
WebSphere MQ

Publish/Subscribe User’s Guide

Version 7.0

SC34-6950-00

���

WebSphere MQ

Publish/Subscribe User’s Guide

Version 7.0

SC34-6950-00

���

Note

Before using this information and the product it supports, be sure to read the general information under notices at the back

of this book.

First edition (April 2008)

This edition of the book applies to the following products:

v IBM WebSphere MQ for Windows, Version 7.0

and to any subsequent releases and modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1996, 2008. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Figures v

Tables vii

Chapter 1. What’s new in

publish/subscribe in WebSphere MQ

Version 7.0? 1

Benefits of WebSphere Version 7.0 publish/subscribe 1

Chapter 2. Introduction to WebSphere

MQ publish/subscribe messaging 3

Overview of publish/subscribe components 3

Example of a single queue manager

publish/subscribe configuration 4

Publishers and publications 5

State and event information 5

Retained publications 6

Subscribers and subscriptions 7

Managed queues and publish/subscribe 7

Subscription durability 8

Selection strings 10

WebSphere MQ topics 10

Topic names 10

Special characters in topics 11

Topic trees 13

Administrative topic objects 14

Chapter 3. Distributed

publish/subscribe 19

How does distributed publish/subscribe work? . . 19

Proxy subscription aggregation and publication

aggregration 22

More on routing mechanisms 22

Wildcard rules 23

Controlling the flow of publications and

subscriptions 23

Publication scope 23

Subscription scope 24

Overlapping topics 24

Retained publications 24

Distributed publish/subscribe security 25

Distributed publish/subscribe system queues . . . 28

Publish/subscribe system queue errors 28

Publish/subscribe topologies 29

Publish/subscribe clusters 29

Publish/subscribe hierarchies 35

Chapter 4. Migrating to WebSphere

Version 7.0 publish/subscribe 37

strmqbrk (Migrate WebSphere MQ Version 6.0

broker to Version 7.0) 37

Publish/subscribe command messages 37

Delete Publication - Version 7 replacement . . . 38

Deregister publisher - Version 7 replacement . . 39

Deregister subscriber - Version 7 replacement . . 40

Publish - Version 7 replacement 42

Register publisher - Version 7 replacement . . . 43

Register subscriber - Version 7 replacement . . . 44

Request Update - Version 7 replacement 47

WebSphere MQ publish/subscribe topology

migration 47

Migrating a WebSphere MQ Version 6.0

publish/subscribe hierarchy to a WebSphere MQ

Version 7.0 publish/subscribe cluster 48

Migrating a WebSphere MQ Version 6.0

publish/subscribe hierarchy to a WebSphere MQ

Version 7.0 hierarchy 50

Chapter 5. Writing publish/subscribe

applications 53

Message ordering 53

Intercepting publications 53

Publishing options 55

Subscription options 55

Subscriptions and message persistence 55

Subscriptions and retained publications 56

Grouping subscriptions 56

Publish/subscribe message properties 57

Chapter 6. WebSphere MQ

publish/subscribe security 61

Example publish/subscribe security setup 61

Grant access to a user to subscribe to a topic . . 61

Grant access to a user to subscribe to a topic

deeper within the tree 62

Grant another user access to subscribe to only

the topic deeper within the tree 63

Change access control to avoid additional

messages 65

Grant access to a user to publish to a topic . . . 67

Grant access to a user to publish to a topic

deeper within the tree 68

Grant access for publish and subscribe 69

Topic objects 71

Subscription security 77

MQSO_ANY_USERID subscription option . . . 78

Chapter 7. Publish/subscribe

deprecated function 81

How does it work? 81

Streams 83

Version 6 wild card schema 84

Broker networks 85

Writing publish/subscribe applications 88

Introduction to writing applications 88

Writing publisher applications 99

Writing subscriber applications 102

© Copyright IBM Corp. 1996, 2008 iii

Format of command messages 106

Publish/Subscribe command messages 115

Error handling and response messages 139

Managing the broker 146

Setting up a broker 146

Controlling the broker 150

Control commands 154

System programming 156

Writing system management applications . . . 156

Notices 165

Index 169

Sending your comments to IBM . . . 173

iv WebSphere MQ: Publish/Subscribe User’s Guide

Figures

 1. Simple publish/subscribe configuration . . . 3

 2. Single queue manager publish/subscribe

example 5

 3. Example of a topic tree 14

 4. Visualization of a topic tree 14

 5. Extended topic tree 15

 6. Visualization of an administrative topic object

associated with the Sport/Soccer topic . . . 15

 7. Topic tree with several administrative topic

objects 16

 8. Publish/subscribe example with two queue

managers 19

 9. Propagation of subscriptions through a queue

manager network 20

10. Multiple subscriptions 21

11. Propagation of publications through a queue

manager network 21

12. Proxy subscription security, making a

subscription 26

13. Proxy subscription security, forwarding

publications 27

14. Overlapping clusters: two clusters each

subscribing to different topics 33

15. Overlapping clusters: two clusters each

subscribing to the same topic 34

16. Topic object access example 61

17. Example of granting access to a topic within a

topic tree 62

18. Granting access to specific topics within a

topic tree 64

19. Example of granting access control to avoid

additional messages. 66

20. Granting publish access to a topic 67

21. Granting publish access to a topic within a

topic tree 68

22. Granting access for publishing and subscribing 70

23. Example topic tree security attributes 73

24. Example topic tree security attributes 75

25. Communication between publishers,

subscribers, and brokers 83

26. Simple broker hierarchy 86

27. Propagation of subscriptions through a broker

network 87

28. Multiple subscriptions 87

29. Propagation of publications through a broker

network 88

30. Basic flow of messages 89

31. Simplified flow of messages 90

32. Flow of messages in a single-broker system 91

33. Flow of messages in a multi-broker system 91

34. Flow of messages using retained publications 92

35. Flow of messages using publish on request

only 92

36. Message descriptor and RFH structure 112

37. Publication data after the RFH structure 113

38. Publishing data within the NameValueString 114

39. User-defined publication data 114

40. Inheriting the CCSID 115

41. Sample Broker stanza for qm.ini 149

© Copyright IBM Corp. 1996, 2008 v

vi WebSphere MQ: Publish/Subscribe User’s Guide

Tables

 1. Topic string concatenation examples 11

 2. Default values of SYSTEM.BASE.TOPIC 17

 3. Publish/subscribe system queues 28

 4. Attributes of publish/subscribe system queues 28

 5. Intercepting subscriber options 54

 6. MQMD values for republished messages 54

 7. Example topic object access 61

 8. Access requirements for example topics and

topic objects 62

 9. Access requirements for example topics and

topic objects 64

10. Example publish access requirements 67

11. Example publish access requirements 68

12. Example publishing and subscribing access

requirements 70

13. Complete list of access authorities resulting

from security examples 71

14. Example topic object authorities 72

15. User IDs used for security checks for

commands 77

16. Default publication context information 78

17. Initial values of fields in MQRFH 109

18. Parameters for publisher and subscriber

information messages 164

© Copyright IBM Corp. 1996, 2008 vii

viii WebSphere MQ: Publish/Subscribe User’s Guide

Chapter 1. What’s new in publish/subscribe in WebSphere MQ

Version 7.0?

Publish/subscribe has been changed significantly for WebSphere® MQ Version 7.0.

In previous versions, publish/subscribe messaging was controlled using a

command message interface. This interface no longer exists in Version 7.0

publish/subscribe. Instead, publish/subscribe messaging is now controlled using

new function in the WebSphere MQ API and as a result, publish/subscribe

messaging is much more consistent with point-to-point messaging. This new way

of doing publish/subscribe messaging is documented in the main body of this

book.

Applications written using previous versions of WebSphere MQ publish/subscribe

and make use of the command message interface are encouraged to move to the

new WebSphere MQ publish/subscribe API – however, the command message

interface continues to be supported by means of a process which runs on all

platforms (including z/OS®). As such, if you are already a user of

publish/subscribe you can continue to use your current configuration after

installing WebSphere MQ Version 7.0 without making extensive changes to your

applications or configuration.

Similarly, JMS applications do not have to be modified, although if you do not

chose to use the new Version 7.0 publish/subscribe you will not benefit from the

simplified administration that is now available when using WebSphere MQ as the

provider. Since the command message interface method of doing publish/subscribe

is still supported in Version 7.0 using the PSMODE function, this interface

continues to be documented in the WebSphere MQ Version 7.0 library. This

information is grouped together here Chapter 7, “Publish/subscribe deprecated

function,” on page 81.

Benefits of WebSphere Version 7.0 publish/subscribe

Publish/subscribe messaging is now performed using the WebSphere MQ API,

there are a number of benefits of using this method.

Benefits of the new method of publish/subscribe include:

v In WebSphere MQ Version 7.0, support has been added for publish/subscribe

messaging on z/OS.

v To perform some WebSphere MQ publish/subscribe functions in previous

versions you required WebSphere Event Broker, WebSphere Message Broker or

the MA0C WebSphere MQ SupportPac™ (if you were using WebSphere MQ

Version 5.3), none of these applications are required now unless you want to

route messages according to their content, in which case you can use WebSphere

MQ in combination with WebSphere Message Broker.

v In WebSphere MQ Version 6.0, if you were using WebSphere MQ

publish/subscribe you had to use PCFs or RFH2 headers, this is no longer the

case.

v In WebSphere MQ Version 6.0 if you were using WebSphere Event Broker or

WebSphere Message Broker you had to use RFH1 headers, this is no longer the

case.

© Copyright IBM Corp. 1996, 2008 1

v In WebSphere MQ Version 7.0, the way you publish and subscribe is consistent

with the rest of the WebSphere MQ API, making publish/subscribe more

intuitive and easier to use.

v Native support for non-durable subscriptions has been added, allowing

unconsumed messages and unnecessary subscriptions to be cleaned up at

disconnection. This removes the need that existed in WebSphere MQ Version 6.0

for JMS to tidy up non-durable subscriptions in order to meet JMS specification

requirements.

v By using non-durable subscriptions with JMS publish/subscribe messaging

performance can be improved and resource usage made more efficient.

v The interlock between JMS and the queue manager is improved by using the

new WebSphere MQ publish/subscribe API (rather than a command message

interface).

2 WebSphere MQ: Publish/Subscribe User’s Guide

Chapter 2. Introduction to WebSphere MQ publish/subscribe

messaging

Publish/subscribe messaging allows you to decouple the provider of information,

from the consumers of that information. The sending application and receiving

application do not need to know anything about each other for the information to

be sent and received.

Before a point-to-point WebSphere MQ application can send a message to another

application, it needs to know something about that application. For example, it

needs to know the name of the queue to which to send the information, and might

also specify a queue manager name.

WebSphere MQ publish/subscribe removes the need for your application to know

anything about the target application. All the sending application has to do, is put

a WebSphere MQ message, containing the information that it wants, and assign it a

topic, that denotes the subject of the information, and let WebSphere MQ handle

the distribution of that information. Similarly, the target application does not have

to know anything about the source of the information it receives.

Figure 1 shows the simplest publish/subscribe system. There is one publisher, one

queue manager, and one subscriber. A subscription is sent from the subscriber to

the queue manager, a publication is sent from the publisher to the queue manager,

and the publication is then forwarded by the queue manager to the subscriber.

 A typical publish/subscribe system has more than one publisher and more than

one subscriber, and often, more than one queue manager. An application can be

both a publisher and a subscriber.

Overview of publish/subscribe components

Publish/subscribe is the mechanism by which subscribers can receive information,

in the form of messages, from publishers. The interactions between publishers and

subscribers are controlled by queue managers, using standard WebSphere MQ

facilities.

A typical publish/subscribe system has more than one publisher and more than

one subscriber, and often, more than one queue manager. An application can be

both a publisher and a subscriber.

The provider of information is called a publisher. Publishers supply information

about a subject, without needing to know anything about the applications that are

Publication

Publication

Subscription
Queue

Manager SubscriberPublisher

Figure 1. Simple publish/subscribe configuration

© Copyright IBM Corp. 1996, 2008 3

interested in that information. Publishers generate this information in the form of

messages, called publications that they want to publish and define the topic of these

messages.

The consumer of the information is called a subscriber. Subscribers create

subscriptions that describe the topic that the subscriber is interested in. Thus, the

subscription determines which publications are forwarded to the subscriber.

Subscribers can have make multiple subscriptions and can receive information

from many different publishers.

Published information is sent in a WebSphere MQ message, and the subject of the

information is identified by its topic. The publisher specifies the topic when it

publishes the information, and the subscriber specifies the topics about which it

wants to receive publications. The subscriber is sent information about only those

topics it subscribes to.

It is the existence of topics that allows the providers and consumers of information

to be decoupled in publish/subscribe messaging by removing the need to include

a specific destination in each message as is required in point-to-point messaging.

Interactions between publishers and subscribers are all controlled by a queue

manager. The queue manager receives messages from publishers, and subscriptions

from subscribers (to a range of topics). The queue manager’s job is to route the

published messages to the subscribers that have registered an interest in the topic

of the messages.

Standard WebSphere MQ facilities are used to distribute messages, so your

applications can use all the features that are available to existing WebSphere MQ

applications. This means that you can use persistent messages to get once-only

assured delivery, and that your messages can be part of a transactional

unit-of-work to ensure that messages are delivered to the subscriber only if they

are committed by the publisher.

Example of a single queue manager publish/subscribe configuration

Figure 2 on page 5 illustrates a basic single queue manager publish/subscribe

configuration. The example shows the configuration for a news service, where

information is available from publishers about several topics:

v Publisher 1 is publishing information about sports results using a topic of Sport

v Publisher 2 is publishing information about stock prices using a topic of Stock

v Publisher 3 is publishing information about film reviews using a topic of Films,

and about television listings using a topic of TV

Three subscribers have registered an interest in different topics, so the queue

manager sends them the information that they are interested in:

v Subscriber 1 receives the sports results and stock prices

v Subscriber 2 receives the film reviews

v Subscriber 3 receives the sports results

None of the subscribers have registered an interest in the television listings, so

these are not distributed.

4 WebSphere MQ: Publish/Subscribe User’s Guide

Publishers and publications

In WebSphere MQ publish/subscribe a publisher is an application that makes

information about a specified topic available to a queue manager in the form of a

standard WebSphere MQ message called a publication. A publisher can publish

information about more than one topic.

Publishers use the MQPUT verb to put a message to a previously opened topic,

this message is a publication. The local queue manager then routes the publication

to any subscribers who have subscriptions to the topic of the publication. A

published message can be consumed by more than one subscriber.

In addition to distributing publications to all local subscribers that have

appropriate subscriptions, a queue manager can also distribute the publication to

any other queue managers connected to it, either directly or through a network of

queue managers that have subscribers to the topic.

In a WebSphere MQ publish/subscribe network, a publishing application can also

be a subscriber.

State and event information

Publications can be categorized as either state publications, such as the current

price of a stock, or event publications, such as a trade in that stock.

State publications

State publications contain information about the current state of something, such as

the price of stock or the current score in a soccer match. When something happens

(for example, the stock price changes or the soccer score changes), the previous

state information is no longer required because it is superseded by the new

information.

Queue Manager

Subscriber 3
Topic:
Sport

Subscriber 2
Topic:
Films

Publisher 1
Topic:
Sport

Publisher 2
Topic:
Stock

Publisher 3
Topics:

Films, TV

Subscriber 1
Topics:

Sport, Stock

Figure 2. Single queue manager publish/subscribe example. This shows the relationship

between publishers, subscribers, and queue managers.

Chapter 2. Introduction to WebSphere MQ publish/subscribe messaging 5

A subscriber will want to receive the current version of the state information when

it starts up, and be sent new information whenever the state changes.

If a publication contains state information, it is often published as a retained

publication. A new subscriber typically wants the current state information

immediately; the subscriber does not want to wait for an event that causes the

information to be republished. Subscribers will automatically receive a topic’s

retained publication when it subscribes unless the subscriber uses the

MQSO_PUBLICATIONS_ON_REQUEST or MQSO_NEW_PUBLICATIONS_ONLY

options.

Event publications

Event publications contain information about individual events that occur, such as a

trade in some stock or the scoring of a particular goal. Each event is independent

of other events.

A subscriber will want to receive information about events as they happen.

Retained publications

By default, after a publication is sent to all interested subscribers it is discarded.

However, a publisher can specify that a copy of a publication should be retained

so that it can be sent to future subscribers who register an interest in the topic.

Deleting publications after they have been sent to all interested subscribers is

suitable for event information, but is not always suitable for state information. By

retaining a message, new subscribers do not have to wait for information to be

published again before they receive initial state information. For example, a

subscriber with a subscription to a stock price would receive the current price

straight away, without waiting for the stock price to change (and hence be

re-published).

The queue manager can retain only one publication for each topic, so a topic’s

existing retained publication is deleted when a new retained publication arrives at

the queue manager. Wherever possible, have no more than one publisher sending

retained publications on any topic.

Subscribers can specify that they do not want to receive retained publications by

using the MQSO_NEW_PUBLICATIONS_ONLY subscription option. Existing

subscribers can ask for duplicate copies of retained publications to be sent to them.

There are times when you might not want to retain publications, even for state

information:

v If all subscriptions to a topic are made before any publications are made on that

topic, and you do not expect, or will not allow, new subscriptions, there is no

need to retain publications because they will be delivered to the complete set of

subscribers the first time they are published.

v If publications occur very frequently, such as every second, a new subscriber (or

a subscriber recovering from a failure) receives the current state almost

immediately after their initial subscription, so there is no need to retain these

publications.

v If the publications are quite large, you could end up needing a considerable

amount of storage space to store the retained publication for each topic. In a

multiple queue manager environment, retained publications are stored by all

queue managers in the network that have a matching subscription.

6 WebSphere MQ: Publish/Subscribe User’s Guide

When deciding whether to use retained publications, consider how subscribing

applications recover from a failure. If the publisher does not use retained

publications, the subscriber application might need to store its current state locally.

To ensure that a publication is retained use the MQPMO_RETAIN put-message

option. If this option is used and the publication cannot be retained, the message

will not be published and the call will fail with MQRC_PUT_NOT_RETAINED.

If a message is a retained publication this will be indicated by the MQIsRetained

message property.

Subscribers and subscriptions

In WebSphere MQ publish/subscribe, a subscriber is an application that requests

information about a specific topic from a queue manager in a publish/subscribe

network. A subscriber can receive messages, about the same or different topics,

from more than one publisher.

Subscriptions can be created manually using an MQSC command or by

applications. These subscriptions are issued to the local queue manager and

contain information about the publications the subscriber wants to receive:

v The topic the subscriber is interested in; this can resolve to multiple topics if

wildcards are used.

v An optional selection string to be applied to published messages.

v A handle to the a queue (known as the subscriber queue), on which selected

publications should be placed, and optional CorrelId.

The local queue manager stores subscription information and when it receives a

publication, scans the information to determine whether there is a subscription that

matches the publication’s topic and selection string. For each matching

subscription, the queue manager directs the publication to the subscriber’s

subscriber queue. The information that a queue manager stores about subscriptions

can be viewed by using the DIS SBSTATUS command.

A subscription is deleted only when one of the following events occurs:

v The subscriber unsubscribes using the MQCLOSE call (if the subscription was

made non-durably).

v The subscription expires.

v The subscription is deleted by the system administrator using the DELETE SUB

command.

v The subscriber application ends (if the subscription was made non-durably).

v The queue manager is stopped or restarted (if the subscription was made

non-durably).

Managed queues and publish/subscribe

When you create a subscription you can choose to use managed queuing. If you

use managed queueing a subscription queue is automatically created when you

create a subscription. Managed queues are tidied up automatically in accordance

with the durability of the subscription. Using managed queues means that you do

not have to worry about creating queues to receive publications and any

unconsumed publications are removed from subscriber queues automatically if a

non-durable subscription connection is closed.

Chapter 2. Introduction to WebSphere MQ publish/subscribe messaging 7

If an application has no need to use a particular queue as its subscriber queue, the

destination for the publications it receives, it can make use of the managed

subscriptions using the MQSO_MANAGED subscription option. If you create a

managed subscription, the queue manager returns an object handle to the

subscriber for a subscriber queue that the queue manager creates where

publications will be received. The queue’s object handle will be returned allowing

you to browse, get or inquire on the queue (it is not possible to put to or set

attributes of a managed queue unless you have been explicitly given access to

temporary dynamic queues).

The durability of the subscription determines whether the managed queue remains

when the subscribing application’s connection to the queue manager is broken.

Managed subscriptions are particularly useful when used with non-durable

subscriptions because when the application’s connection is ended, unconsumed

messages would otherwise remain on the subscriber queue taking up space in your

queue manager indefinitely. If you are using a managed subscription, the managed

queue will be a temporary dynamic queue and as such will be deleted along with

any unconsumed messages when the connection is broken for any of the following

reasons:

v MQCLOSE with MQCO_REMOVE_SUB is used and the managed Hobj is

closed.

v a connection is lost to an application using a non-durable subscription

(MQSO_NON_DURABLE).

v a subscription is removed because it has expired and the managed Hobj is

closed.

Managed subscriptions can also be used with durable subscriptions but it is

possible that you would want to leave unconsumed messages on the subscriber

queue so that they can be retrieved when the connection is reopened. For this

reason, managed queues for durable subscriptions take the form of a permanent

dynamic queue and will remain when the subscribing application’s connection to

the queue manager is broken.

You can set an expiry on your subscription if you want to use permanent dynamic

managed queue so that although the queue will still exist after the connection is

broken, it will not continue to exist indefinitely.

If you delete the managed queue you will receive an error message.

The managed queues that are created are named with numbers at the end

(timestamps) so that each is unique.

Subscription durability

Subscriptions can be configured to be durable or non-durable. Subscription

durability determines what happens to subscriptions when subscribing applications

disconnect for a queue manager.

Durable subscriptions

Durable subscriptions continue to exist when a subscribing application’s

connection to the queue manager is closed. If a subscription is durable, when the

subscribing application disconnects, the subscription remains in place and can be

used by the subscribing application when it reconnects requesting the subscription

again using the SubName that was returned when the subscription was created.

8 WebSphere MQ: Publish/Subscribe User’s Guide

When subscribing durably, a subscription name (SubName) is required.

Subscription names must be unique within a queue manager so that it can be used

to identify a subscription. This means of identification is necessary when

specifying a subscription you want to resume, if you have either deliberately

closed the handle to the subscription (using the MQCO_KEEP_SUB option) or have

been disconnected from the queue manager. You can resume an existing

subscription by using the MQSUB call with the MQSO_RESUME option.

Subscription names are also displayed if you use the DISPLAY SBSTATUS

command with SUBTYPE ALL or ADMIN.

When an application no longer requires a durable subscription it can be removed

using the MQCLOSE command with the MQCO_REMOVE_SUB option or it can

be deleted manually use the MQSC DELETE SUB call.

Whether durable subscriptions can be made to a topic can be controlled using the

DURSUB topic attribute.

On return from an MQSUB call using the MQSO_RESUME option, subscription

expiry will be set to the original expiry of the subscription and not the remaining

expiry time.

A queue manager will continue to send publications to satisfy a durable

subscription even if that subscriber application is not connected. This will lead to a

build up of messages on the subscriber queue. The easiest way to avoid this

problem is to use a non-durable subscription wherever appropriate. However,

where it is necessary to use durable subscriptions, a build up of messages can be

avoided if the subscriber subscribes using the

MQSO_PUBLICATIONS_ON_REQUEST option. A subscriber can then control

when it receives publications by using the MQSUBRQ call.

Non-durable subscriptions

Non-durable subscriptions exist only as long as the subscribing application’s

connection to the queue manager remains open. The subscription is removed when

the subscribing application disconnects from the queue manager either deliberately

or by loss of connection. When the connection is closed, the information about the

subscription is removed from the queue manager, and will no longer be shown if

you display subscriptions using the DISPLAY SBSTATUS command. No more

messages will be put to the subscriber queue.

What happens to any unconsumed publications on the subscriber queue for

non-durable subscriptions is determined as follows.

v If a subscribing application is using a managed destination, any publications

that have not been consumed are automatically removed.

v If the subscribing application provides a handle to its own subscriber queue

when it subscribes, unconsumed messages are not removed automatically. It is

the responsibility of the application to clear the queue if that is appropriate. If

the queue is shared by more than one subscriber, or other point-to-point

applications, it might not be appropriate to clear the queue completely.

Although not required for non durable subscriptions, a subscription name if

provided, will be used by the queue manager. Subscription names must be unique

within the queue manager so that it can be used to identify a subscription.

Chapter 2. Introduction to WebSphere MQ publish/subscribe messaging 9

Selection strings

A selection string is an expression that is applied to a publication to determine

whether it matches a subscription. Selection strings can include wildcard

characters.

When you subscribe, in addition to specifying a topic, you can specify a selection

string to select publications according to their message properties.

WebSphere MQ topics

A topic is a character string that describes the subject of the information that is

published in a publish/subscribe message.

Topics are key to the successful delivery of messages in a publish/subscribe

system. Instead of including a specific destination address in each message, a

publisher assigns a topic to each message. The queue manager matches the topic

with a list of subscribers who have subscribed to that topic, and delivers the

message to each of those subscribers.

Note that a publisher can control which subscribers receive a publication by

choosing carefully the topic that is specified in the message.

Topics can be defined using MQSC or PCF commands. However, the topic of a

message does not have to be defined before a publisher can use it; a topic is

created when it is specified in a publication or subscription for the first time.

A topic string can include any character from the Unicode character set, including

the space character. However, there are three characters that have special

meanings. These characters (″/″, ″#″, and ″+″) are described in “Special characters

in topics” on page 11.

Although a null character does not cause an error, do not use null characters in

your topic strings.

Topic strings are case sensitive.

Topic names

The full topic name is created by the concatenation of two fields used in

publish/subscribe MQI calls, in the order listed.

1. The value of the TOPICSTR parameter of the topic object named in ObjectName

field.

2. The value of the ObjectString field, if the VSLength provided for that variable

length string is non-zero

A ’/’ character is inserted between the two elements in the resultant combined

topic name.

These fields are considered to be completed if the first character of the field is

neither a blank nor a null character. If only one of the fields is completed, it is

used unchanged as the topic name. If neither field has a value the call fails with

reason code MQRC_UNKNOWN_OBJECT_NAME.

10 WebSphere MQ: Publish/Subscribe User’s Guide

Table 1 shows examples of topic string concatenation:

 Table 1. Topic string concatenation examples

TOPICSTR ObjectString Full topic name Comment

/Football Scores /Football/Scores A ’/’ character is

added at the

concatenation point

/Football/ Scores /Football//Scores An ’empty node’ is

produced between

the two strings

/Football /Scores /Football//Scores An ’empty node’ is

produced between

the two strings

/Football/ /Scores /Football///Scores Two ’empty nodes’

are produced

between the two

strings

Notes:

1. The ‘/’ character is considered to be a special character providing structure to

the full topic name in the topic tree and should not be used for any other

reason as the structure of the topic tree will not be effected. This means that the

topic ‘/Football’ is not the same as the topic ‘Football’. However, topic

‘/Football’ is the same as the topic ‘/Football/’.

2. A full topic name with two repeated ‘/’ characters is not valid.

3. If the full topic name is not valid, the call fails with reason code

MQRC_TOPIC_STRING_ERROR.

4. Wild card characters, +, #, * and ? are special characters. Do not use these

characters in your topic strings when publishing. They are not considered

invalid, however, if using them is unavoidable you should take care to

understand the behavior when using them.

v Publishing on a topic string with # or + mixed in with other characters

(including themselves) within a topic level can be subscribed on, with either

wildcard scheme.

v Publishing on a topic string with # or + as the only character between two

‘/’ characters will produce a topic string that cannot be subscribed on

explicitly by an application using the wildcard scheme

MQSO_WILDCARD_TOPIC. This will result in the application getting more

publications than expected.

v Publishing on a topic string containing either * or ? anywhere will produce a

topic string that cannot be subscribed on explicitly by an application using

the wildcard scheme MQSO_WILDCARD_CHAR. This will result in the

application getting more publications than expected.

Special characters in topics

WebSphere MQ supports two different wildcard schemas. Wildcard characters are

determined differently according to the schema the subscription uses. This topic

details the wildcards used in the Version 7.0 implementation of publish/subscribe

messaging.

Topics that were created prior to WebSphere MQ Version 7.0 use the schema

described in “Version 6 wild card schema” on page 84.

Chapter 2. Introduction to WebSphere MQ publish/subscribe messaging 11

A topic can contain any character in the Unicode character set. However, the

following three characters have a special meaning in the Version 7.0

publish/subscribe:

 The topic level separator ″/″.

 The multilevel wildcard ″#″.

 The single-level wildcard ″+″.

The topic level separator is used to introduce structure into the topic, and can

therefore be specified within the topic for that purpose.

Wildcards are a powerful feature of the topic system in WebSphere MQ

publish/subscribe. Wildcards allow subscribers to subscribe to more than one topic

at a time. The multilevel wildcard and single level wildcard can be used for

subscriptions, but they cannot be used within a topic by the publisher of a

message.

However, if a publisher uses the characters ″+″ or ″#″ together with other

characters in any topic level within a topic, these characters are not treated as

wildcards, and they do not have any special meaning.

The topic level separator

WebSphere MQ publish/subscribe does not recognize that the ‘/’ character is being

used in a special way. However, it is allows you to introduce structure into the

topic, providing a hierarchical structure to the topic string. It can be used by

applications to separate levels within a topic tree.

The use of the topic level separator is significant when the two wildcard characters

are encountered in topics specified by subscribers.

Topic hierarchy is important in the administration of access control.

The multilevel wildcard

The multilevel wildcard can be used for subscriptions, but cannot be used within a

topic string by the publisher of a message.

The multilevel wildcard character ″#″ is used to match any number of levels within

a topic. For example, using the example topic tree shown above, if you subscribe to

″USA/Alaska/#″, you receive messages on topics ″USA/Alaska″ and

″USA/Alaska/Juneau″.

The multilevel wildcard can represent zero or more levels. Therefore, ″USA/#″ can

also match the singular ″USA″, where # represents zero levels. The topic level

separator is meaningless in this context, because there are no levels to separate.

The multilevel wildcard is only effective when specified on its own or next to the

topic level separator character. Therefore, ″#″ and ″USA/#″ are valid topics where

the ″#″ character is treated as a wildcard. However, although ″USA#″ is also a

valid topic string, the ″#″ character is not regarded as a wildcard and does not

have any special meaning. See “When wildcards are not wild” on page 13 for more

information.

The single-level wildcard

The multilevel wildcard can be used for subscriptions, but cannot be used within a

topic string by the publisher of a message.

12 WebSphere MQ: Publish/Subscribe User’s Guide

The single-level wildcard character ″+″ matches one, and only one, topic level. For

example, ″USA/+″ matches ″USA/Alabama″, but not ″USA/Alabama/Auburn″.

Because the single-level wildcard matches only a single level, ″USA/+″ does not

match ″USA″.

The single-level wildcard can be used at any level in the topic tree, and in

conjunction with the multilevel wildcard. The single-level wildcard must be

specified next to the topic level separator, except when it is specified on its own.

Therefore, ″+″ and ″USA/+″ are valid topics where the ″+″ character is treated as a

wildcard. However, although ″USA+″ is also a valid topic string, the ″+″ character

is not regarded as a wildcard and does not have any special meaning. See “When

wildcards are not wild” for more information.

When wildcards are not wild

The wildcard characters ″+″ and ″#″ have no special meaning when they are mixed

with other characters (including themselves) in a topic level.

This means that topics that contain ″+″ or ″#″ together with other characters in a

topic level can be published.

For example, consider the following two topics:

1. level0/level1/+/level4/#

2. level0/level1/#+/level4/level#

In the first example, the characters ″+″ and ″#″ are treated as wildcards and are

therefore not valid in a topic string that is to be published to but are valid in a

subscription.

In the second example, the characters ″+″ and ″#″ are not treated as wildcards and

therefore the topic string can be both published and subscribed to.

Topic trees

Each topic that you define is an element, or node, in the topic tree. The topic tree

can either be empty to start with or contain topics that have been defined

previously using MQSC or PCF commands. You can define a new topic either by

using the create topic commands or by specifying the topic for the first time in a

publication or subscription.

Although you can use any character string to define a topic’s topic string, it is

advisable to choose a topic string that fits into a hierarchical tree structure.

Thoughtful design of topic stings and topic trees can help you with the following

operations:

v Subscribing to multiple topics.

v Establishing security policies.

Although you can construct a topic tree as a flat, linear structure, it is better to

build a topic tree in a hierarchical structure with one or more root topics.

Figure 3 on page 14 shows an example of a topic tree with one root topic.

Chapter 2. Introduction to WebSphere MQ publish/subscribe messaging 13

Each character string in the figure represents a node in the topic tree. A complete

topic string is created by aggregating nodes from one or more levels in the topic

tree. Levels are separated by the ″/″ character. The format of a fully specified topic

string is: ″root/level2/level3″.

The valid topics in the topic tree shown in Figure 3 are:

 ″USA″

 ″USA/Alabama″

 ″USA/Alaska″

 ″USA/Alabama/Auburn″

 ″USA/Alabama/Mobile″

 ″USA/Alabama/Montgomery″

 ″USA/Alaska/Juneau″

When you design topic strings and topic trees, remember that the queue manager

does not interpret, or attempt to derive meaning from, the topic string itself. It

simply uses the topic string to send selected messages to subscribers of that topic.

The following principles apply to the construction and content of a topic tree:

v There is no limit to the number of levels in a topic tree.

v There is no limit to the length of the name of a level in a topic tree.

v There can be any number of ″root″ nodes; that is, there can be any number of

topic trees.

Administrative topic objects

An administrative topic object is a WebSphere MQ object that allows you to assign

specific, non-default attributes to topics.

Figure 4 shows how a high-level topic of ’Sport’ divided into separate topics

covering different sports can be visualized as a topic tree:

Figure 5 on page 15 shows how the topic tree can be divided further, to separate

different types of information about each sport:

USA

Alabama Alaska

Auburn Mobile Montgomery Juneau

Figure 3. Example of a topic tree

TennisGolf

Sport

Soccer

Figure 4. Visualization of a topic tree

14 WebSphere MQ: Publish/Subscribe User’s Guide

To create the topic tree illustrated, no administrative topic objects need be defined.

If each of the nodes in this tree are defined by a topic string created in a publish or

subscribe operation, each topic in the tree inherits its attributes from its parent.

Attributes are inherited from the parent topic object because by default all

attributes are set to ASPARENT. In this example, therefore, every topic has the

same attributes as the ’Sport’ topic, which again, assuming no administrative topic

object exists for this node, inherits its attributes from SYSTEM.BASE.TOPIC.

Administrative topic objects can be used to define specific attributes for particular

nodes in the topic tree. In the following example, the administrative topic object is

defined to set the durable subscriptions attribute (DURSUB) of the soccer topic to NO:

DEFINE TOPIC(FOOTBALL.EUROPEAN)

 TOPICSTR(’Sport/Soccer’)

 DURSUB(NO)

 DESCR(’Administrative topic object to disallow durable subscriptions’)

The topic tree can now be visualized as:

Any applications subscribing to topics beneath Soccer in the tree can still use the

topic strings they used before the administrative topic object was added. However,

an application can now be written to subscribe using the object name

FOOTBALL.EUROPEAN, instead of the string /Sport/Soccer. For example, to subscribe

to /Sport/Soccer/Results, an application can specify MQSD.ObjectName as

FOOTBALL.EUROPEAN and MQSD.ObjectString as Results.

