
WebSphere MQ

Intercommunication

Version 7.0

SC34-6931-00

���

WebSphere MQ

Intercommunication

Version 7.0

SC34-6931-00

���

Note

Before using this information and the product it supports, be sure to read the general information under notices at the back

of this book.

First edition (April 2008)

This edition of the book applies to the following products:

v IBM WebSphere MQ, Version 7.0

v IBM WebSphere MQ for z/OS, Version 7.0

and to any subsequent releases and modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1994, 2008. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Figures vii

Tables ix

Chapter 1. Introduction 1

Concepts of intercommunication 1

What is intercommunication? 1

Distributed queuing components 5

Dead-letter queues 12

Remote queue definitions 12

How to get to the remote queue manager . . . 13

Security 15

Making your applications communicate 15

How to send a message to another queue

manager 15

Triggering channels 18

Safety of messages 20

More about intercommunication 21

Addressing information 21

What are aliases? 21

Queue manager alias definitions 22

Reply-to queue alias definitions 24

Networks 25

Chapter 2. How intercommunication

works 29

WebSphere MQ distributed-messaging techniques 29

Message flow control 29

Putting messages on remote queues 31

Choosing the transmission queue 33

Receiving messages 33

Passing messages through your system 35

Separating message flows 36

Concentrating messages to diverse locations . . 38

Diverting message flows to another destination 39

Sending messages to a distribution list 40

Reply-to queue 41

Networking considerations 46

Return routing 47

Managing queue name translations 47

Channel message sequence numbering 49

Loopback testing 49

Route tracing and activity recording 50

DQM implementation 50

Functions of DQM 50

Message sending and receiving 51

Channel control function 53

What happens when a message cannot be

delivered? 66

Initialization and configuration files 68

Data conversion 70

Writing your own message channel agents . . . 70

Channel attributes 71

Channel attributes and channel types 71

Channel attributes in alphabetical order 73

Example configuration chapters in this book . . . 101

Network infrastructure 102

Communications software 102

How to use the communication examples . . . 103

Chapter 3. DQM in WebSphere MQ for

Windows and Unix platforms 105

Monitoring and controlling channels on Windows

and Unix platforms 105

DQM channel control 105

Functions available 106

Getting started with objects 107

Channel attributes and channel types 111

Channel functions 111

Preparing WebSphere MQ for distributed platforms 115

Transmission queues and triggering 115

Channel programs 116

Other things to consider 117

What next? 120

Setting up communication for Windows 120

Deciding on a connection 120

Defining a TCP connection 121

Defining an LU 6.2 connection 122

Defining a NetBIOS connection 124

Defining an SPX connection 126

Example configuration - IBM WebSphere MQ for

Windows 129

Configuration parameters for an LU 6.2

connection 129

Establishing an LU 6.2 connection 134

Establishing a TCP connection 142

Establishing a NetBIOS connection 142

Establishing an SPX connection 143

WebSphere MQ for Windows configuration . . 145

Setting up communication on UNIX systems . . . 150

Deciding on a connection 150

Defining a TCP connection 151

Defining an LU 6.2 connection 154

Example configuration - IBM WebSphere MQ for

AIX 155

Configuration parameters for an LU 6.2

connection 156

Establishing a session using Communications

Server for AIX 160

Establishing a TCP connection 166

WebSphere MQ for AIX configuration 167

Example configuration - IBM WebSphere MQ for

HP-UX 172

Configuration parameters for an LU 6.2

connection 172

Establishing a session using HP SNAplus2 . . 176

Establishing a TCP connection 189

WebSphere MQ for HP-UX configuration . . . 190

Example configuration - IBM WebSphere MQ for

Solaris 194

© Copyright IBM Corp. 1994, 2008 iii

Configuration parameters for an LU 6.2

connection using SNAP-IX 195

Establishing a session using SNAP-IX 199

Establishing a TCP connection 210

WebSphere MQ for Solaris configuration . . . 211

Example configuration - IBM WebSphere MQ for

Linux 215

Configuration parameters for an LU 6.2

connection 215

Establishing a session using Communications

Server for Linux 219

Establishing a TCP connection 232

WebSphere MQ for Linux configuration . . . 234

Message channel planning example for distributed

platforms 238

What the example shows 238

Running the example 241

Chapter 4. DQM in WebSphere MQ for

z/OS 243

Monitoring and controlling channels on z/OS . . 243

The DQM channel control function 243

Using the panels and the commands 244

Managing your channels 245

Preparing WebSphere MQ for z/OS 259

Defining DQM requirements to WebSphere MQ 259

Defining WebSphere MQ objects 260

Other things to consider 261

z/OS Automatic Restart Management (ARM) 262

Setting up communication for z/OS 263

Deciding on a connection 263

Defining a TCP connection 263

Defining an LU6.2 connection 265

Example configuration - IBM WebSphere MQ for

z/OS 266

Configuration parameters for an LU 6.2

connection 267

Establishing an LU 6.2 connection 270

Establishing a TCP connection 272

WebSphere MQ for z/OS configuration 272

Message channel planning example for z/OS . . . 275

What the example shows 276

Running the example 279

Preparing WebSphere MQ for z/OS for DQM with

queue-sharing groups 280

Concepts 280

Components 280

Benefits 283

Clusters and queue-sharing groups 284

Channels and serialization 284

Intra-group queuing 284

Setting up communication for WebSphere MQ for

z/OS using queue-sharing groups 284

Deciding on a connection 285

Defining a TCP connection 285

Defining an LU6.2 connection 285

Example configuration - IBM WebSphere MQ for

z/OS using queue-sharing groups 286

Configuration parameters for an LU 6.2

connection 286

Establishing an LU 6.2 connection into a

queue-sharing group 288

Establishing a TCP connection into a

queue-sharing group 290

WebSphere MQ for z/OS shared channel

configuration 291

Message channel planning example for z/OS using

queue-sharing groups 294

What this example shows 294

Intra-group queuing 298

Concepts 298

Terminology 300

Benefits 300

Limitations 302

Getting started 302

Configurations 303

Messages 308

Security 310

Specific properties 310

Example configuration — WebSphere MQ for z/OS

using intra-group queuing 312

Configuration 1 313

Configuration 2 314

Configuration 3 314

Running the example 318

Chapter 5. DQM in WebSphere MQ for

i5/OS 321

Monitoring and controlling channels on i5/OS . . 321

DQM channel control 321

Operator commands 321

Getting started 323

Creating objects 324

Creating a channel 324

Starting a channel 326

Selecting a channel 327

Browsing a channel 327

Renaming a channel 329

Work with channel status 329

Work-with-channel choices 331

Panel choices 332

Preparing WebSphere MQ for i5/OS 336

Creating a transmission queue 337

Triggering channels in WebSphere MQ for

i5/OS 339

Channel programs 339

Channel states on i5/OS 340

Other things to consider 340

Setting up communication for WebSphere MQ for

i5/OS 342

Deciding on a connection 342

Defining a TCP connection 342

Defining an LU 6.2 connection 344

Example configuration - IBM WebSphere MQ for

i5/OS 350

Configuration parameters for an LU 6.2

connection 351

Establishing an LU 6.2 connection 355

Establishing a TCP connection 360

WebSphere MQ for i5/OS configuration . . . 362

iv WebSphere MQ: Intercommunication

Message channel planning example for WebSphere

MQ for i5/OS 368

What the example shows 368

Running the example 372

Chapter 6. Further

intercommunication considerations . . 375

Channel-exit programs 375

What are channel-exit programs? 375

Writing and compiling channel-exit programs 394

SSPI security exit 403

Implications of sharing conversations 404

Channel-exit calls and data structures 405

Data definition files 406

MQ_CHANNEL_EXIT – Channel exit 406

MQ_CHANNEL_AUTO_DEF_EXIT – Channel

auto-definition exit 410

MQXWAIT – Wait in exit 412

MQCD – Channel definition 413

MQCXP – Channel exit parameter 458

MQXWD – Exit wait descriptor 475

Problem determination in DQM 476

Error message from channel control 477

Ping 477

Dead-letter queue considerations 477

Validation checks 478

In-doubt relationship 478

Channel startup negotiation errors 478

When a channel refuses to run 479

Retrying the link 481

Data structures 482

User exit problems 482

Disaster recovery 482

Channel switching 483

Connection switching 483

Client problems 483

Error logs 484

Message monitoring 485

Chapter 7. Queue name resolution 487

What is queue name resolution? 488

How queue name resolution works 489

Chapter 8. Configuration file stanzas

for distributed queuing 491

Notices 493

Index 497

Sending your comments to IBM . . . 509

Contents v

vi WebSphere MQ: Intercommunication

Figures

 1. Overview of the components of distributed

queuing 2

 2. Sending messages 3

 3. Sending messages in both directions 4

 4. A cluster of queue managers 5

 5. A sender-receiver channel 7

 6. A requester-server channel 7

 7. A requester-sender channel 8

 8. A cluster-sender channel 8

 9. Channel initiators and listeners 10

10. Sequence in which channel exit programs are

called 12

11. Passing through intermediate queue managers 13

12. Sharing a transmission queue 14

13. Using multiple channels 14

14. The concepts of triggering 19

15. Queue manager alias 23

16. Reply-to queue alias used for changing reply

location 24

17. Network diagram showing all channels 26

18. Network diagram showing QM-concentrators 28

19. A remote queue definition is used to resolve a

queue name to a transmission queue to an

adjacent queue manager 32

20. The remote queue definition allows a different

transmission queue to be used 33

21. Receiving messages directly, and resolving

alias queue manager name 34

22. Three methods of passing messages through

your system 35

23. Separating messages flows 37

24. Combining message flows on to a channel 38

25. Diverting message streams to another

destination 39

26. Reply-to queue name substitution during PUT

call 41

27. Reply-to queue alias example 43

28. Distributed queue management model . . . 52

29. Channel states and substates 56

30. Flows between channel states 57

31. What happens when a message cannot be

delivered 67

32. WebSphere MQ channel to be set up in the

example configuration chapters in this book . 101

33. Local LU window 164

34. Mode window 165

35. The message channel example for Windows,

and UNIX systems 239

36. The operations and controls initial panel 244

37. Listing channels 245

38. Starting a system function 250

39. Stopping a function control 251

40. Starting a channel 253

41. Testing a channel 254

42. Stopping a channel 256

43. Listing channel connections 258

44. Listing cluster channels 259

45. Channel Initiator APPL definition 271

46. The first example for WebSphere MQ for

z/OS 276

47. Message channel planning example for

WebSphere MQ for z/OS using

queue-sharing groups 295

48. An example of intra-group queuing 299

49. An example of migration support 301

50. An example configuration 304

51. An example of clustering with intra-group

queuing 306

52. Configuration 2 312

53. Configuration 1: z/OS using intra-group

queuing 313

54. Configuration 3 314

55. Create channel (1) 325

56. Create channel (2) 325

57. Create channel (3) 326

58. Create channel (4) 326

59. Work with channels 327

60. Display a TCP/IP channel (1) 328

61. Display a TCP/IP channel (2) 328

62. Display a TCP/IP channel (3) 329

63. Channel status (1) 330

64. Channel status (2) 330

65. Channel status (3) 331

66. Create a queue (1) 337

67. Create a queue (2) 338

68. Create a queue (3) 338

69. Create a queue (4) 339

70. LU 6.2 communication setup panel - initiating

end 345

71. LU 6.2 communication setup panel - initiated

end 348

72. LU 6.2 communication setup panel - initiated

end 349

73. The message channel example for WebSphere

MQ for i5/OS 369

74. Security exit loop 376

75. Example of a send exit at the sender end of

message channel 377

76. Example of a receive exit at the receiver end

of message channel 377

77. Sender-initiated exchange with agreement 379

78. Sender-initiated exchange with no agreement 380

79. Receiver-initiated exchange with agreement 381

80. Receiver-initiated exchange with no

agreement 382

81. Client connection-initiated exchange with

agreement for client connection using security

parameters 383

82. Security exit skeleton code 384

83. Sample source code for a channel exit on

Windows 398

84. Sample DEF file for Windows 399

© Copyright IBM Corp. 1994, 2008 vii

85. Sample source code for a channel exit on AIX 400

86. Sample compiler and linker commands for

channel exits on AIX 400

87. Sample export file for AIX 400

88. Sample source code for a channel exit on

HP-UX 401

89. Sample compiler and linker commands for

channel exits on HP-UX 401

90. Sample source code for a channel exit on

Solaris 402

91. Sample compiler and linker commands for

channel exits on Solaris 402

92. Sample source code for a channel exit on

Linux 403

93. Sample compiler and linker commands for

channel-exits on Linux platforms where the

queue manager is 64-bit 403

94. Sample compiler and linker commands for

channel-exits on Linux platforms where the

queue manager is 32-bit 403

95. Name resolution 487

96. qm.ini stanzas for distributed queuing 491

viii WebSphere MQ: Intercommunication

Tables

 1. Example of channel names 26

 2. Three ways of using the remote queue

definition object 31

 3. Reply-to queue alias 45

 4. Queue name resolution at queue manager

QMA 48

 5. Queue name resolution at queue manager

QMB 48

 6. Reply-to queue name translation at queue

manager QMA 48

 7. Channel attributes for the channel types 71

 8. Negotiated HBINT value and the

corresponding KAINT value 85

 9. Functions available in Windows systems and

UNIX systems 106

10. Channel programs for Windows and UNIX

systems 117

11. Settings on the local Windows system for a

remote queue manager platform 122

12. Default outstanding connection requests on

Windows 128

13. Configuration worksheet for IBM

Communications Server for Windows systems 130

14. Configuration worksheet for WebSphere MQ

for Windows 146

15. Maximum outstanding connection requests

queued at a TCP/IP port 152

16. Settings on the local UNIX system for a

remote queue manager platform 154

17. Configuration worksheet for Communications

Server for AIX 156

18. Configuration worksheet for WebSphere MQ

for AIX 168

19. Configuration worksheet for HP SNAplus2 172

20. Configuration worksheet for WebSphere MQ

for HP-UX 191

21. Configuration worksheet for SNAP-IX 195

22. Configuration worksheet for WebSphere MQ

for Solaris 212

23. Configuration worksheet for Communications

Server for Linux 216

24. Configuration worksheet for WebSphere MQ

for Linux 235

25. Channel tasks 245

26. Settings on the local z/OS system for a

remote queue manager platform 265

27. Configuration worksheet for z/OS using LU

6.2 267

28. Configuration worksheet for WebSphere MQ

for z/OS 272

29. Configuration worksheet for z/OS using LU

6.2 287

30. Configuration worksheet for WebSphere MQ

for z/OS using queue-sharing groups . . . 292

31. Channel attribute fields per message channel

type 332

32. Program and transaction names 340

33. Channel states on i5/OS 340

34. Settings on the local i5/OS system for a

remote queue manager platform 344

35. Configuration worksheet for SNA on an

i5/OS system 351

36. Configuration worksheet for WebSphere MQ

for i5/OS 364

37. Channel exits available for each channel type 375

38. Identifying API calls 388

© Copyright IBM Corp. 1994, 2008 ix

x WebSphere MQ: Intercommunication

Chapter 1. Introduction

Concepts of intercommunication

This chapter introduces the concepts of intercommunication in WebSphere® MQ.

v The basic concepts of intercommunication are explained in “What is

intercommunication?”

v The objects that you need for intercommunication are described in “Distributed

queuing components” on page 5.

This chapter goes on to introduce:

v “Dead-letter queues” on page 12

v “Remote queue definitions” on page 12

v “How to get to the remote queue manager” on page 13

What is intercommunication?

In WebSphere MQ, intercommunication means sending messages from one queue

manager to another. The receiving queue manager could be on the same machine

or another; nearby or on the other side of the world. It could be running on the

same platform as the local queue manager, or could be on any of the platforms

supported by WebSphere MQ. This is called a distributed environment. WebSphere

MQ handles communication in a distributed environment such as this using

Distributed Queue Management (DQM).

The local queue manager is sometimes called the source queue manager and the

remote queue manager is sometimes called the target queue manager or the partner

queue manager.

How does distributed queuing work?

Figure 1 on page 2 shows an overview of the components of distributed queuing.

© Copyright IBM Corp. 1994, 2008 1

1. An application uses the MQCONN call to connect to a queue manager.

2. The application then uses the MQOPEN call to open a queue so that it can put

messages on it.

3. A queue manager has a definition for each of its queues, specifying information

such as the maximum number of messages allowed on the queue.

4. If the messages are destined for a queue on a remote system, the local queue

manager holds them in a message store until it is ready to forward them to the

remote queue manager. This can be transparent to the application.

5. Each queue manager contains communications software called the moving

service component; through this, the queue manager can communicate with

other queue managers.

6. The transport service is independent of the queue manager and can be any one

of the following (depending on the platform):

v Systems Network Architecture Advanced Program-to Program

Communication (SNA APPC)

v Transmission Control Protocol/Internet Protocol (TCP/IP)

v Network Basic Input/Output System (NetBIOS)

v Sequenced Packet Exchange (SPX)

What do we call the components?:

1. WebSphere MQ applications can put messages onto a local queue, that is, a

queue on the queue manager the application is connected to.

2. A queue manager has a definition for each of its queues. It can also have

definitions for queues that are owned by other queue managers. These are

called remote queue definitions. WebSphere MQ applications can also put

messages targeted at these remote queues.

3. If the messages are destined for a remote queue manager, the local queue

manager stores them on a transmission queue until it is ready to send them to

the remote queue manager. A transmission queue is a special type of local

Transport Service

QM1 QM2

Moving
Service

Moving
Service

QUEUE
DEFNS

QUEUE
DEFNS

Message
Store

Message
Store

MQCONN

MQOPEN

Application

Figure 1. Overview of the components of distributed queuing

2 WebSphere MQ: Intercommunication

queue on which messages are stored until they can be successfully transmitted

and stored at the remote queue manager.

4. The software that handles the sending and receiving of messages is called the

Message Channel Agent (MCA).

5. Messages are transmitted between queue managers on a channel. A channel is a

one-way communication link between two queue managers. It can carry

messages destined for any number of queues at the remote queue manager.

Components needed to send a message:

 If a message is to be sent to a remote queue manager, the local queue manager

needs definitions for a transmission queue and a channel.

Each end of a channel has a separate definition, defining it, for example, as the

sending end or the receiving end. A simple channel consists of a sender channel

definition at the local queue manager and a receiver channel definition at the

remote queue manager. These two definitions must have the same name, and

together constitute one channel.

There is also a message channel agent (MCA) at each end of a channel.

Each queue manager should have a dead-letter queue (also known as the undelivered

message queue). Messages are put on this queue if they cannot be delivered to their

destination.

Figure 2 shows the relationship between queue managers, transmission queues,

channels, and MCAs.

Components needed to return a message:

 If your application requires messages to be returned from the remote queue

manager, you need to define another channel, to run in the opposite direction

between the queue managers, as shown in Figure 3 on page 4.

QM1

Message Flow
MCA MCA

Transmission
Queue

Channel

Dead Letter QueueDead Letter Queue

QM2

Application
Queues

Figure 2. Sending messages

Chapter 1. Introduction 3

Cluster components:

 An alternative to the traditional WebSphere MQ network is the use of clusters.

A cluster is a network of queue managers that are logically associated in some

way. You can group queue managers in a cluster so that queue managers can make

the queues that they host available to every other queue manager in the cluster.

Assuming you have the necessary network infrastructure in place, any queue

manager can send a message to any other queue manager in the same cluster

without the need for explicit channel definitions, remote-queue definitions, or

transmission queues for each destination. Every queue manager in a cluster has a

single transmission queue that transmits messages to any other queue manager in

the cluster. Each queue manager needs to define only one cluster-receiver channel

and one cluster-sender channel.

Figure 4 on page 5 shows the components of a cluster called CLUSTER:

QM1

Message Flow
MCA MCA

Transmission
Queue

Channels

Message Flow
MCA MCA

QM2

Application
Queue

Transmission
Queue

Application
Queue

Figure 3. Sending messages in both directions

4 WebSphere MQ: Intercommunication

v CLUSTER contains three queue managers, QM1, QM2, and QM3.

v QM1 and QM2 host full repositories of information about the queue managers

and queues in the cluster.

v QM2 and QM3 host some cluster queues, that is, queues that are accessible to

any other queue manager in the cluster.

v Each queue manager has a cluster-receiver channel called TO.qmgr on which it

can receive messages.

v Each queue manager also has a cluster-sender channel on which it can send

information to one of the repository queue managers.

v QM1 and QM3 send to the repository at QM2 and QM2 sends to the repository

at QM1.

As with distributed queuing, you use the MQPUT call to put a message to a queue

at any queue manager. You use the MQGET call to retrieve messages from a local

queue.

For further information about clusters, see the WebSphere MQ Queue Manager

Clusters book.

Distributed queuing components

This section describes the components of distributed queuing. These are:

v Message channels

v Message channel agents

v Transmission queues

v Channel initiators and listeners

v Channel-exit programs

CLUSTER

QM2QM1 TO.QM1

TO.QM3

TO.QM2

QM3

Figure 4. A cluster of queue managers

Chapter 1. Introduction 5

Message channels

Message channels are the channels that carry messages from one queue manager to

another.

Do not confuse message channels with MQI channels. There are two types of MQI

channel, server-connection and client-connection. These are discussed in

WebSphere MQ Clients.

The definition of each end of a message channel can be one of the following types:

v Sender

v Receiver

v Server

v Requester

v Cluster sender

v Cluster receiver

A message channel is defined using one of these types defined at one end, and a

compatible type at the other end. Possible combinations are:

v Sender-receiver

v Requester-server

v Requester-sender (callback)

v Server-receiver

v Cluster sender-cluster receiver

Detailed instructions for creating a sender-receiver channel are included in the

Quick Beginnings book for your platform (not applicable to z/OS®). Examples of the

parameters needed to set up sender-receiver channels can be found in this book, in

the Example Configuration chapter applicable to your platform. For the parameters

needed to define a channel of any type, see the DEFINE CHANNEL command in

WebSphere MQ Script (MQSC) Command Reference.

Sender-receiver channels:

 A sender in one system starts the channel so that it can send messages to the other

system. The sender requests the receiver at the other end of the channel to start.

The sender sends messages from its transmission queue to the receiver. The

receiver puts the messages on the destination queue. Figure 5 on page 7 illustrates

this.

6 WebSphere MQ: Intercommunication

Requester-server channel:

 A requester in one system starts the channel so that it can receive messages from

the other system. The requester requests the server at the other end of the channel

to start. The server sends messages to the requester from the transmission queue

defined in its channel definition.

A server channel can also initiate the communication and send messages to a

requester, but this applies only to fully qualified servers, that is server channels that

have the connection name of the partner specified in the channel definition. A fully

qualified server can either be started by a requester, or can initiate a

communication with a requester.

Requester-sender channel:

 The requester starts the channel and the sender terminates the call. The sender

then restarts the communication according to information in its channel definition

(this is known as callback). It sends messages from the transmission queue to the

requester.

QM1

Message Flow
MCA MCA

Transmission
Queue

Channel Application
Queues

RECEIVERSENDER
Session Initiation

QM2

Figure 5. A sender-receiver channel

QM1

Message Flow
MCA MCA

Transmission
Queue

Channel Application
Queues

RECEIVERSERVER Session Initiation

QM2

Figure 6. A requester-server channel

Chapter 1. Introduction 7

Server-receiver channel:

 This is similar to sender-receiver but applies only to fully qualified servers, that is

server channels that have the connection name of the partner specified in the

channel definition. Channel startup must be initiated at the server end of the link.

The illustration of this is similar to the illustration in Figure 5 on page 7.

Cluster-sender channels:

 In a cluster, each queue manager has a cluster-sender channel on which it can send

cluster information to one of the full repository queue managers. Queue managers

can also send messages to other queue managers on cluster-sender channels.

Cluster-receiver channels:

 In a cluster, each queue manager has a cluster-receiver channel on which it can

receive messages and information about the cluster. The illustration of this is

similar to the illustration in Figure 8.

Message channel agents

A message channel agent (MCA) is a program that controls the sending and receiving

of messages. There is one message channel agent at each end of a channel. One

QM1

Message Flow
MCA MCA

Transmission
Queue

Channel Application
Queues

RECEIVERSENDER Callback

Session Initiation QM2

Figure 7. A requester-sender channel

QM1

TO.QM2

MCA MCA

SYSTEM.
CLUSTER.
TRANSMIT.

QUEUE

QM2

Application
Queues

CLUSTER SENDER CLUSTER RECEIVER

Message Flow

Figure 8. A cluster-sender channel

8 WebSphere MQ: Intercommunication

MCA takes messages from the transmission queue and puts them on the

communication link. The other MCA receives messages and delivers them onto a

queue on the remote queue manager.

A message channel agent is called a caller MCA if it initiated the communication,

otherwise it is called a responder MCA. A caller MCA may be associated with a

sender, cluster-sender, server (fully qualified), or requester channel. A responder

MCA may be associated with any type of message channel, except a cluster sender.

Transmission queues

A transmission queue is a special type of local queue used to store messages before

they are transmitted by the MCA to the remote queue manager. In a

distributed-queuing environment, you need to define one transmission queue for

each sending MCA, unless you are using WebSphere MQ Queue Manager clusters.

You specify the name of the transmission queue in a remote queue definition, (see

“Remote queue definitions” on page 12). If you do not specify the name, the queue

manager looks for a transmission queue with the same name as the remote queue

manager.

You can specify the name of a default transmission queue for the queue manager.

This is used if you do not specify the name of the transmission queue, and a

transmission queue with the same name as the remote queue manager does not

exist.

Channel initiators and listeners

A channel initiator acts as a trigger monitor for sender channels, because a

transmission queue may be defined as a triggered queue. When a message arrives

on a transmission queue that satisfies the triggering criteria for that queue, a

message is sent to the initiation queue, triggering the channel initiator to start the

appropriate sender channel. You can also start server channels in this way if you

specified the connection name of the partner in the channel definition. This means

that channels can be started automatically, based upon messages arriving on the

appropriate transmission queue.

You need a channel listener program to start receiving (responder) MCAs.

Responder MCAs are started in response to a startup request from the caller MCA;

the channel listener detects incoming network requests and starts the associated

channel.

Figure 9 on page 10 shows how channel initiators and channel listeners are used.

Chapter 1. Introduction 9

The implementation of channel initiators is platform specific.

v In z/OS, there is one channel initiator for each queue manager and it runs as a

separate address space. You start it using the WebSphere MQ command START

CHINIT, which you would normally issue as part of your queue manager

startup. It monitors the system-defined queue SYSTEM.CHANNEL.INITQ,

which is the initiation queue that is recommended for all the transmission

queues.

v On other platforms, you can start as many channel initiators as you like,

specifying a name for the initiation queue for each one. Normally you need only

one initiator. WebSphere MQ for AIX®, i5/OS®, HP-UX, Solaris, and Windows®

systems allow you to start up to three channel initiators (the default value), but

you can change this value. The default behavior is to start a channel initiator

when a queue manager is automatically started. You can change this by setting

the SCHINIT attribute of the queue manager to MANUAL.

The channel initiator is also required for other functions. These are discussed later

in this book.

The implementation of channel listeners is platform specific.

v Use the channel listener programs provided by WebSphere MQ if you are using

z/OS.

Note: On z/OS, The TCP/IP listener can be started many times with different

combinations of port number and address to listen on. For more information, see

“Listeners” on page 280.

v On i5/OS, use the channel listener program provided by WebSphere MQ if you

are using TCP/IP. If you are using SNA, you do not need a listener program.

SNA starts the channel by invoking the receiver program on the remote system.

v On Windows systems, you can use either the channel listener program provided

by WebSphere MQ, or the facilities provided by the operating system. If

performance is important in your environment and if the environment is stable,

you can choose to run the WebSphere MQ listener as a trusted application as

MCA MCA

Channel

QM2

Initiation
Queue

CHANNEL
INITIATOR

QM1

CHANNEL
LISTENER

START

SESSION
REQUEST

Transmission
Queue

Figure 9. Channel initiators and listeners

10 WebSphere MQ: Intercommunication

described in “Running channels and listeners as trusted applications” on page

119. See the WebSphere MQ Application Programming Guide for information

about trusted applications.

v On UNIX® systems, use the channel listener program provided by WebSphere

MQ or the facilities provided by the ‘operating system’ (for example, inetd for

TCP/IP communications).

By default, threaded channels started by the channel initiator or a listener do not

run under that process but under a process called AMQRMPPA, otherwise known

as a pool process. To revert to the MQSeries® Version 5.2 behavior and have

channels run under the originating process you can define an environment variable

MQNOREMPOOL. The existence of this variable, set to any value, will cause the

channel threads to run as part of the listener or channel initiator process. This can

be useful when trying to isolate one or more channels from the rest of the

configuration, for example when testing channel exits.

Channel-exit programs

If you want to do some additional processing (for example, encryption or data

compression) you can write your own channel-exit programs, or sometimes use

SupportPacs. The Transaction Processing SupportPacs library for WebSphere MQ is

available on the Internet at: http://www.ibm.com/software/integration/support/
supportpacs/product.html#wmq

WebSphere MQ calls channel-exit programs at defined places in the processing

carried out by the MCA. There are six types of channel exit:

Security exit

Used for security checking, such as authentication of the partner.

Message exit

Used for operations on the message, for example, encryption prior to

transmission.

Send and receive exits

Used for operations on split messages, for example, data compression and

decompression.

Message-retry exit

Used when there is a problem putting the message to the destination.

Channel auto-definition exit

Used to modify the supplied default definition for an automatically

defined receiver or server-connection channel.

The sequence of processing is as follows:

1. The security exits are called after the initial data negotiation between both ends

of the channel. These must end successfully for the startup phase to complete

and to allow messages to be transferred.

2. The message exit is called by the sending MCA, and then the send exit is called

for each part of the message that is transmitted to the receiving MCA.

3. The receiving MCA calls the receive exit when it receives each part of the

message, and then calls the message exit when the whole message has been

received.

This is illustrated in Figure 10 on page 12.

Chapter 1. Introduction 11

http://www.ibm.com/software/integration/support/supportpacs/product.html#wmq
http://www.ibm.com/software/integration/support/supportpacs/product.html#wmq

The message-retry exit is used to determine how many times the receiving MCA will

attempt to put a message to the destination queue before taking alternative action.

For more information about channel exits, see “Channel-exit programs” on page

375.

Dead-letter queues

The dead-letter queue (or undelivered-message queue) is the queue to which

messages are sent if they cannot be routed to their correct destination. Messages

are put on this queue when they cannot be put on the destination queue for some

reason (for example, because the queue does not exist, or because it is full).

Dead-letter queues are also used at the sending end of a channel, for

data-conversion errors.

We recommend that you define a dead-letter queue for each queue manager. If you

do not, and the MCA is unable to put a message, it is left on the transmission

queue and the channel is stopped.

Also, if fast, non-persistent messages (see “Fast, nonpersistent messages” on page

20) cannot be delivered and no DLQ exists on the target system, these messages

are discarded.

However, using dead-letter queues can affect the sequence in which messages are

delivered, and so you may choose not to use them.

Remote queue definitions

Whereas applications can retrieve messages only from local queues, they can put

messages on local queues or remote queues. Therefore, as well as a definition for

each of its local queues, a queue manager may have remote queue definitions. These

MESSAGE
RETRY

QM1

MCA MCA

Transmission
Queue

QM2

Message Flow

Channel

SECURITY SECURITY

MESSAGEMESSAGE

SEND RECEIVE

Application
Queues

Figure 10. Sequence in which channel exit programs are called

12 WebSphere MQ: Intercommunication

are definitions for queues that are owned by another queue manager. The

advantage of remote queue definitions is that they enable an application to put a

message to a remote queue without having to specify the name of the remote

queue or the remote queue manager, or the name of the transmission queue. This

gives you location independence.

There are other uses for remote queue definitions, which will be described later.

How to get to the remote queue manager

You may not always have one channel between each source and target queue

manager. Consider these alternative possibilities.

Multi-hopping

If there is no direct communication link between the source queue manager and

the target queue manager, it is possible to pass through one or more intermediate

queue managers on the way to the target queue manager. This is known as a

multi-hop.

You need to define channels between all the queue managers, and transmission

queues on the intermediate queue managers. This is shown in Figure 11.

Sharing channels

As an application designer, you have the choice of forcing your applications to

specify the remote queue manager name along with the queue name, or creating a

remote queue definition for each remote queue. This definition holds the remote

queue manager name, the queue name, and the name of the transmission queue.

Transmission
Queue

Application
Queue

Message Flow
MCA MCA

Message Flow
MCA MCA

Message Flow
MCA MCA

Message Flow
MCA MCA

Transmission
Queue

Transmission
Queue

Application
Queue

Transmission
Queue

QM2

ChannelsChannels

QM1 QM3

Figure 11. Passing through intermediate queue managers

Chapter 1. Introduction 13

Either way, all messages from all applications addressing queues at the same

remote location have their messages sent through the same transmission queue.

This is shown in Figure 12.

Figure 12 illustrates that messages from multiple applications to multiple remote

queues can use the same channel.

Using different channels

If you have messages of different types to send between two queue managers, you

can define more than one channel between the two. There are times when you

need alternative channels, perhaps for security purposes, or to trade off delivery

speed against sheer bulk of message traffic.

To set up a second channel you need to define another channel and another

transmission queue, and create a remote queue definition specifying the location

and the transmission queue name. Your applications can then use either channel

but the messages will still be delivered to the same target queues. This is shown in

Figure 13.

QM1

Message Flow
MCA MCA

Transmission
Queue

Channel

Dead Letter Queue

QM2

Application
Queues

Remote queue
definitions

Figure 12. Sharing a transmission queue

QM1

Message Flow
MCA MCA

Transmission
Queue

Channels

Message Flow
MCA MCA

QM2

Transmission
Queue

Application
Queue

Application
Queue

Figure 13. Using multiple channels

14 WebSphere MQ: Intercommunication

When you use remote queue definitions to specify a transmission queue, your

applications must not specify the location (that is, the destination queue manager)

themselves. If they do, the queue manager will not make use of the remote queue

definitions. Remote queue definitions make the location of queues and the

transmission queue transparent to applications. Applications can put messages to a

logical queue without knowing where the queue is located and you can alter the

physical queue without having to change your applications.

Using clustering

Every queue manager within a cluster defines a cluster-receiver channel. When

another queue manager wants to send a message to that queue manager, it defines

the corresponding cluster-sender channel automatically. For example, if there is

more than one instance of a queue in a cluster, the cluster-sender channel could be

defined to any of the queue managers that host the queue. WebSphere MQ uses a

workload management algorithm that uses a round-robin routine to select an

available queue manager to route a message to. For more information see

WebSphere MQ Queue Manager Clusters.

Security

Security exits

You can write channel exit programs to perform specific tasks at defined places in

the processing carried out by MCA programs. Security exits are a type of channel

exit used to verify that the partner at the other end of the channel is genuine.

See“Channel security exit programs” on page 378 for more information about

channel security exit programs.

Secure sockets layer

WebSphere MQ uses the Secure Sockets Layer (SSL) to provide authentication,

confidentiality and integrity at the link level. For more information about SSL in

WebSphere MQ, see WebSphere MQ Security.

Making your applications communicate

This chapter provides more detailed information about intercommunication

between WebSphere MQ installations. Before reading this chapter it is helpful to

have an understanding of channels, queues, and the other concepts introduced in

“Concepts of intercommunication” on page 1.

This chapter covers the following topics:

v “How to send a message to another queue manager”

v “Triggering channels” on page 18

v “Safety of messages” on page 20

How to send a message to another queue manager

This section describes the simplest way to send a message from one queue

manager to another.

Before you do this you need to do the following:

1. Check that your chosen communication protocol is available.

Chapter 1. Introduction 15

2. Start the queue managers.

3. Start the channel initiators.

4. Start the listeners.

You also need to have the correct WebSphere MQ security authorization to create

the objects required.

To send messages from one queue manager to another:

v Define the following objects on the source queue manager:

– Sender channel

– Remote queue definition

– Initiation queue (required on z/OS, otherwise optional)

– Transmission queue

– Dead-letter queue (recommended)
v Define the following objects on the target queue manager:

– Receiver channel

– Target queue

– Dead-letter queue (recommended)

You can use several different methods to define these objects, depending on your

WebSphere MQ platform:

v On all platforms, you can use the WebSphere MQ script commands (MQSC)

described in WebSphere MQ Script (MQSC) Command Reference, the

programmable command format (PCF) commands described in WebSphere MQ

Programmable Command Formats and Administration Interface, or the

WebSphere MQ explorer.

v On z/OS you can also use the Operation and Control panels described in

WebSphere MQ for z/OS System Administration Guide.

v On i5/OS you can also use the panel interface.

The different methods are described in more detail in the platform-specific parts of

this book.

Defining the channels

To send messages from one queue manager to another, you need to define two

channels; one on the source queue manager and one on the target queue manager.

On the source queue manager

Define a channel with a channel type of SENDER. You need to specify the

following:

v The name of the transmission queue to be used (the XMITQ attribute).

v The connection name of the partner system (the CONNAME attribute).

v The name of the communication protocol you are using (the TRPTYPE

attribute). On WebSphere MQ for z/OS, the protocol must be TCP or

LU6.2. On other platforms, you do not have to specify this. You can

leave it to pick up the value from your default channel definition.

Details of all the channel attributes are given in “Channel attributes” on

page 71.

16 WebSphere MQ: Intercommunication

On the target queue manager

Define a channel with a channel type of RECEIVER, and the same name as

the sender channel.

 Specify the name of the communication protocol you are using (the

TRPTYPE attribute). On WebSphere MQ for z/OS, the protocol must be

TCP or LU6.2. On other platforms, you do not have to specify this. You can

leave it to pick up the value from your default channel definition.

Note that receiver channel definitions can be generic. This means that if

you have several queue managers communicating with the same receiver,

the sending channels can all specify the same name for the receiver, and

one receiver definition will apply to them all.

When you have defined the channel, you can test it using the PING CHANNEL

command. This command sends a special message from the sender channel to the

receiver channel and checks that it is returned.

Defining the queues

To send messages from one queue manager to another, you need to define up to

six queues; four on the source queue manager and two on the target queue

manager.

On the source queue manager

v Remote queue definition

In this definition you specify the following:

Remote queue manager name

The name of the target queue manager.

Remote queue name

The name of the target queue on the target queue manager.

Transmission queue name

The name of the transmission queue. You do not have to specify

this. If you do not, a transmission queue with the same name as

the target queue manager is used, or, if this does not exist, the

default transmission queue is used. You are advised to give the

transmission queue the same name as the target queue manager

so that the queue is found by default.
v Initiation queue definition

Required on z/OS, and optional on other platforms. On z/OS you must

use the initiation queue called SYSTEM.CHANNEL.INITQ and you are

recommended to do so on other platforms also.

v Transmission queue definition

A local queue with the USAGE attribute set to XMITQ. If you are using

the WebSphere MQ for i5/OS native interface, the USAGE attribute is

*TMQ.

v Dead-letter queue definition—recommended

Define a dead-letter queue to which undelivered messages can be

written.

On the target queue manager

v Local queue definition

Chapter 1. Introduction 17

The target queue. The name of this queue must be the same as that

specified in the remote queue name field of the remote queue definition

on the source queue manager.

v Dead-letter queue definition—recommended

Define a dead-letter queue to which undelivered messages can be

written.

Sending the messages

When you put messages on the remote queue defined at the source queue

manager, they are stored on the transmission queue until the channel is started.

When the channel has been started, the messages are delivered to the target queue

on the remote queue manager.

Starting the channel

Start the channel on the sending queue manager using the START CHANNEL

command. When you start the sending channel, the receiving channel is started

automatically (by the listener) and the messages are sent to the target queue. Both

ends of the message channel must be running for messages to be transferred.

Because the two ends of the channel are on different queue managers, they could

have been defined with different attributes. To resolve any differences, there is an

initial data negotiation between the two ends when the channel starts. In general,

the two ends of the channel agree to operate with the attributes needing the fewer

resources, thus enabling larger systems to accommodate the lesser resources of

smaller systems at the other end of the message channel.

The sending MCA splits large messages before sending them across the channel.

They are reassembled at the remote queue manager. This is transparent to the user.

An MCA can transfer messages using multiple threads. This process, called

pipelining enables the MCA to transfer messages more efficiently, with fewer wait

states. This improves channel performance.

Triggering channels

This explanation is intended as an overview of triggering concepts. You can find a

complete description in the WebSphere MQ Application Programming Guide.

For platform-specific information see the following:

v For Windows systems and UNIX systems, “Triggering channels” on page 115

v For z/OS, “Transmission queues and triggering channels” on page 260

v For i5/OS, “Triggering channels in WebSphere MQ for i5/OS” on page 339

18 WebSphere MQ: Intercommunication

The objects required for triggering are shown in Figure 14. It shows the following

sequence of events:

1. The local queue manager places a message from an application or from a

message channel agent (MCA) on the transmission queue.

2. When the triggering conditions are fulfilled, the local queue manager places a

trigger message on the initiation queue.

3. The long-running channel initiator program monitors the initiation queue, and

retrieves messages as they appear.

4. The channel initiator processes the trigger messages according to information

contained in them. This information may include the channel name, in which

case the corresponding MCA is started.

5. The local application or the MCA, having been triggered, retrieves the

messages from the transmission queue.

To set up this scenario, you need to:

v Create the transmission queue with the name of the initiation queue (that is,

SYSTEM.CHANNEL.INITQ) in the corresponding attribute.

v Ensure that the initiation queue (SYSTEM.CHANNEL.INITQ) exists.

v Ensure that the channel initiator program is available and running. The channel

initiator program must be provided with the name of the initiation queue in its

start command. On z/OS, the name of the initiation queue is fixed, so is not

used on the start command.

v Optionally, create the process definition for the triggering, if it does not exist,

and ensure that its UserData field contains the name of the channel it serves.

Instead of creating a process definition, you can specify the channel name in the

TriggerData attribute of the transmission queue. WebSphere MQ for i5/OS,

UNIX systems, and Windows systems, allow the channel name to be specified as

blank, in which case the first available channel definition with this transmission

queue is used.

v Ensure that the transmission queue definition contains the name of the process

definition to serve it, (if applicable), the initiation queue name, and the

Transmission queue

Application

Program

Application

Local or
MCA

Channel
initiator
(Long
running)

Local program
started by
trigger monitor
or
MCA started by
channel initiator

Queue manager

Initiation queue

puts
message
on queue

trigger
message
retrieved

2. trigger message

4.Queue server started

message
retrieved

1.

3.

5.

Figure 14. The concepts of triggering

Chapter 1. Introduction 19

triggering characteristics you feel are most suitable. The trigger control attribute

allows triggering to be enabled, or not, as necessary.

Note:

1. The channel initiator program acts as a ’trigger monitor’ monitoring the

initiation queue used to start channels.

2. An initiation queue and trigger process can be used to trigger any number of

channels.

3. Any number of initiation queues and trigger processes can be defined.

4. A trigger type of FIRST is recommended, to avoid flooding the system with

channel starts.

Safety of messages

In addition to the usual recovery features of WebSphere MQ, distributed queue

management ensures that messages are delivered properly by using a syncpoint

procedure coordinated between the two ends of the message channel. If this

procedure detects an error, it closes the channel to allow you to investigate the

problem, and keeps the messages safely in the transmission queue until the

channel is restarted.

The syncpoint procedure has an added benefit in that it attempts to recover an

in-doubt situation when the channel starts up. (In-doubt is the status of a unit of

recovery for which a syncpoint has been requested but the outcome of the request

is not yet known.) Also associated with this facility are the two functions:

1. Resolve with commit or backout

2. Reset the sequence number

The use of these functions occurs only in exceptional circumstances because the

channel recovers automatically in most cases.

Fast, nonpersistent messages

The nonpersistent message speed (NPMSPEED) channel attribute can be used to

specify that any nonpersistent messages on the channel are to be delivered more

quickly. For more information about this attribute, see “Nonpersistent message

speed (NPMSPEED)” on page 93.

If a channel terminates while fast, nonpersistent messages are in transit, the

messages may be lost and it is up to the application to arrange for their recovery if

required.

If the receiving channel cannot put the message to its destination queue then it is

placed on the dead letter queue, if one has been defined. If not, the message is

discarded.

Note: If the other end of the channel does not support the option, the channel runs

at normal speed.

Undelivered messages

For information about what happens when a message cannot be delivered, see

“What happens when a message cannot be delivered?” on page 66.

20 WebSphere MQ: Intercommunication

More about intercommunication

This chapter mentions three aliases:

v Remote queue definition

v Queue manager alias definition

v Reply-to queue alias definition

These are all based on the remote queue definition object introduced in “Remote

queue definitions” on page 12.

This discussion does not apply to alias queues. These are described in the

WebSphere MQ Application Programming Guide.

This chapter also discusses “Networks” on page 25.

Addressing information

In a single-queue-manager environment, the address of a destination queue is

established when an application opens a queue for putting messages to. Because

the destination queue is on the same queue manager, there is no need for any

addressing information.

In a distributed environment the queue manager needs to know not only the

destination queue name, but also the location of that queue (that is, the queue

manager name), and the route to that remote location (that is, the transmission

queue). When an application puts messages that are destined for a remote queue

manager, the local queue manager adds a transmission header to them before

placing them on the transmission queue. The transmission header contains the

name of the destination queue and queue manager, that is, the addressing

information. The receiving channel removes the transmission header and uses the

information in it to locate the destination queue.

You can avoid the need for your applications to specify the name of the destination

queue manager if you use a remote queue definition. This definition specifies the

name of the remote queue, the name of the remote queue manager to which

messages are destined, and the name of the transmission queue used to transport

the messages.

What are aliases?

Aliases are used to provide a quality of service for messages. The queue manager

alias enables a system administrator to alter the name of a target queue manager

without causing you to have to change your applications. It also enables the

system administrator to alter the route to a destination queue manager, or to set up

a route that involves passing through a number of other queue managers

(multi-hopping). The reply-to queue alias provides a quality of service for replies.

Queue manager aliases and reply-to queue aliases are created using a

remote-queue definition that has a blank RNAME. These definitions do not define

real queues; they are used by the queue manager to resolve physical queue names,

queue manager names, and transmission queues.

Alias definitions are characterized by having a blank RNAME.

Chapter 1. Introduction 21

Queue name resolution

Queue name resolution occurs at every queue manager each time a queue is

opened. Its purpose is to identify the target queue, the target queue manager

(which may be local), and the route to that queue manager (which may be null).

The resolved name has three parts: the queue manager name, the queue name,

and, if the queue manager is remote, the transmission queue.

When a remote queue definition exists, no alias definitions are referenced. The

queue name supplied by the application is resolved to the name of the destination

queue, the remote queue manager, and the transmission queue specified in the

remote queue definition. For more detailed information about queue name

resolution, see Chapter 7, “Queue name resolution,” on page 487.

If there is no remote queue definition and a queue manager name is specified, or

resolved by the name service, the queue manager looks to see if there is a queue

manager alias definition that matches the supplied queue manager name. If there

is, the information in it is used to resolve the queue manager name to the name of

the destination queue manager. The queue manager alias definition can also be

used to determine the transmission queue to the destination queue manager.

If the resolved queue name is not a local queue, both the queue manager name

and the queue name are included in the transmission header of each message put

by the application to the transmission queue.

The transmission queue used usually has the same name as the resolved queue

manager, unless changed by a remote queue definition or a queue manager alias

definition. If you have not defined such a transmission queue but you have

defined a default transmission queue, then this is used.

Note: Names of queue managers running on z/OS are limited to four characters.

Queue manager alias definitions

Queue manager alias definitions apply when an application that opens a queue to

put a message, specifies the queue name and the queue manager name.

Queue manager alias definitions have three uses:

v When sending messages, remapping the queue manager name

v When sending messages, altering or specifying the transmission queue

v When receiving messages, determining whether the local queue manager is the

intended destination for those messages

Outbound messages - remapping the queue manager name

Queue manager alias definitions can be used to remap the queue manager name

specified in an MQOPEN call. For example, an MQOPEN call specifies a queue

name of THISQ and a queue manager name of YOURQM. At the local queue

manager there is a queue manager alias definition like this:

DEFINE QREMOTE (YOURQM) RQMNAME(REALQM)

This shows that the real queue manager to be used, when an application puts

messages to queue manager YOURQM, is REALQM. If the local queue manager is

REALQM, it puts the messages to the queue THISQ, which is a local queue. If the

local queue manager is not called REALQM, it routes the message to a

22 WebSphere MQ: Intercommunication

transmission queue called REALQM. The queue manager changes the transmission

header to say REALQM instead of YOURQM.

Outbound messages - altering or specifying the transmission

queue

Figure 15 shows a scenario where messages arrive at queue manager ‘QM1’ with

transmission headers showing queue names at queue manager ‘QM3’. In this

scenario, ‘QM3’ is reachable by multi-hopping through ‘QM2’.

All messages for ‘QM3’ are captured at ‘QM1’ with a queue manager alias. The

queue manager alias is named ‘QM3’ and contains the definition ‘QM3 via

transmission queue QM2’. The definition looks like this:

DEFINE QREMOTE (QM3) RNAME(’ ’) RQMNAME(QM3) XMITQ(QM2)

The queue manager puts the messages on transmission queue ‘QM2’ but does not

make any alteration to the transmission queue header because the name of the

destination queue manager, ‘QM3’, does not alter.

All messages arriving at ‘QM1’ and showing a transmission header containing a

queue name at ‘QM2’ are also put on the ‘QM2’ transmission queue. In this way,

messages with different destinations are collected onto a common transmission

queue to an appropriate adjacent system, for onward transmission to their

destinations.

Inbound messages - determining the destination

A receiving MCA opens the queue referenced in the transmission header. If a

queue manager alias definition exists with the same name as the queue manager

referenced, then the queue manager name received in the transmission header is

replaced with the RQMNAME from that definition.

This has two uses:

v Directing messages to another queue manager

v Altering the queue manager name to be the same as the local queue manager

Queue Queue

Queue

'QM2' 'QM3'
to

QM3

'QM3'

'QM1' 'QM2'

Channel_in_A

Channel_in_B Channel_out_1 Channel_out_2

Local system Adjacent system Remote
system

Adjacent
system

Figure 15. Queue manager alias

Chapter 1. Introduction 23

Reply-to queue alias definitions

When an application needs to reply to a message it may look at the data in the

message descriptor of the message it received to find out the name of the queue to

which it should reply. It is up to the sending application to suggest where replies

should be sent and to attach this information to its messages. This has to be

coordinated as part of your application design.

What is a reply-to queue alias definition?

A reply-to queue alias definition specifies alternative names for the reply

information in the message descriptor. The advantage of this is that you can alter

the name of a queue or queue manager without having to alter your applications.

Queue name resolution takes place at the sending end, before the message is put to

a queue.

Note: This is an unusual use of queue-name resolution. It is the only situation in

which name resolution takes place at a time when a queue is not being opened.

Normally an application specifies a reply-to queue and leaves the reply-to queue

manager name blank. The queue manager fills in its own name at put time. This

works well except when you want an alternate channel to be used for replies, for

example, a channel that uses transmission queue ’QM1_relief’ instead of the

default return channel which uses transmission queue ’QM1’. In this situation, the

queue manager names specified in transmission-queue headers do not match

“real” queue manager names but are re-specified using queue manager alias

definitions. In order to return replies along alternate routes, it is necessary to map

reply-to queue data as well, using reply-to queue alias definitions.

In the example in Figure 16:

1. The application puts a message using the MQPUT call and specifying the

following in the message descriptor:

Queue

Queue

Queue

Queue

Queue

Queue

Queue

'QM3_relief'

'QM1_relief'

'Inquiry'

'QM3_relief'

'Reply_to'

'Answer'

'QM1_relief'

Queue manager 'QM2'Queue manager 'QM1'

Inquiring

Application

Channel_in_1 Channel_in_2

Channel_out_1 Channel_out_2

Local system Adjacent system
Remote
system

Figure 16. Reply-to queue alias used for changing reply location

24 WebSphere MQ: Intercommunication

ReplyToQ=‘Reply_to’

ReplyToQMgr=‘’

Note that ReplyToQMgr must be blank in order for the reply-to queue alias to

be used.

2. You create a reply-to queue alias definition called ‘Reply_to’, which contains

the name ‘Answer’, and the queue manager name ‘QM1_relief’.

DEFINE QREMOTE (’Reply_to’) RNAME (’Answer’)

 RQMNAME (’QM1_relief’)

3. The messages are sent with a message descriptor showing ReplyToQ=‘Answer’

and ReplyToQMgr=‘QM1_relief’.

4. The application specification must include the information that replies are to be

found in queue ‘Answer’ rather than ‘Reply_to’.

To prepare for the replies you have to create the parallel return channel. This

involves defining:

v At QM2, the transmission queue named ‘QM1_relief’

DEFINE QLOCAL (’QM1_relief’) USAGE(XMITQ)

v At QM1, the queue manager alias QM1_relief’

DEFINE QREMOTE (’QM1_relief’) RNAME() RQMNAME(QM1)

This queue manager alias terminates the chain of parallel return channels and

captures the messages for QM1.

If you think you might want to do this at sometime in the future, arrange for your

applications to use the alias name from the start. For now this is a normal queue

alias to the reply-to queue, but later it can be changed to a queue manager alias.

Reply-to queue name

Care is needed with naming reply-to queues. The reason that an application puts a

reply-to queue name in the message is that it can specify the queue to which its

replies will be sent. But when you create a reply-to queue alias definition with this

name, you cannot have the actual reply-to queue (that is, a local queue definition)

with the same name. Therefore, the reply-to queue alias definition must contain a

new queue name as well as the queue manager name, and the application

specification must include the information that its replies will be found in this

other queue.

The applications now have to retrieve the messages from a different queue from

the one they named as the reply-to queue when they put the original message.

Networks

So far this book has covered creating channels between your system and any other

system with which you need to have communications, and creating multi-hop

channels to systems where you have no direct connections. The message channel

connections described in the scenarios are shown as a network diagram in

Figure 17 on page 26.

Channel and transmission queue names

You can give transmission queues any name you like, but to avoid confusion, you

can give them the same names as the destination queue manager names, or queue

Chapter 1. Introduction 25

manager alias names, as appropriate, to associate them with the route they use.

This gives a clear overview of parallel routes that you create through intermediate

(multi-hopped) queue managers.

This is not quite so clear-cut for channel names. The channel names in Figure 17

for QM2, for example, must be different for incoming and outgoing channels. All

channel names may still contain their transmission queue names, but they must be

qualified to make them unique.

For example, at QM2, there is a QM3 channel coming from QM1, and a QM3

channel going to QM3. To make the names unique, the first one may be named

‘QM3_from_QM1’, and the second may be named ‘QM3_from_QM2’. In this way,

the channel names show the transmission queue name in the first part of the name,

and the direction and adjacent queue manager name in the second part of the

name.

A table of suggested channel names for Figure 17 is given in Table 1.

 Table 1. Example of channel names

Route name Queue managers

hosting channel

Transmission queue

name

Suggested channel name

QM1 QM1 & QM2 QM1 (at QM2) QM1.from.QM2

QM1 QM2 & QM3 QM1 (at QM3) QM1.from.QM3

QM1_fast QM1 & QM2 QM1_fast (at QM2) QM1_fast.from.QM2

QM1_relief QM1 & QM2 QM1_relief (at QM2) QM1_relief.from.QM2

QM1_relief QM2 & QM3 QM1_relief (at QM3) QM1_relief.from.QM3

QM2 QM1 & QM2 QM2 (at QM1) QM2.from.QM1

QM2_fast QM1 & QM2 QM2_fast (at QM1) QM2_fast.from.QM1

QM3 QM1 & QM2 QM3 (at QM1) QM3.from.QM1

QM3 QM2 & QM3 QM3 (at QM2) QM3.from.QM2

QM2

QM2_fast

QM1

QM1_fast

QM1_relief

QM3

QM3_relief

QM1

QM1_relief

QM3

QM3_relief

'QM1' 'QM2' 'QM3'

Figure 17. Network diagram showing all channels

26 WebSphere MQ: Intercommunication

Table 1. Example of channel names (continued)

Route name Queue managers

hosting channel

Transmission queue

name

Suggested channel name

QM3_relief QM1 & QM2 QM3_relief (at QM1) QM3_relief.from.QM1

QM3_relief QM2 & QM3 QM3_relief (at QM2) QM3_relief.from.QM2

Note:

1. On WebSphere MQ for z/OS, queue manager names are limited to 4 characters.

2. You are strongly recommended to name all the channels in your network

uniquely. As shown in Table 1 on page 26, including the source and target

queue manager names in the channel name is a good way to do this.

Network planner

This chapter has discussed application designer, systems administrator, and

channel planner functions. Creating a network assumes that there is another,

higher level function of network planner whose plans are implemented by the other

members of the team.

If an application is used widely, it is more economical to think in terms of local

access sites for the concentration of message traffic, using wide-band links between

the local access sites, as shown in Figure 18 on page 28.

In this example there are two main systems and a number of satellite systems (The

actual configuration would depend on business considerations.) There are two

concentrator queue managers located at convenient centers. Each QM-concentrator

has message channels to the local queue managers:

v QM-concentrator 1 has message channels to each of the three local queue

managers, QM1, QM2, and QM3. The applications using these queue managers

can communicate with each other through the QM-concentrators.

v QM-concentrator 2 has message channels to each of the three local queue

managers, QM4, QM5, and QM6. The applications using these queue managers

can communicate with each other through the QM-concentrators.

v The QM-concentrators have message channels between themselves thus allowing

any application at a queue manager to exchange messages with any other

application at another queue manager.

Chapter 1. Introduction 27

'QM-
Concentrator

1'
'QM1' 'QM3'

'QM-
Concentrator

2'
'QM4' 'QM6'

'QM2'

'QM5'

Figure 18. Network diagram showing QM-concentrators

28 WebSphere MQ: Intercommunication

Chapter 2. How intercommunication works

WebSphere MQ distributed-messaging techniques

This chapter describes techniques that are of use when planning channels. It

introduces the concept of message flow control and explains how this is arranged

in distributed queue management (DQM). It gives more detailed information about

the concepts introduced in the preceding chapters and starts to show how you

might use distributed queue management. This chapter covers the following topics:

v “Message flow control”

v “Putting messages on remote queues” on page 31

v “Choosing the transmission queue” on page 33

v “Receiving messages” on page 33

v “Passing messages through your system” on page 35

v “Separating message flows” on page 36

v “Concentrating messages to diverse locations” on page 38

v “Diverting message flows to another destination” on page 39

v “Sending messages to a distribution list” on page 40

v “Reply-to queue” on page 41

v “Networking considerations” on page 46

v “Return routing” on page 47

v “Managing queue name translations” on page 47

v “Channel message sequence numbering” on page 49

v “Loopback testing” on page 49

v “Route tracing and activity recording” on page 50

Message flow control

Message flow control is a task that involves the setting up and maintenance of

message routes between queue managers. This is very important for routes that

multi-hop through many queue managers.

You control message flow using a number of techniques that were introduced in

“Making your applications communicate” on page 15. If your queue manager is in

a cluster, message flow is controlled using different techniques, as described in the

WebSphere MQ Queue Manager Clusters book. If your queue managers are in a

queue sharing group and intra-group queuing (IGQ) is enabled, then the message

flow can be controlled by IGQ agents, which are described in “Intra-group

queuing” on page 298.

This chapter describes how you use your system’s queues, alias queue definitions,

and message channels to achieve message flow control.

You make use of the following objects:

v Transmission queues

v Message channels

v Remote queue definition

© Copyright IBM Corp. 1994, 2008 29

v Queue manager alias definition

v Reply-to queue alias definition

The queue manager and queue objects are described in the WebSphere MQ System

Administration Guide book for WebSphere MQ for UNIX systems, and Windows

systems, in the WebSphere MQ for i5/OS System Administration Guide book for

WebSphere MQ for i5/OS, in the WebSphere MQ for z/OS Concepts and Planning

Guide for WebSphere MQ for z/OS, or in the MQSeries System Management Guide

for your platform. Message channels are described in “Message channels” on page

6. The following techniques use these objects to create message flows in your

system:

v Putting messages to remote queues

v Routing via particular transmission queues

v Receiving messages

v Passing messages through your system

v Separating message flows

v Switching a message flow to another destination

v Resolving the reply-to queue name to an alias name

Note

All the concepts described in this chapter are relevant for all nodes in a network,

and include sending and receiving ends of message channels. For this reason, only

one node is illustrated in most examples, except where the example requires

explicit cooperation by the administrator at the other end of a message channel.

Before proceeding to the individual techniques it is useful to recap on the concepts

of name resolution and the three ways of using remote queue definitions. See

“More about intercommunication” on page 21.

Queue names in transmission header

The queue name used by the application, the logical queue name, is resolved by

the queue manager to the destination queue name, that is, the physical queue

name. This destination queue name travels with the message in a separate data

area, the transmission header, until the destination queue has been reached after

which the transmission header is stripped off.

You will be changing the queue manager part of this queue name when you create

parallel classes of service. Remember to return the queue manager name to the

original name when the end of the class of service diversion has been reached.

How to create queue manager and reply-to aliases

As discussed above, the remote queue definition object is used in three different

ways. Table 2 on page 31 explains how to define each of the three ways:

v Using a remote queue definition to redefine a local queue name.

The application provides only the queue name when opening a queue, and this

queue name is the name of the remote queue definition.

The remote queue definition contains the names of the target queue and queue

manager, and optionally, the definition can contain the name of the transmission

queue to be used. If no transmission queue name is provided, the queue

manager uses the queue manager name, taken from the remote queue definition,

30 WebSphere MQ: Intercommunication

for the transmission queue name. If a transmission queue of this name is not

defined, but a default transmission queue is defined, the default transmission

queue is used.

v Using a remote queue definition to redefine a queue manager name.

The application, or channel program, provides a queue name together with the

remote queue manager name when opening the queue.

If you have provided a remote queue definition with the same name as the

queue manager name, and you have left the queue name in the definition blank,

then the queue manager will substitute the queue manager name in the open

call with the queue manager name in the definition.

In addition, the definition can contain the name of the transmission queue to be

used. If no transmission queue name is provided, the queue manager takes the

queue manager name, taken from the remote queue definition, for the

transmission queue name. If a transmission queue of this name is not defined,

but a default transmission queue is defined, the default transmission queue is

used.

v Using a remote queue definition to redefine a reply-to queue name.

Each time an application puts a message to a queue, it may provide the name of

a reply-to queue for answer messages but with the queue manager name blank.

If you provide a remote queue definition with the same name as the reply-to

queue then the local queue manager replaces the reply-to queue name with the

queue name from your definition.

You may provide a queue manager name in the definition, but not a

transmission queue name.

 Table 2. Three ways of using the remote queue definition object

Usage

Queue manager

name Queue name

Transmission

queue name

1. Remote queue definition (on OPEN call)

Supplied in the call blank or local QM (*) required -

Supplied in the definition required required optional

2. Queue manager alias (on OPEN call)

Supplied in the call (*) required and

not local QM

required -

Supplied in the definition required blank optional

3. Reply-to queue alias (on PUT call)

Supplied in the call blank (*) required -

Supplied in the definition optional optional blank

Note: (*) means that this name is the name of the definition object

For a formal description, see Chapter 7, “Queue name resolution,” on page 487.

Putting messages on remote queues

In a distributed-queuing environment, a transmission queue and channel are the

focal point for all messages to a location whether the messages originate from

applications in your local system, or arrive through channels from an adjacent

system. This is shown in Figure 19 on page 32 where an application is placing

messages on a logical queue named ‘QA_norm’. The name resolution uses the

Chapter 2. How intercommunication works 31

remote queue definition ‘QA_norm’ to select the transmission queue ‘QMB’, and

adds a transmission header to the messages stating ‘QA_norm at QMB’.

Messages arriving from the adjacent system on ‘Channel_back’ have a transmission

header with the physical queue name ‘QA_norm at QMB’, for example. These

messages are placed unchanged on transmission queue QMB.

The channel moves the messages to an adjacent queue manager.

If you are the WebSphere MQ system administrator, you must:

v Define the message channel from the adjacent system

v Define the message channel to the adjacent system

v Create the transmission queue ‘QMB’

v Define the remote queue object ‘QA_norm’ to resolve the queue name used by

applications to the desired destination queue name, destination queue manager

name, and transmission queue name

In a clustering environment, you only need to define a cluster-receiver channel at

the local queue manager. You do not need to define a transmission queue or a

remote queue object. For information about this, see the WebSphere MQ Queue

Manager Clusters book.

More about name resolution

The effect of the remote queue definition is to define a physical destination queue

name and queue manager name; these names are put in the transmission headers

of messages.

Incoming messages from an adjacent system have already had this type of name

resolution carried out by the original queue manager, and have the transmission

header showing the physical destination queue name and queue manager name.

These messages are unaffected by remote queue definitions.

Queue 'QA norm'

Application 'QMA'

Channel_back

Local system

Queue
QA_norm at QMB

QA_norm
QA_norm at QMB via QMB

Channel_out

Channel to adjacent system

'QMB'

Adjacent
system

Figure 19. A remote queue definition is used to resolve a queue name to a transmission queue to an adjacent queue

manager. Note: The dashed outline represents a remote queue definition. This is not a real queue, but a name alias

that is controlled as though it were a real queue.

32 WebSphere MQ: Intercommunication

Choosing the transmission queue

 In a distributed-queuing environment, when you need to change a message flow

from one channel to another, use the same system configuration as shown in

Figure 19 on page 32. Figure 20 shows how you use the remote queue definition to

send messages over a different transmission queue, and therefore over a different

channel, to the same adjacent queue manager.

For the configuration shown in Figure 20 you must provide:

v The remote queue object ‘QA_norm’ to choose:

– Queue ‘QA_norm’ at the remote queue manager

– Transmission queue ‘TX1’

– Queue manager ‘QMB_priority’
v The transmission queue ‘TX1’. Specify this in the definition of the channel to the

adjacent system

Messages are placed on transmission queue ‘TX1’ with a transmission header

containing ‘QA_norm at QMB_priority’, and are sent over the channel to the

adjacent system.

The channel_back has been left out of this illustration because it would need a

queue manager alias; this is discussed in the following example.

In a clustering environment, you do not need to define a transmission queue or a

remote queue definition. For more information about this, see the WebSphere MQ

Queue Manager Clusters book.

Receiving messages

Configure the queue manager to receive messages from other queue managers.

Ensure that unintentional name resolution does not occur.

Queue 'QA norm'

Application 'QMA'

Local system

Queue

QA_norm
QA_norm at QMB viaTXI

Channel_out

Channel to adjacent system

'TXI'

Adjacent
system

Figure 20. The remote queue definition allows a different transmission queue to be used

Chapter 2. How intercommunication works 33

As well as arranging for messages to be sent, the system administrator must also

arrange for messages to be received from adjacent queue managers. Received

messages contain the physical name of the destination queue manager and queue

in the transmission header. They are treated exactly the same as messages from a

local application that specifies both queue manager name and queue name.

Because of this, you need to ensure that messages entering your system do not

have an unintentional name resolution carried out. See Figure 21 for this scenario.

For this configuration, you must prepare:

v Message channels to receive messages from adjacent queue managers

v A queue manager alias definition to resolve an incoming message flow,

‘QMB_priority’, to the local queue manager name, ‘QMB’

v The local queue, ‘QA_norm’, if it does not already exist

Receiving alias queue manager names

The use of the queue manager alias definition in this illustration has not selected a

different destination queue manager. Messages passing through this local queue

manager and addressed to ‘QMB_priority’ are intended for queue manager ‘QMB’.

The alias queue manager name is used to create the separate message flow.

Queue 'QA_ norm'

Application 'QMB'

Channel_back

Channel_back

Local system

Queue
QA_norm at
QMB_priority

QA_norm at QMB

QA_norm

QA_priority to QMB

'QMB_priority'

Adjacent
system

Figure 21. Receiving messages directly, and resolving alias queue manager name

34 WebSphere MQ: Intercommunication

Passing messages through your system

 Following on from the technique shown in Figure 21 on page 34, where you saw

how an alias flow is captured, Figure 22 illustrates the ways networks are built up

by bringing together the techniques we have discussed.

The configuration shows a channel delivering three messages with different

destinations:

1. ‘QB at QMC’

2. ‘QB at QMD_norm’

3. ‘QB at QMD_PRIORITY’

You must pass the first message flow through your system unchanged; the second

message flow through a different transmission queue and channel, while reverting

the messages from the alias queue manager name ‘QMD_norm’ to the physical

location ‘QMD’; and the third message flow simply chooses a different

transmission queue without any other change.

In a clustering environment, all messages are passed through the cluster

transmission queue, SYSTEM.CLUSTER.TRANSMIT.QUEUE. This is illustrated in

Figure 4 on page 5.

The following methods describe techniques applicable to a distributed-queuing

environment:

Method 1: Using the incoming location name

When you are going to receive messages with a transmission header containing

another location name, the simplest preparation is to have a transmission queue

Queue

Queue

Queue

Queue

Queue

'QMC'

'QMD_fast'

'TX1'

'QMD_norm'

'QMD_PRIORITY'

'QMB'

Channel_out

Channel_out

Channel_in

Channel_outChannel_in

Channel_in

Local system Adjacent
system

Adjacent
system

Figure 22. Three methods of passing messages through your system

Chapter 2. How intercommunication works 35

with that name, ‘QMC’ in this example, as a part of a channel to an adjacent queue

manager. The messages are delivered unchanged.

Method 2: Using an alias for the queue manager

The second method is to use the queue manager alias object definition, but specify

a new location name, ‘QMD’, as well as a particular transmission queue, ‘TX1’.

This action:

v Terminates the alias message flow set up by the queue manager name alias

‘QMD_norm’. That is the named class of service ‘QMD_norm’.

v Changes the transmission headers on these messages from ‘QMD_norm’ to

‘QMD’.

Method 3: Selecting a transmission queue

The third method is to have a queue manager alias object defined with the same

name as the destination location, ‘QMD_PRIORITY’, and use the definition to

select a particular transmission queue, ‘QMD_fast’, and therefore another channel.

The transmission headers on these messages remain unchanged.

Using these methods

For these configurations, you must prepare the:

v Input channel definitions

v Output channel definitions

v Transmission queues:

– QMC

– TX1

– QMD_fast
v Queue manager alias definitions:

– QMD_norm with ‘QMD_norm to QMD via TX1’

– QMD_PRIORITY with ‘QMD_PRIORITY to QMD_PRIORITY via QMD_fast’

Note

None of the message flows shown in the example changes the destination queue.

The queue manager name aliases simply provide separation of message flows.

Separating message flows

In a distributed-queuing environment, the need to separate messages to the same

queue manager into different message flows can arise for a number of reasons. For

example:

v You may need to provide a separate flow for very large, medium, and small

messages. This also applies in a clustering environment and, in this case, you

may create clusters that overlap. There are a number of reasons you might do

this, for example:

– To allow different organizations to have their own administration.

– To allow independent applications to be administered separately.

– To create a class of service. For example you could have a cluster called

STAFF that is a subset of the cluster called STUDENTS. When you put a

message to a queue advertised in the STAFF cluster, a restricted channel is

36 WebSphere MQ: Intercommunication

used. When you put a message to a queue advertised in the STUDENTS

cluster, either a general channel or a restricted channel may be used.

– To create test and production environments.
v It may be necessary to route incoming messages via different paths from the

path of the locally generated messages.

v Your installation may require to schedule the movement of messages at certain

times (for example, overnight) and the messages then need to be stored in

reserved queues until scheduled.

In the example shown in Figure 23, the two incoming flows are to alias queue

manager names ‘QMC_small’ and ‘QMC_large’. You provide these flows with a

queue manager alias definition to capture these flows for the local queue manager.

You have an application addressing two remote queues and you need these

message flows to be kept separate. You provide two remote queue definitions that

specify the same location, ‘QMC’, but specify different transmission queues. This

keeps the flows separate, and nothing extra is needed at the far end as they have

the same destination queue manager name in the transmission headers. You

provide:

v The incoming channel definitions

v The two remote queue definitions QB_small and QB_large

v The two queue manager alias definitions QMC_small and QMC_large

v The three sending channel definitions

v Three transmission queues: TX_small, TX_large, and TX_external

Queue

Queue

Queue

Queue

Queue

Queue

'QMC_ small'

'QMC_ large'

'QB_small'

'QB_large'

'TX_small'

'TX_large'

Application

'QMB'

Channel_out

Channel_out

Channel_back

Channel_out

Channel_back

Local system

Queue

QB at QMC_large

QB at QMC_small

QB_large

QB_small

'TX_external'

Adjacent
system

Adjacent
system

Figure 23. Separating messages flows

Chapter 2. How intercommunication works 37

Coordination with adjacent systems

When you use a queue manager alias to create a separate message flow, you need

to coordinate this activity with the system administrator at the remote end of the

message channel to ensure that the corresponding queue manager alias is available

there.

Concentrating messages to diverse locations

 Figure 24 illustrates a distributed-queuing technique for concentrating messages

that are destined for various locations on to one channel. Two possible uses would

be:

v Concentrating message traffic through a gateway

v Using wide bandwidth highways between nodes

In this example, messages from different sources, local and adjacent, and having

different destination queues and queue managers, are flowed via transmission

queue ‘TX1’ to queue manager QMC. Queue manager QMC delivers the messages

according to the destinations, one set to a transmission queue ‘QMD’ for onward

transmission to queue manager QMD, another set to a transmission queue ‘QME’

for onward transmission to queue manager QME, while other messages are put on

the local queue ‘QA’.

Application

'QME'

Channel_back

Local system

Queue

QB at QME
Channel_back

Channel_out

Channel_out

Channel_out

'QMD'

Adjacent
system

QB at QMD

QB at QME

Adjacent
system

Queue

Queue 'QA'

'QMC'

'QMB'

'TX1'Queue

Local queue

QA

QB

Queue 'QME'

Queue 'QA’

Queue 'QB’

Figure 24. Combining message flows on to a channel

38 WebSphere MQ: Intercommunication

You must provide:

v Channel definitions

v Transmission queue TX1

v Remote queue definitions:

– QA with ‘QA at QMC via TX1’

– QB with ‘QB at QMD via TX1’
v Queue manager alias definition:

– QME with ‘QME via TX1’

The complementary administrator who is configuring QMC must provide:

v Receiving channel definition with the same channel name

v Transmission queue QMD with associated sending channel definition

v Transmission queue QME with associated sending channel definition

v Local queue object QA.

Diverting message flows to another destination

 Figure 25 illustrates how you can redefine the destination of certain messages.

Incoming messages to QMA are destined for ‘QB at QMC’. They would normally

arrive at QMA and be placed on a transmission queue called QMC which would

have been part of a channel to QMC. QMA must divert the messages to QMD, but

is able to reach QMD only over QMB. This method is useful when you need to

move a service from one location to another, and allow subscribers to continue to

send messages on a temporary basis until they have adjusted to the new address.

The method of rerouting incoming messages destined for a certain queue manager

to a different queue manager uses:

v A queue manager alias to change the destination queue manager to another

queue manager, and to select a transmission queue to the adjacent system

v A transmission queue to serve the adjacent queue manager

v A transmission queue at the adjacent queue manager for onward routing to the

destination queue manager

You must provide:

v Channel_back definition

Queue Queue Queue

Queue

'QMB' 'QMD' 'QB'

'QMC'

'QMA' 'QMB' 'QMD'

Channel_back

Channel Channel

Local system Adjacent system Adjacent system

Local queueQB at QMC

Adjacent
system

Figure 25. Diverting message streams to another destination

Chapter 2. How intercommunication works 39

v Queue manager alias object definition QMC with QB at QMD via QMB

v Channel_out definition

v The associated transmission queue QMB

The complementary administrator who is configuring QMB must provide:

v The corresponding channel_back definition

v The transmission queue, QMD

v The associated channel definition to QMD

You can use aliases within a clustering environment. For information about this,

see the WebSphere MQ Queue Manager Clusters book.

Sending messages to a distribution list

In WebSphere MQ on all platforms except z/OS, an application can send a

message to several destinations with a single MQPUT call. This applies in both a

distributed-queuing environment and a clustering environment. You have to define

the destinations in a distribution list, as described in the WebSphere MQ

Application Programming Guide.

Not all queue managers support distribution lists. When an MCA establishes a

connection with a partner, it determines whether or not the partner supports

distribution lists and sets a flag on the transmission queue accordingly. If an

application tries to send a message that is destined for a distribution list but the

partner does not support distribution lists, the sending MCA intercepts the

message and puts it onto the transmission queue once for each intended

destination.

A receiving MCA ensures that messages sent to a distribution list are safely

received at all the intended destinations. If any destinations fail, the MCA

establishes which ones have failed so that it can generate exception reports for

them and can try to re-send the messages to them.

40 WebSphere MQ: Intercommunication

Reply-to queue

 A complete remote queue processing loop using a reply-to queue is shown in

Figure 26. This applies in both a distributed-queuing environment and a clustering

environment. The details are as shown in Table 6 on page 48.

The application opens QA at QMB and puts messages on that queue. The messages

are given a reply-to queue name of QR, without the queue manager name being

specified. Queue manager QMA finds the reply-to queue object QR and extracts

from it the alias name of QRR and the queue manager name QMA_class1. These

names are put into the reply-to fields of the messages.

Reply messages from applications at QMB are addressed to QRR at QMA_class1.

The queue manager alias name definition QMA_class1 is used by the queue

manager to flow the messages to itself, and to queue QRR.

This scenario depicts the way you give applications the facility to choose a class of

service for reply messages, the class being implemented by the transmission queue

QMA_class1 at QMB, together with the queue manager alias definition,

QMA_class1 at QMA. In this way, you can change an application’s reply-to queue

so that the flows are segregated without involving the application. That is, the

application always chooses QR for this particular class of service, and you have the

opportunity to change the class of service with the reply-to queue definition QR.

You must create:

v Reply-to queue definition QR

v Transmission queue object QMB

v Channel_out definition

v Channel_back definition

v Queue manager alias definition QMA_class1

v Local queue object QRR, if it does not exist

Queue

Queue Queue

Queue Queue

Queue

'QR'

'QMB' 'QA'

'QMA_class1' 'QMA_class1'

'QRR'

QMA QMB

'E' 'F'

Application Application

QA at QMB
reply-to QR

QRR at
QMA_class1

Local system Adjacent system

Figure 26. Reply-to queue name substitution during PUT call

Chapter 2. How intercommunication works 41

The complementary administrator at the adjacent system must create:

v Receiving channel definition

v Transmission queue object QMA_class1

v Associated sending channel

v Local queue object QA.

Your application programs use:

v Reply-to queue name QR in put calls

v Queue name QRR in get calls

In this way, you may change the class of service as necessary, without involving

the application, by changing the reply-to alias ‘QR’, together with the transmission

queue ‘QMA_class1’ and queue manager alias ‘QMA_class1’.

If no reply-to alias object is found when the message is put on the queue, the local

queue manager name is inserted in the blank reply-to queue manager name field,

and the reply-to queue name remains unchanged.

Name resolution restriction

Because the name resolution has been carried out for the reply-to queue at ‘QMA’

when the original message was put, no further name resolution is allowed at

‘QMB’, that is, the message is put with the physical name of the reply-to queue by

the replying application.

Note that the applications must be aware of the naming convention that the name

they use for the reply-to queue is different from the name of the actual queue

where the return messages are to be found.

For example, when two classes of service are provided for the use of applications

with reply-to queue alias names of ‘C1_alias’, and ‘C2_alias’, the applications use

these names as reply-to queue names in the message put calls, but the applications

will actually expect messages to appear in queues ‘C1’ and ‘C2’, respectively.

However, an application is able to make an inquiry call on the reply-to alias queue

to check for itself the name of the real queue it must use to get the reply messages.

Reply-to queue alias example

This example illustrates the use of a reply-to alias to select a different route

(transmission queue) for returned messages. The use of this facility requires the

reply-to queue name to be changed in cooperation with the applications.

As shown in Figure 27 on page 43, the return route must be available for the reply

messages, including the transmission queue, channel, and queue manager alias.

42 WebSphere MQ: Intercommunication

This example is for requester applications at ‘QM1’ that send messages to server

applications at ‘QM2’. The servers’ messages are to be returned through an

alternative channel using transmission queue ‘QM1_relief’ (the default return

channel would be served with a transmission queue ‘QM1’).

The reply-to queue alias is a particular use of the remote queue definition named

‘Answer_alias’. Applications at QM1 include this name, ‘Answer_alias’, in the

reply-to field of all messages that they put on queue ‘Inquiry’.

Reply-to queue definition ‘Answer_alias’ is defined as ‘Answer at QM1_relief’.

Applications at QM1 expect their replies to appear in the local queue named

‘Answer’.

Server applications at QM2 use the reply-to field of received messages to obtain

the queue and queue manager names for the reply messages to the requester at

QM1.

Definitions used in this example at QM1:

 The WebSphere MQ system administrator at QM1 must ensure that the reply-to

queue ‘Answer’ is created along with the other objects. The name of the queue

manager alias, marked with a ‘*’, must agree with the queue manager name in the

reply-to queue alias definition, also marked with an ‘*’.

 Object Definition

Local transmission queue QM2

Remote queue definition Object name Inquiry

Remote queue manager name QM2

Remote queue name Inquiry

Transmission queue name QM2 (DEFAULT)

Queue manager alias Object name QM1_relief *

Queue manager name QM1

Queue name (blank)

Reply-to queue alias Object name Answer_alias

Remote queue manager name QM1_relief *

Queue

Queue

Queue Queue

Queue

Q='Answer'
QM='QM1_relief'

Queue

Queue

'Inquiry'

'Inquiry'

'QM1_relief' 'QM1_relief'

'Answer_alias'

'QM2'

'Answer'

'QM1' 'QM2'

Channel_back

Channel_out

Figure 27. Reply-to queue alias example

Chapter 2. How intercommunication works 43

Object Definition

Remote queue name Answer

Definitions used in this example at QM2:

 The WebSphere MQ system administrator at QM2 must ensure that the local queue

exists for the incoming messages, and that the correctly named transmission queue

is available for the reply messages.

 Object Definition

Local queue Inquiry

Transmission queue QM1_relief

Put definition at QM1:

 Applications fill the reply-to fields with the reply-to queue alias name, and leave

the queue manager name field blank.

 Field Content

Queue name Inquiry

Queue manager name (blank)

Reply-to queue name Answer_alias

Reply-to queue manager (blank)

Put definition at QM2:

 Applications at QM2 retrieve the reply-to queue name and queue manager name

from the original message and use them when putting the reply message on the

reply-to queue.

 Field Content

Queue name Answer

Queue manager name QM1_relief

How the example works

In this example, requester applications at QM1 always use ‘Answer_alias’ as their

reply-to queue in the relevant field of the put call, and they always retrieve their

messages from the queue named ‘Answer’.

The reply-to queue alias definitions are available for use by the QM1 system

administrator to change the name of the reply-to queue ‘Answer’, and of the

return route ‘QM1_relief’.

Changing the queue name ‘Answer’ is normally not useful because the QM1

applications are expecting their answers in this queue. However, the QM1 system

administrator is able to change the return route (class of service), as necessary.

How the queue manager makes use of the reply-to queue alias

Queue manager QM1 retrieves the definitions from the reply-to queue alias when

the reply-to queue name, included in the put call by the application, is the same as

the reply-to queue alias, and the queue manager part is blank.

44 WebSphere MQ: Intercommunication

The queue manager replaces the reply-to queue name in the put call with the

queue name from the definition. It replaces the blank queue manager name in the

put call with the queue manager name from the definition.

These names are carried with the message in the message descriptor.

 Table 3. Reply-to queue alias

Field name Put call Transmission header

Reply-to queue name Answer_alias Answer

Reply-to queue manager

name

(blank) QM1_relief

Reply-to queue alias walk-through

To complete this example, let us take a walk through the process, from an

application putting a message on a remote queue at queue manager ‘QM1’,

through to the same application removing the reply message from the alias

reply-to queue.

 1. The application opens a queue named ‘Inquiry’, and puts messages to it. The

application sets the reply-to fields of the message descriptor to:

 Reply-to queue name Answer_alias

Reply-to queue manager name (blank)

 2. Queue manager ‘QM1’ responds to the blank queue manager name by

checking for a remote queue definition with the name ‘Answer_alias’. If none

is found, the queue manager places its own name, ‘QM1’, in the reply-to

queue manager field of the message descriptor.

 3. If the queue manager finds a remote queue definition with the name

‘Answer_alias’, it extracts the queue name and queue manager names from

the definition (queue name=‘Answer’ and queue manager name=

‘QM1_relief’) and puts them into the reply-to fields of the message descriptor.

 4. The queue manager ‘QM1’ uses the remote queue definition ‘Inquiry’ to

determine that the intended destination queue is at queue manager ‘QM2’,

and the message is placed on the transmission queue ‘QM2’. ‘QM2’ is the

default transmission queue name for messages destined for queues at queue

manager ‘QM2’.

 5. When queue manager ‘QM1’ puts the message on the transmission queue, it

adds a transmission header to the message. This header contains the name of

the destination queue, ‘Inquiry’, and the destination queue manager, ‘QM2’.

 6. The message arrives at queue manager ‘QM2’, and is placed on the ‘Inquiry’

local queue.

 7. An application gets the message from this queue and processes the message.

The application prepares a reply message, and puts this reply message on the

reply-to queue name from the message descriptor of the original message.

This is:

 Reply-to queue name Answer

Reply-to queue manager name QM1_relief

 8. Queue manager ‘QM2’ carries out the put command, and finding that the

queue manager name, ‘QM1_relief’, is a remote queue manager, it places the

message on the transmission queue with the same name, ‘QM1_relief’. The

Chapter 2. How intercommunication works 45

message is given a transmission header containing the name of the destination

queue, ‘Answer’, and the destination queue manager, ‘QM1_relief’.

 9. The message is transferred to queue manager ‘QM1’ where the queue

manager, recognizing that the queue manager name ‘QM1_relief’ is an alias,

extracts from the alias definition ‘QM1_relief’ the physical queue manager

name ‘QM1’.

10. Queue manager ‘QM1’ then puts the message on the queue name contained in

the transmission header, ‘Answer’.

11. The application extracts its reply message from the queue ‘Answer’.

Networking considerations

In a distributed-queuing environment, because message destinations are addressed

with just a queue name and a queue manager name, the following rules apply:

1. Where the queue manager name is given, and the name is different from the

local queue manager’s name:

v A transmission queue must be available with the same name, and this

transmission queue must be part of a message channel moving messages to

another queue manager, or

v A queue manager alias definition must exist to resolve the queue manager

name to the same, or another queue manager name, and optional

transmission queue, or

v If the transmission queue name cannot be resolved, and a default

transmission queue has been defined, the default transmission queue is used.
2. Where only the queue name is supplied, a queue of any type but with the same

name must be available on the local queue manager. This queue may be a

remote queue definition which resolves to: a transmission queue to an adjacent

queue manager, a queue manager name, and an optional transmission queue.

To see how this works in a clustering environment, see the WebSphere MQ Queue

Manager Clusters book.

If the queue managers are running in a queue-sharing group (QSG) and

intra-group queuing (IGQ) is enabled, you can use the

SYSTEM.QSG.TRANSMIT.QUEUE. For more information, see “Intra-group

queuing” on page 298.

Consider the scenario of a message channel moving messages from one queue

manager to another in a distributed-queuing environment.

The messages being moved have originated from any other queue manager in the

network, and some messages may arrive that have an unknown queue manager

name as destination. This can occur when a queue manager name has changed or

has been removed from the system, for example.

The channel program recognizes this situation when it cannot find a transmission

queue for these messages, and places the messages on your undelivered-message

(dead-letter) queue. It is your responsibility to look for these messages and arrange

for them to be forwarded to the correct destination, or to return them to the

originator, where this can be ascertained.

Exception reports are generated in these circumstances, if report messages were

requested in the original message.

46 WebSphere MQ: Intercommunication

Name resolution convention

It is strongly recommended that name resolution that changes the identity of the

destination queue, (that is, logical to physical name changing), should only occur

once, and only at the originating queue manager.

Subsequent use of the various alias possibilities should be used only when

separating and combining message flows.

Return routing

Messages may contain a return address in the form of the name of a queue and

queue manager. This applies in both a distributed-queuing environment and a

clustering environment. This address is normally specified by the application that

creates the message, but may be modified by any application that subsequently

handles the message, including user exit applications.

Irrespective of the source of this address, any application handling the message

may choose to use this address for returning answer, status, or report messages to

the originating application.

The way these response messages are routed is not different from the way the

original message is routed. You need to be aware that the message flows you

create to other queue managers will need corresponding return flows.

Physical name conflicts

The destination reply-to queue name has been resolved to a physical queue name

at the original queue manager, and must not be resolved again at the responding

queue manager.

This is a likely possibility for name conflict problems that can only be prevented

by a network-wide agreement on physical and logical queue names.

Managing queue name translations

This description is mainly provided for application designers and channel planners

concerned with an individual system that has message channels to adjacent

systems. It takes a local view of channel planning and control.

When you create a queue manager alias definition or a remote queue definition,

the name resolution is carried out for every message carrying that name, regardless

of the source of the message. To oversee this situation, which may involve large

numbers of queues in a queue manager network, you keep tables of:

v The names of source queues and of source queue managers with respect to

resolved queue names, resolved queue manager names, and resolved

transmission queue names, with method of resolution

v The names of source queues with respect to:

– Resolved destination queue names

– Resolved destination queue manager names

– Transmission queues

– Message channel names

– Adjacent system names

Chapter 2. How intercommunication works 47

– Reply-to queue names

Note: The use of the term source in this context refers to the queue name or the

queue manager name provided by the application, or a channel program when

opening a queue for putting messages.

An example of each of these tables is shown in Table 4, Table 5, and Table 6.

The names in these tables are derived from the examples in this chapter, and this

table is not intended as a practical example of queue name resolution in one node.

 Table 4. Queue name resolution at queue manager QMA

Source queue

specified

when queue

is opened

Source queue

manager specified

when queue is

opened

Resolved

queue name

Resolved queue

manager name

Resolved

transmission

queue name

Resolution type

QA_norm - QA_norm QMB QMB Remote queue

(any) QMB - - QMB (none)

QA_norm - QA_norm QMB TX1 Remote queue

QB QMC QB QMD QMB Queue manager alias

 Table 5. Queue name resolution at queue manager QMB

Source queue

specified

when queue

is opened

Source queue

manager specified

when queue is

opened

Resolved

queue name

Resolved queue

manager name

Resolved

transmission

queue name

Resolution type

QA_norm - QA_norm QMB - (none)

QA_norm QMB QA_norm QMB - (none)

QA_norm QMB_PRIORITY QA_norm QMB - Queue manager alias

(any) QMC (any) QMC QMC (none)

(any) QMD_norm (any) QMD_norm TX1 Queue manager alias

(any) QMD_PRIORITY (any) QMD_PRIORITY QMD_fast Queue manager alias

(any) QMC_small (any) QMC_small TX_small Queue manager alias

(any) QMC_large (any) QMC_large TX_external Queue manager alias

QB_small QMC QB_small QMC TX_small Remote queue

QB_large QMC QB_large QMC TX_large Remote queue

(any) QME (any) QME TX1 Queue manager alias

QA QMC QA QMC TX1 Remote queue

QB QMD QB QMD TX1 Remote queue

 Table 6. Reply-to queue name translation at queue manager QMA

Application design Reply-to alias definition

Local QMGR Queue name for messages Reply-to queue alias name Redefined to

QMA QRR QR QRR at QMA_class1

48 WebSphere MQ: Intercommunication

Channel message sequence numbering

The channel uses sequence numbers to assure that messages are delivered,

delivered without duplication, and stored in the same order as they were taken

from the transmission queue. The sequence number is generated at the sending

end of the channel and is incremented by one before being used, which means that

the current sequence number is the number of the last message sent. This

information can be displayed using DISPLAY CHSTATUS (see WebSphere MQ

Script (MQSC) Command Reference). The sequence number and an identifier

called the LUWID are stored in persistent storage for the last message transferred

in a batch. These values are used during channel start-up to ensure that both ends

of the link agree on which messages have been transferred successfully.

Sequential retrieval of messages

If an application puts a sequence of messages to the same destination queue, those

messages can be retrieved in sequence by a single application with a sequence of

MQGET operations, if the following conditions are met:

v All of the put requests were done from the same application.

v All of the put requests were either from the same unit of work, or all the put

requests were made outside of a unit of work.

v The messages all have the same priority.

v The messages all have the same persistence.

v For remote queuing, the configuration is such that there can only be one path

from the application making the put request, through its queue manager,

through intercommunication, to the destination queue manager and the target

queue.

v The messages are not put to a dead-letter queue (for example, if a queue is

temporarily full).

v The application getting the message does not deliberately change the order of

retrieval, for example by specifying a particular MsgId or CorrelId or by using

message priorities.

v Only one application is doing get operations to retrieve the messages from the

destination queue. If this is not the case, these applications must be designed to

get all the messages in each sequence put by a sending application.

Note: Messages from other tasks and units of work may be interspersed with the

sequence, even where the sequence was put from within a single unit of work.

If these conditions cannot be met, and the order of messages on the target queue is

important, then the application can be coded to use its own message sequence

number as part of the message to assure the order of the messages.

Sequence of retrieval of fast, nonpersistent messages

Nonpersistent messages on a fast channel may overtake persistent messages on the

same channel and so arrive out of sequence. The receiving MCA puts the

nonpersistent messages on the destination queue immediately and makes them

visible. Persistent messages are not made visible until the next syncpoint.

Loopback testing

Loopback testing is a technique on non-z/OS platforms that allows you to test a

communications link without actually linking to another machine. You set up a

Chapter 2. How intercommunication works 49

connection between two queue managers as though they are on separate machines,

but you test the connection by looping back to another process on the same

machine. This means that you can test your communications code without

requiring an active network.

The way you do this depends on which products and protocols you are using.

On Windows systems, you can use the “loopback” adapter.

Refer to the documentation for the products you are using for more information.

Route tracing and activity recording

To confirm the route a message will take through a series of queue managers, you

can use the WebSphere MQ display route application, available through the control

command dspmqrte, or you can use activity recording. Both of these topics are

described in Monitoring WebSphere MQ.

DQM implementation

This chapter describes the implementation of the concepts introduced in “Making

your applications communicate” on page 15.

Distributed queue management (DQM):

v Enables you to define and control communication channels between queue

managers

v Provides you with a message channel service to move messages from a type of

local queue, known as a transmission queue, to communication links on a local

system, and from communication links to local queues at a destination queue

manager

v Provides you with facilities for monitoring the operation of channels and

diagnosing problems, using panels, commands, and programs

This chapter discusses:

v “Functions of DQM”

v “Message sending and receiving” on page 51

v “Channel control function” on page 53

v “What happens when a message cannot be delivered?” on page 66

v “Initialization and configuration files” on page 68

v “Data conversion” on page 70

v “Writing your own message channel agents” on page 70

Functions of DQM

Distributed queue management has these functions:

v Message sending and receiving

v Channel control

v Initialization file

v Data conversion

v Channel exits

50 WebSphere MQ: Intercommunication

Channel definitions associate channel names with transmission queues,

communication link identifiers, and channel attributes. Channel definitions are

implemented in different ways on different platforms. Message sending and

receiving is controlled by programs known as message channel agents (MCAs),

which use the channel definitions to start up and control communication.

The MCAs in turn are controlled by DQM itself. The structure is platform

dependent, but typically includes listeners and trigger monitors, together with

operator commands and panels.

A message channel is a one-way pipe for moving messages from one queue manager

to another. Thus a message channel has two end-points, represented by a pair of

MCAs. Each end-point has a definition of its end of the message channel. For

example, one end would define a sender, the other end a receiver.

For details of how to define channels, see:

v “Monitoring and controlling channels on Windows and Unix platforms” on page

105

v “Monitoring and controlling channels on z/OS” on page 243

v “Monitoring and controlling channels on i5/OS” on page 321

For information about channel exits, see “Channel-exit programs” on page 375.

Message sending and receiving

Figure 28 on page 52 shows the relationships between entities when messages are

transmitted, and shows the flow of control.

Chapter 2. How intercommunication works 51

Note:

1. There is one MCA per channel, depending on the platform. There may be one

or more channel control functions for a given queue manager.

2. The implementation of MCAs and channel control functions is highly platform

dependent; they may be programs or processes or threads, and they may be a

single entity or many comprising several independent or linked parts.

3. All components marked with a star can use the MQI.

Channel parameters

An MCA receives its parameters in one of several ways:

v If started by a command, the channel name is passed in a data area. The MCA

then reads the channel definition directly to obtain its attributes.

v For sender, and in some cases server channels, the MCA can be started

automatically by the queue manager trigger. The channel name is retrieved from

the trigger process definition, where applicable, and is passed to the MCA. The

remaining processing is the same as that described above. Server channels

should only be set up to trigger if they are fully qualified, that is, they specify a

CONNAME to connect to.

v If started remotely by a sender, server, requester, or client-connection, the

channel name is passed in the initial data from the partner message channel

agent. The MCA reads the channel definition directly to obtain its attributes.

Commands

Channel
Initiator

Listener

Message
Channel

Agent
(MCA)

Message
Channel

Agent
(MCA)

User
Exits

User
Exits

Queue

Queue

Queue

Operator

Channel Control
Function

Communications
Network

Transmission

Initiation

Local

Channel
definitions

Synchronization
Information

Status

Commands

Status

SENDING RECEIVING

TO ADJACENT QUEUE MANAGER

Messages

MessagesMessages

Trigger
message

Status Commands

Messages

Messages

Queue Local

Queue Local

Figure 28. Distributed queue management model

52 WebSphere MQ: Intercommunication

Certain attributes not defined in the channel definition are also negotiable:

Split messages

If one end does not support this, split messages will not be sent.

Conversion capability

If one end cannot perform the necessary code page conversion or numeric

encoding conversion when needed, the other end must handle it. If neither

end supports it, when needed, the channel cannot start.

Distribution list support

If one end does not support distribution lists, the partner MCA sets a flag

in its transmission queue so that it will know to intercept messages

intended for multiple destinations.

Channel status and sequence numbers

Message channel agent programs keep records of the current sequence number and

logical unit of work number for each channel, and of the general status of the

channel. Some platforms allow you to display this status information to help you

control channels.

Channel control function

The channel control function provides facilities for you to define, monitor, and

control channels. Commands are issued through panels, programs, or from a

command line to the channel control function. The panel interface also displays

channel status and channel definition data. You can use Programmable Command

Formats or those WebSphere MQ commands (MQSC) and control commands that

are detailed in “Monitoring and controlling channels on Windows and Unix

platforms” on page 105.

The commands fall into the following groups:

v Channel administration

v Channel control

v Channel status monitoring

Channel administration commands deal with the definitions of the channels. They

enable you to:

v Create a channel definition

v Copy a channel definition

v Alter a channel definition

v Delete a channel definition

Channel control commands manage the operation of the channels. They enable you

to:

v Start a channel

v Stop a channel

v Re-synchronize with partner (in some implementations)

v Reset message sequence numbers

v Resolve an in-doubt batch of messages

v Ping; send a test communication across the channel

Channel monitoring displays the state of channels, for example:

Chapter 2. How intercommunication works 53

v Current channel settings

v Whether the channel is active or inactive

v Whether the channel terminated in a synchronized state

Preparing channels

Before trying to start a message channel or MQI channel, you must make sure that

all the attributes of the local and remote channel definitions are correct and

compatible. “Channel attributes” on page 71 describes the channel definitions and

attributes.

Although you set up explicit channel definitions, the channel negotiations carried

out when a channel starts up may override one or other of the values defined. This

is quite normal, and transparent, and has been arranged like this so that otherwise

incompatible definitions can work together.

Auto-definition of receiver and server-connection channels:

 In WebSphere MQ on all platforms except z/OS, if there is no appropriate channel

definition, then for a receiver or server-connection channel that has auto-definition

enabled, a definition is created automatically. The definition is created using:

1. The appropriate model channel definition, SYSTEM.AUTO.RECEIVER or

SYSTEM.AUTO.SVRCONN. The model channel definitions for auto-definition

are the same as the system defaults, SYSTEM.DEF.RECEIVER and

SYSTEM.DEF.SVRCONN, except for the description field, which is

“Auto-defined by” followed by 49 blanks. The systems administrator can

choose to change any part of the supplied model channel definitions.

2. Information from the partner system. The partner’s values are used for the

channel name and the sequence number wrap value.

3. A channel exit program, which you can use to alter the values created by the

auto-definition. See “Channel auto-definition exit program” on page 393.

The description is then checked to determine whether it has been altered by an

auto-definition exit or because the model definition has been changed. If the first

44 characters are still “Auto-defined by” followed by 29 blanks, the queue manager

name is added. If the final 20 characters are still all blanks the local time and date

are added.

Once the definition has been created and stored the channel start proceeds as

though the definition had always existed. The batch size, transmission size, and

message size are negotiated with the partner.

Defining other objects:

 Before a message channel can be started, both ends must be defined (or enabled

for auto-definition) at their respective queue managers. The transmission queue it

is to serve must be defined to the queue manager at the sending end, and the

communication link must be defined and available. In addition, it may be

necessary for you to prepare other WebSphere MQ objects, such as remote queue

definitions, queue manager alias definitions, and reply-to queue alias definitions,

so as to implement the scenarios described in “Making your applications

communicate” on page 15.

For information about MQI channels, see the WebSphere MQ Clients book.

54 WebSphere MQ: Intercommunication

Multiple message channels per transmission queue:

 It is possible to define more than one channel per transmission queue, but only

one of these channels can be active at any one time. This is recommended for the

provision of alternative routes between queue managers for traffic balancing and

link failure corrective action. A transmission queue cannot be used by another

channel if the previous channel to use it terminated leaving a batch of messages

in-doubt at the sending end. For more information, see “In-doubt channels” on

page 65.

Starting a channel:

 A channel can be caused to start transmitting messages in one of four ways. It can

be:

v Started by an operator (not receiver, cluster-receiver or server-connection

channels).

v Triggered from the transmission queue. This applies to sender channels and fully

qualified server channels (those which specify a CONNAME) only. You will

need to prepare the necessary objects for triggering channels.

v Started from an application program (not receiver, cluster-receiver or

server-connection channels).

v Started remotely from the network by a sender, cluster-sender, requester, server,

or client-connection channel. Receiver, cluster-receiver and possibly server and

requester channel transmissions, are started this way; so are server-connection

channels. The channels themselves must already be started (that is, enabled).

Note: Because a channel is ‘started’ it is not necessarily transmitting messages, but,

rather, it is ‘enabled’ to start transmitting when one of the four events described

above occurs. The enabling and disabling of a channel is achieved using the

START and STOP operator commands.

Channel states

Figure 29 on page 56 shows the hierarchy of all possible channel states and the

substates that apply to each of the channel states. The substates are shown inside

boxes, below the states to which they apply. Figure 30 on page 57 shows the links

between channel states. These apply to all types of message channel and

server-connection channels.

Chapter 2. How intercommunication works 55

Current and active:

 The channel is “current” if it is in any state other than inactive. A current channel

is “active” unless it is in RETRYING, STOPPED, or STARTING state. If a channel is

″active″ it may also show a substate giving more detail of exactly what the channel

is doing.

Current

Stopped Starting Retrying Active

Requesting Running Paused

Inactive

Channel

StoppingBinding

InMsgExit
InSndExit
InRcvExit
InMRExit
InScyExit

InChadExit
Sending

Receiving
Serializing

SSLHandshake
NameServer

NetworkConnecting

InMQICall
SSLHandshake

Sending
Receiving

NameServer
NetworkConnecting

InMsgExit
InSndExit
InRcvExit
InMRExit
Sending
Receiving
InMQGET
InMQPUT
Resyncing
Heartbeating
EndofBatch
InMQICall

InMsgExit
InSndExit
InRcvExit
InMRExit
InScyExit

Initializing

Figure 29. Channel states and substates

56 WebSphere MQ: Intercommunication

Note:

Check limits if
retrying

Transferring or ready
to transfer

Waiting until time
for next attempt

Status
OK

Error or STOP request or
disconnect interval expires

Disconnect interval expires

One attempt to
establish session fails

STOP command,
non-retryable error
or retry l imit reached

BINDING

RUNNING

STOPPING

RETRYING

STOPPED
Disabled

Establishing session and
initial data exchange

REQUESTING

Retryable error, one
attempt failed, retry
count not exhausted

Waiting for
message-retry

interval

PAUSED

STARTING

START command

TRIGGER

REMOTE INITIATION

CHANNEL INITIATOR

or

or

or

INITIALIZING

Start
channel

INACTIVE

Figure 30. Flows between channel states

Chapter 2. How intercommunication works 57

1. When a channel is in one of the six states highlighted in Figure 30 on page 57

(INITIALIZING, BINDING, REQUESTING, RUNNING, PAUSED, or

STOPPING), it is consuming resource and a process or thread is running; the

channel is active.

2. When a channel is in STOPPED state, the session may be active because the

next state is not yet known.

Specifying the maximum number of current channels:

 You can specify the maximum number of channels that can be current at one time.

This is the number of channels that have entries in the channel status table,

including channels that are retrying and channels that are stopped. Specify this

using ALTER QMGR MAXCHL for z/OS, the queue manager initialization file for

i5/OS, the queue manager configuration file for UNIX systems, or the WebSphere

MQ Explorer. For more information about the values you set using the

initialization or the configuration file see Chapter 8, “Configuration file stanzas for

distributed queuing,” on page 491. For more information about specifying the

maximum number of channels, see the WebSphere MQ System Administration

Guide for WebSphere MQ for UNIX systems, and Windows systems, the

WebSphere MQ for i5/OS System Administration Guide book for WebSphere MQ

for i5/OS, or the WebSphere MQ Script (MQSC) Command Reference for

WebSphere MQ for z/OS.

Note:

1. Server-connection channels are included in this number.

2. A channel must be current before it can become active. If a channel is started,

but cannot become current, the start fails.

Specifying the maximum number of active channels:

 You can also specify the maximum number of active channels. You can do this to

prevent your system being overloaded by a large number of starting channels. If

you use this method, you should set the disconnect interval attribute to a low

value to allow waiting channels to start as soon as other channels terminate.

Each time a channel that is retrying attempts to establish connection with its

partner, it must become an active channel. If the attempt fails, it remains a current

channel that is not active, until it is time for the next attempt. The number of times

that a channel will retry, and how often, is determined by the retry count and retry

interval channel attributes. There are short and long values for both these

attributes. See “Channel attributes” on page 71 for more information.

When a channel has to become an active channel (because a START command has

been issued, or because it has been triggered, or because it is time for another retry

attempt), but is unable to do so because the number of active channels is already

at the maximum value, the channel waits until one of the active slots is freed by

another channel instance ceasing to be active. If, however, a channel is starting

because it is being initiated remotely, and there are no active slots available for it at

that time, the remote initiation is rejected.

Whenever a channel, other than a requester channel, is attempting to become

active, it goes into the STARTING state. This is true even if there is an active slot

immediately available, although in this case it will only be in STARTING state for

a very short time. However, if the channel has to wait for an active slot, it is in

STARTING state while it is waiting.

58 WebSphere MQ: Intercommunication

Requester channels do not go into STARTING state. If a requester channel cannot

start because the number of active channels is already at the limit, the channel

ends abnormally.

Whenever a channel, other than a requester channel, is unable to get an active slot,

and so waits for one, a message is written to the log or the z/OS console, and an

event is generated. When a slot is subsequently freed and the channel is able to

acquire it, another message and event are generated. Neither of these events and

messages are generated if the channel is able to acquire a slot straightaway.

If a STOP CHANNEL command is issued while the channel is waiting to become

active, the channel goes to STOPPED state. A Channel-Stopped event is raised as

usual.

Server-connection channels are included in the maximum number of active

channels.

For more information about specifying the maximum number of active channels,

see the WebSphere MQ System Administration Guide for WebSphere MQ for UNIX

systems, and Windows systems, the WebSphere MQ for i5/OS System

Administration Guide for WebSphere MQ for i5/OS, or WebSphere MQ Script

(MQSC) Command Reference for WebSphere MQ for z/OS.

Channel errors:

 Errors on channels cause the channel to stop further transmissions. If the channel

is a sender or server, it goes to RETRY state because it is possible that the problem

may clear itself. If it cannot go to RETRY state, the channel goes to STOPPED state.

For sending channels, the associated transmission queue is set to GET(DISABLED)

and triggering is turned off. (A STOP command with STATUS(STOPPED) takes the

side that issued it to STOPPED state; only expiry of the disconnect interval or a

STOP command with STATUS(INACTIVE) will make it end normally and become

inactive.) Channels that are in STOPPED state need operator intervention before

they will restart (see “Restarting stopped channels” on page 64).

Note: For i5/OS, UNIX systems, and Windows systems, a channel initiator must

be running for retry to be attempted. If the channel initiator is not available, the

channel becomes inactive and must be manually restarted. If you are using a script

to start the channel, ensure the channel initiator is running before you try to run

the script.

“Long retry count (LONGRTY)” on page 86 describes how retrying works. If the

error clears, the channel restarts automatically, and the transmission queue is

re-enabled. If the retry limit is reached without the error clearing, the channel goes

to STOPPED state. A stopped channel must be restarted manually by the operator.

If the error is still present, it does not retry again. When it does start successfully,

the transmission queue is re-enabled.

If the channel initiator (on z/OS) or queue manager (on platforms other than

z/OS) stops while a channel is in RETRYING or STOPPED status, the channel

status is remembered when the channel initiator or queue manager is restarted.

However, the channel status for the SVRCONN channel type is reset if the channel

initiator (on z/OS) or queue manager (on platforms other than z/OS) stops while

the channel is in STOPPED status.

Chapter 2. How intercommunication works 59

If a channel is unable to put a message to the target queue because that queue is

full or put inhibited, the channel can retry the operation a number of times

(specified in the message-retry count attribute) at a given time interval (specified in

the message-retry interval attribute). Alternatively, you can write your own

message-retry exit that determines which circumstances cause a retry, and the

number of attempts made. The channel goes to PAUSED state while waiting for

the message-retry interval to finish.

See “Channel attributes” on page 71 for information about the channel attributes,

and “Channel-exit programs” on page 375 for information about the message-retry

exit.

Server-connection channel limits

You can set server-connection channel limits to prevent client applications from

exhausting queue manager channel resources and to prevent a single client

application from exhausting server-connection channel capacity.

A maximum total number of channels can be active at any time on an individual

queue manager, and the total number of server-connection channel instances are

included in the maximum number of active channels.

If you do not specify the maximum number of simultaneous instances of a

server-connection channel that can be started, then it is possible for a single client

application, connecting to a single server-connection channel, to exhaust the

maximum number of active channels that are available. When the maximum

number of active channels is reached, it prevents any other channels from being

started on the queue manager. To avoid this, you must limit the number of

simultaneous instances of an individual server-connection channel that can be

started, regardless of which client started them.

If the value of the limit is reduced to below the currently running number of

instances of the server connection channel, even to zero, then the running channels

are not affected. However, new instances cannot be started until sufficient existing

instances have ceased to run so that the number of currently running instances is

less than the value of the limit.

Also, many different client-connection channels can connect to an individual

server-connection channel. The limit on the number of simultaneous instances of

an individual server-connection channel that can be started, regardless of which

client started them, prevents any client from exhausting the maximum active

channel capacity of the queue manager. However, if you do not also limit the

number of simultaneous instances of an individual server-connection channel that

can be started from an individual client, then it is possible for a single, faulty client

application to open so many connections that it exhausts the channel capacity

allocated to an individual server-connection channel, and this prevents other clients

that need to use the channel from connecting to it. To avoid this, you must limit

the number of simultaneous instances of an individual server-connection channel

that can be started from an individual client.

If the value of the individual client limit is reduced below the number of instances

of the server-connection channel that are currently running from individual clients,

even to zero, then the running channels are not affected. However, new instances

of the server-connection channel cannot be started from an individual client that

exceeds the new limit until sufficient existing instances from that client have

ceased to run so that the number of currently running instances is less than the

value of this parameter.

60 WebSphere MQ: Intercommunication

Checking that the other end of the channel is still available

Heartbeats:

 You can use the heartbeat-interval channel attribute to specify that flows are to be

passed from the sending MCA when there are no messages on the transmission

queue. This is described in “Heartbeat interval (HBINT)” on page 84.

Keep Alive:

 In WebSphere MQ for z/OS, if you are using TCP/IP as the transport protocol,

you can also specify a value for the KeepAlive Interval channel attribute (KAINT).

You are recommended to give the KeepAliveInterval a higher value than the

heartbeat interval, and a smaller value than the disconnect value. You can use this

attribute to specify a time-out value for each channel. This is described in

“KeepAlive Interval (KAINT)” on page 84.

In WebSphere MQ for i5/OS, UNIX systems, and Windows systems, if you are

using TCP as your transport protocol, you can set keepalive=yes. If you specify

this option, TCP periodically checks that the other end of the connection is still

available, and if it is not, the channel is terminated. This is described in

“KeepAlive Interval (KAINT)” on page 84.

If you have unreliable channels that are suffering from TCP errors, use of

KEEPALIVE will mean that your channels are more likely to recover

You can specify time intervals to control the behavior of the KEEPALIVE option.

When you change the time interval, only TCP/IP channels started after the change

are affected. The value that you choose for the time interval should be less than

the value of the disconnect interval for the channel.

For more information about using the KEEPALIVE option on z/OS, see WebSphere

MQ for z/OS Concepts and Planning Guide . For other platforms, see the chapter

about setting up communications for your platform in this manual.

Receive Time Out:

 If you are using TCP as your transport protocol, the receiving end of an idle

non-MQI channel connection is also closed if no data is received for a period of

time. This period of time is determined according to the HBINT (heartbeat

interval) value.

In WebSphere MQ for i5/OS, UNIX systems, and Windows systems, the time-out

value is set as follows:

1. For an initial number of flows, before any negotiation has taken place, the

timeout is twice the HBINT value from the channel definition.

2. When the channels have negotiated a HBINT value, if HBINT is set to less than

60 seconds, the timeout is set to twice this value. If HBINT is set to 60 seconds

or more, the timeout value is set to 60 seconds greater than the value of

HBINT.

In WebSphere MQ for z/OS, the time-out value is set as follows:

1. For an initial number of flows, before any negotiation has taken place, the

timeout is twice the HBINT value from the channel definition.

2. If RCVTIME is set, the timeout is set to one of

Chapter 2. How intercommunication works 61

v the negotiated HBINT multiplied by a constant

v the negotiated HBINT plus a constant number of seconds

v a constant number of seconds

depending on the RCVTTYPE parameter, and subject to any limit imposed by

RCVTMIN. If you use a constant value of RCVTIME and you use a heartbeat

interval, do not specify an RCVTIME less than the heartbeat interval. For

details of the RCVTIME, RCVTMIN and RCVTTYPE attributes, see ALTER

QMGR in WebSphere MQ Script (MQSC) Command Reference.

Note:

1. If either of the above values is zero, there is no timeout.

2. For connections that do not support heartbeats, the HBINT value is negotiated

to zero in step 2 and hence there is no timeout, so you must use TCP/IP

KEEPALIVE.

3. For client connections, heartbeats are flowed from the server only when the

client issues an MQGET call with wait; none are flowed during other MQI calls.

Therefore, you are not recommended to set the heartbeat interval too small for

client channels. For example, if the heartbeat is set to ten seconds, an MQCMIT

call will fail (with MQRC_CONNECTION_BROKEN) if it takes longer than

twenty seconds to commit because no data will have been flowed during this

time. This can happen with large units of work. However, it should not happen

if appropriate values are chosen for the heartbeat interval because only MQGET

with wait should take significant periods of time.

4. Aborting the connection after twice the heartbeat interval is valid because a

data or heartbeat flow is expected at least every heartbeat interval. Setting the

heartbeat interval too small, however, can cause problems, especially if you are

using channel exits. For example, if the HBINT value is one second, and a send

or receive exit is used, the receiving end will only wait for two seconds before

aborting the channel. If the MCA is performing a task such as encrypting the

message, this value might be too short.

Adopting an MCA

If a channel suffers a communications failure, the receiver channel could be left in

a ’communications receive’ state. When communications are re-established the

sender channel attempts to reconnect. If the remote queue manager finds that the

receiver channel is already running it does not allow another version of the same

receiver channel to be started. This problem requires user intervention to rectify

the problem or the use of system keepalive.

The Adopt MCA function solves the problem automatically. It enables WebSphere

MQ to cancel a receiver channel and to start a new one in its place.

The function can be set up with various options. For more information see

WebSphere MQ Script (MQSC) Command Reference for z/OS, WebSphere MQ for

i5/OS System Administration Guide for i5/OS and WebSphere MQ System

Administration Guide for other platforms.

Stopping and quiescing channels

Message channels are designed to be long-running connections between queue

managers with orderly termination controlled only by the disconnect interval

62 WebSphere MQ: Intercommunication

channel attribute. This mechanism works well unless the operator needs to

terminate the channel before the disconnect time interval expires. This can occur in

the following situations:

v System quiesce

v Resource conservation

v Unilateral action at one end of a channel

In this case, you can stop the channel. You can do this using:

v the STOP CHANNEL MQSC command

v the Stop Channel PCF command

v the WebSphere MQ Explorer

v other platform-specific mechanisms, as follows:

For z/OS:

The Stop a channel panel

For i5/OS:

The ENDMQMCHL CL command or the END option on the

WRKMQMCHL panel

There are three options for stopping channels using these commands:

QUIESCE

The QUIESCE option attempts to end the current batch of messages before

stopping the channel.

