
WebSphere MQ

Using .NET

Version 7.0

GC34-6949-00

���

WebSphere MQ

Using .NET

Version 7.0

GC34-6949-00

���

Note

Before using this information and the product it supports, be sure to read the general information under notices at the back

of this book.

First edition (April 2008)

This edition of the book applies to the following:

v IBM WebSphere MQ, Version 7.0

and to any subsequent releases and modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 2003, 2008. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Figures v

Tables vii

Chapter 1. Guidance for users 1

Getting started 1

What are WebSphere MQ classes for .NET? . . . 1

Connection options 1

Installation 2

Using WebSphere MQ classes for .NET 2

Configuring your queue manager to accept

TCP/IP client connections 3

Sample applications 3

Running your own WebSphere MQ .NET

programs 5

Solving WebSphere MQ .NET problems 5

Chapter 2. Programming with

WebSphere MQ classes for .NET 7

Introduction for programmers 7

Why should I use the .NET interface? 7

The WebSphere MQ .NET interface 7

Compiling WebSphere MQ .NET applications . . 7

WebSphere MQ classes for .NET class library . . 7

Writing WebSphere MQ .NET programs 8

Connection differences 8

Example code fragment 10

Operations on queue managers 13

Accessing queues and processes 14

Handling messages 14

Handling errors 16

Getting and setting attribute values 16

Multithreaded programs 17

Using a client channel definition table 17

Using channel exits 17

Secure Sockets Layer (SSL) support 20

Using the .NET Monitor 21

Compiling and testing WebSphere MQ .NET

programs 25

The WebSphere MQ .NET classes and interfaces . . 25

MQAsyncStatus 26

MQAuthenticationInformationRecord 27

MQChannelDefinition 28

MQChannelExit 30

MQDestination 32

MQEnvironment 35

MQException 38

MQGetMessageOptions 39

MQManagedObject 43

MQMessage 46

MQProcess 64

MQPropertyDescriptor 66

MQPutMessageOptions 68

MQQueue 71

MQQueueManager 81

MQSubscription 118

MQTopic 120

MQC 139

Chapter 3. SSL CipherSpecs

supported by WebSphere MQ 141

Notices 143

Index 145

Sending your comments to IBM . . . 147

© Copyright IBM Corp. 2003, 2008 iii

iv WebSphere MQ: Using .NET

Figures

1. WebSphere MQ classes for .NET example code 12

2. Example of transactional processing 22

3. Example of non-transactional processing 23

4. Common routines for examples 24

5. Creating a hash table of properties. 83

© Copyright IBM Corp. 2003, 2008 v

vi WebSphere MQ: Using .NET

Tables

1. Character set identifiers 56 2. Supported CipherSpecs 141

© Copyright IBM Corp. 2003, 2008 vii

viii WebSphere MQ: Using .NET

Chapter 1. Guidance for users

Getting started

This topic gives an overview of WebSphere® MQ classes for .NET and their uses.

What are WebSphere MQ classes for .NET?

WebSphere MQ classes for .NET allow a program written in the .NET

programming framework to connect to WebSphere MQ as a WebSphere MQ client

or to connect directly to a WebSphere MQ server.

Connection options

The following sections describe these options in more detail.

Client bindings connection

To use WebSphere MQ classes for .NET as a WebSphere MQ client, you can install

it, with the WebSphere MQ Client, either on the WebSphere MQ server machine, or

on a separate machine.

Server bindings connection

When used in server bindings mode, WebSphere MQ classes for .NET use the

queue manager API, rather than communicating through a network. This provides

better performance for WebSphere MQ applications than using network

connections.

To use the bindings connection, you must install WebSphere MQ classes for .NET

on the WebSphere MQ server.

Managed client connection

A connection made in this mode connects as a WebSphere MQ client to a

WebSphere MQ server running either on the local or a remote machine.

The WebSphere MQ classes for .NET connecting in this mode remain in .NET

managed code and make no calls to native services. For more information about

managed code, refer to Microsoft® documentation.

Limitations of the managed client:

 The following features are not available in the managed client:

v Channel compression

v SSL support

v XA transactions

Separate channel exits must be written for use with the managed client. You cannot

use existing exits written for a non-managed client.

Communication is supported only over TCP/IP.

© Copyright IBM Corp. 2003, 2008 1

Installation

The WebSphere MQ classes for .NET are installed as part of the standard

WebSphere MQ installation. For installation instructions, see WebSphere MQ for

Windows Quick Beginnings

Prerequisites

To run WebSphere MQ classes for .NET you need the following software:

On 32-bit platforms:

v Microsoft .NET Framework (v1.1.4322) or later.

v Microsoft .NET Framework (v2.0) or later.

On 64-bit platforms:

v Microsoft .NET Framework (v2.0) or later.

What is installed

The latest version of WebSphere MQ classes for .NET is installed with WebSphere

MQ. You might need to override default installation options to make sure this is

done.

The following files are installed:

 File name Description

amqmdnet.dll class libraries

amqmdxcs.dll internal support classes required by

amqmdnet.dll

runmqdnm.exe and endmqdnm.exe control the .NET monitor

amqmdnm.dll IMQObjectTrigger interface definition

amqmdnsp.dll internal support classes

amqmdmsg.dll national language message text

Note:

1. Do not attempt to use any internal support class directly.

2. For more details of the .NET monitor, see “Using the .NET Monitor” on page

21.

Sample applications , including source, are also supplied; see “Sample

applications” on page 3.

Using WebSphere MQ classes for .NET

This chapter describes how to perform the following tasks:

v Configure your system to run the sample programs to verify your WebSphere

MQ classes for .NET installation.

v Modify the process to run your own programs.

2 WebSphere MQ: Using .NET

Configuring your queue manager to accept TCP/IP client

connections

To configure a queue manager to accept incoming connection requests from the

clients:

1. Define a server connection channel:

a. Start the queue manager .

b. Define a sample channel called NET.CHANNEL1:

DEF CHL(’NET.CHANNEL’) CHLTYPE(SVRCONN) TRPTYPE(TCP) MCAUSER(’ ’) +

DESCR(’Sample channel for WebSphere MQ classes for .NET’)

2. Start a listener:

runmqlsr -t tcp [-m qmnqme] [-p portnum]

Note: The square brackets indicate optional parameters; qmname is not required

for the default queue manager, and the port number portnum is not required if

you are using the default (1414).

Sample applications

Three sample applications are supplied:

v A simple put message application

v A simple get message application

v A ’hello world’ application

″Put message″ program SPUT (nmqsput.cs, mmqsput.cpp, vmqsput.vb)

This program shows how to put a message to a named queue. The

program has 3 parameters:

v The name of a queue (required) for example

SYSTEM.DEFAULT.LOCAL.QUEUE

v The name of a queue manager (optional)

v The definition of a channel (optional) for example

SYSTEM.DEF.SVRCONN/TCP/hostname(1414)

If no queue manager name is given, the queue manager defaults to the

default local queue manager. If a channel is defined, it should have the

same format as the MQSERVER environment variable.

″Get message″ program SGET (nmqsget.cs, mmqsget.cpp, vmqsget.vb)

This program shows how to get a message from a named queue. The

program has 3 parameters:

v The name of a queue (required) for example

SYSTEM.DEFAULT.LOCAL.QUEUE

v The name of a queue manager (optional)

v The definition of a channel (optional) for example

SYSTEM.DEF.SVRCONN/TCP/hostname(1414)

If no queue manager name is given, the queue manager defaults to the

default local queue manager. If a channel is defined, it should have the

same format as the MQSERVER environment variable.

1. In this sample, we are not considering security implications. For a production system, consider using SSL or a security exit. See

WebSphere MQ Security for more information.

Chapter 1. Guidance for users 3

″Hello World″ program (nmqwrld.cs, mmqwrld.cpp, vmqwrld.vb)

This program shows how to put and get a message. The program has 3

parameters:

v The name of a queue (optional) for example

SYSTEM.DEFAULT.LOCAL.QUEUE or

SYSTEM.DEFAULT.MODEL.QUEUE

v the name of a queue manager (optional)

v A channel definition (optional) for example SYSTEM.DEF.SVRCONN/
TCP/hostname(1414)

If no queue name is given, the name defaults to

SYSTEM.DEFAULT.LOCAL.QUEUE. If no queue manager name is given,

the queue manager defaults to the default local queue manager.

 You can verify your installation by compiling and running these applications.

The sample applications will be installed to the following locations, according to

the language in which they are written, where mqmtop represents the high-level

directory in which the product has been installed:

C#

 mqmtop\Tools\dotnet\samples\cs\nmqswrld.cs

mqmtop\Tools\dotnet\samples\cs\nmqsput.cs

mqmtop\Tools\dotnet\samples\cs\nmqsget.cs

Managed C++

 mqmtop\Tools\dotnet\samples\mcp\mmqswrld.cpp

mqmtop\Tools\dotnet\samples\mcp\mmqsput.cpp

mqmtop\Tools\dotnet\samples\mcp\mmqsget.cpp

Visual Basic

 mqmtop\Tools\dotnet\samples\vb\vmqswrld.vb

mqmtop\Tools\dotnet\samples\vb\vmqsput.vb

mqmtop\Tools\dotnet\samples\vb\vmqsget.vb

mqmtop\Tools\dotnet\samples\vb\xmqswrld.vb

mqmtop\Tools\dotnet\samples\vb\xmqsput.vb

mqmtop\Tools\dotnet\samples\vb\xmqsget.vb

To build the sample applications a batch file has been supplied for each language.

C#

 mqmtop\Tools\dotnet\samples\cs\bldcssamp.bat

The bldcssamp.bat file contains a line for each sample, which is all that is

necessary to build this sample program:

csc /t:exe /r:System.dll /r:amqmdnet.dll /lib:mqmtop\bin

/out:nmqwrld.exe nmqwrld.cs

Managed C++

 mqmtop\Tools\dotnet\samples\mcp\bldmcpsamp.bat

4 WebSphere MQ: Using .NET

The bldmcpamp.bat file contains a line for each sample, which is all that is

necessary to build this sample program:

cl /clr:oldsyntax mqmtop\bin mmqwrld.cpp

If you want to compile these applications on Microsoft Visual Studio

2003/.NET SDKv1.1, replace the compile command:

cl /clr:oldsyntax mqmtop\bin mmqwrld.cpp

with

cl /clr mqmtop\bin mmqwrld.cpp

Visual Basic

 mqmtop\Tools\dotnet\samples\vb\bldvbsamp.bat

The bldvbsamp.bat file contains a line for each sample, which is all that is

necessary to build this sample program:

vbc /r:System.dll /r:mqmtop\bin\amqmdnet.dll /out:vmqwrld.exe vmqwrld.vb

Running your own WebSphere MQ .NET programs

To run your own .NET applications, use the instructions for the verification

programs, substituting your application name in place of the sample applications.

For information on writing WebSphere MQ classes for .NET applications, see

Chapter 2, “Programming with WebSphere MQ classes for .NET,” on page 7.

Solving WebSphere MQ .NET problems

If a program does not complete successfully, run one of the sample applications,

and follow the advice given in the diagnostic messages.

These sample applications are described in “Using WebSphere MQ classes for

.NET” on page 2.

If the problems continue and you need to contact the IBM® service team, you

might be asked to turn on the trace facility.

Tracing the sample application

For instructions on using the trace facility, refer to “Tracing WebSphere MQ .NET

programs” on page 25.

Error messages

You might see the following common error message:

An unhandled exception of type ’System.IO.FileNotFoundException’ occurred in

unknown module

If this error occurs for either amqmdnet.dll or amqmdxcs.dll, either ensure

that both are registered in the ’Global Assembly Cache’ or create a

configuration file that points to the amqmdnet.dll and amqmdxcs.dll

assemblies. You can examine and change the contents of the assembly

cache using mscorcfg.msc, which is supplied as part of the .NET

framework.

 If the .NET framework was not available when WebSphere MQ was

installed, the classes might not be registered in the global assembly cache.

You can manually rerun the registration process using the command

amqidnet -c mqmtop\bin\amqidotn.txt -l logfile.txt

Chapter 1. Guidance for users 5

Information about this installation is written to the specified log file

(logfile.txt in this example).

6 WebSphere MQ: Using .NET

Chapter 2. Programming with WebSphere MQ classes for

.NET

Introduction for programmers

This topic contains general information for programmers.

For more detailed information about writing programs, see “Writing WebSphere

MQ .NET programs” on page 8.

Why should I use the .NET interface?

If you have applications which use Microsoft’s .NET Framework and wish to take

advantage of the facilities of WebSphere MQ, you must use WebSphere MQ classes

for .NET.

The WebSphere MQ .NET interface

The procedural WebSphere MQ application programming interface is built around

the following verbs:

 MQBACK, MQBEGIN, MQCLOSE, MQCMIT, MQCONN, MQCONNX,

 MQDISC, MQGET, MQINQ, MQOPEN, MQPUT, MQPUT1, MQSET

These verbs all take, as a parameter, a handle to the WebSphere MQ object on

which they are to operate. Because .NET is object-oriented, the .NET programming

interface turns this round. Your program consists of a set of WebSphere MQ

objects, which you act upon by calling methods on those objects.

When you use the procedural interface, you disconnect from a queue manager by

using the call MQDISC(Hconn, CompCode, Reason), where Hconn is a handle to

the queue manager.

In the .NET interface, the queue manager is represented by an object of class

MQQueueManager. You disconnect from the queue manager by calling the

Disconnect() method on that class.

// declare an object of type queue manager

MQQueueManager queueManager=new MQQueueManager();

...

// do something...

...

// disconnect from the queue manager

queueManager.Disconnect();

Compiling WebSphere MQ .NET applications

Before you can compile any applications that you write, you must have access to a

.NET Framework, as detailed in “Prerequisites” on page 2.

WebSphere MQ classes for .NET class library

WebSphere MQ classes for .NET is a set of classes that enable .NET applications to

interact with WebSphere MQ.

The following classes are provided:

© Copyright IBM Corp. 2003, 2008 7

v MQAuthenticationInformationRecord

v MQEnvironment

v MQException

v MQGetMessageOptions

v MQManagedObject

v MQMessage

v MQPutMessageOptions

v MQQueue

v MQQueueManager

The following structure is provided:

v MQC

For details of these, see “The WebSphere MQ .NET classes and interfaces” on page

25

Writing WebSphere MQ .NET programs

To use WebSphere MQ classes for .NET to access WebSphere MQ queues, you

write programs in any language supported by .NET containing calls that put

messages onto, and get messages from, WebSphere MQ queues.

This chapter provides information to assist with writing applications to interact

with WebSphere MQ systems. For details of individual classes, see “The

WebSphere MQ .NET classes and interfaces” on page 25.

Connection differences

The way you program for WebSphere MQ .NET has some dependencies on the

connection modes you want to use.

Managed client connections

When WebSphere MQ classes for .NET are used as a client, it is similar to the

WebSphere MQ C client, but has the following differences:

v The following features are not available:

– Channel compression

– SSL support

– XA transactions
v Channel exits written for a non-managed client will not work. You must write

new exits specifically for the managed client.

v Communication is supported only over TCP/IP.

If you try to use these features with a managed client, it will return an

MQException. If the error is detected at the client end of a connection, it will use

reason code MQRC_ENVIRONMENT_ERROR. If it is detected at the server end,

the reason code returned by the server will be used.

For general information on WebSphere MQ clients, see the WebSphere MQ Clients

book.

8 WebSphere MQ: Using .NET

Defining which connection type to use

The connection type is determined by the setting of the connection name, channel

name, the customization value NMQ_MQ_LIB and the property

MQC.TRANSPORT_PROPERTY.

You can specify the connection name as follows:

v Explicitly on an MQQueueManager constructor:

public MQQueueManager(String queueManagerName, MQLONG Options, string Channel,

string ConnName)

public MQQueueManager(String queueManagerName, string Channel, string ConnName)

v By setting the properties MQC.HOST_NAME_PROPERTY and, optionally,

MQC.PORT_PROPERTY in a hashtable entry on an MQQueueManager

constructor:

public MQQueueManager(String queueManagerName, Hashtable properties)

v As explicit MQEnvironment values

MQEnvironment.Hostname

MQEnvironment.Port(optional).

v By setting the properties MQC.HOST_NAME_PROPERTY and, optionally,

MQC.PORT_PROPERTY in the MQEnvironment.properties hashtable.

You can specify the channel name as follows:

v Explicitly on an MQQueueManager constructor:

public MQQueueManager(String queueManagerName, MQLONG Options, string Channel,

string ConnName)

public MQQueueManager(String queueManagerName, string Channel, string ConnName)

v By setting the property MQC.CHANNEL_PROPERTY in a hashtable entry on an

MQQueueManager constructor:

public MQQueueManager(String queueManagerName, Hashtable properties)

v As an explicit MQEnvironment value

MQEnvironment.Channel

v By setting the property MQC.CHANNEL_PROPERTY in the

MQEnvironment.properties hashtable.

You can specify the transport property as follows:

v By setting the property MQC.TRANSPORT_PROPERTY in a hashtable entry on

an MQQueueManager constructor:

public MQQueueManager(String queueManagerName, Hashtable properties)

v By setting the property MQC.TRANSPORT_PROPERTY in the

MQEnvironment.properties hashtable.

Select the connection type you require by using one of the following values:

 MQC.TRANSPORT_MQSERIES_BINDINGS - connect as server

 MQC.TRANSPORT_MQSERIES_CLIENT - connect as non-XA client

 MQC.TRANSPORT_MQSERIES_XACLIENT - connect as XA client

 MQC.TRANSPORT_MQSERIES_MANAGED - connect as non-XA managed

client.

You can set the customization value NMQ_MQ_LIB to explicitly choose the

connection type as shown in the following table

Chapter 2. Programming with WebSphere MQ classes for .NET 9

NMQ_MQ_LIB value Connection type

mqic32.dll Connect as a non-XA client

mqic32xa.dll Connect as an XA client

mqm.dll Connect as a server

managed Connect as a non-XA managed client

If you choose a connection type which is unavailable in your environment, for

example you specify mqic32xa.dll and don’t have XA support, WebSphere MQ

.NET throws an exception.

Setting NMQ_MQ_LIB to ″managed″ causes the client to use fully-managed

WebSphere MQ problem diagnostics, .NET data conversion, and other

fully-managed low-level WebSphere MQ functions.

All other values for NMQ_MQ_LIB cause the .NET process to use unmanaged

WebSphere MQ problem diagnostics and data conversion, and other unmanaged

low-level WebSphere MQ functions (assuming a WebSphere MQ client or server is

installed on the system).

WebSphere MQ .NET chooses the connection type as follows:

1. If MQC.TRANSPORT_PROPERTY is specified, it connects according to the

value of MQC.TRANSPORT_PROPERTY.

Note, however, that setting MQC.TRANSPORT_PROPERTY to

MQC.TRANSPORT_MQSERIES_MANAGED does not guarantee that the client

process runs fully managed. Even with this setting, the client is not fully

managed in the following cases:

v If another thread in the process has connected with

MQC.TRANSPORT_PROPERTY set to something other than

MQC.TRANSPORT_MQSERIES_MANAGED.

v If NMQ_MQ_LIB is not set to ″managed″, problem diagnostics, data

conversion and other low-level functions are not fully managed (assuming a

WebSphere MQ client or server is installed on the system).
2. If a connection name has been specified without a channel name, or a channel

name has been specified without a connection name, it throws an error.

3. If both a connection name and a channel name have been specified:

v If NMQ_MQ_LIB is set to mqic32xa.dll, it connects as an XA client.

v If NMQ_MQ_LIB is set to managed, it connects as a managed client.

v Otherwise it connects as a non-XA client.
4. If NMQ_MQ_LIB is specified, it connects according to the value of

NMQ_MQ_LIB.

5. If a WebSphere MQ server is installed, it connects as a server.

6. If a WebSphere MQ client is installed, it connects as a non-XA client.

7. Otherwise, it connects as a managed client.

Example code fragment

The following C# code fragment, Figure 1 on page 12, demonstrates an application

that performs three actions:

1. Connect to a queue manager

10 WebSphere MQ: Using .NET

2. Put a message onto SYSTEM.DEFAULT.LOCAL.QUEUE

3. Get the message back

It also shows how to change the connection type.

Chapter 2. Programming with WebSphere MQ classes for .NET 11

// ===

// Licensed Materials - Property of IBM

// 5724-H72

// (c) Copyright IBM Corp. 2003, 2005

// ===

using System;

using System.Collections;

using IBM.WMQ;

class MQSample

{

 // The type of connection to use, this can be:-

 // MQC.TRANSPORT_MQSERIES_BINDINGS for a server connection.

 // MQC.TRANSPORT_MQSERIES_CLIENT for a non-XA client connection

 // MQC.TRANSPORT_MQSERIES_XACLIENT for an XA client connection

 // MQC.TRANSPORT_MQSERIES_MANAGED for a managed client connection

 const String connectionType = MQC.TRANSPORT_MQSERIES_CLIENT;

 // Define the name of the queue manager to use (applies to all connections)

 const String qManager = "your_Q_manager";

 // Define the name of your host connection (applies to client connections only)

 const String hostName = "your_hostname";

 // Define the name of the channel to use (applies to client connections only)

 const String channel = "your_channelname";

 /// <summary>

 /// Initialise the connection properties for the connection type requested

 /// </summary>

 /// <param name="connectionType">One of the MQC.TRANSPORT_MQSERIES_ values</param>

 static Hashtable init(String connectionType)

 {

 Hashtable connectionProperties = new Hashtable();

 // Add the connection type

 connectionProperties.Add(MQC.TRANSPORT_PROPERTY, connectionType);

 // Set up the rest of the connection properties, based on the

 // connection type requested

 switch(connectionType)

 {

 case MQC.TRANSPORT_MQSERIES_BINDINGS:

 break;

 case MQC.TRANSPORT_MQSERIES_CLIENT:

 case MQC.TRANSPORT_MQSERIES_XACLIENT:

 case MQC.TRANSPORT_MQSERIES_MANAGED:

 connectionProperties.Add(MQC.HOST_NAME_PROPERTY, hostName);

 connectionProperties.Add(MQC.CHANNEL_PROPERTY, channel);

 break;

 }

 return connectionProperties;

 }

 /// <summary>

 /// The main entry point for the application.

 /// </summary>

 [STAThread]

 static int Main(string[] args)

 {

 try

 {

 Hashtable connectionProperties = init(connectionType);

 // Create a connection to the queue manager using the connection

 // properties just defined

 MQQueueManager qMgr = new MQQueueManager(qManager, connectionProperties);

 // Set up the options on the queue we wish to open

 int openOptions = MQC.MQOO_INPUT_AS_Q_DEF | MQC.MQOO_OUTPUT;

 // Now specify the queue that we wish to open,and the open options

MQQueue system default local queue =

12 WebSphere MQ: Using .NET

Operations on queue managers

This section describes how to connect to, and disconnect from, a queue manager

using WebSphere MQ classes for .NET.

Setting up the WebSphere MQ environment

The C based WebSphere MQ clients rely on environment variables to control the

behavior of the MQCONN call.

Note: This step is not necessary when using WebSphere MQ classes for .NET in

server bindings mode. In that case, go directly to “Connecting to a queue

manager” on page 14. Before you use the client connection to connect to a queue

manager, you must set up the MQEnvironment.

The .NET programming interface allows you to use the NMQ_MQ_LIB

customization value but also includes a class MQEnvironment. This class allows

you to specify the following details that are to be used during the connection

attempt:

v Channel name

v FIPS required

v Header compression

v Host name

v Key reset count

v Message exit

v Authentication information record array

v Message data compression

v Password

v Port number

v Receive exit

v Receive user data

v Security exit

v Security user data

v Send exits

v Send user data

v SSL cipher specification

v SSL cryptographic hardware

v SSL key repository

v SSL peer name

v User ID

To specify the channel name and host name, use the following code:

MQEnvironment.Hostname = "host.domain.com";

MQEnvironment.Channel = "client.channel";

By default, the clients attempt to connect to a WebSphere MQ listener at port 1414.

To specify a different port, use the code:

MQEnvironment.Port = nnnn;

Chapter 2. Programming with WebSphere MQ classes for .NET 13

Connecting to a queue manager

You are now ready to connect to a queue manager by creating a new instance of

the MQQueueManager class:

MQQueueManager queueManager = new MQQueueManager("qMgrName");

To disconnect from a queue manager, call the Disconnect() method on the queue

manager:

queueManager.Disconnect();

If you call the Disconnect method, all open queues and processes that you have

accessed through that queue manager are closed. However, it is good

programming practice to close these resources explicitly when you finish using

them. To do this, use the Close() method on the object associated with each

resource.

The Commit() and Backout() methods on a queue manager replace the MQCMIT

and MQBACK calls that are used with the procedural interface.

Accessing queues and processes

To access queues, use the MQQueueManager class.

The MQOD (object descriptor structure) is collapsed into the parameters of these

methods. For example, to open a queue on a queue manager represented by an

MQQueueManager object called queueManager, use the following code:

MQQueue queue = queueManager.AccessQueue("qName",

 MQC.MQOO_OUTPUT,

 "qMgrName",

 "dynamicQName",

 "altUserId");

The options parameter is the same as the Options parameter in the MQOPEN call.

The AccessQueue method returns a new object of class MQQueue.

When you have finished using the queue, use the Close() method to close it, as in

the following example:

queue.Close();

With WebSphere MQ .NET, you can also create a queue by using the MQQueue

constructor. The parameters are exactly the same as for the accessQueue method,

with the addition of a queue manager parameter specifying the instantiated

MQQueueManager object to use. For example:

MQQueue queue = new MQQueue(queueManager,

 "qName",

 MQC.MQOO_OUTPUT,

 "qMgrName",

 "dynamicQName",

 "altUserId");

Constructing a queue object in this way enables you to write your own subclasses

of MQQueue.

Handling messages

Put messages onto queues using the Put() method of the MQQueue class.

14 WebSphere MQ: Using .NET

You get messages from queues using the Get() method of the MQQueue class.

Unlike the procedural interface, where MQPUT and MQGET put and get arrays of

bytes, the WebSphere MQ classes for .NET put and get instances of the

MQMessage class. The MQMessage class encapsulates the data buffer that contains

the actual message data, together with all the MQMD (message descriptor)

parameters that describe that message.

To build a new message, create a new instance of the MQMessage class and use

the WriteXXX methods to put data into the message buffer.

When the new message instance is created, all the MQMD parameters are

automatically set to their default values, as defined in the WebSphere MQ

Application Programming Reference. The Put() method of MQQueue also takes an

instance of the MQPutMessageOptions class as a parameter. This class represents

the MQPMO structure. The following example creates a message and puts it onto a

queue:

// Build a new message containing my age followed by my name

MQMessage myMessage = new MQMessage();

myMessage.WriteInt(25);

String name = "Charlie Jordan";

myMessage.WriteUTF(name);

// Use the default put message options...

MQPutMessageOptions pmo = new MQPutMessageOptions();

// put the message!

queue.Put(myMessage,pmo);

The Get() method of MQQueue returns a new instance of MQMessage, which

represents the message just taken from the queue. It also takes an instance of the

MQGetMessageOptions class as a parameter. This class represents the MQGMO

structure.

You do not need to specify a maximum message size, because the Get() method

automatically adjusts the size of its internal buffer to fit the incoming message. Use

the ReadXXX methods of the MQMessage class to access the data in the returned

message.

The following example shows how to get a message from a queue:

// Get a message from the queue

MQMessage theMessage = new MQMessage();

MQGetMessageOptions gmo = new MQGetMessageOptions();

queue.Get(theMessage,gmo); // has default values

// Extract the message data

int age = theMessage.ReadInt();

String name1 = theMessage.ReadUTF();

You can alter the number format that the read and write methods use by setting

the encoding member variable.

You can alter the character set to use for reading and writing strings by setting the

characterSet member variable.

See “MQMessage” on page 46 for more details.

Chapter 2. Programming with WebSphere MQ classes for .NET 15

Note: The WriteUTF() method of MQMessage automatically encodes the length of

the string as well as the Unicode bytes it contains. When your message will be

read by another .NET program (using ReadUTF()), this is the simplest way to send

string information.

Handling errors

Methods in the .NET interface do not return a completion code and reason code.

Instead, they throw an exception whenever the completion code and reason code

resulting from a WebSphere MQ call are not both zero. This simplifies the program

logic so that you do not have to check the return codes after each call to

WebSphere MQ. You can decide at which points in your program you want to deal

with the possibility of failure. At these points, you can surround your code with

try and catch blocks, as in the following example:

try

{

 myQueue.Put(messageA,PutMessageOptionsA);

 myQueue.Put(messageB,PutMessageOptionsB);

}

catch (MQException ex)

{

 // This block of code is only executed if one of

 // the two put methods gave rise to a non-zero

 // completion code or reason code.

 Console.WriteLine("An error occurred during the put operation:" +

 "CC = " + ex.CompletionCode +

 "RC = " + ex.ReasonCode);

 Console.WriteLine("Cause exception:" + ex);

}

The WebSphere MQ call reason codes reported back in .NET exceptions are

documented in a chapter called “Return Codes” in the WebSphere MQ Application

Programming Reference.

Getting and setting attribute values

The classes MQManagedObject, MQQueue, and MQQueueManager contain

properties that allow you to get and set their attribute values. Note that for

MQQueue, the methods work only if you specify the appropriate inquire and set

flags when you open the queue.

For common attributes, the MQQueueManager and MQQueue classes all inherit

from a class called MQManagedObject. This class defines the Inquire() and Set()

interfaces.

When you create a new queue manager object by using the new operator, it is

automatically opened for inquire. When you use the AccessQueue() method to

access a queue object, that object is not automatically opened for either inquire or

set operations, this could cause problems with some types of remote queues. To

use the Inquire and Set methods and to set properties on a queue, you must

specify the appropriate inquire and set flags in the openOptions parameter of the

AccessQueue() method.

The inquire and set methods take three parameters:

v selectors array

v intAttrs array

v charAttrs array

16 WebSphere MQ: Using .NET

You do not need the SelectorCount, IntAttrCount, and CharAttrLength parameters

that are found in MQINQ, because the length of an array is always known. The

following example shows how to make an inquiry on a queue:

//inquire on a queue

int [] selectors = new int [2] ;

int [] intAttrs = new int [1] ;

byte [] charAttrs = new byte [MQC.MQ_Q_DESC_LENGTH];

selectors [0] = MQC.MQIA_DEF_PRIORITY;

selectors [1] = MQC.MQCA_Q_DESC;

queue.Inquire(selectors,intAttrs,charAttrs);

ASCIIEncoding enc = new ASCIIEncoding();

String s1 = "";

s1 = enc.GetString(charAttrs);

Multithreaded programs

Multithreaded programs are hard to avoid. Consider a simple program that

connects to a queue manager and opens a queue at startup. The program displays

a single button on the screen. When a user presses that button, the program fetches

a message from the queue.

The .NET runtime environment is inherently multithreaded. Therefore, your

application initialization occurs in one thread, and the code that executes in

response to the button press executes in a separate thread (the user interface

thread).

The implementation of WebSphere MQ .NET ensures that, for a given connection

(MQQueueManager object instance), all access to the target WebSphere MQ queue

manager is synchronized. The default behaviour is that a thread that wants to

issue a call to a queue manager is blocked until all other calls in progress for that

connection are complete. If you require simultaneous access to the same queue

manager from multiple threads within your program, create a new

MQQueueManager object for each thread that requires concurrent access. (This is

equivalent to issuing a separate MQCONN call for each thread.)