This feature allows you to hide part of the topic tree from application developers.

If you define an administrative topic object at a particular node in the topic tree,

application developers can define their own topics below this, without needing to

have knowledge of topics above the administrative topic object.

ResultsRankingsFixtures Results

TennisGolf

Sport

Tournaments

Soccer

Figure 5. Extended topic tree

ResultsRankingsFixtures Results

TennisGolf

Sport

Tournaments

FOOTBALL.EUROPEAN

DURSUBS(NO)

Soccer

Figure 6. Visualization of an administrative topic object associated with the Sport/Soccer topic

Chapter 2. Introduction to WebSphere MQ publish/subscribe messaging 15

Inheriting attributes

If a topic tree has many administrative topic objects, each administrative topic

object, by default, inherits its attributes from its closest parent administrative topic

node. The previous example has been extended in Figure 7:

If all topics at and below /Sport/Soccer need to have the attribute DURSUB set to NO,

the only change that needs to be made is to alter the DURSUB attribute of

FOOTBALL.EUROPEAN to NO.

This attribute can be set using the following command:

ALTER TOPIC(FOOTBALL.EUROPEAN) DURSUB(NO)

Because all the administrative topic objects below Sport/Soccer have the DURSUB

attribute set to the default value ASPARENT, all topics below Sport/Soccer will

inherit the value NO for their DURSUB attribute.

All the administrative topic objects at and below Sport/Tennis have the value

ASPARENT for the attribute DURSUB. All topics at and below Sport/Tennis, therefore,

will inherit DURSUB from the SYSTEM.BASE.TOPIC object and will have the value of

YES.

Trying to make a durable subscription to the topic Sport/Soccer/TeamX/Results

would now fail; however, trying to make a durable subscription to

Sport/Tennis/PlayerB/Results would succeed.

SYSTEM.BASE.TOPIC

Base topic for ASPARENT resolution. If a particular topic has no parent

administrative topic objects, or those parent objects also have ASPARENT, any

remaining ASPARENT attributes are inherited from this object.

PLAYERS.PLAYERB

DURSUBS(ASPARENT)

PlayerB

ResultsMatchupsResultsMatchups

PLAYERS.PLAYERA

DURSUBS(ASPARENT)

PlayerA

TENNIS

DURSUBS(ASPARENT)

TennisGolf

Sport

Fixtures Results

TEAMS.TEAMX

DURSUBS(ASPARENT)

TeamX

Fixtures Results

TEAMS.TEAMY

DURSUBS(ASPARENT)

TeamY

FOOTBAL.EUROPEAN

DURSUBS(YES)

Soccer

Figure 7. Topic tree with several administrative topic objects

16 WebSphere MQ: Publish/Subscribe User’s Guide

The default values of the SYSTEM.BASE.TOPIC are:

 Table 2. Default values of SYSTEM.BASE.TOPIC

Parameter Value

TOPICSTR ″

DEFPRTY 0

DEFPRESP SYNC

DEFPSIST NO

DESCR ’Base topic for resolving attributes’

DURSUB YES

MDURMDL SYSTEM.DURABLE.MODEL.QUEUE

MNDURMDL SYSTEM.NDURABLE.MODEL.QUEUE

MASTER YES

NPMSGDLV ALLAVAIL

PMSGDLV ALLDUR

PUB ENABLE

SUB ENABLE

If this object does not exist, its default values are still used by WebSphere MQ for

ASPARENT attributes that are not resolved by parent topics further up the topic

tree.

Chapter 2. Introduction to WebSphere MQ publish/subscribe messaging 17

18 WebSphere MQ: Publish/Subscribe User’s Guide

Chapter 3. Distributed publish/subscribe

This section discusses how publish/subscribe messaging can be performed

between queue managers, and the 2 different queue manager topologies that can

be used to connect queue managers, clusters and hierarchies.

Queue managers can communicate with other queue managers in your WebSphere

MQ publish/subscribe system, so that subscribers can subscribe to one queue

manager and receive messages that were initially published to another queue

manager. This is illustrated in Figure 8.

Figure 8 shows a publish/subscribe system with two queue managers.

v Queue manager 2 is used by Publisher 4 to publish weather forecast

information, using a topic of Weather, and information about traffic conditions

on major roads, using a topic of Traffic.

v Subscriber 4 also uses this queue manager, and subscribes to information about

traffic conditions using topic Traffic.

v Subscriber 3 also subscribes to information about weather conditions, even

though it uses a different queue manager from the publisher. This is possible

because the queue managers are linked to each other.

How does distributed publish/subscribe work?

WebSphere MQ publish/subscribe uses proxy subscriptions to ensure that

subscribers can receive messages that are published to remote queue managers.

Distributed publish/subscribe uses the same components as distributed queuing to

connect networks of queue managers and consequently, the applications that

connect to those queue managers. To find out more about messaging between

queue managers and the components involved making connections between queue

managers see the Intercommunication documentation.

Queue Manager 1 Queue Manager 2

Subscriber 3
Topics:

Sport, Weather

Subscriber 2
Topic:
Films

Publisher 1
Topic:
Sport

Publisher 2
Topic:
Stock

Publisher 3
Topics:

Films, TV

Subscriber 1
Topics:

Sport, Stock

Subscriber 4
Topics:
Traffic

Publisher 4
Topics:

Weather, Traffic

Figure 8. Publish/subscribe example with two queue managers

© Copyright IBM Corp. 1996, 2008 19

Subscribers need not do anything beyond the standard subscription operation in a

distributed publish/subscribe system. When a subscription is made on a queue

manager, the queue manager manages the process by which the subscription is

propagated to connected queue managers. A subscriptions flows to all queue

managers in the network, where proxy subscriptions are created to ensure that

publications get routed back to the queue manager where the subscription was

created originally. This is shown in Figure 9.

A publication is propagated to a remote queue manager only if a subscription to

that topic exists on that remote queue manager.

A queue manager consolidates all the subscriptions that are created on it, whether

from local applications or from remote queue managers. In turn, the queue

manager creates subscriptions for these topics with its neighbors, unless a

subscription already exists. This is shown in Figure 10 on page 21.

When an application publishes information, the receiving queue manager forwards

it (possibly through one or more intermediate queue managers) using transmission

queues to any applications that have valid subscriptions on remote queue

managers. This is shown in Figure 11 on page 21.

Subscriber 1

4 - s
ub

sc
rip

tio
n

3 -
 su

bs
cr

ipt
ion

3 - s
ub

sc
rip

tio
n

2 - subscription

HQ

Europe

London

Asia
1 - subscription

Figure 9. Propagation of subscriptions through a queue manager network. Subscriber 1

registers a subscription for a particular topic on the Asia queue manager (1). The subscription

for this topic is forwarded to all other queue managers in the network (2,3,4).

20 WebSphere MQ: Publish/Subscribe User’s Guide

When a queue manager sends any publications or subscriptions to another queue

manager, it sets its own user ID in the message, and uses its own authority to put

the message. This means that the queue manager must have the authority to put

messages onto other queue managers’ queues (unless the channel is set up to put

incoming messages with the message channel agent’s authority). This also means

that all authorization checks are performed at the publisher’s or subscriber’s local

queue manager.

The interconnected nature of publish/subscribe queue managers means that it

takes some time for the proxy subscription to propagate around all nodes in the

network. The consequence of this is that once a subscription has been made,

remote publications are not necessarily received immediately; this can be

addressed by using PROXYSUB(FORCE) as described in “More on routing

mechanisms” on page 22.

Subscriber 1

Subscriber 2

6 - subscriptionsu
bs

cr
ipt

ion

su
bs

cr
ipt

ion

HQ

Europe

London

Asia
subscription

5 - subscription

subscription

Figure 10. Multiple subscriptions. Subscriber 2 registers a subscription, to the same topic as

in Figure 9 on page 20, on the HQ queue manager (5). The subscription for this topic is

forwarded to the Asia queue manager, so that it is aware that subscriptions exist elsewhere

on the network (6). The subscription does not have to be forwarded to the Europe queue

manager, because a subscription for this topic has already been registered (step 3 in

Figure 9 on page 20).

Subscriber 1
7 - publication

Subscriber 2

Publisher

8 - p
ub

lic
ati

on

9 - publication

9 - publication

10 - publication

subscription

su
bs

cr
ipt

ion

subscription

subscription

HQ

Europe

London

Asia

su
bs

cr
ipt

ion

Figure 11. Propagation of publications through a queue manager network. A publisher sends

a publication, on the same topic as in Figure 10, to the Europe queue manager (7). A

subscription for this topic exists from HQ to Europe, so the publication is forwarded to the HQ

queue manager (8). However, no subscription exists from London to Europe (only from

Europe to London), so the publication is not forwarded to the London queue manager. The

HQ queue manager sends the publication directly to subscriber 2 and to the Asia queue

manager (9), from where it is forwarded to subscriber 1 (10).

Chapter 3. Distributed publish/subscribe 21

The subscription operation completes when the proxy subscription has been put on

the appropriate transmission queue for each directly connected queue manager,

and will not include the propagation of the proxy subscription out to the rest of

the topology. Proxy subscriptions are associated with the queue manager name that

created them. If one queue manager is attached, by a hierarchical connection or as

part of a publish/subscribe cluster, to more than one queue manager with the

same queue manager name, this can result in publications failing to reach one or

all of the identically named remote queue managers. To avoid this problem, as

with point-to-point messaging, give queue managers unique names, especially if

they are directly or indirectly connected in a WebSphere MQ network.

Within a distributed publish/subscribe network the flow of publications and

subscriptions can be controlled, and if appropriate, restricted, using publication

and subscription scope.

Proxy subscription aggregation and publication aggregration

Distributed publish/subscribe publications and proxy subscriptions are aggregated

to minimize the quantity of messages passing between publish/subscribe queue

managers.

Proxy subscription aggregation

Proxy subscriptions are aggregated using a simple duplicate elimination

system. For a given resolved topic string, a proxy subscription is sent to

directly connected publish/subscribe queue managers on the first local

subscription or received proxy subscription.

 Subsequent subscriptions make use of this existing proxy subscription. The

proxy subscription is cancelled only after the last local subscription or

received proxy subscription is cancelled.

Note: If PROXYSUB(FORCE) is set, a proxy subscription might be sent

before the first local subscription or received proxy subscription, and will

not be cancelled even after the last local subscription or received proxy

subscription is cancelled.

Publication aggregation

It is possible for more than one proxy subscription to match the topic

string of a single publication when the proxy subscriptions contain

wildcards. If a message is published on a queue manager that matches two

or more proxy subscriptions created by a single connected queue manager,

only one copy of the publication is forwarded to the remote queue

manager to satisfy the multiple proxy subscriptions.

More on routing mechanisms

Publish everywhere is an alternative routing mechanism to proxy

subscription-forwarding. Publish everywhere works by publishing to all directly

connected queue managers regardless of proxy subscriptions. Publish everywhere

is not supported in publish/subscribe clusters or hierarchies, but a similar

technique is available by using the PROXYSUB attribute for a high-level topic

object.

PROXYSUB attribute for a high-level topic object is explained in the following

comparison:

Publish everywhere

If publish everywhere routing is available in a publish/subscribe cluster,

22 WebSphere MQ: Publish/Subscribe User’s Guide

there is no need for any proxy subscriptions and all publications are

published to every member of the publish/subscribe clusters.

 The advantages of publish everywhere are the removal of latency

introduced by the propagation of proxy subscriptions, and the removal of

the network overhead caused by proxy subscription propagation where the

subscription is frequently created and deleted.

Proxy-subscription forwarding

To achieve a similar behavior to publish everywhere, alter the topic object,

as follows:

ALTER TOPIC(“SYSTEM.BASE.TOPIC”) PROXYSUB(FORCE)

This forces the sending of a wildcard proxy subscription, for the topic

string associated with this topic object, to every directly connected member

of the publish/subscribe topology, regardless of whether any local

subscriptions have been made.

 When this forced proxy subscription has been propagated throughout the

topology, any new subscriptions immediately receive any publications from

other connected queue manager, without suffering latency. Proxy

subscriptions for these new subscriptions are still propagated to each of the

directly connected publish/subscribe queue managers; preventing a break

in flow of publications if this behavior is turned off later.

Wildcard rules

Wildcards in proxy subscriptions are converted to use topic wildcards.

When a subscription for a wildcard is received, it can be either a character, as used

by WebSphere MQ Version 6.0, or a topic, as used by WebSphere Message Broker

Version 6.0 and WebSphere MQ Version 7.0 as follows:

v Character wildcards use ‘*’ to represent any character (including ‘/’).

v Topic wildcards use ‘#’ to represent a portion of the topic space between ‘/’

characters.

In WebSphere MQ Version 7.0, all proxy subscriptions are converted to use topic

wildcards. To achieve this, if a character wildcard is found, it is replaced with a ‘#’

character, back to the nearest ‘/’. For example, ‘/aaa/bbb/c*d’ is converted to

‘/aaa/bbb/#’. This results in remote queue managers sending slightly more

publications than were explicitly subscribed to, but these are filtered out by the

local queue manager as it delivers the publications to its local subscribers.

Controlling the flow of publications and subscriptions

Scope is separated into publication and subscription scope so that queue managers

can pass publications into, but not out of the publish/subscribe cluster, or out of,

but not into the publish/subscribe cluster.

Publication scope

The scope of a publication controls whether queue managers distribute the

publication to remote subscribers.

The PUBSCOPE topic attribute can be used to determine the scope of publications

made to a specific topic. You can set the attribute to one of the following values:

Chapter 3. Distributed publish/subscribe 23

QMGR

The publication is delivered only to local subscribers. These publications

are called local publications. Local publications are not forwarded to remote

queue managers and therefore are not received by remote queue managers’

subscribers.

ALL The publication is delivered to local subscribers and remote subscribers

through directly connected queue managers. These publications are called

global publications.

 Publishers can also specify whether a publication is local or global using the

MQPMO_SCOPE_QMGR put message option, if this option is used, it overrides

any behavior that has been set using the PUBSCOPE topic attribute.

Subscription scope

The scope of a subscription controls whether a subscription receives publications

made on remote queue managers. You use the SUBSCOPE topic attribute to

administer the scope of subscriptions.

Subscribers can decide to receive only local publications using the

MQSO_SCOPE_QMGR subscription option. The MQSO_SCOPE_QMGR option

determines whether a proxy subscription is created on remote queue managers in

the network so that they are aware of the subscription and route publications to

the local queue manager. If this option is not used, the subscriber will receive both

local and global publications.

You can set the attribute to one of the following values:

QMGR

The subscription is not propagated to directly connected queue managers,

and receives publications only from local publishers.

ALL The subscription is propagated to directly connected queue managers, and

receives publications from local publishers and remote publishers through

directly connected queue managers.

Overlapping topics

The scope of publications and subscriptions is defined in both local topic objects,

as shown in the following information, and cluster topic objects.

For the following local topic definitions, a local application that subscribes using

topic string ’/football/#’ will not receive remote publications on ’football/myteam’:

DEFINE TOPIC(A) TOPICSTR(’/football’) SUBSCOPE(ALL)

DEFINE TOPIC(B) TOPICSTR(’/football/myteam’) SUBSCOPE(QMGR)

Note: Subscribers can restrict SUBSCOPE, so that remote publications are not

received, by using MQSO_SCOPE_QMGR.

Retained publications

It is not good practice for two or more applications to publish retained

publications to the same topic on the same or different queue managers within a

single publish/subscribe topology.

24 WebSphere MQ: Publish/Subscribe User’s Guide

It is possible that different retained publications could be active at different queue

managers for the same topic, leading to unexpected behavior. As multiple proxy

subscriptions are distributed, multiple retained publications could be received.

Distributed publish/subscribe security

Distributed publish/subscribe internal messages such as proxy subscriptions,

publications, and so on, are put to distributed publish/subscribe system queues

(SYSTEM.INTER.QMGR.CONTROL, for example) by the receiving channel using

normal channel security rules. The information and diagrams in this topic

highlight the various processes and user IDs involved in the delivery of these

messages.

Local access control

Access to topics for publication and subscriptions is governed by local security

definitions and rules that are described in “Topic objects” on page 71. On z/OS, no

local topic object is required to establish access control. This is also true on

distributed systems, so administrators can choose to apply access control to

clustered topic objects irrespective of whether they exist in the cluster yet.

System administrators are responsible for access control on their local system and

trust other members of the hierarchy or cluster collectives to which they are

attached to be responsible for their own access control policy. It might not be

necessary to impose any access control, or access control can be defined on high

level objects in the topic tree, or fine level access control can be defined for each

subdivision of the topic name space. Because access control is defined for each

separate machine it is likely to be burdensome if fine level control is needed.

Making a proxy subscription

Trust for an organization to connect its queue manager to your queue manager is

confirmed by normal channel authentication means. If that trusted organization is

then allowed to do distributed publish/subscribe, an authority check is done when

the channel puts the message to a distributed publish/subscribe queue; for

example, SYSTEM.INTER.QMGR.CONTROL. The user ID for the queue authority

check depends on the PUTAUT value of the receiving channel (for example, the

user ID of the channel, MCAUSER, message context, and so on, depending on

value and platform). For more information on channel security, see WebSphere MQ

Security.

Proxy subscriptions will be made with the user ID of the distributed

publish/subscribe agent on the remote queue manager (QM2 in Figure 12 on page

26) which can then easily be granted access to local topic object profiles, because

that user ID is defined in the system and there are therefore no domain conflicts.

Chapter 3. Distributed publish/subscribe 25

Sending back remote publications

When a publication is made on the publishing queue manager, a copy satisfies the

proxy subscription that was made, and the context of that message contains the

context of the user ID which made the subscription, QM2 in Figure 13 on page 27.

The proxy subscription is made with a destination queue that is a remote queue, so

the publication message is resolved onto a transmission queue.

Again, trust for an organization to connect its queue manager, QM2, to another

queue manager, QM1, is confirmed by normal channel authentication means. If

that trusted organization is then allowed to do distributed publish/subscribe, an

authority check is done when the channel puts the publication message to the

distributed publish/subscribe publication queue SYSTEM.INTER.QMGR.PUBS. The

user ID for the queue authority check depends on the PUTAUT value of the

receiving channel (for example, the user ID of the channel, MCAUSER, message

context, and so on, depending on value and platform). For more information on

channel security, see WebSphere MQ Security.

When the publication message reaches the subscribing queue manager, another

MQPUT to the topic is done under the authority of that queue manager and the

context with the message is replaced by the context of each of the local subscribers

as they are each given the message.

Subscribing QMgr
(USER:QM1)

Proxying QMgr
(USER:QM2)

XmitQ ControlQ

Channel (MCAUSER:CHL1)
PUTAUT(DEF)

Dist Pub/Sub Agent
(USER:QM1)

Dist Pub/Sub Agent
(USER:QM2)

MQSUB App
(USER:APP1)

'ProxySub req msg'
MD.UserID = MQ1
not APP1

Q access
UserID = CHL1

Proxy MQSub
SubUserID = MQ2
not APP1

Figure 12. Proxy subscription security, making a subscription

26 WebSphere MQ: Publish/Subscribe User’s Guide

This means that, on a system where little has been considered regarding security,

the distributed publish/subscribe processes are likely to be running under a user

ID in the mqm group, the MCAUSER parameter on a channel will be blank (the

default), and messages are delivered to the various system queues as required.

This makes it easy to set up a proof of concept to demonstrate distributed

publish/subscribe.

On a system where security is more seriously considered, these internal messages

are subject to the same security controls as any message going over the channel.

If the channel is set up with a non-blank MCAUSER and a PUTAUT value

specifying that MCAUSER should be checked, then the MCAUSER in question

must be granted access to SYSTEM.INTER.QMGR.* queues. Where there are

multiple different remote queue managers with channels running under different

MCAUSER ids (for instance, when multiple hierarchical connections are configured

on a single queue manager), then all those user IDs need to be granted access to

the SYSTEM.INTER.QMGR.* queues.

If the channel is set up with a PUTAUT value specifying that the context of the

message is used, then access to the SYSTEM.INTER.QMGR.* queues are checked

based on the user ID inside the internal message. Because all these messages are

put by the distributed publish/subscribe agent’s user ID from the queue manager

that is sending the internal message, or publication message (see Figure 13), it is

not too large a set of user IDs to grant access to the various system queues (one

per remote queue manager), should you want to set up your distributed

publish/subscribe security in this way. It still has all of the same issues that

channel context security always has; that of the different user ID domains and the

fact that the user ID in the message might not be defined on the receiving system.

However, it is a perfectly acceptable way to run if required.

System queue security in the WebSphere MQ z/OS System Setup Guide provides a list

of queues and the access that is required to securely set up your distributed

publish/subscribe environment. If any internal messages or publications fail to be

put due to security violations, the channel writes a message to the log in the

normal manner and the messages can be sent to the dead-letter queue according to

normal channel error processing.

Subscribing QMgr
(USER:QM1)

Publishing QMgr
(USER:QM2)

ControlQ XmitQ

Channel (MCAUSER:CHL2)
PUTAUT(DEF)

Dist Pub/Sub Agent
(USER:QM1)

Dist Pub/Sub Agent
(USER:QM2)

MQSUB App
(USER:APP1)

MQGET...

MQPUT App
(USER:APP2)

'Publication msg'
MD.UserID = MQ2
not APP2
Subscriber context

Delivered publication
MD.UserID = APP1
Subscriber context

Q access
UserID = CHL2

Figure 13. Proxy subscription security, forwarding publications

Chapter 3. Distributed publish/subscribe 27

All inter-queue manager messaging for the purposes of distributed

publish/subscribe runs using normal channel security. No special casing is

required in the security manager on behalf of the distributed publish/subscribe

component.

For information on restricting publications and proxy subscriptions at the topic

level, see “Topic objects” on page 71.

Distributed publish/subscribe system queues

Four system queues are used by queue managers when they do publish/subscribe

messaging. You normally need to be aware of their existence only for problem

determination or capacity planning purposes.

 Table 3. Publish/subscribe system queues

System queue Purpose

SYSTEM.INTER.QMGR.CONTROL WebSphere MQ distributed publish/subscribe control

queue

SYSTEM.INTER.QMGR.FANREQ WebSphere MQ distributed publish/subscribe

internal proxy subscription fan-out process input

queue

SYSTEM.INTER.QMGR.PUBS WebSphere MQ distributed publish/subscribe

publications

SYSTEM.HIERARCHY.STATE WebSphere MQ distributed publish/subscribe

hierarchy relationship state

The attributes of the distributed publish/subscribe system queues are as displayed

in Table 4.

 Table 4. Attributes of publish/subscribe system queues

Attribute Value

DEFPSIST Yes

DEFSOPT This takes the value EXCL.

MAXMSGL On AIX®, HP-UX, Linux®, i5/OS®, Solaris and Windows® this takes the

value of MAXMSGL parameter of the ALTER QMGR command.

On z/OS this takes the value 100 MB (104 857 600 bytes).

MAXDEPTH On AIX, HP-UX, Linux, i5/OS, Solaris, Windows and z/OS this takes the

value 999 999 999.

SHARE This is a keyword that specifies that the queue can be shared for GET.

STGCLASS On z/OS this takes the value ‘SYSTEM’.

On other platforms this attribute is not used.

Publish/subscribe system queue errors

Errors can occur when distributed publish/subscribe queue manager queues are

unavailable.

If the fan-out request queue SYSTEM.INTER.QMGR.FANREQ is unavailable, the

MQSUB API receives reason codes and error messages written to the error log, on

occasions where proxy subscriptions need to be delivered to directly connected

queue managers.

28 WebSphere MQ: Publish/Subscribe User’s Guide

If the hierarchy relationship state queue SYSTEM.HIERARCHY.STATE is

unavailable, an error message is written to the error log and the publish/subscribe

engine is put into COMPAT mode.

If any other of the SYSTEM.INTER.QMGR queues are unavailable, an error

message is written to the error log, and although function is not disabled, it is

likely that publish/subscribe messages will build up on queues on remote queue

managers.

If the transmission queue to a parent, child or publish/subscribe cluster queue

manager is unavailable:

1. The MQPUT API receives reason codes and the publications are not delivered.

2. Received inter-queue manager publications are backed out to the input queue,

and subsequently re-attempted, being placed on the dead letter queue if the

backout threshold is reached.

3. Proxy subscriptions are backed out to the fanout request queue, and

subsequently attempted again, being placed on the dead letter queue if the

backout threshold is reached; in which case the proxy subscription will not be

delivered to any connected queue manager.

4. Hierarchy relationship protocol messages fail, and the connection status is

marked as ERROR on the PUBSUB command.

Publish/subscribe topologies

A publish/subscribe topology consists of queue managers and the connections

between them, that support publish/subscribe applications.

A publish/subscribe application can consist of a network of queue managers

connected together. The queue managers can all be on the same physical system,

or they can be distributed over several physical systems. By connecting queue

managers together, publications can be received by an application using any queue

manager in the network.

This provides the following benefits:

v Client applications can communicate with a nearby queue manager rather than

with a distant queue manager, thereby getting better response times.

v By using more than one queue manager, more subscribers can be supported.

You can arrange queue managers that are doing publish/subscribe messaging in

two different ways, clusters and hierarchies. For more information about these two

topologies and to find out which is most appropriate for you, refer to the

information in this chapter.

It is possible to use both topologies in combination by joining clusters together in a

hierarchy.

Publish/subscribe clusters

You can improve the performance of your publish/subscribe network by arranging

your queue managers in a publish/subscribe cluster. A publish/subscribe cluster

consists of a set of queue managers connected together, with direct channel links

between all members, to form all or part of a publish/subscribe network.

A publish/subscribe cluster is a set of queue managers that are fully interconnected

and form part of a multi-queue manager network for publish/subscribe

Chapter 3. Distributed publish/subscribe 29

applications. A cluster that is used for publish/subscribe messaging is no different

from a standard WebSphere MQ cluster. As such, the queue managers within the

publish/subscribe cluster can exist on physically separate computers and each pair

of queue managers is connected together by a pair of channels. For information

about how to plan and configure a WebSphere MQ cluster refer to WebSphere MQ

Queue Manager Clusters.

Using clusters in a publish/subscribe topology provides the following benefits:

v Messages destined for a specific queue manager in the same cluster are

transported directly to that queue manager and do not need to pass through an

intermediate queue manager. This improves performance and optimizes

inter-queue manager publish/subscribe traffic, in comparison with a hierarchical

topology.

v There is no single point of failure in this topology. If one queue manager is not

available, publications and subscriptions are still able to flow through the rest of

the publish/subscribe system because each queue manager is directly connected

with each other.

v If your clients are geographically dispersed, you can set up a cluster in each

location, and connect the clusters (by joining a single queue manager in each

cluster) to optimize the flow of publications and subscriptions through the

network.

v You can group clients according to the topics to which they publish and

subscribe.

Clients that share common topics can connect to queue managers within a

cluster. The common publications are transported efficiently within the cluster,

because they pass through only queue managers that have at least one client

with an interest in those common topics.

v A subscribing application can connect to its nearest queue manager, to improve

its own performance. The queue manager receives all messages that match the

subscription registration of the client from all queue managers within the cluster.

The performance of a client application is also improved for other services that

are requested from this queue manager. A client application can use both

publish/subscribe and point-to-point messaging.

v The number of clients per queue manager can be reduced by adding more

queue manager to the cluster to share workload. This makes a publish/subscribe

cluster topology highly scalable.

When you create a cluster it is possible to create a loop causing messages to cycle

forever within the network, nothing will prevent you from doing this but you will

be made aware of it because of the fingerprint that is added by the queue manager

(stored as a message property).

A publish/subscribe cluster is created when a clustered topic is defined. This

definition is shared with all members of the cluster. This means that publications

on the clustered topic are shared with all members of the cluster.

When at least one clustered topic object is defined, all queue managers within the

cluster will be notified about each other.

If you have several queue managers in your publish/subscribe system, many

channels are required to connect these queue managers together. However, the

connections between queue managers can be created automatically to reduce the

administrative work load.

30 WebSphere MQ: Publish/Subscribe User’s Guide

Cluster topics

You can cluster topics in a similar manner to cluster queues, although an

individual administrative topic object can be a member of only one cluster. Topic

objects do not have an equivalent to the CLUSNL (cluster namelist) attribute.

When a cluster topic is defined, the cluster topic object is published to the full

repositories. The full repositories then push all cluster topic definitions to all queue

managers within the cluster.

At each queue manager a single topic space is constructed from the local and

cluster topic definitions. When an application subscribes to a topic that resolves to

a clustered topic, WebSphere MQ creates a proxy subscription and sends it, from

the queue manager to which the subscriber connected, to all members of the

cluster in which the clustered topic object is defined.

If a local and cluster topic definition exists for a single topic string, the local

definition is used. Where two or more cluster topic definitions, for a single topic

string, have differing attributes or exist in more than one cluster, a message is

written to the log and the most recently received cluster topic definition is used. It

is acceptable to define two or more cluster topic definitions with identical

attributes for a single topic string.

If you are working in clusters, and a single queue manager defines a local topic

object to override the behavior of a cluster topic object, this does not prevent other

queue managers in the cluster from sending proxy subscriptions to the queue

manager that defined the local topic object. To prevent publications being sent to

those proxy subscriptions, you need to specify PUBSCOPE(QMGR) on the local

topic object.

If the queue manager on which a cluster topic is defined is unavailable, you cannot

alter the cluster topic definition remotely. However, you can use the RESET

CLUSTER command to remove the queue manager from the cluster. You can

define an additional cluster topic definition on the same topic string at a different

queue manager within the cluster; if defined with differing attributes, this

overrides the previous definition and a message is written to the log. If the original

queue manager subsequently becomes available, its clustered topic object must

either be deleted or its definition updated to match the additional cluster

definition.

Cluster topic names

Cluster topic names are character strings. For example, you could have high-level

cluster topics named ’Sport’, ’Stock’, ’Films’, and ’TV’, and you could divide the

’Sport’ cluster topic into separate, more specific cluster topics covering different

sports:

Sport/Soccer Sport/Golf Sport/Tennis

These cluster topics could then be divided further, to separate different types of

information about each sport:

Sport/Soccer/Fixtures Sport/Soccer/Results Sport/Soccer/Reports

WebSphere MQ publish/subscribe does not recognize that the forward slash (/)

character is being used in a special way, but if you use the forward slash (/)

character as a separator, you can ensure compatibility with other WebSphere

business integration applications.

Chapter 3. Distributed publish/subscribe 31

You can use any character in the single-byte character set for which the machine is

configured in a character string. Consider, however, whether the cluster topic

string might need to be translated to a different character representation, in which

case you must use only those characters that are available in the configured

character set of all relevant machines.

Cluster topic strings are case sensitive, and a blank character has no special

meaning. As a subscriber, you can specify a cluster topic or range of cluster topics

using wildcards to receive the information in which you are interested.

Key roles for publish/subscribe cluster queue managers

There are two key roles for queue managers in publish/subscribe clusters that you

should consider when designing a publish/subscribe cluster.

Full repositories

You can define full repositories on any queue manager in the

publish/subscribe cluster. As with a normal cluster, a publish/subscribe

cluster should ideally have two full repositories, hosted in highly available

machines.

Cluster topic host

A cluster topic host is a queue manager where a clustered topic object is

defined. You can define clustered topic objects on any queue manager in

the publish/subscribe cluster. When at least one clustered topic exists

within a cluster, the cluster is a publish/subscribe cluster. Ideally, all

clustered topic objects should be identically defined on two queue

managers and these machines should be highly available.

 If a single host of a clustered topic object is lost, for example, because of

disk failure, any cluster topic cache records that are based on the clustered

topic object, that already exist in the cluster cache on other queue

managers, are usable within the cluster for a period of up to 30 days, or

until the cache is refreshed.

You can redefine the clustered topic object on a queue manager that is

working correctly. If a new object is not defined within 27 days (inclusive)

after the host queue manager failure, all members of the cluster will report

that an expected object update has not been received.

 Full repositories and topic hosts do not need to overlap or be separated. In

publish/subscribe clusters that have just two highly available computers among

many computers, it is good practice to define both the highly available computers

as full repositories and cluster topic hosts.

In publish/subscribe clusters with many highly available computers it is good

practice to define full repositories and cluster topic hosts on separate highly

available computers, so that the operation and maintenance of one function can be

managed without affecting the operation of other functions.

Overlapping cluster support and publish/subscribe

With WebSphere MQ clusters, a single queue manager can be a member of more

than one cluster.

A reason for making a single queue manager a member of more than one cluster is

to create a cluster gateway between two clusters, so that messages originating in

one cluster can be routed to another cluster. Although a WebSphere MQ queue

manager can be a member of more than one cluster and more than one

publish/subscribe cluster, publications are not passed from one cluster to another

32 WebSphere MQ: Publish/Subscribe User’s Guide

by means of overlapping clusters. The scope of proxy subscriptions is limited to

the single cluster in which the clustered topic is defined.

In Figure 14, an application connected to queue manager QM3, subscribing on a

topic that resolves to topic object TB

(which exists only in CLUSTER 1) results in

proxy subscriptions being sent from queue manager QM3 to both queue managers

QM1 and QM2. An application connected to queue manager QM3, subscribing on

a topic that resolved to topic object TC

(which exists only in the CLUSTER 2)

results in proxy subscriptions being sent from queue manager QM3 to both queue

managers QM4 and QM5.

 In Figure 15 on page 34 messages are output to the log of queue manager QM3

informing users that the topic object TA

exists in two clusters. An application

connected to queue manager QM3, subscribing on a topic that resolved to topic

object TA

(which exists in both CLUSTER 1 and CLUSTER 2) results in proxy

subscriptions being sent to one cluster only – so either to queue managers QM1

and QM2 or to queue managers QM4 and QM5. The cluster chosen depends on

which cluster topic object was added last to the cluster cache in queue manager

QM3.

QM1

QM4

QM3

QM2

QM5

CLUSTER 1

CLUSTER 2TB

TC

Figure 14. Overlapping clusters: two clusters each subscribing to different topics

Chapter 3. Distributed publish/subscribe 33

Publish/subscribe messages, for example, application publications and proxy

subscriptions, are transmitted only over cluster channels that are part of the

publish/subscribe cluster in which the cluster topic that the message relates to is

defined.

For example, for the following topic definitions:

v Topic: TA

in CLUSTER 1 with TopicString: /football

v Topic: TA

in CLUSTER 2 with TopicString: /tennis

A subscription for TA

made on queue manager QM3 resolves to TopicString

/tennis, assuming that this was the latest definition to be made, and causes receipt

of publications on CLUSTER 2 for topic /tennis.

If any queue manager receives multiple definitions on the same topic string which

differ in any detail, including cluster name, the behavior of publications and

subscriptions on those topics or topic string is undefined. An informational

message is issued to alert the administrator to the duplicate definition.

Subscription scope and publication scope in publish/subscribe

clusters

The scope of publications and subscriptions is defined in the cluster topic object.

If a cluster topic object is defined with SUBSCOPE(QMGR), the definition is shared

with the cluster, but the scope of subscriptions based on that topic is local only and

publications are not shared with the cluster.

If a cluster topic object is defined with PUBSCOPE(QMGR), the definition is shared

with the cluster, but the scope of publications based on that topic is local only and

they are not shared with the cluster.

REFRESH CLUSTER considerations

As with point-to-point messaging, REFRESH CLUSTER can cause temporary

disruption to publish/subscribe traffic.