FORCE

The FORCE option attempts to stop the channel immediately and may

require the channel to resynchronize when it restarts because the channel

may be left in doubt.

TERMINATE

The TERMINATE option attempts to stop the channel immediately, and

terminates the channel’s thread or process.

Note that all of these options leave the channel in a STOPPED state, requiring

operator intervention to restart it.

Stopping the channel at the sending end is quite effective but does require operator

intervention to restart. At the receiving end of the channel, things are much more

difficult because the MCA is waiting for data from the sending side, and there is

no way to initiate an orderly termination of the channel from the receiving side; the

stop command is pending until the MCA returns from its wait for data.

Consequently there are three recommended ways of using channels, depending

upon the operational characteristics required:

v If you want your channels to be long running, you should note that there can be

orderly termination only from the sending end. When channels are interrupted,

that is, stopped, operator intervention (a START CHANNEL command) is

required in order to restart them.

v If you want your channels to be active only when there are messages for them

to transmit, you should set the disconnect interval to a fairly low value. Note

that the default setting is quite high and so is not recommended for channels

where this level of control is required. Because it is difficult to interrupt the

receiving channel, the most economical option is to have the channel

Chapter 2. How intercommunication works 63

automatically disconnect and reconnect as the workload demands. For most

channels, the appropriate setting of the disconnect interval can be established

heuristically.

v You can use the heartbeat-interval attribute to cause the sending MCA to send a

heartbeat flow to the receiving MCA during periods in which it has no messages

to send. This releases the receiving MCA from its wait state and gives it an

opportunity to quiesce the channel without waiting for the disconnect interval to

expire. Give the heartbeat interval a lower value than the value of the disconnect

interval.

Note:

1. You are advised to set the disconnect interval to a low value, or to use

heartbeats, for server channels. This is to allow for the case where the

requester channel ends abnormally (for example, because the channel was

canceled) when there are no messages for the server channel to send. If the

disconnect interval is set high and heartbeats are not in use, the server does

not detect that the requester has ended (it will only do this the next time it

tries to send a message to the requester). While the server is still running, it

holds the transmission queue open for exclusive input in order to get any

more messages that arrive on the queue. If an attempt is made to restart the

channel from the requester, the start request receives an error because the

server still has the transmission queue open for exclusive input. It is

necessary to stop the server channel, and then restart the channel from the

requester again.

Restarting stopped channels

When a channel goes into STOPPED state (either because you have stopped the

channel manually using one of the methods given in “Stopping and quiescing

channels” on page 62, or because of a channel error) you have to restart the

channel manually.

To do this, issue one of the following commands:

v The START CHANNEL MQSC command

v The Start Channel PCF command

v the WebSphere MQ Explorer

v

other platform-specific mechanisms, as follows:

For z/OS:

The Start a channel panel

For i5/OS:

The STRMQMCHL CL command or the START option on the

WRKMQMCHL panel

For sender or server channels, when the channel entered the STOPPED state, the

associated transmission queue was set to GET(DISABLED) and triggering was set

off. When the start request is received, these attributes are reset automatically.

If the channel initiator (on z/OS) or queue manager (on distributed platforms)

stops while a channel is in RETRYING or STOPPED status, the channel status is

remembered when the channel initiator or queue manager is restarted. However,

the channel status for the SVRCONN channel type is reset if the channel initiator

or queue manager stops while the channel is in STOPPED status.

64 WebSphere MQ: Intercommunication

In-doubt channels

An in-doubt channel is a channel that is in doubt with a remote channel about

which messages have been sent and received. Note the distinction between this

and a queue manager being in doubt about which messages should be committed

to a queue.

You can reduce the opportunity for a channel to be placed in doubt by using the

Batch Heartbeat channel parameter (BATCHHB). When a value for this parameter

is specified, a sender channel checks that the remote channel is still active before

taking any further action. If no response is received the receiver channel is

considered to be no longer active. The messages can be rolled-back, and re-routed,

and the sender-channel is not put in doubt. This reduces the time when the

channel could be placed in doubt to the period between the sender channel

verifying that the receiver channel is still active, and verifying that the receiver

channel has received the sent messages. See “Channel attributes” on page 71 for

more information on the batch heartbeat parameter.

In-doubt channel problems are usually resolved automatically. Even when

communication is lost, and a channel is placed in doubt with a message batch at

the sender whose receipt status is unknown, the situation is resolved when

communication is re-established. Sequence number and LUWID records are kept

for this purpose. The channel is in doubt until LUWID information has been

exchanged, and only one batch of messages can be in doubt for the channel.

You can, when necessary, resynchronize the channel manually. The term manual

includes use of operators or programs that contain WebSphere MQ system

management commands. The manual resynchronization process works as follows.

This description uses MQSC commands, but you can also use the PCF equivalents.

1. Use the DISPLAY CHSTATUS command to find the last-committed logical unit

of work ID (LUWID) for each side of the channel. Do this using the following

commands:

v For the in-doubt side of the channel:

DISPLAY CHSTATUS(name) SAVED CURLUWID

You can use the CONNAME and XMITQ parameters to further identify the

channel.

v For the receiving side of the channel:

DISPLAY CHSTATUS(name) SAVED LSTLUWID

You can use the CONNAME parameter to further identify the channel.
The commands are different because only the sending side of the channel can

be in doubt. The receiving side is never in doubt.

On WebSphere MQ for i5/OS, the DISPLAY CHSTATUS command can be

executed from a file using the STRMQMMQSC command or the Work with

MQM Channel Status CL command, WRKMQMCHST

2. If the two LUWIDs are the same, the receiving side has committed the unit of

work that the sender considers to be in doubt. The sending side can now

remove the in-doubt messages from the transmission queue and re-enable it.

This is done with the following channel RESOLVE command:

RESOLVE CHANNEL(name) ACTION(COMMIT)

3. If the two LUWIDs are different, the receiving side has not committed the unit

of work that the sender considers to be in doubt. The sending side needs to

retain the in-doubt messages on the transmission queue and re-send them. This

is done with the following channel RESOLVE command:

Chapter 2. How intercommunication works 65

RESOLVE CHANNEL(name) ACTION(BACKOUT)

On WebSphere MQ for i5/OS, you can use the Resolve MQM Channel

command, RSVMQMCHL.

Once this process is complete the channel is no longer in doubt. The transmission

queue can now be used by another channel, if required.

Problem determination

There are two distinct aspects to problem determination:

v Problems discovered when a command is being submitted

v Problems discovered during operation of the channels

Command validation:

 Commands and panel data must be free from errors before they are accepted for

processing. Any errors found by the validation are immediately notified to the user

by error messages.

Problem diagnosis begins with the interpretation of these error messages and

taking the recommended corrective action.

Processing problems:

 Problems found during normal operation of the channels are notified to the system

console or the system log. Problem diagnosis begins with the collection of all

relevant information from the log, and continues with analysis to identify the

problem.

Confirmation and error messages are returned to the terminal that initiated the

commands, when possible.

WebSphere MQ produces accounting and statistical data, which you can use to

identify trends in utilization and performance. On z/OS, this information is

produced in the form of SMF records, see WebSphere MQ for z/OS System Setup

Guide for details. The equivalent information on other platforms is produced as

PCF records, see Monitoring WebSphere MQ for details.

Messages and codes:

 Where provided, the Messages and Codes manual of the particular platform can help

with the primary diagnosis of the problem.

What happens when a message cannot be delivered?

Figure 31 on page 67 shows the processing that occurs when an MCA is unable to

put a message to the destination queue. (Note that the options shown do not apply

on all platforms.)

66 WebSphere MQ: Intercommunication

As shown in the figure, the MCA can do several things with a message that it

cannot deliver. The action taken is determined by options specified when the

channel is defined and on the MQPUT report options for the message.

1. Message-retry

If the MCA is unable to put a message to the target queue for a reason that

could be transitory (for example, because the queue is full), the MCA has

the option to wait and retry the operation later. You can determine if the

MCA waits, for how long, and how many times it retries.

v You can specify a message-retry time and interval for MQPUT errors

when you define your channel. If the message cannot be put to the

destination queue because the queue is full, or is inhibited for puts, the

MCA retries the operation the number of times specified, at the time

interval specified.

v You can write your own message-retry exit. The exit enables you to

specify under what conditions you want the MCA to retry the MQPUT

or MQOPEN operation. Specify the name of the exit when you define

the channel.

2. Return-to-sender

If message-retry was unsuccessful, or a different type of error was

encountered, the MCA can send the message back to the originator.

 To enable this, you need to specify the following options in the message

descriptor when you put the message to the original queue:

v The MQRO_EXCEPTION_WITH_FULL_DATA report option

v The MQRO_DISCARD_MSG report option

v The name of the reply-to queue and reply-to queue manager

MQPUT

DLQ Handler

MCA MCA
Transient Failure

Retry Exit

Application
Queue

Transmission
Queue

Transmission
Queue

Message Flow

Dead Letter
Queue

2 3

1

QM2QM1 Channels

Return to
Sender

Figure 31. What happens when a message cannot be delivered

Chapter 2. How intercommunication works 67

If the MCA is unable to put the message to the destination queue, it

generates an exception report containing the original message, and puts it

on a transmission queue to be sent to the reply-to queue specified in the

original message. (If the reply-to queue is on the same queue manager as

the MCA, the message is put directly to that queue, not to a transmission

queue.)

3. Dead-letter queue

If a message cannot be delivered or returned, it is put on to the dead-letter

queue (DLQ). You can use the DLQ handler to process the message. This is

described in the WebSphere MQ System Administration Guide for

WebSphere MQ for UNIX and Windows systems, and in the WebSphere

MQ for z/OS System Administration Guide for z/OS.

 If the dead-letter queue is not available, the sending MCA leaves the

message on the transmission queue, and the channel stops. On a fast

channel, nonpersistent messages that cannot be written to a dead-letter

queue are lost.

On WebSphere MQ Version 5 and later, if no local dead-letter queue is

defined, the remote queue is not available or defined, and there is no

remote dead-letter queue, the channel stops abnormally, and messages are

not rolled back to the sending transmission queue. You must resolve the

channel using the COMMIT or BACKOUT functions.

Initialization and configuration files

The handling of channel initialization data depends on your WebSphere MQ

platform.

z/OS

In WebSphere MQ for z/OS, initialization and configuration information is

specified using the ALTER QMGR MQSC command. If you put ALTER QMGR

commands in the CSQINP2 initialization input data set, they are processed every

time the queue manager is started. To run MQSC commands such as START

LISTENER every time you start the channel initiator, put them in the CSQINPX

initialization input data set and specify the optional DD statement CSQINPX in the

channel initiator started task procedure. See WebSphere MQ for z/OS Concepts

and Planning Guide for information about CSQINP2 and CSQINPX, and

WebSphere MQ Script (MQSC) Command Reference for information about ALTER

QMGR.

Windows systems

On WebSphere MQ for Windows systems, the registry file holds basic configuration

information about the WebSphere MQ. That is, information relevant to all of the

queue managers on the WebSphere MQ system and also information relating to

individual queue managers. You can examine or change this information using the

WebSphere MQ Explorer. Do not edit the registry directly.

i5/OS and UNIX systems

In WebSphere MQ for i5/OS and WebSphere MQ on UNIX systems, there are

configuration files to hold basic configuration information about the WebSphere MQ

installation.

68 WebSphere MQ: Intercommunication

There are two configuration files: one applies to the machine, the other applies to

an individual queue manager.

WebSphere MQ configuration file:

 This holds information relevant to all of the queue managers on the WebSphere

MQ system. The file is called mqs.ini . It is fully described in the WebSphere MQ

System Administration Guide for WebSphere MQ for UNIX systems, and in the

WebSphere MQ for i5/OS System Administration Guide for WebSphere MQ for

i5/OS.

Queue manager configuration file:

 The queue manager configuration file holds configuration information relating to

one particular queue manager. The file is called qm.ini.

It is created during queue manager creation and may hold configuration

information relevant to any aspect of the queue manager. Information held in the

file includes details of how the configuration of the log differs from the default in

WebSphere MQ configuration file.

The queue manager configuration file is held in the root of the directory tree

occupied by the queue manager. On WebSphere MQ for Windows, the information

is held in the registry. For example, for the DefaultPath attributes, the queue

manager configuration files for a queue manager called QMNAME would be:

For UNIX systems:

/var/mqm/qmgrs/QMNAME/qm.ini

An excerpt of a qm.ini file follows. It specifies that the TCP/IP listener is to listen

on port 2500, the maximum number of current channels is to be 200 and the

maximum number of active channels is to be 100.

 TCP:

 Port=2500

 CHANNELS:

 MaxChannels=200

 MaxActiveChannels=100

In MQSeries V5.2 and WebSphere MQ, you can specify a range of TCP/IP ports to

be used by an outbound channel. One method is to use the qm.ini file to specify

the start and end of a range of port values. The example below shows a qm.ini file

specifying a range of channels:

 TCP:

 StrPort=2500

 EndPort=3000

 CHANNELS:

 MaxChannels=200

 MaxActiveChannels=100

If you specify a value for StrPort or EndPort then you must specify a value for

both. The value of EndPort must always be greater than the value of StrPort.

The channel tries to use each of the port values in the range specified. When the

connection is successful, the port value is the port that the channel then uses.

For i5/OS:

/QIBM/UserData/mqm/qmgrs/QMNAME/qm.ini

Chapter 2. How intercommunication works 69

For more information about qm.ini files see Chapter 8, “Configuration file stanzas

for distributed queuing,” on page 491.

Data conversion

A WebSphere MQ message consists of two parts:

v Control information in a message descriptor

v Application data

Either of the two parts may require data conversion when sent between queues on

different queue managers. For information about data conversion, see the

WebSphere MQ Application Programming Guide.

Writing your own message channel agents

WebSphere MQ allows you to write your own message channel agent (MCA)

programs or to install one from an independent software vendor. You might want

to do this to make WebSphere MQ interoperate over your own, proprietary

communications protocol or to send messages over a protocol that WebSphere MQ

does not support. (You cannot write your own MCA to interoperate with a

WebSphere MQ-supplied MCA at the other end.)

If you decide to use an MCA that was not supplied by WebSphere MQ, you need

to consider the following.

Message sending and receiving

You need to write a sending application that gets messages from wherever

your application puts them, for example from a transmission queue (see

the WebSphere MQ Application Programming Reference book), and sends

them out on a protocol with which you want to communicate. You also

need to write a receiving application that takes messages from this protocol

and puts them onto destination queues. The sending and receiving

applications use the message queue interface (MQI) calls, not any special

interfaces.

 You need to ensure that messages are delivered once and once only.

Syncpoint coordination can be used to help with this.

Channel control function

You need to provide your own administration functions to control

channels. You cannot use WebSphere MQ channel administration functions

either for configuring (for example, the DEFINE CHANNEL command) or

monitoring (for example, DISPLAY CHSTATUS) your channels.

Initialization file

You need to provide your own initialization file, if you require one.

Application data conversion

You will probably want to allow for data conversion for messages you

send to a different system. If so, use the MQGMO_CONVERT option on

the MQGET call when retrieving messages from wherever your application

puts them, for example the transmission queue.

User exits

Consider whether you need user exits. If so, you can use the same

interface definitions that WebSphere MQ uses.

70 WebSphere MQ: Intercommunication

Triggering

If your application puts messages to a transmission queue, you can set up

the transmission queue attributes so that your sending MCA is triggered

when messages arrive on the queue.

Channel initiator

You may need to provide your own channel initiator.

Channel attributes

The previous chapters have introduced the basic concepts of the product, the

business perspective basis of its design, its implementation, and the control

features.

This chapter describes the channel attributes held in the channel definitions. This is

product-sensitive programming interface information.

You choose the attributes of a channel to be optimal for a given set of

circumstances for each channel. However, when the channel is running, the actual

values may have changed during startup negotiations. See “Preparing channels” on

page 54.

Many attributes have default values, and you can use these for most channels.

However, in those circumstances where the defaults are not optimal, refer to this

chapter for guidance in selecting the correct values.

Note: In WebSphere MQ for i5/OS, most attributes can be specified as *SYSDFTCHL,

which means that the value is taken from the system default channel in your

system.

Channel attributes and channel types

Different types of channel support different channel attributes.

The channel types for WebSphere MQ channel attributes are listed in Table 7.

 Table 7. Channel attributes for the channel types

Attribute field SDR SVR RCVR RQSTR CLNT-

CONN

SVR-

CONN

CLUS-

SDR

CLUS-

RCVR

Alter date Yes Yes Yes Yes Yes Yes Yes Yes

Alter time Yes Yes Yes Yes Yes Yes Yes Yes

Batch heartbeat

interval

Yes Yes Yes Yes

Batch interval Yes Yes Yes Yes

Batch size Yes Yes Yes Yes Yes Yes

Channel name Yes Yes Yes Yes Yes Yes Yes Yes

Channel statistics Yes Yes Yes Yes Yes Yes

Channel type Yes Yes Yes Yes Yes Yes Yes Yes

Client channel weight Yes

Cluster Yes Yes

Cluster namelist Yes Yes

Chapter 2. How intercommunication works 71

Table 7. Channel attributes for the channel types (continued)

Attribute field SDR SVR RCVR RQSTR CLNT-

CONN

SVR-

CONN

CLUS-

SDR

CLUS-

RCVR

Cluster workload

priority

Yes Yes

Cluster workload rank Yes Yes

Cluster workload

weight

Yes Yes

Connection affinity Yes

Connection name Yes Yes Yes Yes Yes Yes

Convert message Yes Yes Yes Yes

Data compression Yes Yes Yes Yes Yes Yes Yes Yes

Description Yes Yes Yes Yes Yes Yes Yes Yes

Disconnect interval Yes Yes Yes1 Yes Yes

Disposition Yes Yes Yes Yes Yes Yes Yes Yes

Header compression Yes Yes Yes Yes Yes Yes Yes Yes

Heartbeat interval Yes Yes Yes Yes Yes Yes Yes Yes

Keepalive interval Yes Yes Yes Yes Yes Yes Yes Yes

Local address Yes Yes Yes Yes Yes Yes

Long retry count Yes Yes Yes Yes

Long retry interval Yes Yes Yes Yes

LU 6.2 mode name Yes Yes Yes Yes Yes Yes

LU 6.2 transaction

program name

Yes Yes Yes Yes Yes Yes

Maximum instances Yes

Maximum instances

per client

Yes

Maximum message

length

Yes Yes Yes Yes Yes Yes Yes Yes

Message channel agent

name

Message channel agent

type

Yes Yes Yes Yes Yes

Message channel agent

user

Yes Yes Yes Yes Yes Yes Yes

Message exit name Yes Yes Yes Yes Yes Yes Yes Yes

Message exit user data Yes Yes Yes Yes Yes Yes Yes Yes

Message-retry exit

name

Yes Yes Yes

Message-retry exit

user data

Yes Yes Yes

Message retry count Yes Yes Yes

Message retry interval Yes Yes Yes

Monitoring Yes Yes Yes Yes Yes Yes Yes

72 WebSphere MQ: Intercommunication

Table 7. Channel attributes for the channel types (continued)

Attribute field SDR SVR RCVR RQSTR CLNT-

CONN

SVR-

CONN

CLUS-

SDR

CLUS-

RCVR

Network-connection

priority

Yes

Nonpersistent message

speed

Yes Yes Yes Yes Yes Yes

Password Yes Yes Yes Yes Yes

Property control Yes Yes Yes Yes

PUT authority Yes Yes Yes1 Yes

Queue manager name Yes

Receive exit Yes Yes Yes Yes Yes Yes Yes Yes

Receive exit user data Yes Yes Yes Yes Yes Yes Yes Yes

Security exit Yes Yes Yes Yes Yes Yes Yes Yes

Security exit user data Yes Yes Yes Yes Yes Yes Yes Yes

Send exit Yes Yes Yes Yes Yes Yes Yes Yes

Send exit user data Yes Yes Yes Yes Yes Yes Yes Yes

Sequence number

wrap

Yes Yes Yes Yes Yes Yes

Short retry count Yes Yes Yes Yes

Short retry interval Yes Yes Yes Yes

SSL Cipher

Specification

Yes Yes Yes Yes Yes Yes Yes Yes

SSL Client

Authentication

Yes Yes Yes Yes Yes

SSL Peer Yes Yes Yes Yes Yes Yes Yes Yes

Transmission queue Yes Yes

Transport type Yes Yes Yes Yes Yes Yes Yes Yes

User ID Yes Yes Yes Yes Yes

Note:

1. Valid on z/OS only.

Channel attributes in alphabetical order

This topic describes each attribute of a channel object, with its valid values and

notes on its use where appropriate.

WebSphere MQ for some platforms might not implement all the attributes shown

in the list. Exceptions and platform differences are mentioned in the individual

attribute descriptions, where relevant.

The keyword that you can specify in MQSC is shown in brackets for each attribute.

The attributes are arranged in alphabetical order, as follows:

Chapter 2. How intercommunication works 73

Alter date (ALTDATE)

This is the date on which the definition was last altered, in the form yyyy-mm-dd.

This attribute is valid for all channel types.

Alter time (ALTTIME)

This is the time at which the definition was last altered, in the form hh:mm:ss.

This attribute is valid for all channel types.

Batch Heartbeat Interval (BATCHHB)

The batch heartbeat interval allows a sending channel to verify that the receiving

channel is still active just before committing a batch of messages, so that if the

receiving channel is not active, the batch can be backed out rather than becoming

in-doubt, as would otherwise be the case. By backing out the batch, the messages

remain available for processing so they could, for example, be redirected to another

channel.

If the sending channel has had a communication from the receiving channel within

the batch heartbeat interval, the receiving channel is assumed to be still active,

otherwise a ’heartbeat’ is sent to the receiving channel to check.

The value must be in the range zero through 999 999. A value of zero indicates that

batch heartbeating is not used.

This attribute is valid for channel types of:

v Sender

v Server

v Cluster sender

v Cluster receiver

Batch interval (BATCHINT)

The batch interval is a period of time, in milliseconds, during which the channel

will keep a batch open even if there are no messages on the transmission queue.

You can specify any number of milliseconds, from zero through 999 999 999. The

default value is zero.

If you do not specify a batch interval, the batch closes when the number of

messages specified in BATCHSZ has been sent or when the transmission queue

becomes empty. On lightly loaded channels, where the transmission queue

frequently becomes empty the effective batch size may be much smaller than

BATCHSZ.

You can use the BATCHINT attribute to make your channels more efficient by

reducing the number of short batches. Be aware, however, that you may slow

down the response time, because batches will last longer and messages will remain

uncommitted for longer.

If you specify a BATCHINT, batches close only when one of the following

conditions is met:

v The number of messages specified in BATCHSZ have been sent.

74 WebSphere MQ: Intercommunication

v There are no more messages on the transmission queue and a time interval of

BATCHINT has elapsed while waiting for messages (since the first message of

the batch was retrieved).

Note: BATCHINT specifies the total amount of time that is spent waiting for

messages. It does not include the time spent retrieving messages that are already

available on the transmission queue, or the time spent transferring messages.

This attribute is valid for channel types of:

v Sender

v Server

v Cluster sender

v Cluster receiver

Batch size (BATCHSZ)

The batch size is the maximum number of messages to be sent before a syncpoint

is taken. The batch size does not affect the way the channel transfers messages;

messages are always transferred individually, but are committed or backed out as a

batch.

To improve performance, you can set a batch size to define the maximum number

of messages to be transferred between two syncpoints. The batch size to be used is

negotiated when a channel starts up, and the lower of the two channel definitions

is taken. On some implementations, the batch size is calculated from the lowest of

the two channel definitions and the two queue manager MAXUMSGS values. The

actual size of a batch can be less than this; for example, a batch completes when

there are no messages left on the transmission queue or the batch interval expires.

A large value for the batch size increases throughput, but recovery times are

increased because there are more messages to back out and re-send. The default

BATCHSZ is 50, and you are advised to try that value first. You might choose a

lower value for BATCHSZ if your communications are unreliable, making the need

to recover more likely.

Syncpoint procedure needs a unique logical unit of work identifier to be

exchanged across the link every time a syncpoint is taken, to coordinate batch

commit procedures.

If the synchronized batch commit procedure is interrupted, an in-doubt situation

may arise. In-doubt situations are resolved automatically when a message channel

starts up. If this resolution is not successful, manual intervention may be necessary,

making use of the RESOLVE command.

Some considerations when choosing the number for batch size:

v If the number is too large, the amount of queue space taken up on both ends of

the link becomes excessive. Messages take up queue space when they are not

committed, and cannot be removed from queues until they are committed.

v If there is likely to be a steady flow of messages, you can improve the

performance of a channel by increasing the batch size. However, this has the

negative effect of increasing restart times, and very large batches may also affect

performance.

Chapter 2. How intercommunication works 75

v If message flow characteristics indicate that messages arrive intermittently, a

batch size of 1 with a relatively large disconnect time interval may provide a

better performance.

v The number may be in the range 1 through 9999. However, for data integrity

reasons, channels connecting to any of the current platforms, as described in this

book, should specify a batch size greater than 1. (A value of 1 is for use with

Version 1 products, apart from MQSeries for MVS/ESA™.)

v Even though nonpersistent messages on a fast channel do not wait for a

syncpoint, they do contribute to the batch-size count.

This attribute is valid for channel types of:

v Sender

v Server

v Receiver

v Requester

v Cluster sender

v Cluster receiver

Channel name (CHANNEL)

Specifies the name of the channel definition. The name can contain up to 20

characters, although as both ends of a message channel must have the same name,

and other implementations may have restrictions on the size, the actual number of

characters may have to be smaller.

Where possible, channel names should be unique to one channel between any two

queue managers in a network of interconnected queue managers.

The name must contain characters from the following list:

 Alphabetic (A-Z, a-z; note that uppercase and lowercase are significant)

Numerics (0-9)

Period (.)

Forward slash (/)

Underscore (_)

Percentage sign (%)

Note:

1. Embedded blanks are not allowed, and leading blanks are ignored.

2. On systems using EBCDIC Katakana, you cannot use lowercase characters.

This attribute is valid for all channel types.

Channel statistics (STATCHL)

Controls the collection of statistics data for channels.

The possible values are:

QMGR

Statistics data collection for this channel is based upon the setting of the

queue manager attribute STATCHL. This is the default value.

OFF Statistics data collection for this channel is disabled.

76 WebSphere MQ: Intercommunication

LOW Statistics data collection for this channel is enabled with a low ratio of data

collection.

MEDIUM

Statistics data collection for this channel is enabled with a moderate ratio

of data collection.

HIGH Statistics data collection for this channel is enabled with a high ratio of

data collection.

For more information on channel statistics, see Monitoring WebSphere MQ.

This attribute is not supported on z/OS.

This attribute is valid for channel types of:

v Sender

v Server

v Receiver

v Requester

v Cluster sender

v Cluster receiver

Channel type (CHLTYPE)

Specifies the type of the channel being defined. The possible channel types are:

Message channel types:

v Sender

v Server

v Receiver

v Requester

v Cluster-sender

v Cluster-receiver

MQI channel types:

v Client-connection (WebSphere MQ for Windows systems, and UNIX

systems only)

Note: Client-connection channels can also be defined on z/OS for use

on other platforms.

v Server-connection

The two ends of a channel must have the same name and have compatible types:

v Sender with receiver

v Requester with server

v Requester with sender (for callback)

v Server with receiver (server is used as a sender)

v Client-connection with server-connection

v Cluster-sender with cluster-receiver

Client channel weight (CLNTWGHT)

Specifies a weighting to influence which client-connection channel definition is

used.

Chapter 2. How intercommunication works 77

The client channel weighting attribute is used so that client channel definitions can

be selected at random based on their weighting when more than one suitable

definition is available.

When a client issues an MQCONN requesting connection to a queue manager

group, by specifying a queue manager name starting with an asterisk, which

enables client weight balancing across several queue managers, and more than one

suitable channel definition is available in the client channel definition table

(CCDT), the definition to use is randomly selected based on the weighting, with

any applicable CLNTWGHT(0) definitions selected first in alphabetical order.

Specify a value in the range 0 – 99. The default is 0.

A value of 0 indicates that no load balancing is performed and applicable

definitions are selected in alphabetical order. To enable load balancing choose a

value in the range 1 - 99 where 1 is the lowest weighting and 99 is the highest. The

distribution of connections between two or more channels with non-zero

weightings is approximately proportional to the ratio of those weightings. For

example, three channels with CLNTWGHT values of 2, 4, and 14 are selected

approximately 10%, 20%, and 70% of the time. This distribution is not guaranteed.

If the AFFINITY attribute of the connection is set to PREFERRED, the first

connection chooses a channel definition according to client weightings, and then

subsequent connections will continue to use the same channel definition.

This attribute is valid for the client-connection channel type only.

Cluster (CLUSTER)

The name of the cluster to which the channel belongs. The maximum length is 48

characters conforming to the rules for naming WebSphere MQ objects.

Up to one of the resultant values of CLUSTER or CLUSNL can be non-blank. If

one of the values is non-blank, the other must be blank.

This attribute is valid for channel types of:

v Cluster sender

v Cluster receiver

Cluster namelist (CLUSNL)

The name of the namelist that specifies a list of clusters to which the channel

belongs.

Up to one of the resultant values of CLUSTER or CLUSNL can be nonblank. If one

of the values is nonblank, the other must be blank.

This attribute is valid for channel types of:

v Cluster sender

v Cluster receiver

Cluster workload priority (CLWLPRTY)

Specifies the priority of the channel. The value must be in the range 0 through 9,

where 0 is the lowest priority and 9 is the highest.

This attribute is valid for channel types of:

78 WebSphere MQ: Intercommunication

v Cluster sender

v Cluster receiver

Cluster workload rank (CLWLRANK)

Specifies the rank of the channel. The value must be in the range 0 through 9,

where 0 is the lowest rank and 9 is the highest.

This attribute is valid for channel types of:

v Cluster sender

v Cluster receiver

Cluster workload weight (CLWLWGHT)

Applies a weighting factor to the channel so the proportion of messages sent down

that channel can be controlled. The value must be in the range 1 through 99, where

1 is the lowest weighting and 99 is the highest.

This attribute is valid for channel types of:

v Cluster sender

v Cluster receiver

Connection affinity (AFFINITY)

Specifies which client channel definition that the client applications use to connect

to the queue manager if multiple connections are available.

Use this attribute when multiple applicable channel definitions are available.

The possible values are:

PREFERRED

The first connection in a process reading a client channel definition table

(CCDT) creates a list of applicable definitions based on the client channel

weight, with any definitions having a weight of 0 first and in alphabetical

order. Each connection in the process attempts to connect using the first

definition in the list. If a connection is unsuccessful the next definition is used.

Unsuccessful definitions with client channel weight values other than 0 are

moved to the end of the list. Definitions with a client channel weight of 0

remain at the start of the list and are selected first for each connection.

 Each client process with the same hostname always creates the same list.

For client applications written in C, C++, or the .NET programming framework

(including fully managed .NET) the list is updated if the CCDT has been

modified since the list was created.

This is the default value.

NONE

The first connection in a process reading a CCDT creates a list of applicable

definitions. All connections in a process select an applicable definition based

on the client channel weight, with any definitions having a weight of 0

selected first in alphabetical order.

 For client applications written in C, C++, or the .NET programming framework

(including fully managed .NET) the list is updated if the CCDT has been

modified since the list was created.

Chapter 2. How intercommunication works 79

This attribute is valid for the client-connection channel type only.

Connection name (CONNAME)

This is the communications connection identifier. It specifies the particular

communications link to be used by this channel.

It is optional for server channels, unless the server channel is triggered, in which

case it MUST specify a connection name.

The name is up to 48 characters for z/OS, 264 characters for other platforms, and:

If the transport type is TCP

This is either the hostname or the network address of the remote machine

(or the local machine for cluster-receiver channels). For example,

(MACH1.ABC.COM), (fe80:43e4:0204:acff:fe97:2c34:fde0:3485) or

(19.22.11.162). It may include the port number, for example

(MACHINE(123)). It can include the IP_name of a z/OS dynamic DNS group

or a network dispatcher input port.

 If you use an IPV6 address in a network that only supports IPV4, the

connection name will not be resolved. In a network which uses both IPV4

and IPV6, Connection name interacts with Local Address to determine

which IP stack is used. See “Local Address (LOCLADDR)” on page 85 for

further information.

If the transport type is LU 6.2

For WebSphere MQ for i5/OS, Windows systems, and UNIX systems, give

the fully-qualified name of the partner LU if the TPNAME and

MODENAME are specified. For other versions or if the TPNAME and

MODENAME are blank, give the CPI-C side information object name as

described in the section in this book about setting up communication for

your platform.

 On z/OS there are two forms in which to specify the value:

v Logical unit name

The logical unit information for the queue manager, comprising the

logical unit name, TP name, and optional mode name. This can be

specified in one of 3 forms:

luname, for example IGY12355

luname/TPname, for example IGY12345/APING

luname/TPname/modename, for example IGY12345/APINGD/#INTER

For the first form, the TP name and mode name must be specified for

the TPNAME and MODENAME attributes ; otherwise these attributes

must be blank.

Note: For client-connection channels, only the first form is allowed.

v Symbolic name

The symbolic destination name for the logical unit information for the

queue manager, as defined in the side information data set. The

TPNAME and MODENAME attributes must be blank.

Note: For cluster-receiver channels, the side information is on the other

queue managers in the cluster. Alternatively, in this case it can be a

name that a channel auto-definition exit can resolve into the appropriate

logical unit information for the local queue manager.

80 WebSphere MQ: Intercommunication

The specified or implied LU name can be that of a VTAM® generic

resources group.

If the transmission protocol is NetBIOS

This is the NetBIOS name defined on the remote machine.

If the transmission protocol is SPX

This is an SPX-style address consisting of a 4-byte network address, a

6-byte node address and a 2-byte socket number. Enter these in

hexadecimal, with the network and node addresses separated by a fullstop

and the socket number in brackets. For example:

CONNAME(’0a0b0c0d.804abcde23a1(5e86)’)

 If the socket number is omitted, the default WebSphere MQ SPX socket

number is used. The default is X’5E86’.

This attribute is valid for channel types of:

v Sender

v Server

v Requester

v Client connection

v Cluster sender

v Cluster receiver

It is optional for server channels, unless the server channel is triggered, in which

case it MUST specify a connection name.

Note: The definition of transmission protocol is contained in “Transport type

(TRPTYPE)” on page 100.

Convert message (CONVERT)

Application message data is usually converted by the receiving application.

However, if the remote queue manager is on a platform that does not support data

conversion, use this channel attribute to specify that the message should be

converted into the format required by the receiving system before transmission.

The possible values are ‘yes’ and ‘no’. If you specify ‘yes’, the application data in

the message is converted before sending if you have specified one of the built-in

format names, or a data conversion exit is available for a user-defined format (See

the WebSphere MQ Application Programming Guide). If you specify ‘no’, the

application data in the message is not converted before sending.

This attribute is valid for channel types of:

v Sender

v Server

v Cluster sender

v Cluster receiver

Data compression (COMPMSG)

This is a list of message data compression techniques supported by the channel.

For sender, server, cluster-sender, cluster-receiver, and client-connection channels

the values specified are in order of preference. The first compression technique

supported by the remote end of the channel is used. The channels’ mutually

Chapter 2. How intercommunication works 81

supported compression techniques are passed to the sending channel’s message

exit where the compression technique used can be altered on a per message basis.

Compression will alter the data passed to send and receive exits. See “Header

compression (COMPHDR)” on page 84 for compression of the message header.

The possible values are:

NONE

No message data compression is performed. This is the default value.

RLE Message data compression is performed using run-length encoding.

ZLIBFAST

Message data compression is performed using the zlib compression

technique. A fast compression time is preferred.

ZLIBHIGH

Message data compression is performed using the zlib compression

technique. A high level of compression is preferred.

ANY Allows the channel to support any compression technique that the queue

manager supports. Only supported for Receiver, Requester and

Server-Connection channels.

This attribute is valid for all channel types.

Description (DESCR)

This contains up to 64 bytes of text that describes the channel definition.

Note: The maximum number of characters is reduced if the system is using a

double byte character set (DBCS).

Use characters from the character set identified by the coded character set

identifier (CCSID) for the queue manager to ensure that the text is translated

correctly if it is sent to another queue manager.

This attribute is valid for all channel types.

Disconnect interval (DISCINT)

The disconnect interval is the length of time after which a channel will close down

if no message arrives on the transmission queue during that period.

This is a time-out attribute, specified in seconds, for the server, cluster-sender,

sender, and cluster-receiver channels. The interval is measured from the point at

which a batch ends, that is when the batch size is reached or when the batch

interval expires and the transmission queue becomes empty. If no messages arrive

on the transmission queue during the specified time interval, the channel closes

down. (The time is approximate.)

The close-down exchange of control data between the two ends of the channel

includes an indication of the reason for closing. This ensures that the

corresponding end of the channel remains available to start again.

You can specify any number of seconds from zero through 999 999 where a value

of zero means no disconnect; wait indefinitely.

For server-connection channels using the TCP protocol, the interval represents the

client inactivity disconnect value, specified in seconds. If a server-connection has

82 WebSphere MQ: Intercommunication

received no communication from its partner client for this duration, it will

terminate the connection. The server-connection inactivity interval only applies

between MQ API calls from a client, therefore no client will be disconnected

during a long-running MQGET with wait call.

This attribute is valid for channel types of:

v Sender

v Server

v Server connection (z/OS only)

v Cluster sender

v Cluster receiver

This attribute is not applicable for server-connection channels using protocols other

than TCP.

Note: Performance is affected by the value specified for the disconnect interval.

A very low value (a few seconds) can cause excessive overhead in constantly

starting up the channel. A very large value (more than an hour) might mean that

system resources are unnecessarily held up. You can also specify a heartbeat

interval, so that when there are no messages on the transmission queue, the

sending MCA will send a heartbeat flow to the receiving MCA, thus giving the

receiving MCA an opportunity to quiesce the channel without waiting for the

disconnect interval to expire. For these two values to work together effectively, the

heartbeat interval value must be significantly lower than the disconnect interval

value.

A value for the disconnect interval of a few minutes is a reasonable value to use.

Change this value only if you understand the implications for performance, and

you need a different value for the requirements of the traffic flowing down your

channels.

For more information, see “Stopping and quiescing channels” on page 62.

Disposition (QSGDISP)

This attribute specifies the disposition of the channel in a queue-sharing group.

Values are:

QMGR

The channel is defined on the page set of the queue manager that executes

the command. This is the default.

GROUP

The channel is defined in the shared repository. This is allowed only if

there is a shared queue manager environment. When a channel is defined

with QSGDISP(GROUP), the command DEFINE CHANNEL(name)

NOREPLACE QSGDISP(COPY) is generated automatically and sent to all

active queue managers to cause them to make local copies on page set 0

COPY The channel is defined on the page set of the queue manager that executes

the command, copying its definition from the QSGDISP(GROUP) channel

of the same name. This is allowed only if there is a shared queue manager

environment.

This attribute is valid for all channel types.

Chapter 2. How intercommunication works 83

Header compression (COMPHDR)

This is a list of header data compression techniques supported by the channel. For

sender, server, cluster-sender, cluster-receiver and client-connection channels the

values specified are in order of preference with the first compression technique

supported by the remote end of the channel being used. The channels’ mutually

supported compression techniques are passed to the sending channel’s message

exit where the compression technique used can be altered on a per message basis.

Compression will alter the data passed to send and receive exits.

Possible values are:

NONE

No header data compression is performed. This is the default value.

SYSTEM

Header data compression is performed.

This attribute is valid for all channel types.

Heartbeat interval (HBINT)

You can specify the approximate time between heartbeat flows that are to be

passed from a sending MCA when there are no messages on the transmission

queue. Heartbeat flows unblock the receiving MCA, which is waiting for messages

to arrive or for the disconnect interval to expire. When the receiving MCA is

unblocked it can disconnect the channel without waiting for the disconnect interval

to expire. Heartbeat flows also free any storage buffers that have been allocated for

large messages and close any queues that have been left open at the receiving end

of the channel.

The value is in seconds and must be in the range 0 through 999 999. A value of

zero means that no heartbeat flows are to be sent. The default value is 300. To be

most useful, the value should be significantly less than the disconnect interval

value.

For a description of heartbeating with server-connection and client-connection

channels, see WebSphere MQ Clients.

KeepAlive Interval (KAINT)

The KeepAlive Interval attribute is used to specify a time-out value for a channel.

The KeepAlive Interval attribute is a value passed to the communications stack

specifying the KeepAlive timing for the channel. It allows you to specify a different

keepalive value for each channel.

For this attribute to have any effect, TCP/IP keepalive must be enabled. On z/OS,

you do this by issuing the ALTER QMGR TCPKEEP(YES) MQSC command. On

other platforms, it occurs when the KEEPALIVE=YES parameter is specified in the

TCP stanza in the distributed queuing configuration file, qm.ini, or through the

WebSphere MQ Explorer. Keepalive must also be switched on within TCP/IP itself,

using the TCP profile configuration data set.

The value indicates a time, in seconds, and must be in the range 0 to 99999. A

KeepAlive Interval value of 0 indicates that channel-specific KeepAlive is not

enabled for the channel and only the system-wide KeepAlive value set in TCP/IP

84 WebSphere MQ: Intercommunication

will be used. You can also set KAINT to a value of AUTO (this is the default). If

KAINT is set to AUTO, the KeepAlive value is based on the value of the

negotiated heartbeat interval (HBINT) as follows:

 Table 8. Negotiated HBINT value and the corresponding KAINT value

Negotiated HBINT KAINT

>0 Negotiated HBINT + 60 seconds

0 0

This attribute is valid for all channel types.

The value is ignored for all channels that have a TransportType (TRPTYPE) other

than TCP or SPX

You can set the KeepAlive Interval (KAINT) attribute for channels on a

per-channel basis. On platforms other than z/OS, you can access and modify the

parameter, but it is only stored and forwarded; there is no functional

implementation of the parameter. If you need the functionality provided by the

KAINT parameter, use the Heartbeat Interval (HBINT) parameter, as described in

“Heartbeat interval (HBINT)” on page 84.

Local Address (LOCLADDR)

This attribute only applies if Transport type (TRPTYPE) is TCP/IP. For all other

transport types it is ignored.

This attribute specifies the local communications address for the channel. When a

LOCLADDR value is specified, a channel that is stopped and then restarted

continues to use the TCP/IP address specified in LOCLADDR. In recovery

scenarios, this could be useful when the channel is communicating through a

firewall, because it removes problems caused by the channel restarting with a

different IP address, specified by the TCP/IP stack to which it is connected. You

can also use this attribute to force a channel to use an IPV4 or an IPV6 stack on a

dual stack system or use a dual mode stack on a single stack system.

This attribute is valid for channel types of:

v Sender

v Server

v Requester

v Client connection

v Cluster sender

v Cluster receiver

The value used is the optional IP address and optional port or port range to be

used for outbound TCP/IP communications. The format is as follows:

LOCLADDR([ip-addr][(low-port[,high-port])])

where ″ip-addr″ is specifed in IPV4 dotted decimal form (for example 9.20.9.30),

IPV6 hexadecimal form (for example fe80:43e4:0204:acff:fe97:2c34:fde0:3485), or

dotted alphanumeric form (for example MACH1.ABC.COM), and ″low-port″ and

″high-port″ are port numbers enclosed in parentheses. When two port values are

specified, the channel binds to the address specified, using an available port within

the range covered by the two port values. All values are optional.

Chapter 2. How intercommunication works 85

The maximum length of the string is MQ_LOCAL_ADDRESS_LENGTH.

When a channel is started the values specified for connection name (CONNAME)

and local address (LOCLADDR) determine which IP stack is used for

communication. The IP stack used is determined as follows:

v If the system has only an IPV4 stack configured, the IPV4 stack will always be

used. If a local address (LOCLADDR) or connection name (CONNAME) is

specified as an IPV6 network address, an error is generated and the channel will

fail to start.

v If the system has only an IPV6 stack configured, the IPV6 stack will always be

used. If a local address (LOCLADDR) is specified as an IPV4 network address,

an error is generated and the channel will fail to start. On platforms that support

IPV6 mapped addressing, if a connection name (CONNAME) is specified as an

IPV4 network address, the IPV4 address is mapped to an IPV6 address (for

example ″xxx.xxx.xxx.xxx″ is mapped to ″::ffff:xxx.xxx.xxx.xxx″). Note that the

use of mapped addresses may require protocol translators. Avoid the use of

mapped addresses where possible.

v If a local address (LOCLADDR) is specified as an IP address for a channel, the

stack for that IP address is used. If the local address (LOCLADDR) is specified

as a hostname that resolves to both IPV4 and IPV6 addresses, the connection

name (CONNAME) is used to determine which of the stacks is used. If both the

local address (LOCLADDR) and connection name (CONNAME) are specified as

hostnames that resolve to both IPV4 and IPV6 addresses, the stack used is

determined by the queue manager attribute IPADDRV.

v If the system has dual IPV4 and IPV6 stacks configured and a local address

(LOCLADDR) is not specified for a channel, the connection name (CONNAME)

specified for the channel determines which IP stack to use. If the connection

name (CONNAME) is specified as a hostname that resolves to both IPV4 and

IPV6 addresses, the stack used is determined by the queue manager attribute

IPADDRV.

Note: If the LOCLADDR port is in use, TCP/IP requires a time period to release

the previously used port. If enough time is not left, and if only 1 LOCLADDR port

is specified, the previously used port will not be available and so a random port

will be chosen rather than the LOCLADDR port.

Long retry count (LONGRTY)

Specify the maximum number of times that the channel is to try allocating a

session to its partner. If the initial allocation attempt fails, the short retry count

number is decremented and the channel retries the remaining number of times. If

it still fails, it retries a long retry count number of times with an interval of long

retry interval between each try. If it is still unsuccessful, the channel closes

down. The channel must subsequently be restarted with a command (it is not

started automatically by the channel initiator).

(Retry is not attempted if the cause of failure is such that a retry is not likely to be

successful.)

If the channel initiator (on z/OS) or queue manager (on distributed platforms)

stops while the channel is retrying, the short retry count and long retry count are

reset when the channel initiator or queue manager is restarted or when a message

is successfully put at the sender channel. However, if the if the channel initiator

(on z/OS) or queue manager (on distributed platforms) is shut down and restarted

86 WebSphere MQ: Intercommunication

immediately after either of those actions, the short retry count and long retry count

are not reset. The channel retains the retry count values it had before the channel

restart or the message being put.

The long retry count attribute can be set from zero through 999 999 999.

This attribute is valid for channel types of:

v Sender

v Server

v Cluster sender

v Cluster receiver

Note: For i5/OS, UNIX systems, and Windows systems, in order for retry to be

attempted a channel initiator must be running. The channel initiator must be

monitoring the initiation queue specified in the definition of the transmission

queue that the channel is using.

Long retry interval (LONGTMR)

The approximate interval in seconds that the channel is to wait before retrying to

establish connection, during the long retry mode.

The interval between retries may be extended if the channel has to wait to become

active.

The channel tries to connect long retry count number of times at this long

interval, after trying the short retry count number of times at the short retry

interval.

This attribute can be set from zero through 999 999.

This attribute is valid for channel types of:

v Sender

v Server

v Cluster sender

v Cluster receiver

LU 6.2 mode name (MODENAME)

This is for use with LU 6.2 connections. It gives extra definition for the session

characteristics of the connection when a communication session allocation is

performed.

When using side information for SNA communications, the mode name is defined

in the CPI-C Communications Side Object or APPC side information and this

attribute should be left blank; otherwise, it should be set to the SNA mode name.

The name must be one to eight alphanumeric characters long.

This attribute is valid for channel types of:

v Sender

v Server

v Requester

Chapter 2. How intercommunication works 87

v Client connection

v Cluster sender

v Cluster receiver

It is not valid for receiver or server-connection channels.

LU 6.2 transaction program name (TPNAME)

This is for use with LU 6.2 connections. It is the name, or generic name, of the

transaction program (MCA) to be run at the far end of the link.

When using side information for SNA communications, the transaction program

name is defined in the CPI-C Communications Side Object or APPC side

information and this attribute should be left blank. Otherwise, this name is

required by sender channels and requester channels.

The name can be up to 64 characters long.

The name should be set to the SNA transaction program name, unless the

CONNAME contains a side-object name in which case it should be set to blanks.

The actual name is taken instead from the CPI-C Communications Side Object, or

the APPC side information data set.

This information is set in different ways on different platforms; see the section in

this book about setting up communication for your platform.

This attribute is valid for channel types of:

v Sender

v Server

v Requester

v Client connection

v Cluster sender

v Cluster receiver

Maximum instances (MAXINST)

Specifies the maximum number of simultaneous instances of a server-connection

channel that can be started.

This attribute can be set from zero through 999 999 999. A value of zero indicates

that no client connections are allowed on this channel. The default value is 999 999

999.

If you do not have the Client Attachment feature (CAF) installed, the attribute can

be set from zero to five only on the SYSTEM.ADMIN.SVRCONN channel. A value

greater than five is interpreted as zero without the CAF installed.

If the value is reduced below the number of instances of the server-connection

channel that are currently running, then the running channels are not affected.

However, new instances are not able to start until sufficient existing ones have

ceased to run.

This attribute is valid for server-connection channels only.

88 WebSphere MQ: Intercommunication

Maximum instances per client (MAXINSTC)

Specifies the maximum number of simultaneous instances of a server-connection

channel that can be started from a single client.

This attribute can be set from zero through 999 999 999. A value of zero indicates

that no client connections are allowed on this channel. The default value is 999 999

999.

If you do not have the Client Attachment feature (CAF) installed, the attribute can

be set from zero to five only on the SYSTEM.ADMIN.SVRCONN channel. A value

greater than five is interpreted as zero without the CAF installed.

If the value is reduced below the number of instances of the server-connection

channel that are currently running from individual clients, then the running

channels are not affected. However, new instances from those clients are not able

to start until sufficient existing ones have ceased to run.

This attribute is valid for server-connection channels only.

Maximum message length (MAXMSGL)

Specifies the maximum length of a message that can be transmitted on the channel.

On WebSphere MQ for i5/OS, UNIX systems, and Windows systems, specify a

value greater than or equal to zero, and less than or equal to the maximum

message length for the queue manager. See the MAXMSGL parameter of the

ALTER QMGR command in the WebSphere MQ Script (MQSC) Command

Reference book for more information. On WebSphere MQ for z/OS, specify a value

greater than or equal to zero, and less than or equal to 104 857 600 bytes.

Because various implementations of WebSphere MQ systems exist on different

platforms, the size available for message processing may be limited in some

applications. This number must reflect a size that your system can handle without

stress. When a channel starts up, the lower of the two numbers at each end of the

channel is taken.

Note:

1. If splitting of messages is not supported at either end of a channel, the

maximum message size cannot be greater than the negotiated maximum

transmission size.

2. The IBM® WebSphere MQ products that this edition of the book applies to all

support message splitting. Other WebSphere MQ products do not support

message splitting.

3. For a comparison of the functions available, including the different maximum

message lengths available see the WebSphere MQ Application Programming

Guide.

4. You can use a maximum message size of 0 which will be taken to mean that

the size is to be set to the local queue manager maximum value.

This attribute is valid for all channel types.

Message channel agent name (MCANAME)

This attribute is reserved and if specified must only be set to blanks. Its maximum

length is 20 characters.

Chapter 2. How intercommunication works 89

Message channel agent type (MCATYPE)

This attribute can specify the message channel agent as a process or a thread. On

WebSphere MQ for z/OS, it is supported only for channels with a channel type of

cluster-receiver.

Advantages of running as a process include:

v Isolation for each channel providing greater integrity

v Job authority specific for each channel

v Control over job scheduling

Advantages of threads include:

v Much reduced use of storage

v Easier configuration by typing on the command line

v Faster execution - it is quicker to start a thread than to instruct the operating

system to start a process

For channel types of sender, server, and requester, the default is ‘process’. For

channel types of cluster-sender and cluster-receiver, the default is ‘thread’. These

defaults can change during your installation.

If you specify ‘process’ on the channel definition, a RUNMQCHL process is

started. If you specify ‘thread’, the MCA runs on a thread of the AMQRMPPA

process, or of the RUNMQCHI process if MQNOREMPOOL is specified. On the

machine that receives the inbound allocates, the MCA runs as a thread or process

depending on whether you use RUNMQLSR or inetd respectively.

On WebSphere MQ for z/OS, this attribute is supported only for channels with a

channel type of cluster-receiver. On other platforms it is valid for channel types of:

v Sender

v Server

v Requester

v Cluster sender

v Cluster receiver

Message channel agent user identifier (MCAUSER)

This attribute is the user identifier (a string) to be used by the MCA for

authorization to access WebSphere MQ resources, including (if PUT authority is

DEF) authorization to put the message to the destination queue for receiver or

requester channels.

On WebSphere MQ for Windows, the user identifier may be domain-qualified by

using the format, user@domain, where the domain must be either the Windows

systems domain of the local system or a trusted domain.

If this attribute is blank, the MCA uses its default user identifier.

This attribute is valid for channel types of:

v Sender

v Server

v Receiver

90 WebSphere MQ: Intercommunication

v Requester

v Server connection

v Cluster sender

v Cluster receiver

Message exit name (MSGEXIT)

Specifies the name of the user exit program to be run by the channel message exit.

This can be a list of names of programs that are to be run in succession. Leave

blank, if no channel message exit is in effect.

The format and maximum length of this attribute depend on the platform, as for

“Receive exit name (RCVEXIT)” on page 95.

This attribute is valid for all channel types.

Message exit user data (MSGDATA)

Specifies user data that is passed to the channel message exits.

You can run a sequence of message exits. The limitations on the user data length

and an example of how to specify MSGDATA for more than one exit are as shown

for RCVDATA. See “Receive exit user data (RCVDATA)” on page 96.

This attribute is valid for all channel types.

Message-retry exit name (MREXIT)

Specifies the name of the user exit program to be run by the message-retry user

exit. Leave blank if no message-retry exit program is in effect.

The format and maximum length of the name depend on the platform, as for

“Receive exit name (RCVEXIT)” on page 95. However, there can only be one

message-retry exit specified

This attribute is valid for channel types of:

v Receiver

v Requester

v Cluster receiver

Message-retry exit user data (MRDATA)

This is passed to the channel message-retry exit when it is called.

This attribute is valid for channel types of:

v Receiver

v Requester

v Cluster receiver

Message retry count (MRRTY)

This is the number of times the channel will retry before it decides it cannot

deliver the message.

Chapter 2. How intercommunication works 91

This attribute controls the action of the MCA only if the message-retry exit name is

blank. If the exit name is not blank, the value of MRRTY is passed to the exit for

the exit’s use, but the number of retries performed (if any) is controlled by the exit,

and not by this attribute.

The value must be in the range 0 to 999 999 999. A value of zero means that no

retries will be performed. The default is 10.

This attribute is valid for channel types of:

v Receiver

v Requester

v Cluster receiver

Message retry interval (MRTMR)

This is the minimum interval of time that must pass before the channel can retry

the MQPUT operation. This time interval is in milliseconds.

This attribute controls the action of the MCA only if the message-retry exit name is

blank. If the exit name is not blank, the value of MRTMR is passed to the exit for

the exit’s use, but the retry interval is controlled by the exit, and not by this

attribute.

The value must be in the range 0 to 999 999 999. A value of zero means that the

retry will be performed as soon as possible (provided that the value of MRRTY is

greater than zero). The default is 100.

This attribute is valid for channel types of:

v Receiver

v Requester

v Cluster receiver

Monitoring (MONCHL)

This attribute controls the collection of online Monitoring data.

Possible values are:

QMGR

The collection of Online Monitoring Data is inherited from the setting of

the MONCHL attribute in the queue manager object. This is the default

value.

OFF Online Monitoring Data collection for this channel is switched off.

LOW A low ratio of data collection with a minimal impact on performance.

However, the monitoring results shown may not be totally up to date.

MEDIUM

A moderate ratio of data collection with limited impact on the performance

of the system.

HIGH A high ratio of data collection with the possibility of an impact on

performance. However, the monitoring results shown will be most current.

This attribute is valid for channel types of:

v Sender

92 WebSphere MQ: Intercommunication

v Server

v Receiver

v Requester

v Server connection

v Cluster sender

v Cluster receiver

Network-connection priority (NETPRTY)

The priority for the network connection. Distributed queuing will choose the path

with the highest priority if there are multiple paths available. The value must be in

the range 0 through 9; 0 is the lowest priority.

This attribute is valid for channel types of:

v Cluster receiver

Nonpersistent message speed (NPMSPEED)

The speed at which nonpersistent messages are to be sent. Possible values are:

NORMAL

Nonpersistent messages on a channel are transferred within transactions.

FAST Nonpersistent messages on a channel are not transferred within

transactions.

The default is FAST. The advantage of this is that nonpersistent messages become

available for retrieval far more quickly. The disadvantage is that because they are

not part of a transaction, messages may be lost if there is a transmission failure or

if the channel stops when the messages are in transit. See “Fast, nonpersistent

messages” on page 20.

This attribute is valid for channel types of:

v Sender

v Server

v Receiver

v Requester

v Cluster sender

v Cluster receiver

Password (PASSWORD)

You can specify a password of maximum length 12 characters, although only the

first 10 characters are used.

The password may be used by the MCA when attempting to initiate a secure LU

6.2 session with a remote MCA. It is valid for channel types of sender, server,

requester, or client-connection.

On WebSphere MQ for z/OS, this attribute is valid only for client connection

channels. On other platforms, it is valid for channel types of:

v Sender

v Server

v Requester

Chapter 2. How intercommunication works 93

v Client connection

v Cluster sender

PUT authority (PUTAUT)

Use this attribute to choose the type of security processing to be carried out by the

MCA when executing:

v An MQPUT command to the destination queue (for message channels) , or

v An MQI call (for MQI channels).

You can choose one of the following:

Process security, also called default authority (DEF)

The default user ID is used.

 On platforms with Process security, you choose to have the queue security

based on the user ID that the process is running under. The user ID is that

of the process or user running the MCA at the receiving end of the

message channel.

The queues are opened with this user ID and the open option

MQOO_SET_ALL_CONTEXT.

Context security (CTX)

The alternate user ID is used from the context information associated with

the message.

 The UserIdentifier in the message descriptor is moved into the

AlternateUserId field in the object descriptor. The queue is opened with

the open options MQOO_SET_ALL_CONTEXT and

MQOO_ALTERNATE_USER_AUTHORITY.

The user ID used to check open authority on the queue for

MQOO_SET_ALL_CONTEXT and

MQOO_ALTERNATE_USER_AUTHORITY is that of the process or user

running the MCA at the receiving end of the message channel. The user ID

used to check open authority on the queue for MQOO_OUTPUT is the

UserIdentifier in the message descriptor.

Only Message Channel Agent security (ONLYMCA)

The default user ID is used.

 On platforms with ONLYMCA security, you choose to have the queue

security based on the user ID that the process is running under. The user

ID is that of the process or user running the MCA at the receiving end of

the message channel.

The queues are opened with this user ID and the open option

MQOO_SET_ALL_CONTEXT.

This value only applies to z/OS.

Alternate Message Channel Agent security (ALTMCA)

This is the same as for ONLYMCA security but allows you to use context.

 This value only applies to z/OS.

This attribute is valid for channel types of:

v Receiver

v Requester

v Server connection (z/OS only)

94 WebSphere MQ: Intercommunication

v Cluster receiver

Context security (CTX) and alternate message channel agent security (ALTMCA)

values are not supported on server-connection channels.

Further details about context fields and open options can be found in the

WebSphere MQ Application Programming Guide.

More information on security can be found in WebSphere MQ Security, the

WebSphere MQ System Administration Guide for WebSphere MQ for i5/OS, UNIX

systems, and Windows systems, or in the WebSphere MQ for z/OS System

Administration Guide

Note: On WebSphere MQ for z/OS it is possible for two userids to be checked.

Specific details of userids used by the channel initiator on z/OS can be found in

the WebSphere MQ for z/OS System Setup Guide .

Queue manager name (QMNAME)

This is the name of the queue manager or queue manager group to which a

WebSphere MQ client application can request connection.

This attribute is valid for channel types of:

v Client connection

Receive exit name (RCVEXIT)

Specifies the name of the user exit program to be run by the channel receive user

exit. This can be a list of names of programs that are to be run in succession. Leave

blank, if no channel receive user exit is in effect.

The format and maximum length of this attribute depend on the platform:

v On z/OS it is a load module name, maximum length 8 characters, except for

client-connection channels where the maximum length is 128 characters.

v On i5/OS it is of the form:

libname/progname

when specified in CL commands.

When specified in WebSphere MQ Commands (MQSC) it has the form:

progname libname

where progname occupies the first 10 characters, and libname the second 10

characters (both blank-padded to the right if necessary). The maximum length of

the string is 20 characters.

v On Windows it is of the form:

dllname(functionname)

where dllname is specified without the suffix “.DLL”. The maximum length of

the string is 40 characters.

v On UNIX systems it is of the form:

libraryname(functionname)

The maximum length of the string is 40 characters.

Chapter 2. How intercommunication works 95

During cluster sender channel auto-definition on z/OS, channel exit names are

converted from the distributed platform format to z/OS format. If you want to

control how exit names are converted, you can write a channel auto-definition exit.

For more information, see “Channel auto-definition exit program” on page 393.

You can specify a list of receive, send, or message exit program names. The names

should be separated by a comma, a space, or both. For example:

RCVEXIT(exit1 exit2)

MSGEXIT(exit1,exit2)

SENDEXIT(exit1, exit2)

The total length of the string of exit names and strings of user data for a particular

type of exit is limited to 500 characters. In WebSphere MQ for i5/OS you can list

up to 10 exit names. In WebSphere MQ for z/OS you can list up to eight exit

names.

This attribute is valid for all channel types.

Receive exit user data (RCVDATA)

Specifies user data that is passed to the receive exit.

You can run a sequence of receive exits. The string of user data for a series of exits

should be separated by a comma, spaces, or both. For example:

RCVDATA(exit1_data exit2_data)

MSGDATA(exit1_data,exit2_data)

SENDDATA(exit1_data, exit2_data)

In WebSphere MQ for UNIX systems, and Windows systems, the length of the

string of exit names and strings of user data is limited to 500 characters. In

WebSphere MQ for i5/OS you can specify up to 10 exit names and the length of

user data for each is limited to 32 characters. In WebSphere MQ for z/OS you can

specify up to eight strings of user data each of length 32 characters.

This attribute is valid for all channel types.

Security exit name (SCYEXIT)

Specifies the name of the exit program to be run by the channel security exit.

Leave blank if no channel security exit is in effect.

The format and maximum length of the name depend on the platform, as for

“Receive exit name (RCVEXIT)” on page 95. However, you can only specify one

security exit.

This attribute is valid for all channel types.

Security exit user data (SCYDATA)

Specifies user data that is passed to the security exit. The maximum length is 32

characters.

This attribute is valid for all channel types.

96 WebSphere MQ: Intercommunication

Send exit name (SENDEXIT)

Specifies the name of the exit program to be run by the channel send exit. This can

be a list of names of programs that are to be run in sequence. Leave blank if no

channel send exit is in effect.

The format and maximum length of this attribute depend on the platform, as for

“Receive exit name (RCVEXIT)” on page 95.

This attribute is valid for all channel types.

Send exit user data (SENDDATA)

Specifies user data that is passed to the send exit.

You can run a sequence of send exits. The limitations on the user data length and

an example of how to specify SENDDATA for more than one exit, are as shown for

RCVDATA. See “Receive exit user data (RCVDATA)” on page 96.

This attribute is valid for all channel types.

Sequence number wrap (SEQWRAP)

This is the highest number the message sequence number reaches before it restarts

at 1.

The value of the number should be high enough to avoid a number being reissued

while it is still being used by an earlier message. The two ends of a channel must

have the same sequence number wrap value when a channel starts up; otherwise,

an error occurs.

The value may be set from 100 through 999 999 999.

This attribute is valid for channel types of:

v Sender

v Server

v Receiver

v Requester

v Cluster sender

v Cluster receiver

Short retry count (SHORTRTY)

Specify the maximum number of times that the channel is to try allocating a

session to its partner. If the initial allocation attempt fails, the short retry count is

decremented and the channel retries the remaining number of times with an

interval, defined in the short retry interval attribute, between each attempt. If it

still fails, it retries long retry count number of times with an interval of long

retry interval between each attempt. If it is still unsuccessful, the channel

terminates.

(Retry is not attempted if the cause of failure is such that a retry is not likely to be

successful.)

Chapter 2. How intercommunication works 97

If the channel initiator (on z/OS) or queue manager (on distributed platforms)

stops while the channel is retrying, the short retry count and long retry count are

reset when the channel initiator or queue manager is restarted or when a message

is successfully put at the sender channel. However, if the if the channel initiator

(on z/OS) or queue manager (on distributed platforms) is shut down and restarted

immediately after either of those actions, the short retry count and long retry count

are not reset. The channel retains the retry count values it had before the channel

restart or the message being put.

This attribute can be set from zero through 999 999 999.

This attribute is valid for channel types of:

v Sender

v Server

v Cluster sender

v Cluster receiver

Note: On i5/OS, UNIX systems, and Windows systems, in order for retry to be

attempted a channel initiator must be running. The channel initiator must be

monitoring the initiation queue specified in the definition of the transmission

queue that the channel is using.

Short retry interval (SHORTTMR)

Specify the approximate interval in seconds that the channel is to wait before

retrying to establish connection, during the short retry mode.

The interval between retries may be extended if the channel has to wait to become

active.

This attribute can be set from zero through 999 999.

This attribute is valid for channel types of:

v Sender

v Server

v Cluster sender

v Cluster receiver

SSL Cipher Specification (SSLCIPH)

SSLCIPH defines a single CipherSpec for an SSL connection. Both ends of a

WebSphere MQ SSL channel definition must include the attribute and the SSLCIPH

values must specify the same CipherSpec on both ends of the channel. The value is

a string with a maximum length of 32 characters.

This attribute is valid for all channel types.

It is valid only for channels with a transport type (TRPTYPE) of TCP. If the

TRPTYPE is not TCP, the data is ignored and no error message is issued.

SSLCIPH is an optional attribute.

For more information on SSLCIPH, see WebSphere MQ Script (MQSC) Command

Reference and WebSphere MQ Security.

98 WebSphere MQ: Intercommunication

SSL Client Authentication (SSLCAUTH)

SSLCAUTH is used to define whether the channel needs to receive and

authenticate an SSL certificate from an SSL client. Possible values are:

OPTIONAL

If the peer SSL client sends a certificate, the certificate is processed as

normal but authentication does not fail if no certificate is sent.

REQUIRED

If the SSL client does not send a certificate, authentication fails.

The default value is REQUIRED.

You can specify a value for SSLCAUTH on a non-SSL channel definition, one on

which SSLCIPH is missing or blank. You can use this to temporarily disable SSL

for debugging without first having to clear and then reinput the SSL parameters.

SSLCAUTH is an optional attribute.

This attribute is valid on all channel types that can ever receive a channel initiation

flow, except for sender channels.

This attribute is valid for channel types of:

v Server

v Receiver

v Requester

v Server connection

v Cluster receiver

For more information on SSLCAUTH, see WebSphere MQ Script (MQSC)

Command Reference and WebSphere MQ Security.

SSL Peer (SSLPEER)

The SSLPEER attribute is used to check the Distinguished Name (DN) of the

certificate from the peer queue manager or client at the other end of a WebSphere

MQ channel. If the DN received from the peer does not match the SSLPEER value,

the channel does not start.

SSLPEER is an optional attribute. If a value is not specified, the peer DN is not

checked when the channel is started.

On z/OS the maximum length of the attribute is 256 bytes. On all other platforms

it is 1024 bytes.

On z/OS the attribute values used are not checked. If you input incorrect values,

the channel fails at startup, and error messages are written to the error log at both

ends of the channel. A Channel SSL Error event is also generated at both ends of

the channel. On platforms that support SSLPEER, other than z/OS, the validity of

the string is checked when it is first input.

You can specify a value for SSLPEER on a non-SSL channel definition, one on

which SSLCIPH is missing or blank. You can use this to temporarily disable SSL

for debugging without having to clear and later reinput the SSL parameters.

Chapter 2. How intercommunication works 99

For more information on using SSLPEER, see WebSphere MQ Script (MQSC)

Command Reference and WebSphere MQ Security.

This attribute is valid for all channel types.

Transmission queue name (XMITQ)

The name of the transmission queue from which messages are retrieved. This is

required for channels of type sender or server, it is not valid for other channel

types.

Provide the name of the transmission queue to be associated with this sender or

server channel, that corresponds to the queue manager at the far side of the

channel. The transmission queue may be given the same name as the queue

manager at the remote end.

This attribute is valid for channel types of:

v Sender

v Server

Transport type (TRPTYPE)

The possible values are:

 LU62 LU 6.2

TCP TCP/IP

NETBIOS NetBIOS (1)

SPX SPX (1)

Notes:

1. For use on Windows. Can also be used on z/OS for defining client-connection channels

for use on Windows.

This attribute is valid for all channel types.

User ID (USERID)

You can specify a task user identifier of 20 characters.

The user ID may be used by the MCA when attempting to initiate a secure SNA

session with a remote MCA. It is valid for channel types of sender, server,

requester, or client-connection.

This does not apply to WebSphere MQ for z/OS except for client-connection

channels.

On the receiving end, if passwords are kept in encrypted format and the LU 6.2

software is using a different encryption method, an attempt to start the channel

fails with invalid security details. You can avoid this by modifying the receiving

SNA configuration to either:

v Turn off password substitution, or

v Define a security user ID and password.

On WebSphere MQ for z/OS, this attribute is valid only for client connection

channels. On other platforms it is valid for channel types of:

100 WebSphere MQ: Intercommunication

v Sender

v Server

v Requester

v Client connection

v Cluster sender

Example configuration chapters in this book

Throughout the following parts of the book, there is a series of chapters containing

examples of how to configure the various platforms to communicate with each

other. These chapters describe tasks performed to establish a working WebSphere

MQ network. The tasks were to establish WebSphere MQ sender and receiver

channels to enable bi-directional message flow between the platforms over all

supported protocols.

To use channel types other than sender-receiver, see the DEFINE CHANNEL

command in WebSphere MQ Script (MQSC) Command Reference.

Figure 32 is a conceptual representation of a single channel and the WebSphere MQ

objects associated with it.

This is a simple example, intended to introduce only the basic elements of the

WebSphere MQ network. It does not demonstrate the use of triggering which is

described in “Triggering channels” on page 18.

The objects in this network are:

v A remote queue

v A transmission queue

v A local queue

v A sender channel

v A receiver channel

Appl1 and Appl2 are both application programs; Appl1 is putting messages and

Appl2 is receiving them.

Transmission
queue

Channel

Local
queue

Remote
queue

MQPUT MQGET

Appl1 Appl2

Queue manager 1 Queue manager 2

Sender Receiver

Figure 32. WebSphere MQ channel to be set up in the example configuration chapters in this book

Chapter 2. How intercommunication works 101

Appl1 puts messages to a remote queue. The definition for this remote queue

specifies the name of a target queue manager, a local queue on that queue

manager, and a transmission queue on this the local queue manager.

When the queue manager receives the request from Appl1 to put a message to the

remote queue, it looks at the queue definition and sees that the destination is

remote. It therefore puts the message, along with a transmission header, straight

onto the transmission queue specified in the definition. The message remains on

the transmission queue until the channel becomes available, which may happen

immediately.

A sender channel has in its definition a reference to one, and one only,

transmission queue. When a channel is started, and at other times during its

normal operation, it will look at this transmission queue and send any messages

on it to the target system. The message has in its transmission header details of the

destination queue and queue manager.

The intercommunication examples in the following chapters describe in detail the

creation of each of the objects described above, for a variety of platform

combinations.

On the target queue manager, definitions are required for the local queue and the

receiver side of the channel. These objects operate independently of each other and

so can be created in any sequence.

On the local queue manager, definitions are required for the remote queue, the

transmission queue, and the sender side of the channel. Since both the remote

queue definition and the channel definition refer to the transmission queue name,

it is advisable to create the transmission queue first.

Network infrastructure

The configuration examples assume that all the systems are connected to a Token

Ring network with the exception of z/OS which communicates via a 3745 (or

equivalent) that is attached to the Token Ring, and Solaris, which is on an adjacent

local area network (LAN) also attached to the 3745.

It is also assumed that, for SNA, all the required definitions in VTAM and network

control program (NCP) are in place and activated for the LAN-attached platforms

to communicate over the wide area network (WAN).

Similarly, for TCP, it is assumed that nameserver function is available, either via a

domain nameserver or via locally held tables (for example a host file).

Communications software

Working configurations are given in the following chapters for the following

network software products:

v SNA

– Communications Manager/2 Version 1.11

– Communications Server for Windows NT®, Version 5.0

– AIX Communications Server, V5.0

– Hewlett-Packard SNAplus2

– i5/OS

102 WebSphere MQ: Intercommunication

– Data Connection SNAP-IX Version 6.2 or later

– OS/390® Version 2 Release 4
v TCP

– Microsoft® Windows XP, Windows Server 2003, Windows Vista

– AIX Version 4 Release 1.4

– HP-UX Version 10.2 or later

– Sun Solaris Release 2.4 or later

– i5/OS

– TCP for z/OS

– HP Tru64 UNIX
v NetBIOS

v SPX

How to use the communication examples

The following chapters contain example configurations:

v “Example configuration - IBM WebSphere MQ for Windows” on page 129

v “Example configuration - IBM WebSphere MQ for AIX” on page 155

v “Example configuration - IBM WebSphere MQ for HP-UX” on page 172

v “Example configuration - IBM WebSphere MQ for Solaris” on page 194

v “Example configuration - IBM WebSphere MQ for z/OS” on page 266

v “Example configuration - IBM WebSphere MQ for i5/OS” on page 350

v “Example configuration - IBM WebSphere MQ for z/OS using queue-sharing

groups” on page 286

The information in the example-configuration chapters describes the tasks that

were carried out on a single platform, to set up communication to another of the

platforms, and then describes the WebSphere MQ tasks to establish a working

channel to that platform. Wherever possible, the intention is to make the

information as generic as possible. Thus, to connect any two WebSphere MQ queue

managers on different platforms, you should need to refer to only the relevant two

chapters. Any deviations or special cases are highlighted as such. Of course, you

can also connect two queue managers running on the same platform (on different

machines or on the same machine). In this case, all the information can be derived

from the one chapter.

The examples only cover how to set up communications where clustering is not

being used. For information about setting up communications while using

clustering, see the WebSphere MQ Queue Manager Clusters book. The

communications’ configuration values given here still apply.

Each chapter contains a worksheet in which you can find the parameters used in

the example configurations. There is a short description of each parameter and

some guidance on where to find the equivalent values in your system. When you

have a set of values of your own, record these in the spaces on the worksheet. As

you proceed through the chapter, you will find cross-references to these values as

you need them.

Chapter 2. How intercommunication works 103

IT responsibilities

Because the IT infrastructure can vary greatly between organizations, it is difficult

to indicate who, within an organization, controls and maintains the information

required to complete each parameter value. To understand the terminology used in

the following chapters, consider the following guidelines as a starting point.

v System administrator is used to describe the person (or group of people) who

installs and configures the software for a specific platform.

v Network administrator is used to describe the person who controls LAN

connectivity, LAN address assignments, network naming conventions, and so on.

This person may be in a separate group or may be part of the system

administration group.

In most z/OS installations, there is a group responsible for updating the

ACF/VTAM, ACF/NCP, and TCP/IP software to support the network

configuration. The people in this group should be the main source of

information needed when connecting any WebSphere MQ platform to

WebSphere MQ for z/OS. They may also influence or mandate network naming

conventions on LANs and you should verify their span of control before creating

your definitions.

v A specific type of administrator, for example CICS® administrator is indicated in

cases where we can more clearly describe the responsibilities of the person.

The example-configuration chapters do not attempt to indicate who is responsible

for and able to set each parameter. In general, several different people may be

involved.

104 WebSphere MQ: Intercommunication

Chapter 3. DQM in WebSphere MQ for Windows and Unix

platforms

Monitoring and controlling channels on Windows and Unix platforms

For DQM you need to create, monitor, and control the channels to remote queue

managers. You can use the following types of command to do this:

The WebSphere MQ commands (MQSC)

You can use the MQSC as single commands in an MQSC session in

Windows and UNIX systems. To issue more complicated, or multiple,

commands the MQSC can be built into a file that you then run from the

command line. For full details see the WebSphere MQ Script (MQSC)

Command Reference. This chapter gives some simple examples of using

MQSC for distributed queuing.

Control commands

You can also issue control commands at the command line for some of these

functions. Reference material for these commands is contained in the

WebSphere MQ System Administration Guide for WebSphere MQ for

i5/OS, UNIX systems, and Windows systems.

Programmable command format commands

See the WebSphere MQ Programmable Command Formats and

Administration Interface book for information about using these

commands.

WebSphere MQ Explorer

On Unix and Windows, you can use the WebSphere MQ Explorer. This

provides a graphical administration interface to perform administrative

tasks as an alternative to using control commands or MQSC commands.

Each queue manager has a DQM component for controlling interconnections to

compatible remote queue managers.

For a list of the functions available to you when setting up and controlling

message channels, using the different types of command, see Table 9 on page 106.

DQM channel control

DQM channel control is achieved using commands, programs, WMQ Explorer, files

for the channel definitions, and a storage area for synchronization information. The

following is a brief description of the components.

v The channel commands are a subset of the WebSphere MQ Commands (MQSC).

v You use MQSC and the control commands to:

– Create, copy, display, change, and delete channel definitions

– Start and stop channels, ping, reset channel sequence numbers, and resolve

in-doubt messages when links cannot be re-established

– Display status information about channels
v Channel configuration and control commands are included in WebSphere MQ

Explorer.

© Copyright IBM Corp. 1994, 2008 105

v Channel definitions are held as queue manager objects. The location of the

default definitions is documented in the WebSphere MQ System Administration

Guide.

v A storage area holds sequence numbers and logical unit of work (LUW) identifiers.

These are used for channel synchronization purposes.

Functions available

Table 9 shows the full list of WebSphere MQ functions that you may need when

setting up and controlling channels. The channel functions are explained in this

chapter.

For more details of the control commands that you issue at the command line, see

the WebSphere MQ System Administration Guide.

The MQSC commands are fully described in WebSphere MQ Script (MQSC)

Command Reference.

 Table 9. Functions available in Windows systems and UNIX systems

Function Control commands MQSC WebSphere MQ

Explorer equivalent?

Queue manager functions

Change queue manager ALTER QMGR Yes

Create queue manager crtmqm Yes

Delete queue manager dltmqm Yes

Display queue manager DISPLAY QMGR Yes

End queue manager endmqm Yes

Ping queue manager PING QMGR No

Start queue manager strmqm Yes

Command server functions

Display command server dspmqcsv No

End command server endmqcsv No

Start command server strmqcsv No

Queue functions

Change queue ALTER QALIAS

ALTER QLOCAL

ALTER QMODEL

ALTER QREMOTE

Yes

Clear queue CLEAR QLOCAL

CLEAR QUEUE

Yes

Create queue DEFINE QALIAS

DEFINE QLOCAL

DEFINE QMODEL

DEFINE QREMOTE

Yes

Delete queue DELETE QALIAS

DELETE QLOCAL

DELETE QMODEL

DELETE QREMOTE

Yes

Display queue DISPLAY QUEUE Yes

Process functions

106 WebSphere MQ: Intercommunication

Table 9. Functions available in Windows systems and UNIX systems (continued)

Function Control commands MQSC WebSphere MQ

Explorer equivalent?

Change process ALTER PROCESS Yes

Create process DEFINE PROCESS Yes

Delete process DELETE PROCESS Yes

Display process DISPLAY PROCESS Yes

Channel functions

Change channel ALTER CHANNEL Yes

Create channel DEFINE CHANNEL Yes

Delete channel DELETE CHANNEL Yes

Display channel DISPLAY CHANNEL Yes

Display channel status DISPLAY CHSTATUS Yes

End channel STOP CHANNEL Yes

Ping channel PING CHANNEL Yes

Reset channel RESET CHANNEL Yes

Resolve channel RESOLVE CHANNEL Yes

Run channel runmqchl START CHANNEL Yes

Run channel initiator runmqchi START CHINIT No

Run listener1 runmqlsr START LISTENER No

End listener endmqlsr (Windows

systems, AIX, HP-UX,

and Solaris only)

No

Note:

1. A listener may be started automatically when the queue manager starts. See the DEFINE LISTENER command

in WebSphere MQ Script (MQSC) Command Reference.

Getting started with objects

Use the WebSphere MQ commands (MQSC) or the WebSphere MQ Explorer to:

1. Define message channels and associated objects

2. Monitor and control message channels

The associated objects you may need to define are:

v Transmission queues

v Remote queue definitions

v Queue manager alias definitions

v Reply-to queue alias definitions

v Reply-to local queues

v Processes for triggering (MCAs)

v Message channel definitions

Channels must be completely defined, and their associated objects must exist and

be available for use, before a channel can be started. This chapter shows you how

to do this.

Chapter 3. DQM in WebSphere MQ for Windows and Unix platforms 107

In addition, the particular communication link for each channel must be defined

and available before a channel can be run. For a description of how LU 6.2,

TCP/IP, NetBIOS, SPX, and DECnet links are defined, see the particular

communication guide for your installation. See also the example configuration

chapters in this book.

Creating associated objects

Use MQSC to create the queue and alias objects: transmission queues, remote

queue definitions, queue manager alias definitions, reply-to queue alias definitions,

and reply-to local queues.

Also create the definitions of processes for triggering (MCAs) in a similar way.

For an example showing how to create all the required objects see “Message

channel planning example for distributed platforms” on page 238.

Creating default objects

Default objects are created automatically when a queue manager is created. These

objects are queues, channels, a process definition, and administration queues.

How are default objects created?:

 When you use the crtmqm command to create a queue manager, the command

also initiates a program to create a set of default objects.

1. Each default object is created in turn. The program keeps a count of how many

objects are successfully defined, how many already existed and were replaced,

and how many unsuccessful attempts there were.

2. The program displays the results to you and if any errors occurred, directs you

to the appropriate error log for details.

When the program has finished running, you can use the strmqm command to

start the queue manager.

See the WebSphere MQ System Administration Guide book for information about

the crtmqm and strmqm commands and a list of default objects.

Changing the default objects:

After the default objects have been created, you can replace them at any time by

running the strmqm command with the -c option.

 When you specify the -c option, the queue manager is started temporarily while

the objects are created and is then shut down again. Issuing strmqm with the -c

option refreshes existing system objects with the default values (for example, the

MCAUSER attribute of a channel definition is set to blanks). You must use the

strmqm command again, without the -c option, if you want to start the queue

manager.

If you want to make any changes to the default objects, you can create your own

version of the old amqscoma.tst file and edit it.

108 WebSphere MQ: Intercommunication

Creating a channel

To create a new channel you have to create two channel definitions, one at each

end of the connection. You create the first channel definition at the first queue

manager. Then you create the second channel definition at the second queue

manager, on the other end of the link.

Both ends must be defined using the same channel name. The two ends must have

compatible channel types, for example: Sender and Receiver.

To create a channel definition for one end of the link use the MQSC command

DEFINE CHANNEL. Include the name of the channel, the channel type for this

end of the connection, a connection name, a description (if required), the name of

the transmission queue (if required), and the transmission protocol. Also include

any other attributes that you want to be different from the system default values

for the required channel type, using the information you have gathered previously.

You are provided with help in deciding on the values of the channel attributes in

“Channel attributes” on page 71.

Note: You are very strongly recommended to name all the channels in your

network uniquely. Including the source and target queue manager names in the

channel name is a good way to do this.

Create channel example:

 DEFINE CHANNEL(QM1.TO.QM2) CHLTYPE(SDR) +

DESCR(’Sender channel to QM2’) +

CONNAME(QM2) TRPTYPE(TCP) XMITQ(QM2) CONVERT(YES)

In all the examples of MQSC the command is shown as it would appear in a file of

commands, and as it would be typed in Windows or UNIX systems. The two

methods look identical, except that to issue a command interactively, you must

first start an MQSC session. Type runmqsc, for the default queue manager, or

runmqsc qmname where qmname is the name of the required queue manager. Then

type any number of commands, as shown in the examples.

For portability, you should restrict the line length of your commands to 72

characters. Use the concatenation character, +, as shown to continue over more

than one line. On Windows use Ctrl-z to end the input at the command line. On

UNIX systems, use Ctrl-d. Alternatively, on UNIX or Windows, use the end

command.

Displaying a channel

Use the MQSC command DISPLAY CHANNEL, specifying the channel name, the

channel type (optional), and the attributes you want to see, or specifying that all

attributes are to be displayed. The ALL parameter of the DISPLAY CHANNEL

command is assumed by default if no specific attributes are requested and the

channel name specified is not generic.

The attributes are described in “Channel attributes” on page 71.

Display channel examples:

 DISPLAY CHANNEL(QM1.TO.QM2) TRPTYPE,CONVERT

DISPLAY CHANNEL(QM1.TO.*) TRPTYPE,CONVERT

Chapter 3. DQM in WebSphere MQ for Windows and Unix platforms 109

DISPLAY CHANNEL(*) TRPTYPE,CONVERT

DISPLAY CHANNEL(QM1.TO.QMR34) ALL

Displaying channel status

Use the MQSC command DISPLAY CHSTATUS, specifying the channel name and

whether you want the current status of channels or the status of saved

information.

Display channel status examples:

 DISPLAY CHSTATUS(*) CURRENT

DISPLAY CHSTATUS(QM1.TO.*) SAVED

Note that the saved status does not apply until at least one batch of messages has

been transmitted on the channel. Status is also saved when a channel is stopped

(using the STOP CHL command) and when the queue manager is ended.

Starting a channel

For applications to be able to exchange messages you must start a listener program

for inbound connections (or, in the case of UNIX systems, create a listener

attachment). On Windows and Unix systems, use the runmqlsr command to start

the WebSphere MQ listener process. By default, any inbound requests for channel

attachment causes the listener process to start MCAs as threads of the amqrmppa

process.

runmqlsr -t tcp -m QM2

For outbound connections you must start the channel in one of the following three

ways:

1. Use the MQSC command START CHANNEL, specifying the channel name, to

start the channel as a process or a thread, depending on the MCATYPE

parameter. (If channels are started as threads, they are threads of a channel

initiator.)

START CHANNEL(QM1.TO.QM2)

2. Use the control command runmqchl to start the channel as a process.

runmqchl -c QM1.TO.QM2 -m QM1

3. Use the channel initiator to trigger the channel.

Renaming a channel

To rename a message channel, use MQSC to carry out the following steps:

1. Use STOP CHANNEL to stop the channel.

2. Use DEFINE CHANNEL to create a duplicate channel definition with the new

name.

3. Use DISPLAY CHANNEL to check that it has been created correctly.

4. Use DELETE CHANNEL to delete the original channel definition.

If you decide to rename a message channel, remember that a channel has two

channel definitions, one at each end. Make sure you rename the channel at both

ends at the same time.

110 WebSphere MQ: Intercommunication

Channel attributes and channel types

The channel attributes for each type of channel are shown in Table 7 on page 71.

The channel attributes are described in detail in “Channel attributes” on page 71.

Client-connection channels and server-connection channels are described in the

WebSphere MQ Clients book.

Channel functions

The channel functions available are shown in Table 9 on page 106. Here some more

detail is given about the channel functions.

Create

Use the MQSC command DEFINE CHANNEL to create a new channel definition.

You can create a new channel definition using the default values supplied by

WebSphere MQ, specifying the name of the channel, the type of channel you are

creating, the communication method to be used, the transmission queue name and

the connection name.

The channel name must be the same at both ends of the channel, and unique

within the network. However, you must restrict the characters used to those that

are valid for WebSphere MQ object names.

Change

Use the MQSC command ALTER CHANNEL to change an existing channel

definition, except for the channel name, or channel type.

Delete

Use the MQSC command DELETE CHANNEL to delete a named channel.

Display

Use the MQSC command DISPLAY CHANNEL to display the current definition

for the channel.

Display Status

The MQSC command DISPLAY CHSTATUS displays the status of a channel

whether the channel is active or inactive. It applies to all message channels. It does

not apply to MQI channels other than server-connection channels.. See “Displaying

channel status” on page 110.

Information displayed includes:

v Channel name

v Communication connection name

v In-doubt status of channel (where appropriate)

v Last sequence number

v Transmission queue name (where appropriate)

v The in-doubt identifier (where appropriate)

v The last committed sequence number

v Logical unit of work identifier

Chapter 3. DQM in WebSphere MQ for Windows and Unix platforms 111

v Process ID

v Thread ID (Windows only)

Ping

Use the MQSC command PING CHANNEL to exchange a fixed data message with

the remote end. This gives some confidence to the system supervisor that the link

is available and functioning.

Ping does not involve the use of transmission queues and target queues. It uses

channel definitions, the related communication link, and the network setup. It can

only be used if the channel is not currently active.

It is available from sender and server channels only. The corresponding channel is

started at the far side of the link, and performs the startup parameter negotiation.

Errors are notified normally.

The result of the message exchange is presented as Ping complete or an error

message.

Ping with LU 6.2:

 When Ping is invoked, by default no USERID or password flows to the receiving

end. If USERID and password are required, they can be created at the initiating

end in the channel definition. If a password is entered into the channel definition,

it is encrypted by WebSphere MQ before being saved. It is then decrypted before

flowing across the conversation.

Start

Use the MQSC command START CHANNEL for sender, server, and requester

channels. It should not be necessary where a channel has been set up with queue

manager triggering.

When started, the sending MCA reads the channel definitions and opens the

transmission queue. A channel start-up sequence is executed, which remotely starts

the corresponding MCA of the receiver or server channel. When they have been

started, the sender and server processes await messages arriving on the

transmission queue and transmit them as they arrive.

When you use triggering or run channels as threads, ensure the channel initiator is

available to monitor the initiation queue. The channel initiator is started by default

as part of the queue manager.

However, TCP and LU 6.2 do provide other capabilities:

v For TCP on UNIX systems, inetd can be configured to start a channel. This will

be started as a separate process.

v For LU 6.2 in UNIX systems, configure your SNA product to start the LU 6.2

responder process.

v For LU 6.2 in Windows systems, using SNA Server you can use TpStart (a utility

provided with SNA Server) to start a channel. This will be started as a separate

process.

Use of the Start option always causes the channel to re-synchronize, where

necessary.

112 WebSphere MQ: Intercommunication

For the start to succeed:

v Channel definitions, local and remote, must exist. If there is no appropriate

channel definition for a receiver or server-connection channel, a default one is

created automatically if the channel is auto-defined. See “Channel

auto-definition exit program” on page 393.

v Transmission queue must exist, and have no other channels using it.

v MCAs, local and remote, must exist.

v Communication link must be available.

v Queue managers must be running, local and remote.

v Message channel must not be already running.

A message is returned to the screen confirming that the request to start a channel

has been accepted. For confirmation that the start command has succeeded, check

the error log, or use DISPLAY CHSTATUS. The error logs are:

Windows

mqmtop\qmgrs\qmname\errors\AMQERR01.LOG (for each queue manager called

qmname)

 mqmtop\qmgrs\@SYSTEM\errors\AMQERR01.LOG (for general errors)

Note: On Windows systems, you still also get a message in the Windows

systems application event log.

UNIX systems

/var/mqm/qmgrs/qmname/errors/AMQERR01.LOG (for each queue manager

called qmname)

 /var/mqm/qmgrs/@SYSTEM/errors/AMQERR01.LOG (for general errors)

Stop

Use the MQSC command STOP CHANNEL to request the channel to stop activity.

The channel will not start a new batch of messages until the operator starts the

channel again. (For information about restarting stopped channels, see “Restarting

stopped channels” on page 64.)

This command can be issued to a channel of any type except

MQCHT_CLNTCONN.

You can select the type of stop you require:

Stop quiesce example:

 STOP CHANNEL(QM1.TO.QM2) MODE(QUIESCE)

This command requests the channel to close down in an orderly way. The current

batch of messages is completed and the syncpoint procedure is carried out with

the other end of the channel.

Note: If the channel is idle this command will not terminate a receiving channel.

Stop force example:

 STOP CHANNEL(QM1.TO.QM2) MODE(FORCE)

This option stops the channel immediately, but does not terminate the channel’s

thread or process. The channel does not complete processing the current batch of

Chapter 3. DQM in WebSphere MQ for Windows and Unix platforms 113

messages, and can, therefore, leave the channel in doubt. In general, it is

recommended that operators use the quiesce stop option.

Stop terminate example:

 STOP CHANNEL(QM1.TO.QM2) MODE(TERMINATE)

This option stops the channel immediately, and terminates the channel’s thread or

process.

Stop (quiesce) stopped example:

 STOP CHANNEL(QM1.TO.QM2) STATUS(STOPPED)

This command does not specify a MODE, so will default to MODE(QUIESCE). It

requests that the channel be stopped so that it cannot be restarted automatically

but must be started manually.

Stop (quiesce) inactive example:

 STOP CHANNEL(QM1.TO.QM2) STATUS(INACTIVE)

This command does not specify a MODE, so will default to MODE(QUIESCE). It

requests that the channel be made inactive so that it will be restarted automatically

when required.

Reset

Use the MQSC command RESET CHANNEL to change the message sequence

number. This command is available for any message channel, but not for MQI

channels (client-connection or server-connection). The first message starts the new

sequence the next time the channel is started.

If the command is issued on a sender or server channel, it informs the other side

of the change when the channel is restarted.

Resolve

Use the MQSC command RESOLVE CHANNEL when messages are held in-doubt

by a sender or server, for example because one end of the link has terminated, and

there is no prospect of it recovering. The RESOLVE CHANNEL command accepts

one of two parameters: BACKOUT or COMMIT. Backout restores messages to the

transmission queue, while Commit discards them.

The channel program does not try to establish a session with a partner. Instead, it

determines the logical unit of work identifier (LUWID) which represents the

in-doubt messages. It then issues, as requested, either:

v BACKOUT to restore the messages to the transmission queue; or

v COMMIT to delete the messages from the transmission queue.

For the resolution to succeed:

v The channel must be inactive

v The channel must be in doubt

v The channel type must be sender or server

v A local channel definition must exist

v The local queue manager must be running

114 WebSphere MQ: Intercommunication

Preparing WebSphere MQ for distributed platforms

This chapter describes the WebSphere MQ preparations required before DQM can

be used in Windows and UNIX systems. It includes “Transmission queues and

triggering” and “Channel programs” on page 116.

Transmission queues and triggering

Before a channel (other than a requester channel) can be started, the transmission

queue must be defined as described in this chapter, and must be included in the

message channel definition.

In addition, where needed, the triggering arrangement must be prepared with the

definition of the necessary processes and queues.

Creating a transmission queue

Define a local queue with the USAGE attribute set to XMITQ for each sending

message channel. If you want to make use of a specific transmission queue in your

remote queue definitions, create a remote queue as shown below.

To create a transmission queue, use the WebSphere MQ Commands (MQSC), as

shown in the following examples:

Create transmission queue example

DEFINE QLOCAL(QM2) DESCR(’Transmission queue to QM2’) USAGE(XMITQ)

Create remote queue example

DEFINE QREMOTE(PAYROLL) DESCR(’Remote queue for QM2’) +

XMITQ(QM2) RNAME(PAYROLL) RQMNAME(QM2)

The recommended name for the transmission queue is the queue manager name

on the remote system, as shown in the examples above.

Triggering channels

An overview of triggering is given in “Triggering channels” on page 18, while it is

described in depth in the WebSphere MQ Application Programming Guide. This

description provides you with information specific to WebSphere MQ for UNIX

and Windows systems.

You can create a process definition in WebSphere MQ, defining processes to be

triggered. Use the MQSC command DEFINE PROCESS to create a process

definition naming the process to be triggered when messages arrive on a

transmission queue. The USERDATA attribute of the process definition should

contain the name of the channel being served by the transmission queue.

Alternatively, for WebSphere MQ for UNIX systems and Windows, you can

eliminate the need for a process definition by specifying the channel name in the

TRIGDATA attribute of the transmission queue.

If you do not specify a channel name, the channel initiator searches the channel

definition files until it finds a channel that is associated with the named

transmission queue.

Example definitions for triggering:

Chapter 3. DQM in WebSphere MQ for Windows and Unix platforms 115

Define the local queue (QM4), specifying that trigger messages are to be written to

the default initiation queue SYSTEM.CHANNEL.INITQ, to trigger the application

(process P1) that starts channel (QM3.TO.QM4):

DEFINE QLOCAL(QM4) TRIGGER INITQ(SYSTEM.CHANNEL.INITQ) PROCESS(P1) USAGE (XMITQ)

Define the application (process P1) to be started:

DEFINE PROCESS(P1) USERDATA(QM3.TO.QM4)

Examples for WebSphere MQ for UNIX systems and Windows systems:

 Define the local queue (QM4), specifying that trigger messages are to be written to

the initiation queue (IQ) to trigger the application that starts channel

(QM3.TO.QM4):

DEFINE QLOCAL(QM4) TRIGGER INITQ(SYSTEM.CHANNEL.INITQ) +

USAGE (XMITQ) TRIGDATA(QM3.TO.QM4)

Starting the channel initiator:

 Triggering is implemented using the channel initiator process. This process is

started with the MQSC command START CHINIT. Unless you are using the

default initiation queue, specify the name of the initiation queue on the command.

For example, to use the START CHINIT command to start queue IQ for the default

queue manager, enter:

START CHINIT INITQ(IQ)

By default, a channel initiator is started automatically using the default initiation

queue, SYSTEM.CHANNEL.INITQ. If you want to start all your channel initiators

manually, follow these steps:

1. Create and start the queue manager.

2. Alter the queue manager’s SCHINIT property to MANUAL

3. End and restart the queue manager

The number of channel initiators that you can start is limited. The default limit is

3, which is also the maximum. You can reduce this limit using MAXINITIATORS

in the qm.ini file for UNIX systems, or by using the WebSphere MQ Explorer. If

you increase the value of MAXINITIATORS beyond 3, it has the same effect as

setting it to 3.

See the WebSphere MQ System Administration Guide for details of the run channel

initiator command runmqchi, and the other control commands.

Stopping the channel initiator:

 The default channel initiator is started automatically when you start a queue

manager. All channel initiators are stopped automatically when a queue manager

is stopped.

Channel programs

There are different types of channel programs (MCAs) available for use at the

channels. The names are shown in the following tables.

116 WebSphere MQ: Intercommunication

Table 10. Channel programs for Windows and UNIX systems

Program name Direction of connection Communication

amqrmppa Any

runmqlsr Inbound Any

amqcrs6a Inbound LU 6.2

amqcrsta Inbound TCP

runmqchl Outbound Any

runmqchi Outbound Any

runmqlsr (Run WebSphere MQ listener), runmqchl (Run WebSphere MQ channel),

and runmqchi (Run WebSphere MQ channel initiator) are control commands that

you can enter at the command line.

amqcrsta is invoked for TCP channels on UNIX using inetd, where no listener is

started.

amqcrs6a is invoked as a transaction program when using LU6.2

Examples of the use of these channel programs are given in the following chapters.

Other things to consider

Here are some other topics that you should consider when preparing WebSphere

MQ for distributed queue management.

Undelivered-message queue

A DLQ handler is provided with WebSphere MQ on UNIX systems. See the

WebSphere MQ System Administration Guide book for WebSphere MQ for

information about this.

Queues in use

MCAs for receiver channels may keep the destination queues open even when

messages are not being transmitted; this results in the queues appearing to be “in

use”.

Security of WebSphere MQ objects

This section deals with remote messaging aspects of security.

You need to provide users with authority to make use of the WebSphere MQ

facilities, and this is organized according to actions to be taken with respect to

objects and definitions. For example:

v Queue managers can be started and stopped by authorized users

v Applications need to connect to the queue manager, and have authority to make

use of queues

v Message channels need to be created and controlled by authorized users

v Objects are kept in libraries, and access to these libraries may be restricted

The message channel agent at a remote site needs to check that the message being

delivered originated from a user with authority to do so at this remote site. In

Chapter 3. DQM in WebSphere MQ for Windows and Unix platforms 117

addition, as MCAs can be started remotely, it may be necessary to verify that the

remote processes trying to start your MCAs are authorized to do so. There are

three possible ways for you to deal with this:

1. Specify PUTAUT=CTX in the channel definition to indicate that messages must

contain acceptable context authority, otherwise they will be discarded.

2. Implement user exit security checking to ensure that the corresponding message

channel is authorized. The security of the installation hosting the corresponding

channel ensures that all users are properly authorized, so that you do not need

to check individual messages.

3. Implement user exit message processing to ensure that individual messages are

vetted for authorization.

On UNIX systems:

 Administration users must be part of the mqm group on your system (including

root) if this ID is going to use WebSphere MQ administration commands.

You should always run amqcrsta as the “mqm” user ID.

User IDs on UNIX systems:

 The queue manager converts all uppercase or mixed case user identifiers into

lowercase, before inserting them into the context part of a message, or checking

their authorization. All authorizations should therefore be based only on lowercase

identifiers.

Message descriptor extension (MQMDE):

 When the listener program (amqcrsta, for example) is started by inetd it inherits

the locale from inetd. It is possible that the MQMDE will not be honored and will

be placed on the queue as message data.

To ensure that the MQMDE is honored (merged) the locale must be set correctly.

The locale set by inetd may not match that chosen for other locales used by

WebSphere MQ processes.

To set the locale, create a shell script which sets the locale environment variables

LANG, LC_COLLATE, LC_CTYPE, LC_MONETARY, LC_NUMERIC, LC_TIME,

and LC_MESSAGES to the locale used for other WebSphere MQ processes. In the

same shell script call the listener program. Modify the inetd.conf file to call your

shell script in place of the listener program.

On Windows systems:

 Administration users must be part of both the mqm group and the administrators

group on Windows systems if this ID is going to use WebSphere MQ

administration commands.

User IDs on Windows systems:

 On Windows systems, if there is no message exit installed, the queue manager

converts any uppercase or mixed case user identifiers into lowercase, before

inserting them into the context part of a message, or checking their authorization.

All authorizations should therefore be based only on lowercase identifiers.

User IDs across systems:

118 WebSphere MQ: Intercommunication

Platforms other than Windows systems and UNIX systems use uppercase

characters for user IDs. To allow Windows systems and UNIX systems to use

lowercase user IDs, the following conversions are carried out by the message

channel agent (MCA) on these platforms:

At the sending end

The alpha characters in all user IDs are converted to uppercase, if there is

no message exit installed.

At the receiving end

The alpha characters in all user IDs are converted to lowercase, if there is

no message exit installed.

Note that the automatic conversions are not carried out if you provide a message

exit on UNIX systems and Windows systems for any other reason.

System extensions and user-exit programs

A facility is provided in the channel definition to allow extra programs to be run at

defined times during the processing of messages. These programs are not supplied

with WebSphere MQ, but may be provided by each installation according to local

requirements.

In order to run, these user-exit programs must have predefined names and be

available on call to the channel programs. The names of the user-exit programs are

included in the message channel definitions.

There is a defined control block interface for handing over control to these

programs, and for handling the return of control from these programs.

The precise places where these programs are called, and details of control blocks

and names, are to be found in Chapter 6, “Further intercommunication

considerations,” on page 375.

Running channels and listeners as trusted applications

If performance is an important consideration in your environment and your

environment is stable, you can choose to run your channels and listeners as

trusted, that is, using the fastpath binding. There are two factors that influence

whether or not channels and listeners run as trusted:

v The environment variable MQ_CONNECT_TYPE=FASTPATH or

MQ_CONNECT_TYPE=STANDARD. This is case sensitive. If you specify a

value that is not valid it is ignored.

v MQIBindType in the Channels stanza of the qm.ini or registry file. You can set

this to FASTPATH or STANDARD and it is not case-sensitive. The default is

STANDARD.

You can use MQIBindType in association with the environment variable to achieve

the required effect as follows:

 MQIBindType Environment variable Result

STANDARD UNDEFINED STANDARD

FASTPATH UNDEFINED FASTPATH

STANDARD STANDARD STANDARD

FASTPATH STANDARD STANDARD

Chapter 3. DQM in WebSphere MQ for Windows and Unix platforms 119

MQIBindType Environment variable Result

STANDARD FASTPATH STANDARD

FASTPATH FASTPATH FASTPATH

In summary, there are only two ways of actually making channels and listeners

run as trusted:

1. By specifying MQIBindType=FASTPATH in qm.ini or registry and not

specifying the environment variable.

2. By specifying MQIBindType=FASTPATH in qm.ini or registry and setting the

environment variable to FASTPATH.

You are recommended to run listeners as trusted, because listeners are stable

processes. You are recommended to run channels as trusted, unless you are using

unstable channel exits or the command STOP CHANNEL MODE(TERMINATE).

What next?

When you have made the preparations described in this chapter you are ready to

set up communications. Proceed to one of the following chapters, depending on

what platform you are using:

v “Setting up communication for Windows”

v “Setting up communication on UNIX systems” on page 150

Setting up communication for Windows

When a distributed-queuing management channel is started, it tries to use the

connection specified in the channel definition. For this to succeed, it is necessary

for the connection to be defined and available. This chapter explains how to do

this. You may also find it helpful to refer to “Example configuration - IBM

WebSphere MQ for Windows” on page 129.

For UNIX systems see “Setting up communication on UNIX systems” on page 150.

Deciding on a connection

There are four forms of communication for WebSphere MQ for Windows systems:

v TCP

v LU 6.2

v NetBIOS

v SPX (Windows XP and Windows 2003 Server only)

Each channel definition must specify only one protocol as the Transmission

protocol (Transport Type) attribute. One or more protocols may be used by a queue

manager.

For WebSphere MQ clients, it may be useful to have alternative channels using

different transmission protocols. See the WebSphere MQ Clients book.

120 WebSphere MQ: Intercommunication

Defining a TCP connection

The channel definition at the sending end specifies the address of the target. A

listener program must be run at the receiving end.

Sending end

Specify the host name, or the TCP address of the target machine, in the Connection

name field of the channel definition. The port to connect to will default to 1414.

Port number 1414 is assigned by the Internet Assigned Numbers Authority to

WebSphere MQ.

To use a port number other than the default, change the connection name field

thus:

Connection Name OS2ROG3(1822)

where 1822 is the port required. (This must be the port that the listener at the

receiving end is listening on.)

You can change the default port number by specifying it in the registry for

WebSphere MQ for Windows:

TCP:

 Port=1822

Note: To select which TCP/IP port number to use, WebSphere MQ uses the first

port number it finds in the following sequence:

1. The port number explicitly specified in the channel definition or command line.

This number allows the default port number to be overriden for a channel.

2. The port attribute specified in the registry. This number allows the default port

number to be overriden for a queue manager.

3. The default value of 1414. This is the number assigned to WebSphere MQ by

the Internet Assigned Numbers Authority.

For more information about the values you set using qm.ini, see Chapter 8,

“Configuration file stanzas for distributed queuing,” on page 491.

Receiving on TCP

Receiving channel programs are started in response to a startup request from the

sending channel. To do this, a listener program has to be started to detect incoming

network requests and start the associated channel. You should use the WebSphere

MQ listener.

Using the WebSphere MQ listener:

 To run the Listener supplied with WebSphere MQ, that starts new channels as

threads, use the RUNMQLSR command. For example:

RUNMQLSR -t tcp [-m QMNAME] [-p 1822]

The square brackets indicate optional parameters; QMNAME is not required for the

default queue manager, and the port number is not required if you are using the

default (1414).

Chapter 3. DQM in WebSphere MQ for Windows and Unix platforms 121

For the best performance, run the WebSphere MQ listener as a trusted application

as described in “Running channels and listeners as trusted applications” on page

119. See the WebSphere MQ Application Programming Guide for information

about trusted applications.

You can stop all WebSphere MQ listeners running on a queue manager that is

inactive, using the command:

ENDMQLSR [-m QMNAME]

If you do not specify a queue manager name, the default queue manager is

assumed.

Using the TCP/IP SO_KEEPALIVE option:

 If you want to use the SO_KEEPALIVE option (as discussed in “Checking that the

other end of the channel is still available” on page 61) you need to add the

following entry to your registry:

TCP:

 KeepAlive=yes

On Windows, the TCP configuration registry value for KeepAliveTime controls the

interval that elapses before the connection will be checked. The default is two

hours. For information about changing this value, see the Microsoft article TCP/IP

and NBT Configuration Parameters for XP .

Defining an LU 6.2 connection

SNA must be configured so that an LU 6.2 conversation can be established

between the two machines. Then proceed as follows.

See the following table for information.

 Table 11. Settings on the local Windows system for a remote queue manager platform

Remote platform TPNAME TPPATH

z/OS or OS/390

or MVS/ESA

without CICS

The same as in the corresponding

side information on the remote

queue manager.

-

z/OS or OS/390

or MVS/ESA

using CICS

CKRC (sender) CKSV (requester)

CKRC (server)

-

i5/OS The same as the compare value in

the routing entry on the i5/OS

system.

-

UNIX systems The same as in the corresponding

side information on the remote

queue manager.

mqmtop/bin/amqcrs6a

Windows As specified in the Windows Run

Listener command, or the

invokable Transaction Program

that was defined using TpSetup on

Windows.

mqmtop\bin\amqcrs6a

If you have more than one queue manager on the same machine, ensure that the

TPnames in the channel definitions are unique.

122 WebSphere MQ: Intercommunication

Sending end

Create a CPI-C side object (symbolic destination) from the administration

application of the LU 6.2 product you are using, and enter this name in the

Connection name field in the channel definition. Also create an LU 6.2 link to the

partner.

In the CPI-C side object enter the partner LU Name at the receiving machine, the

TP Name and the Mode Name. For example:

Partner LU Name OS2ROG2

Partner TP Name recv

Mode Name #INTER

Receiving on LU 6.2

Receiving channel programs are started in response to a startup request from the

sending channel. To do this, a listener program has to be started to detect incoming

network requests and start the associated channel. You start this listener program

with the RUNMQLSR command, giving the TpName to listen on. Alternatively,

you can use TpStart under SNA Server for Windows.

Using the RUNMQLSR command:

 Example of the command to start the listener:

RUNMQLSR -t LU62 -n RECV [-m QMNAME]

where RECV is the TpName that is specified at the other (sending) end as the

“TpName to start on the remote side”. The last part in square brackets is optional

and is not required for the default queue manager.

It is possible to have more than one queue manager running on one machine. You

must assign a different TpName to each queue manager, and then start a listener

program for each one. For example:

RUNMQLSR -t LU62 -m QM1 -n TpName1

RUNMQLSR -t LU62 -m QM2 -n TpName2

For the best performance, run the WebSphere MQ listener as a trusted application

as described in “Running channels and listeners as trusted applications” on page

119. See the WebSphere MQ Application Programming Guide for information

about trusted applications.

You can stop all WebSphere MQ listeners running on a queue manager that is

inactive, using the command:

ENDMQLSR [-m QMNAME]

If you do not specify a queue manager name, the default queue manager is

assumed.

Using Microsoft SNA Server on Windows:

 You can use TpSetup (from the SNA Server SDK) to define an invokable TP that

then drives amqcrs6a.exe, or you can set various registry values manually. The

parameters that should be passed to amqcrs6a.exe are:

 -m QM -n TpName

Chapter 3. DQM in WebSphere MQ for Windows and Unix platforms 123

where QM is the Queue Manager name and TpName is the TP Name. See the

Microsoft SNA Server APPC Programmers Guide or the Microsoft SNA Server CPI-C

Programmers Guide for more information.

Defining a NetBIOS connection

WebSphere MQ uses three types of NetBIOS resource when establishing a NetBIOS

connection to another WebSphere MQ product: sessions, commands, and names.

Each of these resources has a limit, which is established either by default or by

choice during the installation of NetBIOS.

Each running channel, regardless of type, uses one NetBIOS session and one

NetBIOS command. The IBM NetBIOS implementation allows multiple processes

to use the same local NetBIOS name. Therefore, only one NetBIOS name needs to

be available for use by WebSphere MQ. Other vendors’ implementations, for

example Novell’s NetBIOS emulation, require a different local name per process.

Verify your requirements from the documentation for the NetBIOS product you are

using.

In all cases, ensure that sufficient resources of each type are already available, or

increase the maximums specified in the configuration. Any changes to the values

will require a system restart.

During system startup, the NetBIOS device driver displays the number of sessions,

commands, and names available for use by applications. These resources are

available to any NetBIOS-based application that is running on the same system.

Therefore, it is possible for other applications to consume these resources before

WebSphere MQ needs to acquire them. Your LAN network administrator should be

able to clarify this for you.

Defining the WebSphere MQ local NetBIOS name

The local NetBIOS name used by WebSphere MQ channel processes can be

specified in three ways. In order of precedence they are:

1. The value specified in the -l parameter of the RUNMQLSR command, for

example:

 RUNMQLSR -t NETBIOS -l my_station

2. The MQNAME environment variable whose value is established by the

command:

 SET MQNAME=my_station

You can set the MQNAME value for each process. Alternatively, you may set it

at a system level in the Windows registry.

If you are using a NetBIOS implementation that requires unique names, you

must issue a SET MQNAME command in each window in which a WebSphere

MQ process is started. The MQNAME value is arbitrary but it must be unique

for each process.

3. The NETBIOS stanza in the queue manager configuration file qm.ini or in the

Windows registry. For example:

 NETBIOS:

 LocalName=my_station

Note:

124 WebSphere MQ: Intercommunication

1. Due to the variations in implementation of the NetBIOS products supported,

you are advised to make each NetBIOS name unique in the network. If you do

not, unpredictable results may occur. If you have problems establishing a

NetBIOS channel and there are error messages in the queue-manager error log

showing a NetBIOS return code of X’15’, review your use of NetBIOS names.

2. On Windows you cannot use your machine name as the NetBIOS name

because Windows already uses it.

3. Sender channel initiation requires that a NetBIOS name be specified either via

the MQNAME environment variable or the LocalName in the qm.ini file or in

the Windows registry.

Establishing the queue manager NetBIOS session, command,

and name limits

The queue manager limits for NetBIOS sessions, commands, and names can be

specified in two ways. In order of precedence they are:

1. The values specified in the RUNMQLSR command:

 -s Sessions

 -e Names

 -o Commands

If the -m operand is not specified in the command, the values will apply only

to the default queue manager.

2. The NETBIOS stanza in the queue manager configuration file qm.ini or in the

Windows registry. For example:

 NETBIOS:

 NumSess=Qmgr_max_sess

 NumCmds=Qmgr_max_cmds

 NumNames=Qmgr_max_names

Establishing the LAN adapter number

For channels to work successfully across NetBIOS, the adapter support at each end

must be compatible. WebSphere MQ allows you to control the choice of LAN

adapter (LANA) number by using the AdapterNum value in the NETBIOS stanza

of your qm.ini file or the Windows registry and by specifying the -a parameter on

the runmqlsr command.

The default LAN adapter number used by WebSphere MQ for NetBIOS

connections is 0. Verify the number being used on your system as follows:

On Windows, it is not possible to query the LAN adapter number directly through

the operating system. Instead, you use the LANACFG.EXE command line utility,

available from Microsoft. The output of the tool shows the virtual LAN adapter

numbers and their effective bindings. For further information on LAN adapter

numbers, see the Microsoft Knowledge Base article 138037 HOWTO: Use LANA

Numbers in a 32-bit Environment.

Specify the correct value in the NETBIOS stanza of the queue manager

configuration file, qm.ini, or the Windows registry:

 NETBIOS:

 AdapterNum=n

where n is the correct LAN adapter number for this system.

Chapter 3. DQM in WebSphere MQ for Windows and Unix platforms 125

Initiating the connection

To initiate the connection, follow these steps at the sending end:

1. Define the NetBIOS station name using the MQNAME or LocalName value as

described above.

2. Verify the LAN adapter number being used on your system and specify the

correct file using the AdapterNum as described above.

3. In the ConnectionName field of the channel definition, specify the NetBIOS

name being used by the target listener program. On Windows, NetBIOS

channels must be run as threads. Do this by specifying MCATYPE(THREAD) in

the channel definition.

DEFINE CHANNEL (chname) CHLTYPE(SDR) +

 TRPTYPE(NETBIOS) +

 CONNAME(your_station) +

 XMITQ(xmitq) +

 MCATYPE(THREAD) +

 REPLACE

Target listener

At the receiving end, follow these steps:

1. Define the NetBIOS station name using the MQNAME or LocalName value as

described above.

2. Verify the LAN adapter number being used on your system and specify the

correct file using the AdapterNum as described above.

3. Define the receiver channel:

DEFINE CHANNEL (chname) CHLTYPE(RCVR) +

 TRPTYPE(NETBIOS) +

 REPLACE

4. Start the WebSphere MQ listener program to establish the station and make it

possible to contact it. For example:

RUNMQLSR -t NETBIOS -l your_station [-m qmgr]

This command establishes your_station as a NetBIOS station waiting to be

contacted. The NetBIOS station name must be unique throughout your

NetBIOS network.

For the best performance, run the WebSphere MQ listener as a trusted application

as described in “Running channels and listeners as trusted applications” on page

119. See the WebSphere MQ Application Programming Guide for information

about trusted applications.

