
WebSphere MQ for i5/OS

Application Programming Reference (ILE

RPG)

Version 7.0

SC34-6943-00

���

WebSphere MQ for i5/OS

Application Programming Reference (ILE

RPG)

Version 7.0

SC34-6943-00

���

Note

Before using this information and the product it supports, be sure to read the general information under notices at the back

of this book.

First edition (April 2008)

This edition of the book applies to the following:

v IBM WebSphere MQ for i5/OS, Version 7.0

and to any subsequent releases and modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1994, 2008. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Figures vii

Tables ix

Chapter 1. Data type descriptions 1

Elementary data types 1

Conventions used in the descriptions of data types 1

Elementary data types 2

Language considerations 6

COPY files 6

Calls 8

Call parameters 8

Structures 8

Named constants 8

MQI procedures 8

Threading considerations 9

Commitment control 9

Coding the bound calls 9

Notational conventions 11

MQAIR – Authentication information record . . . 11

Overview for MQAIR 11

Fields for MQAIR 11

Initial values and RPG declaration 14

MQBMHO – Buffer to message handle options . . 14

Overview for MQBMHO 15

Fields for MQBMHO 15

Initial values and RPG declaration 16

MQBO – Begin options 16

Overview 16

Fields 17

Initial values and RPG declaration 17

MQCBC – Callback context 18

Overview for MQCBC 18

Fields for MQCBC 19

Initial values and RPG declaration 25

MQCBD – Callback descriptor 26

Overview for MQCBD 26

Fields for MQCBD 27

Initial values and RPG declaration 31

MQCHARV - Variable Length String 32

Overview 33

Fields 33

Initial values and RPG declaration 35

Redefinition of CSAPL 35

MQCIH – CICS bridge header 35

Overview 36

Fields 38

Initial values and RPG declaration 48

MQCMHO – Create-message options 50

Overview for MQCMHO 50

Fields for MQCMHO 50

Initial values and RPG declaration 52

MQCNO – Connect options 53

Overview 53

Fields 54

Initial values and RPG declaration 58

MQCSP - Security parameters 59

Overview for MQCSP 60

Fields for MQCSP 60

Initial values and RPG declaration 62

MQCTLO – Control callback options structure . . . 62

Overview for MQCTLO 63

Fields for MQCTLO 63

Initial values and RPG declaration 64

MQDH – Distribution header 65

Overview 66

Fields 67

Initial values and RPG declaration 70

MQDLH – Dead-letter header 71

Overview 71

Fields 73

Initial values and RPG declaration 77

MQDMHO – Delete message handle options . . . 78

Overview for MQDMHO 78

Fields for MQDMHO 79

Initial values and RPG declaration 79

MQDMPO – Delete message property options . . . 80

Overview for MQDMPO 80

Fields for MQDMPO 80

Initial values and RPG declaration 82

MQEPH – Embedded PCF header 82

Overview 82

Fields 83

Initial values and language declarations 85

MQGMO – Get-message options 86

Overview 86

Fields 87

Initial values and RPG declaration 109

MQIIH – IMS information header 110

Overview 110

Fields 111

Initial values and RPG declaration 115

MQIMPO – Inquire message property options . . 116

Overview for MQIMPO 117

Fields for MQIMPO 117

Initial values and RPG declaration 124

MQMD – Message descriptor 125

Overview 126

Fields 128

Initial values and RPG declaration 176

MQMDE – Message descriptor extension 178

Overview 178

Fields 180

Initial values and RPG declaration 183

MQMHBO – Message handle to buffer options . . 184

Overview for MQMHBO 184

Fields for MQMHBO 184

Initial values and RPG declaration 185

MQOD – Object descriptor 185

Overview 186

Fields 187

© Copyright IBM Corp. 1994, 2008 iii

Initial values and RPG declaration 195

MQOR – Object record 197

Overview 197

Fields 197

Initial values and RPG declaration 198

MQPD – Property descriptor 198

Overview for MQPD 198

Fields for MQPD 199

Initial values and RPG declaration 202

MQPMO – Put-message options 202

Overview 203

Fields 204

Initial values and RPG declaration 220

MQPMR – Put-message record 221

Overview 221

Fields 222

Initial values and RPG declaration 223

MQRFH – Rules and formatting header 224

Overview 224

Fields 224

Initial values and RPG declaration 227

MQRFH2 – Rules and formatting header 2 . . . 227

Overview 227

Fields 228

Initial values and RPG declaration 233

MQRMH – Reference message header 234

Overview 234

Fields 235

Initial values and RPG declaration 241

MQRR – Response record 242

Overview 242

Fields 243

Initial values and RPG declaration 243

MQSCO – SSL configuration options 243

Overview for MQSCO 244

Fields for MQSCO 244

Initial values and RPG declaration 247

MQSD - Subscription Descriptor 248

Overview 248

Fields 249

Using topic strings 263

Initial values and RPG declaration 264

MQSMPO – Set message property options 266

Overview for MQSMPO 266

Fields for MQSMPO 266

Initial values and RPG declaration 268

MQSRO - Subscription Request Options 268

Overview 268

Fields 269

Initial Values and RPG declaration 270

MQSTS – Status reporting structure 270

Overview 271

Fields 271

Initial values and language declarations . . . 273

MQTM – Trigger message 274

Overview 274

Fields 276

Initial values and RPG declaration 278

MQTMC2 – Trigger message 2 (character format) 279

Overview 279

Fields 280

Initial values and RPG declaration 281

MQWIH – Work information header 282

Overview 283

Fields 283

Initial values and RPG declaration 285

MQXQH – Transmission-queue header 286

Overview 286

Fields 290

Chapter 2. Function calls 293

Call descriptions 293

Conventions used in the call descriptions . . . 293

MQBACK - Back out changes 294

Syntax 294

Parameters 294

Usage notes 295

RPG invocation 297

MQBEGIN - Begin unit of work 297

Syntax 297

Parameters 297

Usage notes 299

RPG invocation (ILE) 300

MQBUFMH - Convert buffer into message handle 300

Syntax for MQBUFMH 300

Parameters for MQBUFMH 300

Usage notes for MQBUFMH 303

Language invocations for MQBUFMH 303

MQCB – Manage callback 304

Syntax for MQCB 305

Parameters for MQCB 305

Usage notes for MQCB 312

Language invocations for MQCB 313

MQCLOSE - Close object 313

Syntax 314

Parameters 314

Usage notes 318

RPG invocation 320

MQCRTMH – Create message handle 320

Syntax for MQCRTMH 320

Parameters for MQCRTMH 320

Usage notes for MQCRTMH 323

Language invocations for MQCRTMH 324

MQCTL – Control callback 325

Syntax for MQCTL 325

Parameters for MQCTL 326

Usage notes for MQCTL 331

Language invocations for MQCTL 331

MQCMIT - Commit changes 332

Syntax 332

Parameters 332

Usage notes 333

RPG invocation 334

MQCONN - Connect queue manager 335

Syntax 335

Parameters 335

Usage notes 338

RPG invocation 340

MQCONNX - Connect queue manager (extended) 340

Syntax 340

Parameters 340

RPG invocation 342

iv WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

MQDISC - Disconnect queue manager 342

Syntax 342

Parameters 342

Usage notes 343

RPG invocation 344

MQDLTMH – Delete message handle 344

Syntax for MQDLTMH 344

Parameters for MQDLTMH 344

Usage notes for MQDLTMH 346

Language invocations for MQDLTMH 347

MQDLTMP - Delete message property 348

Syntax for MQDLTMP 349

Parameters for MQDLTMP 349

Language invocations for MQDLTMP 350

MQGET - Get message 351

Syntax 351

Parameters 351

Usage notes 357

RPG invocation 360

MQINQ - Inquire about object attributes 361

Syntax 361

Parameters 361

Usage notes 368

RPG invocation 369

MQINQMP - Inquire message property 370

Syntax for MQINQMP 370

Parameters for MQINQMP 370

Language invocations for MQINQMP 375

MQMHBUF - Convert message handle into buffer 376

Syntax for MQMHBUF 376

Parameters for MQMHBUF 376

Usage notes for MQMHBUF 379

Language invocations for MQMHBUF 379

MQOPEN - Open object 380

Syntax 380

Parameters 381

Usage notes 390

RPG invocation 395

MQPUT - Put message 395

Syntax 395

Parameters 395

Usage notes 401

RPG invocation 406

MQPUT1 - Put one message 406

Syntax 406

Parameters 407

Usage notes 412

RPG invocation 413

MQSET - Set object attributes 414

Syntax 414

Parameters 414

Usage notes 418

RPG invocation 418

MQSETMP – Set message handle property . . . 419

Syntax for MQSETMP 419

Parameters for MQSETMP 419

Usage notes for MQSETMP 422

Language invocations for MQSETMP 424

MQSTAT – Retrieve status information 425

Syntax 425

Parameters 425

Usage notes 427

RPG invocation 427

MQSUB – Register Subscription 427

Syntax 427

Parameters 428

Usage notes 432

RPG invocation 433

MQSUBRQ - Subscription Request 434

Syntax 434

Parameters 434

Usage notes 435

Language invocations 436

Chapter 3. Attributes of objects . . . 437

Attributes for queues 437

Overview 438

Attributes for namelists 466

Attribute descriptions 467

Attributes for process definitions 468

Attribute descriptions 469

Attributes for the queue manager 471

Attribute descriptions 473

Attributes for authentication information 488

Attribute descriptions 489

Chapter 4. Applications 491

Building your application 491

WebSphere MQ copy files 491

Preparing your programs to run 491

Interfaces to the i5/OS external syncpoint

manager 492

Syncpoints in CICS for i5/OS applications . . . 493

Sample programs 493

Features demonstrated in the sample programs 494

Preparing and running the sample programs 495

The Put sample program 495

The Browse sample program 496

The Get sample program 497

The Request sample program 498

The Echo sample program 501

The Inquire sample program 502

The Set sample program 503

The Triggering sample programs 505

Running the samples using remote queues . . 506

Chapter 5. Return codes for i5/OS (ILE

RPG) 507

Completion codes for i5/OS (ILE RPG) 507

Reason codes 508

Chapter 6. Rules for validating MQI

options 509

MQOPEN call 509

MQPUT call 509

MQPUT1 call 510

MQGET call 510

MQCLOSE call 510

MQSUB call 511

Contents v

Chapter 7. Machine encodings 513

Binary-integer encoding 513

Packed-decimal-integer encoding 514

Floating-point encoding 514

Constructing encodings 515

Analyzing encodings 515

Using arithmetic 515

Summary of machine architecture encodings . . . 516

Chapter 8. Report options and

message flags 517

Structure of the report field 517

Analyzing the report field 519

Using arithmetic 519

Structure of the message-flags field 519

Chapter 9. Data conversion 523

Conversion processing 523

Processing conventions 525

Conversion of report messages 529

MQDXP – Data-conversion exit parameter 530

Overview 530

Fields 531

RPG declaration (copy file CMQDXPH) . . . 536

MQXCNVC - Convert characters 536

Syntax 536

Parameters 536

RPG invocation (ILE) 541

MQCONVX - Data conversion exit 542

Syntax 542

Parameters 542

Usage notes 543

RPG invocation (ILE) 545

Notices 547

Index 551

Sending your comments to IBM . . . 559

vi WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Figures

1. Sample Client/Server (Echo) program

flowchart 501

© Copyright IBM Corp. 1994, 2008 vii

viii WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Tables

 1. Elementary data types 5

 2. RPG COPY files 6

 3. ILE RPG bound calls supported by each service

program 9

 4. Fields in MQAIR 11

 5. Initial values of fields in MQAIR for MQAIR 14

 6. Fields in MQBMHO 15

 7. Initial values of fields in MQBMHO 16

 8. Fields in MQBO 16

 9. Initial values of fields in MQBO 17

10. Fields in MQCBC 18

11. Initial values of fields in MQCBC 25

12. Fields in MQCBD 26

13. Initial values of fields in MQCBD 31

14. Fields in MQCIH 35

15. Contents of error information fields in MQCIH

structure 37

16. Initial values of fields in MQCIH 48

17. Fields in MQCMHO 50

18. Initial values of fields in MQCMHO 52

19. Fields in MQCNO 53

20. Initial values of fields in MQCNO 58

21. Fields in MQCSP 59

22. Initial values of fields in MQCNO 62

23. Fields in MQCTLO 63

24. Initial values of fields in MQCTLO 64

25. Fields in MQDH 65

26. Initial values of fields in MQDH 70

27. Fields in MQDLH 71

28. Initial values of fields in MQDLH 77

29. Fields in MQDMHO 78

30. Initial values of fields in MQDMHO 79

31. Fields in MQDMPO 80

32. Initial values of fields in MQDPMO 82

33. Fields in MQEPH 82

34. Initial values of fields in EPPCFH 84

35. Initial values of fields in MQEPH 85

36. Fields in MQGMO 86

37. MQGET options relating to messages in

groups and segments of logical messages . . 100

38. Outcome when MQGET or MQCLOSE call is

not consistent with group and segment

information 102

39. Initial values of fields in MQGMO 109

40. Fields in MQIIH 110

41. Initial values of fields in MQIIH 115

42. Fields in MQIMPO 116

43. Initial values of fields in MQIPMO 124

44. Fields in MQMD 125

45. Initial values of fields in MQMD 176

46. Fields in MQMDE 178

47. Queue-manager action when MQMDE

specified on MQPUT or MQPUT1 179

48. Initial values of fields in MQMDE 183

49. Fields in MQMHBO 184

50. Initial values of fields in MQMHBO 185

51. Initial values of fields in MQOD 195

52. Fields in MQOR 197

53. Initial values of fields in MQOR 198

54. Fields in MQPD 198

55. Initial values of fields in MQPD 202

56. MQPUT options relating to messages in

groups and segments of logical messages . . 208

57. Outcome when MQPUT or MQCLOSE call is

not consistent with group and segment

information 210

58. Initial values of fields in MQPMO 220

59. Fields in MQPMR 221

60. Initial values of fields in MQRFH 227

61. Initial values of fields in MQRFH2 233

62. Fields in MQRMH 234

63. Initial values of fields in MQRMH 241

64. Fields in MQRR 242

65. Initial values of fields in MQRR 243

66. Fields in MQSCO 243

67. Initial values of fields in MQSCO 247

68. Fields in MQSMPO 266

69. Initial values of fields in MQSMPO 268

70. Fields in MQTM 270

71. Initial values of fields in MQSTS 273

72. Fields in MQTM 274

73. Initial values of fields in MQTM 278

74. Fields in MQTMC2 279

75. Initial values of fields in MQTMC2 281

76. Fields in MQWIH 282

77. Initial values of fields in MQWIH 285

78. Fields in MQXQH 286

79. Initial values of fields in MQXQH 291

80. Valid close options for use with retained or

deleted objects 315

81. MQINQ attribute selectors for queues 362

82. MQINQ attribute selectors for namelists 364

83. MQINQ attribute selectors for process

definitions 364

84. MQINQ attribute selectors for the queue

manager 364

85. MQSET attribute selectors for queues 415

86. Attributes for queues 438

87. Attributes for namelists 466

88. Attributes for process definitions 468

89. Attributes for the queue manager 472

90. Attributes for process definitions 488

91. Names of the sample programs 493

92. Sample programs demonstrating use of the

MQI 494

93. Client/Server sample program details 500

94. 508

95. Summary of encodings for machine

architectures 516

96. Fields in MQDXP 530

© Copyright IBM Corp. 1994, 2008 ix

x WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Chapter 1. Data type descriptions

Elementary data types

This chapter describes the elementary data types used by the MQI.

The elementary data types are:

v MQBOOL – Boolean

v MQBYTE – Byte

v MQBYTEn – String of n bytes

v MQCHAR – Single-byte character

v MQCHARn – String of n single-byte characters

v MQFLOAT32 – 32-bit floating-point number

v MQFLOAT64 – 64-bit floating point number

v MQHCONN – Connection handle

v MQHOBJ – Object handle

v MQINT8 – 8-bit signed integer

v MQUINT8 – 8-bit unsigned integer

v MQINT16 – 16-bit signed integer

v MQUINT16 – 16-bit unsigned integer

v MQINT64 – 64-bit signed integer

v MQUINT64 – 64-bit unsigned integer

v MQLONG – Long integer

v PMQINT64 – Pointer to data of type MQINT64

v PMQUINT64 – Pointer to data of type MQUINT64

Conventions used in the descriptions of data types

For each elementary data type, this chapter gives a description of its usage, in a

form that is independent of the programming language. This is followed by a

typical declarations in the ILE version of the RPG programming language. The

definitions of elementary data types are included here to provide consistency. RPG

uses ‘D’ specifications where working fields can be declared using whatever

attributes you need. You can, however, do this in the calculation specifications

where the field is used.

To use the elementary data types, you create:

v A /COPY member containing all the data types, or

v An external data structure (PF) containing all the data types. You then need to

specify your working fields with attributes ‘LIKE’ the appropriate data type

field.

The benefits of the second option are that the definitions can be used as a ‘FIELD

REFERENCE FILE’ for other i5/OS® objects. If an MQ data type definition

changes, it is a relatively simple matter to recreate these objects.

© Copyright IBM Corp. 1994, 2008 1

Elementary data types

All of the other data types described in this chapter equate either directly to these

elementary data types, or to aggregates of these elementary data types (arrays or

structures).

MQBOOL

The MQBOOL data type represents a boolean value. The value 0 represents false.

Any other value represents true.

An MQBOOL must be aligned as for the MQLONG data type.

MQBYTE - Byte

The MQBYTE data type represents a single byte of data. No particular

interpretation is placed on the byte—it is treated as a string of bits, and not as a

binary number or character. No special alignment is required.

An array of MQBYTE is sometimes used to represent an area of main storage

whose nature is not known to the queue manager. For example, the area may

contain application message data or a structure. The boundary alignment of this

area must be compatible with the nature of the data contained within it.

MQBYTEn – String of n bytes

Each MQBYTEn data type represents a string of n bytes, where n can take one of

the following values:

v 16, 24, 32, or 64

Each byte is described by the MQBYTE data type. No special alignment is

required.

If the data in the string is shorter than the defined length of the string, the data

must be padded with nulls to fill the string.

When the queue manager returns byte strings to the application (for example, on

the MQGET call), the queue manager always pads with nulls to the defined length

of the string.

Constants are available that define the lengths of byte string fields.

MQCHAR – character

The MQCHAR data type represents a single character. The coded character set

identifier of the character is that of the queue manager (see the CodedCharSetId

attribute in topic CodedCharSetId). No special alignment is required.

Note: Application message data specified on the MQGET, MQPUT, and MQPUT1

calls is described by the MQBYTE data type, not the MQCHAR data type.

MQCHARn – String of n characters

Each MQCHARn data type represents a string of n characters, where n can take

one of the following values:

v 4, 8, 12, 16, 20, 28, 32, 48, 64, 128, or 256

2 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Each character is described by the MQCHAR data type. No special alignment is

required.

If the data in the string is shorter than the defined length of the string, the data

must be padded with blanks to fill the string. In some cases a null character can be

used to end the string prematurely, instead of padding with blanks; the null

character and characters following it are treated as blanks, up to the defined length

of the string. The places where a null can be used are identified in the call and

data type descriptions.

When the queue manager returns character strings to the application (for example,

on the MQGET call), the queue manager always pads with blanks to the defined

length of the string; the queue manager does not use the null character to delimit

the string.

Constants are available that define the lengths of character string fields.

MQFLOAT32

The MQFLOAT32 data type is a 32-bit floating-point number represented using the

standard IEEE floating-point format. An MQFLOAT32 must be aligned on a 4-byte

boundary.

MQFLOAT64

The MQFLOAT64 data type is a 64-bit floating-point number represented using the

standard IEEE floating-point format. An MQFLOAT64 must be aligned on a 8-byte

boundary.

MQHCONN – Connection handle

The MQHCONN data type represents a connection handle, that is, the connection

to a particular queue manager. A connection handle must be aligned on its natural

boundary.

Note: Applications must test variables of this type for equality only.

Overview for MQHMSG

Purpose: The MQHMSG data type represents a message handle that gives access

to a message.

A message handle must be aligned on an 8-byte boundary.

Note: Applications must test variables of this type for equality only.

MQHOBJ – Object handle

The MQHOBJ data type represents an object handle that gives access to an object.

An object handle must be aligned on its natural boundary.

Note: Applications must test variables of this type for equality only.

MQINT8

The MQINT8 data type is an 8-bit signed integer that can take any value in the

range -128 to +127, unless otherwise restricted by the context.

Chapter 1. Data type descriptions 3

MQINT16

The MQINT16 data type is a 16-bit signed integer that can take any value in the

range -32 768 to +32 767, unless otherwise restricted by the context. An MQINT16

must be aligned on a 2-byte boundary.

MQUINT8

The MQUINT8 data type is an 8-bit unsigned integer that can take any value in

the range 0 to +255, unless otherwise restricted by the context.

MQUINT16

The MQUINT16 data type is a 16-bit unsigned integer that can take any value in

the range 0 through +65 535, unless otherwise restricted by the context. An

MQUINT16 must be aligned on a 2-byte boundary.

MQINT32 – 32 bit integer

The MQINT32 data type is a 32 bit signed integer. It is equivalent to MQLONG.

MQUINT32 – 32 bit unsigned integer

The MQUINT32 data type is a 32 bit unsigned integer. It is equivalent to

MQULONG.

MQINT64 – 64 bit integer

The MQINT64 data type is a 64 bit signed integer that can take any value in the

range -9 223 372 036 854 775 808 through +9 223 372 036 854 775 807, unless

otherwise restricted by the context. For COBOL, the valid range is limited to -999

999 999 999 999 999 through +999 999 999 999 999 999. An MQINT64 should be

aligned on a 8 byte boundary.

MQUINT64 – 64 bit unsigned integer

The MQUINT64 data type is a 64 bit unsigned integer that can take any value in

the range 0 through +18 446 744 073 709 551 615 unless otherwise restricted by the

context. For COBOL, the valid range is limited to 0 through +999 999 999 999 999

999. An MQUINT64 should be aligned on a 8 byte boundary.

MQLONG – Long integer

The MQLONG data type is a 32-bit signed binary integer that can take any value

in the range -2 147 483 648 through +2 147 483 647, unless otherwise restricted

by the context, aligned on its natural boundary.

PMQINT32 – Pointer to data of type MQINT32

The PMQINT32 data type is a pointer to data of type MQINT32. It is equivalent to

PMQLONG.

PMQUINT32 – Pointer to data of type MQUINT32

The PMQUINT32 data type is a pointer to data of type MQUINT32. It is

equivalent to PMQULONG.

4 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

PMQINT64 – Pointer to data of type MQINT64

The PMQINT64 data type is a pointer to data of type MQINT64.

PMQUINT64 – Pointer to data of type MQUINT64

The PMQUINT64 data type is a pointer to data of type MQUINT64.

Elementary data types

 Table 1. Elementary data types

Data type Representation

MQBOOL A 10-digit signed integer.

MQBYTE A 1-byte alphanumeric field.

MQBYTE16 A 16-byte alphanumeric field.

MQBYTE24 A 24-byte alphanumeric field.

MQBYTE32 A 32-byte alphanumeric field.

MQBYTE64 A 64-byte alphanumeric field.

MQCHAR A 1-byte alphanumeric field.

MQCHAR4 A 4-byte alphanumeric field.

MQCHAR8 An 8-byte alphanumeric field.

MQCHAR12 A 12-byte alphanumeric field.

MQCHAR16 A 16-byte alphanumeric field.

MQCHAR20 A 20-byte alphanumeric field.

MQCHAR28 A 28-byte alphanumeric field.

MQCHAR32 A 32-byte alphanumeric field.

MQCHAR48 A 48-byte alphanumeric field.

MQCHAR64 A 64-byte alphanumeric field.

MQCHAR128 A 128-byte alphanumeric field.

MQCHAR256 A 256-byte alphanumeric field.

MQFLOAT32 A 4-byte floating-point number.

MQFLOAT64 An 8-byte floating-point number.

MQHCONN A 10-digit signed integer.

MQHOBJ A 10-digit signed integer.

MQINT8 A 3-digit signed integer.

MQUINT8 A 3-digit unsigned integer.

MQINT16 A 5-digit signed integer.

MQUINT16 A 5-digit unsigned integer.

MQINT64 A 64-bit signed integer.

MQUINT64 A 64-bit unsigned integer.

MQLONG A 10-digit signed integer.

PMQINT64 Pointer to data of type MQINT64.

PMQLONG A 10-digit signed integer.

PMQUINT64 Pointer to data of type MQUINT64.

Chapter 1. Data type descriptions 5

Language considerations

This section contains information to help you use the MQI from the RPG

programming language.

COPY files

Various COPY files are provided to assist with the writing of RPG application

programs that use message queuing. There are three sets of COPY files:

v COPY files with names ending with the letter “G” are for use with programs

that use static linkage. These files are initialized with the exceptions stated in

“Structures” on page 8.

v COPY files with names ending with the letter “H” are for use with programs

that use static linkage, but are not initialized.

v COPY files with names ending with the letter “R” are for use with programs

that use dynamic linkage. These files are initialized with the exceptions stated in

“Structures” on page 8.

The COPY files reside in QRPGLESRC in the QMQM library.

For each set of COPY files, there are two files containing named constants, and one

file for each of the structures. The COPY files are summarized in Table 2.

 Table 2. RPG COPY files

Filename (static

linkage,

initialized,

CMQ*G)

Filename (static

linkage, not

initialized,

CMQ*H)

Filename

(dynamic

linkage,

initialized,

CMQ*R)

Contents

CMQBOG CMQBOH – Begin options structure

CMQCDG CMQCDH CMQCDR Channel definition structure

CMQCFBFG CMQCFBFH – PCF bit filter parameter

CMQCFG – – Constants for PCF and events

CMQCFBSG CMQCFBSH – PCF byte string

CMQCFGRG CMQCFGRH – PCF group parameter

CMQCFIFG CMQCFIFH – PCF integer filter parameter

CMQCFHG CMQCFHH – PCF header

CMQCFILG CMQCFILH – PCF integer list parameter

structure

CMQCFING CMQCFINH – PCF integer parameter structure

CMQCFSFG CMQCFSFH – PCF string filter parameter

CMQCFSLG CMQCFSLH – PCF string list parameter structure

CMQCFSTG CMQCFSTH – PCF string parameter structure

CMQCFXLG CMQCFXLH – PCF short name for CFIL64

CMQCFXNG CMQCFXNH – PCF short mame for CFIN64

CMQCIHG CMQCIHH – CICS® information header

structure

CMQCNOG CMQCNOH – Connect options structure

6 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Table 2. RPG COPY files (continued)

Filename (static

linkage,

initialized,

CMQ*G)

Filename (static

linkage, not

initialized,

CMQ*H)

Filename

(dynamic

linkage,

initialized,

CMQ*R)

Contents

CMQCSPG CMQCSPH – Security parameters

CMQCXPG CMQCXPH CMQCXPR Channel exit parameter structure

CMQDHG CMQDHH CMQDHR Distribution header structure

CMQDLHG CMQDLHH CMQDLHR Dead letter header structure

CMQDXPG CMQDXPH CMQDXPR Data conversion exit parameter

structure

CMQEPHG CMQEPHH – Embedded PCF header structure

CMQG – CMQR Named constants for main MQI

CMQGMOG CMQGMOH CMQGMOR Get message options structure

CMQIIHG CMQIIHH CMQIIHR IMS™ information header structure

CMQMDEG CMQMDEH CMQMDER Message descriptor extension

structure

CMQMDG CMQMDH CMQMDR Message descriptor structure

CMQMD1G CMQMD1H CMQMD1R Message descriptor structure

version 1

CMQMD2G CMQMD2H – Message descriptor structure

version 2

CMQODG CMQODH CMQODR Object descriptor structure

CMQORG CMQORH CMQORR Object record structure

CMQPMOG CMQPMOH CMQPMOR Put message options structure

CMQPSG – – Constants for publish/subscribe

CMQRFHG CMQRFHH – Rules and formatting header

structure

CMQRFH2G CMQRFH2H – Rules and formatting header 2

structure

CMQRMHG CMQRMHH CMQRMHR Reference message header

structure

CMQRRG CMQRRH CMQRRR Response record structure

CMQTMCG CMQTMCH CMQTMCR Trigger message structure

(character format)

CMQTMC2G CMQTMC2H CMQTMC2R Trigger message structure

(character format) version 2

CMQTMG CMQTMH CMQTMR Trigger message structure

CMQWIHG CMQWIHH – Work information header structure

CMQXG – CMQXR Named constants for data

conversion exit

CMQXQHG CMQXQHH CMQXQHR Transmission queue header

structure

Chapter 1. Data type descriptions 7

Calls

In this book, the calls are described using their individual names. For calls using

dynamic linkage to program QMQM/QMQM, see the MQSeries for AS/400 V4R2.1

Administration Guide.

Call parameters

Some parameters passed to the MQI can have more than one concurrent function.

This is because the integer value passed is often tested on the setting of individual

bits within the field, and not on its total value. This allows you to ‘add’ several

functions together and pass them as a single parameter.

Structures

All MQ structures are defined with initial values for the fields, with the following

exceptions:

v Any structure with a suffix of H.

v MQTMC

v MQTMC2

These initial values are defined in the relevant table for each structure.

The structure declarations do not contain DS statements. This allows the

application to declare either a single data structure or a multiple-occurrence data

structure, by coding the DS statement and then using the /COPY statement to

copy in the remainder of the declaration:

D*..1....:....2....:....3....:....4....:....5....:....6....:....7

D* Declare an MQMD data structure with 5 occurrences

DMYMD DS 5

D/COPY CMQMDR

Named constants

There are many integer and character values that provide data interchange

between your application program and the queue manager. To facilitate a more

readable and consistent approach to using these values, named constants are

defined for them. You are recommended to use these named constants and not the

values they represent, as this improves the readibility of the program source code.

When the COPY file CMQG is included in a program to define the constants, the

RPG compiler will issue many severity-zero messages for the constants that are not

used by the program; these messages are benign, and can safely be ignored.

MQI procedures

When using the ILE bound calls, you must bind to the MQI procedures when you

create your program. These procedures are exported from the following service

programs as appropriate:

QMQM/AMQZSTUB

This service program provides compatibility bindings for applications

written prior to MQSeries® V5.1 that do not require access to any of the

new capabilities provided in version 5.1. The signature of this service

program matches that contained in version 4.2.1.

8 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

QMQM/LIBMQM

This service program contains the single-threaded bindings for version 5.1

and above. See below for special considerations when writing threaded

applications.

QMQM/LIBMQM_R

This service program contains the multi-threaded bindings for version 5.1

and above. See below for special considerations when writing threaded

applications.

Use the CRTPGM command to create your programs. For example, the following

command creates a single-threaded program that uses the ILE bound calls:

CRTPGM PGM(MYPROGRAM) BNDSRVPGM(QMQM/LIBMQM)

Threading considerations

The RPG compiler used for OS/400® and i5/OS is part of the WebSphere®

Development Toolset and WebSphere Development Studio for i5/OS and is known

as the ILE RPG IV Compiler.

In general, RPG programs should not use the multi threaded service programs.

Exceptions are RPG programs created using the ILE RPG IV Compiler, and

containing the THREAD(*SERIALIZE) keyword in the control specification. However,

even though these programs are thread safe, careful consideration must be given to

the overall application design, as THREAD(*SERIALIZE) forces serialization of RPG

procedures at the module level, and this may have an adverse affect on overall

performance.

Where RPG programs are used as data-conversion exits, they must be made

thread-safe, and should be recompiled using the version 4.4 ILE RPG compiler or

above, with THREAD(*SERIALIZE) specified in the control specification.

For further information about threading, see the i5/OS WebSphere MQ Development

Studio: ILE RPG Reference, and the i5/OS WebSphere MQ Development Studio: ILE

RPG Programmer’s Guide.

Commitment control

The MQI syncpoint functions MQCMIT and MQBACK are available to ILE RPG

programs running in normal mode; these calls allow the program to commit and

back out changes to MQ resources.

The MQCMIT and MQBACK calls are not available to ILE RPG programs running

in compatibility mode. For these programs you should use the operation codes

COMMIT and ROLBK.

Coding the bound calls

MQI ILE procedures are listed in Table 3.

 Table 3. ILE RPG bound calls supported by each service program

Name of call LIBMQM and

LIBMQM_R

AMQZSTUB AMQVSTUB

MQBACK Y

Chapter 1. Data type descriptions 9

Table 3. ILE RPG bound calls supported by each service program (continued)

Name of call LIBMQM and

LIBMQM_R

AMQZSTUB AMQVSTUB

MQBEGIN Y

MQCMIT Y

MQCLOSE Y Y

MQCONN Y Y

MQCONNX Y

MQDISC Y Y

MQGET Y Y

MQINQ Y Y

MQOPEN Y Y

MQPUT Y Y

MQPUT1 Y Y

MQSET Y Y

MQXCNVC Y Y

To use these procedures you need to:

1. Define the external procedures in your ‘D’ specifications. These are all available

within the COPY file member CMQG containing the named constants.

2. Use the CALLP operation code to call the procedure along with its parameters.

For example the MQOPEN call requires the inclusion of the following code:

 D**

 D** MQOPEN Call -- Open Object (From COPY file CMQG) **

 D**

 D*

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..

 DMQOPEN PR EXTPROC(’MQOPEN’)

 D* Connection handle

 D HCONN 10I 0 VALUE

 D* Object descriptor

 D OBJDSC 224A

 D* Options that control the action of MQOPEN

 D OPTS 10I 0 VALUE

 D* Object handle

 D HOBJ 10I 0

 D* Completion code

 D CMPCOD 10I 0

 D* Reason code qualifying CMPCOD

 D REASON 10I 0

 D*

To call the procedure, after initializing the various parameters, you need the

following code:

 ...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+....8

 C CALLP MQOPEN(HCONN : MQOD : OPTS : HOBJ :

 C CMPCOD : REASON)

Here, the structure MQOD is defined using the COPY member CMQODG which

breaks it down into its components.

10 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Notational conventions

The later sections in this book show how the:

v Calls should be invoked

v Parameters should be declared

v Various data types should be declared

In a number of cases, parameters are arrays or character strings whose size is not

fixed. For these, a lower case “n” is used to represent a numeric constant. When

the declaration for that parameter is coded, the “n” must be replaced by the

numeric value required.

MQAIR – Authentication information record

The following table summarizes the fields in the structure.

 Table 4. Fields in MQAIR

Field Description Topic

StrucId Structure identifier StrucId

Version Structure version number Version

AuthInfoType Type of authentication information AuthInfoType

AuthInfoConnName Connection name of LDAP CRL server AuthInfoConnName

LDAPUserNamePtr Address of LDAP user name LDAPUserNamePtr

LDAPUserNameOffset Offset of LDAP user name from start of

MQSCO

LDAPUserNameOffset

LDAPUserNameLength Length of LDAP user name LDAPUserNameLength

LDAPPassword Password to access LDAP server LDAPPassword

Overview for MQAIR

Availability: AIX®, HP-UX, Solaris, Linux® and Windows® clients.

Purpose: The MQAIR structure allows an application running as a WebSphere MQ

client to specify information about an authenticator that is to be used for the client

connection. The structure is an input parameter on the MQCONNX call.

Character set and encoding: Data in MQAIR must be in the character set and

encoding of the local queue manager; these are given by the CodedCharSetId

queue-manager attribute and MQENC_NATIVE, respectively.

Fields for MQAIR

The MQAIR structure contains the following fields; the fields are described in

alphabetic order:

AICN (10-digit signed integer)

This is either the host name or the network address of a host on which the LDAP

server is running. This can be followed by an optional port number, enclosed in

parentheses. The default port number is 389.

Chapter 1. Data type descriptions 11

If the value is shorter than the length of the field, terminate the value with a null

character, or pad it with blanks to the length of the field. If the value is not valid,

the call fails with reason code MQRC_AUTH_INFO_CONN_NAME_ERROR.

This is an input field. The length of this field is given by

MQ_AUTH_INFO_CONN_NAME_LENGTH. The initial value of this field is the

null string in C, and blank characters in other programming languages.

AITYP (10-digit signed integer)

This is the type of authentication information contained in the record.

The value must be:

AITLDP

Certificate revocation using LDAP server.

If the value is not valid, the call fails with reason code

MQRC_AUTH_INFO_TYPE_ERROR.

This is an input field. The initial value of this field is AITLDP.

AIPW (10-digit signed integer)

This is the password needed to access the LDAP CRL server. If the value is shorter

than the length of the field, terminate the value with a null character, or pad it

with blanks to the length of the field.

If the LDAP server does not require a password, or you omit the LDAP user name,

LDAPPassword must be null or blank. If you omit the LDAP user name and

LDAPPassword is not null or blank, the call fails with reason code

MQRC_LDAP_PASSWORD_ERROR.

This is an input field. The length of this field is given by

MQ_LDAP_PASSWORD_LENGTH. The initial value of this field is the null string

in C, and blank characters in other programming languages.

AILUL (10-digit signed integer)

This is the length in bytes of the LDAP user name addressed by the

LDAPUserNamePtr or LDAPUserNameOffset field. The value must be in the range zero

through MQ_DISTINGUISHED_NAME_LENGTH. If the value is not valid, the call

fails with reason code MQRC_LDAP_USER_NAME_LENGTH_ERR.

If the LDAP server involved does not require a user name, set this field to zero.

This is an input field. The initial value of this field is 0.

AILUO (10-digit signed integer)

This is the offset in bytes of the LDAP user name from the start of the MQAIR

structure.

The offset can be positive or negative. The field is ignored if LDAPUserNameLength is

zero.

You can use either LDAPUserNamePtr or LDAPUserNameOffset to specify the LDAP

user name, but not both; see the description of the LDAPUserNamePtr field for

details.

12 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

This is an input field. The initial value of this field is 0.

AILUP (10-digit signed integer)

This is the LDAP user name.

It consists of the Distinguished Name of the user who is attempting to access the

LDAP CRL server. If the value is shorter than the length specified by

LDAPUserNameLength, terminate the value with a null character, or pad it with

blanks to the length LDAPUserNameLength. The field is ignored if

LDAPUserNameLength is zero.

You can supply the LDAP user name in one of two ways:

v By using the pointer field LDAPUserNamePtr

In this case, the application can declare a string that is separate from the MQAIR

structure, and set LDAPUserNamePtr to the address of the string.

Using LDAPUserNamePtr is recommended for programming languages that

support the pointer data type in a fashion that is portable to different

environments (for example, the C programming language).

v By using the offset field LDAPUserNameOffset

In this case, the application must declare a compound structure containing the

MQSCO structure followed by the array of MQAIR records followed by the

LDAP user name strings, and set LDAPUserNameOffset to the offset of the

appropriate name string from the start of the MQAIR structure. Ensure that this

value is correct, and has a value that can be accommodated within an MQLONG

(the most restrictive programming language is COBOL, for which the valid

range is -999 999 999 through +999 999 999).

Using LDAPUserNameOffset is recommended for programming languages that do

not support the pointer data type, or that implement the pointer data type in a

fashion that might not be portable to different environments (for example, the

COBOL programming language).

Whichever technique is chosen, use only one of LDAPUserNamePtr and

LDAPUserNameOffset; the call fails with reason code

MQRC_LDAP_USER_NAME_ERROR if both are nonzero.

This is an input field. The initial value of this field is the null pointer in those

programming languages that support pointers, and an all-null byte string

otherwise.

Note: On platforms where the programming language does not support the

pointer datatype, this field is declared as a byte string of the appropriate length.

AISID (10-digit signed integer)

The value must be:

AISIDV

Identifier for the authentication information record.

This is always an input field. The initial value of this field is AISIDV.

AIVER (10-digit signed integer)

The value must be:

Chapter 1. Data type descriptions 13

AIVER1

Version-1 authentication information record.

The following constant specifies the version number of the current version:

AIRVERC

Current version of authentication information record.

This is always an input field. The initial value of this field is AIVER1.

Initial values and RPG declaration

 Table 5. Initial values of fields in MQAIR for MQAIR

Field name Name of constant Value of constant

AISID AISIDV ’AIR�’

AIVER AIVERC 1

AITYP AITLDP 1

AICN None Null string or blanks

AILUP None Null pointer or null

bytes

AILUO None 0

AILUL None 0

AIPW None Null string or blanks

Notes:

1. The symbol � represents a single blank character.

RPG declaration (copy file CMQAIRG)

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..

 D* MQAIR Structure

 D*

 D* Structure identifier

 D AISID 1 4 INZ(’AIR ’)

 D* Structure version number

 D AIVER 5 8I 0 INZ(1)

 D* Type of authentication information

 D AITYP 9 12I 0 INZ(1)

 D* Connection name of CRL LDAP server

 D AICN 13 276 INZ

 D* Address of LDAP user name

 D AILUP 277 292* INZ(*NULL)

 D* Offset of LDAP user name from start of MQAIR structure

 D AILUO 293 296I 0 INZ(0)

 D* Length of LDAP user name

 D AILUL 297 300I 0 INZ(0)

 D* Password to access LDAP server

 D AIPW 301 332 INZ

MQBMHO – Buffer to message handle options

Structure defining the buffer to message handle options

14 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

The following table summarizes the fields in the structure.

 Table 6. Fields in MQBMHO

Field Description Topic

StrucId Structure identifier StrucId

Version Structure version number Version

Options Options controlling the action of MQBMHO Options

Overview for MQBMHO

Availability: All. Buffer to message handle options structure - overview

Purpose: The MQBMHO structure allows applications to specify options that

control how message handles are produced from buffers. The structure is an input

parameter on the MQBUFMH call.

Character set and encoding: Data in MQBMHO must be in the character set of the

application and encoding of the application (MQENC_NATIVE).

Fields for MQBMHO

Buffer to message handle options structure - fields

The MQBMHO structure contains the following fields; the fields are described in

alphabetic order:

BMOPT (10-digit signed integer)

Buffer to message handle structure - Options field

The value can be:

BMDLPR

Properties that are added to the message handle are deleted from the

buffer. If the call fails no properties are deleted.

Default options: If you do not need the option described, use the following option:

BMNONE

No options specified.

This is always an input field. The initial value of this field is BMDLPR.

BMSID (10-digit signed integer)

Buffer to message handle structure - StrucId field

This is the structure identifier. The value must be:

BMSIDV

Identifier for buffer to message handle structure.

This is always an input field. The initial value of this field is BMSIDV.

BMVER (10-digit signed integer)

Buffer to message handle structure - Version field

This is the structure version number. The value must be:

Chapter 1. Data type descriptions 15

BMVER1

Version number for buffer to message handle structure.

The following constant specifies the version number of the current version:

BMVERVC

Current version of buffer to message handle structure.

This is always an input field. The initial value of this field is BMVER1.

Initial values and RPG declaration

Buffer to message handle structure - Initial values

 Table 7. Initial values of fields in MQBMHO

Field name Name of constant Value of constant

BMSID BMSIDV ’BMHO’

BMVER BMVER1 1

BMOPT BMNONE 0

RPG declaration (copy file CMQBMHOG)

 D* MQBMHO Structure

 D*

 D*

 D* Structure identifier

 D BMSID 1 4 INZ(’BMHO’)

 D*

 D* Structure version number

 D BMVER 5 8I 0 INZ(1)

 D*

 D* Options that control the action of MQBUFMH

 D BMOPT 9 12I 0 INZ(1)

MQBO – Begin options

The following table summarizes the fields in the structure.

 Table 8. Fields in MQBO

Field Description Topic

BOSID Structure identifier BOSID

BOVER Structure version number BOVER

BOOPT Options that control the action of MQBEGIN BOOPT

Overview

Purpose: The MQBO structure allows the application to specify options relating to

the creation of a unit of work. The structure is an input/output parameter on the

MQBEGIN call.

Character set and encoding: Data in MQBO must be in the character set and

encoding of the local queue manager; these are given by the CodedCharSetId queue

manager attribute and ENNAT, respectively.

16 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Fields

The MQBO structure contains the following fields; the fields are described in

alphabetic order:

BOOPT (10-digit signed integer)

Options that control the action of MQBEGIN.

The value must be:

BONONE

No options specified.

This is always an input field. The initial value of this field is BONONE.

BOSID (4-byte character string)

Structure identifier.

The value must be:

BOSIDV

Identifier for begin-options structure.

This is always an input field. The initial value of this field is BOSIDV.

BOVER (10-digit signed integer)

Structure version number.

The value must be:

BOVER1

Version number for begin-options structure.

The following constant specifies the version number of the current version:

BOVERC

Current version of begin-options structure.

This is always an input field. The initial value of this field is BOVER1.

Initial values and RPG declaration

 Table 9. Initial values of fields in MQBO

Field name Name of constant Value of constant

BOSID BOSIDV ’BO��’

BOVER BOVER1 1

BOOPT BONONE 0

Notes:

1. The symbol ‘�’ represents a single blank character.

Chapter 1. Data type descriptions 17

RPG declaration (copy file CMQBOG)

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..

 D* MQBO Structure

 D*

 D* Structure identifier

 D BOSID 1 4 INZ(’BO ’)

 D* Structure version number

 D BOVER 5 8I 0 INZ(1)

 D* Options that control the action of MQBEGIN

 D BOOPT 9 12I 0 INZ(0)

MQCBC – Callback context

Structure describing the callback routine.

The following table summarizes the fields in the structure.

 Table 10. Fields in MQCBC

Field Description Topic

StrucID Structure identifier StrucID

Version Structure version number Version

CallType Why function has been called CallType

Hobj Object handle Hobj

CallbackArea Field for callback function to use CallbackArea

ConnectionArea Field for callback function to use ConnectionArea

CompCode Completion code CompCode

Reason Reason code Reason

State Indication of the state of the current

consumer

State

DataLength Message length DataLength

BufferLength Length of message buffer in bytes BufferLength

Flags General flags Flags

Overview for MQCBC

Availability: AIX, HP-UX, i5/OS, Solaris, Linux, Windows, z/OS®, plus WebSphere

MQ clients connected to these systems.

Purpose: The MQCBC structure is used to specify context information that is

passed to a callback function.

The structure is an input/output parameter on the call to a message consumer

routine.

Version: The current version of MQCBC is MQCBC_VERSION_1.

Character set and encoding: Data in MQCBC will be in the character set and

encoding of the local queue manager; these are given by the CodedCharSetId

queue-manager attribute and MQENC_NATIVE, respectively. However, if the

application is running as an MQ client, the structure will be in the character set

and encoding of the client.

18 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Fields for MQCBC

Alphabetic list of fields for the MQCBC structure.

The MQCBC structure contains the following fields; the fields are described in

alphabetical order:

CBCBUFFLEN (10-digit signed integer)

The buffer can be larger than both the MaxMsgLength value defined for the

consumer and the ReturnedLength value in the MQGMO. Callback context

structure - BufferLength field

This is the length in bytes of the message buffer that has been passed to this

function.

The actual message length is supplied in DataLength field.

The application can use the entire buffer for its own purposes for the duration of

the callback function.

This is an input field to the message consumer function; it is not relevant to an

exception handler function.

CBCCALLBA (10-digit signed integer)

Callback context structure - CallbackArea field

This is a field that is available for the callback function to use.

The queue manager makes no decisions based on the contents of this field and it is

passed unchanged from the field in the MQCBD structure, which is a parameter on

the MQCB call used to define the callback function.

Changes to the CBCCALLBA are preserved across the invocations of the callback

function for an CBCHOBJ. This field is not shared with callback functions for other

handles.

This is an input/output field to the callback function. The initial value of this field

is a null pointer or null bytes.

CBCCALLT (10-digit signed integer)

Callback Context structure - CallType field

Field containing information about why this function has been called; the

following are defined.

Message delivery call types: These call types contain information about a message.

The CBCLEN and CBCBUFFLEN parameters are valid for these call types.

CBCTMR

The message consumer function has been invoked with a message that has

been destructively removed from the object handle.

 If the value of CBCCC is MQCC_WARNING, the value of the Reason field is

MQRC_TRUNCATED_MSG_ACCEPTED or one of the codes indicating a

data conversion problem.

CBCTMN

The message consumer function has been invoked with a message that has

Chapter 1. Data type descriptions 19

not yet been destructively removed from the object handle. The message

can be destructively removed from the object handle using the MsgToken.

 The message might not have been removed because:

v The MQGMO options requested a browse operation,

MQGMO_BROWSE_*

v The message is larger than the available buffer and the MQGMO

options do not specify MQGMO_ACCEPT_TRUNCATED_MSG

If the value of CBCCC is MQCC_WARNING, the value of the Reason field is

MQRC_TRUNCATED_MSG_FAILED or one of the codes indicating a data

conversion problem.

Callback control call types: These call types contain information about the control

of the callback and do not contain details about a message. These call types are

requested using CBDOPT in the MQCBD structure.

The CBCLEN and CBCBUFFLEN parameters are not valid for these call types.

CBCTRC

The purpose of this call type is to allow the callback function to perform

some initial setup.

 The callback function is invoked is immediately after the callback is

registered, that is, upon return from an MQCB call using a value for the

Operation field of MQOP_REGISTER.

This call type is used both for message consumers and event handlers.

If requested, this is the first invocation of the callback function.

The value of the CBCREA field is MQRC_NONE.

CBCTSC

The purpose of this call type is to allow the callback function to perform

some setup when it is started, for example, reinstating resources that were

cleaned up when it was previously stopped.

 The callback function is invoked when the connection is started using

either MQOP_START or MQOP_START_WAIT.

If a callback function is registered within another callback function, this

call type is invoked when the callback returns.

This call type is used for message consumers only.

The value of the CBCREA field is MQRC_NONE.

CBCTTC

The purpose of this call type is to allow the callback function to perform

some cleanup when it is stopped for a while, for example, cleaning up

additional resources that have been acquired during the consuming of

messages.

 The callback function is invoked when an MQCTL call is issued using a

value for the Operation field of MQOP_STOP.

This call type is used for message consumers only.

The value of the CBCREA field is set to indicate the reason for stopping.

20 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

CBCTDC

The purpose of this call type is to allow the callback function to perform

final cleanup at the end of the consume process. The callback function is

invoked when the:

v Callback function is deregistered using an MQCB call with The

exception handler function has been invoked without a message when:

MQOP_DEREGISTER.

v Queue is closed, causing an implicit deregister. In this instance the

callback function is passed MQHO_UNUSABLE_HOBJ as the object

handle.

v MQDISC call completes – causing an implicit close and, therefore, a

deregister. In this case the connection is not disconnected immediately,

and any ongoing transaction is not yet committed.

If any of these actions are taken inside the callback function itself, the

action is invoked once the callback returns.

This call type is used both for message consumers and event handlers.

If requested, this is the last invocation of the callback function.

The value of the CBCREA field is set to indicate the reason for stopping.

CBCTEC

Event handler function

 The event handler function has been invoked without a message when:

v An MQCTL call is issued with a value for the Operation field of

MQOP_STOP, or

v The queue manager or connection stops or quiesces.

This call can be used to take appropriate action for all callback functions.

v Message consumer function

The message consumer function has been invoked without a message

when an error (CBCCC= MQCC_FAILED) has been detected that is

specific to the object handle; for example CBCREA code =

MQRC_GET_INHIBITED.

The value of the CBCREA field is set to indicate the reason for the call.

This is an input field. CBCTMR and CMCTMN are applicable only to message

consumer functions.

CBCCC (10-digit signed integer)

Callback context structure - CompCode field

This is the completion code. It indicates whether there were any problems

consuming the message; it is one of the following:

MQCC_OK

Successful completion

MQCC_WARNING

Warning (partial completion)

MQCC_FAILED

Call failed

This is an input field. The initial value of this field is MQCC_OK.

Chapter 1. Data type descriptions 21

CBCCONNAREA (10-digit signed integer)

Callback context structure - ConnectionArea field

This is a field that is available for the callback function to use.

The queue manager makes no decisions based on the contents of this field and it is

passed unchanged from the ConnectionArea field in the MQCTLO structure, which

is a parameter on the MQCTL call used to control the callback function.

Any changes made to this field by the callback functions are preserved across the

invocations of the callback function. This area can be used to pass information that

is to be shared by all callback functions. Unlike CallbackArea, this area is common

across all callbacks for a connection handle.

This is an input and output field. The initial value of this field is a null pointer or

null bytes.

CBCLEN (10-digit signed integer)

This is the length in bytes of the application data in the message. If the value is

zero, it means that the message contains no application data. Callback context

structure - DataLength field

The DataLength field contains the length of the message but not necessarily the

length of the message data passed to the consumer. It could be that the message

was truncated. Use the GMRL field in the MQGMO to determine how much data

has actually been passed to the consumer.

If the reason code indicates the message has been truncated, you can use the

DataLength field to determine how large the actual message is. This allows you to

determine the size of the buffer required to accommodate the message data, and

then issue an MQCB call to update the CBDMML in the MQCBD with an

appropriate value.

If the MQGMO_CONVERT option is specified, the converted message could be

larger than the value returned for DataLength. In such cases, the application

probably needs to issue an MQCB call to update theCBDMML in the MQCBD to

be greater than the value returned by the queue manager for DataLength.

To avoid message truncation problems, specify MaxMsgLength as

MQCBD_FULL_MSG_LENGTH. This causes the queue manager to allocate a

buffer for the full message length after data conversion. Be aware, however, that

even if this option is specified, it is still possible that sufficient storage is not

available to correctly process the request. Applications should always check the

returned reason code. For example, if it is not possible to allocate sufficient storage

to convert the message, the messages is returned to the application unconverted.

This is an input field to the message consumer function; it is not relevant to an

event handler function.

CBCFLG (10-digit signed integer)

Flags containing information about this consumer. Callback context structure -

Flags field

The following option is defined:

22 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

CBCFBE

This flag can be returned if a previous MQCLOSE call using the

MQCO_QUIESCE option failed with a reason code of

MQRC_READ_AHEAD_MSGS.

 This code indicated that the last read ahead message is being returned and

that the buffer is now empty. If the application issues another MQCLOSE

call using the MQCO_QUIESCE) option, it succeeds.

Note, that an application is not guaranteed to be given a message with this

flag set, as there might still be messages in the read-ahead buffer that do

not match the current selection criteria. In this instance, the consumer

function is invoked with the reason code MQRC_HOBJ_QUIESCED.

If the read ahead buffer is completely empty, the consumer is invoked with

the MQCBCF_READA_BUFFER_EMPTY flag and the reason code

MQRC_HOBJ_QUIESCED_NO_MSGS.

This is an input field to the message consumer function; it is not relevant to an

event handler function.

CBCHOBJ (10-digit signed integer)

Callback context structure - Hobj field

For a call to a message consumer, this is the handle for the object relating to the

message consumer.

For an event handler, this value is MQHO_NONE

The application can use this handle and the message token in the Get Message

Options block to get the message if a message has not been removed from the

queue.

This is always an input field. The initial value of this field is

MQHO_UNUSABLE_HOBJ

CBCREA (10-digit signed integer)

Callback context structure - Reason field

This is the reason code qualifying the CompCode

This is an input field. The initial value of this field is MQRC_NONE.

CBCSTATE (10-digit signed integer)

An indication as to the state of the current consumer. This field is of most value to

an application when a nonzero reason code is passed to the consumer function.

Callback context structure - State field

You can use this field to simplify application programming because you do not

need to code behavior for each reason code.

Chapter 1. Data type descriptions 23

This is an input field. The initial value of this field is MQCS_NONE

 State Queue manager action Value of

constant

CSNONE

This reason code represents a normal

call with no additional reason

information

None; this is the normal operation. 0

CSSUST

These reason codes represent

temporary conditions.

The callback routine is called to

report the condition and then

suspended. After a period of time the

system might attempt the operation

again, which can lead to the same

condition being raised again.

1

CSSUSU

These reason codes represent

conditions where the callback needs

to take action to resolve the

condition.

The consumer is suspended and the

callback routine is called to report the

condition. The callback routine

should resolve the condition if

possible and either RESUME or close

down the connection.

2

CSSUS

These reason codes represent failures

that prevent further message

callbacks.

The queue manager automatically

suspends the callback function. If the

callback function is resumed it is

likely to receive the same reason code

again.

3

CSSTOP

These reason codes represent the end

of message consumption.

Delivered to the exception handler

and to callbacks that specified

MQCBDO_STOP_CALL. No further

messages can be consumed.

4

CBCSID (10-digit signed integer)

Callback context structure - StrucId field

This is the structure identifier; the value must be:

CBCSI

Identifier for callback context structure.

This is always an input field. The initial value of this field is CBCSI.

CBCVER (10-digit signed integer)

Callback context structure - Version field

This is the structure version number; the value must be:

CBCV1

Version-1 callback context structure.

The following constant specifies the version number of the current version:

CBCCV

Current version of the callback context structure.

This is always an input field. The initial value of this field is CBCV1.

24 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Initial values and RPG declaration

Callback context structure - Initial values

 Table 11. Initial values of fields in MQCBC

Field name Name of constant Value of constant

CBCSID CBCSI ’CBC�’

CBCVER CBCV1 1

CBCCALLT None 0

CBCHOBJ MQHO_UNUSABLE_HOBJ -1

CBCCALLBA None Null pointer or null

bytes

CBCCONNAREA None Null pointer or null

bytes

CBCCC MQCC_OK 0

CBCREA MQRC_NONE 0

CBCSTATE MQCS_NONE 0

CBCLEN None 0

CBCBUFFLEN None 0

Flags None 0

Notes:

1. The symbol � represents a single blank character.

RPG declaration (copy file CMQCBCG)

 D* MQCBC Structure

 D*

 D*

 D* Structure identifier

 D CBCSID 1 4 INZ(’CBC ’)

 D*

 D* Structure version number

 D CBCVER 5 8I 0 INZ(1)

 D*

 D* Why Function was called

 D CBCCALLT 9 12I 0 INZ(0)

 D*

 D* Object Handle

 D CBCHOBJ 13 16I 0 INZ(-1)

 D*

 D* Callback data passed to the function

 D CBCCALLBA 17 32* INZ(*NULL)

 D*

 D* MQCTL Data area passed to the function

 D CBCCONNAREA 33 48* INZ(*NULL)

 D*

 D* Completion Code

 D CBCCC 49 52I 0 INZ(0)

 D*

 D* Reason Code

 D CBCREA 53 56I 0 INZ(0)

 D*

 D* Consumer State

 D CBCSTATE 57 60I 0 INZ(0)

 D*

 D* Message Data Length

 D CBCLEN 61 64I 0 INZ(0)

 D*

Chapter 1. Data type descriptions 25

D* Buffer Length

 D CBCBUFFLEN 65 68I 0 INZ(0)

 D*

 ** Flags containing information about

 D* this consumer

 D CBCFLG 69 72I 0 INZ(0)

MQCBD – Callback descriptor

Structure specifying the callback function.

The following table summarizes the fields in the structure.

 Table 12. Fields in MQCBD

Field Description Topic

CBDSID Structure identifier “CBDSID (10-digit

signed integer)” on

page 31

CBDVER Structure version number “CBDVER (10-digit

signed integer)” on

page 31

CBDCALLBT Type of callback function “CBDCALLBT (10-digit

signed integer)” on

page 29

CBDOPT Options controlling message

consumption

“CBDOPT (10-digit

signed integer)” on

page 30

CBDCALLBA Field for callback function to use “CBDCALLBA (10-digit

signed integer)” on

page 27

CBDCALLBF Whether the function is invoked as an

API call

“CBDCALLBF (10-digit

signed integer)” on

page 27

CBDCALLBN Whether the function is invoked as a

dynamically-linked program

“CBDCALLBN (10-digit

signed integer)” on

page 27

CBDMML Length of longest message that can be

read

“CBDMML (10-digit

signed integer)” on

page 29

Overview for MQCBD

Availability: AIX, HP-UX, i5/OS, Solaris, Linux, Windows, z/OS, and WebSphere

MQ clients connected to these systems.

Purpose: The MQCBD structure is used to specify a callback function and the

options controlling its use by the queue manager.

The structure is an input parameter on the MQCB call.

Version: The current version of MQCBD is MQCBD_VERSION_1.

Character set and encoding: Data in MQCBD must be in the character set and

encoding of the local queue manager; these are given by the CodedCharSetId

26 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

queue-manager attribute and MQENC_NATIVE, respectively. However, if the

application is running as an MQ client, the structure must be in the character set

and encoding of the client.

Fields for MQCBD

Alphabetic list of fields for the MQCBD structure.

The MQCBD structure contains the following fields; the fields are described in

alphabetical order:

CBDCALLBA (10-digit signed integer)

Callback descriptor structure - CBDCALLBA field

This is a field that is available for the callback function to use.

The queue manager makes no decisions based on the contents of this field and it is

passed unchanged from the CBDCALLBA field in the MQCBD structure, which is

a parameter on the callback function declaration.

The value is used only on an Operation having a value MQOP_REGISTER, with no

currently defined callback, it does not replace a previous definition.

This is an input and output field to the callback function. The initial value of this

field is a null pointer or null bytes.

CBDCALLBF (10-digit signed integer)

Callback descriptor structure - CBDCALLBF field

The callback function is invoked as a function call.

Use this field to specify a pointer to the call back function.

You must specify either CallbackFunction or CallbackName. If you specify both, the

reason code MQRC_CALLBACK_ROUTINE_ERROR is returned.

If neither CallbackName nor CallbackFunction is not set, the call fails with the

reason code MQRC_CALLBACK_ROUTINE_ERROR.

This option is not supported in the following environments:

v CICS on z/OS

v Programming languages and compilers that do not support function-pointer

references

In such situations, the call fails with the reason code

MQRC_CALLBACK_ROUTINE_ERROR.

On z/OS the function must expect to be called with OS linkage conventions. For

example, in the C programming language, specify:

 #pragma linkage(MQCB_FUNCTION,OS)

This is an input field. The initial value of this field is a null pointer or null bytes.

CBDCALLBN (10-digit signed integer)

Callback descriptor structure - CallbackName field

The call back function is invoked as a dynamically linked program.

Chapter 1. Data type descriptions 27

You must specify either CallbackFunction or CallbackName. If you specify both, the

reason code MQRC_CALLBACK_ROUTINE_ERROR is returned.

If either CallbackName or CallbackFunction is not true, the call fails with the reason

code MQRC_CALLBACK_ROUTINE_ERROR.

The module is loaded when the first callback routine to use is registered, and

unloaded when the last callback routine to use it deregisters.

Except where noted in the following text, the name is left-justified within the field,

with no embedded blanks; the name itself is padded with blanks to the length of

the field. In the descriptions that follow, square brackets ([]) denote optional

information:

i5/OS The callback name can be one of the following formats:

v Library ″/″ Program

v Library ″/″ ServiceProgram ″(″FunctionName″)″

For example, MyLibrary/MyProgram(MyFunction).

 The library name can be *LIBL. Both the library and program names are

limited to a maximum of 10 characters.

UNIX® systems

The callback name is the name of a dynamically-loadable module or

library, suffixed with the name of a function residing in that library. The

function name must be enclosed in parentheses. The library name can

optionally be prefixed with a directory path:

 [path]library(function)

If the path is not specified the system search path is used.

The name is limited to a maximum of 128 characters.

Windows

The callback name is the name of a dynamic-link library, suffixed with the

name of a function residing in that library. The function name must be

enclosed in parentheses .The library name can optionally be prefixed with

a directory path and drive:

 [d:][path]library(function)

If the drive and path are not specified the system search path is used.

The name is limited to a maximum of 128 characters.

z/OS The callback name is the name of a load module that is valid for

specification on the EP parameter of the LINK or LOAD macro.

 The name is limited to a maximum of 8 characters.

z/OS CICS

The callback name is the name of a load module that is valid for

specification on the PROGRAM parameter of the EXEC CICS LINK

command macro.

 The name is limited to a maximum of 8 characters.

The program can be defined as remote using the REMOTESYTEM option

of the installed PROGRAM definition or by the dynamic routing program.

28 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

The remote CICS region must be connected to WebSphere MQ if the

program is to use WebSphere MQ API calls. Note, however, that the Hobj

field in the MQCBC structure is not valid in a remote system.

If a failure occurs trying to load CallbackName, one of the following error codes is

returned to the application:

v MQRC_MODULE_NOT_FOUND

v MQRC_MODULE_INVALID

v MQRC_MODULE_ENTRY_NOT_FOUND

A message is also written to the error log containing the name of the module for

which the load was attempted, and the failing reason code from the operating

system.

This is an input field. The initial value of this field is a null string or blanks.

CBDCALLBT (10-digit signed integer)

Callback descriptor structure - CallbackType field

This is the type of the callback function. The value must be one of:

MQCBT_MESSAGE_CONSUMER

Defines this callback as a message consumer function.

 A message consumer callback function is called when a message, meeting

the selection criteria specified, is available on an object handle and the

connection is started.

MQCBT_EVENT_HANDLER

Defines this callback as the asynchronous event routine; it is not driven to

consume messages for a handle.

 Hobj is not required on the MQCB call defining the event handler and is

ignored if specified.

The event handler is called for conditions that affect the whole message

consumer environment. The consumer function is invoked without a

message when an event, for example, a queue manager or connection

stopping, or quiescing, occurs. It is not called for conditions that are

specific to a single message consumer, for example,

MQRC_GET_INHIBITED.

Events are delivered to the application, regardless of whether the

connection is started or stopped, except in the following environments:

v CICS on z/OS environment

v nonthreaded applications

If the caller does not pass one of these values, the call fails with a Reason

code of MQRC_CALLBACK_TYPE_ERROR

This is always an input field. The initial value of this field is

MQCBT_MESSAGE_CONSUMER.

CBDMML (10-digit signed integer)

This is the length in bytes of the longest message that can be read from the handle

and given to the callback routine. Callback descriptor structure - MaxMsgLength

field

Chapter 1. Data type descriptions 29

If a message has a longer length, the callback routine receives MaxMsgLength bytes

of the message, and reason code:

v MQRC_TRUNCATED_MSG_FAILED or

v MQRC_TRUNCATED_MSG_ACCEPTED if you specified

MQGMO_ACCEPT_TRUNCATED_MSG.

The actual message length is supplied in the “CBCLEN (10-digit signed integer)”

on page 22 field of the MQCBC structure.

The following special value is defined:

MQCBD_FULL_MSG_LENGTH

The buffer length is adjusted by the system to return messages without

truncation.

 If insufficient memory is available to allocate a buffer to receive the

message, the system calls the callback function with an

MQRC_STORAGE_NOT_AVAILABLE reason code.

If, for example, you request data conversion, and there is insufficient

memory available to convert the message data, the unconverted message is

passed to the callback function.

This is an input field. The initial value of the MaxMsgLength field is

MQCBD_FULL_MSG_LENGTH.

CBDOPT (10-digit signed integer)

Callback descriptor structure - Options field

Any one, or all, of the following can be specified. If more than one option is

required the values can be:

v Added together (do not add the same constant more than once), or

v Combined using the bitwise OR operation (if the programming language

supports bit operations).

Combinations that are not valid are noted; any other combinations are valid.

MQCBDO_FAIL_IF_QUIESCING

The MQCB call fails if the queue manager is in the quiescing state.

 On z/OS, this option also forces the MQCB call to fail if the connection

(for a CICS or IMS application) is in the quiescing state.

Specify MQGMO_FAIL_IF_QUIESCING, in the MQGMO options passed

on the MQCB call, to cause notification to message consumers when they

are quiescing.

Control options: The following options control whether the callback function is

called, without a message, when the state of the consumer changes:

MQCBDO_REGISTER_CALL

The callback function is invoked with call type

MQCBCT_REGISTER_CALL.

MQCBDO_START_CALL

The callback function is invoked with call type MQCBCT_START_CALL.

MQCBDO_STOP_CALL

The callback function is invoked with call type MQCBCT_STOP_CALL.

30 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

MQCBDO_DEREGISTER_CALL

The callback function is invoked with call type

MQCBCT_DEREGISTER_CALL.

See “CBCCALLT (10-digit signed integer)” on page 19 for further details about

these call types.

Default option: If you do not need any of the options described, use the following

option:

MQCBDO_NONE

Use this value to indicate that no other options have been specified; all

options assume their default values.

 MQCBDO_NONE is defined to aid program documentation; it is not

intended that this option be used with any other, but as its value is zero,

such use cannot be detected.

This is an input field. The initial value of the Options field is MQCBDO_NONE.

CBDSID (10-digit signed integer)

Callback descriptor structure - StrucId field

This is the structure identifier; the value must be:

MQCBD_STRUC_ID

Identifier for callback descriptor structure.

 For the C programming language, the constant

MQCBD_STRUC_ID_ARRAY is also defined; this has the same value as

MQCBD_STRUC_ID, but is an array of characters instead of a string.

This is always an input field. The initial value of this field is MQCBD_STRUC_ID.

CBDVER (10-digit signed integer)

Callback descriptor structure - Version field

This is the structure version number; the value must be:

MQCBD_VERSION_1

Version-1 callback descriptor structure.

The following constant specifies the version number of the current version:

MQCBD_CURRENT_VERSION

Current version of callback descriptor structure.

This is always an input field. The initial value of this field is MQCBD_VERSION_1.

Initial values and RPG declaration

Callback descriptor structure - Initial values

 Table 13. Initial values of fields in MQCBD

Field name Name of constant Value of constant

StrucId MQCBD_STRUC_ID ’CBD�’

Version MQCBD_VERSION_1 1

CallBackType MQCBT_MESSAGE_CONSUMER 1

Chapter 1. Data type descriptions 31

Table 13. Initial values of fields in MQCBD (continued)

Field name Name of constant Value of constant

Options MQCBDO_NONE 0

CallbackArea None Null pointer or null

blanks

CallbackFunction None Null pointer or null

blanks

CallbackName None Null string or blanks

MaxMsgLength MQCBD_FULL_MSG_LENGTH -1

Notes:

1. The symbol � represents a single blank character.

2. The value Null string or blanks denotes the null sting in the C programming language,

and blank characters in other programming languages.

3. In the C programming language, the macro variable MQCBD_DEFAULT contains the

values listed above. Use it in the following way to provide initial values for the fields

in the structure:

MQCBD MyCBD = {MQCBD_DEFAULT};

RPG declaration (copy file MQCBDG)

 D* MQCBD Structure

 D*

 D*

 D* Structure identifier

 D CBDSID 1 4 INZ(’CBD ’)

 D*

 D* Structure version number

 D CBDVER 5 8I 0 INZ(1)

 D*

 D* Callback function type

 D CBDCALLBT 9 12I 0 INZ(1)

 D*

 ** Options controlling message

 D* consumption

 D CBDOPT 13 16I 0 INZ(0)

 D*

 D* User data passed to the function

 D CBDCALLBA 17 32*

 D*

 D* FP: Callback function pointer

 D CBDCALLBF 33 48*

 D*

 D* Callback name

 D CBDCALLBN 49 176 INZ(’\0’)

 D*

 D* Maximum message length

 D CBDMML 177 180I 0 INZ(-1)

MQCHARV - Variable Length String

The following table summarizes the fields in the structure.

 Field Description Topic

VCHRP Pointer to the variable length string VCHRP

32 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Field Description Topic

VCHRO Offset in bytes of the variable length string from

the start of the structure that contains this

MQCHARV structure

VCHRO

VCHRS Size in bytes of the buffer addressed by the

VCHRP or VCHRO field.

VCHRS

VCHRL The length in bytes of the variable length string

addressed by the VCHRP or VCHRO field.

VCHRL

VCHRC The character set identifier of the variable length

string addressed by the VCHRP or VCHRO field.

VCHRC

Overview

Purpose: Use the MQCHARV structure to describe a variable length string.

Character set and encoding: Data in the MQCHARV must be in the encoding of

the local queue manager that is given by ENNAT and the character set of the

VCHRC field within the structure. If the application is running as an MQ client,

the structure must be in the encoding of the client. Some character sets have a

representation that depends on the encoding. If VCHRC is one of these character

sets, the encoding used is the same encoding as that of the other fields in the

MQCHARV.

Usage: The MQCHARV structure addresses data that might be discontiguous with

the structure containing it. To address this data, fields declared with the pointer

data type can be used.

Fields

The MQCHARV structure contains the following fields; the fields are described in

alphabetic order:

VCHRC (10-digit signed integer)

This is the character set identifier of the variable length string addressed by the

VCHRP or VCHRO field.

The initial value of this field is CSAPL. This is defined by MQ to indicate that it

should be changed by the queue manager to the true character set identifier of the

queue manager. This is in exactly the same way as CSQM behaves. As a result, the

value CSAPL is never associated with a variable length string. The initial value of

this field can be changed by defining a different value for the constant CSAPL for

your compile unit by the appropriate means for your application’s programming

language.

VCHRL (10-digit signed integer)

The length in bytes of the variable length string addressed by the VCHRP or

VCHRO field.

The initial value of this field is 0. The value must be either greater than or equal to

zero or the following special value which is recognized:

VSNLT

Chapter 1. Data type descriptions 33

If VSNLT is not specified, VCHRL bytes are included as part of the string.

If null characters are present they do not delimit the string.

If VSNLT is specified, the string is delimited by the first null encountered

in the string. The null itself is not included as part of that string.

Note: The null character used to terminate a string if VSNLT is specified is

a null from the code set specified by VCHRC.

For example, in UTF-16 (UCS-2 CCSIDs 1200 and 13488), this is the two

byte Unicode encoding where a null is represented by a 16 bit number of

all zeros. In UTF-16 it is common to find single bytes set to all zero which

are part of characters (seven bit ASCII characters for instance), but the

strings will only be null terminated when two ’zero’ bytes are found on an

even byte boundary. It is possible to get two ’zero’ bytes on an odd

boundary when they are each part of valid characters, for example x’01’

x’00’ x’00’ x’30’ would be two valid Unicode characters and would not null

terminate the string.

VCHRO (10-digit signed integer)

The offset in bytes of the variable length string from the start of the MQCHARV, or

the structure containing it.

When the MQCHARV structure is embedded within another structure, this value is

the offset in bytes of the variable length string from the start of the structure that

contains this MQCHARV structure. When the MQCHARV structure is not

embedded within another structure, for example, if it is specified as a parameter

on a function call, the offset is relative to the start of the MQCHARV structure.

The offset can be positive or negative. You can use either the VCHRP or VCHRO

field to specify the variable length string, but not both.

The initial value of this field is 0.

VCHRP (pointer)

This is a pointer to the variable length string.

You can use either the VCHRP or VCHRO field to specify the variable length

string, but not both.

The initial value of this field is a null pointer or null bytes.

VCHRS (10-digit signed integer)

The size in bytes of the buffer addressed by the VCHRP or VCHRO field.

When the MQCHARV structure is used as an output field on a function call, this

field must be initialized with the length of the buffer provided. If the value of

VCHRL is greater than VCHRS then only VCHRS bytes of data will be returned to

the caller in the buffer.

The value must be greater than or equal to zero or the following special value

which is recognized:

VSUSL

If VSUSL is specified, the length of the buffer is taken from the VCHRL

34 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

field in the MQCHARV structure. This special value is not appropriate

when the structure is used as an output field and a buffer is provided. This

is the initial value of this field.

Initial values and RPG declaration

Initial values of fields in MQCHARV

 Field name Name of constant Value of constant

VCHRP None Null pointer or null

bytes.

VCHRO None 0

VCHRS VSUSL -1

VCHRL None 0

VCHRC CSAPL -3

RPG declaration for MQCHARV

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..

 D* MQCHARV Structure

 D*

 D* Address of variable length string

 D VCHRP 1 16*

 D* Offset of variable length string

 D VCHRO 17 20I 0

 D* Size of buffer

 D VCHRS 21 24I 0

 D* Length of variable length string

 D VCHRL 25 28I 0

 D* CCSID of variable length string

 D VCHRC 29 32I 0

Redefinition of CSAPL

Unlike the programming languages supported on other platforms, RPG does not

have a way of redefining a defined constant, so you must set each VCHRC

specifically if you want to use a value other than CSAPL.

MQCIH – CICS bridge header

The following table summarizes the fields in the structure.

 Table 14. Fields in MQCIH

Field Description Topic

CISID Structure identifier CISID

CIVER Structure version number CIVER

CILEN Length of MQCIH structure CILEN

CIENC Reserved CIENC

CICSI Reserved CICSI

CIFMT MQ format name of data that follows MQCIH CIFMT

CIFLG Flags CIFLG

CIRET Return code from bridge CIRET

CICC MQ completion code or CICS EIBRESP CICC

Chapter 1. Data type descriptions 35

Table 14. Fields in MQCIH (continued)

Field Description Topic

CIREA MQ reason or feedback code, or CICS EIBRESP2 CIREA

CIUOW Unit-of-work control CIUOW

CIGWI Wait interval for MQGET call issued by bridge

task

CIGWI

CILT Link type CILT

CIODL Output COMMAREA data length CIODL

CIFKT Bridge facility release time CIFKT

CIADS Send/receive ADS descriptor CIADS

CICT Whether task can be conversational CICT

CITES Status at end of task CITES

CIFAC Bridge facility token CIFAC

CIFNC MQ call name or CICS EIBFN function CIFNC

CIAC Abend code CIAC

CIAUT Password or passticket CIAUT

CIRS1 Reserved CIRS1

CIRFM MQ format name of reply message CIRFM

CIRSI Reserved CIRSI

CIRTI Reserved CIRTI

CITI Transaction to attach CITI

CIFL Terminal emulated attributes CIFL

CIAI AID key CIAI

CISC Transaction start code CISC

CICNC Abend transaction code CICNC

CINTI Next transaction to attach CINTI

CIRS2 Reserved CIRS2

CIRS3 Reserved CIRS3

Note: The remaining fields are not present if CIVER is less than CIVER2.

CICP Cursor position CICP

CIEO Offset of error in message CIEO

CIII Reserved CIII

CIRS4 Reserved CIRS4

Overview

Purpose: The MQCIH structure describes the information that can be present at the

start of a message sent to the CICS bridge through WebSphere MQ for z/OS.

Format name: FMCICS.

Version: The current version of MQCIH is CIVER2. Fields that exist only in the

more-recent version of the structure are identified as such in the descriptions that

follow.

36 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

The COPY file provided contains the most recent version of MQCIH, with the

initial value of the CIVER field set to CIVER2.

Character set and encoding: Special conditions apply to the character set and

encoding used for the MQCIH structure and application message data:

v Applications that connect to the queue manager that owns the CICS bridge

queue must provide an MQCIH structure that is in the character set and

encoding of the queue manager. This is because data conversion of the MQCIH

structure is not performed in this case.

v Applications that connect to other queue managers can provide an MQCIH

structure that is in any of the supported character sets and encodings;

conversion of the MQCIH is performed by the receiving message channel agent

connected to the queue manager that owns the CICS bridge queue.

Note: There is one exception to this. If the queue manager that owns the CICS

bridge queue is using CICS for distributed queuing, the MQCIH must be in the

character set and encoding of the queue manager that owns the CICS bridge

queue.

v The application message data following the MQCIH structure must be in the

same character set and encoding as the MQCIH structure. The CICSI and CIENC

fields in the MQCIH structure cannot be used to specify the character set and

encoding of the application message data.

A data-conversion exit must be provided by the user to convert the application

message data if the data is not one of the built-in formats supported by the

queue manager.

Usage: If the values required by the application are the same as the initial values

shown in Table 16 on page 48, and the bridge is running with AUTH=LOCAL or

AUTH=IDENTIFY, the MQCIH structure can be omitted from the message. In all

other cases, the structure must be present.

The bridge accepts either a version-1 or a version-2 MQCIH structure, but for 3270

transactions a version-2 structure must be used.

The application must ensure that fields documented as “request” fields have

appropriate values in the message sent to the bridge; these fields are input to the

bridge.

Fields documented as “response” fields are set by the CICS bridge in the reply

message that the bridge sends to the application. Error information is returned in

the CIRET, CIFNC, CICC, CIREA, and CIAC fields, but not all of them are set in all

cases. Table 15 shows which fields are set for different values of CIRET.

 Table 15. Contents of error information fields in MQCIH structure

CIRET CIFNC CICC CIREA CIAC

CRC000 – – – –

CRC003 – – FBC* –

CRC002 CRC008 MQ call name MQ CMPCOD MQ REASON –

CRC001 CRC006

CRC007 CRC009

CICS EIBFN CICS EIBRESP CICS EIBRESP2 –

CRC004 CRC005 – – – CICS ABCODE

Chapter 1. Data type descriptions 37

Fields

The MQCIH structure contains the following fields; the fields are described in

alphabetic order:

CIAC (4-byte character string)

Abend code.

The value returned in this field is significant only if the CIRET field has the value

CRC005 or CRC004. If it does, CIAC contains the CICS ABCODE value.

This is a response field. The length of this field is given by LNABNC. The initial

value of this field is 4 blank characters.

CIADS (10-digit signed integer)

Send/receive ADS descriptor.

This is an indicator specifying whether ADS descriptors should be sent on SEND

and RECEIVE BMS requests. The following values are defined:

ADNONE

Do not send or receive ADS descriptor.

ADSEND

Send ADS descriptor.

ADRECV

Receive ADS descriptor.

ADMSGF

Use message format for the ADS descriptor.

 This causes the ADS descriptor to be sent or received using the long form

of the ADS descriptor. The long form has fields that are aligned on 4-byte

boundaries.

The CIADS field should be set as follows:

v If ADS descriptors are not being used, set the field to ADNONE.

v If ADS descriptors are being used, and with the same CCSID in each

environment, set the field to the sum of ADSEND and ADRECV.

v If ADS descriptors are being used, but with different CCSIDs in each

environment, set the field to the sum of ADSEND, ADRECV, and ADMSGF.

This is a request field used only for 3270 transactions. The initial value of this field

is ADNONE.

CIAI (4-byte character string)

AID key.

This is the initial value of the AID key when the transaction is started. It is a

1-byte value, left justified.

This is a request field used only for 3270 transactions. The length of this field is

given by LNATID. The initial value of this field is 4 blanks.

38 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

CIAUT (8-byte character string)

Password or passticket.

This is a password or passticket. If user-identifier authentication is active for the

CICS bridge, CIAUT is used with the user identifier in the MQMD identity context

to authenticate the sender of the message.

This is a request field. The length of this field is given by LNAUTH. The initial

value of this field is 8 blanks.

CICC (10-digit signed integer)

MQ completion code or CICS EIBRESP.

The value returned in this field is dependent on CIRET; see Table 15 on page 37.

This is a response field. The initial value of this field is CCOK.

CICNC (4-byte character string)

Abend transaction code.

This is the abend code to be used to terminate the transaction (normally a

conversational transaction that is requesting more data). Otherwise this field is set

to blanks.

This is a request field used only for 3270 transactions. The length of this field is

given by LNCNCL. The initial value of this field is 4 blanks.

CICP (10-digit signed integer)

Cursor position.

This is the initial cursor position when the transaction is started. Subsequently, for

conversational transactions, the cursor position is in the RECEIVE vector.

This is a request field used only for 3270 transactions. The initial value of this field

is 0. This field is not present if CIVER is less than CIVER2.

CICSI (10-digit signed integer)

Reserved.

This is a reserved field; its value is not significant. The initial value of this field is

0.

CICT (10-digit signed integer)

Whether task can be conversational.

This is an indicator specifying whether the task should be allowed to issue

requests for more information, or should abend. The value must be one of the

following:

CTYES

Task is conversational.

Chapter 1. Data type descriptions 39

CTNO

Task is not conversational.

This is a request field used only for 3270 transactions. The initial value of this field

is CTNO.

CIENC (10-digit signed integer)

Reserved.

This is a reserved field; its value is not significant. The initial value of this field is

0.

CIEO (10-digit signed integer)

Offset of error in message.

This is the position of invalid data detected by the bridge exit. This field provides

the offset from the start of the message to the location of the invalid data.

This is a response field used only for 3270 transactions. The initial value of this

field is 0. This field is not present if CIVER is less than CIVER2.

CIFAC (8-byte bit string)

Bridge facility token.

This is an 8-byte bridge facility token. The purpose of a bridge facility token is to

allow multiple transactions in a pseudoconversation to use the same bridge facility

(virtual 3270 terminal). In the first, or only, message in a pseudoconversation, a

value of FCNONE should be set; this tells CICS to allocate a new bridge facility for

this message. A bridge facility token is returned in response messages when a

nonzero CIFKT is specified on the input message. Subsequent input messages can

then use the same bridge facility token.

The following special value is defined:

FCNONE

No BVT token specified.

This is both a request and a response field used only for 3270 transactions. The

length of this field is given by LNFAC. The initial value of this field is FCNONE.

CIFKT (10-digit signed integer)

Bridge facility release time.

This is the length of time in seconds that the bridge facility will be kept after the

user transaction has ended. For nonconversational transactions, the value should

be zero.

This is a request field used only for 3270 transactions. The initial value of this field

is 0.

CIFL (4-byte character string)

Terminal emulated attributes.

40 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

This is the name of an installed terminal that is to be used as a model for the

bridge facility. A value of blanks means that CIFL is taken from the bridge

transaction profile definition, or a default value is used.

This is a request field used only for 3270 transactions. The length of this field is

given by LNFACL. The initial value of this field is 4 blanks.

CIFLG (10-digit signed integer)

Flags.

The value must be:

CIFNON

No flags.

This is a request field. The initial value of this field is CIFNON.

CIFMT (8-byte character string)

MQ format name of data that follows MQCIH.

This specifies the MQ format name of the data that follows the MQCIH structure.

On the MQPUT or MQPUT1 call, the application must set this field to the value

appropriate to the data. The rules for coding this field are the same as those for the

MDFMT field in MQMD.

This format name is also used for the reply message, if the CIRFM field has the

value FMNONE.

v For DPL requests, CIFMT must be the format name of the COMMAREA.

v For 3270 requests, CIFMT must be CSQCBDCI, and CIRFM must be CSQCBDCO.

The data-conversion exits for these formats must be installed on the queue

manager where they are to run.

If the request message results in the generation of an error reply message, the error

reply message has a format name of FMSTR.

This is a request field. The length of this field is given by LNFMT. The initial value

of this field is FMNONE.

CIFNC (4-byte character string)

MQ call name or CICS EIBFN function.

The value returned in this field is dependent on CIRET; see Table 15 on page 37.

The following values are possible when CIFNC contains an MQ call name:

CFCONN

MQCONN call.

CFGET

MQGET call.

CFINQ

MQINQ call.

Chapter 1. Data type descriptions 41

CFOPEN

MQOPEN call.

CFPUT

MQPUT call.

CFPUT1

MQPUT1 call.

CFNONE

No call.

This is a response field. The length of this field is given by LNFUNC. The initial

value of this field is CFNONE.

CIGWI (10-digit signed integer)

Wait interval for MQGET call issued by bridge task.

This field is applicable only when CIUOW has the value CUFRST. It allows the

sending application to specify the approximate time in milliseconds that the

MQGET calls issued by the bridge should wait for second and subsequent request

messages for the unit of work started by this message. This overrides the default

wait interval used by the bridge. The following special values may be used:

WIDFLT

Default wait interval.

 This causes the CICS bridge to wait for the period of time specified when

the bridge was started.

WIULIM

Unlimited wait interval.

This is a request field. The initial value of this field is WIDFLT.

CIII (10-digit signed integer)

Reserved.

This is a reserved field. The value must be 0. This field is not present if CIVER is

less than CIVER2.

CILEN (10-digit signed integer)

Length of MQCIH structure.

The value must be one of the following:

CILEN1

Length of version-1 CICS information header structure.

CILEN2

Length of version-2 CICS information header structure.

The following constant specifies the length of the current version:

CILENC

Length of current version of CICS information header structure.

This is a request field. The initial value of this field is CILEN2.

42 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

CILT (10-digit signed integer)

Link type.

This indicates the type of object that the bridge should try to link. The value must

be one of the following:

LTPROG

DPL program.

LTTRAN

3270 transaction.

This is a request field. The initial value of this field is LTPROG.

CINTI (4-byte character string)

Next transaction to attach.

This is the name of the next transaction returned by the user transaction (usually

by EXEC CICS RETURN TRANSID). If there is no next transaction, this field is set

to blanks.

This is a response field used only for 3270 transactions. The length of this field is

given by LNTRID. The initial value of this field is 4 blanks.

CIODL (10-digit signed integer)

Output COMMAREA data length.

This is the length of the user data to be returned to the client in a reply message.

This length includes the 8-byte program name. The length of the COMMAREA

passed to the linked program is the maximum of this field and the length of the

user data in the request message, minus 8.

Note: The length of the user data in a message is the length of the message

excluding the MQCIH structure.

If the length of the user data in the request message is smaller than CIODL, the

DATALENGTH option of the LINK command is used; this allows the LINK to be

function-shipped efficiently to another CICS region.

The following special value can be used:

OLINPT

Output length is same as input length.

 This value may be needed even if no reply is requested, in order to ensure

that the COMMAREA passed to the linked program is of sufficient size.

This is a request field used only for DPL programs. The initial value of this field

OLINPT.

CIREA (10-digit signed integer)

MQ reason or feedback code, or CICS EIBRESP2.

The value returned in this field is dependent on CIRET; see Table 15 on page 37.

Chapter 1. Data type descriptions 43

This is a response field. The initial value of this field is RCNONE.

CIRET (10-digit signed integer)

Return code from bridge.

This is the return code from the CICS bridge describing the outcome of the

processing performed by the bridge. The CIFNC, CICC, CIREA, and CIAC fields may

contain additional information (see Table 15 on page 37). The value is one of the

following:

CRC000

(0, X’000’) No error.

CRC001

(1, X’001’) EXEC CICS statement detected an error.

CRC002

(2, X’002’) MQ call detected an error.

CRC003

(3, X’003’) CICS bridge detected an error.

CRC004

(4, X’004’) CICS bridge ended abnormally.

CRC005

(5, X’005’) Application ended abnormally.

CRC006

(6, X’006’) Security error occurred.

CRC007

(7, X’007’) Program not available.

CRC008

(8, X’008’) Second or later message within current unit of work not

received within specified time.

CRC009

(9, X’009’) Transaction not available.

This is a response field. The initial value of this field is CRC000.

CIRFM (8-byte character string)

MQ format name of reply message.

This is the MQ format name of the reply message that will be sent in response to

the current message. The rules for coding this are the same as those for the MDFMT

field in MQMD.

This is a request field used only for DPL programs. The length of this field is given

by LNFMT. The initial value of this field is FMNONE.

CIRSI (4-byte character string)

Reserved.

This is a reserved field. The value must be 4 blanks. The length of this field is

given by LNRSID.

44 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

CIRS1 (8-byte character string)

Reserved.

This is a reserved field. The value must be 8 blanks.

CIRS2 (8-byte character string)

Reserved.

This is a reserved field. The value must be 8 blanks.

CIRS3 (8-byte character string)

Reserved.

This is a reserved field. The value must be 8 blanks.

CIRS4 (10-digit signed integer)

Reserved.

This is a reserved field. The value must be 0. This field is not present if CIVER is

less than CIVER2.

CIRTI (4-byte character string)

Reserved.

This is a reserved field. The value must be 4 blanks. The length of this field is

given by LNTRID.

CISC (4-byte character string)

Transaction start code.

This is an indicator specifying whether the bridge emulates a terminal transaction

or a START transaction. The value must be one of the following:

SCSTRT

Start.

SCDATA

Start data.

SCTERM

Terminate input.

SCNONE

None.

In the response from the bridge, this field is set to the start code appropriate to the

next transaction ID contained in the CINTI field. The following start codes are

possible in the response:

v SCSTRT

v SCDATA

v SCTERM

Chapter 1. Data type descriptions 45

For CICS Transaction Server Version 1.2, this field is a request field only; its value

in the response is undefined.

For CICS Transaction Server Version 1.3 and subsequent releases, this is both a

request and a response field.

This field is used only for 3270 transactions. The length of this field is given by

LNSTCO. The initial value of this field is SCNONE.

CISID (4-byte character string)

Structure identifier.

The value must be:

CISIDV

Identifier for CICS information header structure.

This is a request field. The initial value of this field is CISIDV.

CITES (10-digit signed integer)

Status at end of task.

This field shows the status of the user transaction at end of task. One of the

following values is returned:

TENOSY

Not synchronized.

 The user transaction has not yet completed and has not syncpointed. The

MDMT field in MQMD is MTRQST in this case.

TECMIT

Commit unit of work.

 The user transaction has not yet completed, but has syncpointed the first

unit of work. The MDMT field in MQMD is MTDGRM in this case.

TEBACK

Back out unit of work.

 The user transaction has not yet completed. The current unit of work will

be backed out. The MDMT field in MQMD is MTDGRM in this case.

TEENDT

End task.

 The user transaction has ended (or abended). The MDMT field in MQMD is

MTRPLY in this case.

This is a response field used only for 3270 transactions. The initial value of this

field is TENOSY.

CITI (4-byte character string)

Transaction to attach.

If CILT has the value LTTRAN, CITI is the transaction identifier of the user

transaction to be run; a nonblank value must be specified in this case.

46 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

If CILT has the value LTPROG, CITI is the transaction code under which all

programs within the unit of work are to be run. If the value specified is blank, the

CICS DPL bridge default transaction code (CKBP) is used. If the value is nonblank,

it must have been defined to CICS as a local TRANSACTION whose initial

program is CSQCBP00. This field is applicable only when CIUOW has the value

CUFRST or CUONLY.

This is a request field. The length of this field is given by LNTRID. The initial

value of this field is 4 blanks.

CIUOW (10-digit signed integer)

Unit-of-work control.

This controls the unit-of-work processing performed by the CICS bridge. You can

request the bridge to run a single transaction, or one or more programs within a

unit of work. The field indicates whether the CICS bridge should start a unit of

work, perform the requested function within the current unit of work, or end the

unit of work by committing it or backing it out. Various combinations are

supported, to optimize the data transmission flows.

The value must be one of the following:

CUONLY

Start unit of work, perform function, then commit the unit of work (DPL

and 3270).

CUCONT

Additional data for the current unit of work (3270 only).

CUFRST

Start unit of work and perform function (DPL only).

CUMIDL

Perform function within current unit of work (DPL only).

CULAST

Perform function, then commit the unit of work (DPL only).

CUCMIT

Commit the unit of work (DPL only).

CUBACK

Back out the unit of work (DPL only).

This is a request field. The initial value of this field is CUONLY.

CIVER (10-digit signed integer)

Structure version number.

The value must be one of the following:

CIVER1

Version-1 CICS information header structure.

CIVER2

Version-2 CICS information header structure.

Chapter 1. Data type descriptions 47

Fields that exist only in the more-recent version of the structure are identified as

such in the descriptions of the fields. The following constant specifies the version

number of the current version:

CIVERC

Current version of CICS information header structure.

This is a request field. The initial value of this field is CIVER2.

Initial values and RPG declaration

 Table 16. Initial values of fields in MQCIH

Field name Name of constant Value of constant

CISID CISIDV ’CIH�’

CIVER CIVER2 2

CILEN CILEN2 180

CIENC None 0

CICSI None 0

CIFMT FMNONE Blanks

CIFLG CIFNON 0

CIRET CRC000 0

CICC CCOK 0

CIREA RCNONE 0

CIUOW CUONLY 273

CIGWI WIDFLT -2

CILT LTPROG 1

CIODL OLINPT -1

CIFKT None 0

CIADS ADNONE 0

CICT CTNO 0

CITES TENOSY 0

CIFAC FCNONE Nulls

CIFNC CFNONE Blanks

CIAC None Blanks

CIAUT None Blanks

CIRS1 None Blanks

CIRFM FMNONE Blanks

CIRSI None Blanks

CIRTI None Blanks

CITI None Blanks

CIFL None Blanks

CIAI None Blanks

CISC SCNONE Blanks

CICNC None Blanks

CINTI None Blanks

48 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Table 16. Initial values of fields in MQCIH (continued)

Field name Name of constant Value of constant

CIRS2 None Blanks

CIRS3 None Blanks

CICP None 0

CIEO None 0

CIII None 0

CIRS4 None 0

Notes:

1. The symbol ‘�’ represents a single blank character.

RPG declaration (copy file CMQCIHG)

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..

 D* MQCIH Structure

 D*

 D* Structure identifier

 D CISID 1 4 INZ(’CIH ’)

 D* Structure version number

 D CIVER 5 8I 0 INZ(2)

 D* Length of MQCIH structure

 D CILEN 9 12I 0 INZ(180)

 D* Reserved

 D CIENC 13 16I 0 INZ(0)

 D* Reserved

 D CICSI 17 20I 0 INZ(0)

 D* MQ format name of data that followsMQCIH

 D CIFMT 21 28 INZ(’ ’)

 D* Flags

 D CIFLG 29 32I 0 INZ(0)

 D* Return code from bridge

 D CIRET 33 36I 0 INZ(0)

 D* MQ completion code or CICSEIBRESP

 D CICC 37 40I 0 INZ(0)

 D* MQ reason or feedback code, or CICSEIBRESP2

 D CIREA 41 44I 0 INZ(0)

 D* Unit-of-work control

 D CIUOW 45 48I 0 INZ(273)

 D* Wait interval for MQGET call issuedby bridge task

 D CIGWI 49 52I 0 INZ(-2)

 D* Link type

 D CILT 53 56I 0 INZ(1)

 D* Output COMMAREA data length

 D CIODL 57 60I 0 INZ(-1)

 D* Bridge facility release time

 D CIFKT 61 64I 0 INZ(0)

 D* Send/receive ADS descriptor

 D CIADS 65 68I 0 INZ(0)

 D* Whether task can beconversational

 D CICT 69 72I 0 INZ(0)

 D* Status at end of task

 D CITES 73 76I 0 INZ(0)

 D* Bridge facility token

 D CIFAC 77 84 INZ(X’00000000000000-

 D 00’)

 D* MQ call name or CICS EIBFNfunction

 D CIFNC 85 88 INZ(’ ’)

 D* Abend code

 D CIAC 89 92 INZ

 D* Password or passticket

 D CIAUT 93 100 INZ

Chapter 1. Data type descriptions 49

D* Reserved

 D CIRS1 101 108 INZ

 D* MQ format name of reply message

 D CIRFM 109 116 INZ(’ ’)

 D* Remote CICS system id to use

 D CIRSI 117 120 INZ

 D* CICS RTRANSID to use

 D CIRTI 121 124 INZ

 D* Transaction to attach

 D CITI 125 128 INZ

 D* Terminal emulated attributes

 D CIFL 129 132 INZ

 D* AID key

 D CIAI 133 136 INZ

 D* Transaction start code

 D CISC 137 140 INZ(’ ’)

 D* Abend transaction code

 D CICNC 141 144 INZ

 D* Next transaction to attach

 D CINTI 145 148 INZ

 D* Reserved

 D CIRS2 149 156 INZ

 D* Reserved

 D CIRS3 157 164 INZ

 D* Cursor position

 D CICP 165 168I 0 INZ(0)

 D* Offset of error in message

 D CIEO 169 172I 0 INZ(0)

 D* Reserved

 D CIII 173 176I 0 INZ(0)

 D* Reserved

 D CIRS4 177 180I 0 INZ(0)

 D*

MQCMHO – Create-message options

The following table summarizes the fields in the structure.

 Table 17. Fields in MQCMHO

Field Description Topic

StrucId Structure identifier StrucId

Version Structure version number Version

Options Options Options

Overview for MQCMHO

Availability: AIX, HP-UX, i5/OS, Solaris, Linux, Windows, z/OS and WebSphere

MQ clients.

Purpose: The MQCMHO structure allows applications to specify options that

control how message handles are created. The structure is an input parameter on

the MQCRTMH call.

Character set and encoding: Data in MQCMHO must be in the character set of the

application and encoding of the application (MQENC_NATIVE).

Fields for MQCMHO

The MQCMHO structure contains the following fields; the fields are described in

alphabetic order:

50 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

CMOPT (10-digit signed integer)

One of the following options can be specified:

CMVAL

 When MQSETMP is called to set a property in this message handle, the

property name will be validated to ensure that it:

v contains no invalid characters.

v does not begin “JMS” or “usr.JMS” except for the following:

– JMSCorrelationID

– JMSReplyTo

– JMSType

– JMSXGroupID

– JMSXGroupSeq

These names are reserved for JMS properties.

v is not one of the following keywords, in any mixture of upper or

lowercase:

– “AND”

– “BETWEEN”

– “ESCAPE”

– “FALSE”

– “IN”

– “IS”

– “LIKE”

– “NOT”

– “NULL”

– “OR”

– “TRUE”
v does not begin “Body.” or “Root.” (except for “Root.MQMD.”).

If the property is MQ-defined (“mq.*”) and the name is recognized, the

property descriptor fields will be set to the correct values for the property.

If the property is not recognized, the Support field of the property

descriptor is set to MQPD_OPTIONAL.

CMDEFV

 This specifies that the default level of validation of property names should

occur.

The default level of validation is equivalent to that specified by

MQCMHO_VALIDATE.

In a future release an administrative option may be defined which will

change the level of validation that will occur when

MQCMHO_DEFAULT_VALIDATION is defined.

This is the default value.

CMNOVA

 No validation on the property name will occur. See the description of

MQCMHO_VALIDATE.

Chapter 1. Data type descriptions 51

Default option: If none of the options described above is required, the following

option can be used:

CMNONE

 All options assume their default values. Use this value to indicate that no

other options have been specified. MQCMHO_NONE aids program

documentation; it is not intended that this option be used with any other,

but as its value is zero, such use cannot be detected.

This is always an input field. The initial value of this field is CMDEFV.

CMSID (10-digit signed integer)

This is the structure identifier; the value must be:

CMSIDV

Identifier for create message handle options structure.

This is always an input field. The initial value of this field is CMSIDV.

CMVER (10-digit signed integer)

This is the structure version number; the value must be:

CMVER1

 Version-1 create message handle options structure.

The following constant specifies the version number of the current version:

CMVERC

 Current version of create message handle options structure.

This is always an input field. The initial value of this field is CMVER1.

Initial values and RPG declaration

 Table 18. Initial values of fields in MQCMHO

Field name Name of constant Value of constant

CMSID CMSIDV ’CMHO’

CMVER CMVER1 1

CMOPT CMDEFV 0

RPG declaration (copy file CMQCMHOG)

 D* MQCMHO Structure

 D*

 D*

 D* Structure identifier

 D CMSID 1 4 INZ(’CMHO’)

 D*

 D* Structure version number

 D CMVER 5 8I 0 INZ(1)

 D*

 D* Options that control the action of MQCRTMH

 D CMOPT 9 12I 0 INZ(0)

52 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

MQCNO – Connect options

The following table summarizes the fields in the structure.

 Table 19. Fields in MQCNO

Field Description Topic

CNSID Structure identifier CNSID

CNVER Structure version number CNVER

CNOPT Options that control the action of

MQCONNX

CNOPT

Note: The remaining fields are ignored if CNVER is less than CNVER2.

CNCCO Offset of MQCD structure for

client connection

CNCCO

CNCCP Address of MQCD structure for

client connection

CNCCP

Note: The remaining fields are ignored if CNVER is less than CNVER3.

CNCT Queue-manager connection tag CNCT

Note: The remaining fields are ignored if CNVER is less than CNVER4.

CNSCP Address of MQSCO structure for

client connection

CNSCP

CNSCO Offset of MQSCO structure for

client connection

CNSCO

Note: The remaining fields are ignored if CNVER is less than CNVER5.

CNCONID Connection ID (a unique

connection identifier)

CNCONID

CNSECPO Security parameters offset CNSECPO

CNSECPP Security parameters pointer CNSECPP

Overview

Purpose: The MQCNO structure allows the application to specify options relating

to the connection to the local queue manager. The structure is an input/output

parameter on the MQCONNX call.

Version: The current version of MQCNO is CNVER4. Fields that exist only in the

more-recent versions of the structure are identified as such in the descriptions that

follow.

The COPY file provided contains the most recent version of MQCNO that is

supported by the environment, but with the initial value of the CNVER field set to

CNVER1. To use fields that are not present in the version-1 structure, the

application must set the CNVER field to the version number of the version required.

Character set and encoding: Data in MQCNO must be in the character set and

encoding of the local queue manager; these are given by the CodedCharSetId queue

manager attribute and ENNAT, respectively.

Chapter 1. Data type descriptions 53

Fields

The MQCNO structure contains the following fields; the fields are described in

alphabetic order:

CNCCO (10-digit signed integer)

This is the offset in bytes of an MQCD channel definition structure from the start

of the MQCNO structure.

You can use CNCCO only when the application issuing the MQCONNX call is

running as a WebSphere MQ client. It is therefore not applicable to the i5/OS

platform.

CNCCP (pointer)

This is a pointer to an MQCD channel definition structure

You can use CNCCP only when the application issuing the MQCONNX call is

running as a WebSphere MQ client. It is therefore not applicable to the i5/OS

platform.

CNCONID (24-byte character string)

Unique connection identifier. This field allows the queue manager to reliably

identify an application process by assigning it a unique identifier when it first

connects to the queue manager.

Applications use the connection identifier for correlation purposes when making

PUT and GET calls. All connections are assigned an identifier by the queue

manager, no matter how the connection was established.

It is possible to use the connection identifier to force the end of a long running

unit of work. To do this, specifying the connection identifier using the PCF

command ’Stop Connection’, or the MQSC command STOP CONN. For more

information on using these commands, see the related links.

The initial value of the field is 24 null bytes.

CNCT (128-byte bit string)

This is a tag that the queue manager associates with the resources that are affected

by the application during this connection.

Queue-manager connection tag.

Each application or application instance must use a different value for the tag, so

that the queue manager can correctly serialize access to the affected resources. See

the descriptions of the CN*CT* options for further details. The tag ceases to be

valid when the application terminates, or issues the MQDISC call.

Use the following special value if no tag is required:

CTNONE

No connection tag specified.

 The value is binary zero for the length of the field.

This is an input field. The length of this field is given by LNCTAG. The initial

value of this field is CTNONE. This field is ignored if CNVER is less than CNVER3.

54 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Use the field ConnTag when connecting to a z/OS queue manager.

CNOPT (10-digit signed integer)

Options that control the action of MQCONNX.

Binding options: The following options control the type of MQ binding that will

be used; specify only one of these options:

CNSBND

Standard binding.

 This option causes the application and the local-queue manager agent (the

component that manages queuing operations) to run in separate units of

execution (generally, in separate processes). This arrangement maintains

the integrity of the queue manager, that is, it protects the queue manager

from errant programs.

Use CNSBND in situations where the application may not have been fully

tested, or may be unreliable or untrustworthy. CNSBND is the default.

CNSBND is defined to aid program documentation. It is not intended that

this option be used with any other option controlling the type of binding

used, but as its value is zero, such use cannot be detected.

This option is supported in all environments.

CNFBND

Fastpath binding.

 This option causes the application and the local-queue manager agent to be

part of the same unit of execution. This is in contrast to the normal method

of binding, where the application and the local-queue manager agent run

in separate units of execution.

CNFBND is ignored if the queue manager does not support this type of

binding; processing continues as though the option had not been specified.

CNFBND may be of advantage in situations where the use of multiple

processes is a significant performance overhead compared to the overall

resource used by the application. An application that uses the fastpath

binding is known as a trusted application.

The following important points must be considered when deciding

whether to use the fastpath binding:

v Use of the CNFBND option compromises the integrity of the queue

manager, because it permits a rogue application to alter or corrupt

messages and other data areas belonging to the queue manager. It

should therefore be considered for use only in situations where these

issues have been fully evaluated.

v The application must not use asynchronous signals or timer interrupts

(such as sigkill) with CNFBND. There are also restrictions on the use

of shared memory segments. Refer to the WebSphere MQ Application

Programming Guide for more information.

v The application must not have more than one thread connected to the

queue manager at any one time.

v The application must use the MQDISC call to disconnect from the queue

manager.

v The application must finish before ending the queue manager with the

endmqm command.

Chapter 1. Data type descriptions 55

The following points apply to the use of CNFBND in the environments

indicated:

v On i5/OS, the job must run under user profile QMQM that belongs to

the QMQMADM group. Also, the program must not terminate abnormally,

otherwise unpredictable results may occur.

For more information about the implications of using trusted applications,

see the WebSphere MQ Application Programming Guide.

MQCNO_SHARED_BINDING

Shared Bindings.

 This option causes the application and the local-queue-manager agent (the

component that manages queuing operations) to run in separate units of

execution (generally, in separate processes). This arrangement maintains

the integrity of the queue manager, that is, it protects the queue manager

from errant programs. However some resources are shared between the

application and the local-queue-manager agent.

MQCNO_SHARED_BINDING is ignored if the queue manager does not

support this type of binding. Processing continues as though the option

had not been specified.

MQCNO_ISOLATED_BINDING

Isolated Bindings.

 This option causes the application and the local-queue-manager agent (the

component that manages queuing operations) to run in separate units of

execution (generally, in separate processes). This arrangement maintains

the integrity of the queue manager, that is, it protects the queue manager

from errant programs. The application process and the

local-queue-manager agent are isolated from each other in that they do not

share resources. MQCNO_ISOLATED_BINDING is ignored if the queue

manager does not support this type of binding. Processing continues as

though the option had not been specified.

Handle-sharing options: The following options control the sharing of handles

between different threads (units of parallel processing) within the same process.

Only one of these options can be specified.

CNHSN

No handle sharing between threads.

 This option indicates that connection and object handles can be used only

by the thread that caused the handle to be allocated (that is, the thread that

issued the MQCONN, MQCONNX, or MQOPEN call). The handles cannot

be used by other threads belonging to the same process.

CNHSB

Serial handle sharing between threads, with call blocking.

 This option indicates that connection and object handles allocated by one

thread of a process can be used by other threads belonging to the same

process. However, only one thread at a time can use any particular handle,

that is, only serial use of a handle is permitted. If a thread tries to use a

handle that is already in use by another thread, the call blocks (waits) until

the handle becomes available.

CNHSNB

Serial handle sharing between threads, without call blocking.

56 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

This is the same as CNHSB, except that if the handle is in use by another

thread, the call completes immediately with CCFAIL and RC2219 instead

of blocking until the handle becomes available.

A thread can have zero or one nonshared handle, plus zero or more shared

handles:

v Each MQCONN or MQCONNX call that specifies CNHSN returns a new

nonshared handle on the first call, and the same nonshared handle on the

second and later calls (assuming no intervening MQDISC call). The reason code

is RC2002 for the second and later calls.

v Each MQCONNX call that specifies CNHSB or CNHSNB returns a new shared

handle on each call.

Object handles inherit the same share properties as the connection handle specified

on the MQOPEN call that created the object handle. Also, units of work inherit the

same share properties as the connection handle used to start the unit of work; if

the unit of work is started in one thread using a shared handle, the unit of work

can be updated in another thread using the same handle.

If no handle-sharing option is specified, the default is determined by the

environment:

v In the Microsoft® Transaction Server (MTS) environment, the default is the same

as CNHSB.

v In other environments, the default is the same as CNHSN.

Default option: If none of the options described above is required, the following

option can be used:

CNNONE

No options specified.

 CNNONE is defined to aid program documentation. It is not intended that

this option be used with any other CN* option, but as its value is zero,

such use cannot be detected.

This is always an input field. The initial value of this field is CNNONE.

CNSCO (10-digit signed integer)

This is the offset in bytes of an MQSCO structure from the start of the MQCNO

structure.

You can use CNSCP only when the application issuing the MQCONNX call is

running as a WebSphere MQ client. It is therefore not applicable on the i5/OS

platform.

CNSCP (pointer)

This is the address of an MQSCO structure.

You can use CNSCP only when the application issuing the MQCONNX call is

running as a WebSphere MQ client. It is therefore not applicable on the i5/OS

platform.

CNSECPO (10-digit signed integer)

Security parameters offset. The offset of the MQCSP structure used for specifying a

user ID and password.

The value may be positive or negative. The initial value of this field is 0.

Chapter 1. Data type descriptions 57

CNSECPP (pointer)

Security parameters pointer. Address of the MQCSP structure used for specifying a

user ID and a password.

The initial value of this field is a null pointer or null bytes.

CNSID (4-byte character string)

The structure identifier for the MQCNO structure.

The value must be:

CNSIDV

Identifier for connect-options structure.

This is always an input field. The initial value of this field is CNSIDV.

CNVER (10-digit signed integer)

The structure version number for the MQCNO structure.

The value must be:

CNVER5

Version-5 connect-options structure.

 This version is supported in all environments.

The following constant specifies the version number of the current version:

CNVERC

Current version of connect-options structure.

This is always an input field. The initial value of this field is CNVER5.

Initial values and RPG declaration

 Table 20. Initial values of fields in MQCNO

Field name Name of constant Value of constant

CNSID CNSIDV ’CNO�’

CNVER CNVER1 1

CNOPT CNNONE 0

CNCCO None 0

CNCCP None Null pointer or null

bytes

CNCT CTNONE Nulls

CNSCP None Null pointer or null

bytes

CNSCO None 0

CNCONID None Nulls

CNSECPO None 0

CNSECPP None Null pointer or null

bytes

Notes:

1. The symbol ‘�’ represents a single blank character.

58 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

RPG declaration (copy file CMQCNOG)

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..

 D*

 D* MQCNO Structure

 D*

 D* Structure identifier

 D CNSID 1 4 INZ(’CNO ’)

 D* Structure version number

 D CNVER 5 8I 0 INZ(1)

 D* Options that control the action ofMQCONNX

 D CNOPT 9 12I 0 INZ(0)

 D* Offset of MQCD structure for clientconnection

 D CNCCO 13 16I 0 INZ(0)

 D* Address of MQCD structure for clientconnection

 D CNCCP 17 32* INZ(*NULL)

 D* Queue-manager connection tag

 D CNCT 33 160 INZ(X’00000000000000-

 D 0000000000000000000000-

 D 0000000000000000000000-

 D 0000000000000000000000-

 D 0000000000000000000000-

 D 0000000000000000000000-

 D 0000000000000000000000-

 D 0000000000000000000000-

 D 0000000000000000000000-

 D 0000000000000000000000-

 D 0000000000000000000000-

 D 000000000000000000000-

 D ’)

 D* Address of MQSCO structure forclient connection

 D CNSCP 161 176* INZ(*NULL)

 D* Offset of MQSCO structure for clientconnection

 D CNSCO 177 180I 0 INZ(0)

 D* Unique Connection Identifier

 D CNCONID 181 204 INZ(X’00000000000000-

 D 0000000000000000000000-

 D 000000000000’)

 D* Offset of MQCSP structure

 D CNSECPO 205 208I 0 INZ(0)

 D* Address of MQCSP structure

 D CNSECPP 209 224* INZ(*NULL)

MQCSP - Security parameters

Summary of the MQCSP structure for WebSphere MQ for i5/OS.

The following table summarizes the fields in the structure.

 Table 21. Fields in MQCSP

Field Description Topic

CSSID Structure identifier CSSID

CSVER Structure version number CSVER

CSAUTHT Type of authentication CSAUTHT

CSRE1 Required for pointer

alignment on i5/OS

CSRE1

CSCSPUIP Address of user ID CSCSPUIP

CSCSPUIO Offset of user ID CSCSPUIO

CSCSPUIL Length of user ID CSCSPUIL

Chapter 1. Data type descriptions 59

Table 21. Fields in MQCSP (continued)

Field Description Topic

CSRS2 Required for pointer

alignment on i5/OS

CSRS2

CSCPPP Address of password CSCPPP

CSCPPO Offset of password CSCPPO

CSCPPL Length of password CSCPPL

Overview for MQCSP

Purpose: The MQCSP structure enables the authorization service to authenticate a

user ID and password. You specify the MQCSP connection security parameters

structure on an MQCONNX call.

Character set and encoding: Data in MQCSP must be in the character set and

encoding of the local queue manager; these are given by the CodedCharSetId queue

manager attribute and ENAT, respectively.

Fields for MQCSP

The MQCSP structure contains the following fields; the fields are described in

alphabetic order.

CSAUTHT (10-digit signed integer)

This is the type of authentication to perform.

Valid values are:

CSAN

Do not use user ID and password fields.

CSAUIAP

Authenticate user ID and password fields.

This is an input field. The initial value of this field is CSAN.

CSCPPL (10-digit signed integer)

This is the length of the password to be used in authentication.

The maximum length of the password is not dependent on the platform. If the

length of the password is greater than that allowed, the authentication request fails

with an MQRC_NOT_AUTHORIZED.

This is an input field. The initial value of this field is 0.

CSCPPO (10-digit signed integer)

This is the offset in bytes of the password to be used in authentication.

The offset can be positive or negative.

This is an input field. The initial value of this field is 0.

CSCPPP (pointer)

This is the address of the password to be used in authentication.

This is an input field. The initial value of this field is the null pointer.

60 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

CSCSPUIL (10-digit signed integer)

This is the length of the user ID to be used in authentication.

The maximum length of the user ID is not dependent on the platform. If the length

of the user ID is greater than that allowed, the authentication request fails with an

MQRC_NOT_AUTHORIZED.

This is an input field. The initial value of this field is 0.

CSCSPUIO (10-digit signed integer)

This is the offset in bytes of the user ID to be used in authentication.

The offset can be positive or negative.

This is an input field. The initial value of this field is 0.

CSCSPUIP (pointer)

This is the address of the user ID to be used in authentication.

This is an input field. The initial value of this field is the null pointer. This field is

ignored if CSVER is less than CSVER5.

CSRE1 (4-byte character string)

A reserved field, required for pointer alignment on i5/OS.

This is an input field. The initial value of this field is all null.

CSRS2 (8-byte character string)

A reserved field, required for pointer alignment on i5/OS.

This is an input field. The initial value of this field is all null.

CSSID (4-byte character string)

Structure identifier.

The value must be:

CSSIDV

Identifier for the security parameters structure.

CSVER (10-digit signed integer)

Structure version number.

The value must be:

CSVER1

Version-1 security parameters structure.

The following constant specifies the version number of the current version:

CSVERC

Current version of security parameters structure.

This is always an input field. The initial value of this field is CSVER1.

Chapter 1. Data type descriptions 61

Initial values and RPG declaration

 Table 22. Initial values of fields in MQCNO

Field name Name of constant Value of constant

CSSID CSSIDV ’CSP�’

CSVER CSVER1 1

CSAUTHT None 0

CSRE1 None Nulls

CSCSPUIP None Null pointer

CSCSPUIO None 0

CSCSPUIL None 0

CSRS2 None Nulls

CSCPPP None Null pointer

CSCPPO None 0

CSCPPL None 0

Note:

1. The symbol ‘�’ represents a single blank character.

Initial values and RPG declaration

RPG declaration (copy file CMQCSPG)

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..

 D*

 D* MQCSP Structure

 D*

 D* Structure identifier

 D CSSID 1 4 INZ(’CSP ’)

 D* Structure version number

 D CSVER 5 8I 0 INZ(1)

 D* Type of authentication

 D CSAUTHT 9 12I 0 INZ(0)

 D* Reserved

 D CSRE1 13 16 INZ(X’00000000’)

 D* Address of user ID

 D CSCSPUIP 17 32* INZ(*NULL)

 D* Offset of user ID

 D CSCSPUIO 33 36I 0 INZ(0)

 D* Length of user ID

 D CSCSPUIL 37 40I 0 INZ(0)

 D* Reserved

 D CSRS2 41 48 INZ(X’0000000000000000’)

 D* Address of password

 D CSCPPP 49 64* INZ(*NULL)

 D* Offset of password

 D CSCPPO 65 68I 0 INZ(0)

 D* Length of password

 D CSCPPL 69 72I 0 INZ(0)

MQCTLO – Control callback options structure

Structure specifying the control callback function.

62 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

The following table summarizes the fields in the structure.

 Table 23. Fields in MQCTLO

Field Description Topic

StrucID Structure identifier StrucID

Version Structure version number Version

Options Options Options

Reserved Reserved field Options

ConnectionArea Field for callback function to use ConnectionArea

Overview for MQCTLO

Availability: AIX, HP-UX, i5/OS, Solaris, Linux, Windows, z/OS, and WebSphere

MQ clients connected to these systems. Overview of the MQCTLO structure.

Purpose: The MQCTLO structure is used to specify options relating to a control

callbacks function.

The structure is an input and output parameter on the MQCTL call.

Version: The current version of MQCTLO is MQCTLO_VERSION_1.

Character set and encoding: Data in MQCTLO must be in the character set and

encoding of the local queue manager; these are given by the CodedCharSetId

queue-manager attribute and MQENC_NATIVE, respectively. However, if the

application is running as an MQ client, the structure must be in the character set

and encoding of the client.

Fields for MQCTLO

Alphabetic list of fields for the MQCTLO structure.

The MQCTLO structure contains the following fields; the fields are described in

alphabetical order:

COCONNAREA (10-digit signed integer)

Control options structure - ConnectionArea field

This is a field that is available for the callback function to use.

The queue manager makes no decisions based on the contents of this field and it is

passed unchanged from the ConnectionArea field in the MQCBC structure, which

is a parameter on the MQCB call.

This field is ignored for all operations other than MQOP_START and

MQOP_START_WAIT.

This is an input and output field to the callback function. The initial value of this

field is a null pointer or null bytes.

COOPT (10-digit signed integer)

Control options structure - Options field

Options that control the action of MQCTLO.

Chapter 1. Data type descriptions 63

MQCTLO_FAIL_IF_QUIESCING

Force the MQCTLO call to fail if the queue manager or connection is in the

quiescing state.

 Specify MQGMO_FAIL_IF_QUIESCING, in the MQGMO options passed

on the MQCB call, to cause notification to message consumers when they

are quiescing.

MQCTLO_THREAD_AFFINITY

This option informs the system that the application requires that all

message consumers, for the same connection, are called on the same

thread.

Default option: If you do not need any of the options described, use the following

option:

MQCTLO_NONE

Use this value to indicate that no other options have been specified; all

options assume their default values. MQCTLO_NONE is defined to aid

program documentation; it is not intended that this option be used with

any other, but as its value is zero, such use cannot be detected.

This is an input field. The initial value of the COOPT field is MQCTLO_NONE.

CORSV (10-digit signed integer)

This is a reserved field. The initial value of this field is a blank character.

COSID (10-digit signed integer)

Control options structure - StrucId field

This is the structure identifier; the value must be:

CTLSI Identifier for Control Options structure.

This is always an input field. The initial value of this field is CTLSI.

COVER (10-digit signed integer)

Control options structure - Version field

This is the structure version number; the value must be:

CTLV1

Version-1 Control options structure.

The following constant specifies the version number of the current version:

CTLCV

Current version of Control options structure.

This is always an input field. The initial value of this field is CTLV1.

Initial values and RPG declaration

Control options structure - Initial values

 Table 24. Initial values of fields in MQCTLO

Field name Name of constant Value of constant

COSID CTLSI ’CTLO’

64 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Table 24. Initial values of fields in MQCTLO (continued)

Field name Name of constant Value of constant

COVER CTLV1 1

COOPT MQCTLO_NONE Nulls

CORSV Reserved field

COCONNAREA None Null pointer or null

bytes

RPG declaration (copy file CTLOG)

 D* MQCTLO Structure

 D*

 D*

 D* Structure identifier

 D COSID 1 4 INZ(’CTLO’)

 D*

 D* Structure version number

 D COVER 5 8I 0 INZ(1)

 D*

 D* Options that control the action of MQCTL

 D COOPT 9 12I 0 INZ(0)

 D*

 D* Reserved

 D CORSV 13 16I 0 INZ(-1)

 D*

 D* MQCTL Data area passed to the function

 D COCONNAREA 17 32* INZ(*NULL)

MQDH – Distribution header

The following table summarizes the fields in the structure.

 Table 25. Fields in MQDH

Field Description Topic

DHSID Structure identifier DHSID

DHVER Structure version number DHVER

DHLEN Length of MQDH structure plus following records DHLEN

DHENC Numeric encoding of data that follows array of

MQPMR records

DHENC

DHCSI Character set identifier of data that follows array

of MQPMR records

DHCSI

DHFMT Format name of data that follows array of

MQPMR records

DHFMT

DHFLG General flags DHFLG

DHPRF Flags indicating which MQPMR fields are present DHPRF

DHCNT Number of object records present DHCNT

DHORO Offset of first object record from start of MQDH DHORO

DHPRO Offset of first put-message record from start of

MQDH

DHPRO

Chapter 1. Data type descriptions 65

Overview

Purpose: The MQDH structure describes the additional data that is present in a

message when that message is a distribution-list message stored on a transmission

queue. A distribution-list message is a message that is sent to multiple destination

queues. The additional data consists of the MQDH structure followed by an array

of MQOR records and an array of MQPMR records.

This structure is for use by specialized applications that put messages directly on

transmission queues, or which remove messages from transmission queues (for

example: message channel agents).

This structure should not be used by normal applications which simply want to

put messages to distribution lists. Those applications should use the MQOD

structure to define the destinations in the distribution list, and the MQPMO

structure to specify message properties or receive information about the messages

sent to the individual destinations.

Format name: FMDH.

Character set and encoding: Data in MQDH must be in the character set and

encoding of the local queue manager; these are given by the CodedCharSetId queue

manager attribute and ENNAT for the C programming language, respectively.

The character set and encoding of the MQDH must be set into the MDCSI and MDENC

fields in:

v The MQMD (if the MQDH structure is at the start of the message data), or

v The header structure that precedes the MQDH structure (all other cases).

Usage: When an application puts a message to a distribution list, and some or all

of the destinations are remote, the queue manager prefixes the application message

data with the MQXQH and MQDH structures, and places the message on the

relevant transmission queue. The data therefore occurs in the following sequence

when the message is on a transmission queue:

v MQXQH structure

v MQDH structure plus arrays of MQOR and MQPMR records

v Application message data

Depending on the destinations, more than one such message may be generated by

the queue manager, and placed on different transmission queues. In this case, the

MQDH structures in those messages identify different subsets of the destinations

defined by the distribution list opened by the application.

An application that puts a distribution-list message directly on a transmission

queue must conform to the sequence described above, and must ensure that the

MQDH structure is correct. If the MQDH structure is not valid, the queue manager

may choose to fail the MQPUT or MQPUT1 call with reason code RC2135.

Messages can be stored on a queue in distribution-list form only if the queue is

defined as being able to support distribution list messages (see the DistLists

queue attribute described in “Attributes for queues” on page 437). If an application

puts a distribution-list message directly on a queue that does not support

distribution lists, the queue manager splits the distribution list message into

individual messages, and places those on the queue instead.

66 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Fields

The MQDH structure contains the following fields; the fields are described in

alphabetic order:

DHCNT (10-digit signed integer)

Number of MQOR records present.

This defines the number of destinations. A distribution list must always contain at

least one destination, so DHCNT must always be greater than zero.

The initial value of this field is 0.

DHCSI (10-digit signed integer)

Character set identifier of data that follows the MQOR and MQPMR records.

This specifies the character set identifier of the data that follows the arrays of

MQOR and MQPMR records; it it does not apply to character data in the MQDH

structure itself.

On the MQPUT or MQPUT1 call, the application must set this field to the value

appropriate to the data. The following special value can be used:

CSINHT

Inherit character-set identifier of this structure.

 Character data in the data following this structure is in the same character

set as this structure.

The queue manager changes this value in the structure sent in the message

to the actual character-set identifier of the structure. Provided no error

occurs, the value CSINHT is not returned by the MQGET call.

CSINHT cannot be used if the value of the MDPAT field in MQMD is

ATBRKR.

The initial value of this field is CSUNDF.

DHENC (10-digit signed integer)

Numeric encoding of data that follows the MQOR and MQPMR records.

This specifies the numeric encoding of the data that follows the arrays of MQOR

and MQPMR records; it does not apply to numeric data in the MQDH structure

itself.

On the MQPUT or MQPUT1 call, the application must set this field to the value

appropriate to the data.

The initial value of this field is 0.

DHFLG (10-digit signed integer)

General flags.

The following flag can be specified:

Chapter 1. Data type descriptions 67

DHFNEW

Generate new message identifiers.

 This flag indicates that a new message identifier is to be generated for each

destination in the distribution list. This can be set only when there are no

put-message records present, or when the records are present but they do

not contain the PRMID field.

Using this flag defers generation of the message identifiers until the last

possible moment, namely the moment when the distribution-list message is

finally split into individual messages. This minimizes the amount of

control information that must flow with the distribution-list message.

When an application puts a message to a distribution list, the queue

manager sets DHFNEW in the MQDH it generates when both of the

following are true:

v There are no put-message records provided by the application, or the

records provided do not contain the PRMID field.

v The MDMID field in MQMD is MINONE, or the PMOPT field in MQPMO

includes PMNMID

If no flags are needed, the following can be specified:

DHFNON

No flags.

 This constant indicates that no flags have been specified. DHFNON is

defined to aid program documentation. It is not intended that this constant

be used with any other, but as its value is zero, such use cannot be

detected.

The initial value of this field is DHFNON.

DHFMT (8-byte character string)

Format name of data that follows the MQOR and MQPMR records.

This specifies the format name of the data that follows the arrays of MQOD and

MQPMR records (whichever occurs last).

On the MQPUT or MQPUT1 call, the application must set this field to the value

appropriate to the data. The rules for coding this field are the same as those for the

MDFMT field in MQMD.

The initial value of this field is FMNONE.

DHLEN (10-digit signed integer)

Length of MQDH structure plus following MQOR and MQPMR records.

This is the number of bytes from the start of the MQDH structure to the start of

the message data following the arrays of MQOR and MQPMR records. The data

occurs in the following sequence:

v MQDH structure

v Array of MQOR records

v Array of MQPMR records

v Message data

68 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

The arrays of MQOR and MQPMR records are addressed by offsets contained

within the MQDH structure. If these offsets result in unused bytes between one or

more of the MQDH structure, the arrays of records, and the message data, those

unused bytes must be included in the value of DHLEN, but the content of those

bytes is not preserved by the queue manager. It is valid for the array of MQPMR

records to precede the array of MQOR records.

The initial value of this field is 0.

DHORO (10-digit signed integer)

Offset of first MQOR record from start of MQDH.

This field gives the offset in bytes of the first record in the array of MQOR object

records containing the names of the destination queues. There are DHCNT records in

this array. These records (plus any bytes skipped between the first object record

and the previous field) are included in the length given by the DHLEN field.

A distribution list must always contain at least one destination, so DHORO must

always be greater than zero.

The initial value of this field is 0.

DHPRF (10-digit signed integer)

Flags indicating which MQPMR fields are present.

Zero or more of the following flags can be specified:

PFMID

Message-identifier field is present.

PFCID

Correlation-identifier field is present.

PFGID

Group-identifier field is present.

PFFB Feedback field is present.

PFACC

Accounting-token field is present.

If no MQPMR fields are present, the following can be specified:

PFNONE

No put-message record fields are present.

 PFNONE is defined to aid program documentation. It is not intended that

this constant be used with any other, but as its value is zero, such use

cannot be detected.

The initial value of this field is PFNONE.

DHPRO (10-digit signed integer)

Offset of first MQPMR record from start of MQDH.

This field gives the offset in bytes of the first record in the array of MQPMR put

message records containing the message properties. If present, there are DHCNT

Chapter 1. Data type descriptions 69

records in this array. These records (plus any bytes skipped between the first put

message record and the previous field) are included in the length given by the

DHLEN field.

Put message records are optional; if no records are provided, DHPRO is zero, and

DHPRF has the value PFNONE.

The initial value of this field is 0.

DHSID (4-byte character string)

Structure identifier.

The value must be:

DHSIDV

Identifier for distribution header structure.

The initial value of this field is DHSIDV.

DHVER (10-digit signed integer)

Structure version number.

The value must be:

DHVER1

Version number for distribution header structure.

The following constant specifies the version number of the current version:

DHVERC

Current version of distribution header structure.

The initial value of this field is DHVER1.

Initial values and RPG declaration

 Table 26. Initial values of fields in MQDH

Field name Name of constant Value of constant

DHSID DHSIDV ’DH��’

DHVER DHVER1 1

DHLEN None 0

DHENC None 0

DHCSI CSUNDF 0

DHFMT FMNONE Blanks

DHFLG DHFNON 0

DHPRF PFNONE 0

DHCNT None 0

DHORO None 0

DHPRO None 0

Notes:

1. The symbol ‘�’ represents a single blank character.

70 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

RPG declaration (copy file CMQDHG)

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..