If the default connection options are overridden by

MQC.MQCNO_HANDLE_SHARE_NONE or MQC.MQCNO_SHARE_NO_BLOCK

then the queue manager is no longer synchronized.

Using a client channel definition table

The .NET classes for WebSphere MQ support the use of client definition tables

through the environment variables MQCHLLIB and MQCHLTAB.

MQCHLLIB specifies the directory where the table is located and MQCHLTAB

specifies the actual filename of the table.

Using channel exits

When you use a fully-managed connection, WebSphere MQ .NET allows you to

provide your own send, receive, and security exits.

To implement an exit, you define a new .NET class that implements the

appropriate interface. Three exit interfaces are defined in the WebSphere MQ

package:

v MQSendExit

v MQReceiveExit

Chapter 2. Programming with WebSphere MQ classes for .NET 17

v MQSecurityExit

Note: User exits written using this interface are not supported as channel exits in

the unmanaged environment (that is, when either the C Client or C XA Client are

being used).

The following sample defines a class that implements all three:

class MyMQExits : MQSendExit, MQReceiveExit, MQSecurityExit

{

 // This method comes from the send exit

 byte[] SendExit(MQChannelExit channelExitParms,

 MQChannelDefinition channelDefinition,

 byte[] dataBuffer

 ref int dataOffset

 ref int dataLength

 ref int dataMaxLength)

 {

 // fill in the body of the send exit here

 }

 // This method comes from the receive exit

 byte[] ReceiveExit(MQChannelExit channelExitParms,

 MQChannelDefinition channelDefinition,

 byte[] dataBuffer

 ref int dataOffset

 ref int dataLength

 ref int dataMaxLength)

 {

 // fill in the body of the receive exit here

 }

 // This method comes from the security exit

 byte[] SecurityExit(MQChannelExit channelExitParms,

 MQChannelDefinition channelDefParms,

 byte[] dataBuffer

 ref int dataOffset

 ref int dataLength

 ref int dataMaxLength)

 {

 // fill in the body of the security exit here

 }

}

Each exit is passed an MQChannelExit and an MQChannelDefinition object

instance. These objects represent the MQCXP and MQCD structures defined in the

procedural interface.

The data to be sent by a send exit, and the data received in a security or receive

exit is specified using the exit’s parameters.

On entry, the data at offset dataOffset with length dataLength in the byte array

dataBuffer is the data that is about to be sent by a send exit, and the data received

in a security or receive exit. The parameter dataMaxLength gives the maximum

length (from dataOffset) available to the exit in dataBuffer. Note: For a security exit,

it is possible for the dataBuffer to be null, if this is the first time the exit is called

or the partner end elected to send no data.

On return, the value of dataOffset and dataLength should be set to point to the offset

and length within the returned byte array that the .NET classes should then use.

18 WebSphere MQ: Using .NET

For a send exit, this indicates the data that it should send, and for a security or

receive exit, the data that should be interpreted. The exit should normally return a

byte array; exceptions are a security exit which could elect to send no data, and

any exit called with the INIT or TERM reasons. The simplest form of exit that can

be written therefore is one which does nothing more than return dataBuffer:

The simplest possible exit body is:

{

 return dataBuffer;

}

Specifying channel exits

If you specify a channel name and connection name when creating your

MQQueueManager object (either in the MQEnvironment or on the

MQQueueManager constructor) you can specify channel exits in 2 ways.

In order of precedence, these are:

1. Passing hashtable properties MQC.SECURITY_EXIT_PROPERTY,

MQC.SEND_EXIT_PROPERTY or MQC.RECEIVE_EXIT_PROPERTY on the

MQQueueManager constructor.

2. Setting the MQEnvironment SecurityExit, SendExit or ReceiveExit properties.

If you do not specify a channel name and connection name, the channel exits to

use come from the channel definition picked up from a client channel definition

table. It is not possible to override the values stored in the channel definition. See

WebSphere MQ Clients for more information about channel definition tables.

In each case, the specification takes the form of a string with the following format:

Assembly_name(Class_name)

Class_name is the fully qualified name, including namespace specification, of a

.NET class that implements the IBM.WMQ.MQSecurityExit,

IBM.WMQ.MQSendExit or IBM.WMQ.MQReceiveExit interface (as appropriate).

Assembly_name is the fully qualified location, including file extension, of the

assembly that houses the class. The length of the string is limited to 128 characters.

When necessary, the .NET client code loads and creates an instance of the specified

class by parsing the string specification.

Specifying channel exit user data

Channel exits can have user data associated with them.

If you specify a channel name and connection name when creating your

MQQueueManager object (either in the MQEnvironment or on the

MQQueueManager constructor) you can specify the user data in 2 ways. In order

of precedence, these are:

1. Passing hashtable properties MQC.SECURITY_USERDATA_PROPERTY,

MQC.SEND_USERDATA_PROPERTY or

MQC.RECEIVE_USERDATA_PROPERTY on the MQQueueManager constructor.

2. Setting the MQEnvironment SecurityUserData, SendUserData or

ReceiveUserData properties.

If you do not specify a channel name and connection name, the exit user data

values to use come from the channel definition picked up from the client channel

definition table. It is not possible to override the values stored in the channel

definition. See WebSphere MQ Clients for more information about channel

definition tables.

Chapter 2. Programming with WebSphere MQ classes for .NET 19

In each case, the specification is a string, limited to 32 characters.

Secure Sockets Layer (SSL) support

The following section does not apply to the fully-managed client.

WebSphere MQ classes for .NET client applications support Secure Sockets Layer

(SSL) encryption. SSL provides communication encryption, authentication, and

message integrity. It is typically used to secure communications between any two

peers on the Internet or within an intranet.

Enabling SSL

SSL is supported only for client connections. To enable SSL, you must specify the

CipherSpec to use when communicating with the queue manager, and this must

match the CipherSpec set on the target channel.

To enable SSL, specify the CipherSpec using the SSLCipherSpec static member

variable of MQEnvironment. The following example attaches to a SVRCONN

channel named SECURE.SVRCONN.CHANNEL, which has been set up to require

SSL with a CipherSpec of NULL_MD5:

MQEnvironment.Hostname = "your_hostname";

MQEnvironment.Channel = "SECURE.SVRCONN.CHANNEL";

MQEnvironment.SSLCipherSpec = "NULL_MD5";

MQEnvironment.SSLKeyRepository = @"C:\mqm\key";

MQQueueManager qmgr = new MQQueueManager("your_Q_manager");

See Chapter 3, “SSL CipherSpecs supported by WebSphere MQ,” on page 141 for a

list of CipherSpecs.

The SSLCipherSpec property can also be set using the

MQC.SSL_CIPHER_SPEC_PROPERTY in the hash table of connection properties.

To successfully connect using SSL, the client key store must be set up with

Certificate Authority root certificates chain from which the certificate presented by

the queue manager can be authenticated. Similarly, if SSLClientAuth on the

SVRCONN channel has been set to MQSSL_CLIENT_AUTH_REQUIRED, the client

key store must contain an identifying personal certificate that is trusted by the

queue manager.

Using the distinguished name of the queue manager

The queue manager identifies itself using an SSL certificate, which contains a

Distinguished Name (DN).

A WebSphere MQ .NET client application can use this DN to ensure that it is

communicating with the correct queue manager. A DN pattern is specified using

the sslPeerName variable of MQEnvironment. For example, setting:

 MQEnvironment.SSLPeerName = "CN=QMGR.*, OU=IBM, OU=WEBSPHERE";

allows the connection to succeed only if the queue manager presents a certificate

with a Common Name beginning QMGR., and at least two Organizational Unit

names, the first of which must be IBM and the second WEBSPHERE.

The SSLPeerName property can also be set using the

MQC.SSL_PEER_NAME_PROPERTY in the hash table of connection properties. For

more information about distinguished names and rules for setting peer names,

refer to WebSphere MQ Security.

20 WebSphere MQ: Using .NET

If SSLPeerName is set, connections succeed only if it is set to a valid pattern and

the queue manager presents a matching certificate.

Error handling when using SSL

The following reason codes can be issued by WebSphere MQ classes for .NET

when connecting to a queue manager using SSL:

MQRC_SSL_NOT_ALLOWED

The SSLCipherSpec property was set, but bindings connect was used. Only

client connect supports SSL.

MQRC_SSL_PEER_NAME_MISMATCH

The DN pattern specified in the SSLPeerName property did not match the

DN presented by the queue manager.

MQRC_SSL_PEER_NAME_ERROR

The DN pattern specified in the SSLPeerName property was not valid.

Using the .NET Monitor

The .NET Monitor is an application similar to a WebSphere MQ trigger monitor.

You can create .NET components which will be instantiated whenever a message is

received on a monitored queue, and which will then process that message. The

.NET Monitor is started by the runmqdnm command and stopped by the

endmqdnm command. For details of these commands, see WebSphere MQ System

Administration Guide.

To use the .NET Monitor, you write a component that implements the

IMQObjectTrigger interface, which is defined in amqmdnm.dll.

Components can be either transactional or non-transactional. A transactional

component must inherit from System.EnterpriseServices.ServicedComponent and

be registered as either RequiresTransaction or SupportsTransaction. It must not be

registered as RequiresNew as the .NET Monitor will already have initiated a

transaction.

The component receives MQQueueManager, MQQueue, and MQMessage objects

from runmqdnm. It may also receive a User Parameter string if one was specified,

using the –u command line option, when runmqdnm was invoked. Note that your

component receives the contents of a message that arrived on the monitored queue

in an MQMessage object. It does not have to connect to the queue manager, open

the queue or get the message itself. The component must then process the message

as appropriate and return control to the .NET Monitor.

If your component has been written as a transactional component, it registers

whether it wishes to commit or rollback the transaction using the facilities

provided by System.EnterpriseServices.ServicedComponent.

As the component receives MQQueueManager and MQQueue objects as well as

the message, it has complete context information for that message and can, for

example, open another queue on the same queue manager without needing to

separately connect to WebSphere MQ.

Example code fragments

This section contains two examples of components which obtain a message from

the .NET Monitor and print it, one (Figure 2 on page 22) using transactional

Chapter 2. Programming with WebSphere MQ classes for .NET 21

processing and the other (Figure 3 on page 23) non-transactional processing. A

third example (Figure 4 on page 24) shows common utility routines, applicable to

both the first two examples. All the examples are in C#.

/***/

/* Licensed materials, property of IBM */

/* 63H9336 */

/* (C) Copyright IBM Corp. 2005 */

/***/

using System;

using System.EnterpriseServices;

using IBM.WMQ;

using IBM.WMQMonitor;

[assembly: ApplicationName("dnmsamp")]

// build:

//

// csc -target:library -reference:amqmdnet.dll;amqmdnm.dll TranAssembly.cs

//

// run (with dotnet monitor)

//

// runmqdnm -m <QMNAME> -q <QNAME> -a dnmsamp.dll -c Tran

namespace dnmsamp

{

 [TransactionAttribute(TransactionOption.Required)]

 public class Tran : ServicedComponent, IMQObjectTrigger

 {

 Util util = null;

 [AutoComplete(true)]

 public void Execute(MQQueueManager qmgr, MQQueue queue,

 MQMessage message, string param)

 {

 util = new Util("Tran");

 if (param != null)

 util.Print("PARAM: ’" +param.ToString() + "’");

 util.PrintMessage(message);

 //System.Console.WriteLine("SETTING ABORT");

 //ContextUtil.MyTransactionVote = TransactionVote.Abort;

 System.Console.WriteLine("SETTING COMMIT");

 ContextUtil.SetComplete();

 //ContextUtil.MyTransactionVote = TransactionVote.Commit;

 }

 }

}

Figure 2. Example of transactional processing

22 WebSphere MQ: Using .NET

/***/

/* Licensed materials, property of IBM */

/* 63H9336 */

/* (C) Copyright IBM Corp. 2005 */

/***/

using System;

using IBM.WMQ;

using IBM.WMQMonitor;

// build:

//

// csc -target:library -reference:amqmdnet.dll;amqmdnm.dll NonTranAssembly.cs

//

// run (with dotnet monitor)

//

// runmqdnm -m <QMNAME> -q <QNAME> -a dnmsamp.dll -c NonTran

namespace dnmsamp

{

 public class NonTran : IMQObjectTrigger

 {

 Util util = null;

 public void Execute(MQQueueManager qmgr, MQQueue queue,

 MQMessage message, string param)

 {

 util = new Util("NonTran");

 try

 {

 util.PrintMessage(message);

 }

 catch (Exception ex)

 {

 System.Console.WriteLine(">>> NonTran\n{0}", ex.ToString());

 }

 }

 }

}

Figure 3. Example of non-transactional processing

Chapter 2. Programming with WebSphere MQ classes for .NET 23

/***/

/* Licensed materials, property of IBM */

/* 63H9336 */

/* (C) Copyright IBM Corp. 2005 */

/***/

using System;

using IBM.WMQ;

namespace dnmsamp

{

 /// <summary>

 /// Summary description for Util.

 /// </summary>

 public class Util

 {

 /* -- */

 /* Default prefix string of the namespace. */

 /* -- */

 private string prefixText = "dnmsamp";

 /* -- */

 /* Constructor that takes the replacement prefix string to use. */

 /* -- */

 public Util(String text)

 {

 prefixText = text;

 }

 /* -- */

 /* Display an arbitrary string to the console. */

 /* -- */

 public void Print(String text)

 {

 System.Console.WriteLine("{0} {1}\n", prefixText, text);

 }

 /* -- */

 /* Display the content of the message passed to the console. */

 /* -- */

 public void PrintMessage(MQMessage message)

 {

 if (message.Format.CompareTo(MQC.MQFMT_STRING) == 0)

 {

 try

 {

 string messageText = message.ReadString(message.MessageLength);

 Print(messageText);

 }

 catch(Exception ex)

 {

 Print(ex.ToString());

 }

 }

 else

 {

 Print("UNRECOGNISED FORMAT");

 }

 }

 /* -- */

 /* Convert the byte array into a hex string. */

 /* -- */

 static public string ToHexString(byte[] byteArray)

 {

 string hex = "0123456789ABCDEF";

 string retString = "";

 for(int i = 0; i < byteArray.Length; i++)

{

24 WebSphere MQ: Using .NET

Compiling and testing WebSphere MQ .NET programs

To build a C# application using WebSphere MQ classes for .NET, use the following

command:

csc /t:exe /r:System.dll /r:amqmdnet.dll /lib:mqmtop\bin /out:MyProg.exe MyProg.cs

To build a Visual Basic application using WebSphere MQ classes for .NET, use the

following command:

vbc /r:System.dll /r:mqmtop\bin\amqmdnet.dll /out:MyProg.exe MyProg.vb

To build a Managed C++ application using WebSphere MQ classes for .NET, use

the following command:

cl /clr mqmtop\bin Myprog.cpp

Before you can run WebSphere MQ .NET programs, the Common Language

Runtime (CLR) must be able to locate all the required .NET Assemblies. As part of

the installation process, both amqmdnet.dll and amqmdxcs.dll are registered with

the Global Assembly Cache (GAC).

If the CLR is for some reason unable to locate either amqmdnet.dll or

amqmdxcs.dll, you can direct it to the assemblies in either of the following ways:

v Registering both amqmdnet.dll and amqmdxcs.dll in the GAC.

The commands to register the assemblies are:

gacutil -i mqmtop\bin\amqmdnet.dll

gacutil -i mqmtop\bin\amqmdxcs.dll

v Creating a ’configuration file’ for the WebSphere MQ .NET program.

The configuration file should tell the CLR how to locate the amqmdnet.dll and

amqmdxcs.dll assemblies.

Tracing WebSphere MQ .NET programs

WebSphere MQ .NET uses the standard WebSphere MQ trace facility, which you

can use to produce diagnostic messages if you suspect that there might be a

problem with the code. (You normally need to use this facility only at the request

of IBM service.)

Refer to WebSphere MQ System Administration Guide and WebSphere MQ Script

(MQSC) Command Reference for information on trace commands.

The WebSphere MQ .NET classes and interfaces

This topic describes all the WebSphere MQ .NET classes and interfaces. It includes

details of the variables, constructors, and methods in each class and interface.

The following classes are described:

v “MQAsyncStatus” on page 26

v “MQAuthenticationInformationRecord” on page 27

v “MQChannelDefinition” on page 28

v “MQChannelExit” on page 30

v “MQDestination” on page 32

v “MQEnvironment” on page 35

Chapter 2. Programming with WebSphere MQ classes for .NET 25

v “MQException” on page 38

v “MQGetMessageOptions” on page 39

v “MQManagedObject” on page 43

v “MQMessage” on page 46

v “MQProcess” on page 64

v “MQPropertyDescriptor” on page 66

v “MQPutMessageOptions” on page 68

v “MQQueue” on page 71

v “MQQueueManager” on page 81

v “MQSubscription” on page 118

v “MQTopic” on page 120

The following structure is described:

v “MQC” on page 139

MQAsyncStatus

public class IBM.WMQ.MQAsyncStatus

extends IBM.WMQ.MQBaseObject.

This class encapsulates specific features of the MQSTS data structure. Objects of

this class are used by applications inquiring on the status of previous MQI activity,

for example inquiring on the success of previous asynchronous put operations.

Constructors

MQAsyncStatus

public MQAsyncStatus()

Throws MQException.

Constructor method, constructs an object with fields initialized to zero or

blank as appropriate.

Properties

Properties for MQAsyncStatus

CompCode

public static int CompCode {get;}

The completion code from the first error or warning.

Reason

public static int Reason {get;}

The reason code from the first error or warning.

System.Object

 │

 └─ IBM.WMQ.MQBase

 │

 └─ IBM.WMQ.MQBaseObject

 │

 └─ IBM.WMQ.MQAsyncStatus

26 WebSphere MQ: Using .NET

PutSuccessCount

public static int PutSuccessCount {get;}

The number of successful asynchronous MQI put calls.

PutWarningCount

public static int PutWarningCount { get; }

The number of asynchronous MQI put calls that succeeded with a

warning.

PutFailureCount

public static int PutFailureCount {get;}

The number of failed asynchronous MQI put calls.

ObjectType

public static int ObjectType {get;}

The object type for the first error. The following values are possible:

v MQC.MQOT_ALIAS_Q

v MQC.MQOT_LOCAL_Q

v MQC.MQOT_MODEL_Q

v MQC.MQOT_Q

v MQC.MQOT_REMOTE_Q

v MQC.MQOT_TOPIC

v zero, meaning that no object is returned

ObjectName

public static String ObjectName {get;}

The object name.

ObjectQMgrName

public static String ObjectQMgrName {get;}

The object queue manager name.

ResolvedObjectName

public static String ResolvedObjectName {get;}

The resolved object name.

ResolvedObjectQMgrName

public static String ResolvedObjectQMgrName {get;}

The resolved object queue manager name.

For more detailed descriptions of these properties, see MQSTS Status reporting

structure.

MQAuthenticationInformationRecord

The MQAuthenticationInformationRecord class encapsulates an authentication

information record (MQAIR).

Chapter 2. Programming with WebSphere MQ classes for .NET 27

public class IBM.WMQ.MQAuthenticationInformationRecord

extends System.Object

It allows an application running as a WebSphere MQ client to specify information

about an authenticator that is to be used for the SSL client connection.

Constructors

Creates a new authentication information record.

MQAuthenticationInformationRecord

MQAuthenticationInformationRecord();

Properties

Properties for MQAuthenticationInformationRecord

Version

public long Version {get; set;}

 Structure version number.

AuthInfoType

public long AuthInfoType {get; set;}

 The type of authentication information. The value must be CRLLDAP,

meaning that Certificate Revocation List checking is done using LDAP

servers.

AuthInfoConnName

public String AuthInfoConnName {get; set;}

 The DNS name or IP address of the host on which the LDAP server is

running, with an optional port number. This keyword is required.

LDAPPassword

public String LDAPPassword {get; set;}

 The password associated with the Distinguished Name of the user who is

accessing the LDAP server.

LDAPUserName

public String LDAPUserName {get; set;}

 The Distinguished Name of the user who is accessing the LDAP server.

When you set this property, LDAPUserNameLength and

LDAPUserNamePtr are automatically set correctly.

For more detailed descriptions of these properties, see Attributes for authentication

information objects.

MQChannelDefinition

Use the MQChannelDefinition class to pass information concerning the connection

to the queue manager to the send, receive, and security exits.

System.Object

 │

 └─ IBM.WMQ.MQAuthenticationInformationRecord

System.Object

 │

 └─ IBM.WMQ.MQChannelDefinition

28 WebSphere MQ: Using .NET

public class MQChannelDefinition

extends Object

Properties

Public variables in the MQChannelDefinition class.

ChannelName

public String ChannelName {get; set;}

 The name of the channel through which the connection is established.

ClientChannelWeight

public String ClientChannelWeight

 The client channel weight.

ConnectionAffinity

public String ConnectionAffinity

 The connection affinity.

ConnectionName

public String ConnectionName {get; set;}

 The TCP/IP host name of the computer on which the queue manager

resides.

MaxMessageLength

public int MaxMessageLength {get; set;}

 The maximum length of message that can be sent to the queue manager.

ReceiveExits

public String[] ReceiveExits {get; set;}

 An array of the receive exit locations being used for the channel.

ReceiveUserDatas

public String[] ReceiveUserDatas {get; set;}

 An array of the user data strings associated with each receive exit for the

channel.

SecurityExit

public String SecurityExit {get; set;}

 The security exit location being used for the channel.

SecurityUserData

public String SecurityUserData {get; set;}

 A storage area for the security exit to use. Information placed here is

preserved across invocations of the security exit, and is also available to

the send and receive exits.

SendExits

public String[] SendExits {get; set;}

 An array of the send exit locations being used for the channel.

SendUserDatas

public String[] SendUserDatas {get; set;}

 An array of the user data strings associated with each send exit for the

channel.

SharingConversations

public String[] SharingConversations {get; set;}

Chapter 2. Programming with WebSphere MQ classes for .NET 29

Number of sharing conversations for this channel instance.

SSLCipherSpec

public String SSLCipherSpec {get; set;}

 The SSL Cipher Specification defined for the channel.

SSLPeerName

public String SSLPeerName {get; set;}

 If SSL is used to encrypt data on the wire, this is set to the Distinguished

Name presented by the queue manager during connection. If SSL is not

used, it is left as null.

 For more detailed descriptions of these properties, see MQCD - Channel definition.

MQChannelExit

This class defines context information passed to the send, receive, and security

exits when they are invoked. The exit must set the ExitResponse member variable

to indicate what action the WebSphere MQ Client for .NET should take next.

public class MQChannelExit

extends Object

Note: This class does not apply when connecting directly to WebSphere MQ in

bindings mode.

Properties of MQChannelExit

The properties of MQChannelExit are described.

CapabilityFlags

public int CapabilityFlags {get; set;}

 Indicates the capability of the queue manager.

Only the MQC.MQCF_DIST_LISTS flag is supported.

CurHdrCompression

public int CurHdrCompression {get; set;}

 The type of compression currently being employed on this channel for

message header compression.

CurMsgCompression

public int CurMsgCompression {get; set;}

 The type of compression currently being employed on this channel for

message data compression.

ExitID public int ExitID {get; set;}

 The type of exit that has been invoked. For an MQSecurityExit this is

always MQC.MQXT_CHANNEL_SEC_EXIT; for an MQSendExit this is

always MQC.MQXT_CHANNEL_SEND_EXIT; for an MQReceiveExit this

is always MQC.MQXT_CHANNEL_RCV_EXIT.

ExitNumber

public int ExitNumber {get; set;}

System.Object

 │

 └─ IBM.WMQ.MQChannelExit

30 WebSphere MQ: Using .NET

A zero based index indicating the index of this exit in the array of exits of

the same type. For example, a value of 1 indicates that this is the second

instance of a send exit.

ExitReason

public int ExitReason {get; set;}

 The reason for invoking the exit. Possible values are:

MQC.MQXR_INIT

Exit initialization; called after the channel connection conditions

have been negotiated, but before any security flows have been

sent.

MQC.MQXR_INIT_SEC

Indicates that the exit is to initiate the security dialog with the

queue manager.

MQC.MQXR_SEC_MSG

Indicates to the security exit that a security message has been

received from the queue manager.

MQC.MQXR_TERM

Exit termination; called after the disconnect flows have been sent

but before the socket connection is destroyed.

MQC.MQXR_XMIT

For a send exit, indicates that data is to be transmitted to the

queue manager.

 For a receive exit, indicates that data has been received from the

queue manager.

ExitResponse

public int ExitResponse {get; set;}

 Set by the exit to indicate the action that WebSphere MQ classes for .NET

must take next. Valid values are:

MQC.MQXCC_CLOSE_CHANNEL

Set by any exit to indicate that the connection to the queue

manager must be closed.

MQC.MQXCC_OK

Set by the security exit to indicate that security exchanges are

complete.

 Set by send exit to indicate that the returned data is to be

transmitted to the queue manager.

Set by the receive exit to indicate that the returned data is available

for processing by the WebSphere MQ Client for .NET.

MQC.MQXCC_SEND_AND_REQUEST_SEC_MSG

Set by the security exit to indicate that the returned data is to be

transmitted to the queue manager, and that a response is expected

from the queue manager.

MQC.MQXCC_SEND_SEC_MSG

Set by the security exit to indicate that the returned data is to be

transmitted to the queue manager, and that no response is

expected.

Chapter 2. Programming with WebSphere MQ classes for .NET 31

MQC.MQXCC_SUPPRESS_EXIT

Set by any exit to indicate that it must no longer be called.

MQC.MQXCC_SUPPRESS_FUNCTION

Set by the security exit to indicate that communications with the

queue manager must be shut down.

ExitUserArea

public byte[] ExitUserArea {get; set;}

 A storage area available for the exit to use.

Any data placed in the exitUserArea is preserved by the WebSphere MQ

Client for .NET across exit invocations with the same exitID. (That is, the

send, receive, and security exits each have their own, independent, user

areas.)

FapLevel

public int FapLevel {get; set;}

 The negotiated Format and Protocol (FAP) level.

Hconn

public MQHCONN HConn {get; set;}

 Connection handle for the exit to use when making MQI calls.

MaxSegmentLength

public int MmaxSegmentLength {get; set;}

 The maximum length for any one transmission to a queue manager.

If the exit returns data that is to be sent to the queue manager, the length

of the returned data must not exceed this value.

SharingConversations

public MQBOOL SharingConversations {get; set;}

 Whether the conversation is sharing this channel instance.

UserData

public String UserData {get; set;}

 The user data parameter specified on the channel definition for this specific

exit instance.

 For more detailed descriptions of these properties, see Fields.

MQDestination

MQDestination object for .NET

public class IBM.WMQ.MQDestination

extends IBM.WMQ.MQManagedObject

System.Object

 │

 └─ IBM.WMQ.MQBase

 │

 └─ IBM.WMQ.MQBaseObject

 │

 └─ IBM.WMQ.MQManagedObject

 │

 └─ IBM.WMQ.MQDestination

32 WebSphere MQ: Using .NET

MQDestination is an abstract base class and so cannot be instantiated by itself. It is

designed to contain the common functionality for any WebSphere MQ messaging

destination. MQDestination is a super class for both MQQueue and MQTopic.

Properties

Properties for MQDestination.

CreationDateTime

public DateTime CreationDateTime { get; }

 The date and time that the queue or topic was created. Originally

contained within MQQueue, this property has been moved into the base

MQDestination class.

There is no default value.

DestinationType

public int DestinationType { get; }

Integer value describing the type of destination being used. Initialized from

the sub classes constructor (MQQueue or MQTopic), this value can take

one of these values:

v MQOT_Q

v MQOT_TOPIC

There is no default value.

Constructors

Constructors for MQDestination.

MQDestination

protected MQDestination();

Default constructor. MQDestination is an abstract base class and cannot be

instantiated by itself.

Methods

Methods for MQDestination object.

Put

public void Put(ref MQMessage message);

Throws MQException.

 Places a message onto a queue or publishes a message to a topic. This

method uses a default instance of MQPutMessageOptions to perform the

put or publish. The default MQPutMessageOptions instance differs

depending upon the destination type.

Parameters

message

An MQMessage object containing the Message Descriptor data

(MQMD) and message to be sent. The Message Descriptor

properties of this object can be altered as a consequence of this

method. The values that they have immediately after the

completion of this method are the values that were put to the

queue or published to the topic.

Put

Chapter 2. Programming with WebSphere MQ classes for .NET 33

public void Put(ref MQMessage message,

 MQPutMessageOptions putMessageOptions);

Throws MQException.

 Places a message onto a queue or publishes a message to a topic.

Parameters

message

An MQMessage object containing the Message Descriptor data

(MQMD) and message to be sent. The Message Descriptor

properties of this object can be altered as a consequence of this

method. The values that they have immediately after the

completion of this method are the values that were put to the

queue or published to the topic.

putMessageOptions

Options controlling the action of the put. See

MQPutMessageOptions object “Properties” on page 68.

Get

public void Get(ref MQMessage message);

Throws MQException.

 Retrieves a message from the queue or topic. This method takes an

MQMessage object as a parameter. It uses some of the fields in the object

as input parameters, in particular the messageId and correlationId, so it is

important to ensure that these are set as required.

If the get fails, the MQMessage object is unchanged. If it succeeds, the

message descriptor (member variables) and message data portions of the

MQMessage are completely replaced with the message descriptor and

message data from the incoming message.

This method uses a default instance of MQGetMessageOptions to do the

get. The message option used is MQGMO_NOWAIT.

Parameters

message

An input/output parameter containing the message descriptor

information and the returned message data.

Get

public void Get(ref MQMessage message,

 MQGetMessageOptions getMessageOptions);

Throws MQException.

 Retrieves a message from the queue or topic. This method takes an

MQMessage object as a parameter. It uses some of the fields in the object

as input parameters, in particular the messageId and correlationId, so it is

important to ensure that these are set as required.

If the get fails, the MQMessage object is unchanged. If it succeeds, the

message descriptor (member variables) and message data portions of the

MQMessage are completely replaced with the message descriptor and

message data from the incoming message.

Parameters

34 WebSphere MQ: Using .NET

message

An input/output parameter containing the message descriptor

information and the returned message data.

getMessageOptions

Options controlling the action of the get. See

MQGetMessageOptions object “Properties” on page 40.

Get

public void Get(ref MQMessage message,

 MQGetMessageOptions getMessageOptions,

 int MaxMsgSize);

Throws MQException.

 Retrieves a message from the queue or topic, up to the specified maximum

message size. This method takes an MQMessage object as a parameter. It

uses some of the fields in the object as input parameters, in particular the

messageId and correlationId, so it is important to ensure that these are set

as required.

If the get fails, the MQMessage object is unchanged. If it succeeds, the

message descriptor (member variables) and message data portions of the

MQMessage are completely replaced with the message descriptor and

message data from the incoming message.

Parameters

message

An input/output parameter containing the message descriptor

information and the returned message data.

getMessageOptions

Options controlling the action of the get. See

MQGetMessageOptions object “Properties” on page 40.

MaxMsgSize

The largest message this message object is to receive. If the

message on the queue is larger than this size, one of two things

occurs:

v If the MQGMO_ACCEPT_TRUNCATED_MSG flag is set in the

MQGetMessageOptions object, the message is filled with as

much of the message data as possible. An exception is thrown

with the MQCC_WARNING completion code.

v If the MQGMO_ACCEPT_TRUNCATED_MSG flag is not set, the

message is left on the queue or topic and an exception is thrown

with the MQCC_WARNING completion code and

MQRC_TRUNCATED_MSG_FAILED reason code.