The disruption can occur as follows:

v Up to 10 second pauses in message delivery.

QM1

QM4

QM3

QM2

QM5

CLUSTER 1

CLUSTER 2TA

TA

Figure 15. Overlapping clusters: two clusters each subscribing to the same topic

34 WebSphere MQ: Publish/Subscribe User’s Guide

v MQOPEN and MQPUT failures, for example,

MQRC_NO_DESTINATIONS_AVAILABLE.

Publish/subscribe hierarchies

Queue managers can be grouped together in a hierarchy, where the hierarchy

contains one or more queue managers that are directly connected. Queue managers

are connected together using a connection-time parent and child relationship.

When two queue managers are connected together for the first time, the child

queue manager is connected to the parent queue manager.

When the parent and child queue managers are connected in a hierarchy there is

no functional difference between them until you disconnect queue managers from

the hierarchy.

Note: WebSphere MQ hierarchical connections require that the queue manager

attribute PSMODE is set to ENABLED.

Connecting a queue manager to a hierarchy

You can connect a local queue manager to a parent queue manager to create a

hierarchy.

Before you can add a queue manager to a hierarchy, channels in both directions

must exist between the prospective parent queue manager and child queue

manager. Queue managers use explicit addressing when sending messages to

queues that reside on another queue manager. When the queue is opened by the

queue manager, both the queue and queue manager names are specified. To

facilitate multi-queue manager operation, this queue manager name must resolve

to the appropriate transmission queue. The simplest method of achieving this is for

the transmission queue to have the same name as the remote queue manager

name. If you do not adopt this naming scheme, you can use a queue manager alias

definition to ensure that messages are placed on the appropriate transmission

queue.

For example, to specify that messages sent to queue manager PARENT are placed

on transmission queue PARENT.XMITQ, use the following MQSC command:

DEFINE QREMOTE (PARENT) RNAME(‘’) RQMNAME(PARENT) XMITQ(PARENT.XMITQ)

In WebSphere MQ Version 6.0, when the appropriate channels and queues were

defined, queue managers were connected to one another using the strmqbrk

command. The strmqbrk command works differently in WebSphere MQ Version 7.0

and you can no longer use it to connect children to parents. Instead, you connect

queue managers by using the following command:

ALTER QMGR PARENT(<parent qmgr>)

Where <parent qmgr> is the name of the parent queue manager to which the local

queue manager is connected, using appropriate channels and queues. You can use

a queue manager alias, see WebSphere MQ Application Programming Guide for

details. A queue manager can have only one parent.

If a parent has already been defined, the ALTER QMGR PARENT command

disconnects from the original parent and sends a connection flow to the new

parent queue manager.

If the original parent is unavailable, the ALTER QMGR PARENT command does

not fail, but a warning is written to the error log. The ALTER QMGR PARENT

Chapter 3. Distributed publish/subscribe 35

command is not synchronous with the complete negotiation with the parent queue

manager. Use the following command to monitor the status of the hierarchical

connection to the parent queue manager:

DISPLAY PUBSUB TYPE(PARENT)

Disconnecting a queue manager from a hierarchy

You can disconnect a child queue manager from a parent queue manager in a

hierarchy. You can also check that the disconnection was successful.

To disconnect queue managers, issue the following MQSC command at the child

queue manager:

ALTER QMGR PARENT(‘ ’)

To confirm that the parent has been disconnected, issue the command DISPLAY

PUBSUB TYPE(PARENT) at the child queue manager and check that NONE is

returned.

To confirm that the child queue manager has been disconnected, issue the

command DISPLAY PUBSUB TYPE(CHILD) at the parent queue manager, and check

that the name of the child queue manager is not returned. When the parent and

child have been disconnected, you can manually delete the queues and channels

on the child queue manager and the parent queue manager, as required.

Note: In WebSphere MQ Version 6.0, queue managers were disconnected from one

another using the dltmqbrk command, and required that all child queue managers

were disconnected first. The dltmqbrk command works differently in WebSphere

MQ Version 7.0 and can no longer be used to disconnect children from parents.

36 WebSphere MQ: Publish/Subscribe User’s Guide

Chapter 4. Migrating to WebSphere Version 7.0

publish/subscribe

strmqbrk (Migrate WebSphere MQ Version 6.0 broker to Version 7.0)

Purpose

Use the strmqbrk command to migrate WebSphere MQ Version 6.0 broker state to

WebSphere MQ Version 7.0 publish/subscribe.

In WebSphere MQ Version 6.0, strmqbrk started a broker. The WebSphere MQ

Version 7.0 publish/subscribe engine cannot be started in this manner. To enable

publish/subscribe for a queue manager, use the ALTER QMGR command; for

details, see ALTER QMGRin the WebSphere MQ Script (MQSC) Command Reference.

Publish/subscribe command messages

The WebSphere MQ Version 6.0 publish/subscribe command message interface is

being deprecated. If you have applications that use this interface directly, you

should migrate those applications to use the new Version 7.0 publish/subscribe

functions.

The following sections explain how to replace existing command messages.

Identity

In WebSphere MQ Version 6 there were two ways of identifying a subscriber.

These were referred to as the traditional identity and the subscription name.

The traditional identity was also used to identify a publisher. The traditional

identity was a combination of queue name, queue manager name, and optional

correlation identifier.

A publisher no longer has an explicit publisher identity, but can be identified in

the same way as any only WebSphere MQ application, by means of its connection

to the queue manager. Since there is no explicit registration of a publisher, or his

identity over and above what can be obtained by displaying the connections to the

queue manager, there is no longer a need for the anonymous option on Register

Publisher. Your application must now use the SubName field in the MQSD to

identify a subscriber.

The correlation identifier also had a secondary use which was to allow subscribers

to MQGET by CorrelId to only get publications for a particular subscription, if

there were multiple subscriptions all using the same queue. This is provided by

using the SubCorrelId field returned in the MQSD at MQSUB time.

Stream Name

MQPS_STREAM_NAME is deprecated since stream names are part of the full topic

name. Stream names can be mapped to administrative topic objects, and then the

topic name used along with the stream name can be mapped to a topic string to be

concatenated with the topic string from the topic object. For example, if the

© Copyright IBM Corp. 1996, 2008 37

application was previously using a stream queue name of

SYSTEM.BROKER.RESULTS.STREAM and a topic of Sport/Soccer/State/
LatestScore/*, then a topic object can be created whose name is

SYSTEM.BROKER.RESULTS.STREAM which is defined to have a TOPICSTR of /

and the new application will provide a two part topic name in the MQOD or

MQSD using an ObjectName of SYSTEM.BROKER.RESULTS.STREAM and an

ObjectString of Sport/Soccer/State/LatestScore/*.

If an administrative topic object that does not exist is used in place of a stream

name, the error (effectively mapping to MQRCCF_STREAM_ERROR) which is

given is MQRC_UNKNOWN_OBJECT_NAME. supported.

Application migration details

When migrating to use the MQ API to do publish/subscribe, the code within any

one application program must be consistent.

The application program must not contain a mixture of these deprecated APIs and

the new MQ API options. An entire application suite, such as the combination of a

subscribing application program and a publishing application program, does not

all need to be migrated at the same time. Interaction between a publishing

application program using the deprecated APIs and a subscribing application using

the new MQ API is supported.

Delete Publication - Version 7 replacement

The Delete Publication command message contains a number of parameters. This

should be replaced by using the PCF ClearTopic command. This section details the

equivalent options or fields in the PCF command message to show how an

application would migrate from using the Delete Publication command message to

using the PCF ClearTopic command message.

Required parameters

MQPS_COMMAND with value MQPS_DELETE_PUBLICATION is implied when

you use the ClearTopic command.

MQPS_TOPIC is provided in a field in the ClearTopic command message. If your

application provided more than one MQPS_TOPIC in a single Delete Publication

command message, it must now issue a separate ClearTopic call for each separate

topic string.

Optional parameters

MQPS_DELETE_OPTIONS is replaced with an attribute of the ClearTopic

command message.

For MQPS_STREAM_NAME see Chapter 7, “Publish/subscribe deprecated

function,” on page 81.

Error codes

If your application checked for any of the following error codes, the equivalent

MQRC error codes are shown in the following table:

38 WebSphere MQ: Publish/Subscribe User’s Guide

Reason codes in NameValueString of the

broker response message. MQRC equivalent

MQRCCF_STREAM_ERROR MQRC_UNKNOWN_OBJECT_NAME

MQRCCF_TOPIC_ERROR MQRC_OBJECT_STRING_ERROR

MQRCCF_INCORRECT_STREAM See Note 1

Notes:

1. No equivalent since there is no need to provide the stream name twice, once in the

command and once by putting it to the stream queue, so you cannot have a mismatch.

Deregister publisher - Version 7 replacement

The Deregister Publisher command message contains a number of parameters. You

should replace it with the MQCLOSE verb. This section details the equivalent

options or fields in the MQ API to show how to migrate an application from the

Deregister Publisher command message to MQCLOSE.

A difference in behaviour will be seen because a Register Publisher command

could leave an application registered even when it was not connected, whereas the

equivalent MQOPEN will only show a publisher’s intent when the application is

connected and keeps the handle from MQOPEN available. Even without issuing

MQCLOSE, an application will be deregistered when the queue manager detects

that the application’s connection is lost.

Required parameters

MQPS_COMMAND with value MQPS_REGISTER_PUBLISHER is implied when

closing a handle to a topic previously opened using MQOPEN with the

MQOO_OUTPUT option.

Optional parameters

If your application provided a queue and queue manager name (either by using

MQPS_Q_MGR_NAME and MQPS_Q_NAME in the command message, or from

the ReplyToQ and ReplyToQMgr fields in MQMD of the command message) these

attributes are now implied by the provision of the handle obtained when opening

the topic.

MQPS_REGISTRATION_OPTIONS is replaced with options on the MQCLOSE call.

See MQCLOSE for more details. Note that there are two ways you could have

specified each of these options in your application, a string constant, MQPS_* or an

integer constant, MQREGO_*. Both are replaced by the use of a single numeric

constant.

String constant Integer constant

MQCLOSE Options field

constant

MQPS_CORREL_ID_AS_

IDENTITY

MQREGO_CORREL_ID_AS_

IDENTITY

See Chapter 7,

“Publish/subscribe

deprecated function,” on

page 81

MQPS_DEREGISTER_ALL MQREGO_DEREGISTER_

ALL

See Note 1

Chapter 4. Migrating to WebSphere Version 7.0 publish/subscribe 39

String constant Integer constant

MQCLOSE Options field

constant

Notes:

1. Since only one topic can be opened by the MQOPEN call, closing the handle closes that

one topic. There is no need for an equivalent option. If many topics are opened, simply

issuing MQDISC will close them all, saving the need to MQCLOSE each handle.

For MQPS_STREAM_NAME see Chapter 7, “Publish/subscribe deprecated

function,” on page 81, although in this case, the stream name is implied by the

provision of the handle obtained when opening the topic. MQPS_TOPIC is implied

by the provision of the handle obtained when opening the topic.

Error codes

If your application checked for any of the following error codes, the equivalent

MQRC error codes are shown in the following table:

 Reason codes in NameValueString of the

broker response message. MQRC equivalent

MQRCCF_STREAM_ERROR MQRC_HOBJ_ERROR (See note 1)

MQRCCF_TOPIC_ERROR MQRC_HOBJ_ERROR (See note 1)

MQRCCF_NOT_REGISTERED MQRC_HOBJ_ERROR (See note 1)

MQRCCF_Q_MGR_NAME_ERROR MQRC_HOBJ_ERROR (See note 1)

MQRCCF_Q_NAME_ERROR MQRC_HOBJ_ERROR (See note 1)

MQRCCF_DUPLICATE_IDENTITY MQRC_HOBJ_ERROR (See note 1)

MQRCCF_UNKNOWN_STREAM MQRC_HOBJ_ERROR (See note 1)

MQRCCF_REG_OPTIONS_ERROR MQRC_OPTIONS_ERROR

Notes:

1. This error code implies the same type of problem, but since all of these fields are now

implied by the provision of the handle obtained when opening the topic, this is the

only equivalent error.

Deregister subscriber - Version 7 replacement

The Deregister Subscriber command message contains a number of parameters.

This should be replaced by using the MQCLOSE verb. This section details the

equivalent options or fields in the MQ API to show how an application would

migrate from using the Deregister Subscriber command message to using

MQCLOSE. If the Deregister Subscriber command message was used in a different

program from that of the Register Subscriber command message, the application

must now first use the MQSUB call with the MQSO_RESUME option to get a

handle to the subscription, in order to deregister it.

Required parameters

MQPS_COMMAND with value MQPS_DEREGISTER_SUBSCRIBER is replaced by

the use of the MQCLOSE verb with the option MQCO_REMOVE_SUB.

Optional parameters

40 WebSphere MQ: Publish/Subscribe User’s Guide

If your application provided a queue and queue manager name (either by using

MQPS_Q_MGR_NAME and MQPS_Q_NAME in the command message, or from

the ReplyToQ and ReplyToQMgr fields in MQMD of the command message) these

attributes are now implied by the provision of the handle obtained when

subscribing to the topic.

MQPS_REGISTRATION_OPTIONS is replaced with Options on the MQCLOSE

call. See MQCLOSE for more details. Note that there are two ways you could have

specified each of these options in your application, a string constant, MQPS_* or an

integer constant, MQREGO_*. Both are replaced by the use of a single numeric

constant.

String constant Integer constant

MQCLOSE Options field

constant

MQPS_CORREL_ID_AS_

IDENTITY

MQREGO_CORREL_ID_AS_

IDENTITY

See Note 1

MQPS_DEREGISTER_ALL MQREGO_DEREGISTER_

ALL

See Note 2

MQPS_FULL_RESPONSE MQREGO_FULL_RESPONSE See Note 3

MQPS_LEAVE_ONLY MQREGO_LEAVE_ONLY See Note 4

MQPS_VARIABLE_USER_ID MQREGO_VARIABLE_

USER_ID

See Note 1

Notes:

1. This option is implied by the provision of the handle obtained when subscribing to the

topic.

2. Since only one topic (separate topic string that is – of course wildcards can still be used

within one topic string) can be subscribed to by the MQSUB call, closing the handle

closes that one topic. There is no need for an equivalent option. If many topics are

opened, simply issuing MQDISC will close them all, saving the need to MQCLOSE

each handle.

3. Use of this option is implied in the use of the MQSUB verb. The fields returned in the

response message are now populated in the MQSD structure. See MQSUB for more

details. Because an MQSUB call must be made in order to obtain the handle to pass to

the MQCLOSE call, this option is deprecated.

4. Use of these options are deprecated and moved to spiCONN for the one environment

where they are needed.

For MQPS_STREAM_NAME see Chapter 7, “Publish/subscribe deprecated

function,” on page 81, although in this case, the stream name is implied by the

provision of the handle obtained when subscribing to the topic.

MQPS_SUBSCRIPTION_IDENTITY is replaced by a field in spiCONN for the one

environment where it is needed. MQPS_SUBSCRIPTION_NAME is replaced by the

field in the MQSD called SubName and is therefore implied by the provision of the

handle obtained when subscribing to the topic. MQPS_TOPIC is provided in a field

in the MQSD called ObjectString, and is therefore implied by the provision of the

handle obtained when subscribing to the topic.

See MQSD for more details

Error codes

If your application checked for any of the following error codes, the equivalent

MQRC error codes are shown in the following table:

Chapter 4. Migrating to WebSphere Version 7.0 publish/subscribe 41

Reason codes in NameValueString of the

broker response message. MQRC equivalent

MQRCCF_STREAM_ERROR MQRC_HOBJ_ERROR (See note 1)

MQRCCF_TOPIC_ERROR MQRC_HOBJ_ERROR (See note 1)

MQRCCF_NOT_REGISTERED MQRC_HOBJ_ERROR (See note 1)

MQRCCF_Q_MGR_NAME_ERROR MQRC_HOBJ_ERROR (See note 1)

MQRCCF_Q_NAME_ERROR MQRC_HOBJ_ERROR (See note 1)

MQRCCF_DUPLICATE_IDENTITY MQRC_HOBJ_ERROR (See note 1)

MQRCCF_UNKNOWN_STREAM MQRC_HOBJ_ERROR (See note 1)

MQRCCF_REG_OPTIONS_ERROR MQRC_OPTIONS_ERROR

Notes:

1. This error code implies the same type of problem, but because all of these fields are

now implied by the provision of the handle obtained when opening the topic, this is

the only equivalent error.

Publish - Version 7 replacement

The Publish command message contains a number of parameters. This should be

replaced by using the MQPUT/MQPUT1 verbs. This section details the equivalent

options or fields in the MQ API to show how an application would migrate from

using the Publish command message to using MQPUT/MQPUT1.

Required parameters

MQPS_COMMAND with value MQPS_PUBLISH is implied when putting a

message to an object handle opening a topic for MQOO_OUTPUT. If your

application did not use Register Publisher, see the details in Publish for remaining

unregistered.

MQPS_TOPIC is provided in a field in the MQOD called ObjectString. See MQOD

- Object Descriptor for more details. If your application provided more than one

MQPS_TOPIC in a single Register Publisher command message, it must now issue

a separate MQOPEN call for each separate topic string.

Optional parameters

MQPS_INTEGER_DATA can be replaced with a message property.

MQPS_PUBLICATION_OPTIONS is replaced with the Options field in the

MQPMO structure. See MQPMO for more details. Note that there are two ways

you could have specified each of these options in your application, a string

constant, MQPS_* or an integer constant, MQREGO_*. Both are replaced by the use

of a single numeric constant.

String constant Integer constant

MQCLOSE Options field

constant

MQPS_CORREL_ID_AS_

IDENTITY

MQREGO_CORREL_ID_

AS_IDENTITY

See Chapter 7,

“Publish/subscribe

deprecated function,” on

page 81 for more information

42 WebSphere MQ: Publish/Subscribe User’s Guide

String constant Integer constant

MQCLOSE Options field

constant

MQPS_IS_RETAINED_

PUBLICATION

MQREGO_IS_RETAINED_

PUBLICATION

See Note 1

MQPS_NO_REGISTRATION MQREGO_NO_

REGISTRATION

See Note 2

MQPS_OTHER_

SUBSCRIBERS_ONLY

MQREGO_OTHER_

SUBSCRIBERS_ONLY

See Note 3

MQPS_RETAIN_

PUBLICATION

MQREGO_RETAIN_

PUBLICATION

MQPMO_RETAIN

Notes:

1. A message property will contain this information

2. This option is deprecated because publishers are no longer registered

3. This option is deprecated. If an application does not want to receive its own

publications it should subscribe using the option MQSO_NO_LOCAL on the MQSUB

call.

MQPS_Q_MGR_NAME is replaced by the ReplyToQMgr in the MQMD of the

publication. If the publisher specifies MQPMO_NO_DIRECT_REQUEST the

ReplyToQMgr will not contain the publishers queue manager name, otherwise it

will.

MQPS_Q_NAME is replaced by the ReplyToQ in the MQMD of the publication. If

the publisher does not set this, it is not available.

MQPS_REGISTRATION_OPTIONS is replaced with Options in the MQPMO. See

MQPMO for more details. These are exactly the same as those in the section on

Register Publisher below.

MQPS_SEQUENCE_NUMBER is replaced with a message property.

For MQPS_STREAM_NAME see Chapter 7, “Publish/subscribe deprecated

function,” on page 81. MQPS_STRING_DATA is replaced with a message property.

Register publisher - Version 7 replacement

The Register Publisher command message contains a number of parameters. This

should be replaced by using the MQOPEN verb. This section details the equivalent

options or fields in the MQ API to show how an application would migrate from

using the Register Publisher command message to using MQOPEN. A difference in

behaviour will be seen because a Register Publisher command could leave an

application registered even when it was not connected, whereas MQOPEN will

only show a publishers intent when the application is connected and keeps the

handle from MQOPEN available.

Required parameters

MQPS_COMMAND with value MQPS_REGISTER_PUBLISHER is implied when

opening a topic for MQOO_OUTPUT. If your application did not use Register

Publisher, see the details in Publish for remaining unregistered.

MQPS_TOPIC is provided in a field in the MQOD called ObjectString. See MQOD

- Object Descriptor for more details. If your application provided more than one

Chapter 4. Migrating to WebSphere Version 7.0 publish/subscribe 43

MQPS_TOPIC in a single Register Publisher command message, it must now issue

a separate MQOPEN call for each separate topic string.

Optional parameters

If your application provided a queue and queue manager name (either by using

MQPS_Q_MGR_NAME and MQPS_Q_NAME in the command message, or from

the ReplyToQ and ReplyToQMgr fields in MQMD of the command message) in

order for subscribing applications to be able to directly contact the publisher, then

your application must now provide these details on each published message.

MQPS_REGISTRATION_OPTIONS is replaced with Options in the MQPMO. See

MQPMO for more details. Note that there are two ways you could have specified

each of these options in your application, a string constant, MQPS_* or an integer

constant, MQREGO_*. Both are replaced by the use of a single numeric constant.

String constant Integer constant

MQCLOSE Options field

constant

MQPS_ANONYMOUS MQREGO_ANONYMOUS See Chapter 7,

“Publish/subscribe

deprecated function,” on

page 81

MQPS_CORREL_ID_

AS_IDENTITY

MQREGO_CORREL_ID_

AS_IDENTITY

See Chapter 7,

“Publish/subscribe

deprecated function,” on

page 81

MQPS_DIRECT_REQUEST MQREGO_DIRECT_

REQUEST

See Note 1

MQPS_LOCAL MQREGO_LOCAL MQPMO_SCOPE_QMGR

Notes:

1. Use of this option is implied if the ReplyToQ and ReplyToQMgr fields are provided in

the MQMD of the message put. If these fields are not provided, the queue manager will

still fill in the ReplyToQMgr as the queue manager local to the publisher. To remain

completely anonymous and not even provide this information to subscribers, your

application should use the MQPMO_NO_DIRECT_REQUEST option.

For MQPS_STREAM_NAME see Chapter 7, “Publish/subscribe deprecated

function,” on page 81.

Register subscriber - Version 7 replacement

The Register Subscriber command message contains a number of parameters. This

should be replaced by using the MQSUB verb. This section details the equivalent

options or fields in the MQ API to show how an application would migrate from

using the Register Subscriber command message to using MQSUB.

Required parameters

MQPS_COMMAND with value MQPS_REGISTER_SUBSCRIBER is replaced by the

use of the MQSUB verb. If your application did not use Register Subscriber then

the use of the MQSUB verb is not required for equivalent behaviour.

MQPS_TOPIC is provided in a field in the MQSD called ObjectString. See MQSD

for more details. If your application provided more than one MQPS_TOPIC in a

44 WebSphere MQ: Publish/Subscribe User’s Guide

single Register Subscriber command message, it must now issue a separate

MQSUB call for each separate topic string.

Optional parameters

If your application provided a non-local queue name and/or a queue manager

name other than the one connected to (either by using MQPS_Q_MGR_NAME and

MQPS_Q_NAME in the command message, or from the ReplyToQ and

ReplyToQMgr fields in MQMD of the command message) then your application

must now provide an object handle, which has been returned by a MQOPEN call

for that queue, in the Hobj parameter of the MQSUB verb.

If your application provided the name of a queue local to the queue manager it

connected to, it now has the option to request that the queue manager manage

where the publications are sent. This can be done by using the MQSO_MANAGED

option in the field in the MQSD called Options.

MQPS_REGISTRATION_OPTIONS is replaced with a field in the MQSD called

Options. See MQSD for more details. Note that there are two ways you could have

specified each of these options in your application, a string constant, MQPS_* or an

integer constant, MQREGO_*. Both are replaced by the use of a single numeric

constant.

String constant Integer constant

MQCLOSE Options field

constant

MQPS_ADD_NAME MQREGO_ADD_NAME See Note 1

MQPS_ANONYMOUS MQREGO_ANONYMOUS See Identity

MQPS_CORREL_ID_AS_

IDENTITY

MQREGO_CORREL_ID_

AS_IDENTITY

See Identity (also see Note 7)

MQPS_DUPLICATES_OK MQREGO_DUPLICATES_OK See Note 2

MQPS_FULL_RESPONSE MQREGO_FULL_RESPONSE See Note 3

MQPS_INCLUDE_STREAM_

NAME

MQREGO_INCLUDE_

STREAM_NAME

See Note 4

MQPS_INFORM_IF_

RETAINED

MQREGO_INFORM_IF_

RETAINED

See Note 5

MQPS_JOIN_EXCLUSIVE MQREGO_JOIN_

EXCLUSIVE

See Note 6

MQPS_JOIN_SHARED MQREGO_JOIN_SHARED See Note 6

MQPS_LOCAL MQREGO_LOCAL MQSO_SCOPE_QMGR

MQPS_LOCKED MQREGO_LOCKED See Note 6

MQPS_NEW_

PUBLICATIONS_ONLY

MQREGO_NEW_PUB

LICATIONS_ONLY

MQSO_NEW_

PUBLICATIONS_ONLY

MQPS_NO_ALTERATION MQREGO_NO_

ALTERATION

MQSO_RESUME

MQPS_NON_PERSISTENT MQREGO_NON_

PERSISTENT

MQSO_NON_PERSISTENT

MQPS_PERSISTENT MQREGO_PERSISTENT MQSO_PERSISTENT

MQPS_PERSISTENT_AS_

PUBLISH

MQREGO_PERSISTENT_

AS_PUBLISH

MQSO_PERSISTENT_AS_

PUBLISH

MQPS_PERSISTENT_AS_Q MQREFO_PERSISTENT_

AS_Q

MQSO_PERSISTENT_AS_

QUEUE_DEF

Chapter 4. Migrating to WebSphere Version 7.0 publish/subscribe 45

String constant Integer constant

MQCLOSE Options field

constant

MQPS_PUBLISH_ON_

REQUEST_ONLY

MQREGO_PUBLISH_ON_

REQUEST_ONLY

MQSO_PUBLICATIONS_

ON_REQUEST

MQPS_VARIABLE_USER_ID MQREGO_VARIABLE_

USER_ID

MQSO_ANY_USERID, (also

see Note 7)

Notes:

1. Use of this option is deprecated since the only identity of a subscription is the

SubName. See Deprecation.

2. Use of this option is deprecated since the queued interface has been removed.

3. Use of this option is implied in the use of the MQSUB verb. The fields returned in the

response message are now populated in the MQSD structure. See MQSD for more

details.

4. Use of this option is deprecated since stream names are part of the full topic name.

5. Use of this option is deprecated since the information about whether a publication is a

retained publication or not is a message property that is always present.

6. Use of these options are deprecated and moved to spiCONN for the one environment

where they are needed.

7. A tick in this column indicates this option is also relevant for Request Update.

For MQPS_STREAM_NAME see Chapter 7, “Publish/subscribe deprecated

function,” on page 81, although in this case, the stream name is implied by the

provision of the handle obtained when subscribing to the topic.

MQPS_SUBSCRIPTION_IDENTITY is replaced by a field in spiCONN for the one

environment where it is needed.

MQPS_SUBSCRIPTION_NAME is replaced by the field in the MQSD called

SubName. See MQSD for more details.

MQPS_SUBSCRIPTION_USER_DATA is replaced by the field in the MQSD called

SubUserData. See MQSD for more details.

Error codes

If your application checked for any of the following error codes, the equivalent

MQRC error codes are shown in the following table:

 Reason codes in NameValueString of the

broker response message. MQRC equivalent

MQRCCF_STREAM_ERROR

MQRCCF_TOPIC_ERROR

MQRCCF_Q_MGR_NAME_ERROR

MQRCCF_Q_NAME_ERROR

MQRCCF_DUPLICATE_IDENTITY MQRC_IDENTITY_MISMATCH

MQRCCF_CORREL_ID_ERROR

MQRCCF_NOT_AUTHORIZED

MQRCCF_UNKNOWN_STREAM

MQRCCF_REG_OPTIONS_ERROR

MQRCCF_DUPLICATE_SUBSCRIPTION

46 WebSphere MQ: Publish/Subscribe User’s Guide

Reason codes in NameValueString of the

broker response message. MQRC equivalent

MQRC_SUB_ALREADY_EXISTS

MQRCCF_SUB_NAME_ERROR

MQRCCF_SUB_IDENTITY_ERROR See note 1

MQRCCF_SUBSCRIPTION_IN_USE

MQRC_SUBSCRIPTION_IN_USE

MQRCCF_SUBSCRIPTION_LOCKED

See note 1

MQRCCF_ALREADY_JOINED See note 1

Notes:

1. No equivalent since the use of SubIdentity is deprecated since the only identity of a

subscription is the SubName. See Deprecation.

Request Update - Version 7 replacement

The Request Update command message contains a number of parameters. This

should be replaced by using the MQSUBRQ verb. This section details the

equivalent options or fields in the MQ API to show how an application would

migrate from using the Request Update command message to using MQSUBRQ.

Required parameters

MQPS_COMMAND with value MQPS_REQUEST_UPDATE is replaced by the use

of the MQSUBRQ verb.

MQPS_TOPIC is implied by the use of the Hsub handle returned from the MQSUB

call which is used as a parameter on the MQSUBRQ call.

Optional parameters

QMgrName, QName and StreamName are used in exactly the same way in

Request Update command messages as they are in Register Subscriber command

messages.

See “Register subscriber - Version 7 replacement” on page 44 for details of how to

migrate the use of these fields.

See “Register subscriber - Version 7 replacement” on page 44 for details of how to

migrate your application’s use of MQPS_REGISTRATION_OPTIONS in this

command message.

For MQPS_STREAM_NAME see Chapter 7, “Publish/subscribe deprecated

function,” on page 81.

MQPS_SUBSCRIPTION_NAME is implied by the use of the Hsub handle returned

from the MQSUB call which is used as a parameter on the MQSUBRQ call.

WebSphere MQ publish/subscribe topology migration

This section contains topics that describe various scenarios for migration to

WebSphere MQ Version 7.0 publish/subscribe.

Chapter 4. Migrating to WebSphere Version 7.0 publish/subscribe 47

Migrating a WebSphere MQ Version 6.0 publish/subscribe

hierarchy to a WebSphere MQ Version 7.0 publish/subscribe

cluster

Migrating a WebSphere MQ Version 6.0 publish/subscribe

hierarchy to a Version 7.0 publish/subscribe cluster - all queue

managers simultaneously

How to migrate an entire existing Websphere MQ Version 6.0 hierarchy, where the

parent and child queue managers are on separate computers, to a Websphere

Version 7.0 publish/subscribe cluster, migrating all queue managers at the same

time.

To migrate the hierarchy, perform the following steps:

1. Install WebSphere MQ Version 7.0 on all of the computers that contain queue

managers in the hierarchy, to upgrade all queue managers in the hierarchy to

WebSphere MQ Version 7.0.

2. Use the strmqbrk control command on each queue manager to migrate all

publish/subscribe configuration data into WebSphere MQ Version 7.0.

3. Create a new cluster or nominate an existing cluster, which need not be an

existing publish/subscribe cluster. You can do this using WebSphere MQ Script

commands (MQSC), or any other type of administration command or utility

that is available on your platform, such as the WebSphere MQ Explorer. These

methods are described in WebSphere MQ Queue Manager Clusters.

4. Ensure that each queue manager is in the cluster by using the MQSC command

DISPLAY CLUSQMGR(*), described in WebSphere MQ Script (MQSC) Command

Reference. If a queue manager that should be in the cluster is not, then add it.

For more information, refer to WebSphere MQ Queue Manager Clusters

5. To remove the hierarchical relationship on each child queue manager within the

hierarchy, execute the following MQSC command: ALTER QMGR PARENT(‘ ’)

6. Before proceeding to the next step, to confirm that all the hierarchical

relationships have been cancelled, use the MQSC command DISPLAY PUBSUB

TYPE(ALL) on each queue manager.

7. On one of the queue managers within the cluster, define one cluster topic by

executing the following MQSC command: ALTER TOPIC(<topic name>)

PUBSCOPE(ALL) SUBSCOPE(ALL) CLUSTER(<cluster>) Use a high-level topic, but

not the root. For information about cluster topic naming, see Cluster topics.

Alternative procedure for i5/OS:

The following steps show an alternative procedure for WebSphere MQ for i5/OS,

using CL commands and panels in place of MQSC commands.

1. Install WebSphere MQ Version 7.0 on all of the computers that contain queue

managers in the hierarchy, to upgrade all queue managers in the hierarchy to

WebSphere MQ Version 7.0.

2. Use the strmqbrk command on each queue manager to migrate all

publish/subscribe configuration data into WebSphere MQ Version 7.0.

3. Create a new cluster or nominate an existing cluster, which need not be an

existing publish/subscribe cluster. You can do this using WebSphere MQ Script

commands (MQSC), or any other type of administration command or utility

that is available on your platform, such as the WebSphere MQ Explorer. These

methods are described in WebSphere MQ Queue Manager Clusters

48 WebSphere MQ: Publish/Subscribe User’s Guide

4. Ensure that each queue manager is in the cluster. If a queue manager that

should be in the cluster is not, then add it.

5. Execute WRKMQMPS PUBSUBNAME(<parent_queue_manager>) to display the

hierarchy.

6. On each child queue manager within the hierarchy, use option 4=Remove to

detach from the parent, followed by option 34=Work with Pub/Sub to move

down the sub-hierarchy. Repeat options 4 and 34 until no child queue

managers are displayed.

7. Repeat step 6 for each child queue manager belonging to

PUBSUBNAME(<parent_queue_manager>) until no child queue managers are

displayed.

8. On one of the queue managers within the cluster, define at least one cluster

topic by executing the following command: CHGMQMTOP TOPNAME(<topic name>)

PUBSCOPE(*ALL) SUBSCOPE(*ALL) CLUSTER(<cluster>) MQMNAME(<queue manager

name>) Use a high-level topic, but not the root. For information about cluster

topic naming, see .

Migrating a WebSphere MQ Version 6.0 publish/subscribe

hierarchy to a Version 7.0 publish/subscribe cluster - queue

manager by queue manager

How to migrate an existing WebSphere MQ Version 6.0 hierarchy, where the parent

and child queue managers are on separate computers, to a WebSphere Version 7.0

publish/subscribe cluster, one queue manager at a time.

To migrate the hierarchy, perform the following steps:

1. Create a new cluster or nominate an existing cluster, which need not be an

existing publish/subscribe cluster. You can do this using WebSphere MQ Script

commands (MQSC), or any other type of administration command or utility

that is available on your platform, such as the WebSphere MQ Explorer. These

methods are described in WebSphere MQ Queue Manager Clusters

2. Select the first queue manager to migrate into the publish/subscribe cluster. To

cause the least disruption, select a queue manager that is a leaf node.

3. Install WebSphere MQ Version 7.0 on the computer that contains the selected

queue manager in the hierarchy, to migrate the queue manager to WebSphere

MQ Version 7.0.

4. Use the strmqbrk command on this queue manager to migrate all

publish/subscribe configuration data into WebSphere MQ Version 7.0.

5. Join this queue manager into the cluster.

6. If this queue manager has a hierarchical relationship to an existing member of

the cluster, use the MQSC command ALTER QMGR PARENT(‘ ’) at the child

queue manager to cancel the relationship. Before proceeding to the next step, to

confirm that the hierarchical relationship has been cancelled, use the MQSC

command DISPLAY PUBSUB TYPE(PARENT) at the child queue manager.