 D* MQDH Structure

 D*

 D* Structure identifier

 D DHSID 1 4 INZ(’DH ’)

 D* Structure version number

 D DHVER 5 8I 0 INZ(1)

 D* Length of MQDH structure plusfollowing MQOR and MQPMR records

 D DHLEN 9 12I 0 INZ(0)

 D* Numeric encoding of data that followsthe MQOR and MQPMR records

 D DHENC 13 16I 0 INZ(0)

 D* Character set identifier of data thatfollows the MQOR and MQPMR

 D* records

 D DHCSI 17 20I 0 INZ(0)

 D* Format name of data that follows theMQOR and MQPMR records

 D DHFMT 21 28 INZ(’ ’)

 D* General flags

 D DHFLG 29 32I 0 INZ(0)

 D* Flags indicating which MQPMR fieldsare present

 D DHPRF 33 36I 0 INZ(0)

 D* Number of MQOR records present

 D DHCNT 37 40I 0 INZ(0)

 D* Offset of first MQOR record from startof MQDH

 D DHORO 41 44I 0 INZ(0)

 D* Offset of first MQPMR record fromstart of MQDH

 D DHPRO 45 48I 0 INZ(0)

MQDLH – Dead-letter header

The following table summarizes the fields in the structure.

 Table 27. Fields in MQDLH

Field Description Topic

DLSID Structure identifier DLSID

DLVER Structure version number DLVER

DLREA Reason message arrived on dead-letter queue DLREA

DLDQ Name of original destination queue DLDQ

DLDM Name of original destination queue manager DLDM

DLENC Numeric encoding of data that follows MQDLH DLENC

DLCSI Character set identifier of data that follows

MQDLH

DLCSI

DLFMT Format name of data that follows MQDLH DLFMT

DLPAT Type of application that put message on

dead-letter queue

DLPAT

DLPAN Name of application that put message on

dead-letter queue

DLPAN

DLPD Date when message was put on dead-letter queue DLPD

DLPT Time when message was put on dead-letter queue DLPT

Overview

Purpose: The MQDLH structure describes the information that prefixes the

application message data of messages on the dead-letter (undelivered-message)

Chapter 1. Data type descriptions 71

queue. A message can arrive on the dead-letter queue either because the queue

manager or message channel agent has redirected it to the queue, or because an

application has put the message directly on the queue.

Format name: FMDLH.

Character set and encoding: The fields in the MQDLH structure are in the

character set and encoding given by the MDCSI and MDENC fields in the header

structure that precedes MQDLH, or by those fields in the MQMD structure if the

MQDLH is at the start of the application message data.

The character set must be one that has single-byte characters for the characters that

are valid in queue names.

Usage: Applications that put messages directly on the dead-letter queue should

prefix the message data with an MQDLH structure, and initialize the fields with

appropriate values. However, the queue manager does not require that an MQDLH

structure be present, or that valid values have been specified for the fields.

If a message is too long to put on the dead-letter queue, the application should

consider doing one of the following:

v Truncate the message data to fit on the dead-letter queue.

v Record the message on auxiliary storage and place an exception report message

on the dead-letter queue indicating this.

v Discard the message and return an error to its originator. If the message is (or

might be) a critical message, this should be done only if it is known that the

originator still has a copy of the message, for example, a message received by a

message channel agent from a communication channel.

Which of the above is appropriate (if any) depends on the design of the

application.

The queue manager performs special processing when a message which is a

segment is put with an MQDLH structure at the front; see the description of the

MQMDE structure for further details.

Putting messages on the dead-letter queue: When a message is put on the

dead-letter queue, the MQMD structure used for the MQPUT or MQPUT1 call

should be identical to the MQMD associated with the message (usually the MQMD

returned by the MQGET call), with the exception of the following:

v The MDCSI and MDENC fields must be set to whatever character set and encoding

are used for fields in the MQDLH structure.

v The MDFMT field must be set to FMDLH to indicate that the data begins with a

MQDLH structure.

v The context fields (MDACC, MDAID, MDAOD, MDPAN, MDPAT, MDPD, MDPT, MDUID) should

be set by using a context option appropriate to the circumstances:

– An application putting on the dead-letter queue a message that is not related

to any preceding message should use the PMDEFC option; this causes the

queue manager to set all of the context fields in the message descriptor to

their default values.

– A server application putting on the dead-letter queue a message it has just

received should use the PMPASA option, in order to preserve the original

context information.

72 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

– A server application putting on the dead-letter queue a reply to a message it

has just received should use the PMPASI option; this preserves the identity

information but sets the origin information to be that of the server

application.

– A message channel agent putting on the dead-letter queue a message it

received from its communication channel should use the PMSETA option, to

preserve the original context information.

In the MQDLH structure itself, the fields should be set as follows:

v The DLCSI, DLENC and DLFMT fields should be set to the values that describe the

data that follows the MQDLH structure, usually the values from the original

message descriptor.

v The context fields DLPAT, DLPAN, DLPD, and DLPT should be set to values

appropriate to the application that is putting the message on the dead-letter

queue; these values are not related to the original message.

v Other fields should be set as appropriate.

The application should ensure that all fields have valid values, and that character

fields are padded with blanks to the defined length of the field; the character data

should not be terminated prematurely by using a null character, because the queue

manager does not convert the null and subsequent characters to blanks in the

MQDLH structure.

Getting messages from the dead-letter queue: Applications that get messages

from the dead-letter queue should verify that the messages begin with an MQDLH

structure. The application can determine whether an MQDLH structure is present

by examining the MDFMT field in the message descriptor MQMD; if the field has the

value FMDLH, the message data begins with an MQDLH structure. Applications

that get messages from the dead-letter queue should also be aware that such

messages may have been truncated if they were originally too long for the queue.

Fields

The MQDLH structure contains the following fields; the fields are described in

alphabetic order:

DLCSI (10-digit signed integer)

Character set identifier of data that follows MQDLH.

This specifies the character set identifier of the data that follows the MQDLH

structure (usually the data from the original message); it does not apply to

character data in the MQDLH structure itself.

On the MQPUT or MQPUT1 call, the application must set this field to the value

appropriate to the data. The following special value can be used:

CSINHT

Inherit character-set identifier of this structure.

 Character data in the data following this structure is in the same character

set as this structure.

The queue manager changes this value in the structure sent in the message

to the actual character-set identifier of the structure. Provided no error

occurs, the value CSINHT is not returned by the MQGET call.

Chapter 1. Data type descriptions 73

CSINHT cannot be used if the value of the MDPAT field in MQMD is

ATBRKR.

The initial value of this field is CSUNDF.

DLDM (48-byte character string)

Name of original destination queue manager.

This is the name of the queue manager that was the original destination for the

message.

The length of this field is given by LNQMN. The initial value of this field is 48

blank characters.

DLDQ (48-byte character string)

Name of original destination queue.

This is the name of the message queue that was the original destination for the

message.

The length of this field is given by LNQN. The initial value of this field is 48 blank

characters.

DLENC (10-digit signed integer)

Numeric encoding of data that follows MQDLH.

This specifies the numeric encoding of the data that follows the MQDLH structure

(usually the data from the original message); it does not apply to numeric data in

the MQDLH structure itself.

On the MQPUT or MQPUT1 call, the application must set this field to the value

appropriate to the data.

The initial value of this field is 0.

DLFMT (8-byte character string)

Format name of data that follows MQDLH.

This specifies the format name of the data that follows the MQDLH structure

(usually the data from the original message).

On the MQPUT or MQPUT1 call, the application must set this field to the value

appropriate to the data. The rules for coding this field are the same as those for the

MDFMT field in MQMD.

The length of this field is given by LNFMT. The initial value of this field is

FMNONE.

DLPAN (28-byte character string)

Name of application that put message on dead-letter (undelivered-message) queue.

74 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

The format of the name depends on the DLPAT field. See, also, the description of the

MDPAN field in “MQMD – Message descriptor” on page 125.

If it is the queue manager that redirects the message to the dead-letter queue,

DLPAN contains the first 28 characters of the queue manager name, padded with

blanks if necessary.

The length of this field is given by LNPAN. The initial value of this field is 28

blank characters.

DLPAT (10-digit signed integer)

Type of application that put message on dead-letter (undelivered-message) queue.

This field has the same meaning as the MDPAT field in the message descriptor

MQMD (see “MQMD – Message descriptor” on page 125 for details).

If it is the queue manager that redirects the message to the dead-letter queue,

DLPAT has the value ATQM.

The initial value of this field is 0.

DLPD (8-byte character string)

Date when message was put on dead-letter (undelivered-message) queue.

The format used for the date when this field is generated by the queue manager is:

v YYYYMMDD

where the characters represent:

YYYY year (four numeric digits)

MM month of year (01 through 12)

DD day of month (01 through 31)

Greenwich Mean Time (GMT) is used for the DLPD and DLPT fields, subject to the

system clock being set accurately to GMT.

The length of this field is given by LNPDAT. The initial value of this field is 8

blank characters.

DLPT (8-byte character string)

Time when message was put on the dead-letter (undelivered-message) queue.

The format used for the time when this field is generated by the queue manager is:

v HHMMSSTH

where the characters represent (in order):

HH hours (00 through 23)

MM minutes (00 through 59)

SS seconds (00 through 59; see note below)

T tenths of a second (0 through 9)

H hundredths of a second (0 through 9)

Chapter 1. Data type descriptions 75

Note: If the system clock is synchronized to a very accurate time standard, it is

possible on rare occasions for 60 or 61 to be returned for the seconds in DLPT. This

happens when leap seconds are inserted into the global time standard.

Greenwich Mean Time (GMT) is used for the DLPD and DLPT fields, subject to the

system clock being set accurately to GMT.

The length of this field is given by LNPTIM. The initial value of this field is 8

blank characters.

DLREA (10-digit signed integer)

Reason message arrived on dead-letter (undelivered-message) queue.

This identifies the reason why the message was placed on the dead-letter queue

instead of on the original destination queue. It should be one of the FB* or RC*

values (for example, RC2053). See the description of the MDFB field in “MQMD –

Message descriptor” on page 125 for details of the common FB* values that can

occur.

If the value is in the range FBIFST through FBILST, the actual IMS error code can

be determined by subtracting FBIERR from the value of the DLREA field.

Some FB* values occur only in this field. They relate to repository messages,

trigger messages, or transmission-queue messages that have been transferred to the

dead-letter queue. These are:

FBABEG

Application cannot be started.

 An application processing a trigger message was unable to start the

application named in the TMAI field of the trigger message (see “MQTM –

Trigger message” on page 274).

FBATYP

Application type error.

 An application processing a trigger message was unable to start the

application because the TMAT field of the trigger message is not valid (see

“MQTM – Trigger message” on page 274).

FBBOCD

Cluster-receiver channel deleted.

 The message was on the SYSTEM.CLUSTER.TRANSMIT.QUEUE intended

for a cluster queue that had been opened with the OOBNDO option, but

the remote cluster-receiver channel to be used to transmit the message to

the destination queue was deleted before the message could be sent.

Because OOBNDO was specified, only the channel selected when the

queue was opened can be used to transmit the message. As this channel is

not longer available, the message has been placed on the dead-letter queue.

FBNARM

Message is not a repository message.

FBSBCX

Message stopped by channel auto-definition exit.

FBSBMX

Message stopped by channel message exit.

76 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

FBTM MQTM structure not valid or missing.

 The MDFMT field in MQMD specifies FMTM, but the message does not begin

with a valid MQTM structure. For example, the TMSID mnemonic

eye-catcher may not be valid, the TMVER may not be recognized, or the

length of the trigger message may be insufficient to contain the MQTM

structure.

FBXQME

Message on transmission queue not in correct format.

 A message channel agent has found that a message on the transmission

queue is not in the correct format. The message channel agent puts the

message on the dead-letter queue using this feedback code.

The initial value of this field is RCNONE.

DLSID (4-byte character string)

Structure identifier.

The value must be:

DLSIDV

Identifier for dead-letter header structure.

The initial value of this field is DLSIDV.

DLVER (10-digit signed integer)

Structure version number.

The value must be:

DLVER1

Version number for dead-letter header structure.

The following constant specifies the version number of the current version:

DLVERC

Current version of dead-letter header structure.

The initial value of this field is DLVER1.

Initial values and RPG declaration

 Table 28. Initial values of fields in MQDLH

Field name Name of constant Value of constant

DLSID DLSIDV ’DLH�’

DLVER DLVER1 1

DLREA RCNONE 0

DLDQ None Blanks

DLDM None Blanks

DLENC None 0

DLCSI CSUNDF 0

DLFMT FMNONE Blanks

Chapter 1. Data type descriptions 77

Table 28. Initial values of fields in MQDLH (continued)

Field name Name of constant Value of constant

DLPAT None 0

DLPAN None Blanks

DLPD None Blanks

DLPT None Blanks

Notes:

1. The symbol ‘�’ represents a single blank character.

RPG declaration (copy file CMQDLHG)

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..

 D* MQDLH Structure

 D*

 D* Structure identifier

 D DLSID 1 4 INZ(’DLH ’)

 D* Structure version number

 D DLVER 5 8I 0 INZ(1)

 D* Reason message arrived on dead-letter(undelivered-message) queue

 D DLREA 9 12I 0 INZ(0)

 D* Name of original destination queue

 D DLDQ 13 60 INZ

 D* Name of original destination queuemanager

 D DLDM 61 108 INZ

 D* Numeric encoding of data that followsMQDLH

 D DLENC 109 112I 0 INZ(0)

 D* Character set identifier of data thatfollows MQDLH

 D DLCSI 113 116I 0 INZ(0)

 D* Format name of data that followsMQDLH

 D DLFMT 117 124 INZ(’ ’)

 D* Type of application that put messageon dead-letter

 D* (undelivered-message)queue

 D DLPAT 125 128I 0 INZ(0)

 D* Name of application that put messageon dead-letter

 D* (undelivered-message)queue

 D DLPAN 129 156 INZ

 D* Date when message was put ondead-letter (undelivered-message)queue

 D DLPD 157 164 INZ

 D* Time when message was put on thedead-letter (undelivered-message)queue

 D DLPT 165 172 INZ

MQDMHO – Delete message handle options

The following table summarizes the fields in the structure.

 Table 29. Fields in MQDMHO

Field Description Topic

StrucId Structure identifier StrucId

Version Structure version number Version

Options Options Options

Overview for MQDMHO

Availability: All WebSphere MQ systems and WebSphere MQ clients.

78 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Purpose: The MQDMHO structure allows applications to specify options that

control how message handles are deleted. The structure is an input parameter on

the MQDLTMH call.

Character set and encoding: Data in MQDMHO must be in the character set of the

application and encoding of the application (MQENC_NATIVE).

Fields for MQDMHO

The MQDMHO structure contains the following fields; the fields are described in

alphabetic order:

DMOPT (10-digit signed integer)

The value must be:

DMNONE

 No options specified.

This is always an input field. The initial value of this field is DMNONE.

DMSID (10-digit signed integer)

This is the structure identifier; the value must be:

DMSIDV

 Identifier for delete message handle options structure.

This is always an input field. The initial value of this field is DMSIDV.

DMVER (10-digit signed integer)

This is the structure version number; the value must be:

DMVER1

Version-1 delete message handle options structure.

The following constant specifies the version number of the current version:

DMVERC

Current version of delete message handle options structure.

This is always an input field. The initial value of this field is DMVER1.

Initial values and RPG declaration

 Table 30. Initial values of fields in MQDMHO

Field name Name of constant Value of constant

DMSID DMSIDV ’DMHO’

DMVER DMVER1 1

DMOPT DMNONE 0

Chapter 1. Data type descriptions 79

RPG declaration (copy file MQDMHOG)

 D* MQDMHO Structure

 D*

 D*

 D* Structure identifier

 D DMSID 1 4 INZ(’DMHO’)

 D*

 D* Structure version number

 D DMVER 5 8I 0 INZ(1)

 D*

 D* Options that control the action of MQDLTMH

 D DMOPT 9 12I 0 INZ(0)

MQDMPO – Delete message property options

Structure defining the delete message property options

The following table summarizes the fields in the structure.

 Table 31. Fields in MQDMPO

Field Description Topic

StrucId Structure identifier StrucId

Version Structure version number Version

Options Options controlling the action of MQDMPO Options

Overview for MQDMPO

Availability: All WebSphere MQ systems and WebSphere MQ clients.

Purpose: The MQDMPO structure allows applications to specify options that

control how properties of messages are deleted. The structure is an input

parameter on the MQDLTMP call.

Character set and encoding: Data in MQDMPO must be in the character set of the

application and encoding of the application (MQENC_NATIVE).

Fields for MQDMPO

Delete message property options structure - fields

The MQDMPO structure contains the following fields; the fields are described in

alphabetic order:

DPOPT (10-digit signed integer)

Delete message property options structure - DPOPT field

Location options: The following options relate to the relative location of the

property compared to the property cursor.

DPDELF

Deletes the first property that matches the specified name.

MQDMPO_DEL_NEXT

Deletes the next property that matches the specified name, continuing the

search from the property cursor. If this is the first MQDLTMP call for the

specified name, the first property that matches the specified name is

deleted.

80 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

If the property under the cursor has been deleted, MQINQMP deletes the

next matching property following the one that has been deleted.

If a property is added that matches the specified name while iteration is in

progress, the property might be deleted during the completion of the

iteration. The property will be deleted once the iteration is restarted with

MQDMPO_DEL_FIRST.

DPDELC

Deletes the property pointed to by the property cursor; that is the property

that was last inquired using either the MQIMPO_INQ_FIRST or the

MQIMPO_INQ_NEXT option.

 The property cursor is reset when the message handle is reused, or when

the message handle is specified in the MsgHandle field of the MQGMO or

MQPMO structure on an MQGET or MQPUT call respectively.

If this option is used when the property cursor has not yet been

established or, if the property pointed to by the property cursor has

already been deleted, the call fails with completion code MQCC_FAILED

and reason MQRC_PROPERTY_NOT_AVAILABLE.

If none of the options described above is required, the following option can be

used:

DPNONE

No options specified.

This is always an input field. The initial value of this field is DPDELF.

DPSID (10-digit signed integer)

Delete message property options structure - DPSID field

This is the structure identifier. The value must be:

DPSIDV

Identifier for delete message property options structure.

 For the C programming language, the constant

MQDMPO_STRUC_ID_ARRAY is also defined; this has the same value as

MQDMPO_STRUC_ID, but is an array of characters instead of a string.

This is always an input field. The initial value of this field is DPSIDV.

DPVER (10-digit signed integer)

Delete message property options structure - DPVER field

This is the structure version number. The value must be:

DPVER1

Version number for delete message property options structure.

The following constant specifies the version number of the current version:

DPVERC

Current version of delete message property options structure.

This is always an input field. The initial value of this field is DPVER1

Chapter 1. Data type descriptions 81

Initial values and RPG declaration

Delete message property options structure - Initial values

 Table 32. Initial values of fields in MQDPMO

Field name Name of constant Value of constant

DPSID DPSIDV ’DMPO’

DPVER DPVER1 1

DPOPT Options that control the action of

MQDLTMP

MQDMPO_NONE

RPG declaration (copy file MQDMPOG)

 D* MQDMPO Structure

 D*

 D*

 D* Structure identifier

 D DPSID 1 4 INZ(’DMPO’)

 D*

 D* Structure version number

 D DPVER 5 8I 0 INZ(1)

 D*

 ** Options that control the action of

 D* MQDLTMP

 D DPOPT 9 12I 0 INZ(0)

MQEPH – Embedded PCF header

The following table summarizes the fields in the structure.

 Table 33. Fields in MQEPH

Field Description Topic

EPSID Structure identifier EPSID

EPVER Structure version number EPVER

EPLEN Length of MQEPH structure plus the MQCFH and

parameter structures that follow it

EPLEN

EPENC Numeric encoding of data that follows last PCF

parameter structure

EPENC

EPCSI Character set identifier of data that follows last

PCF parameter structure

EPCSI

EPFMT Format name of data that follows last PCF

parameter structure

EPFMT

EPFLG Flags EPFLG

EPPCFH Programmable command format (PCF) header EPPFH

Overview

Purpose: The MQEPH structure describes the additional data that is present in a

message when that message is a programmable command format (PCF) message.

The EPPFH field defines the PCF parameters that follow this structure and this

allows you to follow the PCF message data with other headers.

82 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Format name: EPFMT

Character set and encoding: Data in MQEPH must be in the character set and

encoding of the local queue manager; this is given by the CCSID queue-manager

attribute.

Set the character set and encoding of the MQEPH into the MDCSI and MDENC fields

in:

v The MQMD (if the MQEPH structure is at the start of the message data), or

v The header structure that precedes the MQEPH structure (all other cases).

Usage: You cannot use MQEPH structures to send commands to the command

server or any other queue manager PCF-accepting server.

Similarly, the command server or any other queue manager PCF-accepting server

do not generate responses or events containing MQEPH structures.

Fields

The MQEPH structure contains the following fields; the fields are described in

alphabetic order:

EPCSI (10-digit signed integer)

This is the character set identifier of the data that follows the MQEPH structure

and the associated PCF parameters; it does not apply to character data in the

MQEPH structure itself.

The initial value of this field is EPCUND.

EPENC (10-digit signed integer)

This is the numeric encoding of the data that follows the MQEPH structure and

the associated PCF parameters; it does not apply to character data in the MQEPH

structure itself.

The initial value of this field is 0.

EPFLG (10-digit signed integer)

The following values are available:

EPNONE

No flags have been specified. MDCSIEPNONE is defined to aid program

documentation. It is not intended that this constant be used with any other,

but as its value is zero, such use cannot be detected.

EPCSEM

The character set of the parameters containing character data is specified

individually within the CCSID field in each structure. The character set of

the EPSID and EPFMT fields is defined by the CCSID in the header structure

that precedes the MQEPH structure, or by the MDCSI field in the MQMD if

the MQEPH is at the start of the message.

The initial value of this field is EPNONE.

Chapter 1. Data type descriptions 83

EPFMT (8-byte character string)

This is the format name of the data that follows the MQEPH structure and the

associated PCF parameters.

The initial value of this field is EPFMNO.

EPLEN (10-digit signed integer)

This is the amount of data preceding the next header structure. It includes:

v The length of the MQEPH header

v The length of all PCF parameters following the header

v Any blank padding following those parameters

EPLEN must be a multiple of 4.

The fixed length part of the structure is defined by EPSTLF.

The initial value of this field is 68.

EPPCFH (MQCFH)

This is the programmable command format (PCF) header, defining the PCF

parameters that follow the MQEPH structure. This enables you to follow the PCF

message data with other headers.

The PCF header is initially defined with the following values:

 Table 34. Initial values of fields in EPPCFH

Field name Name of constant Value of constant

EP3TYP MQCFT_NONE 0

EP3LEN MQCFH_STRUC_LENGH 36

EP3VER MQCFH_VERSION_3 3

EP3CMD MQCMD_NONE 0

EP3SEQ None 1

EP3CTL MQCFC_LAST 1

EEP3CC MQCC_OK 0

EP3REA MQRC_NONE 0

EP3CNT None 0

The application must change EP3TYP from MQCFT_NONE to a valid structure type

for the use it is making of the embedded PCF header.

EPSID (4-byte character string)

The value must be:

EPSTID

Identifier for the Embedded PCF header structure.

The initial value of this field is EPSTID.

84 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

EPVER (10-digit signed integer)

The value can be:

EPVER1

Version number for embedded PCF header structure.

The following constant specifies the version number of the current version:

EPVER3

Current version of embedded PCF header structure.

The initial value of this field is EPVER3.

Initial values and language declarations

 Table 35. Initial values of fields in MQEPH

Field name Name of constant Value of constant

EPSID EPSTID ’EP��’

EPVER EPVER1 1

EPLEN EPSTLF 68

EPENC None 0

EPCSI EPCUND 0

EPFMT EPFMNO Blanks

EPFLG EPNONE 0

EPPCFH Names and values as defined in

Table 34 on page 84

0

Notes:

1. The symbol � represents a single blank character.

RPG declaration (copy file CMQEPHG)

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..

 D* MQEPH Structure

 D*

 D* Structure identifier

 D EPSID 1 4

 D* Structure version number

 D EPVER 5 8I 0

 D* Total lenght of MQEPH including MQCFHand parameter structures

 D* that follow

 D EPLEN 9 12I 0

 D* Numeric encoding of data that follows last PCF parameter structure

 D EPENC 13 16I 0

 D* Character set identifier of data that follows last PCF parameter

 D* structure

 D EPCSI 17 20I 0

 D* Format name of data that follows last PCF parameter structure

 D EPFMT 21 28

 D* Flags

 D EPFLG 29 32I 0

 D* Programmable Command Format Header

 D EP3TYP 33 36I 0

 D EP3LEN 37 40I 0

 D EP3VER 41 44I 0

 D EP3CMD 45 48I 0

 D EP3SEQ 49 52I 0

 D EP3CTL 53 56I 0

Chapter 1. Data type descriptions 85

D EP3CC 57 60I 0

 D EP3REA 61 64I 0

 D EP3CNT 65 68I 0

MQGMO – Get-message options

The following table summarizes the fields in the structure.

 Table 36. Fields in MQGMO

Field Description Topic

GMSID Structure identifier GMSID

GMVER Structure version number GMVER

GMOPT Options that control the action of MQGET GMOPT

GMWI Wait interval GMWI

GMSG1 Signal GMSG1

GMSG2 Signal identifier GMSG2

GMRQN Resolved name of destination queue GMRQN

Note: The remaining fields are ignored if GMVER is less than GMVER2.

GMMO Options controlling selection criteria used for

MQGET

GMMO

GMGST Flag indicating whether message retrieved is in a

group

GMGST

GMSST Flag indicating whether message retrieved is a

segment of a logical message

GMSST

GMSEG Flag indicating whether further segmentation is

allowed for the message retrieved

GMSEG

GMRE1 Reserved GMRE1

Note: The remaining fields are ignored if GMVER is less than GMVER3.

GMTOK Message token GMTOK

GMRL Length of message data returned (bytes) GMRL

Overview

Purpose: The MQGMO structure allows the application to specify options that

control how messages are removed from queues. The structure is an input/output

parameter on the MQGET call.

Version: The current version of MQGMO is GMVER3. Fields that exist only in the

more-recent versions of the structure are identified as such in the descriptions that

follow.

The COPY file provided contains the most recent version of MQGMO that is

supported by the environment, but with the initial value of the GMVER field set to

GMVER1. To use fields that are not present in the version-1 structure, the

application must set the GMVER field to the version number of the version required.

Character set and encoding: Data in MQGMO must be in the character set and

encoding of the local queue manager; these are given by the CodedCharSetId queue

86 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

manager attribute and ENNAT, respectively. However, if the application is running

as an MQ client, the structure must be in the character set and encoding of the

client.

Fields

The MQGMO structure contains the following fields; the fields are described in

alphabetic order:

GMGST (1-byte character string)

Flag indicating whether message retrieved is in a group.

It has one of the following values:

GSNIG

Message is not in a group.

GSMIG

Message is in a group, but is not the last in the group.

GSLMIG

Message is the last in the group.

 This is also the value returned if the group consists of only one message.

This is an output field. The initial value of this field is GSNIG. This field is ignored

if GMVER is less than GMVER2.

GMMO (10-digit signed integer)

Options controlling selection criteria used for MQGET.

These options allow the application to choose which fields in the MSGDSC parameter

will be used to select the message returned by the MQGET call. The application

sets the required options in this field, and then sets the corresponding fields in the

MSGDSC parameter to the values required for those fields. Only messages that have

those values in the MQMD for the message are candidates for retrieval using that

MSGDSC parameter on the MQGET call. Fields for which the corresponding match

option is not specified are ignored when selecting the message to be returned. If no

selection criteria are to be used on the MQGET call (that is, any message is

acceptable), GMMO should be set to MONONE.

If GMLOGO is specified, only certain messages are eligible for return by the next

MQGET call:

v If there is no current group or logical message, only messages that have MDSEQ

equal to 1 and MDOFF equal to 0 are eligible for return. In this situation, one or

more of the following match options can be used to select which of the eligible

messages is the one actually returned:

– MOMSGI

– MOCORI

– MOGRPI
v If there is a current group or logical message, only the next message in the

group or next segment in the logical message is eligible for return, and this

cannot be altered by specifying MO* options.

Chapter 1. Data type descriptions 87

In both of the above cases, match options which are not applicable can still be

specified, but the value of the relevant field in the MSGDSC parameter must match

the value of the corresponding field in the message to be returned; the call fails

with reason code RC2247 is this condition is not satisfied.

GMMO is ignored if either GMMUC or GMBRWC is specified.

One or more of the following match options can be specified:

MOMSGI

Retrieve message with specified message identifier.

 This option specifies that the message to be retrieved must have a message

identifier that matches the value of the MDMID field in the MSGDSC parameter

of the MQGET call. This match is in addition to any other matches that

may apply (for example, the correlation identifier).

If this option is not specified, the MDMID field in the MSGDSC parameter is

ignored, and any message identifier will match.

Note: The message identifier MINONE is a special value that matches any

message identifier in the MQMD for the message. Therefore, specifying

MOMSGI with MINONE is the same as not specifying MOMSGI.

MOCORI

Retrieve message with specified correlation identifier.

 This option specifies that the message to be retrieved must have a

correlation identifier that matches the value of the MDCID field in the MSGDSC

parameter of the MQGET call. This match is in addition to any other

matches that may apply (for example, the message identifier).

If this option is not specified, the MDCID field in the MSGDSC parameter is

ignored, and any correlation identifier will match.

Note: The correlation identifier CINONE is a special value that matches

any correlation identifier in the MQMD for the message. Therefore,

specifying MOCORI with CINONE is the same as not specifying MOCORI.

MOGRPI

Retrieve message with specified group identifier.

 This option specifies that the message to be retrieved must have a group

identifier that matches the value of the MDGID field in the MSGDSC parameter

of the MQGET call. This match is in addition to any other matches that

may apply (for example, the correlation identifier).

If this option is not specified, the MDGID field in the MSGDSC parameter is

ignored, and any group identifier will match.

Note: The group identifier GINONE is a special value that matches any

group identifier in the MQMD for the message. Therefore, specifying

MOGRPI with GINONE is the same as not specifying MOGRPI.

MOSEQN

Retrieve message with specified message sequence number.

 This option specifies that the message to be retrieved must have a message

sequence number that matches the value of the MDSEQ field in the MSGDSC

parameter of the MQGET call. This match is in addition to any other

matches that may apply (for example, the group identifier).

88 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

If this option is not specified, the MDSEQ field in the MSGDSC parameter is

ignored, and any message sequence number will match.

MOOFFS

Retrieve message with specified offset.

 This option specifies that the message to be retrieved must have an offset

that matches the value of the MDOFF field in the MSGDSC parameter of the

MQGET call. This match is in addition to any other matches that may

apply (for example, the message sequence number).

If this option is not specified, the MDOFF field in the MSGDSC parameter is

ignored, and any offset will match.

If none of the options described above is specified, the following option can be

used:

MONONE

No matches.

 This option specifies that no matches are to be used in selecting the

message to be returned; therefore, all messages on the queue are eligible

for retrieval (but subject to control by the GMAMSA, GMASGA, and

GMCMPM options).

MONONE is defined to aid program documentation. It is not intended that

this option be used with any other MO* option, but as its value is zero,

such use cannot be detected.

This is an input field. The initial value of this field is MOMSGI with MOCORI.

This field is ignored if GMVER is less than GMVER2.

Note: The initial value of the GMMO field is defined for compatibility with earlier

verison queue managers . However, when reading a series of messages from a

queue without using selection criteria, this initial value requires the application to

reset the MDMID and MDCID fields to MINONE and CINONE prior to each MQGET

call. The need to reset MDMID and MDCID can be avoided by setting GMVER to

GMVER2, and GMMO to MONONE.

GMOPT (10-digit signed integer)

Options that control the action of MQGET.

Zero or more of the options described below can be specified. If more than one is

required the values can be added together (do not add the same constant more

than once). Combinations of options that are not valid are noted; all other

combinations are valid.

Wait options: The following options relate to waiting for messages to arrive on the

queue:

GMWT

Wait for message to arrive.

 The application is to wait until a suitable message arrives. The maximum

time the application waits is specified in GMWI.

If MQGET requests are inhibited, or MQGET requests become inhibited

while waiting, the wait is canceled and the call completes with CCFAIL

and reason code RC2016, regardless of whether there are suitable messages

on the queue.

Chapter 1. Data type descriptions 89

This option can be used with the GMBRWF or GMBRWN options.

If several applications are waiting on the same shared queue, the

application, or applications, that are activated when a suitable message

arrives are described below.

Note: In the description below, a browse MQGET call is one which specifies

one of the browse options, but not GMLK; an MQGET call specifying the

GMLK option is treated as a nonbrowse call.

v If one or more nonbrowse MQGET calls is waiting, but no browse

MQGET calls are waiting, one is activated.

v If one or more browse MQGET calls is waiting, but no nonbrowse

MQGET calls are waiting, all are activated.

v If one or more nonbrowse MQGET calls, and one or more browse

MQGET calls are waiting, one nonbrowse MQGET call is activated, and

none, some, or all of the browse MQGET calls. (The number of browse

MQGET calls activated cannot be predicted, because it depends on the

scheduling considerations of the operating system, and other factors.)

If more than one nonbrowse MQGET call is waiting on the same queue,

only one is activated; in this situation the queue manager attempts to give

priority to waiting nonbrowse calls in the following order:

1. Specific get-wait requests that can be satisfied only by certain messages,

for example, ones with a specific MDMID or MDCID (or both).

2. General get-wait requests that can be satisfied by any message.

The following points should be noted:

v Within the first category, no additional priority is given to more specific

get-wait requests, for example those that specify both MDMID and MDCID.

v Within either category, it cannot be predicted which application is

selected. In particular, the application waiting longest is not necessarily

the one selected.

v Path length, and priority-scheduling considerations of the operating

system, can mean that a waiting application of lower operating system

priority than expected retrieves the message.

v It may also happen that an application that is not waiting retrieves the

message in preference to one that is.

GMWT is ignored if specified with GMBRWC or GMMUC; no error is

raised.

GMNWT

Return immediately if no suitable message.

 The application is not to wait if no suitable message is available. This is

the opposite of the GMWT option, and is defined to aid program

documentation. It is the default if neither is specified.

GMFIQ

Fail if queue manager is quiescing.

 This option forces the MQGET call to fail if the queue manager is in the

quiescing state.

If this option is specified together with GMWT, and the wait is outstanding

at the time the queue manager enters the quiescing state:

v The wait is canceled and the call returns completion code CCFAIL with

reason code RC2161.

90 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

If GMFIQ is not specified and the queue manager enters the quiescing

state, the wait is not canceled.

Syncpoint options: The following options relate to the participation of the MQGET

call within a unit of work:

GMSYP

Get message with syncpoint control.

 The request is to operate within the normal unit-of-work protocols. The

message is marked as being unavailable to other applications, but it is

deleted from the queue only when the unit of work is committed. The

message is made available again if the unit of work is backed out.

If neither this option nor GMNSYP is specified, the get request is not

within a unit of work.

This option is not valid with any of the following options:

v GMBRWF

v GMBRWC

v GMBRWN

v GMLK

v GMNSYP

v GMPSYP

v GMUNLK

GMPSYP

Get message with syncpoint control if message is persistent.

 The request is to operate within the normal unit-of-work protocols, but

only if the message retrieved is persistent. A persistent message has the

value PEPER in the MDPER field in MQMD.

v If the message is persistent, the queue manager processes the call as

though the application had specified GMSYP (see above for details).

v If the message is not persistent, the queue manager processes the call as

though the application had specified GMNSYP (see below for details).

This option is not valid with any of the following options:

v GMBRWF

v GMBRWC

v GMBRWN

v GMCMPM

v GMNSYP

v GMSYP

v GMUNLK

GMNSYP

Get message without syncpoint control.

 The request is to operate outside the normal unit-of-work protocols. The

message is deleted from the queue immediately (unless this is a browse

request). The message cannot be made available again by backing out the

unit of work.

This option is assumed if GMBRWF or GMBRWN is specified.

Chapter 1. Data type descriptions 91

If neither this option nor GMSYP is specified, the get request is not within

a unit of work.

This option is not valid with any of the following options:

v GMSYP

v GMPSYP

Browse options: The following options relate to browsing messages on the queue:

GMBRWF

Browse from start of queue.

 When a queue is opened with the OOBRW option, a browse cursor is

established, positioned logically before the first message on the queue.

Subsequent MQGET calls specifying the GMBRWF, GMBRWN or

GMBRWC option can be used to retrieve messages from the queue

nondestructively. The browse cursor marks the position, within the

messages on the queue, from which the next MQGET call with GMBRWN

will search for a suitable message.

An MQGET call with GMBRWF causes the previous position of the browse

cursor to be ignored. The first message on the queue that satisfies the

conditions specified in the message descriptor is retrieved. The message

remains on the queue, and the browse cursor is positioned on this

message.

After this call, the browse cursor is positioned on the message that has

been returned. If the message is removed from the queue before the next

MQGET call with GMBRWN is issued, the browse cursor remains at the

position in the queue that the message occupied, even though that position

is now empty.

The GMMUC option can subsequently be used with a nonbrowse MQGET

call if required, to remove the message from the queue.

Note that the browse cursor is not moved by a nonbrowse MQGET call

using the same HOBJ handle. Nor is it moved by a browse MQGET call that

returns a completion code of CCFAIL, or a reason code of RC2080.

The GMLK option can be specified together with this option, to cause the

message that is browsed to be locked.

GMBRWF can be specified with any valid combination of the GM* and

MO* options that control the processing of messages in groups and

segments of logical messages.

If GMLOGO is specified, the messages are browsed in logical order. If that

option is omitted, the messages are browsed in physical order. When

GMBRWF is specified, it is possible to switch between logical order and

physical order, but subsequent MQGET calls using GMBRWN must browse

the queue in the same order as the most recent call that specified

GMBRWF for the queue handle.

The group and segment information that the queue manager retains for

MQGET calls that browse messages on the queue is separate from the

group and segment information that the queue manager retains for

MQGET calls that remove messages from the queue. When GMBRWF is

specified, the queue manager ignores the group and segment information

for browsing, and scans the queue as though there were no current group

and no current logical message. If the MQGET call is successful

(completion code CCOK or CCWARN), the group and segment

92 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

information for browsing is set to that of the message returned; if the call

fails, the group and segment information remains the same as it was prior

to the call.

This option is not valid with any of the following options:

v GMBRWC

v GMBRWN

v GMMUC

v GMSYP

v GMPSYP

v GMUNLK

It is also an error if the queue was not opened for browse.

GMBRWN

Browse from current position in queue.

 The browse cursor is advanced to the next message on the queue that

satisfies the selection criteria specified on the MQGET call. The message is

returned to the application, but remains on the queue.

After a queue has been opened for browse, the first browse call using the

handle has the same effect whether it specifies the GMBRWF or GMBRWN

option.

If the message is removed from the queue before the next MQGET call

with GMBRWN is issued, the browse cursor logically remains at the

position in the queue that the message occupied, even though that position

is now empty.

Messages are stored on the queue in one of two ways:

v FIFO within priority (MSPRIO), or

v FIFO regardless of priority (MSFIFO)

The MsgDeliverySequence queue attribute indicates which method applies

(see “Attributes for queues” on page 437 for details).

If the queue has a MsgDeliverySequence of MSPRIO, and a message arrives

on the queue that is of a higher priority than the one currently pointed to

by the browse cursor, that message will not be found during the current

sweep of the queue using GMBRWN. It can only be found after the browse

cursor has been reset with GMBRWF (or by reopening the queue).

The GMMUC option can subsequently be used with a nonbrowse MQGET

call if required, to remove the message from the queue.

Note that the browse cursor is not moved by nonbrowse MQGET calls

using the same HOBJ handle.

The GMLK option can be specified together with this option, to cause the

message that is browsed to be locked.

GMBRWN can be specified with any valid combination of the GM* and

MO* options that control the processing of messages in groups and

segments of logical messages.

If GMLOGO is specified, the messages are browsed in logical order. If that

option is omitted, the messages are browsed in physical order. When

GMBRWF is specified, it is possible to switch between logical order and

physical order, but subsequent MQGET calls using GMBRWN must browse

Chapter 1. Data type descriptions 93

the queue in the same order as the most recent call that specified

GMBRWF for the queue handle. The call fails with reason code RC2259 if

this condition is not satisfied.

Note: Special care is needed if an MQGET call is used to browse beyond the

end of a message group (or logical message not in a group) when

GMLOGO is not specified. For example, if the last message in the group

happens to precede the first message in the group on the queue, using

GMBRWN to browse beyond the end of the group, specifying MOSEQN

with MDSEQ set to 1 (to find the first message of the next group) would

return again the first message in the group already browsed. This could

happen immediately, or a number of MQGET calls later (if there are

intervening groups).

The possibility of an infinite loop can be avoided by opening the queue

twice for browse:

v Use the first handle to browse only the first message in each group.

v Use the second handle to browse only the messages within a specific

group.

v Use the MO* options to move the second browse cursor to the position

of the first browse cursor, before browsing the messages in the group.

v Do not use GMBRWN to browse beyond the end of a group.

The group and segment information that the queue manager retains for

MQGET calls that browse messages on the queue is separate from the

group and segment information that it retains for MQGET calls that

remove messages from the queue.

This option is not valid with any of the following options:

v GMBRWF

v GMBRWC

v GMMUC

v GMSYP

v GMPSYP

v GMUNLK

It is also an error if the queue was not opened for browse.

GMBRWC

Browse message under browse cursor.

 This option causes the message pointed to by the browse cursor to be

retrieved nondestructively, regardless of the MO* options specified in the

GMMO field in MQGMO.

The message pointed to by the browse cursor is the one that was last

retrieved using either the GMBRWF or the GMBRWN option. The call fails

if neither of these calls has been issued for this queue since it was opened,

or if the message that was under the browse cursor has since been

retrieved destructively.

The position of the browse cursor is not changed by this call.

The GMMUC option can subsequently be used with a nonbrowse MQGET

call if required, to remove the message from the queue.

94 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Note that the browse cursor is not moved by a nonbrowse MQGET call

using the same HOBJ handle. Nor is it moved by a browse MQGET call that

returns a completion code of CCFAIL, or a reason code of RC2080.

If GMBRWC is specified with GMLK:

v If there is already a message locked, it must be the one under the cursor,

so that is returned without unlocking and relocking it; the message

remains locked.

v If there is no locked message, the message under the browse cursor (if

there is one) is locked and returned to the application; if there is no

message under the browse cursor the call fails.

If GMBRWC is specified without GMLK:

v If there is already a message locked, it must be the one under the cursor.

This message is returned to the application and then unlocked. Because

the message is now unlocked, there is no guarantee that it can be

browsed again, or retrieved destructively (it may be retrieved

destructively by another application getting messages from the queue).

v If there is no locked message, the message under the browse cursor (if

there is one) is returned to the application; if there is no message under

the browse cursor the call fails.

If GMCMPM is specified with GMBRWC, the browse cursor must identify

a message whose MDOFF field in MQMD is zero. If this condition is not

satisfied, the call fails with reason code RC2246.

The group and segment information that the queue manager retains for

MQGET calls that browse messages on the queue is separate from the

group and segment information that it retains for MQGET calls that

remove messages from the queue.

This option is not valid with any of the following options:

v GMBRWF

v GMBRWN

v GMMUC

v GMSYP

v GMPSYP

v GMUNLK

It is also an error if the queue was not opened for browse.

GMMUC

Get message under browse cursor.

 This option causes the message pointed to by the browse cursor to be

retrieved, regardless of the MO* options specified in the GMMO field in

MQGMO. The message is removed from the queue.

The message pointed to by the browse cursor is the one that was last

retrieved using either the GMBRWF or the GMBRWN option.

If GMCMPM is specified with GMMUC, the browse cursor must identify a

message whose MDOFF field in MQMD is zero. If this condition is not

satisfied, the call fails with reason code RC2246.

This option is not valid with any of the following options:

v GMBRWF

v GMBRWC

Chapter 1. Data type descriptions 95

v GMBRWN

v GMUNLK

It is also an error if the queue was not opened both for browse and for

input. If the browse cursor is not currently pointing to a retrievable

message, an error is returned by the MQGET call.

Lock options: The following options relate to locking messages on the queue:

GMLK

Lock message.

 This option locks the message that is browsed, so that the message

becomes invisible to any other handle open for the queue. The option can

be specified only if one of the following options is also specified:

v GMBRWF

v GMBRWN

v GMBRWC

Only one message can be locked per queue handle, but this can be a

logical message or a physical message:

v If GMCMPM is specified, all of the message segments that comprise the

logical message are locked to the queue handle (provided that they are

all present on the queue and available for retrieval).

v If GMCMPM is not specified, only a single physical message is locked to

the queue handle. If this message happens to be a segment of a logical

message, the locked segment prevents other applications using

GMCMPM to retrieve or browse the logical message.

The locked message is always the one under the browse cursor, and the

message can be removed from the queue by a later MQGET call that

specifies the GMMUC option. Other MQGET calls using the queue handle

can also remove the message (for example, a call that specifies the message

identifier of the locked message).

If the call returns completion code CCFAIL, or CCWARN with reason code

RC2080, no message is locked.

If the application decides not to remove the message from the queue, the

lock is released by:

v Issuing another MQGET call for this handle, with either GMBRWF or

GMBRWN specified (with or without GMLK); the message is unlocked if

the call completes with CCOK or CCWARN, but remains locked if the

call completes with CCFAIL. However, the following exceptions apply:

– The message is not unlocked if CCWARN is returned with RC2080.

– The message is unlocked if CCFAIL is returned with RC2033.
If GMLK is also specified, the message returned is locked. If GMLK is

not specified, there is no locked message after the call.

If GMWT is specified, and no message is immediately available, the

unlock on the original message occurs before the start of the wait

(providing the call is otherwise free from error).

v Issuing another MQGET call for this handle, with GMBRWC (without

GMLK); the message is unlocked if the call completes with CCOK or

CCWARN, but remains locked if the call completes with CCFAIL.

However, the following exception applies:

– The message is not unlocked if CCWARN is returned with RC2080.

96 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

v Issuing another MQGET call for this handle with GMUNLK.

v Issuing an MQCLOSE call for this handle (either explicitly, or implicitly

by the application ending).

No special open option is required to specify this option, other than

OOBRW, which is needed in order to specify the accompanying browse

option.

This option is not valid with any of the following options:

v GMSYP

v GMPSYP

v GMUNLK

GMUNLK

Unlock message.

 The message to be unlocked must have been previously locked by an

MQGET call with the GMLK option. If there is no message locked for this

handle, the call completes with CCWARN and RC2209.

The MSGDSC, BUFLEN, BUFFER, and DATLEN parameters are not checked or

altered if GMUNLK is specified. No message is returned in BUFFER.

No special open option is required to specify this option (although

OOBRW is needed to issue the lock request in the first place).

This option is not valid with any options except the following:

v GMNWT

v GMNSYP

Both of these options are assumed whether specified or not.

Message-data options: The following options relate to the processing of the

message data when the message is read from the queue:

GMATM

Allow truncation of message data.

 If the message buffer is too small to hold the complete message, this option

allows the MQGET call to fill the buffer with as much of the message as

the buffer can hold, issue a warning completion code, and complete its

processing. This means:

v When browsing messages, the browse cursor is advanced to the returned

message.

v When removing messages, the returned message is removed from the

queue.

v Reason code RC2079 is returned if no other error occurs.

Without this option, the buffer is still filled with as much of the message as

it can hold, a warning completion code is issued, but processing is not

completed. This means:

v When browsing messages, the browse cursor is not advanced.

v When removing messages, the message is not removed from the queue.

v Reason code RC2080 is returned if no other error occurs.

GMCONV

Convert message data.

Chapter 1. Data type descriptions 97

This option requests that the application data in the message should be

converted, to conform to the MDCSI and MDENC values specified in the

MSGDSC parameter on the MQGET call, before the data is copied to the

BUFFER parameter.

The MDFMT field specified when the message was put is assumed by the

conversion process to identify the nature of the data in the message.

Conversion of the message data is by the queue manager for built-in

formats, and by a user-written exit for other formats.

v If conversion is performed successfully, the MDCSI and MDENC fields

specified in the MSGDSC parameter are unchanged on return from the

MQGET call.

v If conversion cannot be performed successfully (but the MQGET call

otherwise completes without error), the message data is returned

unconverted, and the MDCSI and MDENC fields in MSGDSC are set to the

values for the unconverted message. The completion code is CCWARN

in this case.

In either case, therefore, these fields describe the character-set identifier

and encoding of the message data that is returned in the BUFFER parameter.

See the MDFMT field described in “MQMD – Message descriptor” on page

125 for a list of format names for which the queue manager performs the

conversion.

Group and segment options: The following options relate to the processing of

messages in groups and segments of logical messages. These definitions may be of

help in understanding the options:

Physical message

This is the smallest unit of information that can be placed on or removed

from a queue; it often corresponds to the information specified or retrieved

on a single MQPUT, MQPUT1, or MQGET call. Every physical message

has its own message descriptor (MQMD). Generally, physical messages are

distinguished by differing values for the message identifier (MDMID field in

MQMD), although this is not enforced by the queue manager.

Logical message

This is a single unit of application information. In the absence of system

constraints, a logical message would be the same as a physical message.

But where logical messages are extremely large, system constraints may

make it advisable or necessary to split a logical message into two or more

physical messages, called segments.

 A logical message that has been segmented consists of two or more

physical messages that have the same nonnull group identifier (MDGID field

in MQMD), and the same message sequence number (MDSEQ field in

MQMD). The segments are distinguished by differing values for the

segment offset (MDOFF field in MQMD), which gives the offset of the data in

the physical message from the start of the data in the logical message.

Because each segment is a physical message, the segments in a logical

message usually have differing message identifiers.

A logical message that has not been segmented, but for which

segmentation has been permitted by the sending application, also has a

nonnull group identifier, although in this case there is only one physical

message with that group identifier if the logical message does not belong

to a message group. Logical messages for which segmentation has been

98 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

inhibited by the sending application have a null group identifier

(GINONE), unless the logical message belongs to a message group.

Message group

This is a set of one or more logical messages that have the same nonnull

group identifier. The logical messages in the group are distinguished by

differing values for the message sequence number, which is an integer in

the range 1 through n, where n is the number of logical messages in the

group. If one or more of the logical messages is segmented, there will be

more than n physical messages in the group.

GMLOGO

Messages in groups and segments of logical messages are returned in

logical order.

 This option controls the order in which messages are returned by successive

MQGET calls for the queue handle. The option must be specified on each

of those calls in order to have an effect.

If GMLOGO is specified for successive MQGET calls for the queue handle,

messages in groups are returned in the order given by their message

sequence numbers, and segments of logical messages are returned in the

order given by their segment offsets. This order may be different from the

order in which those messages and segments occur on the queue.

Note: Specifying GMLOGO has no adverse consequences on messages that

do not belong to groups and that are not segments. In effect, such

messages are treated as though each belonged to a message group

consisting of only one message. Thus it is perfectly safe to specify

GMLOGO when retrieving messages from queues that may contain a

mixture of messages in groups, message segments, and unsegmented

messages not in groups.

To return the messages in the required order, the queue manager retains

the group and segment information between successive MQGET calls. This

information identifies the current message group and current logical

message for the queue handle, the current position within the group and

logical message, and whether the messages are being retrieved within a

unit of work. Because the queue manager retains this information, the

application does not need to set the group and segment information prior

to each MQGET call. Specifically, it means that the application does not

need to set the MDGID, MDSEQ, and MDOFF fields in MQMD. However, the

application does need to set the GMSYP or GMNSYP option correctly on

each call.

When the queue is opened, there is no current message group and no

current logical message. A message group becomes the current message

group when a message that has the MFMIG flag is returned by the

MQGET call. With GMLOGO specified on successive calls, that group

remains the current group until a message is returned that has:

v MFLMIG without MFSEG (that is, the last logical message in the group

is not segmented), or

v MFLMIG with MFLSEG (that is, the message returned is the last

segment of the last logical message in the group).

When such a message is returned, the message group is terminated, and

on successful completion of that MQGET call there is no longer a current

group. In a similar way, a logical message becomes the current logical

Chapter 1. Data type descriptions 99

message when a message that has the MFSEG flag is returned by the

MQGET call, and that logical message is terminated when the message that

has the MFLSEG flag is returned.

If no selection criteria are specified, successive MQGET calls return (in the

correct order) the messages for the first message group on the queue, then

the messages for the second message group, and so on, until there are no

more messages available. It is possible to select the particular message

groups returned by specifying one or more of the following options in the

GMMO field:

v MOMSGI

v MOCORI

v MOGRPI

However, these options are effective only when there is no current message

group or logical message; see the GMMO field described in “MQGMO –

Get-message options” on page 86 for further details.

Table 37 shows the values of the MDMID, MDCID, MDGID, MDSEQ, and MDOFF

fields that the queue manager looks for when attempting to find a message

to return on the MQGET call. This applies both to removing messages from

the queue, and browsing messages on the queue. The columns in the table

have the following meanings:

LOG ORD

Indicates whether the GMLOGO option is specified on the call.

Cur grp

Indicates whether a current message group exists prior to the call.

Cur log msg

Indicates whether a current logical message exists prior to the call.

Other columns

Show the values that the queue manager looks for. “Previous”

denotes the value returned for the field in the previous message

for the queue handle.

 Table 37. MQGET options relating to messages in groups and segments of logical messages

Options

you

specify

Group and log-msg

status prior to call

Values the queue manager looks for

LOG

ORD

Cur grp Cur log

msg

MDMID MDCID MDGID MDSEQ MDOFF

Yes No No Controlled by

GMMO

Controlled by

GMMO

Controlled by

GMMO

1 0

Yes No Yes Any message

identifier

Any correlation

identifier

Previous group

identifier

1 Previous offset

+ previous

segment length

Yes Yes No Any message

identifier

Any correlation

identifier

Previous group

identifier

Previous

sequence

number + 1

0

Yes Yes Yes Any message

identifier

Any correlation

identifier

Previous group

identifier

Previous

sequence

number

Previous offset

+ previous

segment length

No Either Either Controlled by

GMMO

Controlled by

GMMO

Controlled by

GMMO

Controlled by

GMMO

Controlled by

GMMO

100 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

When multiple message groups are present on the queue and eligible for

return, the groups are returned in the order determined by the position on

the queue of the first segment of the first logical message in each group

(that is, the physical messages that have message sequence numbers of 1,

and offsets of 0, determine the order in which eligible groups are

returned).

The GMLOGO option affects units of work as follows:

v If the first logical message or segment in a group is retrieved within a

unit of work, all of the other logical messages and segments in the

group must be retrieved within a unit of work, if the same queue handle

is used. However, they need not be retrieved within the same unit of

work. This allows a message group consisting of many physical

messages to be split across two or more consecutive units of work for

the queue handle.

v If the first logical message or segment in a group is not retrieved within

a unit of work, none of the other logical messages and segments in the

group can be retrieved within a unit of work, if the same queue handle

is used.

If these conditions are not satisfied, the MQGET call fails with reason code

RC2245.

When GMLOGO is specified, the MQGMO supplied on the MQGET call

must not be less than GMVER2, and the MQMD must not be less than

MDVER2. If this condition is not satisfied, the call fails with reason code

RC2256 or RC2257, as appropriate.

If GMLOGO is not specified for successive MQGET calls for the queue

handle, messages are returned without regard for whether they belong to

message groups, or whether they are segments of logical messages. This

means that messages or segments from a particular group or logical

message may be returned out of order, or they may be intermingled with

messages or segments from other groups or logical messages, or with

messages that are not in groups and are not segments. In this situation, the

particular messages that are returned by successive MQGET calls is

controlled by the MO* options specified on those calls (see the GMMO field

described in “MQGMO – Get-message options” on page 86 for details of

these options).

This is the technique that can be used to restart a message group or logical

message in the middle, after a system failure has occurred. When the

system restarts, the application can set the MDGID, MDSEQ, MDOFF, and GMMO

fields to the appropriate values, and then issue the MQGET call with

GMSYP or GMNSYP set as desired, but without specifying GMLOGO. If

this call is successful, the queue manager retains the group and segment

information, and subsequent MQGET calls using that queue handle can

specify GMLOGO as normal.

The group and segment information that the queue manager retains for the

MQGET call is separate from the group and segment information that it

retains for the MQPUT call. In addition, the queue manager retains

separate information for:

v MQGET calls that remove messages from the queue.

v MQGET calls that browse messages on the queue.

Chapter 1. Data type descriptions 101

For any given queue handle, the application is free to mix MQGET calls

that specify GMLOGO with MQGET calls that do not, but the following

points should be noted:

v If GMLOGO is not specified, each successful MQGET call causes the

queue manager to set the saved group and segment information to the

values corresponding to the message returned; this replaces the existing

group and segment information retained by the queue manager for the

queue handle. Only the information appropriate to the action of the call

(browse or remove) is modified.

v If GMLOGO is not specified, the call does not fail if there is a current

message group or logical message; the call may however succeed with a

CCWARN completion code. Table 38 shows the various cases that can

arise. In these cases, if the completion code is not CCOK, the reason

code is one of the following:

– RC2241

– RC2242

– RC2245

Note: The queue manager does not check the group and segment

information when browsing a queue, or when closing a queue that was

opened for browse but not input; in those cases the completion code is

always CCOK (assuming no other errors).

 Table 38. Outcome when MQGET or MQCLOSE call is not consistent with group and

segment information

Current call is Previous call was MQGET

with GMLOGO

Previous call was MQGET

without GMLOGO

MQGET with GMLOGO CCFAIL CCFAIL

MQGET without GMLOGO CCWARN CCOK

MQCLOSE with an

unterminated group or

logical message

CCWARN CCOK

Applications that simply want to retrieve messages and segments in logical

order are recommended to specify GMLOGO, as this is the simplest option

to use. This option relieves the application of the need to manage the

group and segment information, because the queue manager manages that

information. However, specialized applications may need more control

than provided by the GMLOGO option, and this can be achieved by not

specifying that option. If this is done, the application must ensure that the

MDMID, MDCID, MDGID, MDSEQ, and MDOFF fields in MQMD, and the MO*

options in GMMO in MQGMO, are set correctly, prior to each MQGET call.

For example, an application that wants to forward physical messages that it

receives, without regard for whether those messages are in groups or

segments of logical messages, should not specify GMLOGO. This is

because in a complex network with multiple paths between sending and

receiving queue managers, the physical messages may arrive out of order.

By specifying neither GMLOGO, nor the corresponding PMLOGO on the

MQPUT call, the forwarding application can retrieve and forward each

physical message as soon as it arrives, without having to wait for the next

one in logical order to arrive.

GMLOGO can be specified with any of the other GM* options, and with

various of the MO* options in appropriate circumstances (see above).

102 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

GMCMPM

Only complete logical messages are retrievable.

 This option specifies that only a complete logical message can be returned

by the MQGET call. If the logical message is segmented, the queue

manager reassembles the segments and returns the complete logical

message to the application; the fact that the logical message was

segmented is not apparent to the application retrieving it.

Note: This is the only option that causes the queue manager to reassemble

message segments. If not specified, segments are returned individually to

the application if they are present on the queue (and they satisfy the other

selection criteria specified on the MQGET call). Applications that do not

wish to receive individual segments should therefore always specify

GMCMPM.

To use this option, the application must provide a buffer which is big

enough to accommodate the complete message, or specify the GMATM

option.

If the queue contains segmented messages with some of the segments

missing (perhaps because they have been delayed in the network and have

not yet arrived), specifying GMCMPM prevents the retrieval of segments

belonging to incomplete logical messages. However, those message

segments still contribute to the value of the CurrentQDepth queue attribute;

this means that there may be no retrievable logical messages, even though

CurrentQDepth is greater than zero.

For persistent messages, the queue manager can reassemble the segments

only within a unit of work:

v If the MQGET call is operating within a user-defined unit of work, that

unit of work is used. If the call fails partway through the reassembly

process, the queue manager reinstates on the queue any segments that

were removed during reassembly. However, the failure does not prevent

the unit of work being committed successfully.

v If the call is operating outside a user-defined unit of work, and there is

no user-defined unit of work in existence, the queue manager creates a

unit of work just for the duration of the call. If the call is successful, the

queue manager commits the unit of work automatically (the application

does not need to do this). If the call fails, the queue manager backs out

the unit of work.

v If the call is operating outside a user-defined unit of work, but a

user-defined unit of work does exist, the queue manager is unable to

perform reassembly. If the message does not require reassembly, the call

can still succeed. But if the message does require reassembly, the call fails

with reason code RC2255.

For nonpersistent messages, the queue manager does not require a unit of

work to be available in order to perform reassembly.

Each physical message that is a segment has its own message descriptor.

For the segments constituting a single logical message, most of the fields in

the message descriptor will be the same for all segments in the logical

message – usually it is only the MDMID, MDOFF, and MDMFL fields that differ

between segments in the logical message. However, if a segment is placed

on a dead-letter queue at an intermediate queue manager, the DLQ handler

retrieves the message specifying the GMCONV option, and this may result

in the character set or encoding of the segment being changed. If the DLQ

Chapter 1. Data type descriptions 103

handler successfully sends the segment on its way, the segment may have

a character set or encoding that differs from the other segments in the

logical message when the segment finally arrives at the destination queue

manager.

A logical message consisting of segments in which the MDCSI and/or MDENC

fields differ cannot be reassembled by the queue manager into a single

logical message. Instead, the queue manager reassembles and returns the

first few consecutive segments at the start of the logical message that have

the same character-set identifiers and encodings, and the MQGET call

completes with completion code CCWARN and reason code RC2243 or

RC2244, as appropriate. This happens regardless of whether GMCONV is

specified. To retrieve the remaining segments, the application must reissue

the MQGET call without the GMCMPM option, retrieving the segments

one by one. GMLOGO can be used to retrieve the remaining segments in

order.

It is also possible for an application which puts segments to set other fields

in the message descriptor to values that differ between segments. However,

there is no advantage in doing this if the receiving application uses

GMCMPM to retrieve the logical message. When the queue manager

reassembles a logical message, it returns in the message descriptor the

values from the message descriptor for the first segment; the only

exception is the MDMFL field, which the queue manager sets to indicate that

the reassembled message is the only segment.

If GMCMPM is specified for a report message, the queue manager

performs special processing. The queue manager checks the queue to see if

all of the report messages of that report type relating to the different

segments in the logical message are present on the queue. If they are, they

can be retrieved as a single message by specifying GMCMPM. For this to

be possible, either the report messages must be generated by a queue

manager or MCA which supports segmentation, or the originating

application must request at least 100 bytes of message data (that is, the

appropriate RO*D or RO*F options must be specified). If less than the full

amount of application data is present for a segment, the missing bytes are

replaced by nulls in the report message returned.

If GMCMPM is specified with GMMUC or GMBRWC, the browse cursor

must be positioned on a message whose MDOFF field in MQMD has a value

of 0. If this condition is not satisfied, the call fails with reason code

RC2246.

GMCMPM implies GMASGA, which need not therefore be specified.

GMCMPM can be specified with any of the other GM* options apart from

GMPSYP, and with any of the MO* options apart from MOOFFS.

GMAMSA

All messages in group must be available.

 This option specifies that messages in a group become available for

retrieval only when all messages in the group are available. If the queue

contains message groups with some of the messages missing (perhaps

because they have been delayed in the network and have not yet arrived),

specifying GMAMSA prevents retrieval of messages belonging to

incomplete groups. However, those messages still contribute to the value of

the CurrentQDepth queue attribute; this means that there may be no

retrievable message groups, even though CurrentQDepth is greater than

104 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

zero. If there are no other messages that are retrievable, reason code

RC2033 is returned after the specified wait interval (if any) has expired.

The processing of GMAMSA depends on whether GMLOGO is also

specified:

v If both options are specified, GMAMSA has an effect only when there is

no current group or logical message. If there is a current group or logical

message, GMAMSA is ignored. This means that GMAMSA can remain

on when processing messages in logical order.

v If GMAMSA is specified without GMLOGO, GMAMSA always has an

effect. This means that the option must be turned off after the first

message in the group has been removed from the queue, in order to be

able to remove the remaining messages in the group.

Successful completion of an MQGET call specifying GMAMSA means that

at the time that the MQGET call was issued, all of the messages in the

group were on the queue. However, be aware that other applications are

still able to remove messages from the group (the group is not locked to

the application that retrieves the first message in the group).

If this option is not specified, messages belonging to groups can be

retrieved even when the group is incomplete.

GMAMSA implies GMASGA, which need not therefore be specified.

GMAMSA can be specified with any of the other GM* options, and with

any of the MO* options.

GMASGA

All segments in a logical message must be available.

 This option specifies that segments in a logical message become available

for retrieval only when all segments in the logical message are available. If

the queue contains segmented messages with some of the segments

missing (perhaps because they have been delayed in the network and have

not yet arrived), specifying GMASGA prevents retrieval of segments

belonging to incomplete logical messages. However those segments still

contribute to the value of the CurrentQDepth queue attribute; this means

that there may be no retrievable logical messages, even though

CurrentQDepth is greater than zero. If there are no other messages that are

retrievable, reason code RC2033 is returned after the specified wait interval

(if any) has expired.

The processing of GMASGA depends on whether GMLOGO is also

specified:

v If both options are specified, GMASGA has an effect only when there is

no current logical message. If there is a current logical message,

GMASGA is ignored. This means that GMASGA can remain on when

processing messages in logical order.

v If GMASGA is specified without GMLOGO, GMASGA always has an

effect. This means that the option must be turned off after the first

segment in the logical message has been removed from the queue, in

order to be able to remove the remaining segments in the logical

message.

If this option is not specified, message segments can be retrieved even

when the logical message is incomplete.

Chapter 1. Data type descriptions 105

While both GMCMPM and GMASGA require all segments to be available

before any of them can be retrieved, the former returns the complete

message, whereas the latter allows the segments to be retrieved one by

one.

If GMASGA is specified for a report message, the queue manager performs

special processing. The queue manager checks the queue to see if there is

at least one report message for each of the segments that comprise the

complete logical message. If there is, the GMASGA condition is satisfied.

However, the queue manager does not check the type of the report

messages present, and so there may be a mixture of report types in the

report messages relating to the segments of the logical message. As a

result, the success of GMASGA does not imply that GMCMPM will

succeed. If there is a mixture of report types present for the segments of a

particular logical message, those report messages must be retrieved one by

one.

GMASGA can be specified with any of the other GM* options, and with

any of the MO* options.

Default option: If none of the options described above is required, the following

option can be used:

GMNONE

No options specified.

 This value can be used to indicate that no other options have been

specified; all options assume their default values. GMNONE is defined to

aid program documentation; it is not intended that this option be used

with any other, but as its value is zero, such use cannot be detected.

The initial value of the GMOPT field is GMNWT.

GMRE1 (1-byte character string)

Reserved.

This is a reserved field. The initial value of this field is a blank character. This field

is ignored if GMVER is less than GMVER2.

GMRL (10-digit signed integer)

Length of message data returned (bytes).

This is an output field that is set by the queue manager to the length in bytes of

the message data returned by the MQGET call in the BUFFER parameter. If the

queue manager does not support this capability, GMRL is set to the value RLUNDF.

When messages are converted between encodings or character sets, the message

data can sometimes change size. On return from the MQGET call:

v If GMRL is not RLUNDF, the number of bytes of message data returned is given

by GMRL.

v If GMRL has the value RLUNDF, the number of bytes of message data returned is

usually given by the smaller of BUFLEN and DATLEN, but can be less than this if the

MQGET call completes with reason code RC2079. If this happens, the

insignificant bytes in the BUFFER parameter are set to nulls.

The following special value is defined:

106 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

RLUNDF

Length of returned data not defined.

The initial value of this field is RLUNDF. This field is ignored if GMVER is less than

GMVER3.

GMRQN (48-byte character string)

Resolved name of destination queue.

This is an output field which is set by the queue manager to the local name of the

queue from which the message was retrieved, as defined to the local queue

manager. This will be different from the name used to open the queue if:

v An alias queue was opened (in which case, the name of the local queue to which

the alias resolved is returned), or

v A model queue was opened (in which case, the name of the dynamic local

queue is returned).

The length of this field is given by LNQN. The initial value of this field is 48 blank

characters.

GMSEG (1-byte character string)

Flag indicating whether further segmentation is allowed for the message retrieved.

It has one of the following values:

SEGIHB

Segmentation not allowed.

SEGALW

Segmentation allowed.

This is an output field. The initial value of this field is SEGIHB. This field is

ignored if GMVER is less than GMVER2.

GMSG1 (10-digit signed integer)

Signal.

This is a reserved field; its value is not significant. The initial value of this field is

0.

GMSG2 (10-digit signed integer)

Signal identifier.

This is a reserved field; its value is not significant.

GMSID (4-byte character string)

Structure identifier.

The value must be:

GMSIDV

Identifier for get-message options structure.

Chapter 1. Data type descriptions 107

This is always an input field. The initial value of this field is GMSIDV.

GMSST (1-byte character string)

Flag indicating whether message retrieved is a segment of a logical message.

It has one of the following values:

SSNSEG

Message is not a segment.

SSSEG

Message is a segment, but is not the last segment of the logical message.

SSLSEG

Message is the last segment of the logical message.

 This is also the value returned if the logical message consists of only one

segment.

This is an output field. The initial value of this field is SSNSEG. This field is

ignored if GMVER is less than GMVER2.

GMTOK (16-byte bit string)

Message token.

This is a reserved field; its value is not significant. The following special value is

defined:

MTKNON

No message token.

 The value is binary zero for the length of the field.

The length of this field is given by LNMTOK. The initial value of this field is

MTKNON. This field is ignored if GMVER is less than GMVER3.

GMVER (10-digit signed integer)

Structure version number.

The value must be one of the following:

GMVER1

Version-1 get-message options structure.

GMVER2

Version-2 get-message options structure.

GMVER3

Version-3 get-message options structure.

Fields that exist only in the more-recent versions of the structure are identified as

such in the descriptions of the fields. The following constant specifies the version

number of the current version:

GMVERC

Current version of get-message options structure.

This is always an input field. The initial value of this field is GMVER1.

108 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

GMWI (10-digit signed integer)

Wait interval.

This is the approximate time, expressed in milliseconds, that the MQGET call waits

for a suitable message to arrive (that is, a message satisfying the selection criteria

specified in the MSGDSC parameter of the MQGET call; see the MDMID field described

in “MQMD – Message descriptor” on page 125 for more details). If no suitable

message has arrived after this time has elapsed, the call completes with CCFAIL

and reason code RC2033.

GMWI is used in conjunction with the GMWT option. It is ignored if this option is

not specified. If it is specified, GMWI must be greater than or equal to zero, or the

following special value:

WIULIM

Unlimited wait interval.

The initial value of this field is 0.

Initial values and RPG declaration

 Table 39. Initial values of fields in MQGMO

Field name Name of constant Value of constant

GMSID GMSIDV ’GMO�’

GMVER GMVER1 1

GMOPT GMNWT 0

GMWI None 0

GMSG1 None 0

GMSG2 None 0

GMRQN None Blanks

GMMO MOMSGI + MOCORI 3

GMGST GSNIG ’�’

GMSST SSNSEG ’�’

GMSEG SEGIHB ’�’

GMRE1 None ’�’

GMTOK MTKNON Nulls

GMRL RLUNDF -1

Notes:

1. The symbol ‘�’ represents a single blank character.

RPG declaration (copy file CMQGMOG)

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..

 D*

 D* MQGMO Structure

 D*

 D* Structure identifier

 D GMSID 1 4 INZ(’GMO ’)

 D* Structure version number

 D GMVER 5 8I 0 INZ(1)

 D* Options that control the action ofMQGET

 D GMOPT 9 12I 0 INZ(0)

Chapter 1. Data type descriptions 109

D* Wait interval

 D GMWI 13 16I 0 INZ(0)

 D* Signal

 D GMSG1 17 20I 0 INZ(0)

 D* Signal identifier

 D GMSG2 21 24I 0 INZ(0)

 D* Resolved name of destination queue

 D GMRQN 25 72 INZ

 D* Options controlling selection criteriaused for MQGET

 D GMMO 73 76I 0 INZ(3)

 D* Flag indicating whether messageretrieved is in a group

 D GMGST 77 77 INZ(’ ’)

 D* Flag indicating whether messageretrieved is a segment of a

 D* logicalmessage

 D GMSST 78 78 INZ(’ ’)

 D* Flag indicating whether furthersegmentation is allowed for themessage

 D* retrieved

 D GMSEG 79 79 INZ(’ ’)

 D* Reserved

 D GMRE1 80 80 INZ

 D* Message token

 D GMTOK 81 96 INZ(X’00000000000000-

 D 000000000000000000’)

 D* Length of message data returned(bytes)

 D GMRL 97 100I 0 INZ(-1)

MQIIH – IMS information header

The following table summarizes the fields in the structure.

 Table 40. Fields in MQIIH

Field Description Topic

IISID Structure identifier IISID

IIVER Structure version number IIVER

IILEN Length of MQIIH structure IILEN

IIENC Reserved IIENC

IICSI Reserved IICSI

IIFMT MQ format name of data that follows MQIIH IIFMT

IIFLG Flags IIFLG

IILTO Logical terminal override IILTO

IIMMN Message format services map name IIMMN

IIRFM MQ format name of reply message IIRFM

IIAUT RACF™ password or passticket IIAUT

IITID Transaction instance identifier IITID

IITST Transaction state IITST

IICMT Commit mode IICMT

IISEC Security scope IISEC

IIRSV Reserved IIRSV

Overview

Purpose: The MQIIH structure describes the information that must be present at

the start of a message sent to the IMS bridge through WebSphere MQ for z/OS.

110 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Format name: FMIMS.

Character set and encoding: Special conditions apply to the character set and

encoding used for the MQIIH structure and application message data:

v Applications that connect to the queue manager that owns the IMS bridge queue

must provide an MQIIH structure that is in the character set and encoding of the

queue manager. This is because data conversion of the MQIIH structure is not

performed in this case.

v Applications that connect to other queue managers can provide an MQIIH

structure that is in any of the supported character sets and encodings;

conversion of the MQIIH is performed by the receiving message channel agent

connected to the queue manager that owns the IMS bridge queue.

Note: There is one exception to this. If the queue manager that owns the IMS

bridge queue is using CICS for distributed queuing, the MQIIH must be in the

character set and encoding of the queue manager that owns the IMS bridge

queue.

v The application message data following the MQIIH structure must be in the

same character set and encoding as the MQIIH structure. The IICSI and IIENC

fields in the MQIIH structure cannot be used to specify the character set and

encoding of the application message data.

A data-conversion exit must be provided by the user to convert the application

message data if the data is not one of the built-in formats supported by the

queue manager.

Authenticating passtickets for IMS bridge applications: It is now possible for

WebSphere MQ administrators to specify the application name to be used for

authenticating passtickets, for IMS bridge applications. To do this, the application

name is specified as a new attribute PTKTAPPL for the STGCLASS object

definition, as a 1 to 8 character alphanumeric string.

A blank value means that authentication occurs as with previous releases of

WebSphere MQ, that is, no application name flows on the authentication request,

and the MVSxxxx value to is used instead.

A value of between 1 and 8 alphanumeric characters must follow the rules for

passticket application names as described in the RACF® publications.

MQ Administrators and RACF administrators must both agree on the valid

application names to be used. The RACF administrator must create a profile in the

PTKTDATA class giving READ access to the userids of all applications that are to

be granted access. The WebSphere MQ administrator must create or alter the

required STGCLASS definitions that specify the application name to be used for

passticket authentication.

For related information, see the Script (MQSC) Command Reference.

Fields

The MQIIH structure contains the following fields; the fields are described in

alphabetic order:

IIAUT (8-byte character string)

RACF password or passticket.

Chapter 1. Data type descriptions 111

This is optional; if specified, it is used with the user ID in the MQMD security

context to build a Utoken that is sent to IMS to provide a security context. If it is

not specified, the user ID is used without verification. This depends on the setting

of the RACF switches, which may require an authenticator to be present.

This is ignored if the first byte is blank or null. The following special value may be

used:

IAUNON

No authentication.

The length of this field is given by LNAUTH. The initial value of this field is

IAUNON.

IICMT (1-byte character string)

Commit mode.

See the OTMA Reference for more information about IMS commit modes. The value

must be one of the following:

ICMCTS

Commit then send.

 This mode implies double queuing of output, but shorter region occupancy

times. Fast-path and conversational transactions cannot run with this

mode.

ICMSTC

Send then commit.

The initial value of this field is ICMCTS.

IICSI (10-digit signed integer)

Reserved.

This is a reserved field; its value is not significant. The initial value of this field is

0.

IIENC (10-digit signed integer)

Reserved.

This is a reserved field; its value is not significant. The initial value of this field is

0.

IIFLG (10-digit signed integer)

Flags.

The value must be:

IINONE

No flags.

The initial value of this field is IINONE.

112 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

IIFMT (8-byte character string)

MQ format name of data that follows MQIIH.

This specifies the MQ format name of the data that follows the MQIIH structure.

On the MQPUT or MQPUT1 call, the application must set this field to the value

appropriate to the data. The rules for coding this field are the same as those for the

MDFMT field in MQMD.

The length of this field is given by LNFMT. The initial value of this field is

FMNONE.

IILEN (10-digit signed integer)

Length of MQIIH structure.

The value must be:

IILEN1

Length of IMS information header structure.

The initial value of this field is IILEN1.

IILTO (8-byte character string)

Logical terminal override.

This is placed in the IO PCB field. It is optional; if it is not specified the TPIPE

name is used. It is ignored if the first byte is blank, or null.

The length of this field is given by LNLTOV. The initial value of this field is 8

blank characters.

IIMMN (8-byte character string)

Message format services map name.

This is placed in the IO PCB field. It is optional. On input it represents the MID,

on output it represents the MOD. It is ignored if the first byte is blank or null.

The length of this field is given by LNMFMN. The initial value of this field is 8

blank characters.

IIRFM (8-byte character string)

MQ format name of reply message.

This is the MQ format name of the reply message that will be sent in response to

the current message. The rules for coding this are the same as those for the MDFMT

field in MQMD.

The length of this field is given by LNFMT. The initial value of this field is

FMNONE.

Chapter 1. Data type descriptions 113

IIRSV (1-byte character string)

Reserved.

This is a reserved field; it must be blank.

IISEC (1-byte character string)

Security scope.

This indicates the desired IMS security processing. The following values are

defined:

ISSCHK

Check security scope.

 An ACEE is built in the control region, but not in the dependent region.

ISSFUL

Full security scope.

 A cached ACEE is built in the control region and a non-cached ACEE is

built in the dependent region. If you use ISSFUL, you must ensure that the

user ID for which the ACEE is built has access to the resources used in the

dependent region.

If neither ISSCHK nor ISSFUL is specified for this field, ISSCHK is assumed.

The initial value of this field is ISSCHK.

IISID (4-byte character string)

Structure identifier.

The value must be:

IISIDV

Identifier for IMS information header structure.

The initial value of this field is IISIDV.

IITID (16-byte bit string)

Transaction instance identifier.

This field is used by output messages from IMS so is ignored on first input. If

IITST is set to ITSIC, this must be provided in the next input, and all subsequent

inputs, to enable IMS to correlate the messages to the correct conversation. The

following special value may be used:

ITINON

No transaction instance id.

The length of this field is given by LNTIID. The initial value of this field is

ITINON.

IITST (1-byte character string)

Transaction state.

114 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

This indicates the IMS conversation state. This is ignored on first input because no

conversation exists. On subsequent inputs it indicates whether a conversation is

active or not. On output it is set by IMS. The value must be one of the following:

ITSIC In conversation.

ITSNIC

Not in conversation.

ITSARC

Return transaction state data in architected form.

 This value is used only with the IMS /DISPLAY TRAN command. It causes

the transaction state data to be returned in the IMS architected form

instead of character form. See the WebSphere MQ Application

Programming Guide for further details.

The initial value of this field is ITSNIC.

IIVER (10-digit signed integer)

Structure version number.

The value must be:

IIVER1

Version number for IMS information header structure.

The following constant specifies the version number of the current version:

IIVERC

Current version of IMS information header structure.

The initial value of this field is IIVER1.

Initial values and RPG declaration

 Table 41. Initial values of fields in MQIIH

Field name Name of constant Value of constant

IISID IISIDV ’IIH�’

IIVER IIVER1 1

IILEN IILEN1 84

IIENC None 0

IICSI None 0

IIFMT FMNONE Blanks

IIFLG IINONE 0

IILTO None Blanks

IIMMN None Blanks

IIRFM FMNONE Blanks

IIAUT IAUNON Blanks

IITID ITINON Nulls

IITST ITSNIC ’�’

IICMT ICMCTS ’0’

IISEC ISSCHK ’C’

Chapter 1. Data type descriptions 115

Table 41. Initial values of fields in MQIIH (continued)

Field name Name of constant Value of constant

IIRSV None ’�’

Notes:

1. The symbol ‘�’ represents a single blank character.

RPG declaration (copy file CMQIIHG)

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..

 D*

 D* MQIIH Structure

 D*

 D* Structure identifier

 D IISID 1 4 INZ(’IIH ’)

 D* Structure version number

 D IIVER 5 8I 0 INZ(1)

 D* Length of MQIIH structure

 D IILEN 9 12I 0 INZ(84)

 D* Reserved

 D IIENC 13 16I 0 INZ(0)

 D* Reserved

 D IICSI 17 20I 0 INZ(0)

 D* MQ format name of data that followsMQIIH

 D IIFMT 21 28 INZ(’ ’)

 D* Flags

 D IIFLG 29 32I 0 INZ(0)

 D* Logical terminal override

 D IILTO 33 40 INZ

 D* Message format services map name

 D IIMMN 41 48 INZ

 D* MQ format name of reply message

 D IIRFM 49 56 INZ(’ ’)

 D* RACF password or passticket

 D IIAUT 57 64 INZ(’ ’)

 D* Transaction instance identifier

 D IITID 65 80 INZ(X’00000000000000-

 D 000000000000000000’)

 D* Transaction state

 D IITST 81 81 INZ(’ ’)

 D* Commit mode

 D IICMT 82 82 INZ(’0’)

 D* Security scope

 D IISEC 83 83 INZ(’C’)

 D* Reserved

 D IIRSV 84 84 INZ

MQIMPO – Inquire message property options

The following table summarizes the fields in the structure. MQIMPO structure -

inquire message property options

 Table 42. Fields in MQIMPO

Field Description Topic

StrucId Structure identifier StrucId

Version Structure version number Version

Options Options controlling the action of

MQINQMP

Options

RequestedEncoding Encoding into which the enquired

property is to be converted

RequestedEncoding

116 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Table 42. Fields in MQIMPO (continued)

Field Description Topic

RequestedCCSID Character set of the inquired property RequestedCCSID

ReturnedEncoding Encoding of the returned value ReturnedEncoding

ReturnedCCSID Character set of returned value ReturnedCCSID

Reserved1 Reserved field Reserved1

ReturnedName Name of the inquired property ReturnedName

TypeString String representation of the data type of

the property

TypeString

Overview for MQIMPO

The inquire message properties options structure.

Availability: All WebSphere MQ systems and WebSphere MQ clients.

Purpose: The MQIMPO structure allows applications to specify options that control

how properties of messages are inquired. The structure is an input parameter on

the MQINQMP call.

Character set and encoding: Data in MQIMPO must be in the character set of the

application and encoding of the application (MQENC_NATIVE).

Fields for MQIMPO

Inquire message property options structure - fields

The MQIMPO structure contains the following fields; the fields are described in

alphabetic order:

IPOPT (10-digit signed integer)

Inquire message property options structure - IPOPT field

The following options control the action of MQINQMP. You can specify one or

more of these options, and if you need more than one, the values can be:

v Added together (do not add the same constant more than once), or

v Combined using the bitwise OR operation (if the programming language

supports bit operations).

Combinations of options that are not valid are noted; all other combinations are

valid.

Value data options: The following options relate to the processing of the value

data when the property is retrieved from the message.

IPCVAL

This option requests that the value of the property be converted to

conform to the IPREQCSI and IPREQENC values specified before the

MQINQMP call returns the property value in the Value area.

v If conversion is successful, the IPRETCSI and IPRETENC fields are set to

the same as IPREQCSI and IPREQENC on return from the MQINQMP call.

v If conversion fails, but the MQINQMP call otherwise completes without

error, the property value is returned unconverted.

Chapter 1. Data type descriptions 117

If the property is a string, the IPRETCSI and IPRETENC fields are set to the

character set and encoding of the unconverted string. The completion

code is MQCC_WARNING in this case, with reason code

MQRC_PROP_VALUE_NOT_CONVERTED. The property cursor is

advanced to the returned property.

If the property value expands during conversion, and exceeds the size of

the Value parameter, the value is returned unconverted, with completion

code MQCC_FAILED; the reason code is set to

MQRC_PROPERTY_VALUE_TOO_BIG.

 The DataLength parameter of the MQINQMP call returns the length that

the property value would have converted to, in order to allow the

application to determine the size of the buffer required to accommodate

the converted property value. The property cursor is unchanged.

This option also requests that:

v If the property name contains a wildcard, and

v The IPRETNAMECHRP field is initialized with an address or offset for the

returned name,

then the returned name is converted to conform to the IPREQCSI and

IPREQENC values.

v If conversion is successful, the VSCCSID field of IPRETNAMECHRP and the

encoding of the returned name are set to the input value of IPREQCSI

and IPREQENC.

v If conversion fails, but the MQINQMP call otherwise completes without

error or warning, the returned name is unconverted. The completion

code is MQCC_WARNING in this case, with reason code

MQRC_PROP_NAME_NOT_CONVERTED.

The property cursor is advanced to the returned property.

MQRC_PROP_VALUE_NOT_CONVERTED is returned if both the value

and the name are not converted.

If the returned name expands during conversion, and exceeds the size of

the VSBufsize field of the RequestedName, the returned string is left

unconverted, with completion code MQCC_FAILED and the reason code is

set to MQRC_PROPERTY_NAME_TOO_BIG.

The VSLength field of the MQCHARV structure returns the length that the

property value would have converted to, in order to allow the application

to determine the size of the buffer required to accommodate the converted

property value. The property cursor is unchanged.

IPCTYP

This option requests that the value of the property be converted from its

current data type, into the data type specified on the Type parameter of the

MQINQMP call.

v If conversion is successful, the Type parameter is unchanged on return of

the MQINQMP call.

v If conversion fails, but the MQINQMP call otherwise completes without

error, the call fails with reason

MQRC_PROP_CONV_NOT_SUPPORTED. The property cursor is

unchanged.

If the conversion of the data type causes the value to expand during

conversion, and the converted value exceeds the size of the Value

parameter, the value is returned unconverted, with completion code

118 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

MQCC_FAILED and the reason code is set to

MQRC_PROPERTY_VALUE_TOO_BIG.

The DataLength parameter of the MQINQMP call returns the length that

the property value would have converted to, in order to allow the

application to determine the size of the buffer required to accommodate

the converted property value. The property cursor is unchanged.

If the value of the Type parameter of the MQINQMP call is not valid, the

call fails with reason MQRC_PROPERTY_TYPE_ERROR.

If the requested data type conversion is not supported, the call fails with

reason MQRC_PROP_CONV_NOT_SUPPORTED. The following data type

conversions are supported:

 Property data type Supported target data types

MQTYPE_BOOLEAN MQTYPE_STRING, MQTYPE_INT8, MQTYPE_INT16,

MQTYPE_INT32, MQTYPE_INT64

MQTYPE_BYTE_STRING MQTYPE_STRING

MQTYPE_INT8 MQTYPE_STRING, MQTYPE_INT16, MQTYPE_INT32,

MQTYPE_INT64

MQTYPE_INT16 MQTYPE_STRING, MQTYPE_INT32, MQTYPE_INT64

MQTYPE_INT32 MQTYPE_STRING, MQTYPE_INT64

MQTYPE_INT64 MQTYPE_STRING

MQTYPE_FLOAT32 MQTYPE_STRING, MQTYPE_FLOAT64

MQTYPE_FLOAT64 MQTYPE_STRING

MQTYPE_STRING MQTYPE_BOOLEAN, MQTYPE_INT8, MQTYPE_INT16,

MQTYPE_INT32, MQTYPE_INT64, MQTYPE_FLOAT32,

MQTYPE_FLOAT64

MQTYPE_NULL None

The general rules governing the supported conversions are as follows:

v Numeric property values can be converted from one data type to

another, provided that no data is lost during the conversion.

For example, the value of a property with data type MQTYPE_INT32

can be converted into a value with data type MQTYPE_INT64, but

cannot be converted into a value with data type MQTYPE_INT16.

v A property value of any data type can be converted into a string.

v A string property value can be converted to any other data type

provided the string is formatted correctly for the conversion. If an

application attempts to convert a string property value that is not

formatted correctly, WebSphere MQ returns reason code

MQRC_PROP_NUMBER_FORMAT_ERROR.

v If an application attempts a conversion that is not supported, WebSphere

MQ returns reason code MQRC_PROP_CONV_NOT_SUPPORTED.

The specific rules for converting a property value from one data type to

another are as follows:

v When converting an MQTYPE_BOOLEAN property value to a string,

the value TRUE is converted to the string ″TRUE″, and the value false is

converted to the string ″FALSE″.

Chapter 1. Data type descriptions 119

v When converting an MQTYPE_BOOLEAN property value to a numeric

data type, the value TRUE is converted to one, and the value FALSE is

converted to zero.

v When converting a string property value to an MQTYPE_BOOLEAN

value, the string ″TRUE″ , or ″1″ , is converted to TRUE, and the string

″FALSE″, or ″0″, is converted to FALSE.

Note that the terms ″TRUE″ and ″FALSE″ are not case sensitive.

Any other string cannot be converted; WebSphere MQ returns reason

code MQRC_PROP_NUMBER_FORMAT_ERROR.

v When converting a string property value to a value with data type

MQTYPE_INT8, MQTYPE_INT16, MQTYPE_INT32 or MQTYPE_INT64,

the string must have the following format:

[blanks][sign]digits

The meanings of the components of the string are as follows:

blanks Optional leading blank characters

sign An optional plus sign (+) or minus sign (-) character.

digits A contiguous sequence of digit characters (0-9). At least one digit

character must be present.
After the sequence of digit characters, the string can contain other

characters that are not digit characters, but the conversion stops as soon

as the first of these characters is reached. The string is assumed to

represent a decimal integer.

WebSphere MQ returns reason code

MQRC_PROP_NUMBER_FORMAT_ERROR if the string is not formatted

correctly.

v When converting a string property value to a value with data type

MQTYPE_FLOAT32 or MQTYPE_FLOAT64, the string must have the

following format:

 [blanks][sign]digits[.digits][e_char[e_sign]e_digits]

The meanings of the components of the string are as follows:

blanks Optional leading blank characters

sign An optional plus sign (+) or minus sign (-) character.

digits A contiguous sequence of digit characters (0-9). At least one digit

character must be present.

e_char An exponent character, which is either ″E″ or ″e″.

e_sign An optional plus sign (+) or minus sign (-) character for the

exponent.

e_digits

A contiguous sequence of digit characters (0-9) for the exponent.

At least one digit character must be present if the string contains

an exponent character.
After the sequence of digit characters, or the optional characters

representing an exponent, the string can contain other characters that are

not digit characters, but the conversion stops as soon as the first of these

characters is reached. The string is assumed to represent a decimal

floating point number with an exponent that is a power of 10.

120 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

WebSphere MQ returns reason code

MQRC_PROP_NUMBER_FORMAT_ERROR if the string is not formatted

correctly.

v When converting a numeric property value to a string, the value is

converted to the string representation of the value as a decimal number,

not the string containing the ASCII character for that value. For example,

the integer 65 is converted to the string ″65″, not the string ″A″.

v When converting a byte string property value to a string, each byte is

converted to the two hexadecimal characters that represent the byte. For

example, the byte array {0xF1, 0x12, 0x00, 0xFF} is converted to the

string ″F11200FF″.

IPQLEN

Query the type and length of the property value. The length is returned in

the DataLength parameter of the MQINQMP call. The property value is not

returned.

 If a ReturnedName buffer is specified, the VSLength field of the MQCHARV

structure is filled in with the length of the property name. The property

name is not returned.

Iteration options: The following options relate to iterating over properties, using a

name with a wildcard character

IPINQF

Inquire on the first property that matches the specified name. After this

call, a cursor is established on the property that is returned.

 This is the default value.

The MQIMPO_INQ_PROP_UNDER_CURSOR option can subsequently be

used with an MQINQMP call, if required, to inquire on the same property

again.

Note that there is only one property cursor; therefore, if the property name,

specified in the MQINQMP call, changes the cursor is reset.

This option is not valid with either of the following options:

 MQIMPO_INQ_NEXT

 MQIMPO_INQ_PROP_UNDER_CURSOR

IPINQN

Inquires on the next property that matches the specified name, continuing

the search from the property cursor. The cursor is advanced to the property

that is returned.

 If this is the first MQINQMP call for the specified name, then the first

property that matches the specified name is returned.

The MQIMPO_INQ_PROP_UNDER_CURSOR option can subsequently be

used with an MQINQMP call if required, to inquire on the same property

again.

If the property under the cursor has been deleted, MQINQMP returns the

next matching property following the one that has been deleted.

If a property is added that matches the wildcard, while an iteration is in

progress, the property might or might not be returned during the

completion of the iteration. The property is returned once the iteration

restarts using MQIMPO_INQ_FIRST.

Chapter 1. Data type descriptions 121

A property matching the wildcard that was deleted, while the iteration was

in progress, is not returned subsequent to its deletion.

This option is not valid with either of the following options:

 MQIMPO_INQ_FIRST

 MQIMPO_INQ_PROP_UNDER_CURSOR

IPINQC

Retrieve the value of the property pointed to by the property cursor. The

property pointed to by the property cursor is the one that was last

inquired, using either the MQIMPO_INQ_FIRST or the

MQIMPO_INQ_NEXT option.

 The property cursor is reset when the message handle is reused, when the

message handle is specified in the MsgHandle field of the MQGMO on an

MQGET call, or when the message handle is specified in

OriginalMsgHandle or NewMsgHandle fields of the MQPMO structure on an

MQPUT call.

If this option is used when the property cursor has not yet been

established, or if the property pointed to by the property cursor has been

deleted, the call fails with completion code MQCC_FAILED and reason

MQRC_PROPERTY_NOT_AVAILABLE.

This option is not valid with either of the following options:

 MQIMPO_INQ_FIRST

 MQIMPO_INQ_NEXT

If none of the options previously described is required, the following option can be

used:

IPNONE

Use this value to indicate that no other options have been specified; all

options assume their default values.

 MQIMPO_NONE aids program documentation; it is not intended that this

option be used with any other, but as its value is zero, such use cannot be

detected.

This is always an input field. The initial value of this field is IPINQF.

IPREQCSI (10-digit signed integer)

Inquire message property options structure - IPREQCSI field

The character set that the inquired property value is to be converted into if the

value is a character string. This is also the character set into which the

ReturnedName is to be converted when MQIMPO_CONVERT_VALUE or

MQIMPO_CONVERT_TYPE is specified.

The initial value of this field is MQCCSI_APPL.

IPREQENC (10-digit signed integer)

Inquire message property options structure - RequestedEncoding field

This is the encoding into which the inquired property value is to be converted

when MQIMPO_CONVERT_VALUE or MQIMPO_CONVERT_TYPE is specified.

The initial value of this field is MQENC_NATIVE.

122 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

IPRE1 (10-digit signed integer)

This is a reserved field. The initial value of this field is a blank character.

IPRETCSI (10-digit signed integer)

Inquire message property options structure - IPRETCSI field

On output, this is the character set of the value returned if the Type parameter of

the MQINQMP call is MQTYPE_STRING.

If the MQIMPO_CONVERT_VALUE option is specified and conversion was

successful, the ReturnedCCSID field, on return, is the same value as the value

passed in.

The initial value of this field is zero.

IPRETENC (10-digit signed integer)

Inquire message property options structure - IPRETENC field

On output, this is the encoding of the value returned.

If the MQIMPO_CONVERT_VALUE option is specified and conversion was

successful, the ReturnedEncoding field, on return, is the same value as the value

passed in.

The initial value of this field is MQENC_NATIVE.

IPRETNAMCHRP (10-digit signed integer)

Inquire message property options structure - IPRETNAMCHRP field

The actual name of the inquired property.

On input a string buffer can be passed in using the VSPtr or VSOffset field of the

MQCHARV structure. The length of the string buffer is specified using the

VSBufsize field of the MQCHARV structure.

On return from the MQINQMP call, the string buffer is completed with the name

of the property that was inquired, provided the string buffer was long enough to

fully contain the name. The VSLength field of the MQCHARV structure is filled in

with the length of the property name. The VSCCSID field of the MQCHARV

structure is filled in to indicate the character set of the returned name, whether or

not conversion of the name failed.

This is an input/output field. The initial value of this field is

MQCHARV_DEFAULT.

IPSID (10-digit signed integer)

Inquire message property options structure - IPSID field

This is the structure identifier. The value must be:

IPSIDV

Identifier for inquire message property options structure.

This is always an input field. The initial value of this field is IPSIDV.

Chapter 1. Data type descriptions 123

IPTYP (10-digit signed integer)

Inquire message property options structure - IPTYP field

A string representation of the data type of the property.

If the property was specified in an MQRFH2 header and the MQRFH2 dt attribute

is not recognized, this field can be used to determine the data type of the property.

TypeString is returned in coded character set 1208 (UTF-8), and is the first eight

bytes of the value of the dt attribute of the property that failed to be recognized

This is always an output field. The initial value of this field is the null string in the

C programming language, and 8 blank characters in other programming languages.

IPVER (10-digit signed integer)

Inquire message property options structure - Version field

This is the structure version number. The value must be:

IPVER1

Version number for inquire message property options structure.

The following constant specifies the version number of the current version:

IPVERC

Current version of inquire message property options structure.

This is always an input field. The initial value of this field is IPVER1.

Initial values and RPG declaration

Inquire message property options structure - Initial values

 Table 43. Initial values of fields in MQIPMO

Field name Name of constant Value of constant

IPSID IPSIDV ’IMPO’

IPVER IPVER1 1

IPOPT IPINQF

IPREQENC MQENC_NATIVE

IPREQCSI MQCCSI_APPL

IPRETENC MQENC_NATIVE

IPRETCSI 0

IPRE1 0

IPRETNAMCHRP MQCHARV_DEFAULT

IPTYP Null string or blanks

Notes:

1. The value Null string or blanks denotes the null string in C, and blank characters in

other programming languages.

2. In the C programming language, the macro variable MQIMPO_DEFAULT contains the

values listed above. Use it in the following way to provide initial values for the fields

in the structure:

MQIMPO MyIMPO = {MQIMPO_DEFAULT};

124 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

RPG declaration (copy file MQIMPOG)

 D* MQIMPO Structure

 D*

 D*

 D* Structure identifier

 D IPSID 1 4 INZ(’IMPO’)

 D*

 D* Structure version number

 D IPVER 5 8I 0 INZ(1)

 D*

 ** Options that control the action of

 D* MQINQMP

 D IPOPT 9 12I 0 INZ(0)

 D*

 D* Requested encoding of Value

 D IPREQENC 13 16I 0 INZ(273)

 D*

 ** Requested character set identifier

 D* of Value

 D IPREQCSI 17 20I 0 INZ(-3)

 D*

 D* Returned encoding of Value

 D IPRETENC 21 24I 0 INZ(273)

 D*

 ** Returned character set identifier of

 D* Value

 D IPRETCSI 25 28I 0 INZ(0)

 D*

 D* Reserved

 D IPRE1 29 32I 0 INZ(0)

 D*

 D* Returned property name

 D* Address of variable length string

 D IPRETNAMCHRP 33 48* INZ(*NULL)

 D* Offset of variable length string

 D IPRETNAMCHRO 49 52I 0 INZ(0)

 D* Size of buffer

 D IPRETNAMVSBS 53 56I 0 INZ(-1)

 D* Length of variable length string

 D IPRETNAMCHRL 57 60I 0 INZ(0)

 D* CCSID of variable length string

 D IPRETNAMCHRC 61 64I 0 INZ(-3)

 D*

 D* Property data type as a string

 D IPTYP 65 72 INZ

MQMD – Message descriptor

The following table summarizes the fields in the structure.

 Table 44. Fields in MQMD

Field Description Topic

MDSID Structure identifier MDSID

MDVER Structure version number MDVER

MDREP Options for report messages MDREP

MDMT Message type MDMT

MDEXP Message lifetime MDEXP

MDFB Feedback or reason code MDFB

MDENC Numeric encoding of message data MDENC

Chapter 1. Data type descriptions 125

Table 44. Fields in MQMD (continued)

Field Description Topic

MDCSI Character set identifier of message

data

MDCSI

MDFMT Format name of message data MDFMT

MDPRI Message priority MDPRI

MDPER Message persistence MDPER

MDMID Message identifier MDMID

MDCID Correlation identifier MDCID

MDBOC Backout counter MDBOC

MDRQ Name of reply queue MDRQ

MDRM Name of reply queue manager MDRM

MDUID User identifier MDUID

MDACC Accounting token MDACC

MDAID Application data relating to identity MDAID

MDPAT Type of application that put the

message

MDPAT

MDPAN Name of application that put the

message

MDPAN

MDPD Date when message was put MDPD

MDPT Time when message was put MDPT

MDAOD Application data relating to origin MDAOD

Note: The remaining fields are ignored if MDVER is less than MDVER2.

MDGID Group identifier MDGID

MDSEQ Sequence number of logical message

within group

MDSEQ

MDOFF Offset of data in physical message

from start of logical message

MDOFF

MDMFL Message flags MDMFL

MDOLN Length of original message MDOLN

Overview

Purpose: The MQMD structure contains the control information that accompanies

the application data when a message travels between the sending and receiving

applications. The structure is an input/output parameter on the MQGET, MQPUT,

and MQPUT1 calls.

Version: The current version of MQMD is MDVER2. Fields that exist only in the

more-recent versions of the structure are identified as such in the descriptions that

follow.

The COPY file provided contains the most recent version of MQMD that is

supported by the environment, but with the initial value of the MDVER field set to

MDVER1. To use fields that are not present in the version-1 structure, the

application must set the MDVER field to the version number of the version required.

126 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

A declaration for the version-1 structure is available with the name MQMD1.

Character set and encoding: Data in MQMD must be in the character set and

encoding of the local queue manager; these are given by the CodedCharSetId queue

manager attribute and ENNAT, respectively. However, if the application is running

as an MQ client, the structure must be in the character set and encoding of the

client.

If the sending and receiving queue managers use different character sets or

encodings, the data in MQMD is converted automatically. It is not necessary for

the application to convert the MQMD.

Using different versions of MQMD: A version-2 MQMD is generally equivalent to

using a version-1 MQMD and prefixing the message data with an MQMDE

structure. However, if all of the fields in the MQMDE structure have their default

values, the MQMDE can be omitted. A version-1 MQMD plus MQMDE are used as

described below.

v On the MQPUT and MQPUT1 calls, if the application provides a version-1

MQMD, the application can optionally prefix the message data with an

MQMDE, setting the MDFMT field in MQMD to FMMDE to indicate that an

MQMDE is present. If the application does not provide an MQMDE, the queue

manager assumes default values for the fields in the MQMDE.

Note: Several of the fields that exist in the version-2 MQMD but not the

version-1 MQMD are input/output fields on the MQPUT and MQPUT1 calls.

However, the queue manager does not return any values in the equivalent fields

in the MQMDE on output from the MQPUT and MQPUT1 calls; if the

application requires those output values, it must use a version-2 MQMD.

v On the MQGET call, if the application provides a version-1 MQMD, the queue

manager prefixes the message returned with an MQMDE, but only if one or

more of the fields in the MQMDE has a non-default value. The MDFMT field in

MQMD will have the value FMMDE to indicate that an MQMDE is present.

The default values that the queue manager used for the fields in the MQMDE are

the same as the initial values of those fields, shown in Table 48 on page 183.

When a message is on a transmission queue, some of the fields in MQMD are set

to particular values; see “MQXQH – Transmission-queue header” on page 286 for

details.

Message context: Certain fields in MQMD contain the message context. Usually:

v Identity context relates to the application that originally put the message

v Origin context relates to the application that most recently put the message

v User context relates to the application that originally put the message.

These two applications can be the same application, but they can also be different

applications (for example, when a message is forwarded from one application to

another).

Although identity and origin context usually have the meanings described above,

the content of both types of context fields in MQMD actually depends on the PM*

options that are specified when the message is put. As a result, identity context

does not necessarily relate to the application that originally put the message, and

origin context does not necessarily relate to the application that most recently put

the message – it depends on the design of the application suite.

Chapter 1. Data type descriptions 127

There is one class of application that never alters message context, namely the

message channel agent (MCA). MCAs that receive messages from remote queue

managers use the context option PMSETA on the MQPUT or MQPUT1 call. This

allows the receiving MCA to preserve exactly the message context that travelled

with the message from the sending MCA. However, the result is that the origin

context does not relate to the application that most recently put the message (the

receiving MCA), but instead relates to an earlier application that put the message

(possibly the originating application itself).

In the descriptions below, the context fields are described as though they are used

as described above. For more information see Message context.

Message expiry: Messages that have expired on a loaded queue (a queue that has

been opened) are automatically removed from the queue within a reasonable

period of time after their expiry. Some other new features of this release of

WebSphere MQ can lead to loaded queues being scanned less frequently than in

the previous product version, however expired messages on loaded queues are

always removed within a reasonable period of their expiry.

Fields

The MQMD structure contains the following fields; the fields are described in

alphabetic order:

MDACC (32-byte bit string)

Accounting token.

This is part of the identity context of the message. For more information about

message context, see “Overview” on page 126; also see the WebSphere MQ

Application Programming Guide.

MDACC allows an application to cause work done as a result of the message to be

appropriately charged. The queue manager treats this information as a string of

bits and does not check its content.

When the queue manager generates this information, it is set as follows:

v The first byte of the field is set to the length of the accounting information

present in the bytes that follow; this length is in the range zero through 30, and

is stored in the first byte as a binary integer.

v The second and subsequent bytes (as specified by the length field) are set to the

accounting information appropriate to the environment.

– On z/OS the accounting information is set to:

- For z/OS batch, the accounting information from the JES JOB card or from

a JES ACCT statement in the EXEC card (comma separators are changed to

X’FF’). This information is truncated, if necessary, to 31 bytes.

- For TSO, the user’s account number.

- For CICS, the LU 6.2 unit of work identifier (UEPUOWDS) (26 bytes).

- For IMS, the 8-character PSB name concatenated with the 16-character IMS

recovery token.
– On i5/OS, the accounting information is set to the accounting code for the

job.

128 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

– On HP OpenVMS, Compaq NonStop Kernel, and UNIX systems, the

accounting information is set to the numeric user identifier, in ASCII

characters.

– On OS/2®, the accounting information is set to the ASCII character ’1’.

– On Windows, the accounting information is set to a Windows NT® security

identifier (SID) in a compressed format. The SID uniquely identifies the user

identifier stored in the MDUID field. When the SID is stored in the MDACC field,

the 6-byte Identifier Authority (located in the third and subsequent bytes of

the SID) is omitted. For example, if the Windows NT SID is 28 bytes long, 22

bytes of SID information are stored in the MDACC field.
v The last byte is set to the accounting-token type, one of the following values:

ATTCIC

CICS LUOW identifier.

ATTDOS

PC DOS default accounting token.

ATTWNT

Windows security identifier.

ATTOS2

OS/2 default accounting token.

ATT400

i5/OS accounting token.

ATTUNX

UNIX systems numeric identifier.

ATTUSR

User-defined accounting token.

ATTUNK

Unknown accounting-token type.

The accounting-token type is set to an explicit value only in the following

environments: AIX, HP-UX, OS/2, i5/OS, Solaris, Windows, plus WebSphere

MQ clients connected to these systems. In other environments, the

accounting-token type is set to the value ATTUNK. In these environments the

MDPAT field can be used to deduce the type of accounting token received.

v All other bytes are set to binary zero.

For the MQPUT and MQPUT1 calls, this is an input/output field if PMSETI or

PMSETA is specified in the PMO parameter. If neither PMSETI nor PMSETA is

specified, this field is ignored on input and is an output-only field. For more

information on message context, see the WebSphere MQ Application Programming

Guide.

After the successful completion of an MQPUT or MQPUT1 call, this field contains

the MDACC that was transmitted with the message if it was put to a queue. This will

be the value of MDACC that is kept with the message if it is retained (see description

of PMRET in “PMOPT (10-digit signed integer)” on page 204 for more details

about retained publications) but is not used as the MDACC when the message is sent

as a publication to subscribers since they provide a value to override MDACC in all

publications sent to them. If the message has no context, the field is entirely binary

zero.

This is an output field for the MQGET call.

Chapter 1. Data type descriptions 129

This field is not subject to any translation based on the character set of the queue

manager—the field is treated as a string of bits, and not as a string of characters.

The queue manager does nothing with the information in this field. The

application must interpret the information if it wants to use the information for

accounting purposes.

The following special value may be used for the MDACC field:

ACNONE

No accounting token is specified.

 The value is binary zero for the length of the field.

The length of this field is given by LNACCT. The initial value of this field is

ACNONE.

MDAID (32-byte character string)

Application data relating to identity.

This is part of the identity context of the message. For more information about

message context, see “Overview” on page 126; also see the WebSphere MQ

Application Programming Guide.

MDAID is information that is defined by the application suite, and can be used to

provide additional information about the message or its originator. The queue

manager treats this information as character data, but does not define the format of

it. When the queue manager generates this information, it is entirely blank.

For the MQPUT and MQPUT1 calls, this is an input/output field if PMSETI or

PMSETA is specified in the PMO parameter. If a null character is present, the null

and any following characters are converted to blanks by the queue manager. If

neither PMSETI nor PMSETA is specified, this field is ignored on input and is an

output-only field. For more information on message context, see the WebSphere

MQ Application Programming Guide.

After the successful completion of an MQPUT or MQPUT1 call, this field contains

the MDAID that was transmitted with the message if it was put to a queue. This will

be the value of MDAID that is kept with the message if it is retained (see description

of PMRET for more details about retained publications) but is not used as the

MDAID when the message is sent as a publication to subscribers since they provide a

value to override MDAID in all publications sent to them. If the message has no

context, the field is entirely blank.

This is an output field for the MQGET call. The length of this field is given by

LNAIDD. The initial value of this field is 32 blank characters.

MDAOD (4-byte character string)

Application data relating to origin.

This is part of the origin context of the message. For more information about

message context, see “Overview” on page 126; also see the WebSphere MQ

Application Programming Guide.

130 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

MDAOD is information that is defined by the application suite that can be used to

provide additional information about the origin of the message. For example, it

could be set by applications running with suitable user authority to indicate

whether the identity data is trusted.

The queue manager treats this information as character data, but does not define

the format of it. When the queue manager generates this information, it is entirely

blank.

For the MQPUT and MQPUT1 calls, this is an input/output field if PMSETA is

specified in the PMO parameter. Any information following a null character within

the field is discarded. The null character and any following characters are

converted to blanks by the queue manager. If PMSETA is not specified, this field is

ignored on input and is an output-only field.

After the successful completion of an MQPUT or MQPUT1 call, this field contains

the MDAOD that was transmitted with the message if it was put to a queue. This will

be the value of MDAOD that is kept with the message if it is retained (see description

of PMRET for more details about retained publications) but is not used as the

MDAOD when the message is sent as a publication to subscribers since they provide a

value to override MDAOD in all publications sent to them. If the message has no

context, the field is entirely blank.

This is an output field for the MQGET call. The length of this field is given by

LNAORD. The initial value of this field is 4 blank characters.

MDBOC (10-digit signed integer)

Backout counter.

This is a count of the number of times the message has been previously returned

by the MQGET call as part of a unit of work, and subsequently backed out. It is

provided as an aid to the application in detecting processing errors that are based

on message content. The count excludes MQGET calls that specified any of the

GMBRW* options.

The accuracy of this count is affected by the HardenGetBackout queue attribute; see

“Attributes for queues” on page 437.

This is an output field for the MQGET call. It is ignored for the MQPUT and

MQPUT1 calls. The initial value of this field is 0.

MDCID (24-byte bit string)

Correlation identifier.

This is a byte string that the application can use to relate one message to another,

or to relate the message to other work that the application is performing. The

correlation identifier is a permanent property of the message, and persists across

restarts of the queue manager. Because the correlation identifier is a byte string

and not a character string, the correlation identifier is not converted between

character sets when the message flows from one queue manager to another.

For the MQPUT and MQPUT1 calls, the application can specify any value. The

queue manager transmits this value with the message and delivers it to the

application that issues the get request for the message.

Chapter 1. Data type descriptions 131

If the application specifies PMNCID, the queue manager generates a unique

correlation identifier which is sent with the message, and also returned to the

sending application on output from the MQPUT or MQPUT1 call.

This generated correlation identifier is kept with the message if it is retained and is

used as the correlation identifier when the message is sent as a publication to

subscribers who specify CINONE in the SDCID field in the MQSD passed on the

MQSUB call.

See PMOPT for more details about retained publications

When the queue manager or a message channel agent generates a report message,

it sets the MDCID field in the way specified by the MDREP field of the original

message, either ROCMTC or ROPCI. Applications which generate report messages

should also do this.

For the MQGET call, MDCID is one of the five fields that can be used to select a

particular message to be retrieved from the queue. See the description of the MDMID

field for details of how to specify values for this field.

Specifying CINONE as the correlation identifier has the same effect as not

specifying MOCORI, that is, any correlation identifier will match.

If the GMMUC option is specified in the GMO parameter on the MQGET call, this

field is ignored.

On return from an MQGET call, the MDCID field is set to the correlation identifier of

the message returned (if any).

The following special values may be used:

CINONE

No correlation identifier is specified.

 The value is binary zero for the length of the field.

CINEWS

Message is the start of a new session.

 This value is recognized by the CICS bridge as indicating the start of a

new session, that is, the start of a new sequence of messages.

For the MQGET call, this is an input/output field. For the MQPUT and MQPUT1

calls, this is an input field if PMNCID is not specified, and an output field if

PMNCID is specified. The length of this field is given by LNCID. The initial value

of this field is CINONE.

MDCSI (10-digit signed integer)

Character set identifier of message data.

This specifies the character set identifier of character data in the message.

Note: Character data in MQMD and the other MQ data structures that are

parameters on calls must be in the character set of the queue manager. This is

defined by the queue manager’s CodedCharSetId attribute; see “Attributes for the

queue manager” on page 471 for details of this attribute.

132 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

The following special values can be used:

CSQM

Queue manager’s character set identifier.

 Character data in the message is in the queue manager’s character set.

On the MQPUT and MQPUT1 calls, the queue manager changes this value

in the MQMD sent with the message to the true character-set identifier of

the queue manager. As a result, the value CSQM is never returned by the

MQGET call.

CSINHT

Inherit character-set identifier of this structure.

 Character data in the message is in the same character set as this structure;

this is the queue manager’s character set. (For MQMD only, CSINHT has

the same meaning as CSQM).

The queue manager changes this value in the MQMD sent with the

message to the actual character-set identifier of MQMD. Provided no error

occurs, the value CSINHT is not returned by the MQGET call.

CSINHT cannot be used if the value of the MDPAT field in MQMD is

ATBRKR.

CSEMBD

Embedded character set identifier.

 Character data in the message is in a character set whose identifier is

contained within the message data itself. There can be any number of

character-set identifiers embedded within the message data, applying to

different parts of the data. This value must be used for PCF messages that

contain data in a mixture of character sets. PCF messages have a format

name of FMPCF.

Specify this value only on the MQPUT and MQPUT1 calls. If it is specified

on the MQGET call, it prevents conversion of the message.

On the MQPUT and MQPUT1 calls, the queue manager changes the values CSQM

and CSINHT in the MQMD sent with the message as described above, but does

not change the MQMD specified on the MQPUT or MQPUT1 call. No other check

is carried out on the value specified.

Applications that retrieve messages should compare this field against the value the

application is expecting; if the values differ, the application may need to convert

character data in the message.

If the GMCONV option is specified on the MQGET call, this field is an

input/output field. The value specified by the application is the coded

character-set identifier to which the message data should be converted if necessary.

If conversion is successful or unnecessary, the value is unchanged (except that the

value CSQM or CSINHT is converted to the actual value). If conversion is

unsuccessful, the value after the MQGET call represents the coded character-set

identifier of the unconverted message that is returned to the application.

Otherwise, this is an output field for the MQGET call, and an input field for the

MQPUT and MQPUT1 calls. The initial value of this field is CSQM.

Chapter 1. Data type descriptions 133

MDENC (10-digit signed integer)

Numeric encoding of message data.

This specifies the numeric encoding of numeric data in the message; it does not

apply to numeric data in the MQMD structure itself. The numeric encoding defines

the representation used for binary integers, packed-decimal integers, and

floating-point numbers.

On the MQPUT or MQPUT1 call, the application must set this field to the value

appropriate to the data. The queue manager does not check that the field is valid.

The following special value is defined:

ENNAT

Native machine encoding.

 The encoding is the default for the programming language and machine on

which the application is running.

Note: The value of this constant depends on the programming language

and environment. For this reason, applications must be compiled using the

header, macro, COPY, or INCLUDE files appropriate to the environment in

which the application will run.

Applications that put messages should normally specify ENNAT. Applications that

retrieve messages should compare this field against the value ENNAT; if the values

differ, the application may need to convert numeric data in the message. The

GMCONV option can be used to request the queue manager to convert the

message as part of the processing of the MQGET call.

If the GMCONV option is specified on the MQGET call, this field is an

input/output field. The value specified by the application is the encoding to which

the message data should be converted if necessary. If conversion is successful or

unnecessary, the value is unchanged. If conversion is unsuccessful, the value after

the MQGET call represents the encoding of the unconverted message that is

returned to the application.

In other cases, this is an output field for the MQGET call, and an input field for

the MQPUT and MQPUT1 calls. The initial value of this field is ENNAT.

MDEXP (10-digit signed integer)

Message lifetime.

This is a period of time expressed in tenths of a second, set by the application that

puts the message. The message becomes eligible to be discarded if it has not been

removed from the destination queue before this period of time elapses.

The value is decremented to reflect the time the message spends on the destination

queue, and also on any intermediate transmission queues if the put is to a remote

queue. It may also be decremented by message channel agents to reflect

transmission times, if these are significant. Likewise, an application forwarding this

message to another queue might decrement the value if necessary, if it has retained

the message for a significant time. However, the expiration time is treated as

approximate, and the value need not be decremented to reflect small time

intervals.

134 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

When the message is retrieved by an application using the MQGET call, the MDEXP

field represents the amount of the original expiry time that still remains.

After a message’s expiry time has elapsed, it becomes eligible to be discarded by

the queue manager. In the current implementations, the message is discarded when

a browse or nonbrowse MQGET call occurs that would have returned the message

had it not already expired. For example, a nonbrowse MQGET call with the GMMO

field in MQGMO set to MONONE reading from a FIFO ordered queue will cause

all the expired messages to be discarded up to the first unexpired message. With a

priority ordered queue, the same call will discard expired messages of higher

priority and messages of an equal priority that arrived on the queue before the

first unexpired message.

A message that has expired is never returned to an application (either by a browse

or a non-browse MQGET call), so the value in the MDEXP field of the message

descriptor after a successful MQGET call is either greater than zero, or the special

value EIULIM.

If a message is put on a remote queue, the message may expire (and be discarded)

whilst it is on an intermediate transmission queue, before the message reaches the

destination queue.

A report is generated when an expired message is discarded, if the message

specified one of the ROEXP* report options. If none of these options is specified,

no such report is generated; the message is assumed to be no longer relevant after

this time period (perhaps because a later message has superseded it).

Any other program that discards messages based on expiry time must also send an

appropriate report message if one was requested.

Note:

1. If a message is put with an MDEXP time of zero, the MQPUT or MQPUT1 call

fails with reason code RC2013; no report message is generated in this case.

2. Since a message whose expiry time has elapsed may not actually be discarded

until later, there may be messages on a queue that have passed their expiry

time, and which are not therefore eligible for retrieval. These messages

nevertheless count towards the number of messages on the queue for all

purposes, including depth triggering.

3. An expiration report is generated, if requested, when the message is actually

discarded, not when it becomes eligible for discarding.

4. Discarding of an expired message, and the generation of an expiration report if

requested, are never part of the application’s unit of work, even if the message

was scheduled for discarding as a result of an MQGET call operating within a

unit of work.

5. If a nearly-expired message is retrieved by an MQGET call within a unit of

work, and the unit of work is subsequently backed out, the message may

become eligible to be discarded before it can be retrieved again.

6. If a nearly-expired message is locked by an MQGET call with GMLK, the

message may become eligible to be discarded before it can be retrieved by an

MQGET call with GMMUC; reason code RC2034 is returned on this subsequent

MQGET call if that happens.

7. When a request message with an expiry time greater than zero is retrieved, the

application can take one of the following actions when it sends the reply

message:

Chapter 1. Data type descriptions 135

v Copy the remaining expiry time from the request message to the reply

message.

v Set the expiry time in the reply message to an explicit value greater than

zero.

v Set the expiry time in the reply message to EIULIM.

The action to take depends on the design of the application suite. However, the

default action for putting messages to a dead-letter (undelivered-message)

queue should be to preserve the remaining expiry time of the message, and to

continue to decrement it.

8. Trigger messages are always generated with EIULIM.

9. A message (normally on a transmission queue) which has a MDFMT name of

FMXQH has a second message descriptor within the MQXQH. It therefore has

two MDEXP fields associated with it. The following additional points should be

noted in this case:

v When an application puts a message on a remote queue, the queue manager

places the message initially on a local transmission queue, and prefixes the

application message data with an MQXQH structure. The queue manager

sets the values of the two MDEXP fields to be the same as that specified by the

application.

If an application puts a message directly on a local transmission queue, the

message data must already begin with an MQXQH structure, and the format

name must be FMXQH (but the queue manager does not enforce this). In

this case the application need not set the values of these two MDEXP fields to

be the same. (The queue manager does not check that the MDEXP field within

the MQXQH contains a valid value, or even that the message data is long

enough to include it.)

v When a message with a MDFMT name of FMXQH is retrieved from a queue

(whether this is a normal or a transmission queue), the queue manager

decrements both these MDEXP fields with the time spent waiting on the queue.

No error is raised if the message data is not long enough to include the

MDEXP field in the MQXQH.

v The queue manager uses the MDEXP field in the separate message descriptor

(that is, not the one in the message descriptor embedded within the MQXQH

structure) to test whether the message is eligible for discarding.

v If the initial values of the two MDEXP fields were different, it is therefore

possible for the MDEXP time in the separate message descriptor when the

message is retrieved to be greater than zero (so the message is not eligible for

discarding), while the time according to the MDEXP field in the MQXQH has

elapsed. In this case the MDEXP field in the MQXQH is set to zero.

The following special value is recognized:

EIULIM

Unlimited lifetime.

 The message has an unlimited expiration time.

This is an output field for the MQGET call, and an input field for the MQPUT and

MQPUT1 calls. The initial value of this field is EIULIM.

MDFB (10-digit signed integer)

Feedback or reason code.

136 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

This is used with a message of type MTRPRT to indicate the nature of the report,

and is only meaningful with that type of message. The field can contain one of the

FB* values, or one of the RC* values. Feedback codes are grouped as follows:

FBNONE

No feedback provided.

FBSFST

Lowest value for system-generated feedback.

FBSLST

Highest value for system-generated feedback.

 The range of system-generated feedback codes FBSFST through FBSLST

includes the general feedback codes listed below (FB*), and also the reason

codes (RC*) that can occur when the message cannot be put on the

destination queue.

FBAFST

Lowest value for application-generated feedback.

FBALST

Highest value for application-generated feedback.

Applications that generate report messages should not use feedback codes in the

system range (other than FBQUIT), unless they wish to simulate report messages

generated by the queue manager or message channel agent.

On the MQPUT or MQPUT1 calls, the value specified must either be FBNONE, or

be within the system range or application range. This is checked whatever the

value of MDMT.

General feedback codes:

FBCOA

Confirmation of arrival on the destination queue (see ROCOA).

FBCOD

Confirmation of delivery to the receiving application (see ROCOD).

FBEXP

Message expired.

 Message was discarded because it had not been removed from the

destination queue before its expiry time had elapsed.

FBPAN

Positive action notification (see ROPAN).

FBNAN

Negative action notification (see RONAN).

FBQUIT

Application should end.

 This can be used by a workload scheduling program to control the number

of instances of an application program that are running. Sending an

MTRPRT message with this feedback code to an instance of the application

program indicates to that instance that it should stop processing. However,

adherence to this convention is a matter for the application; it is not

enforced by the queue manager.

Chapter 1. Data type descriptions 137

IMS-bridge feedback codes: When the IMS bridge receives a nonzero IMS-OTMA

sense code, the IMS bridge converts the sense code from hexadecimal to decimal,

adds the value FBIERR (300), and places the result in the MDFB field of the reply

message. This results in the feedback code having a value in the range FBIFST

(301) through FBILST (399) when an IMS-OTMA error has occurred.

The following feedback codes can be generated by the IMS bridge:

FBDLZ

Data length zero.

 A segment length was zero in the application data of the message.

FBDLN

Data length negative.

 A segment length was negative in the application data of the message.

FBDLTB

Data length too big.

 A segment length was too big in the application data of the message.

FBBUFO

Buffer overflow.

 The value of one of the length fields would cause the data to overflow the

message buffer.

FBLOB1

Length in error by one.

 The value of one of the length fields was one byte too short.

FBIIH MQIIH structure not valid or missing.

 The MDFMT field in MQMD specifies FMIMS, but the message does not

begin with a valid MQIIH structure.

FBNAFI

Userid not authorized for use in IMS.

 The user ID contained in the message descriptor MQMD, or the password

contained in the IIAUT field in the MQIIH structure, failed the validation

performed by the IMS bridge. As a result the message was not passed to

IMS.

FBIERR

Unexpected error returned by IMS.

 An unexpected error was returned by IMS. Consult the WebSphere MQ

error log on the system on which the IMS bridge resides for more

information about the error.

FBIFST

Lowest value for IMS-generated feedback.

 IMS-generated feedback codes occupy the range FBIFST (300) through

FBILST (399). The IMS-OTMA sense code itself is MDFB minus FBIERR.

FBILST

Highest value for IMS-generated feedback.

CICS-bridge feedback codes: The following feedback codes can be generated by

the CICS bridge:

138 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

FBCAAB

Application abended.

 The application program specified in the message abended. This feedback

code occurs only in the DLREA field of the MQDLH structure.

FBCANS

Application cannot be started.

 The EXEC CICS LINK for the application program specified in the message

failed. This feedback code occurs only in the DLREA field of the MQDLH

structure.

FBCBRF

CICS bridge terminated abnormally without completing normal error

processing.

FBCCSE

Character set identifier not valid.

FBCIHE

CICS information header structure missing or not valid.

FBCCAE

Length of CICS commarea not valid.

FBCCIE

Correlation identifier not valid.

FBCDLQ

Dead-letter queue not available.

 The CICS bridge task was unable to copy a reply to this request to the

dead-letter queue. The request was backed out.

FBCENE

Encoding not valid.

FBCINE

CICS bridge encountered an unexpected error.

 This feedback code occurs only in the DLREA field of the MQDLH structure.

FBCNTA

User identifier not authorized or password not valid.

 This feedback code occurs only in the DLREA field of the MQDLH structure.

FBCUBO

Unit of work backed out.

 The unit of work was backed out, for one of the following reasons:

v A failure was detected while processing another request within the same

unit of work.

v A CICS abend occurred while the unit of work was in progress.

FBCUWE

Unit-of-work control field CIUOW not valid.

MQ reason codes: For exception report messages, MDFB contains an MQ reason

code. Among possible reason codes are:

RC2051

(2051, X’803’) Put calls inhibited for the queue.

Chapter 1. Data type descriptions 139

RC2053

(2053, X’805’) Queue already contains maximum number of messages.

RC2035

(2035, X’7F3’) Not authorized for access.

RC2056

(2056, X’808’) No space available on disk for queue.

RC2048

(2048, X’800’) Queue does not support persistent messages.

RC2031

(2031, X’7EF’) Message length greater than maximum for queue manager.

RC2030

(2030, X’7EE’) Message length greater than maximum for queue.

This is an output field for the MQGET call, and an input field for MQPUT and

MQPUT1 calls. The initial value of this field is FBNONE.

MDFMT (8-byte character string)

Format name of message data.

This is a name that the sender of the message may use to indicate to the receiver

the nature of the data in the message. Any characters that are in the queue

manager’s character set may be specified for the name, but it is recommended that

the name be restricted to the following:

v Uppercase A through Z

v Numeric digits 0 through 9

If other characters are used, it may not be possible to translate the name between

the character sets of the sending and receiving queue managers.

The name should be padded with blanks to the length of the field, or a null

character used to terminate the name before the end of the field; the null and any

subsequent characters are treated as blanks. Do not specify a name with leading or

embedded blanks. For the MQGET call, the queue manager returns the name

padded with blanks to the length of the field.

The queue manager does not check that the name complies with the

recommendations described above.

Names beginning “MQ” in upper, lower, and mixed case have meanings that are

defined by the queue manager; you should not use names beginning with these

letters for your own formats. The queue manager built-in formats are:

FMNONE

No format name.

 The nature of the data is undefined. This means that the data cannot be

converted when the message is retrieved from a queue using the

GMCONV option.

If GMCONV is specified on the MQGET call, and the character set or

encoding of data in the message differs from that specified in the MSGDSC

parameter, the message is returned with the following completion and

reason codes (assuming no other errors):

140 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

v Completion code CCWARN and reason code RC2110 if the FMNONE

data is at the beginning of the message.

v Completion code CCOK and reason code RCNONE if the FMNONE

data is at the end of the message (that is, preceded by one or more MQ

header structures). The MQ header structures are converted to the

requested character set and encoding in this case.

FMADMN

Command server request/reply message.

 The message is a command-server request or reply message in

programmable command format (PCF). Messages of this format can be

converted if the GMCONV option is specified on the MQGET call. Refer to

the WebSphere MQ Programmable Command Formats and Administration

Interface book for more information about using programmable command

format messages.

FMCICS

CICS information header.

 The message data begins with the CICS information header MQCIH, which

is followed by the application data. The format name of the application

data is given by the CIFMT field in the MQCIH structure.

FMCMD1

Type 1 command reply message.

 The message is an MQSC command-server reply message containing the

object count, completion code, and reason code. Messages of this format

can be converted if the GMCONV option is specified on the MQGET call.

FMCMD2

Type 2 command reply message.

 The message is an MQSC command-server reply message containing

information about the object(s) requested. Messages of this format can be

converted if the GMCONV option is specified on the MQGET call.

FMDLH

Dead-letter header.

 The message data begins with the dead-letter header MQDLH. The data

from the original message immediately follows the MQDLH structure. The

format name of the original message data is given by the DLFMT field in the

MQDLH structure; see “MQDLH – Dead-letter header” on page 71 for

details of this structure. Messages of this format can be converted if the

GMCONV option is specified on the MQGET call.

COA and COD reports are not generated for messages which have a MDFMT

of FMDLH.

FMDH

Distribution-list header.

 The message data begins with the distribution-list header MQDH; this

includes the arrays of MQOR and MQPMR records. The distribution-list

header may be followed by additional data. The format of the additional

data (if any) is given by the DHFMT field in the MQDH structure; see

“MQDH – Distribution header” on page 65 for details of this structure.

Messages with format FMDH can be converted if the GMCONV option is

specified on the MQGET call.

Chapter 1. Data type descriptions 141

FMEVNT

Event message.

 The message is an MQ event message that reports an event that occurred.

Event messages have the same structure as programmable commands;

Refer to the WebSphere MQ Programmable Command Formats and

Administration Interface book for more information about this structure,

and to the Monitoring WebSphere MQ book for information about events.

Version-1 event messages can be converted if the GMCONV option is

specified on the MQGET call.

FMIMS

IMS information header.