MQEnvironment

The MQEnvironment class is used to control how the MQQueueManager

constructor is called.

System.Object

 │

 └─ IBM.WMQ.MQEnvironment

Chapter 2. Programming with WebSphere MQ classes for .NET 35

public class IBM.WMQ.MQEnvironment

extends System.Object

Constructors

MQEnvironment

public MQEnvironment()

Properties

Properties of the MQEnvironment class.

Note: Variables marked with * do not apply when connecting directly to

WebSphere MQ in server bindings mode.

Channel*

public static String Channel {get; set;}

 The name of the channel to connect to on the target queue manager. You

must set this property before constructing an MQQueueManager instance

for use in client mode.

FipsRequired

public static MQLONG FipsRequired {get; set;}

 Specifies whether only FIPS-certified algorithms are to be used if

cryptography is carried out in WebSphere MQ. If cryptographic hardware

is configured, the cryptographic modules used are those provided by the

hardware product, and these might, or might not, be FIPS-certified to a

particular level. This depends on the hardware product in use.

There are two constants available to use when setting this value:

v MQC.MQSSL_FIPS_NO - this equates to the numeric value 0

v MQC.MQSSL_FIPS_YES - this equates to the numeric value 1

HdrCompList

public static ArrayList HdrCompList {get; set;}

 Header Data Compression List

Hostname*

public static String Hostname {get; set;}

 The TCP/IP host name of the computer on which the WebSphere MQ

server resides. If the host name is not set, and no overriding properties are

set, server bindings mode is used to connect to the local queue manager.

KeyResetCount

public static MQLONG KeyResetCount {get; set;}

 Indicates the number of unencrypted bytes sent and received within an

SSL conversation before the secret key is renegotiated.

MessageExit

public static String MsgExit {get; set;}

 A message exit allows you to send the application data in a particular

content and format. If MessageExit is set to null, no message exit will be

called.

MQAIRArray

public static ArrayList MQAIRArray {get; set;}

 An array of authentication information records.

36 WebSphere MQ: Using .NET

MsgCompList

public static ArrayList MsgCompList {get; set;}

 Message Data Compression List

Password

public static String Password {get; set;}

 The password to be authenticated.

Port* public static int Port {get; set;}

 The port to connect to. This is the port on which the WebSphere MQ server

is listening for incoming connection requests. The default value is 1414.

ReceiveExit

public static String ReceiveExit {get; set;}

 A receive exit allows you to examine and alter data received from a queue

manager. It is normally used in conjunction with a corresponding send exit

at the queue manager. If ReceiveExit is set to null, no receive exit will be

called.

ReceiveUserData

public static String ReceiveUserData {get; set;}

 The user data associated with a receive exit. Limited to 32 characters.

SecurityExit

public static String SecurityExit {get; set;}

 A security exit allows you to customize the security flows that occur when

an attempt is made to connect to a queue manager. If securityExit is set to

null, no security exit will be called.

SecurityUserData

public static String SecurityUserData {get; set;}

 The user data associated with a security exit. Limited to 32 characters.

SendExit

public static String SendExit {get; set;}

 A send exit allows you to examine alter the data sent to a queue manager.

It is normally used in conjunction with a corresponding receive exit at the

queue manager. If SendExit is set to null, no send exit will be called.

SendUserData

public static String SendUserData {get; set;}

 The user data associated with a send exit. Limited to 32 characters.

SharingConversations

public static String SharingConversations {get; set;}

 The SharingConversations field is used on connections from .NET

applications, when these applications are not using a client channel

definition table.

SharingConversations determines the maximum number of conversations

that can be shared on a socket associated with this connection.

A value of 0 means that the channel operates as it did before WebSphere

MQ Version 7.0, with regard to conversation sharing, read ahead, and

heartbeat.

Chapter 2. Programming with WebSphere MQ classes for .NET 37

The field is passed in the hashtable of properties as a

SHARING_CONVERSATIONS_PROPERTY, when instantiating a

WebSphere MQ queue manager.

If you do not specify SharingConversations, a default value of 10 is used.

SSLCipherSpec*

public static String SSLCipherSpec {get; set;}

 If set, SSL is enabled for the connection. Set the SSLCipherSpec to the

value of the CipherSpec set on the SVRCONN channel. If set to null

(default), no SSL encryption is performed.

SSLCryptoHardware

public static String SSLCryptoHardware {get; set;}

 Sets the name of the parameter string required to configure the

cryptographic hardware present on the system. For a full description of

this property, see WebSphere MQ Programmable Command Formats and

Administration Interface. This variable is ignored if sslCipherSpec is null.

SSLKeyRepository

public static String SSLKeyRepository {get; set;}

 This property is set to the fully-qualified file name of the key repository.

If this parameter is set to null (default), the certificate MQSSLKEYR

environment variable will be used to locate the key repository. This

variable is ignored if sslCipherSpec is null.

Note: The . kdb extension is a mandatory part of the file name, but is not

included as part of the value of the parameter. The directory you specify

must exist. WebSphere MQ creates the file the first time it accesses the new

key repository, unless the file already exists.

SSLPeerName*

public static String sslPeerName {get; set;}

 A distinguished name pattern. If sslCipherSpec is set, this variable can be

used to ensure the correct queue manager is used. For a description of the

format for this value, see “Using the distinguished name of the queue

manager” on page 20. If set to null (default), no checking of the queue

manager’s DN is performed. This variable is ignored if sslCipherSpec is

null.

UserId

public static String UserId {get; set;}

 The UserId to be authenticated. The Userid field in the MQCSP structure

gets populated by setting this Userid property. Authentication of this

Userid peroperty can be performed using an API or Security exit.

For more detailed descriptions of these properties, see MQSCO - SSL configuration

options, MQAIR - Authentication information record, Fields.

MQException

An MQException is thrown whenever a WebSphere MQ error occurs.

38 WebSphere MQ: Using .NET

public class IBM.WMQ.MQException

extends System.ApplicationException

Constructors

Construct a new MQException object.

MQException

public MQException(int completionCode,

 int reasonCode)

 Parameters

completionCode

The WebSphere MQ completion code.

reasonCode

The WebSphere MQ reason code.

Properties

CompletionCode

public int CompletionCode {get; set;}

 WebSphere MQ completion code giving rise to the error. The possible

values are:

v MQException.MQCC_WARNING

v MQException.MQCC_FAILED

ReasonCode

public int ReasonCode {get; set;}

 WebSphere MQ reason code describing the error. For a full explanation of

the reason codes, refer to the WebSphere MQ Application Programming

Reference.

MQGetMessageOptions

This class contains options that control the behavior of MQQueue.Get().

public class IBM.WMQ.MQGetMessageOptions

extends IBM.WMQ.MQBaseObject

Note: The behavior of some of the options available in this class depends on the

environment in which they are used. These elements are marked with an asterisk

(*).

System.Object

 │

 └─ System.Exception

 │

 └─ System.ApplicationException

 │

 └─ IBM.WMQ.MQException

System.Object

 │

 └─ IBM.WMQ.MQBase

 │

 └─ IBM.WMQ.MQBaseObject

 │

 └─ IBM.WMQ.MQGetMessageOptions

Chapter 2. Programming with WebSphere MQ classes for .NET 39

Constructors

MQGetMessageOptions

public MQGetMessageOptions()

 Construct a new MQGetMessageOptions object with options set to

MQC.MQGMO_NO_WAIT, a wait interval of zero, and a blank resolved

queue name.

Properties

Properties for MQGetMessageOptions.

GroupStatus*

public int GroupStatus {get;}

 This is an output field that indicates whether the retrieved message is in a

group, and if it is, whether it is the last in the group. Possible values are:

MQC.MQGS_LAST_MSG_IN_GROUP

Message is the last in the group. This is also the value returned if

the group consists of only one message.

MQC.MQGS_MSG_IN_GROUP

Message is in a group, but is not the last in the group.

MQC.MQGS_NOT_IN_GROUP

Message is not in a group.

MatchOptions*

public int MatchOptions {get; set;}

 Selection criteria that determine which message is retrieved. The following

match options can be set:

MQC.MQMO_MATCH_CORREL_ID

Correlation id to be matched.

MQC.MQMO_MATCH_GROUP_ID

Group id to be matched.

MQC.MQMO_MATCH_MSG_ID

Message id to be matched.

MQC.MQMO_MATCH_MSG_SEQ_NUMBER

Match message sequence number.

MQC.MQMO_NONE

No matching required.

Options

public int Options {get; set;}

 Options that control the action of MQQueue.get. Any or none of the

following values can be specified. If more than one option is required, the

values can be added together or combined using the bitwise OR operator.

MQC.MQGMO_ACCEPT_TRUNCATED_MSG

Allow truncation of message data.

MQC.MQGMO_BROWSE_FIRST

Browse from start of queue.

MQC.MQGMO_BROWSE_MSG_UNDER_CURSOR*

Browse message under browse cursor.

40 WebSphere MQ: Using .NET

MQC.MQGMO_BROWSE_NEXT

Browse from the current position in the queue.

MQC.MQGMO_CONVERT

Request the application data to be converted, to conform to the

characterSet and encoding attributes of the MQMessage, before the

data is copied into the message buffer. Because data conversion is

also applied when the data is retrieved from the message buffer,

applications do not typically set this option.

 Using this option can cause problems when converting from single

byte character sets to double byte character sets. Instead, do the

conversion using the readString, readLine, and writeString

methods after the message has been delivered.

MQC.MQGMO_FAIL_IF_QUIESCING

Fail if the queue manager is quiescing.

MQC.MQGMO_LOCK*

Lock the message that is browsed.

MQC.MQGMO_MARK_SKIP_BACKOUT*

Allow a unit of work to be backed out without reinstating the

message on the queue.

MQC.MQGMO_MSG_UNDER_CURSOR

Get message under browse cursor.

MQC.MQGMO_NONE

No other options have been specified; all options assume their

default values.

MQC.MQGMO_NO_SYNCPOINT

Get message without syncpoint control.

MQC.MQGMO_NO_WAIT

Return immediately if there is no suitable message.

MQC.MQGMO_SYNCPOINT

Get the message under syncpoint control; the message is marked

as being unavailable to other applications, but it is deleted from

the queue only when the unit of work is committed. The message

is made available again if the unit of work is backed out.

MQC.MQGMO_SYNCPOINT_IF_PERSISTENT*

Get message with syncpoint control if message is persistent.

MQC.MQGMO_UNLOCK*

Unlock a previously locked message.

MQC.MQGMO_WAIT

Wait for a message to arrive.

Segmenting and grouping WebSphere MQ messages can be sent or

received as a single entity, can be split into several segments for sending

and receiving, and can also be linked to other messages in a group.

Each piece of data that is sent is known as a physical message, which can

be a complete logical message, or a segment of a longer logical message.

Each physical message typically has a different MsgId. All the segments of

a single logical message have the same groupId value and MsgSeqNumber

value, but the Offset value is different for each segment. The Offset field

gives the offset of the data in the physical message from the start of the

Chapter 2. Programming with WebSphere MQ classes for .NET 41

logical message. The segments typically have different MsgId values,

because they are individual physical messages.

Logical messages that form part of a group have the same groupId value,

but each message in the group has a different MsgSeqNumber value.

Messages in a group can also be segmented.

The following options can be used for dealing with segmented or grouped

messages:

MQC.MQGMO_ALL_MSGS_AVAILABLE*

Retrieve messages from a group only when all the messages in the

group are available.

MQC.MQGMO_ALL_SEGMENTS_AVAILABLE*

Retrieve the segments of a logical message only when all the

segments in the group are available.

MQC.MQGMO_COMPLETE_MSG*

Retrieve only complete logical messages.

MQC.MQGMO_LOGICAL_ORDER*

Return messages in groups, and segments of logical messages, in

logical order.

ResolvedQueueName

public String ResolvedQueueName {get;}

 This is an output field that the queue manager sets to the local name of the

queue from which the message was retrieved. This is different from the

name used to open the queue if an alias queue or model queue was

opened.

Segmentation*

public char Segmentation {get;}

 This is an output field that indicates whether segmentation is allowed for

the retrieved message. Possible values are:

MQC.MQSEG_INHIBITED

Segmentation not allowed.

MQC.MQSEG_ALLOWED

Segmentation allowed.

SegmentStatus*

public byte SegmentStatus {get;}

 This is an output field that indicates whether the retrieved message is a

segment of a logical message. If the message is a segment, the flag

indicates whether or not it is the last segment. Possible values are:

MQC.MQSS_LAST_SEGMENT

Message is the last segment of the logical message. This is also the

value returned if the logical message consists of only one segment.

MQC.MQSS_NOT_A_SEGMENT

Message is not a segment.

MQC.MQSS_SEGMENT

Message is a segment, but is not the last segment of the logical

message.

WaitInterval

public int WaitInterval {get; set;}

42 WebSphere MQ: Using .NET

The maximum time (in milliseconds) that an MQQueue.get call waits for a

suitable message to arrive (used in conjunction with

MQC.MQGMO_WAIT). A value of MQC.MQWI_UNLIMITED indicates

that an unlimited wait is required.

For more detailed descriptions of these properties, see MQGMO Get-message

options.

MQManagedObject

public class IBM.WMQ.MQManagedObject

extends IBM.WMQ.MQBaseObject

MQManagedObject is a superclass for MQDestination, MQProcess,

MQQueueManager, and MQSubscription. It provides the ability to inquire and set

attributes of these resources.

Constructors

MQManagedObject

 protected MQManagedObject()

 Constructor method. This object is an abstract base class which cannot be

instantiated by itself.

Methods

Close

public virtual void Close()

Throws MQException.

 Closes the object. No further operations against this resource are permitted

after this method has been called. To change the behavior of the Close

method, set the closeOptions attribute.

Throws MQException if the WebSphere MQ call fails.

GetAttributeString

public String GetAttributeString(int selector,

 int length)

Throws MQException.

 Gets an attribute string.

Throws MQException.

Parameters

length Integer indicating the length of the string required.

System.Object

 │

 └─ IBM.WMQ.MQBase

 │

 └─ IBM.WMQ.MQBaseObject

 │

 └─ IBM.WMQ.MQManagedObject

Chapter 2. Programming with WebSphere MQ classes for .NET 43

selector Integer indicating which attribute is being queried. Suitable

selectors for character attributes are shown in MQCA_*.

Inquire

public void Inquire(int[] selectors,

 int[] intAttrs,

 byte[] charAttrs)

Throws MQException.

 Returns an array of integers and a set of character strings containing the

attributes of an object (queue, process, or queue manager).

The attributes to be queried are specified in the selectors array. Refer to the

WebSphere MQ Application Programming Reference for details of the

permissible selectors.

Many of the more common attributes can be queried using the GetXXX()

methods defined in MQManagedObject, MQQueue and

MQQueueManager.

Parameters

selectors

Integer array identifying the attributes with values to be inquired

on.

intAttrs

The array in which the integer attribute values are returned.

Integer attribute values are returned in the same order as the

integer attribute selectors in the selectors array.

charAttrs

The buffer in which the character attributes are returned,

concatenated. Character attributes are returned in the same order

as the character attribute selectors in the selectors array. The length

of each attribute string is fixed for each attribute.

Throws MQException if the inquire fails.

Set

public void Set(int[] selectors,

 int[] intAttrs,

 byte[] charAttrs)

Throws MQException.

 Sets the attributes defined in the selector’s vector.

The attributes to be set are specified in the selectors array. Refer to the

WebSphere MQ Application Programming Reference for details of the

permissible selectors.

Parameters

selectors

Integer array identifying the attributes with values to be set.

intAttrs

The array of integer attribute values to be set. These values must

be in the same order as the integer attribute selectors in the

selectors array.

44 WebSphere MQ: Using .NET

charAttrs

The buffer in which the character attributes to be set are

concatenated. These values must be in the same order as the

character attribute selectors in the selectors array. The length of

each character attribute is fixed.

Throws MQException if the set fails.

SetAttributeString

public void SetAttributeString(int selector,

 String value,

 int length);

Throws MQException.

 Sets an attribute string.

Throws MQException.

Parameters

selector Integer indicating which attribute is being set. Suitable selectors for

character attributes are shown in MQCA_*

value The string to set as the attribute value.

length Integer indicating the length of the string required.

Properties

AlternateUserId

public String AlternateUserId {get; set;}

 The alternate user ID (if any) specified when this resource was opened.

Setting this attribute has no effect. This property is not valid for

subscriptions and is ignored.

CloseOptions

public int CloseOptions {get; set;}

 Set this attribute to control the way the resource is closed. The default

value is MQC.MQCO_NONE, and this is the only permissible value for all

resources other than permanent dynamic queues, temporary dynamic

queues, subscriptions and topics that are being accessed by the objects that

created them.

For queues and topics the following additional values are permissible:

MQC.MQCO_DELETE

Delete the queue if there are no messages.

MQC.MQCO_DELETE_PURGE

Delete the queue, purging any messages on it.

MQC.MQCO_QUIESCE

Request the queue be closed, receiving a warning if any messages

remain (allowing them to be retrieved before final closing).

For subscriptions the following additional values are permissible:

MQC.MQCO_KEEP_SUB

The subscription is not deleted. This option is valid only if the

original subscription is durable. This is the default value if the

resource is a durable topic.

Chapter 2. Programming with WebSphere MQ classes for .NET 45

MQC.MQCO_REMOVE_SUB

The subscription is deleted. This is the default value if the resource

is a non-durable, unmanaged topic.

MQC.MQCO_PURGE_SUB

The subscription is deleted. This is the default value if the resource

is a non-durable, managed topic.

ConnectionReference

public MQQueueManager ConnectionReference {get;}

 The queue manager to which this resource belongs.

Description

public String MQDescription {get;}

 The description of the resource as held by the queue manager. This

property will return an empty string for subscriptions and topics.

IsOpen

public boolean IsOpen {get;}

 Indicates whether this resource is currently open.

Name public String Name {get;}

 The name of this resource (either the name supplied on the access method,

or the name allocated by the queue manager for a dynamic queue).

OpenOptions

public int OpenOptions {get; set;}

 The options specified when this resource was opened. Setting this attribute

has no effect. This property is not valid for subscriptions.

MQMessage

MQMessage represents both the message descriptor and the data for a WebSphere

MQ message.

public class IBM.WMQ.MQMessage

extends IBM.WMQ.MQBaseObject

implements DataInput, DataOutput

There is group of readXXX methods for reading data from a message, and a group

of writeXXX methods for writing data into a message. The format of numbers and

strings used by these read and write methods can be controlled by the Encoding

and CharacterSet properties. The remaining properties contain control information

that accompanies the application message data when a message travels between

sending and receiving applications. The application can set values into the

property before putting a message to a queue and can read values after retrieving

a message from a queue.

System.Object

 │

 └─ IBM.WMQ.MQBase

 │

 └─ IBM.WMQ.MQBaseObject

 │

 └─ IBM.WMQ.MQMessage

46 WebSphere MQ: Using .NET

Constructors

MQMessage

public MQMessage()

 Creates a new message with default message descriptor information and

an empty message buffer.

Methods

ClearMessage

public void ClearMessage()

Throws IOException.

Discards any data in the message buffer and sets the data offset back to

zero.

ReadBoolean

public bool ReadBoolean()

Throws IOException.

Reads a (signed) byte from the current position in the message buffer.

ReadByte

public byte ReadByte()

Throws IOException.

Reads a byte from the current position in the message buffer.

ReadBytes

public byte[] ReadBytes(int count)

Throws IOException.

Reads byte[’count’] (’count’ bytes) from the buffer starting at the data

pointer. After the data has been read the data pointer is incremented by

’count’.

ReadChar

public char ReadChar()

Throws IOException, EndOfStreamException.

Reads a Unicode character from the current position in the message buffer.

ReadDecimal2

public short ReadDecimal2()

Throws IOException, EndOfStreamException.

Reads a 2-byte packed decimal number (-999 to 999). The behavior of this

method is controlled by the value of the encoding member variable. A

value of MQC.MQENC_DECIMAL_NORMAL reads a big-endian packed

decimal number; a value of MQC.MQENC_DECIMAL_REVERSED reads a

little-endian packed decimal number.

ReadDecimal4

public int readDecimal4()

Throws IOException, EndOfStreamException.

Chapter 2. Programming with WebSphere MQ classes for .NET 47

Reads a 4-byte packed decimal number (-9999999 to 9999999). The behavior

of this method is controlled by the value of the encoding member variable.

A value of MQC.MQENC_DECIMAL_NORMAL reads a big-endian packed

decimal number; a value of MQC.MQENC_DECIMAL_REVERSED reads a

little-endian packed decimal number.

ReadDecimal8

public long ReadDecimal8()

Throws IOException, EndOfStreamException.

Reads an 8-byte packed decimal number (-999999999999999 to

999999999999999). The behavior of this method is controlled by the

encoding member variable. A value of

MQC.MQENC_DECIMAL_NORMAL reads a big-endian packed decimal

number; a value of MQC.MQENC_DECIMAL_REVERSED reads a

little-endian packed decimal number.

ReadDouble

public double ReadDouble()

Throws IOException, EndOfStreamException.

Reads a double from the current position in the message buffer. The value

of the encoding member variable determines the behavior of this method.

Values of MQC.MQENC_FLOAT_IEEE_NORMAL and

MQC.MQENC_FLOAT_IEEE_REVERSED read IEEE standard doubles in

big-endian and little-endian formats respectively.

A value of MQC.MQENC_FLOAT_S390 reads a System/390® format

floating point number.

ReadFloat

public float ReadFloat()

Throws IOException, EndOfStreamException.

Reads a float from the current position in the message buffer. The value of

the encoding member variable determines the behavior of this method.

Values of MQC.MQENC_FLOAT_IEEE_NORMAL and

MQC.MQENC_FLOAT_IEEE_REVERSED read IEEE standard floats in

big-endian and little-endian formats respectively.

A value of MQC.MQENC_FLOAT_S390 reads a System/390 format floating

point number.

ReadFully

public void ReadFully(ref byte[] b)

Throws Exception, EndOfStreamException.

Fills the byte array b with data from the message buffer.

ReadFully

public void ReadFully(ref sbyte[] b)

Throws Exception, EndOfStreamException.

Fills the sbyte array b with data from the message buffer.

ReadFully

48 WebSphere MQ: Using .NET

public void ReadFully(ref byte[] b,

 int off,

 int len)

Throws IOException, EndOfStreamException.

Fills len elements of the byte array b with data from the message buffer,

starting at offset off.

ReadFully

public void ReadFully(ref sbyte[] b,

 int off,

 int len)

Throws IOException, EndOfStreamException.

Fills len elements of the sbyte array b with data from the message buffer,

starting at offset off.

ReadInt

public int ReadInt()

Throws IOException, EndOfStreamException.

Reads an integer from the current position in the message buffer. The value

of the encoding member variable determines the behavior of this method.

A value of MQC.MQENC_INTEGER_NORMAL reads a big-endian integer;

a value of MQC.MQENC_INTEGER_REVERSED reads a little-endian

integer.

ReadInt2

public short ReadInt2()

Throws IOException, EndOfStreamException.

Synonym for ReadShort(), provided for cross-language WebSphere MQ API

compatibility.

ReadInt4

public int ReadInt4()

Throws IOException, EndOfStreamException.

Synonym for ReadInt(), provided for cross-language WebSphere MQ API

compatibility.

ReadInt8

public long ReadInt8()

Throws IOException, EndOfStreamException.

Synonym for ReadLong(), provided for cross-language WebSphere MQ API

compatibility.

ReadLine

public String ReadLine()

Throws IOException.

Converts from the codeset identified in the characterSet member variable

to Unicode, and then reads in a line that has been terminated by \n, \r,

\r\n, or EOF.

Chapter 2. Programming with WebSphere MQ classes for .NET 49

ReadLong

public long ReadLong()

Throws IOException, EndOfStreamException.

Reads a long from the current position in the message buffer. The value of

the encoding member variable determines the behavior of this method.

A value of MQC.MQENC_INTEGER_NORMAL reads a big-endian long; a

value of MQC.MQENC_INTEGER_REVERSED reads a little-endian long.

ReadObject

public Object ReadObject()

Throws SerialisationException, IOException.

Reads an object from the message buffer. The class of the object, the

signature of the class, and the value of the non-transient and non-static

fields of the class are all read.

ReadShort

public short ReadShort()

Throws IOException, EndOfStreamException.

Reads a short from the current position in the message buffer. The value of

the encoding member variable determines the behavior of this method.

A value of MQC.MQENC_INTEGER_NORMAL reads a big-endian short; a

value of MQC.MQENC_INTEGER_REVERSED reads a little-endian short.

ReadString

public String ReadString(int length)

Throws IOException, EndOfStreamException.

Reads a string in the codeset identified by the characterSet member

variable, and convert it into Unicode.

Parameters:

length The number of characters to read (which may differ from the

number of bytes according to the codeset, because some codesets

use more than one byte per character).

ReadUInt2

public ushort ReadUInt2()

Throws IOException, EndOfStreamException.

Synonym for ReadUnsignedShort(), provided for cross-language

WebSphere MQ API compatibility.

ReadUnsignedByte

public byte ReadUnsignedByte()

Throws IOException, EndOfStreamException.

Reads an unsigned byte from the current position in the message buffer.

ReadUnsignedShort

public ushort ReadUnsignedShort()

50 WebSphere MQ: Using .NET

Throws IOException, EndOfStreamException.

Reads an unsigned short from the current position in the message buffer.

The value of the encoding member variable determines the behavior of this

method.

A value of MQC.MQENC_INTEGER_NORMAL reads a big-endian

unsigned short; a value of MQC.MQENC_INTEGER_REVERSED reads a

little-endian unsigned short.

ReadUTF

public String ReadUTF()

Throws IOException.

Reads a UTF string, prefixed by a 2-byte length field, from the current

position in the message buffer.

ResizeBuffer

public void ResizeBuffer(int size)

Throws IOException.

A hint to the MQMessage object about the size of buffer that might be

required for subsequent get operations. If the message currently contains

message data, and the new size is less than the current size, the message

data is truncated.

Seek

public void Seek(int pos)

Throws IOException, ArgumentOutOfRangeException ArgumentException.

Moves the cursor to the absolute position in the message buffer given by

pos. Subsequent reads and writes act at this position in the buffer.

SkipBytes

public int SkipBytes(int n)

Throws IOException, EndOfStreamException.

Moves forward n bytes in the message buffer.

This method blocks until one of the following occurs:

v All the bytes are skipped

v The end of message buffer is detected

v An exception is thrown

Returns the number of bytes skipped, which is always n.

Write

public void Write(int b)

Throws IOException.

Writes a byte into the message buffer at the current position.

Write

public void Write(byte[] b)

Throws IOException.

Chapter 2. Programming with WebSphere MQ classes for .NET 51

Writes an array of bytes into the message buffer at the current position.

Write

public void Write(sbyte[] b)

Throws IOException.

Writes an array of sbytes into the message buffer at the current position.

Write

public void Write(byte[] b,

 int off,

 int len)

Throws IOException.

Writes a series of bytes into the message buffer at the current position. len

bytes are written, taken from offset off in the array b.

Write

public void Write(sbyte b[],

 int off,

 int len)

Throws IOException.

Writes a series of sbytes into the message buffer at the current position. len

sbytes are written, taken from offset off in the array b.

WriteBoolean

public void WriteBoolean(boolean v)

Throws IOException.

Writes a boolean into the message buffer at the current position.

WriteByte

public void WriteByte(int v)

Throws IOException.

Writes a byte into the message buffer at the current position.

WriteByte

public void WriteByte(byte value)

Throws IOException.

Writes a byte into the message buffer at the current position.

WriteByte

public void WriteByte(sbyte value)

Throws IOException.

Writes an sbyte into the message buffer at the current position.

WriteBytes

public void WriteBytes(String s)

Throws IOException.

52 WebSphere MQ: Using .NET

Writes the string to the message buffer as a sequence of bytes. Each

character in the string is written in sequence by discarding its high eight

bits.

WriteChar

public void WriteChar(int v)

Throws IOException.

Writes a Unicode character into the message buffer at the current position.

WriteChars

public void WriteChars(String s)

Throws IOException.

Writes a string as a sequence of Unicode characters into the message buffer

at the current position.

WriteDecimal2

public void WriteDecimal2(short v)

Throws IOException, MQException.

Writes a 2-byte packed decimal format number into the message buffer at

the current position. The value of the encoding member variable

determines the behavior of this method.

A value of MQC.MQENC_DECIMAL_NORMAL writes a big-endian

packed decimal; a value of MQC.MQENC_DECIMAL_REVERSED writes a

little-endian packed decimal.

Parameters

v can be in the range -999 to 999.

WriteDecimal4

public void WriteDecimal4(int v)

Throws IOException, MQException.

Writes a 4-byte packed decimal format number into the message buffer at

the current position. The value of the encoding member variable

determines the behavior of this method.

A value of MQC.MQENC_DECIMAL_NORMAL writes a big-endian

packed decimal; a value of MQC.MQENC_DECIMAL_REVERSED writes a

little-endian packed decimal.

Parameters

v can be in the range -9999999 to 9999999.

WriteDecimal8

public void WriteDecimal8(long v)

Throws IOException, MQException.

Writes an 8-byte packed decimal format number into the message buffer at

the current position. The value of the encoding member variable

determines the behavior of this method.

Chapter 2. Programming with WebSphere MQ classes for .NET 53

A value of MQC.MQENC_DECIMAL_NORMAL writes a big-endian

packed decimal; a value of MQC.MQENC_DECIMAL_REVERSED writes a

little-endian packed decimal.

Parameters:

v can be in the range -999999999999999 to 999999999999999.

WriteDouble

public void WriteDouble(double v)

Throws IOException, MQException.

Writes a double into the message buffer at the current position. The value

of the encoding member variable determines the behavior of this method.

Values of MQC.MQENC_FLOAT_IEEE_NORMAL and

MQC.MQENC_FLOAT_IEEE_REVERSED write IEEE standard floats in

big-endian and little-endian formats respectively.

A value of MQC.MQENC_FLOAT_S390 writes a System/390 format

floating point number. Note that the range of IEEE doubles is greater than

the range of S/390® double precision floating point numbers, so very large

numbers cannot be converted.

WriteFloat

public void WriteFloat(float v)

Throws IOException, MQException.

Writes a float into the message buffer at the current position. The value of

the encoding member variable determines the behavior of this method.

Values of MQC.MQENC_FLOAT_IEEE_NORMAL and

MQC.MQENC_FLOAT_IEEE_REVERSED write IEEE standard floats in

big-endian and little-endian formats respectively.

A value of MQC.MQENC_FLOAT_S390 writes a System/390 format

floating point number.

WriteInt

public void WriteInt(int v)

Throws IOException.

Writes an integer into the message buffer at the current position. The value

of the encoding member variable determines the behavior of this method.

A value of MQC.MQENC_INTEGER_NORMAL writes a big-endian

integer; a value of MQC.MQENC_INTEGER_REVERSED writes a

little-endian integer.

WriteInt2

public void WriteInt2(int v)

Throws IOException.

Synonym for WriteShort(), provided for cross-language WebSphere MQ

API compatibility.

WriteInt4

public void WriteInt4(int v)

54 WebSphere MQ: Using .NET

Throws IOException.

Synonym for WriteInt(), provided for cross-language WebSphere MQ API

compatibility.

WriteInt8

public void WriteInt8(long v)

Throws IOException.

Synonym for WriteLong(), provided for cross-language WebSphere MQ API

compatibility.

WriteLong

public void WriteLong(long v)

Throws IOException.

Writes a long into the message buffer at the current position. The value of

the encoding member variable determines the behavior of this method.