You can stop all WebSphere MQ listeners running on a queue manager that is

inactive, using the command:

ENDMQLSR [-m QMNAME]

If you do not specify a queue manager name, the default queue manager is

assumed.

Defining an SPX connection

An SPX connection applies only to a client and server running Windows XP and

Windows 2003 Server.

126 WebSphere MQ: Intercommunication

The channel definition at the sending end specifies the address of the target. A

listener program must be run at the receiving end.

Sending end

If the target machine is remote, specify the SPX address of the target machine in

the Connection name field of the channel definition.

The SPX address is specified in the following form:

 network.node(socket)

where:

network

Is the 4-byte network address of the network on which the remote machine

resides,

node Is the 6-byte node address, which is the LAN address of the LAN adapter

in the remote machine

socket Is the 2-byte socket number on which the remote machine will listen.

If the local and remote machines are on the same network then the network

address need not be specified. If the remote end is listening on the default socket

(5E86) then the socket need not be specified.

An example of a fully specified SPX address specified in the CONNAME

parameter of an MQSC command is:

 CONNAME(’00000001.08005A7161E5(5E87)’)

In the default case, where the machines are both on the same network, this

becomes:

 CONNAME(08005A7161E5)

The default socket number may be changed by specifying it in the queue manager

configuration file (qm.ini) or the Windows registry:

SPX:

 Socket=5E87

For more information about the values you set using qm.ini or the Windows

registry, see Chapter 8, “Configuration file stanzas for distributed queuing,” on

page 491.

Receiving on SPX

Receiving channel programs are started in response to a startup request from the

sending channel. To do this, a listener program has to be started to detect incoming

network requests and start the associated channel.

You should use the WebSphere MQ listener.

Using the SPX listener backlog option:

 When receiving on SPX, a maximum number of outstanding connection requests is

set. This can be considered a backlog of requests waiting on the SPX port for the

listener to accept the request. The default listener backlog values are shown in

Table 12 on page 128.

Chapter 3. DQM in WebSphere MQ for Windows and Unix platforms 127

Table 12. Default outstanding connection requests on Windows

Platform Default listener backlog value

Windows Server 5

Windows Workstation 5

If the backlog reaches the values in Table 12, the reason code,

MQRC_Q_MGR_NOT_AVAILABLE is received when trying to connect to the

queue manager using MQCONN or MQCONNX. If this happens, it is possible to

try to connect again.

However, to avoid this error, you can add an entry in the qm.ini file or in the

registry for Windows:

SPX:

ListenerBacklog = n

This overrides the default maximum number of outstanding requests (see Table 12)

for the SPX listener.

Note: Some operating systems support a larger value than the default. If necessary,

this can be used to avoid reaching the connection limit.

To run the listener with the backlog option switched on either:

v Use the RUNMQLSR -b command, or

v Use the MQSC command DEFINE LISTENER with the BACKLOG attribute set

to the desired value.

For information about the RUNMQLSR command, see the WebSphere MQ System

Administration Guide book. For information about the DEFINE LISTENER

command, see the WebSphere MQ Script (MQSC) Command Reference.

Using the WebSphere MQ listener:

 To run the Listener supplied with WebSphere MQ, that starts new channels as

threads, use the RUNMQLSR command. For example:

RUNMQLSR -t spx [-m QMNAME] [-x 5E87]

The square brackets indicate optional parameters; QMNAME is not required for the

default queue manager, and the socket number is not required if you are using the

default (5E86).

For the best performance, run the WebSphere MQ listener as a trusted application

as described in “Running channels and listeners as trusted applications” on page

119. See the WebSphere MQ Application Programming Guide for information

about trusted applications.

You can stop all WebSphere MQ listeners running on a queue manager that is

inactive, using the command:

ENDMQLSR [-m QMNAME]

If you do not specify a queue manager name, the default queue manager is

assumed.

128 WebSphere MQ: Intercommunication

IPX/SPX parameters

In most cases the default settings for the IPX/SPX parameters will suit your needs.

However, you may need to modify some of them in your environment to tune its

use for WebSphere MQ. The actual parameters and the method of changing them

varies according to the platform and provider of SPX communications support. The

following sections describe some of these parameters, particularly those that may

influence the operation of WebSphere MQ channels and client connections.

Windows systems:

 Please refer to the Microsoft documentation for full details of the use and setting of

the NWLink IPX and SPX parameters. The IPX/SPX parameters are in the

following paths in the registry:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Service\NWLinkSPX\Parameters

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Service\NWLinkIPX\Parameters

Example configuration - IBM WebSphere MQ for Windows

This chapter gives an example of how to set up communication links from

WebSphere MQ for Windows to WebSphere MQ products on the following

platforms:

v AIX

v HP Tru64 UNIX

v HP-UX

v Solaris

v Linux®

v i5/OS

v z/OS

v VSE/ESA™

This chapter first describes the parameters needed for an LU 6.2 connection, then it

guides you through the following tasks:

v “Establishing an LU 6.2 connection” on page 134

v “Establishing a TCP connection” on page 142

v “Establishing a NetBIOS connection” on page 142

v “Establishing an SPX connection” on page 143

Once the connection is established, you need to define some channels to complete

the configuration. This is described in “WebSphere MQ for Windows

configuration” on page 145.

See “Example configuration chapters in this book” on page 101 for background

information about this chapter and how to use it.

Configuration parameters for an LU 6.2 connection

Table 13 on page 130 presents a worksheet listing all the parameters needed to set

up communication from Windows to one of the other WebSphere MQ platforms.

The worksheet shows examples of the parameters, which have been tested in a

working environment, and leaves space for you to fill in your own values. An

Chapter 3. DQM in WebSphere MQ for Windows and Unix platforms 129

explanation of the parameter names follows the worksheet. Use the worksheet in

this chapter in conjunction with the worksheet in the chapter for the platform to

which you are connecting.

The steps required to set up an LU 6.2 connection are described, with numbered

cross references to the parameters on the worksheet. These steps are:

v “Configuring the local node” on page 134

v “Adding a connection” on page 136

v “Adding a partner” on page 139

v “Adding a CPI-C entry” on page 140

v “Configuring an invokable TP” on page 140

Configuration worksheet

Use this worksheet to record the values you use for your configuration. Where

numbers appear in the Reference column they indicate that the value must match

that in the appropriate worksheet elsewhere in this book. The examples that follow

in this chapter refer back to the values in the ID column. The entries in the

Parameter Name column are explained in “Explanation of terms” on page 133.

 Table 13. Configuration worksheet for IBM Communications Server for Windows systems

ID Parameter Name Reference Example Used User Value

Definition for local node

1 Configuration name NTCONFIG

2 Network Name NETID

3 Control Point Name WINNTCP

4 Local Node ID (hex) 05D 30F65

5 LU Name (local) WINNTLU

6 LU Alias (local) NTQMGR

7 TP Name MQSERIES

8 Command line c:\Program

Files\IBM\WebSphere

MQ\bin\amqcrs6a.exe

9 LAN adapter address 08005AA5FAB9

Connection to an AIX system

The values in this section of the table must match those used in Table 17 on page 156, as indicated.

10 Connection AIX

11 Remote Network Address 8 123456789012

12 Network Name 1 NETID

13 Control Point Name 2 AIXPU

14 Remote Node ID 3 071 23456

15 LU Alias (remote) AIXQMGR

16 LU Name 4 AIXLU

17 Mode 14 #INTER

18 CPI-C Name AIXCPIC

19 Partner TP Name 6 MQSERIES

130 WebSphere MQ: Intercommunication

Table 13. Configuration worksheet for IBM Communications Server for Windows systems (continued)

ID Parameter Name Reference Example Used User Value

Connection to an HP-UX system

The values in this section of the table must match those used in Table 19 on page 172, as indicated.

10 Connection HPUX

11 Remote Network Address 8 100090DC2C7C

12 Network Name 4 NETID

13 Control Point Name 2 HPUXPU

14 Remote Node ID 3 05D 54321

15 LU Alias (remote) HPUXQMGR

16 LU Name 5 HPUXLU

17 Mode 17 #INTER

18 CPI-C Name HPUXCPIC

19 Partner TP Name 7 MQSERIES

Connection to a Solaris system

The values in this section of the table must match those used in Table 21 on page 195, as indicated.

10 Connection SOLARIS

11 Remote Network Address 5 08002071CC8A

12 Network Name 2 NETID

13 Control Point Name 3 SOLARPU

14 Remote Node ID 6 05D 310D6

15 LU Alias (remote) SOLARQMGR

16 LU Name 7 SOLARLU

17 Mode 17 #INTER

18 CPI-C Name SOLCPIC

19 Partner TP Name 8 MQSERIES

Connection to a Linux (x86 platform) system

The values in this section of the table must match those used in Configuration worksheet for Communications

Server for Linux, as indicated.

10 Connection LINUX

11 Remote Network Address 8 08005AC6DF33

12 Network Name 4 NETID

13 Control Point Name 2 LINUXPU

14 Remote Node ID 3 05D 30A55

15 LU Alias (remote) LXQMGR

16 LU Name 5 LINUXLU

17 Mode 6 #INTER

18 CPI-C Name LXCPIC

19 Partner TP Name 7 MQSERIES

Connection to an i5/OS system

The values in this section of the table must match those used in Table 35 on page 351, as indicated.

Chapter 3. DQM in WebSphere MQ for Windows and Unix platforms 131

ic14170_.dita#ic14170_/ic14170_1
ic14170_.dita#ic14170_/ic14170_1

Table 13. Configuration worksheet for IBM Communications Server for Windows systems (continued)

ID Parameter Name Reference Example Used User Value

10 Connection AS400

11 Remote Network Address 4 10005A5962EF

12 Network Name 1 NETID

13 Control Point Name 2 AS400PU

14 Remote Node ID

15 LU Alias (remote) AS400QMGR

16 LU Name 3 AS400LU

17 Mode 17 #INTER

18 CPI-C Name AS4CPIC

19 Partner TP Name 8 MQSERIES

Connection to a z/OS system

The values in this section of the table must match those used in Table 27 on page 267, as indicated.

10 Connection MVS™

11 Remote Network Address 8 400074511092

12 Network Name 2 NETID

13 Control Point Name 3 MVSPU

14 Remote Node ID

15 LU Alias (remote) MVSQMGR

16 LU Name 4 MVSLU

17 Mode 10 #INTER

18 CPI-C Name MVSCPIC

19 Partner TP Name 7 MQSERIES

Connection to a z/OS system using a generic interface

The values in this section of the table must match those used in Table 27 on page 267, as indicated.

10 Connection MVS

11 Remote Network Address 8 400074511092

12 Network Name 2 NETID

13 Control Point Name 3 MVSPU

14 Remote Node ID

15 LU Alias (remote) MVSQMGR

16 LU Name 10 MVSGR

17 Mode 6 #INTER

18 CPI-C Name MVSCPIC

19 Partner TP Name 7 MQSERIES

Connection to a VSE/ESA system

The values in this section of the table must match those used in your VSE/ESA system.

10 Connection MVS

11 Remote Network Address 5 400074511092

12 Network Name 1 NETID

132 WebSphere MQ: Intercommunication

Table 13. Configuration worksheet for IBM Communications Server for Windows systems (continued)

ID Parameter Name Reference Example Used User Value

13 Control Point Name 2 VSEPU

14 Remote Node ID

15 LU Alias (remote) VSEQMGR

16 LU Name 3 VSELU

17 Mode #INTER

18 CPI-C Name VSECPIC

19 Partner TP Name 4 MQ01 MQ01

Explanation of terms

1 Configuration Name

This is the name of the file in which the Communications Server

configuration is saved.

2 Network Name

This is the unique ID of the network to which you are connected. It is an

alphanumeric value and can be 1-8 characters long. The network name

works with the Control Point Name to uniquely identify a system. Your

network administrator will tell you the value.

3 Control Point Name

In Advanced Peer-to-Peer Networking® (APPN), a control point is

responsible for managing a node and its resources. A control point is also a

logical unit (LU). The Control Point Name is the name of the LU and is

assigned to your system by the network administrator.

4 Local Node ID (hex)

Some SNA products require partner systems to specify a node identifier

that uniquely identifies their workstation. The two systems exchange this

node identifier in a message unit called the exchange identifier (XID). Your

network administrator will assign this ID for you.

5 LU Name (local)

A logical unit (LU) is software that serves as an interface or translator

between a transaction program and the network. An LU manages the

exchange of data between transaction programs. The local LU Name is the

name of the LU on your workstation. Your network administrator will

assign this to you.

6 LU Alias (local)

The name by which your local LU will be known to your applications. You

choose this name yourself. It can be 1-8 characters long.

7 TP Name

WebSphere MQ applications trying to converse with your workstation

specify a symbolic name for the program that is to start running. This will

have been defined on the channel definition at the sender. For simplicity,

wherever possible use a transaction program name of MQSERIES, or in the

case of a connection to VSE/ESA, where the length is limited to 4 bytes,

use MQTP.

 See Table 11 on page 122 for more information.

8 Command line

This is the path and name of the actual program to be run when a

Chapter 3. DQM in WebSphere MQ for Windows and Unix platforms 133

conversation has been initiated with your workstation. The example shown

on the worksheet assumes that WebSphere MQ is installed in the default

directory, c:\Program Files\IBM\Websphere MQ. The configuration pairs

this name with the symbolic name 7 when you use TPSETUP (which is

part of the SNA Server software developers kit).

9 LAN adapter address

This is the address of your token-ring card. To discover this type net

config server at a command prompt. The address appears in the output.

For example:

Server is active on 08005AA5FAB9

10 Connection

This is a meaningful symbolic name by which the connection to a partner

node is known. It is used only within SNA Server administration and is

specified by you.

15 LU Alias (remote)

This is a value known only in this server and is used to represent the fully

qualified partner LU name. You supply the value.

17 Mode

This is the name given to the set of parameters that control the APPC

conversation. An entry with this name and a similar set of parameters

must be defined at each partner system. Your network administrator will

tell you this name.

18 CPI-C Name

This is the name given to a locally held definition of a partner application.

You supply the name and it must be unique within this server. The name

is specified in the CONNAME attribute of the WebSphere MQ sender

channel definition.

Establishing an LU 6.2 connection

This section describes how to establish an LU 6.2 connection using IBM

Communications Server for Windows NT, Version 5.0. You may use any of the

supported LU 6.2 products for this platform. The panels of other products will not

be identical to those shown here, but most of their content will be similar.

Configuring the local node

To configure the local node, follow these steps:

1. From the Scenarios pull-down of the Communications Server SNA Node

Configuration window, select the CPI-C, APPC or 5250 Emulation scenario.

134 WebSphere MQ: Intercommunication

The CPI-C, APPC or 5250 Emulation scenario window is displayed.

2. Click on Configure Node, then click on New. The Define the Node property

sheet is displayed.

Chapter 3. DQM in WebSphere MQ for Windows and Unix platforms 135

3. In the Fully qualified CP name field on the Basic page, enter the unique ID of

the network to which you are connected (2) and the control point name (3).

Click on OK to continue.

4. From the SNA Node Configuration window, click on Configure Local LU 6.2,

then click on New. The Define a Local LU 6.2 window is displayed.

5. In the Local LU name field on the Basic page, enter the name of the LU on

your workstation (5). In the Local LU alias field, enter the name by which your

local LU will be known to your applications (6). Click on OK to continue.

Adding a connection

To add a connection, follow these steps:

1. From the SNA Node Configuration window, select Configure Devices, select

LAN as the DLC type, then click on New. The Define a LAN Device property

sheet is displayed.

136 WebSphere MQ: Intercommunication

2. If you have the LLC2 protocol installed with Communications Server for

Windows NT, the Adapter number list box lists the available LAN adapters.

See the help file INLLC40.HLP (Windows NT 4.0) or INLLC35.HLP (Windows

NT 3.51) in the Communications Server installation directory for LLC2

installation instructions.

3. The default values displayed on the Define a LAN Device Basic page may be

accepted. Click on OK to continue.

4. From the SNA Node Configuration window, select Configure Connections,

select LAN as the DLC type, then click on New. The Define a LAN Connection

property sheet is displayed.

Chapter 3. DQM in WebSphere MQ for Windows and Unix platforms 137

5. In the Destination address field on the Basic page, enter the LAN address of

the system to which you are connecting (11). Select the Advanced page.

6. In the Block ID field on the Advanced page, enter the local node ID (hex) (4).

Select the Security page.

138 WebSphere MQ: Intercommunication

7. In the Adjacent CP name field on the Security page, enter the network name

and control point name of the remote node (12 and 13). In the Adjacent CP

type field, enter APPN Node. You do not need to complete the Adjacent node ID

field for a peer-to-peer connection. Click on OK to continue. Take note of the

default link name used to identify this new definition (for example, LINK0000).

Adding a partner

To add a partner LU definition, follow these steps:

1. From the SNA Node Configuration window, select Configure Partner LU 6.2,

then click on New. The Define a Partner LU 6.2 property sheet is displayed.

2. In the Partner LU name field on the Basic page, enter the network name (12)

and LU name of the remote system (16). In the Partner LU alias field, enter the

remote LU alias (15). In the Fully qualified CP name fields, enter the network

name and control point name of the remote system (12 and 13). Click on OK to

continue.

Chapter 3. DQM in WebSphere MQ for Windows and Unix platforms 139

Adding a CPI-C entry

To add a CPI-C Side information entry, follow these steps:

1. From the SNA Node Configuration window, select Configure CPI-C Side

Information, then click on New. The Define a CPI-C Side Information property

sheet is displayed.

2. In the Symbolic destination name field of the Basic page, enter the CPI-C

name (18). In the Mode name field, enter the mode value (17). Enter either a

fully qualified partner LU name (12.16) or a partner LU alias (15) depending

on what you choose in the CPI-C Side Information property sheet. In the TP

name field, enter the partner TP name (19). Click on OK to continue.

Configuring an invokable TP

To add a Transaction Program (TP) definition, follow these steps:

1. From the SNA Node Configuration window, select Configure Transaction

Programs, then click on New. The Define a Transaction Program property sheet

is displayed.

140 WebSphere MQ: Intercommunication

2. In the TP name field on the Basic page, enter the transaction program name (7).

In the Complete pathname field, enter the actual path and name of the the

program that will be run when a conversation is initiated with your

workstation (8). When you are happy with the settings, click on OK to

continue.

3. In order to be able to stop the WebSphere MQ Transaction Program, you need

to start it in one of the following ways:

a. Check Service TP on the Basic page. This starts the TP programs at

Windows startup and will run the programs under the system user ID.

b. Check Dynamically loaded on the Advanced page. This dynamically loads

and starts the programs as and when incoming SNA conversation requests

arrive. It will run the programs under the same user ID as the rest of

WebSphere MQ.

Note: To use dynamic loading, it is necessary to vary the user ID under

which the WebSphere MQ SNA Transaction program runs. To do this, set

the Attach Manager to run under the desired user context by modifying the

startup parameters within the Control Panel in the Services applet for the

AppnNode service.

c. Issue the WebSphere MQ command, runmqlsr, to run the channel listener

process.

Communications Server has a tuning parameter called the Receive_Allocate

timeout parameter that is set in the Transaction Program. The default value of this

parameter is 3600 and this indicates that the listener will only remain active for

3600 seconds, that is, 1 hour. You can make your listener run for longer than this

by increasing the value of the Receive_Allocate timeout parameter. You can also

make it run ‘forever’ by specifying zero.

Chapter 3. DQM in WebSphere MQ for Windows and Unix platforms 141

What next?

The SNA configuration task is complete. From the File pull-down, select Save and

specify a file name under which to save your SNA configuration information, for

example, NTCONFIG (1). When prompted, select this configuration as the default.

From the SNA Node Operations application, start the node by clicking the Start

node button on the toolbar. Specify the file name of the configuration you just

saved. (It should appear in the file-name box by default, because you identified it

as your default configuration.) When the node startup is complete, ensure that

your link to the remote node has been established by selecting the Connections

button on the toolbar, then find the link name you configured (for example,

LINK0000). The link should be active if the remote node is active waiting for the

link to be established.

A complementary SNA setup process is required on the node to which you are

connecting before you can attempt WebSphere MQ server-to-server message

transmissions.

The LU 6.2 connection is now established. You are ready to complete the

configuration. Go to “WebSphere MQ for Windows configuration” on page 145.

Establishing a TCP connection

The TCP stack that is shipped with Windows systems does not include an inet

daemon or equivalent.

The WebSphere MQ command used to start the WebSphere MQ for TCP listener is:

runmqlsr -t tcp

The listener must be started explicitly before any channels are started. It enables

receiving channels to start automatically in response to a request from an inbound

sending channel.

What next?

When the TCP/IP connection is established, you are ready to complete the

configuration. Go to “WebSphere MQ for Windows configuration” on page 145.

Establishing a NetBIOS connection

A NetBIOS connection is initiated from a queue manager that uses the

ConnectionName parameter on its channel definition to connect to a target listener.

To set up a NetBIOS connection, follow these steps:

1. At each end of the channel specify the local NetBIOS name to be used by the

WebSphere MQ channel processes, in the Windows registry or in the queue

manager configuration file qm.ini. For example, the NETBIOS stanza in the

Windows registry at the sending end might look like this:

NETBIOS:

 LocalName=WNTNETB1

and at the receiving end:

NETBIOS:

 LocalName=WNTNETB2

142 WebSphere MQ: Intercommunication

Each WebSphere MQ process must use a different local NetBIOS name. Do not

use your machine name as the NetBIOS name because Windows already uses

it.

2. At each end of the channel, verify the LAN adapter number being used on

your system. The WebSphere MQ for Windows default for logical adapter

number 0 is NetBIOS running over a TCP/IP network. To use native NetBIOS

you need to select logical adapter number 1. See “Establishing the LAN adapter

number” on page 125.

Specify the correct LAN adapter number in the NETBIOS stanza of the the

Windows registry. For example:

NETBIOS:

 AdapterNum=1

3. So that sender channel initiation will work, specify the local NetBIOS name via

the MQNAME environment variable:

 SET MQNAME=WNTNETB1I

This name must be unique.

4. At the sending end, define a channel specifying the NetBIOS name being used

at the other end of the channel. For example:

DEFINE CHANNEL (WINNT.OS2.NET) CHLTYPE(SDR) +

 TRPTYPE(NETBIOS) +

 CONNAME(WNTNETB2) +

 XMITQ(OS2) +

 MCATYPE(THREAD) +

 REPLACE

You must specify the option MCATYPE(THREAD) because, on Windows, sender

channels must be run as threads.

5. At the receiving end, define the corresponding receiver channel. For example:

DEFINE CHANNEL (WINNT.OS2.NET) CHLTYPE(RCVR) +

 TRPTYPE(NETBIOS) +

 REPLACE

6. Start the channel initiator because each new channel is started as a thread

rather than as a new process.

runmqchi

7. At the receiving end, start the WebSphere MQ listener:

runmqlsr -t netbios

Optionally you may specify values for the queue manager name, NetBIOS local

name, number of sessions, number of names, and number of commands. See

“Defining a NetBIOS connection” on page 124 for more information about

setting up NetBIOS connections.

Establishing an SPX connection

An SPX connection applies only to a client and server running Windows XP and

Windows 2003 Server.

This section discusses the following topics:

v IPX/SPX parameters

v SPX addressing

v Receiving on SPX

Chapter 3. DQM in WebSphere MQ for Windows and Unix platforms 143

IPX/SPX parameters

Please refer to the Microsoft documentation for full details of the use and setting of

the NWLink IPX and SPX parameters. The IPX/SPX parameters are in the

following paths in the registry:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Service\NWLinkSPX\Parameters

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Service\NWLinkIPX\Parameters

SPX addressing

WebSphere MQ uses the SPX address of each machine to establish connectivity.

The SPX address is specified in the following form:

 network.node(socket)

where

network

Is the 4-byte network address of the network on which the remote machine

resides,

node Is the 6-byte node address, which is the LAN address of the LAN adapter

in the remote machine

socket Is the 2-byte socket number on which the remote machine will listen.

The default socket number used by WebSphere MQ is 5E86. You can change the

default socket number by specifying it in the the Windows registry or in the queue

manager configuration file qm.ini. The lines in the Windows registry might read:

SPX:

 SOCKET=n

For more information about values you can set in qm.ini, see Chapter 8,

“Configuration file stanzas for distributed queuing,” on page 491.

The SPX address is later specified in the CONNAME parameter of the sender

channel definition. If the WebSphere MQ systems being connected reside on the

same network, the network address need not be specified. Similarly, if the remote

system is listening on the default socket number (5E86), it need not be specified. A

fully qualified SPX address in the CONNAME parameter would be:

 CONNAME(’network.node(socket)’)

but if the systems reside on the same network and the default socket number is

used, the parameter would be:

 CONNAME(node)

A detailed example of the channel configuration parameters is given in

“WebSphere MQ for Windows configuration” on page 145.

Receiving on SPX

Receiving channel programs are started in response to a startup request from the

sending channel. To do this, a listener program has to be started to detect incoming

network requests and start the associated channel.

You should use the WebSphere MQ listener.

Using the WebSphere MQ listener:

144 WebSphere MQ: Intercommunication

To run the Listener supplied with WebSphere MQ, that starts new channels as

threads, use the RUNMQLSR command. For example:

RUNMQLSR -t spx

Optionally you may specify the queue manager name or the socket number if you

are not using the defaults.

WebSphere MQ for Windows configuration

Note:

1. You can use the sample program, AMQSBCG, to display the contents and

headers of all the messages in a queue. For example:

AMQSBCG q_name qmgr_name

displays the contents of the queue q_name defined in queue manager qmgr_name.

Alternatively, you can use the message browser in the WebSphere MQ Explorer.

2. You can start any channel from the command prompt using the command

runmqchl -c channel.name

3. Error logs can be found in the directories mqmtop\qmgrs\qmgrname\errors and

mqmtop\qmgrs\@system\errors. In both cases, the most recent messages are at

the end of amqerr01.log.

4. When you are using the command interpreter runmqsc to enter administration

commands, a + at the end of a line indicates that the next line is a continuation.

Ensure that there is a space between the last parameter and the continuation

character.

Default configuration

You can create a default configuration by using the WebSphere MQ Postcard

application to guide you through the process. For information about this, see the

WebSphere MQ System Administration Guide book.

Basic configuration

You can create and start a queue manager from the WebSphere MQ Explorer or

from the command prompt.

If you choose the command prompt:

1. Create the queue manager using the command:

crtmqm -u dlqname -q winnt

where:

winnt Is the name of the queue manager

-q Indicates that this is to become the default queue manager

-u dlqname

Specifies the name of the undeliverable message queue
This command creates a queue manager and a set of default objects.

2. Start the queue manager using the command:

strmqm winnt

where winnt is the name given to the queue manager when it was created.

Chapter 3. DQM in WebSphere MQ for Windows and Unix platforms 145

Channel configuration

The following sections detail the configuration to be performed on the Windows

queue manager to implement the channel described in Figure 32 on page 101.

In each case the MQSC command is shown. Either start runmqsc from a command

prompt and enter each command in turn, or build the commands into a command

file.

Examples are given for connecting WebSphere MQ for Windows and WebSphere

MQ for AIX. If you wish to connect to WebSphere MQ on another platform use the

appropriate set of values from the table in place of those for Windows.

Note: The words in bold are user-specified and reflect the names of WebSphere

MQ objects used throughout these examples. If you change the names used here,

ensure that you also change the other references made to these objects throughout

this book. All others are keywords and should be entered as shown.

 Table 14. Configuration worksheet for WebSphere MQ for Windows

Parameter Name Reference Example Used User Value

Definition for local node

A Queue Manager Name WINNT

B Local queue name WINNT.LOCALQ

Connection to WebSphere MQ for AIX

The values in this section of the table must match those used in Table 18 on page 168, as indicated.

C Remote queue manager name A AIX

D Remote queue name AIX.REMOTEQ

E Queue name at remote system B AIX.LOCALQ

F Transmission queue name AIX

G Sender (SNA) channel name WINNT.AIX.SNA

H Sender (TCP) channel name WINNT.AIX.TCP

I Receiver (SNA) channel name G AIX.WINNT.SNA

J Receiver (TCP) channel name H AIX.WINNT.TCP

Connection to MQSeries for HP Tru64 UNIX

The values in this section of the table must match those used in your HP Tru64 UNIX system.

C Remote queue manager name A DECUX

D Remote queue name DECUX.REMOTEQ

E Queue name at remote system B DECUX.LOCALQ

F Transmission queue name DECUX

H Sender (TCP) channel name DECUX.WINNT.TCP

J Receiver (TCP) channel name H WINNT.DECUX.TCP

Connection to WebSphere MQ for HP-UX

The values in this section of the table must match those used in Table 20 on page 191, as indicated.

C Remote queue manager name A HPUX

D Remote queue name HPUX.REMOTEQ

E Queue name at remote system B HPUX.LOCALQ

146 WebSphere MQ: Intercommunication

Table 14. Configuration worksheet for WebSphere MQ for Windows (continued)

Parameter Name Reference Example Used User Value

F Transmission queue name HPUX

G Sender (SNA) channel name WINNT.HPUX.SNA

H Sender (TCP) channel name WINNT.HPUX.TCP

I Receiver (SNA) channel name G HPUX.WINNT.SNA

J Receiver (TCP/IP) channel name H HPUX.WINNT.TCP

Connection to WebSphere MQ for Solaris

The values in this section of the table must match those used in Table 22 on page 212, as indicated.

C Remote queue manager name A SOLARIS

D Remote queue name SOLARIS.REMOTEQ

E Queue name at remote system B SOLARIS.LOCALQ

F Transmission queue name SOLARIS

G Sender (SNA) channel name WINNT.SOLARIS.SNA

H Sender (TCP) channel name WINNT.SOLARIS.TCP

I Receiver (SNA) channel name G SOLARIS.WINNT.SNA

J Receiver (TCP) channel name H SOLARIS.WINNT.TCP

Connection to WebSphere MQ for Linux

The values in this section of the table must match those used in Table 24 on page 235, as indicated.

C Remote queue manager name A LINUX

D Remote queue name LINUX.REMOTEQ

E Queue name at remote system B LINUX.LOCALQ

F Transmission queue name LINUX

G Sender (SNA) channel name WINNT.LINUX.SNA

H Sender (TCP) channel name WINNT.LINUX.TCP

I Receiver (SNA) channel name G LINUX.WINNT.SNA

J Receiver (TCP) channel name H LINUX.WINNT.TCP

Connection to WebSphere MQ for i5/OS

The values in this section of the table must match those used in Table 36 on page 364, as indicated.

C Remote queue manager name A AS400

D Remote queue name AS400.REMOTEQ

E Queue name at remote system B AS400.LOCALQ

F Transmission queue name AS400

G Sender (SNA) channel name WINNT.AS400.SNA

H Sender (TCP) channel name WINNT.AS400.TCP

I Receiver (SNA) channel name G AS400.WINNT.SNA

J Receiver (TCP) channel name H AS400.WINNT.TCP

Connection to WebSphere MQ for z/OS

The values in this section of the table must match those used in Table 28 on page 272, as indicated.

C Remote queue manager name A MVS

D Remote queue name MVS.REMOTEQ

Chapter 3. DQM in WebSphere MQ for Windows and Unix platforms 147

Table 14. Configuration worksheet for WebSphere MQ for Windows (continued)

Parameter Name Reference Example Used User Value

E Queue name at remote system B MVS.LOCALQ

F Transmission queue name MVS

G Sender (SNA) channel name WINNT.MVS.SNA

H Sender (TCP) channel name WINNT.MVS.TCP

I Receiver (SNA) channel name G MVS.WINNT.SNA

J Receiver (TCP/IP) channel name H MVS.WINNT.TCP

Connection to WebSphere MQ for z/OS using queue-sharing groups

The values in this section of the table must match those used in Table 30 on page 292, as indicated.

C Remote queue manager name A QSG

D Remote queue name QSG.REMOTEQ

E Queue name at remote system B QSG.SHAREDQ

F Transmission queue name QSG

G Sender (SNA) channel name WINNT.QSG.SNA

H Sender (TCP) channel name WINNT.QSG.TCP

I Receiver (SNA) channel name G QSG.WINNT.SNA

J Receiver (TCP/IP) channel name H QSG.WINNT.TCP

Connection to MQSeries for VSE/ESA

The values in this section of the table must match those used in your VSE/ESA system.

C Remote queue manager name A VSE

D Remote queue name VSE.REMOTEQ

E Queue name at remote system B VSE.LOCALQ

F Transmission queue name VSE

G Sender channel name WINNT.VSE.SNA

I Receiver channel name G VSE.WINNT.SNA

WebSphere MQ for Windows sender-channel definitions using SNA:

def ql (AIX) + F

 usage(xmitq) +

 replace

def qr (AIX.REMOTEQ) + D

 rname(AIX.LOCALQ) + E

 rqmname(AIX) + C

 xmitq(AIX) + F

 replace

def chl (WINNT.AIX.SNA) chltype(sdr) + G

 trptype(lu62) +

 conname(AIXCPIC) + 18

 xmitq(AIX) + F

 replace

WebSphere MQ for Windows receiver-channel definitions using SNA:

148 WebSphere MQ: Intercommunication

def ql (WINNT.LOCALQ) replace B

def chl (AIX.WINNT.SNA) chltype(rcvr) + I

 trptype(lu62) +

 replace

WebSphere MQ for Windows sender-channel definitions using TCP/IP:

def ql (AIX) + F

 usage(xmitq) +

 replace

def qr (AIX.REMOTEQ) + D

 rname(AIX.LOCALQ) + E

 rqmname(AIX) + C

 xmitq(AIX) + F

 replace

def chl (WINNT.AIX.TCP) chltype(sdr) + H

 trptype(tcp) +

 conname(remote_tcpip_hostname) +

 xmitq(AIX) + F

 replace

WebSphere MQ for Windows receiver-channel definitions using TCP:

def ql (WINNT.LOCALQ) replace B

def chl (AIX.WINNT.TCP) chltype(rcvr) + J

 trptype(tcp) +

 replace

Automatic startup

WebSphere MQ for Windows allows you to automate the startup of a queue

manager and its channel initiator, channels, listeners, and command servers. Use

the IBM WebSphere MQ Services snap-in to define the services for the queue

manager. When you have successfully completed testing of your communications

setup, set the relevant services to automatic within the snap-in. This file can be

read by the supplied WebSphere MQ service when the system is started.

For more information about this, see the WebSphere MQ System Administration

Guide book.

Running channels as processes or threads

WebSphere MQ for Windows provides the flexibility to run sending channels as

Windows processes or Windows threads. This is specified in the MCATYPE

parameter on the sender channel definition.

Most installations will select to run their sending channels as threads, because the

virtual and real memory required to support a large number of concurrent channel

connections will be reduced. However, a NetBIOS connection needs a separate

process for the sending Message Channel Agent.

Multiple thread support — pipelining

You can optionally allow a message channel agent (MCA) to transfer messages

using multiple threads. This process, called pipelining, enables the MCA to transfer

messages more efficiently, with fewer wait states, which improves channel

performance. Each MCA is limited to a maximum of two threads.

Chapter 3. DQM in WebSphere MQ for Windows and Unix platforms 149

You control pipelining with the PipeLineLength parameter in the qm.ini file. This

parameter is added to the CHANNELS stanza:

PipeLineLength=1|number

This attribute specifies the maximum number of concurrent threads a

channel will use. The default is 1. Any value greater than 1 will be treated

as 2.

With WebSphere MQ for Windows, use the WebSphere MQ Explorer to set the

PipeLineLength parameter in the registry. Refer to the WebSphere MQ System

Administration Guide book for a complete description of the CHANNELS stanza.

Note:

1. PipeLineLength applies only to V5.2 or later products.

2. Pipelining is effective only for TCP/IP channels.

When you use pipelining, the queue managers at both ends of the channel must be

configured to have a PipeLineLength greater than 1.

Channel exit considerations:

 Note that pipelining can cause some exit programs to fail, because:

v Exits might not be called serially.

v Exits might be called alternately from different threads.

Check the design of your exit programs before you use pipelining:

v Exits must be reentrant at all stages of their execution.

v When you use MQI calls, remember that you cannot use the same MQI handle

when the exit is invoked from different threads.

Consider a message exit that opens a queue and uses its handle for MQPUT calls

on all subsequent invocations of the exit. This fails in pipelining mode because the

exit is called from different threads. To avoid this failure, keep a queue handle for

each thread and check the thread identifier each time the exit is invoked.

Setting up communication on UNIX systems

When a distributed-queuing management channel is started, it tries to use the

connection specified in the channel definition. For this to succeed, it is necessary

for the connection to be defined and available. This chapter explains how to do

this. You might also find it helpful to refer to the following chapters:

v “Example configuration - IBM WebSphere MQ for AIX” on page 155

v “Example configuration - IBM WebSphere MQ for HP-UX” on page 172

v “Example configuration - IBM WebSphere MQ for Solaris” on page 194

v “Example configuration - IBM WebSphere MQ for Linux” on page 215

For Windows, see “Setting up communication for Windows” on page 120.

Deciding on a connection

There are two forms of communication for WebSphere MQ on UNIX systems:

v TCP

v LU 6.2

150 WebSphere MQ: Intercommunication

Each channel definition must specify one only as the transmission protocol

(Transport Type) attribute. One or more protocols may be used by a queue

manager.

For WebSphere MQ clients, it may be useful to have alternative channels using

different transmission protocols. See the WebSphere MQ Clients book.

Defining a TCP connection

The channel definition at the sending end specifies the address of the target. The

listener or inet daemon is configured for the connection at the receiving end.

Sending end

Specify the host name, or the TCP address of the target machine, in the Connection

Name field of the channel definition. The port to connect to will default to 1414.

Port number 1414 is assigned by the Internet Assigned Numbers Authority to

WebSphere MQ.

To use a port number other than the default, change the connection name field

thus:

Connection Name REMHOST(1822)

where REMHOST is the hostname of the remote machine and 1822 is the port number

required. (This must be the port that the listener at the receiving end is listening

on.)

Alternatively you can change the port number by specifying it in the queue

manager configuration file (qm.ini):

TCP:

 Port=1822

For more information about the values you set using qm.ini, see Chapter 8,

“Configuration file stanzas for distributed queuing,” on page 491.

Receiving on TCP

You can use either the TCP/IP listener, which is the inet daemon (inetd), or the

WebSphere MQ listener.

Some Linux distributions now use the extended inet daemon (xinetd) instead of

the inet daemon. For information about how to use the extended inet daemon on a

Linux system, see “Using the extended inet daemon (XINETD)” on page 233.

Using the TCP/IP listener:

 To start channels on UNIX, the /etc/services file and the inetd.conf file must be

edited, following the instructions below:

1. Edit the /etc/services file:

Note: To edit the /etc/services file, you must be logged in as a superuser or

root. You can change this, but it must match the port number specified at the

sending end.
Add the following line to the file:

MQSeries 1414/tcp

Chapter 3. DQM in WebSphere MQ for Windows and Unix platforms 151

where 1414 is the port number required by WebSphere MQ.

2. Add a line in the inetd.conf file to call the program amqcrsta:

MQSeries stream tcp nowait mqm /mqmtop/bin/amqcrsta amqcrsta

[-m Queue_Man_Name]

The updates are active after inetd has reread the configuration files. To do this,

issue the following commands from the root user ID:

v On AIX:

refresh -s inetd

v On HP-UX, from the mqm user ID:

inetd -c

v On Solaris 10 or later:

inetconv

v On other UNIX systems (including Solaris 9):

kill -1 <process number>

When the listener program started by inetd inherits the locale from inetd, it is

possible that the MQMDE will not be honored (merged) and will be placed on the

queue as message data. To ensure that the MQMDE is honored, you must set the

locale correctly. The locale set by inetd may not match that chosen for other locales

used by WebSphere MQ processes. To set the locale:

1. Create a shell script which sets the locale environment variables LANG,

LC_COLLATE, LC_CTYPE, LC_MONETARY, LC_NUMERIC, LC_TIME, and

LC_MESSAGES to the locale used for other WebSphere MQ process.

2. In the same shell script, call the listener program.

3. Modify the inetd.conf file to call your shell script in place of the listener

program.

It is possible to have more than one queue manager on the server machine. You

must add a line to each of the two files, as above, for each of the queue managers.

For example:

MQSeries1 1414/tcp

MQSeries2 1822/tcp

MQSeries2 stream tcp nowait mqm /mqmtop/bin/amqcrsta amqcrsta -m QM2

This avoids error messages being generated if there is a limitation on the number

of outstanding connection requests queued at a single TCP port. For information

about the number of outstanding connection requests, see “Using the TCP listener

backlog option.”

Using the TCP listener backlog option:

 In TCP, connections are treated incomplete unless three-way handshake takes place

between the server and the client. These connections are called outstanding

connection requests. A maximum value is set for these outstanding connection

requests. This can be considered a backlog of requests waiting on the TCP port for

the listener to accept the request. The default listener backlog values are shown in

Table 15.

 Table 15. Maximum outstanding connection requests queued at a TCP/IP port

Server platform Maximum connection

requests

AIX 100

152 WebSphere MQ: Intercommunication

Table 15. Maximum outstanding connection requests queued at a TCP/IP port (continued)

Server platform Maximum connection

requests

HP-UX 20

Linux 100

i5/OS 255

Solaris 128

Windows Server 200

Windows Workstation 5

z/OS 255

If the backlog reaches the values shown in Table 15 on page 152, the TCP/IP

connection is rejected and the channel will not be able to start.

For MCA channels, this results in the channel going into a RETRY state and

retrying the connection at a later time.

However, to avoid this error, you can add an entry in the qm.ini file:

TCP:

ListenerBacklog = n

This overrides the default maximum number of outstanding requests (see Table 15

on page 152) for the TCP/IP listener.

Note: Some operating systems support a larger value than the default. If necessary,

this can be used to avoid reaching the connection limit.

To run the listener with the backlog option switched on either:

v Use the runmqlsr -b command, or

v Use the MQSC command DEFINE LISTENER with the BACKLOG attribute set

to the desired value.

For information about the runmqlsr command, see the WebSphere MQ System

Administration Guide book. For information about the DEFINE LISTENER

command, see the WebSphere MQ Script (MQSC) Command Reference.

Using the WebSphere MQ listener:

 To run the listener supplied with WebSphere MQ, which starts new channels as

threads, use the runmqlsr command. For example:

runmqlsr -t tcp [-m QMNAME] [-p 1822]

The square brackets indicate optional parameters; QMNAME is not required for the

default queue manager, and the port number is not required if you are using the

default (1414).

For the best performance, run the WebSphere MQ listener as a trusted application

as described in “Running channels and listeners as trusted applications” on page

119. See the WebSphere MQ Application Programming Guide for information

about trusted applications.

Chapter 3. DQM in WebSphere MQ for Windows and Unix platforms 153

You can stop all WebSphere MQ listeners running on a queue manager that is

inactive, using the command:

endmqlsr [-m QMNAME]

If you do not specify a queue manager name, the default queue manager is

assumed.

Using the TCP/IP SO_KEEPALIVE option:

 If you want to use the SO_KEEPALIVE option (as discussed in “Checking that the

other end of the channel is still available” on page 61) you must the add the

following entry to your queue manager configuration file (qm.ini):

TCP:

 KeepAlive=yes

On some UNIX systems, you can define how long TCP waits before checking that

the connection is still available, and how frequently it retries the connection if the

first check fails. This is either a kernel tunable parameter, or can be entered at the

command line. See the documentation for your UNIX system for more information.

Defining an LU 6.2 connection

SNA must be configured so that an LU 6.2 conversation can be established

between the two machines.

See the Multiplatform APPC Configuration Guide and the following table for

information.

 Table 16. Settings on the local UNIX system for a remote queue manager platform

Remote platform TPNAME TPPATH

z/OS without

CICS

The same as the corresponding

TPName in the side information on

the remote queue manager.

-

z/OS using CICS CKRC (sender) CKSV (requester)

CKRC (server)

-

i5/OS The same as the compare value in

the routing entry on the i5/OS

system.

-

UNIX systems The same as the corresponding

TPName in the side information on

the remote queue manager.

mqmtop/bin/amqcrs6a

Windows As specified in the Windows Run

Listener command, or the

invokable Transaction Program

that was defined using TpSetup on

Windows.

mqmtop\bin\amqcrs6a

If you have more than one queue manager on the same machine, ensure that the

TPnames in the channel definitions are unique.

Sending end

v On UNIX systems, create a CPI-C side object (symbolic destination) and enter

this name in the Connection name field in the channel definition. Also create an

LU 6.2 link to the partner.

154 WebSphere MQ: Intercommunication

In the CPI-C side object enter the partner LU name at the receiving machine, the

transaction program name and the mode name. For example:

Partner LU Name REMHOST

Remote TP Name recv

Service Transaction Program no

Mode Name #INTER

On HP-UX, use the APPCLLU environment variable to name the local LU that

the sender should use. On Solaris, set the APPC_LOCAL_LU environment

variable to be the local LU name.

SECURITY PROGRAM is used, where supported by CPI-C, when WebSphere

MQ attempts to establish an SNA session.

Receiving on LU 6.2

v On UNIX systems, create a listening attachment at the receiving end, an LU 6.2

logical connection profile, and a TPN profile.

In the TPN profile, enter the full path to the executable and the Transaction

Program name:

Full path to TPN executable mqmtop/bin/amqcrs6a

Transaction Program name recv

User ID 0

On systems where you can set the User ID, you should specify a user who is a

member of the mqm group. On AIX, Solaris, and HP-UX, set the APPCTPN

(transaction name) and APPCLLU (local LU name) environment variables (you

can use the configuration panels for the invoked transaction program).

You may need to use a queue manager other than the default queue manager. If

so, define a command file that calls:

amqcrs6a -m Queue_Man_Name

then call the command file.

Example configuration - IBM WebSphere MQ for AIX

This chapter gives an example of how to set up communication links from

WebSphere MQ for AIX to WebSphere MQ products on the following platforms:

v Windows

v HP Tru64 UNIX

v HP-UX

v Solaris

v Linux

v i5/OS

v z/OS

v VSE/ESA

First it describes the parameters needed for an LU 6.2 connection, then it describes

“Establishing a TCP connection” on page 166.

Once the connection is established, you need to define some channels to complete

the configuration. This is described in “WebSphere MQ for AIX configuration” on

page 167.

See “Example configuration chapters in this book” on page 101 for background

information about this chapter and how to use it.

Chapter 3. DQM in WebSphere MQ for Windows and Unix platforms 155

Configuration parameters for an LU 6.2 connection

Table 17 presents a worksheet listing all the parameters needed to set up

communication from AIX to one of the other WebSphere MQ platforms. The

worksheet shows examples of the parameters, which have been tested in a

working environment, and leaves space for you to fill in your own values. An

explanation of the parameter names follows the worksheet. Use the worksheet in

this chapter in conjunction with the worksheet in the chapter for the platform to

which you are connecting.

Configuration worksheet

Use the following worksheet to record the values you will use for this

configuration. Where numbers appear in the Reference column they indicate that

the value must match that in the appropriate worksheet elsewhere in this book.

The examples that follow in this chapter refer back to the values in the ID column

of this table. The entries in the Parameter Name column are explained in

“Explanation of terms” on page 159.

 Table 17. Configuration worksheet for Communications Server for AIX

ID Parameter Name Reference Example User Value

Parameters for local node

1 Network name NETID

2 Control Point name AIXPU

3 Node ID 07123456

4 Local LU name AIXLU

5 Local LU alias AIXQMGR

6 TP Name MQSERIES

7 Full path to TP executable usr/lpp/mqm/bin/amqcrs6a

8 Token-ring adapter address 123456789012

9 Mode name #INTER

Connection to a Windows system

The values in this section of the table must match those used in Table 13 on page 130, as indicated.

10 Network name 2 NETID

11 Remote LU name 5 WINNTLU

12 Remote Transaction Program

name

7 MQSERIES

13 LU 6.2 CPI-C Side Information

profile name

NTCPIC

14 Mode name 17 #INTER

15 LAN destination address 9 08005AA5FAB9

16 Token-Ring Link Station

profile name

NTPRO

17 CP name of adjacent node 3 WINNTCP

18 LU 6.2 partner LU profile

name

NTLUPRO

Connection to an HP-UX system

The values in this section of the table must match those used in Table 19 on page 172, as indicated.

156 WebSphere MQ: Intercommunication

Table 17. Configuration worksheet for Communications Server for AIX (continued)

ID Parameter Name Reference Example User Value

10 Network name 4 NETID

11 Remote LU name 5 HPUXLU

12 Remote Transaction Program

name

7 MQSERIES

13 LU 6.2 CPI-C Side Information

profile name

HPUXCPIC

14 Mode name 6 #INTER

15 LAN destination address 8 100090DC2C7C

16 Token-Ring Link Station

profile name

HPUXPRO

17 CP name of adjacent node 2 HPUXPU

18 LU 6.2 partner LU profile

name

HPUXLUPRO

Connection to a Solaris system

The values in this section of the table must match those used in Table 21 on page 195, as indicated.

10 Network name 2 NETID

11 Remote LU name 7 SOLARLU

12 Remote Transaction Program

name

8 MQSERIES

17 LU 6.2 CPI-C Side Information

profile name

SOLCPIC

14 Mode name 17 #INTER

5 LAN destination address 5 08002071CC8A

16 Token-Ring Link Station

profile name

SOLPRO

17 CP name of adjacent node 3 SOLARPU

18 LU 6.2 partner LU profile

name

SOLLUPRO

Connection to a Linux (x86 platform) system

The values in this section of the table must match those used in Configuration worksheet for Communications

Server for Linux, as indicated.

10 Network name 4 NETID

11 Remote LU name 5 LINUXLU

12 Remote Transaction Program

name

7 MQSERIES

17 LU 6.2 CPI-C Side Information

profile name

LXCPIC

14 Mode name 6 #INTER

5 LAN destination address 8 08005AC6DF33

16 Token-Ring Link Station

profile name

LXPRO

17 CP name of adjacent node 2 LINUXPU

Chapter 3. DQM in WebSphere MQ for Windows and Unix platforms 157

ic14170_.dita#ic14170_/ic14170_1
ic14170_.dita#ic14170_/ic14170_1

Table 17. Configuration worksheet for Communications Server for AIX (continued)

ID Parameter Name Reference Example User Value

18 LU 6.2 partner LU profile

name

LXLUPRO

Connection to an i5/OS system

The values in this section of the table must match those used in Table 35 on page 351, as indicated.

10 Network name 1 NETID

11 Remote LU name 3 AS400LU

12 Remote Transaction Program

name

8 MQSERIES

13 LU 6.2 CPI-C Side Information

profile name

AS4CPIC

14 Mode name 17 #INTER

15 LAN destination address 4 10005A5962EF

16 Token-Ring Link Station

profile name

AS4PRO

17 CP name of adjacent node 2 AS400PU

18 LU 6.2 partner LU profile

name

AS4LUPRO

Connection to a z/OS system

The values in this section of the table must match those used in Table 27 on page 267, as indicated.

10 Network name 2 NETID

11 Remote LU name 4 MVSLU

12 Remote Transaction Program

name

7 MQSERIES

13 LU 6.2 CPI-C Side Information

profile name

MVSCPIC

14 Mode name 10 #INTER

15 LAN destination address 6 400074511092

16 Token-Ring Link Station

profile name

MVSPRO

17 CP name of adjacent node 3 MVSPU

18 LU 6.2 partner LU profile

name

MVSLUPRO

Connection to a z/OS system using a generic interface

The values in this section of the table must match those used in Table 27 on page 267, as indicated.

10 Network name 2 NETID

11 Remote LU name 10 MVSGR

12 Remote Transaction Program

name

7 MQSERIES

13 LU 6.2 CPI-C Side Information

profile name

MVSCPIC

14 Mode name 6 #INTER

15 LAN destination address 8 400074511092

158 WebSphere MQ: Intercommunication

Table 17. Configuration worksheet for Communications Server for AIX (continued)

ID Parameter Name Reference Example User Value

16 Token-Ring Link Station

profile name

MVSPRO

17 CP name of adjacent node 3 MVSPU

18 LU 6.2 partner LU profile

name

MVSLUPRO

Connection to a VSE/ESA system

The values in this section of the table must match those used in your VSE/ESA system.

10 Network name 1 NETID

11 Remote LU name 3 VSELU

12 Remote Transaction Program

name

4 MQ01

13 LU 6.2 CPI-C Side Information

profile name

VSECPIC

14 Mode name #INTER

15 LAN destination address 5 400074511092

16 Token-Ring Link Station

profile name

VSEPRO

17 CP name of adjacent node 2 VSEPU

18 LU 6.2 partner LU profile

name

VSELUPRO

Explanation of terms

1 Network name

This is the unique ID of the network to which you are connected. Your

network administrator will tell you this value.

2 Control Point name

This is a unique control point name for this workstation. Your network

administrator will assign this to you.

3 XID node ID

This is a unique identifier for this workstation. On other platforms it is

often referred to as the exchange ID (XID). Your network administrator will

assign this to you.

4 Local LU name

A logical unit (LU) manages the exchange of data between systems. The

local LU name is the name of the LU on your system. Your network

administrator will assign this to you.

5 Local LU alias

The local LU alias is the name by which your local LU is known to your

applications. You can choose this name yourself. It need be unique only on

this machine.

6 TP Name

WebSphere MQ applications trying to converse with this workstation will

specify a symbolic name for the program to be run at the receiving end.

This will have been defined on the channel definition at the sender. It is

recommended that when AIX is the receiver a Transaction Program Name

Chapter 3. DQM in WebSphere MQ for Windows and Unix platforms 159

of MQSERIES is used, or in the case of a connection to VSE/ESA, where

the length is limited to 4 bytes, use MQTP.

 See Table 16 on page 154 for more information.

7 Full path to TP executable

This is the path and name of a shell script file that invokes the actual

program to be run when a conversation is initiated with this workstation.

You can choose the path and name of the script file. The contents of the

file are illustrated in “WebSphere MQ for AIX TPN setup” on page 171.

8 Token-ring adapter address

This is the 12-character hex address of the token-ring card. It can be found

by entering the AIX command:

lsfg -v -l tokn

where n is the number assigned to the token-ring adapter you are using.

The Network Address field of the Token-Ring section indicates the

adapter’s address.

9 Mode name

This is the name of a configuration profile used by Communications Server

for AIX. The profile contains the set of parameters that control the APPC

conversation. The mode name specified in the profile will be assigned to

you by your network administrator. You supply the name to be used for

the profile.

13 LU 6.2 CPI-C Side Information profile name

This is a name given to the Side Information profile defining a partner

node. You supply the name. It needs to be unique only on this machine.

You will later use the name in the WebSphere MQ sender channel

definition.

16 Token-Ring Link Station profile name

This is the name of a configuration profile used by Communications Server

for AIX. You supply the name to be used for the profile. The link station

profile associates the link station with the SNA DLC profile, which has

been used to define the hardware adapter and link characteristics, and the

node control point.

17 CP name of adjacent node

This is the unique control point name of the partner system which which

you are establishing communication. Your network administrator will

assign this to you.

18 LU 6.2 partner LU profile name

This is the name of a configuration profile used by Communications Server

for AIX. You supply the name to be used for the profile. It needs to be

unique only on this machine. The profile defines parameters for

establishing a session with a specific partner LU. In some scenarios, this

profile may not be required but it is shown here to reduce the likelihood of

error. See the SNA Server for AIX Configuration Reference manual for details.

Establishing a session using Communications Server for AIX

Verify the level of Communications Server software you have installed by entering

the AIX command:

lslpp -h sna.rte

160 WebSphere MQ: Intercommunication

The level displayed in the response needs to be at least Version 5.0.

To update the SNA configuration profile, you need root authority. (Without root

authority you can display options and appear to modify them, but cannot actually

make any changes.) You can make configuration changes when SNA is either

active or inactive.

The configuration scenario that follows was accomplished using the graphical

interface.

Note: The setup used is APPN using independent LUs.

If you are an experienced user of AIX, you may choose to circumvent the panels

and use the command-line interface. Refer to the SNA Server for AIX Configuration

Reference manual to see the commands that correspond to the panels illustrated.

Throughout the following example, only the panels for profiles that must be added

or updated are shown.

Configuring your node

This configuration uses a token ring setup. To define the end node to connect to

the network node (assuming that a network node already exists), you need to:

1. Click on Services from the main menu on the main window.

2. Select Configuration node parameters ... from the drop-down list. A window

entitled Node parameters appears:

3. Click on End node for APPN support.

4. In the SNA addressing box, enter a name and alias for the Control point. The

Control point name consists of a Network name (1) and a Control point name

(2).

5. Enter the Node ID (3) of your local machine.

6. Click on OK.

You have now configured your node to connect to the network node.

Configuring connectivity to the network

1. Defining your port:

a. From the main menu of the main window, click on Services, Connectivity,

and New port ... A window entitled Add to machine name screen appears.

Chapter 3. DQM in WebSphere MQ for Windows and Unix platforms 161

b. Select the default card for connecting to the network (Token ring card).

c. Click on OK. A window entitled Token ring SAP appears:

d. Enter a port name in the SNA port name box, for example, MQPORT.

e. Check Initially Active.

f. Click on OK.
2. Defining your connection to the network node:

a. From the main menu on the main window, click on Services, Connectivity,

and New link station ...

b. Click on OK to link your station to the chosen port (MQPORT). A window

entitled Token ring link station appears:

162 WebSphere MQ: Intercommunication

c. Enter a name for your link station (4), for example, NETNODE.

d. Enter the port name to which you want to connect the link station. In this

case, the port name would be MQPORT.

e. Check Any in the LU traffic box.

f. Define where the remote node is by entering the control point on the

network node in the Independent LU traffic box. The control point consists

of a Network name (10) and a CP name of adjacent node (17).

Note: The network node does not have to be on the remote system that you

are connecting to.

g. Ensure the Remote node type is Network node.

h. In the Contact information, enter the MAC address (15) of the token ring

card on the network node.

Note: The network node does not have to be on the remote system that you

are connecting to.

i. Click on Advanced A window entitled Token ring parameters appears:

Chapter 3. DQM in WebSphere MQ for Windows and Unix platforms 163

j. Check Remote node is network node server.

k. Click on OK. The Token ring link station window remains on the screen.

l. Click on OK on the Token ring link station window.

Defining a local LU

To define a local LU:

1. From the main menu on the main window, click on Services, APPC, and New

independent local LU A window entitled Local LU appears:

2. Enter an LU name (4) and alias (5).

3. Click on OK.

You have now set up a basic SNA system.

To define the mode controlling the SNA session limits:

1. From the main menu in the main window, click on Services, APPC, and Modes

.... A Modes window appears.

2. Select the New ... button. A window entitled Mode appears:

Figure 33. Local LU window

164 WebSphere MQ: Intercommunication

3. Enter a Name (9) for your mode.

4. When you are happy with the session limits, click on OK. The Modes window

remains on the screen.

5. Click on Done in the Modes window.

Defining a transaction program

WebSphere MQ allows you to use the Communications Server for AIX V5

graphical interface to configure transaction programs.

If you are migrating from a previous version of MQSeries, you should delete any

existing Communications Server definitions of transaction programs that can be

invoked by WebSphere MQ using the following commands:

1. Type

snaadmin delete_tp_load_info.tp_name=xxxxx

2. Then type

snaadmin delete_tp.tp_name=xxxxx

An attempt to invoke a previously defined transaction program results in a SNA

sense code of 084B6031. In addition, error message AMQ9213 is returned. See

WebSphere MQ Messages for more information about this and other WebSphere

MQ messages.

You can then re-create the transaction program definition using the following

instructions

From the main window, click Services, APPC, and Transaction programs ... The

following panel is displayed:

Figure 34. Mode window

Chapter 3. DQM in WebSphere MQ for Windows and Unix platforms 165

1. Type TP name (6) in the Application TP field.

2. Clear the Queue incoming Allocates check box.

3. Type the Full path to executable (7).

4. Type -m Local queue manager in the Arguments field.

5. Type mqm in the User ID and Group ID fields.

6. Enter environment variables APPCLLU=local LU (4) and

APPCTPN=Invokable TP (6) separated by the pipe character in the

Environment field.

7. Click OK.

Establishing a TCP connection

The WebSphere MQ command used to start the WebSphere MQ for TCP listener is:

runmqlsr -t tcp

The listener must be started explicitly before any channels are started. It enables

receiving channels to start automatically in response to a request from an inbound

sending channel.

Alternatively, if you want to use the UNIX supplied TCP/IP listener, complete the

following steps:

1. Edit the file /etc/services.

Note: To edit the /etc/services file, you must be logged in as a superuser or

root. If you do not have the following line in that file, add it as shown:

MQSeries 1414/tcp # MQSeries channel listener

2. Edit the file /etc/inetd.conf. If you do not have the following line in that file,

add it as shown:

166 WebSphere MQ: Intercommunication

MQSeries stream tcp nowait root /usr/mqm/bin/amqcrsta amqcrsta

[-m queue.manager.name]

3. Enter the command refresh -s inetd.

Note: You must add root to the mqm group. You need not have the primary group

set to mqm. As long as mqm is in the set of groups, you can use the commands. If

you are running only applications that use the queue manager you do not need

mqm group authority.

What next?

The connection is now established. You are ready to complete the configuration.

Go to “WebSphere MQ for AIX configuration.”

WebSphere MQ for AIX configuration

Note:

1. Before beginning the installation process ensure that you have first created the

mqm user and group, and set the password.

2. If installation fails as a result of insufficient space in the file system you can

increase the size as follows, using the command smit C sna. (Use df to display

the current status of the file system. This will indicate the logical volume that is

full.)

-- Physical and Logical Storage

 -- File Systems

 -- Add / Change / Show / Delete File Systems

 -- Journaled File Systems

 -- Change/Show Characteristics of a Journaled File System

3. Start any channel using the command:

runmqchl -c channel.name

4. Sample programs are installed in /usr/mqm/samp.

5. Error logs are stored in /var/mqm/qmgrs/qmgrname/errors.

6. On AIX you can start a trace of the WebSphere MQ componnets by using

standard WebSphere MQ trace commands, or using AIX system trace. See

WebSphere MQ System Administration Guide for more information on WebSphere

MQ Trace and AIX system trace.

7. When you are using the command interpreter runmqsc to enter administration

commands, a + at the end of a line indicates that the next line is a continuation.

Ensure that there is a space between the last parameter and the continuation

character.

Basic configuration

1. Create the queue manager from the AIX command line using the command:

crtmqm -u dlqname -q aix

where:

aix Is the name of the queue manager

-q Indicates that this is to become the default queue manager

-u dlqname

Specifies the name of the undeliverable message queue
This command creates a queue manager and a set of default objects.

2. Start the queue manager from the AIX command line using the command:

Chapter 3. DQM in WebSphere MQ for Windows and Unix platforms 167

strmqm aix

where aix is the name given to the queue manager when it was created.

3. Start runmqsc from the AIX command line and use it to create the

undeliverable message queue by entering the command:

def ql (dlqname)

where dlqname is the name given to the undeliverable message queue when the

queue manager was created.

Channel configuration

The following section details the configuration to be performed on the AIX queue

manager to implement the channel described in Figure 32 on page 101.

In each case the MQSC command is shown. Either start runmqsc from an AIX

command line and enter each command in turn, or build the commands into a

command file.

Examples are given for connecting WebSphere MQ for AIX and WebSphere MQ for

Windows. If you wish to connect to WebSphere MQ on another platform use the

appropriate set of values from the table in place of those for Windows.

Note: The words in bold are user-specified and reflect the names of WebSphere

MQ objects used throughout these examples. If you change the names used here,

ensure that you also change the other references made to these objects throughout

this book. All others are keywords and should be entered as shown.

 Table 18. Configuration worksheet for WebSphere MQ for AIX

ID Parameter Name Reference Example Used User Value

Definition for local node

A Queue Manager Name AIX

B Local queue name AIX.LOCALQ

Connection to WebSphere MQ for Windows

The values in this section of the table must match those used in Table 14 on page 146, as indicated.

C Remote queue manager name A WINNT

D Remote queue name WINNT.REMOTEQ

E Queue name at remote system B WINNT.LOCALQ

F Transmission queue name WINNT

G Sender (SNA) channel name AIX.WINNT.SNA

H Sender (TCP/IP) channel name AIX.WINNT.TCP

I Receiver (SNA) channel name G WINNT.AIX.SNA

J Receiver (TCP) channel name H WINNT.AIX.TCP

Connection to MQSeries for HP Tru64 UNIX

The values in this section of the table must match those used in your HP Tru64 UNIX system.

C Remote queue manager name A DECUX

D Remote queue name DECUX.REMOTEQ

E Queue name at remote system B DECUX.LOCALQ

F Transmission queue name DECUX

168 WebSphere MQ: Intercommunication

Table 18. Configuration worksheet for WebSphere MQ for AIX (continued)

ID Parameter Name Reference Example Used User Value

H Sender (TCP) channel name DECUX.AIX.TCP

J Receiver (TCP) channel name H AIX.DECUX.TCP

Connection to WebSphere MQ for HP-UX

The values in this section of the table must match those used in Table 20 on page 191, as indicated.

C Remote queue manager name A HPUX

D Remote queue name HPUX.REMOTEQ

E Queue name at remote system B HPUX.LOCALQ

F Transmission queue name HPUX

G Sender (SNA) channel name AIX.HPUX.SNA

H Sender (TCP) channel name AIX.HPUX.TCP

I Receiver (SNA) channel name G HPUX.AIX.SNA

J Receiver (TCP) channel name H HPUX.AIX.TCP

Connection to WebSphere MQ for Solaris

The values in this section of the table must match those used in Table 22 on page 212, as indicated.

C Remote queue manager name A SOLARIS

D Remote queue name SOLARIS.REMOTEQ

E Queue name at remote system B SOLARIS.LOCALQ

F Transmission queue name SOLARIS

G Sender (SNA) channel name AIX.SOLARIS.SNA

H Sender (TCP/IP) channel name AIX.SOLARIS.TCP

I Receiver (SNA) channel name G SOLARIS.AIX.SNA

J Receiver (TCP/IP) channel name H SOLARIS.AIX.TCP

Connection to WebSphere MQ for Linux

The values in this section of the table must match those used in Table 24 on page 235, as indicated.

C Remote queue manager name A LINUX

D Remote queue name LINUX.REMOTEQ

E Queue name at remote system B LINUX.LOCALQ

F Transmission queue name LINUX

G Sender (SNA) channel name AIX.LINUX.SNA

H Sender (TCP/IP) channel name AIX.LINUX.TCP

I Receiver (SNA) channel name G LINUX.AIX.SNA

J Receiver (TCP/IP) channel name H LINUX.AIX.TCP

Connection to WebSphere MQ for i5/OS

The values in this section of the table must match those used in Table 36 on page 364, as indicated.

C Remote queue manager name A AS400

D Remote queue name AS400.REMOTEQ

E Queue name at remote system B AS400.LOCALQ

F Transmission queue name AS400

G Sender (SNA) channel name AIX.AS400.SNA

Chapter 3. DQM in WebSphere MQ for Windows and Unix platforms 169

Table 18. Configuration worksheet for WebSphere MQ for AIX (continued)

ID Parameter Name Reference Example Used User Value

H Sender (TCP) channel name AIX.AS400.TCP

I Receiver (SNA) channel name G AS400.AIX.SNA

J Receiver (TCP) channel name H AS400.AIX.TCP

Connection to WebSphere MQ for z/OS

The values in this section of the table must match those used in Table 28 on page 272, as indicated.

C Remote queue manager name A MVS

D Remote queue name MVS.REMOTEQ

E Queue name at remote system B MVS.LOCALQ

F Transmission queue name MVS

G Sender (SNA) channel name AIX.MVS.SNA

H Sender (TCP) channel name AIX.MVS.TCP

I Receiver (SNA) channel name G MVS.AIX.SNA

J Receiver (TCP) channel name H MVS.AIX.TCP

Connection to WebSphere MQ for z/OS using queue-sharing groups

The values in this section of the table must match those used in Table 30 on page 292, as indicated.

C Remote queue manager name A QSG

D Remote queue name QSG.REMOTEQ

E Queue name at remote system B QSG.SHAREDQ

F Transmission queue name QSG

G Sender (SNA) channel name AIX.QSG.SNA

H Sender (TCP) channel name AIX.QSG.TCP

I Receiver (SNA) channel name G QSG.AIX.SNA

J Receiver (TCP) channel name H QSG.AIX.TCP

Connection to MQSeries for VSE/ESA

The values in this section of the table must match those used in your VSE/ESA system.

C Remote queue manager name A VSE

D Remote queue name VSE.REMOTEQ

E Queue name at remote system B VSE.LOCALQ

F Transmission queue name VSE

G Sender channel name AIX.VSE.SNA

I Receiver channel name G VSE.AIX.SNA

WebSphere MQ for AIX sender-channel definitions using SNA:

def ql (WINNT) + F

 usage(xmitq) +

 replace

def qr (WINNT.REMOTEQ) + D

 rname(WINNT.LOCALQ) + E

 rqmname(WINNT) + C

 xmitq(WINNT) + F

 replace

170 WebSphere MQ: Intercommunication

def chl (AIX.WINNT.SNA) chltype(sdr) + G

 trptype(lu62) +

 conname(’WINNTCPIC’) + 17

 xmitq(WINNT) + F

 replace

WebSphere MQ for AIX receiver-channel definitions using SNA:

def ql (AIX.LOCALQ) replace B

def chl (WINNT.AIX.SNA) chltype(rcvr) + I

 trptype(lu62) +

 replace

WebSphere MQ for AIX TPN setup:

 During the AIX Communications Server configuration process, an LU 6.2 TPN

profile was created, which contained the full path to a TP executable. In the

example the file was called u/interops/AIX.crs6a. You can choose a name, but you

are recommended to include the name of your queue manager in it. The contents

of the executable file must be:

#!/bin/sh

/opt/mqm/bin/amqcrs6a -m aix

where aix is the queue manager name (A). After creating this file, enable it for

execution by running the command:

 chmod 755 /u/interops/AIX.crs6a

As an alternative to creating an executable file, you can specify the path on the

Add LU 6.2 TPN Profile panel, using command line parameters.

Specifying a path in one of these two ways ensures that SNA receiver channels

activate correctly when a sender channel initiates a conversation.

WebSphere MQ for AIX sender-channel definitions using TCP:

def ql (WINNT) + F

 usage(xmitq) +

 replace

def qr (WINNT.REMOTEQ) + D

 rname(WINNT.LOCALQ) + E

 rqmname(WINNT) + C

 xmitq(WINNT) + F

 replace

def chl (AIX.WINNT.TCP) chltype(sdr) + H

 trptype(tcp) +

 conname(remote_tcpip_hostname) +

 xmitq(WINNT) + F

 replace

WebSphere MQ for AIX receiver-channel definitions using TCP:

def ql (AIX.LOCALQ) replace B

def chl (WINNT.AIX.TCP) chltype(rcvr) + J

 trptype(tcp) +

 replace

Chapter 3. DQM in WebSphere MQ for Windows and Unix platforms 171

Example configuration - IBM WebSphere MQ for HP-UX

This chapter gives an example of how to set up communication links from

WebSphere MQ for HP-UX to WebSphere MQ products on the following platforms:

v Windows

v AIX

v HP Tru64 UNIX

v Solaris

v Linux

v i5/OS

v z/OS

v VSE/ESA

First it describes the parameters needed for an LU 6.2 connection, then it describes

“Establishing a session using HP SNAplus2” on page 176 and “Establishing a TCP

connection” on page 189.

Once the connection is established, you need to define some channels to complete

the configuration. This is described in “WebSphere MQ for HP-UX configuration”

on page 190.

See “Example configuration chapters in this book” on page 101 for background

information about this chapter and how to use it.

Configuration parameters for an LU 6.2 connection

Table 19 presents a worksheet listing all the parameters needed to set up

communication from HP-UX to one of the other WebSphere MQ platforms. The

worksheet shows examples of the parameters, which have been tested in a

working environment, and leaves space for you to fill in your own values. An

explanation of the parameter names follows the worksheet. Use the worksheet in

this chapter in conjunction with the worksheet in the chapter for the platform to

which you are connecting.

Configuration worksheet

Use this worksheet to record the values you use for your configuration. Where

numbers appear in the Reference column they indicate that the value must match

that in the appropriate worksheet elsewhere in this book. The examples that follow

in this chapter refer back to the values in the ID column. The entries in the

Parameter Name column are explained in “Explanation of terms” on page 175.

 Table 19. Configuration worksheet for HP SNAplus2

ID Parameter Name Reference Example User Value

Parameters for local node

1 Configuration file name sna_node.cfg

2 Control point name HPUXPU

3 Node ID to send 05D 54321

4 Network name NETID

5 Local APPC LU HPUXLU

6 APPC mode #INTER

172 WebSphere MQ: Intercommunication

Table 19. Configuration worksheet for HP SNAplus2 (continued)

ID Parameter Name Reference Example User Value

7 Invokable TP MQSERIES

8 Token-Ring adapter address 100090DC2C7C

9 Port name MQPORT

10 Full path to executable /opt/mqm/bin/amqcrs6a

11 Local queue manager HPUX

Connection to a Windows system

The values in this section of the table must match those used in Table 13 on page 130, as indicated.

12 Link station name NTCONN

13 Network name 2 NETID

14 CP name 3 WINNTCP

15 Remote LU 5 WINNTLU

16 Application TP 7 MQSERIES

17 Mode name 17 #INTER

18 CPI-C symbolic destination name NTCPIC

19 Remote network address 9 08005AA5FAB9

20 Node ID to receive 4 05D 30F65

Connection to an AIX system

The values in this section of the table must match those used in Table 17 on page 156, as indicated.

12 Link station name AIXCONN

13 Network name 1 NETID

14 CP name 2 AIXPU

15 Remote LU 4 AIXLU

16 Application TP 6 MQSERIES

17 Mode name 14 #INTER

18 CPI-C symbolic destination name AIXCPIC

19 Remote network address 8 123456789012

20 Node ID to receive 3 071 23456

Connection to a Solaris system

The values in this section of the table must match those used in Table 21 on page 195, as indicated.

12 Link station name SOLCONN

13 Network name 2 NETID

14 CP name 3 SOLARPU

15 Remote LU 7 SOLARLU

16 Application TP 8 MQSERIES

17 Mode name 17 #INTER

18 CPI-C symbolic destination name SOLCPIC

19 Remote network address 5 08002071CC8A

20 node ID to receive 6 05D 310D6

Chapter 3. DQM in WebSphere MQ for Windows and Unix platforms 173

Table 19. Configuration worksheet for HP SNAplus2 (continued)

ID Parameter Name Reference Example User Value

Connection to a Linux (x86 platform) system

The values in this section of the table must match those used in Configuration worksheet for Communications

Server for Linux, as indicated.

12 Link station name LXCONN

13 Network name 4 NETID

14 CP name 2 LINUXPU

15 Remote LU 5 LINUXLU

16 Application TP 7 MQSERIES

17 Mode name 6 #INTER

18 CPI-C symbolic destination name LXCPIC

19 Remote network address 8 08005AC6DF33

20 node ID to receive 3 05D 30A55

Connection to an i5/OS system

The values in this section of the table must match those used in Table 35 on page 351, as indicated.

12 Link station name AS4CONN

13 Network name 1 NETID

14 CP name 2 AS400PU

15 Remote LU 3 AS400LU

16 Application TP 8 MQSERIES

17 Mode name 17 #INTER

18 CPI-C symbolic destination name AS4CPIC

19 Remote network address 4 10005A5962EF

Connection to a z/OS system

The values in this section of the table must match those used in Table 27 on page 267, as indicated.

12 Link station name MVSCONN

13 Network name 2 NETID

14 CP name 3 MVSPU

15 Remote LU 4 MVSLU

16 Application TP 7 MQSERIES

17 Mode name 10 #INTER

18 CPI-C symbolic destination name MVSCPIC

19 Remote network address 8 400074511092

Connection to a VSE/ESA system

The values in this section of the table must match those used in your VSE/ESA system.

12 Link station name VSECONN

13 Network name 1 NETID

14 CP name 2 VSEPU

15 Remote LU 3 VSELU

16 Application TP 4 MQ01 MQ01

174 WebSphere MQ: Intercommunication

ic14170_.dita#ic14170_/ic14170_1
ic14170_.dita#ic14170_/ic14170_1

Table 19. Configuration worksheet for HP SNAplus2 (continued)

ID Parameter Name Reference Example User Value

17 Mode name #INTER

18 CPI-C symbolic destination name VSECPIC

19 Remote network address 5 400074511092

Explanation of terms

1 Configuration file name

This is the unique name of the SNAplus2 configuration file. The default for

this name is sna_node.cfg.

 Although it is possible to edit this file it is strongly recommended that

configuration is done using xsnapadmin.

2 Control point name

This is the unique Control point name for this workstation. In the SNA

network, the Control point is an addressable location (PU type 2.1). Your

network administrator will assign this to you.

3 Node ID to send

This is the unique ID of this workstation. On other platforms this is often

referred to as the Exchange ID or XID. Your network administrator will

assign this ID for you.

4 Network name

This is the unique ID of the network to which you are connected. It is an

alphanumeric value and can be 1-8 characters long. The network name

works with the Control point name to uniquely identify a system. Your

network administrator will tell you the value.

5 Local APPC LU

An LU manages the exchange of data between transactions. The local

APPC LU name is the name of the LU on your system. Your network

administrator will assign this to you.

6 APPC mode

This is the name given to the set of parameters that control the APPC

conversation. This name must be defined at each partner system. Your

network administrator will assign this to you.

7 Invokable TP

WebSphere MQ applications trying to converse with this workstation will

specify a symbolic name for the program to be run at the receiving end.

This will have been defined on the channel definition at the sender. For

simplicity, wherever possible use a transaction program name of

MQSERIES, or in the case of a connection to VSE/ESA, where the length is

limited to 4 bytes, use MQTP.

 See Table 16 on page 154 for more information.

8 Token-ring adapter address

Use the HP-UX System Administration Manager (SAM) to discover the

adapter address for this workstation. You need root authority to use SAM.

From the initial menu, select Networking and Communications, then

select Network Interface cards followed by LAN 0 (or whichever LAN

you are using). The adapter address is displayed under the heading Station

Chapter 3. DQM in WebSphere MQ for Windows and Unix platforms 175

Address (hex). The card name represents the appropriate card type. If you

do not have root level authority, your HP-UX system administrator can tell

you the value.

9 Port name

This is a meaningful symbolic name that is used to associate the definitions

with a network interface (in this case, a Token-Ring adapter). A separate

Port must be defined for each physical device attached to the workstation.

10 Full path to executable

On HP SNAplus2 Release 5, this is the path and name of a shell script file

that invokes the actual program to be run when a conversation is initiated

with this workstation. You can choose the path and name of the script file.

The contents of the file are illustrated in “WebSphere MQ for HP-UX

invokable TP setup” on page 193. On HP SNAplus2 Release 6, this is the

path and name of the program to be run when a conversation is initiated

with this workstation. You enter the path in the TP invocation screen (see

“Adding a TP definition using HP SNAplus2 Release 6” on page 187).

11 Local queue manager

This is the name of the queue manager on your local system.

10 Link station name

This is a meaningful symbolic name by which the connection to a peer or

host node is known. It defines a logical path to the remote system. Its

name is used only inside SNAplus2 and is specified by you. The

connection must be associated with an existing Link and owned by one

local node. You must define one connection for each partner or host

system.

18 CPI-C symbolic destination name

This is a name given to the definition of a partner node. You choose the

name. It need be unique only on this machine. Later you can use this name

in the WebSphere MQ sender channel definition.

20 Node ID to receive

This is the unique ID of the partner workstation with which you will be

communicating. On other platforms this is often referred to as the Exchange

ID or XID. For a connection to a host system any values except 000 FFFFF

and FFF FFFFF may be specified. Your network administrator will assign

this ID for you.

Establishing a session using HP SNAplus2

The following information guides you through the tasks you must perform to

create the SNA infrastructure that WebSphere MQ requires. This example creates

the definitions for a partner node and LU on OS/2®.

Use snap start followed by xsnapadmin to enter the HP SNAplus2 configuration

panels. You need root authority to use xsnapadmin.

SNAplus2 configuration

SNAplus2 configuration involves the following steps:

1. Defining a local node

2. Adding a Token Ring Port

3. Defining a local LU

176 WebSphere MQ: Intercommunication

The SNAplus2 main menu, from which you will start, is shown below:

Defining a local node:

1. From the SNAplus2 main menu, select the Services pull-down:

2. Select Configure node parameters.... The following panel is displayed:

Chapter 3. DQM in WebSphere MQ for Windows and Unix platforms 177

3. Complete the Control point name with the values Network name (4) and

Control point name (2).

4. Enter the Control point name (2) in the Control point alias field.

5. Enter the Node ID (3).

6. Select End node.

7. Press OK.

A default independent local LU is defined.

Adding a Token Ring Port:

1. From the main SNAplus2 menu, select the Connectivity and dependent LUs

panel.

2. Press Add. The following panel is displayed:

3. Select a Token Ring Card port and press OK. The following panel is displayed:

178 WebSphere MQ: Intercommunication

4. Enter the SNA port name (9).

5. Enter a Description and press OK to take the default values.

Defining a local LU:

1. From the main SNAplus2 menu, select the Independent local LUs panel.

2. Press Add. The following panel is displayed:

3. Enter the LU name (5) and press OK.

APPC configuration

APPC configuration involves the following steps:

1. Defining a remote node

2. Defining a partner LU

3. Defining a link station

Chapter 3. DQM in WebSphere MQ for Windows and Unix platforms 179

4. Defining a mode

5. Adding CPI-C information

6. Adding a TP definition

Defining a remote node:

1. From the main SNAplus2 menu, select the Remote systems panel.

2. Press Add. The following panel is displayed:

3. Select Define remote node and press OK. The following panel is displayed:

4. Enter the Node’s SNA network name (13) and a Description.

5. Press OK.

6. A default partner LU with the same name is generated and a message is

displayed.

7. Press OK.

Defining a partner LU:

1. From the main SNAplus2 menu, select the remote node in the Remote systems

panel.

2. Press Add. The following panel is displayed:

180 WebSphere MQ: Intercommunication

3. Select Define partner LU on node node name.

4. Press OK. The following panel is displayed:

5. Enter the partner LU name (15) and press OK.

Defining a link station:

 1. From the main SNAplus2 menu, select the Connectivity and dependent LUs

panel.

 2. Select the MQPORT port.

 3. Press Add. The following panel is displayed:

Chapter 3. DQM in WebSphere MQ for Windows and Unix platforms 181

4. Select Add link station to port MQPORT.

 5. Press OK. The following panel is displayed:

 6. Enter the Name of the link station (12).

 7. Set the value of Activation to “On demand”.

 8. Select Independent only.

 9. Press Remote node... and select the value of the remote node (14).

10. Press OK.

11. Set the value of Remote node type to “End or LEN node”.

12. Enter the value for MAC address (19) and press Advanced.... The following

panel is displayed:

182 WebSphere MQ: Intercommunication

13. Select Reactivate link station after failure.

14. Press OK to exit the Advanced... panel.

15. Press OK again.

Defining a mode:

1. From the SNAplus2 main menu, select the Services pull-down: The following

panel is displayed:

2. Select APPC. The following panel is displayed:

Chapter 3. DQM in WebSphere MQ for Windows and Unix platforms 183

3. Select Modes.... The following panel is displayed:

4. Press Add. The following panel is displayed:

184 WebSphere MQ: Intercommunication

5. Enter the Name to be given to the mode (17).

6. Set the values of Initial session limit to 8, Min con. winner sessions to 4, and

Auto-activated sessions to 0.

7. Press OK.

8. Press Done.

Adding CPI-C information:

1. From the SNAplus2 main menu, select the Services pull-down:

2. Select APPC. The following panel is displayed:

Chapter 3. DQM in WebSphere MQ for Windows and Unix platforms 185

3. Select CPI-C.... The following panel is displayed:

4. Press Add. The following panel is displayed:

186 WebSphere MQ: Intercommunication

5. Enter the Name (18). Select Application TP and enter the value (16). Select Use

PLU alias and enter the name (15). Enter the Mode name (17).

6. Press OK.

Adding a TP definition using HP SNAplus2 Release 5:

 Invokable TP definitions are kept in the file /etc/opt/sna/sna_tps. This should be

edited to add a TP definition. Add the following lines:

 [MQSERIES]

 PATH = /users/interops/HPUX.crs6a

 TYPE = NON-QUEUED

 USERID = mqm

 ENV = APPCLLU=HPUXLU

 ENV = APPCTPN=MQSERIES

See “WebSphere MQ for HP-UX invokable TP setup” on page 193 for more

information about TP definitions.

Adding a TP definition using HP SNAplus2 Release 6:

 To add a TP definition:

 1. Select Services pulldown and select APPC as for CPI-C information.

Chapter 3. DQM in WebSphere MQ for Windows and Unix platforms 187

2. Select Transaction Programs. The following panel is displayed:

 3. Select Add. The following panel is displayed:

 4. Enter TP name (7) in the Application TP field.

 5. Mark Incoming Allocates as non-queued.

 6. Enter Full path to executable (10).

 7. Enter -m Local queue manager (11) in the Arguments field.

 8. Enter mqm in the User ID and Group ID fields.

188 WebSphere MQ: Intercommunication

9. Enter environment variables APPCLLU=local LU (5) and

APPCTPN=Invokable TP (7) separated by the pipe character in the

Environment field.

10. Press OK to save your definition.

HP-UX operation

The SNAplus2 control daemon is started with the snap start command. Depending

on the options selected at installation, it may already be running.

The xsnapadmin utility controls SNAplus2 resources.

Logging and tracing are controlled from here. Log and trace files can be found in

the /var/opt/sna directory. The logging files sna.aud and sna.err can be read

using a standard editor such as vi.

In order to read the trace files sna1.trc and sna2.trc they must first be formatted by

running the command snaptrcfmt -f sna1.trc -o sna1 which produces a sna1.dmp

file which can be read using a normal editor.

The configuration file itself is editable but this is not a recommended method of

configuring SNAplus2.

The APPCLU environment variables must be set before starting a sender channel

from the HP-UX system. The command can be either entered interactively or

added to the logon profile. Depending on the level of BOURNE shell or KORN

shell program being used, the command will be:

export APPCLLU=HPUXLU 5 newer level

or

APPCLLU=HPUXLU 5 older level

export

What next?

The connection is now established. You are ready to complete the configuration.

Go to “WebSphere MQ for HP-UX configuration” on page 190.

Establishing a TCP connection

The listener must be started explicitly before any channels are started. It enables

receiving channels to start automatically in response to a request from an inbound

sending channel.

Alternatively, if you want to use the UNIX supplied TCP/IP listener, complete the

following steps:

1. Edit the file /etc/services.

Note: To edit the /etc/services file, you must be logged in as a superuser or

root. If you do not have the following line in that file, add it as shown:

MQSeries 1414/tcp # MQSeries channel listener

2. Edit the file /etc/inetd.conf. If you do not have the following line in that file,

add it as shown:

MQSeries stream tcp nowait root /opt/mqm/bin/amqcrsta amqcrsta

[-m queue.manager.name]

Chapter 3. DQM in WebSphere MQ for Windows and Unix platforms 189

3. Find the process ID of the inetd with the command:

ps -ef | grep inetd

4. Run the command:

kill -1 inetd processid

Note: You must add root to the mqm group. You do not need not have the

primary group set to mqm. As long as mqm is in the set of groups, you can use

the commands. If you are running only applications that use the queue manager

you do not need to have mqm group authority.

What next?

The connection is now established. You are ready to complete the configuration.

Go to “WebSphere MQ for HP-UX configuration.”

WebSphere MQ for HP-UX configuration

Before beginning the installation process ensure that you have first created the

mqm user and group, and set the password.

Start any channel using the command:

runmqchl -c channel.name

Note:

1. Sample programs are installed in /opt/mqm/samp.

2. Error logs are stored in /var/mqm/qmgrs/qmgrname/errors.

3. When you are using the command interpreter runmqsc to enter administration

commands, a + at the end of a line indicates that the next line is a continuation.

Ensure that there is a space between the last parameter and the continuation

character.

Basic configuration

1. Create the queue manager from the UNIX prompt using the command:

crtmqm -u dlqname -q hpux

where:

hpux Is the name of the queue manager

-q Indicates that this is to become the default queue manager

-u dlqname

Specifies the name of the undeliverable message queue
This command creates a queue manager and a set of default objects. It sets the

DEADQ attribute of the queue manager but does not create the undeliverable

message queue.

2. Start the queue manager from the UNIX prompt using the command:

strmqm hpux

where hpux is the name given to the queue manager when it was created.

Channel configuration

The following section details the configuration to be performed on the HP-UX

queue manager to implement the channel described in Figure 32 on page 101.

190 WebSphere MQ: Intercommunication

In each case the MQSC command is shown. Either start runmqsc from a UNIX

prompt and enter each command in turn, or build the commands into a command

file.

Examples are given for connecting WebSphere MQ for HP-UX and WebSphere MQ

for Windows. If you wish connect to WebSphere MQ on another platform use the

appropriate set of values from the table in place of those for Windows.

Note: The words in bold are user-specified and reflect the names of WebSphere

MQ objects used throughout these examples. If you change the names used here,

ensure that you also change the other references made to these objects throughout

this book. All others are keywords and should be entered as shown.

 Table 20. Configuration worksheet for WebSphere MQ for HP-UX

ID Parameter Name Reference Example Used User Value

Definition for local node

A Queue Manager Name HPUX

B Local queue name HPUX.LOCALQ

Connection to WebSphere MQ for Windows

The values in this section of the table must match those used in Table 14 on page 146, as indicated.

C Remote queue manager name A WINNT

D Remote queue name WINNT.REMOTEQ

E Queue name at remote system B WINNT.LOCALQ

F Transmission queue name WINNT

G Sender (SNA) channel name HPUX.WINNT.SNA

H Sender (TCP/IP) channel name HPUX.WINNT.TCP

I Receiver (SNA) channel name G WINNT.HPUX.SNA

J Receiver (TCP) channel name H WINNT.HPUX.TCP

Connection to WebSphere MQ for AIX

The values in this section of the table must match those used in Table 18 on page 168, as indicated.

C Remote queue manager name A AIX

D Remote queue name AIX.REMOTEQ

E Queue name at remote system B AIX.LOCALQ

F Transmission queue name AIX

G Sender (SNA) channel name HPUX.AIX.SNA

H Sender (TCP) channel name HPUX.AIX.TCP

I Receiver (SNA) channel name G AIX.HPUX.SNA

J Receiver (TCP) channel name H AIX.HPUX.TCP

Connection to WebSphere MQ for HP Tru64 UNIX

The values in this section of the table must match those used in your HP Tru64 UNIX system.

C Remote queue manager name A DECUX

D Remote queue name DECUX.REMOTEQ

E Queue name at remote system B DECUX.LOCALQ

F Transmission queue name DECUX

H Sender (TCP) channel name DECUX.HPUX.TCP

Chapter 3. DQM in WebSphere MQ for Windows and Unix platforms 191

Table 20. Configuration worksheet for WebSphere MQ for HP-UX (continued)

ID Parameter Name Reference Example Used User Value

J Receiver (TCP) channel name H HPUX.DECUX.TCP

Connection to WebSphere MQ for Solaris

The values in this section of the table must match those used in Table 22 on page 212, as indicated.

C Remote queue manager name A SOLARIS

D Remote queue name SOLARIS.REMOTEQ

E Queue name at remote system B SOLARIS.LOCALQ

F Transmission queue name SOLARIS

G Sender (SNA) channel name HPUX.SOLARIS.SNA

H Sender (TCP/IP) channel name HPUX.SOLARIS.TCP

I Receiver (SNA) channel name G SOLARIS.HPUX.SNA

J Receiver (TCP/IP) channel name H SOLARIS.HPUX.TCP

Connection to WebSphere MQ for Linux

The values in this section of the table must match those used in Table 24 on page 235, as indicated.

C Remote queue manager name A LINUX

D Remote queue name LINUX.REMOTEQ

E Queue name at remote system B LINUX.LOCALQ

F Transmission queue name LINUX

G Sender (SNA) channel name HPUX.LINUX.SNA

H Sender (TCP/IP) channel name HPUX.LINUX.TCP

I Receiver (SNA) channel name G LINUX.HPUX.SNA

J Receiver (TCP/IP) channel name H LINUX.HPUX.TCP

Connection to WebSphere MQ for i5/OS

The values in this section of the table must match those used in Table 36 on page 364, as indicated.

C Remote queue manager name A AS400

D Remote queue name AS400.REMOTEQ

E Queue name at remote system B AS400.LOCALQ

F Transmission queue name AS400

G Sender (SNA) channel name HPUX.AS400.SNA

H Sender (TCP/IP) channel name HPUX.AS400.TCP

I Receiver (SNA) channel name G AS400.HPUX.SNA

J Receiver (TCP) channel name H AS400.HPUX.TCP

Connection to WebSphere MQ for z/OS

The values in this section of the table must match those used in Table 28 on page 272, as indicated.

C Remote queue manager name A MVS

D Remote queue name MVS.REMOTEQ

E Queue name at remote system B MVS.LOCALQ

F Transmission queue name MVS

G Sender (SNA) channel name HPUX.MVS.SNA

H Sender (TCP) channel name HPUX.MVS.TCP

192 WebSphere MQ: Intercommunication

Table 20. Configuration worksheet for WebSphere MQ for HP-UX (continued)

ID Parameter Name Reference Example Used User Value

I Receiver (SNA) channel name G MVS.HPUX.SNA

J Receiver (TCP) channel name H MVS.HPUX.TCP

Connection to MQSeries for VSE/ESA

The values in this section of the table must match those used in your VSE/ESA system.

C Remote queue manager name A VSE

D Remote queue name VSE.REMOTEQ

E Queue name at remote system B VSE.LOCALQ

F Transmission queue name VSE

G Sender channel name HPUX.VSE.SNA

I Receiver channel name G VSE.HPUX.SNA

WebSphere MQ for HP-UX sender-channel definitions using SNA:

def ql (WINNT) + F

 usage(xmitq) +

 replace

def qr (WINNT.REMOTEQ) + D

 rname(WINNT.LOCALQ) + E

 rqmname(WINNT) + C

 xmitq(WINNT) + F

 replace

def chl (HPUX.WINNT.SNA) chltype(sdr) + G

 trptype(lu62) +

 conname(’WINNTCPIC’) + 16

 xmitq(WINNT) + F

 replace

WebSphere MQ for HP-UX receiver-channel definitions using SNA:

def ql (HPUX.LOCALQ) replace B

def chl (WINNT.HPUX.SNA) chltype(rcvr) + I

 trptype(lu62) +

 replace

WebSphere MQ for HP-UX invokable TP setup:

 This is not required for HP SNAplus2 Release 6.

During the HP SNAplus2 configuration process, you created an invokable TP

definition, which points to an executable file. In the example, the file was called

/users/interops/HPUX.crs6a. You can choose what you call this file, but you are

recommended to include the name of your queue manager in the name. The

contents of the executable file must be:

#!/bin/sh

/opt/mqm/bin/amqcrs6a -m hpux

where hpux is the name of your queue manager A.

This ensures that SNA receiver channels activate correctly when a sender channel

initiates a conversation.

Chapter 3. DQM in WebSphere MQ for Windows and Unix platforms 193

WebSphere MQ for HP-UX sender-channel definitions using TCP:

def ql (WINNT) + F

 usage(xmitq) +

 replace

def qr (WINNT.REMOTEQ) + D

 rname(WINNT.LOCALQ) + E

 rqmname(WINNT) + C

 xmitq(WINNT) + F

 replace

def chl (HPUX.WINNT.TCP) chltype(sdr) + H

 trptype(tcp) +

 conname(remote_tcpip_hostname) +

 xmitq(WINNT) + F

 replace

WebSphere MQ for HP-UX receiver-channel definitions using TCP/IP:

def ql (HPUX.LOCALQ) replace B

def chl (WINNT.HPUX.TCP) chltype(rcvr) + J

 trptype(tcp) +

 replace

Example configuration - IBM WebSphere MQ for Solaris

This chapter gives an example of how to set up communication links from

WebSphere MQ for Solaris to WebSphere MQ products on the following platforms:

v Windows

v AIX

v HP Tru64 UNIX

v HP-UX

v Linux

v i5/OS

v z/OS

v VSE/ESA

WebSphere MQ allows you to set up communication links from WebSphere MQ for

Solaris using SNAP-IX V6.2 or later. See “Configuration parameters for an LU 6.2

connection using SNAP-IX” on page 195, and “Establishing a session using

SNAP-IX” on page 199.

To establish a TCP connection, see “Establishing a TCP connection” on page 210.

Once the connection is established, you need to define some channels to complete

the configuration. This is described in “WebSphere MQ for Solaris configuration”

on page 211.

See “Example configuration chapters in this book” on page 101 for background

information about this chapter and how to use it.

194 WebSphere MQ: Intercommunication

Configuration parameters for an LU 6.2 connection using

SNAP-IX

Table 21 presents a worksheet listing all the parameters needed to set up

communication from Solaris using SNAP-IX to one of the other WebSphere MQ

platforms. The worksheet shows examples of the parameters, which have been

tested in a working environment, and leaves space for you to fill in your own

values. An explanation of the parameter names follows the worksheet. Use the

worksheet for the platform to which you are connecting.

Configuration worksheet

Use this worksheet to record the values you use for your configuration. Where

numbers appear in the Reference column they indicate that the value must match

that in the appropriate worksheet elsewhere in this book. The examples that follow

in this chapter refer to the values in the ID column. The entries in the Parameter

Name column are explained in “Explanation of terms” on page 197.

 Table 21. Configuration worksheet for SNAP-IX

ID Parameter Name Ref. Example User Value

Parameters for local node

1 Configuration file name sna_node.cfg

2 Control point name SOLARXPU

3 Node ID to send 05D 23456

4 Network name NETID

5 Local APPC LU SOLARXLU

6 APPC mode #INTER

7 Invokable TP MQSERIES

8 Local MAC address 08002071CC8A

9 Port name MQPORT

10 Command path /opt/mqm/bin/amqcrs6a

11 Local queue manager SOLARIS

Connection to a Windows system

The values in this section of the table must match those used in the Table for Windows and LU6.2, as indicated.

12 Link station name NTCONN

13 Network name 2 NETID

14 CP name 3 WINNTCP

15 Remote LU 5 WINNTLU

16 Application TP 7 MQSERIES

17 Mode name 17 #INTER

18 CPI-C symbolic destination name NTCPIC

19 Remote network address 9 08005AA5FAB9

20 Node ID to receive 4 05D 30F65

Connection to an AIX system

The values in this section of the table must match those used in the Table for AIX and LU6.2, as indicated.

12 Link station name AIXCONN

Chapter 3. DQM in WebSphere MQ for Windows and Unix platforms 195

Table 21. Configuration worksheet for SNAP-IX (continued)

ID Parameter Name Ref. Example User Value

13 Network name 1 NETID

14 CP name 2 AIXPU

15 Remote LU 4 AIXLU

16 Application TP 6 MQSERIES

17 Mode name 14 #INTER

18 CPI-C symbolic destination name AIXCPIC

19 Remote network address 8 123456789012

20 Node ID to receive 3 071 23456

Connection to an HP-UX system

The values in this section of the table must match those used in the Table for HP-UX and LU6.2, as indicated.

12 Link station name HPUXCONN

13 Network name 2 NETID

14 CP name 3 HPUXPU

15 Remote LU 7 HPUXLU

16 Application TP 8 MQSERIES

17 Mode name 17 #INTER

18 CPI-C symbolic destination name HPUXCPIC

19 Remote network address 5 10005FC5D83

20 node ID to receive 6 05D 54321

Connection to a Linux (x86 platform) system

The values in this section of the table must match those used in the table the Table for Linux (x86 platform) and

LU6.2, as indicated.

12 Link station name LXCONN

13 Network name 4 NETID

14 CP name 2 LINUXPU

15 Remote LU 5 LINUXLU

16 Application TP 7 MQSERIES

17 Mode name 6 #INTER

18 CPI-C symbolic destination name LXCPIC

19 Remote network address 8 08005AC6DF33

20 Node ID to receive 3 05D 30A55

Connection to an i5/OS system

The values in this section of the table must match those used in the Table for i5/OS and LU6.2, as indicated.

12 Link station name AS4CONN

13 Network name 1 NETID

14 CP name 2 AS400PU

15 Remote LU 3 AS400LU

16 Application TP 8 MQSERIES

17 Mode name 17 #INTER

196 WebSphere MQ: Intercommunication

Table 21. Configuration worksheet for SNAP-IX (continued)

ID Parameter Name Ref. Example User Value

18 CPI-C symbolic destination name AS4CPIC

19 Remote network address 4 10005A5962EF

Connection to a z/OS system

The values in this section of the table must match those used in the Table for z/OS and LU6.2, as indicated.

12 Link station name MVSCONN

13 Network name 2 NETID

14 CP name 3 MVSPU

15 Remote LU 4 MVSLU

16 Application TP 7 MQSERIES

17 Mode name 10 #INTER

18 CPI-C symbolic destination name MVSCPIC

19 Remote network address 8 400074511092

Connection to a VSE/ESA system

The values in this section of the table must match those used in the Table for VSE/ESA and LU6.2, as indicated.

12 Link station name VSECONN

13 Network name 1 NETID

14 CP name 2 VSEPU

15 Remote LU 3 VSELU

16 Application TP 4 MQ01 MQ01

17 Mode name #INTER

18 CPI-C symbolic destination name VSECPIC

19 Remote network address 5 400074511092

Explanation of terms

1 Configuration file name

This is the unique name of the SNAP-IX configuration file. The default for

this name is sna_node.cfg.

 Although it is possible to edit this file, it is strongly recommended that

configuration is done using xsnadmin.

2 Control point name

This is the unique Control point name for this workstation. In the SNA

network, the Control point is an addressable location (PU type 2.1). Your

network administrator will assign this to you.

3 Node ID to send

This is the unique ID of this workstation. On other platforms this is often

referred to as the Exchange ID or XID. Your network administrator will

assign this ID for you.

4 Network name

This is the unique ID of the network to which you are connected. It is an

alphanumeric value and can be 1-8 characters long. The network name

works with the Control point name to uniquely identify a system. Your

network administrator will tell you the value.

Chapter 3. DQM in WebSphere MQ for Windows and Unix platforms 197

5 Local APPC LU

An LU manages the exchange of data between transactions. The local

APPC LU name is the name of the LU on your system. Your network

administrator will assign this to you.

6 APPC mode

This is the name given to the set of parameters that control the APPC

conversation. This name must be defined at each partner system. Your

network administrator will assign this to you.

7 Invokable TP

WebSphere MQ applications trying to converse with this workstation will

specify a symbolic name for the program to be run at the receiving end.

This will have been defined on the channel definition at the sender. For

simplicity, wherever possible use a transaction program name of

MQSERIES, or in the case of a connection to VSE/ESA, where the length is

limited to 4 bytes, use MQTP.

8 Local MAC address

This is the network address of the token-ring card. The address to be

specified is found in the ether value displayed in response to the

ifconfig tr0 command issued at a root level of authority. (Tr0 is the name

of the machine’s token-ring interface.) If you do not have the necessary

level of authority, your Sun Solaris system administrator can tell you the

value.

9 Port name

This is a meaningful symbolic name that is used to associate the definitions

with a network interface (in this case, a Token-Ring adapter). A separate

Port must be defined for each physical device attached to the workstation.

10 Full path to executable

This is the path and name of the script file that invokes the WebSphere

MQ program to run.

11 Local queue manager

This is the name of the queue manager on your local system.

10 Link station name

This is a meaningful symbolic name by which the connection to a peer or

host node is known. It defines a logical path to the remote system. Its

name is used only inside SNAP-IX and is specified by you. The connection

must be associated with an existing Link and owned by one local node.

You must define one connection for each partner or host system.

18 CPI-C symbolic destination name

This is a name given to the definition of a partner node. You choose the

name. It need be unique only on this machine. Later you can use this name

in the WebSphere MQ sender channel definition.

20 Node ID to receive

This is the unique ID of the partner workstation with which you will be

communicating. On other platforms this is often referred to as the Exchange

ID or XID. For a connection to a host system any values except 000 FFFFF

and FFF FFFFF may be specified. Your network administrator will assign

this ID for you.

198 WebSphere MQ: Intercommunication

Establishing a session using SNAP-IX

The following information guides you through the tasks you must perform to

create the SNA infrastructure that WebSphere MQ requires. This example creates

the definitions for a partner node and LU on OS/2.

Use sna start followed by xsnaadmin to type the SNAP-IX configuration panels.

You need root authority to use xsnaadmin.

SNAP-IX configuration

SNAP-IX configuration involves the following steps:

1. Defining a local node

2. Adding a Token Ring Port

3. Defining a local LU

The SNAP-IX main menu, from which you start, is shown here:

Defining a local node:

1. From the SNAP-IX main menu, click the Services pull-down. The Services

pull-down appears::

Chapter 3. DQM in WebSphere MQ for Windows and Unix platforms 199

2. Click Configure node parameters. The following panel is displayed:

3. Complete the Control point name with the values Network name (4) and

Control point name (2).

4. Type the Control point name (2) in the Control point alias field.

5. Type the Node ID (3).

6. Click End node.

7. Click OK.

A default independent local LU is defined.

Adding a Token Ring Port:

1. From the main SNAP-IX menu, click Connectivity and dependent LUs.

2. Click Add. The following panel is displayed:

200 WebSphere MQ: Intercommunication

3. Click Token Ring Card and click OK. The following panel is displayed:

4. Type the SNA port name (9).

5. Type a Description and click OK to take the default values.

Defining a local LU:

1. From the main SNAP-IX menu, click Independent local LUs.

2. Click Add. The following panel is displayed:

3. Type the LU name (5) and click OK.

APPC configuration

APPC configuration involves the following steps:

1. Defining a remote node

2. Defining a partner LU

3. Defining a link station

4. Defining a mode

5. Adding CPI-C information

6. Adding a TP definition

Chapter 3. DQM in WebSphere MQ for Windows and Unix platforms 201

Defining a remote node:

1. From the main SNAP-IX menu, click Remote systems.

2. Click Add. The following panel is displayed:

3. Select the Define remote node check box and click OK. The following panel is

displayed:

4. Type the Node’s SNA network name (13) and a Description.

5. Click OK.

6. A default partner LU with the same name is generated and a message is

displayed.

7. Click OK.

Defining a partner LU:

1. From the main SNAP-IX menu, click Remote systems and click the remote

node.

2. Click Add. The following panel is displayed:

3. Select theDefine partner LU on node node name check box.

4. Click OK. The following panel is displayed:

202 WebSphere MQ: Intercommunication

5. Type the partner LU name (15) and click OK.

Defining a link station:

 1. From the main SNAP-IX menu, click Connectivity and dependent LUs.

 2. Click the MQPORT port.

 3. Click Add. The following panel is displayed:

 4. Select the Add link station to port MQPORT check box.

 5. Click OK. The following panel is displayed:

Chapter 3. DQM in WebSphere MQ for Windows and Unix platforms 203

6. Type the Name of the link station (12).

 7. Set the value of Activation to “On demand”.

 8. Select the Independent only check box.

 9. Click Remote node and select the value of the remote node (14).

10. Click OK.

11. Set the value of Remote node type to “End or LEN node”.

12. Type the value for MAC address (19) and click Advanced. The following

panel is displayed:

13. Select the Request CP-CP sessions. check box

204 WebSphere MQ: Intercommunication

14. Select the Reactivate link station after failure. check box

15. Click OK to exit the Advanced panel.

16. Click OK again.

Defining a mode:

1. From the SNAP-IX main menu, click the Services pull-down: The following

panel is displayed:

2. Click APPC. The following panel is displayed:

3. Click Modes. The following panel is displayed:

4. Click Add. The following panel is displayed:

Chapter 3. DQM in WebSphere MQ for Windows and Unix platforms 205

5. Type the Name to be given to the mode (17).

6. Set the values of Initial session limit to 8, Min con. winner sessions to 4, and

Auto-activated sessions to 0.

7. Click OK.

8. Click Done.

Adding CPI-C information:

1. From the SNAP-IX main menu, click the Services pull-down:

2. Click APPC. The following panel is displayed:

206 WebSphere MQ: Intercommunication

3. Click CPI-C. The following panel is displayed:

4. Click Add. The following panel is displayed:

Chapter 3. DQM in WebSphere MQ for Windows and Unix platforms 207

5. Type the Name (18). Select the Application TP check box and type the value

(16). Select the Use PLU alias check box and type the name (15). Type the

Mode name (17).

6. Click OK.

Adding a TP definition using SNAP-IX Release 6:

 To add a TP definition:

 1. Click the Services pull-down and click APPC as for CPI-C information.

 2. Click Transaction Programs. The following panel is displayed:

208 WebSphere MQ: Intercommunication

3. Click Add. The following panel is displayed:

 4. Type TP name (7) in the Application TP field.

 5. Clear the Queue incoming Allocates check box.

 6. Type Full path to executable (10).

 7. Type -m Local queue manager (11) in the Arguments field.

 8. Type mqm in the User ID and Group ID fields.

 9. Type environment variables APPCLLU=local LU (5) and

APPCTPN=Invokable TP (7) separated by the pipe character in the

Environment field.

10. Click OK to save your definition.

Chapter 3. DQM in WebSphere MQ for Windows and Unix platforms 209

SNAP-IX operation

The SNAP-IX control daemon is started with the sna start command. Depending

on the options selected at installation, it may already be running.

The xsnaadmin utility controls SNAP-IX resources.

Logging and tracing are controlled from here. Log and trace files can be found in

the /var/opt/sna directory. The logging files sna.aud and sna.err can be read using

a standard editor such as vi.

In order to read the trace files sna1.trc and sna2.trc you must first format them by

running the command snatrcfmt -f sna1.trc -o sna1. This produces a sna1.dmp file

that can be read using a normal editor.

It is possible to edit the configuration file, but this is not a recommended method

of configuring SNAP-IX.

The APPCLLU environment variables must be set before starting a sender channel

from the Solaris system. The command can be either entered interactively or added

to the logon profile. Depending on the level of BOURNE shell or KORN shell

program being used, the command will be:

export APPCLLU=SOLARXLU 5 newer level

or

APPCLLU=SOLARXLU 5 older level

export

What next?

The connection is now established. You are ready to complete the configuration.

Go to “WebSphere MQ for Solaris configuration” on page 211.

Establishing a TCP connection

To establish a TCP connection, follow these steps.

1. Edit the file /etc/services.

Note: To edit the /etc/services file, you must be logged in as a superuser or

root. If you do not have the following line in that file, add it as shown:

MQSeries 1414/tcp # MQSeries channel listener

2. Edit the file /etc/inetd.conf. If you do not have the following line in that file,

add it as shown:

MQSeries stream tcp nowait mqm /opt/mqm/bin/amqcrsta amqcrsta

[-m queue.manager.name]

3. Find the process ID of the inetd with the command:

ps -ef | grep inetd

4. Run the appropriate command, as follows:

v For Solaris 9:

kill -1 inetd processid

v For Solaris 10 or later:

inetconv

210 WebSphere MQ: Intercommunication

What next?

The TCP/IP connection is now established. You are ready to complete the

configuration. Go to “WebSphere MQ for Solaris configuration.”

WebSphere MQ for Solaris configuration

Before beginning the installation process ensure that you have first created the

mqm user and group, and set the password.

Start any channel using the command:

runmqchl -c channel.name

Note:

1. Sample programs are installed in /opt/mqm/samp.

2. Error logs are stored in /var/mqm/qmgrs/qmgrname/errors.

3. When you are using the command interpreter runmqsc to enter administration

commands, a + at the end of a line indicates that the next line is a continuation.

Ensure that there is a space between the last parameter and the continuation

character.

4. For an SNA or LU6.2 channel, if you experience an error when you try to load

the communications library, probably file liblu62.so cannot be found. A likely

solution to this problem is to add its location, which is probably

/opt/SUNWlu62, to LD_LIBRARY_PATH.

Basic configuration

1. Create the queue manager from the UNIX prompt using the command:

crtmqm -u dlqname -q solaris

where:

solaris

Is the name of the queue manager

-q Indicates that this is to become the default queue manager

-u dlqname

Specifies the name of the undeliverable message queue
This command creates a queue manager and a set of default objects.

2. Start the queue manager from the UNIX prompt using the command:

strmqm solaris

where solaris is the name given to the queue manager when it was created.

Channel configuration

The following section details the configuration to be performed on the Solaris

queue manager to implement the channel described in Figure 32 on page 101.

The MQSC command to create each object is shown. Either start runmqsc from a

UNIX prompt and enter each command in turn, or build the commands into a

command file.

Chapter 3. DQM in WebSphere MQ for Windows and Unix platforms 211

Examples are given for connecting WebSphere MQ for Solaris and WebSphere MQ

for Windows. If you wish to connect to WebSphere MQ on another platform use

the appropriate set of values from the table in place of those for Windows.

Note: The words in bold are user-specified and reflect the names of WebSphere

MQ objects used throughout these examples. If you change the names used here,

ensure that you also change the other references made to these objects throughout

this book. All others are keywords and should be entered as shown.

 Table 22. Configuration worksheet for WebSphere MQ for Solaris

ID Parameter Name Reference Example Used User Value

Definition for local node

A Queue Manager Name SOLARIS

B Local queue name SOLARIS.LOCALQ

Connection to WebSphere MQ for Windows

The values in this section of the table must match those used in Table 14 on page 146, as indicated.

C Remote queue manager name A WINNT

D Remote queue name WINNT.REMOTEQ

E Queue name at remote system B WINNT.LOCALQ

F Transmission queue name WINNT

G Sender (SNA) channel name SOLARIS.WINNT.SNA

H Sender (TCP/IP) channel name SOLARIS.WINNT.TCP

I Receiver (SNA) channel name G WINNT.SOLARIS.SNA

J Receiver (TCP) channel name H WINNT.SOLARIS.TCP

Connection to WebSphere MQ for AIX

The values in this section of the table must match those used in Table 18 on page 168, as indicated.

C Remote queue manager name A AIX

D Remote queue name AIX.REMOTEQ

E Queue name at remote system B AIX.LOCALQ

F Transmission queue name AIX

G Sender (SNA) channel name SOLARIS.AIX.SNA

H Sender (TCP) channel name SOLARIS.AIX.TCP

I Receiver (SNA) channel name G AIX.SOLARIS.SNA

J Receiver (TCP) channel name H AIX.SOLARIS.TCP

Connection to MQSeries for Compaq Tru64 UNIX

The values in this section of the table must match those used in your Compaq Tru64 UNIX system.

C Remote queue manager name A DECUX

D Remote queue name DECUX.REMOTEQ

E Queue name at remote system B DECUX.LOCALQ

F Transmission queue name DECUX

H Sender (TCP) channel name DECUX.SOLARIS.TCP

J Receiver (TCP) channel name H SOLARIS.DECUX.TCP

212 WebSphere MQ: Intercommunication

Table 22. Configuration worksheet for WebSphere MQ for Solaris (continued)

ID Parameter Name Reference Example Used User Value

Connection to WebSphere MQ for HP-UX

The values in this section of the table must match those used in Table 20 on page 191, as indicated.

C Remote queue manager name A HPUX

D Remote queue name HPUX.REMOTEQ

E Queue name at remote system B HPUX.LOCALQ

F Transmission queue name HPUX

G Sender (SNA) channel name SOLARIS.HPUX.SNA

H Sender (TCP) channel name SOLARIS.HPUX.TCP

I Receiver (SNA) channel name G HPUX.SOLARIS.SNA

J Receiver (TCP/IP) channel name H HPUX.SOLARIS.TCP

Connection to WebSphere MQ for Linux

The values in this section of the table must match those used in Table 24 on page 235, as indicated.

C Remote queue manager name A LINUX

D Remote queue name LINUX.REMOTEQ

E Queue name at remote system B LINUX.LOCALQ

F Transmission queue name LINUX

G Sender (SNA) channel name SOLARIS.LINUX.SNA

H Sender (TCP/IP) channel name SOLARIS.LINUX.TCP

I Receiver (SNA) channel name G LINUX.SOLARIS.SNA

J Receiver (TCP/IP) channel name H LINUX.SOLARIS.TCP

Connection to WebSphere MQ for i5/OS

The values in this section of the table must match those used in Table 36 on page 364, as indicated.

C Remote queue manager name A AS400

D Remote queue name AS400.REMOTEQ

E Queue name at remote system B AS400.LOCALQ

F Transmission queue name AS400

G Sender (SNA) channel name SOLARIS.AS400.SNA

H Sender (TCP) channel name SOLARIS.AS400.TCP

I Receiver (SNA) channel name G AS400.SOLARIS.SNA

J Receiver (TCP) channel name H AS400.SOLARIS.TCP

Connection to WebSphere MQ for z/OS

The values in this section of the table must match those used in Table 28 on page 272, as indicated.

C Remote queue manager name A MVS

D Remote queue name MVS.REMOTEQ

E Queue name at remote system B MVS.LOCALQ

F Transmission queue name MVS

G Sender (SNA) channel name SOLARIS.MVS.SNA

H Sender (TCP) channel name SOLARIS.MVS.TCP

I Receiver (SNA) channel name G MVS.SOLARIS.SNA

Chapter 3. DQM in WebSphere MQ for Windows and Unix platforms 213

Table 22. Configuration worksheet for WebSphere MQ for Solaris (continued)

ID Parameter Name Reference Example Used User Value

J Receiver (TCP) channel name H MVS.SOLARIS.TCP

Connection to MQSeries for VSE/ESA

The values in this section of the table must match those used in your VSE/ESA system.