 The message data begins with the IMS information header MQIIH, which

is followed by the application data. The format name of the application

data is given by the IIFMT field in the MQIIH structure. Messages of this

format can be converted if the GMCONV option is specified on the

MQGET call.

FMIMVS

IMS variable string.

 The message is an IMS variable string, which is a string of the form

llzzccc, where:

ll is a 2-byte length field specifying the total length of the IMS

variable string item. This length is equal to the length of ll (2

bytes), plus the length of zz (2 bytes), plus the length of the

character string itself. ll is a 2-byte binary integer in the encoding

specified by the MDENC field.

zz is a 2-byte field containing flags that are significant to IMS. zz is a

byte string consisting of two 1-byte bit string fields, and is

transmitted without change from sender to receiver (that is, zz is

not subject to any conversion).

ccc is a variable-length character string containing ll-4 characters. ccc

is in the character set specified by the MDCSI field.

Messages of this format can be converted if the GMCONV option is

specified on the MQGET call.

FMMDE

Message-descriptor extension.

 The message data begins with the message-descriptor extension MQMDE,

and is optionally followed by other data (usually the application message

data). The format name, character set, and encoding of the data which

follows the MQMDE is given by the MEFMT, MECSI, and MEENC fields in the

MQMDE. See “MQMDE – Message descriptor extension” on page 178 for

details of this structure. Messages of this format can be converted if the

GMCONV option is specified on the MQGET call.

FMPCF

User-defined message in programmable command format (PCF).

 The message is a user-defined message that conforms to the structure of a

programmable command format (PCF) message. Messages of this format

can be converted if the GMCONV option is specified on the MQGET call.

Refer to the WebSphere MQ Programmable Command Formats and

142 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Administration Interface book for more information about using

programmable command format messages.

FMRMH

Reference message header.

 The message data begins with the reference message header MQRMH, and

is optionally followed by other data. The format name, character set, and

encoding of the data is given by the RMFMT, RMCSI, and RMENC fields in the

MQRMH. See “MQRMH – Reference message header” on page 234 for

details of this structure. Messages of this format can be converted if the

GMCONV option is specified on the MQGET call.

FMRFH

Rules and formatting header.

 The message data begins with the rules and formatting header MQRFH,

and is optionally followed by other data. The format name, character set,

and encoding of the data (if any) is given by the RFFMT, RFCSI, and RFENC

fields in the MQRFH. Messages of this format can be converted if the

GMCONV option is specified on the MQGET call.

FMRFH2

Rules and formatting header version 2.

 The message data begins with the version-2 rules and formatting header

MQRFH2, and is optionally followed by other data. The format name,

character set, and encoding of the optional data (if any) is given by the

RF2FMT, RF2CSI, and RF2ENC fields in the MQRFH2. Messages of this format

can be converted if the GMCONV option is specified on the MQGET call.

FMSTR

Message consisting entirely of characters.

 The application message data can be either an SBCS string (single-byte

character set), or a DBCS string (double-byte character set). Messages of

this format can be converted if the GMCONV option is specified on the

MQGET call.

FMTM

Trigger message.

 The message is a trigger message, described by the MQTM structure; see

“MQTM – Trigger message” on page 274 for details of this structure.

Messages of this format can be converted if the GMCONV option is

specified on the MQGET call.

FMWIH

Work information header.

 The message data begins with the work information header MQWIH,

which is followed by the application data. The format name of the

application data is given by the WIFMT field in the MQWIH structure.

FMXQH

Transmission queue header.

 The message data begins with the transmission queue header MQXQH.

The data from the original message immediately follows the MQXQH

structure. The format name of the original message data is given by the

MDFMT field in the MQMD structure which is part of the transmission queue

header MQXQH. See “MQXQH – Transmission-queue header” on page 286

for details of this structure.

Chapter 1. Data type descriptions 143

COA and COD reports are not generated for messages which have a MDFMT

of FMXQH.

This is an output field for the MQGET call, and an input field for the MQPUT and

MQPUT1 calls. The length of this field is given by LNFMT. The initial value of this

field is FMNONE.

MDGID (24-byte bit string)

Group identifier.

This is a byte string that is used to identify the particular message group or logical

message to which the physical message belongs. MDGID is also used if segmentation

is allowed for the message. In all of these cases, MDGID has a non-null value, and

one or more of the following flags is set in the MDMFL field:

v MFMIG

v MFLMIG

v MFSEG

v MFLSEG

v MFSEGA

If none of these flags is set, MDGID has the special null value GINONE.

This field need not be set by the application on the MQPUT or MQGET call if:

v On the MQPUT call, PMLOGO is specified.

v On the MQGET call, MOGRPI is not specified.

These are the recommended ways of using these calls for messages that are not

report messages. However, if the application requires more control, or the call is

MQPUT1, the application must ensure that MDGID is set to an appropriate value.

Message groups and segments can be processed correctly only if the group

identifier is unique. For this reason, applications should not generate their own group

identifiers; instead, applications should do one of the following:

v If PMLOGO is specified, the queue manager automatically generates a unique

group identifier for the first message in the group or segment of the logical

message, and uses that group identifier for the remaining messages in the group

or segments of the logical message, so the application does not need to take any

special action. This is the recommended procedure.

v If PMLOGO is not specified, the application should request the queue manager

to generate the group identifier, by setting MDGID to GINONE on the first

MQPUT or MQPUT1 call for a message in the group or segment of the logical

message. The group identifier returned by the queue manager on output from

that call should then be used for the remaining messages in the group or

segments of the logical message. If a message group contains segmented

messages, the same group identifier must be used for all segments and messages

in the group.

When PMLOGO is not specified, messages in groups and segments of logical

messages can be put in any order (for example, in reverse order), but the group

identifier must be allocated by the first MQPUT or MQPUT1 call that is issued

for any of those messages.

On input to the MQPUT and MQPUT1 calls, the queue manager uses the value

detailed in Table 56 on page 208. On output from the MQPUT and MQPUT1 calls,

the queue manager sets this field to the value that was sent with the message if the

144 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

object opened is a single queue and not a distribution list, but leaves it unchanged

if the object opened is a distribution list. In the latter case, if the application needs

to know the group identifiers generated, the application must provide MQPMR

records containing the PRGID field.

On input to the MQGET call, the queue manager uses the value detailed in

Table 37 on page 100. On output from the MQGET call, the queue manager sets

this field to the value for the message retrieved.

The following special value is defined:

GINONE

No group identifier specified.

 The value is binary zero for the length of the field. This is the value that is

used for messages that are not in groups, not segments of logical messages,

and for which segmentation is not allowed.

The length of this field is given by LNGID. The initial value of this field is

GINONE. This field is ignored if MDVER is less than MDVER2.

MDMFL (10-digit signed integer)

Message flags.

These are flags that specify attributes of the message, or control its processing. The

flags are divided into the following categories:

v Segmentation flag

v Status flags

These are described in turn.

Segmentation flags: When a message is too big for a queue, an attempt to put the

message on the queue usually fails. Segmentation is a technique whereby the

queue manager or application splits the message into smaller pieces called

segments, and places each segment on the queue as a separate physical message.

The application which retrieves the message can either retrieve the segments one

by one, or request the queue manager to reassemble the segments into a single

message which is returned by the MQGET call. The latter is achieved by specifying

the GMCMPM option on the MQGET call, and supplying a buffer that is big

enough to accommodate the complete message. (See “MQGMO – Get-message

options” on page 86 for details of the GMCMPM option.) Segmentation of a

message can occur at the sending queue manager, at an intermediate queue

manager, or at the destination queue manager.

You can specify one of the following to control the segmentation of a message:

MFSEGI

Segmentation inhibited.

 This option prevents the message being broken into segments by the queue

manager. If specified for a message that is already a segment, this option

prevents the segment being broken into smaller segments.

The value of this flag is binary zero. This is the default.

MFSEGA

Segmentation allowed.

Chapter 1. Data type descriptions 145

This option allows the message to be broken into segments by the queue

manager. If specified for a message that is already a segment, this option

allows the segment to be broken into smaller segments. MFSEGA can be

set without either MFSEG or MFLSEG being set.

When the queue manager segments a message, the queue manager turns

on the MFSEG flag in the copy of the MQMD that is sent with each

segment, but does not alter the settings of these flags in the MQMD

provided by the application on the MQPUT or MQPUT1 call. For the last

segment in the logical message, the queue manager also turns on the

MFLSEG flag in the MQMD that is sent with the segment.

Note: Care is needed when messages are put with MFSEGA but without

PMLOGO. If the message is:

v Not a segment, and

v Not in a group, and

v Not being forwarded,

the application must remember to reset the MDGID field to GINONE prior to

each MQPUT or MQPUT1 call, in order to cause a unique group identifier

to be generated by the queue manager for each message. If this is not

done, unrelated messages could inadvertently end up with the same group

identifier, which might lead to incorrect processing subsequently. See the

descriptions of the MDGID field and the PMLOGO option for more

information about when the MDGID field must be reset.

The queue manager splits messages into segments as necessary in order to

ensure that the segments (plus any header data that may be required) fit

on the queue. However, there is a lower limit for the size of a segment

generated by the queue manager (see below), and only the last segment

created from a message can be smaller than this limit. (The lower limit for

the size of an application-generated segment is one byte.) Segments

generated by the queue manager may be of unequal length. The queue

manager processes the message as follows:

v User-defined formats are split on boundaries which are multiples of 16

bytes. This means that the queue manager will not generate segments

that are smaller than 16 bytes (other than the last segment).

v Built-in formats other than FMSTR are split at points appropriate to the

nature of the data present. However, the queue manager never splits a

message in the middle of an MQ header structure. This means that a

segment containing a single MQ header structure cannot be split further

by the queue manager, and as a result the minimum possible segment

size for that message is greater than 16 bytes.

The second or later segment generated by the queue manager will begin

with one of the following:

– An MQ header structure

– The start of the application message data

– Part-way through the application message data
v FMSTR is split without regard for the nature of the data present (SBCS,

DBCS, or mixed SBCS/DBCS). When the string is DBCS or mixed

SBCS/DBCS, this may result in segments which cannot be converted

from one character set to another (see below). The queue manager never

splits FMSTR messages into segments that are smaller than 16 bytes

(other than the last segment).

146 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

v The MDFMT, MDCSI, and MDENC fields in the MQMD of each segment are set

by the queue manager to describe correctly the data present at the start

of the segment; the format name will be either the name of a built-in

format, or the name of a user-defined format.

v The MDREP field in the MQMD of segments with MDOFF greater than zero

are modified as follows:

– For each report type, if the report option is RO*D, but the segment

cannot possibly contain any of the first 100 bytes of user data (that is,

the data following any MQ header structures that may be present),

the report option is changed to RO*.

The queue manager follows the above rules, but otherwise splits messages

as it thinks fit; no assumptions should be made about the way that the

queue manager will choose to split a particular message.

For persistent messages, the queue manager can perform segmentation only

within a unit of work:

v If the MQPUT or MQPUT1 call is operating within a user-defined unit

of work, that unit of work is used. If the call fails partway through the

segmentation process, the queue manager removes any segments that

were placed on the queue as a result of the failing call. However, the

failure does not prevent the unit of work being committed successfully.

v If the call is operating outside a user-defined unit of work, and there is

no user-defined unit of work in existence, the queue manager creates a

unit of work just for the duration of the call. If the call is successful, the

queue manager commits the unit of work automatically (the application

does not need to do this). If the call fails, the queue manager backs out

the unit of work.

v If the call is operating outside a user-defined unit of work, but a

user-defined unit of work does exist, the queue manager is unable to

perform segmentation. If the message does not require segmentation, the

call can still succeed. But if the message does require segmentation, the

call fails with reason code RC2255.

For nonpersistent messages, the queue manager does not require a unit of

work to be available in order to perform segmentation.

Special consideration must be given to data conversion of messages which

may be segmented:

v If data conversion is performed only by the receiving application on the

MQGET call, and the application specifies the GMCMPM option, the

data-conversion exit will be passed the complete message for the exit to

convert, and the fact that the message was segmented will not be

apparent to the exit.

v If the receiving application retrieves one segment at a time, the

data-conversion exit will be invoked to convert one segment at a time.

The exit must therefore be capable of converting the data in a segment

independently of the data in any of the other segments.

If the nature of the data in the message is such that arbitrary

segmentation of the data on 16-byte boundaries may result in segments

which cannot be converted by the exit, or the format is FMSTR and the

character set is DBCS or mixed SBCS/DBCS, the sending application

should itself create and put the segments, specifying MFSEGI to

suppress further segmentation. In this way, the sending application can

ensure that each segment contains sufficient information to allow the

data-conversion exit to convert the segment successfully.

Chapter 1. Data type descriptions 147

v If sender conversion is specified for a sending message channel agent

(MCA), the MCA converts only messages which are not segments of

logical messages; the MCA never attempts to convert messages which

are segments.

This flag is an input flag on the MQPUT and MQPUT1 calls, and an output flag on

the MQGET call. On the latter call, the queue manager also echoes the value of the

flag to the GMSEG field in MQGMO.

The initial value of this flag is MFSEGI.

Status flags: These are flags that indicate whether the physical message belongs to

a message group, is a segment of a logical message, both, or neither. One or more

of the following can be specified on the MQPUT or MQPUT1 call, or returned by

the MQGET call:

MFMIG

Message is a member of a group.

MFLMIG

Message is the last logical message in a group.

 If this flag is set, the queue manager turns on MFMIG in the copy of

MQMD that is sent with the message, but does not alter the settings of

these flags in the MQMD provided by the application on the MQPUT or

MQPUT1 call.

It is valid for a group to consist of only one logical message. If this is the

case, MFLMIG is set, but the MDSEQ field has the value one.

MFSEG

Message is a segment of a logical message.

 When MFSEG is specified without MFLSEG, the length of the application

message data in the segment (excluding the lengths of any MQ header

structures that may be present) must be at least one. If the length is zero,

the MQPUT or MQPUT1 call fails with reason code RC2253.

MFLSEG

Message is the last segment of a logical message.

 If this flag is set, the queue manager turns on MFSEG in the copy of

MQMD that is sent with the message, but does not alter the settings of

these flags in the MQMD provided by the application on the MQPUT or

MQPUT1 call.

It is valid for a logical message to consist of only one segment. If this is the

case, MFLSEG is set, but the MDOFF field has the value zero.

When MFLSEG is specified, it is permissible for the length of the

application message data in the segment (excluding the lengths of any

header structures that may be present) to be zero.

The application must ensure that these flags are set correctly when putting

messages. If PMLOGO is specified, or was specified on the preceding MQPUT call

for the queue handle, the settings of the flags must be consistent with the group

and segment information retained by the queue manager for the queue handle. The

following conditions apply to successive MQPUT calls for the queue handle when

PMLOGO is specified:

v If there is no current group or logical message, all of these flags (and

combinations of them) are valid.

148 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

v Once MFMIG has been specified, it must remain on until MFLMIG is specified.

The call fails with reason code RC2241 if this condition is not satisfied.

v Once MFSEG has been specified, it must remain on until MFLSEG is specified.

The call fails with reason code RC2242 if this condition is not satisfied.

v Once MFSEG has been specified without MFMIG, MFMIG must remain off until

after MFLSEG has been specified. The call fails with reason code RC2242 if this

condition is not satisfied.

Table 56 on page 208 shows the valid combinations of the flags, and the values

used for various fields.

These flags are input flags on the MQPUT and MQPUT1 calls, and output flags on

the MQGET call. On the latter call, the queue manager also echoes the values of

the flags to the GMGST and GMSST fields in MQGMO.

Default flags: The following can be specified to indicate that the message has

default attributes:

MFNONE

No message flags (default message attributes).

 This inhibits segmentation, and indicates that the message is not in a group

and is not a segment of a logical message. MFNONE is defined to aid

program documentation. It is not intended that this flag be used with any

other, but as its value is zero, such use cannot be detected.

The MDMFL field is partitioned into subfields; for details see Chapter 8, “Report

options and message flags,” on page 517.

The initial value of this field is MFNONE. This field is ignored if MDVER is less than

MDVER2.

MDMID (24-byte bit string)

Message identifier.

This is a byte string that is used to distinguish one message from another.

Generally, no two messages should have the same message identifier, although this

is not disallowed by the queue manager. The message identifier is a permanent

property of the message, and persists across restarts of the queue manager. Because

the message identifier is a byte string and not a character string, the message

identifier is not converted between character sets when the message flows from one

queue manager to another.

For the MQPUT and MQPUT1 calls, if MINONE or PMNMID is specified by the

application, the queue manager generates a unique message identifier

1 when the

message is put, and places it in the message descriptor sent with the message. The

queue manager also returns this message identifier in the message descriptor

1. An MDMID generated by the queue manager consists of a 4-byte product identifier (‘AMQ�’ or ‘CSQ�’ in either ASCII or EBCDIC,

where ‘�’ represents a blank), followed by a product-specific implementation of a unique string. In WebSphere MQ this contains

the first 12 characters of the queue manager name, and a value derived from the system clock. All queue managers that can

intercommunicate must therefore have names that differ in the first 12 characters, to ensure that message identifiers are unique.

The ability to generate a unique string also depends upon the system clock not being changed backward. To eliminate the

possibility of a message identifier generated by the queue manager duplicating one generated by the application, the application

should avoid generating identifiers with initial characters in the range A through I in ASCII or EBCDIC (X’41’ through X’49’ and

X’C1’ through X’C9’). However, the application is not prevented from generating identifiers with initial characters in these ranges.

Chapter 1. Data type descriptions 149

belonging to the sending application. The application can use this value to record

information about particular messages, and to respond to queries from other parts

of the application.

If the message is being put to a topic, the queue manager generates unique

message identifiers as necessary for each message published. If PMNMID is

specified by the application, the queue manager generates a unique message

identifier to return on output. If the message is retained then the message identifier

returned on the MQPUT is the message identifier of the retained message,

otherwise this message identifier will not represent any message. The value of the

MDMID field in the MQMD is unchanged on return from the call if MINONE or

PMNMID was specified.

See the description of PMRET in PMOPT for more details about retained

publications.

If the message is being put to a distribution list, the queue manager generates

unique message identifiers as necessary, but the value of the MDMID field in MQMD

is unchanged on return from the call, even if MINONE or PMNMID was specified.

If the application needs to know the message identifiers generated by the queue

manager, the application must provide MQPMR records containing the PRMID field.

The sending application can also specify a particular value for the message

identifier, other than MINONE; this stops the queue manager generating a unique

message identifier. An application that is forwarding a message can use this facility

to propagate the message identifier of the original message.

The queue manager does not itself make any use of this field except to:

v Generate a unique value if requested, as described above

v Deliver the value to the application that issues the get request for the message

v Copy the value to the MDCID field of any report message that it generates about

this message (depending on the MDREP options)

When the queue manager or a message channel agent generates a report message,

it sets the MDMID field in the way specified by the MDREP field of the original

message, either RONMI or ROPMI. Applications that generate report messages

should also do this.

For the MQGET call, MDMID is one of the five fields that can be used to select a

particular message to be retrieved from the queue. Normally the MQGET call

returns the next message on the queue, but if a particular message is required, this

can be obtained by specifying one or more of the five selection criteria, in any

combination; these fields are:

v MDMID

v MDCID

v MDGID

v MDSEQ

v MDOFF

The application sets one or more of these field to the values required, and then sets

the corresponding MO* match options in the GMMO field in MQGMO to indicate

that those fields should be used as selection criteria. Only messages that have the

150 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

specified values in those fields are candidates for retrieval. The default for the GMMO

field (if not altered by the application) is to match both the message identifier and

the correlation identifier.

Normally, the message returned is the first message on the queue that satisfies the

selection criteria. But if GMBRWN is specified, the message returned is the next

message that satisfies the selection criteria; the scan for this message starts with the

message following the current cursor position.

Note: The queue is scanned sequentially for a message that satisfies the selection

criteria, so retrieval times will be slower than if no selection criteria are specified,

especially if many messages have to be scanned before a suitable one is found.

See Table 37 on page 100 for more information about how selection criteria are

used in various situations.

Specifying MINONE as the message identifier has the same effect as not specifying

MOMSGI, that is, any message identifier will match.

This field is ignored if the GMMUC option is specified in the GMO parameter on the

MQGET call.

On return from an MQGET call, the MDMID field is set to the message identifier of

the message returned (if any).

The following special value may be used:

MINONE

No message identifier is specified.

 The value is binary zero for the length of the field.

This is an input/output field for the MQGET, MQPUT, and MQPUT1 calls. The

length of this field is given by LNMID. The initial value of this field is MINONE.

MDMT (10-digit signed integer)

Message type.

This indicates the type of the message. Message types are grouped as follows:

MTSFST

Lowest value for system-defined message types.

MTSLST

Highest value for system-defined message types.

The following values are currently defined within the system range:

MTDGRM

Message not requiring a reply.

 The message is one that does not require a reply.

MTRQST

Message requiring a reply.

 The message is one that requires a reply.

Chapter 1. Data type descriptions 151

The name of the queue to which the reply should be sent must be specified

in the MDRQ field. The MDREP field indicates how the MDMID and MDCID of the

reply are to be set.

MTRPLY

Reply to an earlier request message.

 The message is the reply to an earlier request message (MTRQST). The

message should be sent to the queue indicated by the MDRQ field of the

request message. The MDREP field of the request should be used to control

how the MDMID and MDCID of the reply are set.

Note: The queue manager does not enforce the request-reply relationship;

this is an application responsibility.

MTRPRT

Report message.

 The message is reporting on some expected or unexpected occurrence,

usually related to some other message (for example, a request message was

received which contained data that was not valid). The message should be

sent to the queue indicated by the MDRQ field of the message descriptor of

the original message. The MDFB field should be set to indicate the nature of

the report. The MDREP field of the original message can be used to control

how the MDMID and MDCID of the report message should be set.

Report messages generated by the queue manager or message channel

agent are always sent to the MDRQ queue, with the MDFB and MDCID fields set

as described above.

Other values within the system range may be defined in future versions of the

MQI, and are accepted by the MQPUT and MQPUT1 calls without error.

Application-defined values can also be used. They must be within the following

range:

MTAFST

Lowest value for application-defined message types.

MTALST

Highest value for application-defined message types.

For the MQPUT and MQPUT1 calls, the MDMT value must be within either the

system-defined range or the application-defined range; if it is not, the call fails

with reason code RC2029.

This is an output field for the MQGET call, and an input field for MQPUT and

MQPUT1 calls. The initial value of this field is MTDGRM.

MDOFF (10-digit signed integer)

Offset of data in physical message from start of logical message.

This is the offset in bytes of the data in the physical message from the start of the

logical message of which the data forms part. This data is called a segment. The

offset is in the range 0 through 999 999 999. A physical message which is not a

segment of a logical message has an offset of zero.

This field need not be set by the application on the MQPUT or MQGET call if:

152 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

v On the MQPUT call, PMLOGO is specified.

v On the MQGET call, MOOFFS is not specified.

These are the recommended ways of using these calls for messages that are not

report messages. However, if the application does not comply with these

conditions, or the call is MQPUT1, the application must ensure that MDOFF is set to

an appropriate value.

On input to the MQPUT and MQPUT1 calls, the queue manager uses the value

detailed in Table 56 on page 208. On output from the MQPUT and MQPUT1 calls,

the queue manager sets this field to the value that was sent with the message.

For a report message reporting on a segment of a logical message, the MDOLN field

(provided it is not OLUNDF) is used to update the offset in the segment

information retained by the queue manager.

On input to the MQGET call, the queue manager uses the value detailed in

Table 37 on page 100. On output from the MQGET call, the queue manager sets

this field to the value for the message retrieved.

The initial value of this field is zero. This field is ignored if MDVER is less than

MDVER2.

MDOLN (10-digit signed integer)

Length of original message.

This field is of relevance only for report messages that are segments. It specifies

the length of the message segment to which the report message relates; it does not

specify the length of the logical message of which the segment forms part, nor the

length of the data in the report message.

Note: When generating a report message for a message that is a segment, the

queue manager and message channel agent copy into the MQMD for the report

message the MDGID, MDSEQ, MDOFF, and MDMFL, fields from the original message. As a

result, the report message is also a segment. Applications that generate report

messages are recommended to do the same, and to ensure that the MDOLN field is

set correctly.

The following special value is defined:

OLUNDF

Original length of message not defined.

MDOLN is an input field on the MQPUT and MQPUT1 calls, but the value provided

by the application is accepted only in particular circumstances:

v If the message being put is a segment and is also a report message, the queue

manager accepts the value specified. The value must be:

– Greater than zero if the segment is not the last segment

– Not less than zero if the segment is the last segment

– Not less than the length of data present in the message

If these conditions are not satisfied, the call fails with reason code RC2252.

v If the message being put is a segment but not a report message, the queue

manager ignores the field and uses the length of the application message data

instead.

Chapter 1. Data type descriptions 153

v In all other cases, the queue manager ignores the field and uses the value

OLUNDF instead.

This is an output field on the MQGET call.

The initial value of this field is OLUNDF. This field is ignored if MDVER is less than

MDVER2.

MDPAN (28-byte character string)

Name of application that put the message.

This is part of the origin context of the message. For more information about

message context, see “Overview” on page 126; also see the WebSphere MQ

Application Programming Guide.

The format of the MDPAN depends on the value of MDPAT.

When this field is set by the queue manager (that is, for all options except

PMSETA), it is set to value which is determined by the environment:

v On z/OS, the queue manager uses:

– For z/OS batch, the 8-character job name from the JES JOB card

– For TSO, the 7-character TSO user identifier

– For CICS, the 8-character applid, followed by the 4-character tranid

– For IMS, the 8-character IMS system identifier, followed by the 8-character

PSB name

– For XCF, the 8-character XCF group name, followed by the 16-character XCF

member name

– For a message generated by a queue manager, the first 28 characters of the

queue manager name

– For distributed queuing without CICS, the 8-character jobname of the channel

initiator followed by the 8-character name of the module putting to the

dead-letter queue followed by an 8-character task identifier.

– For MQSeries Java™ language bindings processing with WebSphere MQ for

OS/390®, the 8-character jobname of the address space created for the

OpenEdition™ environment. Typically, this will be a TSO user identifier with a

single numeric character appended.

The name or names are each padded to the right with blanks, as is any space in

the remainder of the field. Where there is more than one name, there is no

separator between them.

v On OS/2, PC DOS, and Windows systems, the queue manager uses:

– For a CICS application, the CICS transaction name

– For a non-CICS application, the rightmost 28 characters of the fully-qualified

name of the executable
v On i5/OS, the queue manager uses the fully-qualified job name.

v On HP OpenVMS and Compaq NonStop Kernel, the queue manager uses: the

rightmost 28 characters of the fully-qualified name of the executable, if this is

available to the queue manager, and blanks otherwise

v On UNIX systems, the queue manager uses:

– For a CICS application, the CICS transaction name

154 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

– For a non-CICS application, the rightmost 14 characters of the fully-qualified

name of the executable if this is available to the queue manager, and blanks

otherwise (for example, on AIX)
v On VSE/ESA™, the queue manager uses the 8-character applid, followed by the

4-character tranid.

For the MQPUT and MQPUT1 calls, this is an input/output field if PMSETA is

specified in the PMO parameter. Any information following a null character within

the field is discarded. The null character and any following characters are

converted to blanks by the queue manager. If PMSETA is not specified, this field is

ignored on input and is an output-only field.

This is an output field for the MQGET call. The length of this field is given by

LNPAN. The initial value of this field is 28 blank characters.

MDPAT (10-digit signed integer)

Type of application that put the message.

This is part of the origin context of the message. For more information about

message context, see “Overview” on page 126; also see the WebSphere MQ

Application Programming Guide.

MDPAT may have one of the following standard types. User-defined types can also

be used but should be restricted to values in the range ATUFST through ATULST.

ATAIX

AIX application (same value as ATUNIX).

ATBRKR

Broker.

ATCICS

CICS transaction.

ATCICB

CICS bridge.

ATVSE

CICS/VSE® transaction.

ATDOS

WebSphere MQ client application on PC DOS.

ATDQM

Distributed queue manager agent.

ATGUAR

Tandem Guardian application (same value as ATNSK).

ATIMS

IMS application.

ATIMSB

IMS bridge.

ATJAVA

Java.

ATMVS

MVS™ or TSO application (same value as ATZOS).

Chapter 1. Data type descriptions 155

ATNOTE

Lotus Notes® Agent application.

ATNSK

Tandem NonStop Kernel application.

ATOS2

OS/2 or Presentation Manager application.

AT390 OS/390 application (same value as ATZOS).

AT400 i5/OS application.

ATQM

Queue manager.

ATUNIX

UNIX application.

ATVMS

Digital OpenVMS application.

ATVOS

Stratus VOS application.

ATWIN

16-bit Windows application.

ATWINT

32-bit Windows application.

ATXCF

XCF.

ATZOS

z/OS application.

ATDEF

Default application type.

 This is the default application type for the platform on which the

application is running.

Note: The value of this constant is environment-specific.

ATUNK

Unknown application type.

 This value can be used to indicate that the application type is unknown,

even though other context information is present.

ATUFST

Lowest value for user-defined application type.

ATULST

Highest value for user-defined application type.

The following special value can also occur:

ATNCON

No context information present in message.

 This value is set by the queue manager when a message is put with no

context (that is, the PMNOC context option is specified).

156 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

When a message is retrieved, MDPAT can be tested for this value to decide

whether the message has context (it is recommended that MDPAT is never

set to ATNCON, by an application using PMSETA, if any of the other

context fields are nonblank).

ATSIB Indicates a message originated in another WebSphere MQ messaging

product and arrived via the SIB (Service Integration Bus) bridge.

When the queue manager generates this information as a result of an application

put, the field is set to a value that is determined by the environment. Note that on

i5/OS, it is set to AT400; the queue manager never uses ATCICS on i5/OS.

For the MQPUT and MQPUT1 calls, this is an input/output field if PMSETA is

specified in the PMO parameter. If PMSETA is not specified, this field is ignored on

input and is an output-only field.

This is an output field for the MQGET call. The initial value of this field is

ATNCON.

MDPD (8-byte character string)

Date when message was put.

This is part of the origin context of the message. For more information about

message context, see “Overview” on page 126; also see the WebSphere MQ

Application Programming Guide.

The format used for the date when this field is generated by the queue manager is:

v YYYYMMDD

where the characters represent:

YYYY year (four numeric digits)

MM month of year (01 through 12)

DD day of month (01 through 31)

Greenwich Mean Time (GMT) is used for the MDPD and MDPT fields, subject to the

system clock being set accurately to GMT.

If the message was put as part of a unit of work, the date is that when the

message was put, and not the date when the unit of work was committed.

For the MQPUT and MQPUT1 calls, this is an input/output field if PMSETA is

specified in the PMO parameter. The contents of the field are not checked by the

queue manager, except that any information following a null character within the

field is discarded. The null character and any following characters are converted to

blanks by the queue manager. If PMSETA is not specified, this field is ignored on

input and is an output-only field.

This is an output field for the MQGET call. The length of this field is given by

LNPDAT. The initial value of this field is 8 blank characters.

MDPER (10-digit signed integer)

Message persistence.

Chapter 1. Data type descriptions 157

This indicates whether the message survives system failures and restarts of the

queue manager. For the MQPUT and MQPUT1 calls, the value must be one of the

following:

PEPER

Message is persistent.

 This means that the message survives system failures and restarts of the

queue manager. Once the message has been put, and the putter’s unit of

work committed (if the message is put as part of a unit of work), the

message is preserved on auxiliary storage. It remains there until the

message is removed from the queue, and the getter’s unit of work

committed (if the message is retrieved as part of a unit of work).

When a persistent message is sent to a remote queue, a store-and-forward

mechanism is used to hold the message at each queue manager along the

route to the destination, until the message is known to have arrived at the

next queue manager.

Persistent messages cannot be placed on:

v Temporary dynamic queues

v Shared queues where the coupling facility structure level is less than

three, or the coupling facility structure is not recoverable.

Persistent messages can be placed on permanent dynamic queues,

predefined queues, and shared queues where the coupling facility structure

level is 3, and the coupling facility is recoverable.

PENPER

Message is not persistent.

 This means that the message does not normally survive system failures or

restarts of the queue manager. This applies even if an intact copy of the

message is found on auxiliary storage during restart of the queue manager.

In the special case of shared queues, nonpersistent messages do survive

restarts of queue managers in the queue-sharing group, but do not survive

failures of the coupling facility used to store messages on the shared

queues.

PEQDEF

Message has default persistence.

 v If the queue is a cluster queue, the persistence of the message is taken

from the DefPersistence attribute defined at the destination queue

manager that owns the particular instance of the queue on which the

message is placed. Usually, all of the instances of a cluster queue have

the same value for the DefPersistence attribute, although this is not

mandated.

The value of DefPersistence is copied into the MDPER field when the

message is placed on the destination queue. If DefPersistence is

changed subsequently, messages that have already been placed on the

queue are not affected.

v If the queue is not a cluster queue, the persistence of the message is

taken from the DefPersistence attribute defined at the local queue

manager, even if the destination queue manager is remote.

If there is more than one definition in the queue-name resolution path,

the default persistence is taken from the value of this attribute in the

first definition in the path. This could be:

– An alias queue

158 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

– A local queue

– A local definition of a remote queue

– A queue manager alias

– A transmission queue (for example, the DefXmitQName queue)
The value of DefPersistence is copied into the MDPER field when the

message is put. If DefPersistence is changed subsequently, messages

that have already been put are not affected.

Both persistent and nonpersistent messages can exist on the same queue.

When replying to a message, applications should normally use for the reply

message the persistence of the request message.

For an MQGET call, the value returned is either PEPER or PENPER.

This is an output field for the MQGET call, and an input field for the MQPUT and

MQPUT1 calls. The initial value of this field is PEQDEF.

MDPRI (10-digit signed integer)

Message priority.

For the MQPUT and MQPUT1 calls, the value must be greater than or equal to

zero; zero is the lowest priority. The following special value can also be used:

PRQDEF

Default priority for queue.

 v If the queue is a cluster queue, the priority for the message is taken from

the DefPriority attribute as defined at the destination queue manager

that owns the particular instance of the queue on which the message is

placed. Usually, all of the instances of a cluster queue have the same

value for the DefPriority attribute, although this is not mandated.

The value of DefPriority is copied into the MDPRI field when the

message is placed on the destination queue. If DefPriority is changed

subsequently, messages that have already been placed on the queue are

not affected.

v If the queue is not a cluster queue, the priority for the message is taken

from the DefPriority attribute as defined at the local queue manager,

even if the destination queue manager is remote.

If there is more than one definition in the queue-name resolution path,

the default priority is taken from the value of this attribute in the first

definition in the path. This could be:

– An alias queue

– A local queue

– A local definition of a remote queue

– A queue manager alias

– A transmission queue (for example, the DefXmitQName queue)
The value of DefPriority is copied into the MDPRI field when the

message is put. If DefPriority is changed subsequently, messages that

have already been put are not affected.

The value returned by the MQGET call is always greater than or equal to

zero; the value PRQDEF is never returned.

Chapter 1. Data type descriptions 159

If a message is put with a priority greater than the maximum supported by the

local queue manager (this maximum is given by the MaxPriority queue manager

attribute), the message is accepted by the queue manager, but placed on the queue

at the queue manager’s maximum priority; the MQPUT or MQPUT1 call completes

with CCWARN and reason code RC2049. However, the MDPRI field retains the

value specified by the application which put the message.

When replying to a message, applications should normally use for the reply

message the priority of the request message. In other situations, specifying

PRQDEF allows priority tuning to be carried out without changing the application.

This is an output field for the MQGET call, and an input field for the MQPUT and

MQPUT1 calls. The initial value of this field is PRQDEF.

MDPT (8-byte character string)

Time when message was put.

This is part of the origin context of the message. For more information about

message context, see “Overview” on page 126; also see the WebSphere MQ

Application Programming Guide.

The format used for the time when this field is generated by the queue manager is:

v HHMMSSTH

where the characters represent (in order):

HH hours (00 through 23)

MM minutes (00 through 59)

SS seconds (00 through 59; see note below)

T tenths of a second (0 through 9)

H hundredths of a second (0 through 9)

Note: If the system clock is synchronized to a very accurate time standard, it is

possible on rare occasions for 60 or 61 to be returned for the seconds in MDPT. This

happens when leap seconds are inserted into the global time standard.

Greenwich Mean Time (GMT) is used for the MDPD and MDPT fields, subject to the

system clock being set accurately to GMT.

If the message was put as part of a unit of work, the time is that when the

message was put, and not the time when the unit of work was committed.

For the MQPUT and MQPUT1 calls, this is an input/output field if PMSETA is

specified in the PMO parameter. The contents of the field are not checked by the

queue manager, except that any information following a null character within the

field is discarded. The null character and any following characters are converted to

blanks by the queue manager. If PMSETA is not specified, this field is ignored on

input and is an output-only field.

This is an output field for the MQGET call. The length of this field is given by

LNPTIM. The initial value of this field is 8 blank characters.

160 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

MDREP (10-digit signed integer)

Options for report messages.

A report message is a message about another message, used to inform an

application about expected or unexpected events that relate to the original

message. The MDREP field enables the application sending the original message to

specify which report messages are required, whether the application message data

is to be included in them, and also (for both reports and replies) how the message

and correlation identifiers in the report or reply message are to be set. Any or all

(or none) of the following types of report message can be requested:

v Exception

v Expiration

v Confirm on arrival (COA)

v Confirm on delivery (COD)

v Positive action notification (PAN)

v Negative action notification (NAN)

If more than one type of report message is required, or other report options are

needed, the values can be added together (do not add the same constant more than

once).

The application that receives the report message can determine the reason the

report was generated by examining the MDFB field in the MQMD; see the MDFB field

for more details.

The use of report options when putting a message to a topic can cause zero, one or

many report messages to be generated and sent to the application. This is because

the publication message may be sent to zero, one or many subscribing applications.

Exception options: You can specify one of the options listed below to request an

exception report message.

ROACTIVITY

 Activity reports required

This report option enables an activity report to be generated, whenever a

message with this report option set is processed by supporting

applications.

Messages with this report option set must be accepted by any queue

manager, even if they do not ’understand’ the option. This allows the

report option to be set on any user message, even if they are processed by

back level queue managers. To achieve this, the report option is placed in

the MQRO_ACCEPT_UNSUP_MASK subfield.

If a process (either a queue manager or a user process) performs an

Activity on a message with MQRO_ACTIVITY set, it can choose to

generate and put an activity report.

The activity report option allows the route of any message to be traced

throughout a queue manager network. The report option can be specified

on any current user message and instantly they can begin to calculate the

route of the message through the network. If the application generating the

message cannot switch on activity reports, it can be turned on by using an

API crossing exit supplied by queue manager administrators.

Chapter 1. Data type descriptions 161

Several conditions are applicable to activity reports:

1. The route will be less detailed if there are fewer queue managers in the

network which are able to generate activity reports.

2. The activity reports may not be easily ’orderable’ in order to determine

the route taken.

3. The activity reports may not be able to find a route to their requested

destination.

ROEXC

Exception reports required.

 This type of report can be generated by a message channel agent when a

message is sent to another queue manager and the message cannot be

delivered to the specified destination queue. For example, the destination

queue or an intermediate transmission queue might be full, or the message

might be too big for the queue.

Generation of the exception report message depends on the persistence of

the original message, and the speed of the message channel (normal or

fast) through which the original message travels:

v For all persistent messages, and for nonpersistent messages traveling

through normal message channels, the exception report is generated only

if the action specified by the sending application for the error condition

can be completed successfully. The sending application can specify one

of the following actions to control the disposition of the original message

when the error condition arises:

– RODLQ (this causes the original message to be placed on the

dead-letter queue).

– RODISC (this causes the original message to be discarded).

If the action specified by the sending application cannot be completed

successfully, the original message is left on the transmission queue, and

no exception report message is generated.

v For nonpersistent messages traveling through fast message channels, the

original message is removed from the transmission queue and the

exception report generated even if the specified action for the error

condition cannot be completed successfully. For example, if RODLQ is

specified, but the original message cannot be placed on the dead-letter

queue because (say) that queue is full, the exception report message is

generated and the original message discarded.

Refer to the WebSphere MQ Intercommunication book for more

information about normal and fast message channels.

An exception report is not generated if the application that put the original

message can be notified synchronously of the problem by means of the

reason code returned by the MQPUT or MQPUT1 call.

Applications can also send exception reports, to indicate that a message

that it has received cannot be processed (for example, because it is a debit

transaction that would cause the account to exceed its credit limit).

Message data from the original message is not included with the report

message.

Do not specify more than one of ROEXC, ROEXCD, and ROEXCF.

ROEXCD

Exception reports with data required.

162 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

This is the same as ROEXC, except that the first 100 bytes of the

application message data from the original message are included in the

report message. If the original message contains one or more MQ header

structures, they are included in the report message, in addition to the 100

bytes of application data.

Do not specify more than one of ROEXC, ROEXCD, and ROEXCF.

ROEXCF

Exception reports with full data required.

 This is the same as ROEXC, except that all of the application message data

from the original message is included in the report message.

Do not specify more than one of ROEXC, ROEXCD, and ROEXCF.

Expiration options: You can specify one of the options listed below to request an

expiration report message.

ROEXP

Expiration reports required.

 This type of report is generated by the queue manager if the message is

discarded prior to delivery to an application because its expiry time has

passed (see the MDEXP field). If this option is not set, no report message is

generated if a message is discarded for this reason (even if one of the

ROEXC* options is specified).

Message data from the original message is not included with the report

message.

Do not specify more than one of ROEXP, ROEXPD, and ROEXPF.

ROEXPD

Expiration reports with data required.

 This is the same as ROEXP, except that the first 100 bytes of the application

message data from the original message are included in the report

message. If the original message contains one or more MQ header

structures, they are included in the report message, in addition to the 100

bytes of application data.

Do not specify more than one of ROEXP, ROEXPD, and ROEXPF.

ROEXPF

Expiration reports with full data required.

 This is the same as ROEXP, except that all of the application message data

from the original message is included in the report message.

Do not specify more than one of ROEXP, ROEXPD, and ROEXPF.

Confirm-on-arrival options: You can specify one of the options listed below to

request a confirm-on-arrival report message.

ROCOA

Confirm-on-arrival reports required.

 This type of report is generated by the queue manager that owns the

destination queue, when the message is placed on the destination queue.

Message data from the original message is not included with the report

message.

Chapter 1. Data type descriptions 163

If the message is put as part of a unit of work, and the destination queue

is a local queue, the COA report message generated by the queue manager

becomes available for retrieval only if and when the unit of work is

committed.

A COA report is not generated if the MDFMT field in the message descriptor

is FMXQH or FMDLH. This prevents a COA report being generated if the

message is put on a transmission queue, or is undeliverable and put on a

dead-letter queue.

Do not specify more than one of ROCOA, ROCOAD, and ROCOAF.

ROCOAD

Confirm-on-arrival reports with data required.

 This is the same as ROCOA, except that the first 100 bytes of the

application message data from the original message are included in the

report message. If the original message contains one or more MQ header

structures, they are included in the report message, in addition to the 100

bytes of application data.

Do not specify more than one of ROCOA, ROCOAD, and ROCOAF.

ROCOAF

Confirm-on-arrival reports with full data required.

 This is the same as ROCOA, except that all of the application message data

from the original message is included in the report message.

Do not specify more than one of ROCOA, ROCOAD, and ROCOAF.

Discard and expiry options: You can specify the option below to set the expiry

time and discard flag for report messages.

ROPDAE

Set report message expiry time and discard flag.

 This option ensures that report messages and reply messages inherit the

expiry time and discard flag (whether to discard or not), from their

original messages. With this option set, report and reply messages:

1. Inherit the MQRO_DISCARD_MSG flag (if it was set).

2. Inherit the remaining expiry time of the message, if the message is not

an expiry report. If the message is an expiry report, the expiry time is

set to 60 seconds.

With this option set, the following applies:

Note:

1. Report and reply messages are generated with a discard flag and an

expiry value, and cannot remain within the system.

2. Trace route messages are prevented from reaching destination queues

on non-trace route enabled queue managers.

3. Queues are prevented from being filled with reports that cannot be

delivered, if communications links are broken.

4. Command server responses inherit the remaining expiry of the request.

Confirm-on-delivery options: You can specify one of the options listed below to

request a confirm-on-delivery report message.

164 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

ROCOD

Confirm-on-delivery reports required.

 This type of report is generated by the queue manager when an

application retrieves the message from the destination queue in a way that

causes the message to be deleted from the queue. Message data from the

original message is not included with the report message.

If the message is retrieved as part of a unit of work, the report message is

generated within the same unit of work, so that the report is not available

until the unit of work is committed. If the unit of work is backed out, the

report is not sent.

A COD report is not generated if the MDFMT field in the message descriptor

is FMDLH. This prevents a COD report being generated if the message is

undeliverable and put on a dead-letter queue.

ROCOD is not valid if the destination queue is an XCF queue.

Do not specify more than one of ROCOD, ROCODD, and ROCODF.

ROCODD

Confirm-on-delivery reports with data required.

 This is the same as ROCOD, except that the first 100 bytes of the

application message data from the original message are included in the

report message. If the original message contains one or more MQ header

structures, they are included in the report message, in addition to the 100

bytes of application data.

If GMATM is specified on the MQGET call for the original message, and

the message retrieved is truncated, the amount of application message data

placed in the report message is the minimum of:

v The length of the original message

v 100 bytes.

ROCODD is not valid if the destination queue is an XCF queue.

Do not specify more than one of ROCOD, ROCODD, and ROCODF.

ROCODF

Confirm-on-delivery reports with full data required.

 This is the same as ROCOD, except that all of the application message data

from the original message is included in the report message.

ROCODF is not valid if the destination queue is an XCF queue.

Do not specify more than one of ROCOD, ROCODD, and ROCODF.

Action-notification options: You can specify one or both of the options listed

below to request that the receiving application send a positive-action or

negative-action report message.

ROPAN

Positive action notification reports required.

 This type of report is generated by the application that retrieves the

message and acts upon it. It indicates that the action requested in the

message has been performed successfully. The application generating the

report determines whether or not any data is to be included with the

report.

Chapter 1. Data type descriptions 165

Other than conveying this request to the application retrieving the

message, the queue manager takes no action based upon this option. It is

the responsibility of the retrieving application to generate the report if

appropriate.

RONAN

Negative action notification reports required.

 This type of report is generated by the application that retrieves the

message and acts upon it. It indicates that the action requested in the

message has not been performed successfully. The application generating

the report determines whether or not any data is to be included with the

report. For example, it may be desirable to include some data indicating

why the request could not be performed.

Other than conveying this request to the application retrieving the

message, the queue manager takes no action based upon this option. It is

the responsibility of the retrieving application to generate the report if

appropriate.

Determination of which conditions correspond to a positive action and which

correspond to a negative action is the responsibility of the application. However, it

is recommended that if the request has been only partially performed, a NAN

report rather than a PAN report should be generated if requested. It is also

recommended that every possible condition should correspond to either a positive

action, or a negative action, but not both.

Message-identifier options: You can specify one of the options listed below to

control how the MDMID of the report message (or of the reply message) is to be set.

RONMI

New message identifier.

 This is the default action, and indicates that if a report or reply is

generated as a result of this message, a new MDMID is to be generated for

the report or reply message.

ROPMI

Pass message identifier.

 If a report or reply is generated as a result of this message, the MDMID of

this message is to be copied to the MDMID of the report or reply message.

The MsgId of a publication message will be different for each subscriber

that receives a copy of the publication and therefore the MsgId copied into

the report or reply message will be different for each one.

If this option is not specified, RONMI is assumed.

Correlation-identifier options: You can specify one of the options listed below to

control how the MDCID of the report message (or of the reply message) is to be set.

ROCMTC

Copy message identifier to correlation identifier.

 This is the default action, and indicates that if a report or reply is

generated as a result of this message, the MDMID of this message is to be

copied to the MDCID of the report or reply message.

The MsgId of a publication message will be different for each subscriber

that receives a copy of the publication and therefore the MsgId copied into

the CorrelId of the report or reply message will be different for each one.

166 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

ROPCI

Pass correlation identifier.

 If a report or reply is generated as a result of this message, the MDCID of

this message is to be copied to the MDCID of the report or reply message.

The MDCID of a publication message will be specific to a subscriber unless it

uses the SOSCID option and sets the SCDIC field in the MQSD to CINONE.

Therefore it is possible that the MDCID copied into the MDCID of the report or

reply message will be different for each one.

If this option is not specified, ROCMTC is assumed.

Servers replying to requests or generating report messages are recommended to

check whether the ROPMI or ROPCI options were set in the original message. If

they were, the servers should take the action described for those options. If neither

is set, the servers should take the corresponding default action.

: You can specify one of the options listed below to control the disposition of the

original message when it cannot be delivered to the destination queue. These

options apply only to those situations that would result in an exception report

message being generated if one had been requested by the sending application.

The application can set the disposition options independently of requesting

exception reports.

RODLQ

Place message on dead-letter queue.

 This is the default action, and indicates that the message should be placed

on the dead-letter queue, if the message cannot be delivered to the

destination queue. This happens in the following situations:

v When the application that put the original message cannot be notified

synchronously of the problem by means of the reason code returned by

the MQPUT or MQPUT1 call. An exception report message is generated,

if one was requested by the sender.

v When the application that put the original message was putting to a

topic

An exception report message will be generated, if one was requested by

the sender.

RODISC

Discard message.

 This indicates that the message should be discarded if it cannot be

delivered to the destination queue. This happens in the following

situations:

v When the application that put the original message cannot be notified

synchronously of the problem by means of the reason code returned by

the MQPUT or MQPUT1 call. An exception report message is generated,

if one was requested by the sender.

v When the application that put the original message was putting to a

topic

An exception report message will be generated, if one was requested by

the sender.

If it is desired to return the original message to the sender, without the

original message being placed on the dead-letter queue, the sender should

specify RODISC with ROEXCF.

Chapter 1. Data type descriptions 167

Default option: You can specify the following if no report options are required:

RONONE

No reports required.

 This value can be used to indicate that no other options have been

specified. RONONE is defined to aid program documentation. It is not

intended that this option be used with any other, but as its value is zero,

such use cannot be detected.

General information:

1. All report types required must be specifically requested by the application

sending the original message. For example, if a COA report is requested but an

exception report is not, a COA report is generated when the message is placed

on the destination queue, but no exception report is generated if the destination

queue is full when the message arrives there. If no MDREP options are set, no

report messages are generated by the queue manager or message channel agent

(MCA).

Some report options can be specified even though the local queue manager

does not recognize them; this is useful when the option is to be processed by

the destination queue manager. See Chapter 8, “Report options and message

flags,” on page 517 for more details.

If a report message is requested, the name of the queue to which the report

should be sent must be specified in the MDRQ field. When a report message is

received, the nature of the report can be determined by examining the MDFB

field in the message descriptor.

2. If the queue manager or MCA that generates a report message is unable to put

the report message on the reply queue (for example, because the reply queue or

transmission queue is full), the report message is placed instead on the

dead-letter queue. If that also fails, or there is no dead-letter queue, the action

taken depends on the type of the report message:

v If the report message is an exception report, the message which caused the

exception report to be generated is left on its transmission queue; this

ensures that the message is not lost.

v For all other report types, the report message is discarded and processing

continues normally. This is done because either the original message has

already been delivered safely (for COA or COD report messages), or is no

longer of any interest (for an expiration report message).

Once a report message has been placed successfully on a queue (either the

destination queue or an intermediate transmission queue), the message is no

longer subject to special processing; it is treated just like any other message.

3. When the report is generated, the MDRQ queue is opened and the report message

put using the authority of the MDUID in the MQMD of the message causing the

report, except in the following cases:

v Exception reports generated by a receiving MCA are put with whatever

authority the MCA used when it tried to put the message causing the report.

The CDPA channel attribute determines the user identifier used.

v COA reports generated by the queue manager are put with whatever

authority was used when the message causing the report was put on the

queue manager generating the report. For example, if the message was put

by a receiving MCA using the MCA’s user identifier, the queue manager puts

the COA report using the MCA’s user identifier.

168 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Applications generating reports should normally use the same authority as they

would have used to generate a reply; this should normally be the authority of

the user identifier in the original message.

If the report has to travel to a remote destination, senders and receivers can

decide whether or not to accept it, in the same way as they do for other

messages.

4. If a report message with data is requested:

v The report message is always generated with the amount of data requested

by the sender of the original message. If the report message is too big for the

reply queue, the processing described above occurs; the report message is

never truncated in order to fit on the reply queue.

v If the MDFMT of the original message is FMXQH, the data included in the

report does not include the MQXQH. The report data starts with the first

byte of the data beyond the MQXQH in the original message. This occurs

whether or not the queue is a transmission queue.
5. If a COA, COD, or expiration report message is received at the reply queue, it

is guaranteed that the original message arrived, was delivered, or expired, as

appropriate. However, if one or more of these report messages is requested and

is not received, the reverse cannot be assumed, since one of the following may

have occurred:

a. The report message is held up because a link is down.

b. The report message is held up because a blocking condition exists at an

intermediate transmission queue or at the reply queue (for example, the

queue is full or inhibited for puts).

c. The report message is on a dead-letter queue.

d. When the queue manager was attempting to generate the report message, it

was unable to put it on the appropriate queue, and was also unable to put

it on the dead-letter queue, so the report message could not be generated.

e. A failure of the queue manager occurred between the action being reported

(arrival, delivery or expiry), and generation of the corresponding report

message. (This does not happen for COD report messages if the application

retrieves the original message within a unit of work, as the COD report

message is generated within the same unit of work.)
Exception report messages may be held up in the same way for reasons 1, 2,

and 3 above. However, when an MCA is unable to generate an exception report

message (the report message cannot be put either on the reply queue or the

dead-letter queue), the original message remains on the transmission queue at

the sender, and the channel is closed. This occurs irrespective of whether the

report message was to be generated at the sending or the receiving end of the

channel.

6. If the original message is temporarily blocked (resulting in an exception report

message being generated and the original message being put on a dead-letter

queue), but the blockage clears and an application then reads the original

message from the dead-letter queue and puts it again to its destination, the

following may occur:

v Even though an exception report message has been generated, the original

message eventually arrives successfully at its destination.

v More than one exception report message is generated in respect of a single

original message, since the original message may encounter another blockage

later.

Report messages when putting to a topic:

Chapter 1. Data type descriptions 169

1. Reports can be generated when putting a message to a topic. This message will

be sent to all subscribers to the topic, which could be zero, one or many. This

should be taken into account when choosing to use report options as many

report messages could be generated as a result.

2. When putting a message to a topic, there may be many destination queues that

are to be given a copy of the message. If some of these destination queues have

a problem, such as queue full, then the successful completion of the MQPUT

depends on the setting of NPMSGDLV or PMSGDLV (depending on the

persistence of the message). If the setting is such that message delivery to the

destination queue must be successful (for example, it is a persistent message to

a durable subscriber and PMSGDLV is set to ALL or ALLDUR), then success is

defined as one of the following criteria being met:

v Successful put to the subscriber queue

v Use of RODLQ and a successful put to the Dead-letter queue if the

subscriber queue cannot take the message

v Use of RODISC if the subscriber queue cannot take the message.

Report messages for message segments:

1. Report messages can be requested for messages that have segmentation

allowed (see the description of the MFSEGA flag). If the queue manager finds it

necessary to segment the message, a report message can be generated for each

of the segments that subsequently encounters the relevant condition.

Applications should therefore be prepared to receive multiple report messages

for each type of report message requested. The MDGID field in the report

message can be used to correlate the multiple reports with the group identifier

of the original message, and the MDFB field used to identify the type of each

report message.

2. If GMLOGO is used to retrieve report messages for segments, be aware that

reports of different types may be returned by the successive MQGET calls. For

example, if both COA and COD reports are requested for a message that is

segmented by the queue manager, the MQGET calls for the report messages

may return the COA and COD report messages interleaved in an unpredictable

fashion. This can be avoided by using the GMCMPM option (optionally with

GMATM). GMCMPM causes the queue manager to reassemble report messages

that have the same report type. For example, the first MQGET call might

reassemble all of the COA messages relating to the original message, and the

second MQGET call might reassemble all of the COD messages. Which is

reassembled first depends on which type of report message happens to occur

first on the queue.

3. Applications that themselves put segments can specify different report options

for each segment. However, the following points should be noted:

v If the segments are retrieved using the GMCMPM option, only the report

options in the first segment are honored by the queue manager.

v If the segments are retrieved one by one, and most of them have one of the

ROCOD* options, but at least one segment does not, it will not be possible to

use the GMCMPM option to retrieve the report messages with a single

MQGET call, or use the GMASGA option to detect when all of the report

messages have arrived.
4. In an MQ network, it is possible for the queue managers to have differing

capabilities. If a report message for a segment is generated by a queue manager

or MCA that does not support segmentation, the queue manager or MCA will

not by default include the necessary segment information in the report

message, and this may make it difficult to identify the original message that

170 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

caused the report to be generated. This difficulty can be avoided by requesting

data with the report message, that is, by specifying the appropriate RO*D or

RO*F options. However, be aware that if RO*D is specified, less than 100 bytes

of application message data may be returned to the application which retrieves

the report message, if the report message is generated by a queue manager or

MCA that does not support segmentation.

Contents of the message descriptor for a report message: When the queue

manager or message channel agent (MCA) generates a report message, it sets the

fields in the message descriptor to the following values, and then puts the message

in the normal way.

 Field in MQMD Value used

MDSID MDSIDV

MDVER MDVER2

MDREP RONONE

MDMT MTRPRT

MDEXP EIULIM

MDFB As appropriate for the nature of the report (FBCOA,

FBCOD, FBEXP, or an RC* value)

MDENC Copied from the original message descriptor

MDCSI Copied from the original message descriptor

MDFMT Copied from the original message descriptor

MDPRI Copied from the original message descriptor

MDPER Copied from the original message descriptor

MDMID As specified by the report options in the original message

descriptor

MDCID As specified by the report options in the original message

descriptor

MDBOC 0

MDRQ Blanks

MDRM Name of queue manager

MDUID As set by the PMPASI option

MDACC As set by the PMPASI option

MDAID As set by the PMPASI option

MDPAT ATQM, or as appropriate for the message channel agent

MDPAN First 28 bytes of the queue manager name or message

channel agent name. For report messages generated by the

IMS bridge, this field contains the XCF group name and

XCF member name of the IMS system to which the message

relates.

MDPD Date when report message is sent

MDPT Time when report message is sent

MDAOD Blanks

MDGID Copied from the original message descriptor

MDSEQ Copied from the original message descriptor

MDOFF Copied from the original message descriptor

MDMFL Copied from the original message descriptor

MDOLN Copied from the original message descriptor if not

OLUNDF, and set to the length of the original message data

otherwise

An application generating a report is recommended to set similar values, except for

the following:

v The MDRM field can be set to blanks (the queue manager will change this to the

name of the local queue manager when the message is put).

Chapter 1. Data type descriptions 171

v The context fields should be set using the option that would have been used for

a reply, normally PMPASI.

Analyzing the report field: The MDREP field contains subfields; because of this,

applications that need to check whether the sender of the message requested a

particular report should use one of the techniques described in “Analyzing the

report field” on page 519.

This is an output field for the MQGET call, and an input field for the MQPUT and

MQPUT1 calls. The initial value of this field is RONONE.

MDRM (48-byte character string)

Name of reply queue manager.

This is the name of the queue manager to which the reply message or report

message should be sent. MDRQ is the local name of a queue that is defined on this

queue manager.

If the MDRM field is blank, the local queue manager looks up the MDRQ name in its

queue definitions. If a local definition of a remote queue exists with this name, the

MDRM value in the transmitted message is replaced by the value of the

RemoteQMgrName attribute from the definition of the remote queue, and this value

will be returned in the message descriptor when the receiving application issues an

MQGET call for the message. If a local definition of a remote queue does not exist,

the MDRM that is transmitted with the message is the name of the local queue

manager.

If the name is specified, it may contain trailing blanks; the first null character and

characters following it are treated as blanks. Otherwise, however, no check is made

that the name satisfies the naming rules for queue managers, or that this name is

known to the sending queue manager; this is also true for the name transmitted, if

the MDRM is replaced in the transmitted message. For more information about

names, see the WebSphere MQ Application Programming Guide.

If a reply-to queue is not required, it is recommended (although this is not

checked) that the MDRM field should be set to blanks; the field should not be left

uninitialized.

For the MQGET call, the queue manager always returns the name padded with

blanks to the length of the field.

This is an output field for the MQGET call, and an input field for the MQPUT and

MQPUT1 calls. The length of this field is given by LNQMN. The initial value of

this field is 48 blank characters.

MDRQ (48-byte character string)

Name of reply queue.

This is the name of the message queue to which the application that issued the get

request for the message should send MTRPLY and MTRPRT messages. The name

is the local name of a queue that is defined on the queue manager identified by

MDRM. This queue should not be a model queue, although the sending queue

manager does not verify this when the message is put.

172 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

For the MQPUT and MQPUT1 calls, this field must not be blank if the MDMT field

has the value MTRQST, or if any report messages are requested by the MDREP field.

However, the value specified (or substituted; see below) is passed on to the

application that issues the get request for the message, whatever the message type.

If the MDRM field is blank, the local queue manager looks up the MDRQ name in its

own queue definitions. If a local definition of a remote queue exists with this

name, the MDRQ value in the transmitted message is replaced by the value of the

RemoteQName attribute from the definition of the remote queue, and this value will

be returned in the message descriptor when the receiving application issues an

MQGET call for the message. If a local definition of a remote queue does not exist,

MDRQ is unchanged.

If the name is specified, it may contain trailing blanks; the first null character and

characters following it are treated as blanks. Otherwise, however, no check is made

that the name satisfies the naming rules for queues; this is also true for the name

transmitted, if the MDRQ is replaced in the transmitted message. The only check

made is that a name has been specified, if the circumstances require it.

If a reply-to queue is not required, it is recommended (although this is not

checked) that the MDRQ field should be set to blanks; the field should not be left

uninitialized.

For the MQGET call, the queue manager always returns the name padded with

blanks to the length of the field.

If a message that requires a report message cannot be delivered, and the report

message also cannot be delivered to the queue specified, both the original message

and the report message go to the dead-letter (undelivered-message) queue (see the

DeadLetterQName attribute described in “Attributes for the queue manager” on

page 471).

This is an output field for the MQGET call, and an input field for the MQPUT and

MQPUT1 calls. The length of this field is given by LNQN. The initial value of this

field is 48 blank characters.

MDSEQ (10-digit signed integer)

Sequence number of logical message within group.

Sequence numbers start at 1, and increase by 1 for each new logical message in the

group, up to a maximum of 999 999 999. A physical message which is not in a

group has a sequence number of 1.

This field need not be set by the application on the MQPUT or MQGET call if:

v On the MQPUT call, PMLOGO is specified.

v On the MQGET call, MOSEQN is not specified.

These are the recommended ways of using these calls for messages that are not

report messages. However, if the application requires more control, or the call is

MQPUT1, the application must ensure that MDSEQ is set to an appropriate value.

On input to the MQPUT and MQPUT1 calls, the queue manager uses the value

detailed in Table 56 on page 208. On output from the MQPUT and MQPUT1 calls,

the queue manager sets this field to the value that was sent with the message.

Chapter 1. Data type descriptions 173

On input to the MQGET call, the queue manager uses the value detailed in

Table 37 on page 100. On output from the MQGET call, the queue manager sets

this field to the value for the message retrieved.

The initial value of this field is one. This field is ignored if MDVER is less than

MDVER2.

MDSID (4-byte character string)

Structure identifier.

The value must be:

MDSIDV

Identifier for message descriptor structure.

This is always an input field. The initial value of this field is MDSIDV.

MDUID (12-byte character string)

User identifier.

This is part of the identity context of the message. For more information about

message context, see “Overview” on page 126; also see the WebSphere MQ

Application Programming Guide.

MDUID specifies the user identifier of the application that originated the message.

The queue manager treats this information as character data, but does not define

the format of it.

After a message has been received, MDUID can be used in the ODAU field of the

OBJDSC parameter of a subsequent MQOPEN or MQPUT1 call, so that the

authorization check is performed for the MDUID user instead of the application

performing the open.

When the queue manager generates this information for an MQPUT or MQPUT1

call, the queue manager uses a user identifier determined from the environment.

When the user identifier is determined from the environment:

v On z/OS, the queue manager uses:

– For batch, the user identifier from the JES JOB card or started task

– For TSO, the log on user identifier

– For CICS, the user identifier associated with the task

– For IMS, the user identifier depends on the type of application:

- For:

v Nonmessage BMP regions

v Nonmessage IFP regions

v Message BMP and message IFP regions that have not issued a successful

GU call

the queue manager uses the user identifier from the region JES JOB card or

the TSO user identifier. If these are blank or null, it uses the name of the

program specification block (PSB).

- For:

174 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

v Message BMP and message IFP regions that have issued a successful GU

call

v MPP regions

the queue manager uses one of:

v The signed-on user identifier associated with the message

v The logical terminal (LTERM) name

v The user identifier from the region JES JOB card

v The TSO user identifier

v The PSB name
v On OS/2, the queue manager uses the string “os2”.

v On i5/OS, the queue manager uses the name of the user profile associated with

the application job.

v On Compaq NonStop Kernel, the queue manager uses the MQSeries principal

that is defined for the Tandem user identifier in the MQSeries principal

database.

v On HP OpenVMS and UNIX systems, the queue manager uses:

– The application’s logon name

– The effective user identifier of the process if no logon is available

– The user identifier associated with the transaction, if the application is a CICS

transaction
v On VSE/ESA, this is a reserved field.

v On Windows, the queue manager uses the first 12 characters of the logged-on

user name.

For the MQPUT and MQPUT1 calls, this is an input/output field if PMSETI or

PMSETA is specified in the PMO parameter. Any information following a null

character within the field is discarded. The null character and any following

characters are converted to blanks by the queue manager. If PMSETI or PMSETA is

not specified, this field is ignored on input and is an output-only field.

After the successful completion of an MQPUT or MQPUT1 call, this field contains

the MDUID that was transmitted with the message if it was put to a queue. This will

be the value of MDUID that is kept with the message if it is retained (see description

of PMRET for more details about retained publications) but is not used as the

MDUID when the message is sent as a publication to subscribers since they provide a

value to override MDUID in all publications sent to them. If the message has no

context, the field is entirely blank.

This is an output field for the MQGET call. The length of this field is given by

LNUID. The initial value of this field is 12 blank characters.

MDVER (10-digit signed integer)

Structure version number.

The value must be one of the following:

MDVER1

Version-1 message descriptor structure.

MDVER2

Version-2 message descriptor structure.

Chapter 1. Data type descriptions 175

Note: When a version-2 MQMD is used, the queue manager performs

additional checks on any MQ header structures that may be present at the

beginning of the application message data; for further details see the usage

notes for the MQPUT call.

Fields that exist only in the more-recent version of the structure are identified as

such in the descriptions of the fields. The following constant specifies the version

number of the current version:

MDVERC

Current version of message descriptor structure.

This is always an input field. The initial value of this field is MDVER1.

Initial values and RPG declaration

 Table 45. Initial values of fields in MQMD

Field name Name of constant Value of constant

MDSID MDSIDV ’MD��’

MDVER MDVER1 1

MDREP RONONE 0

MDMT MTDGRM 8

MDEXP EIULIM -1

MDFB FBNONE 0

MDENC ENNAT Depends on environment

MDCSI CSQM 0

MDFMT FMNONE Blanks

MDPRI PRQDEF -1

MDPER PEQDEF 2

MDMID MINONE Nulls

MDCID CINONE Nulls

MDBOC None 0

MDRQ None Blanks

MDRM None Blanks

MDUID None Blanks

MDACC ACNONE Nulls

MDAID None Blanks

MDPAT ATNCON 0

MDPAN None Blanks

MDPD None Blanks

MDPT None Blanks

MDAOD None Blanks

MDGID GINONE Nulls

MDSEQ None 1

MDOFF None 0

MDMFL MFNONE 0

176 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Table 45. Initial values of fields in MQMD (continued)

Field name Name of constant Value of constant

MDOLN OLUNDF -1

Notes:

1. The symbol ‘�’ represents a single blank character.

RPG declaration (copy file CMQMDG)

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..

 D*

 D* MQMD Structure

 D*

 D* Structure identifier

 D MDSID 1 4 INZ(’MD ’)

 D* Structure version number

 D MDVER 5 8I 0 INZ(1)

 D* Options for report messages

 D MDREP 9 12I 0 INZ(0)

 D* Message type

 D MDMT 13 16I 0 INZ(8)

 D* Message lifetime

 D MDEXP 17 20I 0 INZ(-1)

 D* Feedback or reason code

 D MDFB 21 24I 0 INZ(0)

 D* Numeric encoding of message data

 D MDENC 25 28I 0 INZ(273)

 D* Character set identifier of messagedata

 D MDCSI 29 32I 0 INZ(0)

 D* Format name of message data

 D MDFMT 33 40 INZ(’ ’)

 D* Message priority

 D MDPRI 41 44I 0 INZ(-1)

 D* Message persistence

 D MDPER 45 48I 0 INZ(2)

 D* Message identifier

 D MDMID 49 72 INZ(X’00000000000000-

 D 0000000000000000000000-

 D 000000000000’)

 D* Correlation identifier

 D MDCID 73 96 INZ(X’00000000000000-

 D 0000000000000000000000-

 D 000000000000’)

 D* Backout counter

 D MDBOC 97 100I 0 INZ(0)

 D* Name of reply queue

 D MDRQ 101 148 INZ

 D* Name of reply queue manager

 D MDRM 149 196 INZ

 D* User identifier

 D MDUID 197 208 INZ

 D* Accounting token

 D MDACC 209 240 INZ(X’00000000000000-

 D 0000000000000000000000-

 D 0000000000000000000000-

 D 000000’)

 D* Application data relating toidentity

 D MDAID 241 272 INZ

 D* Type of application that put themessage

 D MDPAT 273 276I 0 INZ(0)

 D* Name of application that put themessage

 D MDPAN 277 304 INZ

 D* Date when message was put

 D MDPD 305 312 INZ

 D* Time when message was put

Chapter 1. Data type descriptions 177

D MDPT 313 320 INZ

 D* Application data relating toorigin

 D MDAOD 321 324 INZ

 D* Group identifier

 D MDGID 325 348 INZ(X’00000000000000-

 D 0000000000000000000000-

 D 000000000000’)

 D* Sequence number of logical messagewithin group

 D MDSEQ 349 352I 0 INZ(1)

 D* Offset of data in physical messagefrom start of logical message

 D MDOFF 353 356I 0 INZ(0)

 D* Message flags

 D MDMFL 357 360I 0 INZ(0)

 D* Length of original message

 D MDOLN 361 364I 0 INZ(-1)

MQMDE – Message descriptor extension

The following table summarizes the fields in the structure.

 Table 46. Fields in MQMDE

Field Description Topic

MESID Structure identifier MESID

MEVER Structure version number MEVER

MELEN Length of MQMDE structure MELEN

MEENC Numeric encoding of data that follows MQMDE MEENC

MECSI Character set identifier of data that follows

MQMDE

MECSI

MEFMT Format name of data that follows MQMDE MEFMT

MEFLG General flags MEFLG

MEGID Group identifier MEGID

MESEQ Sequence number of logical message within group MESEQ

MEOFF Offset of data in physical message from start of

logical message

MEOFF

MEMFL Message flags MEMFL

MEOLN Length of original message MEOLN

Overview

Purpose: The MQMDE structure describes the data that sometimes occurs

preceding the application message data. The structure contains those MQMD fields

that exist in the version-2 MQMD, but not in the version-1 MQMD.

Format name: FMMDE.

Character set and encoding: Data in MQMDE must be in the character set and

encoding of the local queue manager; these are given by the CodedCharSetId queue

manager attribute and ENNAT for the C programming language, respectively.

The character set and encoding of the MQMDE must be set into the MDCSI and

MDENC fields in:

v The MQMD (if the MQMDE structure is at the start of the message data), or

178 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

v The header structure that precedes the MQMDE structure (all other cases).

If the MQMDE is not in the queue manager’s character set and encoding, the

MQMDE is accepted but not honored, that is, the MQMDE is treated as message

data.

Usage: Normal applications should use a version-2 MQMD, in which case they

will not encounter an MQMDE structure. However, specialized applications, and

applications that continue to use a version-1 MQMD, may encounter an MQMDE

in some situations. The MQMDE structure can occur in the following

circumstances:

v Specified on the MQPUT and MQPUT1 calls

v Returned by the MQGET call

v In messages on transmission queues

These are described below.

MQMDE specified on MQPUT and MQPUT1 calls: On the MQPUT and

MQPUT1 calls, if the application provides a version-1 MQMD, the application can

optionally prefix the message data with an MQMDE, setting the MDFMT field in

MQMD to FMMDE to indicate that an MQMDE is present. If the application does

not provide an MQMDE, the queue manager assumes default values for the fields

in the MQMDE. The default values that the queue manager uses are the same as

the initial values for the structure – see Table 48 on page 183.

If the application provides a version-2 MQMD and prefixes the application message

data with an MQMDE, the structures are processed as shown in Table 47.

 Table 47. Queue-manager action when MQMDE specified on MQPUT or MQPUT1

MQMD

version

Values of

version-2

fields

Values of corresponding

fields in MQMDE

Action taken by queue

manager

1 – Valid MQMDE is honored

2 Default Valid MQMDE is honored

2 Not default Valid MQMDE is treated as

message data

1 or 2 Any Not valid Call fails with an

appropriate reason code

1 or 2 Any MQMDE is in the wrong

character set or encoding, or

is an unsupported version

MQMDE is treated as

message data

There is one special case. If the application uses a version-2 MQMD to put a

message that is a segment (that is, the MFSEG or MFLSEG flag is set), and the

format name in the MQMD is FMDLH, the queue manager generates an MQMDE

structure and inserts it between the MQDLH structure and the data that follows it.

In the MQMD that the queue manager retains with the message, the version-2

fields are set to their default values.

Several of the fields that exist in the version-2 MQMD but not the version-1

MQMD are input/output fields on MQPUT and MQPUT1. However, the queue

manager does not return any values in the equivalent fields in the MQMDE on

output from the MQPUT and MQPUT1 calls; if the application requires those

output values, it must use a version-2 MQMD.

Chapter 1. Data type descriptions 179

MQMDE returned by MQGET call: On the MQGET call, if the application

provides a version-1 MQMD, the queue manager prefixes the message returned

with an MQMDE, but only if one or more of the fields in the MQMDE has a

nondefault value. The queue manager sets the MDFMT field in MQMD to the value

FMMDE to indicate that an MQMDE is present.

If the application provides an MQMDE at the start of the BUFFER parameter, the

MQMDE is ignored. On return from the MQGET call, it is replaced by the

MQMDE for the message (if one is needed), or overwritten by the application

message data (if the MQMDE is not needed).

If an MQMDE is returned by the MQGET call, the data in the MQMDE is usually

in the queue manager’s character set and encoding. However the MQMDE may be

in some other character set and encoding if:

v The MQMDE was treated as data on the MQPUT or MQPUT1 call (see Table 47

on page 179 for the circumstances that can cause this).

v The message was received from a remote queue manager connected by a TCP

connection, and the receiving message channel agent (MCA) was not set up

correctly (see the WebSphere MQ Intercommunication manual for further

information).

MQMDE in messages on transmission queues: Messages on transmission queues

are prefixed with the MQXQH structure, which contains within it a version-1

MQMD. An MQMDE may also be present, positioned between the MQXQH

structure and application message data, but it will usually be present only if one or

more of the fields in the MQMDE has a nondefault value.

Other MQ header structures can also occur between the MQXQH structure and the

application message data. For example, when the dead-letter header MQDLH is

present, and the message is not a segment, the order is:

v MQXQH (containing a version-1 MQMD)

v MQMDE

v MQDLH

v Application message data

Fields

The MQMDE structure contains the following fields; the fields are described in

alphabetic order:

MECSI (10-digit signed integer)

Character-set identifier of data that follows MQMDE.

This specifies the character set identifier of the data that follows the MQMDE

structure; it does not apply to character data in the MQMDE structure itself.

On the MQPUT or MQPUT1 call, the application must set this field to the value

appropriate to the data. The queue manager does not check that this field is valid.

The following special value can be used:

CSINHT

Inherit character-set identifier of this structure.

180 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Character data in the data following this structure is in the same character

set as this structure.

The queue manager changes this value in the structure sent in the message

to the actual character-set identifier of the structure. Provided no error

occurs, the value CSINHT is not returned by the MQGET call.

CSINHT cannot be used if the value of the MDPAT field in MQMD is

ATBRKR.

The initial value of this field is CSUNDF.

MEENC (10-digit signed integer)

Numeric encoding of data that follows MQMDE.

This specifies the numeric encoding of the data that follows the MQMDE structure;

it does not apply to numeric data in the MQMDE structure itself.

On the MQPUT or MQPUT1 call, the application must set this field to the value

appropriate to the data. The queue manager does not check that the field is valid.

See the MDENC field described in “MQMD – Message descriptor” on page 125 for

more information about data encodings.

The initial value of this field is ENNAT.

MEFLG (10-digit signed integer)

General flags.

The following flag can be specified:

MEFNON

No flags.

The initial value of this field is MEFNON.

MEFMT (8-byte character string)

Format name of data that follows MQMDE.

This specifies the format name of the data that follows the MQMDE structure.

On the MQPUT or MQPUT1 call, the application must set this field to the value

appropriate to the data. The queue manager does not check that this field is valid.

See the MDFMT field described in “MQMD – Message descriptor” on page 125 for

more information about format names.

The initial value of this field is FMNONE.

MEGID (24-byte bit string)

Group identifier.

See the MDGID field described in “MQMD – Message descriptor” on page 125. The

initial value of this field is GINONE.

Chapter 1. Data type descriptions 181

MELEN (10-digit signed integer)

Length of MQMDE structure.

The following value is defined:

MELEN2

Length of version-2 message descriptor extension structure.

The initial value of this field is MELEN2.

MEMFL (10-digit signed integer)

Message flags.

See the MDMFL field described in “MQMD – Message descriptor” on page 125. The

initial value of this field is MFNONE.

MEOFF (10-digit signed integer)

Offset of data in physical message from start of logical message.

See the MDOFF field described in “MQMD – Message descriptor” on page 125. The

initial value of this field is 0.

MEOLN (10-digit signed integer)

Length of original message.

See the MDOLN field described in “MQMD – Message descriptor” on page 125. The

initial value of this field is OLUNDF.

MESEQ (10-digit signed integer)

Sequence number of logical message within group.

See the MDSEQ field described in “MQMD – Message descriptor” on page 125. The

initial value of this field is 1.

MESID (4-byte character string)

Structure identifier.

The value must be:

MESIDV

Identifier for message descriptor extension structure.

The initial value of this field is MESIDV.

MEVER (10-digit signed integer)

Structure version number.

The value must be:

MEVER2

Version-2 message descriptor extension structure.

182 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

The following constant specifies the version number of the current version:

MEVERC

Current version of message descriptor extension structure.

The initial value of this field is MEVER2.

Initial values and RPG declaration

 Table 48. Initial values of fields in MQMDE

Field name Name of constant Value of constant

MESID MESIDV ’MDE�’

MEVER MEVER2 2

MELEN MELEN2 72

MEENC ENNAT Depends on

environment

MECSI CSUNDF 0

MEFMT FMNONE Blanks

MEFLG MEFNON 0

MEGID GINONE Nulls

MESEQ None 1

MEOFF None 0

MEMFL MFNONE 0

MEOLN OLUNDF -1

Notes:

1. The symbol ‘�’ represents a single blank character.

RPG declaration (copy file CMQMDEG)

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..

 D*

 D* MQMDE Structure

 D*

 D* Structure identifier

 D MESID 1 4 INZ(’MDE ’)

 D* Structure version number

 D MEVER 5 8I 0 INZ(2)

 D* Length of MQMDE structure

 D MELEN 9 12I 0 INZ(72)

 D* Numeric encoding of data that followsMQMDE

 D MEENC 13 16I 0 INZ(273)

 D* Character-set identifier of data thatfollows MQMDE

 D MECSI 17 20I 0 INZ(0)

 D* Format name of data that followsMQMDE

 D MEFMT 21 28 INZ(’ ’)

 D* General flags

 D MEFLG 29 32I 0 INZ(0)

 D* Group identifier

 D MEGID 33 56 INZ(X’00000000000000-

 D 0000000000000000000000-

 D 000000000000’)

 D* Sequence number of logical messagewithin group

 D MESEQ 57 60I 0 INZ(1)

 D* Offset of data in physical messagefrom start of logical message

 D MEOFF 61 64I 0 INZ(0)

 D* Message flags

Chapter 1. Data type descriptions 183

D MEMFL 65 68I 0 INZ(0)

 D* Length of original message

 D MEOLN 69 72I 0 INZ(-1)

MQMHBO – Message handle to buffer options

Structure defining the message handle to buffer options

The following table summarizes the fields in the structure.

 Table 49. Fields in MQMHBO

Field Description Topic

StrucId Structure identifier StrucId

Version Structure version number Version

Options Options controlling the action of MQMHBUF Options

Overview for MQMHBO

Availability: All WebSphere MQ systems and WebSphere MQ clients.

Purpose: The MQMHBO structure allows applications to specify options that

control how buffers are produced from message handles. The structure is an input

parameter on the MQMHBUF call.

Character set and encoding: Data in MQMHBO must be in the character set of the

application and encoding of the application (MQENC_NATIVE).

Fields for MQMHBO

Message handle to buffer options structure - fields

The MQMHBO structure contains the following fields; the fields are described in

alphabetic order:

MBOPT (10-digit signed integer)

Message handle to buffer options structure - MBOPT field

These options control the action of MQMHBUF.

You must specify the following option:

MBPRRF

When converting properties from a message handle into a buffer, convert

them into the MQRFH2 format.

Optionally, you can also specify the following value. If required values can be:

v Added together (do not add the same constant more than once), or

v Combined using the bitwise OR operation (if the programming language

supports bit operations).

MBDLPR

Properties that are added to the buffer are deleted from the message

handle. If the call fails no properties are deleted.

This is always an input field. The initial value of this field is MBPRRF.

184 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

MBSID (10-digit signed integer)

Message handle to buffer options structure - MBSID field

This is the structure identifier. The value must be:

MBSIDV

Identifier for message handle to buffer options structure.

This is always an input field. The initial value of this field isMBSIDV.

MBVER (10-digit signed integer)

Message handle to buffer options structure - MBVER field

This is the structure version number. The value must be:

MBVER1

Version number for message handle to buffer options structure.

The following constant specifies the version number of the current version:

MBVERC

Current version of message handle to buffer options structure.

This is always an input field. The initial value of this field is MBVER1.

Initial values and RPG declaration

Message handle to buffer structure - Initial values

 Table 50. Initial values of fields in MQMHBO

Field name Name of constant Value of constant

MVSID MBSIDV ’MHBO’

MBVER MBVER1 1

MBOPT MBPRRF

Notes:

1. The value Null string or blanks denotes a blank character.

RPG declaration (copy file MQMHBOG)

 D* MQMHBO Structure

 D*

 D*

 D* Structure identifier

 D MBSID 1 4 INZ(’MHBO’)

 D*

 D* Structure version number

 D MBVER 5 8I 0 INZ(1)

 D*

 D* Options that control the action of MQMHBUF

 D MBOPT 9 12I 0 INZ(1)

MQOD – Object descriptor

The following table summarizes the fields in the structure.

 Field Description Topic

ODSID Structure identifier ODSID

Chapter 1. Data type descriptions 185

Field Description Topic

ODVER Structure version number ODVER

ODOT Object type ODOT

ODON Object name ODON

ODMN Object queue manager name ODMN

ODDN Dynamic queue name ODDN

ODAU Alternate user identifier ODAU

Note: The remaining fields are ignored if ODVER is less than ODVER2.

ODREC Number of object records present ODREC

ODKDC Number of local queues opened successfully ODKDC

ODUDC Number of remote queues opened successfully ODUDC

ODIDC Number of queues that failed to open ODIDC

ODORO Offset of first object record from start of MQOD ODORO

ODRRO Offset of first response record from start of

MQOD

ODRRO

ODORP Address of first object record ODORP

ODRRP Address of first response record ODRRP

Note: The remaining fields are ignored if ODVER is less than ODVER3.

ODASI Alternate security identifier ODASI

ODRQN Resolved queue name ODRQN

ODRMN Resolved queue manager name ODRMN

Note: The remaining fields are ignored if ODVER is less than ODVER4.

ODOS Long object name ODOS

ODRO Resolved long object name ODRO

ODSS Selection name ODSS

Overview

Purpose: The MQOD structure is used to specify an object by name. The following

types of object are valid:

v Queue or distribution list

v Namelist

v Process definition

v Queue manager

v Topic

The structure is an input/output parameter on the MQOPEN and MQPUT1 calls.

Version: The current version of MQOD is ODVER4. Fields that exist only in the

more-recent versions of the structure are identified as such in the descriptions that

follow.

The COPY file provided contains the most recent version of MQOD that is

supported by the environment, but with the initial value of the ODVER field set to

ODVER1. To use fields that are not present in the version-1 structure, the

application must set the ODVER field to the version number of the version required.

186 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

To open a distribution list, ODVER must be ODVER2 or greater.

Character set and encoding: Data in MQOD must be in the character set and

encoding of the local queue manager; these are given by the CodedCharSetId queue

manager attribute and ENNAT, respectively. However, if the application is running

as an MQ client, the structure must be in the character set and encoding of the

client.

Fields

The MQOD structure contains the following fields; the fields are described in

alphabetic order:

ODASI (40-byte bit string)

Alternate security identifier.

This is a security identifier that is passed with the ODAU to the authorization service

to allow appropriate authorization checks to be performed. ODASI is used only if:

v OOALTU is specified on the MQOPEN call, or

v PMALTU is specified on the MQPUT1 call,

and the ODAU field is not entirely blank up to the first null character or the end of

the field.

The ODASI field has the following structure:

v The first byte is a binary integer containing the length of the significant data that

follows; the value excludes the length byte itself. If no security identifier is

present, the length is zero.

v The second byte indicates the type of security identifier that is present; the

following values are possible:

SITWNT

Windows security identifier.

SITNON

No security identifier.
v The third and subsequent bytes up to the length defined by the first byte contain

the security identifier itself.

v Remaining bytes in the field are set to binary zero.

The following special value may be used:

SINONE

No security identifier specified.

 The value is binary zero for the length of the field.

This is an input field. The length of this field is given by LNSCID. The initial value

of this field is SINONE. This field is ignored if ODVER is less than ODVER3.

ODAU (12-byte character string)

Alternate user identifier.

If OOALTU is specified for the MQOPEN call, or PMALTU for the MQPUT1 call,

this field contains an alternate user identifier that is to be used to check the

Chapter 1. Data type descriptions 187

authorization for the open, in place of the user identifier that the application is

currently running under. Some checks, however, are still carried out with the

current user identifier (for example, context checks).

If OOALTU or PMALTU is specified and this field is entirely blank up to the first

null character or the end of the field, the open can succeed only if no user

authorization is needed to open this object with the options specified.

If neither OOALTU nor PMALTU is specified, this field is ignored.

This is an input field. The length of this field is given by LNUID. The initial value

of this field is 12 blank characters.

ODDN (48-byte character string)

Dynamic queue name.

This is the name of a dynamic queue that is to be created by the MQOPEN call.

This is of relevance only when ODON specifies the name of a model queue; in all

other cases ODDN is ignored.

The characters that are valid in the name are the same as those for ODON (see

above), except that an asterisk is also valid (see below). A name that is completely

blank (or one in which only blanks appear before the first null character) is not

valid if ODON is the name of a model queue.

If the last nonblank character in the name is an asterisk (*), the queue manager

replaces the asterisk with a string of characters that guarantees that the name

generated for the queue is unique at the local queue manager. To allow a sufficient

number of characters for this, the asterisk is valid only in positions 1 through 33.

There must be no characters other than blanks or a null character following the

asterisk.

It is valid for the asterisk to appear in the first character position, in which case the

name consists solely of the characters generated by the queue manager.

This is an input field. The length of this field is given by LNQN. The initial value

of this field is ’AMQ.*’, padded with blanks.

ODIDC (10-digit signed integer)

Number of queues that failed to open.

This is the number of queues in the distribution list that failed to open successfully.

If present, this field is also set when opening a single queue which is not in a

distribution list.

Note: If present, this field is set only if the CMPCOD parameter on the MQOPEN or

MQPUT1 call is CCOK or CCWARN; it is not set if the CMPCOD parameter is

CCFAIL.

This is an output field. The initial value of this field is 0. This field is ignored if

ODVER is less than ODVER2.

ODKDC (10-digit signed integer)

Number of local queues opened successfully.

188 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

This is the number of queues in the distribution list that resolve to local queues

and that were opened successfully. The count does not include queues that resolve

to remote queues (even though a local transmission queue is used initially to store

the message). If present, this field is also set when opening a single queue which is

not in a distribution list.

This is an output field. The initial value of this field is 0. This field is ignored if

ODVER is less than ODVER2.

ODMN (48-byte character string)

Object queue manager name.

This is the name of the queue manager on which the ODON object is defined. The

characters that are valid in the name are the same as those for ODON (see above). A

name that is entirely blank up to the first null character or the end of the field

denotes the queue manager to which the application is connected (the local queue

manager).

The following points apply to the types of object indicated:

v If ODOT is OTTOP, OTNLST, OTPRO, or OTQM, ODMN must be blank or the name

of the local queue manager.

v If ODON is the name of a model queue, the queue manager creates a dynamic

queue with the attributes of the model queue, and returns in the ODMN field the

name of the queue manager on which the queue is created; this is the name of

the local queue manager. A model queue can be specified only on the MQOPEN

call; a model queue is not valid on the MQPUT1 call.

v If ODON is the name of a cluster queue, and ODMN is blank, the actual destination

of messages sent using the queue handle returned by the MQOPEN call is

chosen by the queue manager (or cluster workload exit, if one is installed) as

follows:

– If OOBNDO is specified, the queue manager selects a particular instance of

the cluster queue during the processing of the MQOPEN call, and all

messages put using this queue handle are sent to that instance.

– If OOBNDN is specified, the queue manager may choose a different instance

of the destination queue (residing on a different queue manager in the

cluster) for each successive MQPUT call that uses this queue handle.
If the application needs to send a message to a specific instance of a cluster

queue (that is, a queue instance that resides on a particular queue manager in

the cluster), the application should specify the name of that queue manager in

the ODMN field. This forces the local queue manager to send the message to the

specified destination queue manager.

v If ODON is the name of a shared queue that is owned by a remote queue-sharing

group (that is, a queue-sharing group to which the local queue manger does not

belong), ODMN should be the name of the queue-sharing group. The name of a

queue manager that belongs to that group is also valid, but this is not

recommended as it may cause the message to be delayed if that particular queue

manager is not available when the message arrives at the queue-sharing group.

v If the object being opened is a distribution list (that is, ODREC is greater than

zero), ODMN must be blank or the null string. If this condition is not satisfied, the

call fails with reason code RC2153.

Chapter 1. Data type descriptions 189

This is an input/output field for the MQOPEN call when ODON is the name of a

model queue, and an input-only field in all other cases. The length of this field is

given by LNQMN. The initial value of this field is 48 blank characters.

ODON (48-byte character string)

Object name.

This is the local name of the object as defined on the queue manager identified by

ODMN. The name can contain the following characters:

v Uppercase alphabetic characters (A through Z)

v Lowercase alphabetic characters (a through z)

v Numeric digits (0 through 9)

v Period (.), forward slash (/), underscore (_), percent (%)

The name must not contain leading or embedded blanks, but may contain trailing

blanks. A null character can be used to indicate the end of significant data in the

name; the null and any characters following it are treated as blanks. The following

restrictions apply in the environments indicated:

v On systems that use EBCDIC Katakana, lowercase characters cannot be used.

v On i5/OS, names containing lowercase characters, forward slash, or percent,

must be enclosed in quotation marks when specified on commands. These

quotation marks must not be specified for names that occur as fields in

structures or as parameters on calls.

The following points apply to the types of object indicated:

v If ODON is the name of a model queue, the queue manager creates a dynamic

queue with the attributes of the model queue, and returns in the ODON field the

name of the queue created. A model queue can be specified only on the

MQOPEN call; a model queue is not valid on the MQPUT1 call.

v If the object being opened is a distribution list (that is, ODREC is present and

greater than zero), ODON must be blank or the null string. If this condition is not

satisfied, the call fails with reason code RC2152.

v If ODOT is OTQM, special rules apply; in this case the name must be entirely

blank up to the first null character or the end of the field.

v If ODON is the name of an alias queue with TARGTYPE(TOPIC), a security

check is first made on the named alias queue, as is normal for the use of alias

queues. If this security check is successful, this MQOPEN call will continue and

behaves like an MQOPEN of an OTTOP, including making a security check

against the administrative topic object.

This is an input/output field for the MQOPEN call when ODON is the name of a

model queue, and an input-only field in all other cases. The length of this field is

given by LNQN. The initial value of this field is 48 blank characters.

ODORO (10-digit signed integer)

Offset of first object record from start of MQOD.

This is the offset in bytes of the first MQOR object record from the start of the

MQOD structure. The offset can be positive or negative. ODORO is used only when a

distribution list is being opened. The field is ignored if ODREC is zero.

190 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

When a distribution list is being opened, an array of one or more MQOR object

records must be provided in order to specify the names of the destination queues

in the distribution list. This can be done in one of two ways:

v By using the offset field ODORO

In this case, the application should declare its own structure containing an

MQOD followed by the array of MQOR records (with as many array elements

as are needed), and set ODORO to the offset of the first element in the array from

the start of the MQOD. Care must be taken to ensure that this offset is correct.

v By using the pointer field ODORP

In this case, the application can declare the array of MQOR structures separately

from the MQOD structure, and set ODORP to the address of the array.

Whichever technique is chosen, one of ODORO and ODORP must be used; the call fails

with reason code RC2155 if both are zero, or both are nonzero.

This is an input field. The initial value of this field is 0. This field is ignored if

ODVER is less than ODVER2.

ODORP (pointer)

Address of first object record.

This is the address of the first MQOR object record. ODORP is used only when a

distribution list is being opened. The field is ignored if ODREC is zero.

Either ODORP or ODORO can be used to specify the object records, but not both; see

the description of the ODORO field above for details. If ODORP is not used, it must be

set to the null pointer or null bytes.

This is an input field. The initial value of this field is the null pointer. This field is

ignored if ODVER is less than ODVER2.

ODOS (MQCHARV)

This specifies the long object name to be used. This field is only referenced for

certain values of ODOT. See the description of ODOT for details of which values

indicate that this field is used.

If ODOS is specified incorrectly, as per the description of how to use the MQCHARV

structure, then the call fails with reason code RC2441.

This is an input field. The initial values of the fields in this structure are the same

as those in the MQCHARV structure.

ODOT (10-digit signed integer)

Object type.

Type of object being named in ODON. Possible values are:

OTQ Queue. The name of the object is found in ODON.

OTNLST

Namelist. The name of the object is found in ODON.

OTPRO

Process definition. The name of the object is found in ODON.

Chapter 1. Data type descriptions 191

OTQM

Queue manager. The name of the object is found in ODON.

OTTOP

Topic. The full topic name can be built from two different fields: ODON and

ODOS.

 For details of how those two fields are used, see “Using topic strings” on

page 263.

If the object identified by the ODON field cannot be found, the call will fail

with reason code RC2085 even if there is a string specified in ODOS.

This is always an input field. The initial value of this field is OTQ.

ODREC (10-digit signed integer)

Number of object records present.

This is the number of MQOR object records that have been provided by the

application. If this number is greater than zero, it indicates that a distribution list is

being opened, with ODREC being the number of destination queues in the list. It is

valid for a distribution list to contain only one destination.

The value of ODREC must not be less than zero, and if it is greater than zero ODOT

must be OTQ; the call fails with reason code RC2154 if these conditions are not

satisfied.

This is an input field. The initial value of this field is 0. This field is ignored if

ODVER is less than ODVER2.

ODRMN (48-byte character string)

Resolved queue manager name.

This is the name of the destination queue manager after name resolution has been

performed by the local queue manager. The name returned is the name of the

queue manager that owns the queue identified by ODRQN. ODRMN can be the name of

the local queue manager.

If ODRQN is a shared queue that is owned by the queue-sharing group to which the

local queue manager belongs, ODRMN is the name of the queue-sharing group. If the

queue is owned by some other queue-sharing group, ODRQN can be the name of the

queue-sharing group or the name of a queue manager that is a member of the

queue-sharing group (the nature of the value returned is determined by the queue

definitions that exist at the local queue manager).

A nonblank value is returned only if the object is a single queue opened for

browse, input, or output (or any combination). If the object opened is any of the

following, ODRMN is set to blanks:

v Not a queue

v A queue, but not opened for browse, input, or output

v A cluster queue with OOBNDN specified (or with OOBNDQ in effect when the

DefBind queue attribute has the value BNDNOT)

v A distribution list

192 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

This is an output field. The length of this field is given by LNQN. The initial value

of this field is the null string in C, and 48 blank characters in other programming

languages. This field is ignored if ODVER is less than ODVER3.

ODRO (MQCHARV)

This is the long object name after the queue manager resolves the name provided

in ODON. This field is only returned for certain types of objects, topics and queue

aliases which reference a topic object.

If the long object name is provided in ODOS and nothing is provided in ODON, then

the value returned in this field is the same as provided in ODOS.

If this field is omitted (that is ODRO.VSBufSize is zero) then the ODRO will not be

returned, but the length will be returned in ODRO.VSLength. If the length is

shorter than the full ODRO then it will be truncated and will return as many of the

rightmost characters as can fit in the provided length.

If ODRO is specified incorrectly, as per the description of how to use the MQCHARV

structure then the call will fail with reason code RC2520.

ODRQN (48-byte character string)

Resolved queue name.

This is the name of the destination queue after name resolution has been

performed by the local queue manager. The name returned is the name of a queue

that exists on the queue manager identified by ODRMN.

A nonblank value is returned only if the object is a single queue opened for

browse, input, or output (or any combination). If the object opened is any of the

following, ODRQN is set to blanks:

v Not a queue

v A queue, but not opened for browse, input, or output

v A distribution list

v An alias queue that references a topic object (refer to “ODRO (MQCHARV)”

instead)

This is an output field. The length of this field is given by LNQN. The initial value

of this field is the null string in C, and 48 blank characters in other programming

languages. This field is ignored if ODVER is less than ODVER3.

ODRRO (10-digit signed integer)

Offset of first response record from start of MQOD.

This is the offset in bytes of the first MQRR response record from the start of the

MQOD structure. The offset can be positive or negative. ODRRO is used only when a

distribution list is being opened. The field is ignored if ODREC is zero.

When a distribution list is being opened, an array of one or more MQRR response

records can be provided in order to identify the queues that failed to open (RRCC

field in MQRR), and the reason for each failure (RRREA field in MQRR). The data is

returned in the array of response records in the same order as the queue names

occur in the array of object records. The queue manager sets the response records

only when the outcome of the call is mixed (that is, some queues were opened

Chapter 1. Data type descriptions 193

successfully while others failed, or all failed but for differing reasons); reason code

RC2136 from the call indicates this case. If the same reason code applies to all

queues, that reason is returned in the REASON parameter of the MQOPEN or

MQPUT1 call, and the response records are not set. Response records are optional,

but if they are supplied there must be ODREC of them.

The response records can be provided in the same way as the object records, either

by specifying an offset in ODRRO, or by specifying an address in ODRRP; see the

description of ODORO above for details of how to do this. However, no more than

one of ODRRO and ODRRP can be used; the call fails with reason code RC2156 if both

are nonzero.

For the MQPUT1 call, these response records are used to return information about

errors that occur when the message is sent to the queues in the distribution list, as

well as errors that occur when the queues are opened. The completion code and

reason code from the put operation for a queue replace those from the open

operation for that queue only if the completion code from the latter was CCOK or

CCWARN.

This is an input field. The initial value of this field is 0. This field is ignored if

ODVER is less than ODVER2.

ODRRP (pointer)

Address of first response record.

This is the address of the first MQRR response record. ODRRP is used only when a

distribution list is being opened. The field is ignored if ODREC is zero.

Either ODRRP or ODRRO can be used to specify the response records, but not both; see

the description of the ODRRO field above for details. If ODRRP is not used, it must be

set to the null pointer or null bytes.

This is an input field. The initial value of this field is the null pointer. This field is

ignored if ODVER is less than ODVER2.

ODSID (4-byte character string)

Structure identifier.

The value must be:

ODSIDV

Identifier for object descriptor structure.

This is always an input field. The initial value of this field is ODSIDV.

ODSS (MQCHARV)

The string used to provide the selection criteria used when retrieving messages off

a queue.

ODSS must not be provided in the following cases:

v If ODOT is not MQOT_Q

v If the queue being opened is not being opened using one of the

MQOO_INPUT_* options

194 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

If ODSS is provided in these cases, the call fails with reason code

MQRC_SELECTION_NOT_VALID_FOR_TYPE.

ODUDC (10-digit signed integer)

Number of remote queues opened successfully

This is the number of queues in the distribution list that resolve to remote queues

and that were opened successfully. If present, this field is also set when opening a

single queue which is not in a distribution list.

This is an output field. The initial value of this field is 0. This field is ignored if

ODVER is less than ODVER2.

ODVER (10-digit signed integer)

Structure version number.

The value must be one of the following:

ODVER1

Version-1 object descriptor structure.

ODVER2

Version-2 object descriptor structure.

ODVER3

Version-3 object descriptor structure.

ODVER4

Version-4 object descriptor structure.

Fields that exist only in the more-recent versions of the structure are identified as

such in the descriptions of the fields. The following constant specifies the version

number of the current version:

ODVERC

Current version of object descriptor structure.

This is always an input field. The initial value of this field is ODVER1.

Initial values and RPG declaration

 Table 51. Initial values of fields in MQOD

Field name Name of constant Value of constant

ODSID ODSIDV ’OD��’

ODVER ODVER1 1

ODOT OTQ 1

ODON None Blanks

ODMN None Blanks

ODDN None ’AMQ.*’

ODAU None Blanks

ODREC None 0

ODKDC None 0

ODUDC None 0

Chapter 1. Data type descriptions 195

Table 51. Initial values of fields in MQOD (continued)

Field name Name of constant Value of constant

ODIDC None 0

ODORO None 0

ODRRO None 0

ODORP None Null pointer or null bytes

ODRRP None Null pointer or null bytes

ODASI SINONE Nulls

ODRQN None Blanks

ODRMN None Blanks

ODOS As defined for MQCHARV As defined for MQCHARV

Notes:

1. The symbol ‘�’ represents a single blank character.

RPG declaration (copy file CMQODG)

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..

 D*

 D* MQOD Structure

 D*

 D* Structure identifier

 D ODSID 1 4 INZ(’OD ’)

 D* Structure version number

 D ODVER 5 8I 0 INZ(1)

 D* Object type

 D ODOT 9 12I 0 INZ(1)

 D* Object name

 D ODON 13 60 INZ

 D* Object queue manager name

 D ODMN 61 108 INZ

 D* Dynamic queue name

 D ODDN 109 156 INZ(’AMQ.*’)

 D* Alternate user identifier

 D ODAU 157 168 INZ

 D* Number of object recordspresent

 D ODREC 169 172I 0 INZ(0)

 D* Number of local queues openedsuccessfully

 D ODKDC 173 176I 0 INZ(0)

 D* Number of remote queues openedsuccessfully

 D ODUDC 177 180I 0 INZ(0)

 D* Number of queues that failed toopen

 D ODIDC 181 184I 0 INZ(0)

 D* Offset of first object recordfrom start of MQOD

 D ODORO 185 188I 0 INZ(0)

 D* Offset of first response recordfrom start of MQOD

 D ODRRO 189 192I 0 INZ(0)

 D* Address of first object record

 D ODORP 193 208* INZ(*NULL)

 D* Address of first responserecord

 D ODRRP 209 224* INZ(*NULL)

 D* Alternate security identifier

 D ODASI 225 264 INZ(X’0000000000000000-

 D 0000000000000000000000-

 D 0000000000000000000000-

 D 00000000000000000000’)

 D* Resolved queue name

 D ODRQN 265 312 INZ

 D* Resolved queue manager name

 D ODRMN 313 360 INZ

196 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

D* Reserved

 D ODRE1 361 368 INZ

 D* Object Long name

 D ODCHRP 369 384* INZ(*NULL)

 D ODCHRO 385 388I 0 INZ(0)

 D ODCHRS 389 392I 0 INZ(0)

 D ODCHRL 393 396I 0 INZ(0)

 D ODCHRC 397 400I 0 INZ(-3)

 D* Message Selector

 D ODCHRPS 401 416* INZ(*NULL)

 D ODCHROS 417 420I 0 INZ(0)

 D ODCHRSS 421 424I 0 INZ(0)

 D ODCHRLS 425 428I 0 INZ(0)

 D ODCHRCS 429 432I 0 INZ(-3)

 D* Resolved Object String

 D ODCHRPR 433 448* INZ(*NULL)

 D ODCHROR 449 452I 0 INZ(0)

 D ODCHRSR 453 456I 0 INZ(0)

 D ODCHRLR 457 460I 0 INZ(0)

 D ODCHRCR 461 464I 0 INZ(-3)

 D* Resolved Object Type

 D ODCHROT 465 468I 0 INZ(0)

MQOR – Object record

The following table summarizes the fields in the structure.

 Table 52. Fields in MQOR

Field Description Topic

ORON Object name ORON

ORMN Object queue manager name ORMN

Overview

Purpose: The MQOR structure is used to specify the queue name and queue

manager name of a single destination queue. MQOR is an input structure for the

MQOPEN and MQPUT1 calls.

Character set and encoding: Data in MQOR must be in the character set and

encoding of the local queue manager; these are given by the CodedCharSetId queue

manager attribute and ENNAT, respectively. However, if the application is running

as an MQ client, the structure must be in the character set and encoding of the

client.

Usage: By providing an array of these structures on the MQOPEN call, it is

possible to open a list of queues; this list is called a distribution list. Each message

put using the queue handle returned by that MQOPEN call is placed on each of

the queues in the list, provided that the queue was opened successfully.

Fields

The MQOR structure contains the following fields; the fields are described in

alphabetic order:

Chapter 1. Data type descriptions 197

ORMN (48-byte character string)

Object queue manager name.

This is the same as the ODMN field in the MQOD structure (see MQOD for details).

This is always an input field. The initial value of this field is 48 blank characters.

ORON (48-byte character string)

Object name.

This is the same as the ODON field in the MQOD structure (see MQOD for details),

except that:

v It must be the name of a queue.

v It must not be the name of a model queue.

This is always an input field. The initial value of this field is 48 blank characters.

Initial values and RPG declaration

 Table 53. Initial values of fields in MQOR

Field name Name of constant Value of constant

ORON None Blanks

ORMN None Blanks

RPG declaration (copy file CMQORG)

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..

 D*

 D* MQOR Structure

 D*

 D* Object name

 D ORON 1 48 INZ

 D* Object queue manager name

 D ORMN 49 96 INZ

MQPD – Property descriptor

The following table summarizes the fields in the structure.

 Table 54. Fields in MQPD

Field Description Topic

StrucId Structure identifier StrucId

Version Structure version number Version

Options Options Options

Support Required support for message property Support

Context Message context to which property belongs Context

CopyOptions Copy options to which property belongs CopyOptions

Overview for MQPD

Availability: AIX, HP-UX, i5/OS, Solaris, Linux, Windows, z/OS and WebSphere

MQ clients.

198 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Purpose: The MQPD is used to define the attributes of a property. The structure is

an input/output parameter on the MQSETMP call and an output parameter on the

MQINQMP call.

Character set and encoding: Data in MQPD must be in the character set of the

application and encoding of the application (MQENC_NATIVE).

Fields for MQPD

The MQPD structure contains the following fields; the fields are described in

alphabetic order:

PDCT (10-digit signed integer)

This describes what message context the property belongs to.

When a queue manager receives a message containing a WebSphere MQ-defined

property that the queue manager recognizes as being incorrect. the queue manager

corrects the value of the Context field.

The following option can be specified:

PDUSC

The property is associated with the user context.

 No special authorization is required to be able to set a property associated

with the user context using the MQSETMP call.

On a WebSphere MQ Version 7.0 queue manager, a property associated

with the user context is saved as described for

MQOO_SAVE_ALL_CONTEXT. An MQPUT call with

MQPMO_PASS_ALL_CONTEXT specified, causes the property to be

copied from the saved context into the new message.

If the option previously described is not required, the following option can be

used:

PDNOC

The property is not associated with a message context.

An unrecognized value is rejected with a PDREA code of MQRC_PD_ERROR

This is an input/output field to the MQSETMP call and an output field from the

MQINQMP call. The initial value of this field is PDNOC.

PDCPYOPT (10-digit signed integer)

This describes which type of messages the property should be copied into. This is

an output only field for recognized WebSphere MQ-defined properties; WebSphere

MQ sets the appropriate value.

When a queue manager receives a message containing a WebSphere MQ-defined

property that the queue manager recognizes as being incorrect. the queue manager

corrects the value of the CopyOptions field.

You can specify one or more of these options, and if you need more than one, the

values can be:

v Added together (do not add the same constant more than once), or

Chapter 1. Data type descriptions 199

v Combined using the bitwise OR operation (if the programming language

supports bit operations).

COPFOR

This property iscopied into a message being forwarded.

COPPUB

This property is copied into the message received by a subscriber when a

message is being published.

COPREP

This property is copied into a reply message.

COPRP

This property is copied into a report message.

COPALL

This property is copied into all types of subsequent messages.

COPNON

This property is not copied into a message.

Default option: The following option can be specified to supply the default set of

copy options:

COPDEF

This property is copied into a message being forwarded, into a report

message, or into a message received by a subscriber when a message is

being published.

 This is equivalent to specifying the combination of options

MQCOPY_FORWARD, plus MQCOPY_REPORT, plus MQCOPY_PUBLISH.

If none of the options described above is required, use the following option:

COPNON

Use this value to indicate that no other copy options have been specified;

programmatically no relationship exists between this property and

subsequent messages. This is always returned for message descriptor

properties.

This is an input/output field to the MQSETMP call and an output field from the

MQINQMP call. The initial value of this field is COPDEF.

PDOPT (10-digit signed integer)

The value must be:

PDNONE

No options specified

This is always an input field. The initial value of this field is PDNONE.

PDSID (10-digit signed integer)

This is the structure identifier; the value must be:

PSIDV

Identifier for property descriptor structure.

This is always an input field. The initial value of this field is PSIDV.

200 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

PDSUP (10-digit signed integer)

This field describes what level of support for the message property is required of

the queue manager, in order for the message containing this property to be put to

a queue. This applies only to WebSphere MQ-defined properties; support for all

other properties is optional.

The field is automatically set to the correct value when the WebSphere MQ-defined

property is known by the queue manager. If the property is not recognized,

PDSUPO is assigned. When a queue manager receives a message containing a

WebSphere MQ-defined property that the queue manager recognizes as being

incorrect. the queue manager corrects the value of the Support field.

When setting a WebSphere MQ-defined property using the MQSETMP call on a

message handle where the MQCMHO_NO_VALIDATION option was set, Support

becomes an input field. This allows an application to put a WebSphere MQ-defined

property, with the correct value, where the property is unsupported by the

connected queue manager, but where the message is intended to be processed on

another queue manager.

The value PDSUPO is always assigned to properties that are not WebSphere

MQ-defined properties.

If a WebSphere MQ Version 7.0 queue manager, that supports message properties,

receives a property that contains an unrecognized Support value, the property is

treated as if:

v PDSUPR was specified if any of the unrecognized values are contained in the

PDRUM.

v PDSUPL was specified if any of the unrecognized values are contained in the

PDAUXM

v PDSUPO was specified otherwise.

One of the following values is returned by the MQINQMP call, or one of the

values can be specified, when using the MQSETMP call on a message handle

where the MQCMHO_NO_VALIDATION option is set:

PDSUPO

The property is accepted by a queue manager even if it is not supported.

The property can be discarded in order for the message to flow to a queue

manager that does not support message properties. This value is also

assigned to properties that are not WebSphere MQ-defined.

PDSUPR

Support for the property is required. The message is rejected by a queue

manager that does not support the WebSphere MQ-defined property. The

MQPUT or MQPUT1 call fails with completion code MQCC_FAILED and

reason code MQRC_UNSUPPORTED_PROPERTY.

PDSUPL

The message is rejected by a queue manager that does not support the

WebSphere MQ-defined property if the message is destined for a local

queue. The MQPUT or MQPUT1 call fails with completion code

MQCC_FAILED and reason code MQRC_UNSUPPORTED_PROPERTY.

 The MQPUT or MQPUT1 call succeeds if the message is destined for a

remote queue manager.

Chapter 1. Data type descriptions 201

This is an output field on the MQINQMP call and an input field on the MQSETMP

call if the message handle was created with the MQCMHO_NO_VALIDATION

option set. The initial value of this field is PDSUPO.

PDVER (10-digit signed integer)

This is the structure version number; the value must be:

PDVER1

 Version-1 property descriptor structure.

The following constant specifies the version number of the current version:

PDVERC

 Current version of property descriptor structure.

This is always an input field. The initial value of this field is PDVER1.

Initial values and RPG declaration

 Table 55. Initial values of fields in MQPD

Field name Name of constant Value of constant

PDSID PDSIDV ’PD’

PDVER PDVER1 1

PDOPT PDNONE 0

PDSUP PDSUPO 0

PDCT PDNOC 0

PDCPYOPT COPDEF 0

RPG declaration (copy file MQPDG)

 D* MQDMHO Structure

 D*

 D*

 D* Structure identifier

 D DMSID 1 4 INZ(’DMHO’)

 D*

 D* Structure version number

 D DMVER 5 8I 0 INZ(1)

 D*

 D* Options that control the action of MQDLTMH

 D DMOPT 9 12I 0 INZ(0)

MQPMO – Put-message options

The following table summarizes the fields in the structure.

 Field Description Topic

PMSID Structure identifier PMSID

PMVER Structure version number PMVER

PMOPT Options that control the action of

MQPUT and MQPUT1

PMOPT

202 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Field Description Topic

PMTO Reserved PMTO

PMCT Object handle of input queue PMCT

PMKDC Number of messages sent

successfully to local queues

PMKDC

PMUDC Number of messages sent

successfully to remote queues

PMUDC

PMIDC Number of messages that could not

be sent

PMIDC

PMRQN Resolved name of destination queue PMRQN

PMRMN Resolved name of destination queue

manager

PMRMN

Note: The remaining fields are ignored if PMVER is less than PMVER2.

PMREC Number of put message records or

response records present

PMREC

PMPRF Flags indicating which MQPMR

fields are present

PMPRF

PMPRO Offset of first put-message record

from start of MQPMO

PMPRO

PMRRO Offset of first response record from

start of MQPMO

PMRRO

PMPRP Address of first put message record PMPRP

PMRRP Address of first response record PMRRP

Note: The remaining fields are ignored if PMVER is less than PMVER3.

PMSL Subscription Level PMSL

Overview

Purpose: The MQPMO structure allows the application to specify options that

control how messages are placed on queues or published to topics. The structure is

an input/output parameter on the MQPUT and MQPUT1 calls.

Version: The current version of MQPMO is PMVER2. Fields that exist only in the

more-recent versions of the structure are identified as such in the descriptions that

follow.

The COPY file provided contains the most recent version of MQPMO that is

supported by the environment, but with the initial value of the PMVER field set to

PMVER1. To use fields that are not present in the version-1 structure, the

application must set the PMVER field to the version number of the version required.

Character set and encoding: Data in MQPMO must be in the character set and

encoding of the local queue manager; these are given by the CodedCharSetId queue

manager attribute and ENNAT, respectively. However, if the application is running

as an MQ client, the structure must be in the character set and encoding of the

client.

Chapter 1. Data type descriptions 203

Fields

The MQPMO structure contains the following fields; the fields are described in

alphabetic order:

PMCT (10-digit signed integer)

Object handle of input queue.

If PMPASI or PMPASA is specified, this field must contain the input queue handle

from which context information to be associated with the message being put is

taken.

If neither PMPASI nor PMPASA is specified, this field is ignored.

This is an input field. The initial value of this field is 0.

PMIDC (10-digit signed integer)

Number of messages that could not be sent.

This is the number of messages that could not be sent to queues in the distribution

list. The count includes queues that failed to open, as well as queues that were

opened successfully but for which the put operation failed. This field is also set

when putting a message to a single queue which is not in a distribution list.

Note: This field is set only if the CMPCOD parameter on the MQPUT or MQPUT1 call

is CCOK or CCWARN; it is not set if the CMPCOD parameter is CCFAIL.

This is an output field. The initial value of this field is 0. This field is not set if

PMVER is less than PMVER2.

PMKDC (10-digit signed integer)

Number of messages sent successfully to local queues.

This is the number of messages that the current MQPUT or MQPUT1 call has sent

successfully to queues in the distribution list that are local queues. The count does

not include messages sent to queues that resolve to remote queues (even though a

local transmission queue is used initially to store the message). This field is also set

when putting a message to a single queue which is not in a distribution list.

This is an output field. The initial value of this field is 0. This field is not set if

PMVER is less than PMVER2.

PMOPT (10-digit signed integer)

Options that control the action of MQPUT and MQPUT1.

Any or none of the following can be specified. If more than one is required the

values can be added together (do not add the same constant more than once).

Combinations that are not valid are noted; any other combinations are valid.

Publishing options: The following options control the way messages are published

to a topic.

MQPMO_SUPPRESS_REPLYTO

204 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Any information filled into the MDRQ and MDRM fields of the MQMD of

this publication will not be passed on to subscribers. If this option is used

with a report option that requires a ReplyToQ, the call fails with RC2027.

PMRET

 The publication being sent is to be retained by the queue manager. This

allows a subscriber to request a copy of this publication after the time it

was published, by using the MQSUBRQ call. It also allows a publication to

be sent to applications which make their subscription after the time this

publication was made, unless they choose not to be sent it by using the

option SONEWP. If an application is sent a publication which was retained,

this will be indicated by the mq.IsRetained message property of that

publication.

Only one publication can be retained at each node of the topic tree. That

means if there already is a retained publication for this topic, published by

any other application, it is replaced with this publication. It is therefore

better to avoid having more than one publisher retaining messages on the

same topic.

When retained publications are requested by a subscriber, the subscription

used may contain a wildcard in the topic, in which case a number of

retained publications may match (at various nodes in the topic tree) and

several publications may be sent to the requesting application. See the

description of the MQSUBRQ call for more details.

If this option is used and the publication cannot be retained, the message

will not be published and the call fails with RC2479.

Syncpoint options: The following options relate to the participation of the MQPUT

or MQPUT1 call within a unit of work:

PMSYP

Put message with syncpoint control.

 The request is to operate within the normal unit-of-work protocols. The

message is not visible outside the unit of work until the unit of work is

committed. If the unit of work is backed out, the message is deleted.

If neither this option nor PMNSYP is specified, the put request is not

within a unit of work.

PMSYP must not be specified with PMNSYP.

PMNSYP

Put message without syncpoint control.

 The request is to operate outside the normal unit-of-work protocols. The

message is available immediately, and it cannot be deleted by backing out

a unit of work.

If neither this option nor PMSYP is specified, the put request is not within

a unit of work.

PMNSYP must not be specified with PMSYP.

Message-identifier and correlation-identifier options: The following options

request the queue manager to generate a new message identifier or correlation

identifier:

PMNMID

Generate a new message identifier.

Chapter 1. Data type descriptions 205

This option causes the queue manager to replace the contents of the MDMID

field in MQMD with a new message identifier. This message identifier is

sent with the message, and returned to the application on output from the

MQPUT or MQPUT1 call.

This option can also be specified when the message is being put to a

distribution list; see the description of the PRMID field in the MQPMR

structure for details.

Using this option relieves the application of the need to reset the MDMID

field to MINONE prior to each MQPUT or MQPUT1 call.

PMNCID

Generate a new correlation identifier.

 This option causes the queue manager to replace the contents of the MDCID

field in MQMD with a new correlation identifier. This correlation identifier

is sent with the message, and returned to the application on output from

the MQPUT or MQPUT1 call.

This option can also be specified when the message is being put to a

distribution list; see the description of the PRCID field in the MQPMR

structure for details.

PMNCID is useful in situations where the application requires a unique

correlation identifier.

Group and segment options: The following option relates to the processing of

messages in groups and segments of logical messages. These definitions may be of

help in understanding the option:

Physical message

This is the smallest unit of information that can be placed on or removed

from a queue; it often corresponds to the information specified or retrieved

on a single MQPUT, MQPUT1, or MQGET call. Every physical message

has its own message descriptor (MQMD). Generally, physical messages are

distinguished by differing values for the message identifier (MDMID field in

MQMD), although this is not enforced by the queue manager.

Logical message

This is a single unit of application information. In the absence of system

constraints, a logical message would be the same as a physical message.

But where logical messages are extremely large, system constraints may

make it advisable or necessary to split a logical message into two or more

physical messages, called segments.

 A logical message that has been segmented consists of two or more

physical messages that have the same nonnull group identifier (MDGID field

in MQMD), and the same message sequence number (MDSEQ field in

MQMD). The segments are distinguished by differing values for the

segment offset (MDOFF field in MQMD), which gives the offset of the data in

the physical message from the start of the data in the logical message.

Because each segment is a physical message, the segments in a logical

message usually have differing message identifiers.

A logical message that has not been segmented, but for which

segmentation has been permitted by the sending application, also has a

nonnull group identifier, although in this case there is only one physical

message with that group identifier if the logical message does not belong

to a message group. Logical messages for which segmentation has been

206 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

inhibited by the sending application have a null group identifier

(GINONE), unless the logical message belongs to a message group.

Message group

This is a set of one or more logical messages that have the same nonnull

group identifier. The logical messages in the group are distinguished by

differing values for the message sequence number, which is an integer in

the range 1 through n, where n is the number of logical messages in the

group. If one or more of the logical messages is segmented, there will be

more than n physical messages in the group.

PMLOGO

Messages in groups and segments of logical messages will be put in logical

order.

 This option tells the queue manager how the application will put messages

in groups and segments of logical messages. It can be specified only on the

MQPUT call; it is not valid on the MQPUT1 call.

If PMLOGO is specified, it indicates that the application will use successive

MQPUT calls to:

v Put the segments in each logical message in the order of increasing

segment offset, starting from 0, with no gaps.

v Put all of the segments in one logical message before putting the

segments in the next logical message.

v Put the logical messages in each message group in the order of

increasing message sequence number, starting from 1, with no gaps.

v Put all of the logical messages in one message group before putting

logical messages in the next message group.

The above order is called “logical order”.

Because the application has told the queue manager how it will put

messages in groups and segments of logical messages, the application does

not have to maintain and update the group and segment information on

each MQPUT call, as the queue manager does this. Specifically, it means

that the application does not need to set the MDGID, MDSEQ, and MDOFF fields

in MQMD, as the queue manager sets these to the appropriate values. The

application need set only the MDMFL field in MQMD, to indicate when

messages belong to groups or are segments of logical messages, and to

indicate the last message in a group or last segment of a logical message.

Once a message group or logical message has been started, subsequent

MQPUT calls must specify the appropriate MF* flags in MDMFL in MQMD.

If the application tries to put a message not in a group when there is an

unterminated message group, or put a message which is not a segment

when there is an unterminated logical message, the call fails with reason

code RC2241 or RC2242, as appropriate. However, the queue manager

retains the information about the current message group and/or current

logical message, and the application can terminate them by sending a

message (possibly with no application message data) specifying MFLMIG

and/or MFLSEG as appropriate, before reissuing the MQPUT call to put

the message that is not in the group or not a segment.

Table 56 on page 208 shows the combinations of options and flags that are

valid, and the values of the MDGID, MDSEQ, and MDOFF fields that the queue

manager uses in each case. Combinations of options and flags that are not

shown in the table are not valid. The columns in the table have the

following meanings; “Either” means “Yes” or “No”:

Chapter 1. Data type descriptions 207

LOG ORD

Indicates whether the PMLOGO option is specified on the call.

MIG Indicates whether the MFMIG or MFLMIG option is specified on

the call.

SEG Indicates whether the MFSEG or MFLSEG option is specified on

the call.

SEG OK

Indicates whether the MFSEGA option is specified on the call.

Cur grp

Indicates whether a current message group exists prior to the call.

Cur log msg

Indicates whether a current logical message exists prior to the call.

Other columns

Show the values that the queue manager uses. “Previous” denotes

the value used for the field in the previous message for the queue

handle.

MQPMO_RESOLVE_LOCAL_QUEUE

Specifies that the ResolvedQName in the MQPMO structure should

be filled in with the name of the local queue which the message

actually gets put to. The ResolvedQMgrName will similarly be

filled in with the name of the local queue manager hosting the

local queue. See MQOO_RESOLVE_LOCAL_QUEUE for what this

means. If a user is authorized for a put to a queue then they have

the required authority to specify this flag on the MQPUT call. No

special authority is needed.

 Table 56. MQPUT options relating to messages in groups and segments of logical messages

Options you specify Group and

log-msg status

prior to call

Values the queue manager uses

LOG

ORD

MIG SEG SEG

OK

Cur

grp

Cur log

msg

MDGID MDSEQ MDOFF

Yes No No No No No GINONE 1 0

Yes No No Yes No No New group id 1 0

Yes No Yes Yes or

No

No No New group id 1 0

Yes No Yes Yes or

No

No Yes Previous group id 1 Previous offset +

previous segment

length

Yes Yes Yes or

No

Yes or

No

No No New group id 1 0

Yes Yes Yes or

No

Yes or

No

Yes No Previous group id Previous sequence

number + 1

0

Yes Yes Yes Yes or

No

Yes Yes Previous group id Previous sequence

number

Previous offset +

previous segment

length

No No No No Yes or

No

Yes or

No

GINONE 1 0

208 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Table 56. MQPUT options relating to messages in groups and segments of logical messages (continued)

Options you specify Group and

log-msg status

prior to call

Values the queue manager uses

No No No Yes Yes or

No

Yes or

No

New group id if

GINONE, else

value in field

1 0

No No Yes Yes or

No

Yes or

No

Yes or

No

New group id if

GINONE, else

value in field

1 Value in field

No Yes No Yes or

No

Yes or

No

Yes or

No

New group id if

GINONE, else

value in field

Value in field 0

No Yes Yes Yes or

No

Yes or

No

Yes or

No

New group id if

GINONE, else

value in field

Value in field Value in field

Notes:

v PMLOGO is not valid on the MQPUT1 call.

v For the MDMID field, the queue manager generates a new message identifier if PMNMID or MINONE is specified,

and uses the value in the field otherwise.

v For the MDCID field, the queue manager generates a new correlation identifier if PMNCID is specified, and uses

the value in the field otherwise.

When PMLOGO is specified, the queue manager requires that all messages

in a group and segments in a logical message be put with the same value

in the MDPER field in MQMD, that is, all must be persistent, or all must be

nonpersistent. If this condition is not satisfied, the MQPUT call fails with

reason code RC2185.

The PMLOGO option affects units of work as follows:

v If the first physical message in a group or logical message is put within

a unit of work, all of the other physical messages in the group or logical

message must be put within a unit of work, if the same queue handle is

used. However, they need not be put within the same unit of work. This

allows a message group or logical message consisting of many physical

messages to be split across two or more consecutive units of work for

the queue handle.

v If the first physical message in a group or logical message is not put

within a unit of work, none of the other physical messages in the group

or logical message can be put within a unit of work, if the same queue

handle is used.

If these conditions are not satisfied, the MQPUT call fails with reason code

RC2245.

When PMLOGO is specified, the MQMD supplied on the MQPUT call

must not be less than MDVER2. If this condition is not satisfied, the call

fails with reason code RC2257.

If PMLOGO is not specified, messages in groups and segments of logical

messages can be put in any order, and it is not necessary to put complete

message groups or complete logical messages. It is the application’s

responsibility to ensure that the MDGID, MDSEQ, MDOFF, and MDMFL fields have

appropriate values.

Chapter 1. Data type descriptions 209

This is the technique that can be used to restart a message group or logical

message in the middle, after a system failure has occurred. When the

system restarts, the application can set the MDGID, MDSEQ, MDOFF, MDMFL, and

MDPER fields to the appropriate values, and then issue the MQPUT call with

PMSYP or PMNSYP set as desired, but without specifying PMLOGO. If this

call is successful, the queue manager retains the group and segment

information, and subsequent MQPUT calls using that queue handle can

specify PMLOGO as normal.

The group and segment information that the queue manager retains for the

MQPUT call is separate from the group and segment information that it

retains for the MQGET call.

For any given queue handle, the application is free to mix MQPUT calls

that specify PMLOGO with MQPUT calls that do not, but the following

points should be noted:

v If PMLOGO is not specified, each successful MQPUT call causes the

queue manager to set the group and segment information for the queue

handle to the values specified by the application; this replaces the

existing group and segment information retained by the queue manager

for the queue handle.

v If PMLOGO is not specified, the call does not fail if there is a current

message group or logical message; the call might however succeed with

an CCWARN completion code. Table 57 shows the various cases that can

arise. In these cases, if the completion code is not CCOK, the reason

code is one of the following (as appropriate):

– RC2241

– RC2242

– RC2185

– RC2245

Note: The queue manager does not check the group and segment

information for the MQPUT1 call.

 Table 57. Outcome when MQPUT or MQCLOSE call is not consistent with group and

segment information

Current call is Previous call was MQPUT

with PMLOGO

Previous call was MQPUT

without PMLOGO

MQPUT with PMLOGO CCFAIL CCFAIL

MQPUT without PMLOGO CCWARN CCOK

MQCLOSE with an

unterminated group or

logical message

CCWARN CCOK

Applications that simply want to put messages and segments in logical

order are recommended to specify PMLOGO, as this is the simplest option

to use. This option relieves the application of the need to manage the

group and segment information, because the queue manager manages that

information. However, specialized applications may need more control

than provided by the PMLOGO option, and this can be achieved by not

specifying that option. If this is done, the application must ensure that the

MDGID, MDSEQ, MDOFF, and MDMFL fields in MQMD are set correctly, prior to

each MQPUT or MQPUT1 call.

210 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

For example, an application that wants to forward physical messages that it

receives, without regard for whether those messages are in groups or

segments of logical messages, should not specify PMLOGO. There are two

reasons for this:

v If the messages are retrieved and put in order, specifying PMLOGO will

cause a new group identifier to be assigned to the messages, and this

may make it difficult or impossible for the originator of the messages to

correlate any reply or report messages that result from the message

group.

v In a complex network with multiple paths between sending and

receiving queue managers, the physical messages may arrive out of

order. By specifying neither PMLOGO, nor the corresponding GMLOGO

on the MQGET call, the forwarding application can retrieve and forward

each physical message as soon as it arrives, without having to wait for

the next one in logical order to arrive.

Applications that generate report messages for messages in groups or

segments of logical messages should also not specify PMLOGO when

putting the report message.

PMLOGO can be specified with any of the other PM* options.

Context options: The following options control the processing of message context:

PMNOC

No context is to be associated with the message.

 Both identity and origin context are set to indicate no context. This means

that the context fields in MQMD are set to:

v Blanks for character fields

v Nulls for byte fields

v Zeros for numeric fields

PMDEFC

Use default context.

 The message is to have default context information associated with it, for

both identity and origin. The queue manager sets the context fields in the

message descriptor as follows:

 Field in MQMD Value used

MDUID Determined from the environment if possible; set to blanks

otherwise.

MDACC Determined from the environment if possible; set to

ACNONE otherwise.

MDAID Set to blanks.

MDPAT Determined from the environment.

MDPAN Determined from the environment if possible; set to blanks

otherwise.

MDPD Set to date when message is put.

MDPT Set to time when message is put.

MDAOD Set to blanks.

For more information on message context, see the WebSphere MQ

Application Programming Guide.

 This is the default action if no context options are specified.

PMPASI

Pass identity context from an input queue handle.