A value of MQC.MQENC_INTEGER_NORMAL writes a big-endian long; a

value of MQC.MQENC_INTEGER_REVERSED writes a little-endian long.

WriteObject

public void WriteObject(Object obj)

Throws IOException.

Writes the specified object to the message buffer. The class of the object, the

signature of the class, and the values of the non-transient and non-static

fields of the class and all its supertypes are all written.

WriteShort

public void WriteShort(int v)

Throws IOException.

Writes a short into the message buffer at the current position. The value of

the encoding member variable determines the behavior of this method.

A value of MQC.MQENC_INTEGER_NORMAL writes a big-endian short;

a value of MQC.MQENC_INTEGER_REVERSED writes a little-endian

short.

WriteString

public void WriteString(String str)

Throws IOException.

Writes a string into the message buffer at the current position, converting it

to the codeset identified by the characterSet member variable.

WriteUTF

public void WriteUTF(String str)

Throws IOException.

Writes a UTF string, prefixed by a 2-byte length field, into the message

buffer at the current position.

Properties

Properties for MQMessage.

Chapter 2. Programming with WebSphere MQ classes for .NET 55

AccountingToken

public String AccountingToken {get; set;}

 Part of the identity context of the message; it allows an application to

charge for work done as a result of the message.

The default value is MQC.MQACT_NONE.

ApplicationIdData

public String ApplicationIdData {get; set;}

 Part of the identity context of the message; it is information that is defined

by the application suite, and can be used to provide additional information

about the message or its originator.

The default value is ″″.

ApplicationOriginData

public String ApplicationOriginData {get; set;}

 Information defined by the application that can be used to provide

additional information about the origin of the message.

The default value is ″″.

BackoutCount

public int BackoutCount {get;}

 A count of the number of times the message has previously been returned

by an MQQueue.Get() call as part of a unit of work, and subsequently

backed out.

The default value is zero.

CharacterSet

public int CharacterSet {get; set;}

 The coded character set identifier of character data in the application

message data. The behavior of the ReadString, ReadLine, and WriteString

methods is altered accordingly.

The default value for this field is MQC.MQCCSI_Q_MGR. If the default

value is used, CharacterSet 1200 (Unicode) is assumed. The following table

shows coded character set identifiers and the characterSet values to use:

 Table 1. Character set identifiers

characterSet Description

37 ibm037

437 ibm437 / PC Original

500 ibm500

819 iso-8859-1 / latin1 / ibm819

1200 Unicode

1208 UTF-8

273 ibm273

277 ibm277

278 ibm278

280 ibm280

284 ibm284

285 ibm285

297 ibm297

420 ibm420

424 ibm424

56 WebSphere MQ: Using .NET

Table 1. Character set identifiers (continued)

characterSet Description

737 ibm737 / PC Greek

775 ibm775 / PC Baltic

813 iso-8859-7 / greek / ibm813

838 ibm838

850 ibm850 / PC Latin 1

852 ibm852 / PC Latin 2

855 ibm855 / PC Cyrillic

856 ibm856

857 ibm857 / PC Turkish

860 ibm860 / PC Portuguese

861 ibm861 / PC Icelandic

862 ibm862 / PC Hebrew

863 ibm863 / PC Canadian French

864 ibm864 / PC Arabic

865 ibm865 / PC Nordic

866 ibm866 / PC Russian

868 ibm868

869 ibm869 / PC Modern Greek

870 ibm870

871 ibm871

874 ibm874

875 ibm875

912 iso-8859-2 / latin2 / ibm912

913 iso-8859-3 / latin3 / ibm913

914 iso-8859-4 / latin4 / ibm914

915 iso-8859-5 / cyrillic / ibm915

916 iso-8859-8 / hebrew / ibm916

918 ibm918

920 iso-8859-9 / latin5 / ibm920

921 ibm921

922 ibm922

930 ibm930

932 PC Japanese

933 ibm933

935 ibm935

937 ibm937

939 ibm939

942 ibm942

948 ibm948

949 ibm949

950 ibm950 / Big 5 Traditional Chinese

954 EUCJIS

964 ibm964 / CNS 11643 Traditional Chinese

970 ibm970

1006 ibm1006

1025 ibm1025

1026 ibm1026

1089 iso-8859-6 / arabic / ibm1089

1097 ibm1097

1098 ibm1098

1112 ibm1112

1122 ibm1122

Chapter 2. Programming with WebSphere MQ classes for .NET 57

Table 1. Character set identifiers (continued)

characterSet Description

1123 ibm1123

1124 ibm1124

1250 Windows® Latin 2

1251 Windows Cyrillic

1252 Windows Latin 1

1253 Windows Greek

1254 Windows Turkish

1255 Windows Hebrew

1256 Windows Arabic

1257 Windows Baltic

1258 Windows Vietnamese

1381 ibm1381

1383 ibm1383

2022 JIS

5601 ksc-5601 Korean

33722 ibm33722

CorrelationId

public byte[] CorrelationId {get;set;}

 For an MQQueue.Get() call, the correlation identifier of the message to be

retrieved. Normally the queue manager returns the first message with a

message identifier and correlation identifier that match those specified. The

special value MQC.MQCI_NONE allows any correlation identifier to

match.

For an MQQueue.Put() call, this specifies the correlation identifier to use.

The default value is MQC.MQCI_NONE.

DataLength

public int DataLength {get;}

 The number of bytes of message data remaining to be read.

DataOffset

public int DataOffset {get; set;}

 The current cursor position within the message data (the point at which

read and write operations take effect).

Encoding

public int Encoding {get; set;}

 The representation used for numeric values in the application message

data; this applies to binary, packed decimal, and floating point data. The

behavior of the read and write methods for these numeric formats is

altered accordingly.

The following encodings are defined for binary integers:

MQC.MQENC_INTEGER_NORMAL

Big-endian integers.

MQC.MQENC_INTEGER_REVERSED

Little-endian integers, as used by PCs.

The following encodings are defined for packed-decimal integers:

58 WebSphere MQ: Using .NET

MQC.MQENC_DECIMAL_NORMAL

Big-endian packed-decimal, as used by z/OS®.

MQC.MQENC_DECIMAL_REVERSED

Little-endian packed-decimal.

The following encodings are defined for floating-point numbers:

MQC.MQENC_FLOAT_IEEE_NORMAL

Big-endian IEEE floats.

MQC.MQENC_FLOAT_IEEE_REVERSED

Little-endian IEEE floats, as used by PCs.

MQC.MQENC_FLOAT_S390

z/OS format floating points.

Construct a value for the encoding field by adding together one value from

each of these three sections (or using the bitwise OR operator). The default

value is: MQC.MQENC_INTEGER_REVERSED |

MQC.MQENC_DECIMAL_REVERSED |

MQC.MQENC_FLOAT_IEEE_REVERSED For convenience, this value is

also represented by MQC.MQENC_NATIVE. This setting causes WriteInt()

to write a little-endian integer, and ReadInt() to read a little-endian integer.

If you set the flag MQC.MQENC_INTEGER_NORMAL flag instead,

WriteInt() writes a big-endian integer, and ReadInt() reads a big-endian

integer.

A loss in precision can occur when converting from IEEE format floating

points to zSeries® format floating points.

Expiry public int Expiry {get; set;}

 An expiry time expressed in tenths of a second, set by the application that

puts the message. After a message’s expiry time has elapsed, it is eligible

to be discarded by the queue manager. If the message specified one of the

MQC.MQRO_EXPIRATION flags, a report is generated when the message

is discarded.

The default value is MQC.MQEI_UNLIMITED, meaning that the message

never expires.

Feedback

public int Feedback {get; set;}

 Used with a message of type MQC.MQMT_REPORT to indicate the nature

of the report. The following feedback codes are defined by the system:

v MQC.MQFB_EXPIRATION

v MQC.MQFB_COA

v MQC.MQFB_COD

v MQC.MQFB_QUIT

v MQC.MQFB_PAN

v MQC.MQFB_NAN

v MQC.MQFB_DATA_LENGTH_ZERO

v MQC.MQFB_DATA_LENGTH_NEGATIVE

v MQC.MQFB_DATA_LENGTH_TOO_BIG

v MQC.MQFB_BUFFER_OVERFLOW

v MQC.MQFB_LENGTH_OFF_BY_ONE

v MQC.MQFB_IIH_ERROR

Chapter 2. Programming with WebSphere MQ classes for .NET 59

Application-defined feedback values in the range

MQC.MQFB_APPL_FIRST to MQC.MQFB_APPL_LAST can also be used.

The default value of this field is MQC.MQFB_NONE, indicating that no

feedback is provided.

Format

public String Format {get; set;}

 A format name used by the sender of the message to indicate the nature of

the data in the message to the receiver. You can use your own format

names, but names beginning with the letters MQ have meanings that are

defined by the queue manager. The queue manager built-in formats are:

MQC.MQFMT_ADMIN

Command server request/reply message.

MQC.MQFMT_COMMAND_1

Type 1 command reply message.

MQC.MQFMT_COMMAND_2

Type 2 command reply message.

MQC.MQFMT_DEAD_LETTER_HEADER

Dead-letter header.

MQC.MQFMT_EVENT

Event message.

MQC.MQFMT_NONE

No format name.

MQC.MQFMT_PCF

User-defined message in programmable command format.

MQC.MQFMT_STRING

Message consisting entirely of characters.

MQC.MQFMT_TRIGGER

Trigger message

MQC.MQFMT_XMIT_Q_HEADER

Transmission queue header.

The default value is MQC.MQFMT_NONE.

GroupId

public byte[] GroupId {get; set;}

 A byte string that identifies the message group to which the physical

message belongs.

The default value is MQC.MQGI_NONE.

MessageFlags

public int MessageFlags {get; set;}

 Flags controlling the segmentation and status of a message.

MessageId

public byte[] MessageId {get; set;}

 For an MQQueue.Get() call, this field specifies the message identifier of the

message to be retrieved. Normally, the queue manager returns the first

60 WebSphere MQ: Using .NET

message with a message identifier and correlation identifier that match

those specified. The special value MQC.MQMI_NONE allows any message

identifier to match.

For an MQQueue.Put() call, this field specifies the message identifier to

use. If MQC.MQMI_NONE is specified, the queue manager generates a

unique message identifier when the message is put. The value of this

member variable is updated after the put, to indicate the message identifier

that was used.

The default value is MQC.MQMI_NONE.

MessageLength

public int MessageLength {get;}

 The number of bytes of message data in the MQMessage object.

MessageSequenceNumber

public int MessageSequenceNumber {get; set;}

 The sequence number of a logical message within a group.

MessageType

public int MessageType {get; set;}

 Indicates the type of the message. The following values are currently

defined by the system:

v MQC.MQMT_DATAGRAM

v MQC.MQMT_REPLY

v MQC.MQMT_REPORT

v MQC.MQMT_REQUEST

Application-defined values can also be used, in the range

MQC.MQMT_APPL_FIRST to MQC.MQMT_APPL_LAST.

The default value of this field is MQC.MQMT_DATAGRAM.

Offset public int Offset {get; set;}

 In a segmented message, the offset of data in a physical message from the

start of a logical message.

OriginalLength

public int OriginalLength {get; set;}

 The original length of a segmented message.

Persistence

public int Persistence {get; set;}

 Message persistence. The following values are defined:

v MQC.MQPER_NOT_PERSISTENT

v MQC.MQPER_PERSISTENT

v MQC.MQPER_PERSISTENCE_AS_Q_DEF

The default value is MQC.MQPER_PERSISTENCE_AS_Q_DEF, which takes

the persistence for the message from the default persistence attribute of the

destination queue.

Priority

public int Priority {get; set;}

 The message priority. The special value

MQC.MQPRI_PRIORITY_AS_Q_DEF can also be set in outbound

Chapter 2. Programming with WebSphere MQ classes for .NET 61

messages, in which case the priority for the message is taken from the

default priority attribute of the destination queue.

The default value is MQC.MQPRI_PRIORITY_AS_Q_DEF.

PropertyValidation

public int PropertyValidation {get; set;}

 Specifies whether validation of properties will take place when a property

of the message is set. Possible values are:

v MQCMHO_DEFAULT_VALIDATION

v MQCMHO_VALIDATE

v MQCMHO_NO_VALIDATION

The default value is MQCMHO_DEFAULT_VALIDATION.

PutApplicationName

public String PutApplicationName {get; set;}

 The name of the application that put the message. The default value is ″″.

PutApplicationType

public int PutApplicationType {get; set;}

 The type of application that put the message. This can be a system-defined

or user-defined value. The following values are defined by the system:

v MQC.MQAT_AIX

v MQC.MQAT_CICS

v MQC.MQAT_DOS

v MQC.MQAT_IMS

v MQC.MQAT_MVS

v MQC.MQAT_OS2

v MQC.MQAT_OS400

v MQC.MQAT_QMGR

v MQC.MQAT_UNIX

v MQC.MQAT_WINDOWS

v MQC.MQAT_JAVA

The default value is the special value MQC.MQAT_NO_CONTEXT, which

indicates that no context information is present in the message.

PutDateTime

public DateTime PutDateTime {get; set;}

 The time and date that the message was put.

ReplyToQueueManagerName

public String ReplyToQueueManagerName {get; set;}

 The name of the queue manager to which reply or report messages will be

sent.

The default value is ″″.

If the value is ″″ on an MQQueue.put() call, the QueueManager fills in the

value.

ReplyToQueueName

public String ReplyToQueueName {get; set;}

62 WebSphere MQ: Using .NET

The name of the message queue to which the application that issued the

get request for the message will send MQC.MQMT_REPLY and

MQC.MQMT_REPORT messages.

The default value is ″″.

Report

public int Report {get; set;}

 A report is a message about another message. This member variable

enables the application sending the original message to specify which

report messages are required, whether the application message data is to

be included in them, and how to set the message and correlation identifiers

in the report or reply. Any, all, or none of the following report types can be

requested:

v Exception

v Expiration

v Confirm on arrival

v Confirm on delivery

For each type, only one of the three corresponding values can be specified,

depending on whether the application message data is to be included in

the report message.

Note: Values marked with ** in the following list are not supported by

z/OS queue managers; do not use them if your application is likely to

access a z/OS queue manager, regardless of the platform on which the

application is running.

The valid values are:

v MQC.MQRO_COA

v MQC.MQRO_COA_WITH_DATA

v MQC.MQRO_COA_WITH_FULL_DATA**

v MQC.MQRO_COD

v MQC.MQRO_COD_WITH_DATA

v MQC.MQRO_COD_WITH_FULL_DATA**

v MQC.MQRO_EXCEPTION

v MQC.MQRO_EXCEPTION_WITH_DATA

v MQC.MQRO_EXCEPTION_WITH_FULL_DATA**

v MQC.MQRO_EXPIRATION

v MQC.MQRO_EXPIRATION_WITH_DATA

v MQC.MQRO_EXPIRATION_WITH_FULL_DATA**

You can specify one of the following to control how the message Id is

generated for the report or reply message:

v MQC.MQRO_NEW_MSG_ID

v MQC.MQRO_PASS_MSG_ID

You can specify one of the following to control how the correlation Id of

the report or reply message is to be set:

v MQC.MQRO_COPY_MSG_ID_TO_CORREL_ID

v MQC.MQRO_PASS_CORREL_ID

You can specify one of the following to control the disposition of the

original message when it cannot be delivered to the destination queue:

Chapter 2. Programming with WebSphere MQ classes for .NET 63

v MQC.MQRO_DEAD_LETTER_Q

v MQC.MQRO_DISCARD_MSG **

If no report options are specified, the default is:

MQC.MQRO_NEW_MSG_ID |

MQC.MQRO_COPY_MSG_ID_TO_CORREL_ID |

MQC.MQRO_DEAD_LETTER_Q

You can specify one or both of the following to request that the receiving

application sends a positive action or negative action report message.

v MQC.MQRO_PAN

v MQC.MQRO_NAN

TotalMessageLength

public int TotalMessageLength {get;}

 The total number of bytes in the message as stored on the message queue

from which this message was received.

UserId

public String UserId {get; set;}

 Part of the identity context of the message; it identifies the user that

originated this message.

The default value is ″″.

Version

public int Version {get; set;}

 The version of the MQMD structure in use.

For more detailed descriptions of these properties, see MQMD - message

descriptor fields.

MQProcess

MQProcess object for .NET

public class IBM.WMQ.MQProcess

extends IBM.WMQ.MQManagedObject

MQProcess provides inquire operations for WebSphere MQ processes. Use either

the corresponding MQProcess constructors or the

MQQueueManager::AccessProcess (...) methods to create an MQProcess object.

Constructors

Constructors for MQProcess.

MQProcess

public MQProcess(MQQueueManager qMgr, String processName, int openOptions)

System.Object

 │

 └─ IBM.WMQ.MQBase

 │

 └─ IBM.WMQ.MQBaseObject

 │

 └─ IBM.WMQ.MQManagedObject

 │

 └─ IBM.WMQ.MQProcess

64 WebSphere MQ: Using .NET

Throws MQException.

Establishes access to a WebSphere MQ process on the queue manager qMgr

such that the process attributes can be inquired. The default user authority

is used for connection to the queue manager.

See MQQueueManager.AccessQueue for details of the remaining

parameters.

MQProcess

public MQProcess(MQQueueManager qMgr, String processName, int openOptions,

 String queueManagerName, String alternateUserId)

Throws MQException.

Establishes access to a WebSphere MQ process on the queue manager qMgr

such that the process attributes can be inquired. The specified alternative

user authority is used for connection to the queue manager.

See MQQueueManager.AccessQueue for details of the remaining

parameters.

Properties

Properties for MQProcess.

ApplicationId

public String ApplicationId { get; }

 Gets the character string that identifies the application to be started. This

information is used by the trigger monitor application that processes

messages on the initiation queue; the information is sent to the initiation

queue as part of the trigger message.

The default value is null.

ApplicationType

public int ApplicationType { get; }

 Identifies the nature of the process to be started in response to a trigger

message. The following standard types have already been defined but

others can be used:

v MQAT_AIX

v MQAT_CICS

v MQAT_IMS

v MQAT_MVS

v MQAT_NATIVE

v MQAT_OS400

v MQAT_UNIX

v MQAT_WINDOWS

v MQAT_JAVA

v MQAT_USER_FIRST

v MQAT_USER_LAST

The default value is MQAT_NATIVE.

EnvironmentData

public String EnvironmentData { get; }

 Gets information on the environment of the application that is to be

started.

Chapter 2. Programming with WebSphere MQ classes for .NET 65

The default value is null.

UserData

public String UserData { get; }

 Gets information pertaining to the application to be started.

The default value is null.

MQPropertyDescriptor

This class encapsulates a property descriptor structure (MQPD). An MQPD

instance describes an MQMessage property.

public class IBM.WMQ.MQPropertyDescriptor

extends System.Object

This class is an input parameter on the MQMessage.set*Property() calls and an

output parameter on the MQMessage.get*Property() calls.

Constructors

Constructors for the property descriptor (MQPD).

ImqPropertyDescriptor();

Create a new property descriptor.

Properties

Properties for MQPropertyDescriptor

Context

public int Context { get; set; }

 The message context the property belongs to. Possible values are:

CMQC.MQPD_NO_CONTEXT

The property is not associated with a message context.

CMQC.MQPD_USER_CONTEXT

The property is associated with the user context.

 A property associated with the user context is saved as described

for MQOO_SAVE_ALL_CONTEXT. An MQPUT call with

MQPMO_PASS_ALL_CONTEXT specified, causes the property to

be copied from the saved context into the new message.

CopyOptions

public int CopyOptions { get; set; }

 This describes which type of message the property should be copied into.

When a queue manager receives a message containing a WebSphere

MQ-defined property that the queue manager recognizes as being

incorrect. the queue manager corrects the value of the CopyOptions field.

Any of the following can be specified. If more than one is required the

values can be:

v Added together (do not add the same constant more than once), or

System.Object

 │

 └─ IBM.WMQ.MQPropertyDescriptor

66 WebSphere MQ: Using .NET

v Combined using the bitwise OR operation (if the programming language

supports bit operations).

You can specifiy one or more of these options:

CMQC.MQCOPY_ALL

This property is copied into all types of subsequent messages.

CMQC.MQCOPY_FORWARD

This property iscopied into a message being forwarded.

CMQC.MQCOPY_PUBLISH

This property is copied into the message received by a subscriber

when a message is being published.

CMQC.MQCOPY_REPLY

This property is copied into a reply message.

CMQC.MQCOPY_REPORT

This property is copied into a report message.

CMQC.MQCOPY_DEFAULT

Use this value to indicate that no other copy options have been

specified; programmatically no relationship exists between this

property and subsequent messages. This is always returned for

message descriptor properties.

CMQC.MQCOPY_NONE

Use this value to indicate that no other copy options have been

specified; programmatically no relationship exists between this

property and subsequent messages. This is always returned for

message descriptor properties.

Options

public int Options { set; }

 Message property’s options. This is always an input field. The default

value is CMQC.MQPD_NONE

Support

public int Support { get; set; }

 This field describes what level of support for the message property is

required of the queue manager in order for the message containing this

property to be put to a queue. This only applies to WebSphere MQ-defined

properties; support for all other properties is optional. Any or none of the

following values can be specified

CMQC.MQPD_SUPPORT_OPTIONAL

The property is accepted by a queue manager even if it is not

supported. The property can be discarded in order for the message

to flow to a queue manager that does not support message

properties. This value is also assigned to properties that are not

WebSphere MQ-defined.

CMQC.MQPD_SUPPORT_REQUIRED

Support for the property is required. The message is rejected by a

queue manager that does not support the WebSphere MQ-defined

property. The MQPUT or MQPUT1 call fails with completion code

MQCC_FAILED and reason code

MQRC_UNSUPPORTED_PROPERTY.

Chapter 2. Programming with WebSphere MQ classes for .NET 67

CMQC.MQPD_SUPPORT_REQUIRED_IF_LOCAL

The message is rejected by a queue manager that does not support

the WebSphere MQ-defined property if the message is destined for

a local queue. The MQPUT or MQPUT1 call fails with completion

code MQCC_FAILED and reason code

MQRC_UNSUPPORTED_PROPERTY.

 The MQPUT or MQPUT1 call succeeds if the message is destined

for a remote queue manager.

Version

This is the structure version number; the initial value is

MQPD_VERSION_1.

MQPD_VERSION_1

Version-1 property descriptor structure.

MQPD_CURRENT_VERSION

Current version of property descriptor structure.

MQPutMessageOptions

This class contains options that control the behavior of MQQueue.put().

public class IBM.WMQ.MQPutMessageOptions

extends IBM.WMQ.MQBaseObject

Note: The behavior of some of the options available in this class depends on the

environment in which they are used. These elements are marked with an asterisk

(*).

Constructors

MQPutMessageOptions

public MQPutMessageOptions()

 Construct a new MQPutMessageOptions object with no options set, and a

blank resolvedQueueName and resolvedQueueManagerName.

Properties

Properties of MQPutMessageOptions.

ContextReference

public MQQueue ContextReference {get; set;}

 An input field that indicates the source of the context information.

If the options field includes MQC.MQPMO_PASS_IDENTITY_CONTEXT,

or MQC.MQPMO_PASS_ALL_CONTEXT, set this field to refer to the

MQQueue from which to take the context information.

The initial value of this field is null.

System.Object

 │

 └─ IBM.WMQ.MQBase

 │

 └─ IBM.WMQ.MQBaseObject

 │

 └─ IBM.WMQ.MQPutMessageOptions

68 WebSphere MQ: Using .NET

InvalidDestCount *

public int InvalidDestCount {get;}

 An output field set by the queue manager to the number of messages that

could not be sent to queues in a distribution list. The count includes

queues that failed to open and queues that were opened successfully, but

for which the put operation failed. This field is also set when opening a

single queue that is not part of a distribution list.

KnownDestCount *

public int KnownDestCount {get;}

 An output field set by the queue manager to the number of messages that

the current call has sent successfully to queues that resolve to local queues.

This field is also set when opening a single queue that is not part of a

distribution list.

Options

public int Options {get; set;}

 Options that control the action of MQQueue.put. Any or none of the

following values can be specified. If more than one option is required, the

values can be added together or combined using the bitwise OR operator.

MQC.MQPMO_ASYNC_RESPONSE

This option causes the MQPUT or MQPUT1 call to be made

asynchronously, with some response data.

MQC.MQPMO_DEFAULT_CONTEXT

Associate default context with the message.

MQC.MQPMO_FAIL_IF_QUIESCING

Fail if the queue manager is quiescing.

MQC.MQPMO_LOGICAL_ORDER*

Put logical messages and segments in message groups into their

logical order.

MQC.MQPMO_NEW_CORREL_ID*

Generate a new correlation id for each sent message.

MQC.MQPMO_NEW_MSG_ID*

Generate a new message id for each sent message.

MQC.MQPMO_NONE

No options specified. Do not use in conjunction with other options.

MQC.MQPMO_NO_CONTEXT

No context is to be associated with the message.

MQC.MQPMO_NO_SYNCPOINT

Put a message without syncpoint control. Note that, if the

syncpoint control option is not specified, a default of no syncpoint

is assumed. This applies to all supported platforms.

MQC.MQPMO_PASS_ALL_CONTEXT

Pass all context from an input queue handle.

MQC.MQPMO_PASS_IDENTITY_CONTEXT

Pass identity context from an input queue handle.

MQC.MQPMO_RESPONSE_AS_Q_DEF

 For an MQPUT call, this option takes the put response type from

DEFPRESP attribute of the queue.

Chapter 2. Programming with WebSphere MQ classes for .NET 69

For an MQPUT1 call, this option causes the call to be made

synchronously.

MQC.MQPMO_RESPONSE_AS_TOPIC_DEF

This is a synonym for MQPMO_RESPONSE_AS_Q_DEF for use

with topic objects.

MQC.MQPMO_RETAIN

The publication being sent is to be retained by the queue manager.

This allows a subscriber to request a copy of this publication after

the time it was published, by using the MQSUBRQ call. It also

allows a publication to be sent to applications which make their

subscription after the time this publication was made (unless they

choose not to be sent it by using the option

MQSO_NEW_PUBLICATIONS_ONLY). If an application is sent a

publication which was retained, this will be indicated by the

MQIsRetained message property of that publication.

 Only one publication can be retained at each node of the topic tree.

That means if there already is a retained publication for this topic,

published by any other application, it is replaced with this

publication. It is recommended that you do not have more than

one publisher retaining messages on the same topic.

When retained publications are requested by a subscriber, the

subscription used may contain a wildcard in the topic, in which

case a number of retained publications may match (at various

nodes in the topic tree) and several publications may be sent to the

requesting application. See MQSUBRQ - Subscription Request for

more details.If this option is used and the publication cannot be

retained, the message will not be published and the call will fail

with MQRC_PUT_NOT_RETAINED.

MQC.MQPMO_SET_ALL_CONTEXT

Set all context from the application.

MQC.MQPMO_SET_IDENTITY_CONTEXT

Set identity context from the application.

MQC.MQPMO_SYNC_RESPONSE

This option causes the MQPUT or MQPUT1 call to be made

synchronously, with full response data.

MQC.MQPMO_SUPPRESS_REPLYTO

Any information filled into the ReplyToQ and ReplyToQMgr fields

of the MQMD of this publication will not be passed on to

subscribers. If this option is used in combination with a report

option that requires a ReplyToQ, the call will fail with

MQRC_MISSING_REPLY_TO_Q.

MQC.MQPMO_SYNCPOINT

Put a message with syncpoint control. The message is not visible

outside the unit of work until the unit of work is committed. If the

unit of work is backed out, the message is deleted.

RecordFields *

public int RecordFields {get; set;}

 Flags indicating which fields are to be customized in each queue when

putting a message to a distribution list. One or more of the following flags

can be specified:

70 WebSphere MQ: Using .NET

MQC.MQPMRF_ACCOUNTING_TOKEN

Use the accountingToken attribute in the MQDistributionListItem.

MQC.MQPMRF_CORREL_ID

Use the correlationId attribute in the MQDistributionListItem.

MQC.MQPMRF_FEEDBACK

Use the feedback attribute in the MQDistributionListItem.

MQC.MQPMRF_GROUP_ID

Use the groupId attribute in the MQDistributionListItem.

MQC.MQPMRF_MSG_ID

Use the messageId attribute in the MQDistributionListItem.

The special value MQC.MQPMRF_NONE indicates that no fields are to be

customized.

ResolvedQueueManagerName

public String ResolvedQueueManagerName {get;}

 An output field set by the queue manager to the name of the queue

manager that owns the queue specified by the remote queue name. This

might be different from the name of the queue manager from which the

queue was accessed if the queue is a remote queue.

A nonblank value is returned only if the object is a single queue; if the

object is a distribution list or a topic, the value returned is undefined.

ResolvedQueueName

public String ResolvedQueueName {get;}

 An output field that is set by the queue manager to the name of the queue

on which the message is placed. This might be different from the name

used to open the queue if the opened queue was an alias or model queue.

A nonblank value is returned only if the object is a single queue; if the

object is a distribution list or a topic, the value returned is undefined.

UnknownDestCount *

public int UnknownDestCount {get;}

 An output field set by the queue manager to the number of messages that

the current call has sent successfully to queues that resolve to remote

queues. This field is also set when opening a single queue that is not part

of a distribution list.

For more detailed descriptions of these properties, see MQPMO Put-message

options.

MQQueue

MQQueue object for .NET

Chapter 2. Programming with WebSphere MQ classes for .NET 71

public class IBM.WMQ.MQQueue

extends IBM.WMQ.MQDestination. (See “MQDestination” on page 32.)

In WebSphere MQ V7.0 MQQueue has been modified to be a sub class of

MQDestination (it was previously a sub class of MQManagedObject). Some of the

methods and properties originally available on the MQQueue object have been

moved into the parent class (MQDestination). This does not affect any existing

WebSphere MQ .NET applications.

MQQueue provides inquire, set, put, and get operations for WebSphere MQ

queues. The inquire and set capabilities are inherited from MQ.MQManagedObject.

The put and get capabilities are inherited from MQDestination.

See also MQQueueManager.AccessQueue.

Constructors

MQQueue

public MQQueue(MQQueueManager qMgr, String queueName, int openOptions,

 String queueManagerName, String dynamicQueueName,

 String alternateUserId)

Throws MQException.

Accesses a queue on the queue manager qMgr.

See MQQueueManager.AccessQueue for details of the remaining

parameters.

Methods

Close

public override void Close()

Overrides MQManagedObject.Close.

Get

public void Get(MQMessage message,

 MQGetMessageOptions getMessageOptions,

 int MaxMsgSize)

Throws MQException.

Retrieves a message from the queue, up to a maximum specified message

size.

This method takes an MQMessage object as a parameter. It uses some of

the fields in the object as input parameters, in particular the messageId and

correlationId, so it is important to ensure that these are set as required.

System.Object

 │

 └─ IBM.WMQ.MQBase

 │

 └─ IBM.WMQ.MQBaseObject

 │

 └─ IBM.WMQ.MQManagedObject

 │

 └─ IBM.WMQ.MQDestination

 │

 └─ IBM.WMQ.MQQueue

72 WebSphere MQ: Using .NET

If the get fails, the MQMessage object is unchanged. If it succeeds, the

message descriptor (member variables) and message data portions of the

MQMessage are completely replaced with the message descriptor and

message data from the incoming message.

All calls to WebSphere MQ from a given MQQueueManager are

synchronous. Therefore, if you perform a get with wait, all other threads

using the same MQQueueManager are blocked from making further

WebSphere MQ calls until the get completes. If you need multiple threads

to access WebSphere MQ simultaneously, each thread must create its own

MQQueueManager object.