7. If this is the first queue manager to be migrated into the publish/subscribe

cluster, define at least one cluster topic by executing the MQSC command ALTER

TOPIC(<topic name="">) PUBSCOPE(ALL) SUBSCOPE(ALL) CLUSTER(<cluster>)

Note: Use a high-level topic, but not the root. For information about cluster

topic naming, see Cluster topics in WebSphere MQ Publish/Subscribe User’s Guide.

8. To migrate the remainder of the hierarchy without introducing loops, repeat

recursively from step 3 for each child queue manager that is not already in the

cluster, and repeat recursively from step 3 for each parent queue manager that

is not already in the cluster.

Chapter 4. Migrating to WebSphere Version 7.0 publish/subscribe 49

Migrating a WebSphere MQ Version 6.0 publish/subscribe

hierarchy to a WebSphere MQ Version 7.0 hierarchy

Migrating a WebSphere MQ Version 6.0 two queue manager

publish/subscribe hierarchy to a Version 7.0 hierarchy - parent

first

How to migrate an existing WebSphere MQ Version 6.0 hierarchy, where the parent

and child queue managers are on separate computers, into a WebSphere Version

7.0 hierarchy, migrating the parent queue manager first.

To migrate the hierarchy, perform the following steps:

1. Install WebSphere MQ Version 7.0 on the computer that contains the parent

queue manager in the hierarchy, to migrate the parent queue manager to

WebSphere MQ Version 7.0.

2. Use the strmqbrk command on the parent queue manager to migrate all

publish/subscribe configuration data into WebSphere MQ Version 7.0. At this

point you can either run as a mixed WebSphere MQ Version 6.0 and Version 7.0

hierarchy or continue with the migration by upgrading the child in the next

step.

3. Install WebSphere MQ Version 7.0 on the computer that contains the child

queue manager in the hierarchy, to migrate the child queue manager to

WebSphere MQ Version 7.0.

4. Use the strmqbrk command on the child queue manager to migrate all

publish/subscribe configuration data into WebSphere MQ Version 7.0, and

check the migration log to verify that the migration was successful. The

migration log is in the queue manager directory: for example,

/var/mqm/<QMgrName> on Linux or C:\Program Files\IBM\
WebSphereMQ\qmgrs\<QMgrName> on Windows, unless you have specified

otherwise on the command line.

Migrating a WebSphere MQ Version 6.0 two publish/subscribe

queue manager hierarchy to a Version 7.0 hierarchy - child first

How to migrate an existing WebSphere MQ Version 6.0 hierarchy, where the parent

and child queue managers are on separate computers, into a WebSphere Version

7.0 hierarchy, migrating the child queue manager first.

To migrate the hierarchy, perform the following steps:

1. Install WebSphere MQ Version 7.0 on the computer that contains the child

queue manager in the hierarchy, to migrate the child queue manager to

WebSphere MQ Version 7.0.

2. Use the strmqbrk command on the child queue manager to migrate all

publish/subscribe configuration data into WebSphere MQ Version 7.0. At this

point you can either run as a mixed WebSphere MQ Version 6.0 and Version 7.0

hierarchy or continue with the migration by upgrading the parent in the next

step.

3. Install WebSphere MQ Version 7.0 on the computer that contains the parent

queue manager in the hierarchy, to migrate the parent queue manager to

WebSphere MQ Version 7.0.

4. Use the strmqbrk command on the parent queue manager to migrate all

publish/subscribe configuration data into WebSphere MQ Version 7.0, and

check the migration log to verify that the migration was successful. The

migration log is in the queue manager directory: for example,

50 WebSphere MQ: Publish/Subscribe User’s Guide

/var/mqm/<QMgrName> on Linux or C:\Program Files\IBM\
WebSphereMQ\qmgrs\<QMgrName> on Windows, unless you have specified

otherwise on the command line.

Chapter 4. Migrating to WebSphere Version 7.0 publish/subscribe 51

52 WebSphere MQ: Publish/Subscribe User’s Guide

Chapter 5. Writing publish/subscribe applications

Message ordering

For a given topic, messages are published by the queue manager in the same order

as they are received from publishing applications (subject to reordering based on

message priority). This normally means that each subscriber receives messages

from a particular queue manager, on a particular topic, from a particular publisher

in the order that they are published by that publisher.

However, as with all WebSphere MQ messages, it is possible for messages,

occasionally, to be delivered out of order. This can happen in the following

situations:

v If a link in the network goes down and subsequent messages are rerouted along

another link

v If a queue becomes temporarily full, or put-inhibited, so that a message is put to

a dead-letter queue and therefore delayed, while subsequent messages pass

straight through.

v If the administrator deletes a queue manager when publishers and subscribers

are still operating, causing queued messages to be put to the dead-letter queue

and subscriptions to be interrupted.

If these circumstances cannot occur, publications are always delivered in order.

Intercepting publications

It may be useful to be able to intercept a publication before it reaches a subscriber

so that you can:

v attach additional information to the message

v block messages

v transform messages

You can perform the same operation on each message or vary the operation

depending on something in the message or message header.

Once intercepted, the message can be passed on to an application capable or doing

message transformation.

To intercept a publication use the subscription level subscription attribute. The

interceptor is simply another subscriber to the topic the messages it wishes to

intercept are being published on. The interceptor then republishes the message so

that is can be received by other subscribers.

To ensure the interceptor receives the messages before any other subscribers, make

sure it has the highest subscription level of all subscribers by using the SubLevel

field in the MQSD. By default, subscribers have a SubLevel of 1.

v If you have one intercepting subscriber it should be configured to subscribe at a

SubLevel of 9.

v If more than one intercepting application is required to receive the publication,

set the sublevel of each iterceptor’s subscription appropriately to determine the

order in which these intercepting applications receive the publication.

© Copyright IBM Corp. 1996, 2008 53

The interceptor with the highest subscription level will receive the publication first,

after which it will be republished and will be received by the subscription with the

next highest subscription level and so on. When configuring multiple intercepting

applications, there should be no more than one at each SubLevel value which

republishes the message; otherwise duplicate publications will be sent to the final

set of subscribing applications because more than one interceptor will republish the

message to the next SubLevel down.

By default, applications will publish to a topic using a PubLevel of 9. PubLevel is a

field in the MQPMO. If there are any subscriptions with a SubLevel of 9, only

those subscriptions will be given a copy of the publication. If there are no

subscriptions with a SubLevel of 9, the publications are given to all those

subscriptions on this topic which have the highest SubLevel.

An intercepting application should make its subscription using the options

described in Table 5.

 Table 5. Intercepting subscriber options

Subscription option Notes

MQSO_SET_CORREL_ID and SubCorrelId

set to MQCI_NONE

This ensures that the CorrelId in the

publication message when it is re-published

by the interceptor, is the one set by the

original publisher, in case any subscriptions

at a lower SubLevel has requested that.

PubPriority set to

MQPRI_PRIORITY_AS_PUBLISHED

This ensures that the Priority in the

publication message when it is re-published

by the interceptor, is the one set by the

original publisher, in case any subscriptions

at a lower SubLevel has requested that.

An intercepting application should process the publication message (for example,

transform or encrypt it) and then re-publish it to the same topic at a publication

level one lower than the subscription level which intercepted it. For example, a

subscription with a SubLevel of 9 should republish the message with a PubLevel of

8. In order to republish the message correctly, several pieces of information are

required as shown in Table 6the table below, and the intercepting application

should use the same MQMD as in the original message and use

MQPMO_PASS_ALL_CONTEXT to ensure all information in that MQMD is

preserved and passed on to the next application (ordinary subscriber or

interceptor).

 Table 6. MQMD values for republished messages

Republish message using MQPUT Information in publication message

MQOD.ObjectString Message property MQTopicString

MQPMO.Options should OR with the

information in the message

Message property MQPubOptions

An intercepting subscriber is a normal subscriber and as such can use any of the

normal publish/subscribe or WebSphere MQ functions.

A maximum of 8 intercepting applications can be implemented (with sub levels

from 9 down to 2 inclusive). In this case the final recipient of the message will

have a subscription level of 1.

54 WebSphere MQ: Publish/Subscribe User’s Guide

You can have a subscriber with sub level 0 that serves as a catch all if no one else

is interested in the message. This configuration can be useful because you can

monitor the messages this subscriber receives and check why no other subscribers

received it and whether it is correct that it not be received by anyone else.

Retained publications

If the publication is put by the original application with Put-message option

MQPMO_RETAIN, it will only be retained if it is received by a subscriber whose

sub level is 1 or 0. In order to ensure that the instruction to retain this publication

is preserved as the publication passes through an intercepting application, the

MQPMO options are carried with the publication as a message property and must

be used on the republishing MQPUT call by the intercepting application.

Publishing options

Several options are available that control the way messages are published.

Withholding reply-to information from subscribers

If you do not want subscribers to be able to reply to publications they receive, it is

possible to withhold information in the ReplyToQ and ReplyToQgr fields of the

MQMD by using the MQPMO_SUPPRESS_REPLYTO put-message option. If this

option is used, the queue manager removes that information from the MQMD

when it receives the publication before forwarding it to any subscribers.

This option cannot be used in combination with a report option that needs a

ReplyToQ, if this is attempted the call with fail with

MQRC_MISSING_REPLY_TO_Q.

Publication level

Using publication levels is a way of controlling which subscribers receive the

publication. The publication level denotes the level of subscription targeted by the

publication. Only subscriptions with the highest subscription level less than or

equal to the publication’s publication level, will receive the publication. This value

must be in the range zero to nine; zero is the lowest publication level. The initial

value of this field is 9. One of the uses of publication and subscription levels is to

intercept publications.

Subscription options

Subscriptions and message persistence

Queue managers maintain the persistence of the publications they forward to

subscribers as set by the publisher, unless changed by options specified when the

subscription is registered. These options are:

v Nonpersistent

v Persistent

v Persistence as queue

v Persistence as publisher (the default)

The system administrator can determine which users are allowed to have

publications sent persistently.

Chapter 5. Writing publish/subscribe applications 55

Subscriptions and retained publications

To control when retained publications are received, subscribers can use two

subscription options.

Publish on request only, MQSO_PUBLICATIONS_ON_REQUEST

If you want a subscriber to have control of when it receives publications you can

use the MQSO_PUBLICATIONS_ON_REQUEST subscription option. A subscriber

can then control when it receives publications by using the MQSUBRQ call

(specifying the Hsub handle that was returned from the original MQSUB call) to

request that it is sent a topic’s retained publication. Subscribers using the

MQSO_PUBLICATIONS_ON_REQUEST subscription option, do not receive any

non-retained publications.

If a subscriber uses the MQSUBRQ call and uses wildcards in the subscription’s

topic, the subscription might match multiple topics or nodes on a topic tree, all of

whose retained messages (if any exist) will be sent to the subscriber.

This option can be particularly helpful when used with durable subscriptions

because a queue manager will continue to send publications to a subscriber if it

subscribed durably even if that subscriber application is not running. This could

lead to a buildup of messages on the subscriber queue. This build up can be

avoided if the subscriber registers using the

MQSO_PUBLICATIONS_ON_REQUEST option. Alternatively, you can use

non-durable subscriptions if appropriate to your application to avoid a build up of

unwanted messages.

If a subscription is durable and a publisher uses retained publications the

subscriber application can use the MQSUBRQ call to refresh its state information

after a restart. The subscriber must then refresh its state periodically using the

MQSUBRQ call.

No publications will be sent as a result of the MQSUB call using this option. A

durable subscription that has been resumed following disconnection will use the

MQSO_PUBLICATIONS_ON_REQUEST option if the original subscription was

configured to use this option.

New publications only, MQSO_NEW_PUBLICATIONS_ONLY

If a retained publication exists on a topic, any subscribers that make a subscription

after the publication was made will receive a copy of that publication. If a

subscriber does not want to receive any publications that were made prior to the

subscription being made, the subscriber can use the

MQSO_NEW_PUBLICATIONS_ONLY subscription option.

Grouping subscriptions

If multiple subscriptions with identical subscription levels, use the same subscriber

queue and correlation ID and subscribe to overlapping topic strings, you can group

them using the MQSO_GROUP_SUB option.

If you group subscriptions, only one copy of a publication is sent to the subscriber

queue. If this option is not used, then each unique subscription (identified by

SubName) that has registered an interest in a topic are provided with a copy of the

publication which will can result in more than one copy of the publication being

placed on the subscriber queue shared by a number of subscriptions.

56 WebSphere MQ: Publish/Subscribe User’s Guide

In a subscription group, the subscription with the most significant subscription is

provided with the publication. The most significant subscription is based on the

full topic name up to the point where a wild card is found. If a mixture of

wildcard schemes is used within the group, only the position of the wild card is

important. You are advised not to combine different wild card schemes within a

group of subscriptions that share the same queue.

If a subscribing application has the most significant subscription in group and uses

the MQSO_NOT_OWN_PUBS option, and this same application publishes a

message that matches the subscription, no publication is delivered to the subscriber

queue.

When creating a new grouped subscription it must still have a unique SubName,

however if the SubName matches the full topic name of an existing subscription in

the group, the call will fail with MQRC_DUPLICATE_GROUP_SUB.

When altering a grouped subscription, the fields that imply the grouping, Hobj on

the MQSUB call (representing the queue and queue manager name), and the

SubCorrelId cannot be changed. Attempting to alter these fields will cause the call

to fail with MQRC_GROUPING_NOT_ALTERABLE.

The group subscription option must be combined with MQSO_SET_CORREL_ID

with either a user provided SubCorrelId or MQCI_NONE.

The group subscription option cannot be combined with managed destinations

(MQSO_MANAGED).

Publish/subscribe message properties

Put your short description here; used for first paragraph and abstract.

PubAccountingToken

This is the value that will be in the AccountingToken field of the Message

Descriptor (MQMD) of all publication messages matching this subscription.

AccountingToken is part of the identity context of the message. For more

information about message context, see the WebSphere MQ Application Programming

Guide. For more information about the AccountingToken field in the MQMD, see

the WebSphere Application Programming Reference.

PubApplIdentityData

This is the value that will be in the ApplIdentityData field of the Message

Descriptor (MQMD) of all publication messages matching this subscription.

ApplIdentityData is part of the identity context of the message. For more

information about message context, see the WebSphere MQ Application Programming

Guide. For more information about the ApplIdentityData field in the MQMD, see

the WebSphere MQ Application Programming Reference.

If the option MQSO_SET_IDENTITY_CONTEXT is not specified, the

ApplIdentityData which will be set in each message published for this subscription

is blanks, as default context information.

If the option MQSO_SET_IDENTITY_CONTEXT is specified, the

PubApplIdentityData is being generated by the user and this field is an input field

Chapter 5. Writing publish/subscribe applications 57

which contains the ApplIdentityData to be set in each publication for this

subscription.

PubPriority

This is the value that will be in the Priority field of the Message Descriptor

(MQMD) of all publication messages matching this subscription. For more

information about the Priority field in the MQMD, see the WebSphere MQ

Application Programming Reference.

The value must be greater than or equal to zero; zero is the lowest priority. The

following special values can also be used:

v MQPRI_PRIORITY_AS_Q_DEF - When a subscription queue is provided in the

Hobj field in the MQSUB call, and is not a managed handle, then the priority for

the message is taken from the DefProirity attribute of this queue. If the queue so

identified is a cluster queue or there is more than one definition in the

queue-name resolution path then the priority is determined when the

publication message is put to the queue as described for Priority in the MQMD

in the WebSphere MQ Application Programming Reference. If the MQSUB call uses a

managed handle, the priority for the message is taken from the DefPriority

attribute of the model queue associated with the topic subscribed to.

v MQPRI_PRIORITY_AS_PUBLISHED - The priority for the message is the

priority of the original publication. This is the initial value of this field.

SelectionString

This variable length field will be returned on output from an MQSUB call using

the MQSO_RESUME option, if a big enough buffer is provided. If the buffer

provided on the call is not big enough (by the value in VSBufSize) only the length

of the selection string will be returned in the VSLength field of the MQCHARV

and the contents of the buffer will not be altered. The MQSUB call with the

MQSO_RESUME option can then be issued again providing a buffer long enough

to fit VSLength bytes.

SubCorrelId

All publications sent to match this subscription will contain this correlation

identifier in the message descriptor. If multiple subscriptions use the same queue

to get their publications from, using MQGET by correlation id allows only

publications for a specific subscription to be obtained. This correlation identifier

can either be generated by the queue manager or by the user.

If the option MQSO_SET_CORREL_ID is not specified, the correlation identifier is

generated by the queue manager and this field is an output field which contains

the correlation identifier which will be set in each message published for this

subscription.

If the option MQSO_SET_CORREL_ID is specified, the correlation identifier is

being generated by the user and this field is an input field which contains the

correlation identifier to be set in each publication for this subscription. In this case,

if the field contains MQCI_NONE, the correlation identifier which will be set in

each message published for this subscription will be the correlation identifier

created by the original put of the message.

58 WebSphere MQ: Publish/Subscribe User’s Guide

If the option MQSO_GROUP_SUB is specified and the correlation identifier

specified is the same as an existing grouped subscription using the same queue

and an overlapping topic string, only the most significant subscription in the group

is provided with a copy of the publication.

SubUserData

This is the subscription user data. The data provided on the subscription in this

field will be included as the MQSubUserData message property of every

publication sent to this subscription.

Chapter 5. Writing publish/subscribe applications 59

60 WebSphere MQ: Publish/Subscribe User’s Guide

Chapter 6. WebSphere MQ publish/subscribe security

Example publish/subscribe security setup

This section describes a scenario that has access control setup on topics in a way

that allows the security control to be applied as required.

Grant access to a user to subscribe to a topic

This topic is the first one in a list of tasks that tells you how to grant access to

topics by more than one user.

This task assumes that no administrative topic objects exist, nor have any profiles

been defined for subscription or publication. The applications are creating new

subscriptions, rather than resuming existing ones, and are doing so using the topic

string only.

An application can make a subscription by providing a topic object, or a topic

string, or a combination of both. Whichever way the application selects, the effect

is to make a subscription at a certain point in the topic tree. If this point in the

topic tree is represented by an administrative topic object, a security profile is

checked based on the name of that topic object.

 Table 7. Example topic object access

Topic Subscribe access required Topic object

Price No user None

Price/Fruit USER1 FRUIT

Define a new topic object as follows:

1. Issue the MQSC command DEF TOPIC(FRUIT) TOPICSTR(’Price/Fruit’).

2. Grant access as follows:

a. z/OS. Grant access to USER1 to subscribe to topic "Price/Fruit" by granting

the user access to the hlq.SUBSCRIBE.FRUIT profile. Do this, using the

following RACF® commands:

RDEFINE MXTOPIC hlq.SUBSCRIBE.FRUIT UACC(NONE)

PERMIT hlq.SUBSCRIBE.FRUIT CLASS(MXTOPIC) ID(USER1) ACCESS(ALTER)

b. Other platforms. Grant access to USER1 to subscribe to topic "Price/Fruit"

by granting the user access to the FRUIT profile. Do this, using the following

setmqaut command:

setmqaut –t topic –n FRUIT –p USER1 +sub

FRUIT

Price

Fruit

Figure 16. Topic object access example

© Copyright IBM Corp. 1996, 2008 61

When USER1 attempts to subscribe to topic "Price/Fruit" the result is success.

When USER2 attempts to subscribe to topic "Price/Fruit" the result is failure with

an MQRC_NOT_AUTHORIZED message, together with:

v On z/OS, the following messages seen on the console that show the full security

path through the topic tree that has been attempted:

ICH408I USER(USER2) ...

 hlq.SUBSCRIBE.FRUIT ...

ICH408I USER(USER2) ...

 hlq.SUBSCRIBE.SYSTEM.BASE.TOPIC ...

v On other platforms, the following authorization event:

MQRC_NOT_AUTHORIZED

ReasonQualifier MQRQ_SUB_NOT_AUTHORIZED

UserIdentifier USER2

AdminTopicNames FRUIT, SYSTEM.BASE.TOPIC

TopicString “Price/Fruit”

Note that this is an illustration of what you see; not all the fields.

Grant access to a user to subscribe to a topic deeper within

the tree

This topic is the second in a list of tasks that tells you how to grant access to topics

by more than one user.

This topic uses the setup described in “Grant access to a user to subscribe to a

topic” on page 61.

If the point in the topic tree where the application makes the subscription is not

represented by an administrative topic object, move up the tree until the closest

parent administrative topic object is located. The security profile is checked, based

on the name of that topic object.

 Table 8. Access requirements for example topics and topic objects

Topic Subscribe access required Topic object

Price No user None

FRUIT

Price

Fruit

Apples Oranges

Figure 17. Example of granting access to a topic within a topic tree

62 WebSphere MQ: Publish/Subscribe User’s Guide

Table 8. Access requirements for example topics and topic objects (continued)

Topic Subscribe access required Topic object

Price/Fruit USER1 FRUIT

Price/Fruit/Apples USER1

Price/Fruit/Oranges USER1

In the previous task USER1 was granted access to subscribe to topic

“Price/Fruit/Apples” by granting it access to the hlq.SUBSCRIBE.FRUIT profile on

z/OS and subscribe access to the FRUIT profile on other platforms. This single

profile also grants USER1 access to subscribe to “Price/Fruit/Oranges” and

“Price/Fruit/#”.

When USER1 attempts to subscribe to topic "Price/Fruit/Apples" the result is

success.

When USER2 attempts to subscribe to topic "Price/Fruit/Apples" the result is

failure with an MQRC_NOT_AUTHORIZED message, together with:

v On z/OS, the following messages seen on the console that show the full security

path through the topic tree that has been attempted:

ICH408I USER(USER2) ...

 hlq.SUBSCRIBE.FRUIT ...

ICH408I USER(USER2) ...

 hlq.SUBSCRIBE.SYSTEM.BASE.TOPIC ...

v On other platforms, the following authorization event:

MQRC_NOT_AUTHORIZED

ReasonQualifier MQRQ_SUB_NOT_AUTHORIZED

UserIdentifier USER2

AdminTopicNames FRUIT, SYSTEM.BASE.TOPIC

TopicString “Price/Fruit/Apples”

Note the following:

v The messages you receive on z/OS are identical to those received in the

previous task as the same topic objects and profiles are controlling the access.

v The event message you receive on other platforms is similar to the one received

in the previous task, but the actual topic string is different.

Grant another user access to subscribe to only the topic

deeper within the tree

This topic is the third in a list of tasks that tells you how to grant access to

subscribe to topics by more than one user.

This topic uses the setup described in “Grant access to a user to subscribe to a

topic deeper within the tree” on page 62.

In the previous task USER2 was refused access to topic “Price/Fruit/Apples”. This

topic tells you how to grant access to that topic, but not to any other topics.

Chapter 6. WebSphere MQ publish/subscribe security 63

Table 9. Access requirements for example topics and topic objects

Topic Subscribe access required Topic object

Price No user None

Price/Fruit USER1 FRUIT

Price/Fruit/Apples USER1 and USER2 APPLE

Price/Fruit/Oranges USER1

Define a new topic object as follows:

1. Issue the MQSC command DEF TOPIC(APPLE) TOPICSTR(’Price/Fruit/Apples’).

2. Grant access as follows:

a. z/OS.

In the previous task USER1 was granted access to subscribe to topic

“Price/Fruit/Apples” by granting the user access to the

hlq.SUBSCRIBE.FRUIT profile.

This single profile also granted USER1 access to subscribe to

“Price/Fruit/Oranges” “Price/Fruit/#” and this access remains even with

the addition of the new topic object and the profiles associated with it.

Grant access to USER2 to subscribe to topic "Price/Fruit/Apples" by

granting the user access to the hlq.SUBSCRIBE.APPLE profile. Do this, using

the following RACF commands:

RDEFINE MXTOPIC hlq.SUBSCRIBE.APPLE UACC(NONE)

PERMIT hlq.SUBSCRIBE.FRUIT APPLE(MXTOPIC) ID(USER2) ACCESS(ALTER)

b. Other platforms.

In the previous task USER1 was granted access to subscribe to topic

“Price/Fruit/Apples” by granting the user subscribe access to the FRUIT

profile.

This single profile also granted USER1 access to subscribe to

“Price/Fruit/Oranges" and “Price/Fruit/#”, and this access remains even

with the addition of the new topic object and the profiles associated with it.

Grant access to USER2 to subscribe to topic "Price/Fruit/Apples" by

granting the user subscribe access to the APPLE profile. Do this, using the

following setmqaut command:

setmqaut –t topic –n APPLE –p USER2 +sub

FRUIT

APPLE

Price

Fruit

Apples Oranges

Figure 18. Granting access to specific topics within a topic tree

64 WebSphere MQ: Publish/Subscribe User’s Guide

On z/OS, when USER1 attempts to subscribe to topic "Price/Fruit/Apples" the

first security check on the hlq.SUBSCRIBE.APPLE profile fails, but on moving up the

tree the hlq.SUBSCRIBE.FRUIT profile allows USER1 to subscribe, so the

subscription succeeds and no return code is sent to the MQSUB call. However, a

RACF ICH message is generated for the first check:

 ICH408I USER(USER1) ...

 hlq.SUBSCRIBE.APPLE ...

When USER2 attempts to subscribe to topic "Price/Fruit/Apples" the result is

success because the security check passes on the first profile.

When USER2 attempts to subscribe to topic "Price/Fruit/Oranges" the result is

failure with an MQRC_NOT_AUTHORIZED message, together with:

v On z/OS, the following messages seen on the console that show the full security

path through the topic tree that has been attempted:

ICH408I USER(USER2) ...

 hlq.SUBSCRIBE.FRUIT ...

ICH408I USER(USER2) ...

 hlq.SUBSCRIBE.SYSTEM.BASE.TOPIC ...

v On other platforms, the following authorization event:

MQRC_NOT_AUTHORIZED

ReasonQualifier MQRQ_SUB_NOT_AUTHORIZED

UserIdentifier USER2

AdminTopicNames FRUIT, SYSTEM.BASE.TOPIC

TopicString “Price/Fruit/Oranges”

The disadvantage of this setup is that, on z/OS, you receive additional ICH

messages on the console. You can avoid this if you secure the topic tree in a

different manner.

Change access control to avoid additional messages

This topic is the fourth in a list of tasks that tells you how to grant access to

subscribe to topics by more than one user and to avoid additional RACF ICH408I

messages on z/OS.

This topic enhances the setup described in “Grant another user access to subscribe

to only the topic deeper within the tree” on page 63 so that you avoid additional

error messages.

This topic tells you how to grant access to topics deeper in the tree, and how to

remove access to the topic lower down the tree when no user requires it.

Chapter 6. WebSphere MQ publish/subscribe security 65

Define a new topic object as follows:

1. Issue the MQSC command DEF TOPIC(ORANGE) TOPICSTR(’Price/Fruit/
Oranges’).

2. Grant access as follows:

a. z/OS.

Define a new profile and add access to that profile, and the existing profiles.

Do this, using the following RACF commands:

RDEFINE MXTOPIC hlq.SUBSCRIBE.ORANGE UACC(NONE)

PERMIT hlq.SUBSCRIBE.ORANGE CLASS(MXTOPIC) ID(USER1) ACCESS(ALTER)

PERMIT hlq.SUBSCRIBE.APPLE CLASS(MXTOPIC) ID(USER1) ACCESS(ALTER)

b. Other platforms.

Setup the equivalent access by using the following setmqaut commands:

setmqaut –t topic –n ORANGE –p USER1 +sub

setmqaut -t topic -n APPLE -p USER1 +sub

On z/OS, when USER1 attempts to subscribe to topic "Price/Fruit/Apples" the

first security check on the hlq.SUBSCRIBE.APPLE profile succeeds.

Similarly, when USER2 attempts to subscribe to topic "Price/Fruit/Apples" the

result is success because the security check passes on the first profile.

When USER2 attempts to subscribe to topic "Price/Fruit/Oranges" the result is

failure with an MQRC_NOT_AUTHORIZED message, together with:

v On z/OS, the following messages seen on the console that show the full security

path through the topic tree that has been attempted:

ICH408I USER(USER2) ...

 hlq.SUBSCRIBE.ORANGE ...

ICH408I USER(USER2) ...

 hlq.SUBSCRIBE.FRUIT ...

ICH408I USER(USER2) ...

 hlq.SUBSCRIBE.SYSTEM.BASE.TOPIC ...

v On other platforms, the following authorization event:

FRUIT

APPLE ORANGE

Price

Fruit

Apples Oranges

Figure 19. Example of granting access control to avoid additional messages.

66 WebSphere MQ: Publish/Subscribe User’s Guide

MQRC_NOT_AUTHORIZED

ReasonQualifier MQRQ_SUB_NOT_AUTHORIZED

UserIdentifier USER2

AdminTopicNames ORANGE, FRUIT, SYSTEM.BASE.TOPIC

TopicString “Price/Fruit/Oranges”

Grant access to a user to publish to a topic

This topic is the first one in a list of tasks that tells you how to grant access to

publish topics by more than one user.

This task assumes that no administrative topic objects exist on the right hand side

of the topic tree, nor have any profiles been defined for publication. The

assumption used is that publishers are using the topic string only.

An application can publish to a topic by providing a topic object, or a topic string,

or a combination of both. Whichever way the application selects, the effect is to

publish at a certain point in the topic tree. If this point in the topic tree is

represented by an administrative topic object, a security profile is checked based

on the name of that topic object. For example:

 Table 10. Example publish access requirements

Topic Publish access required Topic object

Price No user None

Price/Vegetables USER1 VEG

Define a new topic object as follows:

1. Issue the MQSC command DEF TOPIC(VEG) TOPICSTR(’Price/Vegetables’).

2. Grant access as follows:

a. z/OS. Grant access to USER1 to publish to topic "Price/Vegetables" by

granting the user access to the hlq.PUBLISH.VEG profile. Do this, using the

following RACF commands:

RDEFINE MXTOPIC hlq.PUBLISH.VEG UACC(NONE)

PERMIT hlq.PUBLISH.VEG CLASS(MXTOPIC) ID(USER1) ACCESS(UPDATE)

b. Other platforms. Grant access to USER1 to publish to topic

"Price/Vegetables" by granting the user access to the VEG profile. Do this,

using the following setmqaut command:

setmqaut –t topic –n VEG –p USER1 +pub

When USER1 attempts to publish to topic "Price/Vegetables" the result is success;

that is, the MQOPEN call succeeds.

When USER2 attempts to publish to topic "Price/Vegetables" the MQOPEN call

fails with an MQRC_NOT_AUTHORIZED message, together with:

VEG

Price

Fruit Vegetables

Figure 20. Granting publish access to a topic

Chapter 6. WebSphere MQ publish/subscribe security 67

v On z/OS, the following messages seen on the console that show the full security

path through the topic tree that has been attempted:

ICH408I USER(USER2) ...

 hlq.PUBLISH.VEG ...

ICH408I USER(USER2) ...

 hlq.PUBLISH.SYSTEM.BASE.TOPIC ...

v On other platforms, the following authorization event:

MQRC_NOT_AUTHORIZED

ReasonQualifier MQRQ_OPEN_NOT_AUTHORIZED

UserIdentifier USER2

AdminTopicNames VEG, SYSTEM.BASE.TOPIC

TopicString “Price/Vegetables”

Note that this is an illustration of what you see; not all the fields.

Grant access to a user to publish to a topic deeper within the

tree

This topic is the second in a list of tasks that tells you how to grant access to

publish to topics by more than one user.

This topic uses the setup described in “Grant access to a user to publish to a topic”

on page 67.

If the point in the topic tree where the application publishes is not represented by

an administrative topic object, move up the tree until the closest parent

administrative topic object is located. The security profile is checked, based on the

name of that topic object.

 Table 11. Example publish access requirements

Topic Subscribe access required Topic object

Price No user None

Price/Vegetables USER1 VEG

Price/Vegetables/Potatoes USER1

Price/Vegetables/Onions USER1

VEG

Price

Fruit

Potatoes Onions

Vegetables

Figure 21. Granting publish access to a topic within a topic tree

68 WebSphere MQ: Publish/Subscribe User’s Guide

In the previous task USER1 was granted access to publish topic

“Price/Vegetables/Potatoes” by granting it access to the hlq.PUBLISH.VEG profile

on z/OS or publish access to the VEG profile on other platforms. This single profile

also grants USER1 access to publish at“Price/Vegetables/Onions” and at

“Price/Fruit/#”.

When USER1 attempts to publish at topic "Price/Vegetables/Potatoes" the result is

success; that is the MQOPEN call succeeds.

When USER2 attempts to subscribe to topic "Price/Vegetables/Potatoes" the result

is failure; that is, the MQOPEN call fails with an MQRC_NOT_AUTHORIZED message,

together with:

v On z/OS, the following messages seen on the console that show the full security

path through the topic tree that has been attempted:

ICH408I USER(USER2) ...

 hlq.PUBLISH.VEG ...

ICH408I USER(USER2) ...

 hlq.PUBLISH.SYSTEM.BASE.TOPIC ...

v On other platforms, the following authorization event:

MQRC_NOT_AUTHORIZED

ReasonQualifier MQRQ_OPEN_NOT_AUTHORIZED

UserIdentifier USER2

AdminTopicNames VEG, SYSTEM.BASE.TOPIC

TopicString “Price/Vegetables/Potatoes”

Note the following:

v The messages you receive on z/OS are identical to those received in the

previous task as the same topic objects and profiles are controlling the access.

v The event message you receive on other platforms is similar to the one received

in the previous task, but the actual topic string is different.

Grant access for publish and subscribe

This topic is the last in a list of tasks that tells you how to grant access to publish

and subscribe to topics by more than one user.

This topic uses the setup described in “Grant access to a user to publish to a topic

deeper within the tree” on page 68.

In a previous task USER1 was given access to subscribe to the topic “Price/Fruit”.

This topic tells you how to grant access to that user to publish to that topic.

Chapter 6. WebSphere MQ publish/subscribe security 69

Table 12. Example publishing and subscribing access requirements

Topic Subscribe access

required

Publish access

required

Topic object

Price No user No user None

Price/Fruit USER1 USER1 FRUIT

Price/Fruit/Apples USER1 and USER2 APPLE

Price/Fruit/Oranges USER1 ORANGE

Grant access as follows:

1. z/OS.

In an earlier task USER1 was granted access to subscribe to topic “Price/Fruit”

by granting the user access to the hlq.SUBSCRIBE.FRUIT profile.

In order to publish to the “Price/Fruit” topic, grant access to USER1 to the

hlq.PUBLISH.FRUIT profile. Do this, using the following RACF commands:

RDEFINE MXTOPIC hlq.PUBLISH.FRUIT UACC(NONE)

PERMIT hlq.PUBLISH.FRUIT CLASS(MXTOPIC) ID(USER1) ACCESS(ALTER)

2. Other platforms.

Grant access to USER1 to publish to topic "Price/Fruit" by granting the user

publish access to the FRUIT profile. Do this, using the following setmqaut

command:

setmqaut –t topic –n FRUIT –p USER1 +pub

On z/OS, when USER1 attempts to publish to topic "Price/Fruit" the security

check on the MQOPEN call passes.

When USER2 attempts to publish at topic "Price/Fruit" the result is failure with an

MQRC_NOT_AUTHORIZED message, together with:

v On z/OS, the following messages seen on the console that show the full security

path through the topic tree that has been attempted:

ICH408I USER(USER2) ...

 hlq.PUBLISH.FRUIT ...