Chapter 1. Data type descriptions 211

The message is to have context information associated with it. Identity

context is taken from the queue handle specified in the PMCT field. Origin

context information is generated by the queue manager in the same way

that it is for PMDEFC (see above for values). For more information on

message context, see the WebSphere MQ Application Programming Guide.

For the MQPUT call, the queue must have been opened with the OOPASI

option (or an option that implies it). For the MQPUT1 call, the same

authorization check is carried out as for the MQOPEN call with the

OOPASI option.

PMPASA

Pass all context from an input queue handle.

 The message is to have context information associated with it. Both

identity and origin context are taken from the queue handle specified in

the PMCT field. For more information on message context, see the

WebSphere MQ Application Programming Guide.

For the MQPUT call, the queue must have been opened with the OOPASA

option (or an option that implies it). For the MQPUT1 call, the same

authorization check is carried out as for the MQOPEN call with the

OOPASA option.

PMSETI

Set identity context from the application.

 The message is to have context information associated with it. The

application specifies the identity context in the MQMD structure. Origin

context information is generated by the queue manager in the same way

that it is for PMDEFC (see above for values). For more information on

message context, see the WebSphere MQ Application Programming Guide.

For the MQPUT call, the queue must have been opened with the OOSETI

option (or an option that implies it). For the MQPUT1 call, the same

authorization check is carried out as for the MQOPEN call with the

OOSETI option.

PMSETA

Set all context from the application.

 The message is to have context information associated with it. The

application specifies the identity and origin context in the MQMD

structure. For more information on message context, see the WebSphere

MQ Application Programming Guide.

For the MQPUT call, the queue must have been opened with the OOSETA

option. For the MQPUT1 call, the same authorization check is carried out

as for the MQOPEN call with the OOSETA option.

Only one of the PM* context options can be specified. If none of these options is

specified, PMDEFC is assumed.

Put response types. The following options control the response returned to an

MQPUT or MQPUT1 call . You can only specify only one of these options. If

neither MQPMO_ASYNC_RESPONSE nor MQPMO_SYNC_RESPONSE are

specified, MQPMO_RESPONSE_AS_Q_DEF or

MQPMO_RESPONSE_AS_TOPIC_DEF is assumed.

PMARES

212 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

The PMARES (MQPMO_ASYNC_RESPONSE) option requests that an

MQPUT or MQPUT1 operation is completed without the application

waiting for the queue manager to complete the call. Using this option can

improve messaging performance, particularly for applications using client

bindings. An application can periodically check, using the MQSTAT verb,

whether an error has occurred during any previous asynchronous

calls.With this option, only the following fields are guaranteed to be

completed in the MQMD;

v ApplIdentityData

v PutApplType

v PutApplName

v ApplOriginData

Additionally, if either or both of MQPMO_NEW_MSG_ID or

MQPMO_NEW_CORREL_ID are specified as options, the MsgId and

CorrelId returned are also completed. (MQPMO_NEW_MSG_ID can be

implicitly specified by specifying a blank MsgId field).

Only the fields specified above are completed. Other information that

would normally be returned in the MQMD or MQPMO structure is

undefined.

When requesting asynchronous put response for MQPUT or MQPUT1, a

CompCode and Reason of MQCC_OK and MQRC_NONE does not

necessarily mean that the message was successfully put to a queue. When

developing an MQI application that uses asynchronous put response and

require confirmation that messages have been put to a queue you should

check both CompCode & Reason codes from the put operations and also

use MQSTAT to query asynchronous error information.

Although the success or failure of each individual MQPUT/MQPUT1 call

may not be returned immediately, the first error that occurred under an

asynchronous call can be determined at a later juncture through a call to

MQSTAT.

If a persistent message under syncpoint fails to be delivered using

asynchronous put response, and you attempt to commit the transaction,

the commit fails and the transaction is backed out with a completion code

of MQCC_FAILED and a reason of MQRC_BACKED_OUT. The application

can make a call to MQSTAT to determine the cause of a previous MQPUT

or MQPUT1 failure

PMSRES

Specifying this value for a put option in the MQPMO structure ensures

that the MQPUT or MQPUT1 operation is always issued synchronously. If

the operation is successful, all fields in the MQMD and MQPMO are

completed. It is provided to ensure a synchronous response irrespective of

the default put response value defined on the queue or topic object.

PMRASQ

If this value is specified for an MQPUT call, the put response type used is

taken from the DEFPRESP value specified on the queue when it was

opened by the application. If a client application is connected to a queue

manager at a level earlier than Version 7.0, it behaves as if PMSRES was

specified.

Chapter 1. Data type descriptions 213

If this option is specified for an MQPUT1 call, the DEFPRESP value from

the queue definition is not used. If the MQPUT1 call is using PMSYP it

will behave as for PMARES, and if it is using PMNSYP it will behave as

for PMSRES.

PMRAST

This is a synonym for PMRASQ for use with topic objects.

Other options: The following options control authorization checking, and what

happens when the queue manager is quiescing:

PMALTU

Validate with specified user identifier.

 This indicates that the ODAU field in the OBJDSC parameter of the MQPUT1

call contains a user identifier that is to be used to validate authority to put

messages on the queue. The call can succeed only if this ODAU is authorized

to open the queue with the specified options, regardless of whether the

user identifier under which the application is running is authorized to do

so. (This does not apply to the context options specified, however, which

are always checked against the user identifier under which the application

is running.)

This option is valid only with the MQPUT1 call.

PMFIQ

Fail if queue manager is quiescing.

 This option forces the MQPUT or MQPUT1 call to fail if the queue

manager is in the quiescing state.

The call returns completion code CCFAIL with reason code RC2161.

Default option: If none of the options described above is required, the following

option can be used:

PMNONE

No options specified.

 This value can be used to indicate that no other options have been

specified; all options assume their default values. PMNONE is defined to

aid program documentation; it is not intended that this option be used

with any other, but as its value is zero, such use cannot be detected.

This is an input field. The initial value of the PMOPT field is PMNONE.

PMPRF (10-digit signed integer)

Flags indicating which MQPMR fields are present.

This field contains flags that must be set to indicate which MQPMR fields are

present in the put message records provided by the application. PMPRF is used only

when the message is being put to a distribution list. The field is ignored if PMREC is

zero, or both PMPRO and PMPRP are zero.

For fields that are present, the queue manager uses for each destination the values

from the fields in the corresponding put message record. For fields that are absent,

the queue manager uses the values from the MQMD structure.

One or more of the following flags can be specified to indicate which fields are

present in the put message records:

214 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

PFMID

Message-identifier field is present.

PFCID

Correlation-identifier field is present.

PFGID

Group-identifier field is present.

PFFB Feedback field is present.

PFACC

Accounting-token field is present.

 If this flag is specified, either PMSETI or PMSETA must be specified in the

PMOPT field; if this condition is not satisfied, the call fails with reason code

RC2158.

If no MQPMR fields are present, the following can be specified:

PFNONE

No put-message record fields are present.

 If this value is specified, either PMREC must be zero, or both PMPRO and

PMPRP must be zero.

PFNONE is defined to aid program documentation. It is not intended that

this constant be used with any other, but as its value is zero, such use

cannot be detected.

If PMPRF contains flags which are not valid, or put message records are provided

but PMPRF has the value PFNONE, the call fails with reason code RC2158.

This is an input field. The initial value of this field is PFNONE. This field is

ignored if PMVER is less than PMVER2.

PMPRO (10-digit signed integer)

Offset of first put message record from start of MQPMO.

This is the offset in bytes of the first MQPMR put message record from the start of

the MQPMO structure. The offset can be positive or negative. PMPRO is used only

when the message is being put to a distribution list. The field is ignored if PMREC is

zero.

When the message is being put to a distribution list, an array of one or more

MQPMR put message records can be provided in order to specify certain

properties of the message for each destination individually; these properties are:

v message identifier

v correlation identifier

v group identifier

v feedback value

v accounting token

It is not necessary to specify all of these properties, but whatever subset is chosen,

the fields must be specified in the correct order. See the description of the MQPMR

structure for further details.

Chapter 1. Data type descriptions 215

Usually, there should be as many put message records as there are object records

specified by MQOD when the distribution list is opened; each put message record

supplies the message properties for the queue identified by the corresponding

object record. Queues in the distribution list which fail to open must still have put

message records allocated for them at the appropriate positions in the array,

although the message properties are ignored in this case.

It is possible for the number of put message records to differ from the number of

object records. If there are fewer put message records than object records, the

message properties for the destinations which do not have put message records are

taken from the corresponding fields in the message descriptor MQMD. If there are

more put message records than object records, the excess are not used (although it

must still be possible to access them). Put message records are optional, but if they

are supplied there must be PMREC of them.

The put message records can be provided in a similar way to the object records in

MQOD, either by specifying an offset in PMPRO, or by specifying an address in

PMPRP; for details of how to do this, see the ODORO field described in “MQOD –

Object descriptor” on page 185.

No more than one of PMPRO and PMPRP can be used; the call fails with reason code

RC2159 if both are nonzero.

This is an input field. The initial value of this field is 0. This field is ignored if

PMVER is less than PMVER2.

PMPRP (pointer)

Address of first put message record.

This is the address of the first MQPMR put message record. PMPRP is used only

when the message is being put to a distribution list. The field is ignored if PMREC is

zero.

Either PMPRP or PMPRO can be used to specify the put message records, but not both;

see the description of the PMPRO field above for details. If PMPRP is not used, it must

be set to the null pointer or null bytes.

This is an input field. The initial value of this field is the null pointer. This field is

ignored if PMVER is less than PMVER2.

PMREC (10-digit signed integer)

Number of put message records or response records present.

This is the number of MQPMR put message records or MQRR response records

that have been provided by the application. This number can be greater than zero

only if the message is being put to a distribution list. Put message records and

response records are optional – the application need not provide any records, or it

can choose to provide records of only one type. However, if the application

provides records of both types, it must provide PMREC records of each type.

The value of PMREC need not be the same as the number of destinations in the

distribution list. If too many records are provided, the excess are not used; if too

few records are provided, default values are used for the message properties for

those destinations that do not have put message records (see PMPRO below).

216 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

If PMREC is less than zero, or is greater than zero but the message is not being put

to a distribution list, the call fails with reason code RC2154.

This is an input field. The initial value of this field is 0. This field is ignored if

PMVER is less than PMVER2.

PMRMN (48-byte character string)

Resolved name of destination queue manager.

This is the name of the destination queue manager after name resolution has been

performed by the local queue manager. The name returned is the name of the

queue manager that owns the queue identified by PMRQN, and can be the name of

the local queue manager.

If PMRQN is a shared queue that is owned by the queue-sharing group to which the

local queue manager belongs, PMRMN is the name of the queue-sharing group. If the

queue is owned by some other queue-sharing group, PMRQN can be the name of the

queue-sharing group or the name of a queue manager that is a member of the

queue-sharing group (the nature of the value returned is determined by the queue

definitions that exist at the local queue manager).

A nonblank value is returned only if the object is a single queue; if the object is a

distribution list or topic, the value returned is undefined.

This is an output field. The length of this field is given by LNQMN. The initial

value of this field is 48 blank characters.

PMRQN (48-byte character string)

Resolved name of destination queue.

This is the name of the destination queue after name resolution has been

performed by the local queue manager. The name returned is the name of a queue

that exists on the queue manager identified by PMRMN.

A nonblank value is returned only if the object is a single queue; if the object is a

distribution list or topic, the value returned is undefined.

This is an output field. The length of this field is given by LNQN. The initial value

of this field is 48 blank characters.

PMRRO (10-digit signed integer)

Offset of first response record from start of MQPMO.

This is the offset in bytes of the first MQRR response record from the start of the

MQPMO structure. The offset can be positive or negative. PMRRO is used only when

the message is being put to a distribution list. The field is ignored if PMREC is zero.

When the message is being put to a distribution list, an array of one or more

MQRR response records can be provided in order to identify the queues to which

the message was not sent successfully (RRCC field in MQRR), and the reason for

each failure (RRREA field in MQRR). The message might not have been sent either

because the queue failed to open, or because the put operation failed. The queue

manager sets the response records only when the outcome of the call is mixed (that

is, some messages were sent successfully while others failed, or all failed but for

Chapter 1. Data type descriptions 217

differing reasons); reason code RC2136 from the call indicates this case. If the same

reason code applies to all queues, that reason is returned in the REASON parameter

of the MQPUT or MQPUT1 call, and the response records are not set.

Usually, there should be as many response records as there are object records

specified by MQOD when the distribution list is opened; when necessary, each

response record is set to the completion code and reason code for the put to the

queue identified by the corresponding object record. Queues in the distribution list

which fail to open must still have response records allocated for them at the

appropriate positions in the array, although they are set to the completion code

and reason code resulting from the open operation, rather than the put operation.

It is possible for the number of response records to differ from the number of

object records. If there are fewer response records than object records, it may not

be possible for the application to identify all of the destinations for which the put

operation failed, or the reasons for the failures. If there are more response records

than object records, the excess are not used (although it must still be possible to

access them). Response records are optional, but if they are supplied there must be

PMREC of them.

The response records can be provided in a similar way to the object records in

MQOD, either by specifying an offset in PMRRO, or by specifying an address in

PMRRP; for details of how to do this, see the ODORO field described in “MQOD –

Object descriptor” on page 185. However, no more than one of PMRRO and PMRRP

can be used; the call fails with reason code RC2156 if both are nonzero.

For the MQPUT1 call, this field must be zero. This is because the response

information (if requested) is returned in the response records specified by the

object descriptor MQOD.

This is an input field. The initial value of this field is 0. This field is ignored if

PMVER is less than PMVER2.

PMRRP (pointer)

Address of first response record.

This is the address of the first MQRR response record. PMRRP is used only when the

message is being put to a distribution list. The field is ignored if PMREC is zero.

Either PMRRP or PMRRO can be used to specify the response records, but not both; see

the description of the PMRRO field above for details. If PMRRP is not used, it must be

set to the null pointer or null bytes.

For the MQPUT1 call, this field must be the null pointer or null bytes. This is

because the response information (if requested) is returned in the response records

specified by the object descriptor MQOD.

This is an input field. The initial value of this field is the null pointer. This field is

ignored if PMVER is less than PMVER2.

PMSID (4-byte character string)

Structure identifier.

The value must be:

218 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

PMSIDV

Identifier for put-message options structure.

This is always an input field. The initial value of this field is PMSIDV.

PMSL (MQLONG)

The level of subscription targeted by this publication

Only those subscriptions with the highest PMSL less than or equal to this value will

receive this publication. This value must be in the range zero to 9; zero is the

lowest level.

The initial value of this field is 9.

PMTO (10-digit signed integer)

Reserved.

This is a reserved field; its value is not significant. The initial value of this field is

-1.

PMUDC (10-digit signed integer)

Number of messages sent successfully to remote queues.

This is the number of messages that the current MQPUT or MQPUT1 call has sent

successfully to queues in the distribution list that resolve to remote queues.

Messages that the queue manager retains temporarily in distribution-list form

count as the number of individual destinations that those distribution lists contain.

This field is also set when putting a message to a single queue which is not in a

distribution list.

This is an output field. The initial value of this field is 0. This field is not set if

PMVER is less than PMVER2.

PMVER (10-digit signed integer)

Structure version number.

The value must be one of the following:

PMVER1

Version-1 put-message options structure.

PMVER2

Version-2 put-message options structure.

Fields that exist only in the more-recent version of the structure are identified as

such in the descriptions of the fields. The following constant specifies the version

number of the current version:

PMVERC

Current version of put-message options structure.

This is always an input field. The initial value of this field is PMVER1.

Chapter 1. Data type descriptions 219

Initial values and RPG declaration

 Table 58. Initial values of fields in MQPMO

Field name Name of constant Value of constant

PMSID PMSIDV ’PMO�’

PMVER PMVER1 1

PMOPT PMNONE 0

PMTO None -1

PMCT None 0

PMKDC None 0

PMUDC None 0

PMIDC None 0

PMRQN None Blanks

PMRMN None Blanks

PMREC None 0

PMPRF PFNONE 0

PMPRO None 0

PMRRO None 0

PMPRP None Null pointer or null bytes

PMRRP None Null pointer or null bytes

Notes:

1. The symbol ‘�’ represents a single blank character.

RPG declaration (copy file CMQPMOG)

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..

 D* MQPMO Structure

 D*

 D* Structure identifier

 D PMSID 1 4 INZ(’PMO ’)

 D* Structure version number

 D PMVER 5 8I 0 INZ(1)

 D* Options that control the action ofMQPUT and MQPUT1

 D PMOPT 9 12I 0 INZ(0)

 D* Reserved

 D PMTO 13 16I 0 INZ(-1)

 D* Object handle of input queue

 D PMCT 17 20I 0 INZ(0)

 D* Number of messages sentsuccessfully to local queues

 D PMKDC 21 24I 0 INZ(0)

 D* Number of messages sentsuccessfully to remote queues

 D PMUDC 25 28I 0 INZ(0)

 D* Number of messages that could notbe sent

 D PMIDC 29 32I 0 INZ(0)

 D* Resolved name of destinationqueue

 D PMRQN 33 80 INZ

 D* Resolved name of destination queuemanager

 D PMRMN 81 128 INZ

 D* Number of put message records orresponse records present

 D PMREC 129 132I 0 INZ(0)

 D* Flags indicating which MQPMR fieldsare present

 D PMPRF 133 136I 0 INZ(0)

 D* Offset of first put message recordfrom start of MQPMO

 D PMPRO 137 140I 0 INZ(0)

 D* Offset of first response recordfrom start of MQPMO

220 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

D PMRRO 141 144I 0 INZ(0)

 D* Address of first put messagerecord

 D PMPRP 145 160* INZ(*NULL)

 D* Address of first response record

 D PMRRP 161 176* INZ(*NULL)

MQPMR – Put-message record

The following table summarizes the fields in the structure.

 Table 59. Fields in MQPMR

Field Description Topic

PRMID Message identifier PRMID

PRCID Correlation identifier PRCID

PRGID Group identifier PRGID

PRFB Feedback or reason code PRFB

PRACC Accounting token PRACC

Overview

Purpose: The MQPMR structure is used to specify various message properties for a

single destination when a message is being put to a distribution list. MQPMR is an

input/output structure for the MQPUT and MQPUT1 calls.

Character set and encoding: Data in MQPMR must be in the character set and

encoding of the local queue manager; these are given by the CodedCharSetId queue

manager attribute and ENNAT, respectively. However, if the application is running

as an MQ client, the structure must be in the character set and encoding of the

client.

Usage: By providing an array of these structures on the MQPUT or MQPUT1 call,

it is possible to specify different values for each destination queue in a distribution

list. Some of the fields are input only, others are input/output.

Note: This structure is unusual in that it does not have a fixed layout. The fields

in this structure are optional, and the presence or absence of each field is indicated

by the flags in the PMPRF field in MQPMO. Fields that are present must occur in the

following order:

v PRMID

v PRCID

v PRGID

v PRFB

v PRACC

Fields that are absent occupy no space in the record.

Because MQPMR does not have a fixed layout, no definition of it is provided in

the COPY file. The application programmer should create a declaration containing

the fields that are required by the application, and set the flags in PMPRF to indicate

the fields that are present.

Chapter 1. Data type descriptions 221

Fields

The MQPMR structure contains the following fields; the fields are described in

alphabetic order:

PRACC (32-byte bit string)

Accounting token.

This is the accounting token to be used for the message sent to the queue whose

name was specified by the corresponding element in the array of MQOR structures

provided on the MQOPEN or MQPUT1 call. It is processed in the same way as the

MDACC field in MQMD for a put to a single queue. See the description of MDACC in

“MQMD – Message descriptor” on page 125 for information about the content of

this field.

If this field is not present, the value in MQMD is used.

This is an input field.

PRCID (24-byte bit string)

Correlation identifier.

This is the correlation identifier to be used for the message sent to the queue

whose name was specified by the corresponding element in the array of MQOR

structures provided on the MQOPEN or MQPUT1 call. It is processed in the same

way as the MDCID field in MQMD for a put to a single queue.

If this field is not present in the MQPMR record, or there are fewer MQPMR

records than destinations, the value in MQMD is used for those destinations that

do not have an MQPMR record containing a PRCID field.

If PMNCID is specified, a single new correlation identifier is generated and used

for all of the destinations in the distribution list, regardless of whether they have

MQPMR records. This is different from the way that PMNMID is processed (see

PRMID field).

This is an input/output field.

PRFB (10-digit signed integer)

Feedback or reason code.

This is the feedback code to be used for the message sent to the queue whose

name was specified by the corresponding element in the array of MQOR structures

provided on the MQOPEN or MQPUT1 call. It is processed in the same way as the

MDFB field in MQMD for a put to a single queue.

If this field is not present, the value in MQMD is used.

This is an input field.

PRGID (24-byte bit string)

Group identifier.

222 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

This is the group identifier to be used for the message sent to the queue whose

name was specified by the corresponding element in the array of MQOR structures

provided on the MQOPEN or MQPUT1 call. It is processed in the same way as the

MDGID field in MQMD for a put to a single queue.

If this field is not present in the MQPMR record, or there are fewer MQPMR

records than destinations, the value in MQMD is used for those destinations that

do not have an MQPMR record containing a PRGID field. The value is processed as

documented in Table 56 on page 208, but with the following differences:

v In those cases where a new group identifier would be used, the queue manager

generates a different group identifier for each destination (that is, no two

destinations have the same group identifier).

v In those cases where the value in the field would be used, the call fails with

reason code RC2258.

This is an input/output field.

PRMID (24-byte bit string)

Message identifier.

This is the message identifier to be used for the message sent to the queue whose

name was specified by the corresponding element in the array of MQOR structures

provided on the MQOPEN or MQPUT1 call. It is processed in the same way as the

MDMID field in MQMD for a put to a single queue.

If this field is not present in the MQPMR record, or there are fewer MQPMR

records than destinations, the value in MQMD is used for those destinations that

do not have an MQPMR record containing a PRMID field. If that value is MINONE,

a new message identifier is generated for each of those destinations (that is, no two

of those destinations have the same message identifier).

If PMNMID is specified, new message identifiers are generated for all of the

destinations in the distribution list, regardless of whether they have MQPMR

records. This is different from the way that PMNCID is processed (see PRCID field).

This is an input/output field.

Initial values and RPG declaration

There are no initial values defined for this structure, as no structure declaration is

provided. The sample declaration below shows how the structure should be

declared by the application programmer if all of the fields are required.

RPG declaration

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..

 D* MQPMR Structure

 D*

 D* Message identifier

 D PRMID 1 24

 D* Correlation identifier

 D PRCID 25 48

 D* Group identifier

 D PRGID 49 72

Chapter 1. Data type descriptions 223

D* Feedback or reason code

 D PRFB 73 76I 0

 D* Accounting token

 D PRACC 77 108

MQRFH – Rules and formatting header

Overview

Purpose: The MQRFH structure defines the layout of the rules and formatting

header. This header can be used to send string data in the form of name/value

pairs.

Format name: FMRFH.

Character set and encoding: The fields in the MQRFH structure (including RFNVS)

are in the character set and encoding given by the MDCSI and MDENC fields in the

header structure that precedes the MQRFH, or by those fields in the MQMD

structure if the MQRFH is at the start of the application message data.

The character set must be one that has single-byte characters for the characters that

are valid in queue names.

Fields

The MQRFH structure contains the following fields; the fields are described in

alphabetic order:

RFCSI (10-digit signed integer)

Character set identifier of data that follows RFNVS.

This specifies the character set identifier of the data that follows RFNVS; it does not

apply to character data in the MQRFH structure itself.

On the MQPUT or MQPUT1 call, the application must set this field to the value

appropriate to the data. The following special value can be used:

CSINHT

Inherit character-set identifier of this structure.

 Character data in the data following this structure is in the same character

set as this structure.

The queue manager changes this value in the structure sent in the message

to the actual character-set identifier of the structure. Provided no error

occurs, the value CSINHT is not returned by the MQGET call.

CSINHT cannot be used if the value of the MDPAT field in MQMD is

ATBRKR.

The initial value of this field is CSUNDF.

RFENC (10-digit signed integer)

Numeric encoding of data that follows RFNVS.

224 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

This specifies the numeric encoding of the data that follows RFNVS; it does not

apply to numeric data in the MQRFH structure itself.

On the MQPUT or MQPUT1 call, the application must set this field to the value

appropriate to the data.

The initial value of this field is ENNAT.

RFFLG (10-digit signed integer)

Flags.

The following can be specified:

RFNONE

No flags.

The initial value of this field is RFNONE.

RFFMT (8-byte character string)

Format name of data that follows RFNVS.

This specifies the format name of the data that follows RFNVS.

On the MQPUT or MQPUT1 call, the application must set this field to the value

appropriate to the data. The rules for coding this field are the same as those for the

MDFMT field in MQMD.

The initial value of this field is FMNONE.

RFLEN (10-digit signed integer)

Total length of MQRFH including RFNVS.

This is the length in bytes of the MQRFH structure, including the RFNVS field at the

end of the structure. The length does not include any user data that follows the

RFNVS field.

To avoid problems with data conversion of the user data in some environments, it

is recommended that RFLEN should be a multiple of four.

The following constant gives the length of the fixed part of the structure, that is, the

length excluding the RFNVS field:

RFLENV

Length of fixed part of MQRFH structure.

The initial value of this field is RFLENV.

RFNVS (n-byte character string)

String containing name/value pairs.

This is a variable-length character string containing name/value pairs in the form:

name1 value1 name2 value2 name3 value3 ...

Chapter 1. Data type descriptions 225

Each name or value must be separated from the adjacent name or value by one or

more blank characters; these blanks are not significant. A name or value can

contain significant blanks by prefixing and suffixing the name or value with the

double-quote character; all characters between the open double-quote and the

matching close double-quote are treated as significant. In the following example,

the name is FAMOUS_WORDS, and the value is Hello World:

FAMOUS_WORDS "Hello World"

A name or value can contain any characters other than the null character (which

acts as a delimiter for RFNVS – see below). However, to assist interoperability an

application may prefer to restrict names to the following characters:

v First character: upper or lowercase alphabetic (A through Z, or a through z), or

underscore.

v Subsequent characters: upper or lowercase alphabetic, decimal digit (0 through

9), underscore, hyphen, or dot.

If a name or value contains one or more double-quote characters, the name or

value must be enclosed in double quotes, and each double quote within the string

must be doubled:

Famous_Words "The program displayed ""Hello World"""

Names and values are case sensitive, that is, lowercase letters are not considered to

be the same as uppercase letters. For example, FAMOUS_WORDS and Famous_Words are

two different names.

The length in bytes of RFNVS is equal to RFLEN minus RFLENV. To avoid problems

with data conversion of the user data in some environments, it is recommended

that this length should be a multiple of four. RFNVS must be padded with blanks to

this length, or terminated earlier by placing a null character following the last

significant character in the string. The null character and the bytes following it, up

to the specified length of RFNVS, are ignored.

Note: Because the length of this field is not fixed, the field is omitted from the

declarations of the structure that are provided for the supported programming

languages.

RFSID (4-byte character string)

Structure identifier.

The value must be:

RFSIDV

Identifier for rules and formatting header structure.

The initial value of this field is RFSIDV.

RFVER (10-digit signed integer)

Structure version number.

The value must be:

RFVER1

Version-1 rules and formatting header structure.

The initial value of this field is RFVER1.

226 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Initial values and RPG declaration

 Table 60. Initial values of fields in MQRFH

Field name Name of constant Value of constant

RFSID RFSIDV ’RFH�’

RFVER RFVER1 1

RFLEN RFLENV 32

RFENC ENNAT Depends on

environment

RFCSI CSUNDF 0

RFFMT FMNONE Blanks

RFFLG RFNONE 0

Notes:

1. The symbol ‘�’ represents a single blank character.

RPG declaration (copy file CMQRFHG)

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..

 D* MQRFH Structure

 D*

 D* Structure identifier

 D RFSID 1 4 INZ(’RFH ’)

 D* Structure version number

 D RFVER 5 8I 0 INZ(1)

 D* Total length of MQRFH includingNameValueString

 D RFLEN 9 12I 0 INZ(32)

 D* Numeric encoding of data that followsNameValueString

 D RFENC 13 16I 0 INZ(273)

 D* Character set identifier of data thatfollows NameValueString

 D RFCSI 17 20I 0 INZ(0)

 D* Format name of data that followsNameValueString

 D RFFMT 21 28 INZ(’ ’)

 D* Flags

 D RFFLG 29 32I 0 INZ(0)

MQRFH2 – Rules and formatting header 2

Overview

Purpose: The MQRFH2 structure defines the format of the version-2 rules and

formatting header. This header can be used to send data that has been encoded

using an XML-like syntax. A message can contain two or more MQRFH2 structures

in series, with user data optionally following the last MQRFH2 structure in the

series.

Format name: FMRFH2.

Character set and encoding: Special rules apply to the character set and encoding

used for the MQRFH2 structure:

v Fields other than RF2NVD are in the character set and encoding given by the

MDCSI and MDENC fields in the header structure that precedes MQRFH2, or by

those fields in the MQMD structure if the MQRFH2 is at the start of the

application message data.

Chapter 1. Data type descriptions 227

The character set must be one that has single-byte characters for the characters

that are valid in queue names.

When GMCONV is specified on the MQGET call, the queue manager converts

these fields to the requested character set and encoding.

v RF2NVD is in the character set given by the RF2NVC field. Only certain Unicode

character sets are valid for RF2NVC (see the description of RF2NVC for details).

Some character sets have a representation that is dependent on the encoding. If

RF2NVC is one of these character sets, RF2NVD must be in the same encoding as the

other fields in the MQRFH2.

When GMCONV is specified on the MQGET call, the queue manager converts

RF2NVD to the requested encoding, but does not change its character set.

Fields

The MQRFH2 structure contains the following fields; the fields are described in

alphabetic order:

RF2CSI (10-digit signed integer)

Character set identifier of data that follows last RF2NVD field.

This specifies the character set identifier of the data that follows the last RF2NVD

field; it does not apply to character data in the MQRFH2 structure itself.

On the MQPUT or MQPUT1 call, the application must set this field to the value

appropriate to the data. The following special value can be used:

CSINHT

Inherit character-set identifier of this structure.

 Character data in the data following this structure is in the same character

set as this structure.

The queue manager changes this value in the structure sent in the message

to the actual character-set identifier of the structure. Provided no error

occurs, the value CSINHT is not returned by the MQGET call.

CSINHT cannot be used if the value of the MDPAT field in MQMD is

ATBRKR.

The initial value of this field is CSINHT.

RF2ENC (10-digit signed integer)

Numeric encoding of data that follows last RF2NVD field.

This specifies the numeric encoding of the data that follows the last RF2NVD field; it

does not apply to numeric data in the MQRFH2 structure itself.

On the MQPUT or MQPUT1 call, the application must set this field to the value

appropriate to the data.

The initial value of this field is ENNAT.

228 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

RF2FLG (10-digit signed integer)

Flags.

The following value must be specified:

RFNONE

No flags.

The initial value of this field is RFNONE.

RF2FMT (8-byte character string)

Format name of data that follows last RF2NVD field.

This specifies the format name of the data that follows the last RF2NVD field.

On the MQPUT or MQPUT1 call, the application must set this field to the value

appropriate to the data. The rules for coding this field are the same as those for the

MDFMT field in MQMD.

The initial value of this field is FMNONE.

RF2LEN (10-digit signed integer)

Total length of MQRFH2 including all RF2NVL and RF2NVD fields.

This is the length in bytes of the MQRFH2 structure, including the RF2NVL and

RF2NVD fields at the end of the structure. It is valid for there to be multiple pairs of

RF2NVL and RF2NVD fields at the end of the structure, in the sequence:

length1, data1, length2, data2, ...

RF2LEN does not include any user data that may follow the last RF2NVD field at the

end of the structure.

To avoid problems with data conversion of the user data in some environments, it

is recommended that RF2LEN should be a multiple of four.

The following constant gives the length of the fixed part of the structure, that is, the

length excluding the RF2NVL and RF2NVD fields:

RFLEN2

Length of fixed part of MQRFH2 structure.

The initial value of this field is RFLEN2.

RF2NVC (10-digit signed integer)

Character set identifier of RF2NVD.

This specifies the coded character set identifier of the data in the RF2NVD field. This

is different from the character set of the other strings in the MQRFH2 structure,

and can be different from the character set of the data (if any) that follows the last

RF2NVD field at the end of the structure.

Chapter 1. Data type descriptions 229

RF2NVC must have one of the following values:

 CCSID Meaning

1200 UCS-2 open-ended

13488 UCS-2 2.0 subset

17584 UCS-2 2.1 subset (includes the Euro symbol)

1208 UTF-8

For the UCS-2 character sets, the encoding (byte order) of the RF2NVD must be the

same as the encoding of the other fields in the MQRFH2 structure. Surrogate

characters (X’D800’ through X’DFFF’) are not supported.

Note: If RF2NVC does not have one of the values listed above, and the MQRFH2

structure requires conversion on the MQGET call, the call completes with reason

code RC2111 and the message is returned unconverted.

The initial value of this field is 1208.

RF2NVD (n-byte character string)

Name/value data.

This is a variable-length character string containing data encoded using an

XML-like syntax. The length in bytes of this string is given by the RF2NVL field that

precedes the RF2NVD field; this length should be a multiple of four.

The RF2NVL and RF2NVD fields are optional, but if present they must occur as a pair

and be adjacent. The pair of fields can be repeated as many times as required, for

example:

length1 data1 length2 data2 length3 data3

Because these fields are optional, they are omitted from the declarations of the

structure that are provided for the various programming languages supported.

RF2NVD is unusual because it is not converted to the character set specified on the

MQGET call when the message is retrieved with the GMCONV option in effect;

RF2NVD remains in its original character set. However, RF2NVD is converted to the

encoding specified on the MQGET call.

Syntax of name/value data: The string consists of a single “folder” that contains

zero or more properties. The folder is delimited by XML start and end tags whose

name is the name of the folder:

<folder> property1 property2 ... </folder>

Characters following the folder end tag, up to the length defined by RF2NVL, must

be blank. Within the folder, each property is composed of a name and a value, and

optionally a data type:

<name dt="datatype">value</name>

In these examples:

v The delimiter characters (<, =, ″, /, and >) must be specified exactly as shown.

v name is the user-specified name of the property; see below for more information

about names.

230 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

v datatype is an optional user-specified data type of the property; see below for

valid data types.

v value is the user-specified value of the property; see below for more information

about values.

v Blanks are significant between the > character which precedes a value, and the <

character which follows the value, and at least one blank must precede dt=.

Elsewhere blanks can be coded freely between tags, or preceding or following

tags (for example, in order to improve readability); these blanks are not

significant.

If properties are related to each other, they can be grouped together by enclosing

them within XML start and end tags whose name is the name of the group:

<folder> <group> property1 property2 ... </group> </folder>

Groups can be nested within other groups, without limit, and a given group can

occur more than once within a folder. It is also valid for a folder to contain some

properties in groups and other properties not in groups.

Names of properties, groups, and folders: Names of properties, groups, and

folders must be valid XML tag names, with the exception of the colon character,

which is not permitted in a property, group, or folder name. In particular:

v Names must start with a letter or an underscore. Valid letters are defined in the

W3C XML specification, and consist essentially of Unicode categories Ll, Lu, Lo,

Lt, and Nl.

v The remaining characters in a name can be letters, decimal digits, underscores,

hyphens, or dots. These correspond to Unicode categories Ll, Lu, Lo, Lt, Nl, Mc,

Mn, Lm, and Nd.

v The Unicode compatibility characters (X’F900’ and above) are not permitted in

any part of a name.

v Names must not start with the string XML in any mixture of upper or lowercase.

In addition:

v Names are case-sensitive. For example, ABC, abc, and Abc are three different

names.

v Each folder has a separate name space. As a result, a group or property in one

folder does not conflict with a group or property of the same name in another

folder.

v Groups and properties occupy the same name space within a folder. As a result,

a property cannot have the same name as a group within the folder containing

that property.

Generally, programs that analyze the RF2NVD field should ignore properties or

groups that have names that the program does not recognize, provided that those

properties or groups are correctly formed.

Data types of properties: Each property can have an optional data type. If

specified, the data type must be one of the following values, in upper, lower, or

mixed case:

 Data type Used for

string Any sequence of characters. Certain characters must be specified using

escape sequences (see below).

boolean The character 0 or 1 (1 denotes TRUE).

bin.hex Hexadecimal digits representing octets.

Chapter 1. Data type descriptions 231

Data type Used for

i1 Integer number in the range -128 through +127, expressed using only

decimal digits and optional sign.

i2 Integer number in the range -32 768 through +32 767, expressed using

only decimal digits and optional sign.

i4 Integer number in the range -2 147 483 648 through +2 147 483 647,

expressed using only decimal digits and optional sign.

i8 Integer number in the range -9 223 372 036 854 775 808 through

+9 223 372 036 854 775 807, expressed using only decimal digits and

optional sign.

int Integer number in the range -9 223 372 036 854 775 808 through

+9 223 372 036 854 775 807, expressed using only decimal digits and

optional sign. This can be used in place of i1, i2, i4, or i8 if the sender

does not wish to imply a particular precision.

r4 Floating-point number with magnitude in the range 1.175E-37 through

3.402 823 47E+38, expressed using decimal digits, optional sign, optional

fractional digits, and optional exponent.

r8 Floating-point number with magnitude in the range 2.225E-307 through

1.797 693 134 862 3E+308 expressed using decimal digits, optional sign,

optional fractional digits, and optional exponent.

Values of properties: The value of a property can consist of any characters, except

as detailed below. Each occurrence in the value of a character marked as

“mandatory” must be replaced by the corresponding escape sequence. Each

occurrence in the value of a character marked as “optional” can be replaced by the

corresponding escape sequence, but this is not required.

 Character Escape sequence Usage

& & Mandatory

< < Mandatory

> > Optional

" " Optional

’ ' Optional

Note: The & character at the start of an escape sequence must not be replaced by

&.

In the following example, the blanks in the value are significant; however, no

escape sequences are needed:

<Famous_Words>The program displayed "Hello World"</Famous_Words>

RF2NVL (10-digit signed integer)

Length of RF2NVD.

This specifies the length in bytes of the data in the RF2NVD field. To avoid problems

with data conversion of the data (if any) that follows the RF2NVD field, RF2NVL

should be a multiple of four.

Note: The RF2NVL and RF2NVD fields are optional, but if present they must occur as

a pair and be adjacent. The pair of fields can be repeated as many times as

required, for example:

length1 data1 length2 data2 length3 data3

232 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Because these fields are optional, they are omitted from the declarations of the

structure that are provided for the various programming languages supported.

RF2SID (4-byte character string)

Structure identifier.

The value must be:

RFSIDV

Identifier for rules and formatting header structure.

The initial value of this field is RFSIDV.

RF2VER (10-digit signed integer)

Structure version number.

The value must be:

RFVER2

Version-2 rules and formatting header structure.

The initial value of this field is RFVER2.

Initial values and RPG declaration

 Table 61. Initial values of fields in MQRFH2

Field name Name of constant Value of constant

RF2SID RFSIDV ’RFH�’

RF2VER RFVER2 2

RF2LEN RFLEN2 36

RF2ENC ENNAT Depends on

environment

RF2CSI CSINHT -2

RF2FMT FMNONE Blanks

RF2FLG RFNONE 0

RF2NVC None 1208

Notes:

1. The symbol ‘�’ represents a single blank character.

RPG declaration (copy file CMQRFH2G)

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..

 D*

 D* MQRFH2 Structure

 D*

 D* Structure identifier

 D RF2SID 1 4 INZ(’RFH ’)

 D* Structure version number

 D RF2VER 5 8I 0 INZ(2)

 D* Total length of MQRFH2 including allNameValueLength and

 D* NameValueDatafields

 D RF2LEN 9 12I 0 INZ(36)

 D* Numeric encoding of data that followslast NameValueData field

 D RF2ENC 13 16I 0 INZ(273)

Chapter 1. Data type descriptions 233

D* Character set identifier of data thatfollows last NameValueData field

 D RF2CSI 17 20I 0 INZ(-2)

 D* Format name of data that follows lastNameValueData field

 D RF2FMT 21 28 INZ(’ ’)

 D* Flags

 D RF2FLG 29 32I 0 INZ(0)

 D* Character set identifier ofNameValueData

 D RF2NVC 33 36I 0 INZ(1208)

MQRMH – Reference message header

The following table summarizes the fields in the structure.

 Table 62. Fields in MQRMH

Field Description Topic

RMSID Structure identifier RMSID

RMVER Structure version number RMVER

RMLEN Total length of MQRMH, including strings at end

of fixed fields, but not the bulk data

RMLEN

RMENC Numeric encoding of bulk data RMENC

RMCSI Character set identifier of bulk data RMCSI

RMFMT Format name of bulk data RMFMT

RMFLG Reference message flags RMFLG

RMOT Object type RMOT

RMOII Object instance identifier RMOII

RMSEL Length of source environment data RMSEL

RMSEO Offset of source environment data RMSEO

RMSNL Length of source object name RMSNL

RMSNO Offset of source object name RMSNO

RMDEL Length of destination environment data RMDEL

RMDEO Offset of destination environment data RMDEO

RMDNL Length of destination object name RMDNL

RMDNO Offset of destination object name RMDNO

RMDL Length of bulk data RMDL

RMDO Low offset of bulk data RMDO

RMDO2 High offset of bulk data RMDO2

Overview

Purpose: The MQRMH structure defines the format of a reference message header.

This header is used in conjunction with user-written message channel exits to send

extremely large amounts of data (called “bulk data”) from one queue manager to

another. The difference compared to normal messaging is that the bulk data is not

stored on a queue; instead, only a reference to the bulk data is stored on the queue.

This reduces the possibility of MQ resources being exhausted by a small number of

extremely large messages.

Format name: FMRMH.

234 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Character set and encoding: Character data in MQRMH, and the strings addressed

by the offset fields, must be in the character set of the local queue manager; this is

given by the CodedCharSetId queue manager attribute. Numeric data in MQRMH

must be in the native machine encoding; this is given by the value of ENNAT for

the C programming language.

The character set and encoding of the MQRMH must be set into the MDCSI and

MDENC fields in:

v The MQMD (if the MQRMH structure is at the start of the message data), or

v The header structure that precedes the MQRMH structure (all other cases).

Usage: An application puts a message consisting of an MQRMH, but omitting the

bulk data. When the message is read from the transmission queue by a message

channel agent (MCA), a user-supplied message exit is invoked to process the

reference message header. The exit can append to the reference message the bulk

data identified by the MQRMH structure, before the MCA sends the message

through the channel to the next queue manager.

At the receiving end, a message exit that waits for reference messages should exist.

When a reference message is received, the exit should create the object from the

bulk data that follows the MQRMH in the message, and then pass on the reference

message without the bulk data. The reference message can later be retrieved by an

application reading the reference message (without the bulk data) from a queue.

Normally, the MQRMH structure is all that is in the message. However, if the

message is on a transmission queue, one or more additional headers will precede

the MQRMH structure.

A reference message can also be sent to a distribution list. In this case, the MQDH

structure and its related records precede the MQRMH structure when the message

is on a transmission queue.

Note: A reference message should not be sent as a segmented message, because

the message exit cannot process it correctly.

Data conversion: For data conversion purposes, conversion of the MQRMH

structure includes conversion of the source environment data, source object name,

destination environment data, and destination object name. Any other bytes within

RMLEN bytes of the start of the structure are either discarded or have undefined

values after data conversion. The bulk data will be converted provided that all of

the following are true:

v The bulk data is present in the message when the data conversion is performed.

v The RMFMT field in MQRMH has a value other than FMNONE.

v A user-written data-conversion exit exists with the format name specified.

Be aware, however, that usually the bulk data is not present in the message when

the message is on a queue, and that as a result the bulk data will not be converted

by the GMCONV option.

Fields

The MQRMH structure contains the following fields; the fields are described in

alphabetic order:

Chapter 1. Data type descriptions 235

RMCSI (10-digit signed integer)

Character set identifier of bulk data.

This specifies the character set identifier of the bulk data; it does not apply to

character data in the MQRMH structure itself.

On the MQPUT or MQPUT1 call, the application must set this field to the value

appropriate to the data. The following special value can be used:

CSINHT

Inherit character-set identifier of this structure.

 Character data in the data following this structure is in the same character

set as this structure.

The queue manager changes this value in the structure sent in the message

to the actual character-set identifier of the structure. Provided no error

occurs, the value CSINHT is not returned by the MQGET call.

CSINHT cannot be used if the value of the MDPAT field in MQMD is

ATBRKR.

The initial value of this field is CSUNDF.

RMDEL (10-digit signed integer)

Length of destination environment data.

If this field is zero, there is no destination environment data, and RMDEO is ignored.

RMDEO (10-digit signed integer)

Offset of destination environment data.

This field specifies the offset of the destination environment data from the start of

the MQRMH structure. Destination environment data can be specified by the

creator of the reference message, if that data is known to the creator. For example,

on OS/2 the destination environment data might be the directory path of the object

where the bulk data is to be stored. However, if the creator does not know the

destination environment data, it is the responsibility of the user-supplied message

exit to determine any environment information needed.

The length of the destination environment data is given by RMDEL; if this length is

zero, there is no destination environment data, and RMDEO is ignored. If present, the

destination environment data must reside completely within RMLEN bytes from the

start of the structure.

Applications should not assume that the destination environment data is

contiguous with any of the data addressed by the RMSEO, RMSNO, and RMDNO fields.

The initial value of this field is 0.

RMDL (10-digit signed integer)

Length of bulk data.

The RMDL field specifies the length of the bulk data referenced by the MQRMH

structure.

236 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

If the bulk data is actually present in the message, the data begins at an offset of

RMLEN bytes from the start of the MQRMH structure. The length of the entire

message minus RMLEN gives the length of the bulk data present.

If data is present in the message, RMDL specifies the amount of that data that is

relevant. The normal case is for RMDL to have the same value as the length of data

actually present in the message.

If the MQRMH structure represents the remaining data in the object (starting from

the specified logical offset), the value zero can be used for RMDL, provided that the

bulk data is not actually present in the message.

If no data is present, the end of MQRMH coincides with the end of the message.

The initial value of this field is 0.

RMDNL (10-digit signed integer)

Length of destination object name.

If this field is zero, there is no destination object name, and RMDNO is ignored.

RMDNO (10-digit signed integer)

Offset of destination object name.

This field specifies the offset of the destination object name from the start of the

MQRMH structure. The destination object name can be specified by the creator of

the reference message, if that data is known to the creator. However, if the creator

does not know the destination object name, it is the responsibility of the

user-supplied message exit to identify the object to be created or modified.

The length of the destination object name is given by RMDNL; if this length is zero,

there is no destination object name, and RMDNO is ignored. If present, the destination

object name must reside completely within RMLEN bytes from the start of the

structure.

Applications should not assume that the destination object name is contiguous

with any of the data addressed by the RMSEO, RMSNO, and RMDEO fields.

The initial value of this field is 0.

RMDO (10-digit signed integer)

Low offset of bulk data.

This field specifies the low offset of the bulk data from the start of the object of

which the bulk data forms part. The offset of the bulk data from the start of the

object is called the logical offset. This is not the physical offset of the bulk data from

the start of the MQRMH structure – that offset is given by RMLEN.

To allow large objects to be sent using reference messages, the logical offset is

divided into two fields, and the actual logical offset is given by the sum of these

two fields:

v RMDO represents the remainder obtained when the logical offset is divided by 1

000 000 000. It is thus a value in the range 0 through 999 999 999.

Chapter 1. Data type descriptions 237

v RMDO2 represents the result obtained when the logical offset is divided by

1 000 000 000. It is thus the number of complete multiples of 1 000 000 000 that

exist in the logical offset. The number of multiples is in the range 0 through 999

999 999.

The initial value of this field is 0.

RMDO2 (10-digit signed integer)

High offset of bulk data.

This field specifies the high offset of the bulk data from the start of the object of

which the bulk data forms part. It is a value in the range 0 through 999 999 999.

See RMDO for details.

The initial value of this field is 0.

RMENC (10-digit signed integer)

Numeric encoding of bulk data.

This specifies the numeric encoding of the bulk data; it does not apply to numeric

data in the MQRMH structure itself.

On the MQPUT or MQPUT1 call, the application must set this field to the value

appropriate to the data.

The initial value of this field is ENNAT.

RMFLG (10-digit signed integer)

Reference message flags.

The following flags are defined:

RMLAST

Reference message contains or represents last part of object.

 This flag indicates that the reference message represents or contains the

last part of the referenced object.

RMNLST

Reference message does not contain or represent last part of object.

 RMNLST is defined to aid program documentation. It is not intended that

this option be used with any other, but as its value is zero, such use cannot

be detected.

The initial value of this field is RMNLST.

RMFMT (8-byte character string)

Format name of bulk data.

This specifies the format name of the bulk data.

On the MQPUT or MQPUT1 call, the application must set this field to the value

appropriate to the data. The rules for coding this field are the same as those for the

MDFMT field in MQMD.

238 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

The initial value of this field is FMNONE.

RMLEN (10-digit signed integer)

Total length of MQRMH, including strings at end of fixed fields, but not the bulk

data.

The initial value of this field is zero.

RMOII (24-byte bit string)

Object instance identifier.

This field can be used to identify a specific instance of an object. If it is not needed,

it should be set to the following value:

OIINON

No object instance identifier specified.

 The value is binary zero for the length of the field.

The length of this field is given by LNOIID. The initial value of this field is

OIINON.

RMOT (8-byte character string)

Object type.

This is a name that can be used by the message exit to recognize types of reference

message that it supports. It is recommended that the name conform to the same

rules as the RMFMT field described above.

The initial value of this field is 8 blanks.

RMSEL (10-digit signed integer)

Length of source environment data.

If this field is zero, there is no source environment data, and RMSEO is ignored.

The initial value of this field is 0.

RMSEO (10-digit signed integer)

Offset of source environment data.

This field specifies the offset of the source environment data from the start of the

MQRMH structure. Source environment data can be specified by the creator of the

reference message, if that data is known to the creator. For example, on OS/2 the

source environment data might be the directory path of the object containing the

bulk data. However, if the creator does not know the source environment data, it is

the responsibility of the user-supplied message exit to determine any environment

information needed.

The length of the source environment data is given by RMSEL; if this length is zero,

there is no source environment data, and RMSEO is ignored. If present, the source

environment data must reside completely within RMLEN bytes from the start of the

structure.

Chapter 1. Data type descriptions 239

Applications should not assume that the environment data starts immediately after

the last fixed field in the structure or that it is contiguous with any of the data

addressed by the RMSNO, RMDEO, and RMDNO fields.

The initial value of this field is 0.

RMSID (4-byte character string)

Structure identifier.

The value must be:

RMSIDV

Identifier for reference message header structure.

The initial value of this field is RMSIDV.

RMSNL (10-digit signed integer)

Length of source object name.

If this field is zero, there is no source object name, and RMSNO is ignored.

The initial value of this field is 0.

RMSNO (10-digit signed integer)

Offset of source object name.

This field specifies the offset of the source object name from the start of the

MQRMH structure. The source object name can be specified by the creator of the

reference message, if that data is known to the creator. However, if the creator does

not know the source object name, it is the responsibility of the user-supplied

message exit to identify the object to be accessed.

The length of the source object name is given by RMSNL; if this length is zero, there

is no source object name, and RMSNO is ignored. If present, the source object name

must reside completely within RMLEN bytes from the start of the structure.

Applications should not assume that the source object name is contiguous with

any of the data addressed by the RMSEO, RMDEO, and RMDNO fields.

The initial value of this field is 0.

RMVER (10-digit signed integer)

Structure version number.

The value must be:

RMVER1

Version-1 reference message header structure.

The following constant specifies the version number of the current version:

RMVERC

Current version of reference message header structure.

240 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

The initial value of this field is RMVER1.

Initial values and RPG declaration

 Table 63. Initial values of fields in MQRMH

Field name Name of constant Value of constant

RMSID RMSIDV ’RMH�’

RMVER RMVER1 1

RMLEN None 0

RMENC ENNAT Depends on

environment

RMCSI CSUNDF 0

RMFMT FMNONE Blanks

RMFLG RMNLST 0

RMOT None Blanks

RMOII OIINON Nulls

RMSEL None 0

RMSEO None 0

RMSNL None 0

RMSNO None 0

RMDEL None 0

RMDEO None 0

RMDNL None 0

RMDNO None 0

RMDL None 0

RMDO None 0

RMDO2 None 0

Notes:

1. The symbol ‘�’ represents a single blank character.

RPG declaration (copy file CMQRMHG)

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..

 D*

 D* MQRMH Structure

 D*

 D* Structure identifier

 D RMSID 1 4 INZ(’RMH ’)

 D* Structure version number

 D RMVER 5 8I 0 INZ(1)

 D* Total length of MQRMH, includingstrings at end of fixed fields,but not

 D* the bulk data

 D RMLEN 9 12I 0 INZ(0)

 D* Numeric encoding of bulk data

 D RMENC 13 16I 0 INZ(273)

 D* Character set identifier of bulkdata

 D RMCSI 17 20I 0 INZ(0)

 D* Format name of bulk data

 D RMFMT 21 28 INZ(’ ’)

 D* Reference message flags

 D RMFLG 29 32I 0 INZ(0)

 D* Object type

Chapter 1. Data type descriptions 241

D RMOT 33 40 INZ

 D* Object instance identifier

 D RMOII 41 64 INZ(X’00000000000000-

 D 0000000000000000000000-

 D 000000000000’)

 D* Length of source environmentdata

 D RMSEL 65 68I 0 INZ(0)

 D* Offset of source environmentdata

 D RMSEO 69 72I 0 INZ(0)

 D* Length of source object name

 D RMSNL 73 76I 0 INZ(0)

 D* Offset of source object name

 D RMSNO 77 80I 0 INZ(0)

 D* Length of destination environmentdata

 D RMDEL 81 84I 0 INZ(0)

 D* Offset of destination environmentdata

 D RMDEO 85 88I 0 INZ(0)

 D* Length of destination objectname

 D RMDNL 89 92I 0 INZ(0)

 D* Offset of destination objectname

 D RMDNO 93 96I 0 INZ(0)

 D* Length of bulk data

 D RMDL 97 100I 0 INZ(0)

 D* Low offset of bulk data

 D RMDO 101 104I 0 INZ(0)

 D* High offset of bulk data

 D RMDO2 105 108I 0 INZ(0)

MQRR – Response record

The following table summarizes the fields in the structure.

 Table 64. Fields in MQRR

Field Description Topic

RRCC Completion code for queue RRCC

RRREA Reason code for queue RRREA

Overview

Purpose: The MQRR structure is used to receive the completion code and reason

code resulting from the open or put operation for a single destination queue, when

the destination is a distribution list. MQRR is an output structure for the

MQOPEN, MQPUT, and MQPUT1 calls.

Character set and encoding: Data in MQRR must be in the character set and

encoding of the local queue manager; these are given by the CodedCharSetId queue

manager attribute and ENNAT, respectively. However, if the application is running

as an MQ client, the structure must be in the character set and encoding of the

client.

Usage: By providing an array of these structures on the MQOPEN and MQPUT

calls, or on the MQPUT1 call, it is possible to determine the completion codes and

reason codes for all of the queues in a distribution list when the outcome of the

call is mixed, that is, when the call succeeds for some queues in the list but fails

for others. Reason code RC2136 from the call indicates that the response records (if

provided by the application) have been set by the queue manager.

242 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Fields

The MQRR structure contains the following fields; the fields are described in

alphabetic order:

RRCC (10-digit signed integer)

Completion code for queue.

This is the completion code resulting from the open or put operation for the queue

whose name was specified by the corresponding element in the array of MQOR

structures provided on the MQOPEN or MQPUT1 call.

This is always an output field. The initial value of this field is CCOK.

RRREA (10-digit signed integer)

Reason code for queue.

This is the reason code resulting from the open or put operation for the queue

whose name was specified by the corresponding element in the array of MQOR

structures provided on the MQOPEN or MQPUT1 call.

This is always an output field. The initial value of this field is RCNONE.

Initial values and RPG declaration

 Table 65. Initial values of fields in MQRR

Field name Name of constant Value of constant

RRCC CCOK 0

RRREA RCNONE 0

RPG declaration (copy file CMQRRG)

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..

 D*

 D* MQRR Structure

 D*

 D* Completion code for queue

 D RRCC 1 4I 0 INZ(0)

 D* Reason code for queue

 D RRREA 5 8I 0 INZ(0)

MQSCO – SSL configuration options

The following table summarizes the fields in the structure.

 Table 66. Fields in MQSCO

Field Description Topic

StrucId Structure identifier StrucId

Version Structure version number Version

KeyRepository Location of key repository KeyRepository

CryptoHardware Details of cryptographic hardware CryptoHardware

AuthInfoRecCount Number of MQAIR records present AuthInfoRecCount

Chapter 1. Data type descriptions 243

Table 66. Fields in MQSCO (continued)

Field Description Topic

AuthInfoRecOffset Offset of first MQAIR record from start

of MQSCO

AuthInfoRecOffset

AuthInfoRecPtr Address of first MQAIR record AuthInfoRecPtr

Note: The remaining fields are ignored if Version is less than MQSCO_VERSION_2.

KeyResetCount SSL secret key reset count KeyResetCount

Fips Required Use FIPS-certified cryptographic

algorithms in WebSphere MQ

FipsRequired

Overview for MQSCO

Availability: AIX, HP-UX, Solaris, Linux and Windows clients.

Purpose: The MQSCO structure (in conjunction with the SSL fields in the MQCD

structure) allows an application running as a WebSphere MQ client to specify

configuration options that control the use of SSL for the client connection when the

channel protocol is TCP/IP. The structure is an input parameter on the

MQCONNX call.

If the channel protocol for the client channel is not TCP/IP, the MQSCO structure

is ignored.

Character set and encoding: Data in MQSCO must be in the character set and

encoding of the local queue manager; these are given by the CodedCharSetId

queue-manager attribute and MQENC_NATIVE, respectively.

Fields for MQSCO

The MQSCO structure contains the following fields; the fields are described in

alphabetic order:

SCAIC (10-digit signed integer)

This is the number of authentication information (MQAIR) records addressed by

the AuthInfoRecPtr or AuthInfoRecOffset fields. For more information, see

“MQAIR – Authentication information record” on page 11. The value must be zero

or greater. If the value is not valid, the call fails with reason code

MQRC_AUTH_INFO_REC_COUNT_ERROR.

This is an input field. The initial value of this field is 0.

SCAIO (10-digit signed integer)

This is the offset in bytes of the first authentication information record from the

start of the MQSCO structure. The offset can be positive or negative. The field is

ignored if SCAIC is zero.

You can use either SCAIO or SCAIP to specify the MQAIR records, but not both; see

the description of the SCAIP field for details.

This is an input field. The initial value of this field is 0.

244 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

SCAIP (10-digit signed integer)

This is the address of the first authentication information record. The field is

ignored if SCAIC is zero.

You can provide the array of MQAIR records in one of two ways:

v By using the pointer field SCAIP

In this case, the application can declare an array of MQAIR records that is

separate from the MQSCO structure, and set SCAIP to the address of the array.

Using SCAIP is recommended for programming languages that support the

pointer data type in a fashion that is portable to different environments (for

example, the C programming language).

v By using the offset field SCAIO

In this case, the application must declare a compound structure containing an

MQSCO followed by the array of MQAIR records, and set SCAIO to the offset of

the first record in the array from the start of the MQSCO structure. Ensure that

this value is correct, and has a value that can be accommodated within an

MQLONG (the most restrictive programming language is COBOL, for which the

valid range is -999 999 999 through +999 999 999).

Using SCAIO is recommended for programming languages that do not support

the pointer data type, or that implement the pointer data type in a fashion that

is not portable to different environments (for example, the COBOL programming

language).

Whatever technique you choose, only one of SCAIP and SCAIO can be used; the call

fails with reason code MQRC_AUTH_INFO_REC_ERROR if both are nonzero.

This is an input field. The initial value of this field is the null pointer in those

programming languages that support pointers, and an all-null byte string

otherwise.

Note: On platforms where the programming language does not support the

pointer datatype, this field is declared as a byte string of the appropriate length.

SCCH (10-digit signed integer)

This field gives configuration details for cryptographic hardware connected to the

client system. Set the field to one of the following strings, or leave it blank or null:

GSK_ACCELERATOR_RAINBOW_CS_OFF

GSK_ACCELERATOR_RAINBOW_CS_ON

GSK_ACCELERATOR_NCIPHER_NF_OFF

GSK_ACCELERATOR_NCIPHER_NF_ON

GSK_PKCS11=<the PKCS #11 driver path and filename>;<the PKCS #11

token label>;<the PKCS #11 token password>;<symmetric cipher setting>;

Note:

1. The strings containing RAINBOW enable or disable the Rainbow Cryptoswift

cryptographic hardware.

2. The strings containing NCIPHER enable or disable the nCipher nFast

cryptographic hardware.

3. In order to use cryptographic hardware which conforms to the PKCS11

interface, for example, the IBM® 4960 or IBM 4963, the PKCS11 driver path,

PKCS11 token label, and PKCS11 token password strings must be specified,

each terminated by a semi-colon.

Chapter 1. Data type descriptions 245

The PKCS #11 driver path is an absolute path to the shared library providing

support for the PKCS #11 card. The PKCS #11 driver filename is the name of

the shared library. An example of the value required for the PKCS #11 path and

filename is:

/usr/lib/pkcs11/PKCS11_API.so

The PKCS #11 token label must be entirely in lowercase. If you have configured

your hardware with a mixed case or uppercase token label, re-configure it with

this lowercase label.

4. If the field is blank or null, it indicates that no cryptographic hardware

configuration is required.

If the value is shorter than the length of the field, terminate the value with a null

character, or pad it with blanks to the length of the field. If the value is not valid,

or leads to a failure when used to configure the cryptographic hardware, the call

fails with reason code MQRC_CRYPTO_HARDWARE_ERROR.

This is an input field. The length of this field is given by

MQ_SSL_CRYPTO_HARDWARE_LENGTH. The initial value of this field is the

null string in C, and blank characters in other programming languages.

SCKR (10-digit signed integer)

This field is relevant only for WebSphere MQ clients running on UNIX systems

and Windows systems. It specifies the location of the key database file in which

keys and certificates are stored. The key database file must have a file name of the

form zzz.kdb, where zzz is user-selectable. The SCKR field contains the path to this

file, along with the file name stem (all characters in the file name up to but not

including the final .kdb). The .kdb file suffix is added automatically.

Each key database file has an associated password stash file. This holds encrypted

passwords that are used to allow programmatic access to the key database. The

password stash file must reside in the same directory and have the same file stem

as the key database, and must end with the suffix .sth.

For example, if the SCKR field has the value /xxx/yyy/key, the key database file

must be /xxx/yyy/key.kdb, and the password stash file must be /xxx/yyy/key.sth,

where xxx and yyy represent directory names.

If the value is shorter than the length of the field, terminate the value with a null

character, or pad it with blanks to the length of the field. The value is not checked;

if there is an error in accessing the key repository, the call fails with reason code

MQRC_KEY_REPOSITORY_ERROR.

To run an SSL connection from a WebSphere MQ client, set KeyRepository to a

valid key database file name.

This is an input field. The length of this field is given by

MQ_SSL_KEY_REPOSITORY_LENGTH. The initial value of this field is a blank

character.

SCSID (10-digit signed integer)

This is the structure identifier; the value must be:

SCSIDV

Identifier for SSL configuration options structure.

246 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

This is always an input field. The initial value of this field is SCSIDV.

SCVER (10-digit signed integer)

This is the structure version number; the value must be:

SCVER1

Version-1 SSL configuration options structure.

SCVER2

Version-2 SSL configuration options structure.

The following constant specifies the version number of the current version:

SCVERC

Current version of SSL configuration options structure.

This is always an input field. The initial value of this field is SCVER2

Initial values and RPG declaration

 Table 67. Initial values of fields in MQSCO

Field name Name of constant Value of constant

SCSID SCSIDV ’SCO�’

SCVER SCVER2 1

SCKR None Null string or blanks

SCCH None Null string or blanks

SCAIC None 0

SCAIO None 0

SCAIP None Null pointer or null

bytes

Notes:

1. The symbol � represents a single blank character.

RPG declaration (copy file MQSCOG)

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..

 D* MQSCO Structure

 D*

 D* Structure identifier

 D SCSID 1 4 INZ(’SCO ’)

 D* Structure version number

 D SCVER 5 8I 0 INZ(1)

 D* Location of SSL key repository

 D SCKR 9 264 INZ

 D* Cryptographic hardware configuration string

 D SCCH 265 520 INZ

 D* Number of MQAIR records present

 D SCAIC 521 524I 0 INZ(0)

 D* Offset of first MQAIR record from start of MQSCO structure

 D SCAIO 525 528I 0 INZ(0)

 D* Address of first MQAIR record

 D SCAIP 529 544* INZ(*NULL)

Chapter 1. Data type descriptions 247

MQSD - Subscription Descriptor

The following table summarizes the fields in the structure.

 Field Description Topic

SDSID Structure identifier SDSID

SDVER Structure version number SDVER

SDOPT Options SDOPT

SDON Object name SDON

SDAU Alternate User Id SDAU

SDASI Alternate Security Id SDASI

SDOS Object Long Name SDOS

SDSN Subscription Name SDSN

SDSUD Subscription user data SDSUD

SDCID Subscription Correlation Id SDCID

SDPRI Publication priority SDPRI

SDACC Publication Accounting Token SDACC

SDAID Publication application identity data SDAID

SDSL Subscription Level SDSL

Overview

Purpose: The MQSD structure is used to specify details about the subscription

being made.

The structure is an input/output parameter on the MQSUB call.

Managed subscriptions: If an application has no specific need to use a particular

queue as the destination for those publications that match its subscription, it can

make use of the managed subscription feature. If an application elects to use a

managed subscription, the queue manager informs the subscriber about the

destination where published messages will be sent, by providing an object handle

as an output from the MQSUB call. For more information, see “HOBJ (10-digit

signed integer) – input/output” on page 428.

The queue manager also undertakes to clean up un-retrieved messages from the

managed destination when the subscription is removed, in the following situations:

v When the subscription is removed - by use of MQCLOSE with CORMSB - and

the managed Hobj is closed.

v By implicit means when the connection is lost to an application using a

non-durable subscription (SONDUR)

v By expiration when a subscription is removed because it has expired and the

managed Hobj is closed.

You should use managed subscriptions with non-durable subscriptions, so that this

clean up can occur, and so that messages for closed non-durable subscriptions do

not take up space in your queue manager. Durable subscriptions can also use

managed destinations.

248 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Character set and encoding: Data in MQSD must be in the character set and

encoding of the local queue manager; these are given by the CodedCharSetId

queue-manager attribute and ENNAT, respectively. However, if the application is

running as an MQ client, the structure must be in the character set and encoding

of the client.

Fields

SDAID (32-byte character string)

This is the value that will be in the MDAID field of the Message Descriptor (MQMD)

of all publication messages matching this subscription. SDAID is part of the identity

context of the message. For more information about message context, see the

Message context.

For more information about MDAID see MDAID

If the option SOSETI is not specified, the MDAID which will be set in each message

published for this subscription is blanks, as default context information.

If the option SOSETI is specified, the SDAID is being generated by the user and this

field is an input field which contains the MDAID to be set in each publication for this

subscription.

The length of this field is given by LNAIDD. The initial value of this field is 32

blank characters.

If altering an existing subscription using the SOALT option, the SDAID of any future

publication messages can be changed.

On return from an MQSUB call using MQSO_RESUME, this field is set to the

current MDAID being used for the subscription.

SDACC (32-byte character string)

This is the value that will be in the MDACC field of the Message Descriptor (MQMD)

of all publication messages matching this subscription. MDACC is part of the identity

context of the message. For more information about message context, see Message

context.

For more information about MDACC see “MDACC (32-byte bit string)” on page 128

You can use the following special value for the SDACC field:

ACNONE

No accounting token is specified.

 The value is binary zero for the length of the field.

If the option SOSETI is not specified, the accounting token is generated by the

queue manager as default context information and this field is an output field

which contains the MDACC which will be set in each message published for this

subscription.

If the option SOSETI is specified, the accounting token is being generated by the

user and this field is an input field which contains the MDACC to be set in each

publication for this subscription.

Chapter 1. Data type descriptions 249

The length of this field is given by LNACCT. The initial value of this field is

ACNONE.

If altering an existing subscription using the SOALT option, the value of MDACC in

any future publication messages can be changed.

On return from an MQSUB call using MQSO_RESUME, this field is set to the

current MDACC being used for the subscription.

SDASI (40-byte bit string)

This is a security identifier that is passed with the SDAU to the authorization service

to allow appropriate authorization checks to be performed.

SDASI is used only if SOALTU is specified, and the SDAU field is not entirely blank

up to the first null character or the end of the field.

On return from an MQSUB call using SORES, this field is unchanged.

See the description of “ODASI (40-byte bit string)” on page 187 in the MQOD data

type for more information.

SDAU (12-byte character string)

If you specify SOALTU, this field contains an alternate user identifier that is used

to check the authorization for the subscription and for output to the destination

queue (specified in the Hobj parameter of the MQSUB call), in place of the user

identifier that the application is currently running under.

If successful, the user identifier specified in this field is recorded as the

subscription owning user identifier in place of the user identifier that the

application is currently running under.

If SOALTU is specified and this field is entirely blank up to the first null character

or the end of the field, the subscription can succeed only if no user authorization is

needed to subscribe to this topic with the options specified or the destination

queue for output.

If SOALTU is not specified, this field is ignored.

On return from an MQSUB call using SORES, this field is unchanged.

This is an input field. The length of this field is given by LNUID. The initial value

of this field is 12 blank characters.

SDCID (24-byte bit string)

All publications sent to match this subscription will contain this correlation

identifier in the message descriptor. If multiple subscriptions use the same queue

to get their publications from, using MQGET by correlation id allows only

publications for a specific subscription to be obtained. This correlation identifier

can either be generated by the queue manager or by the user.

If the option SOSCID is not specified, the correlation identifier is generated by the

queue manager and this field is an output field which contains the correlation

identifier which will be set in each message published for this subscription.

250 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

If the option SOSCID is specified, the correlation identifier is being generated by

the user and this field is an input field which contains the correlation identifier to

be set in each publication for this subscription. In this case, if the field contains

CINONE, the correlation identifier which will be set in each message published for

this subscription will be the correlation identifier created by the original put of the

message.

If the option SOGRP is specified and the correlation identifier specified is the same

as an existing grouped subscription using the same queue and an overlapping

topic string, only the most significant subscription in the group is provided with a

copy of the publication.

The length of this field is given by LNCID. The initial value of this field is

CINONE.

If altering an existing subscription using the SOALT option, and this field is an

input field, then the subscription correlation id can be changed, unless the

subscription has been created using the SOGRP option.

On return from an MQSUB call using SORES, this field is set to the current

correlation id for the subscription.

SDEXP

This is the period of time expressed in tenths of a second after which the

subscription expires. No more publications will match this subscription after this

interval has passed. This is also used as the value in the MDEXP field in the MQMD

of the publications sent to this subscriber.

The following special value is recognized:

EIULIM

The subscription has an unlimited expiration time.

If altering an existing subscription using the SOALT option, the expiry of the

subscription can be changed.

On return from an MQSUB call using the SORES option this field will be set to the

original expiry of the subscription and not the remaining expiry time.

SDON (48-byte character string)

This is the name of the topic object as defined on the local queue manager.

The name can contain the following characters:

v Uppercase alphabetic characters (A through Z)

v Lowercase alphabetic characters (a through z)

v Numeric digits (0 through 9)

v Period (.), forward slash (/), underscore (_), percent (%)

The name must not contain leading or embedded blanks, but can contain trailing

blanks. Use a null character to indicate the end of significant data in the name; the

null and any characters following it are treated as blanks. The following

restrictions apply:

v On systems that use EBCDIC Katakana, lowercase characters cannot be used.

Chapter 1. Data type descriptions 251

v Names containing lowercase characters, forward slash, or percent, must be

enclosed in quotation marks when specified on commands. These quotation

marks must not be specified for names that occur as fields in structures or as

parameters on calls.

The SDON is used to form the Full topic name.

The full topic name can be built from two different fields: SDON and SDOS. For

details of how these two fields are used, see “Using topic strings” on page 263.

On return from an MQSUB call using the SORES option this field is unchanged.

The length of this field is given by LNTOPN. The initial value of this field is 48

blank characters.

If altering an existing subscription using the SDALT option, the name of the topic

object subscribed to cannot be changed. This field and SDOS can be omitted. If

they are provided they must resolve to the same full topic name or the call fails

with RC2510.

SDOPT (10-digit signed integer)

You must specify at least one of the following options:

v SOALT

v SORES

v SOCRT

The values can be added together. Do not add the same constant more than once.

The table shows how you can combine these options: combinations that are not

valid are noted; any other combinations are valid.

Access or creation options : Access and creation options control whether a

subscription is created, or whether an existing subscription is returned or altered.

You must specify at least one of these options. The table displays valid

combinations of access or creation options.

 Combination of options Notes

SOCRT Creates a subscription if one doesn’t exist,

fails if the subscription already exists.

SORES Resumes an existing subscription, fails if no

subscription exists.

SOCRT + SORES Creates a subscription if one doesn’t exist

and resumes a matching one, if it does exist.

Useful combination if used in an application

that may be run a number of times.

SORES + SOALT (see note) Resumes an existing subscription, altering

any fields to match that specified in the

MQSD, fails if no subscription exists.

SOCRT + SOALT (see note) Creates a subscription if one doesn’t exist

and resumes a matching one, if it does exist,

altering any fields to match that specified in

the MQSD. Useful combination if used in an

application that wants to ensure its

subscription is in a certain state before

proceeding.

252 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Combination of options Notes

Note:

Options specifying SOALT can also specify SORES, but this combination has no additional

effect to specifying SOALT alone. In other words, SOALT implies SORES, because calling

MQSUB to alter a subscription implies that the subscription will also be resumed. The

opposite is not true, however: resuming a subscription does not imply it is to be altered.

SOCRT

 Create a new subscription for the topic specified. If a subscription using

the same SDSN already exists, the call fails with RC2432. This failure can

be avoided by combining the SOCRT option with SORES. The SDSN is not

always necessary. For more details see the description of that field.

Combining SOCRT with SORES first checks whether there is an existing

subscription for the specified SDSN, and if there is returns a handle to that

pre-existing subscription; but if there is no existing subscription, a new one

will be created using all the fields provided in the MQSD.

SOCRT can also be combined with SOALT to similar effect (see details

about SOALT below).

SORES

 Return a handle to a pre-existing subscription which matches that specified

by SDSN. No changes will be made to the matching subscription’s

attributes, and they will be returned on output in the MQSD structure.

Most of the contents of the MQSD are not used: the fields used are SDSID,

SDVER, SDOPT, SDAID and SDASI, and SDSN.

The call fails with reason code RC2428 if a subscription does not exist

matching the full subscription name. This failure can be avoided by

combining the SOCRT option with SORES. For details about SOCRT, see

above.

The userid of the subscription is the userid that created the subscription, or

if it has been subsequently altered by a different userid, it is the userid of

the most recent, successful alteration. If an SDAID is used, and use of

alternate user IDs is allowed for that user, SDAID will be recorded as the

userid that created the subscription instead of the userid under which the

subscription was made.

The userid that created the subscription is recorded as SDAU if that field is

used, and the use of alternate user IDs is allowed for that user.

If a matching subscription exists which was created without the option

SOAUID and the userid of the subscription is different from that of the

application requesting a handle to the subscription, the call fails with

reason code RC2434.

If a matching subscription exists and is currently in use by another

application, the call fails with RC2429. If it is currently in use by the same

connection the call will not fail and a handle to the subscription will be

returned.

If the subscription named in SubName is not a valid subscription to

resume or alter from an application, the call will fail with RC2523.

SORES is implied by SOALT and so is not required to be combined with

that option, however, it is not an error if those two options are combined.

Chapter 1. Data type descriptions 253

SOALT

 Return a handle to a pre-existing subscription with the full subscription

name matching that specified in SDSN. Any attributes of the subscription

that are different to that specified in the MQSD will be altered in the

subscription unless alteration is disallowed for that attribute. Details are

noted in the description of each attribute and are summarised in the table

below. If you try to alter an attribute that can not be changed, the call fails

with the reason code shown in the table below.

The call fails with reason code RC2428 if a subscription does not exist

matching the full subscription name. This failure can be avoided by

combining the SOCRT option with SOALT.

Combining SOCRT with SOALT first checks whether there is an existing

subscription for the specified full subscription name, and if there is returns

a handle to that pre-existing subscription with alterations made as detailed

above; but if there is no existing subscription, a new one will be created

using all the fields provided in the MQSD.

The userid of the subscription is the userid that created the subscription, or

if it has been subsequently altered by a different userid, it is the userid of

the most recent, successful alteration. alteration. If SDAU is used (and use of

alternate user IDs is allowed for that user), then the alternate userid will be

recorded as the userid that created the subscription instead of the userid

under which the subscription was made.

If a matching subscription exists that was created without the option

SOAUID and the userid of the subscription is different from that of the

application requesting a handle to the subscription, the call fails with

reason code RC2434.

If a matching subscription exists and is currently in use by another

application, the call fails with RC2429. If it is currently in use by the same

connection the call will not fail and a handle to the subscription will be

returned.

If the subscription named in SubName is not a valid subscription to

resume or alter from an application, the call will fail with RC2523.

The following tables show the subscription attributes that can be altered by

SOALT.

Data type descriptor

or function call Field name

Can this attribute be

altered using

SOALT? Reason Code

MQSD Durability options No RC2509

MQSD Destination Options Yes None

MQSD Registration options Yes (see note 1 on

page 255)

RC2515 if you try to

alter SOGRP

MQSD Publication options Yes (see note 2 on

page 255)

None

MQSD Wildcard options No RC2510

MQSD Other options No (see note 3 on

page 255)

None

MQSD ObjectName No RC2510

254 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Data type descriptor

or function call Field name

Can this attribute be

altered using

SOALT? Reason Code

MQSD SDAU No (see note 4) None

MQSD SDASI No (see note 4) None

MQSD SDEXP Yes None

MQSD SDOS No RC2510

MQSD SDSN No (see note 5) None

MQSD SDSUD Yes None

MQSD SDCID Yes (see note 6) RC2515 when in a

grouped subscription

MQSD SDPRI Yes None

MQSD SDACC Yes None

MQSD SDAID Yes None

MQSD SDSL No RC2512

MQSUB Hobj Yes (see note 6) RC2515 when in a

grouped subscription

Notes:

1. SOGRP cannot be altered.

2. SONEWP cannot be altered because it is not part of the subscription

3. These options are not part of the subscription

4. This attribute is not part of the subscription

5. This attribute is the identity of the subscription being altered

6. Alterable except when part of a grouped sub (SOGRP)

Durability options : The following options control how durable the subscription is.

You can specify only one of these options. If you are altering an existing

subscription using the SOALT option, you cannot change the durability of the

subscription. On return from an MQSUB call using SORES the appropriate

durability option is set.

SODUR

Request that the subscription to this topic remains until it is explicitly

removed using MQCLOSE with the CORMSB option. If this subscription is

not explicitly removed it will remain even after this application’s

connection to the queue manager is closed.

 If a durable subscription is requested to a topic that is defined as not

allowing durable subscriptions, the call fails with RC2436.

SONDUR

Request that the subscription to this topic is removed when the

application’s connection to the queue manager is closed, if it has not

already been explicitly removed. SONDUR is the opposite of the SODUR

option, and is defined to aid program documentation. It is the default if

neither is specified.

Destination options : The following options control the destination that

publications for a topic that has been subscribed to are sent to. If altering an

Chapter 1. Data type descriptions 255

existing subscription using the SOALT option, the destination used for publications

for the subscription can be changed. On return from an MQSUB call using SORES

this option will set if appropriate.

SOMAN

 Request that the destination that the publications are sent to is managed by

the queue manager.

The object handle returned in HOBJ represents a queue manager managed

queue, and is for use with subsequent MQGET, MQCB, MQINQ, or

MQCLOSE calls.

An object handle returned from a previous MQSUB call cannot be

provided in the Hobj parameter when SOMAN is not specified.

Registration options : The following options control the details of the registration

that is made to the queue manager for this subscription. If altering an existing

subscription using the SOALT option, these registration options can be changed.

On return from an MQSUB call using SORES the appropriate registration options

will be set.

SOGRP

 This subscription is to be grouped with other subscriptions of the same

SDSL using the same queue and specifying the same correlation ID so that

any publications to topics that would cause more than one publication

message to be provided to the group of subscriptions, due to an

overlapping set of topic strings being used, only causes one message to be

delivered to the queue. If this option is not used, then each unique

subscription (identified by SDSN) that matches is provided with a copy of

the publication which could mean more than one copy of the publication

may be placed on the queue shared by a number of subscriptions.

Only the most significant subscription in the group is provided with a

copy of the publication. The most significant subscription is based on the

Full topic name up to the point where a wildcard is found. If a mixture of

wildcard schemes is used within the group, only the position of the

wildcard is important. You are advised not to combine different wildcard

schemes within a group of subscriptions that share the same queue.

When creating a new grouped subscription it must still have a unique

SDSN, but if it matches the full topic name of an existing subscription in the

group, the call fails with RC2514.

If the most significant subscription in group also specifies SONOLC and

this is a publication from the same application, then no publication is

delivered to the queue.

When altering a subscription made with this option, the fields which imply

the grouping, Hobj on the MQSUB call (representing the queue and queue

manager name), and the SDCID cannot be changed. Attempting to alter

them will cause the call to fail with RC2515.

This option must be combined with SOSCID with a SDCID that is not set to

CINONE, and cannot be combined with SOMAN.

SOAUID

 When SOAUID is specified, the identity of the subscriber is not restricted

to a single userid. This allows any user to alter or resume the subscription

when they have suitable authority. Only a single user may have the

256 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

subscription at any one time. An attempt to resume use of a subscription

currently in use by another application will cause the call to fail with

RC2429.

To add this option to an existing subscription, the MQSUB call, using

SOALT, must come from the same userid as the original subscription itself.

If an MQSUB call refers to an existing subscription with SOAUID set, and

the userid differs from the original subscription, the call succeeds only if

the new userid has authority to subscribe to the topic. On successful

completion, future publications to this subscriber are put to the

subscriber’s queue with the new userid set in the publication message.

Do not specify both SOAUID and SOFUID. If neither is specified, the

default is SOFUID.

SOFUID

 When SOFUID is specified, the subscription can be altered or resumed by

only the last userid to alter the subscription. If the subscription has not

been altered, it is the userid that created the subscription.

If an MQSUB verb refers to an existing subscription with SOAUID set and

alters the subscription using SOALT to use option SOFUID, the userid of

the subscription is now fixed at this new user id. The call succeeds only if

the new userid has authority to subscribe to the topic.

If a user id other than the one recorded as owning a subscription tries to

resume or alter an SOFUID subscription, the call fails with RC2434. The

owning user id of a subscription can be viewed using the DISPLAY

SBSTATUS command.

Do not specify both SOAUID and SOFUID. If neither is specified, the

default is SOFUID.

Publication options : The following options control the way publications are sent

to this subscriber. If altering an existing subscription using the SOALT option,

these publication options can be changed.

SONOLC

Tells the broker that the application does not want to see any of its own

publications. Publications are considered to have originated from the same

application if the connection handles are the same. On return from an

MQSUB call using SORES this option will be set if appropriate.

SONEWP

No currently retained publications are to be sent, when this subscription is

created, only new publications. This option only applies when SOCRE is

specified. Any subsequent changes to a subscription do not alter the flow

of publications and so any publications that have been retained on a topic,

will have already been sent to the subscriber as new publications.

 If this option is specified without SOCRE it will cause the call to fail with

RC2046. On return from an MQSUB call using SORES this option will not

be set even if the subscription was created using this option.

If this option is not used, previously retained messages will be sent to the

destination queue provided. If this action fails due to an error, either

MQRC_RETAINED_MSG_Q_ERROR or

MQRC_RETAINED_NOT_DELIVERED, the creation of the subscription

will fail.

Chapter 1. Data type descriptions 257

This option is not valid in combination with SOPUBR.

SOPUBR

Setting this option indicates that the subscriber will request information

specifically when required. The queue manager will not to send unsolicited

messages to the subscriber. The retained publication (or possibly multiple

publications if a wildcard is specified in the topic) will be sent to the

subscriber each time a MQSUBRQ call is made using the Hsub handle

from a previous MQSUB call. No publications will be sent as a result of the

MQSUB call using this option. On return from an MQSUB call using

SORES this option will be set if appropriate.

 This option is not valid in combination with SONEWP.

Wildcard options : The following options control how wildcards are interpreted in

the string provided in the SDOS field of the MQSD. You can specify only one of

these options. If altering an existing subscription using the SOALT option, these

wildcard options cannot be changed. On return from an MQSUB call using SORES

the appropriate wildcard option will be set.

SOWCHR

Wildcards only operate on characters within the topic string.

 The behavior defined by SOWCHR is shown in the table below.

 Special Character Behaviour

/ No significance, just another character

* Wildcard, zero or more characters

? Wildcard, one character

% Escape character to allow the characters ‘*’,

‘?’ or ‘%’ to be used in a string and not be

interpreted as a special character, for

example, ‘%*’, ‘%?’ or ‘%%’.

For example, publishing on the following topic:

/level0/level1/level2/level3/level4

matches subscribers using the following topics:

*

/*

/ level0/level1/level2/level3/*

/ level0/level1/*/level3/level4

/ level0/level1/le?el2/level3/level4

Note: This use of wildcards supplies exactly the meaning provided in

WebSphere MQ V6 and WebSphere MB V6 when using MQRFH1

formatted messages for Publish/Subscribe. It is recommended that this is

not used for newly written applications and is only used for applications

that were previously running against that version and have not been

changed to use the default wildcard behavior as described in SOWTOP.

SOWTOP

 Wildcards only operate on topic elements within the topic string. This is

the default behavior if none is chosen.

258 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

The behavior required by SOWTOP is shown in the following table:

 Special Character Behaviour

/ Topic level separator

Wildcard: multiple topic level

+ Wildcard: single topic level

Note:

The ’+’ and ’#’ are not treated as wildcards if they are mixed in with other characters

(including themselves) within a topic level. In the following string, the ’#’ and ’+’

characters are treated as ordinary characters.

level0/level1/#+/level3/level#

For example, publishing on the following topic:

/level0/level1/level2/level3/level4

matches subscribers using the following topics:

/#

/ level0/level1/level2/level3/#

/ level0/level1/+/level3/level4

Note: This use of wildcards supplies the meaning provided in WebSphere

Message Brokers Version 6 when using MQRFH2 formatted messages for

Publish/Subscribe.

Other options : The following options control the way the API call is issued rather

than the subscription. On return from an MQSUB call using SORES these options

will be unchanged.

SOALTU

The SDAU field contains a user identifier to use to validate this MQSUB

call. The call can succeed only if this SDAU is authorized to open the

object with the specified access options, regardless of whether the user

identifier under which the application is running is authorized to do so.

SOSCID

The subscription is to use the correlation identifier supplied in the SDCID

field. If this option is not specified, a correlation identifier will be

automatically created by the queue manager at subscription time and will

be returned to the application in the SDCID field. See “SDCID (24-byte bit

string)” on page 250 for more information.

SOSETI

 The subscription is to use the accounting token and application identity

data supplied in the SDACC and SDAID fields.

If this option is specified, the same authorization check is carried out as if

the destination queue was accessed using an MQOPEN call with OOSETI,

except in the case where the SOMAN option is also used in which case

there is no authorization check on the destination queue.

If this option is not specified, the publications sent to this subscriber will

have default context information associated with them as follows:

Chapter 1. Data type descriptions 259

Field in MQMD Value used

MDUID The user id associated with the subscription

at the time the subscription was made.

MDACC Determined from the environment if

possible; Set to MQACT_NONE if not.

MDAID Set to blanks

This option is only valid with SOCRE and SOALT. If used with SORES, the

SDACC and SDAID fields are ignored, so this option has no effect.

If a subscription is altered without using this option where previously the

subscription had supplied identity context information, default context

information will be generated for the altered subscription.

If a subscription allowing different user ids to use it with option SOAUID,

is resumed by a different user id, default identity context will be generated

for the new user id now owning the subscription and any subsequent

publications will be delivered containing the new identity context.

SOFIQ

The MQSUB call fails if the queue manager is in quiescing state. On z/OS,

for a CICS or IMS application, this option also forces the MQSUB call to

fail if the connection is in quiescing state.

SDOS (MQCHARV)

This is the long object name to be used.

The SDOS is used to form the full topic name.

The full topic name can be built from two different fields: SDON and SDOS. For

details of how these two fields are used, see “Using topic strings” on page 263.

The maximum length of SDOS is 10240.

If SDOS is specified incorrectly, as per the description of how to use the MQCHARV

structure or the maximum length is exceeded, then the call will fail with reason

code RC2441.

This is an input field. The initial values of the fields in this structure are the same

as those in the MQCHARV structure.

If there are wildcards in the SDOS the interpretation of those wildcards can be

controlled using the Wildcard options specified in the SDOPT field of the MQSD.

On return from an MQSUB call using the MQSO_RESUME option this field is

unchanged. The full topic name used is returned in the ODRO field if a buffer is

provided.

If altering an existing subscription using the SOALT option, the long name of the

topic object subscribed to cannot be changed. This field, and SDON, can be

omitted. If they are provided they must resolve to the same full topic name or the

call fails with RC2510.

260 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

SDPRI (10-digit signed integer)

This is the value that will be in the MQPRI field of the Message Descriptor (MQMD)

of all publication messages matching this subscription. For more information about

the MQPRI field in the MQMD, see “MDPRI (10-digit signed integer)” on page 159.

The value must be greater than or equal to zero; zero is the lowest priority. The

following special values can also be used:

PRQDEF

 When a subscription queue is provided in the Hobj field in the MQSUB

call, and is not a managed handle, then the priority for the message is

taken from the DefPriority attribute of this queue. If the queue so

identified is a cluster queue or there is more than one definition in the

queue-name resolution path then the priority is determined when the

publication message is put to the queue as described for “MDPRI (10-digit

signed integer)” on page 159.

If the MQSUB call uses a managed handle, the priority for the message is

taken from the DefPriority attribute of the model queue associated with

the topic subscribed to.

PRPUB

The priority for the message is the priority of the original publication. This

is the initial value of the field.

If altering an existing subscription using the SOALT option, the MQPRI of any future

publication messages can be changed.

On return from an MQSUB call using SORES, this field is set to the current priority

being used for the subscription.

ODRO (MQCHARV)

This is the long object name after the queue manager resolves the name provided

in ODON.

If the long object name is provided in ODOS and nothing is provided in ODON, then

the value returned in this field is the same as provided in ODOS.

If this field is omitted (that is ODRO.VSBufSize is zero) then the ODRO will not be

returned, but the length will be returned in ODRO.VSLength. If the length is

shorter than the full ODRO then it will be truncated and will return as many of the

rightmost characters as can fit in the provided length.

If ODRO is specified incorrectly, as per the description of how to use the MQCHARV

structure then the call will fail with reason code RC2520.

SDSID (4-byte character string)

This is the structure identifier; the value must be:

SDSIDV

Identifier for Subscription Descriptor structure.

This is always an input field. The initial value of this field is SDSIDV

Chapter 1. Data type descriptions 261

PMPL (10-digit signed integer)

This is the level associated with the subscription. Publications will only be

delivered to this subscription if it is in the set of subscriptions with the highest

SDSL value less than or equal to the PubLevel used at publication time.

The value must be in the range zero to 9. Zero is the lowest level.

The initial value of this field is 1.

If altering an existing subscription using the SOALT option, then SDSL cannot be

changed.

SDSN (MQCHARV)

This specifies the subscription name. This field is only required if SDOPT specifies

the option SODUR, but if provided will be used by the queue manager for

SONDUR as well. If specified, SDSN must be unique within the queue manager,

because it is the field used to identify subscriptions.

The maximum length of SDSN is 10240.

This field serves two purposes. For a SODUR subscription it is the means by which

you identify a subscription to resume it after it has been created, if you have either

closed the handle to the subscription (using the COKPSB option) or have been

disconnected from the queue manager. This is done using the MQSUB call with the

SORES option. It is also displayed in the administration view of subscriptions in

the SDSN field in DISPLAY SBSTATUS.

If SDSN is specified incorrectly, as per the description of how to use the MQCHARV

structure, or is omitted when it is required (that is SDSN.VCHRL is zero), or exceeds

the maximum length, the call fails with reason code RC2440.

This is an input field. The initial values of the fields in this structure are the same

as those in the MQCHARV structure.

If altering an existing subscription using the SOALT option, the subscription name

cannot be changed, because it is the field used to identify the subscription. It is not

changed on output from an MQSUB call with the SORES option.

SDSUD (MQCHARV)

This specifies the subscription user data. The data provided on the subscription in

this field will be included as the mq.SubUserData message property of every

publication sent to this subscription.

The maximum length of SDSUD is 10240.

If SDSUD is specified incorrectly, according to the description of how to use the

MQCHARV structure, or if it exceeds the maximum length, the call fails with

reason code RC2431.

This is an input field. The initial values of the fields in this structure are the same

as those in the MQCHARV structure.

262 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

If altering an existing subscription using the SOALT option, the subscription user

data can be changed.

This variable length field is returned on output from an MQSUB call using the

SORES option, if a buffer is provided and there is a positive buffer length in

VSBufLen. If no buffer is provided on the call, only the length of the subscription

user data is returned in the VCHRL field of the MQCHARV. If the buffer provided is

smaller than the space required to return the field, only VSBufLen bytes are

returned in the provided buffer.

SDVER (10-digit signed integer)

This is the structure version number; the value must be:

SDVER1

Version-1 Subscription Descriptor structure.

The following constant specifies the version number of the current version:

SDVERC

Current version of Subscription Descriptor structure.

This is always an input field. The initial value of the field is SDVER1

Using topic strings

The full topic name is given by the concatenation of two parts. A part exists if the

first character of the field is neither a blank nor a null character:

1. The value of the TOPICSTR parameter of the topic object named in SDON

2. SDOS, if the VSLength provided for that variable length string is non-zero

If one of these parts exist it is used unchanged as the topic name.

If both parts they are concatenated in the order they are listed above. A ’/’

character is inserted between them in the resultant combined topic if one is

required.

If neither part exists the call fails with reason code RC2085.

If the full topic name is not valid the call fails with reason code RC2425.

The following table shows examples of topic string concatenation:

 TOPICSTR ObjectString Concatenation result Comment

/Football Scores /Football/Scores ’/’ is added at the

concatenation point

/Football/ Scores /Football/Scores

/Football /Scores /Football/Scores

/Football/ /Scores /Football/Scores ’/’ is removed at the

concatenation point

1. The ‘/’ character is considered to be a special character providing structure to

the full topic name. You are recommended not to use the ‘/’ character for any

other reason as the structure of the topic tree will not be as you expect. This

means that the topic ‘/Football’ is not the same as the topic ‘Football’.

However, topic ‘/Football’ is the same as the topic ‘/Football/’.

Chapter 1. Data type descriptions 263

2. A full topic name with two repeated ‘/’ characters is not valid.

3. If the full topic name is not valid, the call fails with reason code

MQRC_TOPIC_STRING_ERROR.

4. Wildcard characters, +, #, * and ? are special characters. You are recommended

not to use these characters in your topic strings when publishing. They are not

considered invalid however, you should take care to understand the behaviour

when using them.

v Publishing on a topic string with # or + mixed in with other characters

(including themselves) within a topic level can be subscribed on, with either

wildcard scheme.

v Publishing on a topic string with # or + as the only character between two

‘/’ characters will produce a topic string that cannot be subscribed on

explicitly by an application using the wildcard scheme

MQSO_WILDCARD_TOPIC. This will result in the application getting more

publications than expected.

v Publishing on a topic string containing either * or ? anywhere will produce a

topic string that cannot be subscribed on explicitly by an application using

the wildcard scheme MQSO_WILDCARD_CHAR. This will result in the

application getting more publications than expected.

Initial values and RPG declaration

 Field name Name of constant Value of constant

SDSID MQSD_STRUC_ID ’SD��’

SDVER MQSD_VERSION_1 1

SDOPT MQSO_NON_DURABLE 0

SDON None Null string or blanks

SDAU None Null string or blanks

SDASI MQSID_NONE Nulls

SDEXP MQEI_UNLIMITED -1

SDOS Names and values as defined for

MQCHARV

SDSN Names and values as defined for

MQCHARV

SDSUD Names and values as defined for

MQCHARV

SDCID MQCI_NONE Nulls

SDPRI MQPRI_PRIORITY_AS_Q_DEF -3

SDACC MQACT_NONE Nulls

SDAID None Null string or blanks

SDSL None 1

SDRO Names and values as defuned in

MQCHARV

264 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Field name Name of constant Value of constant

Notes:

1. The symbol � represents a single blank character.

2. The value Null string or blanks denotes the null string in C, and blank characters in

other programming languages.

3. In the C programming language, the macro variable MQSD_DEFAULT contains the

values listed above. It can be used in the following way to provide initial values for the

fields in the structure:

MQSD MySD = {MQSD_DEFAULT};

RPG declaration

D*..1....:....2....:....3....:....4....:....5....:....6....:....7..

D* MQSD Structure

D*

D* Structure identifier

D SDSID 1 4

D* Structure version number

D SDVER 5 8I 0

D* Options associated with subscribing

D SDOPT 9 12I 0

D* Object name

D SDON 13 60

D* Alternate user identifier

D SDAU 61 72

D* Alternate security identifier

D SDASI 73 112

D* Expiry of Subscription

D SDEXP 113 116I 0

D* Object Long name

D SDOSP 117 132*

D SDOSO 133 136I 0

D SDOSS 137 140I 0

D SDOSL 141 144I 0

D SDOSC 145 148I 0

D* Subscription name

D SDSNP 149 164*

D SDSNO 165 168I 0

D SDSNS 169 172I 0

D SDSNL 173 176I 0

D SDSNC 177 180I 0

D* Subscription User data

D SDSUDP 181 196*

D SDSUDO 197 200I 0

D SDSUDS 201 204I 0

D SDSUDL 205 208I 0

D SDSUDC 209 212I 0

D* Correlation Id related to this subscription

D SDCID 213 236

D* Priority set in publications

D SDPRI 237 240I 0

D* Accounting Token set in publications

D SDACC 241 272

D* Appl Identity Data set in publications

D SDAID 273 304

D* Message Selector

D SDSSP 305 320*

D SDSSO 321 324I 0

D SDSSS 325 328I 0

D SDSSL 329 332I 0

D SDSSC 333 336

Chapter 1. Data type descriptions 265

D* Subscription level

D SDSL 337 340 0

D* Resolved Long object name

D SDROP 341 356*

D SDROO 357 360I 0

D SDROS 361 364I 0

D SDROL 365 368I 0

D SDROC 369 372I 0

MQSMPO – Set message property options

The following table summarizes the fields in the structure.

 Table 68. Fields in MQSMPO

Field Description Topic

StrucId Structure identifier StrucId

Version Structure version number Version

Options Options Options

ValueEncoding Property value encoding ValueEncoding

ValueCCSID Property value character set ValueCCSID

Overview for MQSMPO

Availability: All WebSphere MQ systems and WebSphere MQ clients.

Purpose: The MQSMPO structure allows applications to specify options that

control how properties of messages are set. The structure is an input parameter on

the MQSETMP call.

Character set and encoding: Data in MQSMPO must be in the character set of the

application and encoding of the application (MQENC_NATIVE).

Fields for MQSMPO

The MQSMPO structure contains the following fields; the fields are described in

alphabetic order:

SPOPT (10-digit signed integer)

Location options: The following options relate to the relative location of the

property compared to the property cursor:

SPSETF

Sets the value of the first property that matches the specified name, or if it

does not exist, adds a new property after all other properties with a

matching hierarchy.

SPSETC

Sets the value of the property pointed to by the property cursor. The

property pointed to by the property cursor is the one that was last

inquired using either the MQIMPO_INQ_FIRST or the

MQIMPO_INQ_NEXT option.

 The property cursor is reset when the message handle is reused, or when

the message handle is specified in the MsgHandle field of the MQGMO or

MQPMO structure on an MQGET or MQPUT call respectively.

266 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

If this option is used when the property cursor has not yet been

established or if the property pointed to by the property cursor has been

deleted, the call fails with completion code MQCC_FAILED and reason

code MQRC_PROPERTY_NOT_AVAILABLE.

SPSETA

Sets a new property after the property pointed to by the property cursor.

The property pointed to by the property cursor is the one that was last

inquired using either the MQIMPO_INQ_FIRST or the

MQIMPO_INQ_NEXT option.

 The property cursor is reset when the message handle is reused, or when

the message handle is specified in the MsgHandle field of the MQGMO or

MQPMO structure on an MQGET or MQPUT call respectively.

If this option is used when the property cursor has not yet been

established or if the property pointed to by the property cursor has been

deleted, the call fails with completion code MQCC_FAILED and reason

code MQRC_PROPERTY_NOT_AVAILABLE.

If you need none of the options described, use the following option:

SPNONE

No options specified.

This is always an input field. The initial value of this field is SPSETF.

SPSID (10-digit signed integer)

This is the structure identifier; the value must be:

SPSIDV

 Identifier for set message property options structure.

This is always an input field. The initial value of this field is SPSIDV.

SPVAKCSI (10-digit signed integer)

The character set of the property value to be set if the value is a character string.

This is always an input field. The initial value of this field is MQCCSI_APPL.

SPVALENC (10-digit signed integer)

The encoding of the property value to be set if the value is numeric.

This is always an input field. The initial value of this field is MQENC_NATIVE.

SPVER (10-digit signed integer)

This is the structure version number; the value must be:

SPVER1

Version-1 set message property options structure.

The following constant specifies the version number of the current version:

SPVERC

Current version of set message property options structure.

Chapter 1. Data type descriptions 267

This is always an input field. The initial value of this field is SPVER1.

Initial values and RPG declaration

 Table 69. Initial values of fields in MQSMPO

Field name Name of constant Value of constant

SPSID SPSIDV ’SMPO’

SPVER SPVER1 1

SPOPT SPNONE 0

SPVALENC MQENC_NATIVE Depends on environment

SPVALCSI MQCCSI_APPL -3

Notes:

1. The value Null string or blanks denotes a blank character.

RPG declaration (copy file MQSMPOG)

 D* MQSMPO Structure

 D*

 D*

 D* Structure identifier

 D SPSID 1 4 INZ(’SMPO’)

 D*

 D* Structure version number

 D SPVER 5 8I 0 INZ(1)

 D*

 ** Options that control the action of

 D* MQSETMP

 D SPOPT 9 12I 0 INZ(0)

 D*

 D* Encoding of Value

 D SPVALENC 13 16I 0 INZ(273)

 D*

 D* Character set identifier of Value

 D SPVALCSI 17 20I 0 INZ(-3)

MQSRO - Subscription Request Options

 Field Description Topic

SRSID Structure identifier SRSID

SRVER Structure version number SRVER

SROPT Options SROPT

SRNMP Number of publications SRNMP

Overview

Purpose: The MQSRO structure allows the application to specify options that

control how a subscription request is made. The structure is an input/output

parameter on the MQSUBRQ call.

Version: The current version of MQSRO is SRVER1.

268 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Fields

The MQSRO structure contains the following fields; the fields are described in

alphabetical order:

SRNMP (10-digit signed integer)

This is an output field, returned to the application to indicate the number of

publications sent to the subscription queue as a result of this call. Although this

number of publications have been sent as a result of this call, there is no guarantee

that this many messages will be available for the application to get, especially if

they are non-persistent messages.

There may be more than one publication if the topic subscribed to contained a

wildcard. If no wildcards were present in the topic string when the subscription

represented by HSUB was created, then at most one publication is sent as a result of

this call.

SROPT (10-digit signed integer)

One of the following options must be specified. Only one option can be specified.

Other options: The following option controls what happens when the queue

manager is quiescing:

SRFIQ

 The MQSUBRQ call fails if the queue manager is in the quiescing state.

Default option: If the option described above is not required, the following option

must be used:

SRNONE

 Use this value to indicate that no other options have been specified; all

options assume their default values.

SRNONE helps program documentation. Although it is not intended that

this option be used with any other, because its value is zero, this use

cannot be detected.

SRSID (4-byte character string)

This is the structure identifier; the value must be:

SRSIDV

Identifier for Subscription Request SROPT structure.

This is always an input field. The initial value of this field is SRSIDV.

SRVER (10-digit signed integer)

This is the structure version number; the value must be:

SRVER1

Version-1 Subscription Request Options structure.

The following constant specifies the version number of the current version:

SRVERC

Current version of Subscription Request Options structure.

Chapter 1. Data type descriptions 269

This is always an input field. The initial value of this field is SRVER1.

Initial Values and RPG declaration

 Field name Name of constant Value of constant

SRSID SRSIDV ’SRO�’

SRVER SRVER1 1

SROPT SRNONE 0

SRNMP None 0

Notes:

1. The symbol � represents a single blank character.

2. The value Null string or blanks denotes the null string in C, and blank characters in

other programming languages.

RPG invocation

D*..1....:....2....:....3....:....4....:....5....:....6....:....7..

D* MQSRO Structure

D*

D* Structure identifier

D SRSID 1 4

D* Structure version number

D SRVER 5 8I 0

D* Options that control the action of MQSUBRQ

D SROPT 9 12I 0

D* Number of publications sent

D SRNMP 13 16I 0

MQSTS – Status reporting structure

The following table summarizes the fields in the structure.

 Table 70. Fields in MQTM

Field Description Topic

STSSID Structure identifier STSSID

STSVER Structure version number STSVER

STSCC Completion code of first error STSCC

STSRC Reason code of first error STSRC

STSSC Number of successful asynchronous calls STSSC

STSWC Number of asynchronous calls which had

warnings

STSWC

STSFC Number of failed asynchronous calls STSFC

STSOT Type of failing object STSOT

STSOBJN Name of failing object STSOBJN

STSOQMGR Name of queue manager owning the failing object STSOQMGR

STSROBJN Resolved name of destination queue STSROBJN

STSRQMGR Resolved name of destination queue manager STSRQMGR

270 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Overview

Purpose: The MQSTS structure describes the data in the status structure returned

by the MQSTAT command.

Character set and encoding: Character data in MQSTS is in the character set of the

local queue manager; this is given by the CodedCharSetId queue-manager attribute.

Numeric data in MQSTS is in the native machine encoding; this is given by

ENNAT.

Usage: The MQSTAT command is used to retrieve status information. This

information is returned in an MQSTS structure. For information about MQSTAT,

see “MQSTAT – Retrieve status information” on page 425.

Fields

The MQSTS structure contains the following fields; the fields are described in

alphabetic order:

STSCC (10-digit signed integer)

This is the completion code resulting from the first error reported in the MQSTS

structure.

This is always an output field. The initial value of this field is MQCC_OK.

STSPFC (10-digit signed integer)

This is the number of asynchronous put calls that failed.

This is an output field. The initial value of this field is 0.

STSOBJN (48-byte character string)

This is the local name of the object involved in the first failure.

This is an output field. The initial value of this field is 48 blank characters.

STSOQMGR (48-byte character string)

This is the name of the queue manager on which the STSOBJN object is defined. A

name that is entirely blank up to the first null character or the end of the field

denotes the queue manager to which the application is connected (the local queue

manager).

This is an output field. The initial value of this field is 48 blank characters.

STSOT (10-digit signed integer)

The type of object being named in ObjectName. Possible values are:

MQOT_ALIAS_Q

Alias queue.

MQOT_LOCAL_Q

Local queue.

Chapter 1. Data type descriptions 271

MQOT_MODEL_Q

Model queue.

MQOT_Q

Queue.

MQOT_REMOTE_Q

Remote queue.

MQOT_TOPIC

Topic.

This is always an output field. The initial value of this field is MQOT_Q.

STSRC (10-digit signed integer)

This is the reason code resulting from the first error reported in the MQSTS

structure

This is always an output field. The initial value of this field is MQRC_NONE.

STSROBJN (48-byte character string)

This is the name of the destination queue named in STSOBJN after the local queue

manager resolves the name. The name returned is the name of a queue that exists

on the queue manager identified by STSRQMGR.

A nonblank value is returned only if the object is a single queue opened for

browse, input, or output (or any combination). If the object opened is any of the

following, STSROBJN is set to blanks:

v A topic

v A queue, but not opened for browse, input, or output

This is an output field. The initial value of this field is 48 blank characters.

STSRQMGR (48-byte character string)

This is the name of the destination queue manager after the local queue manager

resolves the name. The name returned is the name of the queue manager that

owns the queue identified by STSROBJN. STSRQMGR can be the name of the local

queue manager.

If STSROBJN is a shared queue that is owned by the queue-sharing group to which

the local queue manager belongs, STSRQMGR is the name of the queue-sharing

group. If the queue is owned by some other queue-sharing group, STSROBJN can be

the name of the queue-sharing group or the name of a queue manager that is a

member of the queue-sharing group (the nature of the value returned is

determined by the queue definitions that exist at the local queue manager).

A nonblank value is returned only if the object is a single queue opened for

browse, input, or output (or any combination). If the object opened is any of the

following, STSRQMGR is set to blanks:

v A topic

v A queue, but not opened for browse, input, or output

v A cluster queue with MQOO_BIND_NOT_FIXED specified (or with

MQOO_BIND_AS_Q_DEF in effect when the DefBind queue attribute has the

value MQBND_BIND_NOT_FIXED)

272 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

This is an output field. The initial value of this field is 48 blank characters.

STSPSC (10-digit signed integer)

This is the number of asynchronous put calls that succeeded.

This is an output field. The initial value of this field is 0.

STSSID (4-byte character string)

This is the structure identifier. The value must be:

MQSTS_STRUC_ID

Identifier for status reporting structure.

The initial value of this field is MQSTS_STRUC_ID.

STSVER (10-digit signed integer)

This is the structure version number. The value must be:

MQSTS_VERSION_1

Version number for status reporting structure.

The following constant specifies the version number of the current version:

MQSTS_CURRENT_VERSION

Current version of status reporting structure.

The initial value of this field is MQSTS_VERSION_1.

STSPWC (10-digit signed integer)

This is the number of asynchronous put calls that completed with a warning.

This is an output field. The initial value of this field is 0.

Initial values and language declarations

 Table 71. Initial values of fields in MQSTS

Field name Name of constant Value of constant

STSSID MQSTS_STRUC_ID

STSVER MQSTS_CURRENT_VERSION MQSTS_VERSION_1

STSCC MQCC_OK 0

STSRC MQRC_NONE 0

STSSC None 0

STSWC None 0

STSFC None 0

STSOT None 0

STSOBJN None Blanks

STSOQMGR None Blanks

STSROBJN None Blanks

STSRQMGR None Blanks

Chapter 1. Data type descriptions 273

RPG declaration

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..

 D* MQSTS Structure

 D*

 D* Structure identifier

 D STSSID 1 4

 D* Structure version number

 D STSVER 5 8I 0

 D* Completion code

 D STSCC 9 12I 0

 D* Reason code

 D STSRC 13 16I 0

 D* Success count

 D STSSC 17 20I 0

 D* Warning count

 D STSWC 21 24I 0

 D* Failure count

 D STSFC 25 28I 0

 D* Object type

 D STSOT 29 32I 0

 D* Object name

 D STSOBJN 33 80

 D* Object queue manager

 D STSOQMGR 81 128

 D* Resolved object name

 D STSROBJN 129 176

 D* Resolved object queue manager name

 D STSRQMGR 177 224

MQTM – Trigger message

The following table summarizes the fields in the structure.

 Table 72. Fields in MQTM

Field Description Topic

TMSID Structure identifier TMSID

TMVER Structure version number TMVER

TMQN Name of triggered queue TMQN

TMPN Name of process object TMPN

TMTD Trigger data TMTD

TMAT Application type TMAT

TMAI Application identifier TMAI

TMED Environment data TMED

TMUD User data TMUD

Overview

Purpose: The MQTM structure describes the data in the trigger message that is

sent by the queue manager to a trigger-monitor application when a trigger event

occurs for a queue. This structure is part of the WebSphere MQ Trigger Monitor

Interface (TMI), which is one of the WebSphere MQ framework interfaces.

Format name: FMTM.

274 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Character set and encoding: Character data in MQTM is in the character set of the

queue manager that generates the MQTM. Numeric data in MQTM is in the

machine encoding of the queue manager that generates the MQTM.

The character set and encoding of the MQTM are given by the MDCSI and MDENC

fields in:

v The MQMD (if the MQTM structure is at the start of the message data), or

v The header structure that precedes the MQTM structure (all other cases).

Usage: A trigger-monitor application may need to pass some or all of the

information in the trigger message to the application which is started by the

trigger-monitor application. Information which may be needed by the started

application includes TMQN, TMTD, and TMUD. The trigger-monitor application can pass

the MQTM structure directly to the started application, or pass an MQTMC2

structure instead, depending on what is permitted by the environment and

convenient for the started application. For information about MQTMC2, see

“MQTMC2 – Trigger message 2 (character format)” on page 279.

v On i5/OS, the trigger-monitor application provided with WebSphere MQ passes

an MQTMC2 structure to the started application.

For information about triggers, see the WebSphere MQ Application Programming

Guide.

MQMD for a trigger message: The fields in the MQMD of a trigger message

generated by the queue manager are set as follows:

 Field in MQMD Value used

MDSID MDSIDV

MDVER MDVER1

MDREP RONONE

MDMT MTDGRM

MDEXP EIULIM

MDFB FBNONE

MDENC ENNAT

MDCSI Queue manager’s CodedCharSetId attribute

MDFMT FMTM

MDPRI Initiation queue’s DefPriority attribute

MDPER PENPER

MDMID A unique value

MDCID CINONE

MDBOC 0

MDRQ Blanks

MDRM Name of queue manager

MDUID Blanks

MDACC ACNONE

MDAID Blanks

MDPAT ATQM, or as appropriate for the message channel agent

MDPAN First 28 bytes of the queue manager name

MDPD Date when trigger message is sent

MDPT Time when trigger message is sent

MDAOD Blanks

An application that generates a trigger message is recommended to set similar

values, except for the following:

Chapter 1. Data type descriptions 275

v The MDPRI field can be set to PRQDEF (the queue manager will change this to

the default priority for the initiation queue when the message is put).

v The MDRM field can be set to blanks (the queue manager will change this to the

name of the local queue manager when the message it put).

v The context fields should be set as appropriate for the application.

Fields

The MQTM structure contains the following fields; the fields are described in

alphabetic order:

TMAI (256-byte character string)

Application identifier.

This is a character string that identifies the application to be started, and is used

by the trigger-monitor application that receives the trigger message. The queue

manager initializes this field with the value of the ApplId attribute of the process

object identified by the TMPN field; see “Attributes for process definitions” on page

468 for details of this attribute. The content of this data is of no significance to the

queue manager.

The meaning of TMAI is determined by the trigger-monitor application. The trigger

monitor provided by WebSphere MQ requires TMAI to be the name of an executable

program.

The length of this field is given by LNPROA. The initial value of this field is 256

blank characters.

TMAT (10-digit signed integer)

Application type.

This identifies the nature of the program to be started, and is used by the

trigger-monitor application that receives the trigger message. The queue manager

initializes this field with the value of the ApplType attribute of the process object

identified by the TMPN field; see “Attributes for process definitions” on page 468 for

details of this attribute. The content of this data is of no significance to the queue

manager.

TMAT can have one of the following standard values. User-defined types can also be

used, but should be restricted to values in the range ATUFST through ATULST:

ATCICS

CICS transaction.

ATVSE

CICS/VSE transaction.

AT400 i5/OS application.

ATUFST

Lowest value for user-defined application type.

ATULST

Highest value for user-defined application type.

The initial value of this field is 0.

276 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

TMED (128-byte character string)

Environment data.

This is a character string that contains environment-related information pertaining

to the application to be started, and is used by the trigger-monitor application that

receives the trigger message. The queue manager initializes this field with the

value of the EnvData attribute of the process object identified by the TMPN field; see

“Attributes for process definitions” on page 468 for details of this attribute. The

content of this data is of no significance to the queue manager.

The length of this field is given by LNPROE. The initial value of this field is 128

blank characters.

TMPN (48-byte character string)

Name of process object.

This is the name of the queue manager process object specified for the triggered

queue, and can be used by the trigger-monitor application that receives the trigger

message. The queue manager initializes this field with the value of the ProcessName

attribute of the queue identified by the TMQN field; see “Attributes for queues” on

page 437 for details of this attribute.

Names that are shorter than the defined length of the field are always padded to

the right with blanks; they are not ended prematurely by a null character.

The length of this field is given by LNPRON. The initial value of this field is 48

blank characters.

TMQN (48-byte character string)

Name of triggered queue.

This is the name of the queue for which a trigger event occurred, and is used by

the application started by the trigger-monitor application. The queue manager

initializes this field with the value of the QName attribute of the triggered queue; see

“Attributes for queues” on page 437 for details of this attribute.

Names that are shorter than the defined length of the field are padded to the right

with blanks; they are not ended prematurely by a null character.

The length of this field is given by LNQN. The initial value of this field is 48 blank

characters.

TMSID (4-byte character string)

Structure identifier.

The value must be:

TMSIDV

Identifier for trigger message structure.

The initial value of this field is TMSIDV.

Chapter 1. Data type descriptions 277

TMTD (64-byte character string)

Trigger data.

This is free-format data for use by the trigger-monitor application that receives the

trigger message. The queue manager initializes this field with the value of the

TriggerData attribute of the queue identified by the TMQN field; see “Attributes for

queues” on page 437 for details of this attribute. The content of this data is of no

significance to the queue manager.

The length of this field is given by LNTRGD. The initial value of this field is 64

blank characters.

TMUD (128-byte character string)

User data.

This is a character string that contains user information relevant to the application

to be started, and is used by the trigger-monitor application that receives the

trigger message. The queue manager initializes this field with the value of the

UserData attribute of the process object identified by the TMPN field; see “Attributes

for process definitions” on page 468 for details of this attribute. The content of this

data is of no significance to the queue manager.

The length of this field is given by LNPROU. The initial value of this field is 128

blank characters.

TMVER (10-digit signed integer)

Structure version number.

The value must be:

TMVER1

Version number for trigger message structure.

The following constant specifies the version number of the current version:

TMVERC

Current version of trigger message structure.

The initial value of this field is TMVER1.

Initial values and RPG declaration

 Table 73. Initial values of fields in MQTM

Field name Name of constant Value of constant

TMSID TMSIDV ’TM��’

TMVER TMVER1 1

TMQN None Blanks

TMPN None Blanks

TMTD None Blanks

TMAT None 0

TMAI None Blanks

278 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Table 73. Initial values of fields in MQTM (continued)

Field name Name of constant Value of constant

TMED None Blanks

TMUD None Blanks

Notes:

1. The symbol ‘�’ represents a single blank character.

RPG declaration (copy file CMQTMG)

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..

 D*

 D* MQTM Structure

 D*

 D* Structure identifier

 D TMSID 1 4 INZ(’TM ’)

 D* Structure version number

 D TMVER 5 8I 0 INZ(1)

 D* Name of triggered queue

 D TMQN 9 56 INZ

 D* Name of process object

 D TMPN 57 104 INZ

 D* Trigger data

 D TMTD 105 168 INZ

 D* Application type

 D TMAT 169 172I 0 INZ(0)

 D* Application identifier

 D TMAI 173 428 INZ

 D* Environment data

 D TMED 429 556 INZ

 D* User data

 D TMUD 557 684 INZ

MQTMC2 – Trigger message 2 (character format)

The following table summarizes the fields in the structure.

 Table 74. Fields in MQTMC2

Field Description Topic

TC2SID Structure identifier TC2SID

TC2VER Structure version number TC2VER

TC2QN Name of triggered queue TC2QN

TC2PN Name of process object TC2PN

TC2TD Trigger data TC2TD

TC2AT Application type TC2AT

TC2AI Application identifier TC2AI

TC2ED Environment data TC2ED

TC2UD User data TC2UD

TC2QMN Queue manager name TC2QMN

Overview

Purpose: When a trigger-monitor application retrieves a trigger message (MQTM)

from an initiation queue, the trigger monitor may need to pass some or all of the

Chapter 1. Data type descriptions 279

information in the trigger message to the application that is started by the trigger

monitor. Information that may be needed by the started application includes TC2QN,

TC2TD, and TC2UD. The trigger monitor application can pass the MQTM structure

directly to the started application, or pass an MQTMC2 structure instead,

depending on what is permitted by the environment and convenient for the started

application.

This structure is part of the WebSphere MQ Trigger Monitor Interface (TMI), which

is one of the WebSphere MQ framework interfaces.

Character set and encoding: Character data in MQTMC2 is in the character set of

the local queue manager; this is given by the CodedCharSetId queue manager

attribute.

Usage: The MQTMC2 structure is very similar to the format of the MQTM

structure. The difference is that the non-character fields in MQTM are changed in

MQTMC2 to character fields of the same length, and the queue manager name is

added at the end of the structure.

v On i5/OS, the trigger monitor application provided with WebSphere MQ passes

an MQTMC2 structure to the started application.

Fields

The MQTMC2 structure contains the following fields; the fields are described in

alphabetic order:

TC2AI (256-byte character string)

Application identifier.

See the TMAI field in the MQTM structure.

TC2AT (4-byte character string)

Application type.

This field always contains blanks, whatever the value in the TMAT field in the

MQTM structure of the original trigger message.

TC2ED (128-byte character string)

Environment data.

See the TMED field in the MQTM structure.

TC2PN (48-byte character string)

Name of process object.

See the TMPN field in the MQTM structure.

TC2QMN (48-byte character string)

Queue manager name.

This is the name of the queue manager at which the trigger event occurred.

280 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

TC2QN (48-byte character string)

Name of triggered queue.

See the TMQN field in the MQTM structure.

TC2SID (4-byte character string)

Structure identifier.

The value must be:

TCSIDV

Identifier for trigger message (character format) structure.

TC2TD (64-byte character string)

Trigger data.

See the TMTD field in the MQTM structure.

TC2UD (128-byte character string)

User data.

See the TMUD field in the MQTM structure.

TC2VER (4-byte character string)

Structure version number.

The value must be:

TCVER2

Version 2 trigger message (character format) structure.

The following constant specifies the version number of the current version:

TCVERC

Current version of trigger message (character format) structure.

Initial values and RPG declaration

 Table 75. Initial values of fields in MQTMC2

Field name Name of constant Value of constant

TC2SID TCSIDV ’TMC�’

TC2VER TCVER2 ’���2’

TC2QN None Blanks

TC2PN None Blanks

TC2TD None Blanks

TC2AT None Blanks

TC2AI None Blanks

TC2ED None Blanks

TC2UD None Blanks

Chapter 1. Data type descriptions 281

Table 75. Initial values of fields in MQTMC2 (continued)

Field name Name of constant Value of constant

TC2QMN None Blanks

Notes:

1. The symbol ‘�’ represents a single blank character.

RPG declaration (copy file CMQTMC2G)

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..

 D* MQTMC2 Structure

 D*

 D* Structure identifier

 D TC2SID 1 4

 D* Structure version number

 D TC2VER 5 8

 D* Name of triggered queue

 D TC2QN 9 56

 D* Name of process object

 D TC2PN 57 104

 D* Trigger data

 D TC2TD 105 168

 D* Application type

 D TC2AT 169 172

 D* Application identifier

 D TC2AI 173 428

 D* Environment data

 D TC2ED 429 556

 D* User data

 D TC2UD 557 684

 D* Queue manager name

 D TC2QMN 685 732

MQWIH – Work information header

The following table summarizes the fields in the structure.

 Table 76. Fields in MQWIH

Field Description Topic

WISID Structure identifier WISID

WIVER Structure version number WIVER

WILEN Length of MQWIH structure WILEN

WIENC Numeric encoding of data that follows MQWIH WIENC

WICSI Character-set identifier of data that follows

MQWIH

WICSI

WIFMT Format name of data that follows MQWIH WIFMT

WIFLG Flags WIFLG

WISNM Service name WISNM

WISST Service step name WISST

WITOK Message token WITOK

WIRSV Reserved WIRSV

282 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Overview

Purpose: The MQWIH structure describes the information that must be present at

the start of a message that is to be handled by the z/OS workload manager.

Format name: FMWIH.

Character set and encoding: The fields in the MQWIH structure are in the

character set and encoding given by the MDCSI and MDENC fields in the header

structure that precedes MQWIH, or by those fields in the MQMD structure if the

MQWIH is at the start of the application message data.

The character set must be one that has single-byte characters for the characters that

are valid in queue names.

Usage: If a message is to be processed by the z/OS workload manager, the

message must begin with an MQWIH structure.

Fields

The MQWIH structure contains the following fields; the fields are described in

alphabetic order:

WICSI (10-digit signed integer)

Character-set identifier of data that follows MQWIH.

This specifies the character set identifier of the data that follows the MQWIH

structure; it does not apply to character data in the MQWIH structure itself.

On the MQPUT or MQPUT1 call, the application must set this field to the value

appropriate to the data. The following special value can be used:

CSINHT

Inherit character-set identifier of this structure.

 Character data in the data following this structure is in the same character

set as this structure.

The queue manager changes this value in the structure sent in the message

to the actual character-set identifier of the structure. Provided no error

occurs, the value CSINHT is not returned by the MQGET call.

CSINHT cannot be used if the value of the MDPAT field in MQMD is

ATBRKR.

The initial value of this field is CSUNDF.

WIENC (10-digit signed integer)

Numeric encoding of data that follows MQWIH.

This specifies the numeric encoding of the data that follows the MQWIH structure;

it does not apply to numeric data in the MQWIH structure itself.

On the MQPUT or MQPUT1 call, the application must set this field to the value

appropriate to the data.

Chapter 1. Data type descriptions 283

The initial value of this field is 0.

WIFLG (10-digit signed integer)

Flags

The value must be:

WINONE

No flags.

The initial value of this field is WINONE.

WIFMT (8-byte character string)

Format name of data that follows MQWIH.

This specifies the format name of the data that follows the MQWIH structure.

On the MQPUT or MQPUT1 call, the application must set this field to the value

appropriate to the data. The rules for coding this field are the same as those for the

MDFMT field in MQMD.

The length of this field is given by LNFMT. The initial value of this field is

FMNONE.

WILEN (10-digit signed integer)

Length of MQWIH structure.

The value must be:

WILEN1

Length of version-1 work information header structure.

The following constant specifies the length of the current version:

WILENC

Length of current version of work information header structure.

The initial value of this field is WILEN1.

WIRSV (32-byte character string)

Reserved.

This is a reserved field; it must be blank.

WISID (4-byte character string)

Structure identifier.

The value must be:

WISIDV

Identifier for work information header structure.

The initial value of this field is WISIDV.

284 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

WISNM (32-byte character string)

Service name.

This is the name of the service that is to process the message.

The length of this field is given by LNSVNM. The initial value of this field is 32

blank characters.

WISST (8-byte character string)

Service step name.

This is the name of the step of WISNM to which the message relates.

The length of this field is given by LNSVST. The initial value of this field is 8

blank characters.

WITOK (16-byte bit string)

Message token.

This is a message token that uniquely identifies the message.

For the MQPUT and MQPUT1 calls, this field is ignored. The length of this field is

given by LNMTOK. The initial value of this field is MTKNON.

WIVER (10-digit signed integer)

Structure version number.

The value must be:

WIVER1

Version-1 work information header structure.

The following constant specifies the version number of the current version:

WIVERC

Current version of work information header structure.

The initial value of this field is WIVER1.

Initial values and RPG declaration

 Table 77. Initial values of fields in MQWIH

Field name Name of constant Value of constant

WISID WISIDV ’WIH�’

WIVER WIVER1 1

WILEN WILEN1 120

WIENC None 0

WICSI CSUNDF 0

WIFMT FMNONE Blanks

WIFLG WINONE 0

Chapter 1. Data type descriptions 285

Table 77. Initial values of fields in MQWIH (continued)

Field name Name of constant Value of constant

WISNM None Blanks

WISST None Blanks

WITOK MTKNON Nulls

WIRSV None Blanks

Notes:

1. The symbol ‘�’ represents a single blank character.

RPG declaration (copy file CMQWIHG)

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..

 D*

 D* MQWIH Structure

 D*

 D* Structure identifier

 D WISID 1 4 INZ(’WIH ’)

 D* Structure version number

 D WIVER 5 8I 0 INZ(1)

 D* Length of MQWIH structure

 D WILEN 9 12I 0 INZ(120)

 D* Numeric encoding of data that followsMQWIH

 D WIENC 13 16I 0 INZ(0)

 D* Character-set identifier of data thatfollows MQWIH

 D WICSI 17 20I 0 INZ(0)

 D* Format name of data that followsMQWIH

 D WIFMT 21 28 INZ(’ ’)

 D* Flags

 D WIFLG 29 32I 0 INZ(0)

 D* Service name

 D WISNM 33 64 INZ

 D* Service step name

 D WISST 65 72 INZ

 D* Message token

 D WITOK 73 88 INZ(X’00000000000000-

 D 000000000000000000’)

 D* Reserved

 D WIRSV 89 120 INZ

MQXQH – Transmission-queue header

The following table summarizes the fields in the structure.

 Table 78. Fields in MQXQH

Field Description Topic

XQSID Structure identifier XQSID

XQVER Structure version number XQVER

XQRQ Name of destination queue XQRQ

XQRQM Name of destination queue manager XQRQM

XQMD Original message descriptor XQMD

Overview

Purpose: The MQXQH structure describes the information that is prefixed to the

application message data of messages when they are on transmission queues. A

286 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

transmission queue is a special type of local queue that temporarily holds

messages destined for remote queues (that is, destined for queues that do not

belong to the local queue manager). A transmission queue is denoted by the Usage

queue attribute having the value USTRAN.

Format name: FMXQH.

Character set and encoding: Data in MQXQH must be in the character set and

encoding of the local queue manager; these are given by the CodedCharSetId queue

manager attribute and ENNAT for the C programming language, respectively.

The character set and encoding of the MQXQH must be set into the MDCSI and

MDENC fields in:

v The separate MQMD (if the MQXQH structure is at the start of the message

data), or

v The header structure that precedes the MQXQH structure (all other cases).

Usage: A message that is on a transmission queue has two message descriptors:

v One message descriptor is stored separately from the message data; this is called

the separate message descriptor, and is generated by the queue manager when the

message is placed on the transmission queue. Some of the fields in the separate

message descriptor are copied from the message descriptor provided by the

application on the MQPUT or MQPUT1 call (see below for details).

The separate message descriptor is the one that is returned to the application in

the MSGDSC parameter of the MQGET call when the message is removed from the

transmission queue.

v A second message descriptor is stored within the MQXQH structure as part of

the message data; this is called the embedded message descriptor, and is a copy of

the message descriptor that was provided by the application on the MQPUT or

MQPUT1 call (with minor variations – see below for details).

The embedded message descriptor is always a version-1 MQMD. If the message

put by the application has nondefault values for one or more of the version-2

fields in the MQMD, an MQMDE structure follows the MQXQH, and is in turn

followed by the application message data (if any). The MQMDE is either:

– Generated by the queue manager (if the application uses a version-2 MQMD

to put the message), or

– Already present at the start of the application message data (if the application

uses a version-1 MQMD to put the message).
The embedded message descriptor is the one that is returned to the application

in the MSGDSC parameter of the MQGET call when the message is removed from

the final destination queue.

Fields in the separate message descriptor: The fields in the separate message

descriptor are set by the queue manager as shown below. If the queue manager

does not support the version-2 MQMD, a version-1 MQMD is used without loss of

function.

 Field in separate MQMD Value used

MDSID MDSIDV

MDVER MDVER2

Chapter 1. Data type descriptions 287

Field in separate MQMD Value used

MDREP Copied from the embedded message descriptor, but with the

bits identified by ROAUXM set to zero. (This prevents a

COA or COD report message being generated when a

message is placed on or removed from a transmission

queue.)

MDMT Copied from the embedded message descriptor.

MDEXP Copied from the embedded message descriptor.