C Remote queue manager name A VSE

D Remote queue name VSE.REMOTEQ

E Queue name at remote system B VSE.LOCALQ

F Transmission queue name VSE

G Sender channel name SOLARIS.VSE.SNA

I Receiver channel name G VSE.SOLARIS.SNA

WebSphere MQ for Solaris sender-channel definitions using SNAP-IX SNA:

def ql (WINNT) + F

 usage(xmitq) +

 replace

def qr (WINNT.REMOTEQ) + D

 rname(WINNT.LOCALQ) + E

 rqmname(WINNT) + C

 xmitq(WINNT) + F

 replace

def chl (SOLARIS.WINNT.SNA) chltype(sdr) + G

 trptype(lu62) +

 conname(’NTCPIC’) + 14

 xmitq(WINNT) + F

 replace

WebSphere MQ for Solaris receiver-channel definitions using SNA:

def ql (SOLARIS.LOCALQ) replace B

def chl (WINNT.SOLARIS.SNA) chltype(rcvr) + I

 trptype(lu62) +

 replace

WebSphere MQ for Solaris sender-channel definitions using TCP:

def ql (WINNT) + F

 usage(xmitq) +

 replace

def qr (WINNT.REMOTEQ) + D

 rname(WINNT.LOCALQ) + E

 rqmname(WINNT) + C

 xmitq(WINNT) + F

 replace

def chl (SOLARIS.WINNT.TCP) chltype(sdr) + H

 trptype(tcp) +

 conname(remote_tcpip_hostname) +

 xmitq(WINNT) + F

 replace

WebSphere MQ for Solaris receiver-channel definitions using TCP/IP:

214 WebSphere MQ: Intercommunication

def ql (SOLARIS.LOCALQ) replace B

def chl (WINNT.SOLARIS.TCP) chltype(rcvr) + J

 trptype(tcp) +

 replace

Example configuration - IBM WebSphere MQ for Linux

This chapter gives an example of how to set up communication links from

WebSphere MQ for Linux to WebSphere MQ products on the following platforms:

v Windows

v AIX

v Compaq Tru64 UNIX

v HP-UX

v Solaris

v i5/OS

v z/OS

v VSE/ESA

This chapter contains the following sections:

v “Configuration parameters for an LU 6.2 connection”

v “Establishing a session using Communications Server for Linux” on page 219

v “Establishing a TCP connection” on page 232

v “WebSphere MQ for Linux configuration” on page 234

See “Example configuration chapters in this book” on page 101 for background

information about this chapter and how to use it.

Configuration parameters for an LU 6.2 connection

Use this worksheet to record the values you use for your configuration

Note: The information in this section applies only to WebSphere MQ for Linux

(x86 platform). It does not apply to WebSphere MQ for Linux (x86-64 platform),

WebSphere MQ for Linux (zSeries® s390x platform), or WebSphere MQ for Linux

(POWER™ platform).

Table 23 on page 216 presents a worksheet listing all the parameters needed to set

up communication from Linux to one of the other WebSphere MQ platforms using

Communications Server for Linux. The worksheet shows examples of the

parameters, which have been tested in a working environment, and leaves space

for you to fill in your own values. An explanation of the parameter names follows

the worksheet. Use the worksheet for the platform to which you are connecting.

Use this worksheet to record the values you use for your configuration. Where

numbers appear in the Reference column they indicate that the value must match

that in the appropriate worksheet elsewhere in this information centre. The

examples that follow in this section refer to the values in the ID column. The

entries in the Parameter Name column are explained in “Explanation of terms” on

page 218.

Chapter 3. DQM in WebSphere MQ for Windows and Unix platforms 215

Table 23. Configuration worksheet for Communications Server for Linux

ID Parameter Name Reference Example User Value

Parameters for local node

1 Configuration file name sna_node.cfg

2 Control point name LINUXPU

3 Node ID to send 05D 30A55

4 Network name NETID

5 Local APPC LU LINUXLU

6 APPC mode #INTER

7 Invokable TP MQSERIES

8 Local MAC address 08005AC6DF33

9 Port name MQPORT

10 Command path /opt/mqm/bin/
amqcrs6a

11 Local queue manager LINUX

Connection to a Windows system

The values in this section of the table must match those used in Table 13 on page 130, as

indicated.

12 Link station name NTCONN

13 Network name 2 NETID

14 CP name 3 WINNTCP

15 Remote LU 5 WINNTLU

16 Application TP 7 MQSERIES

17 Mode name 17 #INTER

18 CPI-C symbolic destination

name

NTCPIC

19 Remote network address 9 08005AA5FAB9

20 Node ID to receive 4 05D 30F65

Connection to an AIX system

The values in this section of the table must match those used in Table 17 on page 156, as

indicated.

12 Link station name AIXCONN

13 Network name 1 NETID

14 CP name 2 AIXPU

15 Remote LU 4 AIXLU

16 Application TP 6 MQSERIES

17 Mode name 9 #INTER

18 CPI-C symbolic destination

name

AIXCPIC

19 Remote network address 8 123456789012

20 Node ID to receive 3 071 23456

216 WebSphere MQ: Intercommunication

Table 23. Configuration worksheet for Communications Server for Linux (continued)

ID Parameter Name Reference Example User Value

Connection to an HP-UX system

The values in this section of the table must match those used in Table 19 on page 172, as

indicated.

12 Link station name HPUXCONN

13 Network name 4 NETID

14 CP name 2 HPUXPU

15 Remote LU 5 HPUXLU

16 Application TP 7 MQSERIES

17 Mode name 6 #INTER

18 CPI-C symbolic destination

name

HPUXCPIC

19 Remote network address 8 100090DC2C7C

20 node ID to receive 3 05D 54321

Connection to a Solaris system

The values in this section of the table must match those used in Table 21 on page 195, as

indicated.

12 Link station name SOLCONN

13 Network name 2 NETID

14 CP name 3 SOLARPU

15 Remote LU 7 SOLARLU

16 Application TP 8 MQSERIES

17 Mode name 17 #INTER

18 CPI-C symbolic destination

name

SOLCPIC

19 Remote network address 5 08002071CC8A

20 Node ID to receive 6 05D 310D6

Connection to an i5/OS system

The values in this section of the table must match those used in Table 35 on page 351, as

indicated.

12 Link station name AS4CONN

13 Network name 1 NETID

14 CP name 2 AS400PU

15 Remote LU 3 AS400LU

16 Application TP 8 MQSERIES

17 Mode name 17 #INTER

18 CPI-C symbolic destination

name

AS4CPIC

19 Remote network address 4 10005A5962EF

Connection to a z/OS system

The values in this section of the table must match those used in Table 27 on page 267, as

indicated.

Chapter 3. DQM in WebSphere MQ for Windows and Unix platforms 217

Table 23. Configuration worksheet for Communications Server for Linux (continued)

ID Parameter Name Reference Example User Value

12 Link station name MVSCONN

13 Network name 2 NETID

14 CP name 3 MVSPU

15 Remote LU 4 MVSLU

16 Application TP 7 MQSERIES

17 Mode name 6 #INTER

18 CPI-C symbolic destination

name

MVSCPIC

19 Remote network address 8 400074511092

Connection to a VSE/ESA system

The values in this section of the table must match those used in your VSE/ESA system.

12 Link station name VSECONN

13 Network name 1 NETID

14 CP name 2 VSEPU

15 Remote LU 3 VSELU

16 Application TP 4 MQ01

17 Mode name #INTER

18 CPI-C symbolic destination

name

VSECPIC

19 Remote network address 5 400074511092

Explanation of terms

1 Configuration file name

This is the unique name of the Communications Server for Linux

configuration file. The default for this name is sna_node.cfg.

 Although it is possible to edit this file, it is strongly recommended that

configuration is done using xsnadmin.

2 Control point name

This is the unique control point name for this workstation. In the SNA

network, the control point is an addressable location (PU type 2.1). Your

network administrator will assign this to you.

3 Node ID to send

This is the unique ID of this workstation. On other platforms this is often

referred to as the Exchange ID or XID. Your network administrator will

assign this ID for you.

4 Network name

This is the unique ID of the network to which you are connected. It is an

alphanumeric value and can be 1-8 characters long. The network name

works with the control point name to uniquely identify a system. Your

network administrator will tell you the value.

5 Local APPC LU

An LU manages the exchange of data between transactions. The local

APPC LU name is the name of the LU on your system. Your network

administrator will assign this to you.

218 WebSphere MQ: Intercommunication

6 APPC mode

This is the name given to the set of parameters that control the APPC

conversation. This name must be defined at each partner system. Your

network administrator will assign this to you.

7 Invokable TP

WebSphere MQ applications trying to converse with this workstation will

specify a symbolic name for the program to be run at the receiving end.

This will have been defined on the channel definition at the sender. For

simplicity, wherever possible use a transaction program name of

MQSERIES, or in the case of a connection to VSE/ESA, where the length is

limited to 4 bytes, use MQ01.

8 Local MAC address

This is the network address of the token-ring card. The address to be

specified is found in the ether value displayed in response to the

ifconfig tr0 command issued at a root level of authority. (Tr0 is the name

of the machine’s token-ring interface.) If you do not have the necessary

level of authority, your Linux system administrator can tell you the value.

9 Port name

This is a meaningful symbolic name that is used to associate the definitions

with a network interface (in this case, a Token-Ring adapter). A separate

Port must be defined for each physical device attached to the workstation.

10 Full path to executable

This is the path and name of the script file that invokes the WebSphere

MQ program to run.

11 Local queue manager

This is the name of the queue manager on your local system.

10 Link station name

This is a meaningful symbolic name by which the connection to a peer or

host node is known. It defines a logical path to the remote system. Its

name is used only inside Communications Server for Linux and is

specified by you. The connection must be associated with an existing Link

and owned by one local node. You must define one connection for each

partner or host system.

18 CPI-C symbolic destination name

This is a name given to the definition of a partner node. You choose the

name. It need be unique only on this machine. Later you can use this name

in the WebSphere MQ sender channel definition.

20 Node ID to receive

This is the unique ID of the partner workstation with which you will be

communicating. On other platforms this is often referred to as the Exchange

ID or XID. For a connection to a host system any values except 000 FFFFF

and FFF FFFFF may be specified. Your network administrator will assign

this ID for you.

Establishing a session using Communications Server for

Linux

The following information guides you through the tasks you must perform to

create the SNA infrastructure that WebSphere MQ requires. This example creates

the definitions for a partner node and LU on HP-UX.

Chapter 3. DQM in WebSphere MQ for Windows and Unix platforms 219

Note: The information in this section applies only to WebSphere MQ for Linux

(x86 platform). It does not apply to WebSphere MQ for Linux (x86-64 platform),

WebSphere MQ for Linux (zSeries s390x platform), or WebSphere MQ for Linux

(POWER platform).

Use sna start followed by xsnaadmin to access the Communications Server for

Linux main window. You need root authority to use xsnaadmin.

Communications Server for Linux configuration

Communications Server for Linux configuration involves the following steps:

1. Defining a local node

2. Adding a Token-Ring port

3. Defining a local LU

The Communications Server for Linux main window, from which you start, is

shown here:

Defining a local node:

1. From the Communications Server for Linux main menu, click Services —>

Configure node parameters. The “Node parameters” window opens.

220 WebSphere MQ: Intercommunication

2. Set APPN support to End node.

3. In the Control point name fields, specify the network qualified name of the

control point at the local node. In the first field, type the network name (4). In

the second field, type the control point name (2).

4. In the Control point alias field, type the control point name (2) again.

5. In the Node ID fields, type the two components of the node ID (3).

6. Click OK. A message is displayed informing you that a default LU has been

defined automatically for the local node.

7. Click OK.

Adding a Token-Ring port:

1. From the Communications Server for Linux main menu, click Services —>

Connectivity —> New port. The following window opens.

2. Set Port using to Token Ring Card, or to the type of network adapter card you

are using.

3. Click OK. The “Token-Ring SAP” window opens.

Chapter 3. DQM in WebSphere MQ for Windows and Unix platforms 221

4. In the SNA port name field, type the port name (9).

5. Click OK.

Defining a local LU:

1. From the Communications Server for Linux main menu, click Services —>

APPC —> New independent local LU. The “Local LU” window opens.

2. In the LU name field, type the name of the local LU (5).

3. Click the LU alias field. Communications Server for Linux suggests an LU alias

that is the same as the name of the local LU (5).

4. Click OK.

222 WebSphere MQ: Intercommunication

APPC configuration

APPC configuration involves the following steps:

1. Defining a remote node

2. Defining a partner LU

3. Defining a link station

4. Defining a mode

5. Adding CPI-C information

6. Adding a TP definition

Defining a remote node:

1. From the Communications Server for Linux main menu, click Services —>

APPC —> New remote node. The “Remote node” window opens.

2. In the Node’s SNA network name fields, specify the network qualified name

of the control point at the remote node. Communications Server for Linux

completes the first field for you by setting it to the network name (4 and 13)

you entered earlier. In the second field, type the control point name (14).

3. Click OK. A message is displayed informing you that a default LU has been

defined automatically for the remote node.

4. Click OK.

Defining a partner LU:

1. From the Communications Server for Linux main menu, click Services —>

APPC —> New partner LUs —> Partner LU on remote node. The “Partner

LU” window opens.

Chapter 3. DQM in WebSphere MQ for Windows and Unix platforms 223

2. In the Partner LU name fields, specify the network qualified name of the

partner LU at the remote node. Communications Server for Linux completes

the first field for you by setting it to the network name (4 and 13) you entered

earlier. In the second field, type the name of the partner LU (15).

3. In the Alias and Uninterpreted name fields, type the name of the partner LU

(15) again.

4. Click Location, select the network qualified name of the control point at the

remote node (13.14) from the list that is displayed, and click OK.

5. Click OK.

Defining a link station:

 1. From the Communications Server for Linux main menu, click Services —>

Connectivity —> New link station. The following window opens.

 2. Set Link station to to MQPORT.

 3. Click OK. The “Token ring link station” window opens.

224 WebSphere MQ: Intercommunication

4. In the Name field, type the name of the link station (12).

 5. Set Activation to On demand.

 6. Select the Independent only check box.

 7. Click Remote node, select the network qualified name of the control point at

the remote node (13.14) from the list that is displayed, and click OK.

 8. Set Remote node type to End or LEN node.

 9. In the MAC address field, type the MAC address (19) of the network adapter

card at the remote node.

10. Click Advanced. The “Token ring link station parameters” window opens.

Chapter 3. DQM in WebSphere MQ for Windows and Unix platforms 225

11. Select the Request CP-CP sessions check box.

12. Select the Reactivate link station after failure check box.

13. Click OK to exit the “Token ring link station parameters” window.

14. Click OK to exit the “Token ring link station” window.

Defining a mode:

 This purpose of the section is to explain how to define a new mode with the name

LU62PS. The example continues subsequently, however, by using the mode

#INTER (17), which is a standard mode supplied by Communications Server for

Linux.

1. From the Communications Server for Linux main menu, click Services —>

APPC —> Modes. The “Modes” window opens.

226 WebSphere MQ: Intercommunication

2. Click New. The “Mode” window opens.

3. In the Name field, type the name of the new mode, LU62PS.

4. Click COS Name, select the class of service #INTER from the list that is

displayed, and click OK.

5. For the Session limits:

v Type 8 in the Initial field.

v Type 8 in the Maximum field.

Chapter 3. DQM in WebSphere MQ for Windows and Unix platforms 227

v Type 4 in the Min con. winner sessions field.
6. Click OK to exit the “Mode” window.

7. Click Close to exit the “Modes” window.

Adding CPI-C information:

1. From the Communications Server for Linux main menu, click Services —>

APPC —> CPI-C. The “CPI-C destination names” window opens.

2. Click New. The “CPI-C destination” window opens.

228 WebSphere MQ: Intercommunication

3. In the Name field, type the CPI-C symbolic destination name (18).

4. Select the Use PLU alias check box, and type the name of the partner LU (15),

which you specified earlier as the partner LU alias.

5. In the Mode field, type the mode name (17).

6. Select the Application TP check box, and type the TP name (16).

7. Click OK to exit the “CPI-C destination” window.

8. Click Close to exit the “CPI-C destination names” window.

Adding a TP definition:

 1. From the Communications Server for Linux main menu, click Services —>

APPC —> Transaction programs. The “Transaction Programs” window opens.

Chapter 3. DQM in WebSphere MQ for Windows and Unix platforms 229

2. Click New. The “TP invocation” window opens.

230 WebSphere MQ: Intercommunication

3. Select the Application TP check box, and type the TP name (7).

 4. Clear the Queue incoming Allocates check box.

 5. In the Full path to TP executable field, type the full path to the executable

program (10).

 6. In the Arguments field, type -m local queue manager (11).

 7. In the User ID and Group ID fields, type mqm.

 8. In the Environment field, type APPCLLU=local LU name (5) and APPCTPN=TP

name (7) separated by the pipe character.

 9. Click OK to exit the “TP invocation” window.

10. Click Selection —> Close TP window to exit the “Transaction Programs”

window.

Chapter 3. DQM in WebSphere MQ for Windows and Unix platforms 231

Communications Server for Linux operation

The Communications Server for Linux control daemon is started with the sna start

command. Depending on the options selected at installation, it may already be

running.

The xsnaadmin utility controls Communications Server for Linux resources.

Logging and tracing are controlled from here. Log and trace files can be found in

the /var/opt/sna directory. The logging files sna.aud and sna.err can be read

using a standard editor such as vi.

In order to read the sna1.trc trace file, you must first format it by running the

command:

snatrcfmt -f sna1.trc -o sna1

This produces an sna1.dmp file, which can be read using a normal editor. The

sna2.trc trace file can be processed in the same way.

It is possible to edit the configuration file, but this is not a recommended method

of configuring Communications Server for Linux.

The APPCLLU environment variable must be set before starting a sender channel

from the Linux system. The command can be either entered interactively or added

to the logon profile. Depending on the level of Bourne shell or Korn shell program

being used, the command is:

export APPCLLU=Local LU name 5 newer level

or

APPCLLU=Local LU name 5 older level

export

What next?

The connection is now established. You are ready to complete the configuration.

Go to “WebSphere MQ for Linux configuration” on page 234.

Establishing a TCP connection

Some Linux distributions now use the extended inet daemon (XINETD) instead of

the inet daemon (INETD). The following instructions tell you how to establish a

TCP connection using either the inet daemon or the extended inet daemon.

Using the inet daemon (INETD)

To establish a TCP connection, follow these steps.

1. Edit the file /etc/services. If you do not have the following line in the file, add

it as shown:

MQSeries 1414/tcp # MQSeries channel listener

Note: To edit this file, you must be logged in as a superuser or root.

2. Edit the file /etc/inetd.conf. If you do not have the following line in that file,

add it as shown:

MQSeries stream tcp nowait mqm /opt/mqm/bin/amqcrsta amqcrsta

[-m queue.manager.name]

232 WebSphere MQ: Intercommunication

3. Find the process ID of the inetd with the command:

ps -ef | grep inetd

4. Run the command:

kill -1 inetd processid

If you have more than one queue manager on your system, and therefore require

more than one service, you must add a line for each additional queue manager to

both /etc/services and inetd.conf.

For example:

MQSeries1 1414/tcp

MQSeries2 1822/tcp

MQSeries1 stream tcp nowait mqm /mqmtop/bin/amqcrsta amqcrsta -m QM1

MQSeries2 stream tcp nowait mqm /mqmtop/bin/amqcrsta amqcrsta -m QM2

This avoids error messages being generated if there is a limitation on the number

of outstanding connection requests queued at a single TCP port. For information

about the number of outstanding connection requests, see “Using the TCP listener

backlog option” on page 152.

The inetd process on Linux can limit the rate of inbound connections on a TCP

port. The default is 40 connections in a 60 second interval. If you need a higher

rate, specify a new limit on the number of inbound connections in a 60 second

interval by appending a period (.) followed by the new limit to the nowait

parameter of the appropriate service in inetd.conf. For example, for a limit of 500

connections in a 60 second interval use:

MQSeries stream tcp nowait.500 mqm /mqmtop/bin/amqcrsta amqcrsta -m QM1

Using the extended inet daemon (XINETD)

The following instructions describe how the extended inet daemon is implemented

on Red Hat Linux. If you are using a different Linux distribution, you might have

to adapt these instructions.

To establish a TCP connection, follow these steps.

1. Edit the file /etc/services. If you do not have the following line in the file, add

it as shown:

MQSeries 1414/tcp # MQSeries channel listener

Note: To edit this file, you must be logged in as a superuser or root.

2. Create a file called MQSeries in the XINETD configuration directory,

/etc/xinetd.d. Add the following stanza to the file:

WebSphere MQ service for XINETD

service MQSeries

{

 disable = no

 flags = REUSE

 socket_type = stream

 wait = no

 user = mqm

 server = /opt/mqm/bin/amqcrsta

 server_args = -m queue.manager.name

 log_on_failure += USERID

}

3. Restart the extended inet daemon by issuing the following command:

/etc/rc.d/init.d/xinetd restart

Chapter 3. DQM in WebSphere MQ for Windows and Unix platforms 233

If you have more than one queue manager on your system, and therefore require

more than one service, you must add a line to /etc/services for each additional

queue manager. You can create a file in the /etc/xinetd.d directory for each

service, or you can add additional stanzas to the MQSeries file you created

previously.

The xinetd process on Linux can limit the rate of inbound connections on a TCP

port. The default is 50 connections in a 10 second interval. If you need a higher

rate, specify a new limit on the rate of inbound connections by specifying the ’cps’

attribute in the xinetd configuration file. For example, for a limit of 500

connections in a 60 second interval use:

cps = 500 60

What next?

The TCP/IP connection is now established. You are ready to complete the

configuration. Go to “WebSphere MQ for Linux configuration.”

WebSphere MQ for Linux configuration

Before beginning the installation process ensure that you have first created the

mqm user ID and the mqm group, and set the password.

Start any channel using the command:

runmqchl -c channel.name

Note:

1. Sample programs are installed in /opt/mqm/samp.

2. Error logs are stored in /var/mqm/qmgrs/qmgrname/errors.

3. When you are using the command interpreter runmqsc to enter administration

commands, a + at the end of a line indicates that the next line is a continuation.

Ensure that there is a space between the last parameter and the continuation

character.

Basic configuration

1. Create the queue manager from the UNIX prompt using the command:

crtmqm -u dlqname -q linux

where:

linux Is the name of the queue manager

-q Indicates that this is to become the default queue manager

-u dlqname

Specifies the name of the dead letter queue
This command creates a queue manager and a set of default objects.

2. Start the queue manager from the UNIX prompt using the command:

strmqm linux

where linux is the name given to the queue manager when it was created.

Channel configuration

The following section details the configuration to be performed on the Linux queue

manager to implement the channel described in Figure 32 on page 101.

234 WebSphere MQ: Intercommunication

The MQSC command to create each object is shown. Either start runmqsc from a

UNIX prompt and enter each command in turn, or build the commands into a

command file.

Examples are given for connecting WebSphere MQ for Linux and WebSphere MQ

for HP-UX. If you wish to connect to WebSphere MQ on another platform use the

appropriate set of values from the table in place of those for HP-UX.

Note: The words in bold are user-specified and reflect the names of WebSphere

MQ objects used throughout these examples. If you change the names used here,

ensure that you also change the other references made to these objects throughout

this book. All others are keywords and should be entered as shown.

 Table 24. Configuration worksheet for WebSphere MQ for Linux

ID Parameter Name Reference Example Used User Value

Definition for local node

A Queue Manager Name LINUX

B Local queue name LINUX.LOCALQ

Connection to WebSphere MQ for Windows

The values in this section of the table must match those used in Table 14 on page 146, as indicated.

C Remote queue manager name A WINNT

D Remote queue name WINNT.REMOTEQ

E Queue name at remote system B WINNT.LOCALQ

F Transmission queue name WINNT

G Sender (SNA) channel name LINUX.WINNT.SNA

H Sender (TCP/IP) channel name LINUX.WINNT.TCP

I Receiver (SNA) channel name G WINNT.LINUX.SNA

J Receiver (TCP) channel name H WINNT.LINUX.TCP

Connection to WebSphere MQ for AIX

The values in this section of the table must match those used in Table 18 on page 168, as indicated.

C Remote queue manager name A AIX

D Remote queue name AIX.REMOTEQ

E Queue name at remote system B AIX.LOCALQ

F Transmission queue name AIX

G Sender (SNA) channel name LINUX.AIX.SNA

H Sender (TCP) channel name LINUX.AIX.TCP

I Receiver (SNA) channel name G AIX.LINUX.SNA

J Receiver (TCP) channel name H AIX.LINUX.TCP

Connection to MQSeries for Compaq Tru64 UNIX

The values in this section of the table must match those used in your Compaq Tru64 UNIX system.

C Remote queue manager name A DECUX

D Remote queue name DECUX.REMOTEQ

E Queue name at remote system B DECUX.LOCALQ

F Transmission queue name DECUX

H Sender (TCP) channel name DECUX.LINUX.TCP

Chapter 3. DQM in WebSphere MQ for Windows and Unix platforms 235

Table 24. Configuration worksheet for WebSphere MQ for Linux (continued)

ID Parameter Name Reference Example Used User Value

J Receiver (TCP) channel name H LINUX.DECUX.TCP

Connection to WebSphere MQ for HP-UX

The values in this section of the table must match those used in Table 20 on page 191, as indicated.

C Remote queue manager name A HPUX

D Remote queue name HPUX.REMOTEQ

E Queue name at remote system B HPUX.LOCALQ

F Transmission queue name HPUX

G Sender (SNA) channel name LINUX.HPUX.SNA

H Sender (TCP) channel name LINUX.HPUX.TCP

I Receiver (SNA) channel name G HPUX.LINUX.SNA

J Receiver (TCP/IP) channel name H HPUX.LINUX.TCP

Connection to WebSphere MQ for Solaris

The values in this section of the table must match those used in Table 22 on page 212, as indicated.

C Remote queue manager name A SOLARIS

D Remote queue name SOLARIS.REMOTEQ

E Queue name at remote system B SOLARIS.LOCALQ

F Transmission queue name GIS

G Sender (SNA) channel name LINUX.SOLARIS.SNA

H Sender (TCP/IP) channel name LINUX.SOLARIS.TCP

I Receiver (SNA) channel name G SOLARIS.LINUX.SNA

J Receiver (TCP/IP) channel name H SOLARIS.LINUX.TCP

Connection to WebSphere MQ for i5/OS

The values in this section of the table must match those used in Table 36 on page 364, as indicated.

C Remote queue manager name A AS400

D Remote queue name AS400.REMOTEQ

E Queue name at remote system B AS400.LOCALQ

F Transmission queue name AS400

G Sender (SNA) channel name LINUX.AS400.SNA

H Sender (TCP) channel name LINUX.AS400.TCP

I Receiver (SNA) channel name G AS400.LINUX.SNA

J Receiver (TCP) channel name H AS400.LINUX.TCP

Connection to WebSphere MQ for z/OS

The values in this section of the table must match those used in Table 28 on page 272, as indicated.

C Remote queue manager name A MVS

D Remote queue name MVS.REMOTEQ

E Queue name at remote system B MVS.LOCALQ

F Transmission queue name MVS

G Sender (SNA) channel name LINUX.MVS.SNA

H Sender (TCP) channel name LINUX.MVS.TCP

236 WebSphere MQ: Intercommunication

Table 24. Configuration worksheet for WebSphere MQ for Linux (continued)

ID Parameter Name Reference Example Used User Value

I Receiver (SNA) channel name G MVS.LINUX.SNA

J Receiver (TCP) channel name H MVS.LINUX.TCP

Connection to MQSeries for VSE/ESA (WebSphere MQ for Linux (x86 platform) only)

The values in this section of the table must match those used in your VSE/ESA system.

C Remote queue manager name A VSE

D Remote queue name VSE.REMOTEQ

E Queue name at remote system B VSE.LOCALQ

F Transmission queue name VSE

G Sender channel name LINUX.VSE.SNA

I Receiver channel name G VSE.LINUX.SNA

WebSphere MQ for Linux (x86 platform) sender-channel definitions using

SNA:

def ql (HPUX) + F

 usage(xmitq) +

 replace

def qr (HPUX.REMOTEQ) + D

 rname(HPUX.LOCALQ) + E

 rqmname(HPUX) + C

 xmitq(HPUX) + F

 replace

def chl (LINUX.HPUX.SNA) chltype(sdr) + G

 trptype(lu62) +

 conname(’HPUXCPIC’) + 14

 xmitq(HPUX) + F

 replace

WebSphere MQ for Linux (x86 platform) receiver-channel definitions using

SNA:

def ql (LINUX.LOCALQ) replace B

def chl (HPUX.LINUX.SNA) chltype(rcvr) + I

 trptype(lu62) +

 replace

WebSphere MQ for Linux sender-channel definitions using TCP:

def ql (HPUX) + F

 usage(xmitq) +

 replace

def qr (HPUX.REMOTEQ) + D

 rname(HPUX.LOCALQ) + E

 rqmname(HPUX) + C

 xmitq(HPUX) + F

 replace

def chl (LINUX.HPUX.TCP) chltype(sdr) + H

 trptype(tcp) +

 conname(remote_tcpip_hostname) +

 xmitq(HPUX) + F

 replace

Chapter 3. DQM in WebSphere MQ for Windows and Unix platforms 237

WebSphere MQ for Linux receiver-channel definitions using TCP/IP:

def ql (LINUX.LOCALQ) replace B

def chl (HPUX.LINUX.TCP) chltype(rcvr) + J

 trptype(tcp) +

 replace

Message channel planning example for distributed platforms

This chapter provides a detailed example of how to connect two queue managers

together so that messages can be sent between them. The example illustrates the

preparations needed to allow an application using queue manager QM1 to put

messages on a queue at queue manager QM2. An application running on QM2 can

retrieve these messages, and send responses to a reply queue on QM1.

The example illustrates the use of TCP/IP connections. The example assumes that

channels are to be triggered to start when the first message arrives on the

transmission queue they are servicing. You must start the channel initiator in order

for triggering to work.

This example uses SYSTEM.CHANNEL.INITQ as the initiation queue. This queue

is already defined by WebSphere MQ. You can use a different initiation queue, but

you will have to define it yourself and specify the name of the queue when you

start the channel initiator.

What the example shows

The example shows the WebSphere MQ commands (MQSC) that you can use.

In all the examples, the MQSC commands are shown as they would appear in a

file of commands, and as they would be typed at the command line. The two

methods look identical, but, to issue a command at the command line, you must

first type runmqsc, for the default queue manager, or runmqsc qmname where qmname

is the name of the required queue manager. Then type any number of commands,

as shown in the examples.

An alternative method is to create a file containing these commands. Any errors in

the commands are then easy to correct. If you called your file mqsc.in then to run

it on queue manager QMNAME use:

runmqsc QMNAME < mqsc.in > mqsc.out

You could verify the commands in your file before running it using:

runmqsc -v QMNAME < mqsc.in > mqsc.out

For portability, you should restrict the line length of your commands to 72

characters. Use a concatenation character to continue over more than one line. On

Windows use Ctrl-z to end the input at the command line. On UNIX systems use

Ctrl-d. Alternatively, use the end command.

Figure 35 on page 239 shows the example scenario.

238 WebSphere MQ: Intercommunication

The example involves a payroll query application connected to queue manager

QM1 that sends payroll query messages to a payroll processing application

running on queue manager QM2. The payroll query application needs the replies

to its queries sent back to QM1. The payroll query messages are sent from QM1 to

QM2 on a sender-receiver channel called QM1.TO.QM2, and the reply messages

are sent back from QM2 to QM1 on another sender-receiver channel called

QM2.TO.QM1. Both of these channels are triggered to start as soon as they have a

message to send to the other queue manager.

The payroll query application puts a query message to the remote queue

“PAYROLL.QUERY” defined on QM1. This remote queue definition resolves to the

local queue “PAYROLL” on QM2. In addition, the payroll query application

specifies that the reply to the query is sent to the local queue “PAYROLL.REPLY”

on QM1. The payroll processing application gets messages from the local queue

“PAYROLL” on QM2, and sends the replies to wherever they are required; in this

case, local queue “PAYROLL.REPLY” on QM1.

In the example definitions for TCP/IP, QM1 has a host address of 9.20.9.31 and is

listening on port 1411, and QM2 has a host address of 9.20.9.32 and is listening on

port 1412. The example assumes that these are already defined on your system and

available for use.

The object definitions that need to be created on QM1 are:

v Remote queue definition, PAYROLL.QUERY

v Transmission queue definition, QM2 (default=remote queue manager name)

v Sender channel definition, QM1.TO.QM2

v Receiver channel definition, QM2.TO.QM1

v Reply-to queue definition, PAYROLL.REPLY

The object definitions that need to be created on QM2 are:

v Local queue definition, PAYROLL

v Transmission queue definition, QM1 (default=remote queue manager name)

v Sender channel definition, QM2.TO.QM1

v Receiver channel definition, QM1.TO.QM2

The connection details are supplied in the CONNAME attribute of the sender

channel definitions.

You can see a diagram of the arrangement in Figure 35.

'SYSTEM.CHANNEL.INITQ'

Queue transmission 'QM1'

Queue manager 'QM2'

Queue local 'PAYROLL'

Application

Query
message

Query
message

Channel

Channel

Application

Payroll
processing

Payroll
query

Reply
message

Reply
message

QM1.TO.QM2

QM2.TO.QM1

Queue remote 'PAYROLL.QUERY'

Queue local 'PAYROLL.REPLY'

Queue transmission 'QM2'

'SYSTEM.CHANNEL.INITQ'

Queue manager 'QM1'

Figure 35. The message channel example for Windows, and UNIX systems

Chapter 3. DQM in WebSphere MQ for Windows and Unix platforms 239

Queue manager QM1 example

The following object definitions allow applications connected to queue manager

QM1 to send request messages to a queue called PAYROLL on QM2, and to receive

replies on a queue called PAYROLL.REPLY on QM1.

All the object definitions have been provided with the DESCR and REPLACE

attributes. The other attributes supplied are the minimum required to make the

example work. The attributes that are not supplied take the default values for

queue manager QM1.

Run the following commands on queue manager QM1.

Remote queue definition

DEFINE QREMOTE(PAYROLL.QUERY) DESCR(’Remote queue for QM2’) REPLACE +

PUT(ENABLED) XMITQ(QM2) RNAME(PAYROLL) RQMNAME(QM2)

Note: The remote queue definition is not a physical queue, but a means of

directing messages to the transmission queue, QM2, so that they can be

sent to queue manager QM2.

Transmission queue definition

DEFINE QLOCAL(QM2) DESCR(’Transmission queue to QM2’) REPLACE +

USAGE(XMITQ) PUT(ENABLED) GET(ENABLED) TRIGGER TRIGTYPE(FIRST) +

INITQ(SYSTEM.CHANNEL.INITQ) PROCESS(QM1.TO.QM2.PROCESS)

When the first message is put on this transmission queue, a trigger

message is sent to the initiation queue, SYSTEM.CHANNEL.INITQ. The

channel initiator gets the message from the initiation queue and starts the

channel identified in the named process.

Sender channel definition

DEFINE CHANNEL(QM1.TO.QM2) CHLTYPE(SDR) TRPTYPE(TCP) +

REPLACE DESCR(’Sender channel to QM2’) XMITQ(QM2) +

CONNAME(’9.20.9.32(1412)’)

Receiver channel definition

DEFINE CHANNEL(QM2.TO.QM1) CHLTYPE(RCVR) TRPTYPE(TCP) +

REPLACE DESCR(’Receiver channel from QM2’)

Reply-to queue definition

DEFINE QLOCAL(PAYROLL.REPLY) REPLACE PUT(ENABLED) GET(ENABLED) +

DESCR(’Reply queue for replies to query messages sent to QM2’)

The reply-to queue is defined as PUT(ENABLED). This ensures that reply

messages can be put to the queue. If the replies cannot be put to the

reply-to queue, they are sent to the dead-letter queue on QM1 or, if this

queue is not available, remain on transmission queue QM1 on queue

manager QM2. The queue has been defined as GET(ENABLED) to allow

the reply messages to be retrieved.

Queue manager QM2 example

The following object definitions allow applications connected to queue manager

QM2 to retrieve request messages from a local queue called PAYROLL, and to put

replies to these request messages to a queue called PAYROLL.REPLY on queue

manager QM1.

240 WebSphere MQ: Intercommunication

You do not need to provide a remote queue definition to enable the replies to be

returned to QM1. The message descriptor of the message retrieved from local

queue PAYROLL contains both the reply-to queue and the reply-to queue manager

names. Therefore, as long as QM2 can resolve the reply-to queue manager name to

that of a transmission queue on queue manager QM2, the reply message can be

sent. In this example, the reply-to queue manager name is QM1 and so queue

manager QM2 simply requires a transmission queue of the same name.

All the object definitions have been provided with the DESCR and REPLACE

attributes and are the minimum required to make the example work. The attributes

that are not supplied take the default values for queue manager QM2.

Run the following commands on queue manager QM2.

Local queue definition

DEFINE QLOCAL(PAYROLL) REPLACE PUT(ENABLED) GET(ENABLED) +

DESCR(’Local queue for QM1 payroll details’)

This queue is defined as PUT(ENABLED) and GET(ENABLED) for the

same reason as the reply-to queue definition on queue manager QM1.

Transmission queue definition

DEFINE QLOCAL(QM1) DESCR(’Transmission queue to QM1’) REPLACE +

USAGE(XMITQ) PUT(ENABLED) GET(ENABLED) TRIGGER TRIGTYPE(FIRST) +

INITQ(SYSTEM.CHANNEL.INITQ) PROCESS(QM2.TO.QM1.PROCESS)

When the first message is put on this transmission queue, a trigger

message is sent to the initiation queue, SYSTEM.CHANNEL.INITQ. The

channel initiator gets the message from the initiation queue and starts the

channel identified in the named process.

Sender channel definition

DEFINE CHANNEL(QM2.TO.QM1) CHLTYPE(SDR) TRPTYPE(TCP) +

REPLACE DESCR(’Sender channel to QM1’) XMITQ(QM1) +

CONNAME(’9.20.9.31(1411)’)

Receiver channel definition

DEFINE CHANNEL(QM1.TO.QM2) CHLTYPE(RCVR) TRPTYPE(TCP) +

REPLACE DESCR(’Receiver channel from QM1’)

Running the example

Once these definitions have been created, you need to:

v Start the channel initiator on each queue manager.

v Start the listener for each queue manager.

For information about starting the channel initiator and listener, see “Setting up

communication for Windows” on page 120 and “Setting up communication on

UNIX systems” on page 150.

Expanding this example

This simple example could be expanded with:

v The use of LU 6.2 communications for interconnection with CICS systems, and

transaction processing.

v Adding more queue, process, and channel definitions to allow other applications

to send messages between the two queue managers.

Chapter 3. DQM in WebSphere MQ for Windows and Unix platforms 241

v Adding user-exit programs on the channels to allow for link encryption, security

checking, or additional message processing.

v Using queue-manager aliases and reply-to queue aliases to understand more

about how these can be used in the organization of your queue manager

network.

242 WebSphere MQ: Intercommunication

Chapter 4. DQM in WebSphere MQ for z/OS

Monitoring and controlling channels on z/OS

Use the DQM commands and panels to create, monitor, and control the channels to

remote queue managers. Each z/OS queue manager has a DQM program (the

channel initiator) for controlling interconnections to remote queue managers using

native z/OS facilities.

The implementation of these panels and commands on z/OS is integrated into the

operations and control panels and the MQSC commands. No differentiation is

made in the organization of these two sets of panels and commands.

Commands may also be entered using Programmable Command Format (PCF)

commands. See the WebSphere MQ Programmable Command Formats and

Administration Interface book for information about using these commands.

The information in this chapter applies in all cases where the channel initiator is

used for distributed queuing. It applies whether or not you are using

queue-sharing groups, or intra-group queuing.

The DQM channel control function

The channel control function provides the administration and control of message

channels between WebSphere MQ for z/OS and remote systems. See Figure 28 on

page 52 for a conceptual picture.

The channel control function consists of panels, commands and programs, two

synchronization queues, channel command queues, and the channel definitions.

The following is a brief description of the components of the channel control

function.

v The channel definitions are held as objects in page set zero or in DB2®, like other

WebSphere MQ objects in z/OS.

v You use the operations and control panels, MQSC commands, or PCF commands

to:

– Create, copy, display, alter, and delete channel definitions

– Start and stop channel initiators and listeners

– Start, stop, and ping channels, reset channel sequence numbers, and resolve

in-doubt messages when links cannot be re-established

– Display status information about channels

– Display information about DQM
In particular, you can use the CSQINPX initialization input data set to issue your

MQSC commands. This can be processed every time you start the channel

initiator. See the WebSphere MQ for z/OS Concepts and Planning Guide for

information about this.

v There are two queues (SYSTEM.CHANNEL.SYNCQ and

SYSTEM.QSG.CHANNEL.SYNCQ) used for channel re-synchronization

purposes. You should define these with INDXTYPE(MSGID) for performance

reasons.

© Copyright IBM Corp. 1994, 2008 243

v The channel command queue (SYSTEM.CHANNEL.INITQ) is used to hold

commands for channel initiators, channels, and listeners.

v The channel control function program runs in its own address space, separate

from the queue manager, and comprises the channel initiator, listeners, MCAs,

trigger monitor, and command handler.

v For queue-sharing groups and shared channels, see “Preparing WebSphere MQ

for z/OS for DQM with queue-sharing groups” on page 280.

v For intra-group queuing, see “Intra-group queuing” on page 298

Using the panels and the commands

You can use either the MQSC commands, the PCF commands, or the operations

and control panels to manage DQM. For information about the syntax of the

MQSC commands, see the WebSphere MQ Script (MQSC) Command Reference

book. For information about PCF commands, see WebSphere MQ Programmable

Command Formats and Administration Interface.

Using the initial panel

For an introduction to invoking the operations and control panels, using the

function keys, and getting help, see the WebSphere MQ for z/OS System

Administration Guide.

Note: To use the operations and control panels, you must have the correct security

authorization; see the WebSphere MQ for z/OS System Setup Guide for

information. Figure 36 shows the panel that is displayed when you start a panel

session. The text after the panel explains the actions you should perform in this

panel.

 From this panel you can:

v Select the action you want to perform by typing in the appropriate number in

the Action field.

 IBM WebSphere MQ for z/OS - Main Menu

 Complete fields. Then press Enter.

 Action 1 0. List with filter 4. Manage

 1. List or Display 5. Perform

 2. Define like 6. Start

 3. Alter 7. Stop

 Object type CHANNEL +

 Name *

 Disposition A Q=Qmgr, C=Copy, P=Private, G=Group,

 S=Shared, A=All

 Connect name MQ25 - local queue manager or group

 Target queue manager . . . MQ25

 - connected or remote queue manager for command input

 Action queue manager . . . MQ25 - command scope in group

 Response wait time 10 5 - 999 seconds

 (C) Copyright IBM Corporation 1993,2005. All rights reserved.

 Command ===> __

 F1=Help F2=Split F3=Exit F4=Prompt F9=SwapNext F10=Messages

 F12=Cancel

Figure 36. The operations and controls initial panel

244 WebSphere MQ: Intercommunication

v Specify the object type that you want to work with. Press F4 for a list of object

types if you are not sure what they are.

v Display a list of objects of the type specified. Type in an asterisk (*) in the Name

field and press Enter to display a list of objects (of the type specified) that have

already been defined on this subsystem. You can then select one or more objects

to work with in sequence. Figure 37 shows a list of channels produced in this

way.

v Specify the disposition in the queue-sharing group of the objects you want to

work with in the Disposition field. The disposition determines where the object

is kept and how the object behaves.

v Choose the local queue manager, or queue-sharing group to which you want to

connect in the Connect name field. If you want the commands to be issued on a

remote queue manager, choose either the Target queue manager field or the

Action queue manager field, depending upon whether the remote queue

manager is not or is a member of a queue-sharing group. If the remote queue

manager is not a member of a queue-sharing group, choose the Target queue

manager field. If the remote queue manager is a member of a queue-sharing

group, choose the Action queue manager field.

v Choose the wait time for responses to be received in the Response wait time

field.

Managing your channels

Table 25 lists the tasks that you can perform to manage your channels, channel

initiators, and listeners. It also gives the name of the relevant MQSC command,

and points to the topic where each task is discussed.

 Table 25. Channel tasks

Task to be performed MQSC command See topic

Define a channel DEFINE CHANNEL “Defining a

channel” on

page 247

 List Channels - MQ25 Row 1 of 8

 Type action codes, then press Enter. Press F11 to display connection status.

 1=Display 2=Define like 3=Alter 4=Manage 5=Perform

 6=Start 7=Stop

 Name Type Disposition Status

 <> * CHANNEL ALL MQ25

 _ SYSTEM.DEF.CLNTCONN CLNTCONN QMGR MQ25

 _ SYSTEM.DEF.CLUSRCVR CLUSRCVR QMGR MQ25 INACTIVE

 _ SYSTEM.DEF.CLUSSDR CLUSSDR QMGR MQ25 INACTIVE

 _ SYSTEM.DEF.RECEIVER RECEIVER QMGR MQ25 INACTIVE

 _ SYSTEM.DEF.REQUESTER REQUESTER QMGR MQ25 INACTIVE

 _ SYSTEM.DEF.SENDER SENDER QMGR MQ25 INACTIVE

 _ SYSTEM.DEF.SERVER SERVER QMGR MQ25 INACTIVE

 _ SYSTEM.DEF.SVRCONN SVRCONN QMGR MQ25 INACTIVE

 ******** End of list ********

 Command ===> __

 F1=Help F2=Split F3=Exit F4=Filter F5=Refresh F7=Bkwd

 F8=Fwd F9=SwapNext F10=Messages F11=Status F12=Cancel

Figure 37. Listing channels

Chapter 4. DQM in WebSphere MQ for z/OS 245

Table 25. Channel tasks (continued)

Task to be performed MQSC command See topic

Alter a channel definition ALTER CHANNEL “Altering a

channel

definition” on

page 247

Display a channel definition DISPLAY CHANNEL “Displaying a

channel

definition” on

page 248

Delete a channel definition DELETE CHANNEL “Deleting a

channel

definition” on

page 248

Start a channel initiator START CHINIT “Starting a

channel

initiator” on

page 249

Stop a channel initiator STOP CHINIT “Stopping a

channel

initiator” on

page 250

Display channel initiator information DISPLAY CHINIT “Displaying

information

about the

channel

initiator” on

page 249

Start a channel listener START LISTENER “Starting a

channel

listener” on

page 251

Stop a channel listener STOP LISTENER “Stopping a

channel

listener” on

page 252

Start a channel START CHANNEL “Starting a

channel” on

page 252

Test a channel PING CHANNEL “Testing a

channel” on

page 254

Reset message sequence numbers for a

channel

RESET CHANNEL “Resetting

message

sequence

numbers for a

channel” on

page 254

Resolve in-doubt messages on a channel RESOLVE CHANNEL “Resolving

in-doubt

messages on a

channel” on

page 255

246 WebSphere MQ: Intercommunication

Table 25. Channel tasks (continued)

Task to be performed MQSC command See topic

Stop a channel STOP CHANNEL “Stopping a

channel” on

page 255

Display channel status DISPLAY CHSTATUS “Displaying

channel

status” on

page 257

Display cluster channels DISPLAY CLUSQMGR “Displaying

cluster

channels” on

page 258

Defining a channel

To define a channel using the MQSC commands, use DEFINE CHANNEL.

Using the operations and control panels, starting from the initial panel, complete

these fields and press Enter:

 Field Value

Action 2 (Define like)

Object type channel type (for example SENDER) or CHANNEL

Name

Disposition The location of the new object.

You are presented with some panels to complete with information about the name

and attributes you want for the channel you are defining. They are initialized with

the default attribute values. Change any you want before pressing Enter.

Note: If you entered CHANNEL in the object type field, you are presented with

the Select a Valid Channel Type panel first.

If you want to define a channel with the same attributes as an existing channel,

put the name of the channel you want to copy in the Name field on the initial

panel. The panels will be initialized with the attributes of the existing object.

For information about the channel attributes, see “Channel attributes” on page 71

Note:

1. You are strongly recommended to name all the channels in your network

uniquely. As shown in Table 1 on page 26, including the source and target

queue manager names in the channel name is a good way to do this.

Altering a channel definition

To alter a channel definition using the MQSC commands, use ALTER CHANNEL.

Using the operations and control panels, starting from the initial panel, complete

these fields and press Enter:

 Field Value

Action 3 (Alter)

Chapter 4. DQM in WebSphere MQ for z/OS 247

Field Value

Object type channel type (for example SENDER) or CHANNEL

Name CHANNEL.TO.ALTER

Disposition The location of the stored object.

You are presented with some panels containing information about the current

attributes of the channel. Change any of the unprotected fields that you want by

overtyping the new value, and then press Enter to change the channel definition.

For information about the channel attributes, see “Channel attributes” on page 71.

Displaying a channel definition

To display a channel definition using the MQSC commands, use DISPLAY

CHANNEL.

Using the operations and control panels, starting from the initial panel, complete

these fields and press Enter:

 Field Value

Action 1 (List or Display)

Object type channel type (for example SENDER) or CHANNEL

Name CHANNEL.TO.DISPLAY

Disposition The location of the object.

You are presented with some panels displaying information about the current

attributes of the channel.

For information about the channel attributes, see “Channel attributes” on page 71.

Deleting a channel definition

To delete a channel definition using the MQSC commands, use DELETE

CHANNEL.

Using the operations and control panels, starting from the initial panel, complete

these fields and press Enter:

 Field Value

Action 4 (Manage)

Object type channel type (for example SENDER) or CHANNEL

Name CHANNEL.TO.DELETE

Disposition The location of the object.

You are presented with another panel. Select function type 1 on this panel.

Press Enter to delete the channel definition; you will be asked to confirm that you

want to delete the channel definition by pressing Enter again.

Note: The channel initiator has to be running before a channel definition can be

deleted (except for client-connection channels).

248 WebSphere MQ: Intercommunication

Displaying information about the channel initiator

To display information about the channel initiator using the MQSC commands, use

DISPLAY CHINIT.

Using the operations and control panels, starting from the initial panel, complete

these fields and press Enter:

 Field Value

Action 1 (Display)

Object type SYSTEM

Name Blank

You are presented with another panel. Select function type 1 on this panel.

Note:

1. Displaying distributed queuing information may take some time if you have

lots of channels.

2. The channel initiator has to be running before you can display information

about distributed queuing.

Starting a channel initiator

To start a channel initiator using the MQSC commands, use START CHINIT.

Using the operations and control panels, starting from the initial panel, complete

these fields and press Enter:

 Field Value

Action 6 (Start)

Object type SYSTEM

Name Blank

The Start a System Function panel is displayed. The text following the panel below

explains what action you should take.:

Chapter 4. DQM in WebSphere MQ for z/OS 249

Select function type 1 (channel initiator), and press Enter.

Stopping a channel initiator

To stop a channel initiator using the MQSC commands, use STOP CHINIT.

Using the operations and control panels, starting from the initial panel, complete

these fields and press Enter:

 Field Value

Action 7 (Stop)

Object type SYSTEM

Name Blank

The Stop a System Function panel is displayed. The text following the panel

explains how you should use this panel:

 Start a System Function

 Select function type, complete fields, then press Enter to start system

 function.

 Function type _ 1. Channel initiator

 2. Channel listener

 Action queue manager . . . : MQ25

 Channel initiator

 JCL substitution __

 __

 Channel listener

 Inbound disposition . . . Q G=Group, Q=Qmgr

 Transport type _ L=LU6.2, T=TCP/IP

 LU name (LU6.2) _________________

 Port number (TCP/IP) . . . 1414

 IP address (TCP/IP) . . . __

 Command ===> __

 F1=Help F2=Split F3=Exit F9=SwapNext F10=Messages F12=Cancel

Figure 38. Starting a system function

250 WebSphere MQ: Intercommunication

Select function type 1 (channel initiator) and press Enter.

The channel initiator will wait for all running channels to stop in quiesce mode

before it stops.

Note: If some of the channels are receiver or requester channels that are running

but not active, a stop request issued to either the receiver’s or sender’s channel

initiator will cause it to stop immediately.

However, if messages are flowing, the channel initiator waits for the current batch

of messages to complete before it stops.

Starting a channel listener

To start a channel listener using the MQSC commands, use START LISTENER.

Using the operations and control panels, starting from the initial panel, complete

these fields and press Enter:

 Field Value

Action 6 (Start)

Object type SYSTEM

Name Blank

The Start a System Function panel is displayed (see Figure 38 on page 250).

Select function type 2 (channel listener). Select Inbound disposition. Select

Transport type. If the Transport type is L, select LU name. If the Transport type is

T, select Port number and (optionally) IP address. Press Enter.

Note: For the TCP/IP listener, you can start multiple combinations of Port and IP

address.

 Stop a System Function

 Select function type, complete fields, then press Enter to stop system

 function.

 Function type _ 1. Channel initiator

 2. Channel listener

 Action queue manager . . . : MQ25

 Channel initiator

 Restart shared channels Y Y=Yes, N=No

 Channel listener

 Inbound disposition . . . Q G=Group, Q=Qmgr

 Transport type _ L=LU6.2, T=TCP/IP

 Port number (TCP/IP) . . . _____

 IP address (TCP/IP) . . . __

 Command ===> __

 F1=Help F2=Split F3=Exit F9=SwapNext F10=Messages F12=Cancel

Figure 39. Stopping a function control

Chapter 4. DQM in WebSphere MQ for z/OS 251

Stopping a channel listener

To stop a channel listener using the MQSC commands, use STOP LISTENER.

Using the operations and control panels, starting from the initial panel, complete

these fields and press Enter:

 Field Value

Action 7 (Stop)

Object type SYSTEM

Name Blank

The Stop a System Function panel is displayed (see Figure 39 on page 251).

Select function type 2 (channel listener). Select Inbound disposition. Select

Transport type. If the transport type is ’T’, select Port number and (optionally) IP

address. Press Enter.

Note: For a TCP/IP listener, you can stop specific combinations of Port and IP

address, or you can stop all combinations.

Starting a channel

To start a channel using the MQSC commands, use START CHANNEL.

Using the operations and control panels, starting from the initial panel, complete

these fields and press Enter:

 Field Value

Action 6 (Start)

Object type channel type (for example SENDER) or CHANNEL

Name CHANNEL.TO.USE

Disposition The disposition of the object.

The Start a Channel panel is displayed. The text following the panel explains how

to use the panel.:

252 WebSphere MQ: Intercommunication

Select the disposition of the channel instance and on which queue manager it is to

be started.

Press Enter to start the channel.

Starting a shared channel:

 To start a shared channel, and keep it on a nominated channel initiator, use

disposition = S (on the START CHANNEL command, specify

CHLDISP(FIXSHARED)). There can be only one instance of the shared channel

running at a time. Attempts to start a second instance of the channel will fail.

When you start a channel in this way, the following rules apply to that channel:

v You can stop the channel from any queue manager in the queue-sharing group.

You can do this even if the channel initiator on which it was started is not

running at the time you issue the stop-channel request. When the channel has

stopped, you can restart it by specifying disposition = S

(CHLDISP(FIXSHARED)) on the same, or another, channel initiator. You can also

start it by specifying disposition = A (CHLDISP(SHARED)).

v If the channel is in the starting or retry state, you can restart it by specifying

disposition = S (CHLDISP(FIXSHARED)) on the same or a different channel

initiator. You can also start it by specifying disposition = A

(CHLDISP(SHARED)).

v The channel is eligible to be trigger started when it goes into the inactive state.

Shared channels that are trigger started always have a shared disposition

(CHLDISP(SHARED)).

v The channel is eligible to be started with CHLDISP(FIXSHARED), on any

channel initiator, when it goes into the inactive state. You can also start it by

specifying disposition = A (CHLDISP(SHARED)).

v The channel is not recovered by any other active channel initiator in the

queue-sharing group when the channel initiator on which it was started is

stopped with SHARED(RESTART), or when the channel initiator terminates

abnormally. The channel is recovered only when the channel initiator on which

 Start a Channel

 Select disposition, then press Enter to start channel.

 Channel name : CHANNEL.TO.USE

 Channel type : SENDER

 Description : Description of CHANNEL.TO.USE

 Disposition P P=Private on MQ25

 S=Shared on MQ25

 A=Shared on any queue manager

 Command ===> __

 F1=Help F2=Split F3=Exit F9=SwapNext F10=Messages F12=Cancel

Figure 40. Starting a channel

Chapter 4. DQM in WebSphere MQ for z/OS 253

it was started is next restarted. This stops failed channel-recovery attempts being

passed to other channel initiators in the queue-sharing group, which would add

to their workload.

Testing a channel

To test a channel using the MQSC commands, use PING CHANNEL.

Using the operations and control panels, starting from the initial panel, complete

these fields and press Enter:

 Field Value

Action 5 (Perform)

Object type SENDER, SERVER, or CHANNEL

Name CHANNEL.TO.USE

Disposition The disposition of the channel object.

The Perform a Channel Function panel is displayed. The text following the panel

explains how to use the panel.:

Select function type 2 (ping).

Select the disposition of the channel for which the test is to be done and on which

queue manager it is to be tested.

The data length is initially set to 16. Change it if you want and press Enter.

Resetting message sequence numbers for a channel

To reset channel sequence numbers using the MQSC commands, use RESET

CHANNEL.

Using the operations and control panels, starting from the initial panel, complete

these fields and press Enter:

 Perform a Channel Function

 Select function type, complete fields, then press Enter.

 Function type _ 1. Reset 3. Resolve with commit

 2. Ping 4. Resolve with backout

 Channel name : CHANNEL.TO.USE

 Channel type : SENDER

 Description : Description of CHANNEL.TO.USE

 Disposition P P=Private on MQ25

 S=Shared on MQ25

 A=Shared on any queue manager

 Sequence number for reset . . 1 1 - 999999999

 Data length for ping 16 16 - 32768

 Command ===> __

 F1=Help F2=Split F3=Exit F9=SwapNext F10=Messages F12=Cancel

Figure 41. Testing a channel

254 WebSphere MQ: Intercommunication

Field Value

Action 5 (Perform)

Object type channel type (for example SENDER) or CHANNEL

Name CHANNEL.TO.USE

Disposition The disposition of the channel object.

The Perform a Channel Function panel is displayed (see Figure 41 on page 254).

Select Function type 1 (reset).

Select the disposition of the channel for which the reset is to be done and on which

queue manager it is to be done.

The sequence number field is initially set to one. Change this if you want, and

press Enter.

Resolving in-doubt messages on a channel

To resolve in-doubt messages on a channel using the MQSC commands, use

RESOLVE CHANNEL.

Using the operations and control panels, starting from the initial panel, complete

these fields and press Enter:

 Field Value

Action 5 (Perform)

Object type SENDER, SERVER, or CHANNEL

Name CHANNEL.TO.USE

Disposition The disposition of the object.

The Perform a Channel Function panel is displayed (see Figure 41 on page 254).

Select Function type 3 or 4 (resolve with commit or backout). (See “In-doubt

channels” on page 65 for more information.)

Select the disposition of the channel for which resolution is to be done and which

queue manager it is to be done on. Press Enter.

Stopping a channel

To stop a channel using the MQSC commands, use STOP CHANNEL.

Using the operations and control panels, starting from the initial panel, complete

these fields and press Enter:

 Field Value

Action 7 (Stop)

Object type channel type (for example SENDER) or CHANNEL

Name CHANNEL.TO.USE

Disposition The disposition of the object.

The Stop a Channel panel is displayed. The text following the panel explains how

to use the panel.:

Chapter 4. DQM in WebSphere MQ for z/OS 255

Select the disposition of the channel for which the stop is to be done and on which

queue manager it is to be stopped.

Choose the stop mode that you require:

Quiesce

The channel will stop when the current message is completed and the

batch will then be ended, even if the batch size value has not been reached

and there are messages already waiting on the transmission queue. No

new batches will be started. This is the default.

Force The channel stops immediately. If a batch of messages is in progress, an

‘in-doubt’ situation may result.

Choose the queue manager and connection name for the channel you want to stop.

Choose the status that you require:

Stopped

The channel will not be restarted automatically, and must be restarted

manually. This is the default value if no queue manager or connection

name is specified. If a name is specified, it is not allowed.

Inactive

The channel will be restarted automatically when required. This is the

default value if a queue manager or connection name is specified.

Press Enter to stop the channel.

See “Stopping and quiescing channels” on page 62 for more information. For

information about restarting stopped channels, see “Restarting stopped channels”

on page 64.

Usage notes:

 This section gives some usage notes about stopping a channel:

 Stop a Channel

 Complete fields, then press Enter to stop channel.

 Channel name : CHANNEL.TO.USE

 Channel type : SENDER

 Description : Description of CHANNEL.TO.USE

 Disposition P P=Private on MQ25

 A=Shared on any queue manager

 Stop mode 1 1. Quiesce 2. Force

 Stop status 1 1. Stopped 2. Inactive

 Queue manager __

 Connection name __

 Command ===> __

 F1=Help F2=Split F3=Exit F9=SwapNext F10=Messages F12=Cancel

Figure 42. Stopping a channel

256 WebSphere MQ: Intercommunication

v If a shared channel is in a retry state and the channel initiator on which it was

started is not running, a STOP request for the channel is issued on the queue

manager where the command was entered.

Displaying channel status

To display the status of a channel or a set of channels using the MQSC commands,

use DISPLAY CHSTATUS.

Note: Displaying channel status information may take some time if you have lots

of channels.

Using the operations and control panels on the List Channel panel (see Figure 37

on page 245), a summary of the channel status is shown for each channel as

follows:

 INACTIVE No connections are active

status One connection is active

nnn status More than one connection is current and all current connections have

the same status

nnn CURRENT More than one connection is current and the current connections do not

all have the same status

Blank WebSphere MQ is unable to determine how many connections are active

(for example, because the channel initiator is not running)

Note: For channel objects with the disposition GROUP, no status is

displayed.

where nnn is the number of active connections, and status is one of the following:

 INIT INITIALIZING

BIND BINDING

START STARTING

RUN RUNNING

STOP STOPPING or STOPPED

RETRY RETRYING

REQST REQUESTING

To display more information about the channel status, press the Status key (F11) on

the List Channel or the Display, or Alter channel panels to display the List

Channels - Current Status panel (see Figure 43 on page 258).

Chapter 4. DQM in WebSphere MQ for z/OS 257

The values for status are as follows:

 INIT INITIALIZING

BIND BINDING

START STARTING

RUN RUNNING

STOP STOPPING or STOPPED

RETRY RETRYING

REQST REQUESTING

DOUBT STOPPED and INDOUBT(YES)

See “Channel states” on page 55 for more information about these.

You can press F11 to see a similar list of channel connections with saved status;

press F11 to get back to the current list. Note that the saved status does not apply

until at least one batch of messages has been transmitted on the channel.

Use action code 1 (or a slash (/)) to select a connection and press Enter. The

Display Channel Connection Current Status panels are displayed.

Displaying cluster channels

To display all the cluster channels that have been defined (explicitly or using

auto-definition), use the MQSC command, DISPLAY CLUSQMGR.

Using the operations and control panels, starting from the initial panel, complete

these fields and press Enter:

 Field Value

Action 1 (List or Display)

Object type CLUSCHL

Name *

 List Channels - Current Status - MQ25 Row 1 of 16

 Type action codes, then press Enter. Press F11 to display saved status.

 1=Display current status

 Channel name Connection name State

 Start time Messages Last message time Type Disposition

 <> * CHANNEL ALL MQ25

 _ RMA0.CIRCUIT.ACL.F RMA1 STOP

 _ 2005-03-21 10.22.36 557735 2005-03-24 09.51.11 SENDER PRIVATE MQ25

 _ RMA0.CIRCUIT.ACL.N RMA1

 _ 2005-03-21 10.23.09 378675 2005-03-24 09.51.10 SENDER PRIVATE MQ25

 _ RMA0.CIRCUIT.CL.F RMA2

 _ 2005-03-24 01.12.51 45544 2005-03-24 09.51.08 SENDER PRIVATE MQ25

 _ RMA0.CIRCUIT.CL.N RMA2

 _ 2005-03-24 01.13.55 45560 2005-03-24 09.51.11 SENDER PRIVATE MQ25

 _ RMA1.CIRCUIT.CL.F RMA1

 _ 2005-03-21 10.24.12 360757 2005-03-24 09.51.11 RECEIVER PRIVATE MQ25

 _ RMA1.CIRCUIT.CL.N RMA1

 _ 2005-03-21 10.23.40 302870 2005-03-24 09.51.09 RECEIVER PRIVATE MQ25

 ******** End of list ********

 Command ===> __

 F1=Help F2=Split F3=Exit F4=Filter F5=Refresh F7=Bkwd

 F8=Fwd F9=SwapNext F10=Messages F11=Saved F12=Cancel

Figure 43. Listing channel connections

258 WebSphere MQ: Intercommunication

You are presented with a panel like figure Figure 44, in which the information for

each cluster channel occupies three lines, and includes its channel, cluster, and

queue manager names. For cluster-sender channels, the overall state is shown.

To display full information about one or more channels, type Action code 1 against

their names and press Enter. Use Action codes 5, 6, or 7 to perform functions (such

as ping, resolve, and reset), and start or stop a cluster channel.

To display more information about the channel status, press the Status key (F11).

Preparing WebSphere MQ for z/OS

This chapter describes the WebSphere MQ for z/OS preparations you need to

make before you can start to use distributed queuing. If you are using

queue-sharing groups, see “Preparing WebSphere MQ for z/OS for DQM with

queue-sharing groups” on page 280.

To enable distributed queuing, you must perform the following three tasks:

v Customize the distributed queuing facility and define the WebSphere MQ objects

required; this is described in the WebSphere MQ for z/OS Concepts and

Planning Guide and the WebSphere MQ for z/OS System Setup Guide.

v Define access security; this is described in the WebSphere MQ for z/OS System

Setup Guide.

v Set up your communications; this is described in “Setting up communication for

z/OS” on page 263.

Defining DQM requirements to WebSphere MQ

In order to define your distributed-queuing requirements, you have to:

v Define the channel initiator procedures and data sets

v Define the channel definitions

 List Cluster-queue-manager Channels - MQ25 Row 1 of 9

 Type action codes, then press Enter. Press F11 to display connection status.

 1=Display 5=Perform 6=Start 7=Stop

 Channel name Connection name State

 Type Cluster name Suspended

 Cluster queue manager name Disposition

 <> * - MQ25

 _ TO.MQ90.T HURSLEY.MACH90.COM(1590)

 _ CLUSRCVR VJH01T N

 _ MQ90 - MQ25

 _ TO.MQ95.T HURSLEY.MACH95.COM(1595) RUN

 _ CLUSSDRA VJH01T N

 _ MQ95 - MQ25

 _ TO.MQ96.T HURSLEY.MACH96.COM(1596) RUN

 _ CLUSSDRB VJH01T N

 _ MQ96 - MQ25

 ******** End of list ********

 Command ===> __

 F1=Help F2=Split F3=Exit F4=Filter F5=Refresh F7=Bkwd

 F8=Fwd F9=SwapNext F10=Messages F11=Status F12=Cancel

Figure 44. Listing cluster channels

Chapter 4. DQM in WebSphere MQ for z/OS 259

v Define the queues and other objects

v Define access security

See the WebSphere MQ for z/OS Concepts and Planning Guide for information

about these tasks.

Defining WebSphere MQ objects

Use one of the WebSphere MQ command input methods to define WebSphere MQ

objects. Refer to “Monitoring and controlling channels on z/OS” on page 243 for

information about defining objects.

Transmission queues and triggering channels

Define the following:

v A local queue with the usage of XMITQ for each sending message channel.

v Remote queue definitions.

A remote queue object has three distinct uses, depending upon the way the

name and content are specified:

– Remote queue definition

– Queue manager alias definition

– Reply-to queue alias definition
This is shown in Table 2 on page 31.

Use the TRIGDATA field on the transmission queue to trigger the specified

channel. For example:

 DEFINE QLOCAL(MYXMITQ) USAGE(XMITQ) TRIGGER +

 INITQ(SYSTEM.CHANNEL.INITQ) TRIGDATA(MYCHANNEL)

 DEFINE CHL(MYCHANNEL) CHLTYPE(SDR) TRPTYPE(TCP) +

 XMITQ(MYXMITQ) CONNAME(’9.20.9.30(1555)’)

The supplied sample CSQ4INYD gives additional examples of the necessary

definitions.

Synchronization queue

DQM requires a queue for use with sequence numbers and logical units of work

identifiers (LUWID). You must ensure that a queue is available with the name

SYSTEM.CHANNEL.SYNCQ (see WebSphere MQ for z/OS Concepts and Planning

Guide). This queue must be available otherwise the channel initiator cannot start.

Make sure that you define this queue using INDXTYPE(MSGID). This will improve

the speed at which they can be accessed.

Channel command queues

You need to ensure that a channel command queue exists for your system with the

name SYSTEM.CHANNEL.INITQ.

If the channel initiator detects a problem with the SYSTEM.CHANNEL.INITQ, it

will be unable to continue normally until the problem is corrected. The problem

could be one of the following:

v The queue is full

v The queue is not enabled for put

260 WebSphere MQ: Intercommunication

v The page set that the queue is on is full

v The channel initiator does not have the correct security authorization to the

queue

If the definition of the queue is changed to GET(DISABLED) while the channel

initiator is running, it will not be able to get messages from the queue, and will

terminate.

Starting the channel initiator

Triggering is implemented using the channel initiator. On WebSphere MQ for

z/OS, this is started with the MQSC command START CHINIT.

Stopping the channel initiator

The channel initiator is stopped automatically when you stop the queue manager.

If you need to stop the channel initiator but not the queue manager, you can use

the MQSC command STOP CHINIT.

Other things to consider

Here are some other topics that you should consider when preparing WebSphere

MQ for distributed queue management.

Operator messages

Because the channel initiator uses a number of asynchronously operating

dispatchers, operator messages could appear on the log out of chronological

sequence.

Channel operation commands

Channel operation commands generally involve two stages. When the command

syntax has been checked and the existence of the channel verified, a request is sent

to the channel initiator, and message CSQM134I or CSQM137I is sent to the

command issuer to indicate the completion of the first stage. When the channel

initiator has processed the command, further messages indicating its success or

otherwise are send to the command issuer along with message CSQ9022I or

CSQ9023I respectively. Any error messages generated could also be sent to the

z/OS console.

All cluster commands except DISPLAY CLUSQMGR, however, work

asynchronously. Commands that change object attributes update the object and

send a request to the channel initiator, and commands for working with clusters

are checked for syntax and a request is sent to the channel initiator. In both cases,

message CSQM130I is sent to the command issuer indicating that a request has

been sent; this is followed by message CSQ9022I to indicate that the command has

completed successfully, in that a request has been sent. It does not indicate that the

cluster request has completed successfully. The requests sent to the channel

initiator are processed asynchronously, along with cluster requests received from

other members of the cluster. In some cases, these requests have to be sent to the

whole cluster to determine if they are successful or not. Any errors are reported to

the z/OS on the system where the channel initiator is running. They are not sent

to the command issuer.

Chapter 4. DQM in WebSphere MQ for z/OS 261

Undelivered-message queue

A DLQ handler is provided with WebSphere MQ for z/OS. See WebSphere MQ for

z/OS System Administration Guide for more information.

Queues in use

MCAs for receiver channels may keep the destination queues open even when

messages are not being transmitted; this results in the queues appearing to be ‘in

use’.

Security changes

If you change security access for a user ID, the change may not take effect

immediately. (See one of WebSphere MQ for z/OS Concepts and Planning Guide,

WebSphere MQ for z/OS System Setup Guide and WebSphere MQ for z/OS

System Administration Guide for more information.)

Communications stopped

TCP:

 If TCP is stopped for some reason and then restarted, the WebSphere MQ for z/OS

TCP listener waiting on a TCP port is stopped.

Automatic channel reconnect allows the channel initiator to detect that TCP/IP is

not available and to automatically restart the TCP/IP listener when TCP/IP

returns. This alleviates the need for operations staff to notice the problem with

TCP/IP and manually restart the listener. While the listener is out of action, the

channel initiator can also be used to retry the listener at the interval specified by

LSTRTMR in the channel initiator parameter module. These attempts can continue

until TCP/IP returns and the listener successfully restarts automatically. For

information about LSTRTMR, see the WebSphere MQ for z/OS System Setup

Guide.

LU6.2:

 If APPC is stopped, the listener is also stopped. Again, in this case, the listener

automatically retries at the LSTRTMR interval so that, if APPC restarts, the listener

can restart too.

If the DB2 fails, shared channels that are already running continue to run, but any

new channel start requests will fail. When the DB2 is restored new requests are

able to complete.

z/OS Automatic Restart Management (ARM)

Automatic restart management (ARM) is a z/OS recovery function that can

improve the availability of specific batch jobs or started tasks (for example,

subsystems), and therefore result in a faster resumption of productive work.

To use ARM, you must set up your queue managers and channel initiators in a

particular way to make them restart automatically. For information about this, see

WebSphere MQ for z/OS Concepts and Planning Guide.

262 WebSphere MQ: Intercommunication

Setting up communication for z/OS

DQM is a remote queuing facility for WebSphere MQ. It provides channel control

programs for the queue manager that form the interface to communication links.

These links are controllable by the system operator. The channel definitions held

by distributed queuing management use these connections.

When a distributed-queuing management channel is started, it tries to use the

connection specified in the channel definition. For this to succeed, it is necessary

for the connection to be defined and available. This section explains how to do

this.

You might also find it helpful to refer to “Example configuration - IBM WebSphere

MQ for z/OS” on page 266. If you are using queue sharing groups, see “Setting up

communication for WebSphere MQ for z/OS using queue-sharing groups” on page

284.

Deciding on a connection

There are two forms of communication protocol that can be used:

v TCP

v LU 6.2 through APPC/MVS

Each channel definition must specify only one protocol as the transmission

protocol (Transport Type) attribute. A queue manager can use more than one

protocol to communicate.

Defining a TCP connection

The TCP address space name must be specified in the TCP system parameters data

set, tcpip.TCPIP.DATA. In the data set, a “TCPIPJOBNAME TCPIP_proc” statement

must be included.

The channel initiator address space must have authority to read the data set. The

following techniques can be used to access your TCPIP.DATA data set, depending

on which TCP/IP product and interface you are using:

v Environment variable, RESOLVER_CONFIG

v HFS file, /etc/resolv.conf

v //SYSTCPD DD statement

v //SYSTCPDD DD statement

v jobname/userid.TCPIP.DATA

v SYS1.TCPPARMS(TCPDATA)

v zapname.TCPIP.DATA

You must also be careful to specify the high-level qualifier for TCP/IP correctly.

You should have a suitably configured Domain Name System (DNS) server,

capable of both Name to IP Address translation and IP Address to Name

translation.

For more information, see the following:

v TCP/IP OpenEdition®: Planning and Release Guide, SC31-8303

Chapter 4. DQM in WebSphere MQ for z/OS 263

v z/OS Unix System Services Planning, GA22–7800

Each TCP channel when started will use TCP resources; you may need to adjust

the following parameters in your PROFILE.TCPIP configuration data set:

ACBPOOLSIZE

Add one per started TCP channel, plus one

CCBPOOLSIZE

Add one per started TCP channel, plus one per DQM dispatcher, plus one

DATABUFFERPOOLSIZE

Add two per started TCP channel, plus one

MAXFILEPROC

Controls how many channels each dispatcher in the channel initiator can

handle.

 This parameter is specified in the BPXPRMxx member of SYSI.PARMLIB.

Ensure that you specify a value large enough for your needs.

By default, the channel initiator is only capable of binding to IP addresses

associated with the stack named in the TCPNAME queue manager attribute. To

allow the channel initiator to communicate using additional TCP/IP stacks on the

system, you should change the TCPSTACK queue manager attribute to MULTIPLE.

Sending end

The connection name (CONNAME) field in the channel definition should be set to

either the host name (for example MVSHUR1) or the TCP network address of the

target, in IPv4 dotted decimal form (for example 9.20.9.30) or IPv6 hexadecimal

form (for example fe80:43e4:0204:acff:fe97:2c34:fde0:3485). If the connection name is

a host name, a TCP name server is required to convert the host name into a TCP

host address. (This is a function of TCP, not WebSphere MQ.)

On the initiating end of a connection (sender, requester, and server channel types)

it is possible to provide an optional port number for the connection, for example:

Connection name

9.20.9.30(1555)

In this case the initiating end will attempt to connect to a receiving program

listening on port 1555.

The channel initiator can use any TCP/IP stack which is active and available. By

default, the channel initiator will bind its outbound channels to the default IP

address for the TCP/IP stack named in the TCPNAME queue manager attribute.

To connect through a different stack, you should specify either the hostname or IP

address of the stack in the LOCLADDR attribute of the channel.

Receiving on TCP

Receiving channel programs are started in response to a startup request from the

sending channel. To do this, a listener program has to be started to detect incoming

network requests and start the associated channel. You start this listener program

with the START LISTENER command, or using the operations and control panels.

By default, the TCP Listener program uses port 1414 and listens on all addresses

available to your TCP stack. You may start your TCP listener program to only

264 WebSphere MQ: Intercommunication

listen on a specific address or hostname by specifying IPADDR in the START

LISTENER command. (For more information, see “Preparing WebSphere MQ for

z/OS for DQM with queue-sharing groups” on page 280, ″Listeners″.)

By default, TCP/IP listeners can bind only to addresses associated with the

TCP/IP stack named in the TCPNAME queue manager attribute. To start listeners

for other addresses, set your TCPSTACK queue manager attribute to ’MULTIPLE’.

Using the TCP listener backlog option

When receiving on TCP/IP, a maximum number of outstanding connection

requests is set. This can be considered a backlog of requests waiting on the TCP/IP

port for the listener to accept the request.

The default listener backlog value on z/OS is 255. If the backlog reaches this

values, the TCP/IP connection is rejected and the channel will not be able to start.

For MCA channels, this results in the channel going into a RETRY state and

retrying the connection at a later time.

For client connections, the client receives an MQRC_Q_MGR_NOT_AVAILABLE

reason code from MQCONN and should retry the connection at a later time.

Defining an LU6.2 connection

APPC/MVS setup

Each instance of the channel initiator must have the name of the LU that it is to

use defined to APPC/MVS, in the APPCPMxx member of SYS1.PARMLIB, as in

the following example:

LUADD ACBNAME(luname) NOSCHED TPDATA(CSQ.APPCTP)

luname is the name of the logical unit to be used. NOSCHED is required; TPDATA is not

used. No additions are necessary to the ASCHPMxx member, or to the APPC/MVS

TP profile data set.

The side information data set must be extended to define the connections used by

DQM. See the supplied sample CSQ4SIDE for details of how to do this using the

APPC utility program ATBSDFMU. For details of the TPNAME values to use, see

the Multiplatform APPC Configuration Guide (“Red Book”) and the following table

for information:

 Table 26. Settings on the local z/OS system for a remote queue manager platform

Remote platform TPNAME

z/OS, OS/390, or

MVS/ESA

The same as TPNAME in the corresponding side information on the

remote queue manager.

i5/OS The same as the compare value in the routing entry on the i5/OS

system.

HP OpenVMS As specified in the OVMS Run Listener command.

Compaq NonStop

Kernel

The same as the TPNAME specified in the receiver-channel definition.

UNIX systems The same as TPNAME in the corresponding side information on the

remote queue manager.

Chapter 4. DQM in WebSphere MQ for z/OS 265

Table 26. Settings on the local z/OS system for a remote queue manager

platform (continued)

Remote platform TPNAME

Windows As specified in the Windows Run Listener command, or the invokable

Transaction Program that was defined using TpSetup on Windows.

If you have more than one queue manager on the same machine, ensure that the

TPnames in the channel definitions are unique.

See the Multiplatform APPC Configuration Guide also for information about the

VTAM definitions that may be required.

In an environment where the queue manager is communicating via APPC with a

queue manager on the same or another z/OS system, ensure that either the VTAM

definition for the communicating LU specifies SECACPT(ALREADYV), or that

there is a RACF® APPCLU profile for the connection between LUs, which specifies

CONVSEC(ALREADYV).

The z/OS command VARY ACTIVE must be issued against both base and listener

LUs before attempting to start either inbound or outbound communications.

Connecting to APPC/MVS (LU 6.2):

 The connection name (CONNAME) field in the channel definition should be set to

the symbolic destination name, as specified in the side information data set for

APPC/MVS.

The LU name to use (defined to APPC/MVS as described above) must also be

specified in the channel initiator parameters. It must be set to the same LU that

will be used for receiving by the listener.

The channel initiator uses the “SECURITY(SAME)” APPC/MVS option, so it is the

user ID of the channel initiator address space that is used for outbound

transmissions, and will be presented to the receiver.

Receiving on LU 6.2:

 Receiving MCAs are started in response to a startup request from the sending

channel. To do this, a listener program has to be started to detect incoming

network requests and start the associated channel. The listener program is an

APPC/MVS server. You start it with the START LISTENER command, or using the

operations and control panels. You must specify the LU name to use by means of a

symbolic destination name defined in the side information data set. The local LU

so identified must be the same as that used for outbound transmissions, as set in

the channel initiator parameters.

Example configuration - IBM WebSphere MQ for z/OS

This chapter gives an example of how to set up communication links from

WebSphere MQ for z/OS to WebSphere MQ products on the following platforms:

v Windows

v AIX

v Compaq Tru64 UNIX

266 WebSphere MQ: Intercommunication

v HP-UX

v Solaris

v Linux

v i5/OS

v VSE/ESA

You can also connect any of the following:

v z/OS to z/OS

v z/OS to MVS/ESA

v MVS/ESA to MVS/ESA

First it describes the parameters needed for an LU 6.2 connection; then it describes:

v “Establishing an LU 6.2 connection” on page 270

v “Establishing a TCP connection” on page 272

Once the connection is established, you need to define some channels to complete

the configuration. This is described in “WebSphere MQ for z/OS configuration” on

page 272.

See “Example configuration chapters in this book” on page 101 for background

information about this chapter and how to use it.

Configuration parameters for an LU 6.2 connection

Table 27 presents a worksheet listing all the parameters needed to set up

communication from z/OS to one of the other WebSphere MQ platforms. The

worksheet shows examples of the parameters, which have been tested in a

working environment, and leaves space for you to fill in your own values. An

explanation of the parameter names follows the worksheet. Use the worksheet in

this chapter in conjunction with the worksheet in the chapter for the platform to

which you are connecting.

The steps required to set up an LU 6.2 connection are described in “Establishing an

LU 6.2 connection” on page 270 with numbered cross references to the parameters

on the worksheet.

Configuration worksheet

Use this worksheet to record the values you use for your configuration. Where

numbers appear in the Reference column they indicate that the value must match

that in the appropriate worksheet elsewhere in this book. The examples that follow

in this chapter refer back to the values in the ID column. The entries in the

Parameter Name column are explained in “Explanation of terms” on page 269.

 Table 27. Configuration worksheet for z/OS using LU 6.2

ID Parameter Name Reference Example Used User Value

Definition for local node

1 Command prefix +cpf

2 Network ID NETID

3 Node name MVSPU

4 Local LU name MVSLU

Chapter 4. DQM in WebSphere MQ for z/OS 267

Table 27. Configuration worksheet for z/OS using LU 6.2 (continued)

ID Parameter Name Reference Example Used User Value

5 Symbolic destination M1

6 Modename #INTER

7 Local Transaction Program name MQSERIES

8 LAN destination address 400074511092

Connection to a Windows system

The values in this section of the table must match those used in Table 13 on page 130, as indicated.

13 Symbolic destination M3

14 Modename 21 #INTER

15 Remote Transaction Program name 7 MQSERIES

16 Partner LU name 5 WINNTLU

21 Remote node ID 4 05D 30F65

Connection to an AIX system

The values in this section of the table must match those used in Table 17 on page 156, as indicated.

13 Symbolic Destination M4

14 Modename 18 #INTER

15 Remote Transaction Program name 6 MQSERIES

16 Partner LU name 4 AIXLU

Connection to an HP-UX system

The values in this section of the table must match those used in Table 19 on page 172, as indicated.

13 Symbolic Destination M5

14 Modename 6 #INTER

15 Remote Transaction Program name 7 MQSERIES

16 Partner LU name 5 HPUXLU

Connection to a Solaris system

The values in this section of the table must match those used in Table 21 on page 195, as indicated.

13 Symbolic destination M7

14 Modename 21 #INTER

15 Remote Transaction Program name 8 MQSERIES

16 Partner LU name 7 SOLARLU

Connection to a Linux (x86 platform) system

The values in this section of the table must match those used in Configuration worksheet for Communications

Server for Linux, as indicated.

13 Symbolic destination M8

14 Modename 6 #INTER

15 Remote Transaction Program name 7 MQSERIES

16 Partner LU name 5 LINUXLU

Connection to an i5/OS system

The values in this section of the table must match those used in Table 35 on page 351, as indicated.

13 Symbolic Destination M9

268 WebSphere MQ: Intercommunication

ic14170_.dita#ic14170_/ic14170_1
ic14170_.dita#ic14170_/ic14170_1

Table 27. Configuration worksheet for z/OS using LU 6.2 (continued)

ID Parameter Name Reference Example Used User Value

14 Modename 21 #INTER

15 Remote Transaction Program name 8 MQSERIES

16 Partner LU name 3 AS400LU

Connection to a VSE/ESA system

The values in this section of the table must match those used in your VSE/ESA system.

13 Symbolic destination MA

14 Modename #INTER

15 Remote Transaction Program name 4 MQ01

16 Partner LU name 3 VSELU

Explanation of terms

1 Command prefix

This is the unique command prefix of your WebSphere MQ for z/OS

queue-manager subsystem. The z/OS systems programmer defines this at

installation time, in SYS1.PARMLIB(IEFSSNss), and will be able to tell you

the value.

2 Network ID

The VTAM startup procedure in your installation is partly customized by

the ATCSTRxx member of the data set referenced by the DDNAME

VTAMLST. The Network ID is the value specified for the NETID parameter

in this member. For Network ID you must specify the name of the NETID

that owns the WebSphere MQ communications subsystem (WebSphere MQ

channel initiator). Your network administrator will tell you the value.

3 Node name

VTAM, being a low-entry network node, does not have a Control Point

name for Advanced Peer-to-Peer Networking (APPN) use. It does however

have a system services control point name (SSCPNAME). For node name,

you must specify the name of the SSCP that owns the WebSphere MQ

communications subsystem (WebSphere MQ channel initiator). This is

defined in the same ATCSTRxx member as the Network ID. Your network

administrator will tell you the value.

4 Local LU name

A logical unit (LU) is software that serves as an interface or translator

between a transaction program and the network. It manages the exchange

of data between transaction programs. The local LU name is the unique

VTAM APPLID of this WebSphere MQ subsystem. Your network

administrator will tell you this value.

5 13 Symbolic destination

This is the name you give to the CPI-C side information profile. You need

a side information entry for each LU 6.2 listener.

6 14 Modename

This is the name given to the set of parameters that control the LU 6.2

conversation. An entry with this name and similar attributes must be

defined at each end of the session. In VTAM, this corresponds to a mode

table entry. You network administrator will assign this to you.

Chapter 4. DQM in WebSphere MQ for z/OS 269

7 15 Transaction Program name

WebSphere MQ applications trying to converse with this queue manager

will specify a symbolic name for the program to be run at the receiving

end. This will have been specified in the TPNAME attribute on the channel

definition at the sender. For simplicity, wherever possible use a transaction

program name of MQSERIES, or in the case of a connection to VSE/ESA,

where the length is limited to 4 bytes, use MQTP.

 See Table 26 on page 265 for more information.

8 LAN destination address

This is the LAN destination address that your partner nodes will use to

communicate with this host. When you are using a 3745 network

controller, it will be the value specified in the LOCADD parameter for the

line definition to which your partner is physically connected. If your

partner nodes use other devices such as 317X or 6611 devices, the address

will have been set during the customization of those devices. Your network

administrator will tell you this value.

16 Partner LU name

This is the LU name of the WebSphere MQ queue manager on the system

with which you are setting up communication. This value is specified in

the side information entry for the remote partner.

21Remote node ID

For a connection to Windows, this is the ID of the local node on the

Windows system with which you are setting up communication.

Establishing an LU 6.2 connection

To establish an LU 6.2 connection, there are two steps:

1. Define yourself to the network.

2. Define a connection to the partner.

Defining yourself to the network

1. SYS1.PARMLIB(APPCPMxx) contains the startup parameters for APPC. You

must add a line to this file to tell APPC where to locate the sideinfo. This line

should be of the form:

SIDEINFO

 DATASET(APPC.APPCSI)

2. Add another line to SYS1.PARMLIB(APPCPMxx) to define the local LU name

you intend to use for the WebSphere MQ LU 6.2 listener. The line you add

should take the form:

LUADD ACBNAME(mvslu)

 NOSCHED

 TPDATA(csq.appctp)

Specify values for ACBNAME(4) and TPDATA .

The NOSCHED parameter tells APPC that our new LU will not be using the

LU 6.2 scheduler (ASCH), but has one of its own. TPDATA refers to the

Transaction Program data set in which LU 6.2 stores information about

transaction programs. Again, WebSphere MQ will not use this, but it is required

by the syntax of the LUADD command.

3. Start the APPC subsystem with the command:

START APPC,SUB=MSTR,APPC=xx

270 WebSphere MQ: Intercommunication

where xx is the suffix of the PARMLIB member in which you added the LU in

step 1.

Note: If APPC is already running, it can be refreshed with the command:

SET APPC=xx

The effect of this is cumulative, that is, APPC will not lose its knowledge of

objects already defined to it in this or another PARMLIB member.

4. Add the new LU to a suitable VTAM major node definition. These are typically

in SYS1.VTAMLST. The APPL definition will look similar to the sample shown

in Figure 45.

5. Activate the major node. This can be done with the command:

V NET,ACT,ID=majornode

6. Add an entry defining your LU to the CPI-C side information data set. Use the

APPC utility program ATBSDFMU to do this. Sample JCL is in

thlqual.SCSQPROC(CSQ4SIDE) (where thlqual is the target library high-level

qualifier for WebSphere MQ data sets in your installation.)

The entry you add will look like this:

 SIADD

 DESTNAME(M1) 5

 MODENAME(#INTER) 6

 TPNAME(MQSERIES) 7

 PARTNER_LU(MVSLU) 4

7. Alter the queue manager object to use the correct distributed queueing

parameters using the following command. You must specify the local LU (4)

assigned to your queue manager in the LUNAME attribute of the queue

manager .

ALTER QMGR LUNAME(MVSLU)

Defining a connection to a partner

Note: This example is for a connection to a Windows system but the task is the

same for other platforms.

Add an entry to the CPI-C side information data set to define the connection.

Sample JCL to do this is in thlqual.SCSQPROC(CSQ4SIDE).

The entry you add will look like this:

 MVSLU APPL ABCNAME=MVSLU, 4

 APPXC=YES,

 AUTOSES=0,

 DDRAINL=NALLOW,

 DLOGMOD=#INTER, 6

 DMINWML=10,

 DMINWNR=10,

 DRESPL=NALLOW,

 DSESLIM=60,

 LMDENT=19,

 MODETAB=MTCICS,

 PARSESS=YES,

 VERIFY=NONE,

 SECACPT=ALREADYV,

 SRBEXIT=YES

Figure 45. Channel Initiator APPL definition

Chapter 4. DQM in WebSphere MQ for z/OS 271

SIADD

 DESTNAME(M3) 13

 MODENAME(#INTER) 14

 TPNAME(MQSERIES) 15

 PARTNER_LU(WINNTLU) 16

Establishing a TCP connection

Alter the queue manager object to use the correct distributed queueing parameters

using the following command. You must add the name of the TCP address space

to the TCPNAME queue manager attribute.

ALTER QMGR TCPNAME(TCPIP)

What next?

The TCP connection is now established. You are ready to complete the

configuration. Go to “WebSphere MQ for z/OS configuration.”

WebSphere MQ for z/OS configuration

1. Start the channel initiator using the command:

+cpf START CHINIT 1

2. Start an LU 6.2 listener using the command:

+cpf START LSTR LUNAME(M1) TRPTYPE(LU62)

The LUNAME of M1 refers to the symbolic name you gave your LU (5). You

must specify TRPTYPE(LU62), otherwise the listener will assume you want

TCP.

3. Start a TCP listener using the command:

+cpf START LSTR

If you wish to use a port other than 1414 (the default WebSphere MQ port), use

the command:

+cpf START LSTR PORT(1555)

WebSphere MQ channels will not initialize successfully if the channel negotiation

detects that the message sequence number is different at each end. You may need

to reset this manually.

Channel configuration

The following sections detail the configuration to be performed on the z/OS queue

manager to implement the channel described in Figure 32 on page 101.

Examples are given for connecting WebSphere MQ for z/OS and WebSphere MQ

for Windows. If you wish to connect to WebSphere MQ on another platform use

the appropriate set of values from the table in place of those for Windows.

Note: The words in bold are user-specified and reflect the names of WebSphere

MQ objects used throughout these examples. If you change the names used here,

ensure that you also change the other references made to these objects throughout

this book. All others are keywords and should be entered as shown.

 Table 28. Configuration worksheet for WebSphere MQ for z/OS

ID Parameter Name Reference Example Used User Value

Definition for local node

272 WebSphere MQ: Intercommunication

Table 28. Configuration worksheet for WebSphere MQ for z/OS (continued)

ID Parameter Name Reference Example Used User Value

A Queue Manager Name MVS

B Local queue name MVS.LOCALQ

Connection to WebSphere MQ for Windows

The values in this section of the table must match those used in Table 14 on page 146, as indicated.

C Remote queue manager name A WINNT

D Remote queue name WINNT.REMOTEQ

E Queue name at remote system B WINNT.LOCALQ

F Transmission queue name WINNT

G Sender (LU 6.2) channel name MVS.WINNT.SNA

H Sender (TCP) channel name MVS.WINNT.TCP

I Receiver (LU 6.2) channel name G WINNT.MVS.SNA

J Receiver (TCP/IP) channel name H WINNT.MVS.TCP

Connection to WebSphere MQ for AIX

The values in this section of the table must match those used in Table 18 on page 168, as indicated.

C Remote queue manager name A AIX

D Remote queue name AIX.REMOTEQ

E Queue name at remote system B AIX.LOCALQ

F Transmission queue name AIX

G Sender (LU 6.2) channel name MVS.AIX.SNA

H Sender (TCP/IP) channel name MVS.AIX.TCP

I Receiver (LU 6.2) channel name G AIX.MVS.SNA

J Receiver (TCP/IP) channel name H AIX.MVS.TCP

Connection to MQSeries for Compaq Tru64 UNIX

The values in this section of the table must match those used in your Compaq Tru64 UNIX system.

C Remote queue manager name A DECUX

D Remote queue name DECUX.REMOTEQ

E Queue name at remote system B DECUX.LOCALQ

F Transmission queue name DECUX

H Sender (TCP) channel name DECUX.MVS.TCP

J Receiver (TCP) channel name H MVS.DECUX.TCP

Connection to WebSphere MQ for HP-UX

The values in this section of the table must match those used in Table 20 on page 191, as indicated.

C Remote queue manager name A HPUX

D Remote queue name HPUX.REMOTEQ

E Queue name at remote system B HPUX.LOCALQ

F Transmission queue name HPUX

G Sender (LU 6.2) channel name MVS.HPUX.SNA

H Sender (TCP) channel name MVS.HPUX.TCP

I Receiver (LU 6.2) channel name G HPUX.MVS.SNA

Chapter 4. DQM in WebSphere MQ for z/OS 273

Table 28. Configuration worksheet for WebSphere MQ for z/OS (continued)

ID Parameter Name Reference Example Used User Value

J Receiver (TCP) channel name H HPUX.MVS.TCP

Connection to WebSphere MQ for Solaris

The values in this section of the table must match those used in Table 22 on page 212, as indicated.

C Remote queue manager name A SOLARIS

D Remote queue name SOLARIS.REMOTEQ

E Queue name at remote system B SOLARIS.LOCALQ

F Transmission queue name SOLARIS

G Sender (LU 6.2) channel name MVS.SOLARIS.SNA

H Sender (TCP) channel name MVS.SOLARIS.TCP

I Receiver (LU 6.2) channel name G SOLARIS.MVS.SNA

J Receiver (TCP/IP) channel name H SOLARIS.MVS.TCP

Connection to WebSphere MQ for Linux

The values in this section of the table must match those used in Table 24 on page 235, as indicated.

C Remote queue manager name A LINUX

D Remote queue name LINUX.REMOTEQ

E Queue name at remote system B LINUX.LOCALQ

F Transmission queue name LINUX

G Sender (LU 6.2) channel name MVS.LINUX.SNA

H Sender (TCP) channel name MVS.LINUX.TCP

I Receiver (LU 6.2) channel name G LINUX.MVS.SNA

J Receiver (TCP/IP) channel name H LINUX.MVS.TCP

Connection to WebSphere MQ for i5/OS

The values in this section of the table must match those used in Table 36 on page 364, as indicated.

C Remote queue manager name A AS400

D Remote queue name AS400.REMOTEQ

E Queue name at remote system B AS400.LOCALQ

F Transmission queue name AS400

G Sender (LU 6.2) channel name MVS.AS400.SNA

H Sender (TCP/IP) channel name MVS.AS400.TCP

I Receiver (LU 6.2) channel name G AS400.MVS.SNA

J Receiver (TCP/IP) channel name H AS400.MVS.TCP

Connection to MQSeries for VSE/ESA

The values in this section of the table must match those used in your VSE/ESA system.

C Remote queue manager name A VSE

D Remote queue name VSE.REMOTEQ

E Queue name at remote system B VSE.LOCALQ

F Transmission queue name VSE

G Sender channel name MVS.VSE.SNA

I Receiver channel name G VSE.MVS.SNA

274 WebSphere MQ: Intercommunication

WebSphere MQ for z/OS sender-channel definitions using LU 6.2:

 Local Queue

 Object type : QLOCAL

 Name : WINNT F

 Usage : X (XmitQ)

 Remote Queue

 Object type : QREMOTE

 Name : WINNT.REMOTEQ D

 Name on remote system : WINNT.LOCALQ E

 Remote system name : WINNT C

 Transmission queue : WINNT F

 Sender Channel

 Channel name : MVS.WINNT.SNA G

 Transport type : L (LU6.2)

Transmission queue name : WINNT F

 Connection name : M3 13

WebSphere MQ for z/OS receiver-channel definitions using LU 6.2:

 Local Queue

 Object type : QLOCAL

 Name : MVS.LOCALQ B

 Usage : N (Normal)

 Receiver Channel

 Channel name : WINNT.MVS.SNA I

WebSphere MQ for z/OS sender-channel definitions using TCP:

 Local Queue

 Object type : QLOCAL

 Name : WINNT F

 Usage : X (XmitQ)

 Remote Queue

 Object type : QREMOTE

 Name : WINNT.REMOTEQ D

 Name on remote system : WINNT.LOCALQ E

 Remote system name : WINNT C

 Transmission queue : WINNT F

 Sender Channel

 Channel name : MVS.WINNT.TCP H

 Transport type : T (TCP)

Transmission queue name : WINNT F

 Connection name : winnt.tcpip.hostname

WebSphere MQ for z/OS receiver-channel definitions using TCP:

 Local Queue

 Object type : QLOCAL

 Name : MVS.LOCALQ B

 Usage : N (Normal)

 Receiver Channel

 Channel name : WINNT.MVS.TCP J

Message channel planning example for z/OS

This chapter provides a detailed example of how to connect z/OS, OS/390, or

MVS/ESA queue managers together so that messages can be sent between them.

Chapter 4. DQM in WebSphere MQ for z/OS 275

The example illustrates the preparations needed to allow an application using

queue manager QM1 to put messages on a queue at queue manager QM2. An

application running on QM2 can retrieve these messages, and send responses to a

reply queue on QM1.

The example illustrates the use of both TCP/IP and LU 6.2 connections. The

example assumes that channels are to be triggered to start when the first message

arrives on the transmission queue they are servicing.

What the example shows

This example shows the WebSphere MQ commands (MQSC) that you can use in

WebSphere MQ for z/OS for DQM.

It involves a payroll query application connected to queue manager QM1 that

sends payroll query messages to a payroll processing application running on queue

manager QM2. The payroll query application needs the replies to its queries sent

back to QM1. The payroll query messages are sent from QM1 to QM2 on a

sender-receiver channel called QM1.TO.QM2, and the reply messages are sent back

from QM2 to QM1 on another sender-receiver channel called QM2.TO.QM1. Both

of these channels are triggered to start as soon as they have a message to send to

the other queue manager.

The payroll query application puts a query message to the remote queue

“PAYROLL.QUERY” defined on QM1. This remote queue definition resolves to the

local queue “PAYROLL” on QM2. In addition, the payroll query application

specifies that the reply to the query is sent to the local queue “PAYROLL.REPLY”

on QM1. The payroll processing application gets messages from the local queue

“PAYROLL” on QM2, and sends the replies to wherever they are required; in this

case, local queue “PAYROLL.REPLY” on QM1.

Both queue managers are assumed to be running on z/OS. In the example

definitions for TCP/IP, QM1 has a host address of 9.20.9.31 and is listening on port

1411, and QM2 has a host address of 9.20.9.32 and is listening on port 1412. In the

definitions for LU 6.2, QM1 is listening on a symbolic luname called LUNAME1

and QM2 is listening on a symbolic luname called LUNAME2. The example

assumes that these are already defined on your z/OS system and available for use.

To define them, see “Example configuration - IBM WebSphere MQ for z/OS” on

page 266.

The object definitions that need to be created on QM1 are:

'SYSTEM.CHANNEL.INITQ'

Queue transmission 'QM1'

Queue manager 'QM2'

Queue local 'PAYROLL'

Application

Query
message

Query
message

Channel

Channel

Application

Payroll
processing

Payroll
query

Reply
message

Reply
message

QM1.TO.QM2

QM2.TO.QM1

Queue remote 'PAYROLL.QUERY'

Queue local 'PAYROLL.REPLY'

Queue transmission 'QM2'

'SYSTEM.CHANNEL.INITQ'

Queue manager 'QM1'

Figure 46. The first example for WebSphere MQ for z/OS

276 WebSphere MQ: Intercommunication

v Remote queue definition, PAYROLL.QUERY

v Transmission queue definition, QM2 (default=remote queue manager name)

v Sender channel definition, QM1.TO.QM2

v Receiver channel definition, QM2.TO.QM1

v Reply-to queue definition, PAYROLL.REPLY

The object definitions that need to be created on QM2 are:

v Local queue definition, PAYROLL

v Transmission queue definition, QM1 (default=remote queue manager name)

v Sender channel definition, QM2.TO.QM1

v Receiver channel definition, QM1.TO.QM2

The example assumes that all the SYSTEM.COMMAND.* and

SYSTEM.CHANNEL.* queues required to run DQM have been defined as shown

in the supplied sample definitions, CSQ4INSG and CSQ4INSX.

The connection details are supplied in the CONNAME attribute of the sender

channel definitions.

You can see a diagram of the arrangement in Figure 46 on page 276.

Queue manager QM1 example

The following object definitions allow applications connected to queue manager

QM1 to send request messages to a queue called PAYROLL on QM2, and to receive

replies on a queue called PAYROLL.REPLY on QM1.

All the object definitions have been provided with the DESCR and REPLACE

attributes. The other attributes supplied are the minimum required to make the

example work. The attributes that are not supplied take the default values for

queue manager QM1.

Run the following commands on queue manager QM1.

Remote queue definition:

DEFINE QREMOTE(PAYROLL.QUERY) DESCR(’Remote queue for QM2’) REPLACE +

PUT(ENABLED) XMITQ(QM2) RNAME(PAYROLL) RQMNAME(QM2)

Note: The remote queue definition is not a physical queue, but a means of

directing messages to the transmission queue, QM2, so that they can be sent to

queue manager QM2.

Transmission queue definition:

DEFINE QLOCAL(QM2) DESCR(’Transmission queue to QM2’) REPLACE +

USAGE(XMITQ) PUT(ENABLED) GET(ENABLED) TRIGGER TRIGTYPE(FIRST) +

TRIGDATA(QM1.TO.QM2) INITQ(SYSTEM.CHANNEL.INITQ)

When the first message is put on this transmission queue, a trigger message is sent

to the initiation queue, SYSTEM.CHANNEL.INITQ. The channel initiator gets the

message from the initiation queue and starts the channel identified in the trigger

data. The channel initiator can only get trigger messages from the

SYSTEM.CHANNEL.INITQ queue, so you should not use any other queue as the

initiation queue.

Sender channel definition:

Chapter 4. DQM in WebSphere MQ for z/OS 277

For a TCP/IP connection:

DEFINE CHANNEL(QM1.TO.QM2) CHLTYPE(SDR) TRPTYPE(TCP) +

REPLACE DESCR(’Sender channel to QM2’) XMITQ(QM2) +

CONNAME(’9.20.9.32(1412)’)

For an LU 6.2 connection:

DEFINE CHANNEL(QM1.TO.QM2) CHLTYPE(SDR) TRPTYPE(LU62) +

REPLACE DESCR(’Sender channel to QM2’) XMITQ(QM2) +

CONNAME(’LUNAME2’)

Receiver channel definition:

 For a TCP/IP connection:

DEFINE CHANNEL(QM2.TO.QM1) CHLTYPE(RCVR) TRPTYPE(TCP) +

REPLACE DESCR(’Receiver channel from QM2’)

For an LU 6.2 connection:

DEFINE CHANNEL(QM2.TO.QM1) CHLTYPE(RCVR) TRPTYPE(LU62) +

REPLACE DESCR(’Receiver channel from QM2’)

Reply-to queue definition:

DEFINE QLOCAL(PAYROLL.REPLY) REPLACE PUT(ENABLED) GET(ENABLED) +

DESCR(’Reply queue for replies to query messages sent to QM2’)

The reply-to queue is defined as PUT(ENABLED). This ensures that reply

messages can be put to the queue. If the replies cannot be put to the reply-to

queue, they are sent to the dead-letter queue on QM1 or, if this queue is not

available, remain on transmission queue QM1 on queue manager QM2. The queue

has been defined as GET(ENABLED) to allow the reply messages to be retrieved.

Queue manager QM2 example

The following object definitions allow applications connected to queue manager

QM2 to retrieve request messages from a local queue called PAYROLL, and to put

replies to these request messages to a queue called PAYROLL.REPLY on queue

manager QM1.

You do not need to provide a remote queue definition to enable the replies to be

returned to QM1. The message descriptor of the message retrieved from local

queue PAYROLL contains both the reply-to queue and the reply-to queue manager

names. Therefore, as long as QM2 can resolve the reply-to queue manager name to

that of a transmission queue on queue manager QM2, the reply message can be

sent. In this example, the reply-to queue manager name is QM1 and so queue

manager QM2 simply requires a transmission queue of the same name.

All the object definitions have been provided with the DESCR and REPLACE

attributes and are the minimum required to make the example work. The attributes

that are not supplied take the default values for queue manager QM2.

Run the following commands on queue manager QM2.

Local queue definition:

DEFINE QLOCAL(PAYROLL) REPLACE PUT(ENABLED) GET(ENABLED) +

DESCR(’Local queue for QM1 payroll details’)

This queue is defined as PUT(ENABLED) and GET(ENABLED) for the same

reason as the reply-to queue definition on queue manager QM1.

278 WebSphere MQ: Intercommunication

Transmission queue definition:

DEFINE QLOCAL(QM1) DESCR(’Transmission queue to QM1’) REPLACE +

USAGE(XMITQ) PUT(ENABLED) GET(ENABLED) TRIGGER TRIGTYPE(FIRST) +

TRIGDATA(QM2.TO.QM1) INITQ(SYSTEM.CHANNEL.INITQ)

When the first message is put on this transmission queue, a trigger message is sent

to the initiation queue, SYSTEM.CHANNEL.INITQ. The channel initiator gets the

message from the initiation queue and starts the channel identified in the trigger

data. The channel initiator can only get trigger messages from

SYSTEM.CHANNEL.INITQ so you should not use any other queue as the

initiation queue.

Sender channel definition:

 For a TCP/IP connection:

DEFINE CHANNEL(QM2.TO.QM1) CHLTYPE(SDR) TRPTYPE(TCP) +

REPLACE DESCR(’Sender channel to QM1’) XMITQ(QM1) +

CONNAME(’9.20.9.31(1411)’)

For an LU 6.2 connection:

DEFINE CHANNEL(QM2.TO.QM1) CHLTYPE(SDR) TRPTYPE(LU62) +

REPLACE DESCR(’Sender channel to QM1’) XMITQ(QM1) +

CONNAME(’LUNAME1’)

Receiver channel definition:

 For a TCP/IP connection:

DEFINE CHANNEL(QM1.TO.QM2) CHLTYPE(RCVR) TRPTYPE(TCP) +

REPLACE DESCR(’Receiver channel from QM1’)

For an LU 6.2 connection:

DEFINE CHANNEL(QM1.TO.QM2) CHLTYPE(RCVR) TRPTYPE(LU62) +

REPLACE DESCR(’Receiver channel from QM1’)

Running the example

When you have created the required objects, you must:

v Start the channel initiator for both queue managers

v Start the listener for both queue managers

The applications can then send messages to each other. Because the channels are

triggered to start by the arrival of the first message on each transmission queue,

you do not need to issue the START CHANNEL MQSC command.

For details about starting a channel initiator see “Starting a channel initiator” on

page 249, and for details about starting a listener see “Starting a channel listener”

on page 251.

Expanding this example

This example can be expanded by:

v Adding more queue, and channel definitions to allow other applications to send

messages between the two queue managers.

v Adding user exit programs on the channels to allow for link encryption, security

checking, or additional message processing.

Chapter 4. DQM in WebSphere MQ for z/OS 279

v Using queue manager aliases and reply-to queue aliases to understand more

about how these can be used in the organization of your queue manager

network.

Preparing WebSphere MQ for z/OS for DQM with queue-sharing groups

This chapter describes the concept of distributed queuing with queue-sharing

groups on WebSphere MQ for z/OS.

It also describes the components of distributed queuing in this environment and

the WebSphere MQ preparations required before DQM can be used with

queue-sharing groups, and the advantages of using DQM with queue-sharing

groups.

For information on how to monitor and control channels when using

queue-sharing groups, see “Monitoring and controlling channels on z/OS” on page

243.

Concepts

This section describes the concepts related to distributed queuing with

queue-sharing groups. For additional information on the concepts of shared queues

and queue-sharing groups, see WebSphere MQ for z/OS Concepts and Planning

Guide, ″Shared queues″ .

Class of service

A shared queue is a type of local queue that offers a different class of service.

Messages on a shared queue are stored in a coupling facility (CF), which allows

them to be accessed by all queue managers in the queue-sharing group. A message

on a shared queue must be a message of length no more than 100MB.

Generic interface

A queue-sharing group has a generic interface that allows the network to view the

group as a single entity. This is achieved by having a single generic address that

can be used to connect to any queue manager within the group.

Each queue manager in the queue-sharing group listens for inbound session

requests on an address that is logically related to the generic address. For more

information see “Listeners” below.

Components

What follows is a description of the components required to enable distributed

queuing with queue-sharing groups.

Listeners

The group LU 6.2 and TCP/IP listeners listen on an address that is logically

connected to the generic address.

For the LU 6.2 listener, the specified LUGROUP is mapped to the VTAM generic

resource associated with the queue-sharing group. For an example of setting up

this technology, see Table 26 on page 265.

280 WebSphere MQ: Intercommunication

For the TCP/IP listener, the specifed port has three mutually exclusive means of

being connected to the generic address:

v In the case of a front-end router such as the IBM Network dispatcher (see

Network Dispatcher User’s Guide, GC31–8496–03), inbound connect requests are

forwarded from the router to the members of the queue-sharing group.

v In the case of TCP/IP WLM/DNS, each listener registers as being part of the

WLM group. This is a registration type model, similar to the VTAM generic

resource for LU 6.2. For an example of setting up this technology, see “Using

WLM/DNS” on page 290. WLM/DNS only maps hostname and does not map

port numbers. This means that all the group listeners in a queue-sharing group

must use the same port number. Use the WebSphere MQ command (MQSC) as

shown in the following examples:

– On queue manager QM1:

START LSTR PORT(2424) INDISP(GROUP) +

IPADDR(QM1.MACH.IBM.COM)

– On queue manager QM2:

START LSTR PORT(2424) INDISP(GROUP) +

IPADDR(QM2.MACH.IBM.COM)

v In the case of TCP/IP’s Sysplex Distributor, each listener that is running and is

listening on a particular address that is set up as a Distributed DVIPA will be

allocated a proportion of the incoming requests. For an example of setting up

this technology, see “Using Sysplex Distributor” on page 291

Transmission queues and triggering

A shared transmission queue is used to store messages before they are moved from

the queue-sharing group to the destination. It is a shared queue and it is accessible

to all queue managers in the queue-sharing group.

Triggering:

 A triggered shared queue can generate more than one trigger message for a

satisfied trigger condition. There is one trigger message generated for each local

initiation queue defined on a queue manager in the queue-sharing group

associated with the triggered shared queue.

In the case of distributed queuing, each channel initiator receives a trigger message

for a satisfied shared transmission queue trigger condition. However, only one

channel initiator will actually process the triggered start, and the others will fail

safely. The triggered channel is then started with a load balanced start (see

“Load-balanced channel start” on page 283) that will be triggered to start channel

QSG.TO.QM2. To create a shared transmission queue, use the WebSphere MQ

commands (MQSC) as shown in the following example:

DEFINE QLOCAL(QM2) DESCR(’Transmission queue to QM2’) +

USAGE(XMITQ) QSGDISP(SHARED) +

CFSTRUCT(APPLICATION1) INITQ(SYSTEM.CHANNEL.INITQ) +

TRIGGER TRIGDATA(QSG.TO.QM2)

Message channel agents

A channel can only be started on a channel initiator if it has access to a channel

definition for a channel with that name. A channel definition can be defined to be

private to a queue manager or stored on the shared repository and available

anywhere (a group definition). This means that a group defined channel is

available on any channel initiator in the queue-sharing group.

Chapter 4. DQM in WebSphere MQ for z/OS 281

Note: The private copy of the group definition can be changed or deleted.

To create group channel definitions, use the WebSphere MQ commands (MQSC) as

shown in the following examples:

DEFINE CHL(QSG.TO.QM2) CHLTYPE(SDR) +

TRPTYPE(TCP) CONNAME(QM2.MACH.IBM.COM) +

XMITQ(QM2) QSGDISP(GROUP)

DEFINE CHL(QM2.TO.QSG) CHLTYPE(RCVR) TRPTYPE(TCP) +

QSGDISP(GROUP)

There are two perspectives from which to look at the message channel agents used

for distributed queuing with queue-sharing groups:

v Inbound

v Outbound

Inbound:

 An inbound channel is a shared channel if it is connected to the queue manager

through the group listener. It is connected either through the generic interface to

the queue-sharing group, then directed to a queue manager within the group, or

targeted at a specific queue manager’s group port or the luname used by the group

listener.

Outbound:

 An outbound channel is a shared channel if it moves messages from a shared

transmission queue. In the above example commands, sender channel QSG.TO.QM2

is a shared channel because its transmission queue, QM2 is defined with

QSGDISP(SHARED).

Synchronization queue

Shared channels have their own shared synchronization queue called

SYSTEM.QSG.CHANNEL.SYNCQ, which is accessible to any member of the

queue-sharing group. (Private channels continue to use the private synchronization

queue. See “Synchronization queue” on page 260) This means that the channel can

be restarted on a different queue manager and channel initiator instance within the

queue-sharing group in the event of failure of the communications subsystem,

channel initiator or queue manager. (See “Shared channel recovery” on page 283

for details.)

DQM with queue-sharing groups requires that a shared queue is available with the

name SYSTEM.QSG.CHANNEL.SYNCQ. This queue must be available so that a

group listener can successfully start.

If a group listener fails because the queue was not available, the queue can be

defined and the listener can be restarted without recycling the channel initiator,

and the non-shared channels are not affected.

Make sure that you define this queue using INDXTYPE(MSGID). This will improve

the speed at which they can be accessed.

282 WebSphere MQ: Intercommunication

Benefits

The following section describes the benefits of shared queuing, which are:

v Load-balanced channel start

v Shared channel recovery

v Client channels

Load-balanced channel start

A shared transmission queue can be serviced by an outbound channel running on

any channel initiator in the queue-sharing group. Load-balanced channel start

determines where a start channel command is targeted. An appropriate channel

initiator is chosen that has access to the necessary communications subsystem. For

example, a channel defined with TRPTYPE(LU6.2) will not be started on a channel

initiator that only has access to a TCP/IP subsystem.

The choice of channel initiator is dependant on the channel load and the headroom

of the channel initiator. The channel load is the number of active channels as a

percentage of the maximum number of active channels allowed as defined in the

channel initiator parameters. The headroom is the difference between the number

of active channels and the maximum number allowed.