ICH408I USER(USER2) ...

 hlq.PUBLISH.SYSTEM.BASE.TOPIC ...

v On other platforms, the following authorization event:

FRUIT

APPLE

VEG

ORANGE

Price

Fruit

Apples Potatoes Onions

Vegetables

Oranges

Figure 22. Granting access for publishing and subscribing

70 WebSphere MQ: Publish/Subscribe User’s Guide

MQRC_NOT_AUTHORIZED

ReasonQualifier MQRQ_OPEN_NOT_AUTHORIZED

UserIdentifier USER2

AdminTopicNames FRUIT, SYSTEM.BASE.TOPIC

TopicString “Price/Fruit”

Following the complete set of these tasks, gives USER1 and USER2 the following

access authorities for publish and subscribe to the topics listed:

 Table 13. Complete list of access authorities resulting from security examples

Topic Subscribe access

required

Publish access

required

Topic object

Price No user No user None

Price/Fruit USER1 USER1 FRUIT

Price/Fruit/Apples USER1 and USER2 APPLE

Price/Fruit/Oranges USER1 ORANGE

Price/Vegetables USER1 VEG

Price/Vegetables/
Potatoes

Price/Vegetables/
Onions

Where you have different requirements for security access at different levels within

the topic tree, careful planning ensures that you do not receive extraneous security

warnings on the z/OS console log. Setting up security at the correct level within

the tree avoids misleading security messages.

Topic objects

This section gives an overview of the WebSphere MQ topic object type and

explains the concepts used for authorization when using this type of object.

A topic has a 48 character name used for administration, and a hierarchically

organized string of unlimited length. The topic string is of the form:

 <topic name A>/<topic name B> ...

The topic string of each topic object is used to create a tree, with each node in the

tree representing a topic name segment of the full topic string.

When an application needs to subscribe to a topic, the user ID associated with the

application must be authorized to perform a subscribe operation on the specified

topic. The topic can be specified in the form of a topic string, or as the

MQCHAR48 name of a topic object.

It is possible that, when an application subscribes by specifying a topic string, that

no corresponding node in the topic tree exists at the time of subscription. Note that

the topic string specified by the subscribing application can contain wildcard

characters.

At the time of subscription, an authority check is made to ensure that the same

user ID is authorized to put to the specified destination queue. This is because

when messages are published to that destination, they are put using the user

context associated with the application. If the destination is a managed queue, no

Chapter 6. WebSphere MQ publish/subscribe security 71

security checks are performed against the managed destination. It is assumed that

if you are allowed to subscribe to that topic you can use managed destinations.

If the application is re-subscribing to an existing subscription, the security checks

made are the same as those that would occur if the application was creating a new

subscription. For example, a subscribe security check and a destination queue

security check take place.

To publish on a topic, an application first performs an MQOPEN command of the

topic on which they want to publish. Messages are then published using the

MQPUT command.

The authority check to publish is performed when the application performs the

open command. The application must be authorized to publish to the specified

topic, which can be specified in the form of a topic string, or as the MQCHAR48

name of a topic object. As with a subscribe operation, it is possible that no

corresponding node in the topic tree exists at the time of the MQOPEN call.

Security model

Only defined topic objects, that are specified as administration nodes, have

associated security attributes. These attributes specify whether a specified user ID,

or security group, is permitted to perform a subscribe or a publish operation on

each topic object.

The security attributes are associated with the appropriate administration node in

the topic tree. When an authority check is made for a particular user ID during a

subscribe or publish operation, the authority granted is based on a set of rules

dependent on the security attributes associated with the appropriate topic tree

nodes.

You can represent the security attributes as an access control list, thereby indicating

what authority a particular operating system user ID, or security group, has to the

topic object.

Consider the following example where the topic objects have been defined with

the security attributes, or authorities shown:

 Table 14. Example topic object authorities

Topic name Topic string

Authorities - not

z/OS z/OS authorities

SECROOT SEC none NONE

SECGOOD SEC/GOOD usr1+subscribe ALTER

Hlq.SUBSCRIBE.SECGOOD

SECBAD SEC/BAD none NONE

Hlq.SUBSCRIBE.SECBAD

SECCOMB SEC/COMB none NONE

Hlq.SUBSCRIBE.SECCOMB

SECCOMBB SEC/COMB/
GOOD/BAD

none NONE

Hlq.SUBSCRIBE.SECCOMBB

72 WebSphere MQ: Publish/Subscribe User’s Guide

Table 14. Example topic object authorities (continued)

Topic name Topic string

Authorities - not

z/OS z/OS authorities

SECCOMBG SEC/COMB/
GOOD

usr2+subscribe NONE

Hlq.SUBSCRIBE.SECCOMBG

SECCOMBN SEC/COMB/
BAD

none NONE

Hlq.SUBSCRIBE.SECCOMBN

The examples listed give the following authorizations:

v At the root of the tree /SEC no user has authority at that node.

v usr1 has been granted subscribe authority to the object /SEC/GOOD

v usr2 has been granted subscribe authority to the object /SEC/COMB/GOOD

The topic tree with the associated security attributes at each node can be

represented as:

Subscribing using the topic object name

When subscribing to a topic object by specifying the MQCHAR48 name, the

corresponding node in the topic tree is located. If the security attributes associated

with the topic node indicate that the user has authority to subscribe, then access is

granted.

If not, the parent node in the tree is considered to determine if the user has

authority to subscribe to that node. If so, then access is also granted. If not, then

the parent of that node is considered, and so on, until a node is located that grants

subscribe authority to the user, or until the root node is considered without

authority having been granted. In the latter case, access is denied.

This means that if any node in the path grants authority to subscribe to that user

or application, the subscriber is allowed to subscribe at that node, or anywhere

below that node in the topic tree.

The root node in the above example is SEC; note, it is possible that the root node

will always be a topic object.

SEC/COMB/GOOD/BAD
None

SEC/COMB/GOOD
Usr2 = subscribe / ALTER

SEC/COMB/BAD
None

SEC/COMB
None

SEC
None

SEC/BAD
None

SEC/GOOD
Usr1 = subscribe / ALTER

Figure 23. Example topic tree security attributes

Chapter 6. WebSphere MQ publish/subscribe security 73

The security attributes indicate that a particular user ID has subscribe authority, if

the access control list indicates that the user ID itself has authority, or that an

operating system security group of which the user ID is a member has authority.

So, for example:

v If usr1 tries to subscribe, using a topic string of SEC/GOOD, the subscription

would be allowed as the user ID has access to the node associated with that

topic. However, if usr1 tried to subscribe using topic string SEC/COMB/GOOD the

subscription would not be allowed as the user ID does not have access to the

node associated with it.

v If usr2 tries to subscribe, using a topic string of SEC/COMB/GOOD the subscription

would be allowed to as the user ID has access to the node associated with the

topic. However, if usr2 tried to subscribe to SEC/GOOD the subscription would not

be allowed as the user ID does not have access to the node associated with it.

v If usr2 tries to subscribe using a topic string of SEC/COMB/GOOD/BAD the

subscription would be allowed to because the user ID has access to the parent

node SEC/COMB/GOOD.

v If usr1 or usr2 tries to subscribe using a topic string of /SEC/COMB/BAD, neither

would be allowed as they do not have access to the topic node associated with

it, or the parent nodes of that topic.

A subscribe operation specifying a topic object name in the case where the topic

object does not exist results in an MQRC_UNKNOWN_OBJECT_NAME error.

Subscribing using a topic string where the topic node exists

The behavior is the same as when specifying the topic by the MQCHAR48 object

name.

Subscribing using a topic string where the topic node does not exist

When an application subscribes specifying a topic string representing a topic node

that does not currently exist in the topic tree, the authority check is performed as

outlined in the previous section, starting with the parent node of that which is

represented by the topic string. If the authority is granted, a new node

representing the topic string is created in the topic tree.

For example, if usr1 tries to subscribe to a topic SEC/GOOD/NEW, this would be

allowed as usr1 has access to the parent node SEC/GOOD and a new topic node is

created in the tree as the following diagram shows. As this is not a topic object it

does not have any security attributes associated with it directly; the attributes are

inherited from its parent.

74 WebSphere MQ: Publish/Subscribe User’s Guide

Subscribing using a topic string that contains wildcard characters

When an application attempts to connect by specifying a topic string that contains

a wildcard character, the authority check is made against the node in the topic tree

that matches the fully qualified part of the topic string.

So, if an application needs to subscribe to SEC/COMB/GOOD/*, an authority check is

carried out as outlined in the previous two sections on the node SEC/COMB/GOOD in

the topic tree.

Similarly, if an application needs to subscribe to SEC/COMB/*/GOOD, an authority

check is carried out on the node SEC/COMB.

Authority to destination queues

When subscribing to a topic, one of the parameters on the call is the handle hobj,

this is:

v The hobj of a queue that has been opened for output to receive the publications.

v Blank and:

– The MQSO_MANAGED option has been specified, and

– The subscription does not exist, and

– Create is specified,

in which case a managed queue is created.

v Blank, and you are altering or resuming an existing subscription, in which the

destination queue can be either a managed or non managed queue.

In each case the application or user making the MQSUB request, has to have the

authority to put messages to that destination queue it has provided; in effect

authority to have published messages put on that queue, in order for the subscribe

request to continue. This follows the existing rules for queue security checking.

This includes Alternate user ID and Context security checks where required. In

order to be able to set any of the Identity context fields you have to specify the

MQSO_SET_IDENTITY_CONTEXT option as well as the MQSO_CREATE or

MQSO_ALTER option. You are not allowed to set any of the Identity context fields

on an MQSO_RESUME request.

SEC/COMB/GOOD/BAD
None

SEC/COMB/GOOD
Usr2 = subscribe / ALTER

SEC/COMB/BAD
None

SEC/GOOD/NEW
None

SEC/COMB
None

SEC
None

SEC/BAD
None

SEC/GOOD
Usr1 = subscribe / ALTER

Figure 24. Example topic tree security attributes

Chapter 6. WebSphere MQ publish/subscribe security 75

If the destination is a managed queue, no security checks are performed against

the managed destination. If you are allowed to subscribe to that topic the

assumption is that you can use managed destinations.

Publish using the topic name or topic string where the topic node exists

The security model for the publish operation is the same as that for the subscribe

operation, except that there is no wildcard character in the topic string case to

consider.

The authorities to publish and subscribe are distinct; a user or group can have one

authority without necessarily having the other.

When publishing to a topic object by specifying either the MQCHAR48 name or

the topic string, the corresponding node in the topic tree is located. If the security

attributes associated with the topic node indicates that the user has authority to

publish, then access is granted.

If not, then the parent node in the tree is considered to determine if the user has

authority to publish to that node. If so, then access is also granted. If not, then the

parent of that node is considered, and so on until a node is located which grants

publish authority to the user, or until the root node is considered without authority

having been granted. In the latter case, access is denied.

This means that if any node in the path grants authority to publish to that user or

application, the publisher is allowed to publish at that node or anywhere below

that node in the topic tree.

Publish using the topic name or topic string where the topic node does not exist

As with the subscribe operation, when an application publishes, specifying a topic

string representing a topic node that does not currently exist in the topic tree, the

authority check is performed starting with the parent node of that which is

represented by the topic string. If the authority is granted, a new node

representing the topic string is created in the topic tree.

Publish using an alias queue that resolves to a topic object

If you publish, using an alias queue that resolves to a topic object then security

checking occurs on both the open of the alias queue that you specify and the

underlying topic to which it resolves.

The security check on the alias queue looks to see that the user has authority to

put messages to that alias queue and the security check on the topic looks to see

that the user can Publish to that topic. This is different behavior from that which

takes place when an alias queue resolves to other queues.

Closing a subscription

There is additional security checking if you close a subscription using the MQCO_

SUB_ REMOVE option and you did not create the subscription under this handle.

A security check is performed to ensure that you have the correct authority to do

this as the action results in the removal of the subscription.

76 WebSphere MQ: Publish/Subscribe User’s Guide

A similar process to that used to determine if a user has the correct level of

authority to subscribe to a topic is followed to determine if the user has the correct

level of authority required to perform the close remove request. If the security

attributes associated with the topic node indicate that the user has authority , then

access is granted. If not, then the parent node in the tree is considered to

determine if the user has authority to close remove that subscription and so on

until either authority is granted or the root node is reached.

Note that the security check takes place during close processing.

Defining, altering, and deleting a subscription

When a subscription is created administratively, rather that through an MQSUB

API request, no subscribe security checks take place to see if the subscription can

be created or altered, as the administrator has already been given this authority

through the command, and command resource security associated with the

command.

Security checks are performed to ensure that publications can be put to the

destination queue associated with the subscription in the same way they are

performed for a MQSUB request.

The user ID that is used for these security checks depends upon the command

being issued and the contents of the SUBUSER parameter on the command if it is

specified, as follows:

 Table 15. User IDs used for security checks for commands

Command SUBUSER specified

and blank

SUBUSER specified

and completed

SUBUSER not

specified

DEFINE Use the administrator

ID

Use the User ID

specified in

SUBUSER

Use the

administrator’s ID

ALTER Use the administrator

ID

Use the User ID

specified in

SUBUSER

Use the User ID from

the existing

subscription

The only security check performed when deleting subscriptions using the DELETE

SUB command is the command security check.

Subscription security

MQSO_ALTERNATE_USER_AUTHORITY

The AlternateUserId field contains a user identifier to use to validate this MQSUB

call. The call can succeed only if this AlternateUserId is authorized to subscribe to

the topic with the specified access options, regardless of whether the user identifier

under which the application is running is authorized to do so.

MQSO_SET_IDENTITY_CONTEXT

The subscription is to use the accounting token and application identity data

supplied in the PubAccountingToken and PubApplIdentityData fields.

Chapter 6. WebSphere MQ publish/subscribe security 77

If this option is specified, the same authorization check is carried out as if the

destination queue was accessed using an MQOPEN call with

MQOO_SET_IDENTITY_CONTEXT, except in the case where the

MQSO_MANAGED option is also used in which case there is no authorization

check on the destination queue.

If this option is not specified, the publications sent to this subscriber will have

default context information associated with them as follows:

 Table 16. Default publication context information

Field in MQMD Value used

UserIdentifier The user id associated with the subscription

(see SUBUSER field on DISPLAY SBSTATUS)

at the time the publication is made.

AccountingToken Determined from the environment if

possible; set to MQACT_NONE otherwise.

ApplIdentityData Set to blanks.

This option is only valid with MQSO_CREATE and MQSO_ALTER. If used with

MQSO_RESUME, the PubAccountingToken and PubApplIdentityData fields are

ignored, so this option has no effect.

If a subscription is altered without using this option where previously the

subscription had supplied identity context information, default context information

will be generated for the altered subscription.

If a subscription allowing different user ids to use it with option

MQSO_ANY_USERID, is resumed by a different user ID, default identity context

will be generated for the new user ID now owning the subscription and any

subsequent publications will be delivered containing the new identity context.

AlternateSecurityId

This is a security identifier that is passed with the AlternateUserId to the

authorization service to allow appropriate authorization checks to be performed.

AlternateSecurityId is used only if MQSO_ALTERNATE_USER_AUTHORITY is

specified, and the AlternateUserId field is not entirely blank up to the first null

character or the end of the field.

MQSO_ANY_USERID subscription option

When MQSO_ANY_USERID is specified, the identity of the subscriber is not

restricted to a single userid. This allows any user to alter or resume the

subscription when they have suitable authority. Only a single user may have the

subscription at any one time. An attempt to resume use of a subscription currently

in use by another application will cause the call to fail with

MQRC_SUBSCRIPTION_IN_USE.

To add this option to an existing subscription the MQSUB call (using

MQSO_ALTER) must come from the same userid as the original subscription.

If an MQSUB call refers to an existing subscription with MQSO_ANY_USERID set,

and the userid differs from the original subscription, the call succeeds only if the

78 WebSphere MQ: Publish/Subscribe User’s Guide

new userid has authority to subscribe to the topic. After successful completion,

future publications to this subscriber are put to the subscriber’s queue with the

new userid set in the publication.

MQSO_FIXED_USERID

When MQSO_FIXED_USERID is specified, the subscription can only be altered or

resumed by a single owning userid. This userid is the last userid to alter the

subscription that set this option, thereby removing the MQSO_ANY_USERID

option, or if no alters have taken place, it is the userid that created the

subscription.

If an MQSUB verb refers to an existing subscription with MQSO_ANY_USERID set

and alters the subscription (using MQSO_ALTER) to use option

MQSO_FIXED_USERID, the userid of the subscription is now fixed at this new

user id. The call succeeds only if the new userid has authority to subscribe to the

topic.

If a userid other than the one recorded as owning a subscription trys to resume or

alter an MQSO_FIXED_USERID subscription, the call will fail with

MQRC_IDENTITY_MISMATCH. The owning user id of a subscription can be

viewed using the DISPLAY SBSTATUS command.

If neither MQSO_ANY_USERID or MQSO_FIXED_USERID is specified, the default

is MQSO_FIXED_USERID.

Chapter 6. WebSphere MQ publish/subscribe security 79

80 WebSphere MQ: Publish/Subscribe User’s Guide

Chapter 7. Publish/subscribe deprecated function

Although WebSphere MQ Version 7.0 provides publish/subscribe function that is

integrated into the queue manager, previous publish/subscribe engines and their

applications, for example WebSphere MQ Version 6, WebSphere Message Broker

Version 6 and WebSphere Event Broker Version 6 can coexist with WebSphere MQ

Version 7.0. Coexistence is controlled with a new queue manager attribute,

PSMODE. Using this attribute you can continue to use existing publish/subscribe

applications without having to modify the WebSphere MQ Version 6.0 function

that is deprecated. This collection of topics details WebSphere MQ deprecated

Version 6.0 publish/subscribe function.

The PSMODE queue manager attribute controls whether WebSphere MQ Version

7.0 publish/subscribe and the queued publish/subscribe interface that enables

previous publish/subscribe engines to coexist with WebSphere MQ Version 7.0 is

running, and hence enables applications to publish/subscribe using the MQI and

the queues being monitored by the queued publish/subscribe interface

respectively. The three PSMODE settings are as follows:

v DISABLED - Neither WebSphere MQ Version 7.0 publish/subscribe nor the

queued publish/subscribe interface are running, therefore it is not possible to

publish or subscribe using the MQI and any publish/subscribe messages put to

the queues monitored by the queued publish/subscribe interface will not be

acted upon by WebSphere MQ.

v COMPAT - WebSphere MQ Version 7.0 publish/subscribe is running, therefore it

is possible to WebSphere MQ Version 7.0 publish/subscribe using the MQI. The

queued publish/subscribe interface is not running, therefore any messages put

to the queues monitored by the queued publish/subscribe interface will not be

acted upon by WebSphere MQ. This is the setting that should be used for

compatibility with WebSphere Message Broker Version 6 (or earlier), since

WebSphere Message Broker will read the same queues the queued

publish/subscribe interface reads.

v ENABLED - WebSphere MQ Version 7.0 publish/subscribe and the queued

publish/subscribe interface are both running, therefore it is possible to publish

and subscribe using the MQI and the queues being monitored by the queued

publish/subscribe interface respectively. This is the queue manager’s initial

default value.

How does it work?

Publishers, subscribers, and brokers communicate with each other using command

messages. These messages are used to do the following things:

Publisher and broker

The following communications take place between publishers and brokers:

1. A publisher can register its intention to publish information about

certain topics (this is optional: registration can take place with the first

publication, or not at all, as described in “Registering with the broker”

on page 99).

2. A publisher sends publication messages to the broker, containing the

publication data (or referring to it). The messages can be forwarded

directly to the subscribers, or, in the case of retained publications, be

held at the broker until requested by a subscriber.

© Copyright IBM Corp. 1996, 2008 81

3. A publisher can send a message to the broker requesting that a retained

publication held at the broker be deleted.

4. A publisher can deregister with the broker when it has finished sending

messages about a certain topic.

These interactions are all described in “Writing publisher applications” on

page 99.

Subscriber and broker

The following communications take place between subscribers and brokers:

1. A subscriber registers with a broker, specifying the topics that it is

interested in.

2. The broker sends to the subscriber subsequent publications that match

the topics specified. Alternatively, the subscriber can request retained

publications held at the broker.

3. The subscriber can deregister with the broker for certain topics when it

is no longer interested in them.

These interactions are all described in “Writing subscriber applications” on

page 102.

Broker and broker

The following communications take place between brokers:

1. Brokers can exchange subscription registrations and deregistrations.

2. Brokers can exchange publications, and requests to delete publications.

3. Brokers can exchange information about themselves.

These interactions are illustrated in Figure 25 on page 83.

82 WebSphere MQ: Publish/Subscribe User’s Guide

Streams

The use of streams is deprecated in WebSphere MQ Version 7.0.

WebSphere MQ Version 7.0 produces topic objects and topic strings by combining

WebSphere MQ Version 6.0 StreamName and Topic parameters. For example, if the

WebSphere MQ Version 6.0 StreamName is UK.SPORTS.FEED and the Topic is

Sport/Soccer/LatestScore, the WebSphere MQ Version 7.0 publish/subscribe

engine creates a topic called /UK/SPORTS/FEED/Sport/Soccer/LatestScore.

Where no StreamName is explicitly supplied, the queued publish/subscribe

interface sets the topic object to the WebSphere MQ Version 6.0 default stream

SYSTEM.BROKER.DEFAULT.STREAM.

Streams provide a way of separating the flow of information for different topics. A

stream is implemented as a set of queues, one at each broker that supports the

stream. Each queue has the same name (the name of the stream). The default

stream set up between all the brokers in a network is called

SYSTEM.BROKER.DEFAULT.STREAM.

Streams can be created by an application or by the administrator. Stream names are

case-sensitive, and stream queues must be local queues (not alias queues). Stream

names beginning with the characters ‘SYSTEM.BROKER.’ are reserved for

WebSphere MQ use. For more information see “Broker queues” on page 146.

(Register Publisher)

Publish

Delete Publication

Deregister Publisher

Register Subscriber

Request Update

Deregister Subscriber
Publish

Register Subscriber
Deregister Subscriber
Publish
Delete Publication

Broker 1

Subscriber

Broker 2

Publisher

Figure 25. Communication between publishers, subscribers, and brokers

Chapter 7. Publish/subscribe deprecated function 83

A broker has a separate thread for each stream that it supports. If multiple streams

are used, the broker can process publications arriving at different stream queues in

parallel. Other advantages of using streams are as follows:

v To provide a high level grouping of topics.

Streams act as high-level qualifiers for topics. For instance, in the example

shown in Figure 2 on page 5, a separate stream might be set up for Sport. In this

case, to get the soccer results you need to subscribe to the Soccer/Results topic

specifying the ‘Sport’ stream. The other topics (Stock, Films, TV) remain on the

default stream, unless other streams are set up for them.

Wildcard characters are not used for stream names, and wildcards do not span

streams. For example, a subscriber to topic ‘*’ on the ‘Sport’ stream does not

receive publications published on other streams.

v To restrict the range of publications and subscriptions that a broker has to deal

with.

A given stream can be restricted to a subtree of a hierarchy or the stream can be

split into separate hierarchies that are not connected (see “Broker networks” on

page 85). For example, if broker 1 in Figure 26 on page 86 does not support a

stream supported by its children, brokers 2 and 3 each form the root of a

separate hierarchy for that stream, and no subscriptions or publications flow

between the two hierarchies.

v To provide access control.

A broker has a stream queue for each stream that it supports. Normal

WebSphere MQ access control techniques can be used to control whether a

particular application is authorized to put messages onto this queue (publish to

this stream), or to browse messages from the queue (subscribe to it). Although a

subscribing application does not get messages from the broker’s queue directly,

the broker checks the subscriber’s authorization to subscribe to the broker’s

queue when it registers the subscription. This authorization check takes place at

the broker to which the application publishes or subscribes, not at other brokers

to which the publication or subscription might be propagated.

The administrator can change publishers’ and subscribers’ stream queue

authorizations dynamically (using normal WebSphere MQ queue management

facilities), although the changes might not take effect until the broker is

restarted.

v To allow different queue attributes (such as maximum message length) to be

assigned for publications on different streams.

Version 6 wild card schema

If subscriptions are made using this schema, wild cards operate on all characters

within the topic string. Using this schema, wild cards are interpreted in the same

way they were in WebSphere MQ Version 6 and WebSphere Message Broker

Version 6 when using MQRFH1 formatted message for publish/subscribe. Do not

use this schema for new subscriber applications

To use this schema specify the MQSO_WILDCARD_CHAR option when

subscribing.

If you use this wild card schema, the wild card characters recognized by

WebSphere MQ publish/subscribe are:

* Zero or more characters

? One character

84 WebSphere MQ: Publish/Subscribe User’s Guide

In the example shown in Figure 2 on page 5, the high-level topic of ’Sport’ might

be divided into separate topics covering different sports, such as:

Sport/Soccer

Sport/Golf

Sport/Tennis

These might be divided further, to separate different types of information about

each sport, such as:

Sport/Soccer/Fixtures

Sport/Soccer/Results

Sport/Soccer/Reports

Note: WebSphere MQ Publish/Subscribe does not recognize that the ‘/’ character

is being used in a special way. However, it is recommended that the ‘/’ character is

used as a separator to ensure compatibility with other WebSphere business

integration functions.

The following topic strings could be used in subscriptions to retrieve particular

sets of information:

* All information on Sport, Stock, Films and TV.

Sport/*

All information on Soccer, Golf and Tennis.

Sport/Soccer/*

All information on Soccer (Fixtures, Results and Reports).

Sport/*/Results

All Results for Soccer, Golf and Tennis.

Note that wildcards do not span streams (see “Streams” on page 83).

The percent character ‘%’ is used as an escape character, to allow these characters

to be used in a topic string. For example, the string ‘ABC%*D’ represents the actual

topic ABC*D. If the string ABC%*D is specified in a Publish message (where wildcard

characters are not allowed), the string could be matched by a subscriber specifying

the string ABC?D.

To use a % character in a topic string, specify two percent characters ‘%%’. A

percent character in a string must always be followed by a ‘*’, a ‘?’, or another ‘%’

character.

If wildcard characters are not allowed in a message, a ‘*’ or ‘?’ character can be

present only if it is immediately preceded by a ‘%’ character so that the ‘*’ or ‘?’

character loses its wildcard semantics. Therefore, ABC%*D is a valid topic string in a

Publish message but ABC*D is not.

Broker networks

You can link brokers together to form a network of brokers. A broker network

must be arranged as a hierarchy. The broker at the top of the hierarchy is called

the root broker. The root broker can have one or more child brokers, and is known as

the parent broker to these brokers. The child brokers can also have child brokers,

and so on, as illustrated in Figure 26 on page 86.

Chapter 7. Publish/subscribe deprecated function 85

Using a hierarchy reduces the number of channels that need to be defined because

each broker does not need to be connected to every other broker. Both publication

and subscription traffic take a hierarchic route to their destinations.

Each broker maintains administrative information about its parent broker. When a

broker first starts, it communicates with its parent. In this way, each broker knows

the identities of its immediate children as well as its parent. These are known as

the broker’s neighbors.

Define the hierarchy from the root down and, if it is necessary to delete brokers,

delete them from the bottom up. This usually means that to change the root broker

you have to delete the whole network and start again .

Passing subscription information between brokers

Subscriptions flow to all nodes in the network that support the stream in question.

This is shown in Figure 27 on page 87.

A broker consolidates all the subscriptions that are registered with it, whether from

applications directly or from other brokers. In turn, it registers subscriptions for

these topics with its neighbors, unless a subscription already exists. This is shown

in Figure 28 on page 87.

When an application publishes information, the receiving broker forwards it

(possibly through one or more other brokers) to any applications that have valid

subscriptions for it, including applications registered at other brokers supporting

this stream (for global publications). This is shown in Figure 29 on page 88.

BROKER 1

BROKER 2

BROKER 6BROKER 5

BROKER 3

BROKER 8BROKER 7

BROKER 4

Figure 26. Simple broker hierarchy. Broker 1 is the root broker and brokers 2 and 3 are its

children. Broker 4 is the child of broker 2 and the parent of brokers 7 and 8.

86 WebSphere MQ: Publish/Subscribe User’s Guide

Subscriber 1

4 - s
ub

sc
rip

tio
n

3 -
 su

bs
cr

ipt
ion

3 - s
ub

sc
rip

tio
n

2 - subscription

HQ

Europe

London

Asia
1 - subscription

Figure 27. Propagation of subscriptions through a broker network. Subscriber 1 registers a

subscription for a particular topic and stream on the Asia broker (1). The subscription for this

topic is forwarded to all other brokers in the network that support the stream (2,3,4).

Subscriber 1

Subscriber 2

6 - subscriptionsu
bs

cr
ipt

ion

su
bs

cr
ipt

ion

HQ

Europe

London

Asia
subscription

5 - subscription

subscription

Figure 28. Multiple subscriptions. Subscriber 2 registers a subscription, with the same topic

and stream as in Figure 27, on the HQ broker (5). The subscription for this topic is forwarded

to the Asia broker, so that it is aware that subscriptions exist elsewhere on the network (6).

The subscription does not have to be forwarded to the Europe broker, because a subscription

for this topic has already been registered (step 3 in Figure 27).

Chapter 7. Publish/subscribe deprecated function 87

When a broker sends any publish or subscribe message to another broker, it sets its

own user ID in the message, and uses its own authority to put the message. This

means that the broker must have the authority to put messages onto other brokers’

queues (unless the channel is set up to put incoming messages with the message

channel agent’s authority). This also means that all authorization checks are

performed at the publisher’s or subscriber’s local broker.

For more information about brokers, see “Managing the broker” on page 146.

Writing publish/subscribe applications

Introduction to writing applications

Applications use command messages to communicate with the broker when they

want to publish or subscribe to information. These messages use the WebSphere

MQ Rules and Formatting Header (RF Header), which is described in “Format of

command messages” on page 106. The content of each command message starts

with an MQRFH structure. This structure contains a name/value string, which

defines the type of command the message represents and any parameters

associated with the command. In the case of a Publish command message, the

name/value string is usually followed by the data to be published, in any format

specified by the user. Broker responses to command messages also use the MQRFH

structure.

The normal Message Queue Interface (MQI) calls (such as MQPUT and MQGET)

can be used to put RF Header command messages to the broker queue, and to

retrieve response messages and publications from their respective queues. The MQI

is described in the WebSphere MQ Application Programming Guide. Most

command messages are sent to the broker’s control queue

(SYSTEM.BROKER.CONTROL.QUEUE), but Publish and Delete Publication

command messages are sent to the appropriate stream queue at the broker (for

example, SYSTEM.BROKER.DEFAULT.STREAM).

Subscriber 1
7 - publication

Subscriber 2

Publisher

8 - p
ub

lic
ati

on

9 - publication

9 - publication

10 - publication

subscription

su
bs

cr
ipt

ion

subscription

subscription

HQ

Europe

London

Asia

su
bs

cr
ipt

ion

Figure 29. Propagation of publications through a broker network. A publisher sends a

publication, on the same topic and stream as in Figure 28 on page 87, to the Europe broker

(7). A subscription for this topic exists from HQ to Europe, so the publication is forwarded to

the HQ broker (8). However, no subscription exists from London to Europe (only from Europe

to London), so the publication is not forwarded to the London broker. The HQ broker sends

the publication directly to subscriber 2 and to the Asia broker (9), from where it is forwarded

to subscriber 1 (10).

88 WebSphere MQ: Publish/Subscribe User’s Guide

Alternatively, you can use the WebSphere MQ Application Messaging Interface

(AMI) to send messages to and receive them from the broker. The AMI constructs

and interprets the fields in the RF Header, so you don’t need to understand its

structure. In addition, the application programmer is not concerned with details of

how WebSphere MQ sends the message. These details (for instance, the queue

name and fields in the message descriptor) are contained in AMI services and

policies set up by a system administrator. The AMI is available as a SupportPac.

Message flows

 Figure 30 shows the basic flow of messages using the Register Publisher,

Deregister Publisher, Register Subscriber, Deregister Subscriber and Publish

command message and responses. This flow applies to all event publications, and

to state information where the subscriber wants to get the latest published state of

a topic.

The responses are optional, and the Register Publisher and Deregister Publisher

command messages can be omitted (publishers can choose not to register, or to

register on their first publish command). So the flow diagram can be simplified as

shown in Figure 31 on page 90.

Publisher Broker Subscriber

Register Publisher

Register Publisher (response)

Register Subscriber

Register Subscriber (response)

Publish

Publish (response)

Publish

Publish

Publish (response)

Publish

Deregister Subscriber

Deregister Subscriber (response)

Deregister Publisher

Deregister Publisher (response)

... ...

Figure 30. Basic flow of messages

Chapter 7. Publish/subscribe deprecated function 89

Simplified message flow:

 Figure 31 is a simplified version of Figure 30 on page 89 with the optional

messages and responses omitted.

Figure 32 on page 91 shows how publish and subscribe messages flow between the

publisher, the subscriber, and the broker queues. In Figure 33 on page 91 this is

extended to a two-broker system.

The flow of messages when retained publications are used is shown in Figure 34

on page 92. In this case, the subscriber receives the current retained publication as

soon as it registers a subscription. In Figure 35 on page 92, the subscriber registers

with the ‘Publish on Request Only’ option, so it doesn’t receive the publication

until it sends a Request Update command message. (Note that the first publication

is not delivered to the subscriber, because it is updated by the second publication

before the update request is received).

Publisher Broker Subscriber

Register Subscriber

Publish

Publish

Publish

Publish

Deregister Subscriber

... ...

Figure 31. Simplified flow of messages

90 WebSphere MQ: Publish/Subscribe User’s Guide

Subscriber
Queue

Subscriber

Broker

Stream
Queue

Control
Queue

Publisher
2 - publication 3 - publication

4 - publication

1 - subscription

Figure 32. Flow of messages in a single-broker system. The subscriber registers a

subscription by putting a message on the broker’s control queue (1). Subsequently, a

publisher puts a publication message, for the same topic, on the corresponding stream queue

in the broker (2). The broker forwards the publication by putting the same message on the

subscriber queue (3), from where the subscriber application can get it (4).

Subscriber
Queue

Subscriber

Publisher
3 - publication 5 - publication4 - publication

6 - publication

1 - subscription2 - subscription

Stream
Queue

Control
Queue

Stream
Queue

Control
Queue

Broker 1 Broker 2

Figure 33. Flow of messages in a multi-broker system. The subscriber registers a

subscription as in Figure 32(1). Broker 2 forwards the subscription by putting a message on

the control queue of Broker 1 (2). Subsequently, a publisher puts a publication message, for

the same topic, on the corresponding stream queue in Broker 1 (3). The publication is

forwarded to Broker 2 (4), and then to the subscriber queue (5), from where the subscriber

application can get it (6).

Chapter 7. Publish/subscribe deprecated function 91

Publisher and subscriber identity

A publisher’s or subscriber’s identity consists of the following:

v Their queue name.

v Their queue manager name (this can be blank to indicate the local queue

manager).

v Correlation identifier (this is optional).

Subscriber
Queue

Subscriber

Broker

Stream
Queue

Control
Queue

Internal
Queue

Publisher
1 - publication

5 - publication

3 - subscription

2 - publication 4 - publication

Figure 34. Flow of messages using retained publications. A publisher sends a retained

publication by putting a message on the appropriate stream queue in the broker (1). The

broker stores the publication on an internal queue (2). Subsequently, a subscriber registers a

subscription, to the same topic and stream, by putting a message on the broker’s control

queue (3). The broker sends the current retained publication for this topic by putting a

message on the subscriber queue (4), from where the subscriber application can get it (5).