Parameters

message

An input/output parameter containing the message descriptor

information and the returned message data.

getMessageOptions

Options controlling the action of the get. (See

“MQGetMessageOptions” on page 39.)

 Using option MQC.MQGMO_CONVERT might result in an

exception with reason code

MQException.MQRC_CONVERTED_STRING_TOO_BIG when

converting from single byte character codes to double byte codes.

In this case, the message is copied into the buffer but remains

encoded using its original character set.

MaxMsgSize

The largest message this call can receive. If the message on the

queue is larger than this size, one of two things occurs:

1. If the MQC.MQGMO_ACCEPT_TRUNCATED_MSG flag is set

in the options member variable of the MQGetMessageOptions

object, the message is filled with as much of the message data

as will fit in the specified buffer size, and an exception is

thrown with completion code MQException.MQCC_WARNING

and reason code

MQException.MQRC_TRUNCATED_MSG_ACCEPTED.

2. If the MQC.MQGMO_ACCEPT_TRUNCATED_MSG flag is not

set, the message is left on the queue and an MQException is

raised with completion code MQException.MQCC_WARNING

and reason code

MQException.MQRC_TRUNCATED_MSG_FAILED.

Throws MQException if the get fails.

Get

public void Get(MQMessage message,

 MQGetMessageOptions getMessageOptions)

Throws MQException.

Retrieves a message from the queue, regardless of the size of the message.

For large messages, the get method might have to issue two calls to

WebSphere MQ on your behalf, one to establish the required buffer size

and one to get the message data itself.

Chapter 2. Programming with WebSphere MQ classes for .NET 73

This method takes an MQMessage object as a parameter. It uses some of

the fields in the object as input parameters, in particular the messageId and

correlationId, so it is important to ensure that these are set as required.

If the get fails, the MQMessage object is unchanged. If it succeeds, the

message descriptor (member variables) and message data portions of the

MQMessage are completely replaced with the message descriptor and

message data from the incoming message.

All calls to WebSphere MQ from a given MQQueueManager are

synchronous. Therefore, if you perform a get with wait, all other threads

using the same MQQueueManager are blocked from making further

WebSphere MQ calls until the get completes. If you need multiple threads

to access WebSphere MQ simultaneously, each thread must create its own

MQQueueManager object.

Parameters

message

An input/output parameter containing the message descriptor

information and the returned message data.

getMessageOptions

Options controlling the action of the get. (See

“MQGetMessageOptions” on page 39 for details.)

Throws MQException if the get fails.

Get

public void Get(MQMessage message)

A simplified version of the Get method previously described.

Parameters

MQMessage

An input/output parameter containing the message descriptor

information and the returned message data.

This method uses a default instance of MQGetMessageOptions to do the

get. The message option used is MQGMO_NOWAIT.

Put

public void Put(MQMessage message,

 MQPutMessageOptions putMessageOptions)

Throws MQException.

Places a message onto the queue.

Note: For simplicity and performance, if you want to put just a single

message to a queue, use the Put() method on the MQQueueManager

object. For this you do not need to have an MQQueue object. See

MQQueueManager.Put.

This method takes an MQMessage object as a parameter. The message

descriptor properties of this object can be altered as a result of this method.

The values that they have immediately after the completion of this method

are the values that were put onto the WebSphere MQ queue.

Modifications to the MQMessage object after the put has completed do not

affect the actual message on the WebSphere MQ queue.

74 WebSphere MQ: Using .NET

A Put updates the messageId and correlationId. Consider this when

making further calls to Put/Get using the same MQMessage object. Also,

calling Put does not clear the message data, so:

msg.WriteString("a");

q.Put(msg,pmo);

msg.WriteString("b");

q.Put(msg,pmo);

puts two messages. The first contains a and the second ab.

Parameters

message

Message Buffer containing the Message Descriptor data and

message to be sent.

putMessageOptions

Options controlling the action of the put. (See

“MQPutMessageOptions” on page 68)

Throws MQException if the put fails.

Put

public void Put(MQMessage message)

A simplified version of the Put method previously described.

Parameters

MQMessage

Message Buffer containing the Message Descriptor data and

message to be sent.

This method uses a default instance of MQPutMessageOptions to do the

put.

PutForwardMessage

public void PutForwardMessage(MQMessage message)

Put a message being forwarded onto the queue using default put message

options and message as the original message.

Parameters

MQMessage

The message for forwarding.

Throws MQException if the put fails.

PutForwardMessage

public void PutForwardMessage(MQMessage message,

 MQPutMessageOptions putMessageOptions)

Throws MQException.

Put a message being forwarded onto the queue using message as the

original message.

Parameters

MQMessage

The message for forwarding.

Chapter 2. Programming with WebSphere MQ classes for .NET 75

MQPutMessageOptions

Options controlling the action of the put. (See

“MQPutMessageOptions” on page 68)

Throws MQException if the put fails.

PutReplyMessage

public void PutReplyMessage(MQMessage message)

Put a reply message onto the queue using default put message options and

message as the original message.

Parameters

MQMessage

The request message to be replied to.

Throws MQException if the put fails.

PutReplyMessage

public void PutReplyMessage(MQMessage message,

 MQPutMessageOptions putMessageOptions)

Throws MQException.

Put a reply message onto the queue using message as the original message.

Parameters

MQMessage

The request message to be replied to.

MQPutMessageOptions

Options controlling the action of the put. (See

“MQPutMessageOptions” on page 68)

Throws MQException if the put fails.

PutReportMessage

public void PutReportMessage(MQMessage message)

Put a report message onto the queue using default put message options

and message as the original message.

Parameters

MQMessage

The message that caused the report to be generated.

Throws MQException if the put fails.

PutReportMessage

public void PutReportMessage(MQMessage message,

 MQPutMessageOptions putMessageOptions)

Throws MQException.

Put a message being forwarded onto the queue using message as the

original message.

Parameters

MQMessage

The message that caused the report to be generated.

76 WebSphere MQ: Using .NET

MQPutMessageOptions

Options controlling the action of the put. (See

“MQPutMessageOptions” on page 68)

Throws MQException if the put fails.

Properties

Properties of MQQueue.

ClusterWorkLoadPriority

public int ClusterWorkLoadPriority {get;}

Specifies the priority of the queue. This parameter is valid only for local,

remote, and alias queues.

ClusterWorkLoadRank

public int ClusterWorkLoadRank {get;}

Specifies the rank of the queue. This parameter is valid only for local,

remote, and alias queues.

ClusterWorkLoadUseQ

public int ClusterWorkLoadUseQ {get;}

Specifies the behavior of an MQPUT operation when the target queue has

a local instance and at least one remote cluster instance. This parameter

does not apply if the MQPUT originates from a cluster channel. This

parameter is valid only for local queues.

CreationDateTime

public DateTime CreationDateTime {get;}

Throws MQException.

The date and time that this queue was created.

CurrentDepth

public int CurrentDepth {get;}

Throws MQException.

Gets the number of messages currently on the queue. This value is

incremented during a put call, and during backout of a get call. It is

decremented during a non-browse get and during backout of a put call.

DefinitionType

public int DefinitionType {get;}

Throws MQException.

How the queue was defined.

Returns

One of the following:

v MQC.MQQDT_PREDEFINED

v MQC.MQQDT_PERMANENT_DYNAMIC

v MQC.MQQDT_TEMPORARY_DYNAMIC

InhibitGet

public int InhibitGet {get; set;}

Chapter 2. Programming with WebSphere MQ classes for .NET 77

Throws MQException.

Controls whether get operations are allowed for this queue or topic. The

possible values are:

v MQC.MQQA_GET_INHIBITED

v MQC.MQQA_GET_ALLOWED

InhibitPut

public int InhibitPut {get; set;}

Throws MQException.

Controls whether put operations are allowed for this queue or topic. The

possible values are:

v MQQA_PUT_INHIBITED

v MQQA_PUT_ALLOWED

MaximumDepth

public int MaximumDepth {get;}

Throws MQException.

The maximum number of messages that can exist on the queue at any one

time. An attempt to put a message to a queue that already contains this

many messages fails with reason code MQException.MQRC_Q_FULL.

MaximumMessageLength

public int MaximumMessageLength {get;}

Throws MQException.

The maximum length of the application data that can exist in each message

on this queue. An attempt to put a message larger than this value fails

with reason code MQException.MQRC_MSG_TOO_BIG_FOR_Q.

NonPersistentMessageClass

public int NonPersistentMessageClass {get;}

The level of reliability for non persistent messages put to this queue.

OpenInputCount

public int OpenInputCount {get;}

Throws MQException.

The number of handles that are currently valid for removing messages

from the queue. This is the total number of such handles known to the

local queue manager, not just those created by the WebSphere MQ classes

for .NET (using accessQueue).

OpenOutputCount

public int OpenOutputCount {get;}

Throws MQException.

The number of handles that are currently valid for adding messages to the

queue. This is the total number of such handles known to the local queue

manager, not just those created by the WebSphere MQ classes for .NET

(using accessQueue).

78 WebSphere MQ: Using .NET

QueueAccounting

public int QueueAccounting {get;}

Specifies whether the collection of accounting information is enabled for

the queue.

QueueMonitoring

public int QueueMonitoring {get;}

Specifies whether monitoring is enabled for the queue.

QueueStatistics

public int QueueStatistics {get;}

Specifies whether collection of statistics is enabled for the queue.

QueueType

public int QueueType {get;}

Throws MQException

Returns

The type of this queue with one of the following values:

v MQC.MQQT_ALIAS

v MQC.MQQT_LOCAL

v MQC.MQQT_REMOTE

v MQC.MQQT_CLUSTER

Shareability

public int Shareability {get;}

Throws MQException.

Whether the queue can be opened for input multiple times.

Returns

One of the following:

v MQC.MQQA_SHAREABLE

v MQC.MQQA_NOT_SHAREABLE

TPIPE

public string TPIPE {get;}

The TPIPE name used for communication with OTMA via the WebSphere

MQ IMS™ bridge.

TriggerControl

public int TriggerControl {get; set;}

Throws MQException.

get

 Whether trigger messages are written to an initiation queue, to

start an application to service the queue.

Returns

The possible values are:

v MQC.MQTC_OFF

Chapter 2. Programming with WebSphere MQ classes for .NET 79

v MQC.MQTC_ON

set

 Controls whether trigger messages are written to an initiation

queue to start an application to service the queue. The permissible

values are:

v MQC.MQTC_OFF

v MQC.MQTC_ON

TriggerData

public String TriggerData {get; set;}

Throws MQException.

get

 The free-format data that the queue manager inserts into the

trigger message when a message arriving on this queue causes a

trigger message to be written to the initiation queue.

set

 Sets the free-format data that the queue manager inserts into the

trigger message when a message arriving on this queue causes a

trigger message to be written to the initiation queue. The

maximum permissible length of the string is given by

MQC.MQ_TRIGGER_DATA_LENGTH.

TriggerDepth

public int TriggerDepth {get; set;}

Throws MQException.

get

 The number of messages that must be on the queue before a

trigger message is written when trigger type is set to

MQC.MQTT_DEPTH.

set

 Sets the number of messages that must be on the queue before a

trigger message is written when trigger type is set to

MQC.MQTT_DEPTH.

TriggerMessagePriority

public int TriggerMessagePriority {get; set;}

Throws MQException.

get

 The message priority below which messages do not contribute to

the generation of trigger messages (that is, the queue manager

ignores these messages when deciding whether to generate a

trigger). A value of zero causes all messages to contribute to the

generation of trigger messages.

set

 Sets the message priority below which messages do not contribute

to the generation of trigger messages (that is, the queue manager

80 WebSphere MQ: Using .NET

ignores these messages when deciding whether a trigger will be

generated). A value of zero causes all messages to contribute to the

generation of trigger messages.

TriggerType

public int TriggerType {get; set;}

Throws MQException.

get

 The conditions under which trigger messages are written as a

result of messages arriving on this queue.

Returns

The possible values are:

v MQC.MQTT_NONE

v MQC.MQTT_FIRST

v MQC.MQTT_EVERY

v MQC.MQTT_DEPTH

set

 Sets the conditions under which trigger messages are written as a

result of messages arriving on this queue. The possible values are:

v MQC.MQTT_NONE

v MQC.MQTT_FIRST

v MQC.MQTT_EVERY

v MQC.MQTT_DEPTH

For more detailed descriptions of these properties, see Attribute descriptions for

queues.

MQQueueManager

The MQQueueManager encapsulates the MQCONN. It has an overloaded

constructor that can be used to perform client/server connections to a

QueueManager.

public class IBM.WMQ.MQQueueManager

extends IBM.WMQ.MQManagedObject. (See “MQManagedObject” on page 43.)

The MQQueueManager contains a method ’AccessQueue’, which is used to

instantiate an MQQueue object associated with the connected MQQueueManager

object.

The MQQueueManager class also contains methods to begin, commit, and rollback

transactions.

System.Object

 │

 └─ IBM.WMQ.MQBase

 │

 └─ IBM.WMQ.MQBaseObject

 │

 └─ IBM.WMQ.ManagedObject

 │

 └─ IBM.WMQ.MQQueueManager

Chapter 2. Programming with WebSphere MQ classes for .NET 81

Constructors

MQQueueManager

public MQQueueManager(String queueManagerName)

Throws MQException.

Creates a connection to the named queue manager.

Note: When using WebSphere MQ classes for .NET, the hostname,

channel name, and port to use during the connection request are specified

in the MQEnvironment class. This must be done before calling this

constructor.

The following example shows a connection to a queue manager MYQM,

running on a machine with hostname fred.mq.com.

MQEnvironment.Hostname = "fred.mq.com"; // host to connect to

MQEnvironment.Port = 1414; // port to connect to.

 // If I don’t set this,

 // it defaults to 1414

 // (the default WebSphere MQ port)

MQEnvironment.Channel = "channel.name"; // the CASE-SENSITIVE

 // name of the

 // SVR CONN channel on

 // the queue manager

MQQueueManager qMgr = new MQQueueManager("MYQM");

If the queue manager name is left blank (null or ″″), a connection is made

to the default queue manager.

See also “MQEnvironment” on page 35.

MQQueueManager

public MQQueueManager(String queueManagerName,

 int options)

Throws MQException.

This version of the constructor is intended for use only in bindings mode,

that is, when connecting to a local server. It uses the extended connection

API (MQCONNX) to connect to the queue manager. The options parameter

allows you to choose fast or normal bindings. Possible values are:

v MQC.MQCNO_FASTPATH_BINDING for fast bindings *.

v MQC.MQCNO_STANDARD_BINDING for normal bindings.

MQQueueManager

public MQQueueManager(String queueManagerName,

 Hashtable properties)

Throws MQException.

The properties parameter takes a series of key/value pairs that describe

the WebSphere MQ environment for this particular queue manager. These

properties, where specified, override the values set by the MQEnvironment

class, and allow the individual properties to be set for any queue manager.

The properties which may be specified are as follows:

v MQC.CONNECT_OPTIONS_PROPERTY

v MQC.CONNNAME_PROPERTY

v MQC.HOST_NAME_PROPERTY

v MQC.PORT_PROPERTY

82 WebSphere MQ: Using .NET

v MQC.CHANNEL_PROPERTY

v MQC.SSL_CIPHER_SPEC_PROPERTY

v MQC.SSL_PEER_NAME_PROPERTY

v MQC.SSL_CERT_STORE_PROPERTY

v MQC.SSL_CRYPTO_HARDWARE_PROPERTY

v MQC.SECURITY_EXIT_PROPERTY

v MQC.SECURITY_USERDATA_PROPERTY

v MQC.SEND_EXIT_PROPERTY

v MQC.SEND_USERDATA_PROPERTY

v MQC.RECEIVE_EXIT_PROPERTY

v MQC.RECEIVE_USERDATA_PROPERTY

v MQC.MSG_EXIT_PROPERTY

v MQC.USER_ID_PROPERTY

v MQC.PASSWORD_PROPERTY

v MQC.MQAIR_ARRAY

v MQC.KEY_RESET_COUNT

v MQC.FIPS_REQUIRED

v MQC.HDR_CMP_LIST

v MQC.MSG_CMP_LIST

v MQC.TRANSPORT_PROPERTY

For descriptions of these properties, see the corresponding property

description in “MQEnvironment” on page 35. Figure 5 shows an example

of a program to create a queue manager with its user ID and password

defined in a hash table.

MQQueueManager

public MQQueueManager(String queueManagerName,

 String channel,

 String connName)

Throws MQException.

Connects to the named Queue Manager, using the supplied ’Server

Connection Channel’ and connection.

MQQueueManager

Hashtable properties = new Hashtable();

properties.Add(MQC.USER_ID_PROPERTY, "ExampleUserId");

properties.Add(MQC.PASSWORD_PROPERTY, "ExamplePassword");

try

{

 mqQMgr = new MQQueueManager("qmgrname", properties);

}

catch (MQException mqe)

{

 System.Console.WriteLine("Connect failed with " + mqe.Message);

 return((int)mqe.Reason);

}

Figure 5. Creating a hash table of properties.

Chapter 2. Programming with WebSphere MQ classes for .NET 83

public MQQueueManager(String queueManagerName,

 Int options

 String channel,

 String connName)

Throws MQException.

Connects to the named Queue Manager, using the supplied ’Server

Connection Channel’ and connection, and passing the supplied options.

Methods

Methods for MQQueueManager

AccessProcess

public MQProcess AccessProcess(String processName,

 int openOptions);

Throws MQException.

Establishes access to a WebSphere MQ process on this queue manager

using the default queue manager name and default user ID values, to

inquire about the process attributes.

Parameters

processName

The name of the process to open.

openOptions

Options that control the opening of the process. Valid options are:

v MQOO_FAIL_IF_QUIESCING

v MQOO_INQUIRE

v MQOO_SET

Returns

MQProcess that has been successfully opened.

AccessProcess

public MQProcess AccessProcess(String processName,

 int openOptions,

 String queueManagerName,

 String alternateUserId);

Throws MQException.

Establishes access to a WebSphere MQ process on this queue manager

using the specified queue manager name and specified alternate user ID

values, in order to inquire about the process attributes.

Parameters

processName

The name of the process to open.

openOptions

Options that control the opening of the process. Valid options are:

v MQOO_ALTERNATE_USER_AUTHORITY

v MQOO_FAIL_IF_QUIESCING

v MQOO_INQUIRE

v MQOO_SET

84 WebSphere MQ: Using .NET

queueManagerName

Name of the queue manager on which the process is defined. A

name that is entirely blank or null denotes the queue manager to

which the object is associated.

alternateUserId

If MQOO_ALTERNATE_USER_AUTHORITY is specified in the

openOptions parameter, this parameter specifies the alternative

user ID to be used to check the authorization for the action.

Otherwise this parameter can be blank or null.

Returns

MQProcess that has been successfully opened.

AccessQueue

public MQQueue AccessQueue(String queueName,

 int openOptions,

 String queueManagerName,

 String dynamicQueueName,

 String alternateUserId)

Throws MQException.

Establishes access to a WebSphere MQ queue on this queue manager to get

or browse messages, put messages, inquire about the attributes of the

queue or set the attributes of the queue.

If the queue named is a model queue, a dynamic local queue is created.

The name of the created queue can be determined from the name attribute

of the returned MQQueue object.

Parameters

queueName

Name of queue to open.

openOptions

Options that control the opening of the queue. Valid options are:

MQC.MQOO_ALTERNATE_USER_AUTHORITY

Validate with the specified user identifier.

MQC.MQOO_BIND_AS_QDEF

Use default binding for queue.

MQC.MQOO_BIND_NOT_FIXED

Do not bind to a specific destination.

MQC.MQOO_BIND_ON_OPEN

Bind handle to destination when queue is opened.

MQC.MQOO_BROWSE

Open to browse message.

MQC.MQOO_FAIL_IF_QUIESCING

Fail if the queue manager is quiescing.

MQC.MQOO_INPUT_AS_Q_DEF

Open to get messages using queue-defined default.

MQC.MQOO_INPUT_SHARED

Open to get messages with shared access.

MQC.MQOO_INPUT_EXCLUSIVE

Open to get messages with exclusive access.

Chapter 2. Programming with WebSphere MQ classes for .NET 85

MQC.MQOO_INQUIRE

Open for inquiry - required if you want to query

properties.

MQC.MQOO_OUTPUT

Open to put messages.

MQC.MQOO_PASS_ALL_CONTEXT

Allow all context to be passed.

MQC.MQOO_PASS_IDENTITY_CONTEXT

Allow identity context to be passed.

MQC.MQOO_SAVE_ALL_CONTEXT

Save context when message retrieved*.

MQC.MQOO_SET

Open to set attributes —required if you want to set

properties.

MQC.MQOO_SET_ALL_CONTEXT

Allows all context to be set.

MQC.MQOO_SET_IDENTITY_CONTEXT

Allows identity context to be set.

If more than one option is required, the values can be added

together or combined using the bitwise OR operator. See the

WebSphere MQ Application Programming Guide for a fuller

description of these options.

queueManagerName

Name of the queue manager on which the queue is defined. A

name that is entirely blank or null denotes the queue manager to

which this MQQueueManager object is connected.

dynamicQueueName

This parameter is ignored unless queueName specifies the name of

a model queue. If it does, this parameter specifies the name of the

dynamic queue to be created. A blank or null name is not valid if

queueName specifies the name of a model queue. If the last

non-blank character in the name is an asterisk (*), the queue

manager replaces the asterisk with a string of characters that

guarantees that the name generated for the queue is unique on this

queue manager.

alternateUserId

If MQOO_ALTERNATE_USER_AUTHORITY is specified in the

openOptions parameter, this parameter specifies the alternate user

identifier that is used to check the authorization for the open. If

MQOO_ALTERNATE_USER_AUTHORITY is not specified, this

parameter can be left blank (or null).

Returns

MQQueue that has been successfully opened.

Throws MQException if the open fails.

AccessQueue

public MQQueue AccessQueue(String queueName,

 int openOptions)

86 WebSphere MQ: Using .NET

Throws MQException if you call this method after disconnecting from the

queue manager.

Parameters

queueName

Name of queue to open

openOptions

Options that control the opening of the queue

See the description of MQQueueManager.AccessQueue for details of the

parameters.

For this version of the method, queueManagerName, dynamicQueueName, and

alternateUserId are set to ″″.

Returns

MQQueue that has been successfully opened.

Throws MQException if the open fails.

AccessTopic

public MQTopic AccessTopic(String topicName,

 ref String topicObject,

 int openAs,

 int options);

Throws MQException.

Establishes access to a WebSphere MQ topic. The MQTopic object can be

opened for either publication or subscription depending upon the value of

the openAs parameter. The value dictates the use of the options parameter

– this can map to the equivalent MQOO options for publication or the

equivalent MQSO options for subscription.

The options specified allow the MQTopic object to be used to get or

browse messages, put messages, inquire about the attributes of the topic

(those defined on the object), or set the attributes of the topic (those

defined on the object).

An MQTopic object cannot be used for both publication and subscription

simultaneously. Therefore, the method returns an MQTopic object for

publication OR subscription using the supplied topic name (topicName)

and topic object (topicObject).

The full topic name is given by the concatenation of two parts. A part

exists if the first character of the field is neither a blank nor a null

character. If both parts exist a ‘/’ character is inserted between them in the

resultant combined topic. If only one of these parts exist it is used

unchanged as the topic. The parts are concatenated in the sequence listed

here:

v The value of the TOPICSTR parameter of the topic object named in

topicObject.

v topicName, if the length provided for that string is non-zero.

If there are wildcards in the topicName, the interpretation of those

wildcards can be controlled using the wildcard options specified in the

options parameter.

When creating an MQTopic for subscriptions, the store (MQQueue) will be

managed and owned by the queue manager. This method can therefore be

used to create a managed subscription only.

Chapter 2. Programming with WebSphere MQ classes for .NET 87

Parameters

topicName

The topic string to publish or subscribe against. The topicName

parameter directly maps to the ObjectString field of the MQSD.

The full topic name used is the combination of the topicObject and

topicName parameters as described above.

topicObject

This is the name of the topic object as defined on the local queue

manager. If this property is specified in combination with a

non-zero-length topicName, then the specified topicName is

appended to the topic string contained in the topic object with a

separator character. It is the full topic string that is published or

subscribed against, as described above.

 The parameter is both an input and output parameter. Upon

successful completion of the method, the closest matching

administrative node is located within the topic hierarchy and

returned. The contained topic object might therefore differ to that

originally specified.

openAs Indicates whether the topic is being opened for either publication

or subscription. The parameter can contain one of these options:

v MQTOPIC_OPEN_AS_SUBSCRIPTION

v MQTOPIC_OPEN_AS_PUBLICATION

The topic object cannot be opened for both publication and

subscription. Specifying more than a single option will result in an

error condition.

options

 Options that control the opening of the topic for either publication

or subscription. If more than one option is required, the values can

be added together or combined using the bitwise OR operator.

These options are valid (see MQOPEN – Open object Options for a

full descriptive list of which options are valid when opening a

topic):

v v MQOO_ALTERNATE_USER_AUTHORITY

v v MQOO_FAIL_IF_QUIESCING

v v MQOO_OUTPUT

v v MQOO_PASS_ALL_CONTEXT

v v MQOO_PASS_IDENTITY_CONTEXT

v v MQOO_SET_ALL_CONTEXT

v v MQOO_SET_IDENTITY_CONTEXT

When opening the topic for subscription the following valid

options apply.:

v MQSO_CREATE

v MQSO_RESUME

v MQSO_ALTER

If none of these options are specified, then MQSO_CREATE +

MQSO_ALTER is assumed.

88 WebSphere MQ: Using .NET

Other valid options are also available (see MQOPEN – Open object

Options).

When opening a topic for subscription, the method applies to a

managed, non-durable subscription only. These options are

therefore enforced:

v MQSO_NON_DURABLE

v MQSO_MANAGED

Returns

MQTopic that has been successfully opened.

AccessTopic

public MQTopic AccessTopic(String topicName,

 ref String topicObject,

 int openAs,

 int options,

 String alternateUserId);

Throws MQException.

Establishes access to a WebSphere MQ topic. The MQTopic object can be

opened for either publication or subscription depending upon the value of

the openAs parameter. The value dictates the use of the options parameter

– this can map to the equivalent MQOO options for publication or the

equivalent MQSO options for subscription.

If either MQOO_ALTERNATE_USER_AUTHORITY or

MQSO_ALTERNATE_USER_AUTHORITY is specified in the options

parameter, the alternateUserId parameter is used to check for the necessary

authorization.

The options specified allow the MQTopic object to be used to get or

browse messages, put messages, inquire about the attributes of the topic

(those defined on the object), or set the attributes of the topic (those

defined on the object).

An MQTopic object cannot be used for both publication and subscription

simultaneously. Therefore, the method returns an MQTopic object for

publication OR subscription using the supplied topic name (topicName)

and topic object (topicObject).

The full topic name is given by the concatenation of two parts. A part

exists if the first character of the field is neither a blank nor a null

character. If both parts exist a ‘/’ character is inserted between them in the

resultant combined topic. If only one of these parts exist it is used

unchanged as the topic. The parts are concatenated in the sequence listed

here:

v The value of the TOPICSTR parameter of the topic object named in

topicObject.

v topicName, if the length provided for that string is non-zero.

If there are wildcards in the topicName, the interpretation of those

wildcards can be controlled using the wildcard options specified in the

options parameter.

When creating an MQTopic for subscriptions, the store (MQQueue) will be

managed and owned by the queue manager. This method can therefore be

used to create a managed subscription only.

Parameters

Chapter 2. Programming with WebSphere MQ classes for .NET 89

topicName

The topic string to publish or subscribe against. The topicName

parameter directly maps to the ObjectString field of the MQSD.

The full topic name used is the combination of the topicObject and

topicName parameters as described above.

topicObject

This is the name of the topic object as defined on the local queue

manager. If this property is specified in combination with a

non-zero-length topicName, then the specified topicName is

appended to the topic string contained in the topic object with a

separator character. It is the full topic string that is published or

subscribed against, as described above.

 The parameter is both an input and output parameter. Upon

successful completion of the method, the closest matching

administrative node is located within the topic hierarchy and

returned. The contained topic object might therefore differ to that

originally specified.

openAs Indicates whether the topic is being opened for either publication

or subscription. The parameter can contain one of these options:

v MQTOPIC_OPEN_AS_SUBSCRIPTION

v MQTOPIC_OPEN_AS_PUBLICATION

The topic object cannot be opened for both publication and

subscription. Specifying more than a single option will result in an

error condition.

options

 Options that control the opening of the topic for either publication

or subscription. If more than one option is required, the values can

be added together or combined using the bitwise OR operator.

These options are valid (see MQOPEN – Open object Options for a

full descriptive list of which options are valid when opening a

topic):

v v MQOO_ALTERNATE_USER_AUTHORITY

v v MQOO_FAIL_IF_QUIESCING

v v MQOO_OUTPUT

v v MQOO_PASS_ALL_CONTEXT

v v MQOO_PASS_IDENTITY_CONTEXT

v v MQOO_SET_ALL_CONTEXT

v v MQOO_SET_IDENTITY_CONTEXT

When opening the topic for subscription the following valid

options apply:

v MQSO_CREATE

v MQSO_RESUME

v MQSO_ALTER

If no option is specified, then MQSO_CREATE + MQSO_ALTER is

assumed. Other valid options are also available. (see MQOPEN –

Open object Options).

90 WebSphere MQ: Using .NET

When opening a topic for subscription, the method applies to a

managed, non-durable subscription only. These options are

therefore enforced:

v MQSO_NON_DURABLE

v MQSO_MANAGED

alternateUserId

 If either MQOO_ALTERNATE_USER_AUTHORITY or

MQSO_ALTERNATE_USER_AUTHORITY is specified in the

options parameter, this parameter specifies the alternate user

identifier that is used to check for the required authorization to

complete the operation. Otherwise, this parameter can be left blank

(or null).

Returns

MQTopic that has been successfully opened.

AccessTopic

public MQTopic AccessTopic(String topicName,

 ref String topicObject,

 int options,

 String alternateUserId,

 String subscriptionName);

Throws MQException.

Establishes access to a WebSphere MQ topic. This method can be used for

opening the topic for subscriptions only. The options parameter can map to

the MQSO options for subscription only.

If MQSO_ALTERNATE_USER_AUTHORITY is specified in the options

parameter, the alternateUserId parameter is used to check for the necessary

authorization.

The options specified allow the MQTopic object to be used to get or

browse messages, inquire about the attributes of the topic, or set the

attributes of the topic.

The method returns an MQTopic object for subscription using the supplied

topic name (topicName) and topic object (topicObject).

The full topic name is given by the concatenation of two parts. A part

exists if the first character of the field is neither a blank nor a null

character. If both parts exist a ‘/’ character is inserted between them in the

resultant combined topic. If only one of these parts exist it is used

unchanged as the topic. The parts are concatenated in the sequence listed

here:

v The value of the TOPICSTR parameter of the topic object named in

topicObject.

v topicName, if the length provided for that string is non-zero.

If there are wildcards in the topicName, the interpretation of those

wildcards can be controlled using the wildcard options specified in the

options parameter.

When creating an MQTopic for subscriptions, the store (MQQueue) will be

managed and owned by the queue manager. This method can therefore be

used to create a managed subscription only.