MDFB Copied from the embedded message descriptor.

MDENC ENNAT

MDCSI Queue manager’s CodedCharSetId attribute.

MDFMT FMXQH

MDPRI Copied from the embedded message descriptor.

MDPER Copied from the embedded message descriptor.

MDMID A new value is generated by the queue manager. This

message identifier is different from the MDMID that the queue

manager may have generated for the embedded message

descriptor (see above).

MDCID The MDMID from the embedded message descriptor.

MDBOC 0

MDRQ Copied from the embedded message descriptor.

MDRM Copied from the embedded message descriptor.

MDUID Copied from the embedded message descriptor.

MDACC Copied from the embedded message descriptor.

MDAID Copied from the embedded message descriptor.

MDPAT ATQM

MDPAN First 28 bytes of the queue manager name.

MDPD Date when message was put on transmission queue.

MDPT Time when message was put on transmission queue.

MDAOD Blanks

MDGID GINONE

MDSEQ 1

MDOFF 0

MDMFL MFNONE

MDOLN OLUNDF

Fields in the embedded message descriptor: The fields in the embedded message

descriptor have the same values as those in the MSGDSC parameter of the MQPUT

or MQPUT1 call, with the exception of the following:

v The MDVER field always has the value MDVER1.

v If the MDPRI field has the value PRQDEF, it is replaced by the value of the

queue’s DefPriority attribute.

v If the MDPER field has the value PEQDEF, it is replaced by the value of the

queue’s DefPersistence attribute.

v If the MDMID field has the value MINONE, or the PMNMID option was specified,

or the message is a distribution-list message, MDMID is replaced by a new

message identifier generated by the queue manager.

When a distribution-list message is split into smaller distribution-list messages

placed on different transmission queues, the MDMID field in each of the new

embedded message descriptors is the same as that in the original distribution-list

message.

v If the PMNCID option was specified, MDCID is replaced by a new correlation

identifier generated by the queue manager.

288 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

v The context fields are set as indicated by the PM* options specified in the PMO

parameter; the context fields are:

– MDACC

– MDAID

– MDAOD

– MDPAN

– MDPAT

– MDPD

– MDPT

– MDUID

v The version-2 fields (if they were present) are removed from the MQMD, and

moved into an MQMDE structure, if one or more of the version-2 fields has a

nondefault value.

Putting messages on remote queues: When an application puts a message on a

remote queue (either by specifying the name of the remote queue directly, or by

using a local definition of the remote queue), the local queue manager:

v Creates an MQXQH structure containing the embedded message descriptor

v Appends an MQMDE if one is needed and is not already present

v Appends the application message data

v Places the message on an appropriate transmission queue

Putting messages directly on transmission queues: It is also possible for an

application to put a message directly on a transmission queue. In this case the

application must prefix the application message data with an MQXQH structure,

and initialize the fields with appropriate values. In addition, the MDFMT field in the

MSGDSC parameter of the MQPUT or MQPUT1 call must have the value FMXQH.

Character data in the MQXQH structure created by the application must be in the

character set of the local queue manager (defined by the CodedCharSetId queue

manager attribute), and integer data must be in the native machine encoding. In

addition, character data in the MQXQH structure must be padded with blanks to

the defined length of the field; the data must not be ended prematurely by using a

null character, because the queue manager does not convert the null and

subsequent characters to blanks in the MQXQH structure.

Note however that the queue manager does not check that an MQXQH structure is

present, or that valid values have been specified for the fields.

Getting messages from transmission queues: Applications that get messages from

a transmission queue must process the information in the MQXQH structure in an

appropriate fashion. The presence of the MQXQH structure at the beginning of the

application message data is indicated by the value FMXQH being returned in the

MDFMT field in the MSGDSC parameter of the MQGET call. The values returned in the

MDCSI and MDENC fields in the MSGDSC parameter indicate the character set and

encoding of the character and integer data in the MQXQH structure, respectively.

The character set and encoding of the application message data are defined by the

MDCSI and MDENC fields in the embedded message descriptor.

Chapter 1. Data type descriptions 289

Fields

The MQXQH structure contains the following fields; the fields are described in

alphabetic order:

XQMD (MQMD1)

Original message descriptor.

This is the embedded message descriptor, and is a close copy of the message

descriptor MQMD that was specified as the MSGDSC parameter on the MQPUT or

MQPUT1 call when the message was originally put to the remote queue.

Note: This is a version-1 MQMD.

The initial values of the fields in this structure are the same as those in the MQMD

structure.

XQRQ (48-byte character string)

Name of destination queue.

This is the name of the message queue that is the apparent eventual destination for

the message (this may prove not to be the actual eventual destination if, for

example, this queue is defined at XQRQM to be a local definition of another remote

queue).

If the message is a distribution-list message (that is, the MDFMT field in the

embedded message descriptor is FMDH), XQRQ is blank.

The length of this field is given by LNQN. The initial value of this field is 48 blank

characters.

XQRQM (48-byte character string)

Name of destination queue manager.

This is the name of the queue manager or queue-sharing group that owns the

queue that is the apparent eventual destination for the message.

If the message is a distribution-list message, XQRQM is blank.

The length of this field is given by LNQMN. The initial value of this field is 48

blank characters.

XQSID (4-byte character string)

Structure identifier.

The value must be:

XQSIDV

Identifier for transmission-queue header structure.

The initial value of this field is XQSIDV.

290 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

XQVER (10-digit signed integer)

Structure version number.

The value must be:

XQVER1

Version number for transmission-queue header structure.

The following constant specifies the version number of the current version:

XQVERC

Current version of transmission-queue header structure.

The initial value of this field is XQVER1.

Initial values and RPG declaration

 Table 79. Initial values of fields in MQXQH

Field name Name of constant Value of constant

XQSID XQSIDV ’XQH�’

XQVER XQVER1 1

XQRQ None Blanks

XQRQM None Blanks

XQMD Same names and values as MQMD;

see Table 45 on page 176

–

Notes:

1. The symbol ‘�’ represents a single blank character.

RPG declaration (copy file CMQXQHG):

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..

 D*

 D* MQXQH Structure

 D*

 D* Structure identifier

 D XQSID 1 4 INZ(’XQH ’)

 D* Structure version number

 D XQVER 5 8I 0 INZ(1)

 D* Name of destination queue

 D XQRQ 9 56 INZ

 D* Name of destination queue manager

 D XQRQM 57 104 INZ

 D* Original message descriptor

 D XQ1SID 105 108 INZ(’MD ’)

 D XQ1VER 109 112I 0 INZ(1)

 D XQ1REP 113 116I 0 INZ(0)

 D XQ1MT 117 120I 0 INZ(8)

 D XQ1EXP 121 124I 0 INZ(-1)

 D XQ1FB 125 128I 0 INZ(0)

 D XQ1ENC 129 132I 0 INZ(273)

 D XQ1CSI 133 136I 0 INZ(0)

 D XQ1FMT 137 144 INZ(’ ’)

 D XQ1PRI 145 148I 0 INZ(-1)

 D XQ1PER 149 152I 0 INZ(2)

 D XQ1MID 153 176 INZ(X’00000000000000-

 D 0000000000000000000000-

 D 000000000000’)

 D XQ1CID 177 200 INZ(X’00000000000000-

 D 0000000000000000000000-

Chapter 1. Data type descriptions 291

D 000000000000’)

 D XQ1BOC 201 204I 0 INZ(0)

 D XQ1RQ 205 252 INZ

 D XQ1RM 253 300 INZ

 D XQ1UID 301 312 INZ

 D XQ1ACC 313 344 INZ(X’00000000000000-

 D 0000000000000000000000-

 D 0000000000000000000000-

 D 000000’)

 D XQ1AID 345 376 INZ

 D XQ1PAT 377 380I 0 INZ(0)

 D XQ1PAN 381 408 INZ

 D XQ1PD 409 416 INZ

 D XQ1PT 417 424 INZ

 D XQ1AOD 425 428 INZ

292 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Chapter 2. Function calls

Call descriptions

This chapter describes the MQI calls:

v MQBACK – Back out changes

v MQBEGIN – Begin unit of work

v MQCLOSE – Close object

v MQCMIT – Commit changes

v MQCONN – Connect to queue manager

v MQCONNX – Connect queue

v MQDISC – Disconnect from queue manager

v MQGET – Get message

v MQINQ – Inquire about object attributes

v MQOPEN – Open object

v MQPUT – Put message

v MQPUT1 – Put one message

v MQSET – Set object attributes

Conventions used in the call descriptions

For each call, this chapter gives a description of the parameters and usage of the

call. This is followed by typical invocations of the call, and typical declarations of

its parameters, in the RPG programming language.

The description of each call contains the following sections:

Call name

The call name, followed by a brief description of the purpose of the call.

Parameters

For each parameter, the name is followed by its data type in parentheses

() and its direction; for example:

CMPCOD (9-digit decimal integer) — output

There is more information about the structure data types in “Elementary

data types” on page 1.

 The direction of the parameter can be:

Input You (the programmer) must provide this parameter.

Output

The call returns this parameter.

Input/output

You must provide this parameter, but it is modified by the call.

There is also a brief description of the purpose of the parameter, together

with a list of any values that the parameter can take.

© Copyright IBM Corp. 1994, 2008 293

The last two parameters in each call are a completion code and a reason

code. The completion code indicates whether the call completed

successfully, partially, or not at all. Further information about the partial

success or the failure of the call is given in the reason code.

Usage notes

Additional information about the call, describing how to use it and any

restrictions on its use.

RPG invocation

Typical invocation of the call, and declaration of its parameters, in RPG.

Other notational conventions are:

Constants

Names of constants are shown in uppercase; for example, OOOUT.

Arrays

In some calls, parameters are arrays of character strings whose size is not

fixed. In the descriptions of these parameters, a lowercase “n” represents a

numeric constant. When you code the declaration for that parameter,

replace the “n” with the numeric value you require.

MQBACK - Back out changes

The MQBACK call indicates to the queue manager that all of the message gets and

puts that have occurred since the last syncpoint are to be backed out. Messages put

as part of a unit of work are deleted; messages retrieved as part of a unit of work

are reinstated on the queue.

v On i5/OS, this call is not supported for applications running in compatibility

mode.

Syntax

Parameters

The MQBACK call has the following parameters.

HCONN (10-digit signed integer) – input

Connection handle.

This handle represents the connection to the queue manager. The value of HCONN

was returned by a previous MQCONN or MQCONNX call.

CMPCOD (10-digit signed integer) – output

Completion code.

It is one of the following:

CCOK

Successful completion.

MQBACK (HCONN, COMCOD, REASON)

294 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

CCFAIL

Call failed.

REASON (10-digit signed integer) – output

Reason code qualifying COMCOD.

If COMCOD is CCOK:

RCNONE

(0, X’000’) No reason to report.

If COMCOD is CCFAIL:

RC2219

(2219, X’8AB’) MQI call reentered before previous call complete.

RC2009

(2009, X’7D9’) Connection to queue manager lost.

RC2018

(2018, X’7E2’) Connection handle not valid.

RC2101

(2101, X’835’) Object damaged.

RC2123

(2123, X’84B’) Result of commit or back-out operation is mixed.

RC2162

(2162, X’872’) Queue manager shutting down.

RC2102

(2102, X’836’) Insufficient system resources available.

RC2071

(2071, X’817’) Insufficient storage available.

RC2195

(2195, X’893’) Unexpected error occurred.

Usage notes

1. This call can be used only when the queue manager itself coordinates the unit

of work. This is a local unit of work, where the changes affect only MQ

resources.

2. In environments where the queue manager does not coordinate the unit of

work, the appropriate back-out call must be used instead of MQBACK. The

environment may also support an implicit back out caused by the application

terminating abnormally.

v On i5/OS, this call can be used for local units of work coordinated by the

queue manager. This means that a commitment definition must not exist at

job level, that is, the STRCMTCTL command with the CMTSCOPE(*JOB) parameter

must not have been issued for the job.
3. If an application ends with uncommitted changes in a unit of work, the

disposition of those changes depends on whether the application ends normally

or abnormally. See the usage notes in “MQDISC - Disconnect queue manager”

on page 342 for further details.

4. When an application puts or gets messages in groups or segments of logical

messages, the queue manager retains information relating to the message group

Chapter 2. Function calls 295

and logical message for the last successful MQPUT and MQGET calls. This

information is associated with the queue handle, and includes such things as:

v The values of the MDGID, MDSEQ, MDOFF, and MDMFL fields in MQMD.

v Whether the message is part of a unit of work.

v For the MQPUT call: whether the message is persistent or nonpersistent.

The queue manager keeps three sets of group and segment information, one set

for each of the following:

v The last successful MQPUT call (this can be part of a unit of work).

v The last successful MQGET call that removed a message from the queue (this

can be part of a unit of work).

v The last successful MQGET call that browsed a message on the queue (this

cannot be part of a unit of work).
If the application puts or gets the messages as part of a unit of work, and the

application then decides to back out the unit of work, the group and segment

information is restored to the value that it had previously:

v The information associated with the MQPUT call is restored to the value that

it had prior to the first successful MQPUT call for that queue handle in the

current unit of work.

v The information associated with the MQGET call is restored to the value that

it had prior to the first successful MQGET call for that queue handle in the

current unit of work.

Queues which were updated by the application after the unit of work had

started, but outside the scope of the unit of work, do not have their group and

segment information restored if the unit of work is backed out.

Restoring the group and segment information to its previous value when a unit

of work is backed out allows the application to spread a large message group

or large logical message consisting of many segments across several units of

work, and to restart at the correct point in the message group or logical

message if one of the units of work fails. Using several units of work may be

advantageous if the local queue manager has only limited queue storage.

However, the application must maintain sufficient information to be able to

restart putting or getting messages at the correct point in the event that a

system failure occurs. For details of how to restart at the correct point after a

system failure, see the PMLOGO option described in “MQPMO – Put-message

options” on page 202, and the GMLOGO option described in “MQGMO –

Get-message options” on page 86.

The remaining usage notes apply only when the queue manager coordinates the

units of work:

1. A unit of work has the same scope as a connection handle. This means that all

MQ calls which affect a particular unit of work must be performed using the

same connection handle. Calls issued using a different connection handle (for

example, calls issued by another application) affect a different unit of work. See

the HCONN parameter described in “MQCONN - Connect queue manager” on

page 335 for information about the scope of connection handles.

2. Only messages that were put or retrieved as part of the current unit of work

are affected by this call.

3. A long-running application that issues MQGET, MQPUT, or MQPUT1 calls

within a unit of work, but which never issues a commit or backout call, can

cause queues to fill up with messages that are not available to other

applications. To guard against this possibility, the administrator should set the

MaxUncommittedMsgs queue manager attribute to a value that is low enough to

296 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

prevent runaway applications filling the queues, but high enough to allow the

expected messaging applications to work correctly.

RPG invocation

 C*..1....:....2....:....3....:....4....:....5....:....6....:....7..

 C CALLP MQBACK(HCONN : COMCOD : REASON)

The prototype definition for the call is:

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..

 DMQBACK PR EXTPROC(’MQBACK’)

 D* Connection handle

 D HCONN 10I 0 VALUE

 D* Completion code

 D COMCOD 10I 0

 D* Reason code qualifying COMCOD

 D REASON 10I 0

MQBEGIN - Begin unit of work

The MQBEGIN call begins a unit of work that is coordinated by the queue

manager, and that may involve external resource managers.

v This call is supported in the following environments: AIX, HP-UX, OS/2, i5/OS,

Solaris, Windows.

Syntax

Parameters

The MQBEGIN call has the following parameters.

HCONN (10-digit signed integer) – input

Connection handle.

This handle represents the connection to the queue manager. The value of HCONN

was returned by a previous MQCONN or MQCONNX call.

BEGOP (MQBO) – input/output

Options that control the action of MQBEGIN.

See “MQBO – Begin options” on page 16 for details.

If no options are required, programs written in C or S/390® assembler can specify

a null parameter address, instead of specifying the address of an MQBO structure.

CMPCOD (10-digit signed integer) – output

Completion code.

It is one of the following:

MQBEGIN (HCONN, BEGOP, CMPCOD, REASON)

Chapter 2. Function calls 297

CCOK

Successful completion.

CCWARN

Warning (partial completion).

CCFAIL

Call failed.

REASON (10-digit signed integer) – output

Reason code qualifying CMPCOD.

If CMPCOD is CCOK:

RCNONE

(0, X’000’) No reason to report.

If CMPCOD is CCWARN:

RC2121

(2121, X’849’) No participating resource managers registered.

RC2122

(2122, X’84A’) Participating resource manager not available.

If CMPCOD is CCFAIL:

RC2134

(2134, X’856’) Begin-options structure not valid.

RC2219

(2219, X’8AB’) MQI call reentered before previous call complete.

RC2009

(2009, X’7D9’) Connection to queue manager lost.

RC2012

(2012, X’7DC’) Call not valid in environment.

RC2018

(2018, X’7E2’) Connection handle not valid.

RC2046

(2046, X’7FE’) Options not valid or not consistent.

RC2162

(2162, X’872’) Queue manager shutting down.

RC2102

(2102, X’836’) Insufficient system resources available.

RC2071

(2071, X’817’) Insufficient storage available.

RC2195

(2195, X’893’) Unexpected error occurred.

RC2128

(2128, X’850’) Unit of work already started.

298 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Usage notes

1. The MQBEGIN call can be used to start a unit of work that is coordinated by

the queue manager and that may involve changes to resources owned by other

resource managers. The queue manager supports three types of unit-of-work:

Queue-manager-coordinated local unit of work

This is a unit of work in which the queue manager is the only resource

manager participating, and so the queue manager acts as the

unit-of-work coordinator.

v To start this type of unit of work, the PMSYP or GMSYP option

should be specified on the first MQPUT, MQPUT1, or MQGET call in

the unit of work.

It is not necessary for the application to issue the MQBEGIN call to

start the unit of work, but if MQBEGIN is used, the call completes

with CCWARN and reason code RC2121.

v To commit or back out this type of unit of work, the MQCMIT or

MQBACK call must be used.

Queue-manager-coordinated global unit of work

This is a unit of work in which the queue manager acts as the

unit-of-work coordinator, both for MQ resources and for resources

belonging to other resource managers. Those resource managers

cooperate with the queue manager to ensure that all changes to

resources in the unit of work are committed or backed out together.

v To start this type of unit of work, the MQBEGIN call must be used.

v To commit or back out this type of unit of work, the MQCMIT and

MQBACK calls must be used.

Externally-coordinated global unit of work

This is a unit of work in which the queue manager is a participant, but

the queue manager does not act as the unit-of-work coordinator.

Instead, there is an external unit-of-work coordinator with whom the

queue manager cooperates.

v To start this type of unit of work, the relevant call provided by the

external unit-of-work coordinator must be used.

If the MQBEGIN call is used to try to start the unit of work, the call

fails with reason code RC2012.

v To commit or back out this type of unit of work, the commit and

back-out calls provided by the external unit-of-work coordinator

must be used.

If the MQCMIT or MQBACK call is used to try to commit or back

out the unit of work, the call fails with reason code RC2012.
2. If the application ends with uncommitted changes in a unit of work, the

disposition of those changes depends on whether the application ends normally

or abnormally. See the usage notes in “MQDISC - Disconnect queue manager”

on page 342 for further details.

3. An application can participate in only one unit of work at a time. The

MQBEGIN call fails with reason code RC2128 if there is already a unit of work

in existence for the application, regardless of which type of unit of work it is.

4. The MQBEGIN call is not valid in an MQ client environment. An attempt to

use the call fails with reason code RC2012.

5. When the queue manager is acting as the unit-of-work coordinator for global

units of work, the resource managers that can participate in the unit of work

are defined in the queue manager’s configuration file.

Chapter 2. Function calls 299

6. On i5/OS, the three types of unit of work are supported as follows:

v Queue-manager-coordinated local units of work can be used only when a

commitment definition does not exist at the job level, that is, the STRCMTCTL

command with the CMTSCOPE(*JOB) parameter must not have been issued for

the job.

v Queue-manager-coordinated global units of work are not supported.

v Externally-coordinated global units of work can be used only when a

commitment definition exists at job level, that is, the STRCMTCTL command

with the CMTSCOPE(*JOB) parameter must have been issued for the job. If this

has been done, the i5/OS COMMIT and ROLLBACK operations apply to MQ

resources as well as to resources belonging to other participating resource

managers.

RPG invocation (ILE)

 C*..1....:....2....:....3....:....4....:....5....:....6....:....7..

 C CALLP MQBEGIN(HCONN : BEGOP : CMPCOD :

 C REASON)

The prototype definition for the call is:

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..

 DMQBEGIN PR EXTPROC(’MQBEGIN’)

 D* Connection handle

 D HCONN 10I 0 VALUE

 D* Options that control the action of MQBEGIN

 D BEGOP 12A

 D* Completion code

 D CMPCOD 10I 0

 D* Reason code qualifying CMPCOD

 D REASON 10I 0

MQBUFMH - Convert buffer into message handle

The MQBUFMH function call converts a buffer into a message handle and is the

inverse of the MQMHBUF call.

This call takes a message descriptor and MQRFH2 properties in the buffer and

makes them available through a message handle. The MQRFH2 properties in the

message data are, optionally, removed. The Encoding, CodedCharSetId, and Format

fields of the message descriptor are updated, if necessary, to correctly describe the

contents of the buffer after the properties have been removed.

Syntax for MQBUFMH

Parameters for MQBUFMH

The MQBUFMH call has the following parameters.

HCONN (10-digit signed integer) - output

This handle represents the connection to the queue manager. The value of HCONN

must match the connection handle that was used to create the message handle

specified in the Hmsg parameter.

MQBUFMH (Hconn, Hmsg, BufMsgHOpts, MsgDesc, Buffer, BufferLength, DataLength, CompCode, Reason)

300 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

If the message handle was created using MQHC_UNASSOCIATED_HCONN, a

valid connection must be established on the thread converting a buffer into a

message handle. If a valid connection is not established, the call fails with

MQRC_CONNECTION_BROKEN.

HMSG (10-digit signed integer) - output

This is the message handle for which a buffer is required. The value was returned

by a previous MQCRTMH call.

BMHOPT (10-digit signed integer) - output

The MQBMHO structure allows applications to specify options that control how

message handles are produced from buffers.

See “MQBMHO – Buffer to message handle options” on page 14 for details.

MSGDSC (10-digit signed integer) - output

The MSGDSC structure contains the message descriptor properties and describes the

contents of the buffer area.

On output from the call, the properties are optionally removed from the buffer area

and, in this case, the message descriptor is updated to correctly describe the buffer

area.

Data in this structure must be in the character set and encoding of the application.

BUFLEN (10-digit signed integer) - output

BUFLEN is the length of the Buffer area, in bytes.

A BUFLEN of zero bytes is valid, and indicates that the buffer area contains no data.

BUFFER (10-digit signed integer) - output

BUFFER defines the area containing the message buffer. For most data, you should

align the buffer on a 4-byte boundary.

If BUFFER contains character or numeric data, set the CodedCharSetId and Encoding

fields in the MSGDSC parameter to the values appropriate to the data; this enables

the data to be converted, if necessary.

If properties are found in the message buffer they are optionally removed; they

later become available from the message handle on return from the call.

In the C programming language, the parameter is declared as a pointer-to-void,

which means the address of any type of data can be specified as the parameter.

If the BUFLEN parameter is zero, BUFFER is not referred to; in this case, the

parameter address passed by programs written in C or System/390® assembler can

be null.

DATLEN (10-digit signed integer) - output

DATLEN is the length, in bytes, of the buffer which might have the properties

removed.

Chapter 2. Function calls 301

CMPCOD (10-digit signed integer) - output

The completion code; it is one of the following:

MQCC_OK

Successful completion.

MQCC_FAILED

Call failed.

REASON (10-digit signed integer) - output

The reason code qualifying CMPCOD.

If CMPCOD is MQCC_OK:

MQRC_NONE

(0, X’000’) No reason to report.

If CMPCOD is MQCC_FAILED:

RC2204

(2204, X’089C’) Adapter not available.

RC2130

(2130, X’852’) Unable to load adapter service module.

RC2157

(2157, X’86D’) Primary and home ASIDs differ.

RC2489

(2489, X’09B9’) Buffer to message handle options structure not valid.

RC2004

(2004, X’07D4’) Buffer parameter not valid.

RC2005

(2005, X’07D5’) Buffer length parameter not valid.

RC2219

(2219, X’08AB’) MQI call entered before previous call completed.

RC2009

(2009, X’07D9’) Connection to queue manager lost.

RC2460

(2460, X’099C’) Message handle not valid.

RC2026

(2026, X’07EA’) Message descriptor not valid.

RC2499

(2499, X’09C3’) Message handle already in use.

RC2046

(2046, X’07FE’) Options not valid or not consistent.

RC2334

(2334, X’091E’) MQRFH2 structure not valid.

RC2421

(2421, X’0975’) An MQRFH2 folder containing properties could not be

parsed.

302 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

RC2195

(2195, X’893’) Unexpected error occurred.

Usage notes for MQBUFMH

MQBUFMH calls cannot be intercepted by API exits – a buffer is converted into a

message handle in the application space; the call does not reach the queue

manager.

Language invocations for MQBUFMH

The MQBUFMH call is supported in the programming languages shown below.

C invocation

MQBUFMH (Hconn, Hmsg, &BufMsgHOpts, &MsgDesc, BufferLength, Buffer,

 &DataLength, &CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /* Connection handle */

MQHMSG Hmsg; /* Message handle */

MQBMHO BufMsgHOpts; /* Options that control the action of MQBUFMH */

MQMD MsgDesc; /* Message descriptor */

MQLONG BufferLength; /* Length in bytes of the Buffer area */

MQBYTE Buffer[n]; /* Area to contain the message buffer */

MQLONG DataLength; /* Length of the output buffer */

MQLONG CompCode; /* Completion code */

MQLONG Reason; /* Reason code qualifying CompCode */

COBOL invocation

CALL ‘MQBUFMH’ USING HCONN, HMSG, BUFMSGHOPTS, MSGDESC, BUFFERLENGTH,

 BUFFER, DATALENGTH, COMPCODE, REASON.

Declare the parameters as follows:

** Connection handle

 01 HCONN PIC S9(9) BINARY.

** Message handle

 01 HMSG PIC S9(19) BINARY.

** Options that control the action of MQBUFMH

 01 BUFMSGHOPTS.

 COPY CMQBMHOV.

** Message descriptor

 01 MSGDESC.

 COPY CMQMD.

** Length in bytes of the Buffer area

 01 BUFFERLENGTH PIC S9(9) BINARY.

** Area to contain the message buffer

 01 BUFFER PIC X(n).

** Length of the output buffer

 01 DATALENGTH PIC S9(9) BINARY.

** Completion code

 01 COMPCODE PIC S9(9) BINARY.

** Reason code qualifying COMPCODE

 01 REASON PIC S9(9) BINARY.

PL/I invocation

call MQBUFMH (Hconn, Hmsg, BufMsgHOpts, MsgDesc, BufferLength, Buffer,

 DataLength, CompCode, Reason);

Declare the parameters as follows:

Chapter 2. Function calls 303

dcl Hconn fixed bin(31); /* Connection handle */

dcl Hmsg fixed bin(63); /* Message handle */

dcl BufMsgHOpts like MQBMHO; /* Options that control the action of

 MQBUFMH */

dcl MsgDesc like MQMD; /* Message descriptor */

dcl BufferLength fixed bin(31); /* Length in bytes of the Buffer area */

dcl Buffer char(n); /* Area to contain the message buffer */

dcl DataLength fixed bin(31); /* Length of the output buffer */

dcl CompCode fixed bin(31); /* Completion code */

dcl Reason fixed bin(31); /* Reason code qualifying CompCode */

System/390 assembler invocation

CALL MQBUFMH,(HCONN,HMSG,BUFMSGHOPTS,MSGDESC,BUFFERLENGTH,BUFFER,

 DATALENGTH,COMPCODE,REASON)

Declare the parameters as follows:

HCONN DS F Connection handle

HMSG DS D Message handle

BUFMSGHOPTS CMQBMHOA , Options that control the action of MQBUFMH

MSGDESC CMQMDA , Message descriptor

BUFFERLENGTH DS F Length in bytes of the BUFFER area

BUFFER DS CL(n) Area to contain the properties

DATALENGTH DS F Length of the output buffer

COMPCODE DS F Completion code

REASON DS F Reason code qualifying COMPCODE

MQCB – Manage callback

Manage callback function

The MQCB call reregisters a callback for the specified object handle and controls

activation and changes to the callback.

A callback is a piece of code (specified as either the name of a function that can be

dynamically linked or as function pointer) that is called by WebSphere MQ when

certain events occur.

The types of callback that can be defined are:

Message consumer

A message consumer callback function is called when a message, meeting

the selection criteria specified, is available on an object handle.

 Only one cal back function can be registered against each object handle. If

a single queue is to be read with multiple selection criteria then the queue

must be opened multiple times and a consumer function registered on each

handle.

Event handler

The event handler is called for conditions that affect the whole callback

environment.

 The function is called when an event condition occurs, for example, a

queue manager or connection stopping or quiescing.

The function is not called for conditions that are specific to a single

message consumer, for example MQRC_GET_INHIBITED; it is called,

however, with reason MQRC_CALLBACK_FAILED if a callback function

does not end normally.

304 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Syntax for MQCB

Message callback function - syntax

Parameters for MQCB

The MQCB call has the following parameters. Manage callback function -

parameters

HCONN (10-digit signed integer) - input

Manage callback function - HCONN parameter

This handle represents the connection to the queue manager. The value of HCONN

was returned by a previous MQCONN or MQCONNX call.

On z/OS for CICS applications, and on i5/OS for applications running in

compatibility mode, you can specify the following special value for MQHC_DEF_HCONN

to use the connection handle associated with this execution unit.

OPERATN (10-digit signed integer) - input

Manage callback function - OPERATN parameter

The operation being processed on the callback defined for the specified object

handle. You must specify one of the following options; if more than one option is

required, the values can be:

v Added together (do not add the same constant more than once), or

v Combined using the bitwise OR operation (if the programming language

supports bit operations).

Combinations that are not valid are noted; all other combinations are valid.

MQOP_REGISTER

Define the callback function for the specified object handle. This operation

defines the function to be called and the selection criteria to be used.

 If a callback function is already defined for the object handle the definition

is replaced. If an error is detected whilst replacing the callback, the

function is deregistered.

If a callback is registered in the same callback function in which it was

previously deregistered, this is treated as a replace operation; any initial or

final calls are not invoked.

You can use MQOP_REGISTER in conjunction with MQOP_SUSPEND or

MQOP_RESUME.

MQOP_DEREGISTER

Stop the consuming of messages for the object handle and removes the

handle from those eligible for a callback.

 A callback is automatically deregistered if the associated handle is closed.

If MQOP_DEREGISTER is called from within a consumer, and the callback

has a stop call defined, it is invoked upon return from the consumer.

If this operation is issued against an Hobj with no registered consumer, the

call returns with MQRC_CALLBACK_NOT_REGISTERED.

MQCB (HCONN, OPERATN, HOBJ, CBDSC, MSGDSC,

GMO, CMPCOD, REASON)

Chapter 2. Function calls 305

MQOP_SUSPEND

Suspends the consuming of messages for the object handle.

 If this operation is applied to an event handler, the event handler does not

get events whilst suspended, and any events missed while in the

suspended state are not provided to the operation when it is resumed.

While suspended, the consumer function continues to get the control type

callbacks.

MQOP_RESUME

Resume the consuming of messages for the object handle.

 If this operation is applied to an event handler, the event handler does not

get events whilst suspended, and any events missed while in the

suspended state are not provided to the operation when it is resumed.

CBDSC (10-digit signed integer) - input

Manage callback function - CBDSC parameter

This is a structure that identifies the callback function that is being registered by

the application and the options used when registering it.

See MQCBD for details of the structure.

Callback descriptor is required only for the MQCB_REGISTER option; if the

descriptor is not required, the parameter address passed can be null.

HOBJ (10-digit signed integer) - input

Manage callback function - HOBJ parameter

This handle represents the access that has been established to the object from

which a message is to be consumed. This is a handle that has been returned from a

previous MQOPEN or MQSUB call (in the Hobj parameter).

Hobj is not required when defining an event handler routine

(MQCBT_EVENT_HANDLER) and should be specified as MQHO_NONE.

If this Hobj has been returned from an MQOPEN call, the queue must have been

opened with one or more of the following options:

v MQOO_INPUT_SHARED

v MQOO_INPUT_EXCLUSIVE

v MQOO_INPUT_AS_Q_DEF

v MQOO_BROWSE

MSGDSC (10-digit signed integer) - input

Manage callback function -MSGDSC parameter

This structure describes the attributes of the message required, and the attributes of

the message retrieved.

The MsgDesc parameter defines the attributes of the messages required by the

consumer, and the version of the MQMD to be passed to the message consumer.

The MsgId, CorrelId, GroupId, MsgSeqNumber, and Offset in the MQMD are used

for message selection, depending on the options specified in theGetMsgOpts

parameter.

306 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

com.ibm.mq.csqzak.doc/fr40500_.dita

The Encoding and CodedCharSetId are used for message conversion if you specify

the MQGMO_CONVERT option.

See MQMD for details.

MsgDesc is used only for MQOP_REGISTER and, if you require values other than

the default for any fields. MsgDesc is not used for an event handler.

If the descriptor is not required the parameter address passed can be null.

Note, that if multiple consumers are registered against the same queue with

overlapping selectors, the chosen consumer for each message is undefined.

GMO (10-digit signed integer) - input

Manage callback function - GMO parameter

Options that control how the message consumer gets messages.

All options have the meaning as described in “MQGMO – Get-message options”

on page 86, when used on an MQGET call, except:

MQGMO_SET_SIGNAL

This option is not permitted.

MQGMO_BROWSE_FIRST, MQGMO_BROWSE_NEXT, MQGMO_MARK_*

The order of messages delivered to a browsing consumer is dictated by the

combinations of these options. Significant combinations are:

MQGMO_BROWSE_FIRST

The first message on the queue is delivered repeatedly to the

consumer. This is useful when the consumer destructively

consumes the message in the callback. Use this option with care.

MQGMO_BROWSE_NEXT

The consumer is given each message on the queue, from the

current cursor position until the end of the queue is reached.

MQGMO_BROWSE_FIRST + MQGMO_BROWSE_NEXT

The cursor is reset to the start of the queue. The consumer is then

given each message until the cursor reaches the end of the queue.

MQGMO_BROWSE_FIRST + MQGMO_MARK_*

Starting at the beginning of the queue, the consumer is given the

first nonmarked message on the queue, which is then marked for

this consumer. This combination ensures that the consumer can

receive new messages added behind the current cursor point.

MQGMO_BROWSE_NEXT + MQGMO_MARK_*

Starting at the cursor position the consumer is given the next

nonmarked message on the queue, which is then marked for this

consumer. Use this combination with care because messages can be

added to the queue behind the current cursor position.

MQGMO_BROWSE_FIRST + MQGMO_BROWSE_NEXT +

MQGMO_MARK_*

This combination is not permitted, if used the call returns

MQRC_OPTIONS_ERROR.

MQGMO_NO_WAIT, MQGMO_WAIT and WaitInterval

These options control how the consumer is invoked.

Chapter 2. Function calls 307

MQGMO_NO_WAIT

The consumer is never called with MQRC_NO_MSG_AVAILABLE.

The consumer is only invoked for messages and events

MQGMO_WAIT with a zero WaitInterval

The MQRC_NO_MSGS_AVAILABLE code is only passed to the

consumer when there are no messages and

v the consumer has just been started

v the consumer has been delivered at least one message since the

last no messages reason code.

This prevents the consumer from polling in a busy loop when a

zero wait interval is specified.

MQGMO_WAIT and a positive WaitInterval

The user is invoked after the specified wait interval with reason

code MQRC_NO_MSGS_AVAILABLE. This call is made regardless

of whether any messages have been delivered to the consumer.

This allows the user to perform heartbeat or batch type processing.

MQGMO_WAIT and WaitInterval of MQWI_UNLIMITED

This specifies an infinite wait before returning

MQRC_NO_MSGS_AVAILABLE. The consumer is never called

with MQRC_NO_MSG_AVAILABLE.

GetMsgOpts is used only for MQOP_REGISTER and, if you require values other

than the default for any fields. GetMsgOpts is not used for an event handler.

If the options are not required the parameter address passed can be null, this is

similar to specifying MQGMO_DEFAULT together with

MQGMO_FAIL_IF_QUIESCING.

If a message properties handle is provided in the MQGMO structure, a copy is

provided in the MQGMO structure that is passed into the consumer callback. On

return from the MQCB call, the application can delete the message properties

handle.

CMPCOD (10-digit signed integer) - output

Manage callback function - CMPCOD parameter

The completion code; it is one of the following:

MQCC_OK

Successful completion.

MQCC_WARNING

Warning (partial completion).

MQCC_FAILED

Call failed.

REASON (10-digit signed integer) - output

Manage callback function - REASON parameter

The reason codes listed below are the ones that the queue manager can return for

the REASON parameter.

If CMPCOD is MQCC_OK:

308 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

MQRC_NONE

(0, X’000’) No reason to report.

If CompCode is MQCC_FAILED:

RC2204

(2204, X’89C’) Adapter not available.

RC2133

(2133, X’855’) Unable to load data conversion services modules.

RC2130

(2130, X’852’) Unable to load adapter service module.

RC2374

(2374, X’946’) API exit failed.

RC2183

(2183, X’887’) Unable to load API exit.

RC2157

(2157, X’86D’) Primary and home ASIDs differ.

RC2005

(2005, X’7D5’) Buffer length parameter not valid.

RC2219

(2219, X’8AB’) MQI call entered before previous call complete.

RC2487

(2487, X’9B7’) Incorrect callback type field.

RC2448

(2448, X’990’) Unable to deregister, suspend, or resume because there is no

registered callback.

RC2486

(2486, X’9B6’) Either CallbackFunction or CallbackName must be specified

but not both.

RC2483

(2483, X’9B3’) Incorrect callback type field.

RC2484

(2484, X’9B4’) Incorrect MQCBD options field.

RC2140

(2140, X’85C’) Wait request rejected by CICS.

RC2009

(2009, X’7D9’) Connection to queue manager lost.

RC2217

(2217, X’8A9’) Not authorized for connection.

RC2202

(2202, X’89A’) Connection quiescing.

RC2203

(2203, X’89B’) Connection shutting down.

RC2207

(2207, X’89F’) Correlation-identifier error.

RC2010

(2010, X’7DA’) Data length parameter not valid.

Chapter 2. Function calls 309

RC2016

(2016, X’7E0’) Gets inhibited for the queue.

RC2351

(2351, X’92F’) Global units of work conflict.

RC2186

(2186, X’88A’) Get-message options structure not valid.

RC2353

(2353, X’931’) Handle in use for global unit of work.

RC2018

(2018, X’7E2’) Connection handle not valid.

RC2019

(2019, X’7E3’) Object handle not valid.

RC2259

(2259, X’8D3’) Inconsistent browse specification.

RC2245

(2245, X’8C5’) Inconsistent unit-of-work specification.

RC2246

(2246, X’8C6’) Message under cursor not valid for retrieval.

RC2352

(2352, X’930’) Global unit of work conflicts with local unit of work.

RC2247

(2247, X’8C7’) Match options not valid.

RC2485

(2485, X’9B4’) Incorrect MaxMsgLength field.

RC2026

(2026, X’7EA’) Message descriptor not valid.

RC2497

(2497, X’9C1’) The specified function entry point could not be found in the

module.

RC2496

(2496, X’9C0’) Module found, however it is of the wrong type; not 32 bit,

64 bit, or a valid dynamic link library.

RC2495

(2495, X’9BF’) Module not found in the search path or not authorized to

load.

RC2250

(2250, X’8CA’) Message sequence number not valid.

RC2331

(2331, X’91B’) Use of message token not valid.

RC2033

(2033, X’7F1’) No message available.

RC2034

(2034, X’7F2’) Browse cursor not positioned on message.

RC2036

(2036, X’7F4’) Queue not open for browse.

310 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

RC2037

(2037, X’7F5’) Queue not open for input.

RC2041

(2041, X’7F9’) Object definition changed since opened.

RC2101

(2101, X’835’) Object damaged.

RC2206

(2206, X’89E’) Incorrect operation code on API Call.

RC2046

(2046, X’7FE’) Options not valid or not consistent.

RC2193

(2193, X’891’) Error accessing page-set data set.

RC2052

(2052, X’804’) Queue has been deleted.

RC2394

(2394, X’95A’) Queue has wrong index type.

RC2058

(2058, X’80A’) Queue manager name not valid or not known.

RC2059

(2059, X’80B’) Queue manager not available for connection.

RC2161

(2161, X’871’) Queue manager quiescing.

RC2162

(2162, X’872’) Queue manager shutting down.

RC2102

(2102, X’836’) Insufficient system resources available.

RC2069

(2069, X’815’) Signal outstanding for this handle.

RC2071

(2071, X’817’) Insufficient storage available.

RC2109

(2109, X’83D’) Call suppressed by exit program.

RC2024

(2024, X’7E8’) No more messages can be handled within current unit of

work.

RC2072

(2072, X’818’) Syncpoint support not available.

RC2195

(2195, X’893’) Unexpected error occurred.

RC2354

(2354, X’932’) Enlistment in global unit of work failed.

RC2355

(2355, X’933’) Mixture of unit-of-work calls not supported.

RC2255

(2255, X’8CF’) Unit of work not available for the queue manager to use.

Chapter 2. Function calls 311

RC2090

(2090, X’82A’) Wait interval in MQGMO not valid.

RC2256

(2256, X’8D0’) Wrong version of MQGMO supplied.

RC2257

(2257, X’8D1’) Wrong version of MQMD supplied.

Usage notes for MQCB

MQCB function call - Usage notes

1. MQCB is used to define the action to be invoked for each message, matching

the specified criteria, available on the queue. When the action is processed,

either the message is removed from the queue and passed to the defined

message consumer, or a message token is provided, which is used to retrieve

the message.

2. MQCB can be used to define callback routines before starting consumption

with MQCTL or it can be used from within a callback routine.

3. To use MQCB from outside of a callback routine, you must first suspend

message consumption by using MQCTL and resume consumption afterwards.

Message consumer callback sequence

You can configure a consumer to invoke callback at key points during the lifecycle

of the consumer. For example:

v when the consumer is first registered,

v when the connection is started,

v when the connection is stopped and

v when the consumer is deregistered, either explicitly, or implicitly by an

MQCLOSE.

This to allows the consumer to maintain state associated with the consumer. When

a callback is requested by an application, the rules for consumer invocation are as

follows:

Register

Is always the first type of invocation of the callback

 Is always called on the same thread, as the MQCB(REGISTER) call.

START

Is always called synchronously with the MQCTL(START) verb

v All START callbacks have completed before the MQCTL(START) verb

returns

Is on the same thread as the message delivery if THREAD_AFFINITY is

requested.

The call with start is not guaranteed if, for example, a previous callback

issues MQCTL(STOP) during the MQCTL(START).

STOP No further messages or events are delivered after this call until the

connection is restarted

 A STOP is guaranteed if the application was previously called for START,

or a message, or an event.

312 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Ensure that your application performs thread-based initialization and cleanup in

the START and STOP callbacks. You can do nonthread-based initialization and

cleaup with REGISTER and DEREGISTER callbacks.

Do not make any assumptions about the life and availability of the thread other

than what is stated. For example, do not rely on a thread staying alive beyond the

last call to DEREGISTER. Similarly, when you have chosen not to use

THREAD_AFFINITY, do not assume that the thread exists whenever the

connection is started.

If your application has particular requirements for thread characteristics, it can

always create a thread accordingly, then use MQCTL(MQOP_START_WAIT). This

has the effect of ‘donating’ the thread to MQ for asynchronous message delivery.

Message consumer connection usage

Normally, when an application issues another MQI call while one is outstanding,

the call fails with reason code MQRC_CALL_IN_PROGRESS.

There are special cases, however, when the application needs to issue a further

MQI call before the previous call has completed. For example, the consumer can be

invoked during an MQBC call with MQOP_REGISTER.

In such an instance, when as a result of the application issuing either an MQCB or

MQCTL verb, the application is called back, the application is allowed to issue a

further MQI call. This means you can issue, for example, an MQOPEN call, in the

consumer function when called with a CallType type of MQCBCT_REGISTER. Any

MQI call, with the exception of MQDISC, is allowed.

Language invocations for MQCB

Manage callback function - Language invocations

The MQCB call is supported in the following programming languages.

C invocation

MQCB function call - C language invocation

MQCB (Hconn, Operation, CallbackDesc, Hobj, MsgDesc,

GetMsgOpts, &CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /* Connection handle */

MQLONG Operation; /* Operation being processed */

MQCBD CallbackDesc; /* Callback descriptor */

MQHOBJ HObj /* Object handle */

MQMD MsgDesc /* Message descriptor attributes */

MQGMO GetMsgOpts /* Message options */

MQLONG CompCode; /* Completion code */

MQLONG Reason; /* Reason code qualifying CompCode */

MQCLOSE - Close object

The MQCLOSE call relinquishes access to an object, and is the inverse of the

MQOPEN call.

Chapter 2. Function calls 313

Syntax

Parameters

The MQCLOSE call has the following parameters.

HCONN (10-digit signed integer) – input

Connection handle.

This handle represents the connection to the queue manager. The value of HCONN

was returned by a previous MQCONN or MQCONNX call.

On i5/OS for applications running in compatibility mode, the MQCONN call can

be omitted, and the following value specified for HCONN:

HCDEFH

Default connection handle.

HOBJ (10-digit signed integer) – input/output

Object handle.

This handle represents the object that is being closed. The object can be of any

type. The value of HOBJ was returned by a previous MQOPEN call.

On successful completion of the call, the queue manager sets this parameter to a

value that is not a valid handle for the environment. This value is:

HOUNUH

Unusable object handle.

OPTS (10-digit signed integer) – input

Options that control the action of MQCLOSE.

The OPTS parameter controls how the object is closed. Only permanent dynamic

queues and subscriptions can be closed in more than one way. Permanent dynamic

queues can either be retained or deleted; these are queues whose DefinitionType

attribute has the value QDPERM (see the DefinitionType attribute described in

“Attributes for queues” on page 437). The close options are summarized in a table

later in this topic.

Durable subscriptions can either be kept or removed; these are created using the

MQSUB call with the SODUR option.

When closing the handle to a managed destination (that is the Hobj parameter

returned on an MQSUB call which used the SOMAN option) the queue manager

will clean up any un-retrieved publications when the associated subscription has

also been removed. That is done using the CORMSB option on the Hsub parameter

returned on an MQSUB call. Note that CORMSB is the default behaviour on

MQCLOSE for a non-durable subscription.

MQCLOSE (HCONN, HOBJ, OPTS, CMPCOD, REASON)

314 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

When closing a handle to a non-managed destination you are responsible for

cleaning up the queue where publications are sent. You are recommended to close

the subscription using CORMSB first and then process messages off the queue

until there are none left.

One (and only one) of the following must be specified:

Dynamic queue closure options:

CODEL

Delete the queue.

 The queue is deleted if either of the following is true:

v It is a permanent dynamic queue, created by a previous MQOPEN call,

and there are no messages on the queue and no uncommitted get or put

requests outstanding for the queue (either for the current task or any

other task).

v It is the temporary dynamic queue that was created by the MQOPEN

call that returned HOBJ. In this case, all the messages on the queue are

purged.

In all other cases, including the case where the Hobj was returned on an

MQSUB call, the call fails with reason code RC2045, and the object is not

deleted.

COPURG

Delete the queue, purging any messages on it.

 The queue is deleted if either of the following is true:

v It is a permanent dynamic queue, created by a previous MQOPEN call,

and there are no uncommitted get or put requests outstanding for the

queue (either for the current task or any other task).

v It is the temporary dynamic queue that was created by the MQOPEN

call that returned HOBJ.

In all other cases, including the case where the Hobj was returned on an

MQSUB call, the call fails with reason code RC2045, and the object is not

deleted.

The next table shows which close options are valid, and whether the object is

retained or deleted.

 Table 80. Valid close options for use with retained or deleted objects

Type of object or queue CONONE CODEL COPURG

Object other than a queue Retained Not valid Not valid

Predefined queue Retained Not valid Not valid

Permanent dynamic

queue

Retained Deleted if empty

and no pending

updates

Messages deleted; queue

deleted if no pending

updates

Temporary dynamic

queue (call issued by

creator of queue)

Deleted Deleted Deleted

Temporary dynamic

queue (call not issued by

creator of queue)

Retained Not valid Not valid

Distribution list Retained Not valid Not valid

Chapter 2. Function calls 315

Table 80. Valid close options for use with retained or deleted objects (continued)

Type of object or queue CONONE CODEL COPURG

Managed subscription

destination

Retained Not valid Not valid

Distribution list

(subscription has been

removed)

Messages

deleted; queue

deleted

Not valid Not valid

Subscription closure options: These options control whether durable subscriptions

are removed when the handle is closed, and whether publications still waiting to

be read by the application are cleaned up. These options are only valid for use

with an object handle returned in the HSUB parameter of an MQSUB call.

COKPSB

The handle to the subscription is closed but the subscription made is kept.

Publications will continue to be sent to the destination specified in the

subscription. This option is only valid if the subscription was made with

the option SODUR. COKPSB is the default if the subscription is durable

CORMSB

The subscription is removed and the handle to the subscription is closed.

 The Hobj parameter of the MQSUB call is not invalidated by closure of the

Hsub parameter and may continue to be used for MQGET or MQCB to

receive the remaining publications. When the Hobj parameter of the

MQSUB call is also closed, if it was a managed destination any

un-retrieved publications will be removed.

CORMSB is the default if the subscription is non-durable.

These subscription closure options are summarized in the following tables:

To close a durable subscription handle but leave the subscription around, use the

following subscription closure options:

 Task Subscription closure option

Keep publications on an MQOPENed handle COKPSB

Remove publications on an MQOPENed

handle

Action not allowed

Keep publications on a handle with SOMAN COKPSB

Remove publications on a handle with

SOMAN

Action not allowed

To unsubscribe, either by closing a durable subscription handle and unsubscribing

it or closing a non-durable subscription handle, use the following subscription

closure options:

 Task Subscription closure option

Keep publications on an MQOPENed handle CORMSB

Remove publications on an MQOPENed

handle

Action not allowed

Keep publications on a handle with SOMAN CORMSB

316 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Task Subscription closure option

Remove publications on a handle with

SOMAN

COPGSB

Default option:

If you require none of the options describes above, you can use the following

option.

CONONE

No optional close processing required.

 This must be specified for:

v Objects other than queues

v Predefined queues

v Temporary dynamic queues (but only in those cases where HOBJ is not

the handle returned by the MQOPEN call that created the queue).

v Distribution lists

In all of the above cases, the object is retained and not deleted.

If this option is specified for a temporary dynamic queue:

v The queue is deleted, if it was created by the MQOPEN call that

returned HOBJ; any messages that are on the queue are purged.

v In all other cases the queue (and any messages on it) are retained.

If this option is specified for a permanent dynamic queue, the queue is

retained and not deleted.

CMPCOD (10-digit signed integer) – output

Completion code.

It is one of the following:

CCOK

Successful completion.

CCWARN

Warning (partial completion).

CCFAIL

Call failed.

REASON (10-digit signed integer) – output

Reason code qualifying CMPCOD.

If CMPCOD is CCOK:

RCNONE

(0, X’000’) No reason to report.

If CMPCOD is CCWARN:

RC2241

(2241, X’8C1’) Message group not complete.

Chapter 2. Function calls 317

RC2242

(2242, X’8C2’) Logical message not complete.

If CMPCOD is CCFAIL:

RC2219

(2219, X’8AB’) MQI call reentered before previous call complete.

RC2009

(2009, X’7D9’) Connection to queue manager lost.

RC2018

(2018, X’7E2’) Connection handle not valid.

RC2019

(2019, X’7E3’) Object handle not valid.

RC2035

(2035, X’7F3’) Not authorized for access.

RC2101

(2101, X’835’) Object damaged.

RC2045

(2045, X’7FD’) Option not valid for object type.

RC2046

(2046, X’7FE’) Options not valid or not consistent.

RC2058

(2058, X’80A’) Queue manager name not valid or not known.

RC2059

(2059, X’80B’) Queue manager not available for connection.

RC2162

(2162, X’872’) Queue manager shutting down.

RC2055

(2055, X’807’) Queue contains one or more messages or uncommitted put

or get requests.

RC2102

(2102, X’836’) Insufficient system resources available.

RC2063

(2063, X’80F’) Security error occurred.

RC2071

(2071, X’817’) Insufficient storage available.

RC2195

(2195, X’893’) Unexpected error occurred.

Usage notes

1. When an application issues the MQDISC call, or ends either normally or

abnormally, any objects that were opened by the application and are still open

are closed automatically with the CONONE option.

2. The following points apply if the object being closed is a queue:

v If operations on the queue were performed as part of a unit of work, the

queue can be closed before or after the syncpoint occurs without affecting the

outcome of the syncpoint.

318 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

v If the queue was opened with the OOBRW option, the browse cursor is

destroyed. If the queue is subsequently reopened with the OOBRW option, a

new browse cursor is created (see the OOBRW option described in

MQOPEN).

v If a message is currently locked for this handle at the time of the MQCLOSE

call, the lock is released (see the GMLK option described in “MQGMO –

Get-message options” on page 86).
3. The following points apply if the object being closed is a dynamic queue (either

permanent or temporary):

v For a dynamic queue, the options CODEL or COPURG can be specified

regardless of the options specified on the corresponding MQOPEN call.

v When a dynamic queue is deleted, all MQGET calls with the GMWT option

that are outstanding against the queue are canceled and reason code RC2052

is returned. See the GMWT option described in “MQGMO – Get-message

options” on page 86.

After a dynamic queue has been deleted, any call (other than MQCLOSE)

that attempts to reference the queue using a previously acquired HOBJ handle

fails with reason code RC2052.

Be aware that although a deleted queue cannot be accessed by applications,

the queue is not removed from the system, and associated resources are not

freed, until such time as all handles that reference the queue have been

closed, and all units of work that affect the queue have been either

committed or backed out.

v When a permanent dynamic queue is deleted, if the HOBJ handle specified on

the MQCLOSE call is not the one that was returned by the MQOPEN call

that created the queue, a check is made that the user identifier which was

used to validate the MQOPEN call is authorized to delete the queue. If the

OOALTU option was specified on the MQOPEN call, the user identifier

checked is the ODAU.

This check is not performed if:

– The handle specified is the one returned by the MQOPEN call that created

the queue.

– The queue being deleted is a temporary dynamic queue.
v When a temporary dynamic queue is closed, if the HOBJ handle specified on

the MQCLOSE call is the one that was returned by the MQOPEN call that

created the queue, the queue is deleted. This occurs regardless of the close

options specified on the MQCLOSE call. If there are messages on the queue,

they are discarded; no report messages are generated.

If there are uncommitted units of work that affect the queue, the queue and

its messages are still deleted, but this does not cause the units of work to fail.

However, as described above, the resources associated with the units of work

are not freed until each of the units of work has been either committed or

backed out.
4. The following points apply if the object being closed is a distribution list:

v The only valid close option for a distribution list is CONONE; the call fails

with reason code RC2046 or RC2045 if any other options are specified.

v When a distribution list is closed, individual completion codes and reason

codes are not returned for the queues in the list – only the CMPCOD and REASON

parameters of the call are available for diagnostic purposes.

If a failure occurs closing one of the queues, the queue manager continues

processing and attempts to close the remaining queues in the distribution

list. The CMPCOD and REASON parameters of the call are then set to return

Chapter 2. Function calls 319

information describing the failure. Thus it is possible for the completion code

to be CCFAIL, even though most of the queues were closed successfully. The

queue that encountered the error is not identified.

If there is a failure on more than one queue, it is not defined which failure is

reported in the CMPCOD and REASON parameters.
5. On i5/OS, if the application was connected implicitly when the first MQOPEN

call was issued, an implicit MQDISC occurs when the last MQCLOSE is issued.

Only applications running in compatibility mode can be connected implicitly;

other applications must issue the MQCONN or MQCONNX call to connect to

the queue manager explicitly.

RPG invocation

 C*..1....:....2....:....3....:....4....:....5....:....6....:....7..

 C CALLP MQCLOSE(HCONN : HOBJ : OPTS :

 C CMPCOD : REASON)

The prototype definition for the call is:

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..

 DMQCLOSE PR EXTPROC(’MQCLOSE’)

 D* Connection handle

 D HCONN 10I 0 VALUE

 D* Object handle

 D HOBJ 10I 0

 D* Options that control the action of MQCLOSE

 D OPTS 10I 0 VALUE

 D* Completion code

 D CMPCOD 10I 0

 D* Reason code qualifying CMPCOD

 D REASON 10I 0

MQCRTMH – Create message handle

The MQCRTMH call returns a message handle. An application can use it on

subsequent message queuing calls:

v Use the MQSETMP call to set a property of the message handle.

v Use the MQINQMP call to inquire on the value of a property of the message

handle.

v Use the MQDLTMP call to delete a property of the message handle.

The message handle can be used on the MQPUT and MQPUT1 calls to associate

the properties of the message handle with those of the message being put.

Similarly by specifying a message handle on the MQGET call, the properties of the

message being retrieved can be accessed using the message handle when the

MQGET call completes.

Use MQDLTMH to delete the message handle.

Syntax for MQCRTMH

Parameters for MQCRTMH

The MQCRTMH call has the following parameters.

MQCRTMH (Hconn, CrtMsgHOpts, Hmsg, CompCode, Reason)

320 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

HCONN (10-digit signed integer) - input

This handle represents the connection to the queue manager. The value of HCONN

was returned by a previous MQCONN or MQCONNX call. If the connection to the

queue manager ceases to be valid and no WebSphere MQ call is operating on the

message handle, MQDLTMH is implicitly called to delete the message.

Alternatively, you can specify the following value:

MQHC_UNASSOCIATED_HCONN

The connection handle does not represent a connection to any particular

queue manager.

 When this value is used, the message handle must be deleted with an

explicit call to MQDLTMH in order to release any storage allocated to it;

WebSphere MQ never implicitly deletes the message handle.

There must be at least one valid connection to a queue manager

established on the thread creating the message handle, otherwise the call

fails with MQRC_HCONN_ERROR.

On z/OS for CICS applications, and on i5/OS for applications running in

compatibility mode, the MQCONN call can be omitted, and you can specify the

following value for Hconn:

MQHC_DEF_CONN

Default connection handle

CRTOPT (10-digit signed integer) - input

The options that control the action of MQCRTMH. See MQCMHO for details.

HMSG (10-digit signed integer) - output

On output a message handle is returned that can be used to set, inquire and delete

properties of the message handle. Initially the message handle contains no

properties.

A message handle also has an associated message descriptor. Initially this contains

the default values. The values of the associated message descriptor fields can be set

and inquired using the MQSETMP and MQINQMP calls. The MQDLTMP call will

reset a field of the message descriptor back to its default value.

If the Hconn parameter is specified as the value

MQHC_UNASSOCIATED_HCONN then the returned message handle can be used

on MQGET, MQPUT, or MQPUT1 calls with any connection within the unit of

processing, but can only be in use by one WebSphere MQ call at a time. If the

handle is in use when a second WebSphere MQ call attempts to use the same

message handle, the second WebSphere MQ call fails with reason code

MQRC_MSG_HANDLE_IN_USE.

If the Hconn parameter is not MQHC_UNASSOCIATED_HCONN then the

returned message handle can only be used on the specified connection.

The same Hconn parameter value must be used on the subsequent MQI calls where

this message handle is used:

v MQDLTMH

v MQSETMP

Chapter 2. Function calls 321

v MQINQMP

v MQDLTMP

v MQMHBUF

v MQBUFMH

The returned message handle ceases to be valid when the MQDLTMH call is

issued for the message handle, or when the unit of processing that defines the

scope of the handle terminates. MQDLTMH is called implicitly if a specific

connection is supplied when the message handle is created and the connection to

the queue manager ceases to be valid, for example, if MQDBC is called..

CMPCOD (10-digit signed integer) - output

The completion code; it is one of the following:

MQCC_OK

Successful completion.

MQCC_FAILED

Call failed.

REASON (10-digit signed integer) - output

The reason code qualifying CMPCOD.

If CMPCOD is MQCC_OK:

MQRC_NONE

(0, X’000’) No reason to report.

If CMPCOD is MQCC_FAILED:

RC2204

(2204, X’089C’) Adapter not available.

RC2130

(2130, X’852’) Unable to load adapter service module.

RC2157

(2157, X’86D’) Primary and home ASIDs differ.

RC2219

(2219, X’08AB’) MQI call entered before previous call completed.

RC2461

(2461, X’099D’) Create message handle options structure not valid.

RC2273

(2273, X’7D9’) Connection to queue manager lost.

RC2017

(2017, X’07E1’) No more handles available.

RC2018

(2018, X’7E2’) Connection handle not valid.

RC2460

(2460, X’099C’) Message handle pointer not valid.

RC2046

(2046, X’07FE’) Options not valid or not consistent.

322 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

RC2071

(2071, X’817’) Insufficient storage available.

RC2195

(2195, X’893’) Unexpected error occurred.

See Chapter 5, “Return codes for i5/OS (ILE RPG),” on page 507 for more details.

Usage notes for MQCRTMH

1. You can use this call only when the queue manager itself coordinates the unit

of work. This can be:

v A local unit of work, where the changes affect only MQ resources.

v A global unit of work, where the changes can affect resources belonging to

other resource managers, as well as affecting MQ resources.

For further details about local and global units of work, see MQBEGIN – Begin

unit of work.

2. In environments where the queue manager does not coordinate the unit of

work, use the appropriate back-out call instead of MQBACK. The environment

might also support an implicit back out caused by the application terminating

abnormally.

v On z/OS, use the following calls:

– Batch programs (including IMS batch DL/I programs) can use the

MQBACK call if the unit of work affects only MQ resources. However, if

the unit of work affects both MQ resources and resources belonging to

other resource managers (for example, DB2®), use the SRRBACK call

provided by the z/OS Recoverable Resource Service (RRS). The SRRBACK

call backs out changes to resources belonging to the resource managers

that have been enabled for RRS coordination.

– CICS applications must use the EXEC CICS SYNCPOINT ROLLBACK command

to back out the unit of work. Do not use the MQBACK call for CICS

applications.

– IMS applications (other than batch DL/I programs) must use IMS calls

such as ROLB to back out the unit of work. Do not use the MQBACK call

for IMS applications (other than batch DL/I programs).
v On i5/OS, use this call for local units of work coordinated by the queue

manager. This means that a commitment definition must not exist at job

level, that is, the STRCMTCTL command with the CMTSCOPE(*JOB) parameter

must not have been issued for the job.
3. If an application ends with uncommitted changes in a unit of work, the

disposition of those changes depends on whether the application ends normally

or abnormally. See the usage notes in MQDISC – Disconnect queue manager for

further details.

4. When an application puts or gets messages in groups or segments of logical

messages, the queue manager retains information relating to the message group

and logical message for the last successful MQPUT and MQGET calls. This

information is associated with the queue handle, and includes such things as:

v The values of the GroupId, MsgSeqNumber, Offset, and MsgFlags fields in

MQMD.

v Whether the message is part of a unit of work.

v For the MQPUT call: whether the message is persistent or nonpersistent.

The queue manager keeps three sets of group and segment information, one set

for each of the following:

Chapter 2. Function calls 323

v The last successful MQPUT call (this can be part of a unit of work).

v The last successful MQGET call that removed a message from the queue (this

can be part of a unit of work).

v The last successful MQGET call that browsed a message on the queue (this

cannot be part of a unit of work).
If the application puts or gets the messages as part of a unit of work, and the

application then decides to back out the unit of work, the group and segment

information is restored to the value that it had previously:

v The information associated with the MQPUT call is restored to the value that

it had before the first successful MQPUT call for that queue handle in the

current unit of work.

v The information associated with the MQGET call is restored to the value that

it had before the first successful MQGET call for that queue handle in the

current unit of work.

Queues that were updated by the application after the unit of work started, but

outside the scope of the unit of work, do not have their group and segment

information restored if the unit of work is backed out.

Restoring the group and segment information to its previous value when a unit

of work is backed out allows the application to spread a large message group

or large logical message consisting of many segments across several units of

work, and to restart at the correct point in the message group or logical

message if one of the units of work fails. Using several units of work might be

advantageous if the local queue manager has only limited queue storage.

However, the application must maintain sufficient information to be able to

restart putting or getting messages at the correct point in the event that a

system failure occurs. For details of how to restart at the correct point after a

system failure, see the MQPMO_LOGICAL_ORDER option described in

MQPMO – Put-message options, and the MQGMO_LOGICAL_ORDER option

described in MQGMO – Get-message options.

The remaining usage notes apply only when the queue manager coordinates

the units of work:

5. A unit of work has the same scope as a connection handle. All MQ calls that

affect a particular unit of work must be performed using the same connection

handle. Calls issued using a different connection handle (for example, calls

issued by another application) affect a different unit of work. See the Hconn

parameter described in MQCONN – Connect queue manager for information

about the scope of connection handles.

6. Only messages that were put or retrieved as part of the current unit of work

are affected by this call.

7. A long-running application that issues MQGET, MQPUT, or MQPUT1 calls

within a unit of work, but that never issues a commit or backout call, can fill

queues with messages that are not available to other applications. To guard

against this possibility, the administrator must set the MaxUncommittedMsgs

queue-manager attribute to a value that is low enough to prevent runaway

applications filling the queues, but high enough to allow the expected

messaging applications to work correctly.

Language invocations for MQCRTMH

The MQCRTMH call is supported in the programming languages shown below.

324 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

C invocation

MQCRTMH (Hconn, &CrtMsgHOpts, &Hmsg, &CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /* Connection handle */

MQCMHO CrtMsgHOpts; /* Options that control the action of MQCRTMH */

MQHMSG Hmsg; /* Message handle */

MQLONG CompCode; /* Completion code */

MQLONG Reason; /* Reason code qualifying CompCode */

COBOL invocation

 CALL ’MQCRTMH’ USING HCONN, CRTMSGOPTS, HMSG, COMPCODE, REASON.

Declare the parameters as follows:

** Connection handle

 01 HCONN PIC S9(9) BINARY.

** Options that control the action of MQCRTMH

 01 CRTMSGHOPTS.

 COPY CMQCMHOV.

** Message handle

 01 HMSG PIC S9(19) BINARY.

** Completion code

 01 COMPCODE PIC S9(9) BINARY.

** Reason code qualifying COMPCODE

 01 REASON PIC S9(9) BINARY.

PL/I invocation

call MQCRTMH (Hconn, CrtMsgHOpts, Hmsg, CompCode, Reason);

Declare the parameters as follows:

dcl Hconn fixed bin(31); /* Connection handle */

dcl CrtMsgHOpts like MQCMHO; /* Options that control the action of MQCRTMH */

dcl Hmsg fixed bin(63); /* Message handle */

dcl CompCode fixed bin(31); /* Completion code */

dcl Reason fixed bin(31); /* Reason code qualifying CompCode */

System/390 assembler invocation

 CALL MQCRTMH,(HCONN,CRTMSGHOPTS,HMSG,COMPCODE,REASON)

Declare the parameters as follows:

HCONN DS F Connection handle

CRTMSGHOPTS CMQCMHOA , Options that control the action of MQCRTMH

HMSG DS D Message handle

COMPCODE DS F Completion code

REASON DS F Reason code qualifying COMPCODE

MQCTL – Control callback

The MQCTL call performs controlling actions on the object handles opened for a

connection. Control callback function

Syntax for MQCTL

Control callback function - syntax

MQCTL (Hconn, Operation, ControlOpts, CompCode, Reason)

Chapter 2. Function calls 325

Parameters for MQCTL

The MQCTL call has the following parameters. Control callback function -

parameters

HCONN (10-digit signed integer) - input

Control callback function - HCONN parameter

This handle represents the connection to the queue manager. The value of HCONN

was returned by a previous MQCONN or MQCONNX call.

On z/OS for CICS applications, and on i5/OS for applications running in

compatibility mode, the MQCONN call can be omitted, and you can specify the

following special value for HCONN:

MQHC_DEF_HCONN

Default connection handle.

OPERATN (10-digit signed integer) - input

Control callback function - OPERATN parameter

The operation being processed on the callback defined for the specified object

handle. You must specify one, and one only, of the following options:

MQOP_START

Start the consuming of messages for all defined message consumer

functions for the specified connection handle.

 Callbacks run on a thread started by the system, which is different from

any of the application threads.

This operation gives control of the provided connection handle to system.

The only MQI calls which can be issued by a thread other than the

consumer thread are:

v MQCTL with Operation MQOP_STOP

v MQCTL with Operation MQOP_SUSPEND

v MQDISC - This performs MQCTL with Operation MQOP_STOP before

disconnection the HConn.

MQRC_HCONN_ASYNC_ACTIVE is returned if a WebSphere MQ API call

is issued while the connection handle is started, and the call does not

originate from a message consumer function.

If a connection fails, this has the effect of stopping the conversation as soon

as possible. It is possible, therefore, for a WebSphere MQ API call being

issued on the main thread to receive the return code

MQRC_HCONN_ASYNC_ACTIVE for a while, followed by the return

code MQRC_CONNECTION_BROKEN when the connection reverts to the

stopped state.

This can be issued in a consumer function. For the same connection as the

callback routine, its only purpose is to cancel a previously issued

MQOP_STOP operation.

This option is not supported in the following environments: CICS on z/OS

or if the application is bound with a nonthreaded WebSphere MQ library.

MQOP_START_WAIT

Start the consuming of messages for all defined message consumer

functions for the specified connection handle.

326 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Message consumers run on the same thread and control is not returned to

the caller of MQCTL until:

v Released by the use of the MQCTL MQOP_STOP or MQOP_SUSPEND

operations, or

v All consumer routines have been deregistered or suspended.

If all consumers are deregistered or suspended, an implicit MQOP_STOP

operation is issued.

This option cannot be used from within a callback routine, either for the

current connection handle or any other connection handle. If the call is

attempted it returns with MQRC_ENVIRONMENT_ERROR.

If, at any time during an MQOP_START_WAIT operation there are no

registered, non-suspended consumers the call fails with a reason code of

MQRC_NO_CALLBACKS_ACTIVE.

If, during an MQOP_START_WAIT operation, the connection is suspended,

the MQCTL call returns a warning reason code of

MQRC_CONNECTION_SUSPENDED; at this point the connection remains

‘started’.

The application can choose to issue MQOP_STOP or MQOP_RESUME. In

this instance, the MQOP_RESUME operation blocks.

This option is not supported in a single threaded client.

MQOP_STOP

Stop the consuming of messages, and wait for all consumers to complete

their operations before this option completes. This operation releases the

connection handle.

 If issued from within a callback routine, this option does not take effect

until the routine exits. No more message consumer routines are called after

the consumer routines for messages already read have completed, and after

stop calls (if requested) to callback routines have been made.

If issued outside a callback routine, control does not return to the caller

until the consumer routines for messages already read have completed,

and after stop calls (if requested) to callbacks have been made. The

callbacks themselves, however, remain registered.

This function has no effect on read ahead messages. You must ensure that

consumers run MQCLOSE(MQCO_QUIESCE), from within the callback

function, to determine whether there are any further messages available to

be delivered.

MQOP_SUSPEND

Pause the consuming of messages. This operation releases the connection

handle.

 This does not have any effect on the reading ahead of messages for the

application. If you intend to stop consuming messages for a long period of

time, consider closing the queue and reopening it when consumption

should continue.

If issued from within a callback routine, it does not take effect until the

routine exits. No more message consumer routines will be called after the

current routine exits.

If issued outside a callback, control does not return to the caller until the

current consumer routine has completed and no more are called.

Chapter 2. Function calls 327

MQOP_RESUME

Resume the consuming of messages.

 This option is normally issued from the main application thread, but it can

also be used from within a callback routine to cancel an earlier suspension

request issued in the same routine.

If MQOP_RESUME is used to resume an MQOP_START_WAIT then the

operation blocks.

PCTLOP (10-digit signed integer) - input

Control callback function - PCTLOP parameter

Options that control the action of MQCTL

See MQCTLO for details of the structure.

CMPCOD (10-digit signed integer) - output

Control callback function -CMPCOD parameter

The completion code; it is one of the following:

MQCC_OK

Successful completion.

MQCC_WARNING

Warning (partial completion).

MQCC_FAILED

Call failed.

REASON (10-digit signed integer) - output

Control callback function - REASON parameter

The reason codes listed below are the ones that the queue manager can return for

the Reason parameter.

If CMPCOD is MQCC_OK:

MQRC_NONE

(0, X’000’) No reason to report.

If CMPCOD is MQCC_FAILED:

RC2133

(2133, X’855’) Unable to load data conversion services modules.

RC2204

(2204, X’89C’) Adapter not available.

RC2130

(2130, X’852’) Unable to load adapter service module.

RC2374

(2374, X’946’) API exit failed.

RC2183

(2183, X’887’) Unable to load API exit.

RC2157

(2157, X’86D’) Primary and home ASIDs differ.

328 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

RC2005

(2005, X’7D5’) Buffer length parameter not valid.

RC2487

(2487, X’9B7’) Unable to call the callback routine

RC2448

(2448, X’990’) Unable to Deregister, Suspend, or Resume because there is

no registered callback

RC2486

(2486, X’9B6’) Either, both CallbackFunction and CallbackName have been

specified on an MQOP_REGISTER call.

 Or either CallbackFunction or CallbackName have been specified but does

not match the currently registered callback function.

RC2483

(2483, X’9B3’) Incorrect CallBackType field.

RC2219

(2219, X’8AB’) MQI call entered before previous call complete.

RC2444

(2444, X’98C’) Option block is incorrect.

RC2484

(2484, X’9B4’) Incorrect MQCBD options field.

RC2140

(2140, X’85C’) Wait request rejected by CICS.

RC2009

(2009, X’7D9’) Connection to queue manager lost.

RC2217

(2217, X’8A9’) Not authorized for connection.

RC2202

(2202, X’89A’) Connection quiescing.

RC2203

(2203, X’89B’) Connection shutting down.

RC2207

(2207, X’89F’) Correlation-identifier error.

RC2016

(2016, X’7E0’) Gets inhibited for the queue.

RC2351

(2351, X’92F’) Global units of work conflict.

RC2186

(2186, X’88A’) Get-message options structure not valid.

RC2353

(2353, X’931’) Handle in use for global unit of work.

RC2018

(2018, X’7E2’) Connection handle not valid.

RC2019

(2019, X’7E3’) Object handle not valid.

Chapter 2. Function calls 329

RC2259

(2259, X’8D3’) Inconsistent browse specification.

RC2245

(2245, X’8C5’) Inconsistent unit-of-work specification.

RC2246

(2246, X’8C6’) Message under cursor not valid for retrieval.

RC2352

(2352, X’930’) Global unit of work conflicts with local unit of work.

RC2247

(2247, X’8C7’) Match options not valid.

RC2485

(2485, X’9B5’) Incorrect MaxMsgLength field

RC2026

(2026, X’7EA’) Message descriptor not valid.

RC2497

(2497, X’9C1’)The specified function entry point could not be found in the

module.

RC2496

(2496, X’9C0’) Module is found but is of the wrong type (32bit/64bit) or is

not a valid dll.

RC2495

(2495, X’9BF’) Module not found in the search path or not authorised to

load.

RC2206

(2206, X’89E’) Message-identifier error.

RC2250

(2250, X’8CA’) Message sequence number not valid.

RC2331

(2331, X’91B’) Use of message token not valid.

RC2036

(2036, X’7F4’) Queue not open for browse.

RC2037

(2037, X’7F5’) Queue not open for input.

RC2041

(2041, X’7F9’) Object definition changed since opened.

RC2101

(2101, X’835’) Object damaged.

RC2488

(2488, X’9B8’) Incorrect Operation code on API Call

RC2046

(2046, X’7FE’) Options not valid or not consistent.

RC2193

(2193, X’891’) Error accessing page-set data set.

RC2052

(2052, X’804’) Queue has been deleted.

330 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

RC2394

(2394, X’95A’) Queue has wrong index type.

RC2058

(2058, X’80A’) Queue manager name not valid or not known.

RC2059

(2059, X’80B’) Queue manager not available for connection.

RC2161

(2161, X’871’) Queue manager quiescing.

RC2162

(2162, X’872’) Queue manager shutting down.

RC2102

(2102, X’836’) Insufficient system resources available.

RC2069

(2069, X’815’) Signal outstanding for this handle.

RC2071

(2071, X’817’) Insufficient storage available.

RC2109

(2109, X’83D’) Call suppressed by exit program.

RC2072

(2072, X’818’) Syncpoint support not available.

RC2195

(2195, X’893’) Unexpected error occurred.

RC2354

(2354, X’932’) Enlistment in global unit of work failed.

RC2355

(2355, X’933’) Mixture of unit-of-work calls not supported.

RC2255

(2255, X’8CF’) Unit of work not available for the queue manager to use.

RC2090

(2090, X’82A’) Wait interval in MQGMO not valid.

RC2256

(2256, X’8D0’) Wrong version of MQGMO supplied.

RC2257

(2257, X’8D1’) Wrong version of MQMD supplied.

Usage notes for MQCTL

Control callback function - Usage notes

1. Callback routines must check the responses from all services they invoke, and if

the routine detects a condition that can not be resolved, it must issue an MQCB

MQOP_DEREGISTER command to prevent repeated calls to the callback

routine.

Language invocations for MQCTL

Control call backs function - Language invocations

The MQCTL call is supported in the programming languages shown below.

Chapter 2. Function calls 331

C invocation

MQCTL function call - C language invocation

MQCTL (Hconn, Operation, ControlOpts, &CompCode, &Reason)

Declare the parameters as follows:

MQHCONN Hconn; /* Connection handle */

MQLONG Operation; /* Operation being processed */

MQCTLO ControlOpts /* Options that control the action of MQCTL */

MQLONG CompCode; /* Completion code */

MQLONG Reason; /* Reason code qualifying CompCode */

MQCMIT - Commit changes

The MQCMIT call indicates to the queue manager that the application has reached

a syncpoint, and that all of the message gets and puts that have occurred since the

last syncpoint are to be made permanent. Messages put as part of a unit of work

are made available to other applications; messages retrieved as part of a unit of

work are deleted.

v On i5/OS, this call is not supported for applications running in compatibility

mode.

Syntax

Parameters

The MQCMIT call has the following parameters.

HCONN (10-digit signed integer) – input

Connection handle.

This handle represents the connection to the queue manager. The value of HCONN

was returned by a previous MQCONN or MQCONNX call.

COMCOD (10-digit signed integer) – output

Completion code.

It is one of the following:

CCOK

Successful completion.

CCWARN

Warning (partial completion).

CCFAIL

Call failed.

MQCMIT (HCONN, COMCOD, REASON)

332 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

REASON (10-digit signed integer) – output

Reason code qualifying COMCOD.

If COMCOD is CCOK:

RCNONE

(0, X’000’) No reason to report.

If COMCOD is CCWARN:

RC2003

(2003, X’7D3’) Unit of work backed out.

RC2124

(2124, X’84C’) Result of commit operation is pending.

If COMCOD is CCFAIL:

RC2219

(2219, X’8AB’) MQI call reentered before previous call complete.

RC2009

(2009, X’7D9’) Connection to queue manager lost.

RC2018

(2018, X’7E2’) Connection handle not valid.

RC2101

(2101, X’835’) Object damaged.

RC2123

(2123, X’84B’) Result of commit or back-out operation is mixed.

RC2162

(2162, X’872’) Queue manager shutting down.

RC2102

(2102, X’836’) Insufficient system resources available.

RC2071

(2071, X’817’) Insufficient storage available.

RC2195

(2195, X’893’) Unexpected error occurred.

Usage notes

1. This call can be used only when the queue manager itself coordinates the unit

of work. This is a local unit of work, where the changes affect only MQ

resources.

2. In environments where the queue manager does not coordinate the unit of

work, the appropriate commit call must be used instead of MQCMIT. The

environment may also support an implicit commit caused by the application

terminating normally.

v On i5/OS, this call can be used for local units of work coordinated by the

queue manager. This means that a commitment definition must not exist at

job level, that is, the STRCMTCTL command with the CMTSCOPE(*JOB) parameter

must not have been issued for the job.

Chapter 2. Function calls 333

3. If an application ends with uncommitted changes in a unit of work, the

disposition of those changes depends on whether the application ends normally

or abnormally. See the usage notes in “MQDISC - Disconnect queue manager”

on page 342 for further details.

4. When an application puts or gets messages in groups or segments of logical

messages, the queue manager retains information relating to the message group

and logical message for the last successful MQPUT and MQGET calls. This

information is associated with the queue handle, and includes such things as:

v The values of the MDGID, MDSEQ, MDOFF, and MDMFL fields in MQMD.

v Whether the message is part of a unit of work.

v For the MQPUT call: whether the message is persistent or nonpersistent.
When a unit of work is committed, the queue manager retains the group and

segment information, and the application can continue putting or getting

messages in the current message group or logical message.

Retaining the group and segment information when a unit of work is

committed allows the application to spread a large message group or large

logical message consisting of many segments across several units of work.

Using several units of work may be advantageous if the local queue manager

has only limited queue storage. However, the application must maintain

sufficient information to be able to restart putting or getting messages at the

correct point in the event that a system failure occurs. For details of how to

restart at the correct point after a system failure, see the PMLOGO option

described in “MQPMO – Put-message options” on page 202, and the GMLOGO

option described in “MQGMO – Get-message options” on page 86.

The remaining usage notes apply only when the queue manager coordinates the

units of work:

1. A unit of work has the same scope as a connection handle. This means that all

MQ calls which affect a particular unit of work must be performed using the

same connection handle. Calls issued using a different connection handle (for

example, calls issued by another application) affect a different unit of work. See

the HCONN parameter described in MQCONN for information about the scope of

connection handles.

2. Only messages that were put or retrieved as part of the current unit of work

are affected by this call.

3. A long-running application that issues MQGET, MQPUT, or MQPUT1 calls

within a unit of work, but which never issues a commit or back-out call, can

cause queues to fill up with messages that are not available to other

applications. To guard against this possibility, the administrator should set the

MaxUncommittedMsgs queue manager attribute to a value that is low enough to

prevent runaway applications filling the queues, but high enough to allow the

expected messaging applications to work correctly.

RPG invocation

 C*..1....:....2....:....3....:....4....:....5....:....6....:....7..

 C CALLP MQCMIT(HCONN : COMCOD : REASON)

The prototype definition for the call is:

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..

 DMQCMIT PR EXTPROC(’MQCMIT’)

 D* Connection handle

 D HCONN 10I 0 VALUE

 D* Completion code

334 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

D COMCOD 10I 0

 D* Reason code qualifying COMCOD

 D REASON 10I 0

MQCONN - Connect queue manager

The MQCONN call connects an application program to a queue manager. It

provides a queue manager connection handle, which is used by the application on

subsequent message queuing calls.

v On i5/OS, applications running in compatibility mode do not have to issue this

call. These applications are connected automatically to the queue manager when

they issue the first MQOPEN call. However, the MQCONN and MQDISC calls

are still accepted from i5/OS applications.

Other applications (that is, applications not running in compatibility mode) must

use the MQCONN or MQCONNX call to connect to the queue manager, and the

MQDISC call to disconnect from the queue manager. This is the recommended

style of programming.

On Websphere MQ for OS/2, Windows, UNIX, and i5/OS, each thread in an

application can connect to different queue managers. On other systems, all

concurrent connections within a process must be to the same queue manager.

Syntax

Parameters

The MQCONN call has the following parameters.

QMNAME (48-byte character string) – input

Name of queue manager.

This is the name of the queue manager to which the application wishes to connect.

The name can contain the following characters:

v Uppercase alphabetic characters (A through Z)

v Lowercase alphabetic characters (a through z)

v Numeric digits (0 through 9)

v Period (.), forward slash (/), underscore (_), percent (%)

The name must not contain leading or embedded blanks, but may contain trailing

blanks. A null character can be used to indicate the end of significant data in the

name; the null and any characters following it are treated as blanks. The following

restrictions apply in the environments indicated:

v On i5/OS, names containing lowercase characters, forward slash, or percent

must be enclosed in quotation marks when specified on commands. These

quotation marks must not be specified in the QMNAME parameter.

If the name consists entirely of blanks, the name of the default queue manager is

used.

MQCONN (QMNAME, HCONN, CMPCOD, REASON)

Chapter 2. Function calls 335

The name specified for QMNAME must be the name of a connectable queue manager.

Queue-sharing groups: On systems where several queue managers exist and are

configured to form a queue-sharing group, the name of the queue-sharing group

can be specified for QMNAME in place of the name of a queue manager. This allows

the application to connect to any queue manager that is available in the

queue-sharing group. The system can also be configured so that a blank QMNAME

causes connection to the queue-sharing group instead of to the default queue

manager.

If QMNAME specifies the name of the queue-sharing group, but there is also a queue

manager with that name on the system, connection is made to the latter in

preference to the former. Only if that connection fails is connection to one of the

queue managers in the queue-sharing group attempted.

If the connection is successful, the handle returned by the MQCONN or

MQCONNX call can be used to access all of the resources (both shared and

nonshared) that belong to the particular queue manager to which connection has

been made. Access to these resources is subject to the usual authorization controls.

If the application issues two MQCONN or MQCONNX calls in order to establish

concurrent connections, and one or both calls specifies the name of the

queue-sharing group, the second call may return completion code CCWARN and

reason code RC2002. This occurs when the second call connects to the same queue

manager as the first call.

Queue-sharing groups are supported only on z/OS. Connection to a queue-sharing

group is supported only in the batch, RRS batch, and TSO environments.

MQ client applications: For MQ client applications, a connection is attempted for

each client-connection channel definition with the specified queue manager name,

until one is successful. The queue manager, however, must have the same name as

the specified name. If an all-blank name is specified, each client-connection channel

with an all-blank queue manager name is tried until one is successful; in this case

there is no check against the actual name of the queue manager.

MQ client queue manager groups: If the specified name starts with an asterisk (*),

the actual queue manager to which connection is made may have a name that is

different from that specified by the application. The specified name (without the

asterisk) defines a group of queue managers that are eligible for connection. The

implementation selects one from the group by trying each one in turn, in

alphabetic order, until one is found to which a connection can be made. If none of

the queue managers in the group is available for connection, the call fails. Each

queue manager is tried once only. If an asterisk alone is specified for the name, an

implementation-defined default queue manager group is used.

Queue-manager groups are supported only for applications running in an

MQ-client environment; the call fails if a non-client application specifies a queue

manager name beginning with an asterisk. A group is defined by providing several

client connection channel definitions with the same queue manager name (the

specified name without the asterisk), to communicate with each of the queue

managers in the group. The default group is defined by providing one or more

client connection channel definitions, each with a blank queue manager name

(specifying an all-blank name therefore has the same effect as specifying a single

asterisk for the name for a client application).

336 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

After connecting to one queue manager of a group, an application can specify

blanks in the usual way in the queue manager name fields in the message and

object descriptors to mean the name of the queue manager to which the

application has actually connected (the local queue manager). If the application needs

to know this name, the MQINQ call can be issued to inquire the QMgrName queue

manager attribute.

Prefixing an asterisk to the connection name implies that the application is not

dependent on connecting to a particular queue manager in the group. Suitable

applications would be:

v Applications that put messages but do not get messages.

v Applications that put request messages and then get the reply messages from a

temporary dynamic queue.

Unsuitable applications would be those that need to get messages from a particular

queue at a particular queue manager; such applications should not prefix the name

with an asterisk.

Note that if an asterisk is specified, the maximum length of the remainder of the

name is 47 characters.

The length of this parameter is given by LNQMN.

HCONN (10-digit signed integer) – output

Connection handle.

This handle represents the connection to the queue manager. It must be specified

on all subsequent message queuing calls issued by the application. It ceases to be

valid when the MQDISC call is issued, or when the unit of processing that defines

the scope of the handle terminates.

The scope of the handle is restricted to the smallest unit of parallel processing

supported by the platform on which the application is running; the handle is not

valid outside the unit of parallel processing from which the MQCONN call was

issued.

v On i5/OS, the scope of the handle is the job issuing the call.

On i5/OS for applications running in compatibility mode, the value returned is:

HCDEFH

Default connection handle.

CMPCOD (10-digit signed integer) – output

Completion code.

It is one of the following:

CCOK

Successful completion.

CCWARN

Warning (partial completion).

CCFAIL

Call failed.

Chapter 2. Function calls 337

REASON (10-digit signed integer) – output

Reason code qualifying CMPCOD.

If CMPCOD is CCOK:

RCNONE

(0, X’000’) No reason to report.

If CMPCOD is CCWARN:

RC2002

(2002, X’7D2’) Application already connected.

If CMPCOD is CCFAIL:

RC2219

(2219, X’8AB’) MQI call reentered before previous call complete.

RC2267

(2267, X’8DB’) Unable to load cluster workload exit.

RC2009

(2009, X’7D9’) Connection to queue manager lost.

RC2018

(2018, X’7E2’) Connection handle not valid.

RC2035

(2035, X’7F3’) Not authorized for access.

RC2137

(2137, X’859’) Object not opened successfully.

RC2058

(2058, X’80A’) Queue manager name not valid or not known.

RC2059

(2059, X’80B’) Queue manager not available for connection.

RC2161

(2161, X’871’) Queue manager quiescing.

RC2162

(2162, X’872’) Queue manager shutting down.

RC2102

(2102, X’836’) Insufficient system resources available.

RC2063

(2063, X’80F’) Security error occurred.

RC2071

(2071, X’817’) Insufficient storage available.

RC2195

(2195, X’893’) Unexpected error occurred.

Usage notes

1. The queue manager to which connection is made using the MQCONN call is

called the local queue manager.

338 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

2. Queues that are owned by the local queue manager appear to the application

as local queues. It is possible to put messages on and get messages from these

queues.

Shared queues that are owned by the queue-sharing group to which the local

queue manager belongs appear to the application as local queues. It is possible

to put messages on and get messages from these queues.

Queues that are owned by remote queue managers appear as remote queues. It

is possible to put messages on these queues, but not possible to get messages

from these queues.

3. If the queue manager fails while an application is running, the application must

issue the MQCONN call again in order to obtain a new connection handle to

use on subsequent MQ calls. The application can issue the MQCONN call

periodically until the call succeeds.

If an application is not sure whether it is connected to the queue manager, the

application can safely issue an MQCONN call in order to obtain a connection

handle. If the application is already connected, the handle returned is the same

as that returned by the previous MQCONN call, but with completion code

CCWARN and reason code RC2002.

4. When the application has finished using MQ calls, the application should use

the MQDISC call to disconnect from the queue manager.

5. On i5/OS, applications written for releases prior to MQSeries V5.1 of the queue

manager can run without the need for recompilation.

6. This is a compatibility mode. This mode of operation provides a compatible

run-time environment for applications written using the dynamic linkage . It

comprises the following:

v The service program AMQZSTUB residing in the library QMQM.

AMQZSTUB provides the same public interface as previous releases, and has

the same signature. This service program can be used to access the MQI

through bound procedure calls.

v The program QMQM residing in the library QMQM.

QMQM provides a means of accessing the MQI through dynamic program

calls.

v Programs MQCLOSE, MQCONN, MQDISC, MQGET, MQINQ, MQOPEN,

MQPUT, MQPUT1, and MQSET residing in the library QMQM.

These programs also provide a means of accessing the MQI through dynamic

program calls, but with a parameter list that corresponds to the standard

descriptions of the MQ calls.
These three interfaces do not include capabilities that were introduced in

version 5.1. For example, the MQBACK, MQCMIT, and MQCONNX calls are

not supported. The support provided by these interfaces is for single-threaded

applications only.

Support for the static bound MQ calls in single-threaded applications, and for

all MQ calls in multi-threaded applications, is provided through the service

programs LIBMQM and LIBMQM_R respectively.

7. On i5/OS, programs that end abnormally are not automatically disconnected

from the queue manager. Therefore applications should be written to allow for

the possibility of the MQCONN or MQCONNX call returning completion code

CCWARN and reason code RC2002. The connection handle returned in this

situation can be used as normal.

Chapter 2. Function calls 339

RPG invocation

 C*..1....:....2....:....3....:....4....:....5....:....6....:....7..

 C CALLP MQCONN(QMNAME : HCONN : CMPCOD :

 C REASON)

The prototype definition for the call is:

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..

 DMQCONN PR EXTPROC(’MQCONN’)

 D* Name of queue manager

 D QMNAME 48A

 D* Connection handle

 D HCONN 10I 0

 D* Completion code

 D CMPCOD 10I 0

 D* Reason code qualifying CMPCOD

 D REASON 10I 0

MQCONNX - Connect queue manager (extended)

The MQCONNX call connects an application program to a queue manager. It

provides a queue manager connection handle, which is used by the application on

subsequent MQ calls.

The MQCONNX call is similar to the MQCONN call, except that MQCONNX

allows options to be specified to control the way that the call works.

v On i5/OS, this call is not supported for applications running in compatibility

mode.

On Websphere MQ for OS/2, Windows, UNIX, and i5/OS, each thread in an

application can connect to different queue managers. On other systems, all

concurrent connections within a process must be to the same queue manager.

Syntax

Parameters

The MQCONNX call has the following parameters.

QMNAME (48-byte character string) – input

Name of queue manager.

See the QMNAME parameter described in “MQCONN - Connect queue manager” on

page 335 for details.

CNOPT (MQCNO) – input/output

Options that control the action of MQCONNX.

See “MQCNO – Connect options” on page 53 for details.

MQCONNX (QMNAME, CNOPT, HCONN, CMPCOD, REASON)

340 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

HCONN (10-digit signed integer) – output

Connection handle.

See the HCONN parameter described in “MQCONN - Connect queue manager” on

page 335 for details.

CMPCOD (10-digit signed integer) – output

Completion code.

See the CMPCOD parameter described in “MQCONN - Connect queue manager” on

page 335 for details.

CONNID (10-digit signed integer) – output

Connection identifier.

The unique connection identifier associated with an application that is connected to

the queue manager (parameter identifier: MQBACF_CONNECTION_ID).

You must specify this parameter or the GenericConnectionId parameter (but not

both).

All connections are assigned a unique ID by the queue manager, regardless of how

the connection is established. If the connection is established by an MQCONNX

with a version 5 MQCNO, the application is able to determine the ConnectionId

from the returned MQCNO.

To specify a generic connection identifier, use the GenericConnectionId parameter

rather than this one. The only other valid value that ConnectionId can take is that

of a specific connection identifier.

The string length of the byte string must be MQ_CONNECTION_ID_LENGTH.

A zero length byte string, or one which contains only null bytes is the same as

asking for information about all connection identifiers. This is the only valid value

which GenericConnectionId can take. The maximum length of the byte string is

MQ_CONNECTION_ID_LENGTH.

REASON (10-digit signed integer) – output

Reason code qualifying CMPCOD.

See the REASON parameter described in “MQCONN - Connect queue manager” on

page 335 for details of possible reason codes.

The following additional reason codes can be returned by the MQCONNX call:

If CMPCOD is CCFAIL:

RC2278

(2278, X’8E6’) Client connection fields not valid.

RC2139

(2139, X’85B’) Connect-options structure not valid.

Chapter 2. Function calls 341

RC2046

(2046, X’7FE’) Options not valid or not consistent.

RPG invocation

 C*..1....:....2....:....3....:....4....:....5....:....6....:....7..

 C CALLP MQCONNX(QMNAME : CNOPT : HCONN :

 C CMPCOD : REASON)

The prototype definition for the call is:

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..

 DMQCONNX PR EXTPROC(’MQCONNX’)

 D* Name of queue manager

 D QMNAME 48A

 D* Options that control the action of MQCONNX

 D CNOPT 32A

 D* Connection handle

 D HCONN 10I 0

 D* Completion code

 D CMPCOD 10I 0

 D* Reason code qualifying CMPCOD

 D REASON 10I 0

MQDISC - Disconnect queue manager

The MQDISC call breaks the connection between the queue manager and the

application program, and is the inverse of the MQCONN or MQCONNX call.

v On i5/OS, applications running in compatibility mode do not need to issue this

call. See “MQCONN - Connect queue manager” on page 335 for more

information.

Syntax

Parameters

The MQDISC call has the following parameters.

HCONN (10-digit signed integer) – input/output

Connection handle.

This handle represents the connection to the queue manager. The value of HCONN

was returned by a previous MQCONN or MQCONNX call.

On i5/OS for applications running in compatibility mode, the MQCONN call can

be omitted, and the following value specified for HCONN:

HCDEFH

Default connection handle.

On successful completion of the call, the queue manager sets HCONN to a value that

is not a valid handle for the environment. This value is:

MQDISC (HCONN, CMPCOD, REASON)

342 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

HCUNUH

Unusable connection handle.

CMPCOD (10-digit signed integer) – output

Completion code.

It is one of the following:

CCOK

Successful completion.

CCWARN

Warning (partial completion).

CCFAIL

Call failed.

REASON (10-digit signed integer) – output

Reason code qualifying CMPCOD.

If CMPCOD is CCOK:

RCNONE

(0, X’000’) No reason to report.

If CMPCOD is CCFAIL:

RC2219

(2219, X’8AB’) MQI call reentered before previous call complete.

RC2009

(2009, X’7D9’) Connection to queue manager lost.

RC2018

(2018, X’7E2’) Connection handle not valid.

RC2058

(2058, X’80A’) Queue manager name not valid or not known.

RC2059

(2059, X’80B’) Queue manager not available for connection.

RC2162

(2162, X’872’) Queue manager shutting down.

RC2102

(2102, X’836’) Insufficient system resources available.

RC2071

(2071, X’817’) Insufficient storage available.

RC2195

(2195, X’893’) Unexpected error occurred.

Usage notes

1. If an MQDISC call is issued when the application still has objects open, those

objects are closed by the queue manager, with the close options set to

CONONE.

2. If the application ends with uncommitted changes in a unit of work, the

disposition of those changes depends on how the application ends:

Chapter 2. Function calls 343

a. If the application issues the MQDISC call before ending:

v For a queue manager-coordinated unit of work, the queue manager issues

the MQCMIT call on behalf of the application. The unit of work is

committed if possible, and backed out if not.

v For an externally-coordinated unit of work, there is no change in the

status of the unit of work; however, the queue manager will indicate that

the unit of work should be committed, when asked by the unit-of-work

coordinator.
b. If the application ends normally but without issuing the MQDISC call, the

unit of work is backed out.

c. If the application ends abnormally without issuing the MQDISC call, the unit

of work is backed out.
3. On i5/OS, applications running in compatibility mode do not have to issue this

call; see the MQCONN call for more details.

RPG invocation

 C*..1....:....2....:....3....:....4....:....5....:....6....:....7..

 C CALLP MQDISC(HCONN : CMPCOD : REASON)

The prototype definition for the call is:

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..

 DMQDISC PR EXTPROC(’MQDISC’)

 D* Connection handle

 D HCONN 10I 0

 D* Completion code

 D CMPCOD 10I 0

 D* Reason code qualifying CMPCOD

 D REASON 10I 0

MQDLTMH – Delete message handle

The MQDLTMH call deletes a message handle and is the inverse of the

MQCRTMH call.

Syntax for MQDLTMH

Parameters for MQDLTMH

The MQDLTMH call has the following parameters:

HCONN (10-digit signed integer) - input

This handle represents the connection to the queue manager.

The value must match the connection handle that was used to create the message

handle specified in the HMSG parameter.

If the message handle was created using MQHC_UNASSOCIATED_HCONN then

a valid connection must be established on the thread deleting the message handle,

otherwise the call fails with MQRC_CONNECTION_BROKEN.

MQDLTMH (Hconn, Hmsg, DltMsgHOpts, CompCode, Reason)

344 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

HMSG (10-digit signed integer) - input/output

This is the message handle to be deleted. The value was returned by a previous

MQCRTMH call.

On successful completion of the call, the handle is set to an invalid value for the

environment. This value is:

MQHM_UNUSABLE_HMSG

Unusable message handle.

The message handle cannot be deleted if another MQ call is in progress that was

passed the same message handle.

DLTOPT (10-digit signed integer) - input

See MQDMHO for details.

CMPCOD (10-digit signed integer) - output

The completion code; it is one of the following:

MQCC_OK

Successful completion.

MQCC_FAILED

Call failed.

REASON (10-digit signed integer) - output

The reason code qualifying CMPCOD.

If CMPCOD is MQCC_OK:

MQRC_NONE

(0, X’000’) No reason to report.

If CMPCOD is MQCC_FAILED:

RC2204

(2204, X’089C’) Adapter not available.

RC2130

(2130, X’852’) Unable to load adapter service module.

RC2157

(2157, X’86D’) Primary and home ASIDs differ.

RC2219

(2219, X’08AB’) MQI call entered before previous call completed.

RC2009

(2009, X’07D9’) Connection to queue manager lost.

RC2462

(2462, X’099E’) Delete message handle options structure not valid.

RC2460

(2460, X’099C’) Message handle pointer not valid.

RC2499

(2499, X’09C3’) Message handle already in use.

Chapter 2. Function calls 345

RC2046

(2046, X’07FE’) Options not valid or not consistent.

RC2071

(2071, X’817’) Insufficient storage available.

RC2195

(2195, X’893’) Unexpected error occurred.

See Chapter 5, “Return codes for i5/OS (ILE RPG),” on page 507 for more details.

Usage notes for MQDLTMH

1. You can use this call only when the queue manager itself coordinates the unit

of work. This can be:

v A local unit of work, where the changes affect only MQ resources.

v A global unit of work, where the changes can affect resources belonging to

other resource managers, as well as affecting MQ resources.

For further details about local and global units of work, see “MQBEGIN - Begin

unit of work” on page 297.

2. In environments where the queue manager does not coordinate the unit of

work, use the appropriate back-out call instead of MQBACK. The environment

might also support an implicit back out caused by the application terminating

abnormally.

v On z/OS, use the following calls:

– Batch programs (including IMS batch DL/I programs) can use the

MQBACK call if the unit of work affects only MQ resources. However, if

the unit of work affects both MQ resources and resources belonging to

other resource managers (for example, DB2), use the SRRBACK call

provided by the z/OS Recoverable Resource Service (RRS). The SRRBACK

call backs out changes to resources belonging to the resource managers

that have been enabled for RRS coordination.

– CICS applications must use the EXEC CICS SYNCPOINT ROLLBACK command

to back out the unit of work. Do not use the MQBACK call for CICS

applications.

– IMS applications (other than batch DL/I programs) must use IMS calls

such as ROLB to back out the unit of work. Do not use the MQBACK call

for IMS applications (other than batch DL/I programs).
v On i5/OS, use this call for local units of work coordinated by the queue

manager. This means that a commitment definition must not exist at job

level, that is, the STRCMTCTL command with the CMTSCOPE(*JOB) parameter

must not have been issued for the job.
3. If an application ends with uncommitted changes in a unit of work, the

disposition of those changes depends on whether the application ends normally

or abnormally. See the usage notes in “MQDISC - Disconnect queue manager”

on page 342 for further details.

4. When an application puts or gets messages in groups or segments of logical

messages, the queue manager retains information relating to the message group

and logical message for the last successful MQPUT and MQGET calls. This

information is associated with the queue handle, and includes such things as:

v The values of the GroupId, MsgSeqNumber, Offset, and MsgFlags fields in

MQMD.

v Whether the message is part of a unit of work.

v For the MQPUT call: whether the message is persistent or nonpersistent.

346 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

The queue manager keeps three sets of group and segment information, one set

for each of the following:

v The last successful MQPUT call (this can be part of a unit of work).

v The last successful MQGET call that removed a message from the queue (this

can be part of a unit of work).

v The last successful MQGET call that browsed a message on the queue (this

cannot be part of a unit of work).
If the application puts or gets the messages as part of a unit of work, and the

application then decides to back out the unit of work, the group and segment

information is restored to the value that it had previously:

v The information associated with the MQPUT call is restored to the value that

it had before the first successful MQPUT call for that queue handle in the

current unit of work.

v The information associated with the MQGET call is restored to the value that

it had before the first successful MQGET call for that queue handle in the

current unit of work.

Queues that were updated by the application after the unit of work started, but

outside the scope of the unit of work, do not have their group and segment

information restored if the unit of work is backed out.

Restoring the group and segment information to its previous value when a unit

of work is backed out allows the application to spread a large message group

or large logical message consisting of many segments across several units of

work, and to restart at the correct point in the message group or logical

message if one of the units of work fails. Using several units of work might be

advantageous if the local queue manager has only limited queue storage.

However, the application must maintain sufficient information to be able to

restart putting or getting messages at the correct point in the event that a

system failure occurs. For details of how to restart at the correct point after a

system failure, see the MQPMO_LOGICAL_ORDER option described in

“MQPMO – Put-message options” on page 202, and the

MQGMO_LOGICAL_ORDER option described in “MQGMO – Get-message

options” on page 86.

The remaining usage notes apply only when the queue manager coordinates

the units of work:

5. A unit of work has the same scope as a connection handle. All MQ calls that

affect a particular unit of work must be performed using the same connection

handle. Calls issued using a different connection handle (for example, calls

issued by another application) affect a different unit of work. See the Hconn

parameter described in “MQCONN - Connect queue manager” on page 335 for

information about the scope of connection handles.

6. Only messages that were put or retrieved as part of the current unit of work

are affected by this call.

7. A long-running application that issues MQGET, MQPUT, or MQPUT1 calls

within a unit of work, but that never issues a commit or backout call, can fill

queues with messages that are not available to other applications. To guard

against this possibility, the administrator must set the MaxUncommittedMsgs

queue-manager attribute to a value that is low enough to prevent runaway

applications filling the queues, but high enough to allow the expected

messaging applications to work correctly.

Language invocations for MQDLTMH

The call is supported in the programming languages shown below.

Chapter 2. Function calls 347

C invocation

Parameters used for the C invocation of MQDLTMH.

MQDLTMH (Hconn, &Hmsg, &DltMsgHOpts, &CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /* Connection handle */

MQHMSG Hmsg; /* Message handle */

MQDMHO DltMsgHOpts; /* Options that control the action of MQDLTMH */

MQLONG CompCode; /* Completion code */

MQLONG Reason; /* Reason code qualifying CompCode */

COBOL invocation

Parameters used for the COBOL invocation of MQDLTMH.

 CALL ’MQDLTMH’ USING HCONN, HMSG, DLTMSGOPTS, COMPCODE, REASON.

Declare the parameters as follows:

** Connection handle

 01 HCONN PIC S9(9) BINARY.

** Message handle

 01 HMSG PIC S9(19) BINARY.

** Options that control the action of MQDLTMH

 01 DLTMSGHOPTS.

 COPY CMQDMHOV.

** Completion code

 01 COMPCODE PIC S9(9) BINARY.

** Reason code qualifying COMPCODE

 01 REASON PIC S9(9) BINARY.

PL/I invocation

Parameters used for the PL/I invocation of MQDLTMH.

call MQDLTMH (Hconn, Hmsg, DltMsgHOpts, CompCode, Reason);

Declare the parameters as follows:

dcl Hconn fixed bin(31); /* Connection handle */

dcl Hmsg fixed bin(63); /* Message handle */

dcl DltMsgHOpts like MQDMHO; /* Options that control the action of MQDLTMH */

dcl CompCode fixed bin(31); /* Completion code */

dcl Reason fixed bin(31); /* Reason code qualifying CompCode */

System/390 assembler invocation

Parameters used for the System/390 assembler invocation of MQDLTMH.

 CALL MQDLTMH,(HCONN,HMSG,DLTMSGHOPTS,COMPCODE,REASON)

Declare the parameters as follows:

HCONN DS F Connection handle

HMSG DS D Message handle

DLTMSGHOPTS CMQDMHOA , Options that control the action of MQDLTMH

COMPCODE DS F Completion code

REASON DS F Reason code qualifying COMPCODE

MQDLTMP - Delete message property

The MQDLTMP call deletes a property from a message handle and is the inverse

of the MQSETMP call.

348 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Syntax for MQDLTMP

Parameters for MQDLTMP

The MQDLTMP call has the following parameters.

HCONN (10-digit signed integer) - Input

This handle represents the connection to the queue manager. The value must

match the connection handle that was used to create the message handle specified

in the HMSG parameter.

If the message handle was created using MQHC_UNASSOCIATED_HCONN then

a valid connection must be established on the thread deleting the message handle

otherwise the call fails with MQRC_CONNECTION_BROKEN.

HMSG (10-digit signed integer) - input

This is the message handle containing the property to be deleted. The value was

returned by a previous MQCRTMH call.

DLTOPT (10-digit signed integer) - Input

See the MQDMPO data type for details.

PRNAME (10-digit signed integer) - input

The name of the property to delete. See the WebSphere MQ Application

Programming Guide for further information on property names.

Wildcards are not allowed in the property name.

CMPCOD (10-digit signed integer) - output

The completion code; it is one of the following:

MQCC_OK

Successful completion.

MQCC_WARNING

Warning (partial completion).

MQCC_FAILED

Call failed.

REASON (10-digit signed integer) - output

The reason code qualifying CMPCOD.

If CMPCOD is MQCC_OK:

MQRC_NONE

(0, X’000’) No reason to report.

If CMPCOD is MQCC_WARNING:

MQDLTMP (Hconn, Hmsg, DltPropOpts, Name, CompCode, Reason)

Chapter 2. Function calls 349

RC2471

(2471, X’09A7’) Property not available.

RC2421

(2421, X’0975’) An MQRFH2 folder containing properties could not be

parsed.

If CMPCOD is MQCC_FAILED:

RC2204

(2204, X’089C’) Adapter not available.

RC2130

(2130, X’0852’) Unable to load adapter service module.

RC2157

(2157, X’086D’) Primary and home ASIDs differ.

RC2219

(2219, X’08AB’) MQI call entered before previous call completed.

RC2009

(2009, X’07D9’) Connection to queue manager lost.

RC2481

(2481, X’09B1’) Delete message property options structure not valid.

RC2460

(2460, X’099C’) Message handle not valid.

RC2499

(2499, X’09C3’) Message handle already in use.

RC2046

(2046, X’07FE’) Options not valid or not consistent.

RC2442

(2442, X’098A’) Invalid property name.

RC2111

(2111, X’083F’) Property name coded character set identifier not valid.

RC2195

(2195, X’0893’) Unexpected error occurred.

For detailed information on these codes, see:

v WebSphere MQ for z/OS Messages and Codes for WebSphere MQ for z/OS

v WebSphere MQ Messages for all other WebSphere MQ platforms

Language invocations for MQDLTMP

C invocation

MQDLTMP (Hconn, Hmsg, &DltPropOpts, &Name, &CompCode, &Reason)

Declare the parameters as follows:

MQHCONN Hconn; /* Connection handle */

MQHMSG Hmsg; /* Message handle */

MQDMPO DltPropOpts; /* Options that control the action of MQDLTMP */

MQCHARV Name; /* Property name */

MQLONG CompCode; /* Completion code */

MQLONG Reason; /* Reason code qualifying CompCode */

350 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

COBOL invocation

CALL ‘MQDLTMP’ USING HCONN, HMSG, DLTPROPOPTS, NAME, COMPCODE, REASON.

Declare the parameters as follows:

** Connection handle

 01 HCONN PIC S9(9) BINARY.

** Message handle

 01 HMSG PIC S9(19) BINARY.

** Options that control the action of MQDLTMP

 01 DLTPROPOPTS.

 COPY CMQDMPOV.

** Property name

 01 NAME

 COPY CMQCHRVV.

** Completion code

 01 COMPCODE PIC S9(9) BINARY.

** Reason code qualifying COMPCODE

 01 REASON PIC S9(9) BINARY.

PL/I invocation

call MQDLTMP (Hconn, Hmsg, DltPropOpts, Name, CompCode, Reason);

Declare the parameters as follows:

dcl Hconn fixed bin(31); /* Connection handle */

dcl Hmsg fixed bin(63); /* Message handle */

dcl DltPropOpts like MQDMPO; /* Options that control the action of MQDLTMP */

dcl Name like MQCHARV; /* Property name */

dcl CompCode fixed bin(31); /* Completion code */

dcl Reason fixed bin(31); /* Reason code qualifying CompCode */

System/390 assembler invocation

Parameters used for the System/390 assembler invocation of MQDLTMP.

 CALL MQDLTMP,(HCONN,HMSG,DLTPROPOPTS,NAME,COMPCODE,REASON)

Declare the parameters as follows:

HCONN DS F Connection handle

HMSG DS D Message handle

DLTPROPOPTS CMQDMPOA , Options that control the action of MQDLTMP

NAME CMQCHRVA , Property name

COMPCODE DS F Completion code

REASON DS F Reason code qualifying COMPCODE

MQGET - Get message

The MQGET call retrieves a message from a local queue that has been opened

using the MQOPEN call.

Syntax

Parameters

The MQGET call has the following parameters.

MQGET (HCONN, HOBJ, MSGDSC, GMO, BUFLEN, BUFFER, DATLEN,

CMPCOD, REASON)

Chapter 2. Function calls 351

HCONN (10-digit signed integer) – input

Connection handle.

This handle represents the connection to the queue manager. The value of HCONN

was returned by a previous MQCONN or MQCONNX call.

On i5/OS for applications running in compatibility mode, the MQCONN call can

be omitted, and the following value specified for HCONN:

HCDEFH

Default connection handle.

HOBJ (10-digit signed integer) – input

Object handle.

This handle represents the queue from which a message is to be retrieved. The

value of HOBJ was returned by a previous MQOPEN call. The queue must have

been opened with one or more of the following options (see “MQOPEN - Open

object” on page 380 for details):

v OOINPS

v OOINPX

v OOINPQ

v OOBRW

MSGDSC (MQMD) – input/output

Message descriptor.

This structure describes the attributes of the message required, and the attributes of

the message retrieved. See “MQMD – Message descriptor” on page 125 for details.

If BUFLEN is less than the message length, MSGDSC is still filled in by the queue

manager, whether or not GMATM is specified on the GMO parameter (see the GMOPT

field described in “MQGMO – Get-message options” on page 86).

If the application provides a version-1 MQMD, the message returned has an

MQMDE prefixed to the application message data, but only if one or more of the

fields in the MQMDE has a nondefault value. If all of the fields in the MQMDE

have default values, the MQMDE is omitted. A format name of FMMDE in the

MDFMT field in MQMD indicates that an MQMDE is present.

GMO (MQGMO) – input/output

Options that control the action of MQGET.

See “MQGMO – Get-message options” on page 86 for details.

BUFLEN (10-digit signed integer) – input

Length in bytes of the BUFFER area.

Zero can be specified for messages that have no data, or if the message is to be

removed from the queue and the data discarded (GMATM must be specified in

this case).

352 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Note: The length of the longest message that it is possible to read from the queue

is given by the MaxMsgLength queue attribute; see “Attributes for queues” on page

437.

BUFFER (1-byte bit string×BUFLEN) – output

Area to contain the message data.

The buffer should be aligned on a boundary appropriate to the nature of the data

in the message. 4-byte alignment should be suitable for most messages (including

messages containing MQ header structures), but some messages may require more

stringent alignment. For example, a message containing a 64-bit binary integer

might require 8-byte alignment.

If BUFLEN is less than the message length, as much of the message as possible is

moved into BUFFER; this happens whether or not GMATM is specified on the GMO

parameter (see the GMOPT field described in “MQGMO – Get-message options” on

page 86 for more information).

The character set and encoding of the data in BUFFER are given (respectively) by the

MDCSI and MDENC fields returned in the MSGDSC parameter. If these are different from

the values required by the receiver, the receiver must convert the application

message data to the character set and encoding required. The GMCONV option

can be used with a user-written exit to perform the conversion of the message data

(see “MQGMO – Get-message options” on page 86 for details of this option).

Note: All of the other parameters on the MQGET call are in the character set and

encoding of the local queue manager (given by the CodedCharSetId queue manager

attribute and ENNAT, respectively).

If the call fails, the contents of the buffer may still have changed.

DATLEN (10-digit signed integer) – output

Length of the message.

This is the length in bytes of the application data in the message. If this is greater

than BUFLEN, only BUFLEN bytes are returned in the BUFFER parameter (that is, the

message is truncated). If the value is zero, it means that the message contains no

application data.

If BUFLEN is less than the message length, DATLEN is still filled in by the queue

manager, whether or not GMATM is specified on the GMO parameter (see the GMOPT

field described in “MQGMO – Get-message options” on page 86 for more

information). This allows the application to determine the size of the buffer

required to accommodate the message data, and then reissue the call with a buffer

of the appropriate size.

However, if the GMCONV option is specified, and the converted message data is

too long to fit in BUFFER, the value returned for DATLEN is:

v The length of the unconverted data, for queue manager defined formats.

In this case, if the nature of the data causes it to expand during conversion, the

application must allocate a buffer somewhat bigger than the value returned by

the queue manager for DATLEN.

v The value returned by the data-conversion exit, for application-defined formats.

Chapter 2. Function calls 353

CMPCOD (10-digit signed integer) – output

Completion code.

It is one of the following:

CCOK

Successful completion.

CCWARN

Warning (partial completion).

CCFAIL

Call failed.

REASON (10-digit signed integer) – output

Reason code qualifying CMPCOD.

The reason codes listed below are the ones that the queue manager can return for

the REASON parameter. If the application specifies the GMCONV option, and a

user-written exit is invoked to convert some or all of the message data, it is the

exit that decides what value is returned for the REASON parameter. As a result,

values other than those documented below are possible.

If CMPCOD is CCOK :

RCNONE

(0, X’000’) No reason to report.

If CMPCOD is CCWARN:

RC2120

(2120, X’848’) Converted data too big for buffer.

RC2190

(2190, X’88E’) Converted string too big for field.

RC2150

(2150, X’866’) DBCS string not valid.

RC2110

(2110, X’83E’) Message format not valid.

RC2243

(2243, X’8C3’) Message segments have differing CCSIDs.

RC2244

(2244, X’8C4’) Message segments have differing encodings.

RC2209

(2209, X’8A1’) No message locked.

RC2119

(2119, X’847’) Message data not converted.

RC2272

(2272, X’8E0’) Message data partially converted.

RC2145

(2145, X’861’) Source buffer parameter not valid.

RC2111

(2111, X’83F’) Source coded character set identifier not valid.

354 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

RC2113

(2113, X’841’) Packed-decimal encoding in message not recognized.

RC2114

(2114, X’842’) Floating-point encoding in message not recognized.

RC2112

(2112, X’840’) Source integer encoding not recognized.

RC2143

(2143, X’85F’) Source length parameter not valid.

RC2146

(2146, X’862’) Target buffer parameter not valid.

RC2115

(2115, X’843’) Target coded character set identifier not valid.

RC2117

(2117, X’845’) Packed-decimal encoding specified by receiver not

recognized.

RC2118

(2118, X’846’) Floating-point encoding specified by receiver not recognized.

RC2116

(2116, X’844’) Target integer encoding not recognized.

RC2079

(2079, X’81F’) Truncated message returned (processing completed).

RC2080

(2080, X’820’) Truncated message returned (processing not completed).

If CMPCOD is CCFAIL:

RC2004

(2004, X’7D4’) Buffer parameter not valid.

RC2005

(2005, X’7D5’) Buffer length parameter not valid.

RC2219

(2219, X’8AB’) MQI call reentered before previous call complete.

RC2009

(2009, X’7D9’) Connection to queue manager lost.

RC2010

(2010, X’7DA’) Data length parameter not valid.

RC2016

(2016, X’7E0’) Gets inhibited for the queue.

RC2186

(2186, X’88A’) Get-message options structure not valid.

RC2018

(2018, X’7E2’) Connection handle not valid.

RC2019

(2019, X’7E3’) Object handle not valid.

RC2241

(2241, X’8C1’) Message group not complete.

Chapter 2. Function calls 355

RC2242

(2242, X’8C2’) Logical message not complete.

RC2259

(2259, X’8D3’) Inconsistent browse specification.

RC2245

(2245, X’8C5’) Inconsistent unit-of-work specification.

RC2246

(2246, X’8C6’) Message under cursor not valid for retrieval.

RC2247

(2247, X’8C7’) Match options not valid.

RC2026

(2026, X’7EA’) Message descriptor not valid.

RC2250

(2250, X’8CA’) Message sequence number not valid.

RC2033

(2033, X’7F1’) No message available.

RC2034

(2034, X’7F2’) Browse cursor not positioned on message.

RC2036

(2036, X’7F4’) Queue not open for browse.

RC2037

(2037, X’7F5’) Queue not open for input.

RC2041

(2041, X’7F9’) Object definition changed since opened.

RC2101

(2101, X’835’) Object damaged.

RC2046

(2046, X’7FE’) Options not valid or not consistent.

RC2052

(2052, X’804’) Queue has been deleted.

RC2058

(2058, X’80A’) Queue manager name not valid or not known.

RC2059

(2059, X’80B’) Queue manager not available for connection.

RC2161

(2161, X’871’) Queue manager quiescing.

RC2162

(2162, X’872’) Queue manager shutting down.

RC2102

(2102, X’836’) Insufficient system resources available.

RC2071

(2071, X’817’) Insufficient storage available.

RC2024

(2024, X’7E8’) No more messages can be handled within current unit of

work.

356 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

RC2072

(2072, X’818’) Syncpoint support not available.

RC2195

(2195, X’893’) Unexpected error occurred.

RC2255

(2255, X’8CF’) Unit of work not available for the queue manager to use.

RC2090

(2090, X’82A’) Wait interval in MQGMO not valid.

RC2256

(2256, X’8D0’) Wrong version of MQGMO supplied.

RC2257

(2257, X’8D1’) Wrong version of MQMD supplied.

Usage notes

 1. The message retrieved is normally deleted from the queue. This deletion can

occur as part of the MQGET call itself, or as part of a syncpoint. Message

deletion does not occur if an GMBRWF or GMBRWN option is specified on

the GMO parameter (see the GMOPT field described in “MQGMO – Get-message

options” on page 86).

 2. If the GMLK option is specified with one of the browse options, the browsed

message is locked so that it is visible only to this handle.

If the GMUNLK option is specified, a previously-locked message is unlocked.

No message is retrieved in this case, and the MSGDSC, BUFLEN, BUFFER and

DATLEN parameters are not checked or altered.

 3. If the application issuing the MQGET call is running as an MQ client, it is

possible for the message retrieved to be lost if during the processing of the

MQGET call the MQ client terminates abnormally or the client connection is

severed. This arises because the surrogate that is running on the queue

manager’s platform and which issues the MQGET call on the client’s behalf

cannot detect the loss of the client until the surrogate is about to return the

message to the client; this is after the message has been removed from the

queue. This can occur for both persistent messages and nonpersistent

messages.

The risk of losing messages in this way can be eliminated by always retrieving

messages within units of work (that is, by specifying the GMSYP option on

the MQGET call, and using the MQCMIT or MQBACK calls to commit or

back out the unit of work when processing of the message is complete). If

GMSYP is specified, and the client terminates abnormally or the connection is

severed, the surrogate backs out the unit of work on the queue manager and

the message is reinstated on the queue.

In principle, the same situation can arise with applications that are running on

the queue manager’s platform, but in this case the window during which a

message can be lost is very small. However, as with MQ clients the risk can

be eliminated by retrieving the message within a unit of work.

 4. If an application puts a sequence of messages on a particular queue within a

single unit of work, and then commits that unit of work successfully, the

messages become available for retrieval as follows:

v If the queue is a nonshared queue (that is, a local queue), all messages

within the unit of work become available at the same time.

v If the queue is a shared queue, messages within the unit of work become

available in the order in which they were put, but not all at the same time.

Chapter 2. Function calls 357

When the system is heavily laden, it is possible for the first message in the

unit of work to be retrieved successfully, but for the MQGET call for the

second or subsequent message in the unit of work to fail with RC2033. If

this occurs, the application should wait a short while and then retry the

operation.
 5. If an application puts a sequence of messages on the same queue without

using message groups, the order of those messages is preserved provided that

certain conditions are satisfied. See the usage notes in the description of the

MQPUT call for details. If the conditions are satisfied, the messages will be

presented to the receiving application in the order in which they were sent,

provided that:

v Only one receiver is getting messages from the queue.

If there are two or more applications getting messages from the queue, they

must agree with the sender the mechanism to be used to identify messages

that belong to a sequence. For example, the sender could set all of the MDCID

fields in the messages in a sequence to a value that was unique to that

sequence of messages.

v The receiver does not deliberately change the order of retrieval, for example

by specifying a particular MDMID or MDCID.
If the sending application put the messages as a message group, the messages

will be presented to the receiving application in the correct order provided

that the receiving application specifies the GMLOGO option on the MQGET

call. For more information about message groups, see:

v MDMFL field in MQMD

v PMLOGO option in MQPMO

v GMLOGO option in MQGMO
 6. Applications should test for the feedback code FBQUIT in the MDFB field of the

MSGDSC parameter. If this value is found, the application should end. See the

MDFB field described in “MQMD – Message descriptor” on page 125 for more

information.

 7. If the queue identified by HOBJ was opened with the OOSAVA option, and the

completion code from the MQGET call is CCOK or CCWARN, the context

associated with the queue handle HOBJ is set to the context of the message that

has been retrieved (unless the GMBRWF or GMBRWN option is set, in which

case the context is marked as not available). This context can be used on a

subsequent MQPUT or MQPUT1 call by specifying the PMPASI or PMPASA

options. This enables the context of the message received to be transferred in

whole or in part to another message (for example, when the message is

forwarded to another queue). For more information on message context, see

the WebSphere MQ Application Programming Guide.

 8. If the GMCONV option is included in the GMO parameter, the application

message data is converted to the representation requested by the receiving

application, before the data is placed in the BUFFER parameter:

v The MDFMT field in the control information in the message identifies the

structure of the application data, and the MDCSI and MDENC fields in the

control information in the message specify its character-set identifier and

encoding.

v The application issuing the MQGET call specifies in the MDCSI and MDENC

fields in the MSGDSC parameter the character-set identifier and encoding to

which the application message data should be converted.

358 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

When conversion of the message data is necessary, the conversion is

performed either by the queue manager itself or by a user-written exit,

depending on the value of the MDFMT field in the control information in the

message:

v The format names listed below are formats that are converted automatically

by the queue manager; these are called “built-in” formats:

 FMADMN FMMDE

FMCICS FMPCF

FMCMD1 FMRMH

FMCMD2 FMRFH

FMDLH FMRFH2

FMDH FMSTR

FMEVNT FMTM

FMIMS FMXQH

FMIMVS

v The format name FMNONE is a special value that indicates that the nature

of the data in the message is undefined. As a consequence, the queue

manager does not attempt conversion when the message is retrieved from

the queue.

Note: If GMCONV is specified on the MQGET call for a message that has a

format name of FMNONE, and the character set or encoding of the message

differs from that specified in the MSGDSC parameter, the message is still

returned in the BUFFER parameter (assuming no other errors), but the call

completes with completion code CCWARN and reason code RC2110.

FMNONE can be used either when the nature of the message data means

that it does not require conversion, or when the sending and receiving

applications have agreed between themselves the form in which the

message data should be sent.

v All other format names cause the message to be passed to a user-written

exit for conversion. The exit has the same name as the format, apart from

environment-specific additions. User-specified format names should not

begin with the letters “MQ”, as such names may conflict with format names

supported in the future.
User data in the message can be converted between any supported character

sets and encodings. However, be aware that if the message contains one or

more MQ header structures, the message cannot be converted from or to a

character set that has double-byte or multi-byte characters for any of the

characters that are valid in queue names. Reason code RC2111 or RC2115

results if this is attempted, and the message is returned unconverted. Unicode

character set UCS-2 is an example of such a character set.

On return from MQGET, the following reason code indicates that the message

was converted successfully:

v RCNONE

The following reason code indicates that the message may have been

converted successfully; the application should check the MDCSI and MDENC

fields in the MSGDSC parameter to find out:

v RC2079

All other reason codes indicate that the message was not converted.

Chapter 2. Function calls 359

Note: The interpretation of the reason code described above will be true for

conversions performed by user-written exits only if the exit conforms to the

processing guidelines.

 9. For the built-in formats listed above, the queue manager may perform default

conversion of character strings in the message when the GMCONV option is

specified. Default conversion allows the queue manager to use an

installation-specified default character set that approximates the actual

character set, when converting string data. As a result, the MQGET call can

succeed with completion code CCOK, instead of completing with CCWARN

and reason code RC2111 or RC2115.

Note: The result of using an approximate character set to convert string data

is that some characters may be converted incorrectly. This can be avoided by

using in the string only characters which are common to both the actual

character set and the default character set.

Default conversion applies both to the application message data and to

character fields in the MQMD and MQMDE structures:

v Default conversion of the application message data occurs only when all of

the following are true:

– The application specifies GMCONV.

– The message contains data that must be converted either from or to a

character set which is not supported.

– Default conversion was enabled when the queue manager was installed

or restarted.
v Default conversion of the character fields in the MQMD and MQMDE

structures occurs as necessary, provided that default conversion is enabled

for the queue manager. The conversion is performed even if the GMCONV

option is not specified by the application on the MQGET call.
10. The BUFFER parameter shown in the RPG programming example is declared as

a string; this restricts the maximum length of the parameter to 256 bytes. If a

larger buffer is required, the parameter should be declared instead as a

structure, or as a field in a physical file.

Declaring the parameter as a structure increases the maximum length possible

to 9999 bytes, while declaring the parameter as a field in a physical file

increases the maximum length possible to approximately 32K bytes.

RPG invocation

 C*..1....:....2....:....3....:....4....:....5....:....6....:....7..

 C CALLP MQGET(HCONN : HOBJ : MSGDSC : GMO :

 C BUFLEN : BUFFER : DATLEN :

 C CMPCOD : REASON)

The prototype definition for the call is:

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..

 DMQGET PR EXTPROC(’MQGET’)

 D* Connection handle

 D HCONN 10I 0 VALUE

 D* Object handle

 D HOBJ 10I 0 VALUE

 D* Message descriptor

 D MSGDSC 364A

 D* Options that control the action of MQGET

 D GMO 100A

 D* Length in bytes of the BUFFER area

 D BUFLEN 10I 0 VALUE

 D* Area to contain the message data

360 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

D BUFFER * VALUE

 D* Length of the message

 D DATLEN 10I 0

 D* Completion code

 D CMPCOD 10I 0

 D* Reason code qualifying CMPCOD

 D REASON 10I 0

MQINQ - Inquire about object attributes

The MQINQ call returns an array of integers and a set of character strings

containing the attributes of an object. The following types of object are valid:

v Queue

v Namelist

v Process definition

v Queue manager

Syntax

Parameters

The MQINQ call has the following parameters.

HCONN (10-digit signed integer) – input

Connection handle.

This handle represents the connection to the queue manager. The value of HCONN

was returned by a previous MQCONN or MQCONNX call.

On i5/OS for applications running in compatibility mode, the MQCONN call can

be omitted, and the following value specified for HCONN:

HCDEFH

Default connection handle.

HOBJ (10-digit signed integer) – input

Object handle.

This handle represents the object (of any type) whose attributes are required. The

handle must have been returned by a previous MQOPEN call that specified the

OOINQ option.

SELCNT (10-digit signed integer) – input

Count of selectors.

This is the count of selectors that are supplied in the SELS array. It is the number of

attributes that are to be returned. Zero is a valid value. The maximum number

allowed is 256.

MQINQ (HCONN, HOBJ, SELCNT, SELS, IACNT, INTATR, CALEN,

CHRATR, CMPCOD, REASON)

Chapter 2. Function calls 361

SELS (10-digit signed integer×SELCNT) – input

Array of attribute selectors.

This is an array of SELCNT attribute selectors; each selector identifies an attribute

(integer or character) whose value is required.

Each selector must be valid for the type of object that HOBJ represents, otherwise

the call fails with completion code CCFAIL and reason code RC2067.

In the special case of queues:

v If the selector is not valid for queues of any type, the call fails with completion

code CCFAIL and reason code RC2067.

v If the selector is applicable only to queues of type or types other than that of the

object, the call succeeds with completion code CCWARN and reason code

RC2068.

v If the queue being inquired is a cluster queue, the selectors that are valid

depend on how the queue was resolved; see usage note 4 for further details.