Subscriber
Queue

Subscriber

Broker

Control
Queue

Internal
Queue

Publisher

1 - publication 2 - publication 7 - publication

8 - publication

3 - subscription

4 - publication 5 - publication

6 - request update

Stream
Queue
Stream
Queue

Figure 35. Flow of messages using publish on request only. A publisher sends a retained

publication to a stream queue in the broker (1). The broker stores it on an internal queue (2).

A subscriber registers a subscription, to the same topic and stream, by putting a message on

the broker’s control queue (3), but it uses the ‘Publish on Request Only’ option so the broker

takes no action. Subsequently, the publisher sends a second retained publication to the

broker (4), which replaces the first one on the internal queue (5). The subscriber then sends

a request update message to the broker’s control queue (6). This causes the broker to send

the current retained publication to the subscriber queue (7), from where the subscriber

application can get it (8).

92 WebSphere MQ: Publish/Subscribe User’s Guide

Alternatively, the subscriber’s identity can consist of a subscription name. See

“Subscription name and identity” on page 94.

The correlation identifier can be used to distinguish between different publishers

or subscribers using the same queue. If different subscribers are using the same

queue, all publications sent by the broker to a subscriber specify the correlation

identifier in the CorrelId field of the message descriptor (MQMD).

Note: For responses, MQRO_xx_CORREL_ID report options determine the

correlation identifier used. Applications using a correlation identifier for

identification typically specify the CorrelId and the MQRO_PASS_CORREL_ID

option.

The recipient can then use MQGET with the CorrelId to retrieve the messages.

This allows several applications to share a queue (this might be desirable if there

are many clients). It also allows one application to distinguish between

publications arising from different subscriptions. When the results service restarts,

it subscribes to the topic Sport/Soccer/State/LatestScore/*, with the ‘Publish on

Request Only’ option. It uses a different CorrelId from that used to subscribe to

the Sport/Soccer/Event/* publications. This allows it to retrieve from the same

queue all the retained ‘LatestScore’ publications before it starts processing the

event publications again.

An identity that includes the correlation identifier in the message descriptor is

established by including MQPS_CORREL_ID_AS_IDENTITY in the

RegistrationOptions parameter of the Register Publisher or Register Subscriber

message (or of the Publish message for implicit registration). The correlation

identifier to be used as part of the identity must not be zero.

If MQPS_CORREL_ID_AS_IDENTITY is not set, the identity does not include the

correlation identifier and the broker uses a correlation identifier of its own

choosing when sending messages to that publisher or subscriber. When a broker

selects the correlation identifier itself, this does not conflict with other message

identifiers or correlation identifiers generated by queue managers.

A single publisher or subscriber queue can therefore support multiple identities,

each with a specific correlation identifier value, plus one further identity for which

the correlation identifier is not specified (MQPS_CORREL_ID_AS_IDENTITY was

not set for registration). Each identity is treated by the broker as being independent

of the others. (Usually, however, a queue has either a number of identities each

with its own specific correlation identifier, or only one identity with no specific

correlation identifier).

MQPS_CORREL_ID_AS_IDENTITY should be set by a publisher whose identity

includes a correlation identifier when sending a Publish message to the broker, so

that the broker can identify the publisher using the CorrelId field in the MQMD. If

such a message is received by the broker when there is no registration in effect for

the publisher’s queue and the correlation identifier specified, an implicit

registration is performed (unless MQPS_NO_REGISTRATION is specified).

When a Publish message is sent by a broker to a subscriber whose identity

includes a correlation identifier, the CorrelId field in the MQMD is set to the

required correlation identifier. The correlation identifier sent to the subscriber

Chapter 7. Publish/subscribe deprecated function 93

depends only upon what the subscriber set when it registered. The correlation

identifier used by the publisher is independent of the correlation identifier sent to

the subscriber.

MQPS_CORREL_ID_AS_IDENTITY is valid for the Deregister Publisher and

Deregister Subscriber message, to delete a registration for an identity that includes

a correlation identifier.

The value used for a correlation identifier that is part of a publisher’s or

subscriber’s identity needs to be unique only between the other users of the same

queue. The MQPMO_NEW_CORREL_ID option can be used to cause the queue

manager to generate a unique value.

Subscription name and identity:

 Publish/Subscribe broker subscribers can be identified by their queue name, queue

manager name, and optional correlation identifier. This, in conjunction with a

topic, identifies an individual subscription, referred to here as the traditional identity

of the subscription. An additional attribute to subscriptions, known as the

subscription name, can be used instead of the traditional identity to reference a

subscription.

The subscription name must be unique within the stream for which the

subscription applies. On first registration, the traditional identity must be specified.

The subscription name can be specified on the first registration or added to the

subscription subsequently (at which time the traditional identity must also be

specified to tie the two together). When the subscription name has been defined

for the subscription, subsequent commands need specify only the subscription

name to access (modify or deregister) the subscription. The underlying traditional

identity for the subscription can now be changed by specifying the same

subscription name with new traditional identity information on a Register

Subscriber command.

A subscription name can be associated only with a single traditional identity at any

one time within any stream of a broker (and in particular, with a single topic at a

time), although it is possible to reuse a subscription name for a different

subscription after the original has been deregistered, and it is possible to use the

same subscription name in different streams on the same broker or on any stream

of a different broker for different subscriptions. Subscription names are arbitrary

character strings with no length limit. Subscription names that start with ″MQ″ are

reserved for internal use.

If multiple applications require access to the same subscription, the broker can

manage their access by using subscriber identities. A subscribing application can

specify a subscriber identity (an application-generated unique string) on a Register

Subscriber or Deregister Subscriber command to add or remove itself from the

broker-managed list of interested applications. The concepts of shared and

exclusive access to a subscription are supported by the broker in much the same

way as shared and exclusive access to WebSphere MQ objects is supported by a

queue manager. The use of subscription identities on a subscription does not effect

the publication of matching publications to that subscription; a single copy of each

publication is still sent to the defined subscription queue no matter how many

subscriber identities are currently registered. Deregistering with a subscription

identity from a subscription does not delete the subscription unless the

subscription identity list becomes empty as a result of removing the identity from

that list. Identity names that start with ″MQ″ are reserved for internal use.

94 WebSphere MQ: Publish/Subscribe User’s Guide

The message descriptor

This section gives information about the values you must set in the message

descriptor (MQMD) for messages that you send to the broker. It also explains the

values that the broker sets in the message descriptor for publication messages it

forwards to subscribers.

Messages sent to the broker:

 This section shows the values set for fields in the MQMD for messages sent to the

broker.

Report

See MsgType (below), and “Error handling by the broker” on page 139.

MsgType

Can be set to MQMT_REQUEST for a command message if a response is

always required. The MQRO_PAN and MQRO_NAN flags in the Report field

are not significant in this case.

 Can be set to MQMT_DATAGRAM, in which case responses depend on the

setting of the MQRO_PAN and MQRO_NAN flags in the Report field:

v MQRO_PAN alone means that the broker is to send a response only if the

command succeeds.

v MQRO_NAN alone means that the broker is to send a response only if the

command fails.

v If a command succeeds partially, a response is sent if either MQRO_PAN or

MQRO_NAN is set.

v MQRO_PAN + MQRO_NAN means that the broker is to send a response

whether the command succeeds or fails. This has the same effect from the

broker’s perspective as setting MsgType to MQMT_REQUEST.

v If neither MQRO_PAN nor MQRO_NAN is set, no response is ever sent.

Format

Set to MQFMT_RF_HEADER.

MsgId

Normally set to MQMI_NONE, so that the queue manager generates a unique

value.

CorrelId

Specifies the CorrelId that can optionally be included as part of the

subscriber’s identity. When used with the MQRO_PASS_CORREL_ID option in

the Report field, it is also in all response messages sent by the broker to the

sender.

ReplyToQ

This is the queue to which responses, if any, are to be sent. This can be the

sender’s publisher or subscriber queue that has the advantage that the QName

parameter can be omitted from the message text. If, however, responses are to

be sent to a different queue, the QName parameter is needed.

ReplyToQMgr

Queue manager for responses.

 Note that a putting application can leave this field blank (the default value), in

which case the local queue manager puts its own name in this field.

Expiry

Expiry of the subscription or publication.

Chapter 7. Publish/subscribe deprecated function 95

Publications forwarded by the broker:

 This section shows the values set for fields in the MQMD for publications sent by

the broker to subscribers.

The fields are set to default values, except the following:

Report

Set to MQRO_NONE.

MsgType

Set to MQMT_DATAGRAM.

Expiry

Set to the value in the Publish message received from the publisher. In the

case of a retained message, the time outstanding is reduced by the

approximate time the message has been at the broker.

Format

Set to MQFMT_RF_HEADER.

MsgId

Set to MQMI_NONE, so that the queue manager generates a unique value.

CorrelId

If CorrelId is part of the subscriber’s identity, this is the value specified by the

subscriber when registering. Otherwise, it is a non-zero value chosen by the

broker.

Priority

Set by the publisher or as a resolved value if the publisher specified

MQPRI_PRIORITY_AS_Q_DEF.

Persistence

Set by the publisher or as a resolved value if the publisher specified

MQPER_PERSISTENCE_AS_Q_DEF.

ReplyToQ

Set to blanks.

ReplyToQMgr

Broker’s queue manager name.

UserIdentifier

Subscriber’s user identifier (as set when the subscriber registered).

AccountingToken

Subscriber’s accounting token (as set when the subscriber registered).

ApplIdentityData

Subscriber’s application identity data (as set when the subscriber registered).

PutApplType

Set to MQAT_BROKER.

PutApplName

Set to the first 28 characters of the broker’s queue manager name.

PutDate

Timestamp when the broker puts the message.

PutTime

Timestamp when the broker puts the message.

96 WebSphere MQ: Publish/Subscribe User’s Guide

ApplOriginData

Set to blanks.

Persistence and units of work

Subscriber and publisher registration messages should normally be sent as

persistent messages (registrations themselves are always persistent, regardless of

the persistence of the messages that caused them). Publication messages can be

either persistent or non-persistent. Brokers maintain the persistence and priority of

publications as set by the publisher.

When reading messages from stream queues, brokers always read persistent

messages within a unit-of-work, so that they are not lost if the broker or system

crashes. Non-persistent messages might or might not be read within a

unit-of-work, depending on the options set in the queue manager configuration

file, qm.ini (or equivalent). This is described in “Broker configuration stanza” on

page 149.

Publication messages are treated so that publication to subscribers is once and once

only for persistent messages. For non-persistent messages, delivery to subscribers

is also once only unless SyncPointIfPersistent was specified in the queue

manager configuration file and the broker or queue manager stops abruptly. In this

case, the message might be lost for one or more subscribers. Regardless of its

persistence, however, a Publish message is never sent more than once to a

subscriber, for a given subscription (unless Request Update is used).

Publishers and subscribers can choose whether or not to use a unit-of-work when

publishing or receiving messages. However, if the SequenceNumber technique

described previously is used for maintaining ordering, both publisher and

subscriber must retain sequencing information atomically with putting or getting a

message if the application is to be re-startable.

Limitations

This section describes some limitations of WebSphere MQ Publish/Subscribe.

Group messages:

 Group messages are not supported by WebSphere MQ Publish/Subscribe. If a

group message is sent to the broker, it does not cause an error, but the group

message flags in the message descriptor are not forwarded by the broker.

Segmented messages:

 Segmented messages are not supported by WebSphere MQ Publish/Subscribe. If a

segmented message is sent to the broker, it is rejected as not valid.

If you want to distribute a segmented message to subscribers, you can publish a

short notification that the message is available, offering to accept ‘direct requests’

for the full message (see “Publish” on page 122).

Cluster queues:

 Stream queues must not be cluster queues.

Data conversion of MQRFH structure:

Chapter 7. Publish/subscribe deprecated function 97

You might have a client application (publisher or subscriber) running on a version

of WebSphere MQ that does not support data conversion of the MQRFH structure.

The application can pass publish/subscribe messages to other queue managers

provided that CONVERT(NO) is specified on the sending channel.

Using the Application Messaging Interface

The WebSphere MQ Application Messaging Interface (AMI) provides a simple

interface that application programmers can use without needing to understand all

the options available in the WebSphere MQ Message Queue Interface (MQI). The

options that are needed in a particular installation are defined by a system

administrator, using services and policies.

The AMI has functions to generate the most commonly used publish/subscribe

command messages, and to receive a publication from the broker. It is available for

the C, C++, and Java™ programming languages. The name of the function (or

method) depends on the programming language being used. In the case of C, there

are two sets of functions: the high-level interface and the object interface.

AMI publish/subscribe functions:

 The AMI publish/subscribe functions are:

v Publish command

v Register Subscriber command

v Deregister Subscriber command

v Receive a publication

Publish command:

 C high-level

amPublish

C object-level

amPubPublish

C++ AmPublisher->publish

Java AmPublisher.publish

Register Subscriber command:

 C high-level

amSubscribe

C object-level

amSubSubscribe

C++ AmSubscriber->subscribe

Java AmSubscriber.subscribe

Deregister Subscriber command:

 C high-level

amUnsubscribe

C object-level

amSubUnsubscribe

C++ AmSubscriber->unsubscribe

Java AmSubscriber.unsubscribe

98 WebSphere MQ: Publish/Subscribe User’s Guide

Receive a publication:

 C high-level

amReceivePublication

C object-level

amSubReceive

C++ AmSubscriber->receive

Java AmSubscriber.receive

These functions have parameters that enable you to specify some of the parameters

in the command message, such as the topic. Other parameters in the command

message are specified by the AMI service that you use to send the message (the

service is set up by the system administrator). You can modify these parameters by

changing the appropriate name/value elements before sending the command

message; helper functions are provided for this purpose. Details of these

name/value elements and the options that are available for each command are

given in “Publish/Subscribe command messages” on page 115.

There are no AMI functions to generate Delete Publication, Deregister Publisher,

Register Publisher, or Request Update command messages directly. You have to

construct a message containing the appropriate name/value elements using the

helper functions provided, and then send the message to the broker.

Refer to the WebSphere MQ Programmable Command Formats and Administration

Interface book for details of how to use the functions mentioned above (including

the name/value element helper functions).

Writing publisher applications

Publisher applications communicate with the broker using command messages in

the RF Header format (or the equivalent functions in the Application Messaging

Interface). Publishers can register with the broker before they start publishing

information, they can register implicitly with their first publication, or they can

choose not to register. When they have finished publishing information, they can

deregister with the broker. They can also delete retained publications. This chapter

discusses the following topics:

v “Registering with the broker”

v “Publishing information” on page 100

v “Deleting information” on page 101

v “Deregistering with the broker” on page 102

The only configuration the administrator has to perform before you can define an

application as a potential publisher is to set up the necessary security authorization

to enable the application to put messages to the required stream queues, and, if

explicit registration is required, to send messages to the broker’s control queue.

Registering with the broker

There is no Register Publisher command in WebSphere MQ Version 7.0. A

publisher implicitly registers with the queued publish/subscribe interface by using

any queue in SYSTEM.QPUBSUB.QUEUE.NAMELIST.

Chapter 7. Publish/subscribe deprecated function 99

Publishing information

When an application wants to publish some information, it sends a Publish

command message to the stream queue at the broker. This command is described

in “Publish” on page 122.

The publisher must specify the topic to which the publication applies. If a

publication matches several subscriptions for which a subscriber is registered, only

one copy of the publication is sent to the subscriber for all matching subscriptions.

The publisher can also specify the name of a stream; however, this is not necessary

if the message is put to the correct stream queue at the broker.

If the publisher is not registered with the broker for those topics, the broker

automatically registers the publisher when it receives this message, unless you tell

it not to.

If an application is registered as both a publisher and a subscriber for a topic, it

can use an option when publishing to say that it does not want to receive a copy

of this publication.

Publication data:

 Publishers can include the publication data in the message, or they can refer to it.

Including data in the message:

 Publication data is usually appended to the Publish command message, following

the NameValueString of the MQRFH header, as shown in “Publication data” on

page 112. The characteristics of the data are defined in the Encoding,

CodedCharSetId and Format fields of the MQRFH header. Alternatively, string data

can be contained within the NameValueString.

Referring to data in the message:

 Publishers can make information available to subscribers directly, without going

through the broker. The publisher needs to advertise the fact that it is publishing

information about a topic, and that it is willing to receive direct requests for this

information from subscribers.

There are two ways that a subscriber can find out about this information:

v From a publication received in a normal way.

The publisher can use a normal publication to advertise the fact that it has more

information about a topic (for example, a large file in several different formats).

The publisher should also specify the topic name to be used (which could be the

same, or different) and where the subscriber can find the information.

v From a subscription to the metatopics.

The publisher can register with the broker specifying that it accepts direct

requests for information about a topic. Subscribers that request information

about publishers (metatopics) will discover the names of publishers who publish

on this topic.

Retained publications:

100 WebSphere MQ: Publish/Subscribe User’s Guide

When a publication specifies that it is to be retained, any previously retained

publication for this stream and topic combination is replaced, so that the

information is always at the latest level. See “Retained publications” on page 6 for

information about retained publications.

Mixing retained and non-retained publications on the same topic in a stream is not

recommended. If an application does this and publishes a non-retained publication,

any previously retained publication is still retained.

It is not recommended for two or more applications to publish retained

publications to the same topic and stream. If two applications do publish a

retained publication about the same topic on the same stream simultaneously, it is

difficult to determine which publication is retained. If these publishers use two

different brokers, it is possible that different retained publications could be active

at different brokers for the same topic and stream.

To prevent further subscriptions to a retained publication, it can be removed from

the topic and stream by clearing it. A retained publication can be cleared with the

clear topicstring command

Expiry of retained publications:

 Use the Expiry field of the message descriptor (MQMD) of the publish message to

set an expiry interval for a retained message.

Publishing locally and globally:

 Publishers can specify that they want a publication to be published locally. If they

do not specify this, the publication is made available globally through all the

brokers in the network. Local publications can be received only by subscribers who

register local subscriptions at the same broker as the publisher. Local retained

publications are retained only at this broker.

Applications can publish and subscribe locally to the same topic and stream at

different brokers. Each broker deals with the publications and subscriptions in

isolation from the other brokers.

Mixing local and global publications and subscriptions to the same topic and

stream is not recommended. A local publication is not delivered to a subscriber

registered globally, even if they are at the same broker.

Deleting information

Publishers can request that the broker delete retained publications for specified

topics. To do this, send the Delete Publication command message to the stream

queue at the broker to tell it to delete its copy of any data for the specified topics.

This command is described in “Delete Publication” on page 116.

The application needs the same authority to delete publications as it needs to

publish messages for the specified stream. You do not have to be a registered

publisher to be able to delete publications.

If you want to delete some of the information that was originally published in a

message that covered more than one topic, the broker deletes the publication only

for the topics you specify, and retains the rest.

Chapter 7. Publish/subscribe deprecated function 101

If different publishers publish data on the same stream and topics, the data that is

deleted might have originated from a different publisher.

You can also specify if you want to delete retained publications published locally

at the broker, or those published globally.

Deregistering with the broker

When a publisher that is registered with a broker no longer wants to publish

information on a topic, it can use the Deregister Publisher command message to

deregister with the broker. This message should be sent to the

SYSTEM.BROKER.CONTROL.QUEUE. This command is described in “Deregister

Publisher” on page 117.

This command can be used if the publisher registered with the broker explicitly

using Register Publisher, or implicitly using Publish. A publisher cannot

deregister if it chose not to register in the first place.

The application must specify one of the following:

v Deregister for all topics for which it was registered.

v Deregister for a subset of the topics for which it is registered if it wants to

continue publishing on other topics. It must specify one or more topics, and it

can use wildcards.

You must specify the stream name for these topics, unless it is the default

(SYSTEM.BROKER.DEFAULT.STREAM).

You must also specify the name of the publisher’s queue and queue manager.

The publisher registration must be deregistered by the same user that registered it

originally, unless the deregistering application is allowed to put the message as the

appropriate user (for example using alternate user authority to open the

SYSTEM.BROKER.CONTROL.QUEUE for that user).

Writing subscriber applications

Subscriber applications communicate with the broker using command messages in

the RF Header format (or the equivalent functions in the Application Messaging

Interface). Subscribers need to register with a broker before they can start receiving

publications. They can also request certain types of publication from the broker or

directly from the publisher.

This chapter discusses the following topics:

v “Registering as a subscriber”

v “Requesting information” on page 105

v “Deregistering as a subscriber” on page 106

Registering as a subscriber

Subscriber applications need to register their interest in receiving publications with

a broker. Before you can define an application as a potential subscriber, you must

set up the necessary security authorization to enable the application to do the

following:

v Put a message to the broker’s control queue.

102 WebSphere MQ: Publish/Subscribe User’s Guide

v Browse the required stream queues.

v Put a message to the subscriber queue that will be used to receive publications.

Send the Register Subscriber command message to the

SYSTEM.BROKER.CONTROL.QUEUE to register as a subscriber. This command is

described in “Register Subscriber” on page 129.

Your application should send this message to a broker’s control queue (see “Broker

queues” on page 146). to indicate that it wants to subscribe to the topics specified

in the message. Alternatively, an application can send this message to register on

behalf of another application that wants to subscribe. If an application subscribes

on behalf of another application, the user ID of the subscribing application is used.

The application needs alternate user authority if a different user ID is used. An

application that has already registered as a publisher can also register as a

subscriber.

An application can register with the same broker more than once, and can also

register with many different brokers.

When a subscriber has registered with a broker, the subscription is persistent and

survives broker and queue manager restarts, regardless of the persistence of the

Register Subscriber command message.

When a subscriber registers with the broker, it must specify the topics that it is

interested in. It can specify the name of more than one topic, and it can also use

wildcards to specify a range of topics. If a subscriber has many (different)

registrations that match the topic of a publication, only one copy of the publication

is sent to it.

Subscriber queues:

 A subscriber queue is the queue where publications for that subscriber are sent.

The subscriber specifies the name of the queue when it registers a subscription. If

the subscriber is at the same queue manager as the broker, the subscriber’s queue

name must not be the same as that of the stream. Such a subscription is rejected.

Even if the subscriber’s and broker’s queue managers are different, it is strongly

recommended that you use different names for the queues.

If a subscribing application registers multiple subscriptions (for the same or

different streams), it can choose whether all Publish command messages are sent

to the same queue, or whether Publish command messages for different

subscriptions go to different queues.

The queue name, queue manager name and correlation identifier (if one is

specified) of a subscriber’s queue or a subscription name are used by the broker to

identify the subscriber. When the broker publishes information about subscribers, if

a subscriber has registered several subscriptions for the same stream that are all to

be sent to the same queue, and the subscriptions are not distinguished with

different correlation identifiers, the subscriber appears as a single application.

If publications for different subscriptions are sent to different queues, or use a

different CorrelId, the broker regards these as being from multiple subscribers

(even though the subscriber might be a single application).

Options you can specify when registering as a subscriber:

Chapter 7. Publish/subscribe deprecated function 103

The options that a subscriber specifies when registering determine which

publications (if any) are sent to it by the broker. Any previously retained

publications for the topics specified are sent immediately after registration (unless

the subscriber specifies new publications only, which are those published after the

subscriber registered with the broker).

Alternatively, the subscriber can request that it is not sent any publications about a

topic unless it asks for them using the Request Update command message. This

method is applicable where publications have been retained, and an application

might want to know the latest information about a topic.

Queue name:

 The queue where messages for a subscriber should be sent is called the subscriber

queue. This queue must not be a temporary dynamic queue. The subscriber

specifies the name of the queue when it registers a subscription.

Selecting a stream:

 The use of streams is deprecated in WebSphere MQ Version 7.0.

You can specify the name of the stream to which the specified topics apply. If you

do not specify this, the SYSTEM.BROKER.DEFAULT.STREAM is used.

You can also request that publication messages that are sent to the subscriber

include the name of the stream to which the publication applies, even if the

publisher did not include the name in the publication.

Subscriber identity:

 The identity of the subscriber consists of a subscription name or the name of the

queue and queue manager that it uses.. You can specify these names when you

register as a subscriber. If you do not specify these names, the following, specified

in the message descriptor (MQMD) of the command message, are used instead: the

names of the reply-to queue and reply-to queue manager, and, optionally, the

correlation identifier.

You can also use the correlation identifier in the message descriptor as part of the

subscriber’s identity. You might need to do this if, for example, the broker

publishes information about subscribers, and a subscriber has registered several

subscriptions for the same stream that are all to be sent to the same queue. If the

subscriptions are not distinguished with different correlation identifiers, the

subscriber appears as a single application.

If the different subscriptions are to be sent to different queues, the broker believes

that these are from multiple subscribers even though the subscriber might be a

single application.

If required, you can tell the broker that the identity of the subscriber should not be

divulged by the broker when the broker publishes information about subscribers

(unless the request comes from a subscriber with additional authority).

Subscription scope:

104 WebSphere MQ: Publish/Subscribe User’s Guide

If the broker is part of a network, the subscriber can specify whether it wants to

subscribe to local publications sent to the local broker only, or whether it wants its

subscription distributed to other brokers in the network.

Subscription expiry:

 The values you set for the Expiry attribute in the message descriptor (MQMD) of

the Register Subscriber command message determines when the subscription

expires. This is measured from the time the subscription request is put. This means

that the message could expire before the subscriber is registered with the broker. If

this is set to MQEI_UNLIMITED, the subscription does not expire, and the

subscriber continues to receive publications until it explicitly deregisters.

Broker restart:

 Subscriber registrations are maintained across broker restarts. Any subsequent

publications for the specified topics are forwarded to the subscriber, including any

that arrived while the broker was inactive.

Changing an application’s registration:

 When a subscriber has registered, it can use the Register Subscriber command

message again to increase the range of topics that it wants to receive information

for, or to change the options for topics that it has already registered for.

When a subscription is reregistered, the values you set for the Expiry attribute in

the message descriptor (MQMD) of the Register Subscriber command message

determines when the subscription expires. This is measured from the time the

subscription request is put. Thus the Register Subscriber command message can

be used to refresh a subscription before it expires.

Requesting information

A subscriber can request information from the broker, or directly from a publisher.

Requesting information from the broker:

 A subscriber can request a retained publication on a specified topic from the

broker. To do this, it uses the Request Update command message, which is

described in “Request Update” on page 136. Applications usually do this if, when

they registered with the broker, they asked to be sent publications on request only.

If the broker has a retained publication for the topic specified, it is sent to the

subscriber.

This command message can also be sent by a subscriber that did not register in

this way, to request that the latest copy of a publication be sent to it. This might be

necessary if a subscriber has already seen a publication, but has failed without

saving it, and on restart wants to see it again.

This command message can be satisfied only by a retained publication at the

broker (see “State and event information” on page 5). If the broker to which this

message is sent has no retained publication for the topic specified, the request fails.

Requesting information from a publisher:

 Under some circumstances, subscribers can request information directly from a

publisher without involving the broker.

Chapter 7. Publish/subscribe deprecated function 105

A publisher can specify that it is willing to receive direct requests for information

from other applications. In this case, the publisher must make its queue and queue

manager names (and possibly correlation identifier) known to subscribers by

including them in a publication that advertises the availability of other

publications on direct request.

Alternatively, subscribers can subscribe to information about publishers (called

metatopics). They can discover the names of publishers who are willing to accept

direct requests for publications on this topic.

The subscriber can use this information to send a normal WebSphere MQ message

(using the MQI) directly to the publisher. The publisher can then use the MQI to

send the publication directly to the subscriber.

Deregistering as a subscriber

When a subscriber no longer wants to receive publications on a topic, send the

Deregister Subscriber command message to the broker’s control queue. This

command is described in “Deregister Subscriber” on page 119.

This tells the broker to stop sending publications, about the topics specified, to the

subscriber.

An application must specify one of the following:

v Deregister for all topics for which it was registered.

v Deregister for a subset of the topics for which it is registered if it still wants to

receive publications on other topics. It must specify one or more topics. If the

original subscription used wildcards, it must be deregistered using the same

wildcard topic.

You must specify the stream name for these topics, unless it was the default

(SYSTEM.BROKER.DEFAULT.STREAM).

You must also specify the name of the subscriber’s queue and queue manager,

unless they are the same as the reply-to queue and reply-to queue manager in the

message descriptor of the command message. The subscription must be

deregistered by the same user that registered it originally, unless the deregistering

application is allowed to put the Deregister Subscriber message as the appropriate

user (for example, using alternate user authority to open the

SYSTEM.BROKER.CONTROL.QUEUE for that user and CorrelId).

Format of command messages

Applications use command messages to communicate with the broker when they

want to publish or subscribe to information. These messages use the WebSphere

MQ Rules and Formatting Header (RF Header). Each message or response starts

with an MQRFH structure, which includes a NameValueString. This consists of a

succession of tag names and values (name/value pairs), which define the type of

command the message represents and any options that apply to it. In the case of a

Publish command message, the MQRFH header is usually followed by the data

being published, in a format defined in the MQRFH structure. Alternatively, string

publication data can be included within the NameValueString, using appropriate

tag names and values defined by the publisher.

This chapter discusses the following topics:

106 WebSphere MQ: Publish/Subscribe User’s Guide

v “MQRFH – Rules and formatting header”

v “Publish/Subscribe name/value strings” on page 110

v “Publication data” on page 112

The name/value pairs that define the parameters needed for the command

messages are detailed in “Publish/Subscribe command messages” on page 115.

If you are using the WebSphere MQ Application Messaging Interface (AMI) to

communicate with the broker, you don’t need to understand all the information in

this topic. The AMI constructs and interprets the RF Header and its name/value

pairs.

MQRFH – Rules and formatting header

The MQRFH structure defines the format of the rules and formatting header. This

header can be used to send string data in the form of name/value pairs.

The format name of an MQRFH structure is MQFMT_RF_HEADER. The fields in

the MQRFH structure and the name/value pairs are in the character set and

encoding given by the CodedCharSetId and Encoding fields in the header structure

that precedes the MQRFH, or by those fields in the MQMD structure if the

MQRFH is at the start of the application message data.

Character data in the MQRFH (including the NameValueString field) must belong

to a single-byte character set (SBCS). The user data that follows NameValueString

can belong to any supported character set (SBCS or DBCS).

This structure is supported in the following environments: AIX, DOS client,

HP-UX, Linux, OS/2®, z/OS, Solaris, Windows client, Windows, and Windows

2000.

Fields:

 StrucId (MQCHAR4)

Structure identifier.

 The value must be:

MQRFH_STRUC_ID

Identifier for rules and formatting header structure.

 For the C programming language, the constant

MQRFH_STRUC_ID_ARRAY is also defined; this has the same value as

MQRFH_STRUC_ID, but is an array of characters instead of a string.

The initial value of this field is MQRFH_STRUC_ID.

Version (MQLONG)

Structure version number.

 The value must be:

MQRFH_VERSION_1

Version-1 rules and formatting header structure.

The initial value of this field is MQRFH_VERSION_1.

StrucLength (MQLONG)

Total length of MQRFH including string containing name/value pairs.

Chapter 7. Publish/subscribe deprecated function 107

This is the length in bytes of the MQRFH structure, including the

NameValueString field at the end of the structure. The length does not include

any user data that follows the NameValueString field.

To avoid problems with data conversion of the user data in some

environments, make sure that StrucLength is a multiple of four.

The following constant gives the length of the fixed part of the structure, that

is, the length excluding the NameValueString field:

MQRFH_STRUC_LENGTH_FIXED

Length of fixed part of MQRFH structure.

The initial value of this field is MQRFH_STRUC_LENGTH_FIXED.

Encoding (MQLONG)

Numeric encoding.

 This specifies the representation used for numeric values in the user data (if

any) that follows the string containing the name/value pairs. This applies to

binary integer data, packed-decimal integer data, and floating-point data.

The initial value of this field is MQENC_NATIVE.

CodedCharSetId (MQLONG)

Coded character set identifier.

 This specifies the coded character set identifier of character strings in the user

data (if any) that follows the string containing the name/value pairs.

Note: When a message is put, this field must be set to the nonzero value that

specifies the character set of the user data. If this is not done, it is not possible

to convert the message using the MQGMO_CONVERT option when the

message is retrieved.

The initial value of this field is 0.

Format (MQCHAR8)

Format name.

 This specifies the format name of the user data (if any) that follows the string

containing the name/value pairs.

Pad the name with blanks to the length of the field. Do not use a null

character to terminate the name before the end of the field, because the queue

manager does not change the null and subsequent characters to blanks in the

MQRFH structure. Do not specify a name with leading or embedded blanks.

The initial value of this field is MQFMT_NONE.

Flags (MQLONG)

Flags.

 The following can be specified:

MQRFH_NONE

No flags.

The initial value of this field is MQRFH_NONE.

NameValueString (MQCHARn)

String containing name/value pairs.

 This is a variable-length character string containing name/value pairs in the

form:

name1 value1 name2 value2 name3 value3 ...

108 WebSphere MQ: Publish/Subscribe User’s Guide

Each name or value must be separated from the adjacent name or value by one

or more blank characters; these blanks are not significant. A name or value can

contain significant blanks by prefixing and suffixing the name or value with

the double-quote character; all characters between the open double-quote and

the matching close double-quote are treated as significant. In the following

example, the name is FAMOUS_WORDS, and the value is Hello World:

FAMOUS_WORDS "Hello World"

A name or value can contain any characters other than the null character

(which acts as a delimiter for NameValueString). However, to assist

interoperability, an application might prefer to restrict names to the following

characters:

v First character: upper case or lower case alphabetic (A through Z, or a

through z), or underscore.

v Second character: upper case or lower case alphabetic, decimal digit (0

through 9), underscore, hyphen, or dot.

If a name or value contains one or more double-quote characters, the name or

value must be enclosed in double quotes, and each double quote within the

string must be doubled, for example:

Famous_Words "The program displayed ""Hello World"""

Names and values are case sensitive, that is, lowercase letters are not

considered to be the same as uppercase letters. For example, FAMOUS_WORDS and

Famous_Words are two different names.

The length in bytes of NameValueString is equal to StrucLength minus

MQRFH_STRUC_LENGTH_FIXED. To avoid problems with data conversion of

the user data in some environments, make sure that this length is a multiple of

four. NameValueString must be padded with blanks to this length, or

terminated earlier by placing a null character following the last value in the

string. The null and bytes following it, up to the specified length of

NameValueString, are ignored.

Note: Because the contents and length of the NameValueString field are not fixed,

no initial value is given for this field, and it is omitted from the “Structure

definition in C” on page 110.

 Table 17. Initial values of fields in MQRFH

Field name Name of constant Value of constant

StrucId MQRFH_STRUC_ID ’RFH�’ (See note 1)

Version MQRFH_VERSION_1 1

StrucLength MQRFH_STRUC_LENGTH_FIXED 32

Encoding MQENC_NATIVE See note 2

CodedCharSetId None 0

Format MQFMT_NONE ’��������’

Flags MQRFH_NONE 0

Chapter 7. Publish/subscribe deprecated function 109

Table 17. Initial values of fields in MQRFH (continued)

Field name Name of constant Value of constant

Notes:

1. The symbol ‘�’ represents a single blank character.

2. The value of this constant is environment-specific.

3. In the C programming language, the macro variable MQRFH_DEFAULT contains the

values listed above. It can be used in the following way to provide initial values for the

fields in the structure:

MQRFH MyRFH = {MQRFH_DEFAULT};

Structure definition in C:

 typedef struct tagMQRFH {

 MQCHAR4 StrucId; /* Structure identifier */

 MQLONG Version; /* Structure version number */

 MQLONG StrucLength; /* Total length of MQRFH including string

 containing name/value pairs */

 MQLONG Encoding; /* Numeric encoding */

 MQLONG CodedCharSetId; /* Coded character set identifier */

 MQCHAR8 Format; /* Format name */

 MQLONG Flags; /* Flags */

 } MQRFH;

Publish/Subscribe name/value strings

The MQRFH format is used to encode command messages that are sent to the

WebSphere MQ Publish/Subscribe broker. The NameValueString field within the RF

header contains name/value pairs that describe the command to be carried out by

the broker. If the command being issued is a Publish command, publication data

(in a format defined by the publisher) can follow the NameValueString field.