Parameters

Chapter 2. Programming with WebSphere MQ classes for .NET 91

topicName

The topic string to subscribe against. The topicName parameter

directly maps to the ObjectString field of the MQSD. The full topic

name used is the combination of the topicObject and topicName

parameters as described above.

topicObject

This is the name of the topic object as defined on the local queue

manager. If this property is specified in combination with a

non-zero-length topicName, then the specified topicName is

appended to the topic string contained in the topic object with a

separator character. It is the full topic string that is published or

subscribed against, as described above.

 The parameter is both an input and output parameter. Upon

successful completion of the method, the closest matching

administrative node is located within the topic hierarchy and

returned. The contained topic object might therefore differ to that

originally specified.

options

 Options that control the opening of the topic for subscription. If

more than one option is required, the values can be added together

or combined using the bitwise OR operator.

These options are valid (see MQOPEN – Open object Options for a

full descriptive list of which options are valid when opening a

topic):

v MQSO_CREATE

v MQSO_RESUME

v MQSO_ALTER

If none of these options is specified, then MQSO_CREATE +

MQSO_ALTER is assumed. Other valid options are also available.

(see MQOPEN – Open object Options).

When opening a topic for subscription, the method applies to a

managed subscription only. This option is therefore enforced:

v MQSO_MANAGED

alternateUserId

 If MQSO_ALTERNATE_USER_AUTHORITY is specified in the

options parameter, this parameter specifies the alternate user

identifier that is used to check for the required authorization to

complete the operation. Otherwise, this parameter can be left blank

(or null).

subscriptionName

 If the options parameter specified MQSO_DURABLE then this field

is mandatory, otherwise (MQSO_NON_DURABLE) this field is

optional.

For an MQSO_DURABLE subscription it is the means by which

you identify a subscription to be resumed after it has been created,

if you have either closed the handle to the subscription or have

been disconnected from the queue manager.

92 WebSphere MQ: Using .NET

If altering an existing subscription using the MQSO_ALTER option,

the subscription name cannot be changed.

Returns

MQTopic that has been successfully opened.

AccessTopic

public MQTopic AccessTopic(String topicName,

 ref String topicObject,

 int options,

 String alternateUserId,

 String subscriptionName,

 ref Hashtable parameters);

Throws MQException.

Establishes access to a WebSphere MQ topic. This method can be used for

opening the topic for subscriptions only. The options parameter can map to

the MQSO options for subscription only.

If MQSO_ALTERNATE_USER_AUTHORITY is specified in the options

parameter, the alternateUserId parameter is used to check for the necessary

authorization.

The options specified allow the MQTopic object to be used to get or

browse messages, inquire about the attributes of the topic, or set the

attributes of the topic.

The method returns an MQTopic object for subscription using the supplied

topic name (topicName) and topic object (topicObject).

The full topic name is given by the concatenation of two parts. A part

exists if the first character of the field is neither a blank nor a null

character. If both parts exist a ‘/’ character is inserted between them in the

resultant combined topic. If only one of these parts exist it is used

unchanged as the topic. The parts are concatenated in the sequence listed

here:

v The value of the TOPICSTR parameter of the topic object named in

topicObject.

v topicName, if the length provided for that string is non-zero.

If there are wildcards in the topicName, the interpretation of those

wildcards can be controlled using the wildcard options specified in the

options parameter.

When creating an MQTopic for subscriptions, the store (MQQueue) will be

managed and owned by the queue manager. This method can therefore be

used to create a managed subscription only.

Extra non-standard input and output parameters can also be specified

using the parameters hash table. If a property is an output field it will be

populated within the hash table only if it was originally specified on input.

Essentially, no new key/value pairs will be added to the hash table – only

existing ones updated.

Parameters

topicName

The topic string to subscribe against. The topicName parameter

directly maps to the ObjectString field of the MQSD. The full topic

name used is the combination of the topicObject and topicName

parameters as described above.

Chapter 2. Programming with WebSphere MQ classes for .NET 93

topicObject

This is the name of the topic object as defined on the local queue

manager. If this property is specified in combination with a

non-zero-length topicName, then the specified topicName is

appended to the topic string contained in the topic object with a

separator character. It is the full topic string that is published or

subscribed against, as described above.

 The parameter is both an input and output parameter. Upon

successful completion of the method, the closest matching

administrative node is located within the topic hierarchy and

returned. The contained topic object might therefore differ to that

originally specified.

options

 Options that control the opening of the topic for subscription. If

more than one option is required, the values can be added together

or combined using the bitwise OR operator.

These options are valid (see MQOPEN – Open object Options for a

full descriptive list of which options are valid when opening a

topic):

v MQSO_CREATE

v MQSO_RESUME

v MQSO_ALTER

If none of these options is specified, then MQSO_CREATE +

MQSO_ALTER is assumed. Other valid options are also available.

(see MQOPEN – Open object Options).

When opening a topic for subscription, the method applies to a

managed subscription only. This option is therefore enforced:

v MQSO_MANAGED

alternateUserId

 If MQSO_ALTERNATE_USER_AUTHORITY is specified in the

options parameter, this parameter specifies the alternate user

identifier that is used to check for the required authorization to

complete the operation. Otherwise, this parameter can be left blank

(or null).

subscriptionName

 If the options parameter specified MQSO_DURABLE then this field

is mandatory, otherwise (MQSO_NON_DURABLE) this field is

optional.

For an MQSO_DURABLE subscription it is the means by which

you identify a subscription to be resumed after it has been created,

if you have either closed the handle to the subscription or have

been disconnected from the queue manager.

If altering an existing subscription using the MQSO_ALTER option,

the subscription name cannot be changed.

parameters

 The hash table can be used to specify non-standard input and

output parameters to the subscription request. If a property is an

output field it will only be populated within the hash table if it

94 WebSphere MQ: Using .NET

was originally specified on input. Consequently, no new key/value

pairs will be added to the hash table – only existing ones updated.

The following key names are valid and can be specified:

v MQSUB_PROP_ALTERNATE_SECURITY_ID

v MQSUB_PROP_SUBSCRIPTION_EXPIRY

v MQSUB_PROP_SUBSCRIPTION_USER_DATA

v MQSUB_PROP_SUBSCRIPTION_CORRELATION_ID

v MQSUB_PROP_PUBLICATION_PRIORITY

v MQSUB_PROP_PUBLICATION_ACCOUNTING_TOKEN

v MQSUB_PROP_PUBLICATION_APPLICATIONID_DATA

All are specified as String type properties. The corresponding

language conversion routines can be used to convert the values to

the relevant types.

Returns

MQTopic that has been successfully opened.

AccessTopic

public MQTopic AccessTopic(MQDestination destination,

 String topicName,

 ref String topicObject,

 int options);

Throws MQException.

Establishes access to a WebSphere MQ topic. This method can be used for

opening the topic for subscriptions only. The options parameter can map to

the MQSO options for subscription only.

The options specified allow the MQTopic object to be used to get or

browse messages, inquire about the attributes of the topic, or set the

attributes of the topic.

The method returns an MQTopic object for subscription using the supplied

topic name (topicName) and topic object (topicObject).

The full topic name is given by the concatenation of two parts. A part

exists if the first character of the field is neither a blank nor a null

character. If both parts exist a ‘/’ character is inserted between them in the

resultant combined topic. If only one of these parts exist it is used

unchanged as the topic. The parts are concatenated in the sequence listed

here:

v The value of the TOPICSTR parameter of the topic object named in

topicObject.

v topicName, if the length provided for that string is non-zero.

If there are wildcards in the topicName, the interpretation of those

wildcards can be controlled using the wildcard options specified in the

options parameter.

When creating an MQTopic for subscription, the subscription store

(destination) is provided, managed and owned by the user. The queue

manager takes no responsibility for this object and it is left to the user to

correctly dispose of it. Any messages available for this subscription will be

delivered to the specified destination.

Chapter 2. Programming with WebSphere MQ classes for .NET 95

The destination parameter must be valid and cannot be left blank or null.

This method can be used to create an unmanaged, non-durable

subscription only.

Parameters

destination

 An existing MQDestination object which should receive the

publications. For WebSphere MQ V7.0 this object maps to an

MQQueue object. It cannot resolve to another MQTopic object.

The MQDestination (MQQueue) object can be created by calling an

MQQueueManager::AccessQueue (...) method or an MQQueue

constructor.

The corresponding destination is held as a reference within the

MQTopic object as the UnmanagedDestinationReference property.

topicName

The topic string to subscribe against. The topicName parameter

directly maps to the ObjectString field of the MQSD. The full topic

name used is the combination of the topicObject and topicName

parameters as described above.

topicObject

This is the name of the topic object as defined on the local queue

manager. If this property is specified in combination with a

non-zero-length topicName, then the specified topicName is

appended to the topic string contained in the topic object with a

separator character. It is the full topic string that is published or

subscribed against, as described above.

 The parameter is both an input and output parameter. Upon

successful completion of the method, the closest matching

administrative node is located within the topic hierarchy and

returned. The contained topic object might therefore differ to that

originally specified.

options

 Options that control the opening of the topic for subscription. If

more than one option is required, the values can be added together

or combined using the bitwise OR operator.

These options are valid (see MQOPEN – Open object Options for a

full descriptive list of which options are valid when opening a

topic):

v MQSO_CREATE

v MQSO_RESUME

v MQSO_ALTER

If none of these options is specified, then MQSO_CREATE +

MQSO_ALTER is assumed. Other valid options are also available.

(see MQOPEN – Open object Options).

When opening a topic for subscription, the method applies to an

unmanaged, non-durable subscription only. These options are

therefore enforced:

v MQSO_NON_DURABLE

v ~ MQSO_MANAGED

96 WebSphere MQ: Using .NET

Returns

MQTopic that has been successfully opened.

AccessTopic

public MQTopic AccessTopic(MQDestination destination,

 String topicName,

 ref String topicObject,

 int options,

 String alternateUserId);

Throws MQException.

Establishes access to a WebSphere MQ topic. The presence of the

destination parameter indicates that this method can be used for opening

the topic for subscriptions only. The options parameter therefore always

maps to the equivalent MQSO values.

If MQSO_ALTERNATE_USER_AUTHORITY is specified in the options

parameter, the alternateUserId parameter is used to check for the necessary

authorization.

The options specified allow the MQTopic object to be used to get or

browse messages, inquire about the attributes of the topic, or set the

attributes of the topic.

The method returns an MQTopic object for subscription using the supplied

topic name (topicName) and topic object (topicObject).

The full topic name is given by the concatenation of two parts. A part

exists if the first character of the field is neither a blank nor a null

character. If both parts exist a ‘/’ character is inserted between them in the

resultant combined topic. If only one of these parts exist it is used

unchanged as the topic. The parts are concatenated in the sequence listed

here:

v The value of the TOPICSTR parameter of the topic object named in

topicObject.

v topicName, if the length provided for that string is non-zero.

If there are wildcards in the topicName, the interpretation of those

wildcards can be controlled using the wildcard options specified in the

options parameter.

When creating an MQTopic for subscription, the subscription store

(destination) is provided, managed and owned by the user. The queue

manager takes no responsibility for this object and it is left to the user to

correctly dispose of it. Any messages available for this subscription will be

delivered to the specified destination.

The destination parameter must be valid and cannot be left blank or null.

This method can be used to create an unmanaged, non-durable

subscription only.

Parameters

destination

 An existing MQDestination object which should receive the

publications. For WebSphere MQ V7.0 this object maps to an

MQQueue object. It cannot resolve to another MQTopic object.

Chapter 2. Programming with WebSphere MQ classes for .NET 97

The MQDestination (MQQueue) object can be created by calling an

MQQueueManager::AccessQueue (...) method or an MQQueue

constructor.

The corresponding destination is held as a reference within the

MQTopic object as the UnmanagedDestinationReference property.

topicName

The topic string to subscribe against. The topicName parameter

directly maps to the ObjectString field of the MQSD. The full topic

name used is the combination of the topicObject and topicName

parameters as described above.

topicObject

This is the name of the topic object as defined on the local queue

manager. If this property is specified in combination with a

non-zero-length topicName, then the specified topicName is

appended to the topic string contained in the topic object with a

separator character. It is the full topic string that is published or

subscribed against, as described above.

 The parameter is both an input and output parameter. Upon

successful completion of the method, the closest matching

administrative node is located within the topic hierarchy and

returned. The contained topic object might therefore differ to that

originally specified.

options

 Options that control the opening of the topic for subscription. If

more than one option is required, the values can be added together

or combined using the bitwise OR operator.

These options are valid (see MQOPEN – Open object Options for a

full descriptive list of which options are valid when opening a

topic):

v MQSO_CREATE

v MQSO_RESUME

v MQSO_ALTER

If none of these options is specified, then MQSO_CREATE +

MQSO_ALTER is assumed. Other valid options are also available.

(see MQOPEN – Open object Options).

When opening a topic for subscription, the method applies to an

unmanaged, non-durable subscription only. These options are

therefore enforced:

v MQSO_NON_DURABLE

v ~ MQSO_MANAGED

alternateUserId

 If MQSO_ALTERNATE_USER_AUTHORITY is specified in the

options parameter, this parameter specifies the alternate user

identifier that is used to check for the required authorization to

complete the operation. Otherwise, this parameter can be left blank

(or null).

Returns

MQTopic that has been successfully opened.

98 WebSphere MQ: Using .NET

AccessTopic

public MQTopic AccessTopic(MQDestination destination,

 String topicName,

 ref String topicObject,

 int options,

 String alternateUserId,

 String subscriptionName);

Throws MQException.

Establishes access to a WebSphere MQ topic. The presence of the

destination and subscriptionName parameters indicate that this method

can be used for opening the topic for subscriptions only. The options

parameter therefore always maps to the equivalent MQSO values.

If MQSO_ALTERNATE_USER_AUTHORITY is specified in the options

parameter, the alternateUserId parameter is used to check for the necessary

authorization.

The options specified allow the MQTopic object to be used to get or

browse messages, inquire about the attributes of the topic, or set the

attributes of the topic.

The method returns an MQTopic object for subscription using the supplied

topic name (topicName) and topic object (topicObject).

The full topic name is given by the concatenation of two parts. A part

exists if the first character of the field is neither a blank nor a null

character. If both parts exist a ‘/’ character is inserted between them in the

resultant combined topic. If only one of these parts exist it is used

unchanged as the topic. The parts are concatenated in the sequence listed

here:

v The value of the TOPICSTR parameter of the topic object named in

topicObject.

v topicName, if the length provided for that string is non-zero.

If there are wildcards in the topicName, the interpretation of those

wildcards can be controlled using the wildcard options specified in the

options parameter.

When creating an MQTopic for subscription, the subscription store

(destination) is provided, managed and owned by the user. The queue

manager takes no responsibility for this object and it is left to the user to

correctly dispose of it. Any messages available for this subscription will be

delivered to the specified destination.

The destination parameter must be valid and cannot be left blank or null.

This method can be used to create an unmanaged subscription only.

Parameters

destination

 An existing MQDestination object which should receive the

publications. For WebSphere MQ V7.0 this object maps to an

MQQueue object. It cannot resolve to another MQTopic object.

The MQDestination (MQQueue) object can be created by calling an

MQQueueManager::AccessQueue (...) method or an MQQueue

constructor.

The corresponding destination is held as a reference within the

MQTopic object as the UnmanagedDestinationReference property.

Chapter 2. Programming with WebSphere MQ classes for .NET 99

topicName

The topic string to subscribe against. The topicName parameter

directly maps to the ObjectString field of the MQSD. The full topic

name used is the combination of the topicObject and topicName

parameters as described above.

topicObject

This is the name of the topic object as defined on the local queue

manager. If this property is specified in combination with a

non-zero-length topicName, then the specified topicName is

appended to the topic string contained in the topic object with a

separator character. It is the full topic string that is published or

subscribed against, as described above.

 The parameter is both an input and output parameter. Upon

successful completion of the method, the closest matching

administrative node is located within the topic hierarchy and

returned. The contained topic object might therefore differ to that

originally specified.

options

 Options that control the opening of the topic for subscription. If

more than one option is required, the values can be added together

or combined using the bitwise OR operator.

These options are valid (see MQOPEN – Open object Options for a

full descriptive list of which options are valid when opening a

topic):

v MQSO_CREATE

v MQSO_RESUME

v MQSO_ALTER

If none of these options is specified, then MQSO_CREATE +

MQSO_ALTER is assumed. Other valid options are also available.

(see MQOPEN – Open object Options).

When opening a topic for subscription, the method applies to an

unmanaged subscription only. This option is therefore enforced:

v ~ MQSO_MANAGED

alternateUserId

 If MQSO_ALTERNATE_USER_AUTHORITY is specified in the

options parameter, this parameter specifies the alternate user

identifier that is used to check for the required authorization to

complete the operation. Otherwise, this parameter can be left blank

(or null).

subscriptionName

 If the options parameter specified MQSO_DURABLE then this field

is mandatory, otherwise (MQSO_NON_DURABLE) this field is

optional.

For an MQSO_DURABLE subscription it is the means by which

you identify a subscription to be resumed after it has been created,

if you have either closed the handle to the subscription or have

been disconnected from the queue manager.

100 WebSphere MQ: Using .NET

If altering an existing subscription using the MQSO_ALTER option,

the subscription name cannot be changed.

Returns

MQTopic that has been successfully opened.

AccessTopic

public MQTopic AccessTopic(MQDestination destination,

 String topicName,

 ref String topicObject,

 int options,

 String alternateUserId,

 String subscriptionName,

 ref Hashtable parameters);

Throws MQException.

Establishes access to a WebSphere MQ topic. The presence of the

destination and subscriptionName parameters indicate that this method

can be used for opening the topic for subscriptions only. The options

parameter therefore always maps to the equivalent MQSO values.

If MQSO_ALTERNATE_USER_AUTHORITY is specified in the options

parameter, the alternateUserId parameter is used to check for the necessary

authorization.

The options specified allow the MQTopic object to be used to get or

browse messages, inquire about the attributes of the topic, or set the

attributes of the topic.

The method returns an MQTopic object for subscription using the supplied

topic name (topicName) and topic object (topicObject).

The full topic name is given by the concatenation of two parts. A part

exists if the first character of the field is neither a blank nor a null

character. If both parts exist a ‘/’ character is inserted between them in the

resultant combined topic. If only one of these parts exist it is used

unchanged as the topic. The parts are concatenated in the sequence listed

here:

v The value of the TOPICSTR parameter of the topic object named in

topicObject.

v topicName, if the length provided for that string is non-zero.

If there are wildcards in the topicName, the interpretation of those

wildcards can be controlled using the wildcard options specified in the

options parameter.

When creating an MQTopic for subscription, the subscription store

(destination) is provided, managed and owned by the user. The queue

manager takes no responsibility for this object and it is left to the user to

correctly dispose of it. Any messages available for this subscription will be

delivered to the specified destination.

The destination parameter must be valid and cannot be left blank or null.

This method can be used to create an unmanaged subscription only.

Extra non-standard input and output parameters can also be specified

using the parameters hash table. If a property is an output field it will be

populated within the hash table only if it was originally specified on input.

Essentially, no new key/value pairs will be added to the hash table – only

existing ones updated.

Chapter 2. Programming with WebSphere MQ classes for .NET 101

Parameters

destination

 An existing MQDestination object which should receive the

publications. For WebSphere MQ V7.0 this object maps to an

MQQueue object. It cannot resolve to another MQTopic object.

The MQDestination (MQQueue) object can be created by calling an

MQQueueManager::AccessQueue (...) method or an MQQueue

constructor.

The corresponding destination is held as a reference within the

MQTopic object as the UnmanagedDestinationReference property.

topicName

The topic string to subscribe against. The topicName parameter

directly maps to the ObjectString field of the MQSD. The full topic

name used is the combination of the topicObject and topicName

parameters as described above.

topicObject

This is the name of the topic object as defined on the local queue

manager. If this property is specified in combination with a

non-zero-length topicName, then the specified topicName is

appended to the topic string contained in the topic object with a

separator character. It is the full topic string that is published or

subscribed against, as described above.

 The parameter is both an input and output parameter. Upon

successful completion of the method, the closest matching

administrative node is located within the topic hierarchy and

returned. The contained topic object might therefore differ to that

originally specified.

options

 Options that control the opening of the topic for subscription. If

more than one option is required, the values can be added together

or combined using the bitwise OR operator.

These options are valid (see MQOPEN – Open object Options for a

full descriptive list of which options are valid when opening a

topic):

v MQSO_CREATE

v MQSO_RESUME

v MQSO_ALTER

If none of these options is specified, then MQSO_CREATE +

MQSO_ALTER is assumed. Other valid options are also available.

(see MQOPEN – Open object Options).

When opening a topic for subscription, the method applies to an

unmanaged subscription only. This option is therefore enforced:

v ~ MQSO_MANAGED

alternateUserId

 If MQSO_ALTERNATE_USER_AUTHORITY is specified in the

options parameter, this parameter specifies the alternate user

102 WebSphere MQ: Using .NET

identifier that is used to check for the required authorization to

complete the operation. Otherwise, this parameter can be left blank

(or null).

subscriptionName

 If the options parameter specified MQSO_DURABLE then this field

is mandatory, otherwise (MQSO_NON_DURABLE) this field is

optional.

For an MQSO_DURABLE subscription it is the means by which

you identify a subscription to be resumed after it has been created,

if you have either closed the handle to the subscription or have

been disconnected from the queue manager.

If altering an existing subscription using the MQSO_ALTER option,

the subscription name cannot be changed.

parameters

 The hash table can be used to specify non-standard input and

output parameters to the subscription request. If a property is an

output field it will only be populated within the hash table if it

was originally specified on input. Consequently, no new key /

value pairs will be added to the hash table – only existing ones

updated. The following key names are valid and can be specified:

v MQSUB_PROP_ALTERNATE_SECURITY_ID

v MQSUB_PROP_SUBSCRIPTION_EXPIRY

v MQSUB_PROP_SUBSCRIPTION_USER_DATA

v MQSUB_PROP_SUBSCRIPTION_CORRELATION_ID

v MQSUB_PROP_PUBLICATION_PRIORITY

v MQSUB_PROP_PUBLICATION_ACCOUNTING_TOKEN

v MQSUB_PROP_PUBLICATION_APPLICATIONID_DATA

All are specified as String type properties. The corresponding

language conversion routines can be used to convert the values to

the relevant types.

Returns

MQTopic that has been successfully opened.

Backout

public void Backout()

Throws MQException.

Calling this method indicates to the queue manager that all the message

gets and puts that have occurred since the last syncpoint are to be backed

out. Messages put as part of a unit of work (with the

MQC.MQPMO_SYNCPOINT flag set in the options field of

MQPutMessageOptions) are deleted; messages retrieved as part of a unit of

work (with the MQC.MQGMO_SYNCPOINT flag set in the options field of

MQGetMessageOptions) are reinstated on the queue.

See also the description of the commit method.

Begin*

public void Begin()

 Throws MQException.

Chapter 2. Programming with WebSphere MQ classes for .NET 103

This method is supported only by the WebSphere MQ classes for .NET in

server bindings mode. It signals to the queue manager that a new unit of

work is starting.

Do not use this method for applications that use local one-phase

transactions.

Commit

public void Commit()

Throws MQException.

Calling this method indicates to the queue manager that the application

has reached a syncpoint, and that all the message gets and puts that have

occurred since the last syncpoint are to be made permanent. Messages put

as part of a unit of work (with the MQC.MQPMO_SYNCPOINT flag set in

the options field of MQPutMessageOptions) are made available to other

applications. Messages retrieved as part of a unit of work (with the

MQC.MQGMO_SYNCPOINT flag set in the options field of

MQGetMessageOptions) are deleted.

See also the description of the backout method.

Disconnect

public void Disconnect()

Throws MQException.

Terminates the connection to the queue manager. All open queues and

processes accessed by this queue manager are closed, and become

unusable. When you have disconnected from a queue manager, the only

way to reconnect is to create a new MQQueueManager object.

Normally, any work performed as part of a unit of work is committed.

However, if this connection is managed by a ConnectionManager, rather

than an MQConnectionManager, the unit of work might be rolled back.

GetAsyncStatus

public MQAsyncStatus GetAsyncStatus()

Throws MQException;

 Creates an MQAsyncStatus object that represents the asynchronous activity

for the queue manager connection.

Returns

An asynchronous status object containing the values of the last

asynchronous errors for the queue manager connection.

Exceptions

MQException – if there is a problem retrieving the asynchronous

error status information.

Put

public void Put(String qName,

 String qmName,

 MQMessage msg,

 MQPutMessageOptions pmo,

 String altUserId)

Throws MQException.

104 WebSphere MQ: Using .NET

Places a single message onto a queue without having to create an

MQQueue object first.

The qName (queue name) and qmName (queue manager name)

parameters identify where the message is placed. If the queue is a model

queue, an MQException is thrown.

In other respects, this method behaves like the put method on the

MQQueue object. It is an implementation of the MQPUT1 MQI call. See

MQQueue.Put.

Parameters

qName The name of the queue onto which to place the message.

qmName

The name of the queue manager on which the queue is defined.

msg The message to send.

pmo Options controlling the actions of the put. See

“MQPutMessageOptions” on page 68 for more details.

altUserid

Specifies an alternative user identifier used to check authorization

when placing the message on a queue. If you do not specify

MQPMO_ALTERNATE_USER, this parameter is ignored.

Put

public void Put(String qName,

 String qmName,

 MQMessage msg,

 MQPutMessageOptions pmo)

Throws MQException.

 Places a single message onto a queue without having to create an

MQQueue object first.

This version of the method allows you to omit the altUserid parameter. See

the fully-specified method (MQQueueManager.Put) for details of the

parameters.

Put

public void Put(String qName,

 String qmName,

 MQMessage msg)

Throws MQException.

 Places a single message onto a queue without having to create an

MQQueue object first.

This version of the method allows you to omit the put message options

(pmo) and altUserid parameters. See the fully-specified method

(MQQueueManager.Put) for details of the parameters.

Put

public void Put(String qName,

 MQMessage msg,

 MQPutMessageOptions pmo)

Throws MQException.

Chapter 2. Programming with WebSphere MQ classes for .NET 105

Places a single message onto a queue without having to create an

MQQueue object first.

This version of the method allows you to omit the qmName and altUserid

parameters. See the fully-specified method (MQQueueManager.Put) for

details of the parameters.

Put

 public void Put(String qName,

 MQMessage msg)

Throws MQException.

 Places a single message onto a queue without having to create an

MQQueue object first.

This version of the method allows you to omit the qmName, put message

options (pmo), and altUserid parameters. See the fully-specified method

(MQQueueManager.Put) for details of the parameters.

Put

public void Put(int type,

 ref String destinationName,

 ref MQMessage message);

Throws MQException.

Places or publishes a single message onto a queue or topic without having

to create an MQQueue or MQTopic object first.

When used to place messages to a queue allows you to omit the queue

manager name, put message options, and alternative user ID. When used

to publish messages to a topic allows you to omit the topic string, put

message options and alternative user ID.

The destinationName parameter adopts different meanings depending

upon the destination type specified in the type parameter.

The default options used for unspecified parameters might alter depending

upon the destination type specified.

Parameters

type The options used to control the specified destination type. Valid

values are:

v MQOT_Q

v MQOT_TOPIC

Only one option should be specified – the values should not be

combined by addition or using the bitwise OR operator.

destinationName

 The name of the queue or topic onto which to place or publish the

message. Depending upon the value of the type parameter this

parameter will adopt different meanings:

v If MQOT_Q is specified the destinationName parameter directly

maps to the queue name, that is the ObjectName property of the

MQOD.

106 WebSphere MQ: Using .NET

v If MQOT_TOPIC is specified the destinationName parameter

directly maps to the topic object, that is the ObjectName

property of the MQSD (the topic object ObjectName property is

left blank).

message

The message to send. Properties within the message might be

altered as a result of placing or publishing the message to a queue

or topic. It is therefore marked as both an input and output

parameter.

Returns

There is no return value.

Put

public void Put(int type,

 ref String destinationName,

 ref MQMessage message

 MQPutMessageOptions putMessageOptions);

Throws MQException.

Places or publishes a single message onto a queue or topic without having

to create an MQQueue or MQTopic object first.

When used to place messages to a queue allows you to omit the queue

manager name and alternative user ID. When used to publish messages to

a topic allows you to omit the topic string and alternative user ID.

The destinationName parameter adopts different meanings depending

upon the destination type being specified in the type parameter.

The options specified in the putMessageOptions parameter are used when

putting the message to either the queue or topic. These options differ

depending upon the destination type being specified.

Parameters

type The options used to control the specified destination type. Valid

values are:

v MQOT_Q

v MQOT_TOPIC

Only one option should be specified – the values should not be

combined by addition or using the bitwise OR operator.

destinationName

 The name of the queue or topic onto which to place or publish the

message. Depending upon the value of the type parameter this

parameter will adopt different meanings:

v If MQOT_Q is specified the destinationName parameter directly

maps to the queue name, that is the ObjectName property of the

MQOD.

v If MQOT_TOPIC is specified the destinationName parameter

directly maps to the topic object, that is the ObjectName

property of the MQSD (the topic object ObjectName property is

left blank).

message

The message to send. Properties within the message might be

Chapter 2. Programming with WebSphere MQ classes for .NET 107

altered as a result of placing or publishing the message to a queue

or topic. It is therefore marked as both an input and output

parameter.

putMessageOptions

Options controlling the action of the put or publish. See

MQPutMessageOptions object “Properties” on page 68.

Returns

There is no return value.

Put

public void Put(int type,

 ref String destinationName,

 String queueManagerName,

 String topicString,

 ref MQMessage message);

Throws MQException.

Places or publishes a single message onto a queue or topic without having

to create an MQQueue or MQTopic object first.

When used to place messages to a queue or a topic allows you to omit the

put message options, and alternative user ID.

The destinationName parameter adopts different meanings depending

upon the destination type being specified in the type parameter.

Other parameters are optional.

Parameters

type The options used to control the specified destination type. Valid

values are:

v MQOT_Q

v MQOT_TOPIC

Only one option should be specified – the values should not be

combined by addition or using the bitwise OR operator.

destinationName

 The name of the queue or topic onto which to place or publish the

message. Depending upon the value of the type parameter this

parameter will adopt different meanings:

v If MQOT_Q is specified the destinationName parameter directly

maps to the queue name, that is the ObjectName property of the

MQOD.

v If MQOT_TOPIC is specified the destinationName parameter

directly maps to the topic object, that is the ObjectName

property of the MQSD (the topic object ObjectName property is

left blank).

queueManagerName

The name of the queue manager onto which to place the message.

If type MQOT_TOPIC is specified this parameter is ignored.

topicString

The name of the topic string onto which to publish the message. If

type MQOT_Q is specified this parameter is ignored.

108 WebSphere MQ: Using .NET

message

The message to send. Properties within the message might be

altered as a result of placing or publishing the message to a queue

or topic. It is therefore marked as both an input and output

parameter.

Returns

There is no return value.

Put

public void Put(int type,

 ref String destinationName,

 String queueManagerName,

 String topicString,

 ref MQMessage message,

 MQPutMessageOptions putMessageOptions);

Throws MQException.

Places or publishes a single message onto a queue or topic without having

to create an MQQueue or MQTopic object first.

When used to place messages to a queue or a topic allows you to omit the

alternative user ID.

The destinationName parameter adopts different meanings depending

upon the destination type being specified in the type parameter.

The options specified in the putMessageOptions parameter are used when

putting the message to either the queue or topic. These options differ

depending upon the destination type being specified.

Other parameters are optional.