Inbound shared channels can be load-balanced across the queue-sharing group by

use of a generic address, as described in “Listeners” on page 280.

Shared channel recovery

The following table shows the types of shared-channel failure and how each type

is handled.

 Type of failure: What happens:

Channel initiator

communications

subsystem failure

The channels dependent on the communications subsystem enter

channel retry, and are restarted on an appropriate queue-sharing

group channel initiator by a load-balanced start command.

Channel initiator

failure

The channel initiator fails, but the associated queue manager remains

active. The queue manager monitors the failure and initiates recovery

processing.

Queue manager

failure

The queue manager fails (failing the associated channel initiator).

Other queue managers in the queue-sharing group monitor the event

and initiate peer recovery.

Shared status

failure

Channel state information is stored in DB2, so a loss of connectivity

to DB2 becomes a failure when a channel state change occurs.

Running channels can carry on running without access to these

resources. On a failed access to DB2, the channel enters retry.

Shared channel recovery processing on behalf of a failed system requires

connectivity to DB2 to be available on the system managing the recovery to

retrieve the shared channel status.

Client channels

Client connection channels can benefit from the high availability of messages in

queue-sharing groups that are connected to the generic interface instead of being

connected to a specific queue manger. (For more information about this, see the

WebSphere MQ Clients manual.)

Chapter 4. DQM in WebSphere MQ for z/OS 283

Clusters and queue-sharing groups

You can make your shared queue available to a cluster in a single definition. To do

this you specify the name of the cluster when you define the shared queue.

Users in the network see the shared queue as being hosted by each queue manager

within the queue-sharing group (the shared queue is not advertised as being

hosted by the queue-sharing group). Clients can start sessions with all members of

the queue-sharing group to put messages to the same shared queue.

For more information, see WebSphere MQ Queue Manager Clusters.

Channels and serialization

If a queue manager in a queue-sharing group fails while a message channel agent

is dealing with uncommitted messages on one or more shared queues, the channel

and the associated channel initiator will end, and shared queue peer recovery will

take place for the queue manager.

Because shared queue peer recovery is an asynchronous activity, peer channel

recovery might try to simultaneously restart the channel in another part of the

queue sharing group before shared queue peer recovery is complete. If this

happens, committed messages might be processed ahead of the messages still

being recovered. To ensure that messages are not processed out of sequence in this

way, message channel agents that process messages on shared queues serialize

their access to these queues by issuing the MQCONNX API call.

An attempt to start a channel for which shared queue peer recovery is still in

progress might result in a failure. An error message indicating that recovery is in

progress is issued, and the channel is put into retry state. Once queue manager

peer recovery is complete, the channel can restart at the time of the next retry.

An attempt to RESOLVE, PING, or DELETE a channel can fail for the same reason.

Intra-group queuing

Intra-group queuing (IGQ) can effect potentially fast and less-expensive small

message transfer between queue managers within a queue-sharing group (QSG),

without the need to define channels between the queue managers. That is,

intra-group queuing can be used to deliver, more efficiently, small messages to

queues residing on remote queue managers within a queue-sharing group. See

“Intra-group queuing” on page 298 for more information.

Setting up communication for WebSphere MQ for z/OS using

queue-sharing groups

When a distributed-queuing management channel is started, it tries to use the

connection specified in the channel definition. For this to succeed, it is necessary

for the connection to be defined and available. This section explains how to do

this.

You might also find it useful to refer to “Example configuration - IBM WebSphere

MQ for z/OS using queue-sharing groups” on page 286.

284 WebSphere MQ: Intercommunication

Deciding on a connection

There are two forms of communication protocol that can be used:

v TCP

v LU 6.2 through APPC/MVS

Defining a TCP connection

For information on setting up your TCP, see “Defining a TCP connection” on page

263.

Sending end

The connection name (CONNAME) field in the channel definition to connect to

your queue sharing group should be set to the generic interface of your

queue-sharing group (see “Generic interface” on page 280). If you are using

DNS/WLM, the generic interface is the name in the DNSGROUP queue manager

attribute. If it is not set, it is the queue-sharing group name. For details of

DNSGROUP, see WebSphere MQ Script (MQSC) Command Reference.

Receiving on TCP using a queue-sharing group

Receiving shared channel programs are started in response to a startup request

from the sending channel. To do this, a listener has to be started to detect incoming

network requests and start the associated channel. You start this listener program

with the START LISTENER command, using the inbound disposition of the group,

or using the operations and control panels.

All group listeners in the queue-sharing group must be listening on the same port.

If you have more than one channel initiator running on a single MVS image you

can define virtual IP addresses and start your TCP listener program to only listen

on a specific address or hostname by specifying IPADDR in the START LISTENER

command. (For more information, see “Preparing WebSphere MQ for z/OS for

DQM with queue-sharing groups” on page 280.)

Defining an LU6.2 connection

For information on setting up APPC/MVS, see “Setting up communication for

z/OS” on page 263.

Connecting to APPC/MVS (LU 6.2)

The connection name (CONNAME) field in the channel definition to connect to

your queue-sharing group should be set to the symbolic destination name, as

specified in the side information data set for APPC/MVS. The partner LU specified

in this symbolic destination should be the generic resource name. See “Defining

yourself to the network using generic resources” on page 289 for more details.

Receiving on LU 6.2 using a generic interface

Receiving shared MCAs are started in response to a startup request from the

sending channel. To do this, a group listener program has to be started to detect

incoming network requests and start the associated channel. The listener program

is an APPC/MVS server. You start it with the START LISTENER command, using

an inbound disposition group, or using the operations and control panels. You

Chapter 4. DQM in WebSphere MQ for z/OS 285

must specify the LU name to use by means of a symbolic destination name defined

in the side information data set. See “Defining yourself to the network using

generic resources” on page 289 for more details.

Example configuration - IBM WebSphere MQ for z/OS using

queue-sharing groups

This chapter gives an example of how to set up communication links from a

queue-sharing group on WebSphere MQ for z/OS to WebSphere MQ products on

the following platforms:

v Windows

v AIX

(You can also connect from z/OS to z/OS.)

First it describes the parameters needed for an LU 6.2 connection; then it describes:

v “Establishing an LU 6.2 connection into a queue-sharing group” on page 288

v “Establishing a TCP connection into a queue-sharing group” on page 290

Setting up communication links from a queue-sharing group to a distributed

platform is the same as described in “Example configuration - IBM WebSphere MQ

for z/OS” on page 266. There are examples to other platforms in that chapter.

When the connection is established, you need to define some channels to complete

the configuration. This is described in “WebSphere MQ for z/OS shared channel

configuration” on page 291.

See “Example configuration chapters in this book” on page 101 for background

information about this chapter and how to use it.

Configuration parameters for an LU 6.2 connection

Table 29 on page 287 presents a worksheet listing all the parameters needed to set

up communication from z/OS to one of the other WebSphere MQ platforms. The

worksheet shows examples of the parameters, which have been tested in a

working environment, and leaves space for you to fill in your own values. An

explanation of the parameter names follows the worksheet. Use the worksheet in

this chapter in conjunction with the worksheet in the chapter for the platform to

which you are connecting.

The steps required to set up an LU 6.2 connection are described in “Establishing an

LU 6.2 connection into a queue-sharing group” on page 288, with numbered cross

references to the parameters on the worksheet.

Configuration worksheet

Use this worksheet to record the values you use for your configuration. Where

numbers appear in the Reference column they indicate that the value must match

that in the appropriate worksheet elsewhere in this book. The examples that follow

in this chapter refer back to the values in the ID column. The entries in the

Parameter Name column are explained in “Explanation of terms” on page 287.

286 WebSphere MQ: Intercommunication

Table 29. Configuration worksheet for z/OS using LU 6.2

ID Parameter Name Reference Example Used User Value

Definition for local node using generic resources

1 Command prefix +cpf

2 Network ID NETID

3 Node name MVSPU

6 Modename #INTER

7 Local Transaction Program name MQSERIES

8 LAN destination address 400074511092

9 Local LU name MVSLU1

10 Generic resource name MVSGR

11 Symbolic destination G1

12 Symbolic destination for generic

resource name

G2

Connection to a Windows system

The values in this section of the table must match those used in Table 13 on page 130, as indicated.

13 Symbolic destination M3

14 Modename 21 #INTER

15 Remote Transaction Program name 7 MQSERIES

16 Partner LU name 5 WINNTLU

21 Remote node ID 4 05D 30F65

Connection to an AIX system

The values in this section of the table must match those used in Table 17 on page 156, as indicated.

13 Symbolic Destination M4

14 Modename 18 #INTER

15 Remote Transaction Program name 6 MQSERIES

16 Partner LU name 4 AIXLU

Explanation of terms

1 Command prefix

This is the unique command prefix of your WebSphere MQ for z/OS

queue-manager subsystem. The z/OS systems programmer defines this at

installation time, in SYS1.PARMLIB(IEFSSNss), and will be able to tell you

the value.

2 Network ID

The VTAM startup procedure in your installation is partly customized by

the ATCSTRxx member of the data set referenced by the DDNAME

VTAMLST. The Network ID is the value specified for the NETID parameter

in this member. For Network ID you must specify the name of the NETID

that owns the WebSphere MQ communications subsystem. Your network

administrator will tell you the value.

3 Node name

VTAM, being a low-entry network node, does not have a Control Point

name for Advanced Peer-to-Peer Networking (APPN) use. It does however

have a system services control point name (SSCPNAME). For node name,

Chapter 4. DQM in WebSphere MQ for z/OS 287

you must specify the name of the SSCP that owns the WebSphere MQ

communications subsystem. This is defined in the same ATCSTRxx

member as the Network ID. Your network administrator will tell you the

value.

9 Local LU name

A logical unit (LU) is software that serves as an interface or translator

between a transaction program and the network. It manages the exchange

of data between transaction programs. The local LU name is the unique

VTAM APPLID of this WebSphere MQ subsystem. Your network

administrator will tell you this value.

11 12 13 Symbolic destination

This is the name you give to the CPI-C side information profile. You need

a side information entry for each LU 6.2 listener.

6 14 Modename

This is the name given to the set of parameters that control the LU 6.2

conversation. An entry with this name and similar attributes must be

defined at each end of the session. In VTAM, this corresponds to a mode

table entry. You network administrator will assign this to you.

7 15 Transaction Program name

WebSphere MQ applications trying to converse with this queue manager

will specify a symbolic name for the program to be run at the receiving

end. This will have been specified in the TPNAME attribute on the channel

definition at the sender. For simplicity, wherever possible use a transaction

program name of MQSERIES, or in the case of a connection to VSE/ESA,

where the length is limited to 4 bytes, use MQTP.

 See Table 26 on page 265 for more information.

8 LAN destination address

This is the LAN destination address that your partner nodes will use to

communicate with this host. When you are using a 3745 network

controller, it will be the value specified in the LOCADD parameter for the

line definition to which your partner is physically connected. If your

partner nodes use other devices such as 317X or 6611 devices, the address

will have been set during the customization of those devices. Your network

administrator will tell you this value.

10 Generic resource name

A generic resource name is a unique name assigned to a group of LU

names used by the channel initiators in a queue-sharing group.

16 Partner LU name

This is the LU name of the WebSphere MQ queue manager on the system

with which you are setting up communication. This value is specified in

the side information entry for the remote partner.

21 Remote node ID

For a connection to Windows, this is the ID of the local node on the

Windows system with which you are setting up communication.

Establishing an LU 6.2 connection into a queue-sharing group

To establish an LU 6.2 connection, there are two steps:

1. Define yourself to the network using generic resources.

2. Define a connection to the partner.

288 WebSphere MQ: Intercommunication

Defining yourself to the network using generic resources

This example describes how to use VTAM Generic Resources to have one

connection name to connect to the queue-sharing group.

1. SYS1.PARMLIB(APPCPMxx) contains the start-up parameters for APPC. You

must add a line to this file to tell APPC where to locate the sideinfo. This line

should be of the form:

SIDEINFO

 DATASET(APPC.APPCSI)

2. Add another line to SYS1.PARMLIB(APPCPMxx) to define the local LU name

you intend to use for the WebSphere MQ LU 6.2 group listener. The line you

add should take the form

LUADD ACBNAME(mvslu1)

 NOSCHED

 TPDATA(csq.appctp)

 GRNAME(mvsgr)

Specify values for ACBNAME (9), TPDATA and GRNAME(10).

The NOSCHED parameter tells APPC that our new LU will not be using the

LU 6.2 scheduler (ASCH), but has one of its own. TPDATA refers to the

Transaction Program data set in which LU 6.2 stores information about

transaction programs. Again, WebSphere MQ will not use this, but it is required

by the syntax of the LUADD command.

3. Start the APPC subsystem with the command:

START APPC,SUB=MSTR,APPC=xx

where xx is the suffix of the PARMLIB member in which you added the LU in

step 1.

Note: If APPC is already running, it can be refreshed with the command:

SET APPC=xx

The effect of this is cumulative, that is, APPC will not lose its knowledge of

objects already defined to it in this or another PARMLIB member.

4. Add the new LU to a suitable VTAM major node definition. These are typically

in SYS1.VTAMLST. The APPL definition will look similar to the sample shown.

 MVSLU APPL ACBNAME=MVSLU1, 9

 APPXC=YES,

 AUTOSES=0,

 DDRAINL=NALLOW,

 DLOGMOD=#INTER, 6

 DMINWML=10,

 DMINWNR=10,

 DRESPL=NALLOW,

 DSESLIM=60,

 LMDENT=19,

 MODETAB=MTCICS,

 PARSESS=YES,

 VERIFY=NONE,

 SECACPT=ALREADYV,

 SRBEXIT=YES

5. Activate the major node. This can be done with the command:

V,NET,ACT,majornode

6. Add entries defining your LU and generic resource name to the CPI-C side

information data set. Use the APPC utility program ATBSDFMU to do this.

Sample JCL is in thlqual.SCSQPROC(CSQ4SIDE) (where thlqual is the target

library high-level qualifier for WebSphere MQ data sets in your installation.)

Chapter 4. DQM in WebSphere MQ for z/OS 289

The entries you add will look like this:

 SIADD

 DESTNAME(G1) 11

 MODENAME(#INTER)

 TPNAME(MQSERIES

 PARTNER_LU(MVSLU1) 9

 SIADD

 DESTNAME(G2) 12

 MODENAME(#INTER)

 TPNAME(MQSERIES)

 PARTNER_LU(MVSGR) 10

7. Alter the queue manager object to use the correct distributed queueing

parameters using the following command. You must specify the local LU (9)

assigned to your queue manager in the LUGROUP attribute of the queue

manager.

ALTER QMGR LUGROUP(MVSLU1)

Defining a connection to a partner

Note: This example is for a connection to a Windows system but the task is the

same for other platforms.

Add an entry to the CPI-C side information data set to define the connection.

Sample JCL to do this is in thlqual.SCSQPROC(CSQ4SIDE).

The entry you add will look like this:

 SIADD

 DESTNAME(M3) 13

 MODENAME(#INTER) 14

 TPNAME(MQSERIES) 15

 PARTNER_LU(WINNTLU) 16

What next?

The connection is now established. You are ready to complete the configuration.

Go to “WebSphere MQ for z/OS shared channel configuration” on page 291.

Establishing a TCP connection into a queue-sharing group

Alter the queue manager object to use the correct distributed queueing parameters

using the following command. You must add the name of the TCP address space

to the TCPNAME queue manager attribute.

Using WLM/DNS

Alter the queue manager object to use the correct distributed queueing parameters.

You must set DNSWLM(YES); optionally you can add the name of the group name

to be used as a hostname to the DNSGROUP attribute. If you leave the name

blank, the queue-sharing group name is used.

 ALTER QMGR TCPNAME(TCPIP) DNSWLM(YES) DNSGROUP(MYGROUP)

WLM/DNS does not offer any support for mapping one incoming port number to

a different outgoing port number. This means that each channel initiator must use

a different hostname, by one of the following methods:

v Run each channel initiator on a different MVS image

v Run each channel initiator with a different TCP stack on the same MVS image.

290 WebSphere MQ: Intercommunication

v Have multiple Virtual IP Addresses (VIPAs) on one TCP stack.

v Use the TCP/IP SHAREPORT option to allow the same port to be used for

multiple listeners.

See z/OS Communications Server: IP User’s Guide and Commands, SC31-8780 for

more information on VIPA.

See z/OS Communications Server IP Configuration Reference, SC31-8776 for more

information on SHAREPORT.

See TCP/IP in a sysplex, SG24–5235, an IBM Redbooks™ publication, for more

information on WLM/DNS.

Using Sysplex Distributor

This example shows how to set up Sysplex Distributor to use one connection name

to connect to the queue-sharing group.

1. Define a Distributed DVIPA address as follows:

a. Add a DYNAMICXCF statement to the IPCONFIG. This is used for

inter-image connectivity via dynamically created XCF TCP/IP links.

b. Use the VIPADYNAMIC block on each image in the Sysplex.

1) On the owning image, code a VIPADEFINE statement to create the

DVIPA Then code a VIPADISTRIBUTE statement to distribute it to all

other or selected images.

2) On the backup image(s), code a VIPABACKUP statement for the DVIPA

address.
2. If more than one channel initiator will be started on any LPAR in the sysplex

then add the SHAREPORT option for the port to be shared in the PORT

reservation list in the PROFILE data set.

See z/OS CS: IP Configuration Guide and z/OS CS: IP Configuration Reference for more

information.

Sysplex Distributor will balance the inbound connections between each LPAR. If

there is more than one channel initiator on an LPAR, then the use of SHAREPORT

will pass that inbound connection to the listener port with the smallest number of

connections.

What next?

The TCP connection is now established. You are ready to complete the

configuration. Go to “WebSphere MQ for z/OS shared channel configuration.”

WebSphere MQ for z/OS shared channel configuration

1. Start the channel initiator using the command:

+cpf START CHINIT 1

2. Start an LU6.2 group listener using the command:

+cpf START LSTR LUNAME(G1) TRPTYPE(LU62) INDISP(GROUP)

The LUNAME of G1 refers to the symbolic name you gave your LU (11).

3. If you are using Virtual IP Addressing, either with WLM/DNS os Sysplex

Distributor and wish to listen on a specific address, use the command:

+cpf START LSTR PORT(1555) INDISP(GROUP) IPADDR(mvsvipa)

Chapter 4. DQM in WebSphere MQ for z/OS 291

There can be only one instance of the shared channel running at a time. If you try

to start a second instance of the channel it will fail (the error message varies

depending on other factors). The shared synchronization queue keeps track of the

channel status.

WebSphere MQ channels will not initialize successfully if the channel negotiation

detects that the message sequence number is different at each end. You may need

to reset this manually.

Shared channel configuration

The following sections detail the configuration to be performed on the z/OS queue

manager to implement the channel described in Figure 32 on page 101.

Examples are given for connecting WebSphere MQ for z/OS and Windows. If you

wish to connect to WebSphere MQ on another platform use the appropriate set of

values from the table in place of those for Windows.

Note: The words in bold are user-specified and reflect the names of WebSphere

MQ objects used throughout these examples. If you change the names used here,

ensure that you also change the other references made to these objects throughout

this book. All others are keywords and should be entered as shown.

 Table 30. Configuration worksheet for WebSphere MQ for z/OS using queue-sharing groups

ID Parameter Name Reference Example Used User Value

Definition for local node

A Queue Manager Name QSG

B Local queue name QSG.SHAREDQ

Connection to WebSphere MQ for Windows

The values in this section of the table must match those used in Table 14 on page 146, as indicated.

C Remote queue manager name A WINNT

D Remote queue name WINNT.REMOTEQ

E Queue name at remote system B WINNT.LOCALQ

F Transmission queue name WINNT

G Sender (LU 6.2) channel name QSG.WINNT.SNA

H Sender (TCP) channel name QSG.WINNT.TCP

I Receiver (LU 6.2) channel name G WINNT.QSG.SNA

J Receiver (TCP/IP) channel name H WINNT.QSG.TCP

Connection to WebSphere MQ for AIX

The values in this section of the table must match those used in Table 18 on page 168, as indicated.

C Remote queue manager name AIX

D Remote queue name AIX.REMOTEQ

E Queue name at remote system B AIX.LOCALQ

F Transmission queue name AIX

G Sender (LU 6.2) channel name QSG.AIX.SNA

H Sender (TCP/IP) channel name QSG.AIX.TCP

I Receiver (LU 6.2) channel name G AIX.QSG.SNA

J Receiver (TCP/IP) channel name H AIX.QSG.TCP

292 WebSphere MQ: Intercommunication

WebSphere MQ for z/OS shared sender-channel definitions using LU 6.2:

 Local Queue

 Object type : QLOCAL

 Name : WINNT F

 Usage : X (XmitQ)

 Disposition : SHARED

 Remote Queue

 Object type : QREMOTE

 Name : WINNT.REMOTEQ D

 Name on remote system : WINNT.LOCALQ E

 Remote system name : WINNT C

 Transmission queue : WINNT F

 Disposition : GROUP

 Sender Channel

 Channel name : MVS.WINNT.SNA G

 Transport type : L (LU6.2)

Transmission queue name : WINNT F

 Connection name : M3 13

 Disposition : GROUP

WebSphere MQ for z/OS shared receiver-channel definitions using LU 6.2:

 Local Queue

 Object type : QLOCAL

 Name : QSG.SHAREDQ B

 Usage : N (Normal)

 Disposition : SHARED

 Receiver Channel

 Channel name : WINNT.QSG.SNA I

 Disposition : GROUP

WebSphere MQ for z/OS shared sender-channel definitions using TCP:

 Local Queue

 Object type : QLOCAL

 Name : WINNT F

 Usage : X (XmitQ)

 Disposition : SHARED

 Remote Queue

 Object type : QREMOTE

 Name : WINNT.REMOTEQ D

 Name on remote system : WINNT.LOCALQ E

 Remote system name : WINNT C

 Transmission queue : WINNT F

 Disposition : GROUP

 Sender Channel

 Channel name : QSG.WINNT.TCP H

 Transport type : T (TCP)

Transmission queue name : WINNT F

 Connection name : winnt.tcpip.hostname

 Disposition : GROUP

WebSphere MQ for z/OS shared receiver-channel definitions using TCP:

 Local Queue

 Object type : QLOCAL

 Name : QSG.SHAREDQ B

 Usage : N (Normal)

 Disposition : SHARED

Chapter 4. DQM in WebSphere MQ for z/OS 293

Receiver Channel

 Channel name : WINNT.QSG.TCP J

 Disposition : GROUP

Message channel planning example for z/OS using queue-sharing

groups

This example illustrates the preparations needed to allow an application using

queue manager QM3 to put a message on a queue in a queue-sharing group that

has queue members QM4 and QM5.

It is recommended that you are familiar with the example in “Message channel

planning example for z/OS” on page 275 before trying this example.

What this example shows

This example shows the WebSphere MQ commands (MQSC) that you can use in

WebSphere MQ for z/OS for distributed queuing with queue-sharing groups. This

example expands the payroll query scenario of the example in “Message channel

planning example for z/OS” on page 275 to show how to add higher availability

of query processing by adding more serving applications to serve a shared queue.

The payroll query application is now connected to queue manager QM3 and puts a

query to the remote queue ’PAYROLL QUERY’ defined on QM3. This remote

queue definition resolves to the shared queue ’PAYROLL’ hosted by the queue

managers in the queue-sharing group QSG1. The payroll processing application

now has two instances running, one connected to QM4 and one connected to QM5.

294 WebSphere MQ: Intercommunication

All three queue managers are assumed to be running on z/OS. In the example

definitions for TCP/IP, QM4 has a host name of MVSIP01 and QM5 has a host

name of MVSIP02. Both queue managers are listening on port 1414 and have

registered to use WLM/DNS. The generic address that WLM/DNS provides for

this group is QSG1.MVSIP. QM3 has a host address of 9.20.9.31 and is listening on

port 1411.

In the example definitions for LU6.2, QM3 is listening on a symbolic luname called

LUNAME1. The name of the generic resource defined for VTAM for the lunames

listened on by QM4 and QM5 is LUQSG1. The example assumes that these are

already defined on your z/OS system and are available for use. To define them see

“Defining yourself to the network using generic resources” on page 289.

Channel

Channel

QM3.TO.QSG1

QSG1.TO.QM3

Application

Query
message

Payroll
query

Reply
message

Queue remote 'PAYROLL.QUERY'

Queue local 'PAYROLL.REPLY'

Queue transmission 'QSG1’Queue transmission 'QSG1’

'SYSTEM.CHANNEL.INITQ'

Queue manager 'QM3’

Application

Payroll
processing

Query

Reply

Application

Payroll
processing

Query

Reply

Reply
message

Reply
message

Query
message

Query
message

Get
request

Queue sharing group named 'QSG1’

G
en

er
ic

 p
or

t

WLM / DNS

Channel triggering

QSG1.TO.QM3

QM3.TO.QSG1

QM3.TO.QSG1

SYSTEM.CHANNEL.INITQ

Queue local ‘PAYROLL’

SYSTEM.CHANNEL.INITQ

QSG1.TO.QM3

Trig
chan

Trig
chan

Queue manager ‘QM4’

Coupling Facility

Queue manager ‘QM5’

Queue transmission ‘QM3’

Figure 47. Message channel planning example for WebSphere MQ for z/OS using queue-sharing groups

Chapter 4. DQM in WebSphere MQ for z/OS 295

In this example QSG1 is the name of a queue-sharing group, and queue managers

QM4 and QM5 are the names of members of the group.

Queue-sharing group definitions

Producing the following object definitions for one member of the queue-sharing

group makes them available to all the other members.

Queue managers QM4 and QM5 are members of the queue sharing group. The

definitions produced for QM4 are also available for QM5.

It is assumed that the coupling facility list structure is called ’APPLICATION1’. If

is not called ’APPLICATION1’, you must use your own coupling facility list

structure name for the example.

The shared object definitions are stored in DB2 and their associated messages are

stored within the Coupling Facility.

DEFINE QLOCAL(PAYROLL) QSGDISP(SHARED) REPLACE PUT(ENABLED) GET(ENABLED) +

CFSTRUCT(APPLICATION1) +

DESCR(’Shared queue for payroll details’)

DEFINE QLOCAL(QM3) QSGDISP(SHARED) REPLACE USAGE(XMITQ) PUT(ENABLED) +

CFSTRUCT(APPLICATION1) +

DESCR(’Transmission queue to QM3’) TRIGGER TRIGTYPE(FIRST) +

TRIGDATA(QSG1.TO.QM3) GET(ENABLED) INITQ(SYSTEM.CHANNEL.INITQ)

Shared objects:

Group objects:

 The group object definitions are stored in DB2, and each queue manager in the

queue-sharing group creates a local copy of the defined object.

Sender channel definition:

 For a TCP/IP connection:

DEFINE CHANNEL(QSG1.TO.QM3) CHLTYPE(SDR) QSGDISP(GROUP) TRPTYPE(TCP) +

REPLACE DESCR(’Sender channel to QM3’) XMITQ(QM3) +

CONNAME(’9.20.9.31(1411)’)

For an LU6.2 connection:

DEFINE CHANNEL(QSG1.TO.QM3) CHLTYPE(SDR) QSGDISP(GROUP) TRPTYPE(LU62) +

REPLACE DESCR(’Sender channel to QM3’) XMITQ(QM3) +

CONNAME(’LUNAME1’)

Receiver channel definition:

 For a TCP/IP connection:

DEFINE CHANNEL(QM3.TO.QSG1) CHLTYPE(RCVR) TRPTYPE(TCP) +

REPLACE DESCR(’Receiver channel from QM3’) QSGDISP(GROUP)

For an LU 6.2 connection:

DEFINE CHANNEL(QM3.TO.QSG1) CHLTYPE(RCVR) TRPTYPE(LU62) +

REPLACE DESCR(’Receiver channel from QM3’) QSGDISP(GROUP)

Queue manager QM3 example

QM3 is not a member of the queue-sharing group.

296 WebSphere MQ: Intercommunication

The following object definitions allow it to put messages to a queue in the

queue-sharing group.

Sender channel definition:

 The conname for this channel is the generic address of the queue-sharing group.

For a TCP/IP connection:

DEFINE CHANNEL(QM3.TO.QSG1) CHLTYPE(SDR) TRPTYPE(TCP) +

REPLACE DESCR(’Sender channel to QSG1’) XMITQ(QSG1) +

CONNAME(’QSG1.MVSIP(1414)’)

For an LU 6.2 connection:

DEFINE CHANNEL(QM3.TO.QSG1) CHLTYPE(SDR) TRPTYPE(LU62) +

REPLACE DESCR(’Sender channel to QSG1’) XMITQ(QSG1) +

CONNAME(’LUQSG1) TPNAME(’MQSERIES’) MODENAME(’#INTER’)

Remaining definitions

These definitions are required for the same purposes as those in the first example.

DEFINE QREMOTE(PAYROLL.QUERY) DESCR(’Remote queue for QSG1’) REPLACE +

PUT(ENABLED) XMITQ(QSG1) RNAME(APPL) RQMNAME(QSG1)

DEFINE QLOCAL(QSG1) DESCR(’Transmission queue to QSG1’) REPLACE +

USAGE(XMITQ) PUT(ENABLED) GET(ENABLED) TRIGGER TRIGTYPE(FIRST) +

TRIGDATA(QM3.TO.QSG1) INITQ(SYSTEM.CHANNEL.INITQ)

DEFINE CHANNEL(QSG1.TO.QM3) CHLTYPE(RCVR) TRPTYPE(TCP) +

REPLACE DESCR(’Receiver channel from QSG1’)

DEFINE CHANNEL(QSG1.TO.QM3) CHLTYPE(RCVR) TRPTYPE(LU62) +

REPLACE DESCR(’Receiver channel from QSG1’)

DEFINE QLOCAL(PAYROLL.REPLY) REPLACE PUT(ENABLED) GET(ENABLED) +

DESCR(’Reply queue for replies to query messages sent to QSG1’)

Running the example

When you have created the required objects, you must do the following.

v Start the channel initiator for all three queue managers.

v Start the listeners for both queue managers in the queue-sharing group.

For a TCP/IP connection each member of the group must have a group listener

started that is listening on port 1414.

STA LSTR PORT(1414) IPADDR(MVSIP01) INDISP(GROUP)

The above entry starts the listener on QM4, for example.

For an LU6.2 connection each member of the group must have a group listener

started that is listening on a symbolic luname that corresponds to the generic

resource LUQSG1.

v Start the listener on QM3
STA LSTR PORT(1411)

Chapter 4. DQM in WebSphere MQ for z/OS 297

Intra-group queuing

This chapter describes intra-group queuing on WebSphere MQ for z/OS. This

function is only available to queue managers defined to a queue-sharing group.

For information about queue-sharing groups, see “Preparing WebSphere MQ for

z/OS for DQM with queue-sharing groups” on page 280.

Concepts

This section describes the concepts of intra-group queuing.

Intra-group queuing (IGQ) can effect potentially fast and less-expensive small

message transfer between queue managers within a queue-sharing group (QSG),

without the need to define channels between the queue managers. That is,

intra-group queuing can be used to deliver, more efficiently, small messages to

queues residing on remote queue managers within a queue-sharing group.

The following diagram shows a typical example of intra-group queuing.

298 WebSphere MQ: Intercommunication

The diagram shows:

v IGQ agents running on three queue managers (QMG1,QMG2 and QMG3) that

are defined to a queue-sharing group called SQ26.

v Shared transmission queue SYSTEM.QSG.TRANSMIT.QUEUE that is defined in

the Coupling Facility (CF).

v A remote queue definition that is defined in queue manager QMG1.

v A local queue that is defined in queue manager QMG2.

v A requesting application (this could be a Message Channel Agent (MCA)) that is

connected to queue manager QMG1.

v A server application that is connected to queue manager QMG2.

v A request message being placed on to the SYSTEM.QSG.TRANSMIT.QUEUE.

Intra-group queuing and the intra-group queuing agent

An IGQ agent is started during queue manager initialization. When applications

open and put messages to remote queues, the local queue manager determines

whether intra-group queuing should be used for message transfer. If intra-group

Figure 48. An example of intra-group queuing

Chapter 4. DQM in WebSphere MQ for z/OS 299

queuing is to be used, the local queue manager places the message on to the

SYSTEM.QSG.TRANSMIT.QUEUE. The IGQ agent on the target remote queue

manager retrieves the message and places it on to the destination queue.

Terminology

This section describes the terminology of intra-group queuing.

Intra-group queuing

Intra-group queuing can effect potentially fast and less expensive message transfer

between queue managers in a queue-sharing group, without the need to define

channels.

Shared transmission queue for use by intra-group queuing

Each queue-sharing group has a shared transmission queue called

SYSTEM.QSG.TRANSMIT.QUEUE for use by intra-group queuing. If intra-group

queuing is enabled, SYSTEM.QSG.TRANSMIT.QUEUE appears in the name

resolution path when opening remote queues. When applications (including

Message Channel Agents (MCAs)) put messages to a remote queue, the local

queue manager determines the eligibility of messages for fast transfer and places

them on SYSTEM.QSG.TRANSMIT.QUEUE.

Intra-group queuing agent

The IGQ agent is the task, started at queue manager initialization, that waits for

suitable messages to arrive on the SYSTEM.QSG.TRANSMIT.QUEUE. The IGQ

agent retrieves suitable messages from this queue and delivers them to the

destination queue(s).

The IGQ agent for each queue manager is always started because intra-group

queuing is used by the queue manager itself for its own internal processing.

Benefits

This section describes the benefits of intra-group queuing.

Reduced system definitions

Intra-group queuing removes the need to define channels between queue managers

in a queue-sharing group.

Reduced system administration

Because there are no channels defined between queue managers in a queue-sharing

group, there is no requirement for channel administration.

Improved performance

Because there is only one IGQ agent needed for the delivery of a message to a

target queue (instead of two intermediate sender and receiver agents), the delivery

of messages using intra-group queuing can be less expensive than the delivery of

messages using channels. In intra-group queuing there is only a receiving

component, because the need for the sending component has been removed. This

saving is because the message is available to the IGQ agent at the destination

300 WebSphere MQ: Intercommunication

queue manager for delivery to the destination queue once the put operation at the

local queue manager has completed and, in the case of messages put in syncpoint

scope, committed.

Supports migration

Applications external to a queue-sharing group can deliver messages to a queue

residing on any queue manager in the queue-sharing group, while being connected

only to a particular queue manager in the queue-sharing group. This is because

messages arriving on a receiver channel, destined for a queue on a remote queue

manager, can be transparently sent to the destination queue using intra-group

queuing. This facility allows applications to be deployed among the queue-sharing

group without the need to change any systems that are external to the

queue-sharing group.

A typical configuration is illustrated by the following diagram, in which:

v A requesting application connected to queue manager QMG1 needs to send a

message to a local queue on queue manager QMG3.

v Queue manager QMG1 is connected only to queue manager QMG2.

v Queue managers QMG2 and QMG3, which were previously connected using

channels, are now members of queue-sharing group SQ26.

 The flow of operations is as follows:

1. The requesting application puts a message, destined for local queue LQ1 at

remote queue manager QMG3, on to remote queue definition RQ1.

2. Queue manager QMG1, running on a Windows NT workstation, places the

message on to the transmission queue XQ1.

3. Sender MCA (S) on QM1 transmits the message, via TCP/IP, to the receiver

MCA (R) on channel initiator CHINIT2.

4. Receiver MCA (R) on channel initiator CHINIT2 places the message on to the

shared transmission queue SYSTEM.QSG.TRANSMIT.QUEUE.

5. IGQ agent on queue manager QMG3 retrieves the message from the

SYSTEM.QSG.TRANSMIT.QUEUE and places it on to the target local queue

LQ1.

6. The server application retrieves the message from the target local queue and

processes it.

R
E
Q

A
P
P
L

S
V
R

A
P
P
L

RQ1

QMG1

XQ1

Windows NT

S

SYSTEM.QSG.TRANSMIT.QUEUE

CF

QMG3

IGQ
Agent

S/390

LQ1

QMG2CHINIT2

QSG=SQ26

R
TCP/IP

Figure 49. An example of migration support

Chapter 4. DQM in WebSphere MQ for z/OS 301

Transparent delivery of messages when multi-hopping between

queue managers in a queue-sharing group

The above diagram also illustrates the transparent delivery of messages when

multi-hopping between queue managers in a queue-sharing group. Messages

arriving on a given queue manager within the queue-sharing group, but destined

for a queue on another queue manager in the queue-sharing group, can be easily

transmitted to the destination queue on the destination queue manager, using

intra-group queuing.

Limitations

This section describes the limitations of intra-group queuing.

Messages eligible for transfer using intra-group queuing

Because intra-group queuing makes use of a shared transmission queue that is

defined in the Coupling Facility (CF), intra-group queuing is limited to delivering

messages of the maximum supported message length for shared queues minus the

length of a transmission queue header (MQXQH).

Number of intra-group queuing agents per queue manager

Only one IGQ agent is started per queue manager in a queue-sharing group.

Starting and stopping the intra-group queuing agent

The IGQ agent is started during queue manager initialization and terminated

during queue manager shut-down. It is designed to be a long running, self

recovering (in the event of abnormal termination), task. If there is an error with the

definition of the SYSTEM.QSG.TRANSMIT.QUEUE (for example, if this queue is

Get inhibited) the IGQ agent keeps retrying. If the IGQ agent should encounter an

error that results in normal termination of the agent while the queue manager is

still active, it can be restarted by issuing an ALTER QMGR IGQ(ENABLED)

command. This avoids the need to recycle the queue manager.

Getting started

This section describes getting started with intra-group queuing.

Enabling intra-group queuing

To enable intra-group queuing on your queue managers, you need to do the

following :

v Define a shared transmission queue called SYSTEM.QSG.TRANSMIT.QUEUE.

The definition of this queue can be found in thlqual.SCSQPROCS(CSQ4INSS),

the CSQINP2 sample for SYSTEM objects for queue-sharing groups. This queue

must be defined with the correct attributes, as stated in

thlqual.SCSQPROCS(CSQ4INSS), for intra-group queuing to work properly.

v Because the IGQ agent is always started at queue manager initialization,

intra-group queuing is always available for inbound message processing, that is,

the IGQ agent processes any messages that are placed on the

SYSTEM.QSG.TRANSMIT.QUEUE. However, to enable intra-group queuing for

outbound processing, the queue manager attribute IGQ must be set to

ENABLED.

302 WebSphere MQ: Intercommunication

Disabling intra-group queuing

To disable intra-group queuing for outbound message transfer, set the queue

manager attribute IGQ to DISABLED. Note that if intra-group queuing is disabled

for a given queue manager, the IGQ agent on that queue manager can still process

inbound messages that have been placed on the SYSTEM.QSG.TRANSMIT.QUEUE

by a queue manager that does have intra-group queuing enabled for outbound

transfer.

Using intra-group queuing

Once intra-group queuing is enabled, it is available for use and a queue manager

uses it whenever possible. That is, when an application puts a message to a remote

queue definition, to a fully qualified remote queue, or to a cluster queue, the queue

manager determines if the message is eligible to be delivered using intra-group

queuing and if it is, places the message on to SYSTEM.QSG.TRANSMIT.QUEUE.

There is no need to make changes to user applications, or to application queues,

because for eligible messages the queue manager makes use of the

SYSTEM.QSG.TRANSMIT.QUEUE, in preference to any other transmission queue.

Configurations

In addition to the typical intra-group queuing configuration described in Figure 48

on page 299, other configurations are possible.

Distributed queuing with intra-group queuing (multiple delivery

paths)

For applications that process short messages it might be feasible to configure only

intra-group queuing for delivering messages between queue managers in a

queue-sharing group. However, for applications that process large (greater than the

maximum supported message length for shared queues minus the length of the

MQXQH) messages, it may be necessary to configure distributed queuing with

intra-group queuing. The following diagram illustrates this configuration.

Chapter 4. DQM in WebSphere MQ for z/OS 303

Open/Put processing:

 1. It is important to note that when the requesting application opens remote

queue RQ1, name resolution occurs for both the non-shared transmission queue

XQ1 and the shared transmission queue SYSTEM.QSG.TRANSMIT.QUEUE.

2. When the requesting application puts a message on to the remote queue, the

queue manager decides, based on whether intra-group queuing is enabled for

outbound transfer and on the message characteristics, whether to put the

message to transmission queue XQ1, or to transmission queue

SYSTEM.QSG.TRANSMIT.QUEUE. The queue manager places all large

messages on to transmission queue XQ1, and all small messages on to

transmission queue SYSTEM.QSG.TRANSMIT.QUEUE.

3. If transmission queue XQ1 is full, or is not available, put requests for large

messages fail synchronously with a suitable return and reason code. However,

put requests for small messages continue to succeed and are placed on

transmission queue SYSTEM.QSG.TRANSMIT.QUEUE.

Send

Receive

S/390

Requesting Application

MQPUT

MQGET

MQPUT

QSG = SQ26

QMG1

Serving Application

MQGET

QMG2

GET

MQPUT

CHINIT1

S

CHINIT2

R

RQ1

XQ1

MQPUT

CF

LQ1

PUT
IGQ

Agent

SYSTEM.QSG.TRANSMIT.QUEUE

Figure 50. An example configuration

304 WebSphere MQ: Intercommunication

4. If transmission queue SYSTEM.QSG.TRANSMIT.QUEUE is full, or cannot be

put to, put requests for small messages fail synchronously with a suitable

return and reason code. However, put requests for large messages continue to

succeed and are placed on transmission queue XQ1. In this case, no attempt is

made to put the small messages on to a transmission queue.

Flow for large messages:

 1. The requesting application puts large messages to remote queue RQ1.

2. Queue manager QMG1 puts the messages on to transmission queue XQ1.

3. Sender MCA (S) on queue manager QMG1 retrieves the messages from

transmission queue XQ1 and sends them to queue manager QMG2.

4. Receiver MCA (R) on queue manager QMG2 receives the messages and places

them on to destination queue LQ1.

5. The serving application retrieves and subsequently processes the messages from

queue LQ1.

Flow for small messages:

 1. The requesting application puts small messages on to remote queue RQ1.

2. Queue manager QMG1 puts the messages on to transmission queue

SYSTEM.QSG.TRANSMIT.QUEUE.

3. IGQ on queue manager QMG2 retrieves the messages and places them on to

the destination queue LQ1.

4. The serving application retrieves the messages from queue LQ1.

Points to note about such a configuration:

 1. The requesting application does not need to be aware of the underlying

mechanism used for the delivery of messages.

2. A potentially faster message delivery mechanism can be achieved for small

messages.

3. Multiple paths are available for message delivery (that is, the normal channel

route and the intra-group queuing route).

4. The intra-group queuing route, being potentially faster, is selected in preference

to the normal channel route. Depending on the message characteristics,

message delivery may be divided across the two paths. Hence, messages may

be delivered out of sequence (though this is also possible if messages are

delivered using only the normal channel route).

5. Once a route has been selected, and messages have been placed on to the

respective transmission queues, only the selected route will be used for

message delivery. Any unprocessed messages on the

SYSTEM.QSG.TRANSMIT.QUEUE are not diverted to transmission queue XQ1.

Clustering with intra-group queuing (multiple delivery paths)

It is possible to configure queue managers so that they are in a cluster as well as in

a queue-sharing group. When messages are sent to a cluster queue and the local

and remote destination queue managers are in the same queue-sharing group,

intra-group queuing is used for the delivery of small messages (using the

SYSTEM.QSG.TRANSMIT.QUEUE) , while the

SYSTEM.CLUSTER.TRANSMIT.QUEUE is used for the delivery of large messages.

Also, the SYSTEM.CLUSTER.TRANSMIT.QUEUE is used for the delivery of

messages to any queue manager that is in the cluster, but outside the

queue-sharing group. The following diagram illustrates this configuration (the

Chapter 4. DQM in WebSphere MQ for z/OS 305

channel initiators are not shown).

The diagram shows:

v Four z/OS queue managers QMG1, QMG2, QMG3 and QMG4 configured in a

cluster CLUS1.

v Queue managers QMG1, QMG2 and QMG3 configured in a queue-sharing

group SQ26.

v IGQ agents running on queue managers QMG2 and QMG3.

v The local SYSTEM.CLUSTER.TRANSMIT.QUEUE defined in QMG1.

v The shared SYSTEM.QSG.TRANSMIT.QUEUE defined in the CF.

CLUS1

S/390

TO.QMG4

Requesting Application

QMG4

CLUSQ1

QSG = SQ26

TO.QMG2 TO.QMG3

QMG2

IGQ Agent

CLUSQ1

QMG3

IGQ Agent

CLUSQ1

QMG1

SYSTEM.CLUSTER.TRANSMIT.QUEUE

CF

SYSTEM.QSG.TRANSMIT.QUEUE

S/390

Figure 51. An example of clustering with intra-group queuing

306 WebSphere MQ: Intercommunication

v Cluster channels TO.QMG2 (connecting QMG1 to QMG2), TO.QMG3

(connecting QMG1 to QMG3), and TO.QMG4 (connecting QMG1 to QMG4).

v Cluster queue CLUSQ1 being hosted on queue managers QMG2, QMG3 and

QMG4.

Assume that the requesting application opens the cluster queue with the

MQOO_BIND_NOT_FIXED option, so that the target queue manager for the

cluster queue is selected at put time.

If the selected target queue manager is QMG2:

v All large messages put by the requesting application are

– Put to the SYSTEM.CLUSTER.TRANSMIT.QUEUE on QMG1

– Transferred to cluster queue CLUSQ1 on QMG2 using cluster channel

TO.QMG2
v All small messages put by the requesting application are

– Put to the shared transmission queue SYSTEM.QSG.TRANSMIT.QUEUE

– Retrieved by the IGQ agent on QMG2

– Put to the cluster queue CLUSQ1 on QMG2

If the selected target queue manager is QMG4:

v Because QMG4 is not a member of queue-sharing group SQ26, all messages put

by the requesting application are

– Put to the SYSTEM.CLUSTER.TRANSMIT.QUEUE on QMG1

– Transferred to cluster queue CLUSQ1 on QMG4 using cluster channel

TO.QMG4

Points to note about such a configuration:

v The requesting application does not need to be aware of the underlying

mechanism used for the delivery of messages.

v A potentially faster delivery mechanism is achieved for the transfer of small

non-persistent messages between queue managers in a queue-sharing group

(even if the same queue managers are in a cluster).

v Multiple paths are available for message delivery (that is, both the cluster route

and the intra-group queuing route).

v The intra-group queuing route, being potentially faster, is selected in preference

to the cluster route. Depending on the message characteristics, message delivery

may be divided across the two paths. Hence, messages may be delivered out of

sequence. It is important to note that this will be true irrespective of the

MQOO_BIND_* option specified by the application. Intra-group queuing

distributes messages in the same way as clustering does, depending on whether

the MQOO_BIND_NOT_FIXED, MQOO_BIND_ON_OPEN, or

MQOO_BIND_AS_Q_DEF is specified on open.

v Once a route has been selected, and messages have been placed on to the

respective transmission queues, only the selected route is used for message

delivery. Any unprocessed messages on the SYSTEM.QSG.TRANSMIT.QUEUE

are not diverted to the SYSTEM.CLUSTER.TRANSMIT.QUEUE.

Clustering, intra-group queuing and distributed queuing

It is possible to configure a queue manager that is a member of a cluster as well as

a queue-sharing group and is connected to a distributed queue manager using a

sender/receiver channel pair. This configuration is a combination of distributed

Chapter 4. DQM in WebSphere MQ for z/OS 307

queuing with intra-group queuing, described in “Distributed queuing with

intra-group queuing (multiple delivery paths)” on page 303, and clustering with

intra-group queuing, described in “Clustering with intra-group queuing (multiple

delivery paths)” on page 305.

Messages

This section describes the messages put to the SYSTEM.QSG.TRANSMIT.QUEUE.

Message structure

Like all other messages that are put to transmission queues, messages that are put

to the SYSTEM.QSG.TRANSMIT.QUEUE are prefixed with the transmission queue

header (MQXQH).

Message persistence

In WebSphere MQ Version 5 Release 3 and above, shared queues support both

persistent and non-persistent messages.

If the queue manager terminates while the IGQ agent is processing non-persistent

messages, or if the IGQ agent terminates abnormally while in the middle of

processing messages, non-persistent messages being processed may be lost.

Applications must make arrangements for the recovery of non-persistent messages

if their recovery is required.

If a put request for a non-persistent message, issued by the IGQ agent, fails

unexpectedly, the message being processed is lost.

Delivery of messages

The IGQ agent retrieves and delivers all nonpersistent messages outside of

syncpoint scope, and all persistent messages within syncpoint scope. In this case,

the IGQ agent acts as the syncpoint coordinator. The IGQ agent therefore processes

nonpersistent messages in a way similar to the way fast, nonpersistent messages

are processed on a message channel. See “Fast, nonpersistent messages” on page

20.

Batching of messages

The IGQ agent uses a fixed batchsize of 50 messages. Any persistent messages

retrieved within a batch will be committed at intervals of 50 messages. The agent

commits a batch consisting of persistent messages when there are no more

messages available for retrieval on the SYSTEM.QSG.TRANSMIT.QUEUE.

Message size

The maximum size of message that can be put to the

SYSTEM.QSG.TRANSMIT.QUEUE is the maximum supported message length for

shared queues minus the length of a transmission queue header (MQXQH).

Default message persistence and default message priority

If the SYSTEM.QSG.TRANSMIT.QUEUE is in the queue name resolution path

established at open time, then for messages that are put with default persistence

and default priority (or with default persistence or default priority), the usual rules

are applied in the selection of the queue whose default priority and persistence

308 WebSphere MQ: Intercommunication

values are used. (Refer to WebSphere MQ Application Programming Reference for

information on the rules of queue selection).

Undelivered/unprocessed messages

If an IGQ agent cannot deliver a message to the destination queue, the IGQ agent:

v Honours the MQRO_DISCARD_MSG report option (if the Report options field

of the MQMD for the undelivered message indicates that it should) and discards

the undelivered message.

v Attempts to place the undelivered message on to the dead letter queue for the

destination queue manager, if the message has not already been discarded . The

IGQ agent prefixes the message with a dead letter queue header (MQDLH).

If a dead letter queue is not defined, or if an undelivered message cannot be put to

the dead letter queue, and if the undelivered message is:

v persistent, the IGQ agent backs out the current batch of persistent messages that

it is processing, and enters a state of retry. For more information, see “Retry

capability of the intra-group queuing agent” on page 311.

v non-persistent, the IGQ agent discards the message and continues to process the

next message.

If a queue manager in a queue-sharing group is terminated before its associated

IGQ agent has had time to process all its messages, the unprocessed messages

remain on the SYSTEM.QSG.TRANSMIT.QUEUE until the queue manager is next

started. The IGQ agent then retrieves and delivers the messages to the destination

queues.

If the coupling facility fails before all the messages on the

SYSTEM.QSG.TRANSMIT.QUEUE have been processed, any unprocessed

non-persistent messages will be lost.

IBM recommends that applications do not put messages directly to transmission

queues. If an application does put messages directly to the

SYSTEM.QSG.TRANSMIT.QUEUE, the IGQ agent may not be able to process these

messages and they will simply remain on the SYSTEM.QSG.TRANSMIT.QUEUE.

Users will then have to use their own methods to deal with these unprocessed

messages.

Report messages

This section describes report messages.

Confirmation of arrival (COA)/confirmation of delivery (COD) report messages:

 COA and COD messages are generated by the queue manager, when intra-group

queuing is used.

Expiry report messages:

 Expiry report messages are generated by the queue manager, when intra-group

queuing is used.

Exception report messages:

 Depending on the MQRO_EXCEPTION_* report option specified in the Report

options field of the message descriptor for the undelivered message, the IGQ agent

Chapter 4. DQM in WebSphere MQ for z/OS 309

generates the required exception report and places it on the specified reply-to

queue. (Note that intra-group queuing can be used to deliver the exception report

to the destination reply-to queue).

The persistence of the report message is the same as the persistence of the

undelivered message. If the IGQ agent fails to resolve the name of the destination

reply-to queue, or if it fails to put the reply message to a transmission queue (for

subsequent transfer to the destination reply-to queue) it attempts to put the

exception report to the dead letter queue of the queue manager on which the

report message is generated. If this is not possible, then if the undelivered message

is:

v persistent, the IGQ agent discards the exception report, backs out the current

batch of messages and enters a state of retry. For more information, see “Retry

capability of the intra-group queuing agent” on page 311.

v non-persistent, the IGQ agent discards the exception report and continues

processing the next message on the SYSTEM.QSG.TRANSMIT.QUEUE.

Security

This section describes the security arrangements for intra-group queuing.

Queue manager attributes IGQAUT (IGQ authority) and IGQUSER (IGQ agent

user ID) can be set to control the level of security checking that is performed when

the IGQ agent opens destination queues.

Intra-group queuing authority (IGQAUT)

The IGQAUT attribute can be set to indicate the type of security checks to be

performed, and hence to determine the userids to be used by the IGQ agent when

it establishes the authority to put messages on to the destination queue.

The IGQAUT attribute is analogous to the PUTAUT attribute that is available on

channel definitions.

Intra-group queuing user indentifier (IGQUSER)

The IGQUSER attribute can be used to nominate a user ID to be used by the IGQ

agent when it establishes the authority to put messages on to a destination queue.

The IGQUSER attribute is analogous to the MCAUSER attribute that is available

on channel definitions.

Refer to WebSphere MQ Script (MQSC) Command Reference and WebSphere MQ

Application Programming Reference for more information about the IGQAUT and

IGQUSER queue manager attributes. Refer to the chapter on security in WebSphere

MQ for z/OS System Setup Guide for a table of the userids checked for

intra-group queuing.

Specific properties

This section describes the specific properties of intra-group queuing.

310 WebSphere MQ: Intercommunication

Queue name resolution

Refer to WebSphere MQ Script (MQSC) Command Reference, WebSphere MQ

Application Programming Reference and WebSphere MQ for z/OS System Setup

Guide for details of queue name resolution when intra-group queuing is used.

Invalidation of object handles (MQRC_OBJECT_CHANGED)

If the attributes of an object are found to have changed after the object is opened,

the queue manager invalidates the object handle with MQRC_OBJECT_CHANGED

on its next use.

Intra-group queuing introduces the following new rules for object handle

invalidation :

v If the SYSTEM.QSG.TRANSMIT.QUEUE was included in the name resolution

path during open processing because intra-group queuing was ENABLED at

open time, but intra-group queuing is found to be DISABLED at put time, then

the queue manager invalidates the object handle and fails the put request with

MQRC_OBJECT_CHANGED.

v If the SYSTEM.QSG.TRANSMIT.QUEUE was not included in the name

resolution path during open processing because intra-group queuing was

DISABLED at open time, but intra-group queuing is found to be ENABLED at

put time, then the queue manager invalidates the object handle and fails the put

request with MQRC_OBJECT_CHANGED.

v If the SYSTEM.QSG.TRANSMIT.QUEUE was included in the name resolution

path during open processing because intra-group queuing was enabled at open

time, but the SYSTEM.QSG.TRANSMIT.QUEUE definition is found to have

changed by put time, then the queue manager invalidates the object handle and

fails the put request with MQRC_OBJECT_CHANGED.

Self recovery of the intra-group queuing agent

In the event that the IGQ agent terminates abnormally, message CSQM067E is

issued and the IGQ agent performs self recovery.

Retry capability of the intra-group queuing agent

In the event that the IGQ agent encounters a problem accessing the

SYSTEM.QSG.TRANSMIT.QUEUE (because it is not defined, for example, or is

defined with incorrect attributes, or is inhibited for Gets, or for some other reason),

the IGQ agent goes into the state of retry. The IGQ agent observes short and long

retry counts and intervals. The values for these counts and intervals, which cannot

be changed, are as follows:

 Constant Value

Short retry count 10

Short retry interval 60 secs = 1 min

Long retry count 999,999,999

Long retry interval 1200 secs = 20 min

The intra-group queuing agent and Serialization

If there is a failure of a queue manager in a queue-sharing group while the IGQ

agent is dealing with uncommitted messages on a shared queue or queues, the

Chapter 4. DQM in WebSphere MQ for z/OS 311

IGQ agent ends, and shared queue peer recovery takes place for the failing queue

manager. Because shared queue peer recovery is an asynchronous activity, this

leaves the possibility for the failing queue manager, and also the IGQ agent for

that queue manager, to restart before shared queue peer recovery is complete. This

in turn leaves the possibility for any committed messages to be processed ahead of

and out of sequence with the messages still being recovered. To ensure that

messages are not processed out of sequence, the IGQ agent serializes access to

shared queues by issuing the MQCONNX API call.

An attempt, by the IGQ agent to serialize access to shared queues while peer

recovery is still in progress might fail. An error message is issued and the IGQ

agent is put into retry state. When queue manager peer recovery is complete, for

example at the time of the next retry, the IGQ agent can start.

Example configuration — WebSphere MQ for z/OS using intra-group

queuing

This section describes how a typical payroll query application, that currently uses

distributed queuing to transfer small messages between queue managers, could be

migrated to exploit queue sharing groups and shared queues.

Three configurations are described to illustrate the use of distributed queuing,

intra-group queuing with shared queues, and shared queues. The associated

diagrams show only the flow of data in one direction, that is, from queue manager

QMG1 to queue manager QMG3.

Configuration 2 describes how queue-sharing groups and intra-group queuing can

be used, with no effect on the back end payroll server application, to transfer

messages between queue managers QMG1 and QMG3. This configuration removes

the need for channel definitions between queue managers QMG2 and QMG3

because intra-group queuing is used to transfer messages between these two queue

managers.

 The flow of operations is as follows:

1. A query is entered using the payroll request application connected to queue

manager QMG1.

2. The payroll request application puts the query on to remote queue

PAYROLL.QUERY. As queue PAYROLL.QUERY resolves to transmission queue

QMG2, the query is put on to transmission queue QMG2.

P
A
Y
R
O
L
L

R
E
Q

P
A
Y
R
O
L
L

S
V
R

QMG1

Windows NT

S

SYSTEM.QSG.TRANSMIT.QUEUE

CF

QMG3

IGQ
Agent

S/390

QMG2CHINIT2

QSG=SQ26

R
TCP/IP

QMG2
(xmitq)

PAYROLL

PAYROLL.
QUERY

Figure 52. Configuration 2

312 WebSphere MQ: Intercommunication

3. Sender channel (S) on queue manager QMG1 delivers the query to the partner

receiver channel (R) on queue manager QMG2.

4. Receiver channel (R) on queue manager QMG2 puts the query on to queue

PAYROLL on queue manager QMG3. As queue PAYROLL on QMG3 resolves to

shared transmission queue SYSTEM.QSG.TRANSMIT.QUEUE, the query is put

on to shared transmission queue SYSTEM.QSG.TRANSMIT.QUEUE.

5. IGQ agent on queue manager QMG3 retrieves the query from shared

transmission queue SYSTEM.QSG.TRANSMIT.QUEUE, and puts it on to local

queue PAYROLL on queue manager QMG3.

6. The payroll server application connected to queue manager QMG3 retrieves the

query from local queue PAYROLL, processes it, and generates a suitable reply.

Note: The payroll query example transfers small messages only. If you need to

transfer both persistent and non-persistent messages, a combination of

Configuration 1 and Configuration 2 can be established, so that large messages can

be transferred using the distributed queuing route, while small messages can be

transferred using the potentially faster intra-group queuing route.

Configuration 1

Configuration 1 describes how distributed queuing is currently used to transfer

messages between queue managers QMG1 and QMG3.

 The flow of operations is as follows:

1. A query is entered using the payroll request application connected to queue

manager QMG1.

2. The payroll request application puts the query on to remote queue

PAYROLL.QUERY. As queue PAYROLL.QUERY resolves to transmission queue

QMG2, the query is put on to transmission queue QMG2.

3. Sender channel (S) on queue manager QMG1 delivers the query to the partner

receiver channel (R) on queue manager QMG2.

4. Receiver channel (R) on queue manager QMG2 puts the query on to queue

PAYROLL on queue manager QMG3. As queue PAYROLL on QMG3 resolves to

transmission queue QMG3, the query is put on to transmission queue QMG3.

5. Sender channel (S) on queue manager QMG2 delivers the query to the partner

receiver channel (R) on queue manager QMG3.

6. Receiver channel (R) on queue manager QMG3 puts the query on to local

queue PAYROLL.

P
A
Y
R
O
L
L

R
E
Q

P
A
Y
R
O
L
L

S
V
R

QMG1

QMG2
(xmitq)

QMG3
(xmitq)

Windows NT

S

S

QMG3

S/390

PAYROLL

QMG2CHINIT2

R

CHINIT3

R
TCP/IP

TCP/IPPAYROLL.
QUERY

Figure 53. Configuration 1: z/OS using intra-group queuing

Chapter 4. DQM in WebSphere MQ for z/OS 313

7. The payroll server application connected to queue manager QMG3 retrieves the

query from local queue PAYROLL, processes it, and generates a suitable reply.

Configuration 2

Configuration 3

Configuration 3 describes how queue-sharing groups and shared queues can be

used, with no effect on the backend payroll server application, to transfer messages

between queue managers QMG1 and QMG3.

 The flow of operations is:

1. A query is entered using the payroll request application connected to queue

manager QMG1.

2. The payroll request application puts the query on to remote queue

PAYROLL.QUERY. As queue PAYROLL.QUERY resolves to transmission queue

QMG2, the query is put on to transmission queue QMG2.

3. Sender channel (S) on queue manager QMG1 delivers the query to the partner

receiver channel (R) on queue manager QMG2.

4. Receiver channel (R) on queue manager QMG2 puts the query on to shared

queue PAYROLL.

5. The payroll server application connected to queue manager QMG3 retrieves the

query from shared queue PAYROLL, processes it, and generates a suitable

reply.

This configuration is certainly the simplest to configure. However, it should be

noted that distributed queuing or intra-group queuing would need to be

configured to transfer replies (generated by the payroll server application

connected to queue manager QMG3) from queue manager QMG3 to queue

manager QMG2, and then on to queue manager QMG1. (See “What this example

shows” on page 294 for the configuration used to transfer replies back to the

payroll request application.)

No definitions are required on QMG3.

P
A
Y
R
O
L
L

R
E
Q

P
A
Y
R
O
L
L

S
V
R

QMG1

Windows NT

S

CF

QMG3

S/390

QMG2CHINIT2

QSG=SQ26

R
TCP/IP

QMG2
(xmitq)

PAYROLL

PAYROLL.
QUERY

Figure 54. Configuration 3

314 WebSphere MQ: Intercommunication

Configuration 1 definitions

The definitions required for Configuration 1 are as follows (please note that the

definitions do not take into account triggering, and that only channel definitions

for communication using TCP/IP are provided).

On QMG1:

 Remote queue definition

DEFINE QREMOTE(PAYROLL.QUERY) DESCR(’Remote queue for QMG3’) REPLACE +

PUT(ENABLED) RNAME(PAYROLL) RQMNAME(QMG3) XMITQ(QMG2)

Transmission queue definition

DEFINE QLOCAL(QMG2) DESCR(’Transmission queue to QMG2’) REPLACE +

PUT(ENABLED) USAGE(XMITQ) GET(ENABLED)

Sender channel definition (for TCP/IP)

DEFINE CHANNEL(QMG1.TO.QMG2) CHLTYPE(SDR) TRPTYPE(TCP) REPLACE +

DESCR(’Sender channel to QMG2’) XMITQ(QMG2) CONNAME(’MVSQMG2(1415)’)

This is the place where you should replace MVSQMG2(1415) with your queue

manager connection name and port.

Receiver channel definition (for TCP/IP)

DEFINE CHANNEL(QMG2.TO.QMG1) CHLTYPE(RCVR) TRPTYPE(TCP) +

REPLACE DESCR(’Receiver channel from QMG2’)

Reply-to queue definition

DEFINE QLOCAL(PAYROLL.REPLY) REPLACE PUT(ENABLED) GET(ENABLED) +

DESCR(’Reply queue for replies to payroll queries sent to QMG3’)

On QMG2:

 Transmission queue definition

DEFINE QLOCAL(QMG1) DESCR(’Transmission queue to QMG1’) REPLACE +

PUT(ENABLED) USAGE(XMITQ) GET(ENABLED)

DEFINE QLOCAL(QMG3) DESCR(’Transmission queue to QMG3’) REPLACE +

PUT(ENABLED) USAGE(XMITQ) GET(ENABLED)

Sender channel definitions (for TCP/IP)

DEFINE CHANNEL(QMG2.TO.QMG1) CHLTYPE(SDR) TRPTYPE(TCP) REPLACE +

DESCR(’Sender channel to QMG1’) XMITQ(QMG1) CONNAME(’WINTQMG1(1414)’)

This is the place where you should replace WINTQMG1(1414) with your queue

manager connection name and port.

DEFINE CHANNEL(QMG2.TO.QMG3) CHLTYPE(SDR) TRPTYPE(TCP) REPLACE +

DESCR(’Sender channel to QMG3’) XMITQ(QMG3) CONNAME(’MVSQMG3(1416)’)

This is the place where you should replace MVSQMG3(1416) with your queue

manager connection name and port.

Receiver channel definition (for TCP/IP)

Chapter 4. DQM in WebSphere MQ for z/OS 315

DEFINE CHANNEL(QMG1.TO.QMG2) CHLTYPE(RCVR) TRPTYPE(TCP) +

REPLACE DESCR(’Receiver channel from QMG1’)

DEFINE CHANNEL(QMG3.TO.QMG2) CHLTYPE(RCVR) TRPTYPE(TCP) +

REPLACE DESCR(’Receiver channel from QMG3’)

On QMG3:

 Local queue definition

DEFINE QLOCAL(PAYROLL) DESCR(’Payroll query request queue’) REPLACE +

PUT(ENABLED) USAGE(NORMAL) GET(ENABLED) SHARE

DEFINE QLOCAL(QMG2) DESCR(’Transmission queue to QMG2’) REPLACE +

PUT(ENABLED) USAGE(XMITQ) GET(ENABLED)

Sender channel definitions (for TCP/IP)

DEFINE CHANNEL(QMG3.TO.QMG2) CHLTYPE(SDR) TRPTYPE(TCP) REPLACE +

DESCR(’Sender channel to QMG2) XMITQ(QMG2) CONNAME(’MVSQMG2(1415)’)

This is the place where you should replace MVSQMG2(1415) with your queue

manager connection name and port.

Receiver channel definition (for TCP/IP)

DEFINE CHANNEL(QMG2.TO.QMG3) CHLTYPE(RCVR) TRPTYPE(TCP) +

REPLACE DESCR(’Receiver channel from QMG2)

Configuration 2 definitions

The definitions required for Configuration 2 are as follows (please note that the

definitions do not take into account triggering, and that only channel definitions

for communication using TCP/IP are provided). It is assumed that queue

managers QMG2 and QMG3 are already configured to be members of the same

queue-sharing group.

On QMG1:

 Remote queue definition

DEFINE QREMOTE(PAYROLL.QUERY) DESCR(’Remote queue for QMG3’) REPLACE +

PUT(ENABLED) RNAME(PAYROLL) RQMNAME(QMG3) XMITQ(QMG2)

Transmission queue definition

DEFINE QLOCAL(QMG2) DESCR(’Transmission queue to QMG2’) REPLACE +

PUT(ENABLED) USAGE(XMITQ) GET(ENABLED)

Sender channel definition (for TCP/IP)

DEFINE CHANNEL(QMG1.TO.QMG2) CHLTYPE(SDR) TRPTYPE(TCP) REPLACE +

DESCR(’Sender channel to QMG2’) XMITQ(QMG2) CONNAME(’MVSQMG2(1415)’)

This is the place where you should replace MVSQMG2(1415) with your queue

manager connection name and port.

Receiver channel definition (for TCP/IP)

DEFINE CHANNEL(QMG2.TO.QMG1) CHLTYPE(RCVR) TRPTYPE(TCP) +

REPLACE DESCR(’Receiver channel from QMG2’)

Reply-to queue definition

DEFINE QLOCAL(PAYROLL.REPLY) REPLACE PUT(ENABLED) GET(ENABLED) +

DESCR(’Reply queue for replies to payroll queries sent to QMG3’)

316 WebSphere MQ: Intercommunication

On QMG2:

 Transmission queue definition

DEFINE QLOCAL(QMG1) DESCR(’Transmission queue to QMG1’) REPLACE +

PUT(ENABLED) USAGE(XMITQ) GET(ENABLED)

DEFINE QLOCAL(SYSTEM.QSG.TRANSMIT.QUEUE) QSGDISP(SHARED) +

DESCR(’IGQ Transmission queue’) REPLACE PUT(ENABLED) USAGE(XMITQ) +

GET(ENABLED) INDXTYPE(CORRELID) CFSTRUCT(’APPLICATION1’) +

DEFSOPT(SHARED) DEFPSIST(NO)

This is the place where you should replace APPLICATION1 with your defined CF

structure name. Also note that this queue, being a shared queue, need only be

defined on one of the queue managers in the queue sharing group.

Sender channel definitions (for TCP/IP)

DEFINE CHANNEL(QMG2.TO.QMG1) CHLTYPE(SDR) TRPTYPE(TCP) REPLACE +

DESCR(’Sender channel to QMG1’) XMITQ(QMG1) CONNAME(’WINTQMG1(1414)’)

This is the place where you should replace WINTQMG1(1414) with your queue

manager connection name and port.

Receiver channel definition (for TCP/IP)

DEFINE CHANNEL(QMG1.TO.QMG2) CHLTYPE(RCVR) TRPTYPE(TCP) +

REPLACE DESCR(’Receiver channel from QMG1’)

Queue Manager definition

ALTER QMGR IGQ(ENABLED)

On QMG3:

 Local queue definition

DEFINE QLOCAL(PAYROLL) DESCR(’Payroll query request queue’) REPLACE +

PUT(ENABLED) USAGE(NORMAL) GET(ENABLED) SHARE

Queue Manager definition

ALTER QMGR IGQ(ENABLED)

Configuration 3 definitions

The definitions required for Configuration 3 are as follows (please note that the

definitions do not take into account triggering, and that only channel definitions

for communication using TCP/IP are provided). It is assumed that queue

managers QMG2 and QMG3 are already configured to be members of the same

queue-sharing group.

On QMG1:

 Remote queue definition

DEFINE QREMOTE(PAYROLL.QUERY) DESCR(’Remote queue for QMG3’) REPLACE +

PUT(ENABLED) RNAME(PAYROLL) RQMNAME(QMG3) XMITQ(QMG2)

Transmission queue definition

DEFINE QLOCAL(QMG2) DESCR(’Transmission queue to QMG2’) REPLACE +

PUT(ENABLED) USAGE(XMITQ) GET(ENABLED)

Sender channel definition (for TCP/IP)

Chapter 4. DQM in WebSphere MQ for z/OS 317

DEFINE CHANNEL(QMG1.TO.QMG2) CHLTYPE(SDR) TRPTYPE(TCP) +

REPLACE DESCR(’Sender channel to QMG2’) XMITQ(QMG2) CONNAME(’MVSQMG2(1415)’)

This is the place where you should replace MVSQMG2(1415) with your queue

manager connection name and port.

Receiver channel definition (for TCP/IP)

DEFINE CHANNEL(QMG2.TO.QMG1) CHLTYPE(RCVR) TRPTYPE(TCP) +

REPLACE DESCR(’Receiver channel from QMG2’)

Reply-to queue definition

DEFINE QLOCAL(PAYROLL.REPLY) REPLACE PUT(ENABLED) GET(ENABLED) +

DESCR(’Reply queue for replies to payroll queries sent to QMG3’)

On QMG2:

 Transmission queue definition

DEFINE QLOCAL(QMG1) DESCR(’Transmission queue to QMG1’) REPLACE +

PUT(ENABLED) USAGE(XMITQ) GET(ENABLED)

Sender channel definitions (for TCP/IP)

DEFINE CHANNEL(QMG2.TO.QMG1) CHLTYPE(SDR) TRPTYPE(TCP) +

REPLACE DESCR(’Sender channel to QMG1’) XMITQ(QMG1) CONNAME(’WINTQMG1(1414)’)

This is the place where you should replace WINTQMG1(1414) with your queue

manager connection name and port.

Receiver channel definition (for TCP/IP)

DEFINE CHANNEL(QMG1.TO.QMG2) CHLTYPE(RCVR) TRPTYPE(TCP) +

REPLACE DESCR(’Receiver channel from QMG1’)

Local queue definition

DEFINE QLOCAL(PAYROLL) QSGDISP(SHARED) DESCR(’Payroll query request queue’) +

REPLACE PUT(ENABLED) USAGE(NORMAL) GET(ENABLED) SHARE +

DEFSOPT(SHARED) DEFPSIST(NO) CFSTRUCT(APPLICATION1)

This is the place where you should replace APPLICATION1 with your defined CF

structure name. Also note that this queue, being a shared queue, need only be

defined on one of the queue managers in the queue sharing group.

On QMG3:

Running the example

For Configuration 1:

1. Start queue managers QMG1, QMG2 and QMG3.

2. Start channel initiators for QMG2 and QMG3.

3. Start the listeners on QMG1, QMG2 and QMG3 to listen on ports 1414, 1415

and 1416, respectively.

4. Start sender channel(s) on QMG1, QMG2 and QMG3.

5. Start the payroll query requesting application connected to QMG1.

6. Start the payroll server application connected to QMG3.

7. Submit a payroll query request to QMG3 and wait for the payroll reply.

318 WebSphere MQ: Intercommunication

For Configuration 2:

1. Start queue managers QMG1, QMG2, and QMG3.

2. Start the channel initiator for QMG2.

3. Start the listeners on QMG1, QMG2 to listen on ports 1414 and 1415,

respectively.

4. Start the sender channel on QMG1 and QMG2.

5. Start the payroll query requesting application connected to QMG1.

6. Start the payroll server application connected to QMG3.

7. Submit a payroll query request to QMG3 and wait for the payroll reply.

For Configuration 3:

1. Start queue managers QMG1, QMG2 and QMG3.

2. Start the channel initiator for QMG2.

3. Start the listeners on QMG1, QMG2 to listen on ports 1414 and 1415,

respectively.

4. Start sender channels on QMG1 and QMG2.

5. Start the payroll query requesting application connected to QMG1.

6. Start the payroll server application connected to QMG3.

7. Submit a payroll query request to QMG3 and wait for the payroll reply.

Expanding the example

The example can be:

v Expanded to make use of channel triggering as well as application (PAYROLL

and PAYROLL.REPLY queue) triggering.

v Configured for communication using LU6.2.

v Expanded to configure more queue managers to the queue sharing group. Then

the server application can be cloned to run on other queue manager instances to

provide multiple servers for the PAYROLL query queue.

v Expanded to increase the number of instances of the payroll query requesting

application to demonstrate the processing of requests from multiple clients.

v Expanded to make use of security (IGQAUT and IGQUSER).

Chapter 4. DQM in WebSphere MQ for z/OS 319

320 WebSphere MQ: Intercommunication

Chapter 5. DQM in WebSphere MQ for i5/OS

Monitoring and controlling channels on i5/OS

Use the DQM commands and panels to create, monitor, and control the channels to

remote queue managers. Each queue manager has a DQM program for controlling

interconnections to compatible remote queue managers. See “Operator commands”

for a list of the commands you need when setting up and controlling message

channels.

DQM channel control

DQM channel control is achieved using WebSphere MQ for i5/OS panels,

commands, programs, WebSphere MQ Explorer, a sequence number file, and files

for the channel definitions. The following is a brief description of the components

of the channel control function:

v Channel definition files are held as queue manager objects. For the location of

the default definitions, see the System Administration Guide

– /QIBM/UserData/mqm/qmgrs/../auth/channels

– /QIBM/UserData/mqm/qmgrs/../auth/channels/&mangled

– /QIBM/UserData/mqm/qmgrs/../auth/clntconn

– /QIBM/UserData/mqm/qmgrs/../auth/clntconn/&mangled

– /QIBM/UserData/mqm/qmgrs/../channels

– /QIBM/UserData/mqm/qmgrs/../clntconn
v The channel commands are a subset of the WebSphere MQ for i5/OS set of

commands.

Use the command GO CMDMQM to display the full set of WebSphere MQ for

i5/OS commands.

v You use channel definition panels, or commands to:

– Create, copy, display, change, and delete channel definitions

– Start and stop channels, ping, reset channel sequence numbers, and resolve

in-doubt messages when links cannot be re-established

– Display status information about channels
v Channels can also be managed using MQSC

v Channels can also be managed using WebSphere MQ Explorer

v Sequence numbers and logical unit of work (LUW) identifiers are stored in the

synchronization file, and are used for channel synchronization purposes.

Operator commands

The following table shows the full list of WebSphere MQ for i5/OS commands that

you may need when setting up and controlling channels. In general, issuing a

command results in the appropriate panel being displayed.

The commands can be grouped as follows:

v Channel commands

– CHGMQMCHL, Change MQM Channel

© Copyright IBM Corp. 1994, 2008 321

– CPYMQMCHL, Copy MQM Channel

– CRTMQMCHL, Create MQM Channel

– DLTMQMCHL, Delete MQM Channel

– DSPMQMCHL, Display MQM Channel

– ENDMQMCHL, End MQM Channel

– ENDMQMLSR, End MQM Listener

– PNGMQMCHL, Ping MQM Channel

– RSTMQMCHL, Reset MQM Channel

– RSVMQMCHL, Resolve MQM Channel

– STRMQMCHL, Start MQM Channel

– STRMQMCHLI, Start MQM Channel Initiator

– STRMQMLSR, Start MQM Listener

– WRKMQMCHL, Work with MQM Channel

– WRKMQMCHST, Work with MQM Channel Status
v Cluster commands

– RFRMQMCL, Refresh Cluster

– RSMMQMCLQM, Resume Cluster Queue Manager

– RSTMQMCL, Reset Cluster

– SPDMQMCLQM, Suspend Cluster Queue Manager

– WRKMQMCL, Work with Clusters
v Command Server commands

– DSPMQMCSVR, Display MQM Command Server

– ENDMQMCSVR, End MQM Command Server

– STRMQMCSVR, Start MQM Command Server
v Data Type Conversion Command

– CVTMQMDTA, Convert MQM Data Type Command
v Dead-Letter Queue Handler Command

– STRMQMDLQ, Start WebSphere MQ Dead-Letter Queue Handler
v Media Recovery Commands

– RCDMQMIMG, Record MQM Object Image

– RCRMQMOBJ, Recreate MQM Object
v WebSphere MQ commands

– STRMQMMQSC, Start MQSC Commands
v Name command

– DSPMQMOBJN, Display MQM Object Names
v Namelist commands

– CHGMQMNL, Change MQM Namelist

– CPYMQMNL, Copy MQM Namelist

– CRTMQMNL, Create MQM Namelist

– DLTMQMNL, Delete MQM Namelist

– DSPMQMNL, Display MQM Namelist

– WRKMQMNL, Work with MQM Namelists
v Process commands

– CHGMQMPRC, Change MQM Process

– CPYMQMPRC, Copy MQM Process

322 WebSphere MQ: Intercommunication

– CRTMQMPRC, Create MQM Process

– DLTMQMPRC, Delete MQM Process

– DSPMQMPRC, Display MQM Process

– WRKMQMPRC, Work with MQM Processes
v Queue commands

– CHGMQMQ, Change MQM Queue

– CLRMQMQ, Clear MQM Queue

– CPYMQMQ, Copy MQM Queue

– CRTMQMQ, Create MQM Queue

– DLTMQMQ, Delete MQM Queue

– DSPMQMQ, Display MQM Queue

– WRKMQMMSG, Work with MQM Messages

– WRKMQMQ, Work with MQM Queues
v Queue Manager commands

– CCTMQM, Connect Message Queue Manager

– CHGMQM, Change Message Queue Manager

– CRTMQM, Create Message Queue Manager

– DLTMQM, Delete Message Queue Manager

– DSCMQM, Disconnect Message Queue Manager

– DSPMQM, Display Message Queue Manager

– ENDMQM, End Message Queue Manager

– STRMQM, Start Message Queue Manager

– WRKMQM, Work with Message Queue managers
v Security commands

– DSPMQMAUT, Display MQM Object Authority

– GRTMQMAUT, Grant MQM Object Authority

– RVKMQMAUT, Revoke MQM Object Authority
v Trace commands

– TRCMQM, Trace MQM Job
v Transaction commands

– RSVMQMTRN, Resolve MQSeries Transaction

– WRKMQMTRN, Display MQSeries Transaction
v Trigger Monitor commands

– STRMQMTRM, Start Trigger Monitor

Getting started

Use these commands and panels to:

1. Define message channels and associated objects

2. Monitor and control message channels

By using the F4=Prompt key, you can specify the relevant queue manager. If you

do not use the prompt, the default queue manager is assumed. With F4=Prompt,

an additional panel is displayed where you may enter the relevant queue manager

name and sometimes other data.

The objects you need to define with the panels are:

Chapter 5. DQM in WebSphere MQ for i5/OS 323

v Transmission queues

v Remote queue definitions

v Queue manager alias definitions

v Reply-to queue alias definitions

v Reply-to local queues

v Processes for triggering (MCAs)

v Message channel definitions

See “Making your applications communicate” on page 15 for more discussion on

the concepts involved in the use of these objects.

Channels must be completely defined, and their associated objects must exist and

be available for use, before a channel can be started. This chapter shows you how

to do this.

In addition, the particular communication link for each channel must be defined

and available before a channel can be run. For a description of how LU 6.2 and

TCP/IP links are defined, see the particular communication guide for your

installation.

Creating objects

Use the CRTMQMQ command to create the queue and alias objects, such as:

transmission queues, remote queue definitions, queue manager alias definitions,

reply-to queue alias definitions, and reply-to local queues.

For a list of default objects, see the WebSphere MQ for i5/OS System

Administration Guide book.

Creating a channel

To create a new channel:

1. Use F6 from the Work with MQM Channels panel (the second panel that

displays channel details).

Alternatively, use the CRTMQMCHL command from the command line.

Either way, this displays the Create Channel panel. Type:

v The name of the channel in the field provided

v The channel type for this end of the link
2. Press Enter.

Note: You are strongly recommended to name all the channels in your network

uniquely. As shown in Table 1 on page 26, including the source and target queue

manager names in the channel name is a good way to do this.

Your entries are validated and errors are reported immediately. Correct any errors

and continue.

You are presented with the appropriate channel settings panel for the type of

channel you have chosen. Fill in the fields with the information you have gathered

previously. Press Enter to create the channel.

324 WebSphere MQ: Intercommunication

You are provided with help in deciding on the content of the various fields in the

descriptions of the channel definition panels in the help panels, and in “Channel

attributes” on page 71.

 Create MQM Channel (CRTMQMCHL)

Type choices, press Enter.

Channel name > CHANNAME________________

Channel type > *SDR__ *RCVR, *SDR, *SVR, *RQSTR...

Message Queue Manager name *DFT__________________________________

Replace *NO_ *NO, *YES

Transport type *TCP____ *LU62, *TCP, *SYSDFTCHL

Text ’description’ > ’Example Channel Definition’_______________

Connection name *SYSDFTCHL_________________________________

__

__

__

__

__

__

 More...

F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

F24=More keys

Figure 55. Create channel (1)

 Create MQM Channel (CRTMQMCHL)

Type choices, press Enter.

Transmission queue ’TRANSMISSION_QUEUE_NAME’__________________

Message channel agent *NONE______ Name, *SYSDFTCHL, *NONE

 Library __________ Name

Message channel agent user ID . *SYSDFTCHL__ Character value...

Coded Character Set Identifier *SYSDFTCHL__ 0-9999, *SYSDFTCHL

Batch size 50_________ 1-9999, *SYSDFTCHL

Disconnect interval 6000_______ 1-999999, *SYSDFTCHL

Short retry interval 60_________ 0-999999999, *SYSDFTCHL

Short retry count 10_________ 0-999999999, *SYSDFTCHL

Long retry interval 1200_______ 0-999999999, *SYSDFTCHL

Long retry count 999999999__ 0-999999999, *SYSDFTCHL

Security exit *NONE_____ Name, *SYSDFTCHL, *NONE

 Library __________ Name

Security exit user data *SYSDFTCHL______________________

 More...

F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

F24=More keys

Figure 56. Create channel (2)

Chapter 5. DQM in WebSphere MQ for i5/OS 325

Starting a channel

Listeners are valid for TCP only. For SNA listeners, you must configure your

communications subsystem.

For applications to be able to exchange messages you must start a listener program

for inbound connections using the STRMQMLSR command.

For outbound connections you must start the channel in one of the following ways:

1. Use the CL command STRMQMCHL, specifying the channel name, to start the

channel as a process or a thread, depending on the MCATYPE parameter. (If

channels are started as threads, they are threads of a channel initiator.)

STRMQMCHL CHLNAME(QM1.TO.QM2) MQNAME(MYQMGR)

 Create MQM Channel (CRTMQMCHL)

Type choices, press Enter.

Send exit *NONE______ Name, *SYSDFTCHL, *NONE

 Library ___________ Name

 + for more values __________

Send exit user data ________________________________

 + for more values ________________________________

Receive exit *NONE_____ Name, *SYSDFTCHL, *NONE

 Library __________ Name

 + for more values __________

Receive exit user data ________________________________

 + for more values ________________________________

Message exit *NONE_____ Name, *SYSDFTCHL, *NONE

 Library __________ Name

 + for more values __________

 More...

F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

F24=More keys

Figure 57. Create channel (3)

 Create MQM Channel (CRTMQMCHL)

Type choices, press Enter.

Message exit user data ________________________________

 + for more values _____________________________

Convert message *SYSDFTCHL_ *YES, *NO, *SYSDFTCHL

Sequence number wrap 999999999__ 100-999999999, *SYSDFTCHL

Maximum message length 4194304____ 0-4194304, *SYSDFTCHL

Heartbeat interval 300________ 0-999999999, *SYSDFTCHL

Non Persistent Message Speed . . *FAST_____ *FAST, *NORMAL, *SYSDFTCHL

Password *SYSDFTCHL_ Character value, *BLANK...

Task User Profile *SYSDFTCHL_ Character value, *BLANK...

Transaction Program Name *SYSDFTCHL

 Bottom

F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

F24=More keys

Figure 58. Create channel (4)

326 WebSphere MQ: Intercommunication

2. Use a channel initiator to trigger the channel. One channel initiator is started

automatically when the queue manager is started. This can be eliminated by

changing the chinit stanza in the qm.ini file for that queue manager.

3. Use the WRKMQMCHL command to begin the Work with Channels panel and

choose option 14 to start a channel.

Selecting a channel

To select a channel, use the WRKMQMCHL command to begin at the Work with

Channels panel:

1. Move the cursor to the option field at the left of the required channel name.

2. Type an option number.

3. Press Enter to activate your choice.

If you select more than one channel, the options are activated in sequence.

Browsing a channel

To browse the settings of a channel, use the WRKMQMCHL command to begin at

the Display Channel panel:

1. Move the cursor to the left of the required channel name.

2. Type option 5 (Display).

3. Press Enter to activate your choice.

If you select more than one channel, they are presented in sequence.

Alternatively, you can use the DSPMQMCHL command from the command line.

This results in the respective Display Channel panel being displayed with details

of the current settings for the channel. The fields are described in “Channel

attributes” on page 71.

 Work with MQM Channels

Queue Manager Name . . : CNX

 Type options, press Enter.

 2=Change 3=Copy 4=Delete 5=Display 8=Work with Status 13=Ping

 14=Start 15=End 16=Reset 17=Resolve

 Opt Name Type Transport Status

 CHLNIC *RCVR *TCP INACTIVE

 CORSAIR.TO.MUSTANG *SDR *LU62 INACTIVE

 FV.CHANNEL.MC.DJE1 *RCVR *TCP INACTIVE

 FV.CHANNEL.MC.DJE2 *SDR *TCP INACTIVE

 FV.CHANNEL.MC.DJE3 *RQSTR *TCP INACTIVE

 FV.CHANNEL.MC.DJE4 *SVR *TCP INACTIVE

 FV.CHANNEL.PETER *RCVR *TCP INACTIVE

 FV.CHANNEL.PETER.LU *RCVR *LU62 INACTIVE

 FV.CHANNEL.PETER.LU1 *RCVR *LU62 INACTIVE

 More...

 Parameters or command

 ===>

 F3=Exit F4=Prompt F5=Refresh F6=Create F9=Retrieve F12=Cancel

 F21=Print

Figure 59. Work with channels

Chapter 5. DQM in WebSphere MQ for i5/OS 327

Display MQM Channel

 Channel name : ST.JST.2TO1

 Queue Manager Name : QMREL

 Channel type : *SDR

 Transport type : *TCP

 Text ’description’ : John’s sender to WINSDOA1

 Connection name : MUSTANG

 Transmission queue : WINSDOA1

 Message channel agent :

 Library :

 Message channel agent user ID : *NONE

 Batch interval : 0

 Batch size : 50

 Disconnect interval : 6000

 F3=Exit F12=Cancel F21=Print

Figure 60. Display a TCP/IP channel (1)

 Display MQM Channel

 Short retry interval : 60

 Short retry count : 10

 Long retry interval : 6000

 Long retry count : 10

 Security exit :

 Library :

 Security exit user data . . . :

 Send exit :

 Library :

 Send exit user data :

 Receive exit :

 Library :

 Receive exit user data :

 Message exit :

 Library :

 Message exit user data :

 More...

 F3=Exit F12=Cancel F21=Print

Figure 61. Display a TCP/IP channel (2)

328 WebSphere MQ: Intercommunication

Renaming a channel

To rename a message channel, begin at the Work with Channels panel:

1. End the channel.

2. Use option 3 (Copy) to create a duplicate with the new name.

3. Use option 5 (Display) to check that it has been created correctly.

4. Use option 4 (Delete) to delete the original channel.

If you decide to rename a message channel, ensure that both channel ends are

renamed at the same time.

Work with channel status

Use the WRKMQMCHST command to bring up the first of three screens showing

the status of your channels. You can view the three status screens in sequence

when you select Change-view (F11).

Alternatively, selecting option 8 (Work with Status) from the Work with MQM

Channels panel also brings up the first status panel.

Work with channel status applies to all message channels. It does not apply to

MQI channels other than server-connection channels on WebSphere MQ for i5/OS

V5.1 and later.

Note: The Work with Channel Status screens only show channels that are active

after messages have been sent through the channel and the sequence number has

been incremented.

 Display MQM Channel

 Sequence number wrap : 999999999

 Maximum message length : 10000

 Convert message : *NO

 Heartbeat interval 300

 Nonpersistent message speed . . *FAST

 Bottom

 F3=Exit F12=Cancel F21=Print

Figure 62. Display a TCP/IP channel (3)

Chapter 5. DQM in WebSphere MQ for i5/OS 329

Change the view with F11.

 MQSeries Work with Channel Status

 Type options, press Enter.

 5=Display 13=Ping 14=Start 15=End 16=Reset 17=Resolve

 Opt Name Connection Indoubt Last Seq

 CARTS_CORSAIR_CHAN GBIBMIYA.WINSDOA1 NO 1

 CHLNIC 9.20.2.213 NO 3

 FV.CHANNEL.PETER2 9.20.2.213 NO 6225

 JST.1.2 9.20.2.201 NO 28

 MP_MUST_TO_CORS 9.20.2.213 NO 100

 MUSTANG.TO.CORSAIR GBIBMIYA.WINSDOA1 NO 10

 MP_CORS_TO_MUST 9.20.2.213 NO 101

 JST.2.3 9.5.7.126 NO 32

 PF_WINSDOA1_LU62 GBIBMIYA.IYA80020 NO 54

 PF_WINSDOA1_LU62 GBIBMIYA.WINSDOA1 NO 500

 ST.JCW.EXIT.2TO1.CHL 9.20.2.213 NO 216

 Bottom

 Parameters or command

 ===>

 F3=Exit F4=Prompt F5=Refresh F6=Create F9=Retrieve F11=Change view

 F12=Cancel F21=Print

Figure 63. Channel status (1)

 MQSeries Work with Channel Status

 Type options, press Enter.

 5=Display 13=Ping 14=Start 15=End 16=Reset 17=Resolve

 Opt Transmission Queue LUWID

 7516E58A40C000EC

 7515A36C0D800157

 7515E790AC8001CA

 7516FF2284800009

 75147C6629C0009D

 7516DDE5778000A8

 FV_MKP_TRANS_QUEUE 75147B61A44000FA

 JST.3 75170185D0000133

 PF.WINSDOA1 7516DA3955C00097

 PF.WINSDOA1 7516DE2396C000BC

 ST.JCW.EXIT.2TO1.XMIT.QUEUE 7516C51291400016

 Bottom

 Parameters or command

 ===>

 F3=Exit F4=Prompt F5=Refresh F6=Create F9=Retrieve F11=Change view

 F12=Cancel F21=Print

Figure 64. Channel status (2)

330 WebSphere MQ: Intercommunication

The options available in the Work with Channel Status panel are:

 Menu option Description

5=Display Displays the channel settings.

13=Ping Initiates a Ping action, where appropriate.

14=Start Starts the channel.

15=End Stops the channel.

16=Reset Resets the channel sequence number.

17=Resolve Resolves an in-doubt channel situation, manually.

F11=Change view Cycles around the three status panels.

Note: When using the WRKMQMCHST command, the channel status shown is

SAVED channel status not CURRENT channel status. To see CURRENT channel

status, use the WRKMQMCHL command.

Work-with-channel choices

The Work with Channels panel is reached with the command WRKMQMCHL, and

it allows you to monitor the status of all channels listed, and to issue commands

against selected channels.

The options available in the Work with Channel panel are:

 Menu option Description

F6=Create Creates a channel.

2=Change Changes the attributes of a channel.

3=Copy Copies the attributes of a channel to a new channel.

4=Delete Deletes a channel.

5=Display Displays the current settings for the channel.

8=Work with status Displays the channel status panels.

13=Ping Runs the Ping facility to test the connection to the adjacent system

by exchanging a fixed data message with the remote end.

14=Start Starts the selected channel, or resets a disabled receiver channel.

15=End Requests the channel to close down.

 MQSeries Work with Channel Status

 Type options, press Enter.

 5=Display 13=Ping 14=Start 15=End 16=Reset 17=Resolve

 Indoubt Indoubt Indoubt

 Opt Msgs Seq LUWID

 0 0 0000000000000000

 0 0 0000000000000000

 0 0 0000000000000000

 0 0 0000000000000000

 0 0 0000000000000000

 0 0 0000000000000000

 0 101 75147B61A44000FA

 0 32 75170185D0000133

 0 54 7516DA3955C00097

 0 500 7516DE2396C000BC

 0 216 7516C51291400016

 Bottom

 Parameters or command

 ===>

 F3=Exit F4=Prompt F5=Refresh F6=Create F9=Retrieve F11=Change view

 F12=Cancel F21=Print

Figure 65. Channel status (3)

Chapter 5. DQM in WebSphere MQ for i5/OS 331

Menu option Description

16=Reset Requests the channel to reset the sequence numbers on this end of

the link. The numbers must be equal at both ends for the channel to

start.

17=Resolve Requests the channel to resolve in-doubt messages without

establishing connection to the other end.

Panel choices

The following choices are provided in the Work with MQM channels panel and the

Work with Channel Status panel.

F6=Create

Use the Create option, or enter the CRTMQMCHL command from the command

line, to obtain the Create Channel panel. There are examples of Create Channel

panels, starting at Figure 55 on page 325.

With this panel, you create a new channel definition from a screen of fields filled

with default values supplied by WebSphere MQ for i5/OS. Type the name of the

channel, select the type of channel you are creating, and the communication

method to be used.

When you press Enter, the panel is displayed. Type information in all the required

fields in this panel, and the three pages making up the complete panel, and then

save the definition by pressing Enter.

The channel name must be the same at both ends of the channel, and unique

within the network. However, you should restrict the characters used to those that

are valid for WebSphere MQ for i5/OS object names; see “Channel attributes” on

page 71.

All panels have default values supplied by WebSphere MQ for i5/OS for some

fields. You can customize these values, or you can change them when you are

creating or copying channels. To customize the values, see the WebSphere MQ for

i5/OS System Administration.

You can create your own set of channel default values by setting up dummy

channels with the required defaults for each channel type, and copying them each

time you want to create new channel definitions.

Table 31 shows the channel attributes for each type of channel. See “Channel

attributes” on page 71 for details about the fields.

 Table 31. Channel attribute fields per message channel type

Attribute field Sender Server Receiver Requester

Batch size Yes Yes Yes Yes

Channel name Yes Yes Yes Yes

Channel type Yes Yes Yes Yes

Connection name Yes Yes Yes

Context Yes Yes

Disconnect interval Yes Yes

332 WebSphere MQ: Intercommunication

Table 31. Channel attribute fields per message channel type (continued)

Attribute field Sender Server Receiver Requester

Heartbeat interval Yes Yes Yes Yes

Long retry wait interval Yes Yes

Long retry count Yes Yes

Maximum message length Yes Yes Yes Yes

Message channel agent name Yes

Message exit user data Yes Yes Yes Yes

Message retry exit count Yes Yes

Message retry exit data Yes Yes

Message retry exit interval Yes Yes

Message retry exit name Yes Yes

Nonpersistent message speed Yes Yes Yes Yes

Receive exit Yes Yes Yes Yes

Receive exit user data Yes Yes Yes Yes

Security exit Yes Yes Yes Yes

Security exit user data Yes Yes Yes Yes

Send exit Yes Yes Yes Yes

Send exit user data Yes Yes Yes Yes

Sequence number wrap Yes Yes Yes Yes

Short retry wait interval Yes Yes

Short retry count Yes Yes

Transport type Yes Yes Yes Yes

Transmission queue Yes Yes

Message exit Yes Yes Yes Yes

2=Change

Use the Change option, or the CHGMQMCHL command, to change an existing

channel definition, except for the channel name. Simply type over the fields to be

changed in the channel definition panel, and then save the updated definition by

pressing Enter.

3=Copy

Use the Copy option, or the CPYMQMCHL command, to copy an existing channel.

The Copy panel enables you to define the new channel name. However, you

should restrict the characters used to those that are valid for WebSphere MQ for

i5/OS object names; see the WebSphere MQ for i5/OS System Administration.

Press Enter on the Copy panel to display the details of current settings. You can

change any of the new channel settings. Save the new channel definition by

pressing Enter.

4=Delete

Use the Delete option to delete the selected channel. A panel is displayed to

confirm or cancel your request.

Chapter 5. DQM in WebSphere MQ for i5/OS 333

5=Display

Use the Display option to display the current definitions for the channel. This

choice displays the panel with the fields showing the current values of the

parameters, and protected against user input.

8=Work with Status

The status column tells you whether the channel is active or inactive, and is

displayed continuously in the Work with MQM Channels panel. Use option 8

(Work with Status) to see more status information displayed. Alternatively, this can

be displayed from the command line with the WRKMQMCHST command. See

“Work with channel status” on page 329.

v Channel name

v Communication connection name

v In-doubt status of channel (where appropriate)

v Last sequence number

v Transmission queue name (where appropriate)

v The in-doubt identifier (where appropriate)

v The last committed sequence number

v Logical unit of work identifier

13=Ping

Use the Ping option to exchange a fixed data message with the remote end. This

gives some confidence to the system supervisor that the link is available and

functioning.

Ping does not involve the use of transmission queues and target queues. It uses

channel definitions, the related communication link, and the network setup.

It is available from sender and server channels, only. The corresponding channel is

started at the far side of the link, and performs the start up parameter negotiation.

Errors are notified normally.

The result of the message exchange is presented in the Ping panel for you, and is

the returned message text, together with the time the message was sent, and the

time the reply was received.

Ping with LU 6.2:

 When Ping is invoked in WebSphere MQ for i5/OS, it is run with the USERID of

the user requesting the function, whereas the normal way that a channel program

is run is for the QMQM USERID to be taken for channel programs. The USERID

flows to the receiving side and it must be valid on the receiving end for the LU 6.2

conversation to be allocated.

14=Start

The Start option is available for sender, server, and requester channels. It should

not be necessary where a channel has been set up with queue manager triggering.

The Start option is also used for receiver channels that have a DISABLED or

STOPPED status. Starting a receiver channel that is in DISABLED or STOPPED

state resets the channel and allows it to be started from the remote channel.

334 WebSphere MQ: Intercommunication

When started, the sending MCA reads the channel definition file and opens the

transmission queue. A channel start-up sequence is executed, which remotely starts

the corresponding MCA of the receiver or server channel. When they have been

started, the sender and server processes await messages arriving on the

transmission queue and transmit them as they arrive.

When you use triggering, you will need to start the continuously running trigger

process to monitor the initiation queue. The STRMQMCHLI command can be used

for this.

At the far end of a channel, the receiving process may be started in response to a

channel startup from the sending end. The method of doing this is different for LU

6.2 and TCP/IP connected channels:

v LU 6.2 connected channels do not require any explicit action at the receiving end

of a channel.

v TCP connected channels require a listener process to be running continuously.

This process awaits channel startup requests from the remote end of the link and

starts the process defined in the channel definitions for that connection.

When the remote system is i5/OS, you can use the STRMQMLSR command for

this.

Use of the Start option always causes the channel to re-synchronize, where

necessary.

For the start to succeed:

v Channel definitions, local and remote must exist. If there is no appropriate

channel definition for a receiver or server-connection channel, a default one is

created automatically if the channel is auto-defined. See “Channel

auto-definition exit program” on page 393.

v The transmission queue must exist, be enabled for GETs, and have no other

channels using it.

v MCAs, local and remote, must exist.

v The communication link must be available.

v The queue managers must be running, local and remote.

v The message channel must be inactive.

To transfer messages, remote queues and remote queue definitions must exist.

A message is returned to the panel confirming that the request to start a channel

has been accepted. For confirmation that the Start process has succeeded, check the

system log, or press F5 (refresh the screen).

15=End

Use the End option to request the channel to stop activity. The channel will not

send any more messages until the operator starts the channel again. (For

information about restarting stopped channels, see “Restarting stopped channels”

on page 64.)

You can select the type of stop you require if you press F4 before Enter. You can

choose IMMEDIATE, or CONTROLLED.

Stop immediate:

Chapter 5. DQM in WebSphere MQ for i5/OS 335

Normally, this option should not be used. It terminates the channel process. The

channel does not complete processing the current batch of messages, and cannot,

therefore, leave the channel in doubt. In general, it is recommended that the

operators use the controlled stop option.

Stop controlled:

 This choice requests the channel to close down in an orderly way; the current

batch of messages is completed, and the syncpoint procedure is carried out with

the other end of the channel.

16=Reset

The Reset option changes the message sequence number. Use it with care, and only

after you have used the Resolve option to resolve any in-doubt situations. This

option is available only at the sender or server channel. The first message starts the

new sequence the next time the channel is started.

17=Resolve

Use the Resolve option when messages are held in-doubt by a sender or server, for

example because one end of the link has terminated, and there is no prospect of it

recovering. The Resolve option accepts one of two parameters: BACKOUT or

COMMIT. Backout restores messages to the transmission queue, while Commit

discards them.

The channel program does not try to establish a session with a partner. Instead, it

determines the logical unit of work identifier (LUWID) which represents the

in-doubt messages. It then issues, as requested, either:

v BACKOUT to restore the messages to the transmission queue; or

v COMMIT to delete the messages from the transmission queue.

For the resolution to succeed:

v The channel must be inactive

v The channel must be in doubt

v The channel type must be sender or server

v The channel definition, local, must exist

v The queue manager must be running, local

Preparing WebSphere MQ for i5/OS

This chapter describes the WebSphere MQ for i5/OS preparations required before

DQM can be used. Communication preparations are described in “Setting up

communication for WebSphere MQ for i5/OS” on page 342.

Before a channel can be started, the transmission queue must be defined as

described in this chapter, and must be included in the message channel definition.

In addition, where needed, the triggering arrangement must be prepared with the

definition of the necessary processes and queues.

336 WebSphere MQ: Intercommunication

Creating a transmission queue

You define a local queue with the Usage field attribute set to *TMQ, for each

sending message channel.

If you want to make use of remote queue definitions, use the same command to

create a queue of type *RMT, and Usage of *NORMAL.

To create a transmission queue, use the CRTMQMQ command from the command

line to present you with the first queue creation panel; see Figure 66.

Type the name of the queue and specify the type of queue that you wish to create:

Local, Remote, or Alias. For a transmission queue, specify Local (*LCL) on this

panel and press Enter.

You are presented with the second page of the Create MQM Queue panel; see

Figure 67 on page 338.

 Create MQM Queue (CRTMQMQ)

 Type choices, press Enter.

 Queue name

 Queue type ____ *ALS, *LCL, *MDL, *RMT

 Message Queue Manager name . . . *DFT________________________________

 Bottom

 F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

 F24=More keys

 +

Figure 66. Create a queue (1)

Chapter 5. DQM in WebSphere MQ for i5/OS 337

Change any of the default values shown. Press page down to scroll to the next

screen; see Figure 68.

Type *TMQ, for transmission queue, in the Usage field of this panel, and change any

of the default values shown in the other fields.

 Create MQM Queue (CRTMQMQ)

 Type choices, press Enter.

 Queue name > HURS.2.HURS.PRIORIT

 Queue type > *LCL *ALS, *LCL, *MDL, *RMT

 Message Queue Manager name . . . *DFT

 Replace *NO *NO, *YES

 Text ’description’ ’ ’

 Put enabled *YES *SYSDFTQ, *NO, *YES

 Default message priority 0 0-9, *SYSDFTQ

 Default message persistence . . *NO *SYSDFTQ, *NO, *YES

 Process name ’ ’

 Triggering enabled *NO *SYSDFTQ, *NO, *YES

 Get enabled *YES *SYSDFTQ, *NO, *YES

 Sharing enabled *YES *SYSDFTQ, *NO, *YES

 More...

 F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

 F24=More keys

Figure 67. Create a queue (2)

 Create MQM Queue (CRTMQMQ)

 Type choices, press Enter.

 Default share option *YES *SYSDFTQ, *NO, *YES

 Message delivery sequence . . . *PTY *SYSDFTQ, *PTY, *FIFO

 Harden backout count *NO *SYSDFTQ, *NO, *YES

 Trigger type *FIRST *SYSDFTQ, *FIRST, *ALL...

 Trigger depth 1 1-999999999, *SYSDFTQ

 Trigger message priority 0 0-9, *SYSDFTQ

 Trigger data ’ ’

 Retention interval 999999999 0-999999999, *SYSDFTQ

 Maximum queue depth 5000 1-24000, *SYSDFTQ

 Maximum message length 4194304 0-4194304, *SYSDFTQ

 Backout threshold 0 0-999999999, *SYSDFTQ

 Backout requeue queue ’ ’

 Initiation queue ’ ’

 More...

 F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

 F24=More keys

Figure 68. Create a queue (3)

338 WebSphere MQ: Intercommunication

When you are satisfied that the fields contain the correct data, press Enter to create

the queue.

Triggering channels in WebSphere MQ for i5/OS

Implement triggering in WebSphere MQ for i5/OS by specifying the initiation

queue to the channel initiator process and creating a suitable transmission queue.

An overview of triggering is given in “Triggering channels” on page 18, and it is

described in depth in the WebSphere MQ Application Programming Guide. This

section provides you with information specific to WebSphere MQ for i5/OS.

Triggering of channels in WebSphere MQ for i5/OS is implemented with the

channel initiator process. A channel initiator process for the initiation queue

SYSTEM.CHANNEL.INITQ is typically started automatically with the queue

manager. However, you can choose to manually start a channel initiator for a

different initiation queue, and the automatic startup of the channel initiator can be

disabled by altering the queue manager SCHINIT attribute. You can manually start

up to three channel initiator processes with the STRMQMCHLI command. For

example:

STRMQMCHLI QNAME(MYINITQ)

Set up the transmission queue for the channel, specifying TRGENBL(*YES) and

specifying the channel name in the TRIGDATA field. For example:

CRTMQMQ QNAME(MYXMITQ) QTYPE(*LCL) MQMNAME(MYQMGR) +

 TRGENBL(*YES) INITQNAME(SYSTEM.CHANNEL.INITQ) +

 USAGE(*TMQ) TRIGDATA(MYCHANNEL)

Channel programs

There are different types of channel programs (MCAs) available for use at the

channels. The names are contained in the following table.

 Create MQM Queue (CRTMQMQ)

 Type choices, press Enter.

 Usage *TMQ *SYSDFTQ, *NORMAL, *TMQ

 Queue depth high threshold . . . 80 0-100, *SYSDFTQ

 Queue depth low threshold . . . 20 0-100, *SYSDFTQ

 Queue full events enabled . . . *YES *SYSDFTQ, *NO, *YES

 Queue high events enabled . . . *YES *SYSDFTQ, *NO, *YES

 Queue low events enabled *YES *SYSDFTQ, *NO, *YES

 Service interval 999999999 0-999999999, *SYSDFTQ

 Service interval events *NONE *SYSDFTQ, *HIGH, *OK, *NONE

 Distribution list support . . . *NO *SYSDFTQ, *NO, *YES

 Cluster Name *SYSDFTQ

 Cluster Name List *SYSDFTQ

 Default Binding *SYSDFTQ *SYSDFTQ, *OPEN, *NOTFIXED

 Bottom

 F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

 F24=More keys

Figure 69. Create a queue (4)

Chapter 5. DQM in WebSphere MQ for i5/OS 339

Table 32. Program and transaction names

Program name Direction of connection Communication

AMQCRSTA Inbound TCP

AMQCRS6A Inbound LU 6.2

AMQRMCLA Outbound Any

Channel states on i5/OS

Channel states are displayed on the Work with Channels panel (described in

Figure 59 on page 327). There are some differences between the names of channel

states on different versions of WebSphere MQ for i5/OS. In the following table, the

state names shown for V4R2 correspond to the channel states described in

Figure 30 on page 57. As shown in the table, some of these states have different

names, or do not exist for earlier versions.

 Table 33. Channel states on i5/OS

State name

(V3R6)

State name

(V3R2, V3R7,

V4R2, V5R1)

Meaning

- STARTING Channel is ready to begin negotiation with target

MCA

BINDING BINDING Establishing a session and initial data exchange

REQUESTING REQUESTING Requester channel initiating a connection

READY RUNNING Transferring or ready to transfer

PAUSED PAUSED Waiting for message-retry interval

CLOSING STOPPING Establishing whether to retry or stop

RETRYING RETRYING Waiting until next retry attempt

DISABLED STOPPED Channel stopped because of an error or because an

end-channel command is issued

STOPPED INACTIVE Channel ended processing normally or channel never

started

- *None No state (for server-connection channels only)

Note: The state *None applies only to V3R2 and V3R7.

Other things to consider

Here are some other topics that you should consider when preparing WebSphere

MQ for distributed queue management.

Undelivered-message queue

It is advisable that you have an application available to process the messages

arriving on the undelivered-message queue (also known as the dead-letter queue

or DLQ). The program could be triggered, or run at regular intervals. For more

details, see the WebSphere MQ for i5/OS System Administration and the WebSphere

MQ Application Programming Guide.

340 WebSphere MQ: Intercommunication

Queues in use

MCAs for receiver channels may keep the destination queues open even when

messages are not being transmitted; this results in the queues appearing to be “in

use”.

Maximum number of channels

You can specify the maximum number of channels allowed in your system and the

maximum number that can be active at one time. You do this in the qm.ini file in

directory QIBM/UserData/mqm/qmgrs/queue manager name. See Chapter 8,

“Configuration file stanzas for distributed queuing,” on page 491.

Security of WebSphere MQ for i5/OS objects

This section deals with remote messaging aspects of security.

You need to provide users with authority to make use of the WebSphere MQ for

i5/OS facilities, and this is organized according to actions to be taken with respect

to objects and definitions. For example:

v Queue managers can be started and stopped by authorized users

v Applications need to connect to the queue manager, and have authority to make

use of queues

v Message channels need to be created and controlled by authorized users

The message channel agent at a remote site needs to check that the message being

delivered has derived from a user with authority to do so at this remote site. In

addition, as MCAs can be started remotely, it may be necessary to verify that the

remote processes trying to start your MCAs are authorized to do so. There are

three possible ways for you to deal with this:

1. Decree in the channel definition that messages must contain acceptable context

authority, otherwise they will be discarded.

2. Implement user exit security checking to ensure that the corresponding message

channel is authorized. The security of the installation hosting the corresponding

channel ensures that all users are properly authorized, so that you do not need

to check individual messages.

3. Implement user exit message processing to ensure that individual messages are

vetted for authorization.

Here are some facts about the way WebSphere MQ for i5/OS operates security:

v Users are identified and authenticated by i5/OS.

v Queue manager services invoked by applications are run with the authority of

the queue manager user profile, but in the user’s process.

v Queue manager services invoked by user commands are run with the authority

of the queue manager user profile.

System extensions and user-exit programs

A facility is provided in the channel definition to allow extra programs to be run at

defined times during the processing of messages. These programs are not supplied

with WebSphere MQ for i5/OS, but may be provided by each installation

according to local requirements.

Chapter 5. DQM in WebSphere MQ for i5/OS 341

In order to run, such programs must have predefined names and be available on

call to the channel programs. The names of the exit programs are included in the

message channel definitions.

There is a defined control block interface for handing over control to these

programs, and for handling the return of control from these programs.

The precise places where these programs are called, and details of control blocks

and names, are to be found in Chapter 6, “Further intercommunication

considerations,” on page 375.

Setting up communication for WebSphere MQ for i5/OS

DQM is a remote queuing facility for WebSphere MQ for i5/OS. It provides

channel control programs for the WebSphere MQ for i5/OS queue manager which

form the interface to communication links, controllable by the system operator. The

channel definitions held by distributed-queuing management use these

communication links.

When a distributed-queuing management channel is started, it tries to use the

connection specified in the channel definition. For this to succeed, it is necessary

for the connection to be defined and available. This chapter explains how to do

this.

Deciding on a connection

There are two forms of communication between WebSphere MQ for i5/OS

systems:

v i5/OS TCP

For TCP, a host address may be used, and these connections are set up as

described in the i5/OS Communication Configuration Reference.

In the TCP environment, each distributed service is allocated a unique TCP

address which may be used by remote machines to access the service. The TCP

address consists of a host name/number and a port number. All queue

managers will use such a number to communicate with each other via TCP.

v i5/OS SNA (LU 6.2)

This form of communication requires the definition of an i5/OS SNA logical unit

type 6.2 (LU 6.2) that provides the physical link between the i5/OS system

serving the local queue manager and the system serving the remote queue

manager. Refer to the i5/OS Communication Configuration Reference for details on

configuring communications in i5/OS.

Defining a TCP connection

The channel definition contains a field, CONNECTION NAME, that contains either

the TCP network address of the target, in IPv4 dotted decimal form (for example

9.20.9.30) or IPv6 hexadecimal form (for example

fe80:43e4:0204:acff:fe97:2c34:fde0:3485), or the host name (for example AS4HUR1).

If the CONNECTION NAME is a host name, a name server or the i5/OS host table

is used to convert the host name into a TCP host address.

342 WebSphere MQ: Intercommunication

A port number is required for a complete TCP address; if this is not supplied, the

default port number 1414 is used. On the initiating end of a connection (sender,

requester, and server channel types) it is possible to provide an optional port

number for the connection, for example:

Connection name 9.20.9.30 (1555)

In this case the initiating end will attempt to connect to a receiving program at

port 1555.

Receiving on TCP

Receiving channel programs are started in response to a startup request from the

sending channel. To do this, a listener program has to be started to detect incoming

network requests and start the associated channel. You start this listener program

with the STRMQMLSR command.

You can start more than one listener for each queue manager. By default, the

STRMQMLSR command uses port 1414 but you can override this. To override the

default setting, add the following statements to the qm.ini file of the selected

queue manager (in this example, the listener is required to use port 2500):

 TCP:

 Port=2500

The qm.ini file is located in this IFS directory: /QIBM/UserData/mqm/qmgrs/
queue manager name.

This new value is read only when the TCP listener is started. If you have a listener

already running, this change is not be seen by that program. To use the new value,

stop the listener and issue the STRMQMLSR command again. Now, whenever you

use the STRMQMLSR command, the listener defaults to the new port.

Alternatively, you can specify a different port number on the STRMQMLSR

command. For example:

STRMQMLSR MQMNAME(queue manager name) PORT(2500)

This change makes the listener default to the new port for the duration of the

listener job.

Using the TCP SO_KEEPALIVE option:

 If you want to use the SO_KEEPALIVE option (as discussed in “Checking that the

other end of the channel is still available” on page 61) you must add the following

entry to your queue manager configuration file (qm.ini in the IFS directory,

/QIBM/UserData/mqm/qmgrs/queue manager name):

TCP:

 KeepAlive=yes

You must then issue the following command:

CFGTCP

Select option 3 (Change TCP Attributes). You can now specify a time interval in

minutes. You can specify a value in the range 1 through 40320 minutes; the default

is 120.

Using the TCP listener backlog option:

Chapter 5. DQM in WebSphere MQ for i5/OS 343

When receiving on TCP, a maximum number of outstanding connection requests is

set. This can be considered a backlog of requests waiting on the TCP port for the

listener to accept the request.

The default listener backlog value on i5/OS is 255. If the backlog reaches this

value, the TCP connection is rejected and the channel will not be TCP: able to start.

For MCA channels, this results in the channel going into a RETRY state and

retrying the connection at a later time.