Selectors can be specified in any order. Attribute values that correspond to integer

attribute selectors (IA* selectors) are returned in INTATR in the same order in which

these selectors occur in SELS. Attribute values that correspond to character attribute

selectors (CA* selectors) are returned in CHRATR in the same order in which those

selectors occur. IA* selectors can be interleaved with the CA* selectors; only the

relative order within each type is important.

Note:

1. The integer and character attribute selectors are allocated within two different

ranges; the IA* selectors reside within the range IAFRST through IALAST, and

the CA* selectors within the range CAFRST through CALAST.

For each range, the constants IALSTU and CALSTU define the highest value

that the queue manager will accept.

2. If all of the IA* selectors occur first, the same element numbers can be used to

address corresponding elements in the SELS and INTATR arrays.

The attributes that can be inquired are listed in the following tables. For the CA*

selectors, the constant that defines the length in bytes of the resulting string in

CHRATR is given in parentheses.

 Table 81. MQINQ attribute selectors for queues. See the bottom of the table for an explanation of the notes.

Selector Description Note

CAALTD Date of most recent alteration (LNDATE). 1

CAALTT Time of most recent alteration (LNTIME). 1

CABRQN Excessive backout re-queue name (LNQN). 5

CABASQ Name of queue that alias resolves to (LNQN).

CACFSN Coupling-facility structure name (LNCFSN). 3

CACLN Cluster name (LNCLUN). 1

CACLNL Cluster namelist (LNNLN). 1

CACRTD Queue creation date (LNCRTD).

CACRTT Queue creation time (LNCRTT).

CAINIQ Initiation queue name (LNQN).

362 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Table 81. MQINQ attribute selectors for queues (continued). See the bottom of the table for an explanation of the

notes.

Selector Description Note

CAPRON Name of process definition (LNPRON).

CAQD Queue description (LNQD).

CAQN Queue name (LNQN).

CARQMN Name of remote queue manager (LNQMN).

CARQN Name of remote queue as known on remote queue manager (LNQN).

CATRGD Trigger data (LNTRGD). 5

CAXQN Transmission queue name (LNQN).

IABTHR Backout threshold. 5

IACDEP Number of messages on queue.

IADBND Default binding. 1

IADINP Default open-for-input option. 5

IADPER Default message persistence.

IADPRI Default message priority. 5

IADEFT Queue definition type.

IADIST Distribution list support. 2

IAHGB Whether to harden backout count. 5

IAIGET Whether get operations are allowed.

IAIPUT Whether put operations are allowed.

IAMLEN Maximum message length.

IAMDEP Maximum number of messages allowed on queue.

IAMDS Whether message priority is relevant. 5

IAOIC Number of MQOPEN calls that have the queue open for input.

IAOOC Number of MQOPEN calls that have the queue open for output.

IAQDHE Control attribute for queue depth high events. 4, 5

IAQDHL High limit for queue depth. 4, 5

IAQDLE Control attribute for queue depth low events. 4, 5

IAQDLL Low limit for queue depth. 4, 5

IAQDME Control attribute for queue depth max events. 4, 5

IAQSI Limit for queue service interval. 4, 5

IAQSIE Control attribute for queue service interval events. 4, 5

IAQTYP Queue type.

IAQSGD Queue-sharing group disposition. 3

IARINT Queue retention interval. 5

IASCOP Queue definition scope. 4, 5

IASHAR Whether queue can be shared for input.

IATRGC Trigger control.

IATRGD Trigger depth. 5

IATRGP Threshold message priority for triggers. 5

IATRGT Trigger type.

Chapter 2. Function calls 363

Table 81. MQINQ attribute selectors for queues (continued). See the bottom of the table for an explanation of the

notes.

Selector Description Note

IAUSAG Usage.

CLWLUSEQ Use remote queues.

Notes:

1. Supported on AIX, HP-UX, z/OS, OS/2, i5/OS, Solaris, Windows, plus WebSphere MQ clients connected to

these systems.

2. Supported on AIX, HP-UX, OS/2, i5/OS, Solaris, Windows, plus WebSphere MQ clients connected to these

systems.

3. Supported on z/OS.

4. Not supported on z/OS.

5. Not supported on VSE/ESA.

 Table 82. MQINQ attribute selectors for namelists. See the bottom of Table 81 on page 362 for an explanation of the

notes.

Selector Description Note

CAALTD Date of most recent alteration (LNDATE). 1

CAALTT Time of most recent alteration (LNTIME). 1

CALSTD Namelist description (LNNLD). 1

CALSTN Name of namelist object (LNNLN). 1

CANAMS Names in the namelist (LNQN × Number of names in the list). 1

IANAMC Number of names in the namelist. 1

IAQSGD Queue-sharing group disposition. 3

 Table 83. MQINQ attribute selectors for process definitions. See the bottom of Table 81 on

page 362 for an explanation of the notes.

Selector Description Note

CAALTD Date of most recent alteration (LNDATE). 1

CAALTT Time of most recent alteration (LNTIME). 1

CAAPPI Application identifier (LNPROA). 5

CAENVD Environment data (LNPROE). 5

CAPROD Description of process definition (LNPROD). 5

CAPRON Name of process definition (LNPRON). 5

CAUSRD User data (LNPROU). 5

IAAPPT Application type. 5

IAQSGD Queue-sharing group disposition. 3

 Table 84. MQINQ attribute selectors for the queue manager. See the bottom of Table 81 on page 362 for an

explanation of the notes.

Selector Description Note

CAALTD Date of most recent alteration (LNDATE). 1

CAALTT Time of most recent alteration (LNTIME). 1

CACADX Automatic channel definition exit name (LNEXN). 1

364 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Table 84. MQINQ attribute selectors for the queue manager (continued). See the bottom of Table 81 on page 362 for

an explanation of the notes.

Selector Description Note

CACLWD Data passed to cluster workload exit (LNEXDA). 1

CACLWX Name of cluster workload exit (LNEXN). 1

CACMDQ System command input queue name (LNQN). 5

CADLQ Name of dead-letter queue (LNQN). 5

CADXQN Default transmission queue name (LNQN). 5

CAQMD Queue manager description (LNQMD). 5

CAQMID Queue-manager identifier (LNQMID). 1

CAQMN Name of local queue manager (LNQMN). 5

CAQSGN Queue-sharing group name (LNQSGN). 3

CARPN Name of cluster for which queue manager provides repository services

(LNQMN).

1

CARPNL Name of namelist object containing names of clusters for which queue manager

provides repository services (LNNLN).

1

CMDEV Control attribute that determines whether messages generated when commands

are issued, are put onto a queue.

8

IAAUTE Control attribute for authority events. 4, 5

IACAD Control attribute for automatic channel definition. 2

IACADE Control attribute for automatic channel definition events. 2

IACLWL Cluster workload length. 1

IACCSI Coded character set identifier. 5

IACMDL Command level supported by queue manager. 5

IACFGE Control attribute for configuration events. 3

IADIST Distribution list support. 2

IAINHE Control attribute for inhibit events. 4, 5

IALCLE Control attribute for local events. 4, 5

IAMHND Maximum number of handles. 5

IAMLEN Maximum message length. 5

IAMPRI Maximum priority. 5

IAMUNC Maximum number of uncommitted messages within a unit of work. 5

IAPFME Control attribute for performance events. 4, 5

IAPLAT Platform on which the queue manager resides. 5

IARMTE Control attribute for remote events. 4, 5

IASSE Control attribute for start stop events. 4, 5

IASYNC Syncpoint availability. 5

IATRGI Trigger interval. 5

IACNT (10-digit signed integer) – input

Count of integer attributes.

This is the number of elements in the INTATR array. Zero is a valid value.

Chapter 2. Function calls 365

If this is at least the number of IA* selectors in the SELS parameter, all integer

attributes requested are returned.

INTATR (10-digit signed integer×IACNT) – output

Array of integer attributes.

This is an array of IACNT integer attribute values.

Integer attribute values are returned in the same order as the IA* selectors in the

SELS parameter. If the array contains more elements than the number of IA*

selectors, the excess elements are unchanged.

If HOBJ represents a queue, but an attribute selector is not applicable to that type of

queue, the specific value IAVNA is returned for the corresponding element in the

INTATR array.

CALEN (10-digit signed integer) – input

Length of character attributes buffer.

This is the length in bytes of the CHRATR parameter.

This must be at least the sum of the lengths of the requested character attributes

(see SELS). Zero is a valid value.

CHRATR (1-byte character string×CALEN) – output

Character attributes.

This is the buffer in which the character attributes are returned, concatenated

together. The length of the buffer is given by the CALEN parameter.

Character attributes are returned in the same order as the CA* selectors in the SELS

parameter. The length of each attribute string is fixed for each attribute (see SELS),

and the value in it is padded to the right with blanks if necessary. If the buffer is

larger than that needed to contain all of the requested character attributes

(including padding), the bytes beyond the last attribute value returned are

unchanged.

If HOBJ represents a queue, but an attribute selector is not applicable to that type of

queue, a character string consisting entirely of asterisks (*) is returned as the value

of that attribute in CHRATR.

CMPCOD (10-digit signed integer) – output

Completion code.

It is one of the following:

CCOK

Successful completion.

CCWARN

Warning (partial completion).

CCFAIL

Call failed.

366 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

REASON (10-digit signed integer) – output

Reason code qualifying CMPCOD.

If CMPCOD is CCOK:

RCNONE

(0, X’000’) No reason to report.

If CMPCOD is CCWARN:

RC2008

(2008, X’7D8’) Not enough space allowed for character attributes.

RC2022

(2022, X’7E6’) Not enough space allowed for integer attributes.

RC2068

(2068, X’814’) Selector not applicable to queue type.

If CMPCOD is CCFAIL:

RC2219

(2219, X’8AB’) MQI call reentered before previous call complete.

RC2006

(2006, X’7D6’) Length of character attributes not valid.

RC2007

(2007, X’7D7’) Character attributes string not valid.

RC2009

(2009, X’7D9’) Connection to queue manager lost.

RC2018

(2018, X’7E2’) Connection handle not valid.

RC2019

(2019, X’7E3’) Object handle not valid.

RC2021

(2021, X’7E5’) Count of integer attributes not valid.

RC2023

(2023, X’7E7’) Integer attributes array not valid.

RC2038

(2038, X’7F6’) Queue not open for inquire.

RC2041

(2041, X’7F9’) Object definition changed since opened.

RC2101

(2101, X’835’) Object damaged.

RC2052

(2052, X’804’) Queue has been deleted.

RC2058

(2058, X’80A’) Queue manager name not valid or not known.

RC2059

(2059, X’80B’) Queue manager not available for connection.

Chapter 2. Function calls 367

RC2162

(2162, X’872’) Queue manager shutting down.

RC2102

(2102, X’836’) Insufficient system resources available.

RC2065

(2065, X’811’) Count of selectors not valid.

RC2067

(2067, X’813’) Attribute selector not valid.

RC2066

(2066, X’812’) Count of selectors too big.

RC2071

(2071, X’817’) Insufficient storage available.

RC2195

(2195, X’893’) Unexpected error occurred.

Usage notes

1. The values returned are a snapshot of the selected attributes. There is no

guarantee that the attributes will not change before the application can act

upon the returned values.

2. When you open a model queue, a dynamic local queue is created. This is true

even if you open the model queue to inquire about its attributes.

The attributes of the dynamic queue (with certain exceptions) are the same as

those of the model queue at the time the dynamic queue is created. If you

subsequently use the MQINQ call on this queue, the queue manager returns

the attributes of the dynamic queue, and not those of the model queue. See

Table 86 on page 438 for details of which attributes of the model queue are

inherited by the dynamic queue.

3. If the object being inquired is an alias queue, the attribute values returned by

the MQINQ call are those of the alias queue, and not those of the base queue to

which the alias resolves.

4. If the object being inquired is a cluster queue, the attributes that can be

inquired depend on how the queue is opened:

v If the cluster queue is opened for inquire plus one or more of input, browse,

or set, there must be a local instance of the cluster queue in order for the

open to succeed. In this case the attributes that can be inquired are those

valid for local queues.

v If the cluster queue is opened for inquire alone, or inquire and output, only

the attributes listed below can be inquired; the QType attribute has the value

QTCLUS in this case:

– CAQD

– CAQN

– IADBND

– IADPER

– IADPRI

– IAIPUT

– IAQTYP
If the cluster queue is opened with no fixed binding (that is, OOBNDN

specified on the MQOPEN call, or OOBNDQ specified when the DefBind

attribute has the value BNDNOT), successive MQINQ calls for the queue

368 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

may inquire different instances of the cluster queue, although usually all of

the instances have the same attribute values.
For more information about cluster queues, refer to the WebSphere MQ Queue

Manager Clusters book.

5. If a number of attributes are to be inquired, and subsequently some of them are

to be set using the MQSET call, it may be convenient to position at the

beginning of the selector arrays the attributes that are to be set, so that the

same arrays (with reduced counts) can be used for MQSET.

6. If more than one of the warning situations arise (see the CMPCOD parameter), the

reason code returned is the first one in the following list that applies:

a. RC2068

b. RC2022

c. RC2008
7. For more information about object attributes, see:

v “Attributes for queues” on page 437

v “Attributes for namelists” on page 466

v “Attributes for process definitions” on page 468

v “Attributes for the queue manager” on page 471
8. A new local queue SYSTEM.ADMIN.COMMAND.EVENT is used for queuing

messages that are generated whenever commands are issued. Messages are put

onto this queue for most commands, depending on how the CMDEV queue

manager attribute is set:

v ENABLED — command event messages are generated and put onto the

queue for all successful commands.

v NODISPLAY — command event messages are generated and put onto the

queue for all successful commands other than the DISPLAY (MQSC)

command, and the Inquire (PCF) command.

v DISABLED — command event messages are not generated (this is the queue

manager’s initial default value).

RPG invocation

 C*..1....:....2....:....3....:....4....:....5....:....6....:....7..

 C CALLP MQINQ(HCONN : HOBJ : SELCNT :

 C SELS(1) : IACNT : INTATR(1) :

 C CALEN : CHRATR : CMPCOD :

 C REASON)

The prototype definition for the call is:

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..

 DMQINQ PR EXTPROC(’MQINQ’)

 D* Connection handle

 D HCONN 10I 0 VALUE

 D* Object handle

 D HOBJ 10I 0 VALUE

 D* Count of selectors

 D SELCNT 10I 0 VALUE

 D* Array of attribute selectors

 D SELS 10I 0

 D* Count of integer attributes

 D IACNT 10I 0 VALUE

 D* Array of integer attributes

 D INTATR 10I 0

 D* Length of character attributes buffer

 D CALEN 10I 0 VALUE

 D* Character attributes

Chapter 2. Function calls 369

D CHRATR * VALUE

 D* Completion code

 D CMPCOD 10I 0

 D* Reason code qualifying CMPCOD

 D REASON 10I 0

MQINQMP - Inquire message property

The MQINQMP call returns the value of a property of a message.

Syntax for MQINQMP

Parameters for MQINQMP

The MQINQMP call has the following parameters.

HCONN (10-digit signed integer) - Input

This handle represents the connection to the queue manager. The value of Hconn

must match the connection handle that was used to create the message handle

specified in the Hmsg parameter.

If the message handle was created using MQHC_UNASSOCIATED_HCONN then

a valid connection must be established on the thread inquiring a property of the

message handle otherwise the call fails with MQRC_CONNECTION_BROKEN.

HMSG (10-digit signed integer) - input

This is the message handle to be inquired. The value was returned by a previous

MQCRTMH call.

INQOPT (10-digit signed integer) - Input

See the WebSphere MQ Application Programming Reference data type for details.

PRNAME (10-digit signed integer) - input

The name of the property to inquire.

If no property with this name can be found, the call fails with reason

MQRC_PROPERTY_NOT_AVAILABLE.

You can use the wildcard character ’%’ at the end of the property name. The

wildcard matches zero or more characters, including the ’.’ character. This allows

an application to inquire the value of many properties. Call MQINQMP with

option MQIMPO_INQ_FIRST to get the first matching property and again with the

option MQIMPO_INQ_NEXT to get the next matching property. When no more

matching properties are available, the call fails with

MQRC_PROPERTY_NOT_AVAILABLE . If the ReturnedName field of the

InqPropOpts structure is initialized with an address or offset for the returned name

of the property, this is filled in on return from MQINQMP with the same of the

property that has been matched. If the VSBufSize field of the ReturnedName in the

MQINQMP (Hconn, Hmsg, InqPropOpts, Name, PropDesc, Type, ValueLength, Value, DataLength, CompCode,

Reason)

370 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

InqPropOpts structure is less than the length of the returned property name the

completion code is set MQCC_FAILED with reason

MQRC_PROPERTY_NAME_TOO_BIG.

Properties that have known synonyms are returned as follows:

1. v Properties with the prefix “mqps.” are returned with the MQ property name

e.g. “MQTopicString” is the returned name rather than “mqps.Top”

2. Properties with the prefix ″jms.″ or ″mcd.″ are returned as the JMS header field

name, for example, ″JMSExpiration″ is the returned name rather than

″jms.Exp″’.

3. Properties with the prefix ″usr.″ are returned without that prefix, for example,

″Color″ is returned rather than ″usr.Color″.

Properties with synonyms are only returned once.

In the C programming language, the following macro variables are defined for

inquiring on all properties and all properties that begin ’usr’, respectively:

MQPROP_INQUIRE_ALL

Inquire on all properties of the message.

MQPRP_INQUIRE_ALL_USR

Inquire on all properties of the message that start ’usr.’. The returned name

is returned without the ’usr.’ prefix.

If MQIMP_INQ_NEXT is specified but Name has changed since the previous call

or this is the first call, then MQIMPO_INQ_FIRST is implied.

See Property names and Property name restrictions for further information about

the use of property names.

PRPDSC (10-digit signed integer) - output

This structure is used to define the attributes of a property, including what

happens if the property is not supported, what message context the property

belongs to, and what messages the property should be copied into. See MQPD for

details of this structure.

TYPE (10-digit signed integer) - input/output

On return from the MQINQMP call this parameter is set to the data type of Value.

The data type can be any of the following:

MQTYPE_BOOLEAN

A boolean.

MQTYPE_BYTE_STRING

a byte string.

MQTYPE_INT8

An 8-bit signed integer.

MQTYPE_INT16

A 16-bit signed integer.

MQTYPE_INT32

A 32-bit signed integer.

MQTYPE_INT64

A 64-bit signed integer.

Chapter 2. Function calls 371

MQTYPE_FLOAT32

A 32-bit floating-point number.

MQTYPE_FLOAT64

A 64-bit floating-point number.

MQTYPE_STRING

A character string.

MQTYPE_NULL

The property exists but has a null value.

If the data type of the property value is not recognized then MQTYPE_STRING is

returned and a string representation of the value is placed into the Value area. A

string representation of the data type can be found in the TypeString field of the

InqPropOpts parameter. A warning completion code is returned with reason

MQRC_PROP_TYPE_NOT_SUPPORTED.

Additionally, if the option MQIMPO_CONVERT_TYPE is specified, conversion of

the property value is requested. Use Type as an input to specify the data type that

you want the property to be returned as. See the description of the

MQIMPO_CONVERT_TYPE option of the i5/OS Application Programming Reference

(ILE RPG) for details of data type conversion.

If you do not request type conversion, you can use the following value on input:

MQTYPE_AS_SET

The value of the property is returned without converting its data type.

VALUE (10-digit signed integer) - output

This is the area to contain the inquired property value. The buffer should be

aligned on a boundary appropriate for the value being returned. Failure to do so

may result in an error when the value is later accessed.

If ValueLength is less than the length of the property value, as much of the property

value as possible is moved into Value and the call fails with completion code

MQCC_FAILED and reason MQRC_PROPERTY_VALUE_TOO_BIG.

The character set of the data in Value is given by the ReturnedCCSID field in the

InqPropOpts parameter. The encoding of the data in Value is given by the

ReturnedEncoding field in the InqPropOpts parameter.

In the C programming language, the parameter is declared as a pointer-to-void; the

address of any type of data can be specified as the parameter.

If the ValueLength parameter is zero, Value is not referred to and the parameter

address passed by programs written in C or System/390 assembler is null.

VALLEN (10-digit signed integer) - input

The length in bytes of the Value area. Specify zero for properties that you do not

require the value returned for. These could be properties which are designed by an

application to have a null value or an empty string. Also specify zero if the

MQIMPO_QUERY_LENGTH option has been specified; in this case no value is

returned.

372 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

DATLEN (10-digit signed integer) - output

This is the length in bytes of the actual property value as returned in the Value

area.

If DataLength is less than the property value length, DataLength is still filled in on

return from the MQINQMP call. This allows the application to determine the size

of the buffer required to accommodate the property value, and then reissue the call

with a buffer of the appropriate size.

The following values may also be returned.

If the Type parameter is set to MQTYPE_STRING or MQTYPE_BYTE_STRING:

MQVL_EMPTY_STRING

The property exists but contains no characters or bytes.

CMPCOD (10-digit signed integer) - output

The completion code; it is one of the following:

MQCC_OK

Successful completion.

MQCC_WARNING

Warning (partial completion).

MQCC_FAILED

Call failed.

REASON (10-digit signed integer) - output

The reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE

(0, X’000’) No reason to report.

If CompCode is MQCC_WARNING:

MQRC_PROP_NAME_NOT_CONVERTED

(2492, X’09BC’) Returned property name not converted.

MQRC_PROP_VALUE_NOT_CONVERTED

(2466, X’09A2’) Property value not converted.

MQRC_PROP_TYPE_NOT_SUPPORTED

(2467, X’09A3’) Property data type is not supported.

MQRC_RFH_FORMAT_ERROR

(2421, X’0975’) An MQRFH2 folder containing properties could not be

parsed.

If CompCode is MQCC_FAILED:

MQRC_ADAPTER_NOT_AVAILABLE

(2204, X’089C’) Adapter not available.

MQRC_ADAPTER_SERV_LOAD_ERROR

(2130, X’0852’) Unable to load adapter service module.

Chapter 2. Function calls 373

MQRC_ASID_MISMATCH

(2157, X’086D’) Primary and home ASIDs differ.

MQRC_BUFFER_ERROR

(2004, X’07D4’) Value parameter not valid.

MQRC_BUFFER_LENGTH_ERROR

(2005, X’07D5’) Value length parameter not valid.

MQRC_CALL_IN_PROGRESS

(2219, X’08AB’) MQI call entered before previous call completed.

MQRC_CONNECTION_BROKEN

(2009, X’07D9’) Connection to queue manager lost.

MQRC_DATA_LENGTH_ERROR

(2010, X’07DA’) Data length parameter not valid.

MQRC_IMPO_ERROR

(2464, X’09A0’) Inquire message property options structure not valid.

MQRC_HMSG_ERROR

(2460, X’099C’) Message handle not valid.

MQRC_MSG_HANDLE_IN_USE

(2499, X’09C3’) Message handle already in use.

MQRC_OPTIONS_ERROR

(2046, X’07F8’) Options not valid or not consistent.

MQRC_PD_ERROR

(2482, X’09B2’) Property descriptor structure not valid.

MQRC_PROP_CONV_NOT_SUPPORTED

(2470, X’09A6’) Conversion from the actual to requested data type not

supported.

MQRC_PROPERTY_NAME_ERROR

(2442, X’098A’) Invalid property name.

MQRC_PROPERTY_NAME _TOO_BIG

(2465, X’09A1’) Property name too big for returned name buffer.

MQRC_PROPERTY_NOT_AVAILABLE

(2471, X’09A7) Property not available.

MQRC_PROPERTY_VALUE_TOO_BIG

(2469, X’09A5’) Property value too big for the Value area.

MQRC_PROP_NUMBER_FORMAT_ERROR

(2472, X’09A8’) Number format error encountered in value data.

MQRC_PROPERTY_TYPE_ERROR

(2473, X’09A9’) Invalid requested property type.

MQRC_SOURCE_CCSID_ERROR

(2111, X’083F’) Property name coded character set identifier not valid.

MQRC_STORAGE_NOT_AVAILABLE

(2071, X’0871’) Insufficient storage available.

MQRC_UNEXPECTED_ERROR

(2195, X’0893’) Unexpected error occurred.

For detailed information on these codes, see:

v WebSphere MQ for z/OS Messages and Codes for WebSphere MQ for z/OS

374 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

v WebSphere MQ Messages for all other WebSphere MQ platforms

Language invocations for MQINQMP

C invocation

MQINQMP (Hconn, Hmsg, &InqPropOpts, &Name, &PropDesc, &Type,

ValueLength, Value, &DataLength, &CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /* Connection handle */

MQHMSG Hmsg; /* Message handle */

MQDIMPO InqPropOpts; /* Options that control the action of MQINQMP */

MQCHARV Name; /* Property name */

MQPD PropDesc; /* Property descriptor */

MQLONG Type; /* Property data type */

MQLONG ValueLength; /* Length in bytes of the Value area */

MQBYTE Value[n]; /* Area to contain the property value */

MQLONG DataLength; /* Length of the property value */

MQLONG CompCode; /* Completion code */

MQLONG Reason; /* Reason code qualifying CompCode */

COBOL invocation

CALL ‘MQINQMP’ USING HCONN, HMSG, INQMSGOPTS, NAME, PROPDESC, TYPE,

VALUELENGTH, VALUE, DATALENGTH, COMPCODE, REASON.

Declare the parameters as follows:

** Connection handle

 01 HCONN PIC S9(9) BINARY.

** Message handle

 01 HMSG PIC S9(19) BINARY.

** Options that control the action of MQINQMP

 01 INQMSGOPTS.

 COPY CMQIMPOV.

** Property name

 01 NAME.

 COPY CMQCHRVV.

** Property descriptor

 01 PROPDESC.

 COPY CMQPDV.

** Property data type

 01 TYPE PIC S9(9) BINARY.

** Length in bytes of the VALUE area

 01 VALUELENGTH PIC S9(9) BINARY.

** Area to contain the property value

 01 VALUE PIC X(n).

** Length of the property value

 01 DATALENGTH PIC S9(9) BINARY.

** Completion code

 01 COMPCODE PIC S9(9) BINARY.

** Reason code qualifying COMPCODE

 01 REASON PIC S9(9) BINARY.

PL/I invocation

call MQINQMP (Hconn, Hmsg, InqPropOpts, Name, PropDesc, Type,

ValueLength, Value, DataLength, CompCode, Reason);

Declare the parameters as follows:

dcl Hconn fixed bin(31); /* Connection handle */

dcl Hmsg fixed bin(63); /* Message handle */

dcl InqPropOpts like MQIMPO; /* Options that control the action of MQINQMP */

dcl Name like MQCHARV; /* Property name */

dcl PropDesc like MQPD; /* Property descriptor */

Chapter 2. Function calls 375

dcl Type fixed bin (31); /* Property data type */

dcl ValueLength fixed bin (31); /* Length in bytes of the Value area */

dcl Value char (n); /* Area to contain the property value */

dcl DataLength fixed bin (31); /* Length of the property value */

dcl CompCode fixed bin (31); /* Completion code */

dcl Reason fixed bin (31); /* Reason code qualifying CompCode */

System/390 assembler invocation

Parameters used for the System/390 assembler invocation of MQINQMP.

CALL MQINQMP,(HCONN,HMSG,INQMSGOPTS,NAME,PROPDESC,TYPE,

VALUELENGTH,VALUE,DATALENGTH,COMPCODE,REASON)

Declare the parameters as follows:

HCONN DS F Connection handle

HMSG DS D Message handle

INQMSGOPTS CMQIMPOA , Options that control the action of MQINQMP

NAME CMQCHRVA , Property name

PROPDESC CMQPDA , Property descriptor

TYPE DS F Property data type

VALUELENGTH DS F Length in bytes of the VALUE area

VALUE DS CL(n) Area to contain the property value

DATALENGTH DS F Length of the property value

COMPCODE DS F Completion code

REASON DS F Reason code qualifying COMPCODE

MQMHBUF - Convert message handle into buffer

The MQMHBUF converts a message handle into a buffer and is the inverse of the

MQBUFMH call.

Syntax for MQMHBUF

Parameters for MQMHBUF

The MQMHBUF call has the following parameters.

HCONN (10-digit signed integer) - input

This handle represents the connection to the queue manager. The value of HCONN

must match the connection handle that was used to create the message handle

specified in the HMSG parameter.

If the message handle was created using MQHC_UNASSOCIATED_HCONN, a

valid connection must be established on the thread deleting the message handle. If

a valid connection is not established, the call fails with

MQRC_CONNECTION_BROKEN.

HMSG (10-digit signed integer) - input

This is the message handle for which a buffer is required.

The value was returned by a previous MQCRTMH call.

MHBOPT (10-digit signed integer) - input

The MQMHBO structure allows applications to specify options that control how

buffers are produced from message handles.

MQMHBUF (Hconn, Hmsg, MsgHBufOpts, Name, MsgDesc, BufferLength, Buffer, DataLength, CompCode, Reason)

376 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

See “MQBMHO – Buffer to message handle options” on page 14 for details.

PRNAME (10-digit signed integer) - input

The name of the property or properties to put into the buffer.

If no property matching the name can be found, the call fails with

MQRC_PROPERTY_NOT_AVAILABLE.

Wildcards

You can use a wildcard to put more than one property into the buffer. To do this,

use the wildcard character ’%’ at the end of the property name. This wildcard

matches zero or more characters, including the ’.’ character.

In the C programming language, the following macro variables are defined for

inquiring on all properties and all properties that begin ’usr’, respectively:

MQPROP_INQUIRE_ALL

Put all properties of the message into the buffer

MQPROP_INQUIRE_ALL_USR

Put all properties of the message that start with the characters ’usr.’ into

the buffer.

See Property names and Property name restrictions for further information about

the use of property names.

MSGDSC (10-digit signed integer) - input/output

The MSGDSC structure describes the contents of the buffer area.

On output, the Encoding, CodedCharSetId and Format fields are set to correctly

describe the encoding, character set identifier, and format of the data in the buffer

area as written by the call.

Data in this structure is in the character set and encoding of the application.

BUFLEN (10-digit signed integer) - input

BUFFLEN is the length of the Buffer area, in bytes.

BUFFER (10-digit signed integer) - output

BUFFER defines the area to contain the message properties. You should align the

buffer on a 4-byte boundary.

If BUFFLEN is less than the length required to store the properties in BUFFER,

MQMHBUF fails with MQRC_PROPERTY_VALUE_TOO_BIG.

The contents of the buffer can change even if the call fails.

DATLEN (10-digit signed integer) - output

DATLEN is the length, in bytes, of the returned properties in the buffer. If the value

is zero, no properties matched the value given in PRNAME and the call fails with

reason code MQRC_PROPERTY_NOT_AVAILABLE.

Chapter 2. Function calls 377

If BUFLEN is less than the length required to store the properties in the buffer, the

MQMHBUF call fails with MQRC_PROPERTY_VALUE_TOO_BIG, but a value is

still entered into DATLEN. This allows the application to determine the size of the

buffer required to accommodate the properties, and then reissue the call with the

required BUFLEN.

CMPCOD (10-digit signed integer) - output

The completion code; it is one of the following:

MQCC_OK

Successful completion.

MQCC_FAILED

Call failed.

REASON (10-digit signed integer) - output

The reason code qualifying CMPCOD.

If CMPCOD is MQCC_OK:

MQRC_NONE

(0, X’000’) No reason to report.

If CMPCOD is MQCC_FAILED:

RC2204

(2204, X’089C’) Adapter not available.

RC2130

(2130, X’852’) Unable to load adapter service module.

RC2157

(2157, X’86D’) Primary and home ASIDs differ.

RC2501

(2501, X’095C’) Message handle to buffer options structure not valid.

RC2004

(2004, X’07D4’) Buffer parameter not valid.

RC2005

(2005, X’07D5’) Buffer length parameter not valid.

RC2219

(2219, X’08AB’) MQI call entered before previous call completed.

RC2009

(2009, X’07D9’) Connection to queue manager lost.

RC2010

(2010, X’07DA’) Data length parameter not valid.

RC2460

(2460, X’099C’) Message handle not valid.

RC2026

(2026, X’07EA’) Message descriptor not valid.

RC2499

(2499, X’09C3’) Message handle already in use.

378 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

RC2046

(2046, X’07FE’) Options not valid or not consistent.

RC2442

(2442, X’098A’) Property name is not valid.

RC2471

(2471, X’09A7’) Property not available.

RC2469

(2469, X’09A5’) BufferLength value is too small to contain specified

properties.

RC2195

(2195, X’893’) Unexpected error occurred.

Usage notes for MQMHBUF

MQMHBUF converts a message handle into a buffer.

You can use it with an MQGET API exit to access certain properties, using the

message property APIs, and then pass these in a buffer back to an application

designed to use MQRFH2 headers rather than message handles.

This call is the inverse of the MQBUFMH call, which you can use to parse message

properties from a buffer into a message handle.

Language invocations for MQMHBUF

The MQMHBUF call is supported in the programming languages shown below.

C invocation

MQMHBUF (Hconn, Hmsg, &MsgHBufOpts, &Name, &MsgDesc, BufferLength, Buffer,

 &DataLength, &CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /* Connection handle */

MQHMSG Hmsg; /* Message handle */

MQMHBO MsgHBufOpts; /* Options that control the action of MQMHBUF */

MQCHARV Name; /* Property name */

MQMD MsgDesc; /* Message descriptor */

MQLONG BufferLength; /* Length in bytes of the Buffer area */

MQBYTE Buffer[n]; /* Area to contain the properties */

MQLONG DataLength; /* Length of the properties */

MQLONG CompCode; /* Completion code */

MQLONG Reason; /* Reason code qualifying CompCode */

COBOL invocation

 CALL ‘MQMHBUF’ USING HCONN, HMSG, MSGHBUFOPTS, NAME, MSGDESC,

 BUFFERLENGTH, BUFFER, DATALENGTH, COMPCODE, REASON.

Declare the parameters as follows:

** Connection handle

 01 HCONN PIC S9(9) BINARY.

** Message handle

 01 HMSG PIC S9(19) BINARY.

** Options that control the action of MQMHBUF

 01 MSGHBUFOPTS.

 COPY CMQMHBOV.

** Property name

 01 NAME

 COPY CMQCHRVV.

Chapter 2. Function calls 379

** Message descriptor

 01 MSGDESC

 COPY CMQMDV.

** Length in bytes of the Buffer area */

 01 BUFFERLENGTH PIC S9(9) BINARY.

** Area to contain the properties

 01 BUFFER PIC X(n).

** Length of the properties

 01 DATALENGTH PIC S9(9) BINARY.

** Completion code

 01 COMPCODE PIC S9(9) BINARY.

** Reason code qualifying COMPCODE

 01 REASON PIC S9(9) BINARY.

PL/I invocation

call MQMHBUF (Hconn, Hmsg, MsgHBufOpts, Name, MsgDesc, BufferLength, Buffer,

 DataLength, CompCode, Reason);

Declare the parameters as follows:

dcl Hconn fixed bin(31); /* Connection handle */

dcl Hmsg fixed bin(63); /* Message handle */

dcl MsgHBufOpts like MQMHBO; /* Options that control the action of MQMHBUF */

dcl Name like MQCHARV; /* Property name */

dcl MsgDesc like MQMD; /* Message descriptor */

dcl BufferLength fixed bin(31); /* Length in bytes of the Buffer area */

dcl Buffer char(n); /* Area to contain the properties */

dcl DataLength fixed bin(31); /* Length of the properties */

dcl CompCode fixed bin(31); /* Completion code */

dcl Reason fixed bin(31); /* Reason code qualifying CompCode */

System/390 assembler invocation

CALL MQMHBUF,(HCONN,HMSG,MSGHBUFOPTS,NAME,MSGDESC,BUFFERLENGTH,

 BUFFER,DATALENGTH,COMPCODE,REASON)

Declare the parameters as follows:

HCONN DS F Connection handle

HMSG DS D Message handle

MSGHBUFOPTS CMQMHBOA , Options that control the action of MQMHBUF

NAME CMQCHRVA , Property name

MSGDESC CMQMDA , Message descriptor

BUFFERLENGTH DS F Length in bytes of the BUFFER area

BUFFER DS CL(n) Area to contain the properties

DATALENGTH DS F Length of the properties

COMPCODE DS F Completion code

REASON DS F Reason code qualifying COMPCODE

MQOPEN - Open object

The MQOPEN call establishes access to an object. The following types of object are

valid:

v Queue (including distribution lists)

v Namelist

v Process definition

v Queue manager

v Topic

Syntax

380 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Parameters

The MQOPEN call has the following parameters.

HCONN (10-digit signed integer) – input

Connection handle.

This handle represents the connection to the queue manager. The value of HCONN

was returned by a previous MQCONN or MQCONNX call.

On i5/OS for applications running in compatibility mode, the MQCONN call can

be omitted, and the following value specified for HCONN:

HCDEFH

Default connection handle.

OBJDSC (MQOD) – input/output

Object descriptor.

This is a structure that identifies the object to be opened; see “MQOD – Object

descriptor” on page 185 for details.

If the ODON field in the OBJDSC parameter is the name of a model queue, a dynamic

local queue is created with the attributes of the model queue; this happens

irrespective of the open options specified by the OPTS parameter. Subsequent

operations using the HOBJ returned by the MQOPEN call are performed on the new

dynamic queue, and not on the model queue. This is true even for the MQINQ

and MQSET calls. The name of the model queue in the OBJDSC parameter is

replaced with the name of the dynamic queue created. The type of the dynamic

queue is determined by the value of the DefinitionType attribute of the model

queue (see “Attributes for queues” on page 437). For information about the close

options applicable to dynamic queues, see the description of the MQCLOSE call.

OPTS (10-digit signed integer) – input

Options that control the action of MQOPEN.

At least one of the following options must be specified:

v OOBRW

v OOINP* (only one of these)

v OOINQ

v OOOUT

v OOSET

v OORLQ

See below for details of these options; other options can be specified as required. If

more than one option is required, the values can be added together (do not add

the same constant more than once). Combinations that are not valid are noted; all

MQOPEN (HCONN, OBJDSC, OPTS, HOBJ, CMPCOD, REASON)

Chapter 2. Function calls 381

other combinations are valid. Only options that are applicable to the type of object

specified by OBJDSC are allowed (see “Valid MQOPEN options for each queue

type” on page 386).

Access options: The following options control the type of operations that can be

performed on the object:

OOINPQ

Open queue to get messages using queue-defined default.

 The queue is opened for use with subsequent MQGET calls. The type of

access is either shared or exclusive, depending on the value of the

DefInputOpenOption queue attribute; see “Attributes for queues” on page

437 for details.

This option is valid only for local, alias, and model queues; it is not valid

for remote queues, distribution lists, and objects that are not queues.

OOINPS

Open queue to get messages with shared access.

 The queue is opened for use with subsequent MQGET calls. The call can

succeed if the queue is currently open by this or another application with

OOINPS, but fails with reason code RC2042 if the queue is currently open

with OOINPX.

This option is valid only for local, alias, and model queues; it is not valid

for remote queues, distribution lists, and objects that are not queues.

OOINPX

Open queue to get messages with exclusive access.

 The queue is opened for use with subsequent MQGET calls. The call fails

with reason code RC2042 if the queue is currently open by this or another

application for input of any type (OOINPS or OOINPX).

This option is valid only for local, alias, and model queues; it is not valid

for remote queues, distribution lists, and objects that are not queues.

The following notes apply to these options:

v Only one of these options can be specified.

v An MQOPEN call with one of these options can succeed even if the InhibitGet

queue attribute is set to QAGETI (although subsequent MQGET calls will fail

while the attribute is set to this value).

v If the queue is defined as not being shareable (that is, the Shareability queue

attribute has the value QANSHR), attempts to open the queue for shared access

are treated as attempts to open the queue with exclusive access.

v If an alias queue is opened with one of these options, the test for exclusive use

(or for whether another application has exclusive use) is against the base queue

to which the alias resolves.

v These options are not valid if ODMN is the name of a queue manager alias; this is

true even if the value of the RemoteQMgrName attribute in the local definition of a

remote queue used for queue manager aliasing is the name of the local queue

manager.

OOBRW

Open queue to browse messages.

 The queue is opened for use with subsequent MQGET calls with one of the

following options:

382 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

v GMBRWF

v GMBRWN

v GMBRWC

This is allowed even if the queue is currently open for OOINPX. An

MQOPEN call with the OOBRW option establishes a browse cursor, and

positions it logically before the first message on the queue; see the GMOPT

field described in “MQGMO – Get-message options” on page 86 for further

information.

This option is valid only for local, alias, and model queues; it is not valid

for remote queues, distribution lists, and objects which are not queues. It is

also not valid if ODMN is the name of a queue manager alias; this is true

even if the value of the RemoteQMgrName attribute in the local definition of a

remote queue used for queue manager aliasing is the name of the local

queue manager.

OOOUT

Open queue to put messages, or a topic or topic string to publish

messages.

 The queue is opened for use with subsequent MQPUT calls.

An MQOPEN call with this option can succeed even if the InhibitPut

queue attribute is set to QAPUTI (although subsequent MQPUT calls will

fail while the attribute is set to this value).

This option is valid for all types of queue, including distribution lists and

topics.

OOINQ

Open object to inquire attributes.

 The queue, namelist, process definition, or queue manager is opened for

use with subsequent MQINQ calls.

This option is valid for all types of object other than distribution lists. It is

not valid if ODMN is the name of a queue manager alias; this is true even if

the value of the RemoteQMgrName attribute in the local definition of a remote

queue used for queue manager aliasing is the name of the local queue

manager.

OOSET

Open queue to set attributes.

 The queue is opened for use with subsequent MQSET calls.

This option is valid for all types of queue other than distribution lists. It is

not valid if ODMN is the name of a local definition of a remote queue; this is

true even if the value of the RemoteQMgrName attribute in the local definition

of a remote queue used for queue manager aliasing is the name of the local

queue manager.

Binding options: The following options apply when the object being opened is a

cluster queue; these options control the binding of the queue handle to a particular

instance of the cluster queue:

OOBNDO

Bind handle to destination when queue is opened.

 This causes the local queue manager to bind the queue handle to a

particular instance of the destination queue when the queue is opened. As

Chapter 2. Function calls 383

a result, all messages put using this handle are sent to the same instance of

the destination queue, and by the same route.

This option is valid only for queues, and affects only cluster queues. If

specified for a queue that is not a cluster queue, the option is ignored.

OOBNDN

Do not bind to a specific destination.

 This stops the local queue manager binding the queue handle to a

particular instance of the destination queue. As a result, successive

MQPUT calls using this handle may result in the messages being sent to

different instances of the destination queue, or being sent to the same

instance but by different routes. It also allows the instance selected to be

changed subsequently by the local queue manager, by a remote queue

manager, or by a message channel agent (MCA), according to network

conditions.

Note: Client and server applications which need to exchange a series of

messages in order to complete a transaction should not use OOBNDN (or

OOBNDQ when DefBind has the value BNDNOT), because successive

messages in the series may be sent to different instances of the server

application.

If OOBRW or one of the OOINP* options is specified for a cluster queue,

the queue manager is forced to select the local instance of the cluster

queue. As a result, the binding of the queue handle is fixed, even if

OOBNDN is specified.

If OOINQ is specified with OOBNDN, successive MQINQ calls using that

handle may inquire different instances of the cluster queue, although

usually all of the instances have the same attribute values.

OOBNDN is valid only for queues, and affects only cluster queues. If

specified for a queue that is not a cluster queue, the option is ignored.

OOBNDQ

Use default binding for queue.

 This causes the local queue manager to bind the queue handle in the way

defined by the DefBind queue attribute. The value of this attribute is either

BNDOPN or BNDNOT.

OOBNDQ is the default if neither OOBNDO nor OOBNDN is specified.

OOBNDQ is defined to aid program documentation. It is not intended that

this option be used with either of the other two bind options, but because

its value is zero such use cannot be detected.

Context options: The following options control the processing of message context:

OOSAVA

Save context when message retrieved.

 Context information is associated with this queue handle. This information

is set from the context of any message retrieved using this handle. For

more information on message context, see the WebSphere MQ Application

Programming Guide.

384 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

This context information can be passed to a message that is subsequently

put on a queue using the MQPUT or MQPUT1 calls. See the PMPASI and

PMPASA options described in “MQPMO – Put-message options” on page

202.

Until a message has been successfully retrieved, context cannot be passed

to a message being put on a queue.

A message retrieved using one of the GMBRW* browse options does not

have its context information saved (although the context fields in the

MSGDSC parameter are set after a browse).

This option is valid only for local, alias, and model queues; it is not valid

for remote queues, distribution lists, and objects which are not queues. One

of the OOINP* options must be specified.

OOPASI

Allow identity context to be passed.

 This allows the PMPASI option to be specified in the PMO parameter when

a message is put on a queue; this gives the message the identity context

information from an input queue that was opened with the OOSAVA

option. For more information on message context, see the WebSphere MQ

Application Programming Guide.

The OOOUT option must be specified.

This option is valid for all types of queue, including distribution lists.

OOPASA

Allow all context to be passed.

 This allows the PMPASA option to be specified in the PMO parameter when

a message is put on a queue; this gives the message the identity and origin

context information from an input queue that was opened with the

OOSAVA option. For more information on message context, see the

WebSphere MQ Application Programming Guide.

This option implies OOPASI, which need not therefore be specified. The

OOOUT option must be specified.

This option is valid for all types of queue, including distribution lists.

OOSETI

Allow identity context to be set.

 This allows the PMSETI option to be specified in the PMO parameter when a

message is put on a queue; this gives the message the identity context

information contained in the MSGDSC parameter specified on the MQPUT or

MQPUT1 call. For more information on message context, see the

WebSphere MQ Application Programming Guide.

This option implies OOPASI, which need not therefore be specified. The

OOOUT option must be specified.

This option is valid for all types of queue, including distribution lists.

OOSETA

Allow all context to be set.

 This allows the PMSETA option to be specified in the PMO parameter when

a message is put on a queue; this gives the message the identity and origin

context information contained in the MSGDSC parameter specified on the

Chapter 2. Function calls 385

MQPUT or MQPUT1 call. For more information on message context, see

the WebSphere MQ Application Programming Guide.

This option implies the following options, which need not therefore be

specified:

v OOPASI

v OOPASA

v OOSETI

The OOOUT option must be specified.

This option is valid for all types of queue, including distribution lists.

Other options: The following options control authorization checking, and what

happens when the queue manager is quiescing:

OOALTU

Validate with specified user identifier.

 This indicates that the ODAU field in the OBJDSC parameter contains a user

identifier that is to be used to validate this MQOPEN call. The call can

succeed only if this ODAU is authorized to open the object with the specified

access options, regardless of whether the user identifier under which the

application is running is authorized to do so. This does not apply to any

context options specified, however, which are always checked against the

user identifier under which the application is running.

This option is valid for all types of object.

OOFIQ

Fail if queue manager is quiescing.

 This option forces the MQOPEN call to fail if the queue manager is in

quiescing state.

This option is valid for all types of object.

OORLQ

Fills in the name of local queue that was opened.

 This option specifies that the ResolvedQName in the MQOD structure (if

available) should be filled in with the name of the local queue which was

actually opened. The ResolvedQMgrName will similarly be filled in with

the name of the local queue manager hosting the local queue.

Valid MQOPEN options for each queue type

 Option Alias (note 1) Local and

Model

Remote Nonlocal

Cluster

Distribution

list

Topic

OOINPQ Y Y — — — —

OOINPS Y Y — — — —

OOINPX Y Y — — — —

OOBRW Y Y — — — —

OOOUT Y Y Y Y Y Y

OOINQ Y Y Note 2 Y — —

OOSET Y Y Note 2 — — —

OOBNDO (note 3) Y Y Y Y Y —

OOBNDN (note 3) Y Y Y Y Y —

386 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Option Alias (note 1) Local and

Model

Remote Nonlocal

Cluster

Distribution

list

Topic

OOBNDQ (note 3) Y Y Y Y Y —

OOSAVA Y Y — — — —

OOPASI Y Y Y Y Y Note 5

OOPASA Y Y Y Y Y Note 5

OOSETI Y Y Y Y Y Note 5

OOSETA Y Y Y Y Y Note 5

OOALTU Y Y Y Y Y Y

OOFIQ Y Y Y Y Y Y

OORLQ Y Y Y Y — —

Notes:

1. The validity of options for aliases depends on the validity of the option for the queue to which

the alias resolves.

2. This option is valid only for the local definition of a remote queue.

3. This option can be specified for any queue type, but is ignored if the queue is not a cluster

queue.

4. This attribute is ignored for a topic.

5. These attributes can be used with a topic, but only affect the context set for the retained message,

not the context fields sent to any subscriber.

HOBJ (10-digit signed integer) – output

Object handle.

This handle represents the access that has been established to the object. It must be

specified on subsequent message queuing calls that operate on the object. It ceases

to be valid when the MQCLOSE call is issued, or when the unit of processing that

defines the scope of the handle terminates.

The scope of the handle is restricted to the smallest unit of parallel processing

supported by the platform on which the application is running; the handle is not

valid outside the unit of parallel processing from which the MQOPEN call was

issued:

v On i5/OS, the scope of the handle is the job issuing the call.

CMPCOD (10-digit signed integer) – output

Completion code.

It is one of the following:

CCOK

Successful completion.

CCWARN

Warning (partial completion).

CCFAIL

Call failed.

Chapter 2. Function calls 387

REASON (10-digit signed integer) – output

Reason code qualifying CMPCOD.

If CMPCOD is CCOK:

RCNONE

(0, X’000’) No reason to report.

If CMPCOD is CCWARN:

RC2136

(2136, X’858’) Multiple reason codes returned.

If CMPCOD is CCFAIL:

RC2001

(2001, X’7D1’) Alias base queue not a valid type.

RC2219

(2219, X’8AB’) MQI call reentered before previous call complete.

RC2266

(2266, X’8DA’) Cluster workload exit failed.

RC2268

(2268, X’8DC’) Put calls inhibited for all queues in cluster.

RC2189

(2189, X’88D’) Cluster name resolution failed.

RC2269

(2269, X’8DD’) Cluster resource error.

RC2009

(2009, X’7D9’) Connection to queue manager lost.

RC2198

(2198, X’896’) Default transmission queue not local.

RC2199

(2199, X’897’) Default transmission queue usage error.

RC2011

(2011, X’7DB’) Name of dynamic queue not valid.

RC2017

(2017, X’7E1’) No more handles available.

RC2018

(2018, X’7E2’) Connection handle not valid.

RC2019

(2019, X’7E3’) Object handle not valid.

RC2194

(2194, X’892’) Object name not valid for object type.

RC2035

(2035, X’7F3’) Not authorized for access.

RC2100

(2100, X’834’) Object already exists.

388 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

RC2101

(2101, X’835’) Object damaged.

RC2042

(2042, X’7FA’) Object already open with conflicting options.

RC2043

(2043, X’7FB’) Object type not valid.

RC2044

(2044, X’7FC’) Object descriptor structure not valid.

RC2045

(2045, X’7FD’) Option not valid for object type.

RC2046

(2046, X’7FE’) Options not valid or not consistent.

RC2052

(2052, X’804’) Queue has been deleted.

RC2058

(2058, X’80A’) Queue manager name not valid or not known.

RC2059

(2059, X’80B’) Queue manager not available for connection.

RC2161

(2161, X’871’) Queue manager quiescing.

RC2162

(2162, X’872’) Queue manager shutting down.

RC2057

(2057, X’809’) Queue type not valid.

RC2184

(2184, X’888’) Remote queue name not valid.

RC2102

(2102, X’836’) Insufficient system resources available.

RC2063

(2063, X’80F’) Security error occurred.

RC2188

(2188, X’88C’) Call rejected by cluster workload exit.

RC2071

(2071, X’817’) Insufficient storage available.

RC2195

(2195, X’893’) Unexpected error occurred.

RC2082

(2082, X’822’) Unknown alias base queue.

RC2197

(2197, X’895’) Unknown default transmission queue.

RC2085

(2085, X’825’) Unknown object name.

RC2086

(2086, X’826’) Unknown object queue manager.

Chapter 2. Function calls 389

RC2087

(2087, X’827’) Unknown remote queue manager.

RC2196

(2196, X’894’) Unknown transmission queue.

RC2091

(2091, X’82B’) Transmission queue not local.

RC2092

(2092, X’82C’) Transmission queue with wrong usage.

Usage notes

 1. The object opened is one of the following:

v A queue, in order to:

– Get or browse messages (using the MQGET call)

– Put messages (using the MQPUT call)

– Inquire about the attributes of the queue (using the MQINQ call)

– Set the attributes of the queue (using the MQSET call)
If the queue named is a model queue, a dynamic local queue is created. See

the OBJDSC parameter described in “MQOPEN - Open object” on page 380.

A distribution list is a special type of queue object that contains a list of

queues. It can be opened to put messages, but not to get or browse

messages, or to inquire or set attributes. See usage note 8 for further details.

A queue that has QSGDISP(GROUP) is a special type of queue definition that

cannot be used with the MQOPEN or MQPUT1 calls.

v A namelist, in order to:

– Inquire about the names of the queues in the list (using the MQINQ call).
v A process definition, in order to:

– Inquire about the process attributes (using the MQINQ call).
v The queue manager, in order to:

– Inquire about the attributes of the local queue manager (using the

MQINQ call).
 2. It is valid for an application to open the same object more than once. A

different object handle is returned for each open. Each handle that is returned

can be used for the functions for which the corresponding open was

performed.

 3. If the object being opened is a queue but not a cluster queue, all name

resolution within the local queue manager takes place at the time of the

MQOPEN call. This may include one or more of the following for a given

MQOPEN call:

v Alias resolution to the name of a base queue

v Resolution of the name of a local definition of a remote queue to the name

of the remote queue manager, and the name by which the queue is known

at the remote queue manager

v Resolution of the remote queue manager name to the name of a local

transmission queue
However, be aware that subsequent MQINQ or MQSET calls for the handle

relate solely to the name that has been opened, and not to the object resulting

after name resolution has occurred. For example, if the object opened is an

alias, the attributes returned by the MQINQ call are the attributes of the alias,

not the attributes of the base queue to which the alias resolves. Name

390 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

resolution checking is still carried out, however, regardless of what is specified

for the OPTS parameter on the corresponding MQOPEN.

If the object being opened is a cluster queue, name resolution can occur at the

time of the MQOPEN call, or be deferred until later. The point at which

resolution occurs is controlled by the OOBND* options specified on the

MQOPEN call:

v OOBNDO

v OOBNDN

v OOBNDQ
Refer to the WebSphere MQ Queue Manager Clusters book for more

information about name resolution for cluster queues.

 4. The attributes of an object can change while an application has the object

open. In many cases, the application does not notice this, but for certain

attributes the queue manager marks the handle as no longer valid. These are:

v Any attribute that affects the name resolution of the object. This applies

regardless of the open options used, and includes the following:

– A change to the BaseQName attribute of an alias queue that is open.

– A change to the RemoteQName or RemoteQMgrName queue attributes, for any

handle that is open for this queue, or for a queue which resolves through

this definition as a queue manager alias.

– Any change that causes a currently-open handle for a remote queue to

resolve to a different transmission queue, or to fail to resolve to one at all.

For example, this can include:

- A change to the XmitQName attribute of the local definition of a remote

queue, whether the definition is being used for a queue, or for a queue

manager alias.
There is one exception to this, namely the creation of a new transmission

queue. A handle that would have resolved to this queue had it been

present when the handle was opened, but instead resolved to the default

transmission queue, is not made invalid.

– A change to the DefXmitQName queue manager attribute. In this case all

open handles that resolved to the previously-named queue (that resolved

to it only because it was the default transmission queue) are marked as

invalid. Handles that resolved to this queue for other reasons are not

affected.
v The Shareability queue attribute, if there are two or more handles that are

currently providing OOINPS access for this queue, or for a queue that

resolves to this queue. If this is the case, all handles that are open for this

queue, or for a queue that resolves to this queue, are marked as invalid,

regardless of the open options.

v The Usage queue attribute, for all handles that are open for this queue, or

for a queue that resolves to this queue, regardless of the open options.

When a handle is marked as invalid, all subsequent calls (other than

MQCLOSE) using this handle fail with reason code RC2041; the application

should issue an MQCLOSE call (using the original handle) and then reopen

the queue. Any uncommitted updates against the old handle from previous

successful calls can still be committed or backed out, as required by the

application logic.

If changing an attribute will cause this to happen, a special “force” version of

the command must be used.

Chapter 2. Function calls 391

5. The queue manager performs security checks when an MQOPEN call is

issued, to verify that the user identifier under which the application is

running has the appropriate level of authority before access is permitted. The

authority check is made on the name of the object being opened, and not on

the name, or names, resulting after a name has been resolved.

If the object being opened is a model queue, the queue manager performs a

full security check against both the name of the model queue and the name of

the dynamic queue that is created. If the resulting dynamic queue is

subsequently opened explicitly, a further resource security check is performed

against the name of the dynamic queue.

 6. A remote queue can be specified in one of two ways in the OBJDSC parameter

of this call (see the ODON and ODMN fields described in “MQOD – Object

descriptor” on page 185):

v By specifying for ODON the name of a local definition of the remote queue. In

this case, ODMN refers to the local queue manager, and can be specified as

blanks.

The security validation performed by the local queue manager verifies that

the user is authorized to open the local definition of the remote queue.

v By specifying for ODON the name of the remote queue as known to the

remote queue manager. In this case, ODMN is the name of the remote queue

manager.

The security validation performed by the local queue manager verifies that

the user is authorized to send messages to the transmission queue resulting

from the name resolution process.

In either case:

v No messages are sent by the local queue manager to the remote queue

manager in order to check that the user is authorized to put messages on

the queue.

v When a message arrives at the remote queue manager, the remote queue

manager may reject it because the user originating the message is not

authorized.
 7. An MQOPEN call with the OOBRW option establishes a browse cursor, for

use with MQGET calls that specify the object handle and one of the browse

options. This allows the queue to be scanned without altering its contents. A

message that has been found by browsing can subsequently be removed from

the queue by using the GMMUC option.

Multiple browse cursors can be active for a single application by issuing

several MQOPEN requests for the same queue.

 8. The following notes apply to the use of distribution lists.

a. Fields in the MQOD structure must be set as follows when opening a

distribution list:

v ODVER must be ODVER2 or greater.

v ODOT must be OTQ.

v ODON must be blank or the null string.

v ODMN must be blank or the null string.

v ODREC must be greater than zero.

v One of ODORO and ODORP must be zero and the other nonzero.

v No more than one of ODRRO and ODRRP can be nonzero.

392 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

v There must be ODREC object records, addressed by either ODORO or ODORP.

The object records must be set to the names of the destination queues to

be opened.

v If one of ODRRO and ODRRP is nonzero, there must be ODREC response

records present. They are set by the queue manager if the call completes

with reason code RC2136.
A version-2 MQOD can also be used to open a single queue that is not in

a distribution list, by ensuring that ODREC is zero.

b. Only the following open options are valid in the OPTS parameter:

v OOOUT

v OOPAS*

v OOSET*

v OOALTU

v OOFIQ
c. The destination queues in the distribution list can be local, alias, or remote

queues, but they cannot be model queues. If a model queue is specified,

that queue fails to open, with reason code RC2057. However, this does not

prevent other queues in the list being opened successfully.

d. The completion code and reason code parameters are set as follows:

v If the open operations for the queues in the distribution list all succeed

or fail in the same way, the completion code and reason code

parameters are set to describe the common result. The MQRR response

records (if provided by the application) are not set in this case.

For example, if every open succeeds, the completion code and reason

code are set to CCOK and RCNONE respectively; if every open fails

because none of the queues exists, the parameters are set to CCFAIL and

RC2085.

v If the open operations for the queues in the distribution list do not all

succeed or fail in the same way:

– The completion code parameter is set to CCWARN if at least one

open succeeded, and to CCFAIL if all failed.

– The reason code parameter is set to RC2136.

– The response records (if provided by the application) are set to the

individual completion codes and reason codes for the queues in the

distribution list.
e. When a distribution list has been opened successfully, the handle HOBJ

returned by the call can be used on subsequent MQPUT calls to put

messages to queues in the distribution list, and on an MQCLOSE call to

relinquish access to the distribution list. The only valid close option for a

distribution list is CONONE.

The MQPUT1 call can also be used to put a message to a distribution list;

the MQOD structure defining the queues in the list is specified as a

parameter on that call.

f. Each successfully-opened destination in the distribution list counts as a

separate handle when checking whether the application has exceeded the

permitted maximum number of handles (see the MaxHandles queue

manager attribute). This is true even when two or more of the destinations

in the distribution list actually resolve to the same physical queue. If the

MQOPEN or MQPUT1 call for a distribution list would cause the number

of handles in use by the application to exceed MaxHandles, the call fails

with reason code RC2017.

Chapter 2. Function calls 393

g. Each destination that is opened successfully has the value of its

OpenOutputCount attribute incremented by one. If two or more of the

destinations in the distribution list actually resolve to the same physical

queue, that queue has its OpenOutputCount attribute incremented by the

number of destinations in the distribution list that resolve to that queue.

h. Any change to the queue definitions that would have caused a handle to

become invalid had the queues been opened individually (for example, a

change in the resolution path), does not cause the distribution-list handle

to become invalid. However, it does result in a failure for that particular

queue when the distribution-list handle is used on a subsequent MQPUT

call.

i. It is valid for a distribution list to contain only one destination.
 9. The following notes apply to the use of cluster queues.

a. When a cluster queue is opened for the first time, and the local queue

manager is not a full repository queue manager, the local queue manager

obtains information about the cluster queue from a full repository queue

manager. When the network is busy, it may take several seconds for the

local queue manager to receive the needed information from the repository

queue manager. As a result, the application issuing the MQOPEN call may

have to wait for up to 10 seconds before control returns from the

MQOPEN call. If the local queue manager does not receive the needed

information about the cluster queue within this time, the call fails with

reason code RC2189.

b. When a cluster queue is opened and there are multiple instances of the

queue in the cluster, the instance actually opened depends on the options

specified on the MQOPEN call:

v If the options specified include any of the following:

– OOBRW

– OOINPQ

– OOINPX

– OOINPS

– OOSET

the instance of the cluster queue opened is required to be the local

instance. If there is no local instance of the queue, the MQOPEN call

fails.

v If the options specified include none of the above, but do include one or

both of the following:

– OOINQ

– OOOUT

the instance opened is the local instance if there is one, and a remote

instance otherwise. The instance chosen by the queue manager can,

however, be altered by a cluster workload exit (if there is one).
For more information about cluster queues, refer to the WebSphere MQ Queue

Manager Clusters book.

10. Applications started by a trigger monitor are passed the name of the queue

that is associated with the application when the application is started. This

queue name can be specified in the OBJDSC parameter to open the queue. See

the description of the MQTMC structure for further details.

394 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

11. On i5/OS, applications running in compatibility mode are connected

automatically to the queue manager by the first MQOPEN call issued by the

application (if the application has not already connected to the queue manager

by using the MQCONN call).

Applications not running in compatibility mode must issue the MQCONN or

MQCONNX call to connect to the queue manager explicitly, before using the

MQOPEN call to open an object.

12. When using the MQOO_RESOLVE_LOCAL_QUEUE option, the local queue is

already returned when either a local, alias or model queue is opened, but this

is not the case when, for example, a remote queue or a non-local cluster queue

is opened; the ResolvedQName and ResolvedQMgrName are filled in with the

RemoteQName and RemoteQMgrName found in the remote queue definition,

or similarly with the chosen remote cluster queue. If

MQOO_RESOLVE_LOCAL_QUEUE is specified when opening, for example, a

remote queue, ResolvedQName will now be the transmission queue which

messages will be actually put to. The ResolvedQMgrName will be filled in

with the name of the local queue manager hosting the transmission queue. If a

user is authorized for browse, input or output on a queue, they have the

required authority to specify this flag on the MQOPEN call. No special

authority is needed.

RPG invocation

 C*..1....:....2....:....3....:....4....:....5....:....6....:....7..

 C CALLP MQOPEN(HCONN : OBJDSC : OPTS :

 C HOBJ : CMPCOD : REASON)

The prototype definition for the call is:

D*..1....:....2....:....3....:....4....:....5....:....6....:....7..

DMQOPEN PR EXTPROC(’MQOPEN’)

D* Connection handle

D HCONN 10I 0 VALUE

D* Object descriptor

D OBJDSC 456A

D* Options that control the action of MQOPEN

D OPTS 10I 0 VALUE

D* Object handle

D HOBJ 10I 0

D* Completion code

D CMPCOD 10I 0

D* Reason code qualifying CMPCOD

D REASON 10I 0

MQPUT - Put message

The MQPUT call puts a message on a queue, distribution list or to a topic. The

queue, distribution list or topic must already be open.

Syntax

Parameters

The MQPUT call has the following parameters.

MQPUT (HCONN, HOBJ, MSGDSC, PMO, BUFLEN, BUFFER, CMPCOD,

REASON)

Chapter 2. Function calls 395

HCONN (10-digit signed integer) – input

Connection handle.

This handle represents the connection to the queue manager. The value of HCONN

was returned by a previous MQCONN or MQCONNX call.

On i5/OS for applications running in compatibility mode, the MQCONN call can

be omitted, and the following value specified for HCONN:

HCDEFH

Default connection handle.

HOBJ (10-digit signed integer) – input

Object handle.

This handle represents the queue to which the message is added, or the topic to

which the message is published. The value of HOBJ was returned by a previous

MQOPEN call that specified the OOOUT option.

MSGDSC (MQMD) – input/output

Message descriptor.

This structure describes the attributes of the message being sent, and receives

information about the message after the put request is complete. See “MQMD –

Message descriptor” on page 125 for details.

If the application provides a version-1 MQMD, the message data can be prefixed

with an MQMDE structure in order to specify values for the fields that exist in the

version-2 MQMD but not the version-1. The MDFMT field in the MQMD must be set

to FMMDE to indicate that an MQMDE is present. See “MQMDE – Message

descriptor extension” on page 178 for more details.

PMO (MQPMO) – input/output

Options that control the action of MQPUT.

See “MQPMO – Put-message options” on page 202 for details.

BUFLEN (10-digit signed integer) – input

Length of the message in BUFFER.

Zero is valid, and indicates that the message contains no application data. The

upper limit for BUFLEN depends on various factors:

v If the destination queue is a shared queue, the upper limit is 63 KB (64 512

bytes).

v If the destination is a local queue or resolves to a local queue (but is not a

shared queue), the upper limit depends on whether:

– The local queue manager supports segmentation.

– The sending application specifies the flag that allows the queue manager to

segment the message. This flag is MFSEGA, and can be specified either in a

version-2 MQMD, or in an MQMDE used with a version-1 MQMD.

396 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

If both of these conditions are satisfied, BUFLEN cannot exceed 999 999 999 minus

the value of the MDOFF field in MQMD. The longest logical message that can be

put is therefore 999 999 999 bytes (when MDOFF is zero). However, resource

constraints imposed by the operating system or environment in which the

application is running may result in a lower limit.

If one or both of the above conditions is not satisfied, BUFLEN cannot exceed the

smaller of the queue’s MaxMsgLength attribute and queue manager’s

MaxMsgLength attribute.

v If the destination is a remote queue or resolves to a remote queue, the conditions

for local queues apply, but at each queue manager through which the message must

pass in order to reach the destination queue; in particular:

1. The local transmission queue used to store the message temporarily at the

local queue manager

2. Intermediate transmission queues (if any) used to store the message at queue

managers on the route between the local and destination queue managers

3. The destination queue at the destination queue manager

The longest message that can be put is therefore governed by the most

restrictive of these queues and queue managers.

When a message is on a transmission queue, additional information resides with

the message data, and this reduces the amount of application data that can be

carried. In this situation it is recommended that LNMHD bytes be subtracted

from the MaxMsgLength values of the transmission queues when determining the

limit for BUFLEN.

Note: Only failure to comply with condition 1 can be diagnosed synchronously

(with reason code RC2030 or RC2031) when the message is put. If conditions 2

or 3 are not satisfied, the message is redirected to a dead-letter

(undelivered-message) queue, either at an intermediate queue manager or at the

destination queue manager. If this happens, a report message is generated if one

was requested by the sender.

BUFFER (1-byte bit string×BUFLEN) – input

Message data.

This is a buffer containing the application data to be sent. The buffer should be

aligned on a boundary appropriate to the nature of the data in the message. 4-byte

alignment should be suitable for most messages (including messages containing

MQ header structures), but some messages may require more stringent alignment.

For example, a message containing a 64-bit binary integer might require 8-byte

alignment.

If BUFFER contains character and/or numeric data, the MDCSI and MDENC fields in the

MSGDSC parameter should be set to the values appropriate to the data; this will

enable the receiver of the message to convert the data (if necessary) to the

character set and encoding used by the receiver.

Note: All of the other parameters on the MQPUT call must be in the character set

and encoding of the local queue manager (given by the CodedCharSetId queue

manager attribute and ENNAT, respectively).

Chapter 2. Function calls 397

CMPCOD (10-digit signed integer) – output

Completion code.

It is one of the following:

CCOK

Successful completion.

CCWARN

Warning (partial completion).

CCFAIL

Call failed.

REASON (10-digit signed integer) – output

Reason code qualifying CMPCOD.

If CMPCOD is CCOK:

RCNONE

(0, X’000’) No reason to report.

If CMPCOD is CCWARN:

RC2136

(2136, X’858’) Multiple reason codes returned.

RC2049

(2049, X’801’) Message Priority exceeds maximum value supported.

RC2104

(2104, X’838’) Report option(s) in message descriptor not recognized.

If CMPCOD is CCFAIL:

RC2004

(2004, X’7D4’) Buffer parameter not valid.

RC2005

(2005, X’7D5’) Buffer length parameter not valid.

RC2219

(2219, X’8AB’) MQI call reentered before previous call complete.

RC2266

(2266, X’8DA’) Cluster workload exit failed.

RC2189

(2189, X’88D’) Cluster name resolution failed.

RC2269

(2269, X’8DD’) Cluster resource error.

RC2009

(2009, X’7D9’) Connection to queue manager lost.

RC2097

(2097, X’831’) Queue handle referred to does not save context.

RC2098

(2098, X’832’) Context not available for queue handle referred to.

398 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

RC2135

(2135, X’857’) Distribution header structure not valid.

RC2013

(2013, X’7DD’) Expiry time not valid.

RC2014

(2014, X’7DE’) Feedback code not valid.

RC2258

(2258, X’8D2’) Group identifier not valid.

RC2018

(2018, X’7E2’) Connection handle not valid.

RC2019

(2019, X’7E3’) Object handle not valid.

RC2241

(2241, X’8C1’) Message group not complete.

RC2242

(2242, X’8C2’) Logical message not complete.

RC2185

(2185, X’889’) Inconsistent persistence specification.

RC2245

(2245, X’8C5’) Inconsistent unit-of-work specification.

RC2026

(2026, X’7EA’) Message descriptor not valid.

RC2248

(2248, X’8C8’) Message descriptor extension not valid.

RC2027

(2027, X’7EB’) Missing reply-to queue.

RC2249

(2249, X’8C9’) Message flags not valid.

RC2250

(2250, X’8CA’) Message sequence number not valid.

RC2030

(2030, X’7EE’) Message length greater than maximum for queue.

RC2031

(2031, X’7EF’) Message length greater than maximum for queue manager.

RC2029

(2029, X’7ED’) Message type in message descriptor not valid.

RC2136

(2136, X’858’) Multiple reason codes returned.

RC2270

(2270, X’8DE’) No destination queues available.

RC2479

(2479, X’9AF’) Publication could not be retained.

RC2039

(2039, X’7F7’) Queue not open for output.

Chapter 2. Function calls 399

RC2093

(2093, X’82D’) Queue not open for pass all context.

RC2094

(2094, X’82E’) Queue not open for pass identity context.

RC2095

(2095, X’82F’) Queue not open for set all context.

RC2096

(2096, X’830’) Queue not open for set identity context.

RC2041

(2041, X’7F9’) Object definition changed since opened.

RC2101

(2101, X’835’) Object damaged.

RC2251

(2251, X’8CB’) Message segment offset not valid.

RC2137

(2137, X’859’) Object not opened successfully.

RC2046

(2046, X’7FE’) Options not valid or not consistent.

RC2252

(2252, X’8CC’) Original length not valid.

RC2149

(2149, X’865’) PCF structures not valid.

RC2047

(2047, X’7FF’) Persistence not valid.

RC2048

(2048, X’800’) Queue does not support persistent messages.

RC2173

(2173, X’87D’) Put-message options structure not valid.

RC2158

(2158, X’86E’) Put message record flags not valid.

RC2050

(2050, X’802’) Message priority not valid.

RC2502

(2502, X’9C6’) Publication failed, and publication has not been delivered to

any subscribers

RC2051

(2051, X’803’) Put calls inhibited for the queue.

RC2159

(2159, X’86F’) Put message records not valid.

RC2052

(2052, X’804’) Queue has been deleted.

RC2053

(2053, X’805’) Queue already contains maximum number of messages.

RC2058

(2058, X’80A’) Queue manager name not valid or not known.

400 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

RC2059

(2059, X’80B’) Queue manager not available for connection.

RC2161

(2161, X’871’) Queue manager quiescing.

RC2162

(2162, X’872’) Queue manager shutting down.

RC2056

(2056, X’808’) No space available on disk for queue.

RC2154

(2154, X’86A’) Number of records present not valid.

RC2061

(2061, X’80D’) Report options in message descriptor not valid.

RC2156

(2156, X’86C’) Response records not valid.

RC2102

(2102, X’836’) Insufficient system resources available.

RC2253

(2253, X’8CD’) Length of data in message segment is zero.

RC2188

(2188, X’88C’) Call rejected by cluster workload exit.

RC2071

(2071, X’817’) Insufficient storage available.

RC2024

(2024, X’7E8’) No more messages can be handled within current unit of

work.

RC2072

(2072, X’818’) Syncpoint support not available.

RC2480

(2480, X’9B0’) Target type has changed: the alias queue referred to a queue

but now refers to a topic.

RC2195

(2195, X’893’) Unexpected error occurred.

RC2255

(2255, X’8CF’) Unit of work not available for the queue manager to use.

RC2257

(2257, X’8D1’) Wrong version of MQMD supplied.

RC2420

(2420) An MQPUT call was issued, but the message data contains an

MQEPH structure that is not valid.

Usage notes

Topics

The following notes apply to the use of topics:

1. When using MQPUT to publish messages on a topic, where one or more

subscribers to that topic cannot be given the publication due to a problem with

Chapter 2. Function calls 401

their subscriber queue (for example it is full), the Reason code returned to the

MQPUT call and the delivery behaviour is dependant on the setting of the

PMSGDLV or NPMSGDLV attributes on the TOPIC. Note that delivery of a

publication to the dead letter queue when RODLQ is specified, or discarding

the message when RODISC is specified, is considered a successful delivery of

the message. If none of the publications were delivered, the MQPUT will return

with RC2502. This can happen in the following cases:

v A message is published to a TOPIC with PMSGDLV or NPMSGDLV

(depending on the persistence of the message) set to ALL and any

subscription (durable or not) has a queue which cannot receive the

publication.

v A message is published to a TOPIC with PMSGDLV or NPMSGDLV

(depending on the persistence of the message) set to ALLDUR and a durable

subscription has a queue which cannot receive the publication.

The MQPUT can return with MQRC_NONE even though publications could

not be delivered to some subscribers in the following cases:

v A message is published to a TOPIC with PMSGDLV or NPMSGDLV

(depending on the persistence of the message) set to ALLAVAIL and any

subscription, durable or not, has a queue which cannot receive the

publication.

v A message is published to a TOPIC with PMSGDLV or NPMSGDLV

(depending on the persistence of the message) set to ALLDUR and a

non-durable subscription has a queue which cannot receive the publication.
2. If there are no subscribers to the topic being used, the message published is not

sent to any queue and is discarded. It does not make any difference whether

this message is persistent or non-persistent, or whether it has unlimited expiry

or some small expiry time, it is still discarded if there are no subscribers. The

exception to this is if the message is to be retained, in which case, although it is

not sent to any subscribers’ queues, it is stored against the topic to be delivered

to any new subscriptions or to any subscribers that ask for retained

publications using MQSUBRQ.

MQPUT and MQPUT1

Both the MQPUT and MQPUT1 calls can be used to put messages on a queue;

which call to use depends on the circumstances

v The MQPUT call should be used when multiple messages are to be placed on

the same queue.

An MQOPEN call specifying the OOOUT option is issued first, followed by one

or more MQPUT requests to add messages to the queue; finally the queue is

closed with an MQCLOSE call. This gives better performance than repeated use

of the MQPUT1 call.

v The MQPUT1 call should be used when only one message is to be put on a

queue.

This call encapsulates the MQOPEN, MQPUT, and MQCLOSE calls into a single

call, thereby minimizing the number of calls that must be issued.

Destination queues

If an application puts a sequence of messages on the same queue without using

message groups, the order of those messages is preserved provided that the

402 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

conditions detailed below are satisfied. Some conditions apply to both local and

remote destination queues; other conditions apply only to remote destination

queues.

Conditions for local and remote destination queues

v All of the MQPUT calls are within the same unit of work, or none of them is

within a unit of work.

Be aware that when messages are put onto a particular queue within a single

unit of work, messages from other applications may be interspersed with the

sequence of messages on the queue.

v All of the MQPUT calls are made using the same object handle HOBJ.

In some environments, message sequence is also preserved when different object

handles are used, provided the calls are made from the same application. The

meaning of “same application” is determined by the environment:

– On i5/OS, the application is the job.
v The messages all have the same priority.

Additional conditions for remote destination queues

v There is only one path from the sending queue manager to the destination

queue manager.

If there is a possibility that some messages in the sequence may go on a different

path (for example, because of reconfiguration, traffic balancing, or path selection

based on message size), the order of the messages at the destination queue

manager cannot be guaranteed.

v Messages are not placed temporarily on dead-letter queues at the sending,

intermediate, or destination queue managers.

If one or more of the messages is put temporarily on a dead-letter queue (for

example, because a transmission queue or the destination queue is temporarily

full), the messages can arrive on the destination queue out of sequence.

v The messages are either all persistent or all nonpersistent.

If a channel on the route between the sending and destination queue managers

has its CDNPM attribute set to NPFAST, nonpersistent messages can jump ahead of

persistent messages, resulting in the order of persistent messages relative to

nonpersistent messages not being preserved. However, the order of persistent

messages relative to each other, and of nonpersistent messages relative to each

other, is preserved.

If these conditions are not satisfied, message groups can be used to preserve

message order, but note that this requires both the sending and receiving

applications to use the message-grouping support. For more information about

message groups, see:

v MDMFL field in MQMD

v PMLOGO option in MQPMO

v GMLOGO option in MQGMO

Distribution lists

The following notes apply to the use of distribution lists.

1. Messages can be put to a distribution list using either a version-1 or a version-2

MQPMO. If a version-1 MQPMO is used (or a version-2 MQPMO with PMREC

equal to zero), no put message records or response records can be provided by

Chapter 2. Function calls 403

the application. This means that it will not be possible to identify the queues

which encounter errors, if the message is sent successfully to some queues in

the distribution list and not others.

If put message records or response records are provided by the application, the

PMVER field must be set to PMVER2.

A version-2 MQPMO can also be used to send messages to a single queue that

is not in a distribution list, by ensuring that PMREC is zero.

2. The completion code and reason code parameters are set as follows:

v If the puts to the queues in the distribution list all succeed or fail in the same

way, the completion code and reason code parameters are set to describe the

common result. The MQRR response records (if provided by the application)

are not set in this case.

For example, if every put succeeds, the completion code and reason code are

set to CCOK and RCNONE respectively; if every put fails because all of the

queues are inhibited for puts, the parameters are set to CCFAIL and RC2051.

v If the puts to the queues in the distribution list do not all succeed or fail in

the same way:

– The completion code parameter is set to CCWARN if at least one put

succeeded, and to CCFAIL if all failed.

– The reason code parameter is set to RC2136.

– The response records (if provided by the application) are set to the

individual completion codes and reason codes for the queues in the

distribution list.
If the put to a destination fails because the open for that destination failed,

the fields in the response record are set to CCFAIL and RC2137; that

destination is included in PMIDC.
3. If a destination in the distribution list resolves to a local queue, the message is

placed on that queue in normal form (that is, not as a distribution-list message).

If more than one destination resolves to the same local queue, one message is

placed on the queue for each such destination.

If a destination in the distribution list resolves to a remote queue, a message is

placed on the appropriate transmission queue. Where several destinations

resolve to the same transmission queue, a single distribution-list message

containing those destinations may be placed on the transmission queue, even if

those destinations were not adjacent in the list of destinations provided by the

application. However, this can be done only if the transmission queue supports

distribution-list messages (see the DistLists queue attribute described in

“Attributes for queues” on page 437).

If the transmission queue does not support distribution lists, one copy of the

message in normal form is placed on the transmission queue for each

destination that uses that transmission queue.

If a distribution list with the application message data is too big for a

transmission queue, the distribution list message is split up into smaller

distribution-list messages, each containing fewer destinations. If the application

message data only just fits on the queue, distribution-list messages cannot be

used at all, and the queue manager generates one copy of the message in

normal form for each destination that uses that transmission queue.

If different destinations have different message priority or message persistence

(this can occur when the application specifies PRQDEF or PEQDEF), the

messages are not held in the same distribution-list message. Instead, the queue

manager generates as many distribution-list messages as are necessary to

accommodate the differing priority and persistence values.

404 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

4. A put to a distribution list may result in:

v A single distribution-list message, or

v A number of smaller distribution-list messages, or

v A mixture of distribution list messages and normal messages, or

v Normal messages only.

Which of the above occurs depends on whether:

v The destinations in the list are local, remote, or a mixture.

v The destinations have the same message priority and message persistence.

v The transmission queues can hold distribution-list messages.

v The transmission queues’ maximum message lengths are large enough to

accommodate the message in distribution-list form.

However, regardless of which of the above occurs, each physical message

resulting (that is, each normal message or distribution-list message resulting

from the put) counts as only one message when:

v Checking whether the application has exceeded the permitted maximum

number of messages in a unit of work (see the MaxUncommittedMsgs queue

manager attribute).

v Checking whether the triggering conditions are satisfied.

v Incrementing queue depths and checking whether the queues’ maximum

queue depth would be exceeded.
5. Any change to the queue definitions that would have caused a handle to

become invalid had the queues been opened individually (for example, a

change in the resolution path), does not cause the distribution-list handle to

become invalid. However, it does result in a failure for that particular queue

when the distribution-list handle is used on a subsequent MQPUT call.

Headers

If a message is put with one or more MQ header structures at the beginning of the

application message data, the queue manager performs certain checks on the

header structures to verify that they are valid. If the queue manager detects an

error, the call fails with an appropriate reason code. The checks performed vary

according to the particular structures that are present. In addition, the checks are

performed only if a version-2 or later MQMD is used on the MQPUT or MQPUT1

call; the checks are not performed if a version-1 MQMD is used, even if an

MQMDE is present at the start of the application message data.

The following MQ header structures are validated completely by the queue

manager: MQDH, MQMDE.

For other MQ header structures, the queue manager performs some validation, but

does not check every field. Structures that are not supported by the local queue

manager, and structures following the first MQDLH in the message, are not

validated.

In addition to general checks on the fields in MQ structures, the following

conditions must be satisfied:

v An MQ structure must not be split over two or more segments – the structure

must be entirely contained within one segment.

Chapter 2. Function calls 405

v The sum of the lengths of the structures in a PCF message must equal the length

specified by the BUFLEN parameter on the MQPUT or MQPUT1 call. A PCF

message is a message that has one of the following format names:

– FMADMN

– FMEVNT

– FMPCF
v MQ structures must not be truncated, except in the following situations where

truncated structures are permitted:

– Messages which are report messages.

– PCF messages.

– Messages containing an MQDLH structure. (Structures following the first

MQDLH can be truncated; structures preceding the MQDLH cannot.)

Buffer

The BUFFER parameter shown in the RPG programming example is declared as a

string; this restricts the maximum length of the parameter to 256 bytes. If a larger

buffer is required, the parameter should be declared instead as a structure, or as a

field in a physical file. This will increase the maximum length possible to

approximately 32 KB.

RPG invocation

 C*..1....:....2....:....3....:....4....:....5....:....6....:....7..

 C CALLP MQPUT(HCONN : HOBJ : MSGDSC : PMO :

 C BUFLEN : BUFFER : CMPCOD :

 C REASON)

The prototype definition for the call is:

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..

 DMQPUT PR EXTPROC(’MQPUT’)

 D* Connection handle

 D HCONN 10I 0 VALUE

 D* Object handle

 D HOBJ 10I 0 VALUE

 D* Message descriptor

 D MSGDSC 364A

 D* Options that control the action of MQPUT

 D PMO 176A

 D* Length of the message in BUFFER

 D BUFLEN 10I 0 VALUE

 D* Message data

 D BUFFER * VALUE

 D* Completion code

 D CMPCOD 10I 0

 D* Reason code qualifying CMPCOD

 D REASON 10I 0

MQPUT1 - Put one message

The MQPUT1 call puts one message on a queueor distribution list, or to a topic.

The queue, distribution list, or topic does not need to be open.

Syntax

406 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Parameters

The MQPUT1 call has the following parameters.

HCONN (10-digit signed integer) – input

Connection handle.

This handle represents the connection to the queue manager. The value of HCONN

was returned by a previous MQCONN or MQCONNX call.

On i5/OS for applications running in compatibility mode, the MQCONN call can

be omitted, and the following value specified for HCONN:

HCDEFH

Default connection handle.

OBJDSC (MQOD) – input/output

Object descriptor.

This is a structure which identifies the queue to which the message is added. See

“MQOD – Object descriptor” on page 185 for details.

The user must be authorized to open the queue for output. The queue must not be

a model queue.

MSGDSC (MQMD) – input/output

Message descriptor.

This structure describes the attributes of the message being sent, and receives

feedback information after the put request is complete. See “MQMD – Message

descriptor” on page 125 for details.

If the application provides a version-1 MQMD, the message data can be prefixed

with an MQMDE structure in order to specify values for the fields that exist in the

version-2 MQMD but not the version-1. The MDFMT field in the MQMD must be set

to FMMDE to indicate that an MQMDE is present. See “MQMDE – Message

descriptor extension” on page 178 for more details.

PMO (MQPMO) – input/output

Options that control the action of MQPUT1.

See “MQPMO – Put-message options” on page 202 for details.

BUFLEN (10-digit signed integer) – input

Length of the message in BUFFER.

MQPUT1 (HCONN, OBJDSC, MSGDSC, PMO, BUFLEN, BUFFER, CMPCOD,

REASON)

Chapter 2. Function calls 407

Zero is valid, and indicates that the message contains no application data. The

upper limit depends on various factors; see the description of the BUFLEN parameter

of the MQPUT call for further details.

BUFFER (1-byte bit string×BUFLEN) – input

Message data.

This is a buffer containing the application message data to be sent. The buffer

should be aligned on a boundary appropriate to the nature of the data in the

message. 4-byte alignment should be suitable for most messages (including

messages containing MQ header structures), but some messages may require more

stringent alignment. For example, a message containing a 64-bit binary integer

might require 8-byte alignment.

If BUFFER contains character and/or numeric data, the MDCSI and MDENC fields in the

MSGDSC parameter should be set to the values appropriate to the data; this will

enable the receiver of the message to convert the data (if necessary) to the

character set and encoding used by the receiver.

Note: All of the other parameters on the MQPUT1 call must be in the character set

and encoding of the local queue manager (given by the CodedCharSetId queue

manager attribute and ENNAT, respectively).

CMPCOD (10-digit signed integer) – output

Completion code.

It is one of the following:

CCOK

Successful completion.

CCWARN

Warning (partial completion).

CCFAIL

Call failed.

REASON (10-digit signed integer) – output

Reason code qualifying CMPCOD.

If CMPCOD is CCOK:

RCNONE

(0, X’000’) No reason to report.

If CMPCOD is CCWARN:

RC2136

(2136, X’858’) Multiple reason codes returned.

RC2241

(2241, X’8C1’) Message group not complete.

RC2242

(2242, X’8C2’) Logical message not complete.

RC2049

(2049, X’801’) Message Priority exceeds maximum value supported.

408 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

RC2104

(2104, X’838’) Report option(s) in message descriptor not recognized.

If CMPCOD is CCFAIL:

RC2001

(2001, X’7D1’) Alias base queue not a valid type.

RC2004

(2004, X’7D4’) Buffer parameter not valid.

RC2005

(2005, X’7D5’) Buffer length parameter not valid.

RC2219

(2219, X’8AB’) MQI call reentered before previous call complete.

RC2266

(2266, X’8DA’) Cluster workload exit failed.

RC2189

(2189, X’88D’) Cluster name resolution failed.

RC2269

(2269, X’8DD’) Cluster resource error.

RC2009

(2009, X’7D9’) Connection to queue manager lost.

RC2097

(2097, X’831’) Queue handle referred to does not save context.

RC2098

(2098, X’832’) Context not available for queue handle referred to.

RC2198

(2198, X’896’) Default transmission queue not local.

RC2199

(2199, X’897’) Default transmission queue usage error.

RC2135

(2135, X’857’) Distribution header structure not valid.

RC2013

(2013, X’7DD’) Expiry time not valid.

RC2014

(2014, X’7DE’) Feedback code not valid.

RC2258

(2258, X’8D2’) Group identifier not valid.

RC2017

(2017, X’7E1’) No more handles available.

RC2018

(2018, X’7E2’) Connection handle not valid.

RC2026

(2026, X’7EA’) Message descriptor not valid.

RC2248

(2248, X’8C8’) Message descriptor extension not valid.

Chapter 2. Function calls 409

RC2027

(2027, X’7EB’) Missing reply-to queue.

RC2249

(2249, X’8C9’) Message flags not valid.

RC2250

(2250, X’8CA’) Message sequence number not valid.

RC2030

(2030, X’7EE’) Message length greater than maximum for queue.

RC2031

(2031, X’7EF’) Message length greater than maximum for queue manager.

RC2029

(2029, X’7ED’) Message type in message descriptor not valid.

RC2136

(2136, X’858’) Multiple reason codes returned.

RC2270

(2270, X’8DE’) No destination queues available.

RC2035

(2035, X’7F3’) Not authorized for access.

RC2101

(2101, X’835’) Object damaged.

RC2042

(2042, X’7FA’) Object already open with conflicting options.

RC2155

(2155, X’86B’) Object records not valid.

RC2043

(2043, X’7FB’) Object type not valid.

RC2044

(2044, X’7FC’) Object descriptor structure not valid.

RC2251

(2251, X’8CB’) Message segment offset not valid.

RC2046

(2046, X’7FE’) Options not valid or not consistent.

RC2252

(2252, X’8CC’) Original length not valid.

RC2149

(2149, X’865’) PCF structures not valid.

RC2047

(2047, X’7FF’) Persistence not valid.

RC2048

(2048, X’800’) Queue does not support persistent messages.

RC2173

(2173, X’87D’) Put-message options structure not valid.

RC2158

(2158, X’86E’) Put message record flags not valid.

410 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

RC2050

(2050, X’802’) Message priority not valid.

RC2051

(2051, X’803’) Put calls inhibited for the queue.

RC2159

(2159, X’86F’) Put message records not valid.

RC2052

(2052, X’804’) Queue has been deleted.

RC2053

(2053, X’805’) Queue already contains maximum number of messages.

RC2058

(2058, X’80A’) Queue manager name not valid or not known.

RC2059

(2059, X’80B’) Queue manager not available for connection.

RC2161

(2161, X’871’) Queue manager quiescing.

RC2162

(2162, X’872’) Queue manager shutting down.

RC2056

(2056, X’808’) No space available on disk for queue.

RC2057

(2057, X’809’) Queue type not valid.

RC2154

(2154, X’86A’) Number of records present not valid.

RC2184

(2184, X’888’) Remote queue name not valid.

RC2061

(2061, X’80D’) Report options in message descriptor not valid.

RC2102

(2102, X’836’) Insufficient system resources available.

RC2156

(2156, X’86C’) Response records not valid.

RC2063

(2063, X’80F’) Security error occurred.

RC2253

(2253, X’8CD’) Length of data in message segment is zero.

RC2188

(2188, X’88C’) Call rejected by cluster workload exit.

RC2071

(2071, X’817’) Insufficient storage available.

RC2024

(2024, X’7E8’) No more messages can be handled within current unit of

work.

RC2072

(2072, X’818’) Syncpoint support not available.

Chapter 2. Function calls 411

RC2195

(2195, X’893’) Unexpected error occurred.

RC2082

(2082, X’822’) Unknown alias base queue.

RC2197

(2197, X’895’) Unknown default transmission queue.

RC2085

(2085, X’825’) Unknown object name.

RC2086

(2086, X’826’) Unknown object queue manager.

RC2087

(2087, X’827’) Unknown remote queue manager.

RC2196

(2196, X’894’) Unknown transmission queue.

RC2255

(2255, X’8CF’) Unit of work not available for the queue manager to use.

RC2257

(2257, X’8D1’) Wrong version of MQMD supplied.

RC2091

(2091, X’82B’) Transmission queue not local.

RC2092

(2092, X’82C’) Transmission queue with wrong usage.

RC2420

(2420) An MQPUT1 call was issued, but the message data contains an

MQEPH structure that is not valid.

Usage notes

1. Both the MQPUT and MQPUT1 calls can be used to put messages on a queue;

which call to use depends on the circumstances:

v The MQPUT call should be used when multiple messages are to be placed

on the same queue.

An MQOPEN call specifying the OOOUT option is issued first, followed by

one or more MQPUT requests to add messages to the queue; finally the

queue is closed with an MQCLOSE call. This gives better performance than

repeated use of the MQPUT1 call.

v The MQPUT1 call should be used when only one message is to be put on a

queue.

This call encapsulates the MQOPEN, MQPUT, and MQCLOSE calls into a

single call, thereby minimizing the number of calls that must be issued.
2. If an application puts a sequence of messages on the same queue without using

message groups, the order of those messages is preserved provided that certain

conditions are satisfied. However, in most environments the MQPUT1 call does

not satisfy these conditions, and so does not preserve message order. The

MQPUT call must be used instead in these environments. See the usage notes

in the description of the MQPUT call for details.

3. The MQPUT1 call can be used to put messages to distribution lists. For general

information about this, see the usage notes for the MQOPEN and MQPUT calls.

The following differences apply when using the MQPUT1 call:

412 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

a. If MQRR response records are provided by the application, they must be

provided using the MQOD structure; they cannot be provided using the

MQPMO structure.

b. The reason code RC2137 is never returned by MQPUT1 in the response

records; if a queue fails to open, the response record for that queue contains

the actual reason code resulting from the open operation.

If an open operation for a queue succeeds with a completion code of

CCWARN, the completion code and reason code in the response record for

that queue are replaced by the completion and reason codes resulting from

the put operation.

As with the MQOPEN and MQPUT calls, the queue manager sets the

response records (if provided) only when the outcome of the call is not the

same for all queues in the distribution list; this is indicated by the call

completing with reason code RC2136.
4. If the MQPUT1 call is used to put a message on a cluster queue, the call

behaves as though OOBNDN had been specified on the MQOPEN call.

5. If a message is put with one or more MQ header structures at the beginning of

the application message data, the queue manager performs certain checks on

the header structures to verify that they are valid. For more information about

this, see the usage notes for the MQPUT call.

6. If more than one of the warning situations arise (see the CMPCOD parameter), the

reason code returned is the first one in the following list that applies:

a. RC2136

b. RC2242

c. RC2241

d. RC2049 or RC2104
7. The BUFFER parameter shown in the RPG programming example is declared as

a string; this restricts the maximum length of the parameter to 256 bytes. If a

larger buffer is required, the parameter should be declared instead as a

structure, or as a field in a physical file. This will increase the maximum length

possible to approximately 32 KB.

RPG invocation

 C*..1....:....2....:....3....:....4....:....5....:....6....:....7..

 C CALLP MQPUT1(HCONN : OBJDSC : MSGDSC :

 C PMO : BUFLEN : BUFFER :

 C CMPCOD : REASON)

The prototype definition for the call is:

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..

 DMQPUT1 PR EXTPROC(’MQPUT1’)

 D* Connection handle

 D HCONN 10I 0 VALUE

 D* Object descriptor

 D OBJDSC 360A

 D* Message descriptor

 D MSGDSC 364A

 D* Options that control the action of MQPUT1

 D PMO 176A

 D* Length of the message in BUFFER

 D BUFLEN 10I 0 VALUE

 D* Message data

 D BUFFER * VALUE

 D* Completion code

Chapter 2. Function calls 413

D CMPCOD 10I 0

 D* Reason code qualifying CMPCOD

 D REASON 10I 0

MQSET - Set object attributes

The MQSET call is used to change the attributes of an object represented by a

handle. The object must be a queue.

Syntax

Parameters

The MQSET call has the following parameters.

HCONN (10-digit signed integer) – input

Connection handle.

This handle represents the connection to the queue manager. The value of HCONN

was returned by a previous MQCONN or MQCONNX call.

On i5/OS for applications running in compatibility mode, the MQCONN call can

be omitted, and the following value specified for HCONN:

HCDEFH

Default connection handle.

HOBJ (10-digit signed integer) – input

Object handle.

This handle represents the queue object whose attributes are to be set. The handle

was returned by a previous MQOPEN call that specified the OOSET option.

SELCNT (10-digit signed integer) – input

Count of selectors.

This is the count of selectors that are supplied in the SELS array. It is the number of

attributes that are to be set. Zero is a valid value. The maximum number allowed

is 256.

SELS (10-digit signed integer×SELCNT) – input

Array of attribute selectors.

This is an array of SELCNT attribute selectors; each selector identifies an attribute

(integer or character) whose value is to be set.

Each selector must be valid for the type of queue that HOBJ represents. Only certain

IA* and CA* values are allowed; these values are listed below.

MQSET (HCONN, HOBJ, SELCNT, SELS, IACNT, INTATR, CALEN,

CHRATR, CMPCOD, REASON)

414 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Selectors can be specified in any order. Attribute values that correspond to integer

attribute selectors (IA* selectors) must be specified in INTATR in the same order in

which these selectors occur in SELS. Attribute values that correspond to character

attribute selectors (CA* selectors) must be specified in CHRATR in the same order in

which those selectors occur. IA* selectors can be interleaved with the CA* selectors;

only the relative order within each type is important.

It is not an error to specify the same selector more than once; if this is done, the

last value specified for a given selector is the one that takes effect.

Note:

1. The integer and character attribute selectors are allocated within two different

ranges; the IA* selectors reside within the range IAFRST through IALAST, and

the CA* selectors within the range CAFRST through CALAST.

For each range, the constants IALSTU and CALSTU define the highest value

that the queue manager will accept.

2. If all the IA* selectors occur first, the same element numbers can be used to

address corresponding elements in the SELS and INTATR arrays.

The attributes that can be set are listed in the following table. No other attributes

can be set using this call. For the CA* attribute selectors, the constant that defines

the length in bytes of the string that is required in CHRATR is given in parentheses.

 Table 85. MQSET attribute selectors for queues

Selector Description Note

CATRGD Trigger data

(LNTRGD).

2

IADIST Distribution

list support.

1

IAIGET Whether get

operations are

allowed.

IAIPUT Whether put

operations are

allowed.

IATRGC Trigger

control.

2

IATRGD Trigger depth. 2

IATRGP Threshold

message

priority for

triggers.

2

IATRGT Trigger type. 2

Notes:

1. Supported only on AIX, HP-UX, OS/2, i5/OS, Solaris, Windows, plus WebSphere MQ

clients connected to these systems.

2. Not supported on VSE/ESA.

IACNT (10-digit signed integer) – input

Count of integer attributes.

Chapter 2. Function calls 415

This is the number of elements in the INTATR array, and must be at least the

number of IA* selectors in the SELS parameter. Zero is a valid value if there are

none.

INTATR (10-digit signed integer×IACNT) – input

Array of integer attributes.

This is an array of IACNT integer attribute values. These attribute values must be in

the same order as the IA* selectors in the SELS array.

CALEN (10-digit signed integer) – input

Length of character attributes buffer.

This is the length in bytes of the CHRATR parameter, and must be at least the sum of

the lengths of the character attributes specified in the SELS array. Zero is a valid

value if there are no CA* selectors in SELS.

CHRATR (1-byte character string×CALEN) – input

Character attributes.

This is the buffer containing the character attribute values, concatenated together.

The length of the buffer is given by the CALEN parameter.

The characters attributes must be specified in the same order as the CA* selectors

in the SELS array. The length of each character attribute is fixed (see SELS). If the

value to be set for an attribute contains fewer nonblank characters than the defined

length of the attribute, the value in CHRATR must be padded to the right with

blanks to make the attribute value match the defined length of the attribute.

CMPCOD (10-digit signed integer) – output

Completion code.

It is one of the following:

CCOK

Successful completion.

CCFAIL

Call failed.

REASON (10-digit signed integer) – output

Reason code qualifying CMPCOD.

If CMPCOD is CCOK:

RCNONE

(0, X’000’) No reason to report.

If CMPCOD is CCFAIL:

RC2219

(2219, X’8AB’) MQI call reentered before previous call complete.

RC2006

(2006, X’7D6’) Length of character attributes not valid.

416 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

RC2007

(2007, X’7D7’) Character attributes string not valid.

RC2009

(2009, X’7D9’) Connection to queue manager lost.

RC2018

(2018, X’7E2’) Connection handle not valid.

RC2019

(2019, X’7E3’) Object handle not valid.

RC2020

(2020, X’7E4’) Value for inhibit-get or inhibit-put queue attribute not valid.

RC2021

(2021, X’7E5’) Count of integer attributes not valid.

RC2023

(2023, X’7E7’) Integer attributes array not valid.

RC2040

(2040, X’7F8’) Queue not open for set.

RC2041

(2041, X’7F9’) Object definition changed since opened.

RC2101

(2101, X’835’) Object damaged.

RC2052

(2052, X’804’) Queue has been deleted.

RC2058

(2058, X’80A’) Queue manager name not valid or not known.

RC2059

(2059, X’80B’) Queue manager not available for connection.

RC2162

(2162, X’872’) Queue manager shutting down.

RC2102

(2102, X’836’) Insufficient system resources available.

RC2065

(2065, X’811’) Count of selectors not valid.

RC2067

(2067, X’813’) Attribute selector not valid.

RC2066

(2066, X’812’) Count of selectors too big.

RC2071

(2071, X’817’) Insufficient storage available.

RC2075

(2075, X’81B’) Value for trigger-control attribute not valid.

RC2076

(2076, X’81C’) Value for trigger-depth attribute not valid.

RC2077

(2077, X’81D’) Value for trigger-message-priority attribute not valid.

Chapter 2. Function calls 417

RC2078

(2078, X’81E’) Value for trigger-type attribute not valid.

RC2195

(2195, X’893’) Unexpected error occurred.

Usage notes

1. Using this call, the application can specify an array of integer attributes, or a

collection of character attribute strings, or both. The attributes specified are all

set simultaneously, if no errors occur. If an error does occur (for example, if a

selector is not valid, or an attempt is made to set an attribute to a value that is

not valid), the call fails and no attributes are set.

2. The values of attributes can be determined using the MQINQ call; see “MQINQ

- Inquire about object attributes” on page 361 for details.

Note: Not all attributes whose values can be inquired using the MQINQ call

can have their values changed using the MQSET call. For example, no

process-object or queue manager attributes can be set with this call.

3. Attribute changes are preserved across restarts of the queue manager (other

than alterations to temporary dynamic queues, which do not survive restarts of

the queue manager).

4. It is not possible to change the attributes of a model queue using the MQSET

call. However, if you open a model queue using the MQOPEN call with the

OOSET option, you can use the MQSET call to set the attributes of the dynamic

local queue that is created by the MQOPEN call.

5. If the object being set is a cluster queue, there must be a local instance of the

cluster queue for the open to succeed.

6. Changes to attributes resulting from use of the MQSET call do not affect the

values of the AlterationDate and AlterationTime attributes.

7. For more information about object attributes, see:

v “Attributes for queues” on page 437

v “Attributes for namelists” on page 466

v “Attributes for process definitions” on page 468

v “Attributes for the queue manager” on page 471

RPG invocation

 C*..1....:....2....:....3....:....4....:....5....:....6....:....7..

 C CALLP MQSET(HCONN : HOBJ : SELCNT :

 C SELS(1) : IACNT : INTATR(1) :

 C CALEN : CHRATR : CMPCOD :

 C REASON)

The prototype definition for the call is:

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..

 DMQSET PR EXTPROC(’MQSET’)

 D* Connection handle

 D HCONN 10I 0 VALUE

 D* Object handle

 D HOBJ 10I 0 VALUE

 D* Count of selectors

 D SELCNT 10I 0 VALUE

 D* Array of attribute selectors

 D SELS 10I 0

 D* Count of integer attributes

 D IACNT 10I 0 VALUE

418 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

D* Array of integer attributes

 D INTATR 10I 0

 D* Length of character attributes buffer

 D CALEN 10I 0 VALUE

 D* Character attributes

 D CHRATR * VALUE

 D* Completion code

 D CMPCOD 10I 0

 D* Reason code qualifying CMPCOD

 D REASON 10I 0

MQSETMP – Set message handle property

Call that sets a property of a message handle

The MQSETMP call sets or modifies a property of a message handle.

Syntax for MQSETMP

MQSETMP call syntax and list of parameters

Parameters for MQSETMP

List of valid parameters for the MQSETMP call.

The MQSETMP call has the following parameters:

HCONN (10-digit signed integer) - input

This handle represents the connection to the queue manager.

The value must match the connection handle that was used to create the message

handle specified in the Hmsg parameter.

If the message handle was created using MQHC_UNASSOCIATED_HCONN, a

valid connection must be established on the thread setting a property of the

message handle, otherwise the call fails with reason code

MQRC_CONNECTION_BROKEN.

HMSG (10-digit signed integer) - input/output

This is the message handle to be modified. The value was returned by a previous

MQCRTMH call.

SETOPT (10-digit signed integer) - input

Control how message properties are set.

This structure allows applications to specify options that control how message

properties are set. The structure is an input parameter on the MQSETMP call. See

MQSMPO for further information.

PRNAME (10-digit signed integer) - input

This is the name of the property to set.

See Property names and Property name restrictions for further information about

the use of property names.

MQSETMP (Hconn, Hmsg, SetPropOpts, Name, PropDesc, Type, ValueLength, Value, CompCode, Reason)

Chapter 2. Function calls 419

PRPDSC (10-digit signed integer) - input/output

This structure is used to define the attributes of a property, including:

v what happens if the property is not supported

v what message context the property belongs to

v what messages the property is copied into as it flows

See MQPD for further information about this structure.

TYPE (10-digit signed integer) - input

The data type of the property being set. It can be one of the following:

MQTYPE_BOOLEAN

A boolean. ValueLength must be 4.

MQTYPE_BYTE_STRING

A byte string. ValueLength must be zero or greater.

MQTYPE_INT8

An 8-bit signed integer. ValueLength must be 1.

MQTYPE_INT16

A 16-bit signed integer. ValueLength must be 2.

MQTYPE_INT32

A 32-bit signed integer.ValueLength must be 4.

MQTYPE_INT64

A 64-bit signed integer.ValueLength must be 8.

MQTYPE_FLOAT32

A 32-bit floating-point number. ValueLength must be 4.

 Note: this type is not supported with applications using IBM COBOL for

z/OS.

MQTYPE_FLOAT64

A 64-bit floating-point number. ValueLength must be 8.

 Note: this type is not supported with applications using IBM COBOL for

z/OS.

MQTYPE_STRING

A character string. ValueLength must be zero or greater, or the special value

MQVL_NULL_TERMINATED.

MQTYPE_NULL

The property exists but has a null value.ValueLength must be zero.

VALLEN (10-digit signed integer) - input

The length in bytes of the property value in the Value parameter. Zero is valid only

for null values or for strings or byte strings. Zero indicates that the property exists

but that the value contains no characters or bytes.

The value must be greater than or equal to zero or the following special value if

the Type parameter has MQTYPE_STRING set:

MQVL_NULL_TERMINATED

The value is delimited by the first null encountered in the string. The null

is not included as part of the string. This value is invalid if

MQTYPE_STRING is not also set.

420 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Note: The null character used to terminate a string if

MQVL_NULL_TERMINATED is set is a null from the character set of the

Value.

VALUE (10-digit signed integer) - input

The value of the property to be set. The buffer must be aligned on a boundary

appropriate to the nature of the data in the value.

In the C programming language, the parameter is declared as a pointer-to-void; the

address of any type of data can be specified as the parameter.

If ValueLength is zero, Value is not referred to. In this case, the parameter address

passed by programs written in C or System/390 assembler can be null.

CMPCOD (10-digit signed integer) - output

The completion code; it is one of the following:

MQCC_OK

Successful completion.

MQCC_FAILED

Call failed.

REASON (10-digit signed integer) - output

The reason code qualifying CMPCOD.

If CMPCOD is MQCC_OK:

MQRC_NONE

(0, X’000’) No reason to report.

If CMPCOD is MQCC_WARNING:

RC2421

(2421, X’0975’) An MQRFH2 folder containing properties could not be

parsed.

If CMPCOD is MQCC_FAILED:

RC2204

(2204, X’089C’) Adapter not available.

RC2130

(2130, X’852’) Unable to load adapter service module.

RC2157

(2157, X’86D’) Primary and home ASIDs differ.

RC2004

(2004, X’07D4’) Value parameter not valid.

RC2005

(2005, X’07D5’) Value length parameter not valid.

RC2219

(2219, X’08AB’) MQI call entered before previous call completed.

RC2460

(2460, X’099C’) Message handle pointer not valid.

Chapter 2. Function calls 421

RC2499

(2499, X’09C3’) Message handle already in use.

RC2046

(2046, X’07FE’) Options not valid or not consistent.

RC2482

(2482, X’09B2’) Property descriptor structure not valid.

RC2442

(2442, X’098A’) Invalid property name.

RC2473

(2473, X’09A9’) Invalid property data type.

RC2472

(2472, X’09A8’) Number format error encountered in value data.

RC2463

(2463, X’099F’) Set message property options structure not valid.

RC2111

(2111, X’083F’) Property name coded character set identifier not valid.

RC2071

(2071, X’817’) Insufficient storage available.

RC2195

(2195, X’893’) Unexpected error occurred.

See Chapter 5, “Return codes for i5/OS (ILE RPG),” on page 507 for more details.

Usage notes for MQSETMP

1. You can use this call only when the queue manager itself coordinates the unit

of work. This can be:

v A local unit of work, where the changes affect only MQ resources.

v A global unit of work, where the changes can affect resources belonging to

other resource managers, as well as affecting MQ resources.

For further details about local and global units of work, see “MQBEGIN - Begin

unit of work” on page 297.

2. In environments where the queue manager does not coordinate the unit of

work, use the appropriate back-out call instead of MQBACK. The environment

might also support an implicit back out caused by the application terminating

abnormally.

v On z/OS, use the following calls:

– Batch programs (including IMS batch DL/I programs) can use the

MQBACK call if the unit of work affects only MQ resources. However, if

the unit of work affects both MQ resources and resources belonging to

other resource managers (for example, DB2), use the SRRBACK call

provided by the z/OS Recoverable Resource Service (RRS). The SRRBACK

call backs out changes to resources belonging to the resource managers

that have been enabled for RRS coordination.

– CICS applications must use the EXEC CICS SYNCPOINT ROLLBACK command

to back out the unit of work. Do not use the MQBACK call for CICS

applications.

– IMS applications (other than batch DL/I programs) must use IMS calls

such as ROLB to back out the unit of work. Do not use the MQBACK call

for IMS applications (other than batch DL/I programs).

422 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

v On i5/OS, use this call for local units of work coordinated by the queue

manager. This means that a commitment definition must not exist at job

level, that is, the STRCMTCTL command with the CMTSCOPE(*JOB) parameter

must not have been issued for the job.
3. If an application ends with uncommitted changes in a unit of work, the

disposition of those changes depends on whether the application ends normally

or abnormally. See the usage notes in “MQDISC - Disconnect queue manager”

on page 342 for further details.

4. When an application puts or gets messages in groups or segments of logical

messages, the queue manager retains information relating to the message group

and logical message for the last successful MQPUT and MQGET calls. This

information is associated with the queue handle, and includes such things as:

v The values of the GroupId, MsgSeqNumber, Offset, and MsgFlags fields in

MQMD.

v Whether the message is part of a unit of work.

v For the MQPUT call: whether the message is persistent or nonpersistent.

The queue manager keeps three sets of group and segment information, one set

for each of the following:

v The last successful MQPUT call (this can be part of a unit of work).

v The last successful MQGET call that removed a message from the queue (this

can be part of a unit of work).

v The last successful MQGET call that browsed a message on the queue (this

cannot be part of a unit of work).
If the application puts or gets the messages as part of a unit of work, and the

application then decides to back out the unit of work, the group and segment

information is restored to the value that it had previously:

v The information associated with the MQPUT call is restored to the value that

it had before the first successful MQPUT call for that queue handle in the

current unit of work.

v The information associated with the MQGET call is restored to the value that

it had before the first successful MQGET call for that queue handle in the

current unit of work.

Queues that were updated by the application after the unit of work started, but

outside the scope of the unit of work, do not have their group and segment

information restored if the unit of work is backed out.

Restoring the group and segment information to its previous value when a unit

of work is backed out allows the application to spread a large message group

or large logical message consisting of many segments across several units of

work, and to restart at the correct point in the message group or logical

message if one of the units of work fails. Using several units of work might be

advantageous if the local queue manager has only limited queue storage.

However, the application must maintain sufficient information to be able to

restart putting or getting messages at the correct point in the event that a

system failure occurs. For details of how to restart at the correct point after a

system failure, see the MQPMO_LOGICAL_ORDER option described in

“MQPMO – Put-message options” on page 202, and the

MQGMO_LOGICAL_ORDER option described in “MQGMO – Get-message

options” on page 86.

The remaining usage notes apply only when the queue manager coordinates

the units of work:

Chapter 2. Function calls 423

5. A unit of work has the same scope as a connection handle. All MQ calls that

affect a particular unit of work must be performed using the same connection

handle. Calls issued using a different connection handle (for example, calls

issued by another application) affect a different unit of work. See the Hconn

parameter described in “MQCONN - Connect queue manager” on page 335 for

information about the scope of connection handles.

6. Only messages that were put or retrieved as part of the current unit of work

are affected by this call.

7. A long-running application that issues MQGET, MQPUT, or MQPUT1 calls

within a unit of work, but that never issues a commit or backout call, can fill

queues with messages that are not available to other applications. To guard

against this possibility, the administrator must set the MaxUncommittedMsgs

queue-manager attribute to a value that is low enough to prevent runaway

applications filling the queues, but high enough to allow the expected

messaging applications to work correctly.

Language invocations for MQSETMP

The MQSETMP call is supported in the programming languages shown below. List

of languages supporting the MQSETMP call

C invocation

Parameters used for the C invocation of MQSETMP.

MQSETMP (Hconn, Hmsg, &SetPropOpts, &Name, &PropDesc, Type,

ValueLength, &Value, &CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /* Connection handle */

MQHMSG Hmsg; /* Message handle */

MQSMPO SetPropOpts; /* Options that control the action of MQSETMP */

MQCHARV Name; /* Property name */

MQPD PropDesc; /* Property descriptor */

MQLONG Type; /* Property data type */

MQLONG ValueLength; /* Length of property value in Value */

MQBYTE Value[n]; /* Property value */

MQLONG CompCode; /* Completion code */

MQLONG Reason; /* Reason code qualifying CompCode */

COBOL invocation

Parameters used for the COBOL invocation of MQSETMP.

 CALL ’MQSETMP’ USING HCONN, HMSG, SETMSGOPTS, NAME, PROPDESC, TYPE,

 VALUELENGTH, VALUE, COMPCODE, REASON.

Declare the parameters as follows:

** Connection handle

 01 HCONN PIC S9(9) BINARY.

** Message handle

 01 HMSG PIC S9(19) BINARY.

** Options that control the action of MQSETMP

 01 SETMSGOPTS.

 COPY CMQSMPOV.

** Property name

 01 NAME

 COPY CMQCHRVV.

** Property descriptor

 01 PROPDESC.

 COPY CMQPDV.

** Property data type

 01 TYPE PIC S9(9) BINARY.

** Length of property value in VALUE

424 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

01 VALUELENGTH PIC S9(9) BINARY.

** Property value

 01 VALUE PIC X(n).

** Completion code

 01 COMPCODE PIC S9(9) BINARY.

** Reason code qualifying COMPCODE

 01 REASON PIC S9(9) BINARY.

PL/I invocation

Parameters used for the PL/I invocation of MQSETMP.

call MQSETMP (Hconn, Hmsg, SetPropOpts, Name, PropDesc, Type, ValueLength,

 Value, CompCode, Reason);

Declare the parameters as follows:

dcl Hconn fixed bin(31); /* Connection handle */

dcl Hmsg fixed bin(63); /* Message handle */

dcl SetPropOpts like MQSMPO; /* Options that control the action of MQSETMP */

dcl Name like MQCHARV; /* Property name */

dcl PropDesc like MQPD; /* Property descriptor */

dcl Type fixed bin(31); /* Property data type */

dcl ValueLength fixed bin(31); /* Length of property value in Value */

dcl Value char(n); /* Property value */

dcl CompCode fixed bin(31); /* Completion code */

dcl Reason fixed bin(31); /* Reason code qualifying CompCode */

System/390 assembler invocation

Parameters used for the System/390 assembler invocation of MQSETMP.

 CALL MQSETMP,(HCONN,HMSG,SETMSGHOPTS,NAME,PROPDESC,TYPE,VALUELENGTH,

 VALUE,COMPCODE,REASON)

Declare the parameters as follows:

HCONN DS F Connection handle

HMSG DS D Message handle

SETMSGOPTS CMQSMPOA , Options that control the action of MQSETMP

NAME CMQCHRVA , Property name

PROPDESC CMQPDA , Property descriptor

TYPE DS F Property data type

VALUELENGTH DS F Length of property value in VALUE

VALUE DS CL(n) Property value

COMPCODE DS F Completion code

REASON DS F Reason code qualifying COMPCODE

MQSTAT – Retrieve status information

Use the MQSTAT call to retrieve status information. The type of status information

returned is determined by the STYPE value specified on the call.

Syntax

MQSTAT (HCONN, STYPE, STAT, CMPCOD, REASON)

Parameters

The MQSTAT call has the following parameters:

Hconn (MQHCONN) – input

This handle represents the connection to the queue manager. The value of Hconn

was returned by a previous MQCONN or MQCONNX call.

Chapter 2. Function calls 425

STYPE (10-digit signed integer) – input

Type of status information being requested. The only valid value is:

MQSTAT_TYPE_ASYNC_ERROR

Return information about previous asynchronous put operations.

STS (MQSTS) – input

Status information structure. See “MQSTS – Status reporting structure” on page

270 for details.

CMPCOD (10-digit signed integer) – output

The completion code; it is one of the following:

MQCC_OK

Successful completion.

MQCC_FAILED

Call failed.

REASON (10-digit signed integer) – output

The reason code qualifying CMPCOD.

If CMPCOD is MQCC_OK:

MQRC_NONE

(0, X’000’) No reason to report.

If CMPCOD is MQCC_FAILED:

MQRC_API_EXIT_ERROR

(2374, X’946’) API exit failed

MQRC_API_EXIT_LOAD_ERROR

(2183, X’887’) Unable to load API exit.

MQRC_CALL_IN_PROGRESS

(2219, X’8AB’) MQI call entered before previous call complete.

MQRC_CONNECTION_BROKEN

(2009, X’7D9’) Connection to queue manager lost.

MQRC_CONNECTION_STOPPING

(2203, X’89B’) Connection shutting down.

MQRC_HCONN_ERROR

(2018, X’7E2’) Connection handle not valid.

MQRC_Q_MGR_STOPPING

(2162, X’872’) Queue manager stopping

MQRC_RESOURCE_PROBLEM

(2102, X’836’) Insufficient system resources available.

MQRC_STAT_TYPE_ERROR

(2430, X’97E’) Error with MQSTAT type.

MQRC_STORAGE_NOT_AVAILABLE

(2071, X’817’) Insufficient storage available.

426 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

MQRC_STS_ERROR

(2424, X’978’) Error with MQSTS structure

MQRC_UNEXPECTED_ERROR

(2195, X’893’) Unexpected error occurred.

For detailed information on these codes, see:

v WebSphere MQ Messages

Usage notes

1. A call to MQSTAT specifying a type of MQSTAT_TYPE_ASYNC_ERROR

returns information about previous asynchronous MQPUT and MQPUT1

operations. The MQSTAT structure passed on the call is completed with the

first recorded asynchronous warning or error information for that connection. If

further errors or warnings follow the first, they do not normally alter these

values. However, if an error occurs with a completion code of

MQCC_WARNING , a subsequent failure with a completion code of

MQCC_FAILED is returned instead.

2. If no errors have occurred since the connection was established or since the last

call to MQSTAT then a CMPCOD of MQCC_OK and REASON of

MQRC_NONE are returned.

3. Counts of the number of asynchronous calls that have been processed under

the connection handle are returned via three counters; STSPSC, STSPWC and

STSPFC. These counters are incremented by the queue manager each time an

asynchronous operation is processed successfully, has a warning or fails,

respectively (note that for accounting purposes a put to a distribution list

counts once per destination queue rather than once per distribution list).

4. A successful call to MQSTAT results in any previous error information or

counts being reset.

RPG invocation

C*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7

C CALLP MQSTAT(HCONN : ETYPE : ERR :

C CMPCOD : REASON)

The prototype definition for the call is:

D.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7

DMQSTAT PR EXTPROC(‘MQSTAT’)

D* Connection handle

D HCONN 10I 0

D* Status type

D STYPE 10I 0

D* Status information structure

D STS 224A

D* Completion code

D CMPCOD 10I 0

D* Reason

D REASON 10I 0

MQSUB – Register Subscription

The MQSUB call registers the applications subscription to a particular topic.

Syntax

MQSUB (HCONN, SUBDSC, HOBJ, HSUB, CMPCOD, REASON)

Chapter 2. Function calls 427

Parameters

The MQSUB call has the following parameters:

HCONN (10-digit signed integer) – input

This handle represents the connection to the queue manager. The value of HCONN

was returned by a previous MQCONN or MQCONNX call.

On i5/OS for applications running in compatibility mode, the MQCONN call can

be omitted, and the following value specified for HCONN:

HCDEFH

Default connection handle.

SUBDSC (MQSD) – input/output

This is a structure that identifies the object whose use is being registered by the

application. See “MQSD - Subscription Descriptor” on page 248 for more

information.

HOBJ (10-digit signed integer) – input/output

This handle represents the access that has been established to obtain the messages

sent to this subscription. These messages can either be stored on a specific queue

or the queue manager can be asked to manage their storage without the need for a

specific queue.

Object handle.

If a specific queue is to be used it must be associated with the subscription at

creation time. This can done in two ways:

v By providing this handle when calling MQSUB with the SDCRT option. If this

handle is provided as an input parameter on the call, it must be a valid object

handle returned from a previous MQOPEN call of a queue using at least one of

OOINP*, OOOUT (if a remote queue for example), or OOBRW option. If this is

not the case, the call fails with RC2019. It cannot be an object handle to an alias

queue which resolves to a topic object. If this is the case, the call fails with

RC2019

v By using the DEFINE SUB MQSC command and providing that command with

the name of a queue object.

If the queue manager is to manage the storage of messages sent to this

subscription, you should indicate this when the subscription is created, by using

the SOMAN option and setting the parameter value to HONONE. The queue

manager returns the handle as an output parameter on the call, and the handle

that is returned is known as a managed handle. If HONONE is specified and

SOMAN is not also specified, the call fails with RC2019.

A managed handle that is returned by the queue manager can be used on an

MQGET or MQCB call, with or without browse options, on an MQINQ call, or on

MQCLOSE. It cannot be used on MQPUT, MQSET, or on a subsequent MQSUB;

attempting to do so fails with RC2039, RC2040, or RC2038 respectively.

If the SORES option in the OPTS field in the MQSD structure is used to resume this

subscription, the handle can be returned to the application in this parameter if

HONONE is specified. You can use this whether the subscription is using a

428 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

managed handle or not. It can be useful for subscriptions created using DEFINE

SUB if you want the handle to the subscription queue defined on the DEFINE SUB

command. In the case where an administratively created subscription is being

resumed, the queue is opened with OOINPQ and OOBRW. If other options are

needed, the application must open the subscription queue explicitly and provide

the object handle on the call. If there is a problem opening the queue the call will

fail with MQRC_INVALID_DESTINATION. If the HOBJ is provided, it must be

equivalent to the HOBJ in the original MQSUB call. This means if an object handle

returned from an MQOPEN call is being provided, the handle must be to the same

queue as previously used or the call fails with RC2019.

If this subscription is being altered, by using the SOALT option in the OPTS field in

the MQSD structure, then a different HOBJ can be provided. Any publications that

have been delivered to the queue previously identified through this parameter

remain on that queue and it is the responsibility of the application to retrieve those

messages if the HOBJ parameter now represents a different queue.

The use of this parameter with various subscription options is summarised in the

following table:

 Options Hobj Description

SOCRT + SOMAN Ignored on input Creates a subscription with

queue manager managed

storage of messages.

SOCRT Valid object handle Creates a subscription

providing a specific queue as

the destination for messages.

SORES HONONE Resumes a previously

created subscription

(managed or not) and have

the queue manager return

the object handle for use by

the application.

SORES Valid, matching, object

handle

Resumes a previously

created subscription which

uses a specific queue as the

destination for messages and

use an object handle with

specific open options.

SOALT + SOMAN HONONE Alters an existing

subscription which was

previously using a specific

queue, to now be managed.

SOALT Valid object handle Alters an existing

subscription to use a specific

queue (either from managed,

or from a different specific

queue).

Whether it was provided or returned, HOBJ must be specified on subsequent

MQGET calls that wish to receive the publications.

The HOBJ handle ceases to be valid when the MQCLOSE call is issued on it, or

when the unit of processing that defines the scope of the handle terminates. The

scope of the object handle returned is the same as that of the connection handle

Chapter 2. Function calls 429

specified on the call. See “HCONN (10-digit signed integer) – input” on page 428

for information about handle scope. An MQCLOSE of the HOBJ handle has no

effect on the HSUB handle.

HSUB (10-digit signed integer) – input

This handle represents the subscription that has been made. It can be used for two

further operations:

v It can be used on a subsequent MQSUBRQ call to request publications be sent

when the SOPUBR option has been used when making the subscription.

v It can be used on a subsequent MQCLOSE call to remove the subscription that

has been made. The HSUB handle ceases to be valid when the MQCLOSE call is

issued, or when the unit of processing that defines the scope of the handle

terminates. The scope of the object handle returned is the same as that of the

connection handle specified on the call. An MQCLOSE of the HSUB handle has no

effect on the HOBJ handle.

This handle cannot be passed to an MQGET or MQCB call. You must use the HOBJ

parameter. Passing this handle to any other MQ call results in RC2019.

CMPCOD (10-digit signed integer) - output

The completion code; it is one of the following:

CCOK

Successful completion

CCWARN

Warning (partial completion)

CCFAIL

Call failed

REASON (10-digit signed integer) - output

The reason code qualifying CMPCOD.

If CMPCOD is CCOK:

RCNONE

(0, X’000’) No reason to report.

If CMPCOD is CCFAIL:

RC2298

(2298 X’08FA’) Function not supported.

RC2046

(2046 X’07FE’) Options not valid or not consistent

RC2019

(2019 X’07E3’) Object handle not valid

RC2161

(2161 X’0871’) Queue manager quiescing

RC2085

(2085 X’0825’) Object identified cannot be found

RC2424

(2424 X’0978’) Subscription descriptor (MQSD) not valid

430 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

RC2440

(2440 X’0988’) SubName field not valid

RC2441

(2441 X’0989’) Objectstring field not valid

RC2425

(2441 X’979’) Topic string not valid

RC2431

(2431 X’097F’) SubUserData field not valid

RC2432

(2432 X’0980’) Subscription already exists

RC2434

(2434 X’0982’) Subscription name matches existing subscription

RC2428

(2428 X’097C’) Subscription name specified does not match existing

subscriptions

RC2429

(2429 X’097D’) Subscription name exists and is in use by another

application

RC2435

(2435 X’0983’) Attribute cannot be changed using SDALT, or subscription

was created with SDIMM.

RC2436

(2436 X’0984’) MQSO_DURABLE option not valid

RC2503

(2503 X’09C7’) MQSUB calls are currently inhibited for the topics

subscribed to

Usage notes

1. The subscription is made to a topic, named either using the short name of a

pre-defined topic object, the full name of the topic string, or it is formed by the

concatenation of two parts, as described in “Using topic strings” on page 263.

2. The queue manager performs security checks when an MQSUB call is issued, to

verify that the user identifier under which the application is running has the

appropriate level of authority before access is permitted. The appropriate topic

object is located either by a short name being provided in the call, or the

nearest short name object in the topic hierarchy being found if a long name is

provided. An authority check is made on this topic object to ensure authority to

subscribe is set and on the destination queue to ensure authority for output is

set. If the SDMAN option is used, this means an authority check is made on

the managed queue name associated with this topic object, and if a non

managed queue is provided, this means an authority check is made on the

queue represented by the HOBJ parameter.

3. The HOBJ returned on the MQSUB call when the SOMAN option is used, can be

inquired in order to find out attributes such as the Backout threshold and the

Excessive backout requeue name. You can also inquire the name of the

managed queue, but you should not attempt to directly open this queue.

4. Subscriptions can be grouped together allowing only a single publication to be

delivered to the group of subscriptions even where more than one of the group

matched the publication. Subscriptions are grouped using the SOGRP option

and in order to group subscriptions together they must

Chapter 2. Function calls 431

v be using the same named queue (that is not using the SOMAN option) on

the same queue manager – represented by the HOBJ parameter on the

MQSUB call

v share the same SDCID

v be of the same SDSL

These attributes define the set of subscriptions considered to be in the group,

and are also the attributes that cannot be altered if a subscription is grouped.

Alteration of SDSL results in RC2512, and alteration of any of the others (which

can be changed if a subscription is not grouped) results in RC2515.

5. Fields in the MQSD are filled in on return from an MQSUB call which uses the

SORES option. The MQSD returned can be passed directly into an MQSUB call

which uses the SOALT option with any changes you need to make to the

subscription applied to the MQSD. Some fields have special considerations as

noted in the table.

 MQSD output from MQSUB

Field name in MQSD Special considerations

Access or creation options None of these options are set on return from

the MQSUB call. If you subsequently reuse

the MQSD in an MQSUB call the option you

require must be explicitly set.

Durability options, Destination options,

Registration Options & Wildcard options

These options will be set as appropriate

Publication options These options will be set as appropriate,

with the exception of SONEWP which is

only applicable to SOCRE.

Other options These options are unchanged on return from

an MQSUB call. They control how the API

call is issued and are not stored with the

subscription. They must be set as required

on any subsequent MQSUB call reusing the

MQSD.

ObjectName This input only field is unchanged on return

from an MQSUB call.

ObjectString This input only field is unchanged on return

from an MQSUB call. The Full topic name

used is returned in the ResObjectString

field, if a buffer is provided.

AlternateUserId and AlternateSecurityId These input only fields are unchanged on

return from an MQSUB call. They control

how the API call is issued and are not stored

with the subscription. They must set as

required on any subsequent MQSUB call

reusing the MQSD.

SubExpiry On return from an MQSUB call using the

SORES option this field will be set to the

original expiry of the subscription and not

the remaining expiry time. If you

subsequently reuse the MQSD in an MQSUB

call using the SOALT option you will reset

the expiry of the subscription to start

counting down again.

SubName This field is an input field on an MQSUB

call and is not changed on output.