Parameters

type The options used to control the specified destination type. Valid

values are:

v MQOT_Q

v MQOT_TOPIC

Only one option should be specified – the values should not be

combined by addition or using the bitwise OR operator.

destinationName

 The name of the queue or topic onto which to place or publish the

message. Depending upon the value of the type parameter this

parameter will adopt different meanings:

v If MQOT_Q is specified the destinationName parameter directly

maps to the queue name, that is the ObjectName property of the

MQOD.

v If MQOT_TOPIC is specified the destinationName parameter

directly maps to the topic object, that is the ObjectName

property of the MQSD (the topic object ObjectName property is

left blank).

queueManagerName

The name of the queue manager onto which to place the message.

If type MQOT_TOPIC is specified this parameter is ignored.

Chapter 2. Programming with WebSphere MQ classes for .NET 109

topicString

The name of the topic string onto which to publish the message. If

type MQOT_Q is specified this parameter is ignored.

message

The message to send. Properties within the message might be

altered as a result of placing or publishing the message to a queue

or topic. It is therefore marked as both an input and output

parameter.

putMessageOptions

Options controlling the action of the put or publish. See

MQPutMessageOptions object “Properties” on page 68.

Returns

There is no return value.

Put

public void Put(int type,

 ref String destinationName,

 String queueManagerName,

 String topicString,

 ref MQMessage message,

 MQPutMessageOptions putMessageOptions

 String alternateUserId);

Throws MQException.

Places or publishes a single message onto a queue or topic without having

to create an MQQueue or MQTopic object first.

The destinationName parameter adopts different meanings depending

upon the destination type being specified in the type parameter.

The options specified in the putMessageOptions parameter are used when

putting the message to either the queue or topic. These options differ

depending upon the destination type being specified.

The alternateUserId parameter is an alternative user identifier used to

check authorization when placing or publishing the message onto a queue

or topic.

Other parameters are optional.

Parameters

type The options used to control the specified destination type. Valid

values are:

v MQOT_Q

v MQOT_TOPIC

Only one option should be specified – the values should not be

combined by addition or using the bitwise OR operator.

destinationName

 The name of the queue or topic onto which to place or publish the

message. Depending upon the value of the type parameter this

parameter will adopt different meanings:

v If MQOT_Q is specified the destinationName parameter directly

maps to the queue name, that is the ObjectName property of the

MQOD.

110 WebSphere MQ: Using .NET

v If MQOT_TOPIC is specified the destinationName parameter

directly maps to the topic object, that is the ObjectName

property of the MQSD (the topic object ObjectName property is

left blank).

queueManagerName

The name of the queue manager onto which to place the message.

If type MQOT_TOPIC is specified this parameter is ignored.

topicString

The name of the topic string onto which to publish the message. If

type MQOT_Q is specified this parameter is ignored.

message

The message to send. Properties within the message might be

altered as a result of placing or publishing the message to a queue

or topic. It is therefore marked as both an input and output

parameter.

putMessageOptions

Options controlling the action of the put or publish. See

MQPutMessageOptions object “Properties” on page 68.

alternateUserId

Specifies an alternative user identifier used to check authorization

when placing or publishing the message onto a queue or topic. If

you do not specify MQPMO_ALTERNATE_USER, this parameter is

ignored.

Returns

There is no return value.

Properties

Properties for MQQueueManager.

AccountingConnOverride

public int AccountingConnOverride {get;}

Allows applications to override the setting of the mqi accounting and

queue accounting values.

AccountingInterval

public int AccountingInterval {get;}

How long before intermediate accounting records are written (in seconds).

ActivityRecording

public int ActivityRecording {get;}

Controls the generation of activity reports.

AdoptNewMCACheck

public int AdoptNewMCACheck {get;}

Specifies which elements are checked to determine whether an MCA will

be adopted when a new inbound channel is detected with the same name

as an already active MCA.

AdoptNewMCAInterval

public int AdoptNewMCAInterval {get;}

Chapter 2. Programming with WebSphere MQ classes for .NET 111

The amount of time, in seconds, that the new channel waits for the

orphaned channel to end.

AdoptNewMCAType

public int AdoptNewMCAType {get;}

Whether an orphaned MCA instance is to be adopted (restarted) when a

new inbound channel request is detected matching the

AdoptNewMCACheck value.

BridgeEvent

public int BridgeEvent {get;}

Whether IMS Bridge events are generated.

ChannelEvent

public int ChannelEvent {get;}

Whether channel events are generated.

ChannelInitiatorControl

public int ChannelInitiatorControl {get;}

Whether the channel initiator starts automatically when the queue manager

starts.

ChannelInitiatorAdapters

public int ChannelInitiatorAdapters {get;}

The number of adapter subtasks to process WebSphere MQ calls.

ChannelInitiatorDispatchers

public int ChannelInitiatorDispatchers {get;}

The number of dispatchers to use for the channel initiator.

ChannelInitiatorTraceAutoStart

public int ChannelInitiatorTraceAutoStart {get;}

Specifies whether the channel initiator trace starts automatically.

ChannelInitiatorTraceTableSize

public int ChannelInitiatorTraceTableSize {get;}

The size, in megabytes, of the channel initiator’s trace data space.

ChannelMonitoring

public int ChannelMonitoring {get;}

Whether channel monitoring is enabled.

ChannelStatistics

public int ChannelStatistics {get;}

Controls the collection of statistics data for channels.

CharacterSet

public int CharacterSet {get;}

Throws MQException.

112 WebSphere MQ: Using .NET

Returns the CCSID (Coded Character Set Identifier) of the queue

manager’s code set. This defines the character set used by the queue

manager for all character string fields in the application programming

interface.

Throws MQException if you call this method after disconnecting from the

queue manager.

ClusterSenderMonitoring

public int ClusterSenderMonitoring {get;}

Controls the collection of online monitoring data for automatically-defined

cluster sender channels.

ClusterSenderStatistics

public int ClusterSenderStatistics {get;}

Controls the collection of statistics data for automatically defined cluster

sender channels.

ClusterWorkLoadMRU

public int ClusterWorkLoadMRU {get;}

The maximum number of outbound cluster channels.

ClusterWorkLoadUseQ

public int ClusterWorkLoadUseQ {get;}

The default value of the MQQueue property, ClusterWorkLoadUseQ, if it

specifies a value of QMGR.

CommandEvent

public int CommandEvent {get;}

Specifies whether command events are generated.

CommandInputQueueName

public String CommandInputQueueName {get;}

Throws MQException.

Returns the name of the command input queue defined on the queue

manager. This is a queue to which applications can send commands, if

authorized to do so.

Throws MQException if you call this method after disconnecting from the

queue manager.

CommandLevel

public int CommandLevel {get;}

Throws MQException.

Indicates the level of system control commands supported by the queue

manager. The set of system control commands that correspond to a

particular command level varies according to the architecture of the

platform on which the queue manager is running. See the WebSphere MQ

documentation for your platform for further details.

Throws MQException if you call this method after disconnecting from the

queue manager.

Chapter 2. Programming with WebSphere MQ classes for .NET 113

Returns

One of the MQC.MQCMDL_LEVEL_xxx constants

CommandServer

public int CommandServer {get;}

Whether the command server starts automatically when the queue

manager starts.

DNSGroup

public string DNSGroup {get;}

The name of the group that the TCP listener handling inbound

transmissions for the queue-sharing group must join when using Workload

Manager for Dynamic Domain Name Services support (DDNS).

DNSWLM

public int DNSWLM {get;}

Whether the TCP listener that handles inbound transmissions for the

queue-sharing group must register with Workload Manager for DDNS.

IPAddressVersion

public int IPAddressVersion {get;}

Which IP protocol (IPv4 or IPv6) to use for a channel connection.

IsConnected

public boolean IsConnected {get;}

Returns the value of the isConnected variable.

KeepAlive

public int KeepAlive {get;}

Specifies whether the TCP KEEPALIVE facility is to be used to check that

the other end of the connection is still available. If it is not available, the

channel is closed.

ListenerTimer

public int ListenerTimer {get;}

The time interval, in seconds, between attempts by WebSphere MQ to

restart the listener after an APPC or TCP/IP failure.

LoggerEvent

public int LoggerEvent {get;}

Whether logger events are generated.

LU62ARMSuffix

public string LU62ARMSuffix {get;}

The suffix of the APPCPM member of SYS1.PARMLIB. This suffix

nominates the LUADD for this channel initiator. When automatic restart

manager (ARM) restarts the channel initiator, the z/OS command SET

APPC=xx is issued.

LUGroupName

114 WebSphere MQ: Using .NET

public string LUGroupName {get;}

The generic LU name to be used by the LU 6.2 listener that handles

inbound transmissions for the queue-sharing group.

LUName

public string LUName {get;}

The name of the LU to use for outbound LU 6.2 transmissions.

MaximumActiveChannels

public int MaximumActiveChannels {get;}

The maximum number of channels that can be active at any time.

MaximumCurrentChannels

public int MaximumCurrentChannels {get;}

The maximum number of channels that can be current at any time

(including server-connection channels with connected clients).

MaximumLU62Channels

public int MaximumLU62Channels {get;}

The maximum number of channels that can be current, or clients that can

be connected, that use the LU 6.2 transmission protocol.

MaximumMessageLength

public int MaximumMessageLength {get;}

Throws MQException.

Returns the maximum length of a message (in bytes) that can be handled

by the queue manager. No queue can be defined with a maximum message

length greater than this.

Throws MQException if you call this method after disconnecting from the

queue manager.

MaximumPriority

public int MaximumPriority {get;}

Throws MQException.

Returns the maximum message priority supported by the queue manager.

Priorities range from zero (lowest) to this value.

Throws MQException if you call this method after disconnecting from the

queue manager.

MaximumTCPChannels

public int MaximumTCPChannels {get;}

The maximum number of channels that can be current, or clients that can

be connected, that use the TCP/IP transmission protocol.

MQIAccounting

public int MQIAccounting {get;}

Controls the collection of accounting information for MQI data.

Chapter 2. Programming with WebSphere MQ classes for .NET 115

MQIStatistics

public int MQIStatistics {get;}

Controls the collection of statistics monitoring information for the queue

manager.

OutboundPortMax

public int OutboundPortMax {get;}

The maximum value in the range of port numbers to be used when

binding outgoing channels.

OutboundPortMin

public int OutboundPortMin {get;}

The minimum value in the range of port numbers to be used when

binding outgoing channels.

QueueAccounting

public int QueueAccounting {get;}

Whether class 3 accounting (thread-level and queue-level accounting) data

is to be enabled for all queues.

QueueMonitoring

public int QueueMonitoring {get;}

Controls the collection of online monitoring data for queues.

QueueStatistics

public int QueueStatistics {get;}

Controls the collection of statistics data for queues.

ReceiveTimeout

public int ReceiveTimeout {get;}

The length of time that a TCP/IP channel waits to receive data, including

heartbeats, from its partner before returning to the inactive state.

ReceiveTimeoutMin

public int ReceiveTimeoutMin {get;}

The minimum length of time that a TCP/IP channel waits to receive data,

including heartbeats, from its partner before returning to an inactive state.

ReceiveTimeoutType

public int ReceiveTimeoutType {get;}

The qualifier to apply to the value in ReceiveTimeout.

SharedQueueQueueManagerName

public int SharedQueueQueueManagerName {get;}

Whether the ObjectQmgrName must be used or treated as the local queue

manager on an MQOPEN call for a shared queue when the

ObjectQmgrName is that of another queue manager in the queue-sharing

group.

116 WebSphere MQ: Using .NET

SSLEvent

public int SSLEvent {get;}

Whether SSL events are generated.

SSLFips

public int SSLFips {get;}

Whether only FIPS-certified algorithms are to be used if cryptography is

executed in WebSphere MQ

itself.

SSLKeyResetCount

public int SSLKeyResetCount {get;}

Indicates the number of unencrypted bytes sent and received within an

SSL conversation before the secret key is renegotiated.

StatisticsInterval

public int ClusterSenderStatistics {get;}

Specifies the interval, in minutes, between consecutive gatherings of

statistics.

SyncpointAvailability

public int SyncpointAvailability {get;}

Throws MQException.

Indicates whether the queue manager supports units of work and

syncpointing with the MQQueue.get and MQQueue.put methods.

Returns

v MQC.MQSP_AVAILABLE if syncpointing is available.

v MQC.MQSP_NOT_AVAILABLE if syncpointing is not available.

Throws MQException if you call this method after disconnecting from the

queue manager.

TCPName

public string TCPName {get;}

The name of either the only, or default, TCP/IP system to be used,

depending on the value of TCPStackType.

TCPStackType

public int TCPStackType {get;}

Specifies whether the channel initiator may use only the TCP/IP address

space specified in TCPNAME, or may optionally bind to any selected

TCP/IP address.

TraceRouteRecording

public int TraceRouteRecording {get;}

Controls the recording of route tracing information.

For more detailed descriptions of these properties, see Attribute descriptions for

the queue manager.

Chapter 2. Programming with WebSphere MQ classes for .NET 117

MQSubscription

MQSubscription object for .NET

public class IBM.WMQ.MQSubscription

extends IBM.WMQ.MQManagedObject

MQSubscription is a helper object designed to encapsulate the HSUB reference.

Under normal operating circumstances do not use or modify the object. It is a sub

class of MQManagedObject.

Properties

Properties for MQSubscription.

AlternateUserId

public String AlternateUserId { get; set; }

Although available on the MQManagedObject base class, this property has

no relevance to MQSubscription and is disabled.

Description

public String AlternateUserId { get; }

Although available on the MQManagedObject base class, this property has

no relevance to MQSubscription and is disabled.

OpenOptions

public int OpenOptions { get; set; }

Although available on the MQManagedObject base class, this property has

no relevance to MQSubscription and is disabled.

Constructors

Constructors for MQSubscription.

MQSubscription

protected MQSubscription();

Default constructor. Although not an abstract base class, the

MQSubscription object is set to inhibit construction of these objects. Instead

an MQSubscription object is created automatically when an MQTopic

object is created for subscriptions, and the reference to the MQSubscription

object is held in the MQTopic (SubscriptionReference) object. The reference

is available to you if you want to modify the close options or invoke any

of the object’s methods.

By default the close options of the MQSubscription object are set to

MQCO_NONE, which means the queue manager decides which close

options to use depending upon the subscription type.

System.Object

 │

 └─ IBM.WMQ.MQBase

 │

 └─ IBM.WMQ.MQBaseObject

 │

 └─ IBM.WMQ.MQManagedObject

 │

 └─ IBM.WMQ.MQSubscription

118 WebSphere MQ: Using .NET

Methods

Methods for MQSubscription object.

RequestPublicationUpdate

public int RequestPublicationUpdate(int options);

Throws MQException.

 Requests an update publication to be sent for the current topic. This is

normally used if the user specified the

MQSO_PUBLICATIONS_ON_REQUEST option. If the queue manager has

a retained publication for the topic, this is sent to the subscriber.

The method returns the number of retained publications to be sent to the

subscription queue. There is no guarantee that this many messages will be

available for the application to get, especially if they are non-persistent

messages.

There might be more than one publication if the subscribed topic contained

a wildcard. If no wildcards were present in the topic string when the

subscription was made, then only one publication will be sent as a result

of this call.

Parameters

options This parameter maps directly to the options field of the MQSRO

structure. Any or none of these options can be specified:

MQSRO_FAIL_IF_QUIESCING

The method fails if the queue manager is in a quiescent

state. On z/OS, for a CICS or IMS application, this option

also forces the method to fail if the connection is in a

quiescent state.

MQSRO_NONE

If none of the options described above are required, use

this value to indicate that no other options have been

specified.

Inquire

public void Inquire(int [] selectors,

 int [] intAttrs,

 byte [] charAttrs);

Although available on the MQManagedObject base class, this method has

no relevance to MQSubscription and is inhibited.

Set

public void Set(int [] selectors,

 int [] intAttrs,

 byte [] charAttrs);

Although available on the MQManagedObject base class, this method has

no relevance to MQSubscription and is inhibited.

GetAttributeString

public String GetAttributeString(int selector,

 int length);

Although available on the MQManagedObject base class, this method has

no relevance to MQSubscription and is inhibited.

Chapter 2. Programming with WebSphere MQ classes for .NET 119

SetAttributeString

public String SetAttributeString(int selector,

 String value,

 int length);

Although available on the MQManagedObject base class, this method has

no relevance to MQSubscription and is inhibited.

MQTopic

MQTopic object for .NET

public class IBM.WMQ.MQTopic

extends IBM.WMQ.MQDestination

MQTopic is a sub class of MQDestination and provides set, inquire, put

(send/publish), and get (receive/subscribe) operations for WebSphere MQ topics.

The set and inquire capabilities are inherited from MQManagedObject. The put

and get capabilities are inherited from MQDestination.

Use either the MQTopic constructors or the MQQueueManager::AccessTopic(...)

methods to gain access to an MQTopic object. An MQTopic object can be accessed

for either publication or subscription, not both simultaneously.

When used for receiving messages the MQTopic object can be created with an

unmanaged or managed subscription, and as a durable or non-durable subscriber –

multiple overloaded constructors are provided for this.

Properties

Properties for MQTopic.

IsDurable

public Boolean IsDurable { get; };

Read only property that returns True if the subscription is durable or False

otherwise. If the topic was opened for output, (publication), the property is

ignored and will always return False.

IsManaged

public Boolean IsManaged { get; };

Read only property that returns True if the subscription is managed by the

queue manager, or False otherwise. If the topic was opened for output

(publication), the property is ignored and will always return False.

IsSubscribed

public Boolean IsSubscribed { get; };

System.Object

 │

 └─ IBM.WMQ.MQBase

 │

 └─ IBM.WMQ.MQBaseObject

 │

 └─ IBM.WMQ.MQManagedObject

 │

 └─ IBM.WMQ.MQDestination

 │

 └─ IBM.WMQ.MQTopic

120 WebSphere MQ: Using .NET

Read only property that returns True if the topic was opened for

subscription and False if the topic was opened for publication.

SubscriptionReference

 public MQSubscription SubscriptionReference { get; };

Read only property that returns the MQSubscription object associated with

a topic object opened for subscription. The reference is available if you

want to modify the close options or invoke any of the objects methods.

UnmanagedDestinationReference

public MQDestination UnmanagedDestinationReference { get; };

Read only property that returns the MQDestination (MQQueue) associated

with an unmanaged subscription. This is the destination specified when

the topic object was created. The property will return null for any topic

objects opened for publication or with a managed subscription.

Constructors

Constructors for MQTopic.

The public constructors closely match those offered by MQQueue.

This topic lists four constructors for managed, followed by four for unmanaged.

The first two (managed) constructors can be used for publication or subscription,

the remaining six for subscription only.

Managed and publication or subscription

MQTopic

public MQTopic(MQQueueManager qMgr,

 String topicName,

 ref String topicObject,

 int openAs,

 int options);

Establishes access to a topic on the specified queue manager. The MQTopic

object may be opened for either publication or subscription depending

upon the value of the openAs parameter. The value dictates the use of the

options parameter that should contain MQOO options for publication or

MQSO options for subscription.

An MQTopic object cannot be used for both publication and subscription

simultaneously. The constructor creates an MQTopic object for either

publication or subscription using the supplied topic name (topicName) and

topic object (topicObject).

The full topic name is given by the concatenation of two parts. A part

exists if the first character of the field is neither a blank nor a null

character. If both parts exist a ‘/’ character is inserted between them in the

resultant combined topic. If only one of these parts exist it is used

unchanged as the topic. The parts are concatenated in the sequence listed

here:

v The value of the TOPICSTR parameter of the topic object named in

topicObject.

v topicName, if the length provided for that string is non-zero.

Chapter 2. Programming with WebSphere MQ classes for .NET 121

If there are wildcards in the topicName, the interpretation of those

wildcards can be controlled using the wildcard options specified in the

options parameter.

The options specified allow the MQTopic object to be used to get or

browse messages, put messages, inquire about the attributes of the topic,

or set the attributes of the topic.

When creating an MQTopic for subscriptions, the store (MQQueue) will be

managed and owned by the queue manager. This method can therefore be

used to create a managed subscription only.

Parameters

qMgr The object that represents the queue manager on which the topic

resides.

topicName

The topic string to publish or subscribe against. The topicName

parameter directly maps to the ObjectString field of the MQSD.

The full topic name used is the combination of the topicObject and

topicName parameters as described above.

topicObject

This is the name of the topic object as defined on the local queue

manager. If this property is specified in combination with a

non-zero-length topicName, then the specified topicName is

appended to the topic string contained in the topic object with a

separator character. It is the full topic string that is published or

subscribed against, as described above.

 The parameter is both an input and output parameter. Upon

successful completion of the method the closest matching

administrative node is located within the topic hierarchy and

returned. The contained topic object might therefore differ to that

originally specified.

openAs Indicates whether the topic is being opened for either publication

or subscription. The parameter can contain one of these options:

v MQTOPIC_OPEN_AS_SUBSCRIPTION

v MQTOPIC_OPEN_AS_PUBLICATION

The topic object cannot be opened for both publication and

subscription. Specifying more than a single option will result in an

error condition.

options

 Options that control the opening of the topic for either publication

or subscription. If more than one option is required, the values can

be added together or combined using the bitwise OR operator.

These options are valid (see MQOPEN – Open object Options for a

full descriptive list of which options are valid when opening a

topic):

v v MQOO_ALTERNATE_USER_AUTHORITY

v v MQOO_FAIL_IF_QUIESCING

v v MQOO_OUTPUT

v v MQOO_PASS_ALL_CONTEXT

v v MQOO_PASS_IDENTITY_CONTEXT

122 WebSphere MQ: Using .NET

v v MQOO_SET_ALL_CONTEXT

v v MQOO_SET_IDENTITY_CONTEXT

When opening the topic for subscription the following valid

options apply.:

v MQSO_CREATE

v MQSO_RESUME

v MQSO_ALTER

If none of these options are specified, then MQSO_CREATE +

MQSO_ALTER is assumed.

Other valid options are also available (see MQOPEN – Open object

Options).

When opening a topic for subscription, the method applies to a

managed, non-durable subscription only. These options are

therefore enforced:

v MQSO_NON_DURABLE

v MQSO_MANAGED

MQTopic

public MQTopic(MQQueueManager qMgr,

 String topicName,

 ref String topicObject,

 int openAs,

 int options,

 String alternateUserId);

Establishes access to a topic on the specified queue manager. The MQTopic

object may be opened for either publication or subscription depending

upon the value of the openAs parameter. The value dictates the use of the

options parameter that should contain MQOO options for publication or

MQSO options for subscription.

An MQTopic object cannot be used for both publication and subscription

simultaneously. The constructor creates an MQTopic object for either

publication or subscription using the supplied topic name (topicName) and

topic object (topicObject).

The full topic name is given by the concatenation of two parts. A part

exists if the first character of the field is neither a blank nor a null

character. If both parts exist a ‘/’ character is inserted between them in the

resultant combined topic. If only one of these parts exist it is used

unchanged as the topic. The parts are concatenated in the sequence listed

here:

v The value of the TOPICSTR parameter of the topic object named in

topicObject.

v topicName, if the length provided for that string is non-zero.

If there are wildcards in the topicName, the interpretation of those

wildcards can be controlled using the wildcard options specified in the

options parameter.

The options specified allow the MQTopic object to be used to get or

browse messages, put messages, inquire about the attributes of the topic,

or set the attributes of the topic.

Chapter 2. Programming with WebSphere MQ classes for .NET 123

If either MQOO_ALTERNATE_USER_AUTHORITY or

MQSO_ALTERNATE_USER_AUTHORITY is specified in the options

parameter, the alternateUserId parameter is used to check for the necessary

authorization.

When creating an MQTopic for subscriptions, the store (MQQueue) will be

managed and owned by the queue manager. This method can therefore be

used to create a managed subscription only.

Parameters

qMgr The object that represents the queue manager on which the topic

resides.

topicName

The topic string to publish or subscribe against. The topicName

parameter directly maps to the ObjectString field of the MQSD.

The full topic name used is the combination of the topicObject and

topicName parameters as described above.

topicObject

This is the name of the topic object as defined on the local queue

manager. If this property is specified in combination with a

non-zero-length topicName, then the specified topicName is

appended to the topic string contained in the topic object with a

separator character. It is the full topic string that is published or

subscribed against, as described above.

 The parameter is both an input and output parameter. Upon

successful completion of the method the closest matching

administrative node is located within the topic hierarchy and

returned. The contained topic object might therefore differ to that

originally specified.

openAs Indicates whether the topic is being opened for either publication

or subscription. The parameter can contain one of these options:

v MQTOPIC_OPEN_AS_SUBSCRIPTION

v MQTOPIC_OPEN_AS_PUBLICATION

The topic object cannot be opened for both publication and

subscription. Specifying more than a single option will result in an

error condition.

options

 Options that control the opening of the topic for either publication

or subscription. If more than one option is required, the values can

be added together or combined using the bitwise OR operator.

These options are valid (see MQOPEN – Open object Options for a

full descriptive list of which options are valid when opening a

topic):

v v MQOO_ALTERNATE_USER_AUTHORITY

v v MQOO_FAIL_IF_QUIESCING

v v MQOO_OUTPUT

v v MQOO_PASS_ALL_CONTEXT

v v MQOO_PASS_IDENTITY_CONTEXT

v v MQOO_SET_ALL_CONTEXT

v v MQOO_SET_IDENTITY_CONTEXT

124 WebSphere MQ: Using .NET

When opening the topic for subscription the following valid

options apply.:

v MQSO_CREATE

v MQSO_RESUME

v MQSO_ALTER

If none of these options are specified, then MQSO_CREATE +

MQSO_ALTER is assumed.

Other valid options are also available (see MQOPEN – Open object

Options).

When opening a topic for subscription, the method applies to a

managed, non-durable subscription only. These options are

therefore enforced:

v MQSO_NON_DURABLE

v MQSO_MANAGED

alternateUserId

 If either MQOO_ALTERNATE_USER_AUTHORITY or

MQSO_ALTERNATE_USER_AUTHORITY is specified in the

options parameter, this parameter specifies the alternate user

identifier that is used to check for the required authorization to

complete the operation. Otherwise, this parameter can be left blank

(or null).

Managed and subscription

MQTopic

public MQTopic(MQQueueManager qMgr,

 String topicName,

 ref String topicObject,

 int options,

 String alternateUserId,

 String subscriptionName);

Establishes access to a topic on the specified queue manager. This method

can be used for opening the topic for subscriptions only. The options

parameter can map to the MQSO options for subscription only.

The full topic name is given by the concatenation of two parts. A part

exists if the first character of the field is neither a blank nor a null

character. If both parts exist a ‘/’ character is inserted between them in the

resultant combined topic. If only one of these parts exist it is used

unchanged as the topic. The parts are concatenated in the sequence listed

here:

v The value of the TOPICSTR parameter of the topic object named in

topicObject.

v topicName, if the length provided for that string is non-zero.

If there are wildcards in the topicName, the interpretation of those

wildcards can be controlled using the wildcard options specified in the

options parameter.

The options specified allow the MQTopic object to be used to get or

browse messages, inquire about the attributes of the topic, or set the

attributes of the topic.

Chapter 2. Programming with WebSphere MQ classes for .NET 125

If MQSO_ALTERNATE_USER_AUTHORITY is specified in the options

parameter, the alternateUserId parameter is used to check for the necessary

authorization.

When creating an MQTopic for subscriptions, the store (MQQueue) will be

managed and owned by the queue manager. This method can therefore be

used to create a managed subscription only.

Parameters

qMgr The object that represents the queue manager on which the topic

resides.

topicName

The topic string to publish or subscribe against. The topicName

parameter directly maps to the ObjectString field of the MQSD.

The full topic name used is the combination of the topicObject and

topicName parameters as described above.

topicObject

This is the name of the topic object as defined on the local queue

manager. If this property is specified in combination with a

non-zero-length topicName, then the specified topicName is

appended to the topic string contained in the topic object with a

separator character. It is the full topic string that is published or

subscribed against, as described above.

 The parameter is both an input and output parameter. Upon

successful completion of the method the closest matching

administrative node is located within the topic hierarchy and

returned. The contained topic object might therefore differ to that

originally specified.

options

 Options that control the opening of the topic for subscription. If

more than one option is required, the values can be added together

or combined using the bitwise OR operator.

When opening the topic for subscription the following valid

options apply.:

v MQSO_CREATE

v MQSO_RESUME

v MQSO_ALTER

If none of these options are specified, then MQSO_CREATE +

MQSO_ALTER is assumed.

Other valid options are also available (see MQOPEN – Open object

Options).

When opening a topic for subscription, the method applies to a

managed subscription only. This option is therefore enforced:

v MQSO_MANAGED

alternateUserId

 If MQSO_ALTERNATE_USER_AUTHORITY is specified in the

options parameter, this parameter specifies the alternate user

identifier that is used to check for the required authorization to

complete the operation. Otherwise, this parameter can be left blank

(or null).

126 WebSphere MQ: Using .NET

subscriptionName

 If the options parameter specified MQSO_DURABLE then this field

is required, otherwise if this field is provided it will be used by the

queue manager for MQSO_NON_DURABLE as well.

For an MQSO_DURABLE subscription it is the means by which

you identify a subscription to be resumed after it has been created,

if you have either closed the handle to the subscription or have

been disconnected from the queue manager.

If altering an existing subscription using the MQSO_ALTER option,

the subscription name cannot be changed.

MQTopic

public MQTopic(MQQueueManager qMgr,

 String topicName,

 ref String topicObject,

 int options,

 String alternateUserId,

 String subscriptionName,

 ref Hashtable parameters);

Establishes access to a topic on the specified queue manager. This method

can be used for opening the topic for subscriptions only. The options

parameter can map to the MQSO options for subscription only.

The full topic name is given by the concatenation of two parts. A part

exists if the first character of the field is neither a blank nor a null

character. If both parts exist a ‘/’ character is inserted between them in the

resultant combined topic. If only one of these parts exist it is used

unchanged as the topic. The parts are concatenated in the sequence listed

here:

v The value of the TOPICSTR parameter of the topic object named in

topicObject.

v topicName, if the length provided for that string is non-zero.

If there are wildcards in the topicName, the interpretation of those

wildcards can be controlled using the wildcard options specified in the

options parameter.

The options specified allow the MQTopic object to be used to get or

browse messages, inquire about the attributes of the topic, or set the

attributes of the topic.

If MQSO_ALTERNATE_USER_AUTHORITY is specified in the options

parameter, the alternateUserId parameter is used to check for the necessary

authorization.

Extra non-standard input and output parameters can also be specified

using the parameters hash table. If a property is an output field it will be

populated within the hash table only if it was originally specified on input.

Essentially, no new key/value pairs will be added to the hash table – only

existing ones updated.

When creating an MQTopic for subscriptions, the store (MQQueue) will be

managed and owned by the queue manager. This method can therefore be

used to create a managed subscription only.

Parameters

Chapter 2. Programming with WebSphere MQ classes for .NET 127

qMgr The object that represents the queue manager on which the topic

resides.

topicName

The topic string to publish or subscribe against. The topicName

parameter directly maps to the ObjectString field of the MQSD.

The full topic name used is the combination of the topicObject and

topicName parameters as described above.

topicObject

This is the name of the topic object as defined on the local queue

manager. If this property is specified in combination with a

non-zero-length topicName, then the specified topicName is

appended to the topic string contained in the topic object with a

separator character. It is the full topic string that is published or

subscribed against, as described above.

 The parameter is both an input and output parameter. Upon

successful completion of the method the closest matching

administrative node is located within the topic hierarchy and

returned. The contained topic object might therefore differ to that

originally specified.

options

 Options that control the opening of the topic for subscription. If

more than one option is required, the values can be added together

or combined using the bitwise OR operator.