For client connections, the client receives an MQRC_Q_MGR_NOT_AVAILABLE

reason code from MQCONN and should retry the connection at a later time.

However, to avoid this error, you can add an entry in the qm.ini file:

ListenerBacklog = n

This overrides the default maximum number of outstanding requests (255) for the

TCP listener.

Note: Some operating systems support a larger value than the default. If necessary,

this can be used to avoid reaching the connection limit.

Defining an LU 6.2 connection

In WebSphere MQ for i5/OS, a mode name, TP name, and connection name of a

fully-qualified LU 6.2 connection can be used.

For other versions of WebSphere MQ for i5/OS, a communications side

information (CSI) object is required to define the LU 6.2 communications details for

the sending end of a message channel. It is referred to in the CONNECTION

NAME field of the Sender or Server channel definition for LU 6.2 connections.

Further information on the communications side object is available in the i5/OS

APPC Communications Programmer’s Guide.

The initiated end of the link must have a routing entry definition to complement

this CSI object. Further information on managing work requests from remote

LU 6.2 systems is available in the i5/OS Programming: Work Management Guide.

See the Multiplatform APPC Configuration Guide and the following table for

information.

 Table 34. Settings on the local i5/OS system for a remote queue manager platform

Remote platform TPNAME

z/OS, or OS/390 or

MVS/ESA

The same as in the corresponding side information on the

remote queue manager.

i5/OS The same as the compare value in the routing entry on the

i5/OS system.

HP OpenVMS As specified in the OVMS Run Listener command.

Compaq NonStop Kernel The same as the TPNAME specified in the receiver-channel

definition.

UNIX systems The invokable Transaction Program defined in the remote

LU 6.2 configuration.

344 WebSphere MQ: Intercommunication

Table 34. Settings on the local i5/OS system for a remote queue manager

platform (continued)

Remote platform TPNAME

Windows As specified in the Windows Run Listener command, or the

invokable Transaction Program that was defined using

TpSetup on Windows.

If you have more than one queue manager on the same machine, ensure that the

TPnames in the channel definitions are unique.

Initiating end (Sending)

Use the CRTMQMCHL command to define a channel of transport type *LU62. For

versions previous to WebSphere MQ for i5/OS V5.3, define the name of the CSI

object that this channel will use in the CONNECTION NAME field. (See “Creating

a channel” on page 324 for details of how to do this.) Use of the CSI object is

optional in WebSphere MQ for i5/OS V5.3 or later.

The initiating end panel is shown in Figure Figure 70. You press F10 from the first

panel displayed to obtain the complete panel as shown.

Complete the initiating end fields as follows:

Side information

Give this definition a name that will be used to store the side information

object to be created, for example, WINSDOA1.

Note: For LU 6.2, the link between the message channel definition and the

communication connection is the Connection name field of the message

channel definition at the sending end. This field contains the name of the

CSI object.

Library

The name of the library where this definition will be stored.

 Create Comm Side Information (CRTCSI)

 Type choices, press Enter.

 Side information > WINSDOA1 Name

 Library > QSYS Name, *CURLIB

 Remote location > WINSDOA1 Name

 Transaction program > MQSERIES

 Text ’description’ *BLANK

 Additional Parameters

 Device *LOC Name, *LOC

 Local location *LOC Name, *LOC, *NETATR

 Mode JSTMOD92 Name, *NETATR

 Remote network identifier . . . *LOC Name, *LOC, *NETATR, *NONE

 Authority *LIBCRTAUT Name, *LIBCRTAUT, *CHANGE...

 Bottom

 F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

 F24=More keys

Figure 70. LU 6.2 communication setup panel - initiating end

Chapter 5. DQM in WebSphere MQ for i5/OS 345

The CSI object must be available in a library accessible to the program

serving the message channel, for example, QSYS, QMQM, and QGPL.

If the name is incorrect, missing, or cannot be found then an error will

occur on channel start up.

Remote location

Specifies the remote location name with which your program

communicates.

 In short, this required parameter contains the logical unit name of the

partner at the remote system, as defined in the device description that is

used for the communication link between the two systems.

The Remote location name can be found by issuing the command

DSPNETA on the remote system and seeing the default local location

name.

Transaction program

Specifies the name (up to 64 characters) of the transaction program on the

remote system to be started. It may be a transaction process name, a

program name, the channel name, or a character string that matches the

Compare value in the routing entry.

 This is a required parameter.

Note: To specify SNA service transaction program names, enter the

hexadecimal representation of the service transaction program name. For

example, to specify a service transaction program name whose

hexadecimal representation is 21F0F0F1, you would enter X’21F0F0F1’.

More information on SNA service transaction program names is in the

SNA Transaction Programmer’s Reference manual for LU Type 6.2.

If the receiving end is another i5/OS system, the Transaction program

name is used to match the CSI object at the sending end with the routing

entry at the receiving end. This should be unique for each queue manager

on the target i5/OS system. (See the Program to call parameter under

“Initiated end (Receiver)” on page 348.) See also the Comparison data:

compare value parameter in the Add Routing Entry panel.

Text description

A description (up to 50 characters) to remind you of the intended use of

this connection.

Device

Specifies the name of the device description used for the remote system.

The possible values are:

*LOC The device is determined by the system.

Device-name

Specify the name of the device that is associated with the remote

location.

Local location

Specifies the local location name. The possible values are:

*LOC The local location name is determined by the system.

*NETATR

The LCLLOCNAME value specified in the system network

attributes is used.

346 WebSphere MQ: Intercommunication

Local-location-name

Specify the name of your location. Specify the local location if you

want to indicate a specific location name for the remote location.

The location name can be found by using the DSPNETA command.

Mode Specifies the mode used to control the session. This name is the same as

the Common Programming Interface (CPI)- Communications Mode_Name.

The possible values are:

*NETATR

The mode in the network attributes is used.

BLANK

Eight blank characters are used.

Mode-name

Specify a mode name for the remote location.

Note: Because the mode determines the transmission priority of the

communications session, it may be useful to define different modes

depending on the priority of the messages being sent; for example

MQMODE_HI, MQMODE_MED, and MQMODE_LOW. (You can have

more than one CSI pointing to the same location.)

Remote network identifier

Specifies the remote network identifier used with the remote location. The

possible values are:

*LOC The remote network ID for the remote location is used.

*NETATR

The remote network identifier specified in the network attributes is

used.

*NONE

The remote network has no name.

Remote-network-id

Specify a remote network ID. Use the DSPNETA command at the

remote location to find the name of this network ID. It is the ‘local

network ID’ at the remote location.

Authority

Specifies the authority you are giving to users who do not have specific

authority to the object, who are not on an authorization list, and whose

group profile has no specific authority to the object. The possible values

are:

*LIBCRTAUT

Public authority for the object is taken from the CRTAUT

parameter of the specified library. This value is determined at

create time. If the CRTAUT value for the library changes after the

object is created, the new value does not affect existing objects.

*CHANGE

Change authority allows the user to perform basic functions on the

object, however, the user cannot change the object. Change

authority provides object operational authority and all data

authority.

*ALL The user can perform all operations except those limited to the

owner or controlled by authorization list management authority.

Chapter 5. DQM in WebSphere MQ for i5/OS 347

The user can control the object’s existence and specify the security

for the object, change the object, and perform basic functions on

the object. The user can change ownership of the object.

*USE Use authority provides object operational authority and read

authority.

*EXCLUDE

Exclude authority prevents the user from accessing the object.

Authorization-list

Specify the name of the authorization list whose authority is used

for the side information.

Initiated end (Receiver)

Use the CRTMQMCHL command to define the receiving end of the message

channel link with transport type *LU62. Leave the CONNECTION NAME field

blank and ensure that the corresponding details match the sending end of the

channel. (See “Creating a channel” on page 324 for details of how to do this.)

To enable the initiating end to start the receiving channel, add a routing entry to a

subsystem at the initiated end. The subsystem must be the one that allocates the

APPC device used in the LU 6.2 sessions and, therefore, it must have a valid

communications entry for that device. The routing entry calls the program that

starts the receiving end of the message channel.

Use the i5/OS commands (for example, ADDRTGE) to define the end of the link

that is initiated by a communication session.

The initiated end panel is shown in Figure Figure 71.

Subsystem description

The name of your subsystem where this definition resides. Use the i5/OS

WRKSBSD command to view and update the appropriate subsystem

description for the routing entry.

 Add Routing Entry (ADDRTGE)

 Type choices, press Enter.

 Subsystem description QCMN Name

 Library *LIBL Name, *LIBL, *CURLIB

 Routing entry sequence number . 1 1-9999

 Comparison data:

 Compare value MQSERIES

 Starting position 37 1-80

 Program to call AMQCRC6B Name, *RTGDTA

 Library QMAS400 Name, *LIBL, *CURLIB

 Class *SBSD Name, *SBSD

 Library *LIBL Name, *LIBL, *CURLIB

 Maximum active routing steps . . *NOMAX 0-1000, *NOMAX

 Storage pool identifier 1 1-10

 Bottom

 F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

 F24=More keys

Figure 71. LU 6.2 communication setup panel - initiated end

348 WebSphere MQ: Intercommunication

Routing entry sequence number

A unique number in your subsystem to identify this communication

definition. You can use values in the range 1 to 9999.

Comparison data: Compare value

A text string to compare with that received when the session is started by

a Transaction program parameter, as shown in Figure 70 on page 345. The

character string is derived from the Transaction program field of the sender

CSI.

Comparison data: Starting position

The character position in the string where the comparison is to start.

Note: The starting position field is the character position in the string for

comparison, and this is always 37.

Program to call

The name of the program that runs the inbound message program to be

called to start the session.

 The program, AMQCRC6A, is called for the default queue manager. This is

a program supplied with WebSphere MQ for i5/OS that sets up the

environment and then calls AMQCRS6A.

For additional queue managers:

v Each queue manager has a specific LU 6.2 invokable program located in

its library. This program is called AMQCRC6B and is automatically

generated when the queue manager is created.

v Each queue manager requires a specific routing entry with unique

routing data to be added. This routing data should match the

Transaction program name supplied by the requesting system (see

“Initiating end (Sending)” on page 345).

An example of this is shown in Figure Figure 72:

In Figure Figure 72 sequence number 90 represents the default queue

manager and provides compatibility with configurations from previous

releases (that is, V3R2, V3R6, V3R7, and V4R2) of WebSphere MQ for

 Display Routing Entries

 System: MY400

 Subsystem description: QCMN Status: ACTIVE

 Type options, press Enter.

 5=Display details

 Start

 Opt Seq Nbr Program Library Compare Value Pos

 10 *RTGDTA ’QZSCSRVR’ 37

 20 *RTGDTA ’QZRCSRVR’ 37

 30 *RTGDTA ’QZHQTRG’ 37

 50 *RTGDTA ’QVPPRINT’ 37

 60 *RTGDTA ’QNPSERVR’ 37

 70 *RTGDTA ’QNMAPINGD’ 37

 80 QNMAREXECD QSYS ’AREXECD’ 37

 90 AMQCRC6A QMQMBW ’MQSERIES’ 37

 100 *RTGDTA ’QTFDWNLD’ 37

 150 *RTGDTA ’QMFRCVR’ 37

 F3=Exit F9=Display all detailed descriptions F12=Cancel

Figure 72. LU 6.2 communication setup panel - initiated end

Chapter 5. DQM in WebSphere MQ for i5/OS 349

i5/OS. These releases allow one queue manager only. Sequence numbers 92

and 94 represent two additional queue managers called ALPHA and BETA

that are created with libraries QMALPHA and QMBETA.

Note: You can have more than one routing entry for each queue manager

by using different routing data. This gives the option of different job

priorities depending on the classes used.

Class The name and library of the class used for the steps started through this

routing entry. The class defines the attributes of the routing step’s running

environment and specifies the job priority. An appropriate class entry must

be specified. Use, for example, the WRKCLS command to display existing

classes or to create a new class. Further information on managing work

requests from remote LU 6.2 systems is available in the i5/OS Programming:

Work Management Guide.

Note on Work Management:

 The AMQCRS6A job will not be able to take advantage of the normal i5/OS work

management features that are documented in the WebSphere MQ for i5/OS System

Administration Guide book because it is not started in the same way as other

WebSphere MQ jobs. To change the run-time properties of the LU62 receiver jobs,

you can do one of the following:

v Alter the class description that is specified on the routing entry for the

AMQCRS6A job

v Change the job description on the communications entry

See the i5/OS Programming: Work Management Guide for more information about

configuring Communication Jobs.

Example configuration - IBM WebSphere MQ for i5/OS

This chapter gives an example of how to set up communication links from

WebSphere MQ for i5/OS to WebSphere MQ products on the following platforms:

v Windows

v AIX

v Compaq Tru64 UNIX

v HP-UX

v Solaris

v Linux

v z/OS, OS/390, or MVS/ESA

v VSE/ESA

First it describes the parameters needed for an LU 6.2 connection, then it describes

“Establishing an LU 6.2 connection” on page 355 and “Establishing a TCP

connection” on page 360.

Once the connection is established, you need to define some channels to complete

the configuration. This is described in “WebSphere MQ for i5/OS configuration”

on page 362.

See “Example configuration chapters in this book” on page 101 for background

information about this chapter and how to use it.

350 WebSphere MQ: Intercommunication

Configuration parameters for an LU 6.2 connection

Table 35 presents a worksheet listing all the parameters needed to set up

communication from i5/OS system to one of the other WebSphere MQ platforms.

The worksheet shows examples of the parameters, which have been tested in a

working environment, and leaves space for you to fill in your own values. An

explanation of the parameter names follows the worksheet. Use the worksheet in

this chapter in conjunction with the worksheet in the chapter for the platform to

which you are connecting.

Configuration worksheet

Use the following worksheet to record the values you will use for this

configuration. Where numbers appear in the Reference column they indicate that

the value must match that in the appropriate worksheet elsewhere in this book.

The examples that follow in this chapter refer back to the values in the ID column

of this table. The entries in the Parameter Name column are explained in

“Explanation of terms” on page 353.

 Table 35. Configuration worksheet for SNA on an i5/OS system

ID Parameter Name Reference Example Used User Value

Definition for local node

1 Local network ID NETID

2 Local control point name AS400PU

3 LU name AS400LU

4 LAN destination address 10005A5962EF

5 Subsystem description QCMN

6 Line description TOKENRINGL

7 Resource name LIN041

8 Local Transaction Program name MQSERIES

Connection to a Windows system

The values in this section must match those used in Table 13 on page 130, as indicated.

9 Network ID 2 NETID

10 Control point name 3 WINNTCP

11 LU name 5 WINNTLU

12 Controller description WINNTCP

13 Device WINNTLU

14 Side information NTCPIC

15 Transaction Program 7 MQSERIES

16 LAN adapter address 9 08005AA5FAB9

17 Mode 17 #INTER

Connection to an AIX system

The values in this section must match those used in Table 17 on page 156, as indicated.

9 Network ID 1 NETID

10 Control point name 2 AIXPU

11 LU name 4 AIXLU

Chapter 5. DQM in WebSphere MQ for i5/OS 351

Table 35. Configuration worksheet for SNA on an i5/OS system (continued)

ID Parameter Name Reference Example Used User Value

12 Controller description AIXPU

13 Device AIXLU

14 Side information AIXCPIC

15 Transaction Program 6 MQSERIES

16 LAN adapter address 8 123456789012

17 Mode 14 #INTER

Connection to an HP-UX system

The values in this section must match those used in Table 19 on page 172, as indicated.

9 Network ID 4 NETID

10 Control point name 2 HPUXPU

11 LU name 5 HPUXLU

12 Controller description HPUXPU

13 Device HPUXLU

14 Side information HPUXCPIC

15 Transaction Program 7 MQSERIES

16 LAN adapter address 8 100090DC2C7C

17 Mode 17 #INTER

Connection to a Solaris system

The values in this section must match those used in Table 21 on page 195, as indicated.

9 Network ID 2 NETID

10 Control point name 3 SOLARPU

11 LU name 7 SOLARLU

12 Controller description SOLARPU

13 Device SOLARLU

14 Side information SOLCPIC

15 Transaction Program 8 MQSERIES

16 LAN adapter address 5 08002071CC8A

17 Mode 17 #INTER

Connection to a Linux (x86 platform) system

The values in this section must match those used in Configuration worksheet for Communications Server for Linux,

as indicated.

9 Network ID 4 NETID

10 Control point name 2 LINUXPU

11 LU name 5 LINUXLU

12 Controller description LINUXPU

13 Device LINUXLU

14 Side information LXCPIC

15 Transaction Program 7 MQSERIES

16 LAN adapter address 8 08005AC6DF33

352 WebSphere MQ: Intercommunication

ic14170_.dita#ic14170_/ic14170_1

Table 35. Configuration worksheet for SNA on an i5/OS system (continued)

ID Parameter Name Reference Example Used User Value

17 Mode 6 #INTER

Connection to an z/OS system

The values in this section must match those used in Table 27 on page 267, as indicated.

9 Network ID 2 NETID

10 Control point name 3 MVSPU

11 LU name 4 MVSLU

12 Controller description MVSPU

13 Device MVSLU

14 Side information MVSCPIC

15 Transaction Program 7 MQSERIES

16 LAN adapter address 8 400074511092

17 Mode 6 #INTER

Connection to a VSE/ESA system

The values in this section must match those used in your VSE/ESA system.

9 Network ID 1 NETID

10 Control point name 2 VSEPU

11 LU name 3 VSELU

12 Controller description VSEPU

13 Device VSELU

14 Side information VSECPIC

15 Transaction Program 4 MQ01 MQ01

16 LAN adapter address 5 400074511092

17 Mode #INTER

Explanation of terms

1 2 3 See “How to find network attributes” on page 354 for the details of how to

find the configured values.

4 LAN destination address

The hardware address of the i5/OS system token-ring adapter. You can

find the value using the command DSPLIND Line description (6).

5 Subsystem description

This is the name of any i5/OS subsystem that will be active while using

the queue manager. The name QCMN has been used because this is the

i5/OS communications subsystem.

6 Line description

If this has been specified it is indicated in the Description field of the

resource Resource name. See “How to find the value of Resource name” on

page 354 for details. If the value is not specified you will need to create a

line description.

7 Resource name

See “How to find the value of Resource name” on page 354 for details of

how to find the configured value.

Chapter 5. DQM in WebSphere MQ for i5/OS 353

8 Local Transaction Program name

WebSphere MQ applications trying to converse with this workstation will

specify a symbolic name for the program to be run at the receiving end.

This will have been defined on the channel definition at the sender. For

simplicity, wherever possible use a transaction program name of

MQSERIES, or in the case of a connection to VSE/ESA, where the length is

limited to 4 bytes, use MQTP.

 See Table 34 on page 344 for more information.

12 Controller description

This is an alias for the Control Point name (or Node name) of the partner

system. For convenience we have used the actual name of the partner in

this example.

13 Device

This is an alias for the LU of the partner system. For convenience we have

used the LU name of the partner in this example.

14 Side information

This is the name given to the CPI-C side information profile. You specify

your own 8-character name for this.

How to find network attributes:

 The local node has been partially configured as part of the i5/OS installation. To

display the current network attributes enter the command DSPNETA.

If you need to change these values use the command CHGNETA. An IPL may be

required to apply your changes.

Check that the values for Local network ID (1), Local control point name (2), and

Default local location (3), correspond to the values on your worksheet.

How to find the value of Resource name:

 Display Network Attributes

 System: AS400PU

 Current system name : AS400PU

 Pending system name :

 Local network ID : NETID

 Local control point name : AS400PU

 Default local location : AS400LU

 Default mode : BLANK

 APPN node type : *ENDNODE

 Data compression : *NONE

 Intermediate data compression : *NONE

 Maximum number of intermediate sessions : 200

 Route addition resistance : 128

 Server network ID/control point name : NETID NETCP

 More...

 Press Enter to continue.

 F3=Exit F12=Cancel

354 WebSphere MQ: Intercommunication

Type WRKHDWRSC TYPE(*CMN) and press Enter. The Work with Communication

Resources panel is displayed. The value for Resource name is found as the

Token-Ring Port. It is LIN041 in this example.

Establishing an LU 6.2 connection

This section describes how to establish an LU 6.2 connection.

Local node configuration

To configure the local node, you need to:

1. Create a line description

2. Add a routing entry

Creating a line description:

1. If the line description has not already been created use the command

CRTLINTRN.

2. Specify values for Line description (6) and Resource name (7).

 Work with Communication Resources

 System: AS400PU

Type options, press Enter.

 2=Edit 4=Remove 5=Work with configuration description

 7=Add configuration description ...

 Configuration

Opt Resource Description Type Description

 CC02 2636 Comm Processor

 LIN04 2636 LAN Adapter

 LIN041 TOKENRINGL 2636 Token-Ring Port

 Bottom

F3=Exit F5=Refresh F6=Print F11=Display resource addresses/statuses

F12=Cancel F23=More options

Chapter 5. DQM in WebSphere MQ for i5/OS 355

Adding a routing entry:

1. Type the command ADDRTGE and press Enter.

2. Specify your value for Subsystem description (5), and the values shown here

for Routing entry sequence number, Compare value (8), Starting position,

Program to call, and the Library containing the program to call.

3. Type the command STRSBS subsystem description (5) and press Enter.

Connection to partner node

This example is for a connection to a Windows system, but the steps are the same

for other nodes. The steps are:

1. Create a controller description.

2. Create a device description.

 Create Line Desc (Token-Ring) (CRTLINTRN)

 Type choices, press Enter.

 Line description TOKENRINGL Name

 Resource name LIN041 Name, *NWID

 NWI type *FR *FR, *ATM

 Online at IPL *YES *YES, *NO

 Vary on wait *NOWAIT *NOWAIT, 15-180 (1 second)

 Maximum controllers 40 1-256

 Attached NWI *NONE Name, *NONE

 Bottom

 F3=Exit F4=Prompt F5=Refresh F10=Additional parameters F12=Cancel

 F13=How to use this display F24=More keys

 Parameter LIND required. +

 Add Routing Entry (ADDRTGE)

 Type choices, press Enter.

 Subsystem description QCMN Name

 Library *LIBL Name, *LIBL, *CURLIB

 Routing entry sequence number . 1 1-9999

 Comparison data:

 Compare value ’MQSERIES’

 Starting position 37 1-80

 Program to call AMQCRC6B Name, *RTGDTA

 Library QMAS400 Name, * LI BL, *CURLIB

 Class *SBSD Name, *SBSD

 Library *LIBL Name, *LIBL, *CURLIB

 Maximum active routing steps . . *NOMAX 0-1000, *NOMAX

 Storage pool identifier 1 1-10

 Bottom

 F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

 F24=More keys

 Parameter SBSD required. +

356 WebSphere MQ: Intercommunication

3. Create CPI-C side information.

4. Add a communications entry for APPC.

5. Add a configuration list entry.

Creating a controller description:

1. At a command line type CRTCTLAPPC and press Enter.

2. Specify a value for Controller description (12), set Link type to *LAN, and set

Online at IPL to *NO.

3. Press Enter twice, followed by F10.

4. Specify values for Switched line list (6), Remote network identifier (9),

Remote control point (10), and LAN remote adapter address (16).

 Create Ctl Desc (APPC) (CRTCTLAPPC)

Type choices, press Enter.

Controller description WINNTCP Name

Link type *LAN *FAX, *FR, *IDLC,

*LAN...

Online at IPL *NO *YES, *NO

 Bottom

F3=Exit F4=Prompt F5=Refresh F10=Additional parameters F12=Cancel

F13=How to use this display F24=More keys

Parameter CTLD required. +

 Create Ctl Desc (APPC) (CRTCTLAPPC)

 Type choices, press Enter.

 Controller description > WINNTCP Name

 Link type > *LAN *FAX, *FR, *IDLC, *LAN...

 Online at IPL > *NO *YES, *NO

 APPN-capable *YES *YES, *NO

 Switched line list TOKENRINGL Name

 + for more values

 Maximum frame size *LINKTYPE 265-16393, 256, 265, 512...

 Remote network identifier . . . NETID Name, *NETATR, *NONE, *ANY

 Remote control point WINNTCP Name, *ANY

 Exchange identifier 00000000-FFFFFFFF

 Initial connection *DIAL *DIAL, *ANS

 Dial initiation *LINKTYPE *LINKTYPE, *IMMED, *DELAY

 LAN remote adapter address . . . 10005AFC5D83 000000000001-FFFFFFFFFFFF

 APPN CP session support *YES *YES, *NO

 APPN node type *ENDNODE *ENDNODE, *LENNODE...

 APPN transmission group number 1 1-20, *CALC

 More...

 F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

 F24=More keys

Chapter 5. DQM in WebSphere MQ for i5/OS 357

5. Press Enter.

Creating a device description:

1. Type the command CRTDEVAPPC and press Enter.

2. Specify values for Device description (13), Remote location (11), Local location

(3), Remote network identifier (9), and Attached controller (12).

Note: You can avoid having to create controller and device descriptions manually

by taking advantage of i5/OS’s auto-configuration service. Consult the i5/OS

documentation for details.

Creating CPI-C side information:

1. Type CRTCSI and press F10.

 Create Device Desc (APPC) (CRTDEVAPPC)

 Type choices, press Enter.

 Device description WINNTLU Name

 Remote location WINNTLU Name

 Online at IPL *YES *YES, *NO

 Local location AS400LU Name, *NETATR

 Remote network identifier . . . NETID Name, *NETATR, *NONE

 Attached controller WINNTCP Name

 Mode *NETATR Name, *NETATR

 + for more values

 Message queue QSYSOPR Name, QSYSOPR

 Library *LIBL Name, *LIBL, *CURLIB

 APPN-capable *YES *YES, *NO

 Single session:

 Single session capable *NO *NO, *YES

 Number of conversations . . . 1-512

 Bottom

 F3=Exit F4=Prompt F5=Refresh F10=Additional parameters F12=Cancel

 F13=How to use this display F24=More keys

 Parameter DEVD required. +

358 WebSphere MQ: Intercommunication

2. Specify values for Side information (14), Remote location (11), Transaction

program (15), Local location (3), Mode, and Remote network identifier (9).

3. Press Enter.

Adding a communications entry for APPC:

1. At a command line type ADDCMNE and press Enter.

2. Specify values for Subsystem description (5) and Device (13), and press Enter.

Adding a configuration list entry:

1. Type ADDCFGLE *APPNRMT and press F4.

 Create Comm Side Information (CRTCSI)

 Type choices, press Enter.

 Side information NTCPIC Name

 Library *CURLIB Name, *CURLIB

 Remote location WINNTLU Name

 Transaction program MQSERIES

 Text ’description’ *BLANK

 Additional Parameters

 Device *LOC Name, *LOC

 Local location AS400LU Name, *LOC, *NETATR

 Mode #INTER Name, *NETATR

 Remote network identifier . . . NETID Name, *LOC, *NETATR, *NONE

 Authority *LIBCRTAUT Name, *LIBCRTAUT, *CHANGE...

 Bottom

 F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

 F24=More keys

 Parameter CSI required.

 Add Communications Entry (ADDCMNE)

 Type choices, press Enter.

 Subsystem description QCMN Name

 Library *LIBL Name, *LIBL, *CURLIB

 Device WINNTLU Name, generic*, *ALL...

 Remote location Name

 Job description *USRPRF Name, *USRPRF, *SBSD

 Library Name, *LIBL, *CURLIB

 Default user profile *NONE Name, *NONE, *SYS

 Mode *ANY Name, *ANY

 Maximum active jobs *NOMAX 0-1000, *NOMAX

 Bottom

 F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

 F24=More keys

 Parameter SBSD required.

Chapter 5. DQM in WebSphere MQ for i5/OS 359

2. Specify values for Remote location name (11), Remote network identifier (9),

Local location name (3), Remote control point (10), and Control point net ID

(9).

3. Press Enter.

What next?

The LU 6.2 connection is now established. You are ready to complete the

configuration. Go to “WebSphere MQ for i5/OS configuration” on page 362.

Establishing a TCP connection

If TCP is already configured there are no extra configuration tasks. The following

panels guide you through the steps that may be required if TCP/IP is not

configured.

Adding a TCP/IP interface

1. At a command line type ADDTCPIFC and press Enter.

 Add Configuration List Entries (ADDCFGLE)

 Type choices, press Enter.

 Configuration list type > *APPNRMT *APPNLCL, *APPNRMT...

 APPN remote location entry:

 Remote location name WINNTLU Name, generic*, *ANY

 Remote network identifier . . NETID Name, *NETATR, *NONE

 Local location name AS400LU Name, *NETATR

 Remote control point WINNTCP Name, *NONE

 Control point net ID NETID Name, *NETATR, *NONE

 Location password *NONE

 Secure location *NO *YES, *NO

 Single session *NO *YES, *NO

 Locally controlled session . . *NO *YES, *NO

 Pre-established session . . . *NO *YES, *NO

 Entry ’description’ *BLANK

 Number of conversations . . . 10 1-512

 + for more values

 Bottom

 F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

 F24=More keys

360 WebSphere MQ: Intercommunication

2. Specify this machine’s Internet address and Line description, and a Subnet

mask.

3. Press Enter.

Adding a TCP/IP loopback interface

1. At a command line type ADDTCPIFC and press Enter.

2. Specify the values for Internet address, Line description, and Subnet mask.

Adding a default route

1. At a command line type ADDTCPRTE and press Enter.

 Add TCP/IP Interface (ADDTCPIFC)

 Type choices, press Enter.

 Internet address 19.22.11.55

 Line description TOKENRINGL Name, *LOOPBACK

 Subnet mask 255.255.0.0

 Type of service *NORMAL *MINDELAY, *MAXTHRPUT..

 Maximum transmission unit . . . *LIND 576-16388, *LIND

 Autostart *YES *YES, *NO

 PVC logical channel identifier 001-FFF

 + for more values

 X.25 idle circuit timeout . . . 60 1-600

 X.25 maximum virtual circuits . 64 0-64

 X.25 DDN interface *NO *YES, *NO

 TRLAN bit sequencing *MSB *MSB, *LSB

 Bottom

 F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

 F24=More keys

 Add TCP Interface (ADDTCPIFC)

 Type choices, press Enter.

 Internet address 127.0.0.1

 Line description *LOOPBACK Name, *LOOPBACK

 Subnet mask 255.0.0.0

 Type of service *NORMAL *MINDELAY, *MAXTHRPUT..

 Maximum transmission unit . . . *LIND 576-16388, *LIND

 Autostart *YES *YES, *NO

 PVC logical channel identifier 001-FFF

 + for more values

 X.25 idle circuit timeout . . . 60 1-600

 X.25 maximum virtual circuits . 64 0-64

 X.25 DDN interface *NO *YES, *NO

 TRLAN bit sequencing *MSB *MSB, *LSB

 Bottom

 F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

 F24=More keys

Chapter 5. DQM in WebSphere MQ for i5/OS 361

2. Fill in with values appropriate to your network and press Enter to create a

default route entry.

What next?

The TCP connection is now established. You are ready to complete the

configuration. Go to “WebSphere MQ for i5/OS configuration.”

WebSphere MQ for i5/OS configuration

Start the TCP channel listener using the command STRMQMLSR.

Start any sender channel using the command STRMQMCHL

CHLNAME(channel_name).

Use the WRKMQMQ command to display the WebSphere MQ configuration menu.

Note: AMQ* errors are placed in the log relating to the job that found the error.

Use the WRKACTJOB command to display the list of jobs. Under the subsystem

name QSYSWRK, locate the job and enter 5 against it to work with that job.

WebSphere MQ logs are prefixed ‘AMQ’.

Basic configuration

1. First you need to create a queue manager. To do this, type CRTMQM and press

Enter.

 Add TCP Route (ADDTCPRTE)

 Type choices, press Enter.

 Route destination *DFTROUTE

 Subnet mask *NONE

 Type of service *NORMAL *MINDELAY, *MAXTHRPUT.

 Next hop 19.2.3.4

 Maximum transmission unit . . . 576 576-16388, *IFC

 Bottom

 F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

 F24=More keys

 Command prompting ended when user pressed F12.

362 WebSphere MQ: Intercommunication

2. In the Message Queue Manager name field, type AS400. In the Undelivered

message queue field, type DEAD.LETTER.QUEUE.

3. Press Enter.

4. Now start the queue manager by entering STRMQM MQMNAME(AS400).

5. Create the undelivered message queue using the following parameters. (For

details and an example refer to “Defining a queue” on page 367.)

 Local Queue

 Queue name : DEAD.LETTER.QUEUE

 Queue type : *LCL

Channel configuration

This section details the configuration to be performed on the i5/OS queue manager

to implement the channel described in Figure 32 on page 101.

Examples are given for connecting WebSphere MQ for i5/OS and WebSphere MQ

for Windows. If you wish connect to WebSphere MQ on another platform, use the

appropriate values from the table in place of those for Windows

Note:

1. The words in bold are user-specified and reflect the names of WebSphere MQ

objects used throughout these examples. If you change the names used here,

ensure that you also change the other references made to these objects

throughout this book. All others are keywords and should be entered as shown.

2. The WebSphere MQ channel ping command (PNGMQMCHL) runs

interactively, whereas starting a channel causes a batch job to be submitted. If a

channel ping completes successfully but the channel will not start, this indicates

that the network and WebSphere MQ definitions are probably correct, but that

the i5/OS environment for the batch job is not. For example, make sure that

QSYS2 is included in the system portion of the library list and not just your

personal library list.

For details and examples of how to create the objects listed refer to “Defining a

queue” on page 367 and “Defining a channel” on page 367.

 Create Message Queue Manager (CRTMQM)

 Type choices, press Enter.

 Message Queue Manager name . . .

 Text ’description’ *BLANK

 Trigger interval 999999999 0-999999999

 Undelivered message queue . . . *NONE

 Default transmission queue . . . *NONE

 Maximum handle limit 256 1-999999999

 Maximum uncommitted messages . . 1000 1-10000

 Default Queue manager *NO *YES, *NO

 Bottom

 F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

 F24=More keys

Chapter 5. DQM in WebSphere MQ for i5/OS 363

Table 36. Configuration worksheet for WebSphere MQ for i5/OS

ID Parameter Name Reference Example Used User Value

Definition for local node

A Queue Manager Name AS400

B Local queue name AS400.LOCALQ

Connection to WebSphere MQ for Windows

The values in this section of the table must match those used in Table 14 on page 146, as indicated.

C Remote queue manager name A WINNT

D Remote queue name WINNT.REMOTEQ

E Queue name at remote system B WINNT.LOCALQ

F Transmission queue name WINNT

G Sender (SNA) channel name AS400.WINNT.SNA

H Sender (TCP/IP) channel name AS400.WINNT.TCP

I Receiver (SNA) channel name G WINNT.AS400.SNA

J Receiver (TCP/IP) channel name H WINNT.AS400.TCP

Connection to WebSphere MQ for AIX

The values in this section of the table must match those used in Table 18 on page 168, as indicated.

C Remote queue manager name A AIX

D Remote queue name AIX.REMOTEQ

E Queue name at remote system B AIX.LOCALQ

F Transmission queue name AIX

G Sender (SNA) channel name AS400.AIX.SNA

H Sender (TCP/IP) channel name AS400.AIX.TCP

I Receiver (SNA) channel name G AIX.AS400.SNA

J Receiver (TCP) channel name H AIX.AS400.TCP

Connection to MQSeries for Compaq Tru64 UNIX

The values in this section of the table must match those used in your Compaq Tru64 UNIX system.

C Remote queue manager name A DECUX

D Remote queue name DECUX.REMOTEQ

E Queue name at remote system B DECUX.LOCALQ

F Transmission queue name DECUX

H Sender (TCP) channel name DECUX.AS400.TCP

J Receiver (TCP) channel name H AS400.DECUX.TCP

Connection to WebSphere MQ for HP-UX

The values in this section of the table must match those used in Table 20 on page 191, as indicated.

C Remote queue manager name A HPUX

D Remote queue name HPUX.REMOTEQ

E Queue name at remote system B HPUX.LOCALQ

F Transmission queue name HPUX

G Sender (SNA) channel name AS400.HPUX.SNA

H Sender (TCP) channel name AS400.HPUX.TCP

364 WebSphere MQ: Intercommunication

Table 36. Configuration worksheet for WebSphere MQ for i5/OS (continued)

ID Parameter Name Reference Example Used User Value

I Receiver (SNA) channel name G HPUX.AS400.SNA

J Receiver (TCP) channel name H HPUX.AS400.TCP

Connection to WebSphere MQ for Solaris

The values in this section of the table must match those used in Table 22 on page 212, as indicated.

C Remote queue manager name A SOLARIS

D Remote queue name SOLARIS.REMOTEQ

E Queue name at remote system B SOLARIS.LOCALQ

F Transmission queue name SOLARIS

G Sender (SNA) channel name AS400.SOLARIS.SNA

H Sender (TCP/IP) channel name AS400.SOLARIS.TCP

I Receiver (SNA) channel name G SOLARIS.AS400.SNA

J Receiver (TCP/IP) channel name H SOLARIS.AS400.TCP

Connection to WebSphere MQ for Linux

The values in this section of the table must match those used in Table 24 on page 235, as indicated.

C Remote queue manager name A LINUX

D Remote queue name LINUX.REMOTEQ

E Queue name at remote system B LINUX.LOCALQ

F Transmission queue name LINUX

G Sender (SNA) channel name AS400.LINUX.SNA

H Sender (TCP/IP) channel name AS400.LINUX.TCP

I Receiver (SNA) channel name G LINUX.AS400.SNA

J Receiver (TCP/IP) channel name H LINUX.AS400.TCP

Connection to WebSphere MQ for z/OS

The values in this section of the table must match those used in Table 28 on page 272, as indicated.

C Remote queue manager name A MVS

D Remote queue name MVS.REMOTEQ

E Queue name at remote system B MVS.LOCALQ

F Transmission queue name MVS

G Sender (SNA) channel name AS400.MVS.SNA

H Sender (TCP) channel name AS400.MVS.TCP

I Receiver (SNA) channel name G MVS.AS400.SNA

J Receiver (TCP) channel name H MVS.AS400.TCP

Connection to MQSeries for VSE/ESA

The values in this section of the table must match those used in your VSE/ESA system.

C Remote queue manager name A VSE

D Remote queue name VSE.REMOTEQ

E Queue name at remote system B VSE.LOCALQ

F Transmission queue name VSE

G Sender channel name AS400.VSE.SNA

Chapter 5. DQM in WebSphere MQ for i5/OS 365

Table 36. Configuration worksheet for WebSphere MQ for i5/OS (continued)

ID Parameter Name Reference Example Used User Value

I Receiver channel name G VSE.AS400.SNA

WebSphere MQ for i5/OS sender-channel definitions using SNA:

 Local Queue

 Queue name : WINNT F

 Queue type : *LCL

 Usage : *TMQ

 Remote Queue

 Queue name : WINNT.REMOTEQ D

 Queue type : *RMT

 Remote queue : WINNT.LOCALQ E

 Remote Queue Manager : WINNT C

 Transmission queue : WINNT F

 Sender Channel

 Channel Name : AS400.WINNT.SNA G

 Channel Type : *SDR

 Transport type : *LU62

 Connection name : WINNTCPIC 14

 Transmission queue : WINNT F

WebSphere MQ for i5/OS receiver-channel definitions using SNA:

 Local Queue

 Queue name : AS400.LOCALQ B

 Queue type : *LCL

 Receiver Channel

 Channel Name : WINNT.AS400.SNA I

 Channel Type : *RCVR

 Transport type : *LU62

WebSphere MQ for i5/OS sender-channel definitions using TCP:

 Local Queue

 Queue name : WINNT F

 Queue type : *LCL

 Usage : *TMQ

 Remote Queue

 Queue name : WINNT.REMOTEQ D

 Queue type : *RMT

 Remote queue : WINNT.LOCALQ E

 Remote Queue Manager : WINNT C

 Transmission queue : WINNT F

 Sender Channel

 Channel Name : AS400.WINNT.TCP H

 Channel Type : *SDR

 Transport type : *TCP

 Connection name : WINNT.tcpip.hostname

 Transmission queue : WINNT F

WebSphere MQ for i5/OS receiver-channel definitions using TCP:

 Local Queue

 Queue name : AS400.LOCALQ B

 Queue type : *LCL

366 WebSphere MQ: Intercommunication

Receiver Channel

 Channel Name : WINNT.AS400.TCP J

 Channel Type : *RCVR

 Transport type : *TCP

Defining a queue

Type CRTMQMQ on the command line.

Fill in the two fields of this panel and press Enter. This causes another panel to

appear, with entry fields for the other parameters you have. Defaults can be taken

for all other queue attributes.

Defining a channel

Type CRTMQMCHL on the command line.

 Create MQM Queue (CRTMQMQ)

Type choices, press Enter.

Queue name

Queue type *ALS, *LCL, *RMT

 Bottom

F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

F24=More keys

Parameter QNAME required.

Chapter 5. DQM in WebSphere MQ for i5/OS 367

Fill in the two fields of this panel and press Enter. Another panel is displayed on

which you can specify the values for the other parameters given earlier. Defaults

can be taken for all other channel attributes.

Message channel planning example for WebSphere MQ for i5/OS

This chapter provides a detailed example of how to connect two i5/OS queue

managers together so that messages can be sent between them. The example

illustrates the preparations needed to allow an application using queue manager

QM1 to put messages on a queue at queue manager QM2. An application running

on QM2 can retrieve these messages, and send responses to a reply queue on QM1.

The example illustrates the use of TCP/IP connections. The example assumes that

channels are to be triggered to start when the first message arrives on the

transmission queue they are servicing. You must start the channel initiator in order

for triggering to work. To do this, use the STRMQMCHLI command.

This example uses SYSTEM.CHANNEL.INITQ as the initiation queue. This queue

is already defined by WebSphere MQ. You can use a different initiation queue, but

you will have to define it yourself and specify the name of the queue when you

start the channel initiator.

What the example shows

The example uses the WebSphere MQ for i5/OS command language.

 Create MQM Channel (CRTMQMCHL)

Type choices, press Enter.

Channel name

Channel type *RCVR, *SDR, *SVR, *RQSTR

 Bottom

F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

F24=More keys

Parameter CHLNAME required.

368 WebSphere MQ: Intercommunication

It involves a payroll query application connected to queue manager QM1 that

sends payroll query messages to a payroll processing application running on queue

manager QM2. The payroll query application needs the replies to its queries sent

back to QM1. The payroll query messages are sent from QM1 to QM2 on a

sender-receiver channel called QM1.TO.QM2, and the reply messages are sent back

from QM2 to QM1 on another sender-receiver channel called QM2.TO.QM1. Both

of these channels are triggered to start as soon as they have a message to send to

the other queue manager.

The payroll query application puts a query message to the remote queue

“PAYROLL.QUERY” defined on QM1. This remote queue definition resolves to the

local queue “PAYROLL” on QM2. In addition, the payroll query application

specifies that the reply to the query is sent to the local queue “PAYROLL.REPLY”

on QM1. The payroll processing application gets messages from the local queue

“PAYROLL” on QM2, and sends the replies to wherever they are required; in this

case, local queue “PAYROLL.REPLY” on QM1.

Both queue managers are assumed to be running on i5/OS. In the example

definitions, QM1 has a host address of 9.20.9.31 and is listening on port 1411, and

QM2 has a host address of 9.20.9.32 and is listening on port 1412. The example

assumes that these are already defined on your i5/OS system, and are available for

use.

The object definitions that need to be created on QM1 are:

v Remote queue definition, PAYROLL.QUERY

v Transmission queue definition, QM2 (default=remote queue manager name)

v Sender channel definition, QM1.TO.QM2

v Receiver channel definition, QM2.TO.QM1

v Reply-to queue definition, PAYROLL.REPLY

The object definitions that need to be created on QM2 are:

v Local queue definition, PAYROLL

v Transmission queue definition, QM1 (default=remote queue manager name)

v Sender channel definition, QM2.TO.QM1

v Receiver channel definition, QM1.TO.QM2

The connection details are supplied in the CONNAME attribute of the sender

channel definitions.

'SYSTEM.CHANNEL.INITQ'

Queue transmission 'QM1'

Queue manager 'QM2'

Queue local 'PAYROLL'

Application

Query
message

Query
message

Channel

Channel

Application

Payroll
processing

Payroll
query

Reply
message

Reply
message

QM1.TO.QM2

QM2.TO.QM1

Queue remote 'PAYROLL.QUERY'

Queue local 'PAYROLL.REPLY'

Queue transmission 'QM2'

'SYSTEM.CHANNEL.INITQ'

Queue manager 'QM1'

Figure 73. The message channel example for WebSphere MQ for i5/OS

Chapter 5. DQM in WebSphere MQ for i5/OS 369

You can see a diagram of the arrangement in Figure 73 on page 369.

Queue manager QM1 example

The following object definitions allow applications connected to queue manager

QM1 to send request messages to a queue called PAYROLL on QM2, and to receive

replies on a queue called PAYROLL.REPLY on QM1.

All the object definitions have been provided with the TEXT attributes. The other

attributes supplied are the minimum required to make the example work. The

attributes that are not supplied take the default values for queue manager QM1.

Run the following commands on queue manager QM1:

Remote queue definition

The CRTMQMQ command with the following attributes:

 QNAME ‘PAYROLL.QUERY’

QTYPE *RMT

TEXT ‘Remote queue for QM2’

PUTENBL *YES

TMQNAME ‘QM2’ (default = remote queue manager name)

RMTQNAME ‘PAYROLL’

RMTMQMNAME ‘QM2’

Note: The remote queue definition is not a physical queue, but a means of

directing messages to the transmission queue, QM2, so that they can be

sent to queue manager QM2.

Transmission queue definition

The CRTMQMQ command with the following attributes:

 QNAME QM2

QTYPE *LCL

TEXT ‘Transmission queue to QM2’

USAGE *TMQ

PUTENBL *YES

GETENBL *YES

TRGENBL *YES

TRGTYPE *FIRST

INITQNAME SYSTEM.CHANNEL.INITQ

TRIGDATA QM1.TO.QM2

When the first message is put on this transmission queue, a trigger

message is sent to the initiation queue, SYSTEM.CHANNEL.INITQ. The

channel initiator gets the message from the initiation queue and starts the

channel identified in the named process.

Sender channel definition

The CRTMQMCHL command with the following attributes:

 CHLNAME QM1.TO.QM2

CHLTYPE *SDR

TRPTYPE *TCP

TEXT ‘Sender channel to QM2’

TMQNAME QM2

CONNAME ‘9.20.9.32(1412)’

370 WebSphere MQ: Intercommunication

Receiver channel definition

The CRTMQMCHL command with the following attributes:

 CHLNAME QM2.TO.QM1

CHLTYPE *RCVR

TRPTYPE *TCP

TEXT ‘Receiver channel from QM2’

Reply-to queue definition

The CRTMQMQ command with the following attributes:

 QNAME PAYROLL.REPLY

QTYPE *LCL

TEXT ‘Reply queue for replies to query messages sent to QM2’

PUTENBL *YES

GETENBL *YES

The reply-to queue is defined as PUT(ENABLED). This ensures that reply

messages can be put to the queue. If the replies cannot be put to the

reply-to queue, they are sent to the dead-letter queue on QM1 or, if this

queue is not available, remain on transmission queue QM1 on queue

manager QM2. The queue has been defined as GET(ENABLED) to allow

the reply messages to be retrieved.

Queue manager QM2 example

The following object definitions allow applications connected to queue manager

QM2 to retrieve request messages from a local queue called PAYROLL, and to put

replies to these request messages to a queue called PAYROLL.REPLY on queue

manager QM1.

You do not need to provide a remote queue definition to enable the replies to be

returned to QM1. The message descriptor of the message retrieved from local

queue PAYROLL contains both the reply-to queue and the reply-to queue manager

names. Therefore, as long as QM2 can resolve the reply-to queue manager name to

that of a transmission queue on queue manager QM2, the reply message can be

sent. In this example, the reply-to queue manager name is QM1 and so queue

manager QM2 simply requires a transmission queue of the same name.

All the object definitions have been provided with the TEXT attribute and are the

minimum required to make the example work. The attributes that are not supplied

take the default values for queue manager QM2.

Run the following commands on queue manager QM2:

Local queue definition

The CRTMQMQ command with the following attributes:

 QNAME PAYROLL

QTYPE *LCL

TEXT ‘Local queue for QM1 payroll details’

PUTENBL *YES

GETENBL *YES

Chapter 5. DQM in WebSphere MQ for i5/OS 371

This queue is defined as PUT(ENABLED) and GET(ENABLED) for the

same reason as the reply-to queue definition on queue manager QM1.

Transmission queue definition

The CRTMQMQ command with the following attributes:

 QNAME QM1

QTYPE *LCL

TEXT ‘Transmission queue to QM1’

USAGE *TMQ

PUTENBL *YES

GETENBL *YES

TRGENBL *YES

TRGTYPE *FIRST

INITQNAME SYSTEM.CHANNEL.INITQ

TRIGDATA QM2.TO.QM1

When the first message is put on this transmission queue, a trigger

message is sent to the initiation queue, SYSTEM.CHANNEL.INITQ. The

channel initiator gets the message from the initiation queue and starts the

channel identified in the trigger data.

Sender channel definition

The CRTMQMCHL command with the following attributes:

 CHLNAME QM2.TO.QM1

CHLTYPE *SDR

TRPTYPE *TCP

TEXT ‘Sender channel to QM1’

TMQNAME QM1

CONNAME ‘9.20.9.31(1411)’

Receiver channel definition

The CRTMQMCHL command with the following attributes:

 CHLNAME QM1.TO.QM2

CHLTYPE *RCVR

TRPTYPE *TCP

TEXT ‘Receiver channel from QM1’

Running the example

When you have created the required objects, you must:

v Start the channel initiator for both queue managers

v Start the listener for both queue managers

The applications can then send messages to each other. The channels are triggered

to start by the first message arriving on each transmission queue, so you do not

need to issue the STRMQMCHL command.

For details about starting a channel initiator and a listener see “Monitoring and

controlling channels on i5/OS” on page 321.

Expanding this example

This example can be expanded by:

372 WebSphere MQ: Intercommunication

v Adding more queue and channel definitions to allow other applications to send

messages between the two queue managers.

v Adding user exit programs on the channels to allow for link encryption, security

checking, or additional message processing.

v Using queue manager aliases and reply-to queue aliases to understand more

about how these can be used in the organization of your queue manager

network.

For a version of this example that uses MQSC commands, see “Message channel

planning example for z/OS” on page 275.

Chapter 5. DQM in WebSphere MQ for i5/OS 373

374 WebSphere MQ: Intercommunication

Chapter 6. Further intercommunication considerations

Channel-exit programs

This chapter discusses WebSphere MQ channel-exit programs. This is

product-sensitive programming interface information. The following topics are

covered:

v “What are channel-exit programs?”

v “Writing and compiling channel-exit programs” on page 394

Message channel agents (MCAs) can also call data-conversion exits; these are

discussed in the WebSphere MQ Application Programming Guide.

What are channel-exit programs?

Channel-exit programs are called at defined places in the processing carried out by

MCA programs.

Some of these user-exit programs work in complementary pairs. For example, if a

user-exit program is called by the sending MCA to encrypt the messages for

transmission, the complementary process must be functioning at the receiving end

to reverse the process.

The different types of channel-exit program are described below. Table 37 shows

the types of channel exit that are available for each channel type.

 Table 37. Channel exits available for each channel type

Channel Type Message exit Message- retry

exit

Receive exit Security exit Send exit Auto-

definition exit

Sender channel Yes Yes Yes Yes

Server channel Yes Yes Yes Yes

Cluster- sender

channel

Yes Yes Yes Yes Yes

Receiver

channel

Yes Yes Yes Yes Yes Yes

Requester

channel

Yes Yes Yes Yes Yes

Cluster-

receiver

channel

Yes Yes Yes Yes Yes Yes

Client-

connection

channel

Yes Yes Yes

Server-

connection

channel

Yes Yes Yes Yes

Notes:

1. On z/OS, the auto-definition exit applies to cluster-sender and cluster-receiver channels only.

© Copyright IBM Corp. 1994, 2008 375

If you are going to run channel exits on a client, you cannot use the MQSERVER

environment variable. Instead, create and reference a client channel definition table

as described in the WebSphere MQ Clients book.

Processing overview

On startup, the MCAs exchange a startup dialog to synchronize processing. Then

they switch to a data exchange that includes the security exits; these must end

successfully for the startup phase to complete and to allow messages to be

transferred.

The security check phase is a loop, as shown in Figure 74.

During the message transfer phase, the sending MCA gets messages from a

transmission queue, calls the message exit, calls the send exit, and then sends the

message to the receiving MCA, as shown in Figure 75 on page 377.

Sender-
Server

Comms
link

Receiver-
Requester

Exit ExitMCA MCA

Local system Adjacent system

SecuritySecurity

Figure 74. Security exit loop

376 WebSphere MQ: Intercommunication

MCA

Comms
link

Queue Transmission

Exit

Message
(get)

Exit

Application

Send

Figure 75. Example of a send exit at the sender end of message channel

MCA

Comms
link

Queue Local

Exit

Receive

ExitApplication

Message
(put)

Figure 76. Example of a receive exit at the receiver end of message channel

Chapter 6. Further intercommunication considerations 377

The receiving MCA receives a message from the communications link, calls the

receive exit, calls the message exit, and then puts the message on the local queue,

as shown in Figure 76 on page 377. (The receive exit can be called more than once

before the message exit is called.)

Channel security exit programs

You can use security exit programs to verify that the partner at the other end of a

channel is genuine. To specify that a channel must use a security exit, specify the

exit name in the SCYEXIT field of the channel definition.

A security exit must be written in C.

Channel security exit programs are called at the following places in an MCA’s

processing cycle:

v At MCA initiation and termination.

v Immediately after the initial data negotiation is finished on channel startup. The

receiver or server end of the channel may initiate a security message exchange

with the remote end by providing a message to be delivered to the security exit

at the remote end. It may also decline to do so. The exit program is re-invoked

to process any security message received from the remote end.

v Immediately after the initial data negotiation is finished on channel startup. The

sender or requester end of the channel processes a security message received

from the remote end, or initiates a security exchange when the remote end

cannot. The exit program is re-invoked to process all subsequent security

messages that may be received.

A requester channel never gets called with MQXCC_INIT_SEC. The channel

notifies the server that it has a security exit program, and the server then has the

opportunity to initiate a security exit. If it does not have one, it sends a null

security flow to allow the requester to call its exit program.

Note: You are recommended to avoid sending zero-length security messages.

Examples of the data exchanged by security-exit programs are illustrated in figures

Figure 77 on page 379 through Figure 81 on page 383. These examples show the

sequence of events that occur involving the receiver’s security exit (left-hand

column) and the sender’s security exit (right-hand column). Successive rows in the

figures represent the passage of time. In some cases, the events at the receiver and

sender are not correlated, and therefore can occur at the same time or at different

times. In other cases, an event at one exit program results in a complementary

event occurring later at the other exit program. For example, in Figure 77 on page

379:

1. The receiver and sender are each invoked with MQXR_INIT, but these

invocations are not correlated and can therefore occur at the same time or at

different times.

2. The receiver is next invoked with MQXR_INIT_SEC, but returns MQXCC_OK

which requires no complementary event at the sender exit.

3. The sender is next invoked with MQXR_INIT_SEC. This is not correlated with

the invocation of the receiver with MQXR_INIT_SEC. The sender returns

MQXCC_SEND_SEC_MSG, which causes a complementary event at the

receiver exit.

378 WebSphere MQ: Intercommunication

4. The receiver is subsequently invoked with MQXR_SEC_MSG, and returns

MQXCC_SEND_SEC_MSG, which causes a complementary event at the sender

exit.

5. The sender is subsequently invoked with MQXR_SEC_MSG, and returns

MQXCC_OK which requires no complementary event at the receiver exit.

Sender exitReceiver exit

Invoked with MQXR_INIT

Responds with MQXCC_OK

Invoked with MQXR_INIT_SEC

Responds with MQXCC_OK

Invoked with MQXR_SEC_MSG

Responds with MQXCC_SEND_SEC_MSG

Invoked with MQXR_INIT

Responds with MQXCC_OK

Invoked with MQXR_INIT_SEC

Responds with MQXCC_SEND_SEC_MSG

Invoked with MQXR_SEC_MSG

Responds with MQXCC_OK

Message transfer begins

Figure 77. Sender-initiated exchange with agreement

Chapter 6. Further intercommunication considerations 379

Invoked with MQXR_INIT

Responds with MQXCC_OK

Invoked with MQXR_INIT_SEC

Responds with MQXCC_OK

Invoked with MQXR_SEC_MSG

Responds with MQXCC_OK

Invoked with MQXR_TERM

Responds with MQXCC_OK

Invoked with MQXR_INIT

Responds with MQXCC_OK

Invoked with MQXR_INIT_SEC

Responds with MQXCC_SEND_SEC_MSG

Invoked with MQXR_SEC_MSG

Responds with MQXCC_SUPPRESS_FUNCTION

Invoked with MQXR_TERM

Responds with MQXCC_OK

Sender exitReceiver exit

Channel closes

Figure 78. Sender-initiated exchange with no agreement

380 WebSphere MQ: Intercommunication

Sender exitReceiver exit

Invoked with MQXR_INIT

Responds with MQXCC_OK

Invoked with MQXR_INIT_SEC

Responds with MQXCC_SEND_SEC_MSG

Invoked with MQXR_SEC_MSG

Responds with MQXCC_OK

Invoked with MQXR_TERM
Responds with MQXCC_OK

Invoked with MQXR_INIT

Responds with MQXCC_OK

Invoked with MQXR_SEC_MSG

Responds with MQXCC_SEND_SEC_MSG

Invoked with MQXR_TERM

Responds with MQXCC_OK

Message transfer begins

Figure 79. Receiver-initiated exchange with agreement

Chapter 6. Further intercommunication considerations 381

Figure Figure 81 on page 383 illustrates the use of security exits in a client

connection, using the WebSphere MQ Object Authority Manager to authenticate a

user. Either SecurityParmsPtr or SecurityParmsOffset is set in the MQCNO

structure on the client and there are security exits at both ends of the channel.

After the normal security message exchange has ended, as described for figure

Figure 77 on page 379, and the channel is ready to run, the MQCSP structure

accessed from the MQCXP SecurityParms field is passed to the security exit on the

client. The exit type is set to MQXR_SEC_PARMS. The security exit can elect to do

nothing to the user identifier and password, or it can alter either or both of them.

The data returned from the exit is then sent to the server-connection end of the

channel. The MQCSP structure is rebuilt on the server-connection end of the

channel and is passed to the server-connection security exit accessed from the

MQCXP SecurityParms field. The security exit receives and processes this data.

This processing will normally be to reverse any change made to the userid and

password fields in the client exit. The resulting MQCSP structure is referenced

using SecurityParmsPtr in the MQCNO structure on the queue manager system.

If SecurityParmsPtr or SecurityParmsOffset are set in the MQCNO structure and

there is a security exit at only one end of the channel, the security exit will receive

and process the MQCSP structure. Actions such as encryption are inappropriate for

a single user exit, as there is no exit to perform the complementary action.

If SecurityParmsPtr and SecurityParmsOffset are not set in the MQCNO structure

and there is a security exit at either or both ends of the channel, the security exit or

exits will be called. Either security exit can return its own MQCSP structure,

addressed through the SecurityParmsPtr; the security exit is not called again until

it is terminated (ExitReason of MQXR_TERM). The exit writer can free the memory

used for the MQCSP at that stage.

Receiver exit

Invoked with MQXR_INIT

Responds with MQXCC_OK

Invoked with MQXR_INIT_SEC

Responds with MQXCC_SEND_SEC_MSG

Invoked with MQXR_SEC_MSG

Responds with MQXCC_SUPPRESS_FUNCTION

Sender exit

Invoked with MQXR_INIT

Responds with MQXCC_OK

Invoked with MQXR_SEC_MSG

Responds with MQXCC_OK

Channel closes

Figure 80. Receiver-initiated exchange with no agreement

382 WebSphere MQ: Intercommunication

The channel security exit program is passed an agent buffer containing the security

data, excluding any transmission headers, generated by the security exit. This may

be any suitable data so that either end of the channel is able to perform security

validation.

The security exit program at both the sending and receiving end of the message

channel may return one of four response codes to any call:

v Security exchange ended with no errors

v Suppress the channel and close down

Note:

1. The channel security exits usually work in pairs. When you define the

appropriate channels, make sure that compatible exit programs are named for

both ends of the channel.

Figure 81. Client connection-initiated exchange with agreement for client connection using security parameters

Chapter 6. Further intercommunication considerations 383

2. In i5/OS, security exit programs that have been compiled with “Use adopted

authority” (USEADPAUT=*YES) have the ability to adopt QMQM or

QMQMADM authority. Take care that the exit does not exploit this feature to

pose a security risk to your system.

3. On an SSL channel on which the other end of the channel provides a certificate,

the security exit receives the Distinguished Name of the subject of this

certificate in the MQCD field accessed by SSLPeerNamePtr and the

Distinguished Name of the issuer in the MQCXP field accessed by

SSLRemCertIssNamePtr. Uses to which this name can be put are:

v to restrict access over the SSL channel.

v to change MCAUSER based on the name

Writing a security exit:

 Figure 82 illustrates how to write a security exit.

 The standard MQ Entry Point MQStart must exist, but is not required to perform

any function. The name of the function (EntryPoint in this example) can be

changed, but the function must be exported when the library is compiled and

linked. The MQCXP and MQCD structures are passed to the exit as null pointers,

so they must be cast before accessing fields. For general information on calling

channel exits and the use of parameters, see “MQ_CHANNEL_EXIT – Channel

exit” on page 406. These parameters are used in a security exit as follows:

PMQVOID pChannelExitParm

input/output

 Pointer to MQCXP structure - cast to PMQCXP to access fields. This structure

is used to communicate between the Exit and MCA. The following fields in the

MQCXP are of particular interest for Security Exits:

ExitReason

Tells the Security Exit the current state in the security exchange and

should be used when deciding what action to take.

ExitResponse

The response to the MCA which dictates the next stage in the security

exchange.

ExitResponse2

Extra control flags to govern how the MCA interprets the Security

Exit’s response.

void MQENTRY MQStart() {;}

void MQENTRY EntryPoint (PMQVOID pChannelExitParms,

 PMQVOID pChannelDefinition,

 PMQLONG pDataLength,

 PMQLONG pAgentBufferLength,

 PMQVOID pAgentBuffer,

 PMQLONG pExitBufferLength,

 PMQPTR pExitBufferAddr)

{

 PMQCXP pParms = (PMQCXP)pChannelExitParms;

 PMQCD pChDef = (PMQCD)pChannelDefinition;

 /* TODO: Add Security Exit Code Here */

}

Figure 82. Security exit skeleton code

384 WebSphere MQ: Intercommunication

ExitUserArea

16 bytes (maximum) of storage which can be used by the Security Exit

to maintain state between calls.

ExitData

Contains the data specified in the SCYDATA field of the channel

definition (32 bytes padded to the right with blanks).

PMQVOID pChannelDefinition

input/output

 Pointer to MQCD structure - cast to PMQCD to access fields. This contains the

definition of the channel. The following fields in the MQCD are of particular

interest for Security Exits:

ChannelName

The channel name (20 bytes padded to the right with blanks).

ChannelType

A code defining the channel type.

MCA User Identifier

This group of 3 fields is initialized to the value of the MCAUSER field

specified in the channel definition. Any user identifier specified by the

Security Exit in these fields is used for authentication by the OAM (not

applicable to CLNTCONN channels).

MCAUserIdentifier

First 12 bytes of identifier padded to the right with blanks.

LongMCAUserIdPtr

Pointer to a buffer containing the full length identifier (not

guaranteed null terminated) takes priority over

MCAUserIdentifier.

LongMCAUserIdLength

Length of string pointed to by LongMCAUserIdPtr - must be

set if LongMCAUserIdPtr is set.

Remote User Identfier

Only applies to CLNTCONN/SVRCONN channel pairs. If no

CLNTCONN Security Exit is defined then these 3 fields are initialized

by the client MCA, so they may contain a user identifier from the

environment of the client which can be used by a SVRCONN Security

Exit for authentication and when specifying the MCA User Identifier. If

a CLNTCONN Security Exit is defined then these fields are not

initialized and can be set by the CLNTCONN Security Exit, or security

messages can be used to pass a user identifier from Client to Server.

RemoteUserIdentifier

First 12 Bytes of identifier padded to the right with blanks.

LongRemoteUserIdPtr

Pointer to a buffer containing the full length identifier (not

guaranteed null terminated) takes priority over

RemoteUserIdentifier.

LongRemoteUserIdLength

Length of string pointed to by LongRemoteUserIdPtr - must be

set if LongRemoteUserIdPtr is set.

PMQLONG pDataLength

input/output

Chapter 6. Further intercommunication considerations 385

Pointer to MQLONG. Contains the length of any Security Exit contained in the

AgentBuffer upon invocation of the Security Exit. Must be set by a Security

Exit to the length of any message being sent in the AgentBuffer or ExitBuffer.

PMQLONG pAgentBufferLength

input

 Pointer to MQLONG. The length of the data contained in the AgentBuffer on

invocation of the Security Exit.

PMQVOID pAgentBuffer

input/output

 On invocation of the Security Exit this points to any message sent from the

partner exit. If ExitReason2 in the MQCXP structure has the

MQXR2_USE_AGENT_BUFFER flag set (default) then a Security Exit should

set this to point to any message data being sent.

PMQLONG pExitBufferLength

input/output

 Pointer to MQLONG. This is initialized to 0 on the first invocation of a

Security Exit and the value returned is maintained between calls to the

Security Exit during a security exchange.

PMQPTR pExitBufferAddr

input/output

 This is initialized to a null pointer on the first invocation of a Security Exit and

the value returned is maintained between calls to the Security Exit during a

security exchange. If the MQXR2_USE_EXIT_BUFFER flag is set in the

ExitReason2 in the MQCXP structure then a Security Exit should set this to

point to any message data being sent.

Differences in behavior between security exits defined on CLNTCONN/
SVRCONN channel pairs and other channel pairs:

 Security exits can be defined on all types of channel. However, the behavior of

security exits defined on CLNTCONN/SVRCONN channel pairs is slightly

different to security exits defined on other channel pairs.

A Security Exit on a CLNTCONN channel can set the Remote User Identifier in the

channel definition for processing by a partner CLNTCONN exit, or for OAM

authorization if no SVRCONN Security Exit is defined and the MCAUSER field of

the SVRCONN is not set. If no CLNTCONN Security Exit is defined then the

Remote User Identifier in the channel definition is set to a user identifier from the

client environment (which may be blank) by the client MCA.

A security exchange between Security Exits defined on a CLNTCONN and

SVRCONN channel pair completes successfully when the SVRCONN Security Exit

returns an ExitResponse of MQXCC_OK. A security exchange between other

channel pairs completes successfully when the Security Exit which initiated the

exchange returns an ExitResponse of MQXCC_OK.

However, the MQXCC_SEND_AND_REQUEST_SEC_MSG ExitResponse code can

be used to force continuation of the security exchange: If an ExitResponse of

MQXCC_SEND_AND_REQUEST_SEC_MSG is returned by a CLNTCONN or

SVRCONN Security Exit then the partner exit must respond by sending a security

message (not MQXCC_OK or a null response) or the channel will terminate. For

Security Exits defined on other types of channel an ExitResponse of MQXCC_OK

386 WebSphere MQ: Intercommunication

returned in response to a MQXCC_SEND_AND_REQUEST_SEC_MSG from the

partner Security Exit results in continuation of the security exchange as if a null

response was returned and not in termination of the channel.

Channel send and receive exit programs

You can use the send and receive exits to perform tasks such as data compression

and decompression. You can specify a list of send and receive exit programs to be

run in succession.

Channel send and receive exit programs are called at the following places in an

MCA’s processing cycle:

v The send and receive exit programs are called for initialization at MCA initiation

and for termination at MCA termination.

v The send exit program is invoked at either end of the channel, immediately

before a transmission is sent over the link.

v The receive exit program is invoked at either end of the channel, immediately

after a transmission has been taken from the link.

There may be many transmissions for one message transfer, and there could be

many iterations of the send and receive exit programs before a message reaches the

message exit at the receiving end.

The channel send and receive exit programs are passed an agent buffer containing

the transmission data as sent or received from the communications link. For send

exit programs, the first eight bytes of the buffer are reserved for use by the MCA,

and must not be changed. If the program returns a different buffer, then these first

eight bytes must exist in the new buffer. The format of data presented to the exit

programs is not defined.

A good response code must be returned by send and receive exit programs. Any

other response will cause an MCA abnormal end (abend).

Note: Do not issue an MQGET, MQPUT, or MQPUT1 call within syncpoint from a

send or receive exit.

Note:

1. Send and receive exits usually work in pairs. For example a send exit may

compress the data and a receive exit decompress it, or a send exit may encrypt

the data and a receive exit decrypt it. When you define the appropriate

channels, make sure that compatible exit programs are named for both ends of

the channel.

2. If compression is turned on for the channel, the exits will be passed

compressed data.

3. Channel send and receive exits may be called for message segments other than

for application data, for example, status messages. They are not called during

the startup dialog, nor the security check phase.

4. Although message channels send messages in one direction only,

channel-control data flows in both directions, and these exits are available in

both directions, also. However, some of the initial channel startup data flows

are exempt from processing by any of the exits.

5. There are circumstances in which send and receive exits could be invoked out

of sequence; for example, if you are running a series of exit programs or if you

are also running security exits. Then, when the receive exit is first called upon

Chapter 6. Further intercommunication considerations 387

to process data, it may receive data that has not passed through the

corresponding send exit. If the receive exit were just to perform the operation,

for example decompression, without first checking that it was really required,

the results would be unexpected.

You should code your send and receive exits in such a way that the receive exit

can check that the data it is receiving has been processed by the corresponding

send exit. The recommended way to do this is to code your exit programs so

that:

v The send exit sets the value of the ninth byte of data to 0 and shifts all the

data along one byte, before performing the operation. (The first eight bytes

are reserved for use by the MCA.)

v If the receive exit receives data that has a 0 in byte 9, it knows that the data

has come from the send exit. It removes the 0, performs the complementary

operation, and shifts the resulting data back by one byte.

v If the receive exit receives data that has something other than 0 in byte 9, it

assumes that the send exit has not run, and sends the data back to the caller

unchanged.
When using security exits, if the channel is ended by the security exit it is

possible that a send exit may be called without the corresponding receive exit.

One way to prevent this from being a problem is to code the security exit to set

a flag, in MQCD.SecurityUserData or MQCD.SendUserData, for example, when

the exit decides to end the channel. Then the send exit should check this field,

and process the data only if the flag is not set. This prevents the send exit from

unnecessarily altering the data, and thus prevents any conversion errors that

could occur if the security exit received altered data.

6. In the case of MQI channels for clients, byte 10 of the agent buffer identifies the

API call in use when the send or receive exit is called. This is useful for

identifying which channel flows include user data and may require processing

such as encryption or digital signing.

Table 38 shows the data that appears in byte 10 of the channel flow when an

API call is being processed.

Note: These are not the only values of this byte. There are other reserved

values.

 Table 38. Identifying API calls

API call Value of byte 10 for

request

Value of byte 10 for

reply

MQCONN (1 on page 389, 2 on page 389) X’81’ X’91’

MQDISC (1 on page 389) X’82’ X’92’

MQOPEN (3 on page 389) X’83’ X’93’

MQCLOSE X’84’ X’94’

MQGET (4 on page 389) X’85’ X’95’

MQPUT (4 on page 389) X’86’ X’96’

MQPUT1 request (4 on page 389) X’87’ X’97’

MQSET request X’88’ X’98’

MQINQ request X’89’ X’99’

MQCMIT request X’8A’ X’9A’

MQBACK request X’8B’ X’9B’

xa_start request X’A1’ X’B1’

388 WebSphere MQ: Intercommunication

Table 38. Identifying API calls (continued)

API call Value of byte 10 for

request

Value of byte 10 for

reply

xa_end request X’A2’ X’B2’

xa_open request X’A3’ X’B3’

xa_close request X’A4’ X’B4’

xa_prepare request X’A5’ X’B5’

xa_commit request X’A6’ X’B6’

xa_rollback request X’A7’ X’B7’

xa_forget request X’A8’ X’B8’

xa_recover request X’A9’ X’B9’

xa_complete request X’AA’ X’BA’

Notes:

1. The connection between the client and server is initiated by the client application using

MQCONN. Therefore, for this command in particular, there will be several other

network flows. This also applies to MQDISC that terminates the network connection.

2. MQCONNX is treated in the same way as MQCONN for the purposes of the

client-server connection.

3. If a large distribution list is opened, there may be more than one network flow per

MQOPEN call in order to pass all of the required data to the SVRCONN MCA.

4. Large messages can exceed the transmission segment size. If this happens there can be

a large number of network flows resulting from a single API call.

Channel send exit programs — reserving space

You can use send and receive exits to transform the data before transmission.

Channel send exit programs can add their own data about the transformation by

reserving space in the transmission buffer. This data is processed by the receive

exit program and then removed from the buffer. For example, you might want to

encrypt the data and add a security key for decryption.

How you reserve space and use it:

 When the send exit program is called for initialization, set the ExitSpace field of

MQXCP to the number of bytes to be reserved. See “MQCXP – Channel exit

parameter” on page 458 for details. ExitSpace can be set only during initialization,

that is when ExitReason has the value MQXR_INIT. When the send exit is invoked

immediately before transmission, with ExitReason set to MQXR_XMIT, ExitSpace

bytes are reserved in the transmission buffer. ExitSpace is not supported on z/OS.

The send exit need not use all of the reserved space. It can use less than ExitSpace

bytes or, if the transmission buffer is not full, the exit can use more than the

amount reserved. When setting the value of ExitSpace, you must leave at least 1

KB for message data in the transmission buffer. Note that channel performance can

be affected if reserved space is used for large amounts of data.

What happens at the receiving end of the channel:

 Channel receive exit programs must be set up to be compatible with the

corresponding send exits. Receive exits must know the number of bytes in the

reserved space and must remove the data in that space.

Chapter 6. Further intercommunication considerations 389

Multiple send exits:

 You can specify a list of send and receive exit programs to be run in succession.

WebSphere MQ maintains a total for the space reserved by all of the send exits.

This total space must leave at least 1 KB for message data in the transmission

buffer.

The following example shows how space is allocated for three send exits, called in

succession:

1. When called for initialization:

v Send exit A reserves 1 KB.

v Send exit B reserves 2 KB.

v Send exit C reserves 3 KB.
2. The maximum transmission size is 32 KB and the user data is 5 KB long.

3. Exit A is called with 5 KB of data; up to 27 KB are available, because 5KB is

reserved for exits B and C. Exit A adds 1KB, the amount it reserved.

4. Exit B is called with 6 KB of data; up to 29 KB are available, because 3KB is

reserved for exit C. Exit B adds 1KB, less than the 2KB it reserved.

5. Exit C is called with 7 KB of data; up to 32 KB are available. Exit C adds 10K,

more than the 3KB it reserved. This is valid, because the total amount of data,

17 KB, is less than the 32KB maximum.

Channel message exit programs

You can use the channel message exit for the following:

v Encryption on the link

v Validation of incoming user IDs

v Substitution of user IDs according to local policy

v Message data conversion

v Journaling

v Reference message handling

On WebSphere MQ for i5/OS, UNIX systems, z/OS, and Windows systems, and

with WebSphere MQ clients, you can specify a list of message exit programs to be

run in succession.

Channel message exit programs are called at the following places in an MCA’s

processing cycle:

v At MCA initiation and termination

v Immediately after a sending MCA has issued an MQGET call

v Before a receiving MCA issues an MQPUT call

The message exit is passed an agent buffer containing the transmission queue

header, MQXQH, and the application message text as retrieved from the queue.

(The format of MQXQH is given in the WebSphere MQ Application Programming

Reference book.) If you use reference messages, that is messages that contain only

a header which points to some other object that is to be sent, the message exit

recognizes the header, MQRMH. It identifies the object, retrieves it in whatever

way is appropriate appends it to the header, and passes it to the MCA for

transmission to the receiving MCA. At the receiving MCA, another message exit

recognizes that this is a reference message, extracts the object, and passes the

390 WebSphere MQ: Intercommunication

header on to the destination queue. See the WebSphere MQ Application

Programming Guide for more information about reference messages and some

sample message exits that handle them.

Message exits can return the following responses:

v Send the message (GET exit). The message may have been changed by the exit.

(This returns MQXCC_OK.)

v Put the message on the queue (PUT exit). The message may have been changed

by the exit. (This returns MQXCC_OK.)

v Do not process the message. The message is placed on the dead-letter queue

(undelivered message queue) by the MCA.

v Close the channel.

v Bad return code, which causes the MCA to abend.

Note:

1. Message exits are called just once for every complete message transferred, even

when the message is split into parts.

2. In UNIX systems, if you provide a message exit for any reason the automatic

conversion of user IDs to lowercase characters does not operate. See “User IDs

on UNIX systems” on page 118.

3. An exit runs in the same thread as the MCA itself. It also runs inside the same

unit of work (UOW) as the MCA because it uses the same connection handle.

Therefore, any calls made under syncpoint are committed or backed out by the

channel at the end of the batch. For example, one channel message exit

program can send notification messages to another and these messages will

only be committed to the queue when the batch containing the original

message is committed.

Therefore, it is possible to issue syncpoint MQI calls from a channel message

exit program.

Message conversion outside the message exit:

 Before calling the message exit, the receiving MCA performs some conversions on

the message. This section describes the algorithms used to perform the

conversions.

Which headers are processed:

 A conversion routine runs in the receiver’s MCA before the message exit is called.

The conversion routine begins with the MQXQH header at the top of the message.

The conversion routine then processes through the chained headers that follow the

MQXQH, performing conversion where necessary. The chained headers can extend

beyond the offset contained in the HeaderLength parameter of the MQCXP data

that is passed to the receiver’s message exit. The following headers will be

converted in-place:

v MQXQH (format name ″MQXMIT ″)

v MQMD (this is part of the MQXQH and has no format name)

v MQMDE (format name ″MQHMDE ″)

v MQDH (format name ″MQHDIST ″)

v MQWIH (format name ″MQHWIH ″)

The following headers will not be converted, but will be stepped over as the MCA

continues to process the chained headers:

Chapter 6. Further intercommunication considerations 391

v MQDLH (format name ″MQDEAD ″)

v any headers with format names beginning with the three characters ’MQH’ (eg.

″MQHRF ″) that are not otherwise mentioned above

How the headers are processed:

 The Format parameter of each MQ header is read by the MCA. The Format

parameter is 8 bytes within the header, which are 8 single-byte characters

containing a name.

The MCA then interprets the data following each header as being of the named

type. If the Format is the name of a header type eligible for MQ data conversion, it

will be converted. If it is another name indicating non-MQ data (for example

MQFMT_NONE or MQFMT_STRING) then the MCA stops processing the headers

at this point.

What is the MQCXP HeaderLength?:

 The HeaderLength parameter in the MQCXP data supplied to a message exit is the

total length of the MQXQH (which includes the MQMD), MQMDE and MQDH

headers at the start of the message. These headers are chained using the ’Format’

names and lengths as per the general discussion above.

MQWIH:

 As noted above, the chained headers can extend beyond the HeaderLength into the

user data area. The MQWIH header, if it is present, is one of those that will appear

beyond the HeaderLength.

If there is an MQWIH header in the chained headers, it will be converted in-place

before the receiver’s message exit is called.

Channel message retry exit program

The channel message-retry exit is called when an attempt to open the target queue

is unsuccessful. You can use the exit to determine under which circumstances to

retry, how many times to retry, and how frequently.

This exit is also called at the receiving end of the channel at MCA initiation and

termination.

The channel message-retry exit is passed an agent buffer containing the

transmission queue header, MQXQH, and the application message text as retrieved

from the queue. The format of MQXQH is given in the WebSphere MQ Application

Programming Reference book.

The exit is invoked for all reason codes; the exit determines for which reason codes

it wants the MCA to retry, for how many times, and at what intervals. (The value

of the message-retry count set when the channel was defined is passed to the exit

in the MQCD, but the exit can ignore this.)

The MsgRetryCount field in MQCXP is incremented by the MCA each time the exit

is invoked, and the exit returns either MQXCC_OK with the wait time contained in

the MsgRetryInterval field of MQCXP, or MQXCC_SUPPRESS_FUNCTION. Retries

continue indefinitely until the exit returns MQXCC_SUPPRESS_FUNCTION in the

392 WebSphere MQ: Intercommunication

ExitResponse field of MQCXP. See “MQCXP – Channel exit parameter” on page

458 for information about the action taken by the MCA for these completion codes.

If all the retries are unsuccessful, the message is written to the dead-letter queue. If

there is no dead-letter queue available, the channel stops.

If you do not define a message-retry exit for a channel and a failure occurs that is

likely to be temporary, for example MQRC_Q_FULL, the MCA uses the

message-retry count and message-retry intervals set when the channel was defined.

If the failure is of a more permanent nature and you have not defined an exit

program to handle it, the message is written to the dead-letter queue.

Channel auto-definition exit program

The channel auto-definition exit can be used when a request is received to start a

receiver or server-connection channel but no definition for that channel exists (not

for WebSphere MQ for z/OS). It can also be called on all platforms for

cluster-sender and cluster-receiver channels to allow definition modification for an

instance of the channel.

The channel auto-definition exit can be called on all platforms except z/OS when a

request is received to start a receiver or server-connection channel but no channel

definition exists. You can use it to modify the supplied default definition for an

automatically defined receiver or server-connection channel,

SYSTEM.AUTO.RECEIVER or SYSTEM.AUTO.SVRCON. See “Auto-definition of

receiver and server-connection channels” on page 54 for a description of how

channel definitions can be created automatically.

The channel auto-definition exit can also be called when a request is received to

start a cluster-sender channel. It can be called for cluster-sender and

cluster-receiver channels to allow definition modification for this instance of the

channel. In this case, the exit also applies to WebSphere MQ for z/OS. A common

use of the channel auto-definition exit is to change the names of message exits

(MSGEXIT, RCVEXIT, SCYEXIT, and SENDEXIT) because exit names have different

formats on different platforms. If no channel auto-definition exit is specified, the

default behavior on z/OS is to examine a distributed exit name of the form

[path]/libraryname(function) and take up to 8 chars of function, if present, or

libraryname. Note that on z/OS, a channel auto-definition exit program must alter

the fields addressed by MsgExitPtr, MsgUserDataPtr, SendExitPtr,

SendUserDataPtr, ReceiveExitPtr, and ReceiveUserDataPtr, rather than the MsgExit,

MsgUserData, SendExit, SendUserData, ReceiveExit and ReceiveUserData fields

themselves.

For more information, see WebSphere MQ Queue Manager Clusters.

As with other channel exits, the parameter list is:

MQ_CHANNEL_AUTO_DEF_EXIT (ChannelExitParms, ChannelDefinition)

ChannelExitParms are described in “MQCXP – Channel exit parameter” on page

458. ChannelDefinition is described in “MQCD – Channel definition” on page 413.

MQCD contains the values that are used in the default channel definition if they

are not altered by the exit. The exit can modify only a subset of the fields; see

“MQ_CHANNEL_AUTO_DEF_EXIT – Channel auto-definition exit” on page 410.

However, attempting to change other fields does not cause an error.

Chapter 6. Further intercommunication considerations 393

The channel auto-definition exit returns a response of either MQXCC_OK or

MQXCC_SUPPRESS_FUNCTION. If neither of these is returned, the MCA

continues processing as though MQXCC_SUPPRESS_FUNCTION were returned.

That is, the auto-definition is abandoned, no new channel definition is created and

the channel cannot start.

Writing and compiling channel-exit programs

Channel exits must be named in the channel definition. You can do this when you

first define the channels, or you can add the information later using, for example,

the MQSC command ALTER CHANNEL. You can also give the channel exit names

in the MQCD channel data structure. The format of the exit name depends on your

WebSphere MQ platform; see “MQCD – Channel definition” on page 413 or the

WebSphere MQ Script (MQSC) Command Reference book for information.

If the channel definition does not contain a user-exit program name, the user exit is

not called.

The channel auto-definition exit is the property of the queue manager, not the

individual channel. In order for this exit to be called, it must be named in the

queue manager definition. To alter a queue manager definition, use the MQSC

command ALTER QMGR.

User exits and channel-exit programs are able to make use of all MQI calls, except

as noted in the sections that follow. To get the connection handle, an MQCONN

must be issued, even though a warning, MQRC_ALREADY_CONNECTED, is

returned because the channel itself is connected to the queue manager.

For exits on client-connection channels, the queue manager to which the exit tries

to connect depends on how the exit was linked. If the exit was linked with

MQM.LIB (or QMQM/LIBMQM on i5/OS) and you do not specify a queue

manager name on the MQCONN call, the exit will try to connect to the default

queue manager on your system. If the exit was linked with MQM.LIB (or

QMQM/LIBMQM on i5/OS) and you specify the name of the queue manager that

was passed to the exit through the QMgrName field of MQCD, the exit tries to

connect to that queue manager. If the exit was linked with MQIC.LIB or any other

library, the MQCONN call will fail whether you specify a queue manager name or

not.

Note: You are recommended to avoid issuing the following MQI calls in

channel-exit programs:

v MQCMIT

v MQBACK

v MQBEGIN

v MQDISC

v MQCONNX with MQCNO_HANDLE_SHARE_BLOCK or

MQCNO_HANDLE_SHARE_NO_BLOCK options

MQCONNX with MQCNO_HANDLE_SHARE_BLOCK or

MQCNO_HANDLE_SHARE_NO_BLOCK options returns a new shared handle on

each call. If used inside an exit, the handle must be disconnected before returning

from the exit. Otherwise, this can result in connection handles building up, and

eventually agent threads will increase.

394 WebSphere MQ: Intercommunication

An exit runs in the same thread as the MCA itself and uses the same connection

handle. So, it runs inside the same UOW as the MCA and any calls made under

syncpoint are committed or backed out by the channel at the end of the batch.

Therefore, a channel message exit could send notification messages that will only

be committed to that queue when the batch containing the original message is

committed. So, it is possible to issue syncpoint MQI calls from a channel message

exit.

A channel exit can change fields in the MQCD. However, these changes are not

generally acted on, except in the circumstances listed. If a channel exit program

changes a field in the MQCD data structure, the new value is generally ignored by

the WebSphere MQ channel process. However, the new value remains in the

MQCD and is passed to any remaining exits in an exit chain and to any

conversation sharing the channel instance. For more information, see “Changing

MQCD fields in a channel exit” on page 456

Also, for programs written in C, non-reentrant C library function should not be

used in a channel-exit program.

If you use multiple channel exit libraries simultaneously, problems can arise on

some UNIX platforms if the code for two different exits contains identically-named

functions. When a channel exit is loaded, the dynamic loader resolves function

names in the exit library to the addresses where the library is loaded. If two exit

libraries define separate functions which happen to have identical names, this

resolution process might incorrectly resolve the function names of one library to

use the functions of another. If this problem occurs, specify to the linker that it

must only export the required exit and MQStart functions, as these will be

unaffected. Other functions should be given local visibility so that they will not be

used by functions outside their own exit library. Consult your linker’s

documentation for more information.

All exits are called with a channel exit parameter structure (MQCXP), a channel

definition structure (MQCD), a prepared data buffer, data length parameter, and

buffer length parameter. The buffer length must not be exceeded:

v For message exits, you should allow for the largest message required to be sent

across the channel, plus the length of the MQXQH structure.

v For send and receive exits, the largest buffer you should allow for is as follows:

LU 6.2:

– 32 KB
TCP:

– i5/OS 16 KB

– Others 32 KB

Note: The maximum usable length may be 2 bytes less than this. Check the

value returned in MaxSegmentLength for details. For more information on

MaxSegmentLength, see MaxSegmentLength.

NetBIOS:

– 64 KB
SPX:

– 64 KB

Chapter 6. Further intercommunication considerations 395

Note: Receive exits on sender channels and sender exits on receiver channels

use 2 KB buffers for TCP.

v For security exits, the distributed queuing facility allocates a buffer of 4000

bytes.

It is permissible for the exit to return an alternate buffer, together with the relevant

parameters. See “Channel-exit programs” on page 375 for call details.

Note: Before using a channel-exit program for the first time on WebSphere MQ on

UNIX systems, i5/OS, or Windows, you should relink it with threaded libraries to

make it thread-safe.

WebSphere MQ for z/OS

The exits are invoked as if by a z/OS LINK, in:

v Non-authorized problem program state

v Primary address space control mode

v Non-cross-memory mode

v Non-access register mode

v 31-bit addressing mode

The link-edited modules must be placed in the data set specified by the CSQXLIB

DD statement of the channel initiator address space procedure; the names of the

load modules are specified as the exit names in the channel definition.

When writing channel exits for z/OS, the following rules apply:

v Exits must be written in assembler or C; if C is used, it must conform to the C

systems programming environment for system exits, described in the z/OS

C/C++ Programming Guide.

v Exits are loaded from the non-authorized libraries defined by a CSQXLIB DD

statement. Providing CSQXLIB has DISP=SHR, exits can be updated while the

channel initiator is running, with the new version used when the channel is

restarted.

v Exits must be reentrant, and capable of running anywhere in virtual storage.

v Exits must reset the environment, on return, to that at entry.

v Exits must free any storage obtained, or ensure that it will be freed by a

subsequent exit invocation.

For storage that is to persist between invocations, use the z/OS STORAGE

service; there is no suitable service in C.

v All MQI calls except MQCMIT/CSQBCMT and MQBACK/CSQBBAK are

allowed. They must be contained after MQCONN (with a blank queue manager

name). If these calls are used, the exit must be link-edited with the stub

CSQXSTUB.

The exception to this rule is that security channel exits may issue commit and

backout MQI calls. To do this, code the verbs CSQXCMT and CSQXBAK in

place of MQCMIT/CSQBCMT and MQBACK/CSQBBAK.

v Exits should not use any system services that could cause a wait, because this

would severely impact the handling of some or all of the other channels. Many

channels are run under a single TCB typically, if you do something in an exit

that causes a wait and you do not use MQXWAIT, it will cause all these

396 WebSphere MQ: Intercommunication

channels to wait. This will not give any functional problems, but might have an

adverse effect on performance. Most SVCs involve waits, so you should avoid

them, except for the following:

– GETMAIN/FREEMAIN/STORAGE

– LOAD/DELETE

In general, therefore, SVCs, PCs, and I/O should be avoided. Instead, the

MQXWAIT call should be used.

v Exits should not issue ESTAEs or SPIEs, apart from in any subtasks they attach.

This is because their error handling might interfere with the error handling

performed by WebSphere MQ. This means that WebSphere MQ might not be

able to recover from an error, or that your exit program might not receive all the

error information.

v The MQXWAIT call (see “MQXWAIT – Wait in exit” on page 412) provides a

wait service that allows waiting for I/O and other events; if this service is used,

exits must not use the linkage stack.

For I/O and other facilities that do not provide non-blocking facilities or an ECB

to wait on, a separate subtask should be ATTACHed, and its completion waited

for by MQXWAIT; because of the overhead that this technique incurs, it is

recommended that this be used only by the security exit.

v The MQDISC MQI call will not cause an implicit commit to occur within the exit

program. A commit of the channel process is performed only when the channel

protocol dictates.

The following exit samples are provided with WebSphere MQ for z/OS:

CSQ4BAX0

This sample is written in assembler, and illustrates the use of MQXWAIT.

CSQ4BCX1 and CSQ4BCX2

These samples are written in C and illustrate how to access the parameters.

WebSphere MQ for i5/OS

The exit is a program object written in the ILE C, ILE RPG, or ILE COBOL

language. The exit program names and their libraries are named in the channel

definition.

Observe the following conditions when creating and compiling an exit program:

v The program must be made thread safe and created with the ILE C, ILE RPG, or

ILE COBOL compiler. For ILE RPG you must specify the THREAD(*SERIALIZE)

control specification, and for ILE COBOL you must specify SERIALIZE for the

THREAD option of the PROCESS statement. The programs must also be bound

to the threaded WebSphere MQ libraries: QMQM/LIBMQM_R in the case of ILE

C and ILE RPG, and AMQ0STUB_R in the case of ILE COBOL. For additional

information about making RPG or COBOL applications thread safe, refer to the

appropriate Programmer’s Guide for the language.

v WebSphere MQ for i5/OS requires that the exit programs are enabled for

teraspace support. (Teraspace is a form of shared memory introduced in

OS/400® V4R4.) In the case of the ILE RPG and COBOL compilers, any

programs compiled on OS/400 V4R4 or later are so enabled. In the case of C,

the programs must be compiled with the TERASPACE(*YES *TSIFC) options

specified on CRTCMOD or CRTBNDC commands.

v An exit returning a pointer to its own buffer space must ensure that the object

pointed to exists beyond the timespan of the channel-exit program. In other

Chapter 6. Further intercommunication considerations 397

words, the pointer cannot be the address of a variable on the program stack, nor

of a variable in the program heap. Instead, the pointer must be obtained from

the system. An example of this is a user space created in the user exit. To ensure

that any data area allocated by the channel-exit program is still available for the

MCA when the program ends, the channel exit must run in the caller’s

activation group or a named activation group. Do this by setting the ACTGRP

parameter on CRTPGM to a user-defined value or *CALLER. If the program is

created in this way, the channel-exit program can allocate dynamic memory and

pass a pointer to this memory back to the MCA.

WebSphere MQ for Windows server, WebSphere MQ client for

Windows

The exit is a DLL that must be written in C.

v On a WebSphere MQ for Windows server, specify the path name of the directory

that holds the exit program on the Exits page of the queue manager properties

(accessed from the WebSphere MQ Services snap-in).

If the exit is on a Windows client, specify the path name on the All Queue

Managers page of the WebSphere MQ properties (accessed from the WebSphere

MQ services snap-in).

The WebSphere MQ Services snap-in is described in the WebSphere MQ System

Administration Guide manual.

The default exit path for 32-bit exits is <install location>\exits, and for 64-bit

exits it is <install location>\exits64. You can alter the default location using

WebSphere MQ Explorer.

Define a dummy MQStart() routine in the exit and specify MQStart as the entry

point in the library. Figure 83 shows how to set up an entry to your program:

In order to access the fields pointed to by pChannelExitParms and

pChannelDefinition you need to insert the following lines in your exit program:

...
/* Variable definitions */ ...
 PMQCXP pParms;

 PMQCD pChDef; ...
/* Code */ ...
 pParms = (PMQCXP)pChannelExitParms;

 pChDef = (PMQCD)pChannelDefinition;

#include <cmqc.h>

#include <cmqxc.h>

void MQStart() {;} /* dummy entry point - for consistency only */

void MQENTRY ChannelExit (PMQCXP pChannelExitParms,

 PMQCD pChannelDefinition,

 PMQLONG pDataLength,

 PMQLONG pAgentBufferLength,

 PMQVOID pAgentBuffer,

 PMQLONG pExitBufferLength,

 PMQPTR pExitBufferAddr)

{

... Insert code here

}

Figure 83. Sample source code for a channel exit on Windows

398 WebSphere MQ: Intercommunication

The pointers pParms and pChDef can then be dereferenced to access individual

fields.

When writing channel exits for these products using Visual C++, you should do

the following:

v Add MQMVX.LIB to project as a source file1.

v Change the box labelled “Use Run-Time Library” from “Multithreaded” to

“Multithreaded using DLL” in the project settings under C/C++ code

generation.

v Do not change the box labelled “Entry-Point Symbol”. This box can be found in

the project settings, under the Link tab, when you select Category and then

Output.

v Write your own .DEF file; an example of this is shown in Figure 84.

WebSphere MQ for AIX

Note: Before you use an existing user exit for the first time on WebSphere MQ for

AIX, you must recompile it to enable it to take advantage of thread-safe system

calls. If your user exits use thread-unsafe system calls, you will need to modify

them before using them on this platform.

The exit is a dynamically loaded object that must be written in C. To ensure that it

can be loaded when required, put 32-bit exits in /var/mqm/exits and 64-bit exits

in /var/mqm/exits64.

These are the default paths for exits in the ExitPath stanza of the ’qm.ini’ file or the

ClientExitPath stanza of the WebSphere MQ client configuration file and can be

changed if required. Exits on the server use the ’qm.ini’ file, those on the client use

the WebSphere MQ client configuration file.

If both mqs.ini and WebSphere MQ client configuration file values are encountered,

the WebSphere MQ client configuration file value is used; if there is no WebSphere

MQ client configuration file value, the mqs.ini value is used if it is set.

Alternatively you can specify the full path name in the MQCD if MQCONNX is

used or in the DEFINE CHANNEL command.

1. MQMVX.LIB is used for data conversion and is not available on client products.

 LIBRARY exit

 PROTMODE

 DESCRIPTION ’Provides Retry and Channel exits’

 CODE SHARED LOADONCALL

 DATA NONSHARED MULTIPLE

 HEAPSIZE 4096

 STACKSIZE 8192

 EXPORTS Retry

Figure 84. Sample DEF file for Windows

Chapter 6. Further intercommunication considerations 399

Define a dummy MQStart() routine in the exit and specify MQStart as the entry

point in the module. Figure 85 shows how to set up an entry to your program:

Figure 86 shows the compiler and linker commands for channel-exit programs on

AIX.

 In this case exit is the library name and ChannelExit is the function name. The

export file is called exit.exp. These names are used by the channel definition to

reference the exit program using the format described in Exit name fields. See also

the MSGEXIT parameter of the Define Channel command in WebSphere MQ Script

(MQSC) Command Reference

Figure 87 shows a sample export file for this make file.

Note: All functions that will be called by WebSphere MQ must be exported.

On the client, a 32-bit or 64-bit exit can be used. This must be linked to mqic_r.

WebSphere MQ for HP-UX

Note: Before you use an existing user exit for the first time on WebSphere MQ for

HP-UX, you must recompile it to enable it to take advantage of thread-safe system

calls. If your user exits use thread-unsafe system calls, you will need to modify

them before using them on this platform.

The exit is a dynamically loaded object that must be written in C. To ensure that it

can be loaded when required, put 32-bit exits in /var/mqm/exits and 64-bit exits

in /var/mqm/exits64.

These are the default paths for exits in the ExitPath stanza of the ’qm.ini’ file or the

ClientExitPath stanza of the WebSphere MQ client configuration file and can be

#include <cmqc.h>

#include <cmqxc.h>

void MQStart() {;} /* dummy entry point - for consistency only */

void MQENTRY ChannelExit (PMQVOID pChannelExitParms,

 PMQVOID pChannelDefinition,

 PMQLONG pDataLength,

 PMQLONG pAgentBufferLength,

 PMQVOID pAgentBuffer,

 PMQLONG pExitBufferLength,

 PMQPTR pExitBufferAddr)

{

... Insert code here

}

Figure 85. Sample source code for a channel exit on AIX

$ xlc_r -q64 -e MQStart -bE:exit.exp -bM:SRE -o /var/mqm/exits64/exit

exit.c -I/usr/mqm/inc -L/usr/mqm/lib64 -lmqm_r

Figure 86. Sample compiler and linker commands for channel exits on AIX

#!

channelExit

MQStart

Figure 87. Sample export file for AIX

400 WebSphere MQ: Intercommunication

changed if required. Exits on the server use the ’qm.ini’ file, those on the client use

the WebSphere MQ client configuration file.

If both mqs.ini and WebSphere MQ client configuration file values are encountered,

the WebSphere MQ client configuration file value is used; if there is no WebSphere

MQ client configuration file value, the mqs.ini value is used if it is set.

Alternatively you can specify the full path name in the MQCD if MQCONNX is

used or in the DEFINE CHANNEL command.

Define a dummy MQStart() routine in the exit and specify MQStart as the entry

point in the module. Figure 88 shows how to set up an entry to your program:

 On the client, a 32-bit or 64-bit exit can be used. This must be linked to mqic_r.

WebSphere MQ for Solaris

Note: Before you use an existing user exit for the first time on WebSphere MQ for

Solaris, you must recompile it to enable it to take advantage of thread-safe system

calls. If your user exits use thread-unsafe system calls, you will need to modify

them before using them on this platform.

The exit is a dynamically loaded object that must be written in C. To ensure that it

can be loaded when required, put 32-bit exits in /var/mqm/exits and 64-bit exits

in /var/mqm/exits64.

These are the default paths for exits in the ExitPath stanza of the ’qm.ini’ file or the

ClientExitPath stanza of the WebSphere MQ client configuration file and can be

changed if required. Exits on the server use the ’qm.ini’ file, those on the client use

the WebSphere MQ client configuration file.

If both mqs.ini and WebSphere MQ client configuration file values are encountered,

the WebSphere MQ client configuration file value is used; if there is no WebSphere

MQ client configuration file value, the mqs.ini value is used if it is set.

#include <cmqc.h>

#include <cmqxc.h>

void MQStart() {;} /* dummy entry point - for consistency only */

void MQENTRY ChannelExit (PMQVOID pChannelExitParms,

 PMQVOID pChannelDefinition,

 PMQLONG pDataLength,

 PMQLONG pAgentBufferLength,

 PMQVOID pAgentBuffer,

 PMQLONG pExitBufferLength,

 PMQPTR pExitBufferAddr)

{

... Insert code here

}

Figure 88. Sample source code for a channel exit on HP-UX

$ c89 +DD64 +z -c -D_HPUX_SOURCE -o exit.o exit.c -I/opt/mqm/inc

$ ld -b +noenvvar exit.o +ee MQStart +ee ChannelExit -o

/var/mqm/exits64/exit -L/opt/mqm/lib64 -L/usr/lib/pa20_64 -lmqm_r -lpthread

$ rm exit.o

Figure 89. Sample compiler and linker commands for channel exits on HP-UX

Chapter 6. Further intercommunication considerations 401

Alternatively you can specify the full path name in the MQCD if MQCONNX is

used or in the DEFINE CHANNEL command.

Define a dummy MQStart() routine in the exit and specify MQStart as the entry

point in the module. Figure 90 shows how to set up an entry to your program:

Figure 91 shows the compiler and linker commands for channel-exit programs on

Solaris.

 In this case exit is the library name and ChannelExit is the function name. These

names are used by the channel definition to reference the exit program using the

format described in Exit name fields. See also the MSGEXIT parameter of the

Define Channel command in WebSphere MQ Script (MQSC) Command Reference

On the client, a 32-bit or 64-bit exit can be used. This must be linked to mqic_r.

WebSphere MQ for Linux

Note: Before you use an existing user exit for the first time on WebSphere MQ for

Linux, you must recompile it to enable it to take advantage of thread-safe system

calls. If your user exits use thread-unsafe system calls, you will need to modify

them before using them on this platform.

The exit is a dynamically loaded object that must be written in C. To ensure that it

can be loaded when required, put 32-bit exits in /var/mqm/exits and 64-bit exits

in /var/mqm/exits64.

These are the default paths for exits in the ExitPath stanza of the ’qm.ini’ file or the

ClientExitPath stanza of the WebSphere MQ client configuration file and can be

changed if required. Exits on the server use the ’qm.ini’ file, those on the client use

the WebSphere MQ client configuration file.

If both mqs.ini and WebSphere MQ client configuration file values are encountered,

the WebSphere MQ client configuration file value is used; if there is no WebSphere

MQ client configuration file value, the mqs.ini value is used if it is set.

#include <cmqc.h>

#include <cmqxc.h>

void MQStart() {;} /* dummy entry point */

void MQENTRY ChannelExit (PMQVOID pChannelExitParms,

 PMQVOID pChannelDefinition,

 PMQLONG pDataLength,

 PMQLONG pAgentBufferLength,

 PMQVOID pAgentBuffer,

 PMQLONG pExitBufferLength,

 PMQPTR pExitBufferAddr)

{

... Insert code here

}

Figure 90. Sample source code for a channel exit on Solaris

$ cc -xarch=v9 -mt -G -o /var/mqm/exits64/exit exit.c -I/opt/mqm/inc

-L/opt/mqm/lib64 -R/opt/mqm/lib64 -R/usr/lib/64 -lmqm -lmqmcs -lmqmzse -lsocket

-lnsl -ldl

Figure 91. Sample compiler and linker commands for channel exits on Solaris

402 WebSphere MQ: Intercommunication

Alternatively you can specify the full path name in the MQCD if MQCONNX is

used or in the DEFINE CHANNEL command.

Define a dummy MQStart() routine in the exit and specify MQStart as the entry

point in the module. Figure 92 shows how to set up an entry to your program:

Figure 93 shows the compiler and linker commands for channel-exit programs on

Linux:

 In this case exit is the library name and ChannelExit is the function name. These

names are used by the channel definition to reference the exit program using the

format described in Exit name fields. See also the MSGEXIT parameter of the

Define Channel command in WebSphere MQ Script (MQSC) Command Reference

On the client, a 32-bit or 64-bit exit can be used. This must be linked to mqic_r. For

WebSphere MQ for Linux (x86 platform), if you use a 32-bit server platform, then

use the compiler and linker commands shown in Figure 94.

SSPI security exit

WebSphere MQ for Windows supplies a security exit for both the WebSphere MQ

client and the WebSphere MQ server. This is a channel-exit program that provides

authentication for WebSphere MQ channels by using the Security Services

Programming Interface (SSPI). The SSPI provides the integrated security facilities

of Windows.

The security packages are loaded from either security.dll or secur32.dll. These

DLLs are supplied with your operating system.

#include <cmqc.h>

#include <cmqxc.h>

void MQStart() {;} /* dummy entry point */

void MQENTRY ChannelExit (PMQVOID pChannelExitParms,

PMQVOID pChannelDefinition,

PMQLONG pDataLength,

PMQLONG pAgentBufferLength,

PMQVOID pAgentBuffer,

PMQLONG pExitBufferLength,

PMQPTR pExitBufferAddr)

{

... Insert code here

}

Figure 92. Sample source code for a channel exit on Linux

$ gcc -m64 -shared -fPIC -o /var/mqm/exits64/exit exit.c -I/opt/mqm/inc

-L/opt/mqm/lib64 -Wl,-rpath=/opt/mqm/lib64 -Wl,-rpath=/usr/lib64 -lmqm_r

Figure 93. Sample compiler and linker commands for channel-exits on Linux platforms where

the queue manager is 64-bit

$ gcc -shared -fPIC -o /var/mqm/exits/exit exit.c -I/opt/mqm/inc

-L/opt/mqm/lib -Wl,-rpath=/opt/mqm/lib -Wl,-rpath=/usr/lib -lmqm_r

Figure 94. Sample compiler and linker commands for channel-exits on Linux platforms where

the queue manager is 32-bit

Chapter 6. Further intercommunication considerations 403

One-way authentication is provided on Windows, using NTLM authentication

services. Two way authentication is provided on Windows 2000, using Kerberos

authentication services.

The security exit program is supplied in source and object format. You can use the

object code as it is, or you can use the source code as a starting point to create

your own user-exit programs. For more information on using the object or source

code of the SSPI security exit, see WebSphere MQ Application Programming Guide

Implications of sharing conversations

Channel instances can be shared in some circumstances. This topic discusses the

interaction of the SharingConversations fields in the MQCD and MQCXP

structures and the implications for channel exits.

In an environment where sharing conversations is not permitted, conversations

cannot share a channel instance.

In an environment where sharing conversations is permitted, conversations can

share a channel instance. Sharing conversations is controlled at a channel instance

level by two fields, both called SharingConversations. One of these is part of the

channel definition (MQCD) structure and the other is part of the channel exit

parameter (MQCXP) structure. The SharingConversations field in the MQCD is an

integer value, determining the maximum number of conversations that can share a

channel instance associated with the channel. The SharingConversations fields in

the MQCXP is a boolean value, indicating whether the channel instance can be

shared.

If the first channel exit program to run on a channel instance sets the MQCD

SharingConversations field to zero, the exit program is the only one to run on this

channel instance; the channel instance is never shared. Further exit programs that

set this field to zero similarly run on their own channel instance.

If the first channel exit program to run on a channel instance sets the MQCD

SharingConversations field to a number greater than zero then MQCXP

SharingConversations is set to TRUE, indicating that further conversations can be

started on the same channel instance. If a new user-supplied channel definition

matches the user-supplied definition of this already existing channel (that is, its

definition before any alteration by a channel exit program) then the existing

channel instance is used. The channel exit program cannot choose to use a separate

channel instance. If there are no existing channels matching the new channel

definition, a new channel instance is created and MQCXP SharingConversations is

set to FALSE.

When you write a channel exit program, consider whether it will run on a channel

instance that might be shared. If the channel instance might be shared, consider the

impact on other instances of the channel exit of changing MQCD fields, which

have common values across all the sharing conversations.

Example

Sharing conversations is enabled.

You are using a client-connection channel definition which specifies an exit

program.

404 WebSphere MQ: Intercommunication

The first time that this channel starts, the exit program alters some of the MQCD

parameters when it is initialized. These are acted on by the channel, so the

definition that the channel is running with is now different from the one that was

originally supplied. The MQCXP SharingConversations parameter is set to TRUE.

The next time that the application connects using this channel, the conversation

runs on the channel instance which was started previously, because it has the same

original channel definition. The conversation is now running on a channel instance

which was set up using the definition altered by the exit on the first conversation.

When the exit program is initialized for the second conversation, although it can

alter MQCD fields, they are not acted on by the channel. These same characteristics

apply to any subsequent conversations which share the channel instance.

Each exit instance within a channel instance shares the same MQCD. Once the

channel instance is established, if exit programs try to alter MQCD fields they

might encounter problems because other instances of exit programs running on the

channel instance could be attempting to alter the same fields at the same time. If

this situation could arise with your exit programs, you must serialize access to the

MQCD in your exit code.

If you are working with a channel which is defined to share conversations, but you

do not want sharing to occur on a particular channel instance, set the MQCD value

of SharingConversations to 1 or 0 when you initialize a channel exit on the first

conversation on the channel instance. See “SharingConversations (MQLONG)” on

page 442 for an explanation of the values of SharingConversations.

Channel-exit calls and data structures

This topic provides reference information about the special WebSphere MQ calls

and data structures that you can use when you write channel exit programs.

This is product-sensitive programming interface information. You can write

WebSphere MQ user exits in the following programming languages:

 Platform Programming languages

WebSphere MQ for

z/OS

Assembler and C (which must conform to the C system

programming environment for system exits, described in the z/OS

C/C++ Programming Guide.)

WebSphere MQ for

i5/OS

C, COBOL, and RPG II

All other WebSphere

MQ platforms

C

You can also write user exits in Java™ for use only with Java and JMS applications.

For more information about using channel exits with the WebSphere MQ classes

for Java and WebSphere MQ classes for JMS, see Using channel exits.

You cannot write WebSphere MQ user exits in TAL or Visual Basic. However, a

declaration for the MQCD structure is provided in Visual Basic for use on the

MQCONNX call from an MQ client program.

In a number of cases in the descriptions that follow, parameters are arrays or

character strings whose size is not fixed. For these, a lowercase “n” is used to

represent a numeric constant. When the declaration for that parameter is coded,

the “n” must be replaced by the numeric value required. For further information

Chapter 6. Further intercommunication considerations 405

about the conventions used in these descriptions, see the WebSphere MQ

Application Programming Reference book.

The calls are:

v “MQ_CHANNEL_EXIT – Channel exit”

v “MQ_CHANNEL_AUTO_DEF_EXIT – Channel auto-definition exit” on page 410

v “MQXWAIT – Wait in exit” on page 412

The data structures are:

v “MQCD – Channel definition” on page 413

v “MQCXP – Channel exit parameter” on page 458

v “MQXWD – Exit wait descriptor” on page 475

Data definition files

Data definition files are supplied with WebSphere MQ for each of the supported

programming languages. For details of these, see the chapter ″Header files″ in

WebSphere MQ Constants.

MQ_CHANNEL_EXIT – Channel exit

This call definition is provided solely to describe the parameters that are passed to

each of the channel exits called by the Message Channel Agent. No entry point

called MQ_CHANNEL_EXIT is actually provided by the queue manager; the name

MQ_CHANNEL_EXIT is of no special significance since the names of the channel

exits are provided in the channel definition MQCD.

There are five types of channel exit:

v Channel security exit

v Channel message exit

v Channel send exit

v Channel receive exit

v Channel message-retry exit

The parameters are similar for each type of exit, and the description given here

applies to all of them, except where specifically noted.

Syntax

Parameters

The MQ_CHANNEL_EXIT call has the following parameters.

ChannelExitParms (MQCXP) – input/output:

 Channel exit parameter block.

MQ_CHANNEL_EXIT (ChannelExitParms, ChannelDefinition, DataLength,

AgentBufferLength, AgentBuffer, ExitBufferLength, ExitBufferAddr)

406 WebSphere MQ: Intercommunication

This structure contains additional information relating to the invocation of the exit.

The exit sets information in this structure to indicate how the MCA should

proceed.

ChannelDefinition (MQCD) – input/output:

 Channel definition.

This structure contains parameters set by the administrator to control the behavior

of the channel.

DataLength (MQLONG) – input/output:

 Length of data.

When the exit is invoked, this contains the length of data in the AgentBuffer

parameter. The exit must set this to the length of the data in either the AgentBuffer

or the ExitBufferAddr (as determined by the ExitResponse2 field in the

ChannelExitParms parameter) that is to proceed.

The data depends on the type of exit:

v For a channel security exit, when the exit is invoked this contains the length of

any security message in the AgentBuffer field, if ExitReason is

MQXR_SEC_MSG. It is zero if there is no message. The exit must set this field to

the length of any security message to be sent to its partner if it sets

ExitResponse to MQXCC_SEND_SEC_MSG or

MQXCC_SEND_AND_REQUEST_SEC_MSG. The message data is in either

AgentBuffer or ExitBufferAddr.

The content of security messages is the sole responsibility of the security exits.

v For a channel message exit, when the exit is invoked this contains the length of

the message (including the transmission queue header). The exit must set this

field to the length of the message in either AgentBuffer or ExitBufferAddr that

is to proceed.

v For a channel send or channel receive exit, when the exit is invoked this

contains the length of the transmission. The exit must set this field to the length

of the transmission in either AgentBuffer or ExitBufferAddr that is to proceed.

If a security exit sends a message, and there is no security exit at the other end of

the channel, or the other end sets an ExitResponse of MQXCC_OK, the initiating

exit is re-invoked with MQXR_SEC_MSG and a null response (DataLength=0).

AgentBufferLength (MQLONG) – input:

 Length of agent buffer.

This can be greater than DataLength on invocation.

For channel message, send, and receive exits, any unused space on invocation can

be used by the exit to expand the data in place. If this is done, the DataLength

parameter must be set appropriately by the exit.

In the C programming language, this parameter is passed by address.

AgentBuffer (MQBYTE×AgentBufferLength) – input/output:

Chapter 6. Further intercommunication considerations 407

Agent buffer.

The contents of this depend upon the exit type:

v For a channel security exit, on invocation of the exit it contains a security

message if ExitReason is MQXR_SEC_MSG. If the exit wishes to send a security

message back, it can either use this buffer or its own buffer (ExitBufferAddr).

v For a channel message exit, on invocation of the exit this contains:

– The transmission queue header (MQXQH), which includes the message

descriptor (which itself contains the context information for the message),

immediately followed by

– The message data
If the message is to proceed, the exit can do one of the following:

– Leave the contents of the buffer untouched

– Modify the contents in place (returning the new length of the data in

DataLength; this must not be greater then AgentBufferLength)

– Copy the contents to the ExitBufferAddr, making any required changes
Any changes that the exit makes to the transmission queue header are not

checked; however, erroneous modifications may mean that the message cannot

be put at the destination.

v For a channel send or receive exit, on invocation of the exit this contains the

transmission data. The exit can do one of the following:

– Leave the contents of the buffer untouched

– Modify the contents in place (returning the new length of the data in

DataLength; this must not be greater then AgentBufferLength)

– Copy the contents to the ExitBufferAddr, making any required changes
Note that the first 8 bytes of the data must not be changed by the exit.

ExitBufferLength (MQLONG) – input/output:

 Length of exit buffer.

On the first invocation of the exit, this is set to zero. Thereafter whatever value is

passed back by the exit, on each invocation, is presented to the exit next time it is

invoked. The value is not used by the MCA.

Note: This parameter should not be used by exits written in programming

languages which do not support the pointer data type.

ExitBufferAddr (MQPTR) – input/output:

 Address of exit buffer.

This is a pointer to the address of a buffer of storage managed by the exit, where it

can choose to return message or transmission data (depending upon the type of

exit) to the agent if the agent’s buffer is or may not be large enough, or if it is

more convenient for the exit to do so.

On the first invocation of the exit, the address passed to the exit is null. Thereafter

whatever address is passed back by the exit, on each invocation, is presented to the

exit the next time it is invoked.

Note: This parameter should not be used by exits written in programming

languages that do not support the pointer data type.

408 WebSphere MQ: Intercommunication

Usage notes

1. The function performed by the channel exit is defined by the provider of the

exit. The exit, however, must conform to the rules defined here and in the

associated control block, the MQCXP.

2. The ChannelDefinition parameter passed to the channel exit may be one of

several versions. See the Version field in the MQCD structure for more

information.

3. If the channel exit receives an MQCD structure with the Version field set to a

value greater than MQCD_VERSION_1, the exit should use the ConnectionName

field in MQCD, in preference to the ShortConnectionName field.