The NameValueString can contain any number of name/value pairs, but only those

in which the tag-name begins with the characters ‘MQPS’ are recognized by the

broker. Other name/value pairs (which can be defined by the publisher to encode

publication data, for instance) are ignored by the broker.

The first occurrence of an ‘MQPS’ tag-name must be MQPSCommand, followed by a

tag-value that identifies the command to be carried out. Subsequent ‘MQPS’

tag-names and their values identify any options for that command (if they occur

before the MQPSCommand tag-name, the command fails).

Each name or value must be separated from the adjacent name or value by one or

more blank characters. The C header file cmqpsc.h defines tag-names and values

that can be used by publisher and subscriber applications when building command

messages to be sent to the broker. Blank enclosed versions of the constants are

provided to simplify construction of a NameValueString. For example, topics are

specified using a tag-name of MQPSTopic, and the following three constants are

provided in the cmqpsc.h header file:

#define MQPS_TOPIC "MQPSTopic"

#define MQPS_TOPIC_B " MQPSTopic "

#define MQPS_TOPIC_A ’ ’,’M’,’Q’,’P’,’S’,’T’,’o’,’p’,’i’,’c’,’ ’

The MQPS_TOPIC constant is not enclosed by blanks. If it is used to build a

NameValueString, the application must add blanks between tag-names and values.

The version of the constant with the ‘_B’ suffix includes the necessary blanks. The

110 WebSphere MQ: Publish/Subscribe User’s Guide

version with the ‘_A’ suffix also includes the blanks, but is in character array form.

These constants are most suited for initialization of a C structure that is being used

to define a fixed layout of a NameValueString.

For example, the Delete Publication command can be issued to delete retained

publications throughout the broker network. A topic of ’*’ matches all topics

within the stream that the command is sent to, so using this deletes all retained

publications. A NameValueString to perform such a command can be constructed as

follows.

If the constants without blanks are used, the blanks must be inserted, for example:

MQCHAR DeleteCmd[] =

 MQPS_COMMAND " " MQPS_DELETE_PUBLICATION " " MQPS_TOPIC " *";

This can be simplified by using the constants with blanks, for example:

MQCHAR DeleteCmd[] =

 MQPS_COMMAND_B MQPS_DELETE_PUBLICATION_B MQPS_TOPIC_B "*";

A subscribing application might need to analyze a NameValueString, for instance to

determine the topic associated with each publication it receives. One approach is to

break down the entire NameValueString into its constituent parts. A simpler

approach is to use the sscanf in the C runtime library to determine the position of

the MQPSTopic tag-name in the string. Since sscanf automatically strips away white

space, the MQPS_TOPIC constant (without the blanks) is needed here.

Options using string constants:

 Some commands have options associated with them, which are also specified to

the broker by name/value pairs. They are defined in the C header file cmqpsc.h.

Multiple registration options, publication options and delete options are allowed,

so the MQPSRegOpts, MQPSPubOpts and MQPSDelOpts tag-names can be

repeated with different values. The effect is cumulative.

For example, to register an anonymous local publisher on topic ‘News’, the

following NameValueString is needed:

 MQPSCommand RegPub

 MQPSRegOpts Anon

 MQPSRegOpts Local

 MQPSTopic News

Options using integer constants:

 Alternatively, an application can specify all its options using a single name/value

pair. This might be useful when the presence or absence of an option is conditional

upon program logic. In this case, the combined set of options can be specified as a

single decimal numeric value. The C header file cmqcfc.h provides corresponding

integer constants for all the options. In the previous example, the constants

MQREGO_ANONYMOUS and MQREGO_LOCAL are relevant. The anonymous

option has a decimal value of 2, and the local option has a decimal value of 4, so

the following NameValueString is equivalent:

 MQPSCommand RegPub

 MQPSRegOpts 6

 MQPSTopic News

Sending a command message with the RFH structure:

Chapter 7. Publish/subscribe deprecated function 111

Figure 36 shows how the RFH structure (including the NameValueString) is

appended to the Message Descriptor to send a message to a broker. In this case,

the message is to register a subscriber to the topic ″IBM® Stock Price″. Part of the

message descriptor is shown, together with the message data that consists of the

RFH structure. Pad the NameValueString to a multiple of four bytes.

Details of the name/value pairs for all the command messages are given in

“Publish/Subscribe command messages” on page 115.

Publication data

Publication data, or UserData, can be appended to a Publish command message

after the NameValueString. The format of the data is defined in the Encoding,

CodedCharSetId and Format fields of the MQRFH header. Alternatively, publication

data can be included within the NameValueString, by means of user defined

name/value pairs (which must not begin with the characters ‘MQ’), or the system

provided StringData and IntegerData tags. More details are given in “Publish” on

page 122.

Figure 37 on page 113 shows how publication data can be appended to the RFH

structure. Note how the encoding, CCSID and format of the publication data are

defined in the RFH structure. In Figure 38 on page 114 the publication data is

included within the NameValueString, and in Figure 39 on page 114, the format of

the publication data is defined by the user.

MsgDescriptor

MsgData

437
MQHRF

SUB1.Q
BROKER1

ReplyToQ
ReplyToQMgr

Encoding
CodedCharSetld
Format

MQENC_NATIVE

StrucID
Version
StrucLength
Encoding
CodedCharSetld
Format " "
Flags

RFH
1
64
MQENC_NATIVE
0

0

MQPSCommand RegSub MQPSTopic
"IBM Stock Price"

64

Figure 36. Message descriptor and RFH structure. The message descriptor indicates that the

subscriber has nominated its subscriber queue to be the same as its reply queue. It also

defines the encoding and CCSID of the RFH structure, which follows as the message data.

The encoding and CCSID fields in the RFH structure are not set, because there is no data

following the RFH structure (compare with Figure 37 on page 113). Note that the length of

the RFH structure includes the NameValueString (which contains the name/value pairs

defining the Register Subscriber command). The topic string is quoted because it contains

significant blanks.

112 WebSphere MQ: Publish/Subscribe User’s Guide

Double-byte character sets:

 Publication data can use a single-byte character set (SBCS) or a double-byte

character set (DBCS) code page. However, if a publishing application publishes

information in SBCS, a subscribing application receiving that information must not

request the data to be converted to DBCS (because the MQRFH header would be

converted as well, and the header must be SBCS).

MsgDescriptor

MsgData

437
MQHRF

Encoding
CodedCharSetld
Format

MQENC_NATIVE

StrucID
Version
StrucLength
Encoding
CodedCharSetld
Format
Flags

RFH
1
112
MQENC_NATIVE
437
MQSTR
0

MQPSCommand Publish MQPSPubOpts
NoReg MQPSTopic "IBM Stock Price"

$112.85

112

Figure 37. Publication data after the RFH structure. In this example, the publication data

($112.85) that is being published as string data in MQSTR format, is appended to the

message after the NameValueString. Note that the RFH StrucLength includes the

NameValueString, but not the publication data. The message descriptor defines the encoding,

CCSID and format of the RFH structure, which in turn defines the encoding, CCSID and

format of the publication data.

Chapter 7. Publish/subscribe deprecated function 113

In the previous examples, it is assumed that the subscribing or publishing

application is running in an explicit code page of 437. However, for reasons of

portability, applications can use the special CCSID value MQCCSI_Q_MGR in the

MsgDescriptor

MsgData

437
MQHRF

Encoding
CodedCharSetld
Format

MQENC_NATIVE

StrucID
Version
StrucLength
Encoding
CodedCharSetld
Format " "
Flags

RFH
1
128
MQENC_NATIVE
0

0

MQPSCommand Publish MQPSPubOpts
NoReg MQPSTopic "IBM Stock Price"
StockPrice $112.85

128

Figure 38. Publishing data within the NameValueString. Publication data can be included

within the NameValueString, by means of one or more user-defined name/value pairs, as

shown in this example. The encoding and CCSID fields in the RFH structure are not set,

because there is no following data. The receiving application must parse the RFH structure to

extract the publication data.

MsgData

StrucID
Version
StrucLength
Encoding
CodedCharSetld
Format
Flags

RFH
1
112
MQENC_NATIVE
437
ACCOUNT
0

MQPSCommand Publish MQPSPubOpts
NoReg MQPSTopic
Bank/Event/Account/CreditCheck

00107805 JONES P
MR 000005 57HIGH STREET, LONDON

112

struct { MQLOMG AccountNo;
MQCHAR Customer[32];
MQLONG CreditRating;
MQCHAR Address[24] }

Figure 39. User-defined publication data. In this example, the format of the publication data is

set to a user-defined format, ACCOUNT, which contains character and numeric data. When

the broker processes Publish messages, it converts the RFH header (but not the publication

data) to its own CCSID and encoding. The user must write a data conversion routine if the

publication is sent to subscribing applications that use a different CCSID or encoding.

114 WebSphere MQ: Publish/Subscribe User’s Guide

message descriptor if they are using the same code page as the queue manager

they are communicating with. In addition, the special value MQCCSI_INHERIT

can be set in the CCSID field of the RF header to indicate that the publication data

is in the same CCSID as the character data in the header.

Figure 40 shows how the CCSID for the RF header and the publication data can be

inherited from the message descriptor.

Publish/Subscribe command messages

This chapter describes the name/value pairs that define the parameters needed for

the following command messages:

v “Delete Publication” on page 116

v “Deregister Publisher” on page 117

v “Deregister Subscriber” on page 119

v “Publish” on page 122

v “Register Publisher” on page 127

v “Register Subscriber” on page 129

v “Request Update” on page 136

“Format of command messages” on page 106 describes how to send these

command messages using the Rules and Formatting header.

If you are using the WebSphere MQ Application Messaging Interface (AMI) to

communicate with the broker, you don’t need to understand all the information in

this chapter. The AMI constructs and interprets the RF Header and its name/value

pairs. However, you might find it useful to read this chapter to see what options

MsgDescriptor

MsgData

MQCCSI_Q_MGR
MQHRF

Encoding
CodedCharSetld
Format

MQENC_NATIVE

StrucID
Version
StrucLength
Encoding
CodedCharSetld
Format
Flags

RFH
1
112
MQENC_NATIVE
MQCCSI INHERIT
MQSTR
0

MQPSCommand Publish MQPSPubOpts
NoReg MQPSTopic Temperature/London

10 Degrees Centigrade

112

Figure 40. Inheriting the CCSID. The message descriptor uses the special value

MQCCSI_Q_MGR to indicate that data within the RFH structure is in the same CCSID as the

queue manager. The value of MQCCSI_INHERIT in the RFH structure indicates that the

same CCSID is used for the publication data.

Chapter 7. Publish/subscribe deprecated function 115

are available in each command message. Some of the options are directly accessible

through parameters in an AMI function such as amPublish. Others can be accessed

using an AMI name/value element helper function such as amMsgGetElement, or

a macro such as AmMsgGetStreamName.

Delete Publication

The Delete Publication command message is sent from a publisher (or another

broker) to a broker’s stream queue to tell it to delete its copy of any retained

publications for the specified topics within that stream.

Required parameters

Command

name: "MQPSCommand" (string constant: MQPS_COMMAND)

value: "DeletePub" (string constant: MQPS_DELETE_PUBLICATION)

Command must be the first parameter in the NameValueString.

Topic

name: "MQPSTopic" (string constant: MQPS_TOPIC)

value: The topic for which published information is to be deleted. Wild cards

can be used to delete several topics.

Topic can be repeated for as many topics as required.

Optional parameters

DeleteOptions

name: "MQPSDelOpts" (string constant: MQPS_DELETE_OPTIONS)

value: The following delete options can be specified:

"Local"

(string constant: MQPS_LOCAL, integer constant: MQDELO_LOCAL).

 Retained publications published locally at this broker (that is, with

RetainPub and Local specified) are deleted. Those published globally

(that is, with RetainPub but not Local specified) are not deleted, even if

they were published at this broker.

The default if DeleteOptions is omitted is that global retained publications are

deleted at all brokers in the network, but local retained publications are not

deleted. Mixing local and global publications to the same topic and stream is

not recommended. See “Publish” on page 122 for more information about

retained local publications.

StreamName

name: "MQPSStreamName" (string constant: MQPS_STREAM_NAME)

value: The name of the publication stream for the specified Topic(s).

The default value is the name of the stream queue to which the message is

sent.

Example

Here is an example of a NameValueString for a Delete Publication command

message. This is used by the sample application to delete the retained publication

that contains the latest score in the match between Team1 and Team2.

116 WebSphere MQ: Publish/Subscribe User’s Guide

MQPSCommand DeletePub

 MQPSStreamName SAMPLE.BROKER.RESULTS.STREAM

 MQPSTopic "Sport/Soccer/State/LatestScore/Team1 Team2"

Error codes

The following reason codes might be returned in the NameValueString of the broker

response message to this command, in addition to those shown in topic “Error

codes applicable to all commands” on page 145.

 Reason Reason text Explanation

3071 MQRCCF_STREAM_ERROR Stream name too long or contains

invalid characters.

3072 MQRCCF_TOPIC_ERROR Topic name has an invalid length or

contains invalid characters.

3075 MQRCCF_INCORRECT_STREAM Stream name does not match stream

queue.

3087 MQRCCF_DEL_OPTIONS_ERROR Invalid delete options supplied.

Deregister Publisher

The Deregister Publisher command message is sent from a publisher, or another

application on a publisher’s behalf, to a broker’s control queue to indicate that a

publisher is no longer publishing data on the topics contained in the message.

If a response message is required, this command builds a successful response

message and puts it to the appropriate queue as specified by the MQMD

ReplyToQ and ReplyToQMgr.

Required parameters

Command

name: "MQPSCommand" (string constant: MQPS_COMMAND)

value: "DeregPub" (string constant: MQPS_DEREGISTER_PUBLISHER)

Command must be the first parameter in the NameValueString.

Optional parameters

QueueManagerName

name: "MQPSQMgrName" (string constant: MQPS_Q_MGR_NAME)

value: The publisher’s queue manager name.

For a message sent by a publisher, if QueueManagerName, is not present, it

defaults to the ReplyToQMgr name in the message descriptor (MQMD). If the

resulting name is blank, it matches a publisher that registered with a blank

queue manager name.

For a message sent by a broker, QueueManagerName is omitted.

QueueName

name: "MQPSQName" (string constant: MQPS_Q_NAME)

value: The publisher’s queue name.

For a message sent by a publisher, if QueueName is not present, it defaults to

the ReplyToQ name in the message descriptor (MQMD), which must not be

blank in this case.

Chapter 7. Publish/subscribe deprecated function 117

For a message sent by a broker, the QueueName parameter is omitted.

RegistrationOptions

name: "MQPSRegOpts" (string constant: MQPS_REGISTRATION_OPTIONS)

value: The following registration options can be specified:

"CorrelAsId"

(string constant: MQPS_CORREL_ID_AS_IDENTITY, integer constant:

MQREGO_CORREL_ID_AS_IDENTITY).

 The CorrelId in the MQMD (which must not be zero) is part of the

publisher’s identity.

"DeregAll"

(string constant: MQPS_DEREGISTER_ALL, integer constant:

MQREGO_DEREGISTER_ALL)

 All topics registered for this publisher are to be deregistered. If this

option is set, the Topic parameter must be omitted.

The default if RegistrationOptions is omitted is that no options are set. In this

case, the Topic parameter is required.

StreamName

name: "MQPSStreamName" (string constant: MQPS_STREAM_NAME)

value: The name of the publication stream for the specified Topic(s).

The default value is SYSTEM.BROKER.DEFAULT.STREAM.

Topic

name: "MQPSTopic" (string constant: MQPS_TOPIC)

value: The topic being deregistered. Wildcards are allowed.

If DeregAll is specified in RegistrationOptions, the Topic parameter must be

omitted. Otherwise, it is required, and can optionally be repeated for as many

topics as needed.

Example

Here is an example of a NameValueString for a Deregister Publisher command

message. This deregisters a publisher for all topics it has registered that match

Stock/*. The publisher’s identity, including the CorrelId, is taken from the

defaults in the MQMD.

 MQPSCommand DeregPub

 MQPSRegOpts CorrelAsId

 MQPSTopic Stock/*

Error codes

The following reason codes might be returned in the NameValueString of the broker

response message to this command, in addition to those shown in topic “Error

codes applicable to all commands” on page 145.

 Reason Reason text Explanation

3071 MQRCCF_STREAM_ERROR Stream name too long or contains

invalid characters.

3072 MQRCCF_TOPIC_ERROR Topic name has an invalid length or

contains invalid characters.

118 WebSphere MQ: Publish/Subscribe User’s Guide

Reason Reason text Explanation

3073 MQRCCF_NOT_REGISTERED Publisher or subscriber not registered.

3074 MQRCCF_Q_MGR_NAME_ERROR Queue manager name invalid.

3076 MQRCCF_Q_NAME_ERROR Queue name invalid.

3078 MQRCCF_DUPLICATE_IDENTITY Publisher or subscriber identity already

assigned to another user ID.

3080 MQRCCF_CORREL_ID_ERROR Correlation identifier used as part of

identity but is all binary zero.

3082 MQRCCF_UNKNOWN_STREAM Stream not defined to broker and

cannot be created.

3083 MQRCCF_REG_OPTIONS_ERROR Invalid registration options supplied.

Deregister Subscriber

The Deregister Subscriber command message is sent from a subscriber, another

application on a subscriber’s behalf, or another broker, to a broker’s control queue

to indicate that it no longer wants to subscribe to the topics specified.

Required parameters

Command

name: "MQPSCommand" (string constant: MQPS_COMMAND)

value: "DeregSub" (string constant: MQPS_DEREGISTER_SUBSCRIBER)

Command must be the first parameter in the NameValueString.

Optional parameters

QueueManagerName

name: "MQPSQMgrName" (string constant: MQPS_Q_MGR_NAME)

value: The subscriber’s queue manager name.

If QueueManagerName is not present, it defaults to the ReplyToQMgr name in the

message descriptor (MQMD). If the resulting name is blank, it matches a

subscriber that registered with a blank queue manager name.

QueueName

name: "MQPSQName" (string constant: MQPS_Q_NAME)

value: The subscriber’s queue name.

If QueueName is not present, it defaults to the ReplyToQ name in the message

descriptor (MQMD), which must not be blank in this case.

RegistrationOptions

name: "MQPSRegOpts" (string constant: MQPS_REGISTRATION_OPTIONS)

value: The following registration options can be specified:

"CorrelAsId"

(string constant: MQPS_CORREL_ID_AS_IDENTITY, integer constant:

MQREGO_CORREL_ID_AS_IDENTITY).

 The CorrelId in the MQMD (which must not be zero) is part of the

subscriber’s identity.

"DeregAll"

(string constant: MQPS_DEREGISTER_ALL, integer constant:

MQREGO_DEREGISTER_ALL).

Chapter 7. Publish/subscribe deprecated function 119

All topics registered for this subscriber are to be deregistered. If this

option is set, the Topic parameter can, optionally, be supplied.

"FullResp"

(string constant: MQPS_FULL_RESPONSE, integer constant:

MQREGO_FULL_RESPONSE).

 When FullResp is specified, all the attributes of the subscription are

returned in the response message if the command does not fail. See

details under Register Subscriber. When FullResp is specified,

DeregAll is not permitted in the Deregister Subscriber command or

multiple topics.

"LeaveOnly"

(string constant: MQPS_LEAVE_ONLY, integer constant:

MQREGO_LEAVE_ONLY).

 When LeaveOnly is specified with a SubIdentity that is in the identity

set for the subscription, the SubIdentity is removed from the identity

set for the subscription, but the subscription is not removed from the

broker, even if the resulting identity set is empty.

If the SubIdentity value is not in the identity set the command fails.

LeaveOnly must be specified with a SubIdentity.

If neither LeaveOnly nor SubIdentity are specified, the subscription is

removed regardless of the contents of the identity set for the

subscription.

"VariableUserId"

(string constant: MQPS_VARIABLE_USER_ID, integer constant:

MQREGO_VARIABLE_USER_ID).

 If the subscription to be deregistered has VariableUserId set this must

be set when the Deregister Subscriber command is sent to indicate

which subscription is being deregistered. Otherwise, the userid of the

Deregister Subscriber command will be used to identify the

subscription. This is overridden (along with the other subscriber

identifiers) if a subscription name is supplied.

The default if this tag is omitted is that no options are set. In this case, the

Topic parameter is required.

StreamName

name: "MQPSStreamName" (string constant: MQPS_STREAM_NAME)

value: The name of the publication stream for the specified Topic(s).

The default value is SYSTEM.BROKER.DEFAULT.STREAM.

SubIdentity

name: "MQPSSubIdentity" (string constant:

MQPS_SUBSCRIPTION_IDENTITY)

value: Subscription identity.

See Register Subscriber for more details. If the SubIdentity is in the identity

set for the subscription, it is removed from the set.

If the identity set becomes empty as a result of this, the subscription is

removed from the broker (unless LeaveOnly is specified).

120 WebSphere MQ: Publish/Subscribe User’s Guide

If the identity set still contains other identities, the subscription is not removed

from the broker and publication flow is not interrupted.

SubName

name: "MQPSSubName" (string constant: MQPS_SUBSCRIPTION_NAME)

value: Subscription name.

The SubName value takes precedence over all other identifier fields except the

userid unless VariableUserId is set on the subscription itself.

If VariableUserId is not set, the Deregister Subscriber command succeeds only

if the userid of the command message matches that of the subscription.

If a subscription exists that matches the traditional identity of this command

but has no SubName, the Deregister Subscriber command fails.

If an attempt is made to deregister a subscription that has a SubName using a

command message that matches the traditional identity but with no SubName

specified, the command succeeds.

Topic

name: "MQPSTopic" (string constant: MQPS_TOPIC)

value: The topic being deregistered. Wild cards are allowed, but a specified

topic string must match exactly the corresponding string that was

originally specified in the Register Subscriber command.

If DeregAll is specified in RegistrationOptions, the Topic parameter can,

optionally, be supplied. Otherwise, this parameter is required, and can

optionally be repeated for as many topics as needed. Topics specified can be a

subset of those for which the subscriber is registered if it wants to retain

subscriptions to the other topics.

Example

Here is an example of a NameValueString for a Deregister Subscriber command

message. In this case the sample application is deregistering its subscription to the

topics that contain the latest score for all matches. The subscriber’s identity,

including the CorrelId, is taken from the defaults in the MQMD.

 MQPSCommand DeregSub

 MQPSRegOpts CorrelAsId

 MQPSStreamName SAMPLE.BROKER.RESULTS.STREAM

 MQPSTopic Sport/Soccer/State/LatestScore/*

Error codes

The following reason codes might be returned in the NameValueString of the broker

response message to this command, in addition to those shown in topic “Error

codes applicable to all commands” on page 145.

 Reason Reason text Explanation

3071 MQRCCF_STREAM_ERROR Stream name too long or contains

invalid characters.

3072 MQRCCF_TOPIC_ERROR Topic name has an invalid length or

contains invalid characters.

3073 MQRCCF_NOT_REGISTERED Publisher or subscriber not registered.

3074 MQRCCF_Q_MGR_NAME_ERROR Queue manager name invalid.

3076 MQRCCF_Q_NAME_ERROR Queue name invalid.

Chapter 7. Publish/subscribe deprecated function 121

Reason Reason text Explanation

3078 MQRCCF_DUPLICATE_IDENTITY Publisher or subscriber identity already

assigned to another user ID.

3080 MQRCCF_CORREL_ID_ERROR Correlation identifier used as part of

identity but is all binary zero.

3082 MQRCCF_UNKNOWN_STREAM Stream not defined to broker and

cannot be created.

3083 MQRCCF_REG_OPTIONS_ERROR Invalid registration options supplied.

3153 MQRCCF_SUB_NAME_ERROR Subscription exists but has no

SubName.

3154 MQRCCF_SUB_IDENTITY_ERROR SubIdentity is not in the identity set for

the subscription.

Publish

The Publish command message is used to publish information on specific topics. It

is sent from either a publisher (or another broker) to a broker’s stream queue or a

broker to a subscriber’s stream queue.

Publication data can be appended to the message, after the NameValueString, in a

format defined by the Encoding, CodedCharSetId and Format fields in the MQRFH

header.

Alternatively, publication data can be included within the NameValueString, using

name/value pairs such as the StringData and IntegerData parameters defined

below, or any other name/value pairs defined by the publisher (provided the

tag-name does not begin with the characters ‘MQ’).

Required parameters

Command

name: "MQPSCommand" (string constant: MQPS_COMMAND)

value: "Publish" (string constant: MQPS_PUBLISH)

Command must be the first parameter in the NameValueString.

Topic

name: "MQPSTopic" (string constant: MQPS_TOPIC)

value: The topic that categorizes this publication. No wild cards are allowed.

Topic can be repeated for as many topics as required. For example, an

application might publish information under topic ‘Topic 1’, which is then

enhanced to publish extra information. The new publications might use topics

‘Topic 1’ and ‘Topic 1 enhanced’, so that subscribers to ‘Topic 1 enhanced’

would be sure to get the additional information, while existing subscribers to

‘Topic 1’ could still access the basic information in the same publication.

Optional parameters

IntegerData

name: "MQPSIntData" (string constant: MQPS_INTEGER_DATA)

value: Optional publication data as an integer.

The meaning is as defined by the publisher. IntegerData can be repeated,

interspersed with StringData tags if required, to send publication data in any

manner defined by the publisher.

122 WebSphere MQ: Publish/Subscribe User’s Guide

PublicationOptions

name: "MQPSPubOpts" (string constant: MQPS_PUBLICATION_OPTIONS)

value: The following publication options can be specified:

"CorrelAsId"

(string constant: MQPS_CORREL_ID_AS_IDENTITY, integer constant:

MQPUBO_CORREL_ID_AS_IDENTITY).

 The CorrelId in the MQMD (which must not be zero) is part of the

publisher’s identity (for messages sent by a publisher to a broker). For

messages sent from a broker to a subscriber, this option is not changed

by the broker.

"IsRetainedPub"

(string constant: MQPS_IS_RETAINED_PUBLICATION, integer

constant: MQPUBO_IS_RETAINED_PUBLICATION).

 Can be set only by a broker.

This publication has been retained by the broker. The broker sets this

option to notify a subscriber that this publication was published earlier

and has been retained. A subscriber can receive such a publication

immediately after registering (or later if a publication has been retained

at another broker that is temporarily inaccessible). It can also be

received in response to a Request Update command.

The broker sets this option only if the subscriber registered with the

InformIfRet option.

"NoReg"

(string constant: MQPS_NO_REGISTRATION, integer constant:

MQPUBO_NO_REGISTRATION).

 Valid only if the recipient is a broker.

If the publisher is not already registered with the broker as a publisher

for this stream and topic, this option stops the broker from performing

an implicit registration. If the publisher is already registered, the

registration is unchanged, and has no effect on this publication.

"OtherSubsOnly"

(string constant: MQPS_OTHER_SUBSCRIBERS_ONLY, integer

constant: MQPUBO_OTHER_SUBSCRIBERS_ONLY).

 Valid only if the recipient is a broker.

Allows simpler processing of conference-type applications. It tells the

broker not to send the publication to the publisher even if he has

subscribed. For example, a group of applications can all subscribe to

the same topic (for example, “Conference”). Using this option, each

application can publish information into the conference without

themselves receiving the information.

"RetainPub"

(string constant: MQPS_RETAIN_PUBLICATION, integer constant:

MQPUBO_RETAIN_PUBLICATION).

 Valid only if the recipient is a broker.

The broker is to retain a copy of the publication. If this option is not

set, the publication is deleted as soon as the broker has sent the

publication to all its current subscribers.

Chapter 7. Publish/subscribe deprecated function 123

The default is that no publication options are set.

PublishTimestamp

name: "MQPSPubTime" (string constant: MQPS_PUBLISH_TIMESTAMP)

value: Optional publication timestamp set by the publisher.

This is of length 16 characters in the format:

 YYYYMMDDHHMMSSTH

using Universal Time. However, this is not checked by the broker, which

transmits this information to subscribers if it is present.

QMgrName

name: "MQPSQMgrName" (string constant: MQPS_Q_MGR_NAME)

value: The publisher’s queue manager name.

For a message sent by a publisher, the default is the ReplyToQMgr name in the

message descriptor (MQMD). If the resulting name is blank, it represents a

publisher that can be reached by resolving QName at the broker.

For a message sent by a broker, QMgrName is present only if it was explicitly

included by the publisher. (Note that it is not removed by the broker if the

publisher has registered with Anon)

QName

name: "MQPSQName" (string constant: MQPS_Q_NAME)

value: The publisher’s queue name.

For a message sent by a publisher, the default is the ReplyToQ name in the

message descriptor (MQMD), which must not be blank in this case (unless

PublicationOptions specifies NoReg and not OtherSubsOnly).

For a message sent by a broker, QName is present only if it was explicitly

included by the publisher. (Note that it is not removed by the broker if the

publisher has registered with Anon)

RegistrationOptions

name: "MQPSRegOpts" (string constant: MQPS_REGISTRATION_OPTIONS)

value: The registration options listed below can be specified, subject to the

following conditions:

If NoReg is not specified in PublicationOptions:

v If the publisher is already registered, the registration options are changed to

the values specified, if this tag is present. If it is not present, the registration

options are unchanged.

v If the publisher is not already registered, an implicit registration is

performed. The registration options are those specified by the

RegistrationOptions parameter, if it is present. If it is not present, no options

are set.

If NoReg is specified in PublicationOptions, any current registration has no

effect and it is not changed. RegistrationOptions can be specified.

If Local is specified in RegistrationOptions, the publication is restricted to

local subscribers and any other valid options are not acted on by the broker.

The following registration options can be set:

124 WebSphere MQ: Publish/Subscribe User’s Guide

"Anon"

(string constant: MQPS_ANONYMOUS, integer constant:

MQREGO_ANONYMOUS).

 Valid only if the recipient is a broker.

Tells the broker that the identity of the publisher is not to be divulged,

except to subscribers with additional authority.

This option (or the lack of it) overrides the option setting for any

previous publication on the same topics (or publisher registration).

"CorrelAsId"

(string constant: MQPS_CORREL_ID_AS_IDENTITY, integer constant:

MQREGO_CORREL_ID_AS_IDENTITY).

 The CorrelId in the MQMD (which must not be zero) is part of the

publisher’s identity. This option is assumed if CorrelAsId is set in the

PublicationOptions.

"DirectReq"

(string constant: MQPS_DIRECT_REQUESTS, integer constant:

MQREGO_DIRECT_REQUESTS).

 Tells the recipient that the publisher is willing to receive direct requests

for publication information from other applications (not just from the

broker).

The publisher’s queue and queue manager names can be included in a

Publish message sent by a publisher, so that the names are visible to

the subscriber.

This option (or the lack of it) overrides the option setting for any

previous publication on the same topics (or registration in the case of a

publisher to a broker, or the value returned in the response to a

subscriber registration).

This option must not be set if Anon is also set.

"Local"

(string constant: MQPS_LOCAL, integer constant: MQREGO_LOCAL).

 Valid only if the recipient is a broker.

Tells the broker that publications published by this publisher should be

sent only to subscribers that registered at this broker specifying Local.

SequenceNumber

name: "MQPSSeqNum" (string constant: MQPS_SEQUENCE_NUMBER)

value: Optional sequence number set by the publisher.

This should increase by 1 with each publication. However, this is not checked

by the broker, which merely transmits this information to subscribers if it is

present. If publications on the same stream and topic are published to different

interconnected brokers, it is the responsibility of the publisher to ensure that

sequence numbers, if used, are meaningful.

StreamName

name: "MQPSStreamName" (string constant: MQPS_STREAM_NAME)

value: The name of the publication stream for the specified Topic(s).

Chapter 7. Publish/subscribe deprecated function 125

This defaults to the name of the stream queue to which the message is sent if

sent to a broker, or an unspecified stream name if the message is sent to a

subscriber. A subscriber can request that the broker always include StreamName

in Publish messages by specifying "InclStreamName" when it registers.

StringData

name: "MQPSStringData" (string constant: MQPS_STRING_DATA)

value: Optional publication data as a character string.

The meaning and format are as defined by the publisher. StringData can be

repeated, interspersed with IntegerData tags if required, to send publication

data in any manner defined by the publisher.

Example

Here are some examples of a NameValueString for a Publish command message.

The first example is for an Event Publication sent by the match simulator in the

sample application to indicate that a match has started, with ‘No Registration’

specified for the publisher:

 MQPSCommand Publish

 MQPSPubOpts NoReg

 MQPSStreamName SAMPLE.BROKER.RESULTS.STREAM

 MQPSTopic Sport/Soccer/Event/MatchStarted

The second example is for a State Publication, so ‘Retain Publication’ is specified as

well. In this case the results service is publishing the latest score in the match

between Team1 and Team2.

 MQPSCommand Publish

 MQPSPubOpts RetainPub

 MQPSPubOpts NoReg

 MQPSStreamName SAMPLE.BROKER.RESULTS.STREAM

 MQPSTopic "Sport/Soccer/State/LatestScore/Team1 Team2"

In both examples the publication data (the names of the teams, or the latest score)

follows the NameValueString, as string data in MQSTR format.

Error codes

The following reason codes might be returned in the NameValueString of the broker

response message to this command, in addition to those shown in topic “Error

codes applicable to all commands” on page 145.

 Reason Reason text Explanation

3071 MQRCCF_STREAM_ERROR Stream name too long or contains

invalid characters.

3072 MQRCCF_TOPIC_ERROR Topic name has an invalid length or

contains invalid characters.

3074 MQRCCF_Q_MGR_NAME_ERROR Queue manager name invalid.

3075 MQRCCF_INCORRECT_STREAM Stream not defined to broker and

cannot be created.

3076 MQRCCF_Q_NAME_ERROR Queue name invalid.

3078 MQRCCF_DUPLICATE_IDENTITY Publisher or subscriber identity already

assigned to another user ID.

3080 MQRCCF_CORREL_ID_ERROR Correlation identifier used as part of

identity but is all binary zero.

3083 MQRCCF_REG_OPTIONS_ERROR Invalid registration options supplied.

3084 MQRCCF_PUB_OPTIONS_ERROR Invalid publication options supplied.

126 WebSphere MQ: Publish/Subscribe User’s Guide

Register Publisher

The Register Publisher command message is sent from a publisher (or another

application on a publisher’s behalf) to a broker’s control queue to indicate that a

publisher will be, or is capable of, publishing data on one or more specified topics.

Required parameters

Command

name: "MQPSCommand" (string constant: MQPS_COMMAND)

value: "RegPub" (string constant: MQPS_REGISTER_PUBLISHER)

Command must be the first parameter in the NameValueString.

Topic

Topic

name: "MQPSTopic" (string constant: MQPS_TOPIC)

value: The topic for which the publisher will be providing publications. Wild

cards are not allowed.

Topic can be repeated for as many topics as required.

Optional parameters

QMgrName

name: "MQPSQMgrName" (string constant: MQPS_Q_MGR_NAME)

value: The publisher’s queue manager name.