432 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

MQSD output from MQSUB

Field name in MQSD Special considerations

SubUserData and SelectionString These variable length fields will be returned

on output from an MQSUB call using the

SORES option, if a buffer is provided, and

also a positive buffer length in VSBufSize. If

no buffer is provided only the length will be

returned in the VSLength field of the

MQCHARV.If the buffer provided is smaller

than the space required to return the field,

only VSBufSize bytes are returned in the

provided buffer.

If you subsequently reuse the MQSD in an

MQSUB call using the SOALT option and a

buffer is not provided but a non-zero

VSLength is provided, if that length matches

the existing length of the field, no alteration

will made to the field.

SubCorrelId and PubAccountingToken If you do not use MQSO_SET_CORREL_ID,

then the SubCorrelId will be generated by

the queue manager. If you do not use

MQSO_SET_IDENTITY_CONTEXT, then the

PubAccountingToken will be generated by the

queue manager.

These fields will be returned in the MQSD

from an MQSUB call using the SORES

option. If they are generated by the queue

manager, the generated value will be

returned on an MQSUB call using the

SOCRE or SOALT option.

PubPriority, SubLevel &

PubApplIdentityData

These fields will be returned in the MQSD.

ResObjectString This output only field will be returned in

the MQSD if a buffer is provided.

RPG invocation

 C*..1....:....2....:....3....:....4....:....5....:....6....:....7..

 C CALLP MQSUB(HCONN : SUBDSC : HOBJ :

 C HSUB : CMPCOD : REASON)

The prototype definition for the call is:

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..

 DMQSUB PR EXTPROC(’MQSUB’)

 D* Connection handle

 D HCONN 10I 0 VALUE

 D* Subscription descriptor

 D SUBDSC 372A

 D* Object handle

 D HOBJ 10I 0

 D* Subscription handle

 D HSUB 10I 0

 D* Completion code

 D CMPCOD 10I 0

 D* Reason code qualifying CMPCOD

 D REASON 10I 0

Chapter 2. Function calls 433

MQSUBRQ - Subscription Request

The MQSUBRQ call makes a request on a subscription.

Syntax

MQSUBRQ (HCONN, HSUB, ACTION, SUBROPT, CMPCOD, REASON)

Parameters

The MQSUBRQ call has the following parameters.

HCONN (10-digit signed integer) - Input

This handle represents the connection to the queue manager. The value of HCONN

was returned by a previous MQCONN or MQCONNX call.

On z/OS for CICS applications, and on i5/OS for applications running in

compatibility mode, the MQCONN call can be omitted, and the following value

specified for HCONN:

HCDEFH

Default connection handle.

HSUB (10-digit signed integer) - input

This handle represents the subscription for which an update is to be requested. The

value of HSUB was returned from a previous MQSUB call.

ACTION (10-digit signed integer) - Input

This parameter controls the particular action that is being requested on the

subscription. One (and only one) of the following must be specified:

SRAPUB

 This action requests an update publication be sent for the specified topic.

This is normally used if the subscriber specified the option SOPUBR on the

MQSUB call when it made the subscription. If the queue manager has a

retained publication for the topic, this is sent to the subscriber. If not, the

call fails. If an application is sent a publication which was retained, this

will be indicated by the MQIsRetained message property of that

publication.

Since the topic in the existing subscription represented by the HSUB

parameter may contain wildcards, the subscriber might receive multiple

retained publications.

SBROPT (MQSRO) - Input/output

These options control the action of MQSUBRQ, see MQSRO - Subscription Request

Options for details.

CMPCOD (10-digit signed integer) - output

The completion code; it is one of the following:

434 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

CCOK

Successful completion

CCWARN

Warning (partial completion)

CCFAIL

Call failed

Reason (10-digit signed integer) - output

The reason code qualifying CMPCOD.

If CPMCOD is CCOK:

RCNONE

(0, X’000’) No reason to report.

If CPMCOD is CCFAIL:

RC2298

2298 (X’08FA’) The function requested is not available in the current

environment.

RC2437

2437 (X’0985’) There are no retained publications currently stored for this

topic.

RC2046

2046 (X’07FE’) Options parameter or field contains options that are not

valid, or a combination of options that is not valid.

RC2161

2161 (X’0871’) Queue manager quiescing

RC2438

2438 (X’0986’) On the MQSUBRQ call, the Subscription Request Options

MQSRO is not valid.

Usage notes

The following usage notes apply to the use of SRAPUB:

1. If this verb completes successfully, the retained publications matching the

subscription specified have been sent to the subscription and can be received

by using MQGET or MQCB using the HOBJ returned on the original MQSUB

verb that created the subscription.

2. If the topic subscribed to by the original MQSUB verb that created the

subscription contained a wildcard, more than one retained publication may be

sent. The number of publications sent as a result of this call is recorded in the

SRNMP field in the SBROPT structure.

3. If this verb completes with a reason code of RC2437

(MQRC_NO_RETAINED_MSG) then there were no currently retained

publications for the topic specified.

4. If this verb completes with a reason code of RC2525

(MQRC_RETAINED_MSG_Q_ERROR) or RC2526

(MQRC_RETAINED_NOT_DELIVERED) then there are currently retained

publications for the topic specified but an error has occurred that that meant

they were unable to be delivered.

Chapter 2. Function calls 435

5. The application must have a current subscription to the topic before it can

make this call. If the subscription was made in a previous instance of the

application and a valid handle to the subscription is not available, the

application must first call MQSUB with the SORES option to obtain a handle to

it for use in this call.

6. The publications are sent to the destination that is registered for use with the

current subscription of this application. If the publications should be sent

somewhere else, the subscription must first be altered using the MQSUB call

with the SOALT option.

Language invocations

C*..1....:....2....:....3....:....4....:....5....:....6....:....7..

C CALLP MQSUBRQ(HCONN : HSUB : ACTION :

C SBROPT : CMPCOD : REASON)

The prototype definition for the call is:

D*..1....:....2....:....3....:....4....:....5....:....6....:....7..

DMQSUBRQ PR EXTPROC(‘MQSUBRQ’)

D* Connection handle

D HCONN 10I 0 VALUE

D* Subscription handle

D HSUB 10I 0

D* Action requested by MQSUBRQ

D ACTION 10I 0

D* Options that control the action of MQSUBRQ

D SBROPT 16A

D* Completion code

D CMPCOD 10I 0

D* Reason code qualifying CMPCOD

D REASON 10I 0

436 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Chapter 3. Attributes of objects

Attributes for queues

Types of queue: The queue manager supports the following types of queue

definition:

Local queue

This is a physical queue that stores messages. The queue exists on the local

queue manager.

 Applications connected to the local queue manager can place messages on

and remove messages from queues of this type. The value of the QType

queue attribute is QTLOC.

Shared queue

This is a physical queue that stores messages. The queue exists in a shared

repository that is accessible to all of the queue managers that belong to the

queue-sharing group that owns the shared repository.

 Applications connected to any queue manager in the queue-sharing group

can place messages on and remove messages from queues of this type.

Such queues are effectively the same as local queues. The value of the

QType queue attribute is QTLOC.

v Shared queues are supported only on z/OS.

Cluster queue

This is a physical queue that stores messages. The queue exists either on

the local queue manager, or on one or more of the queue managers that

belong to the same cluster as the local queue manager.

 Applications connected to the local queue manager can place messages on

queues of this type, regardless of the location of the queue. If an instance

of the queue exists on the local queue manager, the queue behaves in the

same way as a local queue, and applications connected to the local queue

manager can remove messages from the queue. The value of the QType

queue attribute is QTCLUS.

Alias queue

This is not a physical queue – it is an alternative name for a local queue.

The name of the local queue to which the alias resolves is part of the

definition of the alias queue.

 Applications connected to the local queue manager can place messages on

and remove messages from alias queues – the messages are actually placed

on and removed from the local queue to which the alias resolves. The

value of the QType queue attribute is QTALS.

Remote queue

This is not a physical queue – it is the local definition of a queue that

exists on a remote queue manager. The local definition of the remote queue

contains information that tells the local queue manager how to route

messages to the remote queue manager.

 Applications connected to the local queue manager can place messages on

remote queues – the messages are actually placed on the the local

© Copyright IBM Corp. 1994, 2008 437

transmission queue used to route messages to the remote queue manager.

Applications cannot remove messages from remote queues. The value of

the QType queue attribute is QTREM.

A remote queue definition can also be used for:

v Reply-queue aliasing

In this case the name of the definition is the name of a reply-to queue.

For more information, see the WebSphere MQ Intercommunication book.

v Queue-manager aliasing

In this case the name of the definition is an alias for a queue manager,

and not the name of a queue. For more information, see the WebSphere

MQ Intercommunication book.

Model queue

This is not a physical queue – it is a set of queue attributes from which a

local queue can be created.

 Messages cannot be stored on queues of this type.

Queue attributes:

Overview

Some queue attributes apply to all types of queue; other queue attributes apply

only to certain types of queue. The types of queue to which an attribute applies are

indicated by the Y symbol in Table 86 and subsequent tables.

Table 86 summarizes the attributes that are specific to queues. The attributes are

described in alphabetic order.

Note: The names of the attributes shown in this book are the names used with the

MQINQ and MQSET calls. When MQSC commands are used to define, alter, or

display attributes, alternative short names are used; see the WebSphere MQ Script

(MQSC) Command Reference for details.

 Table 86. Attributes for queues. The columns apply as follows:

v The column for local queues applies also to shared queues.

v The column for model queues indicates which attributes are inherited by the local queue created from the model

queue.

v The column for cluster queues indicates the attributes that can be inquired when the cluster queue is opened for

inquire alone, or for inquire and output. If the cluster queue is opened for inquire plus one or more of input,

browse, or set, the column for local queues applies instead.

Attribute Description Local Model Alias Remote Cluster Topic

AlterationDate Date when

definition was

last changed

Y Y Y AlterationDate

AlterationTime Time when

definition was

last changed

Y Y Y AlterationTime

BackoutRequeueQName Excessive

backout requeue

queue name

Y Y BackoutRequeueQName

438 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Table 86. Attributes for queues (continued). The columns apply as follows:

v The column for local queues applies also to shared queues.

v The column for model queues indicates which attributes are inherited by the local queue created from the model

queue.

v The column for cluster queues indicates the attributes that can be inquired when the cluster queue is opened for

inquire alone, or for inquire and output. If the cluster queue is opened for inquire plus one or more of input,

browse, or set, the column for local queues applies instead.

Attribute Description Local Model Alias Remote Cluster Topic

BackoutThreshold Backout

threshold

Y Y BackoutThreshold

BaseQName Queue name to

which alias

resolves

 Y BaseQName

ClusterName Name of cluster

to which queue

belongs

Y Y Y ClusterName

ClusterNamelist Name of

namelist object

containing

names of

clusters to which

queue belongs

Y Y Y ClusterNamelist

CreationDate Date the queue

was created

Y CreationDate

CreationTime Time the queue

was created

Y CreationTime

CurrentQDepth Current queue

depth

Y CurrentQDepth

DefBind Default binding Y Y Y Y DefBind

DefinitionType Queue definition

type

Y Y DefinitionType

DefInputOpenOption Default input

open option

Y Y DefInputOpenOption

DefPersistence Default message

persistence

Y Y Y Y Y DefPersistence

DefPriority Default message

priority

Y Y Y Y Y DefPriority

DistLists Distribution list

support

Y Y DistLists

HardenGetBackout Whether to

maintain an

accurate backout

count

Y Y HardenGetBackout

InhibitGet Controls

whether get

operations for

the queue are

allowed

Y Y Y InhibitGet

Chapter 3. Attributes of objects 439

Table 86. Attributes for queues (continued). The columns apply as follows:

v The column for local queues applies also to shared queues.

v The column for model queues indicates which attributes are inherited by the local queue created from the model

queue.

v The column for cluster queues indicates the attributes that can be inquired when the cluster queue is opened for

inquire alone, or for inquire and output. If the cluster queue is opened for inquire plus one or more of input,

browse, or set, the column for local queues applies instead.

Attribute Description Local Model Alias Remote Cluster Topic

InhibitPut Controls

whether put

operations for

the queue are

allowed

Y Y Y Y Y InhibitPut

InitiationQName Name of

initiation queue

Y Y InitiationQName

MaxMsgLength Maximum

message length

in bytes

Y Y MaxMsgLength

MaxQDepth Maximum

queue depth

Y Y MaxQDepth

MediaLog Identity of

oldest log extent

(or oldest

journal receiver

on i5/OS)

needed for

media recovery

of a specified

queue

Y Y MediaLog

MsgDeliverySequence Message

delivery

sequence

Y Y MsgDeliverySequence

OpenInputCount Number of

opens for input

Y OpenInputCount

OpenOutputCount Number of

opens for output

Y OpenOutputCount

ProcessName Process name Y Y ProcessName

QDepthHighEvent Controls

whether Queue

Depth High

events are

generated

Y Y QDepthHighEvent

QDepthHighLimit High limit for

queue depth

Y Y QDepthHighLimit

QDepthLowEvent Controls

whether Queue

Depth Low

events are

generated

Y Y QDepthLowEvent

QDepthLowLimit Low limit for

queue depth

Y Y QDepthLowLimit

440 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Table 86. Attributes for queues (continued). The columns apply as follows:

v The column for local queues applies also to shared queues.

v The column for model queues indicates which attributes are inherited by the local queue created from the model

queue.

v The column for cluster queues indicates the attributes that can be inquired when the cluster queue is opened for

inquire alone, or for inquire and output. If the cluster queue is opened for inquire plus one or more of input,

browse, or set, the column for local queues applies instead.

Attribute Description Local Model Alias Remote Cluster Topic

QDepthMaxEvent Controls

whether Queue

Full events are

generated

Y Y QDepthMaxEvent

QDesc Queue

description

Y Y Y Y Y QDesc

QName Queue name Y Y Y Y QName

QServiceInterval Target for queue

service interval

Y Y QServiceInterval

QServiceIntervalEvent Controls

whether Service

Interval High or

Service Interval

OK events are

generated

Y Y QServiceIntervalEvent

QType Queue type Y Y Y Y QType

RemoteQMgrName Name of remote

queue manager

 Y RemoteQMgrName

RemoteQName Name of remote

queue

 Y RemoteQName

RetentionInterval Retention

interval

Y Y RetentionInterval

Scope Controls

whether an

entry for the

queue also exists

in a cell

directory

Y Y Y Scope

Shareability Queue

shareability

Y Y Shareability

TriggerControl Trigger control Y Y TriggerControl

TriggerData Trigger data Y Y TriggerData

TriggerDepth Trigger depth Y Y TriggerDepth

TriggerMsgPriority Threshold

message priority

for triggers

Y Y TriggerMsgPriority

TriggerType Trigger type Y Y TriggerType

Usage Queue usage Y Y Usage

XmitQName Transmission

queue name

 Y XmitQName

Chapter 3. Attributes of objects 441

AlterationDate (12-byte character string)

Date when definition was last changed.

 Local Model Alias Remote Cluster

Y Y Y

This is the date when the definition was last changed. The format of the date is

YYYY-MM-DD, padded with two trailing blanks to make the length 12 bytes (for

example, 1992-09-23��, where �� represents 2 blank characters).

It is normal for the values of certain attributes to change as the queue manager

operates (for example, CurrentQDepth). Changes to these attributes do not affect

AlterationDate. Also, changes resulting from use of the MQSET call do not affect

AlterationDate.

To determine the value of this attribute, use the CAALTD selector with the

MQINQ call. The length of this attribute is given by LNDATE.

AlterationTime (8-byte character string)

Time when definition was last changed.

 Local Model Alias Remote Cluster

Y Y Y

This is the time when the definition was last changed. The format of the time is

HH.MM.SS using the 24-hour clock, with a leading zero if the hour is less than 10

(for example 09.10.20). The time is local time.

It is normal for the values of certain attributes to change as the queue manager

operates (for example, CurrentQDepth). Changes to these attributes do not affect

AlterationTime. Also, changes resulting from use of the MQSET call do not affect

AlterationTime.

To determine the value of this attribute, use the CAALTT selector with the MQINQ

call. The length of this attribute is given by LNTIME.

BackoutRequeueQName (48-byte character string)

Excessive backout requeue queue name.

 Local Model Alias Remote Cluster

Y Y

Apart from allowing its value to be queried, the queue manager takes no action

based on the value of this attribute.

To determine the value of this attribute, use the CABRQN selector with the

MQINQ call. The length of this attribute is given by LNQN.

BackoutThreshold (10-digit signed integer)

Backout threshold.

442 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Local Model Alias Remote Cluster

Y Y

Apart from allowing its value to be queried, the queue manager takes no action

based on the value of this attribute.

To determine the value of this attribute, use the IABTHR selector with the MQINQ

call.

BaseQName (48-byte character string)

The queue name to which the alias resolves.

 Local Model Alias Remote Cluster

 Y

This is the name of a queue that is defined to the local queue manager. (For more

information on queue names, see the description of the ODON field in MQOD. The

queue is one of the following types:

QTLOC

Local queue.

QTREM

Local definition of a remote queue.

QTCLUS

Cluster queue.

To determine the value of this attribute, use the CABASQ selector with the

MQINQ call. The length of this attribute is given by LNQN.

CFStrucName (12-byte character string)

Coupling-facility structure name.

 Local Model Alias Remote Cluster

Y Y

This is the name of the coupling-facility structure where the messages on the

queue are stored. The first character of the name is in the range A through Z, and

the remaining characters are in the range A through Z, 0 through 9, or blank.

The full name of the structure in the coupling facility is obtained by suffixing the

value of the QSGName queue manager attribute with the value of the CFStrucName

queue attribute.

This attribute applies only to shared queues; it is ignored if QSGDisp does not have

the value QSGDSH.

To determine the value of this attribute, use the CACFSN selector with the MQINQ

call. The length of this attribute is given by LNCFSN.

This attribute is supported only on z/OS.

Chapter 3. Attributes of objects 443

ClusterName (48-byte character string)

Name of cluster to which queue belongs.

 Local Model Alias Remote Cluster

Y Y Y

This is the name of the cluster to which the queue belongs. If the queue belongs to

more than one cluster, ClusterNamelist specifies the name of a namelist object that

identifies the clusters, and ClusterName is blank. At least one of ClusterName and

ClusterNamelist must be blank.

To determine the value of this attribute, use the CACLN selector with the MQINQ

call. The length of this attribute is given by LNCLUN.

ClusterNamelist (48-byte character string)

Name of namelist object containing names of clusters to which queue belongs.

 Local Model Alias Remote Cluster

Y Y Y

This is the name of a namelist object that contains the names of clusters to which

this queue belongs. If the queue belongs to only one cluster, the namelist object

contains only one name. Alternatively, ClusterName can be used to specify the

name of the cluster, in which case ClusterNamelist is blank. At least one of

ClusterName and ClusterNamelist must be blank.

To determine the value of this attribute, use the CACLNL selector with the

MQINQ call. The length of this attribute is given by LNNLN.

CreationDate (12-byte character string)

Date when queue was created.

 Local Model Alias Remote Cluster

Y

This is the date when the queue was created. The format of the date is YYYY-MM-DD,

padded with two trailing blanks to make the length 12 bytes (for example,

1992-09-23��, where �� represents 2 blank characters).

v On i5/OS, the creation date of a queue may differ from that of the underlying

operating system entity (file or userspace) that represents the queue.

To determine the value of this attribute, use the CACRTD selector with the

MQINQ call. The length of this attribute is given by LNCRTD.

CreationTime (8-byte character string)

Time when queue was created.

 Local Model Alias Remote Cluster

Y

444 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

This is the time when the queue was created. The format of the time is HH.MM.SS

using the 24-hour clock, with a leading zero if the hour is less than 10 (for example

09.10.20). The time is local time.

v On i5/OS, the creation time of a queue may differ from that of the underlying

operating system entity (file or userspace) that represents the queue.

To determine the value of this attribute, use the CACRTT selector with the MQINQ

call. The length of this attribute is given by LNCRTT.

CurrentQDepth (10-digit signed integer)

Current queue depth.

 Local Model Alias Remote Cluster

Y

This is the number of messages currently on the queue. It is incremented during an

MQPUT call, and during backout of an MQGET call. It is decremented during a

nonbrowse MQGET call, and during backout of an MQPUT call. The effect of this

is that the count includes messages that have been put on the queue within a unit

of work, but which have not yet been committed, even though they are not eligible

to be retrieved by the MQGET call. Similarly, it excludes messages that have been

retrieved within a unit of work using the MQGET call, but which have yet to be

committed.

The count also includes messages which have passed their expiry time but have

not yet been discarded, although these messages are not eligible to be retrieved.

See the MDEXP field described in “MQMD – Message descriptor” on page 125.

Unit-of-work processing and the segmentation of messages can both cause

CurrentQDepth to exceed MaxQDepth. However, this does not affect the retrievability

of the messages – all messages on the queue can be retrieved using the MQGET

call in the normal way.

The value of this attribute fluctuates as the queue manager operates.

To determine the value of this attribute, use the IACDEP selector with the MQINQ

call.

DefBind (10-digit signed integer)

Default binding.

 Local Model Alias Remote Cluster

Y Y Y Y

This is the default binding that is used when OOBNDQ is specified on the

MQOPEN call and the queue is a cluster queue. The value is one of the following:

BNDOPN

Binding fixed by MQOPEN call.

Chapter 3. Attributes of objects 445

BNDNOT

Binding not fixed.

To determine the value of this attribute, use the IADBND selector with the MQINQ

call.

DefinitionType (10-digit signed integer)

Queue definition type.

 Local Model Alias Remote Cluster

Y Y

This indicates how the queue was defined. The value is one of the following:

QDPRE

Predefined permanent queue.

 The queue is a permanent queue created by the system administrator; only

the system administrator can delete it.

Predefined queues are created using the DEFINE MQSC command, and can

be deleted only by using the DELETE MQSC command. Predefined queues

cannot be created from model queues.

Commands can be issued either by an operator, or by an authorized user

sending a command message to the command input queue (see the

CommandInputQName attribute described in “Attributes for the queue

manager” on page 471).

QDPERM

Dynamically defined permanent queue.

 The queue is a permanent queue that was created by an application issuing

an MQOPEN call with the name of a model queue specified in the object

descriptor MQOD. The model queue definition had the value QDPERM for

the DefinitionType attribute.

This type of queue can be deleted using the MQCLOSE call. See

“MQCLOSE - Close object” on page 313 for more details.

The value of the QSGDisp attribute for a permanent dynamic queue is

QSGDQM.

QDTEMP

Dynamically defined temporary queue.

 The queue is a temporary queue that was created by an application issuing

an MQOPEN call with the name of a model queue specified in the object

descriptor MQOD. The model queue definition had the value QDTEMP for

the DefinitionType attribute.

This type of queue is deleted automatically by the MQCLOSE call when it

is closed by the application that created it.

The value of the QSGDisp attribute for a temporary dynamic queue is

QSGDQM.

QDSHAR

Dynamically defined shared queue.

446 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

The queue is a shared permanent queue that was created by an application

issuing an MQOPEN call with the name of a model queue specified in the

object descriptor MQOD. The model queue definition had the value

QDSHAR for the DefinitionType attribute.

This type of queue can be deleted using the MQCLOSE call. See

“MQCLOSE - Close object” on page 313 for more details.

The value of the QSGDisp attribute for a shared dynamic queue is QSGDSH.

This attribute in a model queue definition does not indicate how the model queue

was defined, because model queues are always predefined. Instead, the value of

this attribute in the model queue is used to determine the DefinitionType of each

of the dynamic queues created from the model queue definition using the

MQOPEN call.

To determine the value of this attribute, use the IADEFT selector with the MQINQ

call.

DefInputOpenOption (10-digit signed integer)

Default input open option.

 Local Model Alias Remote Cluster

Y Y

This is the default way in which the queue should be opened for input. It applies

if the OOINPQ option is specified on the MQOPEN call when the queue is

opened. The value is one of the following:

OOINPX

Open queue to get messages with exclusive access.

 The queue is opened for use with subsequent MQGET calls. The call fails

with reason code RC2042 if the queue is currently open by this or another

application for input of any type (OOINPS or OOINPX).

OOINPS

Open queue to get messages with shared access.

 The queue is opened for use with subsequent MQGET calls. The call can

succeed if the queue is currently open by this or another application with

OOINPS, but fails with reason code RC2042 if the queue is currently open

with OOINPX.

To determine the value of this attribute, use the IADINP selector with the MQINQ

call.

DefPersistence (10-digit signed integer)

Default message persistence.

 Local Model Alias Remote Cluster

Y Y Y Y Y

This is the default persistence of messages on the queue. It applies if PEQDEF is

specified in the message descriptor when the message is put.

Chapter 3. Attributes of objects 447

If there is more than one definition in the queue-name resolution path, the default

persistence is taken from the value of this attribute in the first definition in the

path at the time of the MQPUT or MQPUT1 call. This could be:

v An alias queue

v A local queue

v A local definition of a remote queue

v A queue manager alias

v A transmission queue (for example, the DefXmitQName queue)

The value is one of the following:

PEPER

Message is persistent.

 This means that the message survives system failures and restarts of the

queue manager. Persistent messages cannot be placed on:

v Temporary dynamic queues

v Shared queues

Persistent messages can be placed on permanent dynamic queues, and

predefined queues.

PENPER

Message is not persistent.

 This means that the message does not normally survive system failures or

restarts of the queue manager. This applies even if an intact copy of the

message is found on auxiliary storage during restart of the queue manager.

In the special case of shared queues, nonpersistent messages do survive

restarts of queue managers in the queue-sharing group, but do not survive

failures of the coupling facility used to store messages on the shared

queues.

Both persistent and nonpersistent messages can exist on the same queue.

To determine the value of this attribute, use the IADPER selector with the MQINQ

call.

DefPriority (10-digit signed integer)

Default message priority

 Local Model Alias Remote Cluster

Y Y Y Y Y

This is the default priority for messages on the queue. This applies if PRQDEF is

specified in the message descriptor when the message is put on the queue.

If there is more than one definition in the queue-name resolution path, the default

priority for the message is taken from the value of this attribute in the first

definition in the path at the time of the put operation. This could be:

v An alias queue

v A local queue

v A local definition of a remote queue

448 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

v A queue manager alias

v A transmission queue (for example, the DefXmitQName queue)

The way in which a message is placed on a queue depends on the value of the

queue’s MsgDeliverySequence attribute:

v If the MsgDeliverySequence attribute is MSPRIO, the logical position at which a

message is placed on the queue is dependent on the value of the MDPRI field in

the message descriptor.

v If the MsgDeliverySequence attribute is MSFIFO, messages are placed on the

queue as though they had a priority equal to the DefPriority of the resolved

queue, regardless of the value of the MDPRI field in the message descriptor.

However, the MDPRI field retains the value specified by the application that put

the message. See the MsgDeliverySequence attribute described in “Attributes for

queues” on page 437 for more information.

Priorities are in the range zero (lowest) through MaxPriority (highest); see the

MaxPriority attribute described in “Attributes for the queue manager” on page

471.

To determine the value of this attribute, use the IADPRI selector with the MQINQ

call.

DistLists (10-digit signed integer)

Distribution list support.

 Local Model Alias Remote Cluster

Y Y

This indicates whether distribution-list messages can be placed on the queue. The

attribute is set by a message channel agent (MCA) to inform the local queue

manager whether the queue manager at the other end of the channel supports

distribution lists. This latter queue manager (called the “partnering queue

manager”) is the one which next receives the message, after it has been removed

from the local transmission queue by a sending MCA.

The attribute is set by the sending MCA whenever it establishes a connection to

the receiving MCA on the partnering queue manager. In this way, the sending

MCA can cause the local queue manager to place on the transmission queue only

messages which the partnering queue manager is capable of processing correctly.

This attribute is primarily for use with transmission queues, but the processing

described is performed regardless of the usage defined for the queue (see the Usage

attribute).

The value is one of the following:

DLSUPP

Distribution lists supported.

 This indicates that distribution-list messages can be stored on the queue,

and transmitted to the partnering queue manager in that form. This

reduces the amount of processing required to send the message to multiple

destinations.

Chapter 3. Attributes of objects 449

DLNSUP

Distribution lists not supported.

 This indicates that distribution-list messages cannot be stored on the

queue, because the partnering queue manager does not support

distribution lists. If an application puts a distribution-list message, and that

message is to be placed on this queue, the queue manager splits the

distribution-list message and places the individual messages on the queue

instead. This increases the amount of processing required to send the

message to multiple destinations, but ensures that the messages will be

processed correctly by the partnering queue manager.

To determine the value of this attribute, use the IADIST selector with the MQINQ

call. To change the value of this attribute, use the MQSET call.

HardenGetBackout (10-digit signed integer)

Whether to maintain an accurate backout count.

 Local Model Alias Remote Cluster

Y Y

For each message, a count is kept of the number of times that the message is

retrieved by an MQGET call within a unit of work, and that unit of work

subsequently backed out. This count is available in the MDBOC field in the message

descriptor after the MQGET call has completed.

The message backout count survives restarts of the queue manager. However, to

ensure that the count is accurate, information has to be “hardened” (recorded on

disk or other permanent storage device) each time a message is retrieved by an

MQGET call within a unit of work for this queue. If this is not done, and a failure

of the queue manager occurs together with backout of the MQGET call, the count

may or may not be incremented.

Hardening information for each MQGET call within a unit of work, however,

imposes a performance overhead, and the HardenGetBackout attribute should be set

to QABH only if it is essential that the count is accurate.

v On i5/OS, the message backout count is always hardened, regardless of the

setting of this attribute.

The following values are possible:

QABH

Backout count remembered.

 Hardening is used to ensure that the backout count for messages on this

queue is accurate.

QABNH

Backout count may not be remembered.

 Hardening is not used to ensure that the backout count for messages on

this queue is accurate. The count may therefore be lower than it should be.

To determine the value of this attribute, use the IAHGB selector with the MQINQ

call.

450 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

InhibitGet (10-digit signed integer)

Controls whether get operations for this queue are allowed.

 Local Model Alias Remote Cluster

Y Y Y

If the queue is an alias queue, get operations must be allowed for both the alias

and the base queue at the time of the get operation, in order for the MQGET call

to succeed. The value is one of the following:

QAGETI

Get operations are inhibited.

 MQGET calls fail with reason code RC2016. This includes MQGET calls

that specify GMBRWF or GMBRWN.

Note: If an MQGET call operating within a unit of work completes

successfully, changing the value of the InhibitGet attribute subsequently to

QAGETI does not prevent the unit of work being committed.

QAGETA

Get operations are allowed.

To determine the value of this attribute, use the IAIGET selector with the MQINQ

call. To change the value of this attribute, use the MQSET call.

InhibitPut (10-digit signed integer)

Controls whether put operations for this queue are allowed.

 Local Model Alias Remote Cluster

Y Y Y Y Y

If there is more than one definition in the queue-name resolution path, put

operations must be allowed for every definition in the path (including any queue

manager alias definitions) at the time of the put operation, in order for the

MQPUT or MQPUT1 call to succeed. The value is one of the following:

QAPUTI

Put operations are inhibited.

 MQPUT and MQPUT1 calls fail with reason code RC2051.

Note: If an MQPUT call operating within a unit of work completes

successfully, changing the value of the InhibitPut attribute subsequently to

QAPUTI does not prevent the unit of work being committed.

QAPUTA

Put operations are allowed.

To determine the value of this attribute, use the IAIPUT selector with the MQINQ

call. To change the value of this attribute, use the MQSET call.

InitiationQName (48-byte character string)

Name of initiation queue.

Chapter 3. Attributes of objects 451

Local Model Alias Remote Cluster

Y Y

This is the name of a queue defined on the local queue manager; the queue must

be of type QTLOC. The queue manager sends a trigger message to the initiation

queue when application start-up is required as a result of a message arriving on

the queue to which this attribute belongs. The initiation queue must be monitored

by a trigger monitor application which will start the appropriate application after

receipt of the trigger message.

To determine the value of this attribute, use the CAINIQ selector with the MQINQ

call. The length of this attribute is given by LNQN.

MaxMsgLength (10-digit signed integer)

Maximum message length in bytes.

 Local Model Alias Remote Cluster

Y Y

This is an upper limit for the length of the longest physical message that can be

placed on the queue. However, because the MaxMsgLength queue attribute can be

set independently of the MaxMsgLength queue manager attribute, the actual upper

limit for the length of the longest physical message that can be placed on the

queue is the lesser of those two values.

If the queue manager supports segmentation, it is possible for an application to

put a logical message that is longer than the lesser of the two MaxMsgLength

attributes, but only if the application specifies the MFSEGA flag in MQMD. If that

flag is specified, the upper limit for the length of a logical message is 999 999 999

bytes, but usually resource constraints imposed by the operating system, or by the

environment in which the application is running, will result in a lower limit.

An attempt to place on the queue a message that is too long fails with reason code:

v RC2030 if the message to too big for the queue

v RC2031 if the message to too big for the queue manager, but not too big for the

queue

The lower limit for the MaxMsgLength attribute is zero. The upper limit is

determined by the environment:

v On i5/OS, the maximum message length is 100 MB (104 857 600 bytes).

For more information, see the BUFLEN parameter described in “MQPUT - Put

message” on page 395.

To determine the value of this attribute, use the IAMLEN selector with the MQINQ

call.

MaxQDepth (10-digit signed integer)

Maximum queue depth.

452 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Local Model Alias Remote Cluster

Y Y

This is the defined upper limit for the number of physical messages that can exist

on the queue at any one time. An attempt to put a message on a queue that

already contains MaxQDepth messages fails with reason code RC2053.

Unit-of-work processing and the segmentation of messages can both cause the

actual number of physical messages on the queue to exceed MaxQDepth. However,

this does not affect the retrievability of the messages – all messages on the queue

can be retrieved using the MQGET call in the normal way.

The value of this attribute is zero or greater. The upper limit is determined by the

environment.

Note: It is possible for the storage space available to the queue to be exhausted

even if there are fewer than MaxQDepth messages on the queue.

To determine the value of this attribute, use the IAMDEP selector with the MQINQ

call.

MediaLog (10-digit signed integer)

Identity of the log extent (or journal receiver on i5/OS) needed for media recovery

of a particular queue.

 Local Model Alias Remote Cluster

Y Y

On queue managers where circular logging is in use, the value is returned as a null

string.

MsgDeliverySequence (10-digit signed integer)

Message delivery sequence.

 Local Model Alias Remote Cluster

Y Y

This determines the order in which messages are returned to the application by the

MQGET call:

MSFIFO

Messages are returned in FIFO order (first in, first out).

 This means that an MQGET call will return the first message that satisfies

the selection criteria specified on the call, regardless of the priority of the

message.

MSPRIO

Messages are returned in priority order.

 This means that an MQGET call will return the highest-priority message that

satisfies the selection criteria specified on the call. Within each priority

level, messages are returned in FIFO order (first in, first out).

Chapter 3. Attributes of objects 453

If the relevant attributes are changed while there are messages on the queue, the

delivery sequence is as follows:

v The order in which messages are returned by the MQGET call is determined by

the values of the MsgDeliverySequence and DefPriority attributes in force for

the queue at the time the message arrives on the queue:

– If MsgDeliverySequence is MSFIFO when the message arrives, the message is

placed on the queue as though its priority were DefPriority. This does not

affect the value of the MDPRI field in the message descriptor of the message;

that field retains the value it had when the message was first put.

– If MsgDeliverySequence is MSPRIO when the message arrives, the message is

placed on the queue at the place appropriate to the priority given by the

MDPRI field in the message descriptor.
If the value of the MsgDeliverySequence attribute is changed while there are

messages on the queue, the order of the messages on the queue is not changed.

If the value of the DefPriority attribute is changed while there are messages on

the queue, the messages will not necessarily be delivered in FIFO order, even

though the MsgDeliverySequence attribute is set to MSFIFO; those that were

placed on the queue at the higher priority are delivered first.

To determine the value of this attribute, use the IAMDS selector with the MQINQ

call.

OpenInputCount (10-digit signed integer)

Number of opens for input.

 Local Model Alias Remote Cluster

Y

This is the number of handles that are currently valid for removing messages from

the queue by means of the MQGET call. It is the total number of such handles

known to the local queue manager. If the queue is a shared queue, the count does

not include opens for input that were performed for the queue at other queue

managers in the queue-sharing group to which the local queue manager belongs.

The count includes handles where an alias queue which resolves to this queue was

opened for input. The count does not include handles where the queue was

opened for action(s) which did not include input (for example, a queue opened

only for browse).

The value of this attribute fluctuates as the queue manager operates.

To determine the value of this attribute, use the IAOIC selector with the MQINQ

call.

OpenOutputCount (10-digit signed integer)

Number of opens for output.

 Local Model Alias Remote Cluster

Y

454 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

This is the number of handles that are currently valid for adding messages to the

queue by means of the MQPUT call. It is the total number of such handles known

to the local queue manager; it does not include opens for output that were

performed for this queue at remote queue managers. If the queue is a shared

queue, the count does not include opens for output that were performed for the

queue at other queue managers in the queue-sharing group to which the local

queue manager belongs.

The count includes handles where an alias queue which resolves to this queue was

opened for output. The count does not include handles where the queue was

opened for action(s) which did not include output (for example, a queue opened

only for inquire).

The value of this attribute fluctuates as the queue manager operates.

To determine the value of this attribute, use the IAOOC selector with the MQINQ

call.

ProcessName (48-byte character string)

Process name.

 Local Model Alias Remote Cluster

Y Y

This is the name of a process object that is defined on the local queue manager.

The process object identifies a program that can service the queue.

To determine the value of this attribute, use the CAPRON selector with the

MQINQ call. The length of this attribute is given by LNPRON.

QDepthHighEvent (10-digit signed integer)

Controls whether Queue Depth High events are generated.

 Local Model Alias Remote Cluster

Y Y

A Queue Depth High event indicates that an application has put a message on a

queue, and this has caused the number of messages on the queue to become

greater than or equal to the queue depth high threshold (see the QDepthHighLimit

attribute).

Note: The value of this attribute can change dynamically.

The value is one of the following:

EVRDIS

Event reporting disabled.

EVRENA

Event reporting enabled.

For more information about events, see the Monitoring WebSphere MQ book.

Chapter 3. Attributes of objects 455

To determine the value of this attribute, use the IAQDHE selector with the MQINQ

call.

QDepthHighLimit (10-digit signed integer)

High limit for queue depth.

 Local Model Alias Remote Cluster

Y Y

This is the threshold against which the queue depth is compared to generate a

Queue Depth High event. This event indicates that an application has put a

message on a queue, and this has caused the number of messages on the queue to

become greater than or equal to the queue depth high threshold. See the

QDepthHighEvent attribute.

The value is expressed as a percentage of the maximum queue depth (MaxQDepth

attribute), and is in the range zero through 100. The default value is 80.

To determine the value of this attribute, use the IAQDHL selector with the MQINQ

call.

QDepthLowEvent (10-digit signed integer)

Controls whether Queue Depth Low events are generated.

 Local Model Alias Remote Cluster

Y Y

A Queue Depth Low event indicates that an application has retrieved a message

from a queue, and this has caused the number of messages on the queue to

become less than or equal to the queue depth low threshold (see the

QDepthLowLimit attribute).

Note: The value of this attribute can change dynamically.

The value is one of the following:

EVRDIS

Event reporting disabled.

EVRENA

Event reporting enabled.

For more information about events, see the Monitoring WebSphere MQ book.

To determine the value of this attribute, use the IAQDLE selector with the MQINQ

call.

QDepthLowLimit (10-digit signed integer)

Low limit for queue depth.

 Local Model Alias Remote Cluster

Y Y

456 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

This is the threshold against which the queue depth is compared to generate a

Queue Depth Low event. This event indicates that an application has retrieved a

message from a queue, and this has caused the number of messages on the queue

to become less than or equal to the queue depth low threshold. See the

QDepthLowEvent attribute.

The value is expressed as a percentage of the maximum queue depth (MaxQDepth

attribute), and is in the range zero through 100. The default value is 20.

To determine the value of this attribute, use the IAQDLL selector with the MQINQ

call.

QDepthMaxEvent (10-digit signed integer)

Controls whether Queue Full events are generated.

 Local Model Alias Remote Cluster

Y Y

A Queue Full event indicates that a put to a queue has been rejected because the

queue is full, that is, the queue depth has already reached its maximum value.

Note: The value of this attribute can change dynamically.

The value is one of the following:

EVRDIS

Event reporting disabled.

EVRENA

Event reporting enabled.

For more information about events, see the Monitoring WebSphere MQ book.

To determine the value of this attribute, use the IAQDME selector with the

MQINQ call.

QDesc (64-byte character string)

Queue description.

 Local Model Alias Remote Cluster

Y Y Y Y Y

This is a field that may be used for descriptive commentary. The content of the

field is of no significance to the queue manager, but the queue manager may

require that the field contain only characters that can be displayed. It cannot

contain any null characters; if necessary, it is padded to the right with blanks. In a

DBCS installation, the field can contain DBCS characters (subject to a maximum

field length of 64 bytes).

Note: If this field contains characters that are not in the queue manager’s character

set (as defined by the CodedCharSetId queue manager attribute), those characters

may be translated incorrectly if this field is sent to another queue manager.

Chapter 3. Attributes of objects 457

To determine the value of this attribute, use the CAQD selector with the MQINQ

call. The length of this attribute is given by LNQD.

QName (48-byte character string)

Queue name.

 Local Model Alias Remote Cluster

Y Y Y Y

This is the name of a queue defined on the local queue manager. For more

information about queue names, see the WebSphere MQ Application Programming

Guide. All queues defined on a queue manager share the same queue name space.

Therefore, a QTLOC queue and a QTALS queue cannot have the same name.

To determine the value of this attribute, use the CAQN selector with the MQINQ

call. The length of this attribute is given by LNQN.

QServiceInterval (10-digit signed integer)

Target for queue service interval.

 Local Model Alias Remote Cluster

Y Y

This is the service interval used for comparison to generate Service Interval High

and Service Interval OK events. See the QServiceIntervalEvent attribute.

The value is in units of milliseconds, and is in the range zero through 999 999 999.

To determine the value of this attribute, use the IAQSI selector with the MQINQ

call.

QServiceIntervalEvent (10-digit signed integer)

Controls whether Service Interval High or Service Interval OK events are

generated.

 Local Model Alias Remote Cluster

Y Y

v A Service Interval High event is generated when a check indicates that no

messages have been retrieved from the queue for at least the time indicated by

the QServiceInterval attribute.

v A Service Interval OK event is generated when a check indicates that messages

have been retrieved from the queue within the time indicated by the

QServiceInterval attribute.

Note: The value of this attribute can change dynamically.

The value is one of the following:

QSIEHI

Queue Service Interval High events enabled.

458 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

v Queue Service Interval High events are enabled and

v Queue Service Interval OK events are disabled.

QSIEOK

Queue Service Interval OK events enabled.

 v Queue Service Interval High events are disabled and

v Queue Service Interval OK events are enabled.

QSIENO

No queue service interval events enabled.

 v Queue Service Interval High events are disabled and

v Queue Service Interval OK events are also disabled.

For shared queues, the value of this attribute is ignored; the value QSIENO is

assumed.

For more information about events, see the Monitoring WebSphere MQ book.

To determine the value of this attribute, use the IAQSIE selector with the MQINQ

call.

QSGDisp (10-digit signed integer)

Queue-sharing group disposition.

 Local Model Alias Remote Cluster

Y Y Y

This specifies the disposition of the queue. The value is one of the following:

QSGDQM

Queue manager disposition.

 The object has queue manager disposition. This means that the object

definition is known only to the local queue manager; the definition is not

known to other queue managers in the queue-sharing group.

It is possible for each queue manager in the queue-sharing group to have

an object with the same name and type as the current object, but these are

separate objects and there is no correlation between them. Their attributes

are not constrained to be the same as each other.

QSGDCP

Copied-object disposition.

 The object is a local copy of a master object definition that exists in the

shared repository. Each queue manager in the queue-sharing group can

have its own copy of the object. Initially, all copies have the same

attributes, but by using MQSC commands each copy can be altered so that

its attributes differ from those of the other copies. The attributes of the

copies are resynchronized when the master definition in the shared

repository is altered.

QSGDSH

Shared disposition.

 The object has shared disposition. This means that there exists in the

shared repository a single instance of the object that is known to all queue

Chapter 3. Attributes of objects 459

managers in the queue-sharing group. When a queue manager in the

group accesses the object, it accesses the single shared instance of the

object.

To determine the value of this attribute, use the IAQSGD selector with the MQINQ

call.

This attribute is supported only on z/OS.

QType (10-digit signed integer)

Queue type.

 Local Model Alias Remote Cluster

Y Y Y Y

This attribute has one of the following values:

QTALS

Alias queue definition.

QTCLUS

Cluster queue.

QTLOC

Local queue.

QTREM

Local definition of a remote queue.

To determine the value of this attribute, use the IAQTYP selector with the MQINQ

call.

RemoteQMgrName (48-byte character string)

Name of remote queue manager.

 Local Model Alias Remote Cluster

 Y

This is the name of the remote queue manager on which the queue RemoteQName is

defined. If the RemoteQName queue has a QSGDisp value of QSGDCP or QSGDSH,

RemoteQMgrName can be the name of the queue-sharing group that owns

RemoteQName.

If an application opens the local definition of a remote queue, RemoteQMgrName

must not be blank and must not be the name of the local queue manager. If

XmitQName is blank, the local queue whose name is the same as RemoteQMgrName is

used as the transmission queue. If there is no queue with the name

RemoteQMgrName, the queue identified by the DefXmitQName queue manager attribute

is used.

If this definition is used for a queue manager alias, RemoteQMgrName is the name of

the queue manager that is being aliased. It can be the name of the local queue

460 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

manager. Otherwise, if XmitQName is blank when the open occurs, there must be a

local queue whose name is the same as RemoteQMgrName; this queue is used as the

transmission queue.

If this definition is used for a reply-to alias, this name is the name of the queue

manager which is to be the MDRM.

Note: No validation is performed on the value specified for this attribute when the

queue definition is created or modified.

To determine the value of this attribute, use the CARQMN selector with the

MQINQ call. The length of this attribute is given by LNQMN.

RemoteQName (48-byte character string)

Name of remote queue.

 Local Model Alias Remote Cluster

 Y

This is the name of the queue as it is known on the remote queue manager

RemoteQMgrName.

If an application opens the local definition of a remote queue, when the open

occurs RemoteQName must not be blank.

If this definition is used for a queue manager alias definition, when the open

occurs RemoteQName must be blank.

If the definition is used for a reply-to alias, this name is the name of the queue that

is to be the MDRQ.

Note: No validation is performed on the value specified for this attribute when the

queue definition is created or modified.

To determine the value of this attribute, use the CARQN selector with the MQINQ

call. The length of this attribute is given by LNQN.

RetentionInterval (10-digit signed integer)

Retention interval.

 Local Model Alias Remote Cluster

Y Y

This is the period of time for which the queue should be retained. After this time

has elapsed, the queue is eligible for deletion.

The time is measured in hours, counting from the date and time when the queue

was created. The creation date and time of the queue are recorded in the

CreationDate and CreationTime attributes, respectively.

This information is provided to enable a housekeeping application or the operator

to identify and delete queues that are no longer required.

Chapter 3. Attributes of objects 461

Note: The queue manager never takes any action to delete queues based on this

attribute, or to prevent the deletion of queues whose retention interval has not

expired; it is the user’s responsibility to cause any required action to be taken.

A realistic retention interval should be used to prevent the accumulation of

permanent dynamic queues (see DefinitionType). However, this attribute can also

be used with predefined queues.

To determine the value of this attribute, use the IARINT selector with the MQINQ

call.

Scope (10-digit signed integer)

Controls whether an entry for this queue also exists in a cell directory.

 Local Model Alias Remote Cluster

Y Y Y

A cell directory is provided by an installable Name service. The value is one of the

following:

SCOQM

Queue-manager scope.

 The queue definition has queue manager scope. This means that the

definition of the queue does not extend beyond the queue manager which

owns it. To open the queue for output from some other queue manager,

either the name of the owning queue manager must be specified, or the

other queue manager must have a local definition of the queue.

SCOCEL

Cell scope.

 The queue definition has cell scope. This means that the queue definition is

also placed in a cell directory available to all of the queue managers in the

cell. The queue can be opened for output from any of the queue managers

in the cell merely by specifying the name of the queue; the name of the

queue manager which owns the queue need not be specified. However, the

queue definition is not available to any queue manager in the cell which

also has a local definition of a queue with that name, as the local definition

takes precedence.

A cell directory is provided by an installable name service such as LDAP

(Lightweight Directory Access Protocol. Note that WebSphere MQ no

longer supports the DCE (Distributed Computing Environment) name

service that was formerly used for inserting queue definitions into a DCE

directory (also no longer supported).

Model and dynamic queues cannot have cell scope.

This value is only valid if a name service supporting a cell directory has

been configured.

To determine the value of this attribute, use the IASCOP selector with the MQINQ

call.

Support for this attribute is subject to the following restrictions:

v On i5/OS, the attribute is supported, but only SCOQM is valid.

462 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Shareability (10-digit signed integer)

Whether queue can be shared for input.

 Local Model Alias Remote Cluster

Y Y

This indicates whether the queue can be opened for input multiple times

concurrently. The value is one of the following:

QASHR

Queue is shareable.

 Multiple opens with the OOINPS option are allowed.

QANSHR

Queue is not shareable.

 An MQOPEN call with the OOINPS option is treated as OOINPX.

To determine the value of this attribute, use the IASHAR selector with the MQINQ

call.

TriggerControl (10-digit signed integer)

Trigger control.

 Local Model Alias Remote Cluster

Y Y

This controls whether trigger messages are written to an initiation queue, in order

to cause an application to be started to service the queue. This is one of the

following:

TCOFF

Trigger messages not required.

 No trigger messages are to be written for this queue. The value of

TriggerType is irrelevant in this case.

TCON

Trigger messages required.

 Trigger messages are to be written for this queue, when the appropriate

trigger events occur.

To determine the value of this attribute, use the IATRGC selector with the MQINQ

call. To change the value of this attribute, use the MQSET call.

TriggerData (64-byte character string)

Trigger data.

 Local Model Alias Remote Cluster

Y Y

Chapter 3. Attributes of objects 463

This is free-format data that the queue manager inserts into the trigger message

when a message arriving on this queue causes a trigger message to be written to

the initiation queue.

The content of this data is of no significance to the queue manager. It is

meaningful either to the trigger-monitor application which processes the initiation

queue, or to the application which is started by the trigger monitor.

The character string cannot contain any nulls. It is padded to the right with blanks

if necessary.

To determine the value of this attribute, use the CATRGD selector with the

MQINQ call. To change the value of this attribute, use the MQSET call. The length

of this attribute is given by LNTRGD.

TriggerDepth (10-digit signed integer)

Trigger depth.

 Local Model Alias Remote Cluster

Y Y

This is the number of messages of priority TriggerMsgPriority or greater that

must be on the queue before a trigger message is written. This applies when

TriggerType is set to TTDPTH. The value of TriggerDepth is one or greater. This

attribute is not used otherwise.

To determine the value of this attribute, use the IATRGD selector with the MQINQ

call. To change the value of this attribute, use the MQSET call.

TriggerMsgPriority (10-digit signed integer)

Threshold message priority for triggers.

 Local Model Alias Remote Cluster

Y Y

This is the message priority below which messages do not contribute to the

generation of trigger messages (that is, the queue manager ignores these messages

when deciding whether a trigger message should be generated).

TriggerMsgPriority can be in the range zero (lowest) through MaxPriority

(highest; see “Attributes for the queue manager” on page 471); a value of zero

causes all messages to contribute to the generation of trigger messages.

To determine the value of this attribute, use the IATRGP selector with the MQINQ

call. To change the value of this attribute, use the MQSET call.

TriggerType (10-digit signed integer)

Trigger type.

 Local Model Alias Remote Cluster

Y Y

464 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

This controls the conditions under which trigger messages are written as a result of

messages arriving on this queue. The value is one of the following:

TTNONE

No trigger messages.

 No trigger messages are written as a result of messages on this queue. This

has the same effect as setting TriggerControl to TCOFF.

TTFRST

Trigger message when queue depth goes from 0 to 1.

 A trigger message is written whenever the number of messages of priority

TriggerMsgPriority or greater on the queue changes from 0 to 1.

TTEVRY

Trigger message for every message.

 A trigger message is written whenever a message of priority

TriggerMsgPriority or greater arrives on the queue.

TTDPTH

Trigger message when depth threshold exceeded.

 A trigger message is written whenever the number of messages of priority

TriggerMsgPriority or greater on the queue equals or exceeds

TriggerDepth. After the trigger message has been written, TriggerControl

is set to TCOFF to prevent further triggering until it is explicitly turned on

again.

To determine the value of this attribute, use the IATRGT selector with the MQINQ

call. To change the value of this attribute, use the MQSET call.

Usage (10-digit signed integer)

Queue usage.

 Local Model Alias Remote Cluster

Y Y

This indicates what the queue is used for. The value is one of the following:

USNORM

Normal usage.

 This is a queue that normal applications use when putting and getting

messages; the queue is not a transmission queue.

USTRAN

Transmission queue.

 This is a queue used to hold messages destined for remote queue

managers. When a normal application sends a message to a remote queue,

the local queue manager stores the message temporarily on the appropriate

transmission queue in a special format. A message channel agent then

reads the message from the transmission queue, and transports the

message to the remote queue manager. For more information about

transmission queues, see the WebSphere MQ Application Programming

Guide.

Only privileged applications can open a transmission queue for OOOUT to

put messages on it directly. Only utility applications would normally be

Chapter 3. Attributes of objects 465

expected to do this. Care must be taken that the message data format is

correct (see “MQXQH – Transmission-queue header” on page 286),

otherwise errors may occur during the transmission process. Context is not

passed or set unless one of the PM* context options is specified.

To determine the value of this attribute, use the IAUSAG selector with the MQINQ

call.

XmitQName (48-byte character string)

Transmission queue name.

 Local Model Alias Remote Cluster

 Y

If this attribute is nonblank when an open occurs, either for a remote queue or for

a queue manager alias definition, it specifies the name of the local transmission

queue to be used for forwarding the message.

If XmitQName is blank, the local queue whose name is the same as RemoteQMgrName is

used as the transmission queue. If there is no queue with the name

RemoteQMgrName, the queue identified by the DefXmitQName queue manager attribute

is used.

This attribute is ignored if the definition is being used as a queue manager alias

and RemoteQMgrName is the name of the local queue manager. It is also ignored if

the definition is used as a reply-to queue alias definition.

To determine the value of this attribute, use the CAXQN selector with the MQINQ

call. The length of this attribute is given by LNQN.

Attributes for namelists

The following table summarizes the attributes that are specific to namelists. The

attributes are described in alphabetic order.

Note: The names of the attributes shown in this book are the names used with the

MQINQ and MQSET calls. When MQSC commands are used to define, alter, or

display attributes, alternative short names are used; see the WebSphere MQ Script

(MQSC) Command Reference for details.

 Table 87. Attributes for namelists

Attribute Description Topic

AlterationDate Date when definition was last

changed

AlterationDate

AlterationTime Time when definition was last

changed

AlterationTime

NameCount Number of names in namelist NameCount

NamelistDesc Namelist description NamelistDesc

NamelistName Namelist name NamelistName

Names A list of NameCount names Names

466 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Attribute descriptions

A namelist object has the attributes described below.

AlterationDate (12-byte character string)

Date when definition was last changed.

This is the date when the definition was last changed. The format of the date is

YYYY-MM-DD, padded with two trailing blanks to make the length 12 bytes.

To determine the value of this attribute, use the CAALTD selector with the

MQINQ call. The length of this attribute is given by LNDATE.

AlterationTime (8-byte character string)

Time when definition was last changed.

This is the time when the definition was last changed. The format of the time is

HH.MM.SS.

To determine the value of this attribute, use the CAALTT selector with the MQINQ

call. The length of this attribute is given by LNTIME.

NameCount (10-digit signed integer)

Number of names in namelist.

This is greater than or equal to zero. The following value is defined:

NCMXNL

Maximum number of names in a namelist.

To determine the value of this attribute, use the IANAMC selector with the

MQINQ call.

NamelistDesc (64-byte character string)

Namelist description.

This is a field that may be used for descriptive commentary; its value is established

by the definition process. The content of the field is of no significance to the queue

manager, but the queue manager may require that the field contain only characters

that can be displayed. It cannot contain any null characters; if necessary, it is

padded to the right with blanks. In a DBCS installation, this field can contain

DBCS characters (subject to a maximum field length of 64 bytes).

Note: If this field contains characters that are not in the queue manager’s character

set (as defined by the CodedCharSetId queue manager attribute), those characters

may be translated incorrectly if this field is sent to another queue manager.

To determine the value of this attribute, use the CALSTD selector with the MQINQ

call.

The length of this attribute is given by LNNLD.

Chapter 3. Attributes of objects 467

NamelistName (48-byte character string)

Namelist name.

This is the name of a namelist that is defined on the local queue manager. For

more information about namelist names, see the WebSphere MQ Application

Programming Guide.

Each namelist has a name that is different from the names of other namelists

belonging to the queue manager, but may duplicate the names of other queue

manager objects of different types (for example, queues).

To determine the value of this attribute, use the CALSTN selector with the MQINQ

call.

The length of this attribute is given by LNNLN.

Names (48-byte character string×NameCount)

A list of NameCount names.

Each name is the name of an object that is defined to the local queue manager. For

more information about object names, see the WebSphere MQ Application

Programming Guide.

To determine the value of this attribute, use the CANAMS selector with the

MQINQ call.

The length of each name in the list is given by LNOBJN.

Attributes for process definitions

The following table summarizes the attributes that are specific to process

definitions. The attributes are described in alphabetic order.

Note: The names of the attributes shown in this book are the names used with the

MQINQ and MQSET calls. When MQSC commands are used to define, alter, or

display attributes, alternative short names are used; see the WebSphere MQ Script

(MQSC) Command Reference for details.

 Table 88. Attributes for process definitions

Attribute Description Topic

AlterationDate Date when definition was last changed AlterationDate

AlterationTime Time when definition was last changed AlterationTime

ApplId Application identifier ApplId

ApplType Application type ApplType

EnvData Environment data EnvData

ProcessDesc Process description ProcessDesc

ProcessName Process name ProcessName

UserData User data UserData

468 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Attribute descriptions

A process-definition object has the attributes described below.

AlterationDate (12-byte character string)

Date when definition was last changed.

This is the date when the definition was last changed. The format of the date is

YYYY-MM-DD, padded with two trailing blanks to make the length 12 bytes.

To determine the value of this attribute, use the CAALTD selector with the

MQINQ call. The length of this attribute is given by LNDATE.

AlterationTime (8-byte character string)

Time when definition was last changed.

This is the time when the definition was last changed. The format of the time is

HH.MM.SS.

To determine the value of this attribute, use the CAALTT selector with the MQINQ

call. The length of this attribute is given by LNTIME.

ApplId (256-byte character string)

Application identifier.

This is a character string that identifies the application to be started. This

information is for use by a trigger-monitor application that processes messages on

the initiation queue; the information is sent to the initiation queue as part of the

trigger message.

The meaning of ApplId is determined by the trigger-monitor application. The

trigger monitor provided by WebSphere MQ requires ApplId to be the name of an

executable program.

The character string cannot contain any nulls. It is padded to the right with blanks

if necessary.

To determine the value of this attribute, use the CAAPPI selector with the MQINQ

call. The length of this attribute is given by LNPROA.

ApplType (10-digit signed integer)

Application type.

This identifies the nature of the program to be started in response to the receipt of

a trigger message. This information is for use by a trigger-monitor application that

processes messages on the initiation queue; the information is sent to the initiation

queue as part of the trigger message.

ApplType can have any value, but the following values are recommended for

standard types; user-defined application types should be restricted to values in the

range ATUFST through ATULST:

Chapter 3. Attributes of objects 469

ATCICS

CICS transaction.

AT400 i5/OS application.

ATUFST

Lowest value for user-defined application type.

ATULST

Highest value for user-defined application type.

To determine the value of this attribute, use the IAAPPT selector with the MQINQ

call.

EnvData (128-byte character string)

Environment data.

This is a character string that contains environment-related information pertaining

to the application to be started. This information is for use by a trigger-monitor

application that processes messages on the initiation queue; the information is sent

to the initiation queue as part of the trigger message.

The meaning of EnvData is determined by the trigger-monitor application. The

trigger monitor provided by WebSphere MQ appends EnvData to the parameter list

passed to the started application. The parameter list consists of the MQTMC2

structure, followed by one blank, followed by EnvData with trailing blanks

removed.

The character string cannot contain any nulls. It is padded to the right with blanks

if necessary.

To determine the value of this attribute, use the CAENVD selector with the

MQINQ call. The length of this attribute is given by LNPROE.

ProcessDesc (64-byte character string)

Process description.

This is a field that may be used for descriptive commentary. The content of the

field is of no significance to the queue manager, but the queue manager may

require that the field contain only characters that can be displayed. It cannot

contain any null characters; if necessary, it is padded to the right with blanks. In a

DBCS installation, the field can contain DBCS characters (subject to a maximum

field length of 64 bytes).

Note: If this field contains characters that are not in the queue manager’s character

set (as defined by the CodedCharSetId queue manager attribute), those characters

may be translated incorrectly if this field is sent to another queue manager.

To determine the value of this attribute, use the CAPROD selector with the

MQINQ call.

The length of this attribute is given by LNPROD.

470 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

ProcessName (48-byte character string)

Process name.

This is the name of a process definition that is defined on the local queue manager.

Each process definition has a name that is different from the names of other

process definitions belonging to the queue manager. But the name of the process

definition may be the same as the names of other queue manager objects of

different types (for example, queues).

To determine the value of this attribute, use the CAPRON selector with the

MQINQ call.

The length of this attribute is given by LNPRON.

UserData (128-byte character string)

User data.

This is a character string that contains user information pertaining to the

application to be started. This information is for use by a trigger-monitor

application that processes messages on the initiation queue, or the application

which is started by the trigger monitor. The information is sent to the initiation

queue as part of the trigger message.

The meaning of UserData is determined by the trigger-monitor application. The

trigger monitor provided by WebSphere MQ simply passes UserData to the started

application as part of the parameter list. The parameter list consists of the

MQTMC2 structure (containing UserData), followed by one blank, followed by

EnvData with trailing blanks removed.

The character string cannot contain any nulls. It is padded to the right with blanks

if necessary.

To determine the value of this attribute, use the CAUSRD selector with the

MQINQ call. The length of this attribute is given by LNPROU.

Attributes for the queue manager

Some queue manager attributes are fixed for particular implementations, while

others can be changed by using the MQSC command ALTER QMGR. The attributes

can also be displayed by using the command DISPLAY QMGR. Most queue manager

attributes can be inquired by opening a special OTQM object, and using the

MQINQ call with the handle returned.

The following table summarizes the attributes that are specific to the queue

manager. The attributes are described in alphabetic order.

Note: The names of the attributes shown in this book are the names used with the

MQINQ and MQSET calls. When MQSC commands are used to define, alter, or

display attributes, alternative short names are used; see the WebSphere MQ Script

(MQSC) Command Reference for details.

Chapter 3. Attributes of objects 471

Table 89. Attributes for the queue manager

Attribute Description Topic

AlterationDate Date when definition was last changed AlterationDate

AlterationTime Time when definition was last changed AlterationTime

AuthorityEvent Controls whether authorization (Not Authorized)

events are generated

AuthorityEvent

BridgeEvent Controls whether IMS bridge events are generated. BridgeEvent

ChannelAutoDef Controls whether automatic channel definition is

permitted

ChannelAutoDef

ChannelAutoDefEvent Controls whether channel automatic-definition events

are generated

ChannelAutoDefEvent

ChannelAutoDefExit Name of user exit for automatic channel definition ChannelAutoDefExit

ChannelEvent Controls whether channel events are generated ChannelEvent

ClusterCacheType Controls whether the cluster cache is fixed in size or

dynamically sized

ClusterCacheType

ClusterWorkloadData User data for cluster workload exit ClusterWorkloadData

ClusterWorkloadExit Name of user exit for cluster workload management ClusterWorkloadExit

ClusterWorkloadLength Maximum length of message data passed to cluster

workload exit

ClusterWorkloadLength

CodedCharSetId Coded character set identifier CodedCharSetId

CommandEvent Controls whether command event messages are queued CommandEvent

CommandInputQName Command input queue name CommandInputQName

CommandLevel Command level CommandLevel

ConfigurationEvent Configuration event ConfigurationEvent

DeadLetterQName Name of dead-letter queue DeadLetterQName

DefXmitQName Default transmission queue name DefXmitQName

DistLists Distribution list support DistLists

InhibitEvent Controls whether inhibit (Inhibit Get and Inhibit Put)

events are generated

InhibitEvent

LocalEvent Controls whether local error events are generated LocalEvent

LoggerEvent Controls whether recovery log events are generated LoggerEvent

MaxHandles Maximum number of handles MaxHandles

MaxMsgLength Maximum message length in bytes MaxMsgLength

MaxPriority Maximum priority MaxPriority

MaxUncommittedMsgs Maximum number of uncommitted messages within a

unit of work

MaxUncommittedMsgs

PerformanceEvent Controls whether performance-related events are

generated

PerformanceEvent

Platform Platform on which the queue manager is running Platform

QMgrDesc Queue manager description QMgrDesc

QMgrIdentifier Unique internally-generated identifier of queue

manager

QMgrIdentifier

QMgrName Queue manager name QMgrName

QPubSub Whether the queued publish/subscribe interface is

running

QPubSub

472 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Table 89. Attributes for the queue manager (continued)

Attribute Description Topic

RemoteEvent Controls whether remote error events are generated RemoteEvent

RepositoryName Name of cluster for which this queue manager

provides repository services

RepositoryName

RepositoryNamelist Name of namelist object containing names of clusters

for which this queue manager provides repository

services

RepositoryNamelist

SQQMName Controls whether or not the messages in a

queue-sharing group are put onto a locally-defined

shared queue, or directly onto the target queue.

SSLCRLNamelist Name of namelist object containing names of

authentication information objects.

Note 1

SSLEvent Controls whether SSL events are generated SSLEvent

SSLKeyRepository Location of SSL key repository. Note 1

SSLKeyResetCount Determines the number of non-encrypted bytes sent

and received within an SSL conversation before the

encryption key is renegotiated.

SSLKeyResetCount

StartStopEvent Controls whether start and stop events are generated StartStopEvent

SyncPoint Syncpoint availability SyncPoint

TraceRouteRecording Controls the recording of trace route information for

messages

TraceRouteRecording

TriggerInterval Trigger-message interval TriggerInterval

Notes:

1. This attribute cannot be inquired using the MQINQ call, and is not described in this book. See the WebSphere

MQ Programmable Command Formats and Administration Interface book for details of this attribute.

Attribute descriptions

The queue manager object has the attributes described below.

AlterationDate (12-byte character string)

Date when definition was last changed.

This is the date when the definition was last changed. The format of the date is

YYYY-MM-DD, padded with two trailing blanks to make the length 12 bytes.

To determine the value of this attribute, use the CAALTD selector with the

MQINQ call. The length of this attribute is given by LNDATE.

AlterationTime (8-byte character string)

Time when definition was last changed.

This is the time when the definition was last changed. The format of the time is

HH.MM.SS.

To determine the value of this attribute, use the CAALTT selector with the MQINQ

call. The length of this attribute is given by LNTIME.

Chapter 3. Attributes of objects 473

AuthorityEvent (10-digit signed integer)

Controls whether authorization (Not Authorized) events are generated.

The value is one of the following:

EVRDIS

Event reporting disabled.

EVRENA

Event reporting enabled.

For more information about events, see the Monitoring WebSphere MQ book.

To determine the value of this attribute, use the IAAUTE selector with the MQINQ

call.

BridgeEvent (character string)

Determines whether or not IMS bridge event messages are generated.

This attribute determines whether IMS bridge event messages are put onto the

SYSTEM.ADMIN.CHANNEL.EVENT queue. This attribute is only supported on

z/OS.

The value can be one of the following:

v MQEVR_ENABLED (MQINQ/config event) ENABLED (MQSC): The following

IMS Bridge events are generated: MQRC_BRIDGE_STARTED,

MQRC_BRIDGE_STOPPED. This value is only supported on z/OS.

v MQEVR_DISABLED (MQINQ/config event) DISABLED (MQSC): IMS Bridge

events are not generated. This is the queue manager’s initial default value.

To determine the value of this attribute, use the MQIA_IMS_BRIDGE_EVENT

selector with the MQINQ call.

ChannelAutoDef (10-digit signed integer)

Controls whether automatic channel definition is permitted.

This attribute controls the automatic definition of channels of type CTRCVR and

CTSVCN. Note that the automatic definition of CTCLSD channels is always

enabled. The value is one of the following:

CHADDI

Channel auto-definition disabled.

CHADEN

Channel auto-definition enabled.

To determine the value of this attribute, use the IACAD selector with the MQINQ

call.

ChannelAutoDefEvent (10-digit signed integer)

Controls whether channel automatic-definition events are generated.

This applies to channels of type CTRCVR, CTSVCN, and CTCLSD. The value is

one of the following:

474 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

EVRDIS

Event reporting disabled.

EVRENA

Event reporting enabled.

For more information about events, see the Monitoring WebSphere MQ book.

To determine the value of this attribute, use the IACADE selector with the MQINQ

call.

ChannelAutoDefExit (20-byte character string)

Name of user exit for automatic channel definition.

If this name is nonblank, and ChannelAutoDef has the value CHADEN, the exit is

called each time that the queue manager is about to create a channel definition.

This applies to channels of type CTRCVR, CTSVCN, and CTCLSD. The exit can

then do one of the following:

v Allow the creation of the channel definition to proceed without change.

v Modify the attributes of the channel definition that is created.

v Suppress creation of the channel entirely.

To determine the value of this attribute, use the CACADX selector with the

MQINQ call. The length of this attribute is given by LNEXN.

ChannelEvent (character string)

Determines whether or not channel event messages are generated.

This attribute determines whether channel event messages are put onto the

SYSTEM.ADMIN.CHANNEL.EVENT queue, and if so, what type of messages are

queued (for example ’channel started’, ’channel stopped’, ’channel not activated’).

Prior to the implementation of this attribute, the only way of preventing channel

event messages from being queued was to delete the target queue).

This attribute also allows you to collect IMS bridge events only (because you can

now switch channel events off, they do not get put onto the same queue). The

same applies to SSL events which can also be collected without having to collect

channel events as well.

This attribute also allows you to collect ’interesting’ events only (for example when

channels have errors, not when they start and stop normally).

The value for the ChannelEvent attribute can be one of the following:

v MQEVR_EXCEPTION (only the following channel events are generated:

MQRC_CHANNEL_ACTIVATED, MQRC_CHANNEL_CONV_ERROR,

MQRC_CHANNEL_NOT_ACTIVATED, MQRC_CHANNEL_STOPPED,

CHANNEL_STOPPED_BY_USER).

v MQEVR_ENABLED (all channel events are generated; that is, in addition to the

events generated by MQEVR_EXCEPTION, the MQRC_CHANNEL_STARTED,

and MQRC_CHANNEL_STOPPED events are also generated).

v MQEVR_DISABLED (no channel events are generated; this is the queue manager

initial default value).

Chapter 3. Attributes of objects 475

To determine the value of this attribute, use the MQIA_CHANNEL_EVENT

selector with the MQINQ call.

ClusterCacheType (32-byte character string)

Controls whether cluster cache is fixed size, or is dynamically sized.

This is a user-defined 32-byte character string that is passed to the cluster

workload exit when it is called. If there is no data to pass to the exit, the string is

blank.

To determine the value of this attribute, use the CACLWD selector with the

MQINQ call.

ClusterWorkloadData (32-byte character string)

User data for cluster workload exit.

This is a user-defined 32-byte character string that is passed to the cluster

workload exit when it is called. If there is no data to pass to the exit, the string is

blank.

To determine the value of this attribute, use the CACLWD selector with the

MQINQ call.

ClusterWorkloadExit (20-byte character string)

Name of user exit for cluster workload management.

If this name is nonblank, the exit is called each time that a message is put to a

cluster queue or moved from one cluster-sender queue to another. The exit can

then decide whether to accept the queue instance selected by the queue manager

as the destination for the message, or choose another queue instance.

To determine the value of this attribute, use the CACLWX selector with the

MQINQ call. The length of this attribute is given by LNEXN.

ClusterWorkloadLength (10-digit signed integer)

Maximum length of message data passed to cluster workload exit.

This is the maximum length of message data that is passed to the cluster workload

exit. The actual length of data passed to the exit is the minimum of the following:

v The length of the message.

v The queue manager’s MaxMsgLength attribute.

v The ClusterWorkloadLength attribute.

To determine the value of this attribute, use the IACLWL selector with the MQINQ

call.

CodedCharSetId (10-digit signed integer)

Coded character set identifier.

This defines the character set used by the queue manager for all character string

fields defined in the MQI, including the names of objects, queue creation date and

476 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

time, and so on. The character set must be one that has single-byte characters for

the characters that are valid in object names. It does not apply to application data

carried in the message. The value depends on the environment:

v On i5/OS, the value is that which is set in the environment when the queue

manager is first created.

To determine the value of this attribute, use the IACCSI selector with the MQINQ

call.

CommandEvent (integer)

Controls whether messages are put onto a local queue when commands are issued.

This controls whether or not messages are written to a new event queue,

SYSTEM.ADMIN.COMMAND.EVENT, whenever commands are issued. This

feature is useful for command tracking notification, and for problem diagnosis. To

inquire about the CommandEvent queue manager attribute, use the new attribute

selector MQIA_COMMAND_EVENT with one of the following values:

v MQEVR_ENABLED — command event messages are generated and put onto

the queue for all successful commands.

v MQEVR_NO_DISPLAY — command event messages are generated and put onto

the queue for all successful commands other than the DISPLAY (MQSC)

command, and the Inquire (PCF) command.

v MQEVR_DISABLED — command event messages are not generated or put onto

the queue (this is the queue manager’s initial default value).

To determine the value of this attribute, use the CMDEVselector with the MQINQ

call.

CommandInputQName (48-byte character string)

Command input queue name.

This is the name of the command input queue defined on the local queue manager.

This is a queue to which users can send commands, if authorized to do so. The

name of the queue depends on the environment:

v On i5/OS, the name of the queue is SYSTEM.ADMIN.COMMAND.QUEUE, and

only PCF commands can be sent to it. However, an MQSC command can be sent

to this queue if the MQSC command is enclosed within a PCF command of type

CMESC. Refer to the WebSphere MQ Programmable Command Formats and

Administration Interface. book for details of the Escape command.

To determine the value of this attribute, use the CACMDQ selector with the

MQINQ call. The length of this attribute is given by LNQN.

CommandLevel (10-digit signed integer)

Command Level. This indicates the level of system control commands supported

by the queue manager.

The value is one of the following:

CMLVL1

Level 1 of system control commands.

 This value is returned by the following:

v MQSeries for OS/400

Chapter 3. Attributes of objects 477

– Version 2 Release 3

– Version 3 Release 1

– Version 3 Release 6

CML320

Level 320 of system control commands.

 This value is returned by the following:

v MQSeries for OS/400

– Version 3 Release 2

– Version 3 Release 7

CML420

Level 420 of system control commands.

 This value is returned by the following:

v MQSeries for AS/400®

– Version 4 Release 2.0

– Version 4 Release 2.1

CML510

Level 510 of system control commands.

 This value is returned by the following:

v MQSeries for AS/400 Version 5 Release 1

CML520

Level 520 of system control commands.

 This value is returned by the following:

v MQSeries for AS/400 Version 5 Release 2

CML530

Level 530 of system control commands.

 This value is returned by the following:

v WebSphere MQ for i5/OS Version 5 Release 3

CML600

Level 600 of system control commands.

 This value is returned by the following:

v WebSphere MQ for i5/OS Version 6 Release 0

CML700

Level 700 of system control commands.

 This value is returned by the following:

v WebSphere MQ for i5/OS Version 7 Release 0

The set of system control commands that corresponds to a particular value of the

CommandLevel attribute varies according to the value of the Platform attribute; both

must be used to decide which system control commands are supported.

To determine the value of this attribute, use the IACMDL selector with the MQINQ

call.

478 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

ConfigurationEvent

Controls whether configuration events are generated and sent to the

SYSTEM.ADMIN.CONFIG.EVENT queue default object. The ConfigurationEvent

attribute can be one of the following values:

v MQEVR_ENABLED

v MQEVR_DISABLED.

If the ConfigurationEvent attribute is set to MQEVR_ENABLED, and certain

commands are successfully issued via runmqsc or PCF, configuration events are

generated and sent to the SYSTEM.ADMIN.CONFIG.EVENT queue. Events for the

following commands are issued, even if an alter command does not change the

object involved. The commands for which configuration events are generated and

sent are:

v DEFINE/ALTER AUTHINFO

v DEFINE/ALTER CHANNEL

v DEFINE/ALTER NAMELIST

v DEFINE/ALTER PROCESS

v DEFINE/ALTER QLOCAL (unless it is a temporary dynamic queue)

v DEFINE/ALTER QMODEL/QALIAS/QREMOTE

v DELETE AUTHINFO

v DELETE CHANNEL

v DELETE NAMELIST

v DELETE PROCESS

v DELETE QLOCAL (unless it is a temporary dynamic queue)

v DELETE QMODEL/QALIAS/QREMOTE

v ALTER QMGR (unless the CONFIGEV attribute is disabled and is not changed

to enabled)

v REFRESH QMGR

v An MQSET call, other than for a temporary dynamic queue.

Events are not generated (if enabled) in the following circumstances:

v The command or MQSET call fails.

v The queue manager cannot put the event message on the event queue. The

command should still complete successfully.

v Temporary dynamic queues.

v Internal attribute changes done directly or implicitly (not by MQSET or

command); this affects TRIGGER, CURDEPTH, IPPROCS, OPPROCS, QDPHIEV,

QDPLOEV, QDPMAXEV, QSVCIEV.

v When the configuration event queue is changed, although it an event message

will be generated for that change when a Refresh is requested.

v Clustering changes by the commands REFRESH/RESET CLUSTER and

RESUME/SUSPEND QMGR.

v Creating or deleting a queue manager.

DeadLetterQName (48-byte character string)

Name of dead-letter (undelivered-message) queue.

This is the name of a queue defined on the local queue manager. Messages are sent

to this queue if they cannot be routed to their correct destination.

Chapter 3. Attributes of objects 479

For example, messages are put on this queue when:

v A message arrives at a queue manager, destined for a queue that is not yet

defined on that queue manager

v A message arrives at a queue manager, but the queue for which it is destined

cannot receive it because, possibly:

– The queue is full

– Put requests are inhibited

– The sending node does not have authority to put messages on the queue

Applications can also put messages on the dead-letter queue.

Report messages are treated in the same way as ordinary messages; if the report

message cannot be delivered to its destination queue (usually the queue specified

by the MDRQ field in the message descriptor of the original message), the report

message is placed on the dead-letter (undelivered-message) queue.

Note: Messages that have passed their expiry time (see the MDEXP field described in

“MQMD – Message descriptor” on page 125) are not transferred to this queue

when they are discarded. However, an expiration report message (ROEXP) is still

generated and sent to the MDRQ queue, if requested by the sending application.

Messages are not put on the dead-letter (undelivered-message) queue when the

application that issued the put request has been notified synchronously of the

problem by means of the reason code returned by the MQPUT or MQPUT1 call

(for example, a message put on a local queue for which put requests are inhibited).

Messages on the dead-letter (undelivered-message) queue sometimes have their

application message data prefixed with an MQDLH structure. This structure

contains extra information that indicates why the message was placed on the

dead-letter (undelivered-message) queue. See “MQDLH – Dead-letter header” on

page 71 for more details of this structure.

This queue must be a local queue, with a Usage attribute of USNORM.

If a dead-letter (undelivered-message) queue is not supported by a queue manager,

or one has not been defined, the name is all blanks. All WebSphere MQ queue

managers support a dead-letter (undelivered-message) queue, but by default it is

not defined.

If the dead-letter (undelivered-message) queue is not defined, or it is full, or

unusable for some other reason, a message which would have been transferred to

it by a message channel agent is retained instead on the transmission queue.

To determine the value of this attribute, use the CADLQ selector with the MQINQ

call. The length of this attribute is given by LNQN.

DefXmitQName (48-byte character string)

Default transmission queue name.

This is the name of the transmission queue that is used for the transmission of

messages to remote queue managers, if there is no other indication of which

transmission queue to use.

480 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

If there is no default transmission queue, the name is entirely blank. The initial

value of this attribute is blank.

To determine the value of this attribute, use the CADXQN selector with the

MQINQ call. The length of this attribute is given by LNQN.

DistLists (10-digit signed integer)

Distribution list support.

This indicates whether the local queue manager supports distribution lists on the

MQPUT and MQPUT1 calls. The value is one of the following:

DLSUPP

Distribution lists supported.

DLNSUP

Distribution lists not supported.

To determine the value of this attribute, use the IADIST selector with the MQINQ

call.

InhibitEvent (10-digit signed integer)

Controls whether inhibit (Inhibit Get and Inhibit Put) events are generated.

The value is one of the following:

EVRDIS

Event reporting disabled.

EVRENA

Event reporting enabled.

For more information about events, see the Monitoring WebSphere MQ book.

To determine the value of this attribute, use the IAINHE selector with the MQINQ

call.

LocalEvent (10-digit signed integer)

Controls whether local error events are generated.

The value is one of the following:

EVRDIS

Event reporting disabled.

EVRENA

Event reporting enabled.

For more information about events, see the Monitoring WebSphere MQ book.

To determine the value of this attribute, use the IALCLE selector with the MQINQ

call.

Chapter 3. Attributes of objects 481

LoggerEvent (10-digit signed integer)

Controls whether recovery logger events are generated.

The value is one of the following:

ENABLED

Logger events are generated.

DISABLED

Logger events are not generated. This is the queue managers initial default

value.

For more information about events, see the Monitoring WebSphere MQ book.

MaxHandles (10-digit signed integer)

Maximum number of handles.

This is the maximum number of open handles that any one task can use

concurrently. Each successful MQOPEN call for a single queue (or for an object

that is not a queue) uses one handle. That handle becomes available for reuse

when the object is closed. However, when a distribution list is opened, each queue

in the distribution list is allocated a separate handle, and so that MQOPEN call

uses as many handles as there are queues in the distribution list. This must be

taken into account when deciding on a suitable value for MaxHandles.

The MQPUT1 call performs an MQOPEN call as part of its processing; as a result,

MQPUT1 uses as many handles as MQOPEN would, but the handles are used

only for the duration of the MQPUT1 call itself.

The value is in the range 1 through 999 999 999. On i5/OS, the default value is

256.

To determine the value of this attribute, use the IAMHND selector with the

MQINQ call.

MaxMsgLength (10-digit signed integer)

Maximum message length in bytes.

This is the length of the longest physical message that can be handled by the queue

manager. However, because the MaxMsgLength queue manager attribute can be set

independently of the MaxMsgLength queue attribute, the longest physical message

that can be placed on a queue is the lesser of those two values.

If the queue manager supports segmentation, it is possible for an application to

put a logical message that is longer than the lesser of the two MaxMsgLength

attributes, but only if the application specifies the MFSEGA flag in MQMD. If that

flag is specified, the upper limit for the length of a logical message is 999 999 999

bytes, but usually resource constraints imposed by the operating system, or by the

environment in which the application is running, will result in a lower limit.

The lower limit for the MaxMsgLength attribute is 32 KB (32 768 bytes). On i5/OS,

the maximum message length is 100 MB (104 857 600 bytes).

482 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

To determine the value of this attribute, use the IAMLEN selector with the MQINQ

call.

MaxPriority (10-digit signed integer)

Maximum priority.

This is the maximum message priority supported by the queue manager. Priorities

range from zero (lowest) to MaxPriority (highest).

To determine the value of this attribute, use the IAMPRI selector with the MQINQ

call.

MaxUncommittedMsgs (10-digit signed integer)

Maximum number of uncommitted messages within a unit of work.

This is the maximum number of uncommitted messages that can exist within a

unit of work. The number of uncommitted messages is the sum of the following

since the start of the current unit of work:

v Messages put by the application with the PMSYP option

v Messages retrieved by the application with the GMSYP option

v Trigger messages and COA report messages generated by the queue manager for

messages put with the PMSYP option

v COD report messages generated by the queue manager for messages retrieved

with the GMSYP option

The following are not counted as uncommitted messages:

v Messages put or retrieved by the application outside a unit of work

v Trigger messages or COA/COD report messages generated by the queue

manager as a result of messages put or retrieved outside a unit of work

v Expiration report messages generated by the queue manager (even if the call

causing the expiration report message specified GMSYP)

v Event messages generated by the queue manager (even if the call causing the

event message specified PMSYP or GMSYP)

Note:

1. Exception report messages are generated by the Message Channel Agent

(MCA), or by the application, and so are treated in the same way as ordinary

messages put or retrieved by the application.

2. When a message or segment is put with the PMSYP option, the number of

uncommitted messages is incremented by one regardless of how many physical

messages actually result from the put. (More than one physical message may

result if the queue manager needs to subdivide the message or segment.)

3. When a distribution list is put with the PMSYP option, the number of

uncommitted messages is incremented by one for each physical message that is

generated. This can be as small as one, or as great as the number of destinations

in the distribution list.

The lower limit for this attribute is 1; the upper limit is 999 999 999.

To determine the value of this attribute, use the IAMUNC selector with the

MQINQ call.

Chapter 3. Attributes of objects 483

PerformanceEvent (10-digit signed integer)

Controls whether performance-related events are generated.

The value is one of the following:

EVRDIS

Event reporting disabled.

EVRENA

Event reporting enabled.

For more information about events, see the Monitoring WebSphere MQ book.

To determine the value of this attribute, use the IAPFME selector with the MQINQ

call.

Platform (10-digit signed integer)

Platform on which the queue manager is running.

This indicates the operating system on which the queue manager is running. The

value is:

PL400 i5/OS.

QMgrDesc (64-byte character string)

Queue manager description.

This is a field that may be used for descriptive commentary. The content of the

field is of no significance to the queue manager, but the queue manager may

require that the field contain only characters that can be displayed. It cannot

contain any null characters; if necessary, it is padded to the right with blanks. In a

DBCS installation, this field can contain DBCS characters (subject to a maximum

field length of 64 bytes).

Note: If this field contains characters that are not in the queue manager’s character

set (as defined by the CodedCharSetId queue manager attribute), those characters

may be translated incorrectly if this field is sent to another queue manager.

On i5/OS, the default value is blanks.

To determine the value of this attribute, use the CAQMD selector with the MQINQ

call. The length of this attribute is given by LNQMD.

QMgrIdentifier (48-byte character string)

Unique internally-generated identifier of queue manager.

This is an internally-generated unique name for the queue manager.

To determine the value of this attribute, use the CAQMID selector with the

MQINQ call. The length of this attribute is given by LNQMID.

QMgrName (48-byte character string)

Queue manager name.

484 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

This is the name of the local queue manager, that is, the name of the queue

manager to which the application is connected.

The first 12 characters of the name are used to construct a unique message

identifier (see the MDMID field described in “MQMD – Message descriptor” on page

125). Queue managers that can intercommunicate must therefore have names that

differ in the first 12 characters, in order for message identifiers to be unique in the

queue manager network.

To determine the value of this attribute, use the CAQMN selector with the MQINQ

call. The length of this attribute is given by LNQMN.

QPubSub (10-digit signed integer)

Whether the queued publish/subscribe interface is running and hence getting from

SYSTEM.BROKER.CONTROL.QUEUE and the queues listed in

SYSTEM.QPUBSUB.QUEUE.NAMELIST.

The value is one of the following:

STOPPED

The queued publish/subscribe interface is not running.

RUNNING

The queued publish/subscribe interface is running and getting from the

queues listed above.

To determine the value of this attribute, use the MQIA_QUEUED_PUBSUB selector

with the MQINQ call.

RemoteEvent (10-digit signed integer)

Controls whether remote error events are generated.

The value is one of the following:

EVRDIS

Event reporting disabled.

EVRENA

Event reporting enabled.

For more information about events, see the Monitoring WebSphere MQ book.

To determine the value of this attribute, use the IARMTE selector with the MQINQ

call.

RepositoryName (48-byte character string)

Name of cluster for which this queue manager provides repository services.

This is the name of a cluster for which this queue manager provides a

repository-manager service. If the queue manager provides this service for more

than one cluster, RepositoryNamelist specifies the name of a namelist object that

identifies the clusters, and RepositoryName is blank. At least one of RepositoryName

and RepositoryNamelist must be blank.

To determine the value of this attribute, use the CARPN selector with the MQINQ

call. The length of this attribute is given by LNQMN.

Chapter 3. Attributes of objects 485

RepositoryNamelist (48-byte character string)

Name of namelist object containing names of clusters for which this queue

manager provides repository services.

This is the name of a namelist object that contains the names of clusters for which

this queue manager provides a repository-manager service. If the queue manager

provides this service for only one cluster, the namelist object contains only one

name. Alternatively, RepositoryName can be used to specify the name of the cluster,

in which case RepositoryNamelist is blank. At least one of RepositoryName and

RepositoryNamelist must be blank.

To determine the value of this attribute, use the CARPNL selector with the

MQINQ call. The length of this attribute is given by LNNLN.

SQQMName (character string)

This determines whether or not the messages in a queue-sharing group are put

onto a locally-defined shared queue, or directly onto the target queue.

The value is one of the following:

v USE: messages are delivered to the ObjectQMgrName before being put onto the

target queue. This is the default value. It ensures that when a queue manager is

migrated from a previous version the function remains unchanged.

v IGNORE: messages are put directly onto the shared queue by any queue

manager in the same queue-sharing group as the ObjectQMgrName.

By putting a given message directly onto its target queue in a queue sharing

group, WebSphere MQ does not have two execute two puts and a get. This feature

decreases the workload in a queue sharing group (the decrease in workload could

be even bigger, where messages are being transmitted over channels).

To determine the value of this attribute, use the MQIA_SQQMNAME selector with

the MQINQ call.

SSLEvent (character string)

Determines whether or not SSL events are generated.

The value is one of the following:

v MQEVR_ENABLED (MQINQ/PCF/config event) ENABLED (MQSC): SSL

events are generated (that is, the MQRC_CHANNEL_SSL_ERROR event is

generated).

v MQEVR_DISABLED (MQINQ/PCF/config event) DISABLED (MQSC): SSL

events are not generated. This is the queue manager’s initial default value.

To determine the value of this attribute, use the MQIA_SSL_EVENT selector with

the MQINQ call.

SSLKeyResetCount (integer)

Determines the total number of non-encrypted bytes that are sent and received

within an SSL conversation, before the secret key is renegotiated. The number of

bytes includes control information sent by the message channel agent (MCA).

486 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

This value is only used by SSL channel MCAs which initiate communication from

this queue manager (that is, the sender channel MCA in a sender and receiver

channel pairing).

If the value of this attribute is greater than 0, and channel heartbeats are enabled

for a channel, the secret key is also renegotiated before data is sent or received

following a channel heartbeat. The count of bytes until the next secret key

renegotiation is reset after each successful renegotiation occurs.

The value may be in the range 0 through 999 999 999. A value of 0 for this

attribute indicates that the secret key is never renegotiated. If you specify an

SSL/TLS secret key reset count between 1 byte and 32Kb, SSL/TLS channels will

use a secret key reset count of 32Kb. This is to avoid the overhead of excessive key

resets which would occur for small SSL/TLS secret key reset values.

When the SSL server is a WebSphere MQ queue manager, and both secret key reset

and channel heartbeats are enabled, renegotiation occurs immediately after each

channel heartbeat.

To determine the value of this attribute, use the MQIA_SSL_RESET_COUNT

selector with the MQINQ call.

StartStopEvent (10-digit signed integer)

Controls whether start and stop events are generated.

The value is one of the following:

EVRDIS

Event reporting disabled.

EVRENA

Event reporting enabled.

For more information about events, see the Monitoring WebSphere MQ book.

To determine the value of this attribute, use the IASSE selector with the MQINQ

call.

SyncPoint (10-digit signed integer)

Syncpoint availability.

This indicates whether the local queue manager supports units of work and

syncpointing with the MQGET, MQPUT, and MQPUT1 calls.

SPAVL

Units of work and syncpointing available.

SPNAVL

Units of work and syncpointing not available.

To determine the value of this attribute, use the IASYNC selector with the MQINQ

call.

TraceRouteRecording (10-digit signed integer)

Trace route recording.

Chapter 3. Attributes of objects 487

This controls whether or not information about messages is recorded as they flow

through a queue manager. The value is one of the following:

v DISABLED: no appending to trace route messages is allowed

v MQROUTE_RECORDING_Q: messages are put onto a fixed named queue

v MQROUTE_RECORDING_MSG: determine using message (this is the initial

default setting)

To prevent the trace route message from remaining in the system, set an expiry

value on it that is greater than zero, and specify the MQRO_DISCARD_MSG report

option. To prevent report or reply messages remaining in the system, set the report

option MQRO_PASS_DISCARD_AND_EXPIRY. For more information, see

Chapter 8, “Report options and message flags,” on page 517.

To determine the value of this attribute, use the IATRGI selector with the MQINQ

call.

TriggerInterval (10-digit signed integer)

Trigger-message interval.

This is a time interval (in milliseconds) used to restrict the number of trigger

messages. This is relevant only when the TriggerType is TTFRST. In this case

trigger messages are normally generated only when a suitable message arrives on

the queue, and the queue was previously empty. Under certain circumstances,

however, an additional trigger message can be generated with TTFRST triggering

even if the queue was not empty. These additional trigger messages are not

generated more often than every TriggerInterval milliseconds.

For more information on triggering, see the WebSphere MQ Application

Programming Guide.

The value is in the range zero through 999 999 999. The default value is

999 999 999.

To determine the value of this attribute, use the IATRGI selector with the MQINQ

call.

Attributes for authentication information

The following table summarizes the attributes that are specific to authentication

information objects. The attributes are described in alphabetic order.

Note: The names of the attributes shown in this book are the names used with the

MQINQ and MQSET calls. When MQSC commands are used to define, alter, or

display attributes, alternative short names are used; see the WebSphere MQ Script

(MQSC) Command Reference for details.

 Table 90. Attributes for process definitions

Attribute Description Topic

AlterationDate Date when definition was last changed AlterationDate

AlterationTime Time when definition was last changed AlterationTime

488 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Table 90. Attributes for process definitions (continued)

Attribute Description Topic

AuthInfoConnName The DNS name or IP address of the host

on which the LDAP server is running, with

an optional port number. This keyword is

required.

AuthInfoConnName

AuthInfoDesc Plain-text comment. It provides descriptive

information about the authentication

information object when an operator issues

the DISPLAY AUTHINFO command.

AuthInfoDesc

AuthInfoName Name of the authentication information

object.

AuthInfoName

AuthInfoType The type of authentication information. AuthInfoType

LDAPPassword The password associated with the

Distinguished Name of the user who is

accessing the LDAP server.

LDAPPassword

LDAPUserName The Distinguished Name of the user who

is accessing the LDAP server.

LDAPUserName

Attribute descriptions

An authentication information object has the attributes described below.

AlterationDate (MQCHAR12)

Date when definition was last changed.

This is the date when the definition was last changed. The format of the date is

YYYY-MM-DD, padded with two trailing blanks to make the length 12 bytes.

AlterationTime (MQCHAR8)

Time when definition was last changed.

This is the time when the definition was last changed. The format of the time is

HH.MM.SS using the 24-hour clock, with a leading zero if the hour is less than 10

(for example 09.10.20).

v On z/OS, the time is Greenwich Mean Time (GMT), subject to the system clock

being set accurately to GMT.

v In other environments, the time is local time.

AuthInfoConnName (MQCHAR264)

The DNS name or IP address of the host on which the LDAP server is running,

with an optional port number. This keyword is required.

The syntax for CONNAME is the same as for channels. For example,

conname(’hostname(nnn)’)

where nnn is the port number. If nnn is not provided, the default port number 389

is used.

The maximum length for the field is 264 characters.

Chapter 3. Attributes of objects 489

AuthInfoDesc (MQCHAR64)

Plain-text comment. It provides descriptive information about the authentication

information object when an operator issues the DISPLAY AUTHINFO command.

It should contain only displayable characters. The maximum length is 64

characters. In a DBCS installation, it can contain DBCS characters (subject to a

maximum length of 64 bytes).

Note: If characters are used that are not in the coded character set identifier

(CCSID) for this queue manager, they might be translated incorrectly if the

information is sent to another queue manager.

AuthInfoName (MQCHAR48)

Name of the authentication information object.

The name must not be the same as any other authentication information object

name currently defined on this queue manager (unless REPLACE or ALTER is

specified).

AuthInfoType (MQLONG)

The type of authentication information. The value must be CRLLDAP, meaning

that Certificate Revocation List checking is done using LDAP servers.

LDAPPassword (MQCHAR32)

The password associated with the Distinguished Name of the user who is

accessing the LDAP server.

Its maximum size is 32 characters. The default value is blank.

LDAPUserName (MQ_DISTINGUISHED_NAME_LENGTH)

The Distinguished Name of the user who is accessing the LDAP server.

The maximum size for the user name is 1024 characters on i5/OS, UNIX systems,

and Windows, and 256 characters on z/OS.

The maximum accepted line length is defined to be BUFSIZ, which can be found in

stdio.h.

If you use asterisks (*) in the user name they are treated as literal characters, and

not as wild cards, because LDAPUSER is a specific name and not a string used for

matching.

490 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Chapter 4. Applications

Building your application

The i5/OS publications describe how to build executable applications from the

programs you write. This chapter describes the additional tasks, and the changes

to the standard tasks, you must perform when building WebSphere MQ for i5/OS

applications to run under i5/OS.

In addition to coding the MQI calls in your source code, you must add the

appropriate language statements to include the WebSphere MQ for i5/OS copy

files for the RPG language. You should make yourself familiar with the contents of

these files; their names, and a brief description of their contents are given in the

following text.

WebSphere MQ copy files

WebSphere MQ for i5/OS provides copy files to assist you with writing your

applications in the RPG programming language. They are suitable for use with the

WebSphere Development toolset (5722 WDS) ILE RPG 4 Compiler.

The copy files that WebSphere MQ for i5/OS provides to assist with the writing of

channel exits are described in the WebSphere MQ Intercommunication book.

The names of the WebSphere MQ for i5/OS copy files for RPG have the prefix

CMQ. They have a suffix of G or H. There are separate copy files containing the

named constants, and one file for each of the structures. The copy files are listed in

Table 2 on page 6.

Note: For ILE RPG/400® they are supplied as members of file QRPGLESRC in

library QMQM.

The structure declarations do not contain DS statements. This allows the

application to declare a data structure (or a multiple-occurrence data structure) by

coding the DS statement and using the /COPY statement to copy in the remainder

of the declaration:

For ILE RPG/400 the statement is:

D*..1....:....2....:....3....:....4....:....5....:....6....:....7

D* Declare an MQMD data structure

D MQMD DS

D/COPY CMQMDG

Preparing your programs to run

To create an executable WebSphere MQ for i5/OS application, you have to compile

the source code you have written.

To do this for ILE RPG/400, you can use the usual i5/OS commands,

CRTRPGMOD and CRTPGM.

© Copyright IBM Corp. 1994, 2008 491

After creating your *MODULE, you need to specify BNDSRVPGM(QMQM/LIBMQM) in the

CRTPGM command. This includes the various WebSphere MQ procedures in your

program.

Make sure that the library containing the copy files (QMQM) is in the library list

when you perform the compilation.

Interfaces to the i5/OS external syncpoint manager

WebSphere MQ for i5/OS uses native i5/OS commitment control as an external

syncpoint coordinator. See the i5/OS Programming: Backup and Recovery Guide Guide

for more information about the commitment control capabilities of i5/OS.

To start the i5/OS commitment control facilities, use the STRCMTCTL system

command. To end commitment control, use the ENDCMTCTL system command.

Note: The default value of Commitment definition scope is *ACTGRP. This must be

defined as *JOB for WebSphere MQ for i5/OS. For example:

STRCMTCTL LCKLVL(*ALL) CMTSCOPE(*JOB)

If you call MQPUT, MQPUT1, or MQGET, specifying PMSYP or GMSYP, after

starting commitment control, WebSphere MQ for i5/OS adds itself as an API

commitment resource to the commitment definition. This is typically the first such

call in a job. While there are any API commitment resources registered under a

particular commitment definition, you cannot end commitment control for that

definition.

WebSphere MQ for i5/OS removes its registration as an API commitment resource

when you disconnect from the queue manager, provided there are no pending MQI

operations in the current unit of work.

If you disconnect from the queue manager while there are pending MQPUT,

MQPUT1, or MQGET operations in the current unit of work ,WebSphere MQ for

i5/OS remains registered as an API commitment resource so that it is notified of

the next commit or rollback. When the next syncpoint is reached, WebSphere MQ

commits or rolls back the changes as required. It is possible for an application to

disconnect and reconnect to a queue manager during an active unit of work and

perform further MQGET and MQPUT operations inside the same unit of work

(this is a pending disconnect).

If you attempt to issue an ENDCMTCTL system command for that commitment

definition, message CPF8355 is issued, indicating that pending changes were active.

This message also appears in the job log when the job ends. To avoid this, ensure

that you commit or roll back all pending WebSphere MQ operations, and that you

disconnect from the queue manager. Thus, using COMMIT or ROLLBACK

commands before ENDCMTCTL should enable end-commitment control to

complete successfully.

When i5/OS commitment control is used as an external syncpoint coordinator,

MQCMIT, MQBACK, and MQBEGIN calls may not be issued. Calls to these

functions fail with the reason code MQRC_ENVIRONMENT_ERROR.

To commit or roll back (that is, to back out) your unit of work, use one of the

programming languages that supports the commitment control. For example:

v CL commands: COMMIT and ROLLBACK

492 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

v ILE C Programming Functions: _Rcommit and _Rrollback

v RPG/400: COMMIT and ROLBK

v COBOL/400®: COMMIT and ROLLBACK

Syncpoints in CICS for i5/OS applications

WebSphere MQ for i5/OS participates in units of work with CICS. You can use the

MQI within a CICS application to put and get messages inside the current unit of

work.

You can use the EXEC CICS SYNCPOINT command to establish a syncpoint that

includes the WebSphere MQ for i5/OS operations. To back out all changes up to

the previous syncpoint, you can use the EXEC CICS SYNCPOINT ROLLBACK

command.

If you use MQPUT, MQPUT1, or MQGET with the PMSYP, or GMSYP , option set

in a CICS application, you cannot log off CICS until WebSphere MQ for i5/OS has

removed its registration as an API commitment resource. Therefore, you should

commit or back out any pending put or get operations before you disconnect from

the queue manager. This will allow you to log off CICS.

Sample programs

This chapter describes the sample programs delivered with WebSphere MQ for

i5/OS for RPG. The samples demonstrate typical uses of the Message Queue

Interface (MQI).

The samples are not intended to demonstrate general programming techniques, so

some error checking that you may want to include in a production program has

been omitted. However, these samples are suitable for use as a base for your own

message queuing programs.

The source code for all the samples is provided with the product; this source

includes comments that explain the message queuing techniques demonstrated in

the programs.

There is one set of ILE sample programs:

1. Programs using prototyped calls to the MQI (static bound calls)

The source exists in QMQMSAMP/QRPGLESRC. The members are named

AMQ3xxx4, where xxx indicates the sample function. Copy members exist in

QMQM/QRPGLESRC. Each member name has a suffix of “G” or “H”.

Table 91 gives a complete list of the sample programs delivered with WebSphere

MQ for i5/OS, and shows the names of the programs in each of the supported

programming languages. Notice that their names all start with the prefix AMQ, the

fourth character in the name indicates the programming language.

 Table 91. Names of the sample programs

 RPG (ILE)

Put samples AMQ3PUT4

Browse samples AMQ3GBR4

Get samples AMQ3GET4

Chapter 4. Applications 493

Table 91. Names of the sample programs (continued)

 RPG (ILE)

Request samples AMQ3REQ4

Echo samples AMQ3ECH4

Inquire samples AMQ3INQ4

Set samples AMQ3SET4

Trigger Monitor sample AMQ3TRG4

Trigger Server sample AMQ3SRV4

In addition to these, the WebSphere MQ for i5/OS sample option includes a

sample data file, AMQSDATA, which can be used as input to certain sample

programs. and sample CL programs that demonstrate administration tasks. The CL

samples are described in the WebSphere MQ for i5/OS System Administration

Guide. You could use the sample CL program to create queues to use with the

sample programs described in this chapter.

For information on how to run the sample programs, see “Preparing and running

the sample programs” on page 495.

Features demonstrated in the sample programs

Table 92 shows the techniques demonstrated by the WebSphere MQ for i5/OS

sample programs. Some techniques occur in more than one sample program, but

only one program is listed in the table. All the samples open and close queues

using the MQOPEN and MQCLOSE calls, so these techniques are not listed

separately in the table.

 Table 92. Sample programs demonstrating use of the MQI

Technique RPG (ILE)

Using the MQCONN and MQDISC calls AMQ3ECH4 or

AMQ3INQ4

Implicitly connecting and disconnecting AMQ3PUT4

Putting messages using the MQPUT call AMQ3PUT4

Putting a single message using the MQPUT1 call AMQ3ECH4 or

AMQ3INQ4

Replying to a request message AMQ3INQ4

Getting messages (no wait) AMQ3GBR4

Getting messages (wait with a time limit) AMQ3GET4

Getting messages (with data conversion) AMQ3ECH4

Browsing a queue AMQ3GBR4

Using a shared input queue AMQ3INQ4

Using an exclusive input queue AMQ3REQ4

Using the MQINQ call AMQ3INQ4

Using the MQSET call AMQ3SET4

Using a reply-to queue AMQ3REQ4

Requesting exception messages AMQ3REQ4

Accepting a truncated message AMQ3GBR4

494 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Table 92. Sample programs demonstrating use of the MQI (continued)

Technique RPG (ILE)

Using a resolved queue name AMQ3GBR4

Trigger processing AMQ3SRV4 or

AMQ3TRG4

Note: All the sample programs produce a spool file that contains the results of the

processing.

Preparing and running the sample programs

Before you can run the WebSphere MQ for i5/OS sample programs, you must

compile them as you would any other WebSphere MQ for i5/OS applications. To

do this, you can use the i5/OS commands CRTRPGMOD and CRTPGM.

When you create the AMQ3xxx4 programs, you need to specify

BNDSRVPGM(QMQM/LIBMQM) in the CRTPGM command. This includes the

various MQ procedures in your program.

The sample programs are provided in library QMQMSAMP as members of

QRPGLESRC. They use the copy files provided in library QMQM, so make sure

this library is in the library list when you compile them. The RPG compiler gives

information messages because the samples do not use many of the variables that

are declared in the copy files.

Running the sample programs

You can use your own queues when you run the samples, or you can compile and

run AMQSAMP4 to create some sample queues. The source for this program is

shipped in file QCLSRC in library QMQMSAMP. It can be compiled using the

CRTCLPGM command.

To call one of the sample programs, use a command like:

 CALL PGM(QMQMSAMP/AMQ3PUT4) PARM(’Queue_Name’,’Queue_Manager_Name’)

where Queue_Name and Queue_Manager_Name must be 48 characters in length, which

you achieve by padding the Queue_Name and Queue_Manager_Name with the required

number of blanks.

Note that for the Inquire and Set sample programs, the sample definitions created

by AMQSAMP4 cause the C versions of these samples to be triggered. If you want

to trigger the RPG versions, you must change the process definitions

SYSTEM.SAMPLE.ECHOPROCESS and SYSTEM.SAMPLE.INQPROCESS and

SYSTEM.SAMPLE.SETPROCESS. You can use the CHGMQMPRC command

(described in the WebSphere MQ for i5/OS System Administration Guide book) to

do this, or edit and run AMQSAMP4 with the alternative definition.

The Put sample program

The Put sample program, AMQ3PUT4, puts messages on a queue using the

MQPUT call.

Chapter 4. Applications 495

To start the program, call the program and give the name of your target queue as a

program parameter. The program puts a set of fixed messages on the queue; these

messages are taken from the data block at the end of the program source code. A

sample put program is AMQ3PUT4 in library QMQMSAMP.

Using this example program, the command is:

 CALL PGM(QMQMSAMP/AMQ3PUT4) PARM(’Queue_Name’,’Queue_Manager_Name’)

where Queue_Name and Queue_Manager_Name must be 48 characters in length, which

you achieve by padding the Queue_Name and Queue_Manager_Name with the required

number of blanks.

Design of the Put sample program

The program uses the MQOPEN call with the OOOUT option to open the target

queue for putting messages. The results are output to a spool file. If it cannot open

the queue, the program writes an error message containing the reason code

returned by the MQOPEN call. To keep the program simple, on this and on

subsequent MQI calls, the program uses default values for many of the options.

For each line of data contained in the source code, the program reads the text into

a buffer and uses the MQPUT call to create a datagram message containing the

text of that line. The program continues until either it reaches the end of the input

or the MQPUT call fails. If the program reaches the end of the input, it closes the

queue using the MQCLOSE call.

The Browse sample program

The Browse sample program, AMQ3GBR4, browses messages on a queue using the

MQGET call.

The program retrieves copies of all the messages on the queue you specify when

you call the program; the messages remain on the queue. You could use the

supplied queue SYSTEM.SAMPLE.LOCAL; run the Put sample program first to

put some messages on the queue. You could use the queue

SYSTEM.SAMPLE.ALIAS, which is an alias name for the same local queue. The

program continues until it reaches the end of the queue or an MQI call fails.

An example of a command to call the RPG program is:

 CALL PGM(QMQMSAMP/AMQ3GBR4) PARM(’Queue_Name’,’Queue_Manager_Name’)

where Queue_Name and Queue_Manager_Name must be 48 characters in length, which

you achieve by padding the Queue_Name and Queue_Manager_Name with the required

number of blanks. Therefore, if you are using SYSTEM.SAMPLE.LOCAL as your

target queue, you will need 29 blank characters.

Design of the Browse sample program

The program opens the target queue using the MQOPEN call with the OOBRW

option. If it cannot open the queue, the program writes an error message to its

spool file, containing the reason code returned by the MQOPEN call.

For each message on the queue, the program uses the MQGET call to copy the

message from the queue, then displays the data contained in the message. The

MQGET call uses these options:

496 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

GMBRWN

After the MQOPEN call, the browse cursor is positioned logically before

the first message in the queue, so this option causes the first message to be

returned when the call is first made.

GMNWT

The program does not wait if there are no messages on the queue.

GMATM

The MQGET call specifies a buffer of fixed size. If a message is longer than

this buffer, the program displays the truncated message, together with a

warning that the message has been truncated.

The program demonstrates how you must clear the MDMID and MDCID fields of the

MQMD structure after each MQGET call because the call sets these fields to the

values contained in the message it retrieves. Clearing these fields means that

successive MQGET calls retrieve messages in the order in which the messages are

held in the queue.

The program continues to the end of the queue; at this point the MQGET call

returns the RC2033 (no message available) reason code and the program displays a

warning message. If the MQGET call fails, the program writes an error message

that contains the reason code in its spool file.

The program then closes the queue using the MQCLOSE call.

The Get sample program

The Get sample program, AMQ3GET4, gets messages from a queue using the

MQGET call.

When the program is called, it removes messages from the specified queue. You

could use the supplied queue SYSTEM.SAMPLE.LOCAL; run the Put sample

program first to put some messages on the queue. You could use the

SYSTEM.SAMPLE.ALIAS queue, which is an alias name for the same local queue.

The program continues until the queue is empty or an MQI call fails.

An example of a command to call the RPG program is:

 CALL PGM(QMQMSAMP/AMQ3GET4) PARM(’Queue_Name’,’Queue_Manager_Name’)

where Queue_Name and Queue_Manager_Name must be 48 characters in length, which

you achieve by padding the Queue_Name and Queue_Manager_Name with the required

number of blanks. Therefore, if you are using SYSTEM.SAMPLE.LOCAL as your

target queue, you will need 29 blank characters.

Design of the Get sample program

The program opens the target queue for getting messages; it uses the MQOPEN

call with the OOINPQ option. If it cannot open the queue, the program writes an

error message containing the reason code returned by the MQOPEN call in its

spool file.

For each message on the queue, the program uses the MQGET call to remove the

message from the queue; it then displays the data contained in the message. The

MQGET call uses the GMWT option, specifying a wait interval (GMWI) of 15

seconds, so that the program waits for this period if there is no message on the

Chapter 4. Applications 497

queue. If no message arrives before this interval expires, the call fails and returns

the RC2033 (no message available) reason code.

The program demonstrates how you must clear the MDMID and MDCID fields of the

MQMD structure after each MQGET call because the call sets these fields to the

values contained in the message it retrieves. Clearing these fields means that

successive MQGET calls retrieve messages in the order in which the messages are

held in the queue.

The MQGET call specifies a buffer of fixed size. If a message is longer than this

buffer, the call fails and the program stops.

The program continues until either the MQGET call returns the RC2033 (no

message available) reason code or the MQGET call fails. If the call fails, the

program displays an error message that contains the reason code.

The program then closes the queue using the MQCLOSE call.

The Request sample program

The Request sample program, AMQ3REQ4, demonstrates client/server processing.

The sample is the client that puts request messages on a queue that is processed by

a server program. It waits for the server program to put a reply message on a

reply-to queue.

The Request sample puts a series of request messages on a queue using the

MQPUT call. These messages specify SYSTEM.SAMPLE.REPLY as the reply-to

queue. The program waits for reply messages, then displays them. Replies are sent

only if the target queue (which we will call the server queue) is being processed by

a server application, or if an application is triggered for that purpose (the Inquire

and Set sample programs are designed to be triggered). The sample waits 5

minutes for the first reply to arrive (to allow time for a server application to be

triggered) and 15 seconds for subsequent replies, but it can end without getting

any replies.

To start the program, call the program and give the name of your target queue as a

program parameter. The program puts a set of fixed messages on the queue; these

messages are taken from the data block at the end of the program source code.

Using triggering with the Request sample

To run the sample using triggering, start the trigger server program, AMQ3SRV4,

against the required initiation queue in one job, then start AMQ3REQ4 in another

job. This means that the trigger server is ready when the Request sample program

sends a message.

Note:

1. The samples use the SYSTEM SAMPLE TRIGGER queue as the initiation queue

for SYSTEM.SAMPLE.ECHO, SYSTEM.SAMPLE.INQ, or SYSTEM.SAMPLE.SET

local queues. Alternatively, you can define your own initiation queue.

2. The sample definitions created by AMQSAMP4 cause the C version of the

sample to be triggered. If you want to trigger the RPG version, you must

change the process definitions SYSTEM.SAMPLE.ECHOPROCESS and

SYSTEM.SAMPLE.INQPROCESS and SYSTEM.SAMPLE.SETPROCESS. You can

498 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

use the CHGMQMPRC command (described in the WebSphere MQ for i5/OS

System Administration Guide) to do this, or edit and run your own version of

AMQSAMP4.

3. You need to compile the trigger server program from the source provided in

QMQMSAMP/QRPGLESRC.

Depending on the trigger process you want to run, AMQ3REQ4 should be called

with the parameter specifying request messages to be placed on one of these

sample server queues:

v SYSTEM.SAMPLE.ECHO (for the Echo sample programs)

v SYSTEM.SAMPLE.INQ (for the Inquire sample programs)

v SYSTEM.SAMPLE.SET (for the Set sample programs)

A flow chart for the SYSTEM.SAMPLE.ECHO program is shown in Figure 1 on

page 501. Using the example the command to issue the RPG program request to

this server is:

 CALL PGM(QMQMSAMP/AMQ3REQ4) PARM(’SYSTEM.SAMPLE.ECHO

 + 30 blank characters’,’Queue_Manager_Name’)

because the queue name and queue manager name must be 48 characters in length.

Note: This sample queue has a trigger type of FIRST, so if there are already

messages on the queue before you run the Request sample, server applications are

not triggered by the messages you send.

If you want to attempt further examples, you can try the following variations:

v Use AMQ3TRG4 instead of AMQ3SRV4 to submit the job instead, but potential

job submission delays could make it less easy to follow what is happening.

v Use the SYSTEM.SAMPLE.INQ and SYSTEM.SAMPLE.SET sample queues.

Using the example data file the commands to issue the RPG program requests to

these servers are, respectively:

 CALL PGM(QMQMSAMP/AMQ3INQ4) PARM(’SYSTEM.SAMPLE.INQ

 + 31 blank characters’)

 CALL PGM(QMQMSAMP/AMQ3SET4) PARM(’SYSTEM.SAMPLE.SET

 + 31 blank characters’)

because the queue name must be 48 characters in length.

These sample queues also have a trigger type of FIRST.

Design of the Request sample program

The program opens the server queue so that it can put messages. It uses the

MQOPEN call with the OOOUT option. If it cannot open the queue, the program

displays an error message containing the reason code returned by the MQOPEN

call.

The program then opens the reply-to queue called SYSTEM.SAMPLE.REPLY so

that it can get reply messages. For this, the program uses the MQOPEN call with

the OOINPX option. If it cannot open the queue, the program displays an error

message containing the reason code returned by the MQOPEN call.

For each line of input, the program then reads the text into a buffer and uses the

MQPUT call to create a request message containing the text of that line. On this

call the program uses the ROEXCD report option to request that any report

Chapter 4. Applications 499

messages sent about the request message will include the first 100 bytes of the

message data. The program continues until either it reaches the end of the input or

the MQPUT call fails.

The program then uses the MQGET call to remove reply messages from the queue,

and displays the data contained in the replies. The MQGET call uses the GMWT

option, specifying a wait interval (GMWI) of 5 minutes for the first reply (to allow

time for a server application to be triggered) and 15 seconds for subsequent replies.

The program waits for these periods if there is no message on the queue. If no

message arrives before this interval expires, the call fails and returns the RC2033

(no message available) reason code. The call also uses the GMATM option, so

messages longer than the declared buffer size are truncated.

The program demonstrates how you must clear the MDMID and MDCOD fields of the

MQMD structure after each MQGET call because the call sets these fields to the

values contained in the message it retrieves. Clearing these fields means that

successive MQGET calls retrieve messages in the order in which the messages are

held in the queue.

The program continues until either the MQGET call returns the RC2033 (no

message available) reason code or the MQGET call fails. If the call fails, the

program displays an error message that contains the reason code.

The program then closes both the server queue and the reply-to queue using the

MQCLOSE call. Table 93 shows the changes to the Echo sample program that are

necessary to run the Inquire and Set sample programs.

Note: The details for the Echo sample program are included as a reference.

 Table 93. Client/Server sample program details

Program name SYSTEM/SAMPLE queue Program started

Echo ECHO AMQ3ECH4

Inquire INQ AMQ3INQ4

Set SET AMQ3SET4

500 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

The Echo sample program

The Echo sample programs return the message send to a reply queue. The

program is named AMQ3ECH4

The programs are intended to run as triggered programs, so their only input is the

data read from the queue named in the trigger message structure.

For the triggering process to work, you must ensure that the Echo sample program

you want to use is triggered by messages arriving on queue

SYSTEM.SAMPLE.ECHO. To do this, specify the name of the Echo sample

program you want to use in the ApplId field of the process definition

SYSTEM.SAMPLE.ECHOPROCESS. (For this, you can use the CHGMQMPRC

command, described in the WebSphere MQ for i5/OS System Administration

Guide.) The sample queue has a trigger type of FIRST, so if there are already

messages on the queue before you run the Request sample, the Echo sample is not

triggered by the messages you send.

When you have set the definition correctly, first start AMQ3SRV4 in one job, then

start AMQ3REQ4 in another. You could use AMQ3TRG4 instead of AMQ3SRV4,

but potential job submission delays could make it less easy to follow what is

happening.

Figure 1. Sample Client/Server (Echo) program flowchart

Chapter 4. Applications 501

Use the Request sample programs to send messages to queue

SYSTEM.SAMPLE.ECHO. The Echo sample programs send a reply message

containing the data in the request message to the reply-to queue specified in the

request message.

Design of the Echo sample program

When the program is triggered, it explicitly connects to the default queue manager

using the MQCONN call. Although this is not necessary for WebSphere MQ for

i5/OS, this means you could use the same program on other platforms without

changing the source code.

The program then opens the queue named in the trigger message structure it was

passed when it started. (For clarity, we will call this the request queue.) The program

uses the MQOPEN call to open this queue for shared input.

The program uses the MQGET call to remove messages from this queue. This call

uses the GMATM and GMWT options, with a wait interval of 5 seconds. The

program tests the descriptor of each message to see if it is a request message; if it

is not, the program discards the message and displays a warning message.

For each request message removed from the request queue, the program uses the

MQPUT call to put a reply message on the reply-to queue. This message contains

the contents of the request message.

When there are no messages remaining on the request queue, the program closes

that queue and disconnects from the queue manager.

This program can also respond to messages sent to the queue from platforms other

than WebSphere MQ for i5/OS, although no sample is supplied for this situation.

To make the ECHO program work, you:

v Write a program, correctly specifying the Format, Encoding, and CCSID fields, to

send text request messages.

The ECHO program requests the queue manager to perform message data

conversion, if this is needed.

v Specify CONVERT(*YES) on the WebSphere MQ for i5/OS sending channel, if

the program you have written does not provide similar conversion for the reply.

The Inquire sample program

The Inquire sample program, AMQ3INQ4, inquires about some of the attributes of

a queue using the MQINQ call.

The program is intended to run as a triggered program, so its only input is an

MQTMC (trigger message) structure that contains the name of a target queue

whose attributes are to be inquired.

For the triggering process to work, you must ensure that the Inquire sample

program is triggered by messages arriving on queue SYSTEM.SAMPLE.INQ. To do

this, specify the name of the Inquire sample program in the ApplId field of the

SYSTEM.SAMPLE.INQPROCESS process definition. (For this, you can use the

CHGMQMPRC command, described in the WebSphere MQ for i5/OS System

Administration Guide book.) The sample queue has a trigger type of FIRST, so if

there are already messages on the queue before you run the Request sample, the

Inquire sample is not triggered by the messages you send.

502 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

When you have set the definition correctly, first start AMQ3SRV4 in one job, then

start AMQ3REQ4 in another. You could use AMQ3TRG4 instead of AMQ3SRV4,

but potential job submission delays could make it less easy to follow what is

happening.

Use the Request sample program to send request messages, each containing just a

queue name, to queue SYSTEM.SAMPLE.INQ. For each request message, the

Inquire sample program sends a reply message containing information about the

queue specified in the request message. The replies are sent to the reply-to queue

specified in the request message.

Design of the Inquire sample program

When the program is triggered, it explicitly connects to the default queue manager

using the MQCONN call. Although this is not necessary for WebSphere MQ for

i5/OS, this means you could use the same program on other platforms without

changing the source code.

The program then opens the queue named in the trigger message structure it was

passed when it started. (For clarity, we will call this the request queue.) The program

uses the MQOPEN call to open this queue for shared input.

The program uses the MQGET call to remove messages from this queue. This call

uses the GMATM and GMWT options, with a wait interval of 5 seconds. The

program tests the descriptor of each message to see if it is a request message; if it

is not, the program discards the message and displays a warning message.

For each request message removed from the request queue, the program reads the

name of the queue (which we will call the target queue) contained in the data and

opens that queue using the MQOPEN call with the OOINQ option. The program

then uses the MQINQ call to inquire about the values of the InhibitGet,

CurrentQDepth, and OpenInputCount attributes of the target queue.

If the MQINQ call is successful, the program uses the MQPUT call to put a reply

message on the reply-to queue. This message contains the values of the 3

attributes.

If the MQOPEN or MQINQ call is unsuccessful, the program uses the MQPUT call

to put a report message on the reply-to queue. In the MDFB field of the message

descriptor of this report message is the reason code returned by either the

MQOPEN or MQINQ call, depending on which one failed.

After the MQINQ call, the program closes the target queue using the MQCLOSE

call.

When there are no messages remaining on the request queue, the program closes

that queue and disconnects from the queue manager.

The Set sample program

The Set sample program, AMQ3SET4, inhibits put operations on a queue by using

the MQSET call to change the queue’s InhibitPut attribute.

The program is intended to run as a triggered program, so its only input is an

MQTMC (trigger message) structure that contains the name of a target queue

whose attributes are to be inquired.

Chapter 4. Applications 503

For the triggering process to work, you must ensure that the Set sample program is

triggered by messages arriving on queue SYSTEM.SAMPLE.SET. To do this, specify

the name of the Set sample program in the ApplId field of the process definition

SYSTEM.SAMPLE.SETPROCESS. (For this, you can use the CHGMQMPRC

command, described in the WebSphere MQ for i5/OS System Administration

Guide.) The sample queue has a trigger type of FIRST, so if there are already

messages on the queue before you run the Request sample, the Set sample is not

triggered by the messages you send.

When you have set the definition correctly, first start AMQ3SRV4 in one job, then

start AMQ3REQ4 in another. You could use AMQ3TRG4 instead of AMQ3SRV4,

but potential job submission delays could make it less easy to follow what is

happening.

Use the Request sample program to send request messages, each containing just a

queue name, to queue SYSTEM.SAMPLE.SET. For each request message, the Set

sample program sends a reply message containing a confirmation that put

operations have been inhibited on the specified queue. The replies are sent to the

reply-to queue specified in the request message.

Design of the Set sample program

When the program is triggered, it explicitly connects to the default queue manager

using the MQCONN call. Although this is not necessary for WebSphere MQ for

i5/OS, this means you could use the same program on other platforms without

changing the source code.

The program then opens the queue named in the trigger message structure it was

passed when it started. (For clarity, we will call this the request queue.) The program

uses the MQOPEN call to open this queue for shared input.

The program uses the MQGET call to remove messages from this queue. This call

uses the GMATM and GMWT options, with a wait interval of 5 seconds. The

program tests the descriptor of each message to see if it is a request message; if it

is not, the program discards the message and displays a warning message.

For each request message removed from the request queue, the program reads the

name of the queue (which we will call the target queue) contained in the data and

opens that queue using the MQOPEN call with the OOSET option. The program

then uses the MQSET call to set the value of the InhibitPut attribute of the target

queue to QAPUTI.

If the MQSET call is successful, the program uses the MQPUT call to put a reply

message on the reply-to queue. This message contains the string PUT inhibited.

If the MQOPEN or MQSET call is unsuccessful, the program uses the MQPUT call

to put a report message on the reply-to queue. In the MDFB field of the message

descriptor of this report message is the reason code returned by either the

MQOPEN or MQSET call, depending on which one failed.

After the MQSET call, the program closes the target queue using the MQCLOSE

call.

When there are no messages remaining on the request queue, the program closes

that queue and disconnects from the queue manager.

504 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

The Triggering sample programs

WebSphere MQ for i5/OS supplies two Triggering sample programs that are

written in ILE/RPG. The programs are:

AMQ3TRG4

This is a trigger monitor for the i5/OS environment. It submits an i5/OS

job for the application to be started, but this means there is a processing

overhead associated with each trigger message.

AMQ3SRV4

This is a trigger server for the i5/OS environment. For each trigger

message, this server runs the start command in its own job to start the

specified application. The trigger server can call CICS transactions.

C language versions of these samples are also available as executable programs in

library QMQM, called AMQSTRG4 and AMQSERV4.

The AMQ3TRG4 sample trigger monitor

AMQ3TRG4 is a trigger monitor. It takes one parameter: the name of the initiation

queue it is to serve. AMQSAMP4 defines a sample initiation queue,

SYSTEM.SAMPLE.TRIGGER, that you can use when you try the sample programs.

AMQ3TRG4 submits an i5/OS job for each valid trigger message it gets from the

initiation queue.

Design of the trigger monitor:

 The trigger monitor opens the initiation queue and gets messages from the queue,

specifying an unlimited wait interval.

The trigger monitor submits an i5/OS job to start the application specified in the

trigger message, and passes an MQTMC (a character version of the trigger

message) structure. The environment data in the trigger message is used as job

submission parameters.

Finally, the program closes the initiation queue.

The AMQ3SRV4 sample trigger server

AMQ3SRV4 is a trigger server. It takes one parameter: the name of the initiation

queue it is to serve. AMQSAMP4 defines a sample initiation queue,

SYSTEM.SAMPLE.TRIGGER, that you can use when you try the sample programs.

For each trigger message, AMQ3SRV4 runs a start command in its own job to start

the specified application.

Using the example trigger queue the command to issue is:

 CALL PGM(QMQM/AMQ3SRV4) PARM(’Queue Name’)

where Queue Name must be 48 characters in length, which you achieve by padding

the queue name with the required number of blanks. Therefore, if you are using

SYSTEM.SAMPLE.TRIGGER as your target queue, you will need 28 blank

characters.

Design of the trigger server:

Chapter 4. Applications 505

The design of the trigger server is similar to that of the trigger monitor, except the

trigger server:

v Allows CICS as well as i5/OS applications

v Does not use the environment data from the trigger message

v Calls i5/OS applications in its own job (or uses STRCICSUSR to start CICS

applications) rather than submitting an i5/OS job

v Opens the initiation queue for shared input, so many trigger servers can run at

the same time

Note: Programs started by AMQ3SRV4 must not use the MQDISC call because this

will stop the trigger server. If programs started by AMQ3SRV4 use the MQCONN

call, they will get the RC2002 reason code.

Ending the Triggering sample programs

A trigger monitor program can be ended by the sysrequest option 2 (ENDRQS) or

by inhibiting gets from the trigger queue. If the sample trigger queue is used the

command is:

 CHGMQMQ QNAME(’SYSTEM.SAMPLE.TRIGGER’) GETENBL(*NO)

Note: To start triggering again on this queue, you must enter the command:

 CHGMQMQ QNAME(’SYSTEM.SAMPLE.TRIGGER’) GETENBL(*YES)

Running the samples using remote queues

You can demonstrate remote queuing by running the samples on connected

message queue managers.

Program AMQSAMP4 provides a local definition of a remote queue

(SYSTEM.SAMPLE.REMOTE) that uses a remote queue manager named OTHER. To

use this sample definition, change OTHER to the name of the second message queue

manager you want to use. You must also set up a message channel between your

two message queue managers; for information on how to do this, see the

WebSphere MQ Intercommunication book.

The Request sample program puts its own local queue manager name in the MDRM

field of messages it sends. The Inquire and Set samples send reply messages to the

queue and message queue manager named in the MDRQ and MDRM fields of the

request messages they process.

506 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Chapter 5. Return codes for i5/OS (ILE RPG)

This section describes the return codes associated with the MQI and MQAI.

The return codes associated with:

v Programmable Command Format (PCF) commands are listed in WebSphere MQ

Programmable Command Formats and Administration Interface.

v C++ calls are listed in WebSphere MQ Using C++.

For each call, a completion code and a reason code are returned by the queue

manager or by an exit routine, to indicate the success or failure of the call.

Applications must not depend upon errors being checked for in a specific order,

except where specifically noted. If more than one completion code or reason code

could arise from a call, the particular error reported depends on the

implementation.

Completion codes for i5/OS (ILE RPG)

The completion code parameter (CMPCOD) allows the caller to see quickly whether

the call completed successfully, completed partially, or failed.

CCOK

(MQCC_OK on other platforms)

 Successful completion.

The call completed fully; all output parameters have been set. The REASON

parameter always has the value RCNONE in this case.

CCWARN

(MQCC_WARN on other platforms)

 Warning (partial completion).

The call completed partially. Some output parameters may have been set in

addition to the CMPCOD and REASON output parameters. The REASON

parameter gives additional information about the partial completion.

CCFAIL

(MQCC_FAIL on other platforms)

 Call failed.

The processing of the call did not complete, and the state of the queue

manager is normally unchanged; exceptions are specifically noted. The

CMPCOD and REASON output parameters have been set; other parameters are

unchanged, except where noted.

The reason may be a fault in the application program, or it may be a result

of some situation external to the program, for example the user’s authority

may have been revoked. The REASON parameter gives additional

information about the error.

© Copyright IBM Corp. 1994, 2008 507

Reason codes

The reason code parameter (REASON) is a qualification to the completion code

parameter (CMPCOD).

If there is no special reason to report, RCNONE is returned. A successful call

returns CCOK and RCNONE.