4. In general, channel exits are allowed to change the length of message data. This

may arise as a result of the exit adding data to the message, or removing data

from the message, or compressing or encrypting the message. However, special

restrictions apply if the message is a segment that contains only part of a

logical message. In particular, there must be no net change in the length of the

message as a result of the actions of complementary sending and receiving

exits.

For example, it is permissible for a sending exit to shorten the message by

compressing it, but the complementary receiving exit must restore the original

length of the message by decompressing it, so that there is no net change in the

length of the message.

This restriction arises because changing the length of a segment would cause

the offsets of later segments in the message to be incorrect, and this would

inhibit the queue manager’s ability to recognize that the segments formed a

complete logical message.

C invocation

exitname (&ChannelExitParms, &ChannelDefinition,

 &DataLength, &AgentBufferLength, AgentBuffer,

 &ExitBufferLength, &ExitBufferAddr);

The parameters passed to the exit are declared as follows:

MQCXP ChannelExitParms; /* Channel exit parameter block */

MQCD ChannelDefinition; /* Channel definition */

MQLONG DataLength; /* Length of data */

MQLONG AgentBufferLength; /* Length of agent buffer */

MQBYTE AgentBuffer[n]; /* Agent buffer */

MQLONG ExitBufferLength; /* Length of exit buffer */

MQPTR ExitBufferAddr; /* Address of exit buffer */

COBOL invocation

 CALL ’exitname’ USING CHANNELEXITPARMS, CHANNELDEFINITION,

 DATALENGTH, AGENTBUFFERLENGTH, AGENTBUFFER,

 EXITBUFFERLENGTH, EXITBUFFERADDR.

The parameters passed to the exit are declared as follows:

** Channel exit parameter block

 01 CHANNELEXITPARMS.

 COPY CMQCXPV.

** Channel definition

 01 CHANNELDEFINITION.

 COPY CMQCDV.

** Length of data

 01 DATALENGTH PIC S9(9) BINARY.

** Length of agent buffer

 01 AGENTBUFFERLENGTH PIC S9(9) BINARY.

** Agent buffer

 01 AGENTBUFFER PIC X(n).

Chapter 6. Further intercommunication considerations 409

** Length of exit buffer

 01 EXITBUFFERLENGTH PIC S9(9) BINARY.

** Address of exit buffer

 01 EXITBUFFERADDR POINTER.

RPG invocation (ILE)

 C*..1....:....2....:....3....:....4....:....5....:....6....:....7..

 C CALLP exitname(MQCXP : MQCD : DATLEN :

 C ABUFL : ABUF : EBUFL :

 C EBUF)

The prototype definition for the call is:

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..

 Dexitname PR EXTPROC(’exitname’)

 D* Channel exit parameter block

 D MQCXP 160A

 D* Channel definition

 D MQCD 1328A

 D* Length of data

 D DATLEN 10I 0

 D* Length of agent buffer

 D ABUFL 10I 0

 D* Agent buffer

 D ABUF * VALUE

 D* Length of exit buffer

 D EBUFL 10I 0

 D* Address of exit buffer

 D EBUF *

System/390 assembler invocation

 CALL EXITNAME,(CHANNELEXITPARMS,CHANNELDEFINITION,DATALENGTH, X

 AGENTBUFFERLENGTH,AGENTBUFFER,EXITBUFFERLENGTH, X

 EXITBUFFERADDR)

The parameters passed to the exit are declared as follows:

CHANNELEXITPARMS CMQCXPA , Channel exit parameter block

CHANNELDEFINITION CMQCDA , Channel definition

DATALENGTH DS F Length of data

AGENTBUFFERLENGTH DS F Length of agent buffer

AGENTBUFFER DS CL(n) Agent buffer

EXITBUFFERLENGTH DS F Length of exit buffer

EXITBUFFERADDR DS F Address of exit buffer

MQ_CHANNEL_AUTO_DEF_EXIT – Channel auto-definition

exit

This call definition is provided solely to describe the parameters that are passed to

the channel auto-definition exit called by the Message Channel Agent. No entry

point called MQ_CHANNEL_AUTO_DEF_EXIT is actually provided by the queue

manager; the name MQ_CHANNEL_AUTO_DEF_EXIT is of no special significance

because the names of the auto-definition exits are provided in the queue manager.

Syntax

MQ_CHANNEL_AUTO_DEF_EXIT (ChannelExitParms, ChannelDefinition)

410 WebSphere MQ: Intercommunication

Parameters

The MQ_CHANNEL_AUTO_DEF_EXIT call has the following parameters.

ChannelExitParms (MQCXP) – input/output:

 Channel exit parameter block.

This structure contains additional information relating to the invocation of the exit.

The exit sets information in this structure to indicate how the MCA should

proceed.

ChannelDefinition (MQCD) – input/output:

 Channel definition.

This structure contains parameters set by the administrator to control the behavior

of channels which are created automatically. The exit sets information in this

structure to modify the default behavior set by the administrator.

The MQCD fields listed below must not be altered by the exit:

v ChannelName

v ChannelType

v StrucLength

v Version

If other fields are changed, the value set by the exit must be valid. If the value is

not valid, an error message is written to the error log file or displayed on the

console (as appropriate to the environment).

Usage notes

1. The function performed by the channel exit is defined by the provider of the

exit. The exit, however, must conform to the rules defined here and in the

associated control block, the MQCXP.

2. The ChannelExitParms parameter passed to the channel auto-definition exit is

an MQCXP structure. The version of MQCXP passed depends on the

environment in which the exit is running; see the description of the Version

field in “MQCXP – Channel exit parameter” on page 458 for details.

3. The ChannelDefinition parameter passed to the channel auto-definition exit is

an MQCD structure. The version of MQCD passed depends on the

environment in which the exit is running; see the description of the Version

field in “MQCD – Channel definition” on page 413 for details.

C invocation

exitname (&ChannelExitParms, &ChannelDefinition);

The parameters passed to the exit are declared as follows:

MQCXP ChannelExitParms; /* Channel exit parameter block */

MQCD ChannelDefinition; /* Channel definition */

COBOL invocation

 CALL ’exitname’ USING CHANNELEXITPARMS, CHANNELDEFINITION.

The parameters passed to the exit are declared as follows:

Chapter 6. Further intercommunication considerations 411

** Channel exit parameter block

 01 CHANNELEXITPARMS.

 COPY CMQCXPV.

** Channel definition

 01 CHANNELDEFINITION.

 COPY CMQCDV.

RPG invocation (ILE)

 C*..1....:....2....:....3....:....4....:....5....:....6....:....7..

 C CALLP exitname(MQCXP : MQCD)

The prototype definition for the call is:

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..

 Dexitname PR EXTPROC(’exitname’)

 D* Channel exit parameter block

 D MQCXP 160A

 D* Channel definition

 D MQCD 1328A

System/390 assembler invocation

 CALL EXITNAME,(CHANNELEXITPARMS,CHANNELDEFINITION)

The parameters passed to the exit are declared as follows:

CHANNELEXITPARMS CMQCXPA , Channel exit parameter block

CHANNELDEFINITION CMQCDA , Channel definition

MQXWAIT – Wait in exit

The MQXWAIT call waits for an event to occur. It can be used only from a channel

exit on z/OS.

The use of MQXWAIT helps to avoid performance problems that might otherwise

occur if a channel exit does something that causes a wait. The event MQXWAIT is

waiting on is signalled by an MVS ECB (event control block). The ECB is described

in the MQXWD control block description .

For more information on the use of MQXWAIT and writing channel-exit programs,

see “WebSphere MQ for z/OS” on page 396

Syntax

Parameters

The MQXWAIT call has the following parameters.

Hconn (MQHCONN) – input

 Connection handle.

This handle represents the connection to the queue manager. The value of

Hconn was returned by a previous MQCONN call issued in the same or earlier

invocation of the exit.

WaitDesc (MQXWD) – input/output

 Wait descriptor.

This describes the event to wait for. See “MQXWD – Exit wait descriptor” on

page 475 for details of the fields in this structure.

MQXWAIT (Hconn, WaitDesc, CompCode, Reason)

412 WebSphere MQ: Intercommunication

CompCode (MQLONG) – output

 Completion code.

It is one of the following:

MQCC_OK

Successful completion.

MQCC_FAILED

Call failed.

Reason (MQLONG) – output

 Reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE

(0, X’000’) No reason to report.

MQRC_ADAPTER_NOT_AVAILABLE

(2204, X’89C’) Adapter not available.

MQRC_OPTIONS_ERROR

(2046, X’7FE’) Options not valid or not consistent.

MQRC_XWAIT_CANCELED

(2107, X’83B’) MQXWAIT call canceled.

MQRC_XWAIT_ERROR

(2108, X’83C’) Invocation of MQXWAIT call not valid.

For more information on these reason codes, see the WebSphere MQ

Application Programming Reference.

C invocation

MQXWAIT (Hconn, &WaitDesc, &CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /* Connection handle */

MQXWD WaitDesc; /* Wait descriptor */

MQLONG CompCode; /* Completion code */

MQLONG Reason; /* Reason code qualifying CompCode */

System/390® assembler invocation

 CALL MQXWAIT,(HCONN,WAITDESC,COMPCODE,REASON)

Declare the parameters as follows:

HCONN DS F Connection handle

WAITDESC CMQXWDA , Wait descriptor

COMPCODE DS F Completion code

REASON DS F Reason code qualifying COMPCODE

MQCD – Channel definition

The MQCD structure contains the parameters which control execution of a channel.

It is passed to each channel exit that is called from a Message Channel Agent

(MCA). See MQ_CHANNEL_EXIT. The description in section relates both to

message channels and to MQI channels.

Chapter 6. Further intercommunication considerations 413

Exit name fields

When an exit is called, the relevant field from SecurityExit, MsgExit, SendExit,

ReceiveExit, and MsgRetryExit contains the name of the exit currently being

invoked. The meaning of the name in these fields depends on the environment in

which the MCA is running. Except where noted below, the name is left-justified

within the field, with no embedded blanks; the name is padded with blanks to the

length of the field. In the descriptions that follow, square brackets ([]) denote

optional information:

UNIX systems

The exit name is the name of a dynamically-loadable module or library,

suffixed with the name of a function residing in that library. The function

name must be enclosed in parentheses. The library name can optionally be

prefixed with a directory path:

[path]library(function)

 The name is limited to a maximum of 128 characters.

z/OS The exit name is the name of a load module that is valid for specification

on the EP parameter of the LINK or LOAD macro. The name is limited to

a maximum of 8 characters.

Windows

The exit name is the name of a dynamic-link library, suffixed with the

name of a function residing in that library. The function name must be

enclosed in parentheses. The library name can optionally be prefixed with

a directory path and drive:

[d:][path]library(function)

 The name is limited to a maximum of 128 characters.

i5/OS The exit name is a 10-byte program name followed by a 10-byte library

name. If the names are less than 10 bytes long, each name is padded with

blanks to make it 10 bytes. The library name can be *LIBL except when

calling a channel auto-definition exit, in which case a fully qualified name

is required.

Fields

This topic lists all the fields in the MQCD structure and describes each field.

ChannelName (MQCHAR20):

 Channel definition name.

There must be a channel definition of the same name at the remote machine to be

able to communicate.

The name must use only the characters:

v Uppercase A–Z

v Lowercase a–z

v Numerics 0–9

v Period (.)

v Forward slash (/)

v Underscore (_)

414 WebSphere MQ: Intercommunication

v Percent sign (%)

and be padded to the right with blanks. Leading or embedded blanks are not

allowed.

The length of this field is given by MQ_CHANNEL_NAME_LENGTH.

Version (MQLONG):

 Structure version number.

The value depends on the environment:

MQCD_VERSION_1

Version-1 channel definition structure.

MQCD_VERSION_2

Version-2 channel definition structure.

 This value is not used by any current WebSphere MQ product.

MQCD_VERSION_3

Version-3 channel definition structure.

 The field has this value on MQSeries Version 2 in the following

environments: HP OpenVMS, Compaq NonStop Kernel, and UNIX systems

not listed elsewhere.

MQCD_VERSION_4

Version-4 channel definition structure.

 This value is not used by any current WebSphere MQ product.

MQCD_VERSION_5

Version-5 channel definition structure.

 The field has this value on MQSeries for OS/390 Version 5 Release 2.

MQCD_VERSION_6

Version-6 channel definition structure.

 This is not the current MQCD structure version of any existing WebSphere

MQ product. However, a Version-6 MQCD structure can be passed to

MQCONNX using the ClientConnOffset or ClientConnPtr fields of the

MQCNO structure.

On the distributed platforms MQCD_VERSION_6 is the default Version in

the MQCD_DEFAULT and MQCD_CLIENT_CONN_DEFAULT initializers.

If you want to reference the MQCD_VERSION_7, MQCD_VERSION_8, or

MQCD_VERSION_9 fields of the MQCD, explicitly initialize the MQCD

Version field to MQCD_VERSION_7, MQCD_VERSION_8, or

MQCD_VERSION_9 as appropriate.

MQCD_VERSION_7

Version-7 channel definition structure.

 The field has this value on WebSphere MQ Version 5 Release 3 in the

following environments: AIX, HP-UX, Solaris, Windows, and on

WebSphere MQ for z/OS Version 5 Release 3 and Version 5 Release 3.1.

MQCD_VERSION_8

Version-8 channel definition structure.

 The field has this value on WebSphere MQ Version 6.0 on all platforms.

Chapter 6. Further intercommunication considerations 415

MQCD_VERSION_9

Version-9 channel definition structure.

 The field has this value on WebSphere MQ Version 7.0 on all platforms.

Fields that exist only in the more-recent versions of the structure are identified as

such in the descriptions of the fields. The following constant specifies the version

number of the current version:

MQCD_CURRENT_VERSION

Current version of channel definition structure.

 The value of this constant depends on the environment (see above).For

WebSphere MQ Version 7, the declarations of MQCD provided in the

header, COPY, and INCLUDE files for the supported programming

languages contain the additional fields, but the initial value provided for

the Version field is MQCD_VERSION_6. To use the additional fields, the

application must set the version number to MQCD_CURRENT_VERSION.

Applications which are intended to be portable between several

environments should use a more-recent version MQCD only if all of those

environments support that version.

Note: When a new version of the MQCD structure is introduced, the layout of the

existing part is not changed. The exit should therefore check that the version

number is equal to or greater than the lowest version which contains the fields that

the exit needs to use.

ChannelType (MQLONG):

 Channel type.

It is one of the following:

MQCHT_SENDER

Sender.

MQCHT_SERVER

Server.

MQCHT_RECEIVER

Receiver.

MQCHT_REQUESTER

Requester.

MQCHT_CLNTCONN

Client connection.

MQCHT_SVRCONN

Server-connection (for use by clients).

MQCHT_CLUSSDR

Cluster sender.

MQCHT_CLUSRCVR

Cluster receiver.

TransportType (MQLONG):

 Transport type.

Transmission protocol to be used.

416 WebSphere MQ: Intercommunication

Note that the value will not have been checked if the channel was initiated from

the other end.

The value is one of the following:

MQXPT_LU62

LU 6.2 transport protocol.

MQXPT_TCP

TCP/IP transport protocol.

MQXPT_NETBIOS

NetBIOS transport protocol.

 This value is supported in the following environments: Windows.

MQXPT_SPX

SPX transport protocol.

 This value is supported in the following environments: Windows, plus

WebSphere MQ clients connected to these systems.

Desc (MQCHAR64):

 Channel description.

This is a field that may be used for descriptive commentary. The content of the

field is of no significance to Message Channel Agents. However, it should contain

only characters that can be displayed. It cannot contain any null characters; if

necessary, it is padded to the right with blanks. In a DBCS installation, the field

can contain DBCS characters (subject to a maximum field length of 64 bytes).

Note: If this field contains characters that are not in the queue manager’s character

set (as defined by the CodedCharSetId queue manager attribute), those characters

may be translated incorrectly if this field is sent to another queue manager.

The length of this field is given by MQ_CHANNEL_DESC_LENGTH.

QMgrName (MQCHAR48):

 Queue-manager name.

For channels with a ChannelType other than MQCHT_CLNTCONN, this is the

name of the queue manager that an exit can connect to, which on UNIX systems

and Windows, is always nonblank.

The length of this field is given by MQ_Q_MGR_NAME_LENGTH.

XmitQName (MQCHAR48):

 Transmission queue name.

The name of the transmission queue from which messages are retrieved.

This field is relevant only for channels with a ChannelType of MQCHT_SENDER or

MQCHT_SERVER.

The length of this field is given by MQ_Q_NAME_LENGTH.

Chapter 6. Further intercommunication considerations 417

ShortConnectionName (MQCHAR20):

 First 20 bytes of connection name.

If the Version field is MQCD_VERSION_1, ShortConnectionName contains the full

connection name.

If the Version field is MQCD_VERSION_2 or greater, ShortConnectionName

contains the first 20 characters of the connection name. The full connection name is

given by the ConnectionName field; ShortConnectionName and the first 20 characters

of ConnectionName are identical.

See ConnectionName for details of the contents of this field.

Note: The name of this field was changed for MQCD_VERSION_2 and subsequent

versions of MQCD; the field was previously called ConnectionName.

The length of this field is given by MQ_SHORT_CONN_NAME_LENGTH.

MCAName (MQCHAR20):

 Reserved.

This is a reserved field; its value is blank.

The length of this field is given by MQ_MCA_NAME_LENGTH.

ModeName (MQCHAR8):

 LU 6.2 Mode name.

This field is relevant only if the transmission protocol (TransportType) is

MQXPT_LU62, and the ChannelType is not MQCHT_SVRCONN or

MQCHT_RECEIVER.

This field is always blank. The information is contained in the communications

Side Object instead.

The length of this field is given by MQ_MODE_NAME_LENGTH.

TpName (MQCHAR64):

 LU 6.2 transaction program name.

This field is relevant only if the transmission protocol (TransportType) is

MQXPT_LU62, and the ChannelType is not MQCHT_SVRCONN or

MQCHT_RECEIVER.

This field is always blank on platforms on which the information is contained in

the communications Side Object instead.

The length of this field is given by MQ_TP_NAME_LENGTH.

BatchSize (MQLONG):

 Batch size.

418 WebSphere MQ: Intercommunication

The maximum number of messages that can be sent through a channel before

synchronizing the channel.

This field is not relevant for channels with a ChannelType of MQCHT_SVRCONN

or MQCHT_CLNTCONN.

DiscInterval (MQLONG):

 Disconnect interval.

The maximum time in seconds for which the channel waits for a message to arrive

on the transmission queue, before terminating the channel. A value of zero causes

the MCA to wait indefinitely.

For server-connection channels using the TCP protocol, the interval represents the

client inactivity disconnect value, specified in seconds. If a server-connection has

received no communication from its partner client for this duration, it will

terminate the connection. The server-connection inactivity interval only applies

between MQ API calls from a client, so no client will be disconnected during a

long-running MQGET with wait call.

This attribute is not applicable for server-connection channels using protocols other

than TCP.

This field is relevant only for channels with a ChannelType of MQCHT_SENDER,

MQCHT_SERVER, MQCHT_CLUSSDR, MQCHT_CLUSRCVR or

MQCHT_SVRCONN.

ShortRetryCount (MQLONG):

 Short retry count.

This is the maximum number of attempts that are made to connect to the remote

machine, at intervals specified by ShortRetryInterval, before the (normally longer)

LongRetryCount and LongRetryInterval are used.

This field is relevant only for channels with a ChannelType of MQCHT_SENDER,

MQCHT_SERVER, MQCHT_CLUSSDR, or MQCHT_CLUSRCVR.

ShortRetryInterval (MQLONG):

 Short retry wait interval.

This is the maximum number of seconds to wait before reattempting connection to

the remote machine. Note that the interval between retries may be extended if the

channel has to wait to become active.

This field is relevant only for channels with a ChannelType of MQCHT_SENDER,

MQCHT_SERVER, MQCHT_CLUSSDR, or MQCHT_CLUSRCVR.

LongRetryCount (MQLONG):

 Long retry count.

Chapter 6. Further intercommunication considerations 419

This count is used after the count specified by ShortRetryCount has been

exhausted. It specifies the maximum number of further attempts that are made to

connect to the remote machine, at intervals specified by LongRetryInterval, before

logging an error to the operator.

This field is relevant only for channels with a ChannelType of MQCHT_SENDER,

MQCHT_SERVER, MQCHT_CLUSSDR, or MQCHT_CLUSRCVR.

LongRetryInterval (MQLONG):

 Long retry wait interval.

This is the maximum number of seconds to wait before reattempting connection to

the remote machine. Note that the interval between retries may be extended if the

channel has to wait to become active.

This field is relevant only for channels with a ChannelType of MQCHT_SENDER,

MQCHT_SERVER, MQCHT_CLUSSDR, or MQCHT_CLUSRCVR.

SecurityExit (MQCHARn):

 Channel security exit name.

If this name is nonblank, the exit is called at the following times:

v Immediately after establishing a channel.

Before any messages are transferred, the exit is given the opportunity to

instigate security flows to validate connection authorization.

v Upon receipt of a response to a security message flow.

Any security message flows received from the remote processor on the remote

machine are given to the exit.

v At initialization and termination of the channel.

See“Exit name fields” on page 414 for a description of the content of this field in

various environments.

The length of this field is given by MQ_EXIT_NAME_LENGTH.

Note: The value of this constant is environment specific.

MsgExit (MQCHARn):

 Channel message exit name.

If this name is nonblank, the exit is called at the following times:

v Immediately after a message has been retrieved from the transmission queue

(sender or server), or immediately before a message is put to a destination

queue (receiver or requester).

The exit is given the entire application message and transmission queue header

for modification.

v At initialization and termination of the channel.

This field is not relevant for channels with a ChannelType of MQCHT_SVRCONN

or MQCHT_CLNTCONN; a message exit is never invoked for such channels.

420 WebSphere MQ: Intercommunication

See “Exit name fields” on page 414 for a description of the content of this field in

various environments.

The length of this field is given by MQ_EXIT_NAME_LENGTH.

Note: The value of this constant is environment specific.

SendExit (MQCHARn):

 Channel send exit name.

If this name is nonblank, the exit is called at the following times:

v Immediately before data is sent out on the network.

The exit is given the complete transmission buffer before it is transmitted. The

contents of the buffer can be modified as required.

v At initialization and termination of the channel.

See “Exit name fields” on page 414 for a description of the content of this field in

various environments.

The length of this field is given by MQ_EXIT_NAME_LENGTH.

Note: The value of this constant is environment specific.

ReceiveExit (MQCHARn):

 Channel receive exit name.

If this name is nonblank, the exit is called at the following times:

v Immediately before the received network data is processed.

The exit is given the complete transmission buffer as received. The contents of

the buffer can be modified as required.

v At initialization and termination of the channel.

See “Exit name fields” on page 414 for a description of the content of this field in

various environments.

The length of this field is given by MQ_EXIT_NAME_LENGTH.

Note: The value of this constant is environment specific.

SeqNumberWrap (MQLONG):

 Highest allowable message sequence number.

When this value is reached, sequence numbers wrap to start again at 1.

This value is non-negotiable and must match in both the local and remote channel

definitions.

This field is not relevant for channels with a ChannelType of MQCHT_SVRCONN

or MQCHT_CLNTCONN.

MaxMsgLength (MQLONG):

Chapter 6. Further intercommunication considerations 421

Maximum message length.

Specifies the maximum message length that can be transmitted on the channel.

This is compared with the value for the remote channel and the actual maximum

is the lower of the two values.

PutAuthority (MQLONG):

 Put authority.

Specifies whether the user identifier in the context information associated with a

message should be used to establish authority to put the message to the

destination queue.

This field is relevant only for channels with a ChannelType of

MQCHT_REQUESTER, MQCHT_RECEIVER, or MQCHT_CLUSRCVR. It is one of

the following:

MQPA_DEFAULT

Default user identifier is used.

MQPA_CONTEXT

Context user identifier is used.

MQPA_ALTERNATE_OR_MCA

The user ID from the UserIdentifier field of the message descriptor is used.

Any user ID received from the network is not used. This value is

supported only on z/OS.

MQPA_ONLY_MCA

The default user ID is used. Any user ID received from the network is not

used. This value is supported only on z/OS.

DataConversion (MQLONG):

 Data conversion.

This specifies whether the sending message channel agent should attempt

conversion of the application message data if the receiving message channel agent

is unable to perform this conversion. This applies only to messages that are not

segments of logical messages; the MCA never attempts to convert messages which

are segments.

This field is relevant only for channels with a ChannelType of MQCHT_SENDER,

MQCHT_SERVER, MQCHT_CLUSSDR, or MQCHT_CLUSRCVR. It is one of the

following:

MQCDC_SENDER_CONVERSION

Conversion by sender.

MQCDC_NO_SENDER_CONVERSION

No conversion by sender.

SecurityUserData (MQCHAR32):

 Channel security exit user data.

This is passed to the channel security exit in the ExitData field of the

ChannelExitParms parameter (see MQ_CHANNEL_EXIT).

422 WebSphere MQ: Intercommunication

This field initially contains the data that was set in the channel definition.

However, during the lifetime of this MCA instance, any changes made to the

contents of this field by an exit of any type are preserved by the MCA, and made

visible to subsequent invocations of exits (regardless of type) for this MCA

instance. This applies to exits on different conversations. Such changes have no

effect on the channel definition used by other MCA instances. Any characters

(including binary data) can be used.

The length of this field is given by MQ_EXIT_DATA_LENGTH.

This field is not relevant in WebSphere MQ for i5/OS.

MsgUserData (MQCHAR32):

 Channel message exit user data.

This is passed to the channel message exit in the ExitData field of the

ChannelExitParms parameter (see MQ_CHANNEL_EXIT).

This field initially contains the data that was set in the channel definition.

However, during the lifetime of this MCA instance, any changes made to the

contents of this field by an exit of any type are preserved by the MCA, and made

visible to subsequent invocations of exits (regardless of type) for this MCA

instance. Such changes have no effect on the channel definition used by other

MCA instances. Any characters (including binary data) can be used.

The length of this field is given by MQ_EXIT_DATA_LENGTH.

This field is not relevant in WebSphere MQ for i5/OS.

SendUserData (MQCHAR32):

 Channel send exit user data.

This is passed to the channel send exit in the ExitData field of the

ChannelExitParms parameter (see MQ_CHANNEL_EXIT).

This field initially contains the data that was set in the channel definition.

However, during the lifetime of this MCA instance, any changes made to the

contents of this field by an exit of any type are preserved by the MCA, and made

visible to subsequent invocations of exits (regardless of type) for this MCA

instance. This applies to exits on different conversations. Such changes have no

effect on the channel definition used by other MCA instances. Any characters

(including binary data) can be used.

The length of this field is given by MQ_EXIT_DATA_LENGTH.

This field is not relevant in WebSphere MQ for i5/OS.

ReceiveUserData (MQCHAR32):

 Channel receive exit user data.

This is passed to the channel receive exit in the ExitData field of the

ChannelExitParms parameter (see MQ_CHANNEL_EXIT).

Chapter 6. Further intercommunication considerations 423

This field initially contains the data that was set in the channel definition.

However, during the lifetime of this MCA instance, any changes made to the

contents of this field by an exit of any type are preserved by the MCA, and made

visible to subsequent invocations of exits (regardless of type) for this MCA

instance. This applies to exits on different conversations. Such changes have no

effect on the channel definition used by other MCA instances. Any characters

(including binary data) can be used.

The length of this field is given by MQ_EXIT_DATA_LENGTH.

This field is not relevant in WebSphere MQ for i5/OS.

The following fields in this structure are not present if Version is less than

MQCD_VERSION_2.

UserIdentifier (MQCHAR12):

 User identifier.

This is used by the message channel agent when attempting to initiate a secure

SNA session with a remote message channel agent.

This field can be nonblank only on UNIX systems and Windows, and is relevant

only for channels with a ChannelType of MQCHT_SENDER, MQCHT_SERVER,

MQCHT_REQUESTER or MQCHT_CLNTCONN. On z/OS this field is not

relevant.

The length of this field is given by MQ_USER_ID_LENGTH, however only the first

10 characters are used.

This field is not present when Version is less than MQCD_VERSION_2.

Password (MQCHAR12):

 Password.

This is used by the message channel agent when attempting to initiate a secure

SNA session with a remote message channel agent.

This field can be nonblank only on UNIX systems, and Windows, and is relevant

only for channels with a ChannelType of MQCHT_SENDER, MQCHT_SERVER,

MQCHT_REQUESTER or MQCHT_CLNTCONN. On z/OS this field is not

relevant.

The length of this field is given by MQ_PASSWORD_LENGTH, however only the

first 10 characters are used.

This field is not present if Version is less than MQCD_VERSION_2.

MCAUserIdentifier (MQCHAR12):

This field contains the first 12 bytes of the MCA user identifier. It is used to specify

the user identifier for the message channel agent (MCA), and can be set by a

security exit.

 There are two fields that contain the MCA user identifier:

424 WebSphere MQ: Intercommunication

v MCAUserIdentifier contains the first 12 bytes of the MCA user identifier, and is

padded with blanks if the identifier is shorter than 12 bytes. MCAUserIdentifier

can be completely blank.

v LongMCAUserIdPtr points to the full MCA user identifier, which can be longer

than 12 bytes. Its length is given by LongMCAUserIdLength. The full identifier

contains no trailing blanks, and is not null-terminated. If the identifier is

completely blank, LongMCAUserIdLength is zero, and the value of

LongMCAUserIdPtr is undefined.

Note: LongMCAUserIdPtr is not present if Version is less than

MQCD_VERSION_6.

If the MCA user identifier is nonblank, it specifies the user identifier to be used by

the message channel agent for authorization to access WebSphere MQ

resources.For channel types MQCHT_REQUESTER, MQCHT_RECEIVER, and

MQCHT_CLUSRCVR, if PutAuthority is MQPA_DEFAULT this is the user

identifier used for authorization checks for the put operation to destination queues.

If the MCA user identifier is blank, the message channel agent uses its default user

identifier.

The MCA user identifier can be set by a security exit to indicate the user identifier

that the message channel agent should use. The exit can change either

MCAUserIdentifier, or the string pointed at by LongMCAUserIdPtr. If both are

changed but differ from each other, the MCA uses LongMCAUserIdPtr in preference

to MCAUserIdentifier. If the exit changes the length of the string addressed by

LongMCAUserIdPtr, LongMCAUserIdLength must be set correspondingly. If the exit

wishes to increase the length of the identifier, the exit must allocate storage of the

required length, set that storage to the required identifier, and place the address of

that storage in LongMCAUserIdPtr. The exit is responsible for freeing that storage

when the exit is later invoked with the MQXR_TERM reason.

For channels with a ChannelType of MQCHT_SVRCONN, if MCAUserIdentifier in

the channel definition is blank, any user identifier transferred from the client is

copied into it. This user identifier (after any modification by the security exit at the

server) is the one which the client application is assumed to be running under.

The MCA user identifier is not relevant for channels with a ChannelType of

MQCHT_CLNTCONN.

This is an input/output field to the exit. The length of this field is given by

MQ_USER_ID_LENGTH. This field is not present when Version is less than

MQCD_VERSION_2.

MCAType (MQLONG):

 Message channel agent type.

This is the type of the message channel agent program.

This field is relevant only for channels with a ChannelType of MQCHT_SENDER,

MQCHT_SERVER, MQCHT_REQUESTER, MQCHT_CLUSSDR, or

MQCHT_CLUSRCVR.

The value is one of the following:

Chapter 6. Further intercommunication considerations 425

MQMCAT_PROCESS

Process.

 The message channel agent runs as a separate process.

MQMCAT_THREAD

Thread (i5/OS, UNIX, and Windows).

 The message channel agent runs as a separate thread.

This field is not present when Version is less than MQCD_VERSION_2.

ConnectionName (MQCHAR264):

 Connection name.

For cluster-receiver channels (when specified) CONNAME relates to the local

queue manager, and for other channels it relates to the target queue manager. The

value you specify depends on the transmission protocol (TransportType) to be

used:

v For MQXPT_LU62, it is the fully-qualified name of the partner Logical Unit.

v For MQXPT_NETBIOS, it is the NetBIOS name defined on the remote machine.

v For MQXPT_TCP, it is either the host name, the network address of the remote

machine specified in IPv4 dotted decimal or IPv6 hexadecimal format, or the

local machine for cluster-receiver channels.

v For MQXPT_SPX, it is an SPX-style address comprising a 4-byte network

address, a 6-byte node address, and a 2-byte socket number.

When defining a channel, this field is not relevant for channels with a ChannelType

of MQCHT_SVRCONN or MQCHT_RECEIVER. However, when the channel

definition is passed to an exit, this field contains the address of the partner,

whatever the channel type.

The length of this field is given by MQ_CONN_NAME_LENGTH. This field is not

present if Version is less than MQCD_VERSION_2.

RemoteUserIdentifier (MQCHAR12):

 First 12 bytes of user identifier from partner.

There are two fields that contain the remote user identifier:

v RemoteUserIdentifier contains the first 12 bytes of the remote user identifier,

and is padded with blanks if the identifier is shorter than 12 bytes.

RemoteUserIdentifier can be completely blank.

v LongRemoteUserIdPtr points to the full remote user identifier, which can be

longer than 12 bytes. Its length is given by LongRemoteUserIdLength. The full

identifier contains no trailing blanks, and is not null-terminated. If the identifier

is completely blank, LongRemoteUserIdLength is zero, and the value of

LongRemoteUserIdPtr is undefined.

LongRemoteUserIdPtr is not present if Version is less than MQCD_VERSION_6.

The remote user identifier is relevant only for channels with a ChannelType of

MQCHT_CLNTCONN or MQCHT_SVRCONN.

v For a security exit on an MQCHT_CLNTCONN channel, this is a user identifier

that has been obtained from the environment. The exit can choose to send it to

the security exit at the server.

426 WebSphere MQ: Intercommunication

v For a security exit on an MQCHT_SVRCONN channel, this field may contain a

user identifier which has been obtained from the environment at the client, if

there is no client security exit. The exit may validate this user ID (possibly in

conjunction with the password in RemotePassword) and update the value in

MCAUserIdentifier.

If there is a security exit at the client, then this information can be obtained in a

security flow from the client.

The length of this field is given by MQ_USER_ID_LENGTH. This field is not

present if Version is less than MQCD_VERSION_2.

RemotePassword (MQCHAR12):

 Password from partner.

This field contains valid information only if ChannelType is MQCHT_CLNTCONN

or MQCHT_SVRCONN.

v For a security exit at an MQCHT_CLNTCONN channel, this is a password

which has been obtained from the environment . The exit can choose to send it

to the security exit at the server.

v For a security exit at an MQCHT_SVRCONN channel, this field may contain a

password which has been obtained from the environment at the client, if there is

no client security exit. The exit may use this to validate the user identifier in

RemoteUserIdentifier.

If there is a security exit at the client, then this information can be obtained in a

security flow from the client.

The length of this field is given by MQ_PASSWORD_LENGTH. This field is not

present if Version is less than MQCD_VERSION_2.

The following fields in this structure are not present if Version is less than

MQCD_VERSION_3.

MsgRetryExit (MQCHARn):

 Channel message retry exit name.

The message retry exit is an exit that is invoked by the MCA when the MCA

receives a completion code of MQCC_FAILED from an MQOPEN or MQPUT call.

The purpose of the exit is to specify a time interval for which the MCA should

wait before retrying the MQOPEN or MQPUT operation. Alternatively, the exit can

decide that the operation should not be retried.

The exit is invoked for all reason codes that have a completion code of

MQCC_FAILED — it is up to the exit to decide which reason codes it wants the

MCA to retry, for how many attempts, and at what time intervals.

When the exit decides that the operation should not be retried any more, the MCA

performs its normal failure processing; this includes generating an exception report

message (if specified by the sender), and either placing the original message on the

dead-letter queue or discarding the message (according to whether the sender

specified MQRO_DEAD_LETTER_Q or MQRO_DISCARD_MSG, respectively).

Note that failures involving the dead-letter queue (for example, dead-letter queue

full) do not cause the message-retry exit to be invoked.

Chapter 6. Further intercommunication considerations 427

If the exit name is nonblank, the exit is called at the following times:

v Immediately before performing the wait prior to retrying a message

v At initialization and termination of the channel

See “Exit name fields” on page 414 for a description of the content of this field in

various environments.

This field is relevant only for channels with a ChannelType of

MQCHT_REQUESTER, MQCHT_RECEIVER, or MQCHT_CLUSRCVR.

The length of this field is given by MQ_EXIT_NAME_LENGTH.

Note: The value of this constant is environment specific.

This field is not present when Version is less than MQCD_VERSION_3.

MsgRetryUserData (MQCHAR32):

 Channel message retry exit user data.

This is passed to the channel message-retry exit in the ExitData field of the

ChannelExitParms parameter (see MQ_CHANNEL_EXIT).

This field initially contains the data that was set in the channel definition.

However, during the lifetime of this MCA instance, any changes made to the

contents of this field by an exit of any type are preserved by the MCA, and made

visible to subsequent invocations of exits (regardless of type) for this MCA

instance. Such changes have no effect on the channel definition used by other

MCA instances. Any characters (including binary data) can be used.

This field is relevant only for channels with a ChannelType of

MQCHT_REQUESTER, MQCHT_RECEIVER, or MQCHT_CLUSRCVR.

The length of this field is given by MQ_EXIT_DATA_LENGTH. This field is not

present when Version is less than MQCD_VERSION_3.

This field is not relevant in WebSphere MQ for i5/OS.

MsgRetryCount (MQLONG):

 Number of times MCA will try to put the message, after the first attempt has

failed.

This indicates the number of times that the MCA will retry the open or put

operation, if the first MQOPEN or MQPUT fails with completion code

MQCC_FAILED. The effect of this attribute depends on whether MsgRetryExit is

blank or nonblank:

v If MsgRetryExit is blank, the MsgRetryCount attribute controls whether the MCA

attempts retries. If the attribute value is zero, no retries are attempted. If the

attribute value is greater than zero, the retries are attempted at intervals given

by the MsgRetryInterval attribute.

Retries are attempted only for the following reason codes:

– MQRC_PAGESET_FULL

– MQRC_PUT_INHIBITED

428 WebSphere MQ: Intercommunication

– MQRC_Q_FULL

For other reason codes, the MCA proceeds immediately to its normal failure

processing, without retrying the failing message.

v If MsgRetryExit is nonblank, the MsgRetryCount attribute has no effect on the

MCA; instead it is the message-retry exit which determines how many times the

retry is attempted, and at what intervals; the exit is invoked even if the

MsgRetryCount attribute is zero.

The MsgRetryCount attribute is made available to the exit in the MQCD structure,

but the exit it not required to honor it — retries continue indefinitely until the

exit returns MQXCC_SUPPRESS_FUNCTION in the ExitResponse field of

MQCXP.

This field is relevant only for channels with a ChannelType of

MQCHT_REQUESTER, MQCHT_RECEIVER, or MQCHT_CLUSRCVR.

This field is not present when Version is less than MQCD_VERSION_3.

MsgRetryInterval (MQLONG):

 Minimum interval in milliseconds after which the open or put operation will be

retried.

The effect of this attribute depends on whether MsgRetryExit is blank or nonblank:

v If MsgRetryExit is blank, the MsgRetryInterval attribute specifies the minimum

period of time that the MCA will wait before retrying a message, if the first

MQOPEN or MQPUT fails with completion code MQCC_FAILED. A value of

zero means that the retry will be performed as soon as possible after the

previous attempt. Retries are performed only if MsgRetryCount is greater than

zero.

This attribute is also used as the wait time if the message-retry exit returns an

invalid value in the MsgRetryInterval field in MQCXP.

v If MsgRetryExit is not blank, the MsgRetryInterval attribute has no effect on the

MCA; instead it is the message-retry exit which determines how long the MCA

should wait. The MsgRetryInterval attribute is made available to the exit in the

MQCD structure, but the exit it not required to honor it.

The value is in the range 0 through 999 999 999.

This field is relevant only for channels with a ChannelType of

MQCHT_REQUESTER, MQCHT_RECEIVER, or MQCHT_CLUSRCVR.

This field is not present when Version is less than MQCD_VERSION_3.

The following fields in this structure are not present if Version is less than

MQCD_VERSION_4.

HeartbeatInterval (MQLONG):

 Time in seconds between heartbeat flows.

The interpretation of this field depends on the channel type, as follows:

v For a channel type of MQCHT_SENDER, MQCHT_SERVER,

MQCHT_RECEIVER MQCHT_REQUESTER, MQCHT_CLUSSDR, or

MQCHT_CLUSRCVR, this is the time in seconds between heartbeat flows

Chapter 6. Further intercommunication considerations 429

passed from the sending MCA when there are no messages on the transmission

queue. This gives the receiving MCA the opportunity to quiesce the channel. To

be useful, HeartbeatInterval should be significantly less than DiscInterval.

v For a channel type of MQCHT_CLNTCONN or MQCHT_SVRCONN with the

MQCD Sharing Conversations field set to zero, this is the time in seconds

between heartbeat flows passed from the server MCA when that MCA has

issued an MQGET call with the MQGMO_WAIT option on behalf of a client

application. This allows the server MCA to handle situations where the client

connection fails during an MQGET with MQGMO_WAIT.

v For a channel type of MQCHT_CLNTCONN or MQCHT_SVRCONN with the

MQCD Sharing Conversations field set to a non-zero value, this is the time in

seconds between heartbeat flow when there are no data flows sent or received.

This allows the channel to be quiesced efficiently.

The value is in the range 0 through 999 999. The value that is actually used is the

larger of the values specified at the sending side and receiving side unless a value

of 0 is specified at either side, in which case no heartbeat exchange occurs.

This is an input field to the exit. The field is not present if Version is less than

MQCD_VERSION_4.

BatchInterval (MQLONG):

 Batch duration.

This is the approximate time in milliseconds that a channel will keep a batch open,

if fewer than BatchSize messages have been transmitted in the current batch.

If BatchInterval is greater than zero, the batch is terminated by whichever of the

following occurs first:

v BatchSize messages have been sent, or

v BatchInterval milliseconds have elapsed since the start of the batch.

If BatchInterval is zero, the batch is terminated by whichever of the following

occurs first:

v BatchSize messages have been sent, or

v the transmission queue becomes empty.

BatchInterval must be in the range zero through 999 999 999.

This field is relevant only for channels with a ChannelType of MQCHT_SENDER,

MQCHT_SERVER, MQCHT_CLUSSDR, or MQCHT_CLUSRCVR.

This is an input field to the exit. The field is not present when Version is less than

MQCD_VERSION_4.

NonPersistentMsgSpeed (MQLONG):

 Speed at which nonpersistent messages are sent.

This specifies the speed at which nonpersistent messages travel through the

channel.

430 WebSphere MQ: Intercommunication

This field is relevant only for channels with a ChannelType of MQCHT_SENDER,

MQCHT_SERVER, MQCHT_RECEIVER, MQCHT_REQUESTER,

MQCHT_CLUSSDR, or MQCHT_CLUSRCVR.

The value is one of the following:

MQNPMS_NORMAL

Normal speed.

 If a channel is defined to be MQNPMS_NORMAL, nonpersistent messages

travel through the channel at normal speed. This has the advantage that

these messages will not be lost if there is a channel failure. Also, persistent

and nonpersistent messages on the same transmission queue maintain their

order relative to each other.

MQNPMS_FAST

Fast speed.

 If a channel is defined to be MQNPMS_FAST, nonpersistent messages

travel through the channel at fast speed. This improves the throughput of

the channel, but means that nonpersistent messages will be lost if there is a

channel failure. Also, it is possible for nonpersistent messages to jump

ahead of persistent messages waiting on the same transmission queue, that

is, the order of nonpersistent messages is not maintained relative to

persistent messages. However the order of nonpersistent messages relative

to each other is maintained. Similarly, the order of persistent messages

relative to each other is maintained.

StrucLength (MQLONG):

 Length of MQCD structure.

This is the length in bytes of the MQCD structure. The length does not include any

of the strings addressed by pointer fields contained within the structure. The value

is one of the following:

MQCD_LENGTH_4

Length of version-4 channel definition structure.

MQCD_LENGTH_5

Length of version-5 channel definition structure.

MQCD_LENGTH_6

Length of version-6 channel definition structure.

MQCD_LENGTH_7

Length of version-7 channel definition structure.

MQCD_LENGTH_8

Length of version-8 channel definition structure.

MQCD_LENGTH_9

Length of version-9 channel definition structure.

The following constant specifies the length of the current version:

MQCD_CURRENT_LENGTH

Length of current version of channel definition structure.

Note: These constants have values that are environment specific.

The field is not present if Version is less than MQCD_VERSION_4.

Chapter 6. Further intercommunication considerations 431

ExitNameLength (MQLONG):

 Length of exit name.

This is the length in bytes of each of the names in the lists of exit names addressed

by the MsgExitPtr, SendExitPtr, and ReceiveExitPtr fields. This length is not

necessarily the same as MQ_EXIT_NAME_LENGTH.

This is an input field to the exit. The field is not present if Version is less than

MQCD_VERSION_4.

ExitDataLength (MQLONG):

 Length of exit user data.

This is the length in bytes of each of the user data items in the lists of exit user

data items addressed by the MsgUserDataPtr, SendUserDataPtr, and

ReceiveUserDataPtr fields. This length is not necessarily the same as

MQ_EXIT_DATA_LENGTH.

This is an input field to the exit. The field is not present if Version is less than

MQCD_VERSION_4.

MsgExitsDefined (MQLONG):

 Number of message exits defined.

This is the number of channel message exits in the chain. It is greater than or equal

to zero.

This is an input field to the exit. The field is not present if Version is less than

MQCD_VERSION_4.

SendExitsDefined (MQLONG):

 Number of send exits defined.

This is the number of channel send exits in the chain. It is greater than or equal to

zero.

This is an input field to the exit. The field is not present if Version is less than

MQCD_VERSION_4.

ReceiveExitsDefined (MQLONG):

 Number of receive exits defined.

This is the number of channel receive exits in the chain. It is greater than or equal

to zero.

This is an input field to the exit. The field is not present if Version is less than

MQCD_VERSION_4.

MsgExitPtr (MQPTR):

 Address of first MsgExit field.

432 WebSphere MQ: Intercommunication

If MsgExitsDefined is greater than zero, this is the address of the list of names of

each channel message exit in the chain.

Each name is in a field of length ExitNameLength, padded to the right with blanks.

There are MsgExitsDefined fields adjoining one another – one for each exit.

Any changes made to these names by an exit are preserved, although the message

channel exit takes no explicit action – it does not change which exits are invoked.

If MsgExitsDefined is zero, this field is the null pointer.

On platforms where the programming language does not support the pointer data

type, this field is declared as a byte string of the appropriate length.

This is an input field to the exit. The field is not present if Version is less than

MQCD_VERSION_4.

MsgUserDataPtr (MQPTR):

 Address of first MsgUserData field.

If MsgExitsDefined is greater than zero, this is the address of the list of user data

items for each channel message exit in the chain.

Each user data item is in a field of length ExitDataLength, padded to the right

with blanks. There are MsgExitsDefined fields adjoining one another – one for each

exit. If the number of user data items defined is less than the number of exit

names, undefined user data items are set to blanks. Conversely, if the number of

user data items defined is greater than the number of exit names, the excess user

data items are ignored and not presented to the exit.

Any changes made to these values by an exit are preserved. This allows one exit to

pass information to another exit. No validation is carried out on any changes so,

for example, binary data can be written to these fields if required.

If MsgExitsDefined is zero, this field is the null pointer.

On platforms where the programming language does not support the pointer data

type, this field is declared as a byte string of the appropriate length.

This is an input field to the exit. The field is not present if Version is less than

MQCD_VERSION_4.

SendExitPtr (MQPTR):

 Address of first SendExit field.

If SendExitsDefined is greater than zero, this is the address of the list of names of

each channel send exit in the chain.

Each name is in a field of length ExitNameLength, padded to the right with blanks.

There are SendExitsDefined fields adjoining one another – one for each exit.

Any changes made to these names by an exit are preserved, although the message

send exit takes no explicit action – it does not change which exits are invoked.

Chapter 6. Further intercommunication considerations 433

If SendExitsDefined is zero, this field is the null pointer.

On platforms where the programming language does not support the pointer data

type, this field is declared as a byte string of the appropriate length.

This is an input field to the exit. The field is not present if Version is less than

MQCD_VERSION_4.

SendUserDataPtr (MQPTR):

 Address of first SendUserData field.

If SendExitsDefined is greater than zero, this is the address of the list of user data

items for each channel message exit in the chain.

Each user data item is in a field of length ExitDataLength, padded to the right

with blanks. There are MsgExitsDefined fields adjoining one another – one for each

exit. If the number of user data items defined is less than the number of exit

names, undefined user data items are set to blanks. Conversely, if the number of

user data items defined is greater than the number of exit names, the excess user

data items are ignored and not presented to the exit.

Any changes made to these values by an exit are preserved. This allows one exit to

pass information to another exit. No validation is carried out on any changes so,

for example, binary data can be written to these fields if required.

If SendExitsDefined is zero, this field is the null pointer.

On platforms where the programming language does not support the pointer data

type, this field is declared as a byte string of the appropriate length.

This is an input field to the exit. The field is not present if Version is less than

MQCD_VERSION_4.

ReceiveExitPtr (MQPTR):

 Address of first ReceiveExit field.

If ReceiveExitsDefined is greater than zero, this is the address of the list of names

of each channel receive exit in the chain.

Each name is in a field of length ExitNameLength, padded to the right with blanks.

There are ReceiveExitsDefined fields adjoining one another – one for each exit.

Any changes made to these names by an exit are preserved, although the message

channel exit takes no explicit action – it does not change which exits are invoked.

If ReceiveExitsDefined is zero, this field is the null pointer.

On platforms where the programming language does not support the pointer data

type, this field is declared as a byte string of the appropriate length.

This is an input field to the exit. The field is not present if Version is less than

MQCD_VERSION_4.

ReceiveUserDataPtr (MQPTR):

434 WebSphere MQ: Intercommunication

Address of first ReceiveUserData field.

If ReceiveExitsDefined is greater than zero, this is the address of the list of user

data item for each channel receive exit in the chain.

Each user data item is in a field of length ExitDataLength, padded to the right

with blanks. There are ReceiveExitsDefined fields adjoining one another – one for

each exit. If the number of user data items defined is less than the number of exit

names, undefined user data items are set to blanks. Conversely, if the number of

user data items defined is greater than the number of exit names, the excess user

data items are ignored and not presented to the exit.

Any changes made to these values by an exit are preserved. This allows one exit to

pass information to another exit. No validation is carried out on any changes so,

for example, binary data can be written to these fields if required.

If ReceiveExitsDefined is zero, this field is the null pointer.

On platforms where the programming language does not support the pointer data

type, this field is declared as a byte string of the appropriate length.

This is an input field to the exit. The field is not present if Version is less than

MQCD_VERSION_4.

The following fields in this structure are not present if Version is less than

MQCD_VERSION_5.

ClusterPtr (MQPTR):

 Address of a list of cluster names.

If ClustersDefined is greater than zero, this is the address of a list of cluster

names. The channel belongs to each cluster listed.

This field is relevant only for channels with a ChannelType of MQCHT_CLUSSDR

or MQCHT_CLUSRCVR.

This is an input field to the exit. The field is not present if Version is less than

MQCD_VERSION_5.

ClustersDefined (MQLONG):

 Number of clusters to which the channel belongs.

This is the number of cluster names pointed to by ClusterPtr. It is zero or greater.

This field is relevant only for channels with a ChannelType of MQCHT_CLUSSDR

or MQCHT_CLUSRCVR.

This is an input field to the exit. The field is not present if Version is less than

MQCD_VERSION_5.

NetworkPriority (MQLONG):

 Network priority.

Chapter 6. Further intercommunication considerations 435

This is the priority of the network connection for this channel. When multiple

paths to a particular destination are available, the path with the highest priority is

chosen. The value is in the range 0 through 9; 0 is the lowest priority.

This field is relevant only for channels with a ChannelType of MQCHT_CLUSSDR

or MQCHT_CLUSRCVR.

This is an input field to the exit. The field is not present if Version is less than

MQCD_VERSION_5.

The following fields in this structure are not present if Version is less than

MQCD_VERSION_6.

LongMCAUserIdLength (MQLONG):

 Length of long MCA user identifier.

This is the length in bytes of the full MCA user identifier pointed to by

LongMCAUserIdPtr.

This field is not relevant for channels with a ChannelType of

MQCHT_CLNTCONN.

This is an input/output field to the exit. The field is not present if Version is less

than MQCD_VERSION_6.

LongRemoteUserIdLength (MQLONG):

 Length of long remote user identifier.

This is the length in bytes of the full remote user identifier pointed to by

LongRemoteUserIdPtr.

This field is relevant only for channels with a ChannelType of

MQCHT_CLNTCONN or MQCHT_SVRCONN.

This is an input field to the exit. The field is not present if Version is less than

MQCD_VERSION_6.

LongMCAUserIdPtr (MQPTR):

 Address of long MCA user identifier.

If LongMCAUserIdLength is greater than zero, this is the address of the full MCA

user identifier. The length of the full identifier is given by LongMCAUserIdLength.

The first 12 bytes of the MCA user identifier are also contained in the field

MCAUserIdentifier.

See the description of the MCAUserIdentifier field for details of the MCA user

identifier.

This field is not relevant for channels with a ChannelType of

MQCHT_CLNTCONN.

This is an input/output field to the exit. The field is not present if Version is less

than MQCD_VERSION_6.

436 WebSphere MQ: Intercommunication

LongRemoteUserIdPtr (MQPTR):

 Address of long remote user identifier.

If LongRemoteUserIdLength is greater than zero, this is the address of the full

remote user identifier. The length of the full identifier is given by

LongRemoteUserIdLength. The first 12 bytes of the remote user identifier are also

contained in the field RemoteUserIdentifier.

See the description of the RemoteUserIdentifier field for details of the remote user

identifier.

This field is relevant only for channels with a ChannelType of

MQCHT_CLNTCONN or MQCHT_SVRCONN.

This is an input field to the exit. The field is not present if Version is less than

MQCD_VERSION_6.

MCASecurityId (MQBYTE40):

 MCA security identifier.

This is the security identifier for the MCA.

This field is not relevant for channels with a ChannelType of

MQCHT_CLNTCONN.

The following special value indicates that there is no security identifier:

MQSID_NONE

No security identifier specified.

 The value is binary zero for the length of the field.

For the C programming language, the constant MQSID_NONE_ARRAY is

also defined; this has the same value as MQSID_NONE, but is an array of

characters instead of a string.

This is an input/output field to the exit. The length of this field is given by

MQ_SECURITY_ID_LENGTH. This field is not present if Version is less than

MQCD_VERSION_6.

RemoteSecurityId (MQBYTE40):

 Remote security identifier.

This is the security identifier for the remote user.

This field is relevant only for channels with a ChannelType of

MQCHT_CLNTCONN or MQCHT_SVRCONN.

The following special value indicates that there is no security identifier:

MQSID_NONE

No security identifier specified.

 The value is binary zero for the length of the field.

Chapter 6. Further intercommunication considerations 437

For the C programming language, the constant MQSID_NONE_ARRAY is

also defined; this has the same value as MQSID_NONE, but is an array of

characters instead of a string.

This is an input field to the exit. The length of this field is given by

MQ_SECURITY_ID_LENGTH. This field is not present if Version is less than

MQCD_VERSION_6.

The following fields in this structure are not present if Version is less than

MQCD_VERSION_7.

SSLCipherSpec (MQCHAR32):

 If SSLCipherSpec is blank, the channel is not using SSL. If it is not blank, this field

contains a string specifying the CypherSpec in use.

This parameter is valid for all channel types. It is supported on AIX, HP-UX,

Linux, i5/OS, Solaris, Windows, and z/OS. It is valid only for channel types of a

transport type (TRPTYPE) of TCP.

This is an input field to the exit. The length of this field is given by

MQ_SSL_CIPHER_SPEC_LENGTH. The field is not present if Version is less than

MQCD_VERSION_7.

SSLPeerNamePtr (MQPTR):

 Address of the SSL peer name.

When a certificate is received during a successful SSL handshake, the

Distinguished Name of the subject of the certificate is copied into the MQCD field

accessed by SSLPeerNamePtr at the end of the channel which receives the

certificate. It overwrites the SSLPeerName value for the channel if this is present in

the local user’s channel definition. If a security exit is specified at this end of the

channel it will receive the Distinguished Name from the peer certificate in the

MQCD.

This is an input field to the exit. The field is not present if Version is less than

MQCD_VERSION_7.

SSLPeerNameLength (MQLONG):

 Length of SSL peer name.

This is the length in bytes of SSL peer name pointed to by SSLPeerNamePtr.

This is an input field to the exit. The field is not present if Version is less than

MQCD_VERSION_7.

SSLClientAuth (MQLONG):

 Determines whether SSL client authentication is required.

This field is relevant only to SVRCONN channel definitions.

The value is one of the following:

438 WebSphere MQ: Intercommunication

MQSCA_REQUIRED

Client authentication required.

MQSCA_OPTIONAL

Client authentication optional.

This is an input field to the exit. The field is not present if Version is less than

MQCD_VERSION_7.

KeepAliveInterval (MQLONG):

 Keepalive interval.

This is the value passed to the communications stack for keepalive timing for the

channel. The value is applicable for the TCP/IP and SPX communications

protocols, though not all implementations support this parameter.

The value is in the range 0 through 99 999; the units are seconds. A value of zero

indicates that channel keepalive is not enabled, although keepalive may still occur

if TCP/IP keepalive (rather than channel keepalive) is enabled. The following

special value is also valid:

MQKAI_AUTO

Automatic.

 This indicates that the keepalive interval is calculated from the negotiated

heartbeat interval, as follows:

v If the negotiated heartbeat interval is greater than zero, the keepalive

interval that is used is the heartbeat interval plus 60 seconds.

v If the negotiated heartbeat interval is zero, the keepalive interval that is

used is zero.
v On z/OS, TCP/IP keepalive occurs when TCPKEEP(YES) is specified on the

queue manager object.

v In other environments, TCP/IP keepalive occurs when the KEEPALIVE=YES

parameter is specified in the TCP stanza in the distributed queuing

configuration file.

This field is relevant only for channels that have a TransportType of MQXPT_TCP

or MQXPT_SPX.

This is an input field to the exit. The field is not present if Version is less than

MQCD_VERSION_7.

LocalAddress (MQCHAR48):

 Local communications address.

This is the local TCP/IP address defined for the channel for outbound

communications, or blank if no specific address is defined for outbound

communications. The address can optionally include a port number or range of

port numbers. The format of this address is:

[ip-addr][(low-port[,high-port])]

where square brackets ([]) denote optional information, ip-addr is specified in

IPv4 dotted decimal, IPv6 hexadecimal, or alphanumeric form, and low-port and

high-port are port numbers enclosed in parentheses. All are optional.

Chapter 6. Further intercommunication considerations 439

A specific IP address, port, or port range for outbound communications is useful in

recovery scenarios where a channel is restarted on a different TCP/IP stack.

LocalAddress is similar in form to ConnectionName, but should not be confused

with it. LocalAddress specifies the characteristics of the local communciations,

whereas ConnectionName specifies how to reach a remote queue manager.

This field is relevant only for channels with a TransportType of MQXPT_TCP, and

a ChannelType of MQCHT_SENDER, MQCHT_SERVER, MQCHT_REQUESTER,

MQCHT_CLNTCONN, MQCHT_CLUSSDR, or MQCHT_CLUSRCVR.

The length of this field is given by MQ_LOCAL_ADDRESS_LENGTH. This field is

not present if Version is less than MQCD_VERSION_7.

BatchHeartbeat (MQLONG):

 Batch heartbeat interval.

This specifies the time interval that is used to trigger a batch heartbeat for the

channel. Batch heartbeating allows sender channels to determine whether the

remote channel instance is still active before going indoubt. A batch heartbeat

occurs if a sender channel has not communicated with the remote channel instance

within the specified time interval.

The value is in the range 0 through 999 999; the units are milliseconds. A value of

zero indicates that batch heartbeating is not enabled.

This field is relevant only for channels that have a ChannelType of

MQCHT_SENDER, MQCHT_SERVER, MQCHT_CLUSSDR, or

MQCHT_CLUSRCVR.

This is an input field to the exit. The field is not present if Version is less than

MQCD_VERSION_7.

HdrCompList [2] (MQLONG):

 Header data compression list.

The list of header data compression techniques which are supported by the

channel.

The list contains one or more of the following:

MQCOMPRESS_NONE

No header data compression is performed.

MQCOMPRESS_SYSTEM

Header data compression is performed.

Unused values in the array are set to MQCOMPRESS_NOT_AVAILABLE.

This is an input field to the exit. The field is not present if Version is less than

MQCD_VERSION_8.

MsgCompList [16] (MQLONG):

 Message data compression list.

440 WebSphere MQ: Intercommunication

The list of message data compression techniques which are supported by the

channel.

The list contains one or more of the following:

MQCOMPRESS_NONE

No message data compression is performed.

MQCOMPRESS_RLE

Message data compression is performed using run-length encoding.

MQCOMPRESS_ZLIBFAST

Message data compression is performed using the zlib compression

technique. A fast compression time is preferred.

MQCOMPRESS_ZLIBHIGH

Message data compression is performed using the zlib compression

technique. A high level of compression is preferred.

Unused values in the array are set to MQCOMPRESS_NOT_AVAILABLE.

This is an input field to the exit. The field is not present if Version is less than

MQCD_VERSION_8.

CLWLChannelRank (MQLONG):

 Cluster workload channel rank.

The workload manager choose algorithm selects a destination with the highest

rank. When the final destination is a queue manager on a different cluster, you can

set the rank of intermediate gateway queue managers (at the intersection of

neighbouring clusters) so the choose algorithm will correctly choose a destination

queue manager nearer the final destination.

The value is in the range 0 through 9. The default is 0.

This is an input field to the exit. The field is not present if Version is less than

MQCD_VERSION_8.

For further information, see WebSphere MQ Queue Manager Clusters.

CLWLChannelPriority (MQLONG):

 Cluster workload channel priority.

The workload manager choose algorithm selects a destination with the highest

priority from the set of destinations selected on the basis of rank. If there are two

possible destination queue managers, this attribute can be used to make one queue

manager failover onto the other queue manager. All the messages will go to the

queue manager with the highest priority until that ends, then the messages will go

to the queue manager with the next highest priority.

The value is in the range 0 through 9. The default is 0.

This is an input field to the exit. The field is not present if Version is less than

MQCD_VERSION_8.

For further information, see WebSphere MQ Queue Manager Clusters.

Chapter 6. Further intercommunication considerations 441

CLWLChannelWeight (MQLONG):

 Cluster workload channel weight.

The workload manager choose algorithm will use the channel’s ″weight″ attribute

to the skew the destination choice so that more messages can be sent to a

particular machine. For example, you can give a channel on a large Unix server a

larger ″weight″ than another channel on small desktop PC, and the choose

algorithm will choose the Unix server more frequently than the PC.

The value is in the range 1 through 99. The default is 50.

This is an input field to the exit. The field is not present if Version is less than

MQCD_VERSION_8.

For further information, see WebSphere MQ Queue Manager Clusters.

ChannelMonitoring (MQLONG):

 The current level of Monitoring data collection for the channel.

This field is not relevant for channels with a ChannelType of

MQCHT_CLNTCONN.

The value is one of the following:

v MQMON_OFF

v MQMON_LOW

v MQMON_MEDIUM

v MQMON_HIGH

This is an input field to the exit. It is not present if Version is less than

MQCD_VERSION_8.

ChannelStatistics (MQLONG):

 The current level of Statistics data collection for the channel.

This field is not relevant for channels with a ChannelType of

MQCHT_CLNTCONN.

The value is one of the following:

v MQMON_OFF

v MQMON_LOW

v MQMON_MEDIUM

v MQMON_HIGH

This is an input field to the exit. It is not present if Version is less than

MQCD_VERSION_8.

SharingConversations (MQLONG):

This field determines the maximum number of conversations that can share a

channel instance associated with this channel.

442 WebSphere MQ: Intercommunication

This field is used on client connection and server-connection channels.

A value of 0 means that the channel operates as it did prior to WebSphere MQ

Version 7.0 with respect to the following attributes::

v Conversation sharing

v Read ahead

v STOP CHANNEL(<channelname>) MODE(QUIESCE)

v Heartbeating

v Client asynchronous consume

A value of 1 is the minimum value for WebSphere MQ V7.0 behavior. Although

only one conversation is allowed on the channel instance, read ahead,

asynchronous consume, and the Version 7 behavior of CLNTCONN-SVRCONN

heartbeating and quiescent channel stopping are available.

This is an input field to the exit. It is not present if Version is less than

MQCD_VERSION_9.

The default value of this field is 10.

Note: MaxInstances and MaxInstancesPerClient limits applied to a channel restrict

the number of channel instances, not the number of conversations that might be

sharing those instances.

ClientChannelWeight (MQLONG):

Specifies a weighting to influence which client-connection channel definition is

used.

 The ClientChannelWeight attribute is used so that client channel definitions can be

selected at random based on their weighting when more than one suitable

definition is available. When a client issues an MQCONN requesting connection to

a queue manager group, by specifying a queue manager name starting with an

asterisk, and more than one suitable channel definition is available in the client

channel definition table (CCDT), the definition to use is randomly selected based

on the weighting, with any applicable ClientChannelWeight(0) definitions selected

first in alphabetical order.

Specify a value in the range 0 – 99. The default is 0.

A value of 0 indicates that no load balancing is performed and applicable

definitions are selected in alphabetical order. To enable load balancing choose a

value in the range 1 - 99 where 1 is the lowest weighting and 99 is the highest. The

distribution of messages between two or more channels with non-zero weightings

is approximately proportional to the ratio of those weightings. For example, three

channels with ClientChannelWeight values of 2, 4, and 14 are selected

approximately 10%, 20%, and 70% of the time. This distribution is not guaranteed.

This attribute is valid for the client-connection channel type only.

This is an input field to the exit. The field is not present if Version is less than

MQCD_VERSION_9.

ConnectionAffinity (MQLONG):

Chapter 6. Further intercommunication considerations 443

Specifies which client channel definition that the client applications use to connect

to the queue manager if multiple connections are available.

 Use this attribute when multiple applicable channel definitions are available.

The value is one of the following:

PREFERRED

The first connection in a process reading a client channel definition table

(CCDT) creates a list of applicable definitions based on the weighting with any

applicable CLNTWGHT(0) definitions first and in alphabetical order. Each

connection in the process attempts to connect using the first definition in the

list. If a connection is unsuccessful the next definition is used. Unsuccessful

definitions with CLNTWGHT values other than 0 are moved to the end of the

list. CLNTWGHT(0) definitions remain at the start of the list and are selected

first for each connection.

 Each client process with the same hostname always creates the same list.

For client applications written in C, C++, or the .NET programming framework

(including fully managed .NET) the list is updated if the CCDT has been

modified since the list was created.

This is the default value.

NONE

The first connection in a process reading a CCDT creates a list of applicable

definitions. All connections in a process select an applicable definition based

on the weighting with any applicable CLNTWGHT(0) definitions selected first

in alphabetical order.

 For client applications written in C, C++, or the .NET programming framework

(including fully managed .NET) the list is updated if the CCDT has been

modified since the list was created.

This attribute is valid for the client-connection channel type only.

This is an input field to the exit. The field is not present if Version is less than

MQCD_VERSION_9.

PropertyControl (MQLONG):

This field determines how message properties are handled for messages that are

retrieved from queues using the MQGET call with the

MQGMO_PROPERTIES_AS_Q_DEF option.

 The value can be:

MQPROP_COMPATIBILITY

If the message contains a property with a prefix of mcd., jms., usr., or

mqext., all message properties are delivered to the application in an

MQRFH2 header. Otherwise all properties of the message, except those

contained in the message descriptor (or extension), are discarded and are

no longer accessible to the application.

 This is the default value; it allows applications, which expect JMS related

properties to be in an MQRFH2 header in the message data, to continue to

work unmodified.

444 WebSphere MQ: Intercommunication

MQPROP_NONE

All properties of the message, except those in the message descriptor (or

extension), are removed from the message before the message is sent to the

remote queue manager.

MQPROP_ALL

All properties of the message are included with the message when it is

sent to the remote queue manager. The properties, except those in the

message descriptor (or extension), are placed in one or more MQRFH2

headers in the message data.

This attribute is applicable to Sender, Server, Cluster Sender and Cluster Receiver

channels.

MaxInstances (MQLONG):

This field specifies the maximum number of simultaneous instances of an

individual server-connection channel that can be started.

 This field is used only on server-connection channels.

The field can have a value in the range 0 to 999 999 999. A value of zero prevents

all client access.

The default value of this field is 999 999 999.

If the value of this field is reduced to a number that is less than the number of

instances of the server-connection channel that are currently running, then those

running instances are not affected. However, new instances cannot start until

sufficient existing instances have ceased to run so that the number of currently

running instances is less than the value of the field.

MaxInstancesPerClient (MQLONG):

This field specifies the maximum number of simultaneous instances of an

individual server-connection channel that can be started from a single client. In this

context, connections that originate from the same remote network address are

regarded as coming from the same client.

 This field is used only on server-connection channels.

The field can have a value in the range 0 to 999 999 999. A value of zero prevents

all client access.

The default value of this field is 999 999 999.

If the value of this field is reduced to a number that is less than the number of

instances of the server-connection channel that are currently running from

individual clients, then those running instances are not affected. However, new

instances from any of those clients cannot start until sufficient existing instances

have ceased to run such that the number of currently running instances,

originating from the client attempting to start a new one, is less than the value of

the field.

C declaration

This is the C declaration for the MQCD structure.

Chapter 6. Further intercommunication considerations 445

typedef struct tagMQCD MQCD;

struct tagMQCD {

 MQCHAR ChannelName[20]; /* Channel definition name */

 MQLONG Version; /* Structure version number */

 MQLONG ChannelType; /* Channel type */

 MQLONG TransportType; /* Transport type */

 MQCHAR Desc[64]; /* Channel description */

 MQCHAR QMgrName[48]; /* Queue-manager name */

 MQCHAR XmitQName[48]; /* Transmission queue name */

 MQCHAR ShortConnectionName[20]; /* First 20 bytes of connection

 name */

 MQCHAR MCAName[20]; /* Reserved */

 MQCHAR ModeName[8]; /* LU 6.2 Mode name */

 MQCHAR TpName[64]; /* LU 6.2 transaction program

 name */

 MQLONG BatchSize; /* Batch size */

 MQLONG DiscInterval; /* Disconnect interval */

 MQLONG ShortRetryCount; /* Short retry count */

 MQLONG ShortRetryInterval; /* Short retry wait interval */

 MQLONG LongRetryCount; /* Long retry count */

 MQLONG LongRetryInterval; /* Long retry wait interval */

 MQCHAR SecurityExit[n]; /* Channel security exit name */

 MQCHAR MsgExit[n]; /* Channel message exit name */

 MQCHAR SendExit[n]; /* Channel send exit name */

 MQCHAR ReceiveExit[n]; /* Channel receive exit name */

 MQLONG SeqNumberWrap; /* Highest allowable message

 sequence number */

 MQLONG MaxMsgLength; /* Maximum message length */

 MQLONG PutAuthority; /* Put authority */

 MQLONG DataConversion; /* Data conversion */

 MQCHAR SecurityUserData[32]; /* Channel security exit user

 data */

 MQCHAR MsgUserData[32]; /* Channel message exit user

 data */

 MQCHAR SendUserData[32]; /* Channel send exit user data */

 MQCHAR ReceiveUserData[32]; /* Channel receive exit user

 data */

 MQCHAR UserIdentifier[12]; /* User identifier */

 MQCHAR Password[12]; /* Password */

 MQCHAR MCAUserIdentifier[12]; /* First 12 bytes of MCA user

 identifier */

 MQLONG MCAType; /* Message channel agent type */

 MQCHAR ConnectionName[264]; /* Connection name */

 MQCHAR RemoteUserIdentifier[12]; /* First 12 bytes of user

 identifier from partner */

 MQCHAR RemotePassword[12]; /* Password from partner */

 MQCHAR MsgRetryExit[n]; /* Channel message retry exit

 name */

 MQCHAR MsgRetryUserData[32]; /* Channel message retry exit

 user data */

 MQLONG MsgRetryCount; /* Number of times MCA will try

 to put the message, after the

 first attempt has failed */

 MQLONG MsgRetryInterval; /* Minimum interval in

 milliseconds after which the

 open or put operation will be

 retried */

 MQLONG HeartbeatInterval; /* Time in seconds between

 heartbeat flows */

 MQLONG BatchInterval; /* Batch duration */

 MQLONG NonPersistentMsgSpeed; /* Speed at which nonpersistent

 messages are sent */

 MQLONG StrucLength; /* Length of MQCD structure */

 MQLONG ExitNameLength; /* Length of exit name */

 MQLONG ExitDataLength; /* Length of exit user data */

 MQLONG MsgExitsDefined; /* Number of message exits

 defined */

446 WebSphere MQ: Intercommunication

MQLONG SendExitsDefined; /* Number of send exits

 defined */

 MQLONG ReceiveExitsDefined; /* Number of receive exits

 defined */

 MQPTR MsgExitPtr; /* Address of first MsgExit

 field */

 MQPTR MsgUserDataPtr; /* Address of first MsgUserData

 field */

 MQPTR SendExitPtr; /* Address of first SendExit

 field */

 MQPTR SendUserDataPtr; /* Address of first SendUserData

 field */

 MQPTR ReceiveExitPtr; /* Address of first ReceiveExit

 field */

 MQPTR ReceiveUserDataPtr; /* Address of first

 ReceiveUserData field */

 MQPTR ClusterPtr; /* Address of a list of cluster

 names */

 MQLONG ClustersDefined; /* Number of clusters to which

 the channel belongs */

 MQLONG NetworkPriority; /* Network priority */

 MQLONG LongMCAUserIdLength; /* Length of long MCA user

 identifier */

 MQLONG LongRemoteUserIdLength; /* Length of long remote user

 identifier */

 MQPTR LongMCAUserIdPtr; /* Address of long MCA user

 identifier */

 MQPTR LongRemoteUserIdPtr; /* Address of long remote user

 identifier */

 MQBYTE40 MCASecurityId; /* MCA security identifier */

 MQBYTE40 RemoteSecurityId; /* Remote security identifier */

 MQCHAR SSLCipherSpec[32]; /* SSL CipherSpec */

 MQPTR SSLPeerNamePtr; /* Address of SSL peer name */

 MQLONG SSLPeerNameLength; /* Length of SSL peer name */

 MQLONG SSLClientAuth; /* Whether SSL client

 authentication is required */

 MQLONG KeepAliveInterval; /* Keepalive interval */

 MQCHAR LocalAddress[48]; /* Local communications

 address */

 MQLONG BatchHeartbeat; /* Batch heartbeat interval */

 MQLONG HdrCompList[2]; /* Header data compression list */

 MQLONG MsgCompList[16]; /* Message data compression list */

 MQLONG CLWLChannelRank; /* Channel rank */

 MQLONG CLWLChannelPriority; /* Channel priority */

 MQLONG CLWLChannelWeight; /* Channel weight */

 MQLONG ChannelMonitoring; /* Channel Monitoring control */

 MQLONG ChannelStatistics; /* Channel Statistics*/

 MQLONG SharingConversations; /* Limit on sharing conversations */

 MQLONG PropertyControl; /* Message property control */

 MQLONG MaxInstances; /* Limit on SVRCONN channel instances */

 MQLONG MaxInstancesPerClient; /* Limit on SVRCONN channel instances

 per client */

 MQLONG ClientChannelWeight; /* Client channel weight */

 MQLONG ConnectionAffinity; /* Connection Affinity */

};

COBOL declaration

** MQCD structure

 10 MQCD.

** Channel definition name

 15 MQCD-CHANNELNAME PIC X(20).

** Structure version number

 15 MQCD-VERSION PIC S9(9) BINARY.

** Channel type

 15 MQCD-CHANNELTYPE PIC S9(9) BINARY.

** Transport type

 15 MQCD-TRANSPORTTYPE PIC S9(9) BINARY.

Chapter 6. Further intercommunication considerations 447

** Channel description

 15 MQCD-DESC PIC X(64).

** Queue-manager name

 15 MQCD-QMGRNAME PIC X(48).

** Transmission queue name

 15 MQCD-XMITQNAME PIC X(48).

** First 20 bytes of connection name

 15 MQCD-SHORTCONNECTIONNAME PIC X(20).

** Reserved

 15 MQCD-MCANAME PIC X(20).

** LU 6.2 Mode name

 15 MQCD-MODENAME PIC X(8).

** LU 6.2 transaction program name

 15 MQCD-TPNAME PIC X(64).

** Batch size

 15 MQCD-BATCHSIZE PIC S9(9) BINARY.

** Disconnect interval

 15 MQCD-DISCINTERVAL PIC S9(9) BINARY.

** Short retry count

 15 MQCD-SHORTRETRYCOUNT PIC S9(9) BINARY.

** Short retry wait interval

 15 MQCD-SHORTRETRYINTERVAL PIC S9(9) BINARY.

** Long retry count

 15 MQCD-LONGRETRYCOUNT PIC S9(9) BINARY.

** Long retry wait interval

 15 MQCD-LONGRETRYINTERVAL PIC S9(9) BINARY.

** Channel security exit name

 15 MQCD-SECURITYEXIT PIC X(n).

** Channel message exit name

 15 MQCD-MSGEXIT PIC X(n).

** Channel send exit name

 15 MQCD-SENDEXIT PIC X(n).

** Channel receive exit name

 15 MQCD-RECEIVEEXIT PIC X(n).

** Highest allowable message sequence number

 15 MQCD-SEQNUMBERWRAP PIC S9(9) BINARY.

** Maximum message length

 15 MQCD-MAXMSGLENGTH PIC S9(9) BINARY.

** Put authority

 15 MQCD-PUTAUTHORITY PIC S9(9) BINARY.

** Data conversion

 15 MQCD-DATACONVERSION PIC S9(9) BINARY.

** Channel security exit user data

 15 MQCD-SECURITYUSERDATA PIC X(32).

** Channel message exit user data

 15 MQCD-MSGUSERDATA PIC X(32).

** Channel send exit user data

 15 MQCD-SENDUSERDATA PIC X(32).

** Channel receive exit user data

 15 MQCD-RECEIVEUSERDATA PIC X(32).

** User identifier

 15 MQCD-USERIDENTIFIER PIC X(12).

** Password

 15 MQCD-PASSWORD PIC X(12).

** First 12 bytes of MCA user identifier

 15 MQCD-MCAUSERIDENTIFIER PIC X(12).

** Message channel agent type

 15 MQCD-MCATYPE PIC S9(9) BINARY.

** Connection name

 15 MQCD-CONNECTIONNAME PIC X(264).

** First 12 bytes of user identifier from partner

 15 MQCD-REMOTEUSERIDENTIFIER PIC X(12).

** Password from partner

 15 MQCD-REMOTEPASSWORD PIC X(12).

** Channel message retry exit name

 15 MQCD-MSGRETRYEXIT PIC X(n).

** Channel message retry exit user data

448 WebSphere MQ: Intercommunication

15 MQCD-MSGRETRYUSERDATA PIC X(32).

** Number of times MCA will try to put the message, after the first

** attempt has failed

 15 MQCD-MSGRETRYCOUNT PIC S9(9) BINARY.

** Minimum interval in milliseconds after which the open or put

** operation will be retried

 15 MQCD-MSGRETRYINTERVAL PIC S9(9) BINARY.

** Time in seconds between heartbeat flows

 15 MQCD-HEARTBEATINTERVAL PIC S9(9) BINARY.

** Batch duration

 15 MQCD-BATCHINTERVAL PIC S9(9) BINARY.

** Speed at which nonpersistent messages are sent

 15 MQCD-NONPERSISTENTMSGSPEED PIC S9(9) BINARY.

** Length of MQCD structure

 15 MQCD-STRUCLENGTH PIC S9(9) BINARY.

** Length of exit name

 15 MQCD-EXITNAMELENGTH PIC S9(9) BINARY.

** Length of exit user data

 15 MQCD-EXITDATALENGTH PIC S9(9) BINARY.

** Number of message exits defined

 15 MQCD-MSGEXITSDEFINED PIC S9(9) BINARY.

** Number of send exits defined

 15 MQCD-SENDEXITSDEFINED PIC S9(9) BINARY.

** Number of receive exits defined

 15 MQCD-RECEIVEEXITSDEFINED PIC S9(9) BINARY.

** Address of first MSGEXIT field

 15 MQCD-MSGEXITPTR POINTER.

** Address of first MSGUSERDATA field

 15 MQCD-MSGUSERDATAPTR POINTER.

** Address of first SENDEXIT field

 15 MQCD-SENDEXITPTR POINTER.

** Address of first SENDUSERDATA field

 15 MQCD-SENDUSERDATAPTR POINTER.

** Address of first RECEIVEEXIT field

 15 MQCD-RECEIVEEXITPTR POINTER.

** Address of first RECEIVEUSERDATA field

 15 MQCD-RECEIVEUSERDATAPTR POINTER.

** Address of a list of cluster names

 15 MQCD-CLUSTERPTR POINTER.

** Number of clusters to which the channel belongs

 15 MQCD-CLUSTERSDEFINED PIC S9(9) BINARY.

** Network priority

 15 MQCD-NETWORKPRIORITY PIC S9(9) BINARY.

** Length of long MCA user identifier

 15 MQCD-LONGMCAUSERIDLENGTH PIC S9(9) BINARY.

** Length of long remote user identifier

 15 MQCD-LONGREMOTEUSERIDLENGTH PIC S9(9) BINARY.

** Address of long MCA user identifier

 15 MQCD-LONGMCAUSERIDPTR POINTER.

** Address of long remote user identifier

 15 MQCD-LONGREMOTEUSERIDPTR POINTER.

** MCA security identifier

 15 MQCD-MCASECURITYID PIC X(40).

** Remote security identifier

 15 MQCD-REMOTESECURITYID PIC X(40).

** SSL CipherSpec

 15 MQCD-SSLCIPHERSPEC PIC X(32).

** Address of SSL peer name

 15 MQCD-SSLPEERNAMEPTR POINTER.

** Length of SSL peer name

 15 MQCD-SSLPEERNAMELENGTH PIC S9(9) BINARY.

** Whether SSL client authentication is required

 15 MQCD-SSLCLIENTAUTH PIC S9(9) BINARY.

** Keepalive interval

 15 MQCD-KEEPALIVEINTERVAL PIC S9(9) BINARY.

** Local communications address

 15 MQCD-LOCALADDRESS PIC X(48).

Chapter 6. Further intercommunication considerations 449

** Batch heartbeat interval

 15 MQCD-BATCHHEARTBEAT PIC S9(9) BINARY.

** Header data compression list

 15 MQCD-HDRCOMPLIST PIC S9(9) BINARY OCCURS 2.

** Message data compression list

 15 MQCD-MSGCOMPLIST PIC S9(9) BINARY OCCURS 16.

** Channel rank

 15 MQCD-CLWLCHANNELRANK PIC S9(9) BINARY.

** Channel priority

 15 MQCD-CLWLCHANNELPRIORITY PIC S9(9) BINARY.

** Channel weight

 15 MQCD-CLWLCHANNELWEIGHT PIC S9(9) BINARY.

** Channel Monitoring control

 15 MQCD-CHANNELMONITORING PIC S9(9) BINARY.

** Channel Statistics

 15 MQCD-CHANNELSTATISTICS PIC S9(9) BINARY.

** Limit on sharing conversations

 15 MQCD-SHARINGCONVERSATIONS PIC S9(9) BINARY.

** Message property control

 15 MQCD-PROPERTYCONTROL PIC S9(9) BINARY.

** Limit on SVRCONN channel instances

 15 MQCD-MAXINSTANCES PIC S9(9) BINARY.

** Limit on SVRCONN channel instances per client

 15 MQCD-MAXINSTANCESPERCLIENT PIC S9(9) BINARY.

** Client channel weight

 15 MQCD-CLIENTCHANNELWEIGHT PIC S9(9) BINARY

** Channel affinity

 15 MQCD-CONNECTIONAFFINITY PIC S9(9) BINARY

RPG declaration (ILE)

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..

 D* MQCD Structure

 D*

 D* Channel definition name

 D CDCHN 1 20

 D* Structure version number

 D CDVER 21 24I 0

 D* Channel type

 D CDCHT 25 28I 0

 D* Transport type

 D CDTRT 29 32I 0

 D* Channel description

 D CDDES 33 96

 D* Queue-manager name

 D CDQM 97 144

 D* Transmission queue name

 D CDXQ 145 192

 D* First 20 bytes of connection name

 D CDSCN 193 212

 D* Reserved

 D CDMCA 213 232

 D* LU 6.2 Mode name

 D CDMOD 233 240

 D* LU 6.2 transaction program name

 D CDTP 241 304

 D* Batch size

 D CDBS 305 308I 0

 D* Disconnect interval

 D CDDI 309 312I 0

 D* Short retry count

 D CDSRC 313 316I 0

 D* Short retry wait interval

 D CDSRI 317 320I 0

 D* Long retry count

 D CDLRC 321 324I 0

 D* Long retry wait interval

 D CDLRI 325 328I 0

450 WebSphere MQ: Intercommunication

D* Channel security exit name

 D CDSCX 329 348

 D* Channel message exit name

 D CDMSX 349 368

 D* Channel send exit name

 D CDSNX 369 388

 D* Channel receive exit name

 D CDRCX 389 408

 D* Highest allowable message sequence number

 D CDSNW 409 412I 0

 D* Maximum message length

 D CDMML 413 416I 0

 D* Put authority

 D CDPA 417 420I 0

 D* Data conversion

 D CDDC 421 424I 0

 D* Channel security exit user data

 D CDSCD 425 456

 D* Channel message exit user data

 D CDMSD 457 488

 D* Channel send exit user data

 D CDSND 489 520

 D* Channel receive exit user data

 D CDRCD 521 552

 D* User identifier

 D CDUID 553 564

 D* Password

 D CDPW 565 576

 D* First 12 bytes of MCA user identifier

 D CDAUI 577 588

 D* Message channel agent type

 D CDCAT 589 592I 0

 D* Connection name (characters 1 through 256)

 D CDCON 593 848

 D* Connection name (characters 257 through 264)

 D CDCN2 849 856

 D* First 12 bytes of user identifier from partner

 D CDRUI 857 868

 D* Password from partner

 D CDRPW 869 880

 D* Channel message retry exit name

 D CDMRX 881 900

 D* Channel message retry exit user data

 D CDMRD 901 932

 D* Number of times MCA will try to put the message, after the first

 D* attempt has failed

 D CDMRC 933 936I 0

 D* Minimum interval in milliseconds after which the open or put

 D* operation will be retried

 D CDMRI 937 940I 0

 D* Time in seconds between heartbeat flows

 D CDHBI 941 944I 0

 D* Batch duration

 D CDBI 945 948I 0

 D* Speed at which nonpersistent messages are sent

 D CDNPM 949 952I 0

 D* Length of MQCD structure

 D CDLEN 953 956I 0

 D* Length of exit name

 D CDXNL 957 960I 0

 D* Length of exit user data

 D CDXDL 961 964I 0

 D* Number of message exits defined

 D CDMXD 965 968I 0

 D* Number of send exits defined

 D CDSXD 969 972I 0

 D* Number of receive exits defined

Chapter 6. Further intercommunication considerations 451

D CDRXD 973 976I 0

 D* Address of first CDMSX field

 D CDMXP 977 992*

 D* Address of first CDMSD field

 D CDMUP 993 1008*

 D* Address of first CDSNX field

 D CDSXP 1009 1024*

 D* Address of first CDSND field

 D CDSUP 1025 1040*

 D* Address of first CDRCX field

 D CDRXP 1041 1056*

 D* Address of first CDRCD field

 D CDRUP 1057 1072*

 D* Limit on sharing conversations

 D CDSHC 1073 1076B 0

 D* Message property control

 D CDPRO 1077 1080I 0

 D* Address of a list of cluster names

 D CDCLP 1073 1088*

 D* Number of clusters to which the channel belongs

 D CDCLD 1089 1092I 0

 D* Network priority

 D CDNP 1093 1096I 0

 D* Length of long MCA user identifier

 D CDLML 1097 1100I 0

 D* Length of long remote user identifier

 D CDLRL 1101 1104I 0

 D* Address of long MCA user identifier

 D CDLMP 1105 1120*

 D* Address of long remote user identifier

 D CDLRP 1121 1136*

 D* MCA security identifier

 D CDMSI 1137 1176

 D* Remote security identifier

 D CDRSI 1177 1216

 D* SSL CipherSpec

 D CDSCS 1217 1248

 D* Address of SSL peer name

 D CDSPP 1249 1264*

 D* Length of SSL peer name

 D CDSPL 1265 1268I 0

 D* Whether SSL client authentication is required

 D CDSCA 1269 1272I 0

 D* Keepalive interval

 D CDKAI 1273 1276I 0

 D* Local communications address

 D CDLAD 1277 1324

 D* Batch heartbeat interval

 D CDBHB 1325 1328I 0

 D* Header data compression list

 D CDHCL 1329 1330I 0

 D* Message data compression list

 D CDMCL 1331 1346I 0

 D* Channel Rank

 D CDCWCR 1347 1350I 0

 D* Channel priority

 D CDCWCP 1351 1354I 0

 D* Channel Weight

 D CDCWCW 1355 1358I 0

 D* Channel Monitoring control

 D CDCHLMON 1359 1362I 0

 D* Channel Statistics

 D CDCHLST 1363 1366I 0

 D* Client channel weight

 D CDCNW 1367 1380I 0

 D* Connection affinity

 D CDCNA 1381 1384I 0

452 WebSphere MQ: Intercommunication

System/390 assembler declaration

MQCD DSECT

MQCD_CHANNELNAME DS CL20 Channel definition name

MQCD_VERSION DS F Structure version number

MQCD_CHANNELTYPE DS F Channel type

MQCD_TRANSPORTTYPE DS F Transport type

MQCD_DESC DS CL64 Channel description

MQCD_QMGRNAME DS CL48 Queue-manager name

MQCD_XMITQNAME DS CL48 Transmission queue name

MQCD_SHORTCONNECTIONNAME DS CL20 First 20 bytes of connection

* name

MQCD_MCANAME DS CL20 Reserved

MQCD_MODENAME DS CL8 LU 6.2 Mode name

MQCD_TPNAME DS CL64 LU 6.2 transaction program name

MQCD_BATCHSIZE DS F Batch size

MQCD_DISCINTERVAL DS F Disconnect interval

MQCD_SHORTRETRYCOUNT DS F Short retry count

MQCD_SHORTRETRYINTERVAL DS F Short retry wait interval

MQCD_LONGRETRYCOUNT DS F Long retry count

MQCD_LONGRETRYINTERVAL DS F Long retry wait interval

MQCD_SECURITYEXIT DS CLn Channel security exit name

MQCD_MSGEXIT DS CLn Channel message exit name

MQCD_SENDEXIT DS CLn Channel send exit name

MQCD_RECEIVEEXIT DS CLn Channel receive exit name

MQCD_SEQNUMBERWRAP DS F Highest allowable message

* sequence number

MQCD_MAXMSGLENGTH DS F Maximum message length

MQCD_PUTAUTHORITY DS F Put authority

MQCD_DATACONVERSION DS F Data conversion

MQCD_SECURITYUSERDATA DS CL32 Channel security exit user data

MQCD_MSGUSERDATA DS CL32 Channel message exit user data

MQCD_SENDUSERDATA DS CL32 Channel send exit user data

MQCD_RECEIVEUSERDATA DS CL32 Channel receive exit user data

MQCD_USERIDENTIFIER DS CL12 User identifier

MQCD_PASSWORD DS CL12 Password

MQCD_MCAUSERIDENTIFIER DS CL12 First 12 bytes of MCA user

* identifier

MQCD_MCATYPE DS F Message channel agent type

MQCD_CONNECTIONNAME DS CL264 Connection name

MQCD_REMOTEUSERIDENTIFIER DS CL12 First 12 bytes of user

* identifier from partner

MQCD_REMOTEPASSWORD DS CL12 Password from partner

MQCD_MSGRETRYEXIT DS CLn Channel message retry exit name

MQCD_MSGRETRYUSERDATA DS CL32 Channel message retry exit user

* data

MQCD_MSGRETRYCOUNT DS F Number of times MCA will try to

* put the message, after the

* first attempt has failed

MQCD_MSGRETRYINTERVAL DS F Minimum interval in

* milliseconds after which the

* open or put operation will be

* retried

MQCD_HEARTBEATINTERVAL DS F Time in seconds between

* heartbeat flows

MQCD_BATCHINTERVAL DS F Batch duration

MQCD_NONPERSISTENTMSGSPEED DS F Speed at which nonpersistent

* messages are sent

MQCD_STRUCLENGTH DS F Length of MQCD structure

MQCD_EXITNAMELENGTH DS F Length of exit name

MQCD_EXITDATALENGTH DS F Length of exit user data

MQCD_MSGEXITSDEFINED DS F Number of message exits defined

MQCD_SENDEXITSDEFINED DS F Number of send exits defined

MQCD_RECEIVEEXITSDEFINED DS F Number of receive exits defined

MQCD_MSGEXITPTR DS F Address of first MSGEXIT field

MQCD_MSGUSERDATAPTR DS F Address of first MSGUSERDATA

* field

MQCD_SENDEXITPTR DS F Address of first SENDEXIT field

Chapter 6. Further intercommunication considerations 453

MQCD_SENDUSERDATAPTR DS F Address of first SENDUSERDATA

* field

MQCD_RECEIVEEXITPTR DS F Address of first RECEIVEEXIT

* field

MQCD_RECEIVEUSERDATAPTR DS F Address of first

* RECEIVEUSERDATA field

MQCD_CLUSTERPTR DS F Address of a list of cluster

* names

MQCD_CLUSTERSDEFINED DS F Number of clusters to which the

* channel belongs

MQCD_NETWORKPRIORITY DS F Network priority

MQCD_LONGMCAUSERIDLENGTH DS F Length of long MCA user

* identifier

MQCD_LONGREMOTEUSERIDLENGTH DS F Length of long remote user

* identifier

MQCD_LONGMCAUSERIDPTR DS F Address of long MCA user

* identifier

MQCD_LONGREMOTEUSERIDPTR DS F Address of long remote user

* identifier

MQCD_MCASECURITYID DS XL40 MCA security identifier

MQCD_REMOTESECURITYID DS XL40 Remote security identifier

MQCD_SSLCIPHERSPEC DS CL32 SSL CipherSpec

MQCD_SSLPEERNAMEPTR DS F Address of SSL peer name

MQCD_SSLPEERNAMELENGTH DS F Length of SSL peer name

MQCD_SSLCLIENTAUTH DS F Whether SSL client

* authentication is required

MQCD_KEEPALIVEINTERVAL DS F Keepalive interval

MQCD_LOCALADDRESS DS CL48 Local communications address

MQCD_BATCHHEARTBEAT DS F Batch heartbeat interval

MQCD_HDRCOMPLIST DS CL2 Header data compression list

MQCD_MSGCOMPLIST DS CL16 Message data compression list

MQCD_CLWLCHANNELRANK DS F Channel rank

MQCD_CLWLCHANNELPRIORITY DS F Channel priority

MQCD_CLWLCHANNELWEIGHT DS F Channel weight

MQCD_CHANNELMONITORING DS F Channel monitoring

MQCD_CHANNELSTATISTICS DS F Channel statistics

MQCD_SHARINGCONVERSATIONS DS F Limit on sharing

* conversations

MQCD_PROPERTYCONTROL DS F Message property

* control

MQCD_SHARINGCONVERSATIONS DS F Limit on sharing conversations

MQCD_PROPERTYCONTROL DS F Message property control

MQCD_MAXINSTANCES DS F Limit on SVRCONN chl instances

MQCD_MAXINSTANCESPERCLIENT DS F Limit on SVRCONN chl instances

 per client

MQCD_CLIENTCHANNELWEIGHT DS F Channel weight

MQCD_CONNECTIONAFFINITY DS F Connection Affinty

MQCD_LENGTH EQU *-MQCD

 ORG MQCD

MQCD_AREA DS CL(MQCD_LENGTH)

Visual Basic declaration

In Visual Basic, the MQCD structure can be used with the MQCNO structure on

the MQCONNX call.

Type MQCD

 ChannelName As String*20 ’Channel definition name’

 Version As Long ’Structure version number’

 ChannelType As Long ’Channel type’

 TransportType As Long ’Transport type’

 Desc As String*64 ’Channel description’

 QMgrName As String*48 ’Queue-manager name’

 XmitQName As String*48 ’Transmission queue name’

 ShortConnectionName As String*20 ’First 20 bytes of connection’

 ’name’

 MCAName As String*20 ’Reserved’

454 WebSphere MQ: Intercommunication

ModeName As String*8 ’LU 6.2 Mode name’

 TpName As String*64 ’LU 6.2 transaction program name’

 BatchSize As Long ’Batch size’

 DiscInterval As Long ’Disconnect interval’

 ShortRetryCount As Long ’Short retry count’

 ShortRetryInterval As Long ’Short retry wait interval’

 LongRetryCount As Long ’Long retry count’

 LongRetryInterval As Long ’Long retry wait interval’

 SecurityExit As String*n ’Channel security exit name’

 MsgExit As String*n ’Channel message exit name’

 SendExit As String*n ’Channel send exit name’

 ReceiveExit As String*n ’Channel receive exit name’

 SeqNumberWrap As Long ’Highest allowable message’

 ’sequence number’

 MaxMsgLength As Long ’Maximum message length’

 PutAuthority As Long ’Put authority’

 DataConversion As Long ’Data conversion’

 SecurityUserData As String*32 ’Channel security exit user data’

 MsgUserData As String*32 ’Channel message exit user data’

 SendUserData As String*32 ’Channel send exit user data’

 ReceiveUserData As String*32 ’Channel receive exit user data’

 UserIdentifier As String*12 ’User identifier’

 Password As String*12 ’Password’

 MCAUserIdentifier As String*12 ’First 12 bytes of MCA user’

 ’identifier’

 MCAType As Long ’Message channel agent type’

 ConnectionName As String*264 ’Connection name’

 RemoteUserIdentifier As String*12 ’First 12 bytes of user’

 ’identifier from partner’

 RemotePassword As String*12 ’Password from partner’

 MsgRetryExit As String*n ’Channel message retry exit name’

 MsgRetryUserData As String*32 ’Channel message retry exit user’

 ’data’

 MsgRetryCount As Long ’Number of times MCA will try to’

 ’put the message, after the’

 ’first attempt has failed’

 MsgRetryInterval As Long ’Minimum interval in’

 ’milliseconds after which the’

 ’open or put operation will be’

 ’retried’

 HeartbeatInterval As Long ’Time in seconds between’

 ’heartbeat flows’

 BatchInterval As Long ’Batch duration’

 NonPersistentMsgSpeed As Long ’Speed at which nonpersistent’

 ’messages are sent’

 StrucLength As Long ’Length of MQCD structure’

 ExitNameLength As Long ’Length of exit name’

 ExitDataLength As Long ’Length of exit user data’

 MsgExitsDefined As Long ’Number of message exits defined’

 SendExitsDefined As Long ’Number of send exits defined’

 ReceiveExitsDefined As Long ’Number of receive exits defined’

 MsgExitPtr As String*4 ’Address of first MsgExit field’

 MsgUserDataPtr As String*4 ’Address of first MsgUserData’

 ’field’

 SendExitPtr As String*4 ’Address of first SendExit field’

 SendUserDataPtr As String*4 ’Address of first SendUserData’

 ’field’

 ReceiveExitPtr As String*4 ’Address of first ReceiveExit’

 ’field’

 ReceiveUserDataPtr As String*4 ’Address of first’

 ’ReceiveUserData field’

 ClusterPtr As String*4 ’Address of a list of cluster’

 ’names’

 ClustersDefined As Long ’Number of clusters to which the’

 ’channel belongs’

 NetworkPriority As Long ’Network priority’

 LongMCAUserIdLength As Long ’Length of long MCA user’

Chapter 6. Further intercommunication considerations 455

’identifier’

 LongRemoteUserIdLength As Long ’Length of long remote user’

 ’identifier’

 LongMCAUserIdPtr As String*4 ’Address of long MCA user’

 ’identifier’

 LongRemoteUserIdPtr As String*4 ’Address of long remote user’

 ’identifier’

 MCASecurityId As String*40 ’MCA security identifier’

 RemoteSecurityId As String*40 ’Remote security identifier’

 SSLCipherSpec As String*32 ’SSL CipherSpec’

 SSLPeerNamePtr As String*4 ’Address of SSL peer name’

 SSLPeerNameLength As Long ’Length of SSL peer name’

 SSLClientAuth As Long ’Whether SSL client’

 ’authentication is required’

 KeepAliveInterval As Long ’Keepalive interval’

 LocalAddress As String*48 ’Local communications address’

 BatchHeartbeat As Long ’Batch heartbeat interval’

 HdrCompList As Long2 ’Header data compression list’

 MsgCompList As Long16 ’Message data compression list’

 CLWLChannelRank As Long ’Channel Rank’

 CLWLChannelPriority As Long ’Channel priority’

 CLWLChannelWeight As Long ’Channel Weight’

 ChannelMonitoring As Long ’Channel Monitoring control’

 ChannelStatistics As Long ’Channel Statistics’

End Type

Changing MQCD fields in a channel exit

A channel exit can change fields in the MQCD. However, these changes are not

generally acted on, except in the circumstances listed.

If a channel exit program changes a field in the MQCD data structure, the new

value is generally ignored by the WebSphere MQ channel process. However, the

new value remains in the MQCD and is passed to any remaining exits in an exit

chain and to any conversation sharing the channel instance.

If SharingConversations is set to FALSE in the MQCXP structure, changes to

certain fields can be acted on, depending on the type of exit program, the type of

channel, and the exit reason code. The following table shows the fields that can be

changed and have an effect on the behavior of the channel, and in what

circumstances. If an exit program changes one of these fields in any other

circumstances, or any field not listed, the new value is ignored by the channel

process but remains in the MQCD and is passed to any remaining exits in an exit

chain and to any conversation sharing the channel instance

For example, changes to ChannelName will be acted on when MQCXP

SharingConversations is set to FALSE, it is changed by any type of exit program

and for any type of channel but only when the exit is initializing: Changes to

MCAUserIdentifier will be acted on when MQCXP SharingConversations is FALSE,

for the various channel types and exit reason codes listed, but only if it is changed

by a security exit.

 Field Exit Reason Code Exit Type Channel Type

ChannelName MQXR_INIT All All

TransportType MQXR_INIT All All

XmitQName MQXR_INIT All SDR,RCVR

ModeName MQXR_INIT All All

TpName MQXR_INIT All All

456 WebSphere MQ: Intercommunication

BatchSize MQXR_INIT All SDR, SVR, RCVR,

RQSTR,

CLUSSDR,

CLUSRCVR

DiscInterval MQXR_INIT All SDR, SVR, RCVR,

RQSTR,

CLUSSDR,

CLUSRCVR

ShortRetryCount MQXR_INIT All SDR, SVR, RCVR,

RQSTR,

CLUSSDR,

CLUSRCVR

ShortRetryInterval MQXR_INIT All SDR, SVR, RCVR,

RQSTR,

CLUSSDR,

CLUSRCVR

LongRetryCount MQXR_INIT All SDR, SVR, RCVR,

RQSTR,

CLUSSDR,

CLUSRCVR

LongRetryInterval MQXR_INIT All SDR, SVR, RCVR,

RQSTR,

CLUSSDR,

CLUSRCVR

SeqNumberWrap MQXR_INIT All SDR, SVR, RCVR,

RQSTR,

CLUSSDR,

CLUSRCVR

MaxMsgLength MQXR_INIT All All

PutAuthority MQXR_INIT All SDR, SVR, RCVR,

RQSTR,

CLUSSDR,

CLUSRCVR

DataConversion MQXR_INIT All All

MCAUserIdentifier MQXR_INIT,

MQXR_INIT_SEC,

MQXR_SEC_MSG,

MQXR_SEC_PARMS

Security SDR, SVR, RCVR,

RQSTR,

CLUSSDR,

CLUSRCVR

ConnectionName MQXR_INIT All SDR, SVR,

RQSTR,

CLNTCONN,

CLUSSDR,

CLUSRCVR

MsgRetryUserData MQXR_INIT All RCVR, RQSTR,

CLUSRCVR

MsgRetryCount MQXR_INIT All RCVR, RQSTR,

CLUSRCVR

MsgRetryInterval MQXR_INIT All RCVR, RQSTR,

CLUSRCVR

HeartbeatInterval MQXR_INIT All All

BatchInterval MQXR_INIT All SDR, SVR,

CLUSSDR,

CLUSRCVR

Chapter 6. Further intercommunication considerations 457

NonPersistentMsgSpeed MQXR_INIT All SDR, SVR, RCVR,

RQSTR,

CLUSSDR,

CLUSRCVR

MCASecurityId MQXR_INIT,

MQXR_INIT_SEC,

MQXR_SEC_MSG,

MQXR_SEC_PARMS

Security SDR, SVR, RCVR,

RQSTR,

SVRCONN,

CLUSSDR,

CLUSRCVR

SSLCipherSpec MQXR_INIT All All

SSLPeerNamePtr MQXR_INIT All All

SSLPeerNameLength MQXR_INIT All All

SSLClientAuth MQXR_INIT All SVR, RCVR,

RQSTR,

SVRCONN,

CLUSRCVR

KeepAliveInterval MQXR_INIT All All

LocalAddress MQXR_INIT All SDR, SVR,

RQSTR,

CLNTCONN,

CLUSSDR,

CLUSRCVR

BatchHeartbeat MQXR_INIT All SDR, SVR,

CLUSSDR,

CLUSRCVR

HdrCompList MQXR_INIT All All

MsgCompList MQXR_INIT All All

ChannelMonitoring MQXR_INIT All SDR, SVR, RCVR,

RQSTR,

SVRCONN,

CLUSSDR,

CLUSRCVR

ChannelStatistics MQXR_INIT All SDR, SVR, RCVR,

RQSTR,

CLUSSDR,

CLUSRCVR

SharingConversations MQXR_INIT All SVRCONN,

CLNTCONN

PropertyControl MQXR_INIT All SDR, SVR,

CLUSSDR,

CLUSRCVR

MQCXP – Channel exit parameter

The MQCXP structure is passed to each type of exit called by a Message Channel

Agent (MCA), client-connection channel, or server-connection channel. See

MQ_CHANNEL_EXIT.

The fields described as “input to the exit” in the descriptions that follow are

ignored by the channel when the exit returns control to the channel. The exit

should not expect that any input fields that it changes in the channel exit

parameter block will be preserved for its next invocation. Changes made to

458 WebSphere MQ: Intercommunication

input/output fields (for example, the ExitUserArea field), are preserved for

invocations of that instance of the exit only. Such changes cannot be used to pass

data between different exits defined on the same channel, or between the same exit

defined on different channels.

Fields

StrucId (MQCHAR4):

 Structure identifier.

The value must be:

MQCXP_STRUC_ID

Identifier for channel exit parameter structure.

 For the C programming language, the constant

MQCXP_STRUC_ID_ARRAY is also defined; this has the same value as

MQCXP_STRUC_ID, but is an array of characters instead of a string.

This is an input field to the exit.

Version (MQLONG):

 Structure version number.

The value depends on the environment:

MQCXP_VERSION_1

Version-1 channel exit parameter structure.

MQCXP_VERSION_2

Version-2 channel exit parameter structure.

 The field has this value in the following environments: HP OpenVMS,

Compaq NonStop Kernel.

MQCXP_VERSION_3

Version-3 channel exit parameter structure.

 The field has this value in the following environments: UNIX systems not

listed elsewhere.

MQCXP_VERSION_4

Version-4 channel exit parameter structure.

MQCXP_VERSION_5

Version-5 channel exit parameter structure.

MQCXP_VERSION_6

Version-6 channel exit parameter structure.

MQCXP_VERSION_8

Version-8 channel exit parameter structure.

 The field has this value in the following environments: z/OS, AIX, HP-UX,

Linux, i5/OS, Solaris, Windows.

Fields that exist only in the more-recent versions of the structure are identified as

such in the descriptions of the fields. The following constant specifies the version

number of the current version:

Chapter 6. Further intercommunication considerations 459

MQCXP_CURRENT_VERSION

Current version of channel exit parameter structure.

 The value of this constant depends on the environment (see above).

Note: When a new version of the MQCXP structure is introduced, the layout of

the existing part is not changed. The exit should therefore check that the version

number is equal to or greater than the lowest version which contains the fields that

the exit needs to use.

This is an input field to the exit.

ExitId (MQLONG):

 Type of exit.

This indicates the type of exit being called, and is set on entry to the exit routine.

Possible values are:

MQXT_CHANNEL_SEC_EXIT

Channel security exit.

MQXT_CHANNEL_MSG_EXIT

Channel message exit.

MQXT_CHANNEL_SEND_EXIT

Channel send exit.

MQXT_CHANNEL_RCV_EXIT

Channel receive exit.

MQXT_CHANNEL_MSG_RETRY_EXIT

Channel message-retry exit.

MQXT_CHANNEL_AUTO_DEF_EXIT

Channel auto-definition exit.

 On z/OS, this type of exit is supported only for channels of type

MQCHT_CLUSSDR and MQCHT_CLUSRCVR.

This is an input field to the exit.

ExitReason (MQLONG):

 Reason for invoking exit.

This indicates the reason why the exit is being called, and is set on entry to the exit

routine. It is not used by the auto-definition exit. Possible values are:

MQXR_INIT

Exit initialization.

 This indicates that the exit is being invoked for the first time. It allows the

exit to acquire and initialize any resources that it may need (for example:

memory).

MQXR_TERM

Exit termination.

 This indicates that the exit is about to be terminated. The exit should free

any resources that it may have acquired since it was initialized (for

example: memory).

460 WebSphere MQ: Intercommunication

MQXR_MSG

Process a message.

 This indicates that the exit is being invoked to process a message. This

occurs for channel message exits only.

MQXR_XMIT

Process a transmission.

 This occurs for channel send and receive exits only.

MQXR_SEC_MSG

Security message received.

 This occurs for channel security exits only.

MQXR_INIT_SEC

Initiate security exchange.

 This occurs for channel security exits only.

The receiver’s security exit is always invoked with this reason immediately

after being invoked with MQXR_INIT, to give it the opportunity to initiate

a security exchange. If it declines the opportunity (by returning

MQXCC_OK instead of MQXCC_SEND_SEC_MSG or

MQXCC_SEND_AND_REQUEST_SEC_MSG), the sender’s security exit is

invoked with MQXR_INIT_SEC.

If the receiver’s security exit does initiate a security exchange (by returning

MQXCC_SEND_SEC_MSG or

MQXCC_SEND_AND_REQUEST_SEC_MSG), the sender’s security exit is

never invoked with MQXR_INIT_SEC; instead it is invoked with

MQXR_SEC_MSG to process the receiver’s message. (In either case it is

first invoked with MQXR_INIT.)

Unless one of the security exits requests termination of the channel (by

setting ExitResponse to MQXCC_SUPPRESS_FUNCTION or

MQXCC_CLOSE_CHANNEL), the security exchange must complete at the

side that initiated the exchange. Therefore, if a security exit is invoked with

MQXR_INIT_SEC and it does initiate an exchange, the next time the exit is

invoked it will be with MQXR_SEC_MSG. This happens whether or not

there is a security message for the exit to process. There will be a security

message if the partner returns MQXCC_SEND_SEC_MSG or

MQXCC_SEND_AND_REQUEST_SEC_MSG, but not if the partner returns

MQXCC_OK or there is no security exit at the partner. If there is no

security message to process, the security exit at the initiating end is

re-invoked with a DataLength of zero.

MQXR_RETRY

Retry a message.

 This occurs for message-retry exits only.

MQXR_AUTO_CLUSSDR

Automatic definition of a cluster-sender channel.

 This occurs for channel auto-definition exits only.

MQXR_AUTO_RECEIVER

Automatic definition of a receiver channel.

 This occurs for channel auto-definition exits only.

Chapter 6. Further intercommunication considerations 461

MQXR_AUTO_SVRCONN

Automatic definition of a server-connection channel.

 This occurs for channel auto-definition exits only.

MQXR_AUTO_CLUSRCVR

Automatic definition of a cluster-receiver channel.

 This occurs for channel auto-definition exits only.

MQXR_SEC_PARMS

Security parameters

 This applies to security exits only and indicates that an MQCSP structure is

being passed to the exit. For more information, see MQCSP – Security

parameters

Note:

1. If you have more than one exit defined for a channel, they will each be invoked

with MQXR_INIT when the MCA is initialized, and will each be invoked with

MQXR_TERM when the MCA is terminated.

2. For the channel auto-definition exit, ExitReason is not set if Version is less than

MQCXP_VERSION_4. The value MQXR_AUTO_SVRCONN is implied in this

case.

This is an input field to the exit.

ExitResponse (MQLONG):

 Response from exit.

This is set by the exit to communicate with the MCA. It must be one of the

following:

MQXCC_OK

Exit completed successfully.

 v For the channel security exit, this indicates that message transfer should

now proceed normally.

v For the channel message retry exit, this indicates that the MCA should

wait for the time interval returned by the exit in the MsgRetryInterval

field in MQCXP, and then retry the message.

The ExitResponse2 field may contain additional information.

MQXCC_SUPPRESS_FUNCTION

Suppress function.

 v For the channel security exit, this indicates that the channel should be

terminated.

v For the channel message exit, this indicates that the message is not to

proceed any further towards its destination. Instead the MCA generates

an exception report message (if one was requested by the sender of the

original message), and places the message contained in the original

buffer on the dead-letter queue (if the sender specified

MQRO_DEAD_LETTER_Q), or discards it (if the sender specified

MQRO_DISCARD_MSG).

For persistent messages, if the sender specified

MQRO_DEAD_LETTER_Q, but the put to the dead-letter queue fails, or

there is no dead-letter queue, the original message is left on the

462 WebSphere MQ: Intercommunication

transmission queue and the report message is not generated. The

original message is also left on the transmission queue if the report

message cannot be generated successfully.

The Feedback field in the MQDLH structure at the start of the message

on the dead-letter queue indicates why the message was put on the

dead-letter queue; this feedback code is also used in the message

descriptor of the exception report message (if one was requested by the

sender).

v For the channel message retry exit, this indicates that the MCA should

not wait and retry the message; instead, the MCA continues immediately

with its normal failure processing (the message is placed on the

dead-letter queue or discarded, as specified by the sender of the

message).

v For the channel auto-definition exit, either MQXCC_OK or

MQXCC_SUPPRESS_FUNCTION must be specified. If neither of these is

specified, MQXCC_SUPPRESS_FUNCTION is assumed by default and

the auto-definition is abandoned.

This response is not supported for the channel send and receive exits.

MQXCC_SEND_SEC_MSG

Send security message.

 This value can be set only by a channel security exit. It indicates that the

exit has provided a security message which should be transmitted to the

partner.

MQXCC_SEND_AND_REQUEST_SEC_MSG

Send security message that requires a reply.

 This value can be set only by a channel security exit. It indicates

v that the exit has provided a security message which should be

transmitted to the partner, and

v that the exit requires a response from the partner. If no response is

received, the channel must be terminated, because the exit has not yet

decided whether communications can proceed.

MQXCC_SUPPRESS_EXIT

Suppress exit.

 v This value can be set by all types of channel exit other than a security

exit or an auto-definition exit. It suppresses any further invocation of

that exit (as if its name had been blank in the channel definition), until

termination of the channel, when the exit is again invoked with an

ExitReason of MQXR_TERM.

v If a message retry exit returns this value, message retries for subsequent

messages are controlled by the MsgRetryCount and MsgRetryInterval

channel attributes as normal. For the current message, the MCA

performs the number of outstanding retries, at intervals given by the

MsgRetryInterval channel attribute, but only if the reason code is one

that the MCA would normally retry (see the MsgRetryCount field

described in “MQCD – Channel definition” on page 413). The number of

outstanding retries is the value of the MsgRetryCount attribute, less the

number of times the exit returned MQXCC_OK for the current message;

if this number is negative, no further retries are performed by the MCA

for the current message.

MQXCC_CLOSE_CHANNEL

Close channel.

Chapter 6. Further intercommunication considerations 463

This value can be set by any type of channel exit except an auto-definition

exit. It closes the channel.

This is an input/output field from the exit.

ExitResponse2 (MQLONG):

 Secondary response from exit.

This is set to zero on entry to the exit routine. It can be set by the exit to provide

further information to the WebSphere MQ channel functions. It is not used by the

auto-definition exit.

The exit can set one or more of the following. If more than one is required, the

values are added together. Combinations that are not valid are noted; other

combinations are allowed.

MQXR2_PUT_WITH_DEF_ACTION

Put with default action.

 This is set by the receiver’s channel message exit. It indicates that the

message is to be put with the MCA’s default action, that is either the

MCA’s default user ID, or the context UserIdentifier in the MQMD

(message descriptor) of the message.

The value of this constant is zero, which corresponds to the initial value set

when the exit is invoked. The constant is provided for documentation

purposes.

MQXR2_PUT_WITH_DEF_USERID

Put with default user identifier.

 This can only be set by the receiver’s channel message exit. It indicates that

the message is to be put with the MCA’s default user identifier.