When opening the topic for subscription the following valid

options apply.:

v MQSO_CREATE

v MQSO_RESUME

v MQSO_ALTER

If none of these options are specified, then MQSO_CREATE +

MQSO_ALTER is assumed.

Other valid options are also available (see MQOPEN – Open object

Options).

When opening a topic for subscription, the method applies to a

managed subscription only. This option is therefore enforced:

v MQSO_MANAGED

alternateUserId

 If MQSO_ALTERNATE_USER_AUTHORITY is specified in the

options parameter, this parameter specifies the alternate user

identifier that is used to check for the required authorization to

complete the operation. Otherwise, this parameter can be left blank

(or null).

subscriptionName

 If the options parameter specified MQSO_DURABLE then this field

is required, otherwise if this field is provided it will be used by the

queue manager for MQSO_NON_DURABLE as well.

For an MQSO_DURABLE subscription it is the means by which

you identify a subscription to be resumed after it has been created,

128 WebSphere MQ: Using .NET

if you have either closed the handle to the subscription or have

been disconnected from the queue manager.

If altering an existing subscription using the MQSO_ALTER option,

the subscription name cannot be changed.

parameters

 The hash table can be used to specify non-standard input and

output parameters to the subscription request. If a property is an

output field it will only be populated within the hash table if it

was originally specified on input. Consequently, no new key/value

pairs will be added to the hash table – only existing ones updated.

The following key names are valid and can be specified:

v MQSUB_PROP_ALTERNATE_SECURITY_ID

v MQSUB_PROP_SUBSCRIPTION_EXPIRY

v MQSUB_PROP_SUBSCRIPTION_USER_DATA

v MQSUB_PROP_SUBSCRIPTION_CORRELATION_ID

v MQSUB_PROP_PUBLICATION_PRIORITY

v MQSUB_PROP_PUBLICATION_ACCOUNTING_TOKEN

v MQSUB_PROP_PUBLICATION_APPLICATIONID_DATA

All are specified as String type properties. The corresponding

language conversion routines can be used to convert the values to

the relevant types.

Unmanaged and subscription

MQTopic

public MQTopic(MQQueueManager qMgr,

 MQDestination destination,

 String topicName,

 ref String topicObject,

 int options);

Establishes access to a topic on the specified queue manager. This method

can be used for opening the topic for subscriptions only. The options

parameter can map to the MQSO options for subscription only.

The destination parameter must be valid and cannot be left blank or null.

The full topic name is given by the concatenation of two parts. A part

exists if the first character of the field is neither a blank nor a null

character. If both parts exist a ‘/’ character is inserted between them in the

resultant combined topic. If only one of these parts exist it is used

unchanged as the topic. The parts are concatenated in the sequence listed

here:

v The value of the TOPICSTR parameter of the topic object named in

topicObject.

v topicName, if the length provided for that string is non-zero.

If there are wildcards in the topicName, the interpretation of those

wildcards can be controlled using the wildcard options specified in the

options parameter.

The options specified allow the MQTopic object to be used to get or

browse messages, inquire about the attributes of the topic, or set the

attributes of the topic.

Chapter 2. Programming with WebSphere MQ classes for .NET 129

When creating an MQTopic for subscription, the subscription store

(destination) is provided, managed and owned by the user. The queue

manager takes no responsibility for this object and it is left to the user to

correctly dispose of it. Any messages available for this subscription will be

delivered to the specified destination. This method can therefore be used to

create an unmanaged, non-durable subscription only.

Parameters

qMgr The object that represents the queue manager on which the topic

resides.

destination

 An existing MQDestination object which should receive the

publications. For WebSphere MQ V7.0 this object maps to an

MQQueue object. It cannot resolve to another MQTopic object.

The MQDestination (MQQueue) object can be created by calling an

MQQueueManager::AccessQueue (...) method or an MQQueue

constructor.

The corresponding destination is held as a reference within the

MQTopic object as the UnmanagedDestinationReference property.

topicName

The topic string to publish or subscribe against. The topicName

parameter directly maps to the ObjectString field of the MQSD.

The full topic name used is the combination of the topicObject and

topicName parameters as described above.

topicObject

This is the name of the topic object as defined on the local queue

manager. If this property is specified in combination with a

non-zero-length topicName, then the specified topicName is

appended to the topic string contained in the topic object with a

separator character. It is the full topic string that is published or

subscribed against, as described above.

 The parameter is both an input and output parameter. Upon

successful completion of the method the closest matching

administrative node is located within the topic hierarchy and

returned. The contained topic object might therefore differ to that

originally specified.

options

 Options that control the opening of the topic for subscription. If

more than one option is required, the values can be added together

or combined using the bitwise OR operator.

These options are valid (see MQOPEN – Open object Options for a

full descriptive list of which options are valid when opening a

topic):

v MQSO_CREATE

v MQSO_RESUME

v MQSO_ALTER

If none of these options is specified, then MQSO_CREATE +

MQSO_ALTER is assumed. Other valid options are also available.

(see MQOPEN – Open object Options).

130 WebSphere MQ: Using .NET

When opening a topic for subscription, the method applies to an

unmanaged, non-durable subscription only. These options are

therefore enforced:

v MQSO_NON_DURABLE

v ~ MQSO_MANAGED

MQTopic

public MQTopic(MQQueueManager qMgr,

 MQDestination destination,

 String topicName,

 ref String topicObject,

 int options,

 String alternateUserId);

Establishes access to a topic on the specified queue manager. This method

can be used for opening the topic for subscriptions only. The options

parameter can map to the MQSO options for subscription only.

The destination parameter must be valid and cannot be left blank or null.

The full topic name is given by the concatenation of two parts. A part

exists if the first character of the field is neither a blank nor a null

character. If both parts exist a ‘/’ character is inserted between them in the

resultant combined topic. If only one of these parts exist it is used

unchanged as the topic. The parts are concatenated in the sequence listed

here:

v The value of the TOPICSTR parameter of the topic object named in

topicObject.

v topicName, if the length provided for that string is non-zero.

If there are wildcards in the topicName, the interpretation of those

wildcards can be controlled using the wildcard options specified in the

options parameter.

The options specified allow the MQTopic object to be used to get or

browse messages, inquire about the attributes of the topic, or set the

attributes of the topic.

If MQSO_ALTERNATE_USER_AUTHORITY is specified in the options

parameter, the alternateUserId parameter is used to check for the necessary

authorization.

When creating an MQTopic for subscription, the subscription store

(destination) is provided, managed and owned by the user. The queue

manager takes no responsibility for this object and it is left to the user to

correctly dispose of it. Any messages available for this subscription will be

delivered to the specified destination. This method can therefore be used to

create an unmanaged, non-durable subscription only.

Parameters

qMgr The object that represents the queue manager on which the topic

resides.

destination

 An existing MQDestination object which should receive the

publications. For WebSphere MQ V7.0 this object maps to an

MQQueue object. It cannot resolve to another MQTopic object.

Chapter 2. Programming with WebSphere MQ classes for .NET 131

The MQDestination (MQQueue) object can be created by calling an

MQQueueManager::AccessQueue (...) method or an MQQueue

constructor.

The corresponding destination is held as a reference within the

MQTopic object as the UnmanagedDestinationReference property.

topicName

The topic string to publish or subscribe against. The topicName

parameter directly maps to the ObjectString field of the MQSD.

The full topic name used is the combination of the topicObject and

topicName parameters as described above.

topicObject

This is the name of the topic object as defined on the local queue

manager. If this property is specified in combination with a

non-zero-length topicName, then the specified topicName is

appended to the topic string contained in the topic object with a

separator character. It is the full topic string that is published or

subscribed against, as described above.

 The parameter is both an input and output parameter. Upon

successful completion of the method the closest matching

administrative node is located within the topic hierarchy and

returned. The contained topic object might therefore differ to that

originally specified.

options

 Options that control the opening of the topic for subscription. If

more than one option is required, the values can be added together

or combined using the bitwise OR operator.

These options are valid (see MQOPEN – Open object Options for a

full descriptive list of which options are valid when opening a

topic):

v MQSO_CREATE

v MQSO_RESUME

v MQSO_ALTER

If none of these options is specified, then MQSO_CREATE +

MQSO_ALTER is assumed. Other valid options are also available.

(see MQOPEN – Open object Options).

When opening a topic for subscription, the method applies to an

unmanaged, non-durable subscription only. These options are

therefore enforced:

v MQSO_NON_DURABLE

v ~ MQSO_MANAGED

alternateUserId

 If MQSO_ALTERNATE_USER_AUTHORITY is specified in the

options parameter, this parameter specifies the alternate user

identifier that is used to check for the required authorization to

complete the operation. Otherwise, this parameter can be left blank

(or null).

MQTopic

132 WebSphere MQ: Using .NET

public MQTopic(MQQueueManager qMgr,

 MQDestination destination,

 String topicName,

 ref String topicObject,

 int options,

 String alternateUserId,

 String subscriptionName);

Establishes access to a topic on the specified queue manager. This method

can be used for opening the topic for subscriptions only. The options

parameter can map to the MQSO options for subscription only.

The destination parameter must be valid and cannot be left blank or null.

The full topic name is given by the concatenation of two parts. A part

exists if the first character of the field is neither a blank nor a null

character. If both parts exist a ‘/’ character is inserted between them in the

resultant combined topic. If only one of these parts exist it is used

unchanged as the topic. The parts are concatenated in the sequence listed

here:

v The value of the TOPICSTR parameter of the topic object named in

topicObject.

v topicName, if the length provided for that string is non-zero.

If there are wildcards in the topicName, the interpretation of those

wildcards can be controlled using the wildcard options specified in the

options parameter.

The options specified allow the MQTopic object to be used to get or

browse messages, inquire about the attributes of the topic, or set the

attributes of the topic.

If MQSO_ALTERNATE_USER_AUTHORITY is specified in the options

parameter, the alternateUserId parameter is used to check for the necessary

authorization.

When creating an MQTopic for subscription, the subscription store

(destination) is provided, managed and owned by the user. The queue

manager takes no responsibility for this object and it is left to the user to

correctly dispose of it. Any messages available for this subscription will be

delivered to the specified destination. This method can therefore be used to

create an unmanaged subscription only.

Parameters

qMgr The object that represents the queue manager on which the topic

resides.

destination

 An existing MQDestination object which should receive the

publications. For WebSphere MQ V7.0 this object maps to an

MQQueue object. It cannot resolve to another MQTopic object.

The MQDestination (MQQueue) object can be created by calling an

MQQueueManager::AccessQueue (...) method or an MQQueue

constructor.

The corresponding destination is held as a reference within the

MQTopic object as the UnmanagedDestinationReference property.

topicName

The topic string to publish or subscribe against. The topicName

Chapter 2. Programming with WebSphere MQ classes for .NET 133

parameter directly maps to the ObjectString field of the MQSD.

The full topic name used is the combination of the topicObject and

topicName parameters as described above.

topicObject

This is the name of the topic object as defined on the local queue

manager. If this property is specified in combination with a

non-zero-length topicName, then the specified topicName is

appended to the topic string contained in the topic object with a

separator character. It is the full topic string that is published or

subscribed against, as described above.

 The parameter is both an input and output parameter. Upon

successful completion of the method the closest matching

administrative node is located within the topic hierarchy and

returned. The contained topic object might therefore differ to that

originally specified.

options

 Options that control the opening of the topic for subscription. If

more than one option is required, the values can be added together

or combined using the bitwise OR operator.

These options are valid (see MQOPEN – Open object Options for a

full descriptive list of which options are valid when opening a

topic):

v MQSO_CREATE

v MQSO_RESUME

v MQSO_ALTER

If none of these options is specified, then MQSO_CREATE +

MQSO_ALTER is assumed. Other valid options are also available.

(see MQOPEN – Open object Options).

When opening a topic for subscription, the method applies to an

unmanaged subscription only. This option is therefore enforced:

v ~ MQSO_MANAGED

alternateUserId

 If MQSO_ALTERNATE_USER_AUTHORITY is specified in the

options parameter, this parameter specifies the alternate user

identifier that is used to check for the required authorization to

complete the operation. Otherwise, this parameter can be left blank

(or null).

subscriptionName

 If the options parameter specified MQSO_DURABLE then this field

is required, otherwise if this field is provided it will be used by the

queue manager for MQSO_NON_DURABLE as well.

For an MQSO_DURABLE subscription it is the means by which

you identify a subscription to be resumed after it has been created,

if you have either closed the handle to the subscription or have

been disconnected from the queue manager.

If altering an existing subscription using the MQSO_ALTER option,

the subscription name cannot be changed.

MQTopic

134 WebSphere MQ: Using .NET

public MQTopic(MQQueueManager qMgr,

 MQDestination destination,

 String topicName,

 ref String topicObject,

 int options,

 String alternateUserId,

 String subscriptionName,

 ref Hashtable parameters);

Establishes access to a topic on the specified queue manager. This method

can be used for opening the topic for subscriptions only. The options

parameter can map to the MQSO options for subscription only.

The destination parameter must be valid and cannot be left blank or null.

The full topic name is given by the concatenation of two parts. A part

exists if the first character of the field is neither a blank nor a null

character. If both parts exist a ‘/’ character is inserted between them in the

resultant combined topic. If only one of these parts exist it is used

unchanged as the topic. The parts are concatenated in the sequence listed

here:

v The value of the TOPICSTR parameter of the topic object named in

topicObject.

v topicName, if the length provided for that string is non-zero.

If there are wildcards in the topicName, the interpretation of those

wildcards can be controlled using the wildcard options specified in the

options parameter.

The options specified allow the MQTopic object to be used to get or

browse messages, inquire about the attributes of the topic, or set the

attributes of the topic.

If MQSO_ALTERNATE_USER_AUTHORITY is specified in the options

parameter, the alternateUserId parameter is used to check for the necessary

authorization.

When creating an MQTopic for subscription, the subscription store

(destination) is provided, managed and owned by the user. The queue

manager takes no responsibility for this object and it is left to the user to

correctly dispose of it. Any messages available for this subscription will be

delivered to the specified destination. This method can therefore be used to

create an unmanaged subscription only.

Extra non-standard input and output parameters can also be specified

using the parameters hash table. If a property is an output field it will be

populated within the hash table only if it was originally specified on input.

Essentially, no new key/value pairs will be added to the hash table – only

existing ones updated.

Parameters

qMgr The object that represents the queue manager on which the topic

resides.

destination

 An existing MQDestination object which should receive the

publications. For WebSphere MQ V7.0 this object maps to an

MQQueue object. It cannot resolve to another MQTopic object.

Chapter 2. Programming with WebSphere MQ classes for .NET 135

The MQDestination (MQQueue) object can be created by calling an

MQQueueManager::AccessQueue (...) method or an MQQueue

constructor.

The corresponding destination is held as a reference within the

MQTopic object as the UnmanagedDestinationReference property.

topicName

The topic string to publish or subscribe against. The topicName

parameter directly maps to the ObjectString field of the MQSD.

The full topic name used is the combination of the topicObject and

topicName parameters as described above.

topicObject

This is the name of the topic object as defined on the local queue

manager. If this property is specified in combination with a

non-zero-length topicName, then the specified topicName is

appended to the topic string contained in the topic object with a

separator character. It is the full topic string that is published or

subscribed against, as described above.

 The parameter is both an input and output parameter. Upon

successful completion of the method the closest matching

administrative node is located within the topic hierarchy and

returned. The contained topic object might therefore differ to that

originally specified.

options

 Options that control the opening of the topic for subscription. If

more than one option is required, the values can be added together

or combined using the bitwise OR operator.

These options are valid (see MQOPEN – Open object Options for a

full descriptive list of which options are valid when opening a

topic):

v MQSO_CREATE

v MQSO_RESUME

v MQSO_ALTER

If none of these options is specified, then MQSO_CREATE +

MQSO_ALTER is assumed. Other valid options are also available.

(see MQOPEN – Open object Options).

When opening a topic for subscription, the method applies to an

unmanaged subscription only. This option is therefore enforced:

v ~ MQSO_MANAGED

alternateUserId

 If MQSO_ALTERNATE_USER_AUTHORITY is specified in the

options parameter, this parameter specifies the alternate user

identifier that is used to check for the required authorization to

complete the operation. Otherwise, this parameter can be left blank

(or null).

subscriptionName

 If the options parameter specified MQSO_DURABLE then this field

is required, otherwise if this field is provided it will be used by the

queue manager for MQSO_NON_DURABLE as well.

136 WebSphere MQ: Using .NET

For an MQSO_DURABLE subscription it is the means by which

you identify a subscription to be resumed after it has been created,

if you have either closed the handle to the subscription or have

been disconnected from the queue manager.

If altering an existing subscription using the MQSO_ALTER option,

the subscription name cannot be changed.

parameters

 The hash table can be used to specify non-standard input and

output parameters to the subscription request. If a property is an

output field it will only be populated within the hash table if it

was originally specified on input. Consequently, no new key/value

pairs will be added to the hash table – only existing ones updated.

The following key names are valid and can be specified:

v MQSUB_PROP_ALTERNATE_SECURITY_ID

v MQSUB_PROP_SUBSCRIPTION_EXPIRY

v MQSUB_PROP_SUBSCRIPTION_USER_DATA

v MQSUB_PROP_SUBSCRIPTION_CORRELATION_ID

v MQSUB_PROP_PUBLICATION_PRIORITY

v MQSUB_PROP_PUBLICATION_ACCOUNTING_TOKEN

v MQSUB_PROP_PUBLICATION_APPLICATIONID_DATA

All are specified as String type properties. The corresponding

language conversion routines can be used to convert the values to

the relevant types.

Methods

Methods for MQTopic object.

Put

public void Put(ref MQMessage message);

Throws MQException.

 Publishes a message to the topic. This method uses a default instance of

MQPutMessageOptions to perform the put or publish. The default

MQPutMessageOptions instance differs depending upon the destination

type.

Parameters

message

An MQMessage object containing the Message Descriptor data

(MQMD) and message to be sent. The Message Descriptor

properties of this object can be altered as a result of this method.

The values that they have immediately after the completion of this

method are the values that were published to the topic.

Put

public void Put(ref MQMessage message,

 MQPutMessageOptions putMessageOptions);

Throws MQException.

 Publishes a message to the topic.

Parameters

Chapter 2. Programming with WebSphere MQ classes for .NET 137

message

An MQMessage object containing the Message Descriptor data

(MQMD) and message to be sent. The Message Descriptor

properties of this object can be altered as a result of this method.

The values that they have immediately after the completion of this

method are the values that were published to the topic.

putMessageOptions

Options controlling the action of the put (See

“MQPutMessageOptions” on page 68).

Get

public void Get(ref MQMessage message);

Throws MQException.

 Retrieves a message from the topic. This method takes an MQMessage

object as a parameter. It uses some of the fields in the object as input

parameters, in particular the messageId and correlationId, so make sure

you set these as required.

If the get fails, the MQMessage object is unchanged. If it succeeds, the

message descriptor (member variables) and message data portions of the

MQMessage are completely replaced with the message descriptor and

message data from the incoming message.

This method uses a default instance of MQGetMessageOptions to do the

get. The message option used is MQGMO_NOWAIT.

Parameters

message

An input/output parameter containing the message descriptor

information and the returned message data.

Get

public void Get(ref MQMessage message,

 MQGetMessageOptions getMessageOptions);

Throws MQException.

 Retrieves a message from the topic. This method takes an MQMessage

object as a parameter. It uses some of the fields in the object as input

parameters, in particular the messageId and correlationId, so make sure

you set these as required.

If the get fails, the MQMessage object is unchanged. If it succeeds, the

message descriptor (member variables) and message data portions of the

MQMessage are completely replaced with the message descriptor and

message data from the incoming message.

Parameters

message

An input/output parameter containing the message descriptor

information and the returned message data.

getMessageOptions

Options controlling the action of the get (See

“MQGetMessageOptions” on page 39).

Get

138 WebSphere MQ: Using .NET

public void Get(ref MQMessage message,

 MQGetMessageOptions getMessageOptions,

 int MaxMsgSize);

Throws MQException.

 Retrieves a message from the topic, up to the maximum specified message

size. This method takes an MQMessage object as a parameter. It uses some

of the fields in the object as input parameters, in particular the messageId

and correlationId, so make sure you set these as required.

If the get fails, the MQMessage object is unchanged. If it succeeds, the

message descriptor (member variables) and message data portions of the

MQMessage are completely replaced with the message descriptor and

message data from the incoming message.

Parameters

message

An input/output parameter containing the message descriptor

information and the returned message data.

getMessageOptions

Options controlling the action of the get (See

“MQGetMessageOptions” on page 39).

MaxMsgSize

The largest message this call can receive. If the message on the

queue is larger than this size, one of two things occurs:

1. If the MQC.MQGMO_ACCEPT_TRUNCATED_MSG flag is set

in the options member variable of the MQGetMessageOptions

object, the message is filled with as much of the message data

as will fit in the specified buffer size, and an exception is

thrown with completion code MQException.MQCC_WARNING

and reason code

MQException.MQRC_TRUNCATED_MSG_ACCEPTED.

2. If the MQC.MQGMO_ACCEPT_TRUNCATED_MSG flag is not

set, the message is left on the queue and an MQException is

raised with completion code MQException.MQCC_WARNING

and reason code

MQException.MQRC_TRUNCATED_MSG_FAILED.

MQC

public interface IBM.WMQ.MQC

extends System.Object

The MQC structure defines all the constants used by the MQI. To refer to one of

these constants from within your programs, prefix the constant name with ″MQC.″.

For example, you can set the close options for a queue as follows:

System.Object

 │

 └─ IBM.WMQ.MQC

Chapter 2. Programming with WebSphere MQ classes for .NET 139

MQQueue queue;

 ...

queue.closeOptions = MQC.MQCO_DELETE; // delete the

 // queue when

 // it is closed

 ...

A full description of these constants is in the WebSphere MQ Application

Programming Reference.

140 WebSphere MQ: Using .NET

Chapter 3. SSL CipherSpecs supported by WebSphere MQ

The following table lists the CipherSpecs supported by WebSphere MQ. Specify the

CipherSpec name in the SSLCIPH property of the SVRCONN channel on the

queue manager and in MQEnvironment.SSLCipherSpec

 Table 2. Supported CipherSpecs

CipherSpec

DES_SHA_EXPORT

DES_SHA_EXPORT1024

NULL_MD5

NULL_SHA

RC2_MD5_EXPORT

RC4_56_SHA_EXPORT1024

RC4_MD5_US

RC4_MD5_EXPORT

RC4_SHA_US

TRIPLE_DES_SHA_US

© Copyright IBM Corp. 2003, 2008 141

142 WebSphere MQ: Using .NET

Notices

This information was developed for products and services offered in the United

States. IBM may not offer the products, services, or features discussed in this

information in other countries. Consult your local IBM representative for

information on the products and services currently available in your area. Any

reference to an IBM product, program, or service is not intended to state or imply

that only that IBM product, program, or service may be used. Any functionally

equivalent product, program, or service that does not infringe any IBM intellectual

property right may be used instead. However, it is the user’s responsibility to

evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this information. The furnishing of this information does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing,

IBM Corporation,

North Castle Drive,

Armonk, NY 10504-1785,

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation,

Licensing,

2-31 Roppongi 3-chome, Minato-k,u

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the information. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

information at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2003, 2008 143

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM United Kingdom Laboratories,

Mail Point 151,

Hursley Park,

Winchester,

Hampshire,

England

SO21 2JN.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Programming License Agreement, or any equivalent agreement

between us.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application

programs conforming to IBM’s application programming interfaces.

The following are trademarks of International Business Machines Corporation in

the United States, or other countries, or both:

 IBM IBMLink S/390

System/390 WebSphere z/OS

zSeries

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of

others.

144 WebSphere MQ: Using .NET

Index

Special characters
.NET classes 25

.NET Monitor 21

A
accessing queues 14

C
CapabilityFlags

property of MQChannelExit 30

channel exits
specifying 19

using 17

with SSL 17

writing 17

CipherSpecs 141

class library 7

classes 7

classes, WebSphere MQ .NET 25, 28

MQAsyncStatus 26

MQC 139

MQChannelDefinition 29

MQChannelExit 30

MQDestination 32

MQEnvironment 36

MQException 39

MQGetMessageOptions 39

MQManagedObject 43

MQMessage 46

MQProcess 64

MQPropertyDescriptor 66

MQPutMessageOptions 68

MQQueue 72

MQQueueManager 81

MQSubscription 118

MQTopic 120

client bindings connections 1

client connections
managed 8

clients
configuring queue manager 3

programming 8

code examples 10

compiling WebSphere MQ .NET

programs 25

configuring queue manager for clients 3

confirm on arrival report options,

message 63

confirm on delivery report options,

message 63

connecting to a queue manager 14

connection type, defining 9

connections
client bindings 1

managed client 1

server bindings 1

constructors 66

CurHdrCompression
property of MQChannelExit 30

CurMsgCompression
property of MQChannelExit 30

D
defining connection type 9

disconnecting from a queue manager 14

disposition options, message 64

E
endmqdnm 21

error handling 16

error messages 5

example code 10

exception report options, message 63

ExitID
property of MQChannelExit 30

ExitNumber
property of MQChannelExit 30

ExitReason
property of MQChannelExit 31

ExitResponse
property of MQChannelExit 31

ExitUserArea
property of MQChannelExit 32

expiration report options, message 63

F
FapLevel

property of MQChannelExit 32

G
getting started 1

H
handling

errors 16

messages 15

Hconn
property of MQChannelExit 32

I
IMQObjectTrigger 21

inquire and set 16

interface, programming 7

introduction 1

for programmers 7

M
managed client connections 1

MaxSegmentLength
property of MQChannelExit 32

message
error 5

handling 15

Monitor program 21

MQAsyncStatus 26

MQAuthenticationInformationRecord 28

MQC 139

MQChannelDefinition 29

MQChannelExit 30

properties 30

MQDestination 32, 33

MQEnvironment 9, 13, 36

MQException 39

MQGetMessageOptions 39

MQManagedObject 43

MQMessage 15, 46

MQProcess 64, 65

MQPropertyDescriptor 66

MQPutMessageOptions 68

MQQueue 15, 72

MQQueueManager 14, 81

MQReceiveExit 17

MQSecurityExit 17

MQSendExit 17

MQSubscription 118

MQTopic 120, 121

multithreaded programs 17

O
operations on queue managers 13

P
prerequisite software 2

problems, solving 5

programmers, introduction 7

programming
compiling 25

connections 8

managed client connections 8

multithreaded 17

tracing 25

writing 8

programming interface 7

property descriptor structure 66

Q
queue manager

configuring for clients 3

connecting to 14

disconnecting from 14

operations on 13

queues, accessing 14

© Copyright IBM Corp. 2003, 2008 145

R
report options, message 63

runmqdnm 21

S
Sample applications 3

sample code 10

Secure Sockets Layer
CipherSpecs 20, 141

distinguished names (DN) 20

enabling 20

sslCipherSpec property 20

sslPeerName property 20

server bindings connections 1

set and inquire 16

SharingConversations
property of MQChannelExit 32

software, prerequisites 2

solving problems 5

sslCipherSpec property 20

sslPeerName property 20

T
testing programs 25

tracing programs 25

U
user exits

specifying 19

using 17

with SSL 17

writing 17

UserData
property of MQChannelExit 32

Using WebSphere MQ classes for

.NET 2

V
verbs, WebSphere MQ supported 7

versions of software required 2

W
WebSphere MQ .NET classes 25

WebSphere MQ supported verbs 7

writing
channel exits 17

programs 8

user exits 17

146 WebSphere MQ: Using .NET

Sending your comments to IBM

If you especially like or dislike anything about this book, please use one of the

methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on

the accuracy, organization, subject matter, or completeness of this book.

Please limit your comments to the information in this book and the way in which

the information is presented.

To make comments about the functions of IBM products or systems, talk to your

IBM representative or to your IBM authorized remarketer.

When you send comments to IBM , you grant IBM a nonexclusive right to use or

distribute your comments in any way it believes appropriate, without incurring

any obligation to you.

You can send your comments to IBM in any of the following ways:

v By mail, to this address:

User Technologies Department (MP095)

IBM United Kingdom Laboratories

Hursley Park

WINCHESTER,

Hampshire

SO21 2JN

United Kingdom

v By fax:

– From outside the U.K., after your international access code use 44-1962-816151

– From within the U.K., use 01962-816151
v Electronically, use the appropriate network ID:

– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL

– IBMLink™: HURSLEY(IDRCF)

– Internet: idrcf@hursley.ibm.com

Whichever method you use, ensure that you include:

v The publication title and order number

v The topic to which your comment applies

v Your name and address/telephone number/fax number/network ID.

© Copyright IBM Corp. 2003, 2008 147

148 WebSphere MQ: Using .NET

���

GC34-6949-00

Sp
in
e
in
fo
rm
at
io
n:

 �
�

�

W
eb

Sp
he

re

M

Q

U
si

ng

.N

ET

Ve
rs

io
n

7.0

	Contents
	Figures
	Tables
	Chapter 1. Guidance for users
	Getting started
	What are WebSphere MQ classes for .NET?
	Connection options
	Client bindings connection
	Server bindings connection
	Managed client connection

	Installation
	Prerequisites
	What is installed

	Using WebSphere MQ classes for .NET
	Configuring your queue manager to accept TCP/IP client connections
	Sample applications
	Running your own WebSphere MQ .NET programs
	Solving WebSphere MQ .NET problems
	Tracing the sample application
	Error messages

	Chapter 2. Programming with WebSphere MQ classes for .NET
	Introduction for programmers
	Why should I use the .NET interface?
	The WebSphere MQ .NET interface
	Compiling WebSphere MQ .NET applications
	WebSphere MQ classes for .NET class library

	Writing WebSphere MQ .NET programs
	Connection differences
	Managed client connections
	Defining which connection type to use

	Example code fragment
	Operations on queue managers
	Setting up the WebSphere MQ environment
	Connecting to a queue manager

	Accessing queues and processes
	Handling messages
	Handling errors
	Getting and setting attribute values
	Multithreaded programs
	Using a client channel definition table
	Using channel exits
	Specifying channel exits
	Specifying channel exit user data

	Secure Sockets Layer (SSL) support
	Enabling SSL
	Using the distinguished name of the queue manager
	Error handling when using SSL

	Using the .NET Monitor
	Example code fragments

	Compiling and testing WebSphere MQ .NET programs
	Tracing WebSphere MQ .NET programs

	The WebSphere MQ .NET classes and interfaces
	MQAsyncStatus
	Constructors
	Properties

	MQAuthenticationInformationRecord
	Constructors
	Properties

	MQChannelDefinition
	Properties

	MQChannelExit
	Properties of MQChannelExit

	MQDestination
	Properties
	Constructors
	Methods

	MQEnvironment
	Constructors
	Properties

	MQException
	Constructors
	Properties

	MQGetMessageOptions
	Constructors
	Properties

	MQManagedObject
	Constructors
	Methods
	Properties

	MQMessage
	Constructors
	Methods
	Properties

	MQProcess
	Constructors
	Properties

	MQPropertyDescriptor
	Constructors
	Properties

	MQPutMessageOptions
	Constructors
	Properties

	MQQueue
	Constructors
	Methods
	Properties

	MQQueueManager
	Constructors
	Methods
	Properties

	MQSubscription
	Properties
	Constructors
	Methods

	MQTopic
	Properties
	Constructors
	Methods

	MQC

	Chapter 3. SSL CipherSpecs supported by WebSphere MQ
	Notices
	Index
	Sending your comments to IBM