If the completion code is either CCWARN or CCFAIL, the queue manager always

reports a qualifying reason; details are given under each call description.

Where user exit routines set completion codes and reasons, they should adhere to

these rules. In addition, any special reason values defined by user exits should be

less than zero, to ensure that they do not conflict with values defined by the queue

manager. Exits can set reasons already defined by the queue manager, where these

are appropriate.

Reason codes also occur in:

v The DLREA field of the MQDLH structure

v The MDFB field of the MQMD structure

The full list of reason codes is in API completion and reason codes in WebSphere

MQ Messages.

To find your i5/OS reason code in that list, remove the ″RC″ from the front, for

example RC2002 becomes 2002. Also the completion codes there are shown as they

are on other platforms:

 Table 94.

i5/OS Other platforms

CCOK MQCC_OK

CCWARN MQCC_WARN

CCFAIL MQCC_FAIL

508 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Chapter 6. Rules for validating MQI options

This appendix lists the situations that produce an RC2046 reason code from an

MQOPEN, MQPUT, MQPUT1, MQGET, or MQCLOSE call.

MQOPEN call

For the options of the MQOPEN call:

v At least one of the following must be specified:

– OOBRW

– OOINPQ

– OOINPX

– OOINPS

– OOINQ

– OOOUT

– OOSET
v Only one of the following is allowed:

– OOINPQ

– OOINPX

– OOINPS
v Only one of the following is allowed:

– OOBNDO

– OOBNDN

– OOBNDQ

Note: The options listed above are mutually exclusive. However, because the

value of OOBNDQ is zero, specifying it with either of the other two bind

options does not result in reason code RC2046. OOBNDQ is provided to aid

program documentation.

v If OOSAVA is specified, one of the OOINP* options must also be specified.

v If one of the OOSET* or OOPAS* options is specified, OOOUT must also be

specified.

MQPUT call

For the put-message options:

v The combination of PMSYP and PMNSYP is not allowed.

v Only one of the following is allowed:

– PMDEFC

– PMNOC

– PMPASA

– PMPASI

– PMSETA

– PMSETI
v PMALTU is not allowed (it is valid only on the MQPUT1 call).

© Copyright IBM Corp. 1994, 2008 509

MQPUT1 call

For the put-message options, the rules are the same as for the MQPUT call, except

for the following:

v PMALTU is allowed.

v PMLOGO is not allowed.

MQGET call

For the get-message options:

v Only one of the following is allowed:

– GMNSYP

– GMSYP

– GMPSYP
v Only one of the following is allowed:

– GMBRWF

– GMBRWC

– GMBRWN

– GMMUC
v GMSYP is not allowed with any of the following:

– GMBRWF

– GMBRWC

– GMBRWN

– GMLK

– GMUNLK
v GMPSYP is not allowed with any of the following:

– GMBRWF

– GMBRWC

– GMBRWN

– GMCMPM

– GMUNLK
v If GMLK is specified, one of the following must also be specified:

– GMBRWF

– GMBRWC

– GMBRWN
v If GMUNLK is specified, only the following are allowed:

– GMNSYP

– GMNWT

MQCLOSE call

v For the options of the MQCLOSE call. The combination of CODEL and

COPURG is not allowed.

v Only one of the following is allowed:

– COKPSB

– CORMSB

510 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

MQSUB call

For the options of the MQSUB call:

v At least one of the following must be specified:

v v At least one of the following must be specified:

– MQSO_ALTER

– MQSO_RESUME

– MQSO_CREATE
v Only one of the following is allowed:

– MQSO_DURABLE

– MQSO_NON_DURABLE

Note: The options listed above are mutually exclusive. However, as the value of

MQSO_NON_DURABLE is is zero, specifying it with MQSO_DURABLE does

not result in reason code MQRC_OPTIONS_ERROR. MQSO_NON_DURABLE is

provided to aid program documentation.

v The combination of MQSO_GROUP_SUB and MQSO_MANAGED is not

allowed.

v MQSO_GROUP_SUB requires MQSO_SET_CORREL_ID to be specified.

v Only one of the following is allowed: MQSO_ANY_USERID

MQSO_FIXED_USERID

v The combination of MQSO_NEW_PUBLICATIONS_ONLY and

MQSO_PUBLICATIONS_ON_REQUEST is not allowed.

v MQSO_NEW_PUBLICATIONS_ONLY is only allowed in combination with

MQSO_CREATE.

v Only one of the following is allowed:

– MQSO_WILDCARD_CHAR

– MQSO_WILDCARD_TOPIC

Chapter 6. Rules for validating MQI options 511

512 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Chapter 7. Machine encodings

This appendix describes the structure of the MDENC field in the message descriptor

(see “MQMD – Message descriptor” on page 125).

The MDENC field is a 32-bit integer that is divided into four separate subfields; these

subfields identify:

v The encoding used for binary integers

v The encoding used for packed-decimal integers

v The encoding used for floating-point numbers

v Reserved bits

Each subfield is identified by a bit mask which has 1-bits in the positions

corresponding to the subfield, and 0-bits elsewhere. The bits are numbered such

that bit 0 is the most significant bit, and bit 31 the least significant bit. The

following masks are defined:

ENIMSK

Mask for binary-integer encoding.

 This subfield occupies bit positions 28 through 31 within the MDENC field.

ENDMSK

Mask for packed-decimal-integer encoding.

 This subfield occupies bit positions 24 through 27 within the MDENC field.

ENFMSK

Mask for floating-point encoding.

 This subfield occupies bit positions 20 through 23 within the MDENC field.

ENRMSK

Mask for reserved bits.

 This subfield occupies bit positions 0 through 19 within the MDENC field.

Binary-integer encoding

The following values are valid for the binary-integer encoding:

ENIUND

Undefined integer encoding.

 Binary integers are represented using an encoding that is undefined.

ENINOR

Normal integer encoding.

 Binary integers are represented in the conventional way:

v The least significant byte in the number has the highest address of any

of the bytes in the number; the most significant byte has the lowest

address.

v The least significant bit in each byte is adjacent to the byte with the next

higher address; the most significant bit in each byte is adjacent to the

byte with the next lower address.

© Copyright IBM Corp. 1994, 2008 513

ENIREV

Reversed integer encoding.

 Binary integers are represented in the same way as ENINOR, but with the

bytes arranged in reverse order. The bits within each byte are arranged in

the same way as ENINOR.

Packed-decimal-integer encoding

The following values are valid for the packed-decimal-integer encoding:

ENDUND

Undefined packed-decimal encoding.

 Packed-decimal integers are represented using an encoding that is

undefined.

ENDNOR

Normal packed-decimal encoding.

 Packed-decimal integers are represented in the conventional way:

v Each decimal digit in the printable form of the number is represented in

packed decimal by a single hexadecimal digit in the range X’0’ through

X’9’. Each hexadecimal digit occupies four bits, and so each byte in the

packed decimal number represents two decimal digits in the printable

form of the number.

v The least significant byte in the packed-decimal number is the byte

which contains the least significant decimal digit. Within that byte, the

most significant four bits contain the least significant decimal digit, and

the least significant four bits contain the sign. The sign is either X’C’

(positive), X’D’ (negative), or X’F’ (unsigned).

v The least significant byte in the number has the highest address of any

of the bytes in the number; the most significant byte has the lowest

address.

v The least significant bit in each byte is adjacent to the byte with the next

higher address; the most significant bit in each byte is adjacent to the

byte with the next lower address.

ENDREV

Reversed packed-decimal encoding.

 Packed-decimal integers are represented in the same way as ENDNOR, but

with the bytes arranged in reverse order. The bits within each byte are

arranged in the same way as ENDNOR.

Floating-point encoding

The following values are valid for the floating-point encoding:

ENFUND

Undefined floating-point encoding.

 Floating-point numbers are represented using an encoding that is

undefined.

ENFNOR

Normal IEEE (The Institute of Electrical and Electronics Engineers) float

encoding.

514 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Floating-point numbers are represented using the standard IEEE

floating-point format, with the bytes arranged as follows:

v The least significant byte in the mantissa has the highest address of any

of the bytes in the number; the byte containing the exponent has the

lowest address

v The least significant bit in each byte is adjacent to the byte with the next

higher address; the most significant bit in each byte is adjacent to the

byte with the next lower address

Details of the IEEE float encoding may be found in IEEE Standard 754.

ENFREV

Reversed IEEE float encoding.

 Floating-point numbers are represented in the same way as ENFNOR, but

with the bytes arranged in reverse order. The bits within each byte are

arranged in the same way as ENFNOR.

ENF390

System/390 architecture float encoding.

 Floating-point numbers are represented using the standard System/390

floating-point format; this is also used by System/370®.

Constructing encodings

To construct a value for the MDENC field in MQMD, the relevant constants that

describe the required encodings should be added together. Be sure to combine only

one of the ENI* encodings with one of the END* encodings and one of the ENF*

encodings.

Analyzing encodings

The MDENC field contains subfields; because of this, applications that need to

examine the integer, packed decimal, or float encoding should use the technique

described below.

Using arithmetic

The following steps should be performed using integer arithmetic:

1. Select one of the following values, according to the type of encoding required:

v 1 for the binary integer encoding

v 16 for the packed decimal integer encoding

v 256 for the floating point encoding

Call the value A.

2. Divide the value of the MDENC field by A; call the result B.

3. Divide B by 16; call the result C.

4. Multiply C by 16 and subtract from B; call the result D.

5. Multiply D by A; call the result E.

6. E is the encoding required, and can be tested for equality with each of the

values that is valid for that type of encoding.

Chapter 7. Machine encodings 515

Summary of machine architecture encodings

Encodings for machine architectures are shown in Table 95.

 Table 95. Summary of encodings for machine architectures

Machine architecture Binary integer

encoding

Packed-decimal

integer encoding

Floating-point

encoding

i5/OS normal normal IEEE normal

Intel® x86 reversed reversed IEEE reversed

PowerPC® normal normal IEEE normal

System/390 normal normal System/390

516 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Chapter 8. Report options and message flags

This appendix concerns the MDREP and MDMFL fields that are part of the message

descriptor MQMD specified on the MQGET, MQPUT, and MQPUT1 calls (see

“MQMD – Message descriptor” on page 125). The appendix describes:

v The structure of the report field and how the queue manager processes it

v How an application should analyze the report field

v The structure of the message-flags field

Structure of the report field

The MDREP field is a 32-bit integer that is divided into three separate subfields.

These subfields identify:

v Report options that are rejected if the local queue manager does not recognize

them

v Report options that are always accepted, even if the local queue manager does

not recognize them

v Report options that are accepted only if certain other conditions are satisfied

Each subfield is identified by a bit mask which has 1-bits in the positions

corresponding to the subfield, and 0-bits elsewhere. Note that the bits in a subfield

are not necessarily adjacent. The bits are numbered such that bit 0 is the most

significant bit, and bit 31 the least significant bit. The following masks are defined

to identify the subfields:

RORUM

Mask for unsupported report options that are rejected.

 This mask identifies the bit positions within the MDREP field where report

options which are not supported by the local queue manager will cause the

MQPUT or MQPUT1 call to fail with completion code CCFAIL and reason

code RC2061.

This subfield occupies bit positions 3, and 11 through 13.

ROAUM

Mask for unsupported report options that are accepted.

 This mask identifies the bit positions within the MDREP field where report

options which are not supported by the local queue manager will

nevertheless be accepted on the MQPUT or MQPUT1 calls. Completion

code CCWARN with reason code RC2104 are returned in this case.

This subfield occupies bit positions 0 through 2, 4 through 10, and 24

through 31.

The following report options are included in this subfield:

v ROCMTC

v RODLQ

v RODISC

v ROEXC

v ROEXCD

v ROEXCF

© Copyright IBM Corp. 1994, 2008 517

v ROEXP

v ROEXPD

v ROEXPF

v RONAN

v RONMI

v RONONE

v ROPAN

v ROPCI

v ROPMI

ROAUXM

Mask for unsupported report options that are accepted only in certain

circumstances.

 This mask identifies the bit positions within the MDREP field where report

options which are not supported by the local queue manager will

nevertheless be accepted on the MQPUT or MQPUT1 calls provided that

both of the following conditions are satisfied:

v The message is destined for a remote queue manager.

v The application is not putting the message directly on a local

transmission queue (that is, the queue identified by the ODMN and ODON

fields in the object descriptor specified on the MQOPEN or MQPUT1

call is not a local transmission queue).

Completion code CCWARN with reason code RC2104 are returned if these

conditions are satisfied, and CCFAIL with reason code RC2061 if not.

This subfield occupies bit positions 14 through 23.

The following report options are included in this subfield:

v ROCOA

v ROCOAD

v ROCOAF

v ROCOD

v ROCODD

v ROCODF

If there are any options specified in the MDREP field which the queue manager does

not recognize, the queue manager checks each subfield in turn by using the bitwise

AND operation to combine the MDREP field with the mask for that subfield. If the

result of that operation is not zero, the completion code and reason codes

described above are returned.

If CCWARN is returned, it is not defined which reason code is returned if other

warning conditions exist.

The ability to specify and have accepted report options which are not recognized

by the local queue manager is useful when it is desired to send a message with a

report option which will be recognized and processed by a remote queue manager.

518 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Analyzing the report field

The MDREP field contains subfields; because of this, applications that need to check

whether the sender of the message requested a particular report should use the

technique described below.

Using arithmetic

The following steps should be performed using integer arithmetic:

1. Select one of the following values, according to the type of report to be

checked:

v ROCOA for COA report

v ROCOD for COD report

v ROEXC for exception report

v ROEXP for expiration report

Call the value A.

2. Divide the MDREP field by A; call the result B.

3. Divide B by 8; call the result C.

4. Multiply C by 8 and subtract from B; call the result D.

5. Multiply D by A; call the result E.

6. Test E for equality with each of the values that is possible for that type of

report.

For example, if A is ROEXC, test E for equality with each of the following to

determine what was specified by the sender of the message:

v RONONE

v ROEXC

v ROEXCD

v ROEXCF

The tests can be performed in whatever order is most convenient for the

application logic.

The following pseudocode illustrates this technique for exception report messages:

A = MQRO_EXCEPTION

B = Report/A

C = B/8

D = B - C*8

E = D*A

A similar method can be used to test for the ROPMI or ROPCI options; select as

the value A whichever of these two constants is appropriate, and then proceed as

described above, but replacing the value 8 in the steps above by the value 2.

Structure of the message-flags field

The MDMFL field is a 32-bit integer that is divided into three separate subfields.

These subfields identify:

v Message flags that are rejected if the local queue manager does not recognize

them

v Message flags that are always accepted, even if the local queue manager does

not recognize them

Chapter 8. Report options and message flags 519

v Message flags that are accepted only if certain other conditions are satisfied

Note: All subfields in MDMFL are reserved for use by the queue manager.

Each subfield is identified by a bit mask which has 1-bits in the positions

corresponding to the subfield, and 0-bits elsewhere. The bits are numbered such

that bit 0 is the most significant bit, and bit 31 the least significant bit. The

following masks are defined to identify the subfields:

MFRUM

Mask for unsupported message flags that are rejected.

 This mask identifies the bit positions within the MDMFL field where message

flags which are not supported by the local queue manager will cause the

MQPUT or MQPUT1 call to fail with completion code CCFAIL and reason

code RC2249.

This subfield occupies bit positions 20 through 31.

The following message flags are included in this subfield:

v MFLMIG

v MFLSEG

v MFMIG

v MFSEG

v MFSEGA

v MFSEGI

MFAUM

Mask for unsupported message flags that are accepted.

 This mask identifies the bit positions within the MDMFL field where message

flags which are not supported by the local queue manager will

nevertheless be accepted on the MQPUT or MQPUT1 calls. The completion

code is CCOK.

This subfield occupies bit positions 0 through 11.

MFAUXM

Mask for unsupported message flags that are accepted only in certain

circumstances.

 This mask identifies the bit positions within the MDMFL field where message

flags which are not supported by the local queue manager will

nevertheless be accepted on the MQPUT or MQPUT1 calls provided that

both of the following conditions are satisfied:

v The message is destined for a remote queue manager.

v The application is not putting the message directly on a local

transmission queue (that is, the queue identified by the ODMN and ODON

fields in the object descriptor specified on the MQOPEN or MQPUT1

call is not a local transmission queue).

Completion code CCOK is returned if these conditions are satisfied, and

CCFAIL with reason code RC2249 if not.

This subfield occupies bit positions 12 through 19.

If there are flags specified in the MDMFL field that the queue manager does not

recognize, the queue manager checks each subfield in turn by using the bitwise

520 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

AND operation to combine the MDMFL field with the mask for that subfield. If the

result of that operation is not zero, the completion code and reason codes

described above are returned.

Chapter 8. Report options and message flags 521

522 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Chapter 9. Data conversion

This appendix describes the interface to the data-conversion exit, and the

processing performed by the queue manager when data conversion is required.

The data-conversion exit is invoked as part of the processing of the MQGET call in

order to convert the application message data to the representation required by the

receiving application. Conversion of the application message data is optional — it

requires the GMCONV option to be specified on the MQGET call.

The following are described:

v The processing performed by the queue manager in response to the GMCONV

option; see “Conversion processing.”

v Processing conventions used by the queue manager when processing a built-in

format; these conventions are recommended for user-written exits too. See

“Processing conventions” on page 525.

v Special considerations for the conversion of report messages; see “Conversion of

report messages” on page 529.

v The parameters passed to the data-conversion exit; see “MQCONVX - Data

conversion exit” on page 542.

v A call that can be used from the exit in order to convert character data between

different representations; see “MQXCNVC - Convert characters” on page 536.

v The data-structure parameter which is specific to the exit; see “MQDXP –

Data-conversion exit parameter” on page 530.

Conversion processing

The queue manager performs the following actions if the GMCONV option is

specified on the MQGET call, and there is a message to be returned to the

application:

1. If one or more of the following is true, no conversion is necessary:

v The message data is already in the character set and encoding required by

the application issuing the MQGET call. The application must set the MDCSI

and MDENC fields in the MSGDSC parameter of the MQGET call to the values

required, prior to issuing the call.

v The length of the message data is zero.

v The length of the BUFFER parameter of the MQGET call is zero.

In these cases the message is returned without conversion to the application

issuing the MQGET call; the MDCSI and MDENC values in the MSGDSC parameter

are set to the values in the control information in the message, and the call

completes with one of the following combinations of completion code and

reason code:

Completion code

Reason code

CCOK

RCNONE

CCWARN

RC2079

© Copyright IBM Corp. 1994, 2008 523

CCWARN

RC2080

The following steps are performed only if the character set or encoding of the

message data differs from the corresponding value in the MSGDSC parameter, and

there is data to be converted:

1. If the MDFMT field in the control information in the message has the value

FMNONE, the message is returned unconverted, with completion code

CCWARN and reason code RC2110.

In all other cases conversion processing continues.

2. The message is removed from the queue and placed in a temporary buffer

which is the same size as the BUFFER parameter. For browse operations, the

message is copied into the temporary buffer, instead of being removed from the

queue.

3. If the message has to be truncated to fit in the buffer, the following is done:

v If the GMATM option was not specified, the message is returned

unconverted, with completion code CCWARN and reason code RC2080.

v If the GMATM option was specified, the completion code is set to CCWARN,

the reason code is set to RC2079, and conversion processing continues.
4. If the message can be accommodated in the buffer without truncation, or the

GMATM option was specified, the following is done:

v If the format is a built-in format, the buffer is passed to the queue manager’s

data-conversion service.

v If the format is not a built-in format, the buffer is passed to a user-written

exit which has the same name as the format. If the exit cannot be found, the

message is returned unconverted, with completion code CCWARN and

reason code RC2110.
If no error occurs, the output from the data-conversion service or from the

user-written exit is the converted message, plus the completion code and

reason code to be returned to the application issuing the MQGET call.

5. If the conversion is successful, the queue manager returns the converted

message to the application. In this case, the completion code and reason code

returned by the MQGET call will usually be one of the following combinations:

Completion code

Reason code

CCOK

RCNONE

CCWARN

RC2079

However, if the conversion is performed by a user-written exit, other reason

codes can be returned, even when the conversion is successful.

If the conversion fails (for whatever reason), the queue manager returns the

unconverted message to the application, with the MDCSI and MDENC fields in the

MSGDSC parameter set to the values in the control information in the message,

and with completion code CCWARN. See below for possible reason codes.

524 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Processing conventions

When converting a built-in format, the queue manager follows the processing

conventions described below. It is recommended that user-written exits should also

follow these conventions, although this is not enforced by the queue manager. The

built-in formats converted by the queue manager are:

 FMADMN FMMDE

FMCICS FMPCF

FMCMD1 FMRMH

FMCMD2 FMRFH

FMDLH FMRFH2

FMDH FMSTR

FMEVNT FMTM

FMIMS FMXQH

FMIMVS

 1. If the message expands during conversion, and exceeds the size of the BUFFER

parameter, the following is done:

v If the GMATM option was not specified, the message is returned

unconverted, with completion code CCWARN and reason code RC2120.

v If the GMATM option was specified, the message is truncated, the

completion code is set to CCWARN, the reason code is set to RC2079, and

conversion processing continues.
 2. If truncation occurs (either before or during conversion), it is possible for the

number of valid bytes returned in the BUFFER parameter to be less than the

length of the buffer.

This can occur, for example, if a 4-byte integer or a DBCS character straddles

the end of the buffer. The incomplete element of information is not converted,

and so those bytes in the returned message do not contain valid information.

This can also occur if a message that was truncated before conversion shrinks

during conversion.

If the number of valid bytes returned is less than the length of the buffer, the

unused bytes at the end of the buffer are set to nulls.

 3. If an array or string straddles the end of the buffer, as much of the data as

possible is converted; only the particular array element or DBCS character

which is incomplete is not converted – preceding array elements or characters

are converted.

 4. If truncation occurs (either before or during conversion), the length returned

for the DATLEN parameter is the length of the unconverted message before

truncation.

 5. When strings are converted between single-byte character sets (SBCS),

double-byte character sets (DBCS), or multi-byte character sets (MBCS), the

strings can expand or contract.

v In the PCF formats FMADMN, FMEVNT, and FMPCF, the strings in the

MQCFST and MQCFSL structures expand or contract as necessary to

accommodate the string after conversion.

For the string-list structure MQCFSL, the strings in the list may expand or

contract by different amounts. If this happens, the queue manager pads the

shorter strings with blanks to make them the same length as the longest

string after conversion.

Chapter 9. Data conversion 525

v In the format FMRMH, the strings addressed by the RMSEO, RMSNO, RMDEO,

and RMDNO fields expand or contract as necessary to accommodate the

strings after conversion.

v In the format FMRFH, the RFNVS field expands or contracts as necessary to

accommodate the name/value pairs after conversion.

v In structures with fixed field sizes, the queue manager allows strings to

expand or contract within their fixed fields, provided that no significant

information is lost. In this regard, trailing blanks and characters following

the first null character in the field are treated as insignificant.

– If the string expands, but only insignificant characters need to be

discarded to accommodate the converted string in the field, the

conversion succeeds and the call completes with CCOK and reason code

RCNONE (assuming no other errors).

– If the string expands, but the converted string requires significant

characters to be discarded in order to fit in the field, the message is

returned unconverted and the call completes with CCWARN and reason

code RC2190.

Note: Reason code RC2190 results in this case whether or not the

GMATM option was specified.

– If the string contracts, the queue manager pads the string with blanks to

the length of the field.
 6. For messages consisting of one or more MQ header structures followed by

user data, it is possible for one or more of the header structures to be

converted, while the remainder of the message is not. However, (with two

exceptions) the MDCSI and MDENC fields in each header structure always

correctly indicate the character set and encoding of the data that follows the

header structure.

The two exceptions are the MQCIH and MQIIH structures, where the values

in the MDCSI and MDENC fields in those structures are not significant. For those

structures, the data following the structure is in the same character set and

encoding as the MQCIH or MQIIH structure itself.

 7. If the MDCSI or MDENC fields in the control information of the message being

retrieved, or in the MSGDSC parameter, specify values which are undefined or

not supported, the queue manager may ignore the error if the undefined or

unsupported value does not need to be used in converting the message.

For example, if the MDENC field in the message specifies an unsupported float

encoding, but the message contains only integer data, or contains

floating-point data which does not require conversion (because the source and

target float encodings are identical), the error may or may not be diagnosed.

If the error is diagnosed, the message is returned unconverted, with

completion code CCWARN and one of the RC2111, RC2112, RC2113, RC2114

or RC2115, RC2116, RC2117, RC2118 reason codes (as appropriate); the MDCSI

and MDENC fields in the MSGDSC parameter are set to the values in the control

information in the message.

If the error is not diagnosed and the conversion completes successfully, the

values returned in the MDCSI and MDENC fields in the MSGDSC parameter are

those specified by the application issuing the MQGET call.

 8. In all cases, if the message is returned to the application unconverted the

completion code is set to CCWARN, and the MDCSI and MDENC fields in the

MSGDSC parameter are set to the values appropriate to the unconverted data.

This is done for FMNONE also.

526 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

The REASON parameter is set to a code that indicates why the conversion could

not be carried out, unless the message also had to be truncated; reason codes

related to truncation take precedence over reason codes related to conversion.

(To determine if a truncated message was converted, check the values

returned in the MDCSI and MDENC fields in the MSGDSC parameter.)

When an error is diagnosed, either a specific reason code is returned, or the

general reason code RC2119. The reason code returned depends on the

diagnostic capabilities of the underlying data-conversion service.

 9. If completion code CCWARN is returned, and more than one reason code is

relevant, the order of precedence is as follows:

a. The following reason takes precedence over all others:

v RC2079
b. Next in precedence is the following reason:

v RC2110
c. The order of precedence within the remaining reason codes is not defined.

10. On completion of the MQGET call:

v The following reason code indicates that the message was converted

successfully:

– RCNONE
v The following reason code indicates that the message may have been

converted successfully (check the MDCSI and MDENC fields in the MSGDSC

parameter to find out):

– RC2079
v All other reason codes indicate that the message was not converted.

The following processing is specific to the built-in formats; it is not applicable to

user-defined formats:

1. With the exception of the following formats:

v FMADMN

v FMEVNT

v FMIMVS

v FMPCF

v FMSTR

none of the built-in formats can be converted from or to character sets that do

not have SBCS characters for the characters that are valid in queue names. If an

attempt is made to perform such a conversion, the message is returned

unconverted, with completion code CCWARN and reason code RC2111 or

RC2115, as appropriate.

The Unicode character set UCS-2 is an example of a character set that does not

have SBCS characters for the characters that are valid in queue names.

2. If the message data for a built-in format is truncated, fields within the message

which contain lengths of strings, or counts of elements or structures, are not

adjusted to reflect the length of the data actually returned to the application;

the values returned for such fields within the message data are the values

applicable to the message prior to truncation.

When processing messages such as a truncated FMADMN message, care must

be taken to ensure that the application does not attempt to access data beyond

the end of the data returned.

3. If the format name is FMDLH, the message data begins with an MQDLH

structure, and this may be followed by zero or more bytes of application

Chapter 9. Data conversion 527

message data. The format, character set, and encoding of the application

message data are defined by the DLFMT, DLCSI, and DLENC fields in the MQDLH

structure at the start of the message. Since the MQDLH structure and

application message data can have different character sets and encodings, it is

possible for one, other, or both of the MQDLH structure and application

message data to require conversion.

The queue manager converts the MQDLH structure first, as necessary. If

conversion is successful, or the MQDLH structure does not require conversion,

the queue manager checks the DLCSI and DLENC fields in the MQDLH structure

to see if conversion of the application message data is required. If conversion is

required, the queue manager invokes the user-written exit with the name given

by the DLFMT field in the MQDLH structure, or performs the conversion itself (if

DLFMT is the name of a built-in format).

If the MQGET call returns a completion code of CCWARN, and the reason code

is one of those indicating that conversion was not successful, one of the

following applies:

v The MQDLH structure could not be converted. In this case the application

message data will not have been converted either.

v The MQDLH structure was converted, but the application message data was

not.

The application can examine the values returned in the MDCSI and MDENC fields

in the MSGDSC parameter, and those in the MQDLH structure, in order to

determine which of the above applies.

4. If the format name is FMXQH, the message data begins with an MQXQH

structure, and this may be followed by zero or more bytes of additional data.

This additional data is usually the application message data (which may be of

zero length), but there can also be one or more further MQ header structures

present, at the start of the additional data.

The MQXQH structure must be in the character set and encoding of the queue

manager. The format, character set, and encoding of the data following the

MQXQH structure are given by the MDFMT, MDCSI, and MDENC fields in the

MQMD structure contained within the MQXQH. For each subsequent MQ

header structure present, the MDFMT, MDCSI, and MDENC fields in the structure

describe the data that follows that structure; that data is either another MQ

header structure, or the application message data.

If the GMCONV option is specified for an FMXQH message, the application

message data and certain of the MQ header structures are converted, but the

data in the MQXQH structure is not. On return from the MQGET call, therefore:

v The values of the MDFMT, MDCSI, and MDENC fields in the MSGDSC parameter

describe the data in the MQXQH structure, and not the application message

data; the values will therefore not be the same as those specified by the

application that issued the MQGET call.

The effect of this is that an application which repeatedly gets messages from

a transmission queue with the GMCONV option specified must reset the

MDCSI and MDENC fields in the MSGDSC parameter to the values desired for the

application message data, prior to each MQGET call.

v The values of the MDFMT, MDCSI, and MDENC fields in the last MQ header

structure present describe the application message data. If there are no other

MQ header structures present, the application message data is described by

these fields in the MQMD structure within the MQXQH structure. If

conversion is successful, the values will be the same as those specified in the

MSGDSC parameter by the application that issued the MQGET call.

528 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

If the message is a distribution-list message, the MQXQH structure is followed

by an MQDH structure (plus its arrays of MQOR and MQPMR records), which

in turn may be followed by zero or more further MQ header structures and

zero or more bytes of application message data. Like the MQXQH structure, the

MQDH structure must be in the character set and encoding of the queue

manager, and it is not converted on the MQGET call, even if the GMCONV

option is specified.

The processing of the MQXQH and MQDH structures described above is

primarily intended for use by message channel agents when they get messages

from transmission queues.

Conversion of report messages

A report message can contain varying amounts of application message data,

according to the report options specified by the sender of the original message. In

particular, a report message can contain either:

1. No application message data

2. Some of the application message data from the original message

This occurs when the sender of the original message specifies RO*D and the

message is longer than 100 bytes.

3. All of the application message data from the original message

This occurs when the sender of the original message specifies RO*F, or specifies

RO*D and the message is 100 bytes or shorter.

When the queue manager or message channel agent generates a report message, it

copies the format name from the original message into the MDFMT field in the

control information in the report message. The format name in the report message

may therefore imply a length of data which is different from the length actually

present in the report message (cases 1 and 2 above).

If the GMCONV option is specified when the report message is retrieved:

v For case 1 above, the data-conversion exit will not be invoked (because the

report message will have no data).

v For case 3 above, the format name correctly implies the length of the message

data.

v But for case 2 above, the data-conversion exit will be invoked to convert a

message which is shorter than the length implied by the format name.

In addition, the reason code passed to the exit will usually be RCNONE (that is,

the reason code will not indicate that the message has been truncated). This

happens because the message data was truncated by the sender of the report

message, and not by the receiver’s queue manager in response to the MQGET

call.

Because of these possibilities, the data-conversion exit should not use the format

name to deduce the length of data passed to it; instead the exit should check the

length of data provided, and be prepared to convert less data than the length

implied by the format name. If the data can be converted successfully, completion

code CCOK and reason code RCNONE should be returned by the exit. The length

of the message data to be converted is passed to the exit as the INLEN parameter.

Product-sensitive programming interface

Chapter 9. Data conversion 529

If a report message contains information about an activity that has taken place, it is

known as an activity report. Examples of activities are:

v an MCA sending a message from a queue down a channel

v an MCA receiving a message from a channel and putting it onto a queue

v an MCA dead-letter queuing an undeliverable message

v an MCA getting a message off a queue and discarding it

v a dead-letter handler placing a message back on a queue

v the command server processing a PCF request - a broker processing a publish

request

v a user application getting a message from a queue - a user application browsing

a message on a queue

Any application, including the queue manager, can add some of the message data

to the activity report following the report header. The amount of data that should

be supplied if some is sent is not fixed, and is decided by the application. The

information returned should be useful to the application processing the activity

report. Queue manager activity reports will return with them any standard MQ

header structures (beginning ’MQH’) contained in the original message. This

includes, for example, any MQRFH2 headers that were included in the original

message. Also the queue manager will return an MQCFH header found, but not

the PCF parameters associated with it. This gives monitoring applications an idea

of what the message was about.

MQDXP – Data-conversion exit parameter

The following table summarizes the fields in the structure.

 Table 96. Fields in MQDXP

Field Description Topic

DXSID Structure identifier DXSID

DXVER Structure version number DXVER

DXAOP Application options DXAOP

DXENC Numeric encoding required by application DXENC

DXCSI Character set required by application DXCSI

DXLEN Length in bytes of message data DXLEN

DXCC Completion code DXCC

DXREA Reason code qualifying DXCC DXREA

DXRES Response from exit DXRES

DXHCN Connection handle DXHCN

Overview

Purpose: The MQDXP structure is a parameter that the queue manager passes to

the data-conversion exit when the exit is invoked to convert the message data as

part of the processing of the MQGET call. See the description of the MQCONVX

call for details of the data conversion exit.

530 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Character set and encoding: Character data in MQDXP is in the character set of

the local queue manager; this is given by the CodedCharSetId queue manager

attribute. Numeric data in MQDXP is in the native machine encoding; this is given

by ENNAT.

Usage: Only the DXLEN, DXCC, DXREA and DXRES fields in MQDXP may be changed

by the exit; changes to other fields are ignored. However, the DXLEN field cannot be

changed if the message being converted is a segment that contains only part of a

logical message.

When control returns to the queue manager from the exit, the queue manager

checks the values returned in MQDXP. If the values returned are not valid, the

queue manager continues processing as though the exit had returned XRFAIL in

DXRES; however, the queue manager ignores the values of the DXCC and DXREA fields

returned by the exit in this case, and uses instead the values those fields had on

input to the exit. The following values in MQDXP cause this processing to occur:

v DXRES field not XROK and not XRFAIL

v DXCC field not CCOK and not CCWARN

v DXLEN field less than zero, or DXLEN field changed when the message being

converted is a segment that contains only part of a logical message.

Fields

The MQDXP structure contains the following fields; the fields are described in

alphabetic order:

DXAOP (10-digit signed integer)

Application options.

This is a copy of the GMOPT field of the MQGMO structure specified by the

application issuing the MQGET call. The exit may need to examine these to

ascertain whether the GMATM option was specified.

This is an input field to the exit.

DXCC (10-digit signed integer)

Completion code.

When the exit is invoked, this contains the completion code that will be returned

to the application that issued the MQGET call, if the exit chooses to do nothing. It

is always CCWARN, because either the message was truncated, or the message

requires conversion and this has not yet been done.

On output from the exit, this field contains the completion code to be returned to

the application in the CMPCOD parameter of the MQGET call; only CCOK and

CCWARN are valid. See the description of the DXREA field for recommendations on

how the exit should set this field on output.

This is an input/output field to the exit.

DXCSI (10-digit signed integer)

Character set required by application.

Chapter 9. Data conversion 531

This is the coded character-set identifier of the character set required by the

application issuing the MQGET call; see the MDCSI field in the MQMD structure for

more details. If the application specifies the special value CSQM on the MQGET

call, the queue manager changes this to the actual character-set identifier of the

character set used by the queue manager, before invoking the exit.

If the conversion is successful, the exit should copy this to the MDCSI field in the

message descriptor.

This is an input field to the exit.

DXENC (10-digit signed integer)

Numeric encoding required by application.

This is the numeric encoding required by the application issuing the MQGET call;

see the MDENC field in the MQMD structure for more details.

If the conversion is successful, the exit should copy this to the MDENC field in the

message descriptor.

This is an input field to the exit.

DXHCN (10-digit signed integer)

Connection handle.

This is a connection handle which can be used on the MQXCNVC call. This handle

is not necessarily the same as the handle specified by the application which issued

the MQGET call.

DXLEN (10-digit signed integer)

Length in bytes of message data.

When the exit is invoked, this field contains the original length of the application

message data. If the message was truncated in order to fit into the buffer provided

by the application, the size of the message provided to the exit will be smaller than

the value of DXLEN. The size of the message actually provided to the exit is always

given by the INLEN parameter of the exit, irrespective of any truncation that may

have occurred.

Truncation is indicated by the DXREA field having the value RC2079 on input to the

exit.

Most conversions will not need to change this length, but an exit can do so if

necessary; the value set by the exit is returned to the application in the DATLEN

parameter of the MQGET call. However, this length cannot be changed if the

message being converted is a segment that contains only part of a logical message.

This is because changing the length would cause the offsets of later segments in

the logical message to be incorrect.

Note that, if the exit wants to change the length of the data, be aware that the

queue manager has already decided whether the message data will fit into the

application’s buffer, based on the length of the unconverted data. This decision

determines whether the message is removed from the queue (or the browse cursor

moved, for a browse request), and is not affected by any change to the data length

532 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

caused by the conversion. For this reason it is recommended that conversion exits

do not cause a change in the length of the application message data.

If character conversion does imply a change of length, a string can be converted

into another string with the same length in bytes, truncating trailing blanks or

padding with blanks as necessary.

The exit is not invoked if the message contains no application message data; hence

DXLEN is always greater then zero.

This is an input/output field to the exit.

DXREA (10-digit signed integer)

Reason code qualifying DXCC.

When the exit is invoked, this contains the reason code that will be returned to the

application that issued the MQGET call, if the exit chooses to do nothing. Among

possible values are RC2079, indicating that the message was truncated in order fit

into the buffer provided by the application, and RC2119, indicating that the

message requires conversion but that this has not yet been done.

On output from the exit, this field contains the reason to be returned to the

application in the REASON parameter of the MQGET call; the following is

recommended:

v If DXREA had the value RC2079 on input to the exit, the DXREA and DXCC fields

should not be altered, irrespective of whether the conversion succeeds or fails.

(If the DXCC field is not CCOK, the application which retrieves the message can

identify a conversion failure by comparing the returned MDENC and MDCSI values

in the message descriptor with the values requested; in contrast, the application

cannot distinguish a truncated message from a message that just fitted the

buffer. For this reason, RC2079 should be returned in preference to any of the

reasons that indicate conversion failure.)

v If DXREA had any other value on input to the exit:

– If the conversion succeeds, DXCC should be set to CCOK and DXREA set to

RCNONE.

– If the conversion fails, or the message expands and has to be truncated to fit

in the buffer, DXCC should be set to CCWARN (or left unchanged), and DXREA

set to one of the values listed below, to indicate the nature of the failure.

Note that, if the message after conversion is too big for the buffer, it should

be truncated only if the application that issued the MQGET call specified the

GMATM option:

- If it did specify that option, reason RC2079 should be returned.

- If it did not specify that option, the message should be returned

unconverted, with reason code RC2120.

The reason codes listed below are recommended for use by the exit to indicate the

reason that conversion failed, but the exit can return other values from the set of

RC* codes if deemed appropriate. In addition, the range of values RC0900 through

RC0999 are allocated for use by the exit to indicate conditions that the exit wishes

to communicate to the application issuing the MQGET call.

Chapter 9. Data conversion 533

Note: If the message cannot be converted successfully, the exit must return XRFAIL

in the DXRES field, in order to cause the queue manager to return the unconverted

message. This is true regardless of the reason code returned in the DXREA field.

RC0900

(900, X’384’) Lowest value for application-defined reason code.

RC0999

(999, X’3E7’) Highest value for application-defined reason code.

RC2120

(2120, X’848’) Converted data too big for buffer.

RC2119

(2119, X’847’) Message data not converted.

RC2111

(2111, X’83F’) Source coded character set identifier not valid.

RC2113

(2113, X’841’) Packed-decimal encoding in message not recognized.

RC2114

(2114, X’842’) Floating-point encoding in message not recognized.

RC2112

(2112, X’840’) Source integer encoding not recognized.

RC2115

(2115, X’843’) Target coded character set identifier not valid.

RC2117

(2117, X’845’) Packed-decimal encoding specified by receiver not

recognized.

RC2118

(2118, X’846’) Floating-point encoding specified by receiver not recognized.

RC2116

(2116, X’844’) Target integer encoding not recognized.

RC2079

(2079, X’81F’) Truncated message returned (processing completed).

This is an input/output field to the exit.

DXRES (10-digit signed integer)

Response from exit.

This is set by the exit to indicate the success or otherwise of the conversion. It

must be one of the following:

XROK Conversion was successful.

 If the exit specifies this value, the queue manager returns the following to

the application that issued the MQGET call:

v The value of the DXCC field on output from the exit

v The value of the DXREA field on output from the exit

v The value of the DXLEN field on output from the exit

v The contents of the exit’s output buffer OUTBUF. The number of bytes

returned is the lesser of the exit’s OUTLEN parameter, and the value of the

DXLEN field on output from the exit

534 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

If the MDENC and MDCSI fields in the exit’s message descriptor parameter are

both unchanged, the queue manager returns:

v The value of the MDENC and MDCSI fields in the MQDXP structure on

input to the exit

If one or both of the MDENC and MDCSI fields in the exit’s message descriptor

parameter has been changed, the queue manager returns:

v The value of the MDENC and MDCSI fields in the exit’s message descriptor

parameter on output from the exit

v

XRFAIL

Conversion was unsuccessful.

 If the exit specifies this value, the queue manager returns the following to

the application that issued the MQGET call:

v The value of the DXCC field on output from the exit

v The value of the DXREA field on output from the exit

v The value of the DXLEN field on input to the exit

v The contents of the exit’s input buffer INBUF. The number of bytes

returned is given by the INLEN parameter

If the exit has altered INBUF, the results are undefined.

DXRES is an output field from the exit.

DXSID (4-byte character string)

Structure identifier.

The value must be:

DXSIDV

Identifier for data conversion exit parameter structure.

This is an input field to the exit.

DXVER (10-digit signed integer)

Structure version number.

The value must be:

DXVER1

Version number for data-conversion exit parameter structure.

The following constant specifies the version number of the current version:

DXVERC

Current version of data-conversion exit parameter structure.

Note: When a new version of this structure is introduced, the layout of the

existing part is not changed. The exit should therefore check that the DXVER field is

equal to or greater than the lowest version which contains the fields that the exit

needs to use.

This is an input field to the exit.

Chapter 9. Data conversion 535

DXXOP (10-digit signed integer)

Reserved.

This is a reserved field; its value is 0.

RPG declaration (copy file CMQDXPH)

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..

 D* MQDXP Structure

 D*

 D* Structure identifier

 D DXSID 1 4

 D* Structure version number

 D DXVER 5 8I 0

 D* Reserved

 D DXXOP 9 12I 0

 D* Application options

 D DXAOP 13 16I 0

 D* Numeric encoding required by application

 D DXENC 17 20I 0

 D* Character set required by application

 D DXCSI 21 24I 0

 D* Length in bytes of message data

 D DXLEN 25 28I 0

 D* Completion code

 D DXCC 29 32I 0

 D* Reason code qualifying DXCC

 D DXREA 33 36I 0

 D* Response from exit

 D DXRES 37 40I 0

 D* Connection handle

 D DXHCN 41 44I 0

MQXCNVC - Convert characters

The MQXCNVC call converts characters from one character set to another.

This call is part of the WebSphere MQ Data Conversion Interface (DCI), which is

one of the WebSphere MQ framework interfaces. Note: this call can be used only

from a data-conversion exit.

Syntax

Parameters

The MQXCNVC call has the following parameters.

HCONN (10-digit signed integer) – input

Connection handle.

This handle represents the connection to the queue manager. It should normally be

the handle passed to the data-conversion exit in the DXHCN field of the MQDXP

structure; this handle is not necessarily the same as the handle specified by the

application which issued the MQGET call.

MQXCNVC (HCONN, OPTS, SRCCSI, SRCLEN, SRCBUF, TGTCSI, TGTLEN,

TGTBUF, DATLEN, CMPCOD, REASON)

536 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

On i5/OS, the following special value can be specified for HCONN:

HCDEFH

Default connection handle.

OPTS (10-digit signed integer) – input

Options that control the action of MQXCNVC.

Zero or more of the options described below can be specified. If more than one is

required, the values can be added together (do not add the same constant more

than once).

Default-conversion option: The following option controls the use of default

character conversion:

DCCDEF

Default conversion.

 This option specifies that default character conversion can be used if one or

both of the character sets specified on the call is not supported. This allows

the queue manager to use an installation-specified default character set that

approximates the specified character set, when converting the string.

Note: The result of using an approximate character set to convert the

string is that some characters may be converted incorrectly. This can be

avoided by using in the string only characters which are common to both

the specified character set and the default character set.

The default character sets are defined by a configuration option when the

queue manager is installed or restarted.

If DCCDEF is not specified, the queue manager uses only the specified

character sets to convert the string, and the call fails if one or both of the

character sets is not supported.

Padding option: The following option allows the queue manager to pad the

converted string with blanks or discard insignificant trailing characters, in order to

make the converted string fit the target buffer:

DCCFIL

Fill target buffer.

 This option requests that conversion take place in such a way that the

target buffer is filled completely:

v If the string contracts when it is converted, trailing blanks are added in

order to fill the target buffer.

v If the string expands when it is converted, trailing characters that are not

significant are discarded to make the converted string fit the target

buffer. If this can be done successfully, the call completes with CCOK

and reason code RCNONE.

If there are too few insignificant trailing characters, as much of the string

as will fit is placed in the target buffer, and the call completes with

CCWARN and reason code RC2120.

Insignificant characters are:

– Trailing blanks

– Characters following the first null character in the string (but

excluding the first null character itself)

Chapter 9. Data conversion 537

v If the string, TGTCSI, and TGTLEN are such that the target buffer cannot be

set completely with valid characters, the call fails with CCFAIL and

reason code RC2144. This can occur when TGTCSI is a pure DBCS

character set (such as UCS-2), but TGTLEN specifies a length that is an

odd number of bytes.

v TGTLEN can be less than or greater than SRCLEN. On return from

MQXCNVC, DATLEN has the same value as TGTLEN.

If this option is not specified:

v The string is allowed to contract or expand within the target buffer as

required. Insignificant trailing characters are neither added nor

discarded.

If the converted string fits in the target buffer, the call completes with

CCOK and reason code RCNONE.

If the converted string is too big for the target buffer, as much of the

string as will fit is placed in the target buffer, and the call completes

with CCWARN and reason code RC2120. Note that fewer than TGTLEN

bytes can be returned in this case.

v TGTLEN can be less than or greater than SRCLEN. On return from

MQXCNVC, DATLEN is less than or equal to TGTLEN.

Encoding options: The options described below can be used to specify the integer

encodings of the source and target strings. The relevant encoding is used only

when the corresponding character set identifier indicates that the representation of

the character set in main storage is dependent on the encoding used for binary

integers. This affects only certain multibyte character sets (for example, UCS-2

character sets).

The encoding is ignored if the character set is a single-byte character set (SBCS), or

a multibyte character set whose representation in main storage is not dependent on

the integer encoding.

Only one of the DCCS* values should be specified, combined with one of the

DCCT* values:

DCCSNA

Source encoding is the default for the environment and programming

language.

DCCSNO

Source encoding is normal.

DCCSRE

Source encoding is reversed.

DCCSUN

Source encoding is undefined.

DCCTNA

Target encoding is the default for the environment and programming

language.

DCCTNO

Target encoding is normal.

DCCTRE

Target encoding is reversed.

538 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

DCCTUN

Target encoding is undefined.

The encoding values defined above can be added directly to the OPTS field.

However, if the source or target encoding is obtained from the MDENC field in the

MQMD or other structure, the following processing must be done:

1. The integer encoding must be extracted from the MDENC field by eliminating the

float and packed-decimal encodings; see “Analyzing encodings” on page 515

for details of how to do this.

2. The integer encoding resulting from step 1 must be multiplied by the

appropriate factor before being added to the OPTS field. These factors are:

DCCSFA

Factor for source encoding

DCCTFA

Factor for target encoding

If not specified, the encoding options default to undefined (DCC*UN). In most

cases, this does not affect the successful completion of the MQXCNVC call.

However, if the corresponding character set is a multibyte character set whose

representation is dependent on the encoding (for example, a UCS-2 character set),

the call fails with reason code RC2112 or RC2116 as appropriate.

Default option: If none of the options described above is specified, the following

option can be used:

DCCNON

No options specified.

 DCCNON is defined to aid program documentation. It is not intended that

this option be used with any other, but as its value is zero, such use cannot

be detected.

SRCCSI (10-digit signed integer) – input

Coded character set identifier of string before conversion.

This is the coded character set identifier of the input string in SRCBUF.

SRCLEN (10-digit signed integer) – input

Length of string before conversion.

This is the length in bytes of the input string in SRCBUF; it must be zero or greater.

SRCBUF (1-byte character string×SRCLEN) – input

String to be converted.

This is the buffer containing the string to be converted from one character set to

another.

TGTCSI (10-digit signed integer) – input

Coded character set identifier of string after conversion.

This is the coded character set identifier of the character set to which SRCBUF is to

be converted.

Chapter 9. Data conversion 539

TGTLEN (10-digit signed integer) – input

Length of output buffer.

This is the length in bytes of the output buffer TGTBUF; it must be zero or greater. It

can be less than or greater than SRCLEN.

TGTBUF (1-byte character string×TGTLEN) – output

String after conversion.

This is the string after it has been converted to the character set defined by TGTCSI.

The converted string can be shorter or longer than the unconverted string. The

DATLEN parameter indicates the number of valid bytes returned.

DATLEN (10-digit signed integer) – output

Length of output string.

This is the length of the string returned in the output buffer TGTBUF. The converted

string can be shorter or longer than the unconverted string.

CMPCOD (10-digit signed integer) – output

Completion code.

It is one of the following:

CCOK

Successful completion.

CCWARN

Warning (partial completion).

CCFAIL

Call failed.

REASON (10-digit signed integer) – output

Reason code qualifying CMPCOD.

If CMPCOD is CCOK:

RCNONE

(0, X’000’) No reason to report.

If CMPCOD is CCWARN:

RC2120

(2120, X’848’) Converted data too big for buffer.

If CMPCOD is CCFAIL:

RC2010

(2010, X’7DA’) Data length parameter not valid.

RC2150

(2150, X’866’) DBCS string not valid.

RC2018

(2018, X’7E2’) Connection handle not valid.

540 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

RC2046

(2046, X’7FE’) Options not valid or not consistent.

RC2102

(2102, X’836’) Insufficient system resources available.

RC2145

(2145, X’861’) Source buffer parameter not valid.

RC2111

(2111, X’83F’) Source coded character set identifier not valid.

RC2112

(2112, X’840’) Source integer encoding not recognized.

RC2143

(2143, X’85F’) Source length parameter not valid.

RC2071

(2071, X’817’) Insufficient storage available.

RC2146

(2146, X’862’) Target buffer parameter not valid.

RC2115

(2115, X’843’) Target coded character set identifier not valid.

RC2116

(2116, X’844’) Target integer encoding not recognized.

RC2144

(2144, X’860’) Target length parameter not valid.

RC2195

(2195, X’893’) Unexpected error occurred.

For more information on these reason codes, see Chapter 5, “Return codes for

i5/OS (ILE RPG),” on page 507.

RPG invocation (ILE)

 C*..1....:....2....:....3....:....4....:....5....:....6....:....7..

 C CALLP MQXCNVC(HCONN : OPTS : SRCCSI :

 C SRCLEN : SRCBUF : TGTCSI :

 C TGTLEN : TGTBUF : DATLEN :

 C CMPCOD : REASON)

The prototype definition for the call is:

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..

 DMQXCNVC PR EXTPROC(’MQXCNVC’)

 D* Connection handle

 D HCONN 10I 0 VALUE

 D* Options that control the action of MQXCNVC

 D OPTS 10I 0 VALUE

 D* Coded character set identifier of string before conversion

 D SRCCSI 10I 0 VALUE

 D* Length of string before conversion

 D SRCLEN 10I 0 VALUE

 D* String to be converted

 D SRCBUF * VALUE

 D* Coded character set identifier of string after conversion

 D TGTCSI 10I 0 VALUE

 D* Length of output buffer

 D TGTLEN 10I 0 VALUE

 D* String after conversion

Chapter 9. Data conversion 541

D TGTBUF * VALUE

 D* Length of output string

 D DATLEN 10I 0

 D* Completion code

 D CMPCOD 10I 0

 D* Reason code qualifying CMPCOD

 D REASON 10I 0

MQCONVX - Data conversion exit

This call definition describes the parameters that are passed to the data-conversion

exit. No entry point called MQCONVX is actually provided by the queue manager

(see usage note 11 on page 545).

This definition is part of the WebSphere MQ Data Conversion Interface (DCI),

which is one of the WebSphere MQ framework interfaces.

Syntax

Parameters

The MQCONVX call has the following parameters.

MQDXP (MQDXP) – input/output

Data-conversion exit parameter block.

This structure contains information relating to the invocation of the exit. The exit

sets information in this structure to indicate the outcome of the conversion. See

“MQDXP – Data-conversion exit parameter” on page 530 for details of the fields in

this structure.

MQMD (MQMD) – input/output

Message descriptor.

On input to the exit, this is the message descriptor that would be returned to the

application if no conversion were performed. It therefore contains the MDFMT, MDENC,

and MDCSI of the unconverted message contained in INBUF.

Note: The MQMD parameter passed to the exit is always the most recent version of

MQMD supported by the queue manager which invokes the exit. If the exit is

intended to be portable between different environments, the exit should check the

MDVER field in MQMD to verify that the fields that the exit needs to access are present

in the structure.

On i5/OS, the exit is passed a version-2 MQMD.

On output, the exit should change the MDENC and MDCSI fields to the values

requested by the application, if conversion was successful; these changes will be

reflected back to the application. Any other changes that the exit makes to the

structure are ignored; they are not reflected back to the application.

MQCONVX (MQDXP, MQMD, INLEN, INBUF, OUTLEN, OUTBUF)

542 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

If the exit returns XROK in the DXRES field of the MQDXP structure, but does not

change the MDENC or MDCSI fields in the message descriptor, the queue manager

returns for those fields the values that the corresponding fields in the MQDXP

structure had on input to the exit.

INLEN (10-digit signed integer) – input

Length in bytes of INBUF.

This is the length of the input buffer INBUF, and specifies the number of bytes to be

processed by the exit. INLEN is the lesser of the length of the message data prior to

conversion, and the length of the buffer provided by the application on the

MQGET call.

The value is always greater than zero.

INBUF (1-byte bit string×INLEN) – input

Buffer containing the unconverted message.

This contains the message data prior to conversion. If the exit is unable to convert

the data, the queue manager returns the contents of this buffer to the application

after the exit has completed.

Note: The exit should not alter INBUF; if this parameter is altered, the results are

undefined.

OUTLEN (10-digit signed integer) – input

Length in bytes of OUTBUF.

This is the length of the output buffer OUTBUF, and is the same as the length of the

buffer provided by the application on the MQGET call.

The value is always greater than zero.

OUTBUF (1-byte bit string×OUTLEN) – output

Buffer containing the converted message.

On output from the exit, if the conversion was successful (as indicated by the

value XROK in the DXRES field of the MQDXP parameter), OUTBUF contains the

message data to be delivered to the application, in the requested representation. If

the conversion was unsuccessful, any changes that the exit has made to this buffer

are ignored.

Usage notes

 1. A data-conversion exit is a user-written exit which receives control during the

processing of an MQGET call. The function performed by the data-conversion

exit is defined by the provider of the exit; however, the exit must conform to

the rules described here, and in the associated parameter structure MQDXP.

The programming languages that can be used for a data-conversion exit are

determined by the environment.

 2. The exit is invoked only if all of the following are true:

v The GMCONV option is specified on the MQGET call

Chapter 9. Data conversion 543

v The MDFMT field in the message descriptor is not FMNONE

v The message is not already in the required representation; that is, one or

both of the message’s MDCSI and MDENC is different from the value specified

by the application in the message descriptor supplied on the MQGET call

v The queue manager has not already done the conversion successfully

v The length of the application’s buffer is greater than zero

v The length of the message data is greater than zero

v The reason code so far during the MQGET operation is RCNONE or

RC2079
 3. When an exit is being written, consideration should be given to coding the

exit in a way that will allow it to convert messages that have been truncated.

Truncated messages can arise in the following ways:

v The receiving application provides a buffer that is smaller than the message,

but specifies the GMATM option on the MQGET call.

In this case, the DXREA field in the MQDXP parameter on input to the exit will

have the value RC2079.

v The sender of the message truncated it before sending it. This can happen

with report messages, for example (see “Conversion of report messages” on

page 529 for more details).

In this case, the DXREA field in the MQDXP parameter on input to the exit will

have the value RCNONE (if the receiving application provided a buffer that

was big enough for the message).

Thus the value of the DXREA field on input to the exit cannot always be used to

decide whether the message has been truncated.

The distinguishing characteristic of a truncated message is that the length

provided to the exit in the INLEN parameter will be less than the length implied

by the format name contained in the MDFMT field in the message descriptor.

The exit should therefore check the value of INLEN before attempting to

convert any of the data; the exit should not assume that the full amount of data

implied by the format name has been provided.

If the exit has not been written to convert truncated messages, and INLEN is

less than the value expected, the exit should return XRFAIL in the DXRES field

of the MQDXP parameter, with the DXCC and DXREA fields set to CCWARN and

RC2110 respectively.

If the exit has been written to convert truncated messages, the exit should

convert as much of the data as possible (see next usage note), taking care not

to attempt to examine or convert data beyond the end of INBUF. If the

conversion completes successfully, the exit should leave the DXREA field in the

MQDXP parameter unchanged. This has the effect of returning RC2079 if the

message was truncated by the receiver’s queue manager, and RCNONE if the

message was truncated by the sender of the message.

It is also possible for a message to expand during conversion, to the point

where it is bigger than OUTBUF. In this case the exit must decide whether to

truncate the message; the DXAOP field in the MQDXP parameter will indicate

whether the receiving application specified the GMATM option.

 4. Generally it is recommended that all of the data in the message provided to

the exit in INBUF is converted, or that none of it is. An exception to this,

however, occurs if the message is truncated, either before conversion or

during conversion; in this case there may be an incomplete item at the end of

the buffer (for example: one byte of a double-byte character, or 3 bytes of a

4-byte integer). In this situation it is recommended that the incomplete item

544 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

should be omitted, and unused bytes in OUTBUF set to nulls. However,

complete elements or characters within an array or string should be converted.

 5. When an exit is needed for the first time, the queue manager attempts to load

an object that has the same name as the format (apart from extensions). The

object loaded must contain the exit that processes messages with that format

name. It is recommended that the exit name, and the name of the object that

contain the exit, should be identical, although not all environments require

this.

 6. A new copy of the exit is loaded when an application attempts to retrieve the

first message that uses that MDFMT since the application connected to the queue

manager. A new copy may also be loaded at other times, if the queue

manager has discarded a previously-loaded copy. For this reason, an exit

should not attempt to use static storage to communicate information from one

invocation of the exit to the next – the exit may be unloaded between the two

invocations.

 7. If there is a user-supplied exit with the same name as one of the built-in

formats supported by the queue manager, the user-supplied exit does not

replace the built-in conversion routine. The only circumstances in which such

an exit is invoked are:

v If the built-in conversion routine cannot handle conversions to or from

either the MDCSI or MDENC involved, or

v If the built-in conversion routine has failed to convert the data (for example,

because there is a field or character which cannot be converted).
 8. The scope of the exit is environment-dependent. MDFMT names should be

chosen so as to minimize the risk of clashes with other formats. It is

recommended that they start with characters that identify the application

defining the format name.

 9. The data-conversion exit runs in an environment similar to that of the

program which issued the MQGET call; environment includes address space

and user profile (where applicable). The program could be a message channel

agent sending messages to a destination queue manager that does not support

message conversion. The exit cannot compromise the queue manager’s

integrity, since it does not run in the queue manager’s environment.

10. The only MQI call which can be used by the exit is MQXCNVC; attempting to

use other MQI calls fails with reason code RC2219, or other unpredictable

errors.

11. No entry point called MQCONVX is actually provided by the queue manager.

The name of the exit should be the same as the format name (the name

contained in the MDFMT field in MQMD), although this is not required in all

environments.

RPG invocation (ILE)

 C*..1....:....2....:....3....:....4....:....5....:....6....:....7..

 C CALLP exitname(MQDXP : MQMD : INLEN :

 C INBUF : OUTLEN : OUTBUF)

The prototype definition for the call is:

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..

 Dexitname PR EXTPROC(’exitname’)

 D* Data-conversion exit parameter block

 D MQDXP 44A

 D* Message descriptor

 D MQMD 364A

 D* Length in bytes of INBUF

 D INLEN 10I 0 VALUE

Chapter 9. Data conversion 545

D* Buffer containing the unconverted message

 D INBUF * VALUE

 D* Length in bytes of OUTBUF

 D OUTLEN 10I 0 VALUE

 D* Buffer containing the converted message

 D OUTBUF * VALUE

End of product-sensitive programming interface

546 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Notices

This information was developed for products and services offered in the United

States. IBM may not offer the products, services, or features discussed in this

information in other countries. Consult your local IBM representative for

information on the products and services currently available in your area. Any

reference to an IBM product, program, or service is not intended to state or imply

that only that IBM product, program, or service may be used. Any functionally

equivalent product, program, or service that does not infringe any IBM intellectual

property right may be used instead. However, it is the user’s responsibility to

evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this information. The furnishing of this information does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing,

IBM Corporation,

North Castle Drive,

Armonk, NY 10504-1785,

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation,

Licensing,

2-31 Roppongi 3-chome, Minato-k,u

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the information. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

information at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1994, 2008 547

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM United Kingdom Laboratories,

Mail Point 151,

Hursley Park,

Winchester,

Hampshire,

England

SO21 2JN.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Programming License Agreement, or any equivalent agreement

between us.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application

programs conforming to IBM’s application programming interfaces.

The following are trademarks of International Business Machines Corporation in

the United States, or other countries, or both:

 AIX AS/400 CICS

CICS/VSE COBOL/400 FFST

IBM IBMLink Informix

i5/OS IMS Lotus Notes

MQSeries MVS OS/2

OS/390 OS/400 PowerPC

RACF RPG/400 S/390

System/390 VSE/ESA WebSphere

z/OS

548 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

Unix is a trademark of The Open Group in the United States, other countries, or

both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of

others.

Notices 549

550 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Index

A
AC* values 130

AISID field
MQAIR structure 13

AITYP field
MQAIR structure 12

AIVER field
MQAIR structure 13

aliasing
queue manager 438

reply queue 438

AlterationDate attribute
authentication information 489

namelist 467

process definition 469

queue 442

queue manager 473

AlterationTime attribute
authentication information 489

namelist 467

process definition 469

queue 442

queue manager 473

AMQ3ECH4 sample program 501

AMQ3GBR4 sample program 496

AMQ3GET4 sample program 497

AMQ3INQ4 sample program 502

AMQ3PUT4 sample program 495

AMQ3REQ4 sample program 498

AMQ3SET4 sample program 503

AMQ3SRV4 sample program 505

AMQ3TRG4 sample program 505

ApplId attribute 469

ApplType attribute 469

AT* values
ApplType attribute 470

MDPAT field 155

TMAT field 276

attributes
authentication information 488

namelist 466

process definition 468

queue 437

queue manager 471

authentication information

attributes 488

authentication information record 11

AuthInfoConnName
attribute 489

AuthInfoConnName field
MQAIR structure 12

AuthInfoDesc
attribute 490

AuthInfoName
attribute 490

AuthInfoType
attribute 490

AuthorityEvent attribute 474

B
BackoutRequeueQName attribute 442

BackoutThreshold attribute 443

BaseQName attribute 443

begin options structure 16

BEGOP parameter 297

BM* values 15

BMOPT field
MQBMHO structure 15

BMSID field
MQBMHO structure 15

BMVER field
MQBMHO structure 15

BND* values 445

BO* values 17

BOOPT field 17

BOSID field 17

BOVER field 17

BUFFER parameter
MQGET call 353

MQPUT call 397

MQPUT1 call 408

buffer to message handle options 15

BUFLEN parameter
MQGET call 352

MQPUT call 396

MQPUT1 call 408

building your application 491

built-in formats 140

C
CA* values 362, 415

CALEN parameter
MQINQ call 366

MQSET call 416

callback area field
MQCBD structure 27

callback context structure 18

callback descriptor structure 26

CallbackName field
MQCBD structure 27

CallbackType field
MQCBD structure 29

calls
conventions used 293

detailed description
MQBACK 294

MQBEGIN 297

MQBUFMFH 300

MQCB 304

MQCLOSE 313

MQCMIT 332

MQCONN 335

MQCONNX 340

MQCONVX 542

MQCRTMH 320

MQCTL 325

MQDISC 342

MQDLTMH 344

calls (continued)
detailed description (continued)

MQDLTMP 348

MQGET 351

MQINQ 361

MQINQMP 370

MQMHBUF 376

MQOPEN 380

MQPUT 395

MQPUT1 406

MQSET 414

MQSETMP 419

MQSTAT 425

MQSUB 427

MQSUBRQ 434

MQXCNVC 536

CBC* values 24

CBCCALLBA field
MQCBD structure 19

CBCCALLT field
MQCBC structure 19

CBCCC field
MQCBC structure 21

CBCSID field
MQCBC structure 24

CBCVER field
MQCBC structure 24

CBDCALLBF field
MQCBD structure 27

CBDSC parameter
MQCB call 306

CF* values 41

CFStrucName attribute 443

ChannelAutoDef attribute 474

ChannelAutoDefEvent attribute 474

ChannelAutoDefExit attribute 475

CHRATR parameter
MQINQ call 366

MQSET call 416

CI* values 46, 132

CIAC field 38

CIADS field 38

CIAI field 38

CIAUT field 39

CICC field 39

CICNC field 39

CICP field 39

CICSI field 39

CICT field 39

CIENC field 40

CIEO field 40

CIFAC field 40

CIFKT field 40

CIFL field 41

CIFLG field 41

CIFMT field 41

CIFNC field 41

CIGWI field 42

CIII field 42

CILEN field 42

CILT field 43

© Copyright IBM Corp. 1994, 2008 551

CINTI field 43

CIODL field 43

CIREA field 43

CIRET field 44

CIRFM field 44

CIRS1 field 45

CIRS2 field 45

CIRS3 field 45

CIRS4 field 45

CIRSI field 44

CIRTI field 45

CISC field 45

CISID field 46

CITES field 46

CITI field 46

CIUOW field 47

CIVER field 47

ClusterName attribute 444

ClusterNamelist attribute 444

ClusterWorkloadData attribute 476

ClusterWorkloadExit attribute 476

ClusterWorkloadLength attribute 476

CML* values 477

CMOPT field
MQCMHO structure 51

CMPCOD parameter
MQBACK call 294, 322, 378

MQBEGIN call 297

MQCB call 308

MQCLOSE call 317

MQCONN call 337

MQCONNX call 341

MQCTL call 328

MQDISC call 343

MQDLTMH call 345

MQDLTMP call 349

MQGET call 354

MQINQ call 366

MQINQMP call 373

MQOPEN call 387

MQPUT call 398

MQPUT1 call 408

MQSET call 416

MQSETMP call 421

MQSTAT call 426

MQXCNVC call 540

CMSID field
MQCMHO structure 52

CMVER field
MQCMHO structure 52

CN* values 55, 58

CNCCO 54

CNCCP 54

CNCT field 54

CNOPT field 55

CNOPT parameter 340

CNSID field 58

CO* values 315

COCONNAREA field
MQCTLO structure 63

coded character set identifier 476

CodedCharSetId attribute 476, 477

COMCOD parameter
MQCMIT call 332

CommandInputQName attribute 477

CommandLevel attribute 477

commitment control
building your application 492

MQBACK 295

MQBEGIN 299

MQCMIT 333

compatibility mode 339

CompCode parameter
MQBACK call 302

compiling 491

completion codes for i5/OS 507

connect options structure 53

ConnectionArea field
MQCBC structure 22

control callback options structure 63

conversion of report messages 529

COOPT field
MQCTLO structure 63

copy file – RPG programming

language 6

copy files 491

CORSV field 64

COSID field
MQCTLO structure 64

COVER field
MQCTLO structure 64

CRC* values 44

create-message options structure 50

CreationDate attribute 444

CreationTime attribute 444

CRTPGM 491

CRTRPGMOD 491

CRTRPGPGM 491

CS* values 133

CSVER field
MQCSP structure

i5/OS 61

CT* values 54

CTL* values 63, 64

CU* values 47

CurrentQDepth attribute 445

D
data conversion

processing conventions 525

report messages 529

data types, conventions used 1

data types, detailed description
elementary

ILE 5

MQBOOL 2

MQBYTE 2

MQBYTEn 2

MQCHAR 2

MQCHARn 2

MQFLOAT32 3

MQFLOAT64 3

MQHCONN 3

MQHOBJ 3, 4, 5

MQINT16 4

MQINT8 3

MQLONG 4

MQUINT16 4

MQUINT8 4

overview 2

MQCSP
i5/OS 59

data types, detailed description

(continued)
structure

MQAIR 11

MQBMHO 15

MQBO 16

MQCBC 18

MQCBD 26

MQCHARV 32

MQCIH 35

MQCMHO 50

MQCNO 53

MQCTLO 63

MQDH 65

MQDLH 71

MQDMHO 78

MQDMPO 80

MQDXP 530

MQEPH 82

MQGMO 86

MQIIH 110

MQIMPO 116

MQMD 125

MQMDE 178

MQMHBO 184

MQOD 185

MQOR 197

MQPMO 202

MQPMR 221

MQRFH 224

MQRFH2 227

MQRMH 234

MQRR 242

MQSCO 243

MQSMPO 266

MQSTS 270

MQTM 274

MQTMC2 279

MQWIH 282

MQXQH 286

DATLEN parameter
MQGET call 353

MQINQMP call 373

MQXCNVC call 540

DCC* values 537

dead-letter header structure 71

DeadLetterQName attribute 479

DefBind attribute 445

DefinitionType attribute 446

DefInputOpenOption attribute 447

DefPersistence attribute 447

DefPriority attribute 448

DefXmitQName attribute 480

delete message handle options

structure 78

delete message property options 80

DH* values 70

DHCNT field 67

DHCSI field 67

DHENC field 67

DHF* values 67

DHFLG field 67

DHFMT field 68

DHLEN field 68

DHORO field 69

DHPRF field 69

DHPRO field 69

552 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

DHSID field 70

DHVER field 70

DistLists attribute 449, 481

distribution header structure 65

distribution lists 449, 481

DL* values 77, 449, 481

DLCSI field 73

DLDM field 74

DLDQ field 74

DLENC field 74

DLFMT field 74

DLPAN field 75

DLPAT field 75

DLPD field 75

DLPT field 75

DLREA field 76

DLSID field 77

DLVER field 77

DMOPT field
MQDMHO structure 79

DMSID field
MQDMHO structure 79

DMVER field
MQDMHO structure 79

DP* values 80, 81

DPOPT field
MQDPMO structure 80

DPSID field
MQDMPO structure 81

DPVER field
MQDMPO structure 81

DX* values 535

DXAOP field 531

DXCC field 531

DXCSI field 532

DXENC field 532

DXHCN field 532

DXLEN field 532

DXREA field 533

DXRES field 534

DXSID field 535

DXVER field 535

DXXOP field 536

dynamic queue 381

E
EI* values 136

embedded PCF header structure 82

EN* values 134

Encoding field
using 513

EnvData attribute 470

EPCSI
field

MQEPH structure 83

EPENC
MQEPH structure 83

EPFLG field
MQEPH structure 83

EPFMT field
MQEPH structure 84

EPH_* values 84

EPLEN field
MQEPH structure 84

EPPCFH field
MQEPH structure 84

EPSID field
MQEPH structure 84

EPVER field
MQEPH structure 85

EVR* values
AuthorityEvent attribute 474

ChannelAutoDefEvent attribute 474

InhibitEvent attribute 481

LocalEvent attribute 481, 482

PerformanceEvent attribute 484

QDepthHighEvent attribute 455

QDepthLowEvent attribute 456

QDepthMaxEvent attribute 457

RemoteEvent attribute 485

StartStopEvent attribute 487

F
FB* values 76, 137

FM* values 140

formats built-in 140

G
get-message options structure 86

GI* values 145

GM* values 89, 107

GMGST field 87

GMMO field 87

GMO parameter 352

MQCB call 307

GMOPT field 89

GMRE1 field 106

GMRL field 106

GMRQN field 107

GMSEG field 107

GMSG1 field 107

GMSG2 field 107

GMSID field 107

GMSST field 108

GMTOK field 108

GMVER field 108

GMWI field 109

GS* values 87

H
handle scope 337, 387

handle sharing 56

handles 482

HardenGetBackout attribute 450

HC* values 342

Hconn parameter
MQSTAT call 425

MQSUB call 428

HCONN parameter
MQBACK call 294, 376

MQBEGIN call 297

MQBUFMH call 300

MQCB call 305

MQCLOSE call 314

MQCMIT call 332

MQCONN call 337

MQCONNX call 341

MQCRTMH call 321

MQCTL call 326

HCONN parameter (continued)
MQDISC call 342

MQDLTMH call 344

MQDLTMP call 349

MQGET call 352

MQINQ call 361

MQINQMP call 370

MQOPEN call 381

MQPUT call 396

MQPUT1 call 407

MQSET call 414

MQSETMP call 419

MQSUBRQ call 434

MQXCNVC call 536

scope 337

HMSG parameter
MQCRTMH call 321

MQDLTMH call 345

MQDLTMP call 349

MQINQMP call 370

MQSETMP call 419

HO* values 314

Hobj field
MQCBC structure 23

HOBJ parameter
MQCB call 306

MQCLOSE call 314

MQGET call 352

MQINQ call 361

MQOPEN call 387

MQPUT call 396

MQSET call 414

MQSUB call 428

scope 387

I
IA* values 362, 415

IACNT parameter
MQINQ call 365

MQSET call 416

IAU* values 112

IAV* values 366

ICM* values 112

II* values 114

IIAUT field 112

IICMT field 112

IICSI field 112

IIENC field 112

IIFLG field 112

IIFMT field 113

IILEN field 113

IILTO field 113

IIMMN field 113

IIRFM field 113

IIRSV field 114

IISEC field 114

IISID field 114

IITID field 114

IITST field 115

IIVER field 115

INBUF parameter 543

InhibitEvent attribute 481

InhibitGet attribute 451

InhibitPut attribute 451

InitiationQName attribute 452

INLEN parameter 543

Index 553

inquire message property options 116

INTATR parameter
MQINQ call 366

MQSET call 416

IP* values 117, 123, 124

IPOPT field
MQIPMO structure 117

IPRE1 field 123

IPREQCSI field
MQIPMO structure 122

IPREQENC field
MQIPMO structure 122

IPRETCSI field
MQIPMO structure 123

IPRETENC field
MQIPMO structure 123

IPRETNAMCHRP field
MQIPMO structure 123

IPSID field
MQIMPO structure 123

IPTYP field
MQIPMO structure 124

IPVER field
MQIMPO structure 124

ISS* values 114

ITI* values 114

ITS* values 115

L
language declarations 312, 313

LDAPPassword
attribute 490

LDAPPassword field
MQAIR structure 12

LDAPUserName
attribute 490

LDAPUserNameLength field
MQAIR structure 12

LDAPUserNameOffset field
MQAIR structure 12

LDAPUserNamePtr field
MQAIR structure 13

LocalEvent attribute 481, 482

LT* values 43

M
MaxHandles attribute 482

MaxMsgLength attribute
queue 452

queue manager 482

MaxPriority attribute 483

MaxQDepth attribute 453

MaxUncommittedMsgs attribute 483

MB* values 184, 185

MBOPT field
MQMHBO structure 184

MBSID field
MQMHBO structure 185

MBVER field
MQMHBO structure 185

MD* values 174, 175

MDACC field 128

MDAID field 130

MDAOD field 130

MDBOC field 131

MDCID field 131

MDCSI field 132

MDENC field 134

MDEXP field 134

MDFB field 137

MDFMT field 140

MDGID field 144

MDMFL field 145

MDMID field 149

MDMT field 151

MDOFF field 152

MDOLN field 153

MDPAN field 154

MDPAT field 155

MDPD field 157

MDPER field 158

MDPRI field 159

MDPT field 160

MDREP field 161

MDRM field 172

MDRQ field 172

MDSEQ field 173

MDSID field 174

MDUID field 174

MDVER field 175

ME* values 182

MECSI field 180

MEENC field 181

MEF* values 181

MEFLG field 181

MEFMT field 181

MEGID field 181

MELEN field 182

MEMFL field 182

MEOFF field 182

MEOLN field 182

MESEQ field 182

MESID field 182

message descriptor extension

structure 178

message descriptor structure 125

message handle to buffer options 184

message order 358, 402, 412

MEVER field 182

MF* values 145

MI* values 151

MO* values 88

MQAIR structure 11

MQAIR_* values 13

MQBACK call 294

MQBEGIN call 297

MQBMHO structure 15

MQBO structure 16

MQBOOL 2

MQBUFMH call 300

MQBYTE 2

MQBYTEn 2

MQCB call 304

MQCBC structure 18

MQCBD structure 26

MQCBD_* values 30, 31

MQCBD_DEFAULT 32

MQCHAR 2

MQCHARn 2

MQCHARV structure 32

MQCIH structure 35

MQCLOSE call 313

MQCMHO structure 50

MQCMIT call 332

MQCNO structure 53

MQCONN call 335

MQCONNX call 340

MQCONVX call 542

MQCRTMH call 320

MQCSP structure
i5/OS 59

MQCTL call 325

MQCTLO structure 63

MQDH structure 65

MQDISC call 342

MQDLH structure 71

MQDLTMH call 344

MQDLTMP call 348

MQDMHO structure 78

MQDMPO structure 80

MQDXP parameter 542

MQDXP structure 530

MQEPH structure 82

MQFLOAT32 3

MQFLOAT64 3

MQGET call 351

MQGMO structure 86

MQHCONN 3

MQHOBJ 3, 4, 5

MQIIH structure 110

MQIMPO structure 116

MQIMPO_DEFAULT 124

MQINQ call 361

MQINQMP call 370

MQINT16 4

MQINT8 3

MQLONG 4

MQMD
parameter 542

structure 125

MQMDE structure 178

MQMHBO structure 184

MQMHBUF call 376

MQOD structure 185

MQOPEN call 380

MQOR structure 197

MQOT_* values
MQSTS structure 271

MQPMO structure 202

MQPMR structure 221

MQPUT call 395

MQPUT1 call 406

MQRFH structure 224

MQRFH2 structure 227

MQRMH structure 234

MQRR structure 242

MQSCO structure 243

MQSCO_* values 246

MQSD_* values 261

MQSD_DEFAULT 265

MQSET call 414

MQSETMP call 419

MQSMPO structure 266

MQSRO_* values 269

MQSTAT call 425

MQSTS structure 270

MQSTS_* values 273

MQSUB call 427

554 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

MQSUBRQ call 434

MQTM structure 274

MQTMC2 structure 279

MQUINT16 4

MQUINT8 4

MQWIH structure 282

MQXCNVC call 536

MQXQH structure 286

MS* values 453

MsgDeliverySequence attribute 453

MSGDSC parameter
MQCB call 306

MQGET call 352

MQPUT call 396

MQPUT1 call 407

MT* values 151

MTK* values 108

N
NameCount attribute 467

namelist attributes 466

NamelistDesc attribute 467

NamelistName attribute 468

Names attribute 468

NC* values 467

notational conventions – RPG

programming language 11

O
OBJDSC parameter

MQOPEN call 381

MQPUT1 call 407

object descriptor structure 185

object record structure 197

OD* values 194

ODASI field 187

ODAU field 187

ODDN field 188

ODIDC field 188

ODKDC field 189

ODMN field 189

ODON field 190

ODORO field 190

ODORP field 191

ODOT field 191

ODREC field 192

ODRMN field 192

ODRQN field 193

ODRRO field 193

ODRRP field 194

ODSID field 194

ODUDC field 195

ODVER field 195

OII* values 239

OL* values 43, 153

OO* values 382, 447

OpenInputCount attribute 454

OpenOutputCount attribute 454

OPERATN parameter
MQCB call 305

MQCTL call 326

Options field
MQCBD structure 30

MQSMPO structure 266

OPTS parameter
MQCLOSE call 314

MQOPEN call 381

MQXCNVC call 537

ordering of messages 358, 402, 412

ORMN field 198

ORON field 198

OT* values 191

OUTBUF parameter 543

OUTLEN parameter 543

P
PCTLOP parameter

MQCTLO call 328

PE* values 158

PerformanceEvent attribute 484

persistence 448

PF* values 69, 214

PL* values 484

Platform attribute 484

PM* values 204, 218

PMCT field 204

PMIDC field 204

PMKDC field 204

PMO parameter
MQPUT call 396

MQPUT1 call 407

PMOPT field 204

PMPRF field 214

PMPRO field 215

PMPRP field 216

PMREC field 216

PMRMN field 217

PMRQN field 217

PMRRO field 217

PMRRP field 218

PMSID field 218

PMTO field 219

PMUDC field 219

PMVER field 219

PR* values 159

PRACC field 222

PRCID field 222

PRFB field 222

PRGID field 223

PRMID field 223

PRNAME parameter
MQSETMP call 419

process definition attributes 468

ProcessDesc attribute 470

ProcessName attribute
process definition 471

queue 455

property descriptor structure 312, 313

PRPDSC parameter
MQSETMP call 420

put message record structure 221

put-message options structure 202

Q
QA* values

InhibitGet attribute 451

InhibitPut attribute 451

Shareability attribute 463

QD* values 446

QDepthHighEvent attribute 455

QDepthHighLimit attribute 456

QDepthLowEvent attribute 456

QDepthLowLimit attribute 456

QDepthMaxEvent attribute 457

QDesc attribute 457

QMgrDesc attribute 484

QMgrIdentifier attribute 484

QMgrName attribute 485

QMNAME parameter 335

MQCONNX call 340

QName attribute 458

QPubSub attribute
queue manager 485

QRPGLESRC 491

QServiceInterval attribute 458

QServiceIntervalEvent attribute 458

QSGD* values 459

QSGDisp attribute
queue 459

QSIE* values 458

QT* values 443, 460

QType attribute 460

queue attributes 437

queue manager aliasing 438

queue manager attributes 471

queue-sharing group 189, 336

queue, dynamic 381

R
RC* values 139

Reason field
MQCBC structure 23

Reason parameter
MQMHBUF call 302

MQSUB call 430, 435

REASON parameter
MQBACK call 295, 322

MQBEGIN call 298

MQCB call 308

MQCLOSE call 317

MQCMIT call 333

MQCONN call 338

MQCONNX call 341

MQCTL call 328

MQDISC call 343

MQDLTMH call 345

MQDLTMP call 349

MQGET call 354

MQINQ call 367

MQINQMP call 373

MQMHBUF call 378

MQOPEN call 388

MQPUT call 398

MQPUT1 call 408

MQSET call 416

MQSETMP call 421

MQSTAT call 426

MQXCNVC call 540

reference message header structure 234

RemoteEvent attribute 485

RemoteQMgrName attribute 460

RemoteQName attribute 461

reply queue aliasing 438

Index 555

Report field
using 517

report message conversion 529

RepositoryName attribute 485

RepositoryNamelist attribute 486

response record structure 242

RetentionInterval attribute 461

return codes 507

RF* values 226, 233

RF2CSI field 228

RF2ENC field 228

RF2FLG field 229

RF2FMT field 229

RF2LEN field 229

RF2NVC field 229

RF2NVD field 230

RF2NVL field 232

RF2SID field 233

RF2VER field 233

RFCSI field 224

RFENC field 225

RFFLG field 225

RFFMT field 225

RFLEN field 225

RFNVS field 225

RFSID field 226

RFVER field 226

RL* values 106

RM* values 238, 240

RMCSI field 236

RMDEL field 236

RMDEO field 236

RMDL field 236

RMDNL field 237

RMDNO field 237

RMDO field 237

RMDO2 field 238

RMENC field 238

RMFLG field 238

RMFMT field 238

RMLEN field 239

RMOII field 239

RMOT field 239

RMSEL field 239

RMSEO field 239

RMSID field 240

RMSNL field 240

RMSNO field 240

RMVER field 240

RO* values 161

RPG (ILE) sample programs 493

RPG programming language
COPY file 6

notational conventions 11

structures 8, 491

RRCC field 243

RRREA field 243

rules and formatting header

structure 224

rules and formatting header structure

version 2 227

S
sample programs 493

browse 496

echo 501

sample programs (continued)
get 497

inquire 502

preparing and running 495

put 495

request 498

set 503

trigger monitor 505

trigger server 505

using remote queues 506

using triggering 498

SCAIC field
MQSCO structure 244

SCAIO field
MQSCO structure 244

SCAIP field
MQSCO structure 245

SCCH field
MQSCO structure 245

SCKR field
MQSCO structure 246

SCO* values 462

Scope attribute 462

scope, handles 337, 387

SCSID field
MQSCO structure 246

SCVER field
MQSCO structure 247

security parameters
i5/OS 59

SEG* values 107

SELCNT parameter
MQINQ call 361

MQSET call 414

SELS parameter
MQINQ call 362

MQSET call 414

set message property options

structure 266

Shareability attribute 463

shared handles 56

shared queue 189, 357

SI* values 187

SIT* values 187

SP* values 487

SPSID field
MQSMPO structure 267

SPVAKCSI field
MQSMPO structure 267

SPVALENC field
MQSMPO structure 267

SPVER field
MQSMPO structure 267

SRCBUF parameter 539

SRCCSI parameter 539

SRCLEN parameter 539

SS* values 108

SSL configuration options structure 243

StartStopEvent attribute 487

Status structure 270

StrucId field
MQCBD structure 31

MQCSP structure
i5/OS 61

MQSD structure 261

MQSRO structure 269

structures – RPG programming

language 8, 491

STS parameter
MQSTAT call 426

STSCC field
MQSTS structure 271

STSOBJN field
MQSTS structure 271

STSOQMGR field
MQSTS structure 271

STSOT field
MQSTS structure 271

STSPFC field 271

STSPSC field 273

STSPWC field 273

STSRC field
MQSTS structure 272

STSROBJN field
MQOD structure 272

STSRQMGR field
MQSTS structure 272

STSSID field
MQSTS structure 273

STSVER field
MQSTS structure 273

STYPE parameter
MQSTAT call 426

syncpoint 487

in CICS for i5/OS applications 493

with WebSphere MQ 492

SyncPoint attribute 487

T
TC* values 281, 463

TC2AI field 280

TC2AT field 280

TC2ED field 280

TC2PN field 280

TC2QMN field 280

TC2QN field 281

TC2SID field 281

TC2TD field 281

TC2UD field 281

TC2VER field 281

TGTBUF parameter 540

TGTCSI parameter 539

TGTLEN parameter 540

TM* values 277

TMAI field 276

TMAT field 276

TMED field 277

TMPN field 277

TMQN field 277

TMSID field 277

TMTD field 278

TMUD field 278

TMVER field 278

transmission queue header structure 286

trigger message structure 274

TriggerControl attribute 463

TriggerData attribute 463

TriggerDepth attribute 464

triggering 463

TriggerInterval attribute 488

TriggerMsgPriority attribute 464

TriggerType attribute 464

556 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

trusted application 55

TT* values 465

TYPE parameter
MQINQMP call 371

MQSETMP call 420

U
Uncommitted messages 483

unit of work
building your application 492

MQBACK 295

MQBEGIN 299

MQCMIT 333

US* values 465

Usage attribute 465

UserData attribute 471

V
VALLEN parameter

MQINQMP call 372

MQSETMP call 420

VALUE parameter
MQINQMP call 372

MQSETMP call 421

variable length string structure 32

VCHRC field 33

VCHRL field 33

VCHRO field 34

VCHRP field 34

VCHRS field 34

Version field
MQCBD structure 31

MQSD structure 263

MQSRO structure 269

W
WebSphere MQ

syncpoint considerations with CICS

for i5/OS 493

syncpoints 492

WI* values 42, 109, 284

WICSI field 283

WIENC field 283

WIFLG field 284

WIFMT field 284

WILEN field 284

WIRSV field 284

WISID field 284

WISNM field 285

WISST field 285

WITOK field 285

WIVER field 285

X
XmitQName attribute 466

XQ* values 290, 291

XQMD field 290

XQRQ field 290

XQRQM field 290

XQSID field 290

XQVER field 291

XR* values 534

Index 557

558 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

Sending your comments to IBM

If you especially like or dislike anything about this book, please use one of the

methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on

the accuracy, organization, subject matter, or completeness of this book.

Please limit your comments to the information in this book and the way in which

the information is presented.

To make comments about the functions of IBM products or systems, talk to your

IBM representative or to your IBM authorized remarketer.

When you send comments to IBM , you grant IBM a nonexclusive right to use or

distribute your comments in any way it believes appropriate, without incurring

any obligation to you.

You can send your comments to IBM in any of the following ways:

v By mail, to this address:

User Technologies Department (MP095)

IBM United Kingdom Laboratories

Hursley Park

WINCHESTER,

Hampshire

SO21 2JN

United Kingdom

v By fax:

– From outside the U.K., after your international access code use 44-1962-816151

– From within the U.K., use 01962-816151
v Electronically, use the appropriate network ID:

– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL

– IBMLink™: HURSLEY(IDRCF)

– Internet: idrcf@hursley.ibm.com

Whichever method you use, ensure that you include:

v The publication title and order number

v The topic to which your comment applies

v Your name and address/telephone number/fax number/network ID.

© Copyright IBM Corp. 1994, 2008 559

560 WebSphere MQ for i5/OS: Application Programming Reference (ILE RPG)

���

SC34-6943-00

Sp
in
e
in
fo
rm
at
io
n:

 �
�

�

W
eb

Sp
he

re

M

Q

fo

r
i5

/O
S

Ap
pl

ic
at

io
n

Pr
og

ra
m

m
in

g
R

ef
er

en
ce

(I

LE

R

PG
)

Ve
rs

io
n

7.0

	Contents
	Figures
	Tables
	Chapter 1. Data type descriptions
	Elementary data types
	Conventions used in the descriptions of data types
	Elementary data types
	MQBOOL
	MQBYTE - Byte
	MQBYTEn – String of n bytes
	MQCHAR – character
	MQCHARn – String of n characters
	MQFLOAT32
	MQFLOAT64
	MQHCONN – Connection handle
	Overview for MQHMSG
	MQHOBJ – Object handle
	MQINT8
	MQINT16
	MQUINT8
	MQUINT16
	MQINT32 – 32 bit integer
	MQUINT32 – 32 bit unsigned integer
	MQINT64 – 64 bit integer
	MQUINT64 – 64 bit unsigned integer
	MQLONG – Long integer
	PMQINT32 – Pointer to data of type MQINT32
	PMQUINT32 – Pointer to data of type MQUINT32
	PMQINT64 – Pointer to data of type MQINT64
	PMQUINT64 – Pointer to data of type MQUINT64
	Elementary data types

	Language considerations
	COPY files
	Calls
	Call parameters
	Structures
	Named constants
	MQI procedures
	Threading considerations
	Commitment control
	Coding the bound calls
	Notational conventions

	MQAIR – Authentication information record
	Overview for MQAIR
	Fields for MQAIR
	AICN (10-digit signed integer)
	AITYP (10-digit signed integer)
	AIPW (10-digit signed integer)
	AILUL (10-digit signed integer)
	AILUO (10-digit signed integer)
	AILUP (10-digit signed integer)
	AISID (10-digit signed integer)
	AIVER (10-digit signed integer)

	Initial values and RPG declaration
	RPG declaration (copy file CMQAIRG)

	MQBMHO – Buffer to message handle options
	Overview for MQBMHO
	Fields for MQBMHO
	BMOPT (10-digit signed integer)
	BMSID (10-digit signed integer)
	BMVER (10-digit signed integer)

	Initial values and RPG declaration
	RPG declaration (copy file CMQBMHOG)

	MQBO – Begin options
	Overview
	Fields
	BOOPT (10-digit signed integer)
	BOSID (4-byte character string)
	BOVER (10-digit signed integer)

	Initial values and RPG declaration
	RPG declaration (copy file CMQBOG)

	MQCBC – Callback context
	Overview for MQCBC
	Fields for MQCBC
	CBCBUFFLEN (10-digit signed integer)
	CBCCALLBA (10-digit signed integer)
	CBCCALLT (10-digit signed integer)
	CBCCC (10-digit signed integer)
	CBCCONNAREA (10-digit signed integer)
	CBCLEN (10-digit signed integer)
	CBCFLG (10-digit signed integer)
	CBCHOBJ (10-digit signed integer)
	CBCREA (10-digit signed integer)
	CBCSTATE (10-digit signed integer)
	CBCSID (10-digit signed integer)
	CBCVER (10-digit signed integer)

	Initial values and RPG declaration
	RPG declaration (copy file CMQCBCG)

	MQCBD – Callback descriptor
	Overview for MQCBD
	Fields for MQCBD
	CBDCALLBA (10-digit signed integer)
	CBDCALLBF (10-digit signed integer)
	CBDCALLBN (10-digit signed integer)
	CBDCALLBT (10-digit signed integer)
	CBDMML (10-digit signed integer)
	CBDOPT (10-digit signed integer)
	CBDSID (10-digit signed integer)
	CBDVER (10-digit signed integer)

	Initial values and RPG declaration
	RPG declaration (copy file MQCBDG)

	MQCHARV - Variable Length String
	Overview
	Fields
	VCHRC (10-digit signed integer)
	VCHRL (10-digit signed integer)
	VCHRO (10-digit signed integer)
	VCHRP (pointer)
	VCHRS (10-digit signed integer)

	Initial values and RPG declaration
	RPG declaration for MQCHARV

	Redefinition of CSAPL

	MQCIH – CICS bridge header
	Overview
	Fields
	CIAC (4-byte character string)
	CIADS (10-digit signed integer)
	CIAI (4-byte character string)
	CIAUT (8-byte character string)
	CICC (10-digit signed integer)
	CICNC (4-byte character string)
	CICP (10-digit signed integer)
	CICSI (10-digit signed integer)
	CICT (10-digit signed integer)
	CIENC (10-digit signed integer)
	CIEO (10-digit signed integer)
	CIFAC (8-byte bit string)
	CIFKT (10-digit signed integer)
	CIFL (4-byte character string)
	CIFLG (10-digit signed integer)
	CIFMT (8-byte character string)
	CIFNC (4-byte character string)
	CIGWI (10-digit signed integer)
	CIII (10-digit signed integer)
	CILEN (10-digit signed integer)
	CILT (10-digit signed integer)
	CINTI (4-byte character string)
	CIODL (10-digit signed integer)
	CIREA (10-digit signed integer)
	CIRET (10-digit signed integer)
	CIRFM (8-byte character string)
	CIRSI (4-byte character string)
	CIRS1 (8-byte character string)
	CIRS2 (8-byte character string)
	CIRS3 (8-byte character string)
	CIRS4 (10-digit signed integer)
	CIRTI (4-byte character string)
	CISC (4-byte character string)
	CISID (4-byte character string)
	CITES (10-digit signed integer)
	CITI (4-byte character string)
	CIUOW (10-digit signed integer)
	CIVER (10-digit signed integer)

	Initial values and RPG declaration
	RPG declaration (copy file CMQCIHG)

	MQCMHO – Create-message options
	Overview for MQCMHO
	Fields for MQCMHO
	CMOPT (10-digit signed integer)
	CMSID (10-digit signed integer)
	CMVER (10-digit signed integer)

	Initial values and RPG declaration
	RPG declaration (copy file CMQCMHOG)

	MQCNO – Connect options
	Overview
	Fields
	CNCCO (10-digit signed integer)
	CNCCP (pointer)
	CNCONID (24-byte character string)
	CNCT (128-byte bit string)
	CNOPT (10-digit signed integer)
	CNSCO (10-digit signed integer)
	CNSCP (pointer)
	CNSECPO (10-digit signed integer)
	CNSECPP (pointer)
	CNSID (4-byte character string)
	CNVER (10-digit signed integer)

	Initial values and RPG declaration
	RPG declaration (copy file CMQCNOG)

	MQCSP - Security parameters
	Overview for MQCSP
	Fields for MQCSP
	CSAUTHT (10-digit signed integer)
	CSCPPL (10-digit signed integer)
	CSCPPO (10-digit signed integer)
	CSCPPP (pointer)
	CSCSPUIL (10-digit signed integer)
	CSCSPUIO (10-digit signed integer)
	CSCSPUIP (pointer)
	CSRE1 (4-byte character string)
	CSRS2 (8-byte character string)
	CSSID (4-byte character string)
	CSVER (10-digit signed integer)

	Initial values and RPG declaration
	Initial values and RPG declaration

	MQCTLO – Control callback options structure
	Overview for MQCTLO
	Fields for MQCTLO
	COCONNAREA (10-digit signed integer)
	COOPT (10-digit signed integer)
	CORSV (10-digit signed integer)
	COSID (10-digit signed integer)
	COVER (10-digit signed integer)

	Initial values and RPG declaration
	RPG declaration (copy file CTLOG)

	MQDH – Distribution header
	Overview
	Fields
	DHCNT (10-digit signed integer)
	DHCSI (10-digit signed integer)
	DHENC (10-digit signed integer)
	DHFLG (10-digit signed integer)
	DHFMT (8-byte character string)
	DHLEN (10-digit signed integer)
	DHORO (10-digit signed integer)
	DHPRF (10-digit signed integer)
	DHPRO (10-digit signed integer)
	DHSID (4-byte character string)
	DHVER (10-digit signed integer)

	Initial values and RPG declaration
	RPG declaration (copy file CMQDHG)

	MQDLH – Dead-letter header
	Overview
	Fields
	DLCSI (10-digit signed integer)
	DLDM (48-byte character string)
	DLDQ (48-byte character string)
	DLENC (10-digit signed integer)
	DLFMT (8-byte character string)
	DLPAN (28-byte character string)
	DLPAT (10-digit signed integer)
	DLPD (8-byte character string)
	DLPT (8-byte character string)
	DLREA (10-digit signed integer)
	DLSID (4-byte character string)
	DLVER (10-digit signed integer)

	Initial values and RPG declaration
	RPG declaration (copy file CMQDLHG)

	MQDMHO – Delete message handle options
	Overview for MQDMHO
	Fields for MQDMHO
	DMOPT (10-digit signed integer)
	DMSID (10-digit signed integer)
	DMVER (10-digit signed integer)

	Initial values and RPG declaration
	RPG declaration (copy file MQDMHOG)

	MQDMPO – Delete message property options
	Overview for MQDMPO
	Fields for MQDMPO
	DPOPT (10-digit signed integer)
	DPSID (10-digit signed integer)
	DPVER (10-digit signed integer)

	Initial values and RPG declaration
	RPG declaration (copy file MQDMPOG)

	MQEPH – Embedded PCF header
	Overview
	Fields
	EPCSI (10-digit signed integer)
	EPENC (10-digit signed integer)
	EPFLG (10-digit signed integer)
	EPFMT (8-byte character string)
	EPLEN (10-digit signed integer)
	EPPCFH (MQCFH)
	EPSID (4-byte character string)
	EPVER (10-digit signed integer)

	Initial values and language declarations
	RPG declaration (copy file CMQEPHG)

	MQGMO – Get-message options
	Overview
	Fields
	GMGST (1-byte character string)
	GMMO (10-digit signed integer)
	GMOPT (10-digit signed integer)
	GMRE1 (1-byte character string)
	GMRL (10-digit signed integer)
	GMRQN (48-byte character string)
	GMSEG (1-byte character string)
	GMSG1 (10-digit signed integer)
	GMSG2 (10-digit signed integer)
	GMSID (4-byte character string)
	GMSST (1-byte character string)
	GMTOK (16-byte bit string)
	GMVER (10-digit signed integer)
	GMWI (10-digit signed integer)

	Initial values and RPG declaration
	RPG declaration (copy file CMQGMOG)

	MQIIH – IMS information header
	Overview
	Fields
	IIAUT (8-byte character string)
	IICMT (1-byte character string)
	IICSI (10-digit signed integer)
	IIENC (10-digit signed integer)
	IIFLG (10-digit signed integer)
	IIFMT (8-byte character string)
	IILEN (10-digit signed integer)
	IILTO (8-byte character string)
	IIMMN (8-byte character string)
	IIRFM (8-byte character string)
	IIRSV (1-byte character string)
	IISEC (1-byte character string)
	IISID (4-byte character string)
	IITID (16-byte bit string)
	IITST (1-byte character string)
	IIVER (10-digit signed integer)

	Initial values and RPG declaration
	RPG declaration (copy file CMQIIHG)

	MQIMPO – Inquire message property options
	Overview for MQIMPO
	Fields for MQIMPO
	IPOPT (10-digit signed integer)
	IPREQCSI (10-digit signed integer)
	IPREQENC (10-digit signed integer)
	IPRE1 (10-digit signed integer)
	IPRETCSI (10-digit signed integer)
	IPRETENC (10-digit signed integer)
	IPRETNAMCHRP (10-digit signed integer)
	IPSID (10-digit signed integer)
	IPTYP (10-digit signed integer)
	IPVER (10-digit signed integer)

	Initial values and RPG declaration
	RPG declaration (copy file MQIMPOG)

	MQMD – Message descriptor
	Overview
	Fields
	MDACC (32-byte bit string)
	MDAID (32-byte character string)
	MDAOD (4-byte character string)
	MDBOC (10-digit signed integer)
	MDCID (24-byte bit string)
	MDCSI (10-digit signed integer)
	MDENC (10-digit signed integer)
	MDEXP (10-digit signed integer)
	MDFB (10-digit signed integer)
	MDFMT (8-byte character string)
	MDGID (24-byte bit string)
	MDMFL (10-digit signed integer)
	MDMID (24-byte bit string)
	MDMT (10-digit signed integer)
	MDOFF (10-digit signed integer)
	MDOLN (10-digit signed integer)
	MDPAN (28-byte character string)
	MDPAT (10-digit signed integer)
	MDPD (8-byte character string)
	MDPER (10-digit signed integer)
	MDPRI (10-digit signed integer)
	MDPT (8-byte character string)
	MDREP (10-digit signed integer)
	MDRM (48-byte character string)
	MDRQ (48-byte character string)
	MDSEQ (10-digit signed integer)
	MDSID (4-byte character string)
	MDUID (12-byte character string)
	MDVER (10-digit signed integer)

	Initial values and RPG declaration
	RPG declaration (copy file CMQMDG)

	MQMDE – Message descriptor extension
	Overview
	Fields
	MECSI (10-digit signed integer)
	MEENC (10-digit signed integer)
	MEFLG (10-digit signed integer)
	MEFMT (8-byte character string)
	MEGID (24-byte bit string)
	MELEN (10-digit signed integer)
	MEMFL (10-digit signed integer)
	MEOFF (10-digit signed integer)
	MEOLN (10-digit signed integer)
	MESEQ (10-digit signed integer)
	MESID (4-byte character string)
	MEVER (10-digit signed integer)

	Initial values and RPG declaration
	RPG declaration (copy file CMQMDEG)

	MQMHBO – Message handle to buffer options
	Overview for MQMHBO
	Fields for MQMHBO
	MBOPT (10-digit signed integer)
	MBSID (10-digit signed integer)
	MBVER (10-digit signed integer)

	Initial values and RPG declaration
	RPG declaration (copy file MQMHBOG)

	MQOD – Object descriptor
	Overview
	Fields
	ODASI (40-byte bit string)
	ODAU (12-byte character string)
	ODDN (48-byte character string)
	ODIDC (10-digit signed integer)
	ODKDC (10-digit signed integer)
	ODMN (48-byte character string)
	ODON (48-byte character string)
	ODORO (10-digit signed integer)
	ODORP (pointer)
	ODOS (MQCHARV)
	ODOT (10-digit signed integer)
	ODREC (10-digit signed integer)
	ODRMN (48-byte character string)
	ODRO (MQCHARV)
	ODRQN (48-byte character string)
	ODRRO (10-digit signed integer)
	ODRRP (pointer)
	ODSID (4-byte character string)
	ODSS (MQCHARV)
	ODUDC (10-digit signed integer)
	ODVER (10-digit signed integer)

	Initial values and RPG declaration
	RPG declaration (copy file CMQODG)

	MQOR – Object record
	Overview
	Fields
	ORMN (48-byte character string)
	ORON (48-byte character string)

	Initial values and RPG declaration
	RPG declaration (copy file CMQORG)

	MQPD – Property descriptor
	Overview for MQPD
	Fields for MQPD
	PDCT (10-digit signed integer)
	PDCPYOPT (10-digit signed integer)
	PDOPT (10-digit signed integer)
	PDSID (10-digit signed integer)
	PDSUP (10-digit signed integer)
	PDVER (10-digit signed integer)

	Initial values and RPG declaration
	RPG declaration (copy file MQPDG)

	MQPMO – Put-message options
	Overview
	Fields
	PMCT (10-digit signed integer)
	PMIDC (10-digit signed integer)
	PMKDC (10-digit signed integer)
	PMOPT (10-digit signed integer)
	PMPRF (10-digit signed integer)
	PMPRO (10-digit signed integer)
	PMPRP (pointer)
	PMREC (10-digit signed integer)
	PMRMN (48-byte character string)
	PMRQN (48-byte character string)
	PMRRO (10-digit signed integer)
	PMRRP (pointer)
	PMSID (4-byte character string)
	PMSL (MQLONG)
	PMTO (10-digit signed integer)
	PMUDC (10-digit signed integer)
	PMVER (10-digit signed integer)

	Initial values and RPG declaration
	RPG declaration (copy file CMQPMOG)

	MQPMR – Put-message record
	Overview
	Fields
	PRACC (32-byte bit string)
	PRCID (24-byte bit string)
	PRFB (10-digit signed integer)
	PRGID (24-byte bit string)
	PRMID (24-byte bit string)

	Initial values and RPG declaration
	RPG declaration

	MQRFH – Rules and formatting header
	Overview
	Fields
	RFCSI (10-digit signed integer)
	RFENC (10-digit signed integer)
	RFFLG (10-digit signed integer)
	RFFMT (8-byte character string)
	RFLEN (10-digit signed integer)
	RFNVS (n-byte character string)
	RFSID (4-byte character string)
	RFVER (10-digit signed integer)

	Initial values and RPG declaration
	RPG declaration (copy file CMQRFHG)

	MQRFH2 – Rules and formatting header 2
	Overview
	Fields
	RF2CSI (10-digit signed integer)
	RF2ENC (10-digit signed integer)
	RF2FLG (10-digit signed integer)
	RF2FMT (8-byte character string)
	RF2LEN (10-digit signed integer)
	RF2NVC (10-digit signed integer)
	RF2NVD (n-byte character string)
	RF2NVL (10-digit signed integer)
	RF2SID (4-byte character string)
	RF2VER (10-digit signed integer)

	Initial values and RPG declaration
	RPG declaration (copy file CMQRFH2G)

	MQRMH – Reference message header
	Overview
	Fields
	RMCSI (10-digit signed integer)
	RMDEL (10-digit signed integer)
	RMDEO (10-digit signed integer)
	RMDL (10-digit signed integer)
	RMDNL (10-digit signed integer)
	RMDNO (10-digit signed integer)
	RMDO (10-digit signed integer)
	RMDO2 (10-digit signed integer)
	RMENC (10-digit signed integer)
	RMFLG (10-digit signed integer)
	RMFMT (8-byte character string)
	RMLEN (10-digit signed integer)
	RMOII (24-byte bit string)
	RMOT (8-byte character string)
	RMSEL (10-digit signed integer)
	RMSEO (10-digit signed integer)
	RMSID (4-byte character string)
	RMSNL (10-digit signed integer)
	RMSNO (10-digit signed integer)
	RMVER (10-digit signed integer)

	Initial values and RPG declaration
	RPG declaration (copy file CMQRMHG)

	MQRR – Response record
	Overview
	Fields
	RRCC (10-digit signed integer)
	RRREA (10-digit signed integer)

	Initial values and RPG declaration
	RPG declaration (copy file CMQRRG)

	MQSCO – SSL configuration options
	Overview for MQSCO
	Fields for MQSCO
	SCAIC (10-digit signed integer)
	SCAIO (10-digit signed integer)
	SCAIP (10-digit signed integer)
	SCCH (10-digit signed integer)
	SCKR (10-digit signed integer)
	SCSID (10-digit signed integer)
	SCVER (10-digit signed integer)

	Initial values and RPG declaration
	RPG declaration (copy file MQSCOG)

	MQSD - Subscription Descriptor
	Overview
	Fields
	SDAID (32-byte character string)
	SDACC (32-byte character string)
	SDASI (40-byte bit string)
	SDAU (12-byte character string)
	SDCID (24-byte bit string)
	SDEXP
	SDON (48-byte character string)
	SDOPT (10-digit signed integer)
	SDOS (MQCHARV)
	SDPRI (10-digit signed integer)
	ODRO (MQCHARV)
	SDSID (4-byte character string)
	PMPL (10-digit signed integer)
	SDSN (MQCHARV)
	SDSUD (MQCHARV)
	SDVER (10-digit signed integer)

	Using topic strings
	Initial values and RPG declaration
	RPG declaration

	MQSMPO – Set message property options
	Overview for MQSMPO
	Fields for MQSMPO
	SPOPT (10-digit signed integer)
	SPSID (10-digit signed integer)
	SPVAKCSI (10-digit signed integer)
	SPVALENC (10-digit signed integer)
	SPVER (10-digit signed integer)

	Initial values and RPG declaration
	RPG declaration (copy file MQSMPOG)

	MQSRO - Subscription Request Options
	Overview
	Fields
	SRNMP (10-digit signed integer)
	SROPT (10-digit signed integer)
	SRSID (4-byte character string)
	SRVER (10-digit signed integer)

	Initial Values and RPG declaration
	RPG invocation

	MQSTS – Status reporting structure
	Overview
	Fields
	STSCC (10-digit signed integer)
	STSPFC (10-digit signed integer)
	STSOBJN (48-byte character string)
	STSOQMGR (48-byte character string)
	STSOT (10-digit signed integer)
	STSRC (10-digit signed integer)
	STSROBJN (48-byte character string)
	STSRQMGR (48-byte character string)
	STSPSC (10-digit signed integer)
	STSSID (4-byte character string)
	STSVER (10-digit signed integer)
	STSPWC (10-digit signed integer)

	Initial values and language declarations
	RPG declaration

	MQTM – Trigger message
	Overview
	Fields
	TMAI (256-byte character string)
	TMAT (10-digit signed integer)
	TMED (128-byte character string)
	TMPN (48-byte character string)
	TMQN (48-byte character string)
	TMSID (4-byte character string)
	TMTD (64-byte character string)
	TMUD (128-byte character string)
	TMVER (10-digit signed integer)

	Initial values and RPG declaration
	RPG declaration (copy file CMQTMG)

	MQTMC2 – Trigger message 2 (character format)
	Overview
	Fields
	TC2AI (256-byte character string)
	TC2AT (4-byte character string)
	TC2ED (128-byte character string)
	TC2PN (48-byte character string)
	TC2QMN (48-byte character string)
	TC2QN (48-byte character string)
	TC2SID (4-byte character string)
	TC2TD (64-byte character string)
	TC2UD (128-byte character string)
	TC2VER (4-byte character string)

	Initial values and RPG declaration
	RPG declaration (copy file CMQTMC2G)

	MQWIH – Work information header
	Overview
	Fields
	WICSI (10-digit signed integer)
	WIENC (10-digit signed integer)
	WIFLG (10-digit signed integer)
	WIFMT (8-byte character string)
	WILEN (10-digit signed integer)
	WIRSV (32-byte character string)
	WISID (4-byte character string)
	WISNM (32-byte character string)
	WISST (8-byte character string)
	WITOK (16-byte bit string)
	WIVER (10-digit signed integer)

	Initial values and RPG declaration
	RPG declaration (copy file CMQWIHG)

	MQXQH – Transmission-queue header
	Overview
	Fields
	XQMD (MQMD1)
	XQRQ (48-byte character string)
	XQRQM (48-byte character string)
	XQSID (4-byte character string)
	XQVER (10-digit signed integer)
	Initial values and RPG declaration

	Chapter 2. Function calls
	Call descriptions
	Conventions used in the call descriptions

	MQBACK - Back out changes
	Syntax
	Parameters
	HCONN (10-digit signed integer) – input
	CMPCOD (10-digit signed integer) – output
	REASON (10-digit signed integer) – output

	Usage notes
	RPG invocation

	MQBEGIN - Begin unit of work
	Syntax
	Parameters
	HCONN (10-digit signed integer) – input
	BEGOP (MQBO) – input/output
	CMPCOD (10-digit signed integer) – output
	REASON (10-digit signed integer) – output

	Usage notes
	RPG invocation (ILE)

	MQBUFMH - Convert buffer into message handle
	Syntax for MQBUFMH
	Parameters for MQBUFMH
	HCONN (10-digit signed integer) - output
	HMSG (10-digit signed integer) - output
	BMHOPT (10-digit signed integer) - output
	MSGDSC (10-digit signed integer) - output
	BUFLEN (10-digit signed integer) - output
	BUFFER (10-digit signed integer) - output
	DATLEN (10-digit signed integer) - output
	CMPCOD (10-digit signed integer) - output
	REASON (10-digit signed integer) - output

	Usage notes for MQBUFMH
	Language invocations for MQBUFMH
	C invocation
	COBOL invocation
	PL/I invocation
	System/390 assembler invocation

	MQCB – Manage callback
	Syntax for MQCB
	Parameters for MQCB
	HCONN (10-digit signed integer) - input
	OPERATN (10-digit signed integer) - input
	CBDSC (10-digit signed integer) - input
	HOBJ (10-digit signed integer) - input
	MSGDSC (10-digit signed integer) - input
	GMO (10-digit signed integer) - input
	CMPCOD (10-digit signed integer) - output
	REASON (10-digit signed integer) - output

	Usage notes for MQCB
	Message consumer callback sequence
	Message consumer connection usage

	Language invocations for MQCB
	C invocation

	MQCLOSE - Close object
	Syntax
	Parameters
	HCONN (10-digit signed integer) – input
	HOBJ (10-digit signed integer) – input/output
	OPTS (10-digit signed integer) – input
	CMPCOD (10-digit signed integer) – output
	REASON (10-digit signed integer) – output

	Usage notes
	RPG invocation

	MQCRTMH – Create message handle
	Syntax for MQCRTMH
	Parameters for MQCRTMH
	HCONN (10-digit signed integer) - input
	CRTOPT (10-digit signed integer) - input
	HMSG (10-digit signed integer) - output
	CMPCOD (10-digit signed integer) - output
	REASON (10-digit signed integer) - output

	Usage notes for MQCRTMH
	Language invocations for MQCRTMH
	C invocation
	COBOL invocation
	PL/I invocation
	System/390 assembler invocation

	MQCTL – Control callback
	Syntax for MQCTL
	Parameters for MQCTL
	HCONN (10-digit signed integer) - input
	OPERATN (10-digit signed integer) - input
	PCTLOP (10-digit signed integer) - input
	CMPCOD (10-digit signed integer) - output
	REASON (10-digit signed integer) - output

	Usage notes for MQCTL
	Language invocations for MQCTL
	C invocation

	MQCMIT - Commit changes
	Syntax
	Parameters
	HCONN (10-digit signed integer) – input
	COMCOD (10-digit signed integer) – output
	REASON (10-digit signed integer) – output

	Usage notes
	RPG invocation

	MQCONN - Connect queue manager
	Syntax
	Parameters
	QMNAME (48-byte character string) – input
	HCONN (10-digit signed integer) – output
	CMPCOD (10-digit signed integer) – output
	REASON (10-digit signed integer) – output

	Usage notes
	RPG invocation

	MQCONNX - Connect queue manager (extended)
	Syntax
	Parameters
	QMNAME (48-byte character string) – input
	CNOPT (MQCNO) – input/output
	HCONN (10-digit signed integer) – output
	CMPCOD (10-digit signed integer) – output
	CONNID (10-digit signed integer) – output
	REASON (10-digit signed integer) – output

	RPG invocation

	MQDISC - Disconnect queue manager
	Syntax
	Parameters
	HCONN (10-digit signed integer) – input/output
	CMPCOD (10-digit signed integer) – output
	REASON (10-digit signed integer) – output

	Usage notes
	RPG invocation

	MQDLTMH – Delete message handle
	Syntax for MQDLTMH
	Parameters for MQDLTMH
	HCONN (10-digit signed integer) - input
	HMSG (10-digit signed integer) - input/output
	DLTOPT (10-digit signed integer) - input
	CMPCOD (10-digit signed integer) - output
	REASON (10-digit signed integer) - output

	Usage notes for MQDLTMH
	Language invocations for MQDLTMH
	C invocation
	COBOL invocation
	PL/I invocation
	System/390 assembler invocation

	MQDLTMP - Delete message property
	Syntax for MQDLTMP
	Parameters for MQDLTMP
	HCONN (10-digit signed integer) - Input
	HMSG (10-digit signed integer) - input
	DLTOPT (10-digit signed integer) - Input
	PRNAME (10-digit signed integer) - input
	CMPCOD (10-digit signed integer) - output
	REASON (10-digit signed integer) - output

	Language invocations for MQDLTMP
	C invocation
	COBOL invocation
	PL/I invocation
	System/390 assembler invocation

	MQGET - Get message
	Syntax
	Parameters
	HCONN (10-digit signed integer) – input
	HOBJ (10-digit signed integer) – input
	MSGDSC (MQMD) – input/output
	GMO (MQGMO) – input/output
	BUFLEN (10-digit signed integer) – input
	BUFFER (1-byte bit stringBUFLEN) – output
	DATLEN (10-digit signed integer) – output
	CMPCOD (10-digit signed integer) – output
	REASON (10-digit signed integer) – output

	Usage notes
	RPG invocation

	MQINQ - Inquire about object attributes
	Syntax
	Parameters
	HCONN (10-digit signed integer) – input
	HOBJ (10-digit signed integer) – input
	SELCNT (10-digit signed integer) – input
	SELS (10-digit signed integerSELCNT) – input
	IACNT (10-digit signed integer) – input
	INTATR (10-digit signed integerIACNT) – output
	CALEN (10-digit signed integer) – input
	CHRATR (1-byte character stringCALEN) – output
	CMPCOD (10-digit signed integer) – output
	REASON (10-digit signed integer) – output

	Usage notes
	RPG invocation

	MQINQMP - Inquire message property
	Syntax for MQINQMP
	Parameters for MQINQMP
	HCONN (10-digit signed integer) - Input
	HMSG (10-digit signed integer) - input
	INQOPT (10-digit signed integer) - Input
	PRNAME (10-digit signed integer) - input
	PRPDSC (10-digit signed integer) - output
	TYPE (10-digit signed integer) - input/output
	VALUE (10-digit signed integer) - output
	VALLEN (10-digit signed integer) - input
	DATLEN (10-digit signed integer) - output
	CMPCOD (10-digit signed integer) - output
	REASON (10-digit signed integer) - output

	Language invocations for MQINQMP
	C invocation
	COBOL invocation
	PL/I invocation
	System/390 assembler invocation

	MQMHBUF - Convert message handle into buffer
	Syntax for MQMHBUF
	Parameters for MQMHBUF
	HCONN (10-digit signed integer) - input
	HMSG (10-digit signed integer) - input
	MHBOPT (10-digit signed integer) - input
	PRNAME (10-digit signed integer) - input
	MSGDSC (10-digit signed integer) - input/output
	BUFLEN (10-digit signed integer) - input
	BUFFER (10-digit signed integer) - output
	DATLEN (10-digit signed integer) - output
	CMPCOD (10-digit signed integer) - output
	REASON (10-digit signed integer) - output

	Usage notes for MQMHBUF
	Language invocations for MQMHBUF
	C invocation
	COBOL invocation
	PL/I invocation
	System/390 assembler invocation

	MQOPEN - Open object
	Syntax
	Parameters
	HCONN (10-digit signed integer) – input
	OBJDSC (MQOD) – input/output
	OPTS (10-digit signed integer) – input
	HOBJ (10-digit signed integer) – output
	CMPCOD (10-digit signed integer) – output
	REASON (10-digit signed integer) – output

	Usage notes
	RPG invocation

	MQPUT - Put message
	Syntax
	Parameters
	HCONN (10-digit signed integer) – input
	HOBJ (10-digit signed integer) – input
	MSGDSC (MQMD) – input/output
	PMO (MQPMO) – input/output
	BUFLEN (10-digit signed integer) – input
	BUFFER (1-byte bit stringBUFLEN) – input
	CMPCOD (10-digit signed integer) – output
	REASON (10-digit signed integer) – output

	Usage notes
	RPG invocation

	MQPUT1 - Put one message
	Syntax
	Parameters
	HCONN (10-digit signed integer) – input
	OBJDSC (MQOD) – input/output
	MSGDSC (MQMD) – input/output
	PMO (MQPMO) – input/output
	BUFLEN (10-digit signed integer) – input
	BUFFER (1-byte bit stringBUFLEN) – input
	CMPCOD (10-digit signed integer) – output
	REASON (10-digit signed integer) – output

	Usage notes
	RPG invocation

	MQSET - Set object attributes
	Syntax
	Parameters
	HCONN (10-digit signed integer) – input
	HOBJ (10-digit signed integer) – input
	SELCNT (10-digit signed integer) – input
	SELS (10-digit signed integerSELCNT) – input
	IACNT (10-digit signed integer) – input
	INTATR (10-digit signed integerIACNT) – input
	CALEN (10-digit signed integer) – input
	CHRATR (1-byte character stringCALEN) – input
	CMPCOD (10-digit signed integer) – output
	REASON (10-digit signed integer) – output

	Usage notes
	RPG invocation

	MQSETMP – Set message handle property
	Syntax for MQSETMP
	Parameters for MQSETMP
	HCONN (10-digit signed integer) - input
	HMSG (10-digit signed integer) - input/output
	SETOPT (10-digit signed integer) - input
	PRNAME (10-digit signed integer) - input
	PRPDSC (10-digit signed integer) - input/output
	TYPE (10-digit signed integer) - input
	VALLEN (10-digit signed integer) - input
	VALUE (10-digit signed integer) - input
	CMPCOD (10-digit signed integer) - output
	REASON (10-digit signed integer) - output

	Usage notes for MQSETMP
	Language invocations for MQSETMP
	C invocation
	COBOL invocation
	PL/I invocation
	System/390 assembler invocation

	MQSTAT – Retrieve status information
	Syntax
	Parameters
	Hconn (MQHCONN) – input
	STYPE (10-digit signed integer) – input
	STS (MQSTS) – input
	CMPCOD (10-digit signed integer) – output
	REASON (10-digit signed integer) – output

	Usage notes
	RPG invocation

	MQSUB – Register Subscription
	Syntax
	Parameters
	HCONN (10-digit signed integer) – input
	SUBDSC (MQSD) – input/output
	HOBJ (10-digit signed integer) – input/output
	HSUB (10-digit signed integer) – input
	CMPCOD (10-digit signed integer) - output
	REASON (10-digit signed integer) - output

	Usage notes
	RPG invocation

	MQSUBRQ - Subscription Request
	Syntax
	Parameters
	HCONN (10-digit signed integer) - Input
	HSUB (10-digit signed integer) - input
	ACTION (10-digit signed integer) - Input
	SBROPT (MQSRO) - Input/output
	CMPCOD (10-digit signed integer) - output
	Reason (10-digit signed integer) - output

	Usage notes
	Language invocations

	Chapter 3. Attributes of objects
	Attributes for queues
	Overview
	AlterationDate (12-byte character string)
	AlterationTime (8-byte character string)
	BackoutRequeueQName (48-byte character string)
	BackoutThreshold (10-digit signed integer)
	BaseQName (48-byte character string)
	CFStrucName (12-byte character string)
	ClusterName (48-byte character string)
	ClusterNamelist (48-byte character string)
	CreationDate (12-byte character string)
	CreationTime (8-byte character string)
	CurrentQDepth (10-digit signed integer)
	DefBind (10-digit signed integer)
	DefinitionType (10-digit signed integer)
	DefInputOpenOption (10-digit signed integer)
	DefPersistence (10-digit signed integer)
	DefPriority (10-digit signed integer)
	DistLists (10-digit signed integer)
	HardenGetBackout (10-digit signed integer)
	InhibitGet (10-digit signed integer)
	InhibitPut (10-digit signed integer)
	InitiationQName (48-byte character string)
	MaxMsgLength (10-digit signed integer)
	MaxQDepth (10-digit signed integer)
	MediaLog (10-digit signed integer)
	MsgDeliverySequence (10-digit signed integer)
	OpenInputCount (10-digit signed integer)
	OpenOutputCount (10-digit signed integer)
	ProcessName (48-byte character string)
	QDepthHighEvent (10-digit signed integer)
	QDepthHighLimit (10-digit signed integer)
	QDepthLowEvent (10-digit signed integer)
	QDepthLowLimit (10-digit signed integer)
	QDepthMaxEvent (10-digit signed integer)
	QDesc (64-byte character string)
	QName (48-byte character string)
	QServiceInterval (10-digit signed integer)
	QServiceIntervalEvent (10-digit signed integer)
	QSGDisp (10-digit signed integer)
	QType (10-digit signed integer)
	RemoteQMgrName (48-byte character string)
	RemoteQName (48-byte character string)
	RetentionInterval (10-digit signed integer)
	Scope (10-digit signed integer)
	Shareability (10-digit signed integer)
	TriggerControl (10-digit signed integer)
	TriggerData (64-byte character string)
	TriggerDepth (10-digit signed integer)
	TriggerMsgPriority (10-digit signed integer)
	TriggerType (10-digit signed integer)
	Usage (10-digit signed integer)
	XmitQName (48-byte character string)

	Attributes for namelists
	Attribute descriptions
	AlterationDate (12-byte character string)
	AlterationTime (8-byte character string)
	NameCount (10-digit signed integer)
	NamelistDesc (64-byte character string)
	NamelistName (48-byte character string)
	Names (48-byte character stringNameCount)

	Attributes for process definitions
	Attribute descriptions
	AlterationDate (12-byte character string)
	AlterationTime (8-byte character string)
	ApplId (256-byte character string)
	ApplType (10-digit signed integer)
	EnvData (128-byte character string)
	ProcessDesc (64-byte character string)
	ProcessName (48-byte character string)
	UserData (128-byte character string)

	Attributes for the queue manager
	Attribute descriptions
	AlterationDate (12-byte character string)
	AlterationTime (8-byte character string)
	AuthorityEvent (10-digit signed integer)
	BridgeEvent (character string)
	ChannelAutoDef (10-digit signed integer)
	ChannelAutoDefEvent (10-digit signed integer)
	ChannelAutoDefExit (20-byte character string)
	ChannelEvent (character string)
	ClusterCacheType (32-byte character string)
	ClusterWorkloadData (32-byte character string)
	ClusterWorkloadExit (20-byte character string)
	ClusterWorkloadLength (10-digit signed integer)
	CodedCharSetId (10-digit signed integer)
	CommandEvent (integer)
	CommandInputQName (48-byte character string)
	CommandLevel (10-digit signed integer)
	ConfigurationEvent
	DeadLetterQName (48-byte character string)
	DefXmitQName (48-byte character string)
	DistLists (10-digit signed integer)
	InhibitEvent (10-digit signed integer)
	LocalEvent (10-digit signed integer)
	LoggerEvent (10-digit signed integer)
	MaxHandles (10-digit signed integer)
	MaxMsgLength (10-digit signed integer)
	MaxPriority (10-digit signed integer)
	MaxUncommittedMsgs (10-digit signed integer)
	PerformanceEvent (10-digit signed integer)
	Platform (10-digit signed integer)
	QMgrDesc (64-byte character string)
	QMgrIdentifier (48-byte character string)
	QMgrName (48-byte character string)
	QPubSub (10-digit signed integer)
	RemoteEvent (10-digit signed integer)
	RepositoryName (48-byte character string)
	RepositoryNamelist (48-byte character string)
	SQQMName (character string)
	SSLEvent (character string)
	SSLKeyResetCount (integer)
	StartStopEvent (10-digit signed integer)
	SyncPoint (10-digit signed integer)
	TraceRouteRecording (10-digit signed integer)
	TriggerInterval (10-digit signed integer)

	Attributes for authentication information
	Attribute descriptions
	AlterationDate (MQCHAR12)
	AlterationTime (MQCHAR8)
	AuthInfoConnName (MQCHAR264)
	AuthInfoDesc (MQCHAR64)
	AuthInfoName (MQCHAR48)
	AuthInfoType (MQLONG)
	LDAPPassword (MQCHAR32)
	LDAPUserName (MQ_DISTINGUISHED_NAME_LENGTH)

	Chapter 4. Applications
	Building your application
	WebSphere MQ copy files
	Preparing your programs to run
	Interfaces to the i5/OS external syncpoint manager
	Syncpoints in CICS for i5/OS applications

	Sample programs
	Features demonstrated in the sample programs
	Preparing and running the sample programs
	Running the sample programs

	The Put sample program
	Design of the Put sample program

	The Browse sample program
	Design of the Browse sample program

	The Get sample program
	Design of the Get sample program

	The Request sample program
	Using triggering with the Request sample
	Design of the Request sample program

	The Echo sample program
	Design of the Echo sample program

	The Inquire sample program
	Design of the Inquire sample program

	The Set sample program
	Design of the Set sample program

	The Triggering sample programs
	The AMQ3TRG4 sample trigger monitor
	The AMQ3SRV4 sample trigger server
	Ending the Triggering sample programs

	Running the samples using remote queues

	Chapter 5. Return codes for i5/OS (ILE RPG)
	Completion codes for i5/OS (ILE RPG)
	Reason codes

	Chapter 6. Rules for validating MQI options
	MQOPEN call
	MQPUT call
	MQPUT1 call
	MQGET call
	MQCLOSE call
	MQSUB call

	Chapter 7. Machine encodings
	Binary-integer encoding
	Packed-decimal-integer encoding
	Floating-point encoding
	Constructing encodings
	Analyzing encodings
	Using arithmetic

	Summary of machine architecture encodings

	Chapter 8. Report options and message flags
	Structure of the report field
	Analyzing the report field
	Using arithmetic

	Structure of the message-flags field

	Chapter 9. Data conversion
	Conversion processing
	Processing conventions
	Conversion of report messages
	MQDXP – Data-conversion exit parameter
	Overview
	Fields
	DXAOP (10-digit signed integer)
	DXCC (10-digit signed integer)
	DXCSI (10-digit signed integer)
	DXENC (10-digit signed integer)
	DXHCN (10-digit signed integer)
	DXLEN (10-digit signed integer)
	DXREA (10-digit signed integer)
	DXRES (10-digit signed integer)
	DXSID (4-byte character string)
	DXVER (10-digit signed integer)
	DXXOP (10-digit signed integer)

	RPG declaration (copy file CMQDXPH)

	MQXCNVC - Convert characters
	Syntax
	Parameters
	HCONN (10-digit signed integer) – input
	OPTS (10-digit signed integer) – input
	SRCCSI (10-digit signed integer) – input
	SRCLEN (10-digit signed integer) – input
	SRCBUF (1-byte character stringSRCLEN) – input
	TGTCSI (10-digit signed integer) – input
	TGTLEN (10-digit signed integer) – input
	TGTBUF (1-byte character stringTGTLEN) – output
	DATLEN (10-digit signed integer) – output
	CMPCOD (10-digit signed integer) – output
	REASON (10-digit signed integer) – output

	RPG invocation (ILE)

	MQCONVX - Data conversion exit
	Syntax
	Parameters
	MQDXP (MQDXP) – input/output
	MQMD (MQMD) – input/output
	INLEN (10-digit signed integer) – input
	INBUF (1-byte bit stringINLEN) – input
	OUTLEN (10-digit signed integer) – input
	OUTBUF (1-byte bit stringOUTLEN) – output

	Usage notes
	RPG invocation (ILE)

	Notices
	Index
	Sending your comments to IBM