MQXR2_PUT_WITH_MSG_USERID

Put with message’s user identifier.

 This can only be set by the receiver’s channel message exit. It indicates that

the message is to be put with the context UserIdentifier in the MQMD

(message descriptor) of the message (this may have been modified by the

exit).

Only one of MQXR2_PUT_WITH_DEF_ACTION,

MQXR2_PUT_WITH_DEF_USERID, and MQXR2_PUT_WITH_MSG_USERID

should be set.

MQXR2_USE_AGENT_BUFFER

Use agent buffer.

 This indicates that any data to be passed on is in AgentBuffer, not

ExitBufferAddr.

The value of this constant is zero, which corresponds to the initial value set

when the exit is invoked. The constant is provided for documentation

purposes.

MQXR2_USE_EXIT_BUFFER

Use exit buffer.

 This indicates that any data to be passed on is in ExitBufferAddr, not

AgentBuffer.

464 WebSphere MQ: Intercommunication

Only one of MQXR2_USE_AGENT_BUFFER and MQXR2_USE_EXIT_BUFFER

should be set.

MQXR2_DEFAULT_CONTINUATION

Default continuation.

 Continuation with the next exit in the chain depends on the response from

the last exit invoked:

v If MQXCC_SUPPRESS_FUNCTION or MQXCC_CLOSE_CHANNEL are

returned, no further exits in the chain are called.

v Otherwise, the next exit in the chain is invoked.

MQXR2_CONTINUE_CHAIN

Continue with the next exit.

MQXR2_SUPPRESS_CHAIN

Skip remaining exits in chain.

This is an input/output field to the exit.

Feedback (MQLONG):

 Feedback code.

This is set to MQFB_NONE on entry to the exit routine.

If a channel message exit sets the ExitResponse field to

MQXCC_SUPPRESS_FUNCTION, the Feedback field specifies the feedback code

that identifies why the message was put on the dead-letter (undelivered-message)

queue, and is also used to send an exception report if one has been requested. In

this case, if the Feedback field is MQFB_NONE, the following feedback code is

used:

MQFB_STOPPED_BY_MSG_EXIT

Message stopped by channel message exit.

The value returned in this field by channel security, send, receive, and

message-retry exits is not used by the MCA.

The value returned in this field by auto-definition exits is not used if ExitResponse

is MQXCC_OK, but otherwise is used for the AuxErrorDataInt1 parameter in the

event message.

This is an input/output field from the exit.

MaxSegmentLength (MQLONG):

 Maximum segment length.

This is the maximum length in bytes that can be sent in a single transmission. It is

not used by the auto-definition exit. It is of interest to a channel send exit, because

this exit must ensure that it does not increase the size of a transmission segment to

a value greater than MaxSegmentLength. The length includes the initial 8 bytes that

the exit must not change. The value is negotiated between the WebSphere MQ

channel functions when the channel is initiated. See “Writing and compiling

channel-exit programs” on page 394 for more information about segment lengths.

The value in this field is not meaningful if ExitReason is MQXR_INIT.

Chapter 6. Further intercommunication considerations 465

This is an input field to the exit.

ExitUserArea (MQBYTE16):

 Exit user area.

This is a field that is available for the exit to use.

It is initialized to binary zero before the first invocation of the exit (which has an

ExitReason set to MQXR_INIT), and thereafter any changes made to this field by

the exit are preserved across invocations of the exit.

The following value is defined:

MQXUA_NONE

No user information.

 The value is binary zero for the length of the field.

For the C programming language, the constant MQXUA_NONE_ARRAY is

also defined; this has the same value as MQXUA_NONE, but is an array of

characters instead of a string.

The length of this field is given by MQ_EXIT_USER_AREA_LENGTH. This is an

input/output field to the exit.

ExitData (MQCHAR32):

 Exit data.

This is set on entry to the exit routine to information that WebSphere MQ channel

functions took from the channel definition. If no such information is available, this

field is all blanks.

The length of this field is given by MQ_EXIT_DATA_LENGTH.

This is an input field to the exit.

The following fields in this structure are not present if Version is less than

MQCXP_VERSION_2.

MsgRetryCount (MQLONG):

 Number of times the message has been retried.

The first time the exit is invoked for a particular message, this field has the value

zero (no retries yet attempted). On each subsequent invocation of the exit for that

message, the value is incremented by one by the MCA.

This is an input field to the exit. The value in this field is not meaningful if

ExitReason is MQXR_INIT. The field is not present if Version is less than

MQCXP_VERSION_2.

MsgRetryInterval (MQLONG):

 Minimum interval in milliseconds after which the put operation should be retried.

466 WebSphere MQ: Intercommunication

The first time the exit is invoked for a particular message, this field contains the

value of the MsgRetryInterval channel attribute. The exit can leave the value

unchanged, or modify it to specify a different time interval in milliseconds. If the

exit returns MQXCC_OK in ExitResponse, the MCA will wait for at least this time

interval before retrying the MQOPEN or MQPUT operation. The time interval

specified must be zero or greater.

The second and subsequent times the exit is invoked for that message, this field

contains the value returned by the previous invocation of the exit.

If the value returned in the MsgRetryInterval field is less than zero or greater than

999 999 999, and ExitResponse is MQXCC_OK, the MCA ignores the

MsgRetryInterval field in MQCXP and waits instead for the interval specified by

the MsgRetryInterval channel attribute.

This is an input/output field to the exit. The value in this field is not meaningful if

ExitReason is MQXR_INIT. The field is not present if Version is less than

MQCXP_VERSION_2.

MsgRetryReason (MQLONG):

 Reason code from previous attempt to put the message.

This is the reason code from the previous attempt to put the message; it is one of

the MQRC_* values.

This is an input field to the exit. The value in this field is not meaningful if

ExitReason is MQXR_INIT. The field is not present if Version is less than

MQCXP_VERSION_2.

The following fields in this structure are not present if Version is less than

MQCXP_VERSION_3.

HeaderLength (MQLONG):

 Length of header information.

This field is relevant only for a message exit and a message-retry exit. The value is

the length of the routing header structures at the start of the message data; these

are the MQXQH structure, the MQMDE (message description extension header),

and (for a distribution-list message) the MQDH structure and arrays of MQOR and

MQPMR records that follow the MQXQH structure.

The message exit can examine this header information, and modify it if necessary,

but the data that the exit returns must still be in the correct format. The exit must

not, for example, encrypt or compress the header data at the sending end, even if

the message exit at the receiving end makes compensating changes.

If the message exit modifies the header information in such a way as to change its

length (for example, by adding another destination to a distribution-list message),

it must change the value of HeaderLength correspondingly before returning.

This is an input/output field to the exit. The value in this field is not meaningful if

ExitReason is MQXR_INIT. The field is not present if Version is less than

MQCXP_VERSION_3.

Chapter 6. Further intercommunication considerations 467

PartnerName (MQCHAR48):

 Partner Name.

The name of the partner, as follows:

v For SVRCONN channels, it is the logged-on user ID at the client.

v For all other types of channel, it is the queue-manager name of the partner.

When the exit is initialized this field is blank because the queue manager does not

know the name of the partner until after initial negotiation has taken place.

This is an input field to the exit. The field is not present if Version is less than

MQCXP_VERSION_3.

FAPLevel (MQLONG):

 Negotiated Formats and Protocols level.

This is an input field to the exit. The field is not present if Version is less than

MQCXP_VERSION_3.

CapabilityFlags (MQLONG):

 Capability flags.

The following are defined:

MQCF_NONE

No flags.

MQCF_DIST_LISTS

Distribution lists supported.

This is an input field to the exit. The field is not present if Version is less than

MQCXP_VERSION_3.

ExitNumber (MQLONG):

 Exit number.

The ordinal number of the exit, within the type defined in ExitId. For example, if

the exit being invoked is the third message exit defined, this field contains the

value 3. If the exit type is one for which a list of exits cannot be defined (for

example, a security exit), this field has the value 1.

This is an input field to the exit. The field is not present if Version is less than

MQCXP_VERSION_3.

The following fields in this structure are not present if Version is less than

MQCXP_VERSION_5.

ExitSpace (MQLONG):

 Number of bytes in transmission buffer reserved for exit to use.

This field is relevant only for a send exit. It specifies the amount of space in bytes

that the WebSphere MQ channel functions will reserve in the transmission buffer

468 WebSphere MQ: Intercommunication

for the exit to use. This allows the exit to add to the transmission buffer a small

amount of data (typically not exceeding a few hundred bytes) for use by a

complementary receive exit at the other end. The data added by the send exit must

be removed by the receive exit.

The value is always zero on z/OS.

Note: This facility should not be used to send large amounts of data, as this may

degrade performance, or even inhibit operation of the channel.

By setting ExitSpace the exit is guaranteed that there will always be at least that

number of bytes available in the transmission buffer for the exit to use. However,

the exit can use less than the amount reserved, or more than the amount reserved

if there is space available in the transmission buffer. The exit space in the buffer is

provided following the existing data.

ExitSpace can be set by the exit only when ExitReason has the value MQXR_INIT;

in all other cases the value returned by the exit is ignored. On input to the exit,

ExitSpace is zero for the MQXR_INIT call, and is the value returned by the

MQXR_INIT call in other cases.

If the value returned by the MQXR_INIT call is negative, or there are fewer than

1024 bytes available in the transmission buffer for message data after reserving the

requested exit space for all of the send exits in the chain, the MCA outputs an

error message and closes the channel. Similarly, if during data transfer the exits in

the send exit chain allocate more user space than they reserved such that fewer

than 1024 bytes remain in the transmission buffer for message data, the MCA

outputs an error message and closes the channel. The limit of 1024 allows the

channel’s control and administrative flows to be processed by the chain of send

exits, without the need for the flows to be segmented.

This is an input/output field to the exit if ExitReason is MQXR_INIT, and an input

field in all other cases. The field is not present if Version is less than

MQCXP_VERSION_5.

SSLCertUserId (MQCHAR12):

 This field specifies the UserId associated with the remote certificate. It is blank on

all platforms except z/OS

This is an input field to the exit. The field is not present if Version is less than

MQCXP_VERSION_6.

SSLRemCertIssNameLength (MQLONG):

 This field contains the length in bytes of the full Distinguished Name of the issuer

of the remote certificate pointed to by SSLCertRemoteIssuerNamePtr.

This is an input field to the exit. The field is not present if Version is less than

MQCXP_VERSION_6. The value is zero if it is not an SSL channel.

SSLRemCertIssNamePtr (PMQVOID):

 This field contains the address of the full Distinguished Name of the issuer of the

remote certificate. Its value is the null pointer if it is not an SSL channel.

Chapter 6. Further intercommunication considerations 469

This is an input field to the exit. The field is not present if Version is less than

MQCXP_VERSION_6.

SecurityParms (PMQCSP):

 Address of the MQCSP structure used to specify a user ID and password. The

initial value of this field is the null pointer.

This is an input/output field to the exit. The field is not present if Version is less

than MQCXP_VERSION_6.

CurHdrCompression (MQLONG):

 Current header data compression.

This field specifies which technique is currently being used to compress the header

data.

It is set to one of the following:

MQCOMPRESS_NONE

No header data compression is performed.

MQCOMPRESS_SYSTEM

Header data compression is performed.

The value can be altered by a sending channel’s message exit to one of the

negotiated supported values accessed from the HdrCompList field of the MQCD.

This enables the technique used to compress the header data to be decided for

each message based on the content of the message. The altered value is used for

the current message only. The channel ends if the attribute is altered to an

unsupported value. The value is ignored if altered outside a sending channel’s

message exit.

This is an input/output field to the exit. The field is not present if Version is less

than MQCXP_VERSION_6.

CurMsgCompression (MQLONG):

 Current message compression.

This field specifies which technique is currently being used to compress the

message data.

It is set to one of the following:

MQCOMPRESS_NONE

No header data compression is performed.

MQCOMPRESS_RLE

Message data compression is performed using run-length encoding.

MQCOMPRESS_ZLIBFAST

Message data compression is performed using the zlib compression

technique. A fast compression time is preferred.

MQCOMPRESS_ZLIBHIGH

Message data compression is performed using the zlib compression

technique. A high level of compression is preferred.

470 WebSphere MQ: Intercommunication

The value can be altered by a sending channel’s message exit to one of the

negotiated supported values accessed from the MsgCompList field of the MQCD.

This enables the technique used to compress the message data to be decided for

each message based on the content of the message. The altered value is used for

the current message only. The channel ends if the attribute is altered to an

unsupported value. The value is ignored if altered outside a sending channel’s

message exit.

This is an input/output field to the exit. The field is not present if Version is less

than MQCXP_VERSION_6.

Hconn (MQHCONN):

 Connection handle

This field contains the connection handle that the exit should use if it needs to

make any MQI calls within the exit. This field is not relevant to exits running on

client-connection channels, where it contains the value

MQHC_UNUSABLE_HCONN (-1).

This is an input field to the exit. The field is not present if Version is less than

MQCXP_VERSION_7.

SharingConversations (MQBOOL):

This field indicates whether the conversation is the only one that could currently

be running on this channel instance, or whether more than one conversation could

currently be running on this channel instance.

 It also indicates whether the exit program is subject to the risk of the MQCD being

altered by another exit program running at the same time.

This field is only relevant for exit programs running on client-connection or

server-connection channels.

It is set to one of the following:

FALSE

The exit instance is the only exit instance that could currently be running

on this channel instance. This allows the exit to safely update the MQCD

fields without contention from other exits running on other channel

instances. Whether changes to the MQCD fields are acted upon by the

channel is defined by the table of MQCD fields in “Changing MQCD fields

in a channel exit” on page 456.

TRUE The exit instance is not the only exit instance that could currently be

running on this channel instance. Any changes made to the MQCD will

not be acted upon by the channel, with the exception of those listed in the

table of MQCD fields in “Changing MQCD fields in a channel exit” on

page 456 for Exit Reasons other than MQXR_INIT. If this exit updates the

MQCD fields, ensure there is no contention from other exits running on

other conversations at the same time by providing serialization among the

exits that run on this channel instance.

This is an input field to the exit. The field is not present if Version is less than

MQCXP_VERSION_7.

Chapter 6. Further intercommunication considerations 471

C declaration

typedef struct tagMQCXP MQCXP;

struct tagMQCXP {

 MQCHAR4 StrucId; /* Structure identifier */

 MQLONG Version; /* Structure version number */

 MQLONG ExitId; /* Type of exit */

 MQLONG ExitReason; /* Reason for invoking exit */

 MQLONG ExitResponse; /* Response from exit */

 MQLONG ExitResponse2; /* Secondary response from exit */

 MQLONG Feedback; /* Feedback code */

 MQLONG MaxSegmentLength; /* Maximum segment length */

 MQBYTE16 ExitUserArea; /* Exit user area */

 MQCHAR32 ExitData; /* Exit data */

 MQLONG MsgRetryCount; /* Number of times the message has been

 retried */

 MQLONG MsgRetryInterval; /* Minimum interval in milliseconds after

 which the put operation should be

 retried */

 MQLONG MsgRetryReason; /* Reason code from previous attempt to

 put the message */

 MQLONG HeaderLength; /* Length of header information */

 MQCHAR48 PartnerName; /* Partner Name */

 MQLONG FAPLevel; /* Negotiated Formats and Protocols

 level */

 MQLONG CapabilityFlags; /* Capability flags */

 MQLONG ExitNumber; /* Exit number */

 MQLONG ExitSpace; /* Number of bytes in transmission buffer

 reserved for exit to use */

 MQCHAR12 SSLCertUserid; /* User identifier associated

 with remote SSL certificate */

 MQLONG SSLRemCertIssNameLength; /* Length of

 distinguished name of issuer

 of remote SSL certificate */

 MQPTR SSLRemCertIssNamePtr; /* Address of

 distinguished name of issuer

 of remote SSL certificate */

 PMQVOID SecurityParms; /* Security parameters */

 MQLONG CurHdrCompression; /* Header data compression

 used for current message */

 MQLONG CurMsgCompression; /* Message data compression

 used for current message */

 MQHCONN Hconn; /* Connection handle */

 MQBOOL SharingConversations; /* Multiple conversations

 possible on channel inst? */

};

COBOL declaration

** MQCXP structure

 10 MQCXP.

** Structure identifier

 15 MQCXP-STRUCID PIC X(4).

** Structure version number

 15 MQCXP-VERSION PIC S9(9) BINARY.

** Type of exit

 15 MQCXP-EXITID PIC S9(9) BINARY.

** Reason for invoking exit

 15 MQCXP-EXITREASON PIC S9(9) BINARY.

** Response from exit

 15 MQCXP-EXITRESPONSE PIC S9(9) BINARY.

** Secondary response from exit

 15 MQCXP-EXITRESPONSE2 PIC S9(9) BINARY.

** Feedback code

 15 MQCXP-FEEDBACK PIC S9(9) BINARY.

** Maximum segment length

 15 MQCXP-MAXSEGMENTLENGTH PIC S9(9) BINARY.

** Exit user area

472 WebSphere MQ: Intercommunication

15 MQCXP-EXITUSERAREA PIC X(16).

** Exit data

 15 MQCXP-EXITDATA PIC X(32).

** Number of times the message has been retried

 15 MQCXP-MSGRETRYCOUNT PIC S9(9) BINARY.

** Minimum interval in milliseconds after which the put operation

** should be retried

 15 MQCXP-MSGRETRYINTERVAL PIC S9(9) BINARY.

** Reason code from previous attempt to put the message

 15 MQCXP-MSGRETRYREASON PIC S9(9) BINARY.

** Length of header information

 15 MQCXP-HEADERLENGTH PIC S9(9) BINARY.

** Partner Name

 15 MQCXP-PARTNERNAME PIC X(48).

** Negotiated Formats and Protocols level

 15 MQCXP-FAPLEVEL PIC S9(9) BINARY.

** Capability flags

 15 MQCXP-CAPABILITYFLAGS PIC S9(9) BINARY.

** Exit number

 15 MQCXP-EXITNUMBER PIC S9(9) BINARY.

** Number of bytes in transmission buffer reserved for exit to use

 15 MQCXP-EXITSPACE PIC S9(9) BINARY.

** User Id associated with remote certificate

 15 MQCXP-SSLCERTUSERID PIC X(12).

** Length of distinguished name of issuer of remote SSL

** certificate

 15 MQCXP-SSLREMCERTISSNAMELENGTH PIC S9(9) BINARY.

** Address of distinguished name of issuer of remote SSL

** certificate

 15 MQCXP-SSLREMCERTISSNAMEPTR POINTER.

** Security parameters

 15 MQCXP-SECURITYPARMS PIC S9(18) BINARY.

** Header data compression used for current message

 15 MQCXP-CURHDRCOMPRESSION PIC S9(9) BINARY.

** Message data compression used for current message

 15 MQCXP-CURMSGCOMPRESSION PIC S9(9) BINARY.

** Connection handle

 15 MQCXP-HCONN PIC S9(9) BINARY.

** Multiple conversations possible on channel instance?

 15 MQCXP-SHARINGCONVERSATIONS PIC S9(9) BINARY.

RPG declaration (ILE)

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..

 D* MQCXP Structure

 D*

 D* Structure identifier

 D CXSID 1 4

 D* Structure version number

 D CXVER 5 8I 0

 D* Type of exit

 D CXXID 9 12I 0

 D* Reason for invoking exit

 D CXREA 13 16I 0

 D* Response from exit

 D CXRES 17 20I 0

 D* Secondary response from exit

 D CXRE2 21 24I 0

 D* Feedback code

 D CXFB 25 28I 0

 D* Maximum segment length

 D CXMSL 29 32I 0

 D* Exit user area

 D CXUA 33 48

 D* Exit data

 D CXDAT 49 80

 D* Number of times the message has been retried

 D CXMRC 81 84I 0

Chapter 6. Further intercommunication considerations 473

D* Minimum interval in milliseconds after which the put operation

 D* should be retried

 D CXMRI 85 88I 0

 D* Reason code from previous attempt to put the message

 D CXMRR 89 92I 0

 D* Length of header information

 D CXHDL 93 96I 0

 D* Partner Name

 D CXPNM 97 144

 D* Negotiated Formats and Protocols level

 D CXFAP 145 148I 0

 D* Capability flags

 D CXCAP 149 152I 0

 D* Exit number

 D CXEXN 153 156I 0

 D* Number of bytes in transmission buffer reserved for exit to use

 D CXHDL 157 160I 0

 D* User identifier associated with remote SSL certificate

 D CXSSLCU 161 172

 D* Length of distinguished name of issuer of remote SSL certificate

 D CXSRCINL 173 176I 0

 D* Address of distinguished name of issuer of remote SSL certificate

 D CXSRCINP 177 192*

 D* Security parameters

 D CXSECP 193 208*

 D* Header data compression used for current message

 D CXCHC 209 212I 0

 D* Message data compression used for current message

 D CXCMC 213 216I 0

 D* Connection handle

 D CXHCONN 217 220I 0

 D* Multiple conversations possible on channel instance?

 D CXSHARECONV 221 224I 0

System/390 assembler declaration

MQCXP DSECT

MQCXP_STRUCID DS CL4 Structure identifier

MQCXP_VERSION DS F Structure version number

MQCXP_EXITID DS F Type of exit

MQCXP_EXITREASON DS F Reason for invoking exit

MQCXP_EXITRESPONSE DS F Response from exit

MQCXP_EXITRESPONSE2 DS F Secondary response from exit

MQCXP_FEEDBACK DS F Feedback code

MQCXP_MAXSEGMENTLENGTH DS F Maximum segment length

MQCXP_EXITUSERAREA DS XL16 Exit user area

MQCXP_EXITDATA DS CL32 Exit data

MQCXP_MSGRETRYCOUNT DS F Number of times the message has been

* retried

MQCXP_MSGRETRYINTERVAL DS F Minimum interval in milliseconds

* after which the put operation should

* be retried

MQCXP_MSGRETRYREASON DS F Reason code from previous attempt to

* put the message

MQCXP_HEADERLENGTH DS F Length of header information

MQCXP_PARTNERNAME DS CL48 Partner Name

MQCXP_FAPLEVEL DS F Negotiated Formats and Protocols

* level

MQCXP_CAPABILITYFLAGS DS F Capability flags

MQCXP_EXITNUMBER DS F Exit number

MQCXP_EXITSPACE DS F Number of bytes in transmission

* buffer reserved for exit to use

MQCXP_SSLCERTUSERID DS CL12 User identifier associated with

* remote SSL certificate

MQCXP_SSLREMCERTISSNAMELENGTH DS F Length of distinguished name

* of issuer of remote SSL certificate

MQCXP_SSLREMCERTISSNAMEPTR DS F Address of distinguished name

* of issuer of remote SSL certificate

474 WebSphere MQ: Intercommunication

MQCXP_SECURITYPARMS DS F Address of security parameters

MQCXP_CURHDRCOMPRESSION DS F Header data compression used for

* current message

MQCXP_CURMSGCOMPRESSION DS F Message data compression used for

* current message

MQCXP_HCONN DS F Connection handle

MQCXP_SHARINGCONVERSATIONS DS F Multiple conversations possible on

* channel inst?

MQCXP_LENGTH EQU *-MQCXP

 ORG MQCXP

MQCXP_AREA DS CL(MQCXP_LENGTH)

MQXWD – Exit wait descriptor

The MQXWD structure is an input/output parameter on the MQXWAIT call.

This structure is supported only on z/OS.

Fields

StrucId (MQCHAR4):

 Structure identifier.

The value must be:

MQXWD_STRUC_ID

Identifier for exit wait descriptor structure.

 For the C programming language, the constant

MQXWD_STRUC_ID_ARRAY is also defined; this has the same value as

MQXWD_STRUC_ID, but is an array of characters instead of a string.

The initial value of this field is MQXWD_STRUC_ID.

Version (MQLONG):

 Structure version number.

The value must be:

MQXWD_VERSION_1

Version number for exit wait descriptor structure.

The initial value of this field is MQXWD_VERSION_1.

Reserved1 (MQLONG):

 Reserved.

This is a reserved field; its value must be zero.

This is an input field.

Reserved2 (MQLONG):

 Reserved.

This is a reserved field; its value must be zero.

Chapter 6. Further intercommunication considerations 475

This is an input field.

Reserved3 (MQLONG):

 Reserved.

This is a reserved field; its value must be zero.

This is an input field.

ECB (MQLONG):

 Event control block to wait on.

This is the event control block (ECB) to wait on. It should be set to zero before the

MQXWAIT call is issued; on successful completion it will contain the post code.

This is an input/output field.

C declaration

typedef struct tagMQXWD MQXWD;

struct tagMQXWD {

 MQCHAR4 StrucId; /* Structure identifier */

 MQLONG Version; /* Structure version number */

 MQLONG Reserved1; /* Reserved */

 MQLONG Reserved2; /* Reserved */

 MQLONG Reserved3; /* Reserved */

 MQLONG ECB; /* Event control block to wait on */

};

System/390 assembler declaration

MQXWD DSECT

MQXWD_STRUCID DS CL4 Structure identifier

MQXWD_VERSION DS F Structure version number

MQXWD_RESERVED1 DS F Reserved

MQXWD_RESERVED2 DS F Reserved

MQXWD_RESERVED3 DS F Reserved

MQXWD_ECB DS F Event control block to wait on

*

MQXWD_LENGTH EQU *-MQXWD

 ORG MQXWD

MQXWD_AREA DS CL(MQXWD_LENGTH)

Problem determination in DQM

This chapter explains the various aspects of problem determination and suggests

methods of resolving problems. Some of the problems mentioned in this chapter

are platform and installation specific. Where this is the case, it is made clear in the

text.

Problem determination for the following scenarios is discussed:

v “Error message from channel control” on page 477

v “Ping” on page 477

v “Dead-letter queue considerations” on page 477

v “Validation checks” on page 478

v “In-doubt relationship” on page 478

v “Channel startup negotiation errors” on page 478

476 WebSphere MQ: Intercommunication

v “When a channel refuses to run” on page 479

v “Retrying the link” on page 481

v “Data structures” on page 482

v “User exit problems” on page 482

v “Disaster recovery” on page 482

v “Channel switching” on page 483

v “Connection switching” on page 483

v “Client problems” on page 483

v “Error logs” on page 484

v “Message monitoring” on page 485

Error message from channel control

Problems found during normal operation of the channels are reported to the

system console and to the system log. In WebSphere MQ for Windows they are

reported to the channel log. Problem diagnosis starts with the collection of all

relevant information from the log, and analysis of this information to identify the

problem.

However, this could be difficult in a network where the problem may arise at an

intermediate system that is staging some of your messages. An error situation,

such as transmission queue full, followed by the dead-letter queue filling up,

would result in your channel to that site closing down.

In this example, the error message you receive in your error log will indicate a

problem originating from the remote site, but may not be able to tell you any

details about the error at that site.

You need to contact your counterpart at the remote site to obtain details of the

problem, and to receive notification of that channel becoming available again.

Ping

Ping is useful in determining whether the communication link and the two

message channel agents that make up a message channel are functioning across all

interfaces.

Ping makes no use of transmission queues, but it does invoke some user exit

programs. If any error conditions are encountered, error messages are issued.

To use ping, you can issue the MQSC command PING CHANNEL. On z/OS and

i5/OS, you can also use the panel interface to select this option.

On UNIX platforms, Windows, and i5/OS, you can also use the MQSC command

PING QMGR to test whether the queue manager is responsive to commands. See

the WebSphere MQ Script (MQSC) Command Reference for more information

about this.

Dead-letter queue considerations

In some WebSphere MQ implementations the dead-letter queue is referred to as an

undelivered-message queue.

Chapter 6. Further intercommunication considerations 477

If a channel ceases to run for any reason, applications will probably continue to

place messages on transmission queues, creating a potential overflow situation.

Applications can monitor transmission queues to find the number of messages

waiting to be sent, but this would not be a normal function for them to carry out.

When this occurs in a message-originating node, and the local transmission queue

is full, the application’s PUT fails.

When this occurs in a staging or destination node, there are three ways that the

MCA copes with the situation:

1. By calling the message-retry exit, if one is defined.

2. By directing all overflow messages to a dead-letter queue (DLQ), returning an

exception report to applications that requested these reports.

Note: In distributed-queuing management, if the message is too big for the

DLQ, the DLQ is full, or the DLQ is not available, the channel stops and the

message remains on the transmission queue. Ensure your DLQ is defined,

available, and sized for the largest messages you handle.

3. By closing down the channel, if neither of the previous options succeeded.

4. By returning the undelivered messages back to the sending end and returning a

full report to the reply-to queue (MQRC_EXCEPTION_WITH_FULL_DATA and

MQRO_DISCARD_MSG).

If an MCA is unable to put a message on the DLQ:

v The channel stops

v Appropriate error messages are issued at the system consoles at both ends of the

message channel

v The unit of work is backed out, and the messages reappear on the transmission

queue at the sending channel end of the channel

v Triggering is disabled for the transmission queue

Validation checks

A number of validation checks are made when creating, altering, and deleting

channels, and where appropriate, an error message returned.

Errors may occur when:

v A duplicate channel name is chosen when creating a channel

v Unacceptable data is entered in the channel parameter fields

v The channel to be altered is in doubt, or does not exist

In-doubt relationship

If a channel is in doubt, it is usually resolved automatically on restart, so the

system operator does not need to resolve a channel manually in normal

circumstances. See “In-doubt channels” on page 65 for information about this.

Channel startup negotiation errors

During channel startup, the starting end has to state its position and agree channel

running parameters with the corresponding channel. It may happen that the two

478 WebSphere MQ: Intercommunication

ends cannot agree on the parameters, in which case the channel closes down with

error messages being issued to the appropriate error logs.

When a channel refuses to run

If a channel refuses to run:

v Check that DQM and the channels have been set up correctly. This is a likely

problem source if the channel has never run. Reasons could be:

– A mismatch of names between sending and receiving channels (remember

that uppercase and lowercase letters are significant)

– Incorrect channel types specified

– The sequence number queue (if applicable) is not available, or is damaged

– The dead-letter queue is not available

– The sequence number wrap value is different on the two channel definitions

– A queue manager or communication link is not available

– A receiver channel might be in STOPPED state

– The connection might not be defined correctly

– There might be a problem with the communications software (for example, is

TCP running?)
v It is possible that an in-doubt situation exists, if the automatic synchronization

on startup has failed for some reason. This is indicated by messages on the

system console, and the status panel may be used to show channels that are in

doubt.

The possible responses to this situation are:

– Issue a Resolve channel request with Backout or Commit.

You need to check with your remote link supervisor to establish the number

of the last message or unit of work committed. Check this against the last

number at your end of the link. If the remote end has committed a number,

and that number is not yet committed at your end of the link, then issue a

RESOLVE COMMIT command.

In all other cases, issue a RESOLVE BACKOUT command.

The effect of these commands is that backed out messages reappear on the

transmission queue and are sent again, while committed messages are

discarded.

If in doubt yourself, perhaps backing out with the probability of duplicating a

sent message would be the safer decision.

– Issue a RESET command.

This command is for use when sequential numbering is in effect, and should

be used with care. Its purpose is to reset the sequence number of messages

and you should use it only after using the RESOLVE command to resolve any

in-doubt situations.
v On WebSphere MQ for i5/OS, Windows, UNIX systems, and z/OS, there is no

need for the administrator to choose a particular sequence number to ensure that

the sequence numbers are put back in step. When a sender channel starts up

after being reset, it informs the receiver that it has been reset and supplies the

new sequence number that is to be used by both the sender and receiver.

v If the status of a receiver end of the channel is STOPPED, it can be reset by

starting the receiver end.

Chapter 6. Further intercommunication considerations 479

Note: This does not start the channel, it merely resets the status. The channel

must still be started from the sender end.

Triggered channels

If a triggered channel refuses to run, investigate the possibility of in-doubt

messages here: “When a channel refuses to run” on page 479

Another possibility is that the trigger control parameter on the transmission queue

has been set to NOTRIGGER by the channel. This happens when:

v There is a channel error.

v The channel was stopped because of a request from the receiver.

v The channel was stopped because of a problem on the sender that requires

manual intervention.

After diagnosing and fixing the problem, start the channel manually.

An example of a situation where a triggered channel fails to start is as follows:

1. A transmission queue is defined with a trigger type of FIRST.

2. A message arrives on the transmission queue, and a trigger message is

produced.

3. The channel is started, but stops immediately because the communications to

the remote system are not available.

4. The remote system is made available.

5. Another message arrives on the transmission queue.

6. The second message does not increase the queue depth from zero to one, so no

trigger message is produced (unless the channel is in RETRY state). If this

happens, restart the channel manually.

On WebSphere MQ for z/OS, if the queue manager is stopped using

MODE(FORCE) during channel initiator shutdown, it might be necessary to

manually restart some channels after channel initiator restart.

Conversion failure

Another reason for the channel refusing to run could be that neither end is able to

carry out necessary conversion of message descriptor data between ASCII and

EBCDIC, and integer formats. In this instance, communication is not possible.

Network problems

When using LU 6.2, make sure that your definitions are consistent throughout the

network. For example, if you have increased the RU sizes in your CICS Transaction

Server for OS/390 or Communications Manager definitions, but you have a

controller with a small MAXDATA value in its definition, the session may fail if

you attempt to send large messages across the network. A symptom of this may be

that channel negotiation takes place successfully, but the link fails when message

transfer occurs.

When using TCP, if your channels are unreliable and your connections break, you

can set a KEEPALIVE value for your system or channels. You do this using the

SO_KEEPALIVE option to set a system-wide value, and on WebSphere MQ for

z/OS, you can also use the KeepAlive Interval channel attribute (KAINT) to set

channel-specific keepalive values. On WebSphere MQ for z/OS you can

alternatively use the RCVTIME and RCVTMIN channel initiator parameters. These

480 WebSphere MQ: Intercommunication

options are discussed in “Checking that the other end of the channel is still

available” on page 61, and “KeepAlive Interval (KAINT)” on page 84.

Adopting an MCA:

 The Adopt MCA function enables WebSphere MQ to cancel a receiver channel and

to start a new one in its place.

For more information about this function, see “Adopting an MCA” on page 62. For

details of its parameters, see WebSphere MQ for z/OS System Setup Guide.

Registration time for DDNS:

 When a group TCP/IP listener is started, it registers with DDNS. But there may be

a delay until the address is available to the network. A channel that is started in

this period, and which targets the newly registered generic name, fails with an

’error in communications configuration’ message. The channel then goes into retry

until the name becomes available to the network. The length of the delay will be

dependent on the name server configuration used.

Dial-up problems

WebSphere MQ supports connection over dial-up lines but you should be aware

that with TCP, some protocol providers assign a new IP address each time you dial

in. This can cause channel synchronization problems because the channel cannot

recognize the new IP addresses and so cannot ensure the authenticity of the

partner. If you encounter this problem, you need to use a security exit program to

override the connection name for the session.

This problem does not occur when a WebSphere MQ for i5/OS, UNIX systems, or

Windows systems product is communicating with another product at the same

level, because the queue manager name is used for synchronization instead of the

IP address.

Retrying the link

An error scenario may occur that is difficult to recognize. For example, the link

and channel may be functioning perfectly, but some occurrence at the receiving

end causes the receiver to stop. Another unforeseen situation could be that the

receiver system has run out of memory and is unable to complete a transaction.

You need to be aware that such situations can arise, often characterized by a

system that appears to be busy but is not actually moving messages. You need to

work with your counterpart at the far end of the link to help detect the problem

and correct it.

Retry considerations

If a link failure occurs during normal operation, a sender or server channel

program will itself start another instance, provided that:

1. Initial data negotiation and security exchanges are complete

2. The retry count in the channel definition is greater than zero

Note: For i5/OS, UNIX systems, and Windows, to attempt a retry a channel

initiator must be running. In platforms other than WebSphere MQ for i5/OS, UNIX

Chapter 6. Further intercommunication considerations 481

systems, and Windows systems, this channel initiator must be monitoring the

initiation queue specified in the transmission queue that the channel is using.

Shared channel recovery on z/OS:

 See “Shared channel recovery” on page 283, which includes a table that shows the

types of shared-channel failure and how each type is handled.

Data structures

Data structures are needed for reference when checking logs and trace entries

during problem diagnosis. Details can be found in “Channel-exit calls and data

structures” on page 405 and in the WebSphere MQ Application Programming

Reference book.

User exit problems

The interaction between the channel programs and the user-exit programs has

some error-checking routines, but this facility can only work successfully when the

user exits obey the rules described in Chapter 6, “Further intercommunication

considerations,” on page 375. When errors occur, the most likely outcome will be

that the channel stops and the channel program issues an error message, together

with any return codes from the user exit. Any errors detected on the user exit side

of the interface can be determined by scanning the messages created by the user

exit itself.

You might need to use a trace facility of your host system to identify the problem.

Disaster recovery

Disaster recovery planning is the responsibility of individual installations, and the

functions performed may include the provision of regular system ‘snapshot’

dumps that are stored safely off-site. These dumps would be available for

regenerating the system, should some disaster overtake it. If this occurs, you need

to know what to expect of the messages, and the following description is intended

to start you thinking about it.

First a recap on system restart. If a system fails for any reason, it may have a

system log that allows the applications running at the time of failure to be

regenerated by replaying the system software from a syncpoint forward to the

instant of failure. If this occurs without error, the worst that can happen is that

message channel syncpoints to the adjacent system may fail on startup, and that

the last batches of messages for the various channels will be sent again. Persistent

messages will be recovered and sent again, nonpersistent messages may be lost.

If the system has no system log for recovery, or if the system recovery fails, or

where the disaster recovery procedure is invoked, the channels and transmission

queues may be recovered to an earlier state, and the messages held on local queues

at the sending and receiving end of channels may be inconsistent.

Messages may have been lost that were put on local queues. The consequence of

this happening depends on the particular WebSphere MQ implementation, and the

channel attributes. For example, where strict message sequencing is in force, the

receiving channel detects a sequence number gap, and the channel closes down for

482 WebSphere MQ: Intercommunication

manual intervention. Recovery then depends upon application design, as in the

worst case the sending application may need to restart from an earlier message

sequence number.

Channel switching

A possible solution to the problem of a channel ceasing to run would be to have

two message channels defined for the same transmission queue, but with different

communication links. One message channel would be preferred, the other would

be a replacement for use when the preferred channel is unavailable.

If triggering is required for these message channels, the associated process

definitions must exist for each sender channel end.

To switch message channels:

v If the channel is triggered, set the transmission queue attribute NOTRIGGER.

v Ensure the current channel is inactive.

v Resolve any in-doubt messages on the current channel.

v If the channel is triggered, change the process attribute in the transmission

queue to name the process associated with the replacement channel.

In this context, some implementations allow a channel to have a blank process

object definition, in which case you may omit this step as the queue manager

will find and start the appropriate process object.

v Restart the channel, or if the channel was triggered, set the transmission queue

attribute TRIGGER.

Connection switching

Another solution would be to switch communication connections from the

transmission queues.

To do this:

v If the sender channel is triggered, set the transmission queue attribute

NOTRIGGER.

v Ensure the channel is inactive.

v Change the connection and profile fields to connect to the replacement

communication link.

v Ensure that the corresponding channel at the remote end has been defined.

v Restart the channel, or if the sender channel was triggered, set the transmission

queue attribute TRIGGER.

Client problems

A client application may receive an unexpected error return code, for example:

v Queue manager not available

v Queue manager name error

v Connection broken

Look in the client error log for a message explaining the cause of the failure. There

may also be errors logged at the server, depending on the nature of the failure.

Chapter 6. Further intercommunication considerations 483

Terminating clients

Even though a client has terminated, it is still possible for its surrogate process to

be holding its queues open. Normally this will only be for a short time until the

communications layer notifies that the partner has gone.

Error logs

WebSphere MQ error messages are placed in different error logs depending on the

platform. There are error logs for:

v Windows

v UNIX systems

v z/OS

Error logs for Windows

WebSphere MQ for Windows uses a number of error logs to capture messages

concerning the operation of WebSphere MQ itself, any queue managers that you

start, and error data coming from the channels that are in use.

The location the error logs are stored in depends on whether the queue manager

name is known and whether the error is associated with a client.

v If the queue manager name is known and the queue manager is available:

<install directory>\QMGRS\QMgrName\ERRORS\AMQERR01.LOG

v If the queue manager is not available:

<install directory>\QMGRS\@SYSTEM\ERRORS\AMQERR01.LOG

v If an error has occurred with a client application:

<install directory>\ERRORS\AMQERR01.LOG

On Windows, you should also examine the Windows application event log for

relevant messages.

Error logs on UNIX systems

WebSphere MQ on UNIX systems uses a number of error logs to capture messages

concerning the operation of WebSphere MQ itself, any queue managers that you

start, and error data coming from the channels that are in use. The location the

error logs are stored in depends on whether the queue manager name is known

and whether the error is associated with a client.

v If the queue manager name is known and the queue manager is available:

/var/mqm/qmgrs/QMgrName/errors/AMQERR01.LOG

v If the queue manager is not available:

/var/mqm/qmgrs/@SYSTEM/errors/AMQERR01.LOG

v If an error has occurred with a client application:

/var/mqm/errors/AMQERR01.LOG

Error logs on z/OS

Error messages are written to:

v The z/OS system console

v The channel-initiator job log

484 WebSphere MQ: Intercommunication

If you are using the z/OS message processing facility to suppress messages, the

console messages may be suppressed. See the WebSphere MQ for z/OS Concepts

and Planning Guide for more information.

Message monitoring

If a message does not reach its intended destination, you can use the WebSphere

MQ display route application, available through the control command dspmqrte,

to determine the route a message takes through the queue manger network and its

final location.

The WebSphere MQ display route application is described in Monitoring

WebSphere MQ.

Chapter 6. Further intercommunication considerations 485

486 WebSphere MQ: Intercommunication

Chapter 7. Queue name resolution

This appendix describes queue name resolution as performed by queue managers

at both sending and receiving ends of a channel.

In larger networks, the use of queue managers has a number of advantages over

other forms of communication. These advantages derive from the name resolution

function in DQM and the main benefits are:

v Applications do not need to make routing decisions

v Applications do not need to know the network structure

v Network links are created by systems administrators

v Network structure is controlled by network planners

v Multiple channels can be used between nodes to partition traffic

Referring to Figure 95, the basic mechanism for putting messages on a remote

queue, as far as the application is concerned, is the same as for putting messages

on a local queue:

v The application putting the message issues MQOPEN and MQPUT calls to put

messages on the target queue.

v The application getting the messages issues MQOPEN and MQGET calls to get

the messages from the target queue.

FileFile

Queue Queue

Channel definitionChannel definition

'transmission' 'Target'

Queue Manager Queue Manager

Sending

Putting
application

Getting
application

MQGET
call

MQGET
call

MQPUT
call

MQPUT
call

Receiving

MCA

Application

Machine A Machine B

Application

Network

MCA

Queue name
resolution
process

Queue name
resolution
process

Channel

Figure 95. Name resolution

© Copyright IBM Corp. 1994, 2008 487

If both applications are connected to the same queue manager then no inter-queue

manager communication is required, and the target queue is described as local to

both applications.

However, if the applications are connected to different queue managers, two MCAs

and their associated network connection are involved in the transfer, as shown in

the figure. In this case, the target queue is considered to be a remote queue to the

putting application.

The sequence of events is as follows:

1. The putting application issues MQOPEN and MQPUT calls to put messages to

the target queue.

2. During the MQOPEN call, the name resolution function detects that the target

queue is not local, and decides which transmission queue is appropriate.

Thereafter, on the MQPUT calls associated with the MQOPEN call, all messages

are placed on this transmission queue.

3. The sending MCA gets the messages from the transmission queue and passes

them to the receiving MCA at the remote computer.

4. The receiving MCA puts the messages on the target queue, or queues.

5. The getting application issues MQOPEN and MQGET calls to get the messages

from the target queue.

Note: Only step 1 and step 5 involve application code; steps 2 through 4 are

performed by the local queue managers and the MCA programs. The putting

application is unaware of the location of the target queue, which could be in the

same processor, or in another processor on another continent.

The combination of sending MCA, the network connection, and the receiving

MCA, is called a message channel, and is inherently a unidirectional device.

Normally, it is necessary to move messages in both directions, and two channels

are set up for this, one in each direction.

What is queue name resolution?

Queue name resolution is vital to DQM. It removes the need for applications to be

concerned with the physical location of queues, and insulates them against the

details of networks. A systems administrator can move queues from one queue

manager to another, and change the routing between queue managers without

applications needing to know anything about it.

In order to uncouple from the application design the exact path over which the

data travels, it is necessary to introduce a level of indirection between the name

used by the application when it refers to the target queue, and the naming of the

channel over which the flow occurs. This indirection is achieved using the queue

name resolution mechanism.

In essence, when an application refers to a queue name, the name is mapped by

the resolution mechanism either to a transmission queue or to a local queue that is

not a transmission queue. In the case of mapping to a transmission queue, a

second name resolution is needed at the destination, and the received message is

placed on the target queue as intended by the application designer. The application

remains unaware of the transmission queue and channel used for moving the

message.

488 WebSphere MQ: Intercommunication

Note: The definition of the queue and channel is a system management

responsibility and can be changed by an operator or a system management utility,

without the need to change applications.

An important requirement for the system management of message flows is that

alternative paths should be provided between queue managers. For example,

business requirements might dictate that different classes of service should be sent

over different channels to the same destination. This is a system management

decision and the queue name resolution mechanism provides a very flexible way

to achieve it. The Application Programming Guide describes in detail how this is

done, but the basic idea is to use queue name resolution at the sending queue

manager to map the queue name supplied by the application to the appropriate

transmission queue for the type of traffic involved. Similarly at the receiving end,

queue name resolution maps the name in the message descriptor to a local (not a

transmission) queue or again to an appropriate transmission queue.

Not only is it possible for the forward path from one queue manager to another to

be partitioned into different types of traffic, but the return message that is sent to

the reply-to queue definition in the outbound message can also use the same traffic

partitioning. Queue name resolution satisfies this requirement and the application

designer need not be involved in these traffic partitioning decisions.

The point that the mapping is carried out at both the sending and receiving queue

managers is an important aspect of the way name resolution works. This allows

the queue name supplied by the putting application to be mapped to a local queue

or a transmission queue at the sending queue manager, and again remapped to a

local queue or a transmission queue at the receiving queue manager.

Reply messages from receiving applications or MCAs have the name resolution

carried out in exactly the same way, allowing return routing over specific paths by

means of queue definitions at all the queue managers on route.

How queue name resolution works

The WebSphere MQ Application Programming Guide provides the rules for queue

name resolution.

Chapter 7. Queue name resolution 489

490 WebSphere MQ: Intercommunication

Chapter 8. Configuration file stanzas for distributed queuing

A description of the stanzas of the queue manager configuration file, qm.ini,

related to distributed queueing.

This topic shows the stanzas in the queue manager configuration file that relate to

distributed queuing. It applies to the queue manager configuration file for

WebSphere MQ on UNIX systems, and for WebSphere MQ for i5/OS. The file is

called qm.ini on both platforms.

Note: WebSphere MQ for Windows uses the registry. Use the WebSphere MQ

Explorer to make equivalent changes to the configuration information.

The stanzas that relate to distributed queuing are:

v CHANNELS

v TCP

v LU62

v NETBIOS

v SPX (Windows XP and Windows 2003 Server only)

v EXITPATH

Figure 96 shows the values that you can set using these stanzas. When you are

defining one of these stanzas, you do not need to start each item on a new line.

You can use either a semicolon (;) or a hash character (#) to indicate a comment.

Note:

1. MQIBINDTYPE applies only to WebSphere MQ for AIX, WebSphere MQ for

i5/OS, WebSphere MQ for HP-UX, and WebSphere MQ for Solaris.

CHANNELS:

 MAXCHANNELS=n ; Maximum number of channels allowed, the

 ; default value is 100

 MAXACTIVECHANNELS=n ; Maximum number of channels allowed to be active at

 ; any time, the default is the value of MaxChannels

 MAXINITIATORS=n ; Maximum number of initiators allowed, the

 ; default and maximum value is 3

 MQIBINDTYPE=type1 ; Whether the binding for applications is to be

 ; “fastpath” or “standard”.

 ;The default is “standard”.

 ADOPTNEWMCA=chltype ; Stops previous process if channel fails to start.

 ; The default is “NO”.

 ADOPTNEWMCATIMEOUT=n ; Specifies the amount of time that the new

 ; process should wait for the old process to end.

 ; The default is 60.

 ADOPTNEWMCACHECK= ; Specifies the type checking required.

 typecheck ; The default is “NAME”,“ADDRESS”, and “QM”.

 TCP: ; TCP entries

 PORT=n ; Port number, the default is 1414

 KEEPALIVE=Yes ; Switch TCP/IP KeepAlive on

 IPADDR=Addr/Name ; TCP/IP address or name for Listener

 LIBRARY2=DLLName2 ; Same as above if code is in two libraries)

 EXITPATH:2 ; Location of user exits (MQSeries for AIX,

 ; HP-UX, and Solaris only)

 EXITPATHS= ; String of directory paths

Figure 96. qm.ini stanzas for distributed queuing

© Copyright IBM Corp. 1994, 2008 491

2. EXITPATH applies only to WebSphere MQ for AIX, WebSphere MQ for HP-UX,

and WebSphere MQ for Solaris.

For more information about the qm.ini file and the other stanzas in it, see

WebSphere MQ System Administration Guide for WebSphere MQ for UNIX

systems, and Windows systems, and WebSphere MQ for i5/OS System

Administration Guide for WebSphere MQ for i5/OS.

492 WebSphere MQ: Intercommunication

Notices

This information was developed for products and services offered in the United

States. IBM may not offer the products, services, or features discussed in this

information in other countries. Consult your local IBM representative for

information on the products and services currently available in your area. Any

reference to an IBM product, program, or service is not intended to state or imply

that only that IBM product, program, or service may be used. Any functionally

equivalent product, program, or service that does not infringe any IBM intellectual

property right may be used instead. However, it is the user’s responsibility to

evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this information. The furnishing of this information does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing,

IBM Corporation,

North Castle Drive,

Armonk, NY 10504-1785,

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation,

Licensing,

2-31 Roppongi 3-chome, Minato-k,u

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the information. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

information at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1994, 2008 493

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM United Kingdom Laboratories,

Mail Point 151,

Hursley Park,

Winchester,

Hampshire,

England

SO21 2JN.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Programming License Agreement, or any equivalent agreement

between us.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application

programs conforming to IBM’s application programming interfaces.

The following are trademarks of International Business Machines Corporation in

the United States, or other countries, or both:

 Advanced Peer-to-Peer

Networking

AIX CICS

DB2 DB2 Universal Database™ i5/OS

IBM IBMLink™ iSeries™

MQSeries MVS MVS/ESA

OS/2 OS/390 OS/400

POWER RACF Redbooks

SupportPac™ System/390 VSE/ESA

VTAM WebSphere z/OS

494 WebSphere MQ: Intercommunication

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Other company, product, or service names may be trademarks or service marks of

others.

Notices 495

496 WebSphere MQ: Intercommunication

Index

A
active channels, maximum number 58

add routing entry 348

addressing information 21

addrtge 348

administration, channel 53

Adopting an MCA 62

Adopting an MCA, information on 481

AFFINITY 79

agent
intra-group queuing 300

AgentBuffer parameter 408

AgentBufferLength parameter 407

aliases 21

ALTDATE attribute 74

alter channel
z/OS 247

alternate channels 14

ALTTIME attribute 74

AMQCRCTA channel program 340

AMQCRS6A channel program 117

AMQCRSTA channel program 117, 340

AMQRMCLA channel program 340

APPC/MVS, defining a connection 266,

285

applications, trusted 11, 119

ARM (Automatic Restart

Management) 262

assured delivery 20

attributes
ALTDATE 74

alter date 74

alter time 74

ALTTIME 74

batch heartbeat 74

batch interval 74

batch size 75

BATCHHB 74

BATCHINT 74

BATCHSZ 75

CHANNEL 76

channel description 82

channel name 76

channel statistics 76

channel type 77

CHLTYPE 77

CLUSNL 78

CLUSTER 78

cluster name 78

cluster namelist 78

CLWLPRTY 78

CLWLRANK 79

CLWLWGHT 79

communication connection

identifier 80

COMPHDR 84

COMPMSG 81

CONNAME 80

connection name 80

CONVERT 81

convert message 81

attributes (continued)
data compression 81

DESCR 82

DISCINT 82

disconnect interval 82

disposition 83

HBINT 84

header compression 84

heartbeat interval 84

KAINT 84

Keepalive interval 84

local address 85

LOCALADDR 85

long retry count 86

long retry interval 87

LONGRTY 86

LONGTMR 87

LU 6.2 mode name 87

LU 6.2 TP name 88

maximum instances 88

maximum instances per client 89

maximum message length 89

MAXINST 88

MAXINSTC 89

MAXMSGL 89

MCA name 89

MCA type 90

MCA user 90

MCANAME 89

MCATYPE 90

MCAUSER 90

message exit name 91

message exit user data 91

message retry count 91

message retry interval 92

message-retry exit name 91

message-retry exit user data 91

mode name 87

MODENAME 87

MONCHL 92

monitoring 92

MRDATA 91

MREXIT 91

MRRTY 91

MRTMR 92

MSGDATA 91

MSGEXIT 91

NETPRTY 93

network-connection priority 93

nonpersistent message speed 93

NPMSPEED 93

password 93

priority 78

PUT authority 94

PUTAUT 94

QMNAME 95

QSGDISP 83

queue manager name 95

rank 79

RCVDATA 96

RCVEXIT 95

attributes (continued)
receive exit name 95

receive exit user data 96

SCYDATA 96

SCYEXIT 96

security exit name 96

security exit user data 96

send exit name 97

send exit user data 97

SENDDATA 97

SENDEXIT 97

sequence number wrap 97

SEQWRAP 97

short retry count 97

short retry interval 98

SHORTRTY 97

SHORTTMR 98

SSL Cipher Specification 98

SSL Client Authentication 99

SSL Peer 99

SSLCAUTH 99

SSLCIPH 98

SSLPEER 99

STATCHL 76

TPNAME 88

transmission protocol 100

transmission queue name 100

transport type 100

TRPTYPE 100

user ID 100

USERID 100

weighting 79

XMITQ 100

Attributes
channel 71

authority, PUT 94

auto-definition exit program 393

auto-definition of channels 54

automatic channel reconnect for

TCP/IP 262

Automatic Restart Management

(ARM) 262

B
back out in-doubt messages

i5/OS 336

UNIX systems 114

Windows systems 114

balanced
Workload 283

batch heartbeat 74

batch interval 74

batch size 75

BATCHHB attribute 74

BatchHeartbeat field 440

BATCHINT attribute 74

BatchInterval field 430

BatchSize field 419

BATCHSZ attribute 75

© Copyright IBM Corp. 1994, 2008 497

benefits
intra-group queuing 300

shared queuing 283

Benefits of shared queuing 283

bind type 119

BINDING channel state 56

binding, fastpath 119

browsing a channel 327

C
caller

MCA 8

caller MCA 8

caller, responder 8

calls
detailed description

MQ_CHANNEL_EXIT 406

MQXWAIT 412

CapabilityFlags field 468

change definition, channel 111, 333

Change option 333

channel
administration 53

alter
z/OS 247

attributes 111

auto-definition 54

auto-definition exit program 393

browsing 327

change definition 111, 333

channel control function
i5/OS 321

UNIX systems 105

Windows systems 105

characteristics
i5/OS 339

UNIX systems 116

Windows systems 116

client-connection 6

cluster-receiver 8

cluster-sender 8

command queue
z/OS 260

control commands 53

copy definition 333

create definition
i5/OS 332

UNIX Systems 111

Windows systems 111

creating 109, 324

creating your own defaults 332

default values supplied by WebSphere

MQ for i5/OS 332

define
z/OS 247

definition file
i5/OS 321

UNIX systems 106

Windows systems 106

definition, what is it? 51

delete 111, 333

z/OS 248

description 82

display
i5/OS 334

UNIX systems 111

channel (continued)
display (continued)

Windows systems 111

display status
i5/OS 334

UNIX systems 111

Windows systems 111

display, z/OS 248

displaying 109, 334

displaying settings
i5/OS 334

UNIX Systems 112

Windows systems 112

displaying status 334

i5/OS 334

UNIX Systems 112

Windows systems 112

enabling 55

end 335

error 59

restarting after 64

fastpath binding 119

i5/OS
resolve 336

in doubt 65

in-doubt channels 65

initial data negotiation 54

initiator
AIX, HP-UX, Solaris, and Windows

systems 116

overview 9

starting 116

stopping 116

UNIX systems, and Windows

systems 116

z/OS 249

listener
overview 9

start, i5/OS 334

start, z/OS 251

stop, z/OS 252

STRMQMLSR command 334

trusted 11

monitoring 53

MQI 6

ping
i5/OS 334

UNIX systems 112

Windows systems 112

z/OS 254

preparing 54

program types
UNIX systems 116

WebSphere MQ for i5/OS 339

Windows systems 116

programs 339

AMQCCLA 339

AMQCRCTA 339

AMQCRS6A 116, 339

AMQCRSTA 116

AMQRMCLA 339

quiescing 62

receiver 6

receiving parameters 52

refuses to run 479

renaming
i5/OS 329

channel (continued)
renaming (continued)

UNIX Systems 110

Windows systems 110

requester 6

requester-sender 7

requester-server 7

reset
z/OS 254

Reset
i5/OS 336

UNIX systems 114

Windows systems 114

resolving
i5/OS 336

UNIX Systems 114

Windows systems 114

z/OS 255

restart 55

restarting when stopped 64

run 110, 326

segregating messages 14

selecting 327

sender-receiver 6

sequence numbers 53

server-connection 6

server-receiver 8

sharing 13

start 55

i5/OS 326, 334

UNIX systems 112

UNIX Systems 110

Windows systems 110, 112

z/OS 252

startup negotiation errors 478

startup, data negotiation 54, 376, 378

state 55, 56

status 53

stopping 62, 335

i5/OS 335

UNIX systems 113

Windows systems 113

z/OS 255

switching 483

synchronizing 376

test, z/OS 254

triggering 18

UNIX systems 115

Windows systems 115

z/OS 260

trusted 119

types 77, 111, 116

using alternate channels 14

CHANNEL attribute 76

Channel attributes 71

by channel type 71

channel auto-definition exit,

introduction 11

channel configuration
WebSphere MQ for AIX 168

WebSphere MQ for HP-UX 190

WebSphere MQ for i5/OS 363

WebSphere MQ for Linux 234

WebSphere MQ for Solaris 211

WebSphere MQ for Windows 146

WebSphere MQ for z/OS 272, 292

channel control error messages 477

498 WebSphere MQ: Intercommunication

channel control function 53

i5/OS 321

UNIX systems 105

Windows systems 105

z/OS 243

channel definition file
i5/OS 321

UNIX systems 106

Windows systems 106

channel description 82

channel disposition 83

channel exit
compatible receive exit 389

considerations for pipelining 149

reserving space in send exit 389

channel exits
auto-definition 393

message 390

message-retry 392

receive 387

security 378

CLNTCONN and SVRCONN

channels 386

send 387

channel functions
UNIX systems 111

Windows systems 111

channel initiator
display, z/OS 249

overview 9

retries 59, 87

runmqchi command, WebSphere MQ

for Windows 112

runmqchi command, WebSphere MQ

on UNIX systems 112

running the MCA as a thread 90

start, i5/OS 335

start, Windows systems and UNIX

systems 116

start, z/OS 249

stop, Windows systems and UNIX

systems 116

stop, z/OS 250

STRMQMCHLI command 335

channel listener
overview 9

start, i5/OS 335

start, z/OS 251

stop, z/OS 252

STRMQMLSR command 335

trusted 11

channel name attribute 76

channel planning example
i5/OS 368

UNIX systems 238

Windows 238

channel planning examples
z/OS 275, 294

channel programs
UNIX systems 116

WebSphere MQ for i5/OS 339

Windows systems 116

channel refuses to run 479

channel startup negotiation errors 478

channel states
BINDING 55

i5/OS 340

channel states (continued)
INACTIVE 59

channel statistics attribute 76

channel status
display, i5/OS 334

display, UNIX systems 111

display, Windows systems 111

display, z/OS 257

channel type attribute 77

channel-exit program 403

channel-exit programs 375

channel definition structure,

MQCD 394

data buffer 394

introduction 11

parameter structure, MQCXP 394

WebSphere MQ for AIX 399

WebSphere MQ for HP-UX 400

WebSphere MQ for i5/OS 397

WebSphere MQ for Solaris 401

WebSphere MQ for Windows 398

WebSphere MQ for z/OS 396

Windows 95 and Windows 98

client 398

Windows client 398

writing and compiling 394

channel, performance improvement 149

ChannelDefinition parameter
MQ_CHANNEL_AUTO_DEF_EXIT

call 411

MQ_CHANNEL_EXIT call 407

ChannelExitParms parameter
MQ_CHANNEL_AUTO_DEF_EXIT

call 411

MQ_CHANNEL_EXIT call 407

ChannelName field 414

CHANNELS stanza 491

channels, alternate to 14

ChannelType field 416

CHLTYPE attribute 77

class
of service 280

class of routing entry 350

class of service 41

Class of service 280

client channel weight 78

client channels
with queue sharing 283

Client channels 283

client-connection channel 6

security exit 386

ClientChannelWeight 443

clients, problem determination 483

CLNTWGHT 78

CLUSNL attribute 78

CLUSTER attribute 78

cluster channels, z/OS 258

cluster components 4

cluster name attribute 78

cluster namelist attribute 78

cluster-receiver 8

cluster-receiver channel 6

cluster-sender 8

cluster-sender channel 6

clustering
with intra-group queuing 306

ClusterPtr field 435

clusters
choosing transmission queue 33

components 4

concentrating messages 38

distribution lists 40

message flow 29

networking considerations 46

passing messages 35

putting messages 32

queue sharing with 284

reply-to queue 41

return routing 47

separating message flows 36

using 15

Clusters and queue-sharing groups 284

ClustersDefined field 435

CLWLChannelPriority field 441

CLWLChannelRank field 441

CLWLChannelWeight field 442

CLWLPRTY attribute 78

CLWLRANK attribute 79

CLWLWGHT attribute 79

command queue channel, z/OS 260

command validation 66

commit in-doubt messages
i5/OS 336

UNIX systems 114

Windows systems 114

committed messages
i5/OS 336

UNIX systems 114

Windows systems 114

Communications Server for AIX V5 160

Communications Server for Linux
establishing a session 220

explanation of terms 218

operation 232

Communications Server for Windows

NT 134

communications side object
i5/OS 344, 345

z/OS 266, 285

CompCode parameter 413

COMPHDR attribute 84

COMPMSG attribute 81

components of
shared queuing 280

components of distributed-queuing

environment 12

channel initiator 9

channel listener 9

message channel 6

message channel agent 8

transmission queue 9

Components of shared queuing 280

components, cluster 4

compression
data 81

header 84

compression of data 387

concentrating messages 38

concentrators 27

concepts
shared queuing 280

concepts of
intra-group queuing 298

Index 499

concepts of intercommunication 1, 15,

20

Concepts of queue-sharing groups 280

configuration
WebSphere MQ for AIX 167

WebSphere MQ for HP-UX 190

WebSphere MQ for i5/OS 362

WebSphere MQ for Linux 234

WebSphere MQ for Solaris 211

WebSphere MQ for Windows 145

WebSphere MQ for z/OS 272, 291

configuration file 68

UNIX systems 68

configurations
intra-group queuing 303

CONNAME attribute 80

connection
APPC/MVS, z/OS 263, 284

deciding upon
i5/OS 342

z/OS 263, 284

defining APPC/MVS (LU 6.2) 266,

285

defining LU 6.2
i5/OS 344

UNIX systems 154

Windows systems 122

LU 6.2
i5/OS 342

UNIX systems 150

Windows 120

z/OS 263, 284

NetBIOS
Windows 120

SPX
Windows 120

switching 483

TCP
i5/OS 342

UNIX systems 150

Windows 120

z/OS 263, 284

UDP
UNIX systems 150

connection affinity 79

connection name 80

ConnectionAffinity 444

ConnectionName field 426

context security 94

control commands, channel 53

Conversations, sharing 404

conversion failure, problem

determination 480

conversion of data 53

CONVERT attribute 81

convert message 81

coordination with adjacent systems 38

Copy option 333

Create option 332

creating
channel

i5/OS 324

UNIX systems 109

Windows systems 109

defaults 332

objects
i5/OS 324

creating (continued)
objects (continued)

UNIX systems 108

Windows systems 108

queues 115, 337

transmission queue 115, 337

CRTCSI command 345

CRTMQM command 108

CurHdrCompression field 470

CurMsgCompression field 470

current channels
specifying maximum number 58

D
data

compression 387

conversion 390

decompression 387

encryption 390

negotiation 18, 54

data compression 81

data conversion 70

data types, detailed description
MQCD 413

MQCXP 458

MQXWD 475

DataConversion field 422

DataLength parameter 407

DDNS
registration time for 481

dead-letter queue 46

overview 12

problem determination 477

processing 477

UNIX systems 117

WebSphere MQ for i5/OS 340

Windows systems 117

z/OS 117

decompression of data 387

default channel values
i5/OS 332

default object creation 108

define channel
z/OS 247

defining
an LU 6.2 connection

i5/OS 344

UNIX systems 154

Windows systems 122

APPC/MVS (LU 6.2) connection
z/OS 266, 285

objects
z/OS 260

queues
z/OS 260

z/OS 247

definition file
i5/OS 321

UNIX systems 106

Windows systems 106

delete channel
distributed platforms 111

i5/OS 333

z/OS 248

delivery, messages 20

Desc field 417

DESCR attribute 82

description, channel 82

destination queue 36

dial-up support 481

disabled receiver channels 112, 334

disaster recovery 482

DISCINT attribute 82

DiscInterval field 419

disconnect interval 82

display
option 334

z/OS, DQM 249

display channel
i5/OS 334

UNIX systems 109

Windows systems 109

z/OS 248

display channel initiator
z/OS 249

display channel status
z/OS 257

Display channel status
UNIX systems 110

Windows systems 110

display DQM 249

disposition 83

distributed queuing
components 5, 12

functions 50

with intra-group queuing 304

distributed queuing with queue-sharing

groups 280

distributed-queuing management in

WebSphere MQ for i5/OS 336

distribution lists 40, 53

diverting message flows 39

DQM
display, z/OS 249

E
ECB field 476

edit
change

i5/OS 333

UNIX systems 111

Windows systems 111

copy
i5/OS 333

create
i5/OS 332

UNIX systems 111

Windows systems 111

delete
i5/OS 333

UNIX systems 111

Windows systems 111

enabling a channel to transmit

messages 55

encryption
in send exit 389

encryption of messages 375

end 113

End option 335

ending a channel 113, 335

ENDMQLSR command 117

500 WebSphere MQ: Intercommunication

error
at remote sites 477

channel 59

logs 113, 484

message from channel control 477

recovery 476

example
alias walk-through 45

channel initiators 9

channel listeners 9

channel names 26

channel planning
for distributed platforms 238

for i5/OS 368

for z/OS 275, 294

i5/OS 368

UNIX systems 238

Windows 238

z/OS 275, 294

choosing the transmission queue 33

cluster of queue managers 4

communication in WebSphere MQ for

i5/OS, TCP connection 342

concentrating messages 38

configurations 101, 102

create channel 109

creating reply-to aliases 30

defining channels 16

defining queues 17

defining remote queue definitions 30

display channel 109

display channel status 110

diverting message flows 39

establishing a session using

Communications Server for

Linux 220

establishing a session using

SNAP-IX 199

flow control 29

intra-group queuing 313

local queue definition
i5/OS 371

UNIX systems 241

Windows 241

z/OS 278

message channels
cluster-receiver 8

cluster-sender 8

requester-sender 7

requester-server 7

sender-receiver 6

multi-hopping 13

passing messages through system 35

passing through intermediate queue

managers 13

putting messages on remote

queues 32

QM-concentrators 27

queue name resolution 48

receiver channel definition
i5/OS 371, 372

UNIX systems 240, 241

Windows 240, 241

z/OS 278, 279

receiving messages 34

remote queue definition
i5/OS 370

example (continued)
remote queue definition (continued)

UNIX systems 240

Windows 240

z/OS 277

renaming a channel 110

reply-to queue 41, 42

reply-to queue definition
i5/OS 371

UNIX systems 240

Windows 240

z/OS 278

reply-to-queue alias 24

running
i5/OS 372

UNIX systems 241

Windows 241

z/OS 279

send exits reserving space 390

sender channel definition
i5/OS 370, 372

UNIX systems 240, 241

Windows 240, 241

z/OS 278, 279

sending messages 3, 15

sending messages in both

directions 3

separating message flows 36

setting up communication for

Windows systems
defining a NetBIOS

connection 124

defining a TCP connection 121

defining an LU 6.2

connection 122

defining an SPX connection 126

setting up communication in UNIX

systems
defining a TCP connection 150

defining an LU 6.2

connection 154

setting up communication in

WebSphere MQ for z/OS
LU 6.2 connection 266, 285

TCP connection 263

sharing a transmission queue 13

starting a channel 110, 326

transmission queue definition
i5/OS 370, 372

UNIX systems 240, 241

Windows 240, 241

z/OS 277, 279

triggering 19, 116

using multiple channels 14

using the remote queue definition

object 31

WebSphere MQ for AIX

configuration 155

WebSphere MQ for HP-UX

configuration 172

WebSphere MQ for i5/OS

configuration 350

WebSphere MQ for Linux

configuration 215

WebSphere MQ for Solaris

configuration 194

example (continued)
WebSphere MQ for Windows

configuration 129

WebSphere MQ for z/OS

configuration 266, 286

example configurations
WebSphere MQ for AIX 155

WebSphere MQ for HP-UX 172

WebSphere MQ for i5/OS 350, 368

WebSphere MQ for Linux 215

WebSphere MQ for Solaris 194

WebSphere MQ for Windows 129

WebSphere MQ for z/OS 266, 286

exit wait descriptor structure 475

ExitBufferAddr parameter 408

ExitBufferLength parameter 408

ExitData field 466

ExitDataLength field 432

ExitId field 460

ExitNameLength field 432

ExitNumber field 468

EXITPATH
stanza of qm.ini file 491

ExitReason field
MQCXP structure 460

ExitResponse field
MQCXP structure 462

ExitResponse2 field 464

ExitSpace field 468

ExitUserArea field
MQCXP structure 466

F
FAPLevel field 468

fast, nonpersistent messages 20

sequence of retrieval 49

specifying 93

Feedback field
MQCXP structure 465

fields
BatchHeartbeat 440

BatchInterval 430

BatchSize 419

CapabilityFlags 468

ChannelName 414

ChannelType 416

ClusterPtr 435

ClustersDefined 435

CLWLChannelPriority 441

CLWLChannelRank 441

CLWLChannelWeight 442

ConnectionName 426

CurHdrCompression 470

CurMsgCompression 470

DataConversion 422

Desc 417

DiscInterval 419

ECB 476

ExitData 466

ExitDataLength 432

ExitId 460

ExitNameLength 432

ExitNumber 468

ExitReason
MQCXP structure 460

Index 501

fields (continued)
ExitResponse

MQCXP structure 462

ExitResponse2 464

ExitSpace 468

ExitUserArea
MQCXP structure 466

FAPLevel 468

Feedback
MQCXP structure 465

Hconn 471

HdrCompList 440

HeaderLength 467

HeartbeatInterval 429

KeepAliveInterval 439

LocalAddress 439

LongMCAUserIdLength 436

LongMCAUserIdPtr 436

LongRemoteUserIdLength 436

LongRemoteUserIdPtr 437

LongRetryCount 420

LongRetryInterval 420

MaxInstances 445

MaxInstancesPerClient 445

MaxMsgLength 422

MaxSegmentLength 465

MCAName 418

MCASecurityId 437

MCAType 425

MCAUserIdentifier 424

ModeName 418

MsgCompList 441

MsgExit 420

MsgExitPtr 433

MsgExitsDefined 432

MsgRetryCount
MQCD structure 428

MQCXP structure 466

MsgRetryExit 427

MsgRetryInterval
MQCD structure 429

MQCXP structure 467

MsgRetryReason 467

MsgRetryUserData 428

MsgUserData 423

MsgUserDataPtr 433

NetworkPriority 436

NonPersistentMsgSpeed 430

PartnerName 468

Password 424

PropertyControl 444

PutAuthority 422

QMgrName 417

ReceiveExit 421

ReceiveExitPtr 434

ReceiveExitsDefined 432

ReceiveUserData 423

ReceiveUserDataPtr 435

RemotePassword 427

RemoteSecurityId 437

RemoteUserIdentifier 426

Reserved1 475

Reserved2 475

Reserved3 476

SecurityExit 420

SecurityParms 470

SecurityUserData 422

fields (continued)
SendExit 421

SendExitPtr 433

SendExitsDefined 432

SendUserData 423

SendUserDataPtr 434

SeqNumberWrap 421

SharingConversations 443, 471

ShortConnectionName 418

ShortRetryCount 419

ShortRetryInterval 419

SSLCertUserId 469

SSLCipherSpec 438

SSLClientAuth 438

SSLPeerNameLength 438

SSLPeerNamePtr 438

SSLRemCertIssNameLength 469

SSLRemCertIssNamePtr 469

StrucId
MQCXP structure 459

MQXWD structure 475

StrucLength 431

TpName 418

TransportType
MQCD structure 416

UserIdentifier 424

Version
MQCD structure 415

MQCXP structure 459

MQXWD structure 475

XmitQName 417

flow control 29

for shared queuing
listeners 280

functions available
UNIX systems 106

Windows systems 106

G
generic

interface 280

Generic interface 280

getting started
intra-group queuing 302

Getting started with intra-group

queuing 302

H
HBINT attribute 84

Hconn field 471

Hconn parameter 412

HdrCompList field 440

header compression 84

HeaderLength field 467

heartbeat interval 84

HeartbeatInterval field 429

I
i5/OS

KEEPALIVE 343

IBM Communications Server for

Windows NT 134

in-doubt 75

in-doubt channels, manual

resynchronization 65

in-doubt message on channel, resolve on

z/OS 255

in-doubt messages, commit or back out
i5/OS 336

UNIX systems 114

Windows systems 114

INACTIVE channel state 56, 59

inbound channels
with shared queuing 282

Inbound channels with shared

queuing 282

INETD 232

ini file 68

initial data negotiation 18, 54

initialization data set, z/OS 68

initialization file 68

initiator for channel
AIX, HP-UX, Solaris, and Windows

systems 116

UNIX systems and Windows

systems 116

z/OS 249

integrity of delivery 20

intercommunication
concepts 1, 15, 20

example configuration 101

intercommunication examples
WebSphere MQ for AIX 155

WebSphere MQ for HP-UX 172

WebSphere MQ for i5/OS 350

WebSphere MQ for Linux 215

WebSphere MQ for Solaris 194

WebSphere MQ for Windows 129

WebSphere MQ for z/OS 266, 286

interface
generic 280

intra-group queuing
agent 300

benefits 300

concepts of 298

configurations 303

example 313

getting started 302

intra-group queuing agent 299

limitations 302

messages 308

security 310

shared transmission queue 300

specific properties 311

terminology 300

with clustering 306

with distributed queuing 304

intra-group queuing agent
intra-group queuing 299

Intra-group queuing agent 300

Intra-group queuing and the intra-group

queuing agent 299

Intra-group queuing benefits 300

Intra-group queuing concepts 298

Intra-group queuing configurations 303

intra-group queuing example 313

Intra-group queuing limitations 302

Intra-group queuing security 310

Intra-group queuing specific

properties 311

502 WebSphere MQ: Intercommunication

Intra-group queuing terminology 300

Intra-group queuing with clustering 306

Intra-group queuing with distributed

queuing 304

J
journaling 390

K
KAINT attribute 84

KEEPALIVE 61

i5/OS 343

UNIX systems 154

KeepAlive interval 84

KeepAliveInterval field 439

L
limitations

intra-group queuing 302

links, wide-band 27

list cluster channels, z/OS 258

listener, trusted 9, 11, 119

listeners
for shared queuing 280

Listeners 280

listening on LU 6.2
UNIX systems 155

Windows systems 123

z/OS 266, 285

listening on NetBIOS
Windows systems 126

listening on SPX
Windows 144

Windows systems 127

listening on TCP
i5/OS 343

UNIX systems 151

Windows systems 121

z/OS 264, 285

Local Address 85

local queue definition
example

i5/OS 371

UNIX systems 241

Windows 241

z/OS 278

local queue manager 1

LOCALADDR attribute 85

LocalAddress field 439

location name 35

log
error 113, 484

file, @SYSTEM 484

logs for errors 113

long retry count attribute 86

long retry interval attribute 87

LongMCAUserIdLength field 436

LongMCAUserIdPtr field 436

LongRemoteUserIdLength field 436

LongRemoteUserIdPtr field 437

LongRetryCount field 420

LongRetryInterval field 420

LONGRTY attribute 86

LONGTMR attribute 87

loopback testing 49

LU 6.2
mode name 87

settings
i5/OS 344

UNIX systems 154

Windows systems 122

TP name 88

LU 6.2 connection
setting up

i5/OS 342

UNIX systems 150

Windows 120

z/OS 266, 285

WebSphere MQ for AIX 156

WebSphere MQ for HP-UX 172

WebSphere MQ for i5/OS 351

WebSphere MQ for Linux (x86

platform) 215

WebSphere MQ for Solaris 195

WebSphere MQ for Windows 129

WebSphere MQ for z/OS 267, 286

worksheet
WebSphere MQ for Linux

configuration 215

LU62
stanza of qm.ini file 491

M
maximum

active channels 58

current channels 58

message length 89

server-connection channels 60

maximum instances 88

maximum instances per client 89

MAXINST attribute 88

MaxInstances field 445

MaxInstancesPerClient field 445

MAXINSTC attribute 89

MAXMSGL attribute 89

MaxMsgLength field 422

MaxSegmentLength field 465

MCA
adopting 62, 481

caller 8

name 89

responder 8

type 90

user 90

user-written 70

MCANAME attribute 89

MCAName field 418

MCASecurityId field 437

MCATYPE attribute 90

MCAType field 425

MCAUSER attribute 90

MCAUserIdentifier field 424

message
committed

i5/OS 336

UNIX systems 114

Windows systems 114

concentrating 38

converting 81

message (continued)
diverting flows 39

encryption 375

error 477

for distribution list 40

passing through system 35

putting on remote queue 31

queue name translations 47

receiving 34

return routing 47

return to sender 67

routing 33

sending and receiving 51

separating flows 36

sequence numbering 49

sequential retrieval 49

splitting 53

undeliverable 66

message channel
cluster-receiver 6, 8

cluster-sender 6, 8

receiver 6

requester 6

requester-sender 7

requester-server 7

sender 6

sender-receiver 6

server 6

server-receiver 8

message channel agent
caller 8

initiation 378, 387

responder 8

security 94

termination 378, 387

user-written 70

message channel agent (MCA) 8, 51

message channel agents
with shared queuing 281

Message channel agents with shared

queuing 281

message exit 11

message exit name 91

message exit program 390

overview 376

message exit user data 91

message flow control 29

networking considerations 46

message monitoring 485

message retry 67

message-retry exit
introduction 11

name 91

retry count 91

retry interval 92

user data 91

message-retry exit program 392

messages
assured delivery 20

back out in-doubt messages
i5/OS 336

commit in-doubt messages
i5/OS 336

intra-group queuing 308

resolve in-doubt messages
i5/OS 336

sending 15

Index 503

Messages
back out in-doubt messages 114

commit in-doubt messages 114

resolve in-doubt messages 114

messages and codes 66

Messages put to

SYSTEM.QSG.TRANSMIT

.QUEUE 308

mode name 87

MODENAME attribute 87

ModeName field 418

MONCHL 92

monitoring 92

message 485

monitoring and controlling channels
i5/OS 321

UNIX systems 105

Windows 105

z/OS 243

monitoring channels 53

moving service component 2

MQ_CHANNEL_AUTO_DEF_EXIT

call 410

MQ_CHANNEL_EXIT call 406

MQCD structure 413

MQCD, channel definition structure 394

MQCXP structure 458

ExitReason field 389

ExitSpace field 389

MQCXP_* values 459

MQCXP, channel exit parameter

structure 394

MQFB_* values 465

MQI channels 6

MQIBindType 119

MQRMH, reference-message header 390

mqs.ini 69

MQSINI 69

MQXCC_* values
MQCXP structure 462

MQXCP_VERSION_5, of MQCXP

structure 389

MQXQH, transmission header 390, 392

MQXR_* values
MQCXP structure 460

MQXR_INIT, ExitReason value 389

MQXR_XMIT, ExitReason value 389

MQXR2_* values 464

MQXT_* values 460

MQXUA_* values
MQTXP structure 466

MQXWAIT call 412

MQXWD structure 475

MQXWD_* values 475

MRDATA attribute 91

MREXIT attribute 91

MRRTY attribute 91

MRTMR attribute 92

MsgCompList field 441

MSGDATA attribute 91

MSGEXIT attribute 91

MsgExit field 420

MsgExitPtr field 433

MsgExitsDefined field 432

MsgRetryCount field
MQCD structure 428

MQCXP structure 466

MsgRetryExit field 427

MsgRetryInterval field
MQCD structure 429

MQCXP structure 467

MsgRetryReason field 467

MsgRetryUserData field 428

MsgUserData field 423

MsgUserDataPtr field 433

multi-hopping 13

multiple message channels per

transmission queue
UNIX systems 55

Windows systems 55

multiple queue managers 123

N
name resolution

conflicts 47

convention 46

description 487

introduction 22

location 35

queue name translations 47

restriction 42

negotiations on startup 54, 478

NetBIOS 2, 124

NETBIOS
stanza of qm.ini file 491

NetBIOS connection
WebSphere MQ for Windows 142

Windows 120

NetBIOS products, in example

configurations 102

NetBIOS, example configurations 102

network infrastructure, example

configurations 102

network planner 27

network-connection priority 93

networking 35

networking considerations 46

NetworkPriority field 436

networks 25

node centric 30

nonpersistent message speed 93

NonPersistentMsgSpeed field 430

O
objects

creating
default 108

i5/OS 324

UNIX systems 108

Windows systems 108

defining
z/OS 260

security 117, 341

operator commands
i5/OS 321

options
change 333

copy 333

create 332

display 334

display status 334

options (continued)
end 335

ping 334

reset 336

resolve 114

i5/OS 336

start 334

outbound channels
with shared queuing 282

Outbound channels with shared

queuing 282

P
panel data, validation 66

panels
browsing a channel

i5/OS 327

channel start
i5/OS 334

creating a channel
i5/OS 324

display
i5/OS 334

display channel status 334

ending channel
i5/OS 335

i5/OS
resolve 336

work with status 334

ping
i5/OS 334

reset
i5/OS 336

selecting a channel
i5/OS 327

using, z/OS 244

Work with channel status
i5/OS 329

work-with-channel choices
i5/OS 331

parameters
AgentBuffer 408

AgentBufferLength 407

ChannelDefinition
MQ_CHANNEL_EXIT call 407

ChannelExitParms
MQ_CHANNEL_EXIT call 407

CompCode 413

DataLength 407

ExitBufferAddr 408

ExitBufferLength 408

Hconn 412

Reason 413

security exit 384

WaitDesc 412

parameters, receiving 52

PartnerName field 468

Password attribute
encrypted value 100

introduction 93

Password field 424

PAUSED channel state 56, 59

peer recovery
with queue-sharing 283

Peer recovery 283

504 WebSphere MQ: Intercommunication

peer-shared-channel retry on z/OS
about 482

performance
channel 149

ping 334

problem determination 477

UNIX systems 112

Windows systems 112

ping channel
z/OS 254

ping with LU 6.2 112, 334

pipelining
in MCA message transfer 149

parameter in qm.ini file 149

port 200

in qm.ini file 491

WebSphere MQ for AIX 161

WebSphere MQ for HP-UX 178

WebSphere MQ for i5/OS 342

WebSphere MQ for Linux (x86

platform) 221

WebSphere MQ for Windows

systems 121

WebSphere MQ for z/OS 249, 272,

291

preparation
getting started

i5/OS 323

UNIX systems 107

Windows systems 107

preparing channels 54

preparing WebSphere MQ for i5/OS 336

priority 78

problem determination 476

channel refuses to run 479

channel startup negotiation

errors 478

channel switching 483

clients 483

connection switching 483

conversion failure 480

data structures 482

dead-letter queue 477

error messages 477

retrying the link 481

scenarios 476

transmission queue overflow 477

triggered channels 480

undelivered-message queue 477

user-exit programs 482

using the PING command 477

validation checks 478

process definition for triggering
i5/OS 339

UNIX systems 115

Windows systems 115

z/OS 260

process security 94

processing problems 66

programs
AMQCRCTA 340

AMQCRS6A 117

AMQCRSTA 117, 340

AMQRMCLA 340

RUNMQCHI 117

RUNMQCHL 117

RUNMQLSR 117

PropertyControl field 444

PUT authority 94

PUTAUT attribute 94

PutAuthority field 422

putting messages 31

on remote queues 31

to distribution lists 40

Q
qm.ini 69

Channels stanza 149

stanzas used for distributed

queuing 491

QMgrName field 417

QMINI file
stanzas used for distributed

queuing 491

QMNAME attribute 95

QSGDISP attribute 83

queue
destination 36

reply-to 41

queue manager
alias 21, 30

receiving 34

name 95

alias 36

types 1

queue manager alias 21, 30

introduction 22

receiving 34

queue name
resolution 487

how it works 489

what is it? 488

translations 47

queue sharing
peer recovery with 283

queue-sharing
clusters and 284

queues
create a transmission queue 115, 337

defining
z/OS 260

queuing
shared 280

quiescing channels 62

R
rank 79

RCVDATA attribute 96

RCVEXIT attribute 95

Reason parameter 413

receive exit 11

name 95

program 387

user data 96

ReceiveExit field 421

ReceiveExitPtr field 434

ReceiveExitsDefined field 432

receiver
channel 6

channel definition example
i5/OS 371

receiver (continued)
channel definition example (continued)

UNIX systems 240

Windows 240

z/OS 278

receiver channel definition
example

i5/OS 372

UNIX systems 241

Windows 241

z/OS 279

overview 3

ReceiveUserData field 423

ReceiveUserDataPtr field 435

receiving
messages 34, 51

on LU 6.2
UNIX systems 155

Windows systems 123

z/OS 266, 285

on SPX
Windows 144

Windows systems 127

on TCP
i5/OS 343

UNIX systems 151

Windows systems 121

z/OS 264, 285

receiving messages 34, 51

receiving on LU 6.2
UNIX systems 155

Windows systems 123

z/OS 266, 285

receiving on SPX
Windows 144

Windows systems 127

receiving on TCP
i5/OS 343

UNIX systems 151

Windows systems 121

z/OS 264, 285

recovery with queue-sharing
peer 283

reference-message header
message exit program 390

Registration time for DDNS 481

registry 68, 69, 122, 124, 129, 144, 398

remote queue definition 30

example
i5/OS 370

UNIX systems 240

Windows 240

z/OS 277

introduction 14, 21

what it is 12

remote queue manager 1

RemotePassword field 427

RemoteSecurityId field 437

RemoteUserIdentifier field 426

renaming a channel
i5/OS 329

UNIX systems 110

Windows systems 110

reply-to alias 30

reply-to queue 41

alias definition 24

alias example 42

Index 505

reply-to queue (continued)
aliases 21

preparing for 25

specifying 24

reply-to queue definition
example

i5/OS 371

UNIX systems 240

Windows 240

z/OS 278

requester channel 6

REQUESTING channel state 56

Reserved1 field 475

Reserved2 field 475

Reserved3 field 476

reset 114, 336

RESET CHANNEL command 479

reset channel sequence numbers,

z/OS 254

RESOLVE CHANNEL command 479

resolve in-doubt message on channel,

z/OS 255

resolve in-doubt messages 114

i5/OS 336

resolve option 114

i5/OS 336

responder
LU6.2 112

MCA 8

responder MCA 8

responder process 112

restarting
channels 55

restarting stopped channels 64

RETRY channel state 56, 59

retry considerations 481

retrying the link, problem

determination 481

return routing 47

return to sender 67

route tracing 485

routing entry
add 349

class 350

routing entry class 350

routing messages 33

run channel 110, 326

run channel initiator 116

runmqchi command
AIX, HP-UX, Solaris, and Windows

systems 116

UNIX systems and Windows

systems 116

RUNMQCHI command 117

RUNMQCHL command 117

RUNMQLSR command 117

S
sample security exit 384, 403

scenarios, problem determination 476

SCYDATA attribute 96

SCYEXIT attribute 96

security
context 94

exit 11

exit name 96

security (continued)
exit program 378

CLNTCONN and SVRCONN

channels 386

exit program, overview 376

exit user data 96

intra-group queuing 310

levels for exit programs 119

message channel agent 94

objects
UNIX systems 117

WebSphere MQ for i5/OS 341

Windows systems 117

process 94

security exit
parameters 384

sample 384, 403

Security Services Programming Interface

(SSPI) 403

SecurityExit field 420

SecurityParms field 470

SecurityUserData field 422

segregating messages 14

selecting a channel 327

send
exit 11

exit name 97

exit program 387

message 51

send exit
multiple send exits 390

send exit user data 97

SENDDATA attribute 97

sender channel 6

sender channel definition
example

i5/OS 370, 372

UNIX systems 240, 241

Windows 240, 241

z/OS 278, 279

overview 3

SENDEXIT attribute 97

SendExit field 421

SendExitPtr field 433

SendExitsDefined field 432

sending
messages 15, 51

on SPX
Windows 127

on TCP
Windows 121

sending on TCP 151

SendUserData field 423

SendUserDataPtr field 434

SeqNumberWrap field 421

sequence number wrap 97

sequence numbering 49

sequence numbers 53

reset, z/OS 254

sequential retrieval of messages 49

SEQWRAP attribute 97

server
channel 6

server-connection channel 6

security exit 386

server-connection channels, maximum

number 60

service
class of 280

service, class of 41

setting up
communication

i5/OS 342

UNIX systems 150

Windows 120

shared
queuing 280

shared queuing
benefits of 283

components of 280

concepts of 280

inbound channels 282

message channel agents with 281

outbound channels 282

synchronization queue 282

transmission 281

triggering with 281

shared transmission queue
intra-group queuing 300

Shared transmission queue for

intra-group queuing 300

SHAREPORT 291

sharing channels 13

Sharing conversations 404

SharingConversations
MQCD 404

MQCXP 404

SharingConversations field 443, 471

short retry
count 97

interval 98

ShortConnectionName field 418

ShortRetryCount field 419

ShortRetryInterval field 419

SHORTRTY attribute 97

SHORTTMR attribute 98

side object
i5/OS 345

SNA 2

products, in example

configurations 102

SNAP-IX
configuration parameters 195

establishing a session 199

explanation of terms 197

operation 210

sender-channel definitions 214

SNAplus2 176

SO_KEEPALIVE
i5/OS 343

UNIX systems 154

Windows systems 122

source queue manager 1

specific properties
intra-group queuing 311

splitting messages 53

SPX 2

connection
WebSphere MQ for Windows 143

example configurations 102

products, in example

configurations 102

stanza of qm.ini file 491

Windows 120

506 WebSphere MQ: Intercommunication

SSLCAUTH attribute 99

SSLCertUserId field 469

SSLCIPH attribute 98

SSLCipherSpec field 438

SSLClientAuth field 438

SSLPEER attribute 99

SSLPeerNameLength field 438

SSLPeerNamePtr field 438

SSLRemCertIssNameLength field 469

SSLRemCertIssNamePtr field 469

SSPI (Security Services Programming

Interface) 403

stanza file 68

stanza, in qm.ini file
Channels 149

start
channel 55

UNIX systems 110

Windows systems 110

z/OS 252

channel initiator, z/OS 249

channel listener, z/OS 251

option 334

STARTING channel state 56

startup dialog 376

STATCHL attribute 76

state, channel 55

status
display channel 110

work with channel 329

status panels 334

status, channel 53

stop
channel 62, 113

channel initiator, z/OS 250

channel listener, OS/390 252

channel, z/OS 255

controlled 336

immediate 336

quiesce 113, 114

stop channel initiator 116

stop force 113, 114

STOPPED channel state 56, 59

stopped channels, restarting 64

STOPPING channel state 56

STRMQM command 108

StrucId field
MQCXP structure 459

MQXWD structure 475

StrucLength field 431

structure
MQCXP 389

structures
MQCD 413

MQCXP 458

MQXWD 475

switching channels 483

synchronization
with shared queuing 282

Synchronization queue with shared

queuing 282

synchronization queue, z/OS 260

synchronizing channels 376

syncpoint introduction 75

Sysplex Distributor 291

system extension 119, 341

system extensions
user-exit programs

UNIX systems 119

WebSphere MQ for i5/OS 341

Windows systems 119

SYSTEM.CHANNEL.INITQ queue
i5/OS 368

UNIX systems 238

Windows 238

z/OS 243, 260

SYSTEM.CHANNEL.REPLY.INFO

queue 243, 260

SYSTEM.CHANNEL.SYNCQ 260

T
target queue manager 1

TCP
connection

listener backlog 127, 152, 265, 344

WebSphere MQ for AIX 166

WebSphere MQ for HP-UX 189

WebSphere MQ for i5/OS 360

WebSphere MQ for Linux 232

WebSphere MQ for Solaris 210

WebSphere MQ for z/OS 272, 290

Windows 142

example configurations 102

listener backlog option 127, 152, 265,

344

OpenEdition MVS sockets 262

products, in example

configurations 102

stanza of qm.ini file 491

stanza of QMINI file 491

TCP connection
setting up

UNIX systems 150

Windows 120

z/OS 263

TCP KEEPALIVE
i5/OS 343

UNIX systems 154

Windows systems 122

TCP/IP 2

TCP/IP KEEPALIVE 61

terminology
intra-group queuing 300

test channel, z/OS 254

testing connections, lookback testing 49

threads
multiple 149

time-out 82

TPNAME and TPPATH
i5/OS 344

UNIX systems 154

Windows systems 122

TPNAME attribute 88

TpName field 418

transaction
program name 88

transmission
shared queuing 281

transmission header
alias

definition 22

message exit program 390

transmission header (continued)
message-retry exit program 392

queue name 30

transmission of messages
maximum transmission size 389

transmission buffer 389

transmission protocol 100

transmission queue
definition of 9

example definition
i5/OS 370

UNIX systems 240

Windows 240

z/OS 277

multiple message channels
UNIX systems 55

Windows systems 55

overflow 477

selecting 36

sharing 13

Transmission queue 281

transmission queue definition
example

i5/OS 372

UNIX systems 241

Windows 241

z/OS 279

transmission queue name 100

transport type 100

supported 2

transport-retry exit
introduction 11

TransportType field
MQCD structure 416

triggered channels, problem

determination 480

triggering
channels 18

UNIX systems 115

WebSphere MQ for i5/OS 339

Windows systems 115

z/OS 260

with shared queuing 281

Triggering with shared queuing 281

TRPTYPE attribute 100

trusted applications 11, 119

type, bind 119

types of channel 77

U
UCD products, in example

configurations 102

UDP
example configurations 102

undeliverable message 66

undelivered-message queue
UNIX systems 117

Windows systems 117

z/OS 117

UNIX
KEEPALIVE 154

user ID 100, 119

user-exit
programs 482

user-exit programs 375

problem determination 482

Index 507

user-exit programs (continued)
security levels 119

system extension
i5/OS 341

UNIX systems 119

Windows systems 119

writing and compiling 394

user-written MCAs 70

USERDATA parameter
z/OS 260

USERID attribute 100

UserIdentifier field 424

V
validation

checks 478

command 66

of user IDs 390

panel data 66

values supplied by WebSphere MQ for

i5/OS 332

Version field
MQCD structure 415

MQCXP structure 459

MQXWD structure 475

W
WaitDesc parameter 412

WAITING channel state 56

WebSphere MQ for AIX
channel configuration 168

channel-exit programs 399

configuration 167

intercommunication example 155

LU 6.2 connection 156

TCP connection 166

WebSphere MQ for HP-UX
channel configuration 190

channel-exit programs 400

configuration 190

intercommunication example 172

LU 6.2 connection 172

TCP connection 189

WebSphere MQ for i5/OS
channel configuration 363

channel-exit programs 397

configuration 362

intercommunication example 350,

368

LU 6.2 connection 351

TCP connection 360

WebSphere MQ for Linux
channel configuration 234

configuration 234

intercommunication example 215

TCP connection 232

using INETD 232

using XINETD 233

WebSphere MQ for Solaris
channel configuration 211

channel-exit programs 401

configuration 211

intercommunication example 194

TCP connection 210

WebSphere MQ for Windows
channel configuration 146

channel-exit programs 398

configuration 145

intercommunication example 129

LU 6.2 connection 129

NetBIOS connection 142

SPX connection 143

TCP connection 142

WebSphere MQ for z/OS
channel configuration 272, 292

channel-exit programs 396

configuration 272, 291

intercommunication example 266

LU 6.2 connection 267, 286

reset channel sequence numbers 254

resolving in-doubt message on

channel 255

TCP connection 272, 290

weighting 79

wide-band links 27

work with channel status 329

work with status 334

work-with-channel choices 331

workload
balanced 283

Workload-balanced channel start 283

worksheet
WebSphere MQ for AIX

configuration 156

WebSphere MQ for HP-UX

configuration 172

WebSphere MQ for i5/OS

configuration 351

WebSphere MQ for Solaris

configuration 195

WebSphere MQ for Windows

configuration 130

WebSphere MQ for z/OS

configuration 267, 286

writing your own message channel

agents 70

WRKCLS command 350

WRKSBSD command 348

X
XINETD 233

XMITQ attribute 100

XmitQName field 417

508 WebSphere MQ: Intercommunication

Sending your comments to IBM

If you especially like or dislike anything about this book, please use one of the

methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on

the accuracy, organization, subject matter, or completeness of this book.

Please limit your comments to the information in this book and the way in which

the information is presented.

To make comments about the functions of IBM products or systems, talk to your

IBM representative or to your IBM authorized remarketer.

When you send comments to IBM , you grant IBM a nonexclusive right to use or

distribute your comments in any way it believes appropriate, without incurring

any obligation to you.

You can send your comments to IBM in any of the following ways:

v By mail, to this address:

User Technologies Department (MP095)

IBM United Kingdom Laboratories

Hursley Park

WINCHESTER,

Hampshire

SO21 2JN

United Kingdom

v By fax:

– From outside the U.K., after your international access code use 44-1962-816151

– From within the U.K., use 01962-816151
v Electronically, use the appropriate network ID:

– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL

– IBMLink: HURSLEY(IDRCF)

– Internet: idrcf@hursley.ibm.com

Whichever method you use, ensure that you include:

v The publication title and order number

v The topic to which your comment applies

v Your name and address/telephone number/fax number/network ID.

© Copyright IBM Corp. 1994, 2008 509

510 WebSphere MQ: Intercommunication

���

SC34-6931-00

Sp
in
e
in
fo
rm
at
io
n:

 �
�

�

W
eb

Sp
he

re

M

Q

In
te

rc
om

m
un

ic
at

io
n

Ve
rs

io
n

7.0

	Contents
	Figures
	Tables
	Chapter 1. Introduction
	Concepts of intercommunication
	What is intercommunication?
	How does distributed queuing work?

	Distributed queuing components
	Message channels
	Message channel agents
	Transmission queues
	Channel initiators and listeners
	Channel-exit programs

	Dead-letter queues
	Remote queue definitions
	How to get to the remote queue manager
	Multi-hopping
	Sharing channels
	Using different channels
	Using clustering

	Security
	Security exits
	Secure sockets layer

	Making your applications communicate
	How to send a message to another queue manager
	Defining the channels
	Defining the queues
	Sending the messages
	Starting the channel

	Triggering channels
	Safety of messages
	Fast, nonpersistent messages
	Undelivered messages

	More about intercommunication
	Addressing information
	What are aliases?
	Queue name resolution

	Queue manager alias definitions
	Outbound messages - remapping the queue manager name
	Outbound messages - altering or specifying the transmission queue
	Inbound messages - determining the destination

	Reply-to queue alias definitions
	What is a reply-to queue alias definition?
	Reply-to queue name

	Networks
	Channel and transmission queue names
	Network planner

	Chapter 2. How intercommunication works
	WebSphere MQ distributed-messaging techniques
	Message flow control
	Queue names in transmission header
	How to create queue manager and reply-to aliases

	Putting messages on remote queues
	More about name resolution

	Choosing the transmission queue
	Receiving messages
	Passing messages through your system
	Method 1: Using the incoming location name
	Method 2: Using an alias for the queue manager
	Method 3: Selecting a transmission queue
	Using these methods

	Separating message flows
	Concentrating messages to diverse locations
	Diverting message flows to another destination
	Sending messages to a distribution list
	Reply-to queue
	Reply-to queue alias example
	How the example works
	How the queue manager makes use of the reply-to queue alias
	Reply-to queue alias walk-through

	Networking considerations
	Return routing
	Managing queue name translations
	Channel message sequence numbering
	Sequential retrieval of messages
	Sequence of retrieval of fast, nonpersistent messages

	Loopback testing
	Route tracing and activity recording

	DQM implementation
	Functions of DQM
	Message sending and receiving
	Channel parameters
	Channel status and sequence numbers

	Channel control function
	Preparing channels
	Channel states
	Server-connection channel limits
	Checking that the other end of the channel is still available
	Adopting an MCA
	Stopping and quiescing channels
	Restarting stopped channels
	In-doubt channels
	Problem determination

	What happens when a message cannot be delivered?
	Initialization and configuration files
	z/OS
	Windows systems
	i5/OS and UNIX systems

	Data conversion
	Writing your own message channel agents

	Channel attributes
	Channel attributes and channel types
	Channel attributes in alphabetical order
	Alter date (ALTDATE)
	Alter time (ALTTIME)
	Batch Heartbeat Interval (BATCHHB)
	Batch interval (BATCHINT)
	Batch size (BATCHSZ)
	Channel name (CHANNEL)
	Channel statistics (STATCHL)
	Channel type (CHLTYPE)
	Client channel weight (CLNTWGHT)
	Cluster (CLUSTER)
	Cluster namelist (CLUSNL)
	Cluster workload priority (CLWLPRTY)
	Cluster workload rank (CLWLRANK)
	Cluster workload weight (CLWLWGHT)
	Connection affinity (AFFINITY)
	Connection name (CONNAME)
	Convert message (CONVERT)
	Data compression (COMPMSG)
	Description (DESCR)
	Disconnect interval (DISCINT)
	Disposition (QSGDISP)
	Header compression (COMPHDR)
	Heartbeat interval (HBINT)
	KeepAlive Interval (KAINT)
	Local Address (LOCLADDR)
	Long retry count (LONGRTY)
	Long retry interval (LONGTMR)
	LU 6.2 mode name (MODENAME)
	LU 6.2 transaction program name (TPNAME)
	Maximum instances (MAXINST)
	Maximum instances per client (MAXINSTC)
	Maximum message length (MAXMSGL)
	Message channel agent name (MCANAME)
	Message channel agent type (MCATYPE)
	Message channel agent user identifier (MCAUSER)
	Message exit name (MSGEXIT)
	Message exit user data (MSGDATA)
	Message-retry exit name (MREXIT)
	Message-retry exit user data (MRDATA)
	Message retry count (MRRTY)
	Message retry interval (MRTMR)
	Monitoring (MONCHL)
	Network-connection priority (NETPRTY)
	Nonpersistent message speed (NPMSPEED)
	Password (PASSWORD)
	PUT authority (PUTAUT)
	Queue manager name (QMNAME)
	Receive exit name (RCVEXIT)
	Receive exit user data (RCVDATA)
	Security exit name (SCYEXIT)
	Security exit user data (SCYDATA)
	Send exit name (SENDEXIT)
	Send exit user data (SENDDATA)
	Sequence number wrap (SEQWRAP)
	Short retry count (SHORTRTY)
	Short retry interval (SHORTTMR)
	SSL Cipher Specification (SSLCIPH)
	SSL Client Authentication (SSLCAUTH)
	SSL Peer (SSLPEER)
	Transmission queue name (XMITQ)
	Transport type (TRPTYPE)
	User ID (USERID)

	Example configuration chapters in this book
	Network infrastructure
	Communications software
	How to use the communication examples
	IT responsibilities

	Chapter 3. DQM in WebSphere MQ for Windows and Unix platforms
	Monitoring and controlling channels on Windows and Unix platforms
	DQM channel control
	Functions available
	Getting started with objects
	Creating associated objects
	Creating default objects
	Creating a channel
	Displaying a channel
	Displaying channel status
	Starting a channel
	Renaming a channel

	Channel attributes and channel types
	Channel functions
	Create
	Change
	Delete
	Display
	Display Status
	Ping
	Start
	Stop
	Reset
	Resolve

	Preparing WebSphere MQ for distributed platforms
	Transmission queues and triggering
	Creating a transmission queue
	Triggering channels

	Channel programs
	Other things to consider
	Undelivered-message queue
	Queues in use
	Security of WebSphere MQ objects
	System extensions and user-exit programs
	Running channels and listeners as trusted applications

	What next?

	Setting up communication for Windows
	Deciding on a connection
	Defining a TCP connection
	Sending end
	Receiving on TCP

	Defining an LU 6.2 connection
	Sending end
	Receiving on LU 6.2

	Defining a NetBIOS connection
	Defining the WebSphere MQ local NetBIOS name
	Establishing the queue manager NetBIOS session, command, and name limits
	Establishing the LAN adapter number
	Initiating the connection
	Target listener

	Defining an SPX connection
	Sending end
	Receiving on SPX
	IPX/SPX parameters

	Example configuration - IBM WebSphere MQ for Windows
	Configuration parameters for an LU 6.2 connection
	Configuration worksheet
	Explanation of terms

	Establishing an LU 6.2 connection
	Configuring the local node
	Adding a connection
	Adding a partner
	Adding a CPI-C entry
	Configuring an invokable TP
	What next?

	Establishing a TCP connection
	What next?

	Establishing a NetBIOS connection
	Establishing an SPX connection
	IPX/SPX parameters
	SPX addressing
	Receiving on SPX

	WebSphere MQ for Windows configuration
	Default configuration
	Basic configuration
	Channel configuration
	Automatic startup
	Running channels as processes or threads
	Multiple thread support — pipelining

	Setting up communication on UNIX systems
	Deciding on a connection
	Defining a TCP connection
	Sending end
	Receiving on TCP

	Defining an LU 6.2 connection
	Sending end
	Receiving on LU 6.2

	Example configuration - IBM WebSphere MQ for AIX
	Configuration parameters for an LU 6.2 connection
	Configuration worksheet
	Explanation of terms

	Establishing a session using Communications Server for AIX
	Configuring your node
	Configuring connectivity to the network
	Defining a local LU
	Defining a transaction program

	Establishing a TCP connection
	What next?

	WebSphere MQ for AIX configuration
	Basic configuration
	Channel configuration

	Example configuration - IBM WebSphere MQ for HP-UX
	Configuration parameters for an LU 6.2 connection
	Configuration worksheet
	Explanation of terms

	Establishing a session using HP SNAplus2
	SNAplus2 configuration
	APPC configuration
	HP-UX operation
	What next?

	Establishing a TCP connection
	What next?

	WebSphere MQ for HP-UX configuration
	Basic configuration
	Channel configuration

	Example configuration - IBM WebSphere MQ for Solaris
	Configuration parameters for an LU 6.2 connection using SNAP-IX
	Configuration worksheet
	Explanation of terms

	Establishing a session using SNAP-IX
	SNAP-IX configuration
	APPC configuration
	SNAP-IX operation
	What next?

	Establishing a TCP connection
	What next?

	WebSphere MQ for Solaris configuration
	Basic configuration
	Channel configuration

	Example configuration - IBM WebSphere MQ for Linux
	Configuration parameters for an LU 6.2 connection
	Explanation of terms

	Establishing a session using Communications Server for Linux
	Communications Server for Linux configuration
	APPC configuration
	Communications Server for Linux operation
	What next?

	Establishing a TCP connection
	Using the inet daemon (INETD)
	Using the extended inet daemon (XINETD)
	What next?

	WebSphere MQ for Linux configuration
	Basic configuration
	Channel configuration

	Message channel planning example for distributed platforms
	What the example shows
	Queue manager QM1 example
	Queue manager QM2 example

	Running the example
	Expanding this example

	Chapter 4. DQM in WebSphere MQ for z/OS
	Monitoring and controlling channels on z/OS
	The DQM channel control function
	Using the panels and the commands
	Using the initial panel

	Managing your channels
	Defining a channel
	Altering a channel definition
	Displaying a channel definition
	Deleting a channel definition
	Displaying information about the channel initiator
	Starting a channel initiator
	Stopping a channel initiator
	Starting a channel listener
	Stopping a channel listener
	Starting a channel
	Testing a channel
	Resetting message sequence numbers for a channel
	Resolving in-doubt messages on a channel
	Stopping a channel
	Displaying channel status
	Displaying cluster channels

	Preparing WebSphere MQ for z/OS
	Defining DQM requirements to WebSphere MQ
	Defining WebSphere MQ objects
	Transmission queues and triggering channels
	Synchronization queue
	Channel command queues
	Starting the channel initiator
	Stopping the channel initiator

	Other things to consider
	Operator messages
	Channel operation commands
	Undelivered-message queue
	Queues in use
	Security changes
	Communications stopped

	z/OS Automatic Restart Management (ARM)

	Setting up communication for z/OS
	Deciding on a connection
	Defining a TCP connection
	Sending end
	Receiving on TCP
	Using the TCP listener backlog option

	Defining an LU6.2 connection
	APPC/MVS setup

	Example configuration - IBM WebSphere MQ for z/OS
	Configuration parameters for an LU 6.2 connection
	Configuration worksheet
	Explanation of terms

	Establishing an LU 6.2 connection
	Defining yourself to the network
	Defining a connection to a partner

	Establishing a TCP connection
	What next?

	WebSphere MQ for z/OS configuration
	Channel configuration

	Message channel planning example for z/OS
	What the example shows
	Queue manager QM1 example
	Queue manager QM2 example

	Running the example
	Expanding this example

	Preparing WebSphere MQ for z/OS for DQM with queue-sharing groups
	Concepts
	Class of service
	Generic interface

	Components
	Listeners
	Transmission queues and triggering
	Message channel agents
	Synchronization queue

	Benefits
	Load-balanced channel start
	Shared channel recovery
	Client channels

	Clusters and queue-sharing groups
	Channels and serialization
	Intra-group queuing

	Setting up communication for WebSphere MQ for z/OS using queue-sharing groups
	Deciding on a connection
	Defining a TCP connection
	Sending end
	Receiving on TCP using a queue-sharing group

	Defining an LU6.2 connection
	Connecting to APPC/MVS (LU 6.2)
	Receiving on LU 6.2 using a generic interface

	Example configuration - IBM WebSphere MQ for z/OS using queue-sharing groups
	Configuration parameters for an LU 6.2 connection
	Configuration worksheet
	Explanation of terms

	Establishing an LU 6.2 connection into a queue-sharing group
	Defining yourself to the network using generic resources
	Defining a connection to a partner
	What next?

	Establishing a TCP connection into a queue-sharing group
	Using WLM/DNS
	Using Sysplex Distributor
	What next?

	WebSphere MQ for z/OS shared channel configuration
	Shared channel configuration

	Message channel planning example for z/OS using queue-sharing groups
	What this example shows
	Queue-sharing group definitions
	Queue manager QM3 example
	Remaining definitions
	Running the example

	Intra-group queuing
	Concepts
	Intra-group queuing and the intra-group queuing agent

	Terminology
	Intra-group queuing
	Shared transmission queue for use by intra-group queuing
	Intra-group queuing agent

	Benefits
	Reduced system definitions
	Reduced system administration
	Improved performance
	Supports migration
	Transparent delivery of messages when multi-hopping between queue managers in a queue-sharing group

	Limitations
	Messages eligible for transfer using intra-group queuing
	Number of intra-group queuing agents per queue manager
	Starting and stopping the intra-group queuing agent

	Getting started
	Enabling intra-group queuing
	Disabling intra-group queuing
	Using intra-group queuing

	Configurations
	Distributed queuing with intra-group queuing (multiple delivery paths)
	Clustering with intra-group queuing (multiple delivery paths)
	Clustering, intra-group queuing and distributed queuing

	Messages
	Message structure
	Message persistence
	Delivery of messages
	Batching of messages
	Message size
	Default message persistence and default message priority
	Undelivered/unprocessed messages
	Report messages

	Security
	Intra-group queuing authority (IGQAUT)
	Intra-group queuing user indentifier (IGQUSER)

	Specific properties
	Queue name resolution
	Invalidation of object handles (MQRC_OBJECT_CHANGED)
	Self recovery of the intra-group queuing agent
	Retry capability of the intra-group queuing agent
	The intra-group queuing agent and Serialization

	Example configuration — WebSphere MQ for z/OS using intra-group queuing
	Configuration 1
	Configuration 2
	Configuration 3
	Configuration 1 definitions
	Configuration 2 definitions
	Configuration 3 definitions

	Running the example
	Expanding the example

	Chapter 5. DQM in WebSphere MQ for i5/OS
	Monitoring and controlling channels on i5/OS
	DQM channel control
	Operator commands
	Getting started
	Creating objects
	Creating a channel
	Starting a channel
	Selecting a channel
	Browsing a channel
	Renaming a channel
	Work with channel status
	Work-with-channel choices
	Panel choices
	F6=Create
	2=Change
	3=Copy
	4=Delete
	5=Display
	8=Work with Status
	13=Ping
	14=Start
	15=End
	16=Reset
	17=Resolve

	Preparing WebSphere MQ for i5/OS
	Creating a transmission queue
	Triggering channels in WebSphere MQ for i5/OS
	Channel programs
	Channel states on i5/OS
	Other things to consider
	Undelivered-message queue
	Queues in use
	Maximum number of channels
	Security of WebSphere MQ for i5/OS objects
	System extensions and user-exit programs

	Setting up communication for WebSphere MQ for i5/OS
	Deciding on a connection
	Defining a TCP connection
	Receiving on TCP

	Defining an LU 6.2 connection
	Initiating end (Sending)
	Initiated end (Receiver)

	Example configuration - IBM WebSphere MQ for i5/OS
	Configuration parameters for an LU 6.2 connection
	Configuration worksheet
	Explanation of terms

	Establishing an LU 6.2 connection
	Local node configuration
	Connection to partner node
	What next?

	Establishing a TCP connection
	Adding a TCP/IP interface
	Adding a TCP/IP loopback interface
	Adding a default route
	What next?

	WebSphere MQ for i5/OS configuration
	Basic configuration
	Channel configuration
	Defining a queue
	Defining a channel

	Message channel planning example for WebSphere MQ for i5/OS
	What the example shows
	Queue manager QM1 example
	Queue manager QM2 example

	Running the example
	Expanding this example

	Chapter 6. Further intercommunication considerations
	Channel-exit programs
	What are channel-exit programs?
	Processing overview
	Channel security exit programs
	Channel send and receive exit programs
	Channel send exit programs — reserving space
	Channel message exit programs
	Channel message retry exit program
	Channel auto-definition exit program

	Writing and compiling channel-exit programs
	WebSphere MQ for z/OS
	WebSphere MQ for i5/OS
	WebSphere MQ for Windows server, WebSphere MQ client for Windows
	WebSphere MQ for AIX
	WebSphere MQ for HP-UX
	WebSphere MQ for Solaris
	WebSphere MQ for Linux

	SSPI security exit
	Implications of sharing conversations

	Channel-exit calls and data structures
	Data definition files
	MQ_CHANNEL_EXIT – Channel exit
	Syntax
	Parameters
	Usage notes
	C invocation
	COBOL invocation
	RPG invocation (ILE)
	System/390 assembler invocation

	MQ_CHANNEL_AUTO_DEF_EXIT – Channel auto-definition exit
	Syntax
	Parameters
	Usage notes
	C invocation
	COBOL invocation
	RPG invocation (ILE)
	System/390 assembler invocation

	MQXWAIT – Wait in exit
	MQCD – Channel definition
	Exit name fields
	Fields
	C declaration
	COBOL declaration
	RPG declaration (ILE)
	System/390 assembler declaration
	Visual Basic declaration
	Changing MQCD fields in a channel exit

	MQCXP – Channel exit parameter
	Fields
	C declaration
	COBOL declaration
	RPG declaration (ILE)
	System/390 assembler declaration

	MQXWD – Exit wait descriptor
	Fields
	C declaration
	System/390 assembler declaration

	Problem determination in DQM
	Error message from channel control
	Ping
	Dead-letter queue considerations
	Validation checks
	In-doubt relationship
	Channel startup negotiation errors
	When a channel refuses to run
	Triggered channels
	Conversion failure
	Network problems
	Dial-up problems

	Retrying the link
	Retry considerations

	Data structures
	User exit problems
	Disaster recovery
	Channel switching
	Connection switching
	Client problems
	Terminating clients

	Error logs
	Error logs for Windows
	Error logs on UNIX systems
	Error logs on z/OS

	Message monitoring

	Chapter 7. Queue name resolution
	What is queue name resolution?
	How queue name resolution works

	Chapter 8. Configuration file stanzas for distributed queuing
	Notices
	Index
	Sending your comments to IBM