For a message sent by a publisher, the default is the ReplyToQMgr name in the

message descriptor (MQMD). If the resulting name is blank, it represents a

publisher that can be reached by resolving QName at the broker.

For a message sent by a broker, QMgrName is present only if DirectReq is set

in the RegistrationOptions tag.

QName

name: "MQPSQName" (string constant: MQPS_Q_NAME)

value: The publisher’s queue name.

For a message sent by a publisher, the default is the ReplyToQ name in the

message descriptor (MQMD), which must not be blank in this case.

For a message sent by a broker, QName is present only if DirectReq is set in

the RegistrationOptions tag.

RegistrationOptions

name: "MQPSRegOpts" (string constant: MQPS_REGISTRATION_OPTIONS)

value: The following registration options can be specified:

"Anon"

(string constant: MQPS_ANONYMOUS, integer constant:

MQREGO_ANONYMOUS)

 Tells the broker that the identity of the publisher is not to be divulged,

except to subscribers with additional authority.

Chapter 7. Publish/subscribe deprecated function 127

"CorrelAsId"

(string constant: MQPS_CORREL_ID_AS_IDENTITY, integer constant:

MQREGO_CORREL_ID_AS_IDENTITY)

 The CorrelId in the message descriptor, MQMD, (which must not be

zero) is part of the publisher’s identity.

"DirectReq"

(string constant: MQPS_DIRECT_REQUESTS, integer constant:

MQREGO_DIRECT_REQUEST)

 Tells the recipient that the publisher is willing to receive direct requests

for publication information from other applications (that is, not just

from the broker).

This option must not be set if Anon is also set.

"Local"

(string constant: MQPS_LOCAL, integer constant: MQREGO_LOCAL)

 Tells the broker that publications published by this publisher should be

sent only to subscribers that registered on this broker specifying Local.

If the RegistrationOptions parameter is omitted and the publisher is already

registered, its registration options are unchanged. If the publisher is not

already registered, the default is that no registration options are set.

StreamName

name: "MQPSStreamName" (string constant: MQPS_STREAM_NAME)

value: The name of the publication stream for the specified Topic(s).

The default value is SYSTEM.BROKER.DEFAULT.STREAM.

Example

Here is an example of a NameValueString for a Register Publisher command

message. The publisher is registering with the ‘Direct Requests’ option, for the

Stock/IBM topic on the default stream. The queue name and queue manager name

are specified so that subscribers can respond directly to the publisher.

 MQPSCommand RegPub

 MQPSRegOpts DirectReq

 MQPSQMgrName Broker1

 MQPSQName STOCK.IBM.PUBLISHER.QUEUE

 MQPSTopic Stock/IBM

Error codes

The following reason codes might be returned in the NameValueString of the broker

response message to this command, in addition to those shown in topic “Error

codes applicable to all commands” on page 145.

 Reason Reason text Explanation

3071 MQRCCF_STREAM_ERROR Stream name too long or contains

invalid characters.

3072 MQRCCF_TOPIC_ERROR Topic name has an invalid length or

contains invalid characters.

3074 MQRCCF_Q_MGR_NAME_ERROR Queue manager name invalid.

3076 MQRCCF_Q_NAME_ERROR Queue name invalid.

3078 MQRCCF_DUPLICATE_IDENTITY Publisher or subscriber identity already

assigned to another user ID.

128 WebSphere MQ: Publish/Subscribe User’s Guide

Reason Reason text Explanation

3080 MQRCCF_CORREL_ID_ERROR Correlation identifier used as part of

identity but is all binary zero.

3082 MQRCCF_UNKNOWN_STREAM Stream not defined to broker and

cannot be created.

3083 MQRCCF_REG_OPTIONS_ERROR Invalid registration options supplied.

Register Subscriber

The Register Subscriber command message is sent from a subscriber (or another

application on its behalf), or a broker, to a broker’s control queue to indicate that it

wants to subscribe to the topics specified.

Required parameters

Command

name: "MQPSCommand" (string constant: MQPS_COMMAND)

value: "RegSub" (string constant: MQPS_REGISTER_SUBSCRIBER)

Command must be the first parameter in the NameValueString.

Topic

name: "MQPSTopic" (string constant: MQPS_TOPIC)

value: The topic for which the subscriber wants to receive publications. Wild

cards are allowed.

Topic can be repeated for as many topics as required.

Optional parameters

QMgrName

name: "MQPSQMgrName" (string constant: MQPS_Q_MGR_NAME)

value: The subscriber’s queue manager name.

The default is the ReplyToQMgr name in the message descriptor (MQMD). If the

resulting name is blank, it represents a publisher that can be reached by

resolving QName at the broker.

QName

name: "MQPSQName" (string constant: MQPS_Q_NAME)

value: The subscriber’s queue name.

The default is the ReplyToQ name in the message descriptor (MQMD), which

must not be blank in this case.

RegistrationOptions

name: "MQPSRegOpts" (string constant: MQPS_REGISTRATION_OPTIONS)

value: The following registration options can be specified:

"AddName"

(string constant: MQPS_ADD_NAME, integer constant:

MQREGO_ADD_NAME)

 If AddName is specified, the SubName field is mandatory.

Chapter 7. Publish/subscribe deprecated function 129

If AddName is specified for an existing subscription that matches the

traditional identity of this Register Subscriber command, but with no

current SubName value, the SubName specified in this command is

added to the subscription.

If a subscription already exists by this SubName, or if a matching

subscription (as identified by the traditional identity) with a different

SubName exists on this stream, the command fails.

"Anon"

(string constant: MQPS_ANONYMOUS, integer constant:

MQREGO_ANONYMOUS)

 Tells the broker that the identity of the publisher is not to be divulged,

except to subscribers with additional authority.

"CorrelAsId"

(string constant: MQPS_CORREL_ID_AS_IDENTITY, integer constant:

MQREGO_CORREL_ID_AS_IDENTITY)

 The CorrelId in the message descriptor, MQMD, (which must not be

zero) is part of the subscriber’s identity.

"DupsOK"

(string constant: MQPS_DUPLICATES_OK, integer constant:

MQREGO_DUPLICATES_OK)

 Setting this option results in the occasional delivery of duplicate

publications to the subscriber. The subscriber should be tolerant of

such duplicate publications.

The advantage this option provides is reduced overhead in the broker

that can enhance performance.

"FullResp"

(string constant: MQPS_FULL_RESPONSE, integer constant:

MQREGO_FULL_RESPONSE)

 If a response message is requested and this option is specified, all

attributes of a subscription are returned in the response message of any

command that does not fail. When using MQRFH messages, the

NameValueString of the response is in the following format. First the

standard response fields (space delimited):

MQPSCompCode <value>

MQPSReason <value>

MQPSReasonText <value>

followed by all subscription fields, if defined, (again space delimited)

as they appear after any registration changes were made as a result of

a Register Subscriber command, or before any changes were made as

a result of a Deregister Subscriber command.

MQPSCommand <value>

MQPSSubName <value> (Might not be present)

MQPSTopic <value>

MQPSQMgrName <value>

MQPSQName <value>

MQPSCorrelId <value> (Might not be present,

 48-byte character representation of hex chars)

MQPSUserId <value>

MQPSRegOpts <value> (Can be repeated)

MQPSSubIdentity <value> (Might not be present, can be repeated)

MQPSSubUserData <value> (Might not be present)

130 WebSphere MQ: Publish/Subscribe User’s Guide

FullResp is valid only when the command message (Register

Subscriber or Deregister Subscriber) refers to only a single

subscription. Therefore, only a single topic is permitted in the

command, otherwise the command fails.

When PCF structures are used, the above data is returned in an

equivalent PCF structured message.

If no response is returned (for example, MQMT_DATAGRAM), this

option is ignored.

"InclStreamName"

(string constant: MQPS_INCLUDE_STREAM_NAME, integer constant:

MQREGO_INCLUDE_STREAM_NAME)

 Each Publish message that is sent must include the StreamName

parameter. The broker does this by adding the appropriate name/value

pair to the NameValueString of the message. The NameValueString is

extended if necessary.

If this option is not set, StreamName is included only if it was specified

explicitly by the publisher.

"InformIfRet"

(string constant: MQPS_INFORM_IF_RETAINED, integer constant:

MQREGO_INFORM_IF_RETAINED)

 The broker informs the subscriber if a publication is retained when a

Publish message is sent. It does this by adding the name/value pair

"MQPSPubOpts IsRetainedPub" to the NameValueString of the message

(after the StreamName if that has been added in accordance with the

InclStreamName option).

Use this option if a subscriber needs to distinguish between new

publications and old publications that were retained by the broker

before the subscription was made. If this option is specified, the broker

always adds the name/value pair to a publication sent in response to a

Request Update command.

"JoinExcl"

(string constant: MQPS_JOIN_EXCLUSIVE, integer constant:

MQREGO_JOIN_EXCLUSIVE)

 Indicates that the specified SubIdentity should be added as the

exclusive member of the identity set for the subscription, and that no

other identities can be added to the set.

If the subscription is currently exclusively locked, the command fails if

the identity with the exclusive lock is not the one in this command

message; if it is the same identity, the command succeeds, but returns a

warning of MQRCCF_ALREADY_JOINED.

If the identity has already joined ’shared’ and is the sole entry in the

set, the set is changed to an exclusive lock held by this identity.

Otherwise, if the subscription currently has other identities in the

identity set (with shared access) the command fails.

If an application attempts to register with a SubIdentity and the userid

differs from that currently registered with the subscription, it fails if

VariableUserId is not set on the original subscription or, if it is set, the

userid of the command message is checked for authority to browse the

Chapter 7. Publish/subscribe deprecated function 131

stream queue and put to the subscriber’s queue; if it does not have

sufficient authority, the command fails.

This option is valid only when SubIdentity is specified.

"JoinShared"

(string constant: MQPS_JOIN_SHARED, integer constant:

MQREGO_JOIN_SHARED)

 Indicates that the specified SubIdentity should be added to the identity

set for the subscription.

If the subscription currently has zero or more members in the identity

set and none match this identity, and it is not exclusively locked (see

"JoinExcl"), the command succeeds and adds this identity to the set.

If the identity already has a shared entry for this subscription, the

command succeeds but returns a warning of

MQRCCF_ALREADY_JOINED.

If the subscription is currently locked exclusively,

MQRCCF_SUBSCRIPTION_LOCKED is returned, unless the identity

that has the subscription locked is the same identity as the one in this

command message, in which case the lock is atomically modified to a

shared lock.

If an application attempts to register with a SubIdentity, and the userid

differs from the one currently registered with the subscription, it fails if

VariableUserId is not set on the original subscription. If it is set, the

userid of the command message is checked for authority to browse the

stream queue and put to the subscriber’s queue; if it does not have

sufficient authority, the command fails.

This option is valid only when SubIdentity is specified.

"Local"

(string constant: MQPS_LOCAL, integer constant: MQREGO_LOCAL)

 Tells the broker that the subscription is local and should not be

distributed to other brokers in the network. Only publications

published at this node by a publisher specifying Local are sent to this

subscriber.

"Locked"

(string constant: MQPS_LOCKED, integer constant:

MQREGO_LOCKED)

 Can be set only by the broker.

This subscription is currently locked (someone has exclusive access to

the subscription). This option is automatically set and unset against the

subscription as identities JoinExcl and leave. Anyone inquiring on the

subscription (either by metatopics or the FullResp option) can see this

option set and the current identity set, thus identifying the owner of

the lock.

"NewPubsOnly"

(string constant: MQPS_NEW_PUBLICATIONS_ONLY, integer

constant: MQREGO_NEW_PUBLICATIONS_ONLY)

 Tells the broker that no currently retained publications are to be sent,

only new publications. If a subscriber re-registers and changes this

132 WebSphere MQ: Publish/Subscribe User’s Guide

option so that it is not set, it is possible that a publication that has

already been sent to it is sent to it again.

"NoAlter"

(string constant: MQPS_NO_ALTERATION, integer constant:

MQREGO_NO_ALTERATION)

 When NoAlter is specified, the Register Subscriber command does not

modify an existing matching subscription’s attributes. This option has

no effect when a subscription is created. This is the converse of the

default behavior for a subsequent subscription that matches the

identity of an existing subscription overwriting any modifiable

attributes of the original subscription.

If a SubIdentity is supplied along with a Join option, the identity is

added to the identity set (if possible) irrespective of the NoAlter

option, because this applies to a subscription’s attributes not its current

state.

"NonPers"

(string constant: MQPS_NON_PERSISTENT, integer constant:

MQREGO_NON_PERSISTENT)

 Any publication sent from a broker to a subscriber that specified this

option is sent as a non-persistent message, irrespective of the

persistence of the publication message received by the broker.

If you set this option, you cannot set "Pers", "PersAsPub", or

"PersAsQueue".

"Pers"

(string constant: MQPS_PERSISTENT, integer constant:

MQREGO_PERSISTENT)

 Any publication sent from a broker to a subscriber that specified this

option is sent as a persistent message, irrespective of the persistence of

the publication message received by the broker.

If you set this option, you cannot set "NonPers", "PersAsPub", or

"PersAsQueue".

"PersAsPub"

(string constant: MQPS_PERSISTENT_AS_PUBLISH, integer constant:

MQREGO_PERSISTENT_AS_PUBLISH)

 Any publication sent from a broker to a subscriber that specified this

option is sent with the persistence of the original publication. This is

the default option.

If you set this option, you cannot set "NonPers", "Pers", or

"PersAsQueue".

"PersAsQueue"

(string constant: MQPS_PERSISTENT_AS_Q, integer constant:

MQREGO_PERSISTENT_AS_Q)

 Any publication sent from a broker to a subscriber that specified this

option is sent with the persistence specified on the subscriber queue.

The persistence is derived from the DEFPSIST setting of the subscriber

queue definition local to the broker: for example, the transmission

queue to the subscriber’s queue manager if the subscriber’s queue

manager is remote from the broker’s queue manager.

Chapter 7. Publish/subscribe deprecated function 133

If you set this option, you cannot set "NonPers", "Pers", or

"PersAsPub".

"PubOnReqOnly"

(string constant: MQPS_PUBLISH_ON_REQUEST_ONLY, integer

constant: MQREGO_PUBLISH_ON_REQUEST_ONLY)

 Indicates that the subscriber polls only for information with Request

Update. The broker is not to send unsolicited messages to the

subscriber.

This option is not propagated if the broker sends this subscription to

other brokers in the network. Publications are sent to it in the normal

way, and these publications must specify RetainPub to be eligible for

return in response to a Request Update message.

"VariableUserId"

(string constant: MQPS_VARIABLE_USER_ID, integer constant:

MQREGO_VARIABLE_USER_ID)

 When VariableUserId is specified, the identity of the subscriber (queue

name, queue manager name, and correlation identifier) is not restricted

to a single userid. This allows any user to modify or deregister the

subscription when they have suitable authority. To add this option to

an existing subscription the command must come from the same userid

as the original subscription itself.

If a Register Subscriber command message specifying this option

refers to an existing subscription with this option set, and the userid of

this message differs from the original subscription, the command

succeeds only if the userid of the new command message has authority

to browse the stream queue, and put authority to the subscriber queue

of the modified subscription (that is, existing Publish/Subscribe

authority check for a subscriber). On successful completion, future

publications to this subscriber are put to the subscriber’s queue with

the new userid.

If a Register Subscriber command message without this option set

refers to an existing subscription with this option set, the option is

removed from this subscription, and the userid of the subscription is

now fixed. If at this time a subscriber already exists that has the same

identity (queue name, queue manager name, and correlation identifier),

but with a different userid associated to it, the command fails.

If the Registration Options parameter is omitted and the subscriber is already

registered, its registration options are unchanged. If the subscriber is not

already registered, the default is that no registration options are set.

StreamName

name: "MQPSStreamName" (string constant: MQPS_STREAM_NAME)

value: The name of the publication stream for the specified Topic(s).

The default value is SYSTEM.BROKER.DEFAULT.STREAM.

SubIdentity

name: "MQPSSubIdentity" (string constant:

MQPS_SUBSCRIPTION_IDENTITY)

value: The subscription identity.

134 WebSphere MQ: Publish/Subscribe User’s Guide

Used to represent an application with an interest in a subscription. The broker

maintains a set of subscriber identities for each subscription; each subscription

can allow its identity set to hold only a single identity, or unlimited identities

(see the "JoinShared" and "JoinExcl" options).

A Register Subscriber command that specifies the JoinShared or JoinExcl

option adds the SubIdentity to the subscription’s identity set, if it is not

already there. Any alteration of the subscription’s attributes as the result of a

Register Subscriber command where a SubIdentity is specified succeeds only

if it would be the only member of the set of identities for this subscription.

Otherwise the command fails.

If no SubIdentity is specified the alteration succeeds irrespective of a possible

set of identities.

The maximum length of a SubIdentity is defined by

MQ_SUB_IDENTITY_LENGTH.

SubName

name: "MQPSSubName" (string constant: MQPS_SUBSCRIPTION_NAME)

value: The subscription name.

If SubName is specified, the subscription name is the single field used to

identify a subscription, overriding the traditional identity.

If a subscription already exists that matches the traditional identity of this

command, but has no SubName, the Register Subscriber command fails unless

the AddName option is specified.

If an existing named subscription is to be altered by another Register

Subscriber command specifying the same SubName, and the values of Topic,

QMgrName, QName and CorrelId in the new command match a different

existing subscription (with or without a SubName defined), the command fails:

two subscription names cannot refer to a single subscription.

Altering or deregistering a subscription that has a SubName is also allowed by

a command message that matches the traditional identity but with no

SubName specified.

When a SubName value is specified, only one topic attribute is permitted.

If the underlying topic of the subscription is changed, existing retained

publications are sent to the subscriber, whether or not they received them as a

result of a previous topic for this subscription.

SubUserData

name: "MQPSSubUserData" (string constant:

MQPS_SUBSCRIPTION_USER_DATA)

value: The subscription user data.

Variable length text string. The value is stored by the broker with the

subscription but has no influence on publication delivery to the subscriber. The

value can be altered by re-registering to the same subscription with a new

value. This attribute is for the use of the application.

Example

Here is an example of a NameValueString for a Register Subscriber command

message. In the sample application, the results service uses this message to register

a subscription to the topics containing the latest scores in all matches, with the

Chapter 7. Publish/subscribe deprecated function 135

‘Publish on Request Only’ option set. The subscriber’s identity, including the

CorrelId, is taken from the defaults in the MQMD.

 MQPSCommand RegSub

 MQPSRegOpts PubOnReqOnly

 MQPSRegOpts CorrelAsId

 MQPSStreamName SAMPLE.BROKER.RESULTS.STREAM

 MQPSTopic Sport/Soccer/State/LatestScore/*

Here is the same message using the equivalent decimal registration options:

 MQPSCommand RegSub

 MQPSRegOpts 33

 MQPSStreamName SAMPLE.BROKER.RESULTS.STREAM

 MQPSTopic Sport/Soccer/State/LatestScore/*

Error codes

The following reason codes might be returned in the NameValueString of the broker

response message to this command, in addition to those shown in topic “Error

codes applicable to all commands” on page 145.

 Reason Reason text Explanation

3071 MQRCCF_STREAM_ERROR Stream name too long or contains

invalid characters.

3072 MQRCCF_TOPIC_ERROR Topic name has an invalid length or

contains invalid characters.

3074 MQRCCF_Q_MGR_NAME_ERROR Queue manager name invalid.

3076 MQRCCF_Q_NAME_ERROR Queue name invalid.

3078 MQRCCF_DUPLICATE_IDENTITY Publisher or subscriber identity already

assigned to another user ID.

3080 MQRCCF_CORREL_ID_ERROR Correlation identifier used as part of

identity but is all binary zero.

3081 MQRCCF_NOT_AUTHORIZED Publisher or subscriber not registered.

3082 MQRCCF_UNKNOWN_STREAM Stream not defined to broker and

cannot be created.

3083 MQRCCF_REG_OPTIONS_ERROR Invalid registration options supplied.

3152 MQRCCF_DUPLICATE_SUBSCRIPTION A subscription by this SubName exists

or a matching subscription (identified

by the traditional identity) with a

different SubName exists on this

stream.

3153 MQRCCF_SUB_NAME_ERROR The SubName is invalid: it is of zero

length or contains invalid escape

sequences.

3154 MQRCCF_SUB_IDENTITY_ERROR The SubIdentity is not in the identity

set for the subscription and neither

JoinShared nor JoinExcl was specified.

3155 MQRCCF_SUBSCRIPTION_IN_USE The subscription has other identities in

the identity set, with shared access.

3156 MQRCCF_SUBSCRIPTION_LOCKED The subscription is locked exclusively

by another identity.

3157 MQRCCF_ALREADY_JOINED The identity already has a shared entry

for this subscription.

Request Update

The Request Update command message is sent from a subscriber to a broker to

request an update publication for the topic specified. This is normally used if the

136 WebSphere MQ: Publish/Subscribe User’s Guide

subscriber specified the option "PubOnReqOnly" (publish on request only) when it

registered. If the broker has a retained publication for the topic, this is sent to the

subscriber. If not, the request fails.

Required parameters

Command

name: "MQPSCommand" (string constant: MQPS_COMMAND)

value: "ReqUpdate" (string constant: MQPS_REQUEST_UPDATE)

Command must be the first parameter in the NameValueString.

Topic

name: "MQPSTopic" (string constant: MQPS_TOPIC)

value: The topic the subscriber is requesting. Wild cards are allowed, in which

case the subscriber might receive multiple retained publications.

Only one occurrence of Topic is allowed in this message.

Optional parameters

QMgrName

name: "MQPSQMgrName" (string constant: MQPS_Q_MGR_NAME)

value: The subscriber’s queue manager name.

The default is the ReplyToQMgr name in the message descriptor (MQMD). If the

resulting name is blank, it matches a publisher with a blank queue manager

name (that is, local to the broker).

QName

name: "MQPSQName" (string constant: MQPS_Q_NAME)

value: The subscriber’s queue name.

The default is the ReplyToQ name in the message descriptor (MQMD), which

must not be blank in this case.

RegistrationOptions

name: "MQPSRegOpts" (string constant: MQPS_REGISTRATION_OPTIONS)

value: The following registration options can be specified:

"CorrelAsId"

(string constant: MQPS_CORREL_ID_AS_IDENTITY, integer constant:

MQREGO_CORREL_ID_AS_IDENTITY)

 The CorrelId in the message descriptor (MQMD), which must not be

zero, is part of the subscriber’s identity.

"VariableUserId"

(string constant: MQPS_VARIABLE_USER_ID, integer constant:

MQREGO_VARIABLE_USER_ID)

 If the subscription of the request update command has VariableUserId

set, this must be set when the Request Update is sent to indicate

which subscription is referred to. Otherwise, the userid of the Request

Update command is used to identify the subscription. This is

overridden (along with the other subscriber identifiers) if a

subscription name is supplied.

Chapter 7. Publish/subscribe deprecated function 137

If VariableUserId is set and the userid differs from that of the

subscription, the command succeeds only if the userid of the new

command message has authority to browse the stream queue, and put

authority to the subscriber queue of the subscription (that is, existing

Publish/Subscribe authority check for a subscriber), otherwise it fails.

StreamName

name: "MQPSStreamName" (string constant: MQPS_STREAM_NAME)

value: The name of the publication stream for the specified Topic(s).

The default value is SYSTEM.BROKER.DEFAULT.STREAM.

SubName

name: "MQPSSubName" (string constant: MQPS_SUBSCRIPTION_NAME)

value: The subscription name.

The SubName value takes precedence over all other identifier fields except the

userid unless VariableUserId is set on the subscription itself.

If a subscription exists that matches the traditional identity of this command,

but has no SubName, the Request Update command fails.

If an attempt is made to request an update for a subscription that has a

SubName using a command message that matches the traditional identity, but

with no SubName specified, the command succeeds.

Example

Here is an example of a NameValueString for a Request Update command

message. In the sample application, the results service uses this message to request

retained publications containing the latest scores for all teams. The subscriber’s

identity, including the CorrelId, is taken from the defaults in the MQMD.

 MQPSCommand ReqUpdate

 MQPSRegOpts CorrelAsId

 MQPSStreamName SAMPLE.BROKER.RESULTS.STREAM

 MQPSTopic Sport/Soccer/State/LatestScore/*

Error codes

The following reason codes might be returned in the NameValueString of the broker

response message to this command, in addition to those shown in topic “Error

codes applicable to all commands” on page 145.

 Reason Reason text Explanation

3071 MQRCCF_STREAM_ERROR Stream name too long or contains

invalid characters.

3072 MQRCCF_TOPIC_ERROR Topic name has an invalid length or

contains invalid characters.

3073 MQRCCF_NOT_REGISTERED Publisher or subscriber not registered.

3074 MQRCCF_Q_MGR_NAME_ERROR Queue manager name invalid.

3076 MQRCCF_Q_NAME_ERROR Queue name invalid.

3077 MQRCCF_NO_RETAINED_MSG No retained message exists for this

topic.

3078 MQRCCF_DUPLICATE_IDENTITY Publisher or subscriber identity already

assigned to another user ID.

3080 MQRCCF_CORREL_ID_ERROR Correlation identifier used as part of

identity but is all binary zero.

138 WebSphere MQ: Publish/Subscribe User’s Guide

Reason Reason text Explanation

3081 MQRCCF_NOT_AUTHORIZED Subscriber not authorized to browse

broker’s stream queue or subscriber

queue.

3082 MQRCCF_UNKNOWN_STREAM Stream not defined to broker and cannot

be created.

3083 MQRCCF_REG_OPTIONS_ERROR Invalid registration options supplied.

3153 MQRCCF_SUB_NAME_ERROR A subscription with no SubName

matches the traditional identity of the

command.

Error handling and response messages

Messages sent to and by a broker are subject to exception processing, report

generation and dead-letter queue processing in the same way as other WebSphere

MQ messages. A message can indicate that a response is not required, is required

only if there is an error, only if the command succeeds, or always required.

Response messages can be generated by the broker to each command message

issued by a publisher or subscriber. Response messages indicate the success or

failure of a request and also the reason for the failure. Responses are given only by

the broker to which the messages are initially sent.

The following topics are discussed in this chapter:

v “Error handling by the broker”

v “Response messages” on page 140

v “Broker responses” on page 142

v “Problem determination” on page 145

Error handling by the broker

Any message received by a broker that is not of Format MQFMT_RF_HEADER (or

MQFMT_PCF in the case of the system management messages) is treated as an

error. It is written to the dead-letter queue (or discarded, depending on the report

options), and an exception report generated, if requested. If a message is of the

correct format but has some other error (for example, a syntax error), or if the

broker cannot process it correctly (for example, it cannot retain a message), the

following happens:

v If a response has been requested, one is generated.

– If the response cannot be enqueued at the broker, the response is put to the

dead-letter queue (responses are always generated with MQRO_NONE).

– If the response cannot be put to the dead-letter queue, the response is

discarded if this is allowed (this depends on the type of response message),

depending on the broker configuration parameters.

– If the response could not be discarded or put to the reply-to queue or the

dead-letter queue, the command is backed out, and the input message is put

to the dead-letter queue with a Reason of

MQRCCF_BROKER_COMMAND_FAILED, or discarded, as indicated by the

report options. An exception report message is generated, if requested.

– If the input message or response cannot be put to the dead-letter queue or

discarded, the command is backed out and the input message is restored to

Chapter 7. Publish/subscribe deprecated function 139

the input queue if the message is within syncpoint. The input message is

retried periodically, and (less frequently) a message is written to the queue

manager log to alert the administrator.
v If a response has not been requested, one is not sent, and no further action is

appropriate for this message.

If an input message is put to the dead-letter queue, no response and publication

messages are sent. It might be appropriate for the input message to be restored

and reprocessed when the error has been resolved.

If the message is a Publish command message, and there is a problem sending an

outgoing message on to a subscriber, the processing is as follows:

v The outgoing message is put to the dead-letter queue, if this is permitted by the

broker and queue manager configuration. If the outgoing message cannot be put

to the dead-letter queue because of a failure or because it is not permitted by the

broker and queue manager configuration, it is discarded if this is permitted by

the broker and queue manager configuration.

v If the outgoing message cannot be put to the dead-letter queue or discarded, the

input message is restored. The input message is retried after suitable time

interval, and (less frequently) a message is written to the log to alert the

administrator.

Note: If the broker cannot put a publication message onto a destination queue or

the dead-letter queue, and cannot discard the message, the broker continues trying

to put the publication message onto the destination queue (at suitable intervals)

and does not continue processing subsequent messages.

The dead-letter queue and discard options for nonpersistent messages are specified

in queue manager configuration file (qm.ini or equivalent). These options are

described in “Setting up a broker” on page 146.

Response messages

Each command message that the broker processes can generate a response

message. A response message has a similar format to a command message; the

NameValueString in the MQRFH header contains the response to the command.

Response messages are sent to the queue identified by the ReplyToQ and

ReplyToQMgr fields in the message descriptor of the original message.

The MsgType and Report options specified in the message descriptor of the

command message, together with the success or failure of the command, determine

whether response messages are sent or not. If no responses are requested, and the

command message contains an error, it is discarded.

Note:

1. If there are multiple errors in a command message, a single response message

is generated.

2. Brokers do not request publishers or subscribers to generate responses.

Message descriptor for response messages:

 When the broker sends a response message, all the fields of the message descriptor

are set to their default values, except the following:

CorrelId

Set according to the Report options in the original command message. By

140 WebSphere MQ: Publish/Subscribe User’s Guide

default, this means that the CorrelId is set to the same value as the MsgId of

the command message. This can be used to correlate commands with their

responses.

Expiry

The same value as in the original command message received by the broker.

Format

Set to MQFMT_RF_HEADER.

MsgId

Set according to the Report options in the original command message. By

default, this means that it is set to MQMI_NONE, so that the queue manager

generates a unique value.

MsgType

Set to MQMT_REPLY.

Persistence

The same value as in the original command message.

Priority

The same value as in the original command message.

PutApplName

Set to the first 28 characters of the queue manager name.

PutApplType

Set to MQAT_QMGR.

Report

Set to zeroes.

Other context fields are set as if generated with

MQPMO_PASS_IDENTITY_CONTEXT.

Types of error response:

 The broker generates three types of response:

OK response:

 This indicates that the command completed successfully. The response consists of a

message that contains an MQRFH format header with the CompCode tag name in

the NameValueString set to the value of MQCC_OK.

An OK response is sent by the broker if the command message was sent with a

MsgType of MQMT_REQUEST, or if it was sent with a MsgType of

MQMT_DATAGRAM and the MQRO_PAN Report option was set.

Warning response:

 This indicates that the command was only partially successful. The response

consists of a message that contains an MQRFH format header with the CompCode

tag name in the NameValueString set to the value of MQCC_WARNING. The

Reason and the ReasonText tag names and values identify the nature of the

warning.

Chapter 7. Publish/subscribe deprecated function 141

A warning response is sent by the broker if the command message was sent with a

MsgType of MQMT_REQUEST, or if it was sent with a MsgType of

MQMT_DATAGRAM and either the MQRO_PAN or MQRO_NAN Report options

were set.

Error response:

 This indicates that the command has failed. The response consists of a message

that contains an MQRFH format header with the CompCode name in the

NameValueString set to the value of MQCC_FAILED. The Reason and the

ReasonText names and values identify the nature of the failure, and additional

names and values can be used to give more information.

Error responses are sent by the broker if the command message was sent with a

MsgType of MQMT_REQUEST, or if it was sent with a MsgType of

MQMT_DATAGRAM and the MQRO_NAN Report option was set.

Broker responses

A Broker Response message is sent from a broker to the ReplyToQ of a publisher

or a subscriber, to indicate the success or failure of a command message received

by the broker.

The standard parameters listed below are always returned in the order shown. In

the case where an error is being reported, they can be followed by an optional

parameter (depending on the command message that failed) that gives more

information about the error.

With multiple errors, the group of standard and optional parameters are repeated

as necessary.

The NameValueString of the command message that caused an error is usually

appended to the broker response message following the MQRFH structure, to

assist in diagnosis of the error. However, in the case of an MQRC_RFH_ERROR or

MQRCCF_MSG_LENGTH_ERROR, the NameValueString of the command message

that caused the error is not appended to the broker response message.

Standard parameters:

 CompCode

name: "MQPSCompCode" (string constant: MQPS_COMPCODE)

value: The completion code is returned in decimal form, and takes one of

three values:

MQCC_OK

Command completed successfully

MQCC_WARNING

Command completed with warning

MQCC_FAILED

Command failed

Reason

name: "MQPSReason" (string constant: MQPS_REASON)

value: A decimal value corresponding to the error code. It is set to the value

of MQRC_NONE if CompCode is set to MQCC_OK.

142 WebSphere MQ: Publish/Subscribe User’s Guide

Error codes are listed in topic “Error codes applicable to all commands” on

page 145, and in the sections describing individual command messages.

ReasonText

name: "MQPSReasonText" (string constant: MQPS_REASON_TEXT)

value: A string corresponding to the error code. It is set to MQRC_NONE if

CompCode is set to MQCC_OK.

Error codes are listed in topic “Error codes applicable to all commands” on

page 145, and in the sections describing individual command messages.

Optional parameters:

 Command

name: "MQPSCommand" (string constant: MQPS_COMMAND)

value: The incorrect command that was specified when a command fails with

MQRC_RFH_COMMAND_ERROR.

DeleteOptions

name: "MQPSDelOpts" (string constant: MQPS_DELETE_OPTIONS)

value: The incorrect delete options that were specified when a command fails

with MQRCCF_DEL_OPTIONS_ERROR.

ErrorId

name: "MQPSErrorId" (string constant: MQPS_ERROR_ID)

value: An additional reason code (decimal value) when a command fails with

MQRCCF_Q_MGR_NAME_ERROR, MQRCCF_Q_NAME_ERROR or

MQRCCF_NOT_AUTHORIZED. For example, the value might be

MQRC_UNKNOWN_ENTITY indicating that the subscriber is not

authorized because it is unknown to the broker.

ErrorPos

name: "MQPSErrorPos" (string constant: MQPS_ERROR_POS)

value: A decimal value indicating the position in the NameValueString of the

command message sent to the broker at which an error was found. An

error at the first character is reported with an error position of zero.

 If the first ‘MQPS’ tag isn’t MQPSCommand, the command fails with an

MQRC_RFH_COMMAND_ERROR, and the MQPSErrorPos tag indicates

the position of the offending tag.

If no ‘MQPS’ tags were encountered, the command fails with an

MQRC_RFH_COMMAND_ERROR, and the MQPSErrorPos tag is set to

the last character in the string.

If an ‘MQPS’ tag doesn’t have a matching value, or a quoted name or

value doesn’t have a matching end quote, the command fails with an

MQRC_RFH_STRING_ERROR, and the MQPSErrorPos tag indicates the

position in the string where the error was detected.

ParameterId

name: "MQPSParmId" (string constant: MQPS_PARAMETER_ID)

value: The incorrect parameter that was specified, or the parameter that was

missing, when a command fails with MQRC_RFH_PARM_ERROR,

MQRC_RFH_DUPLICATE_PARM or MQRC_RFH_PARM_MISSING.

Chapter 7. Publish/subscribe deprecated function 143

PublicationOptions

name: "MQPSPubOpts" (string constant: MQPS_PUBLICATION_OPTIONS)

value: The incorrect publication options that were specified when a command

fails with MQRCCF_PUB_OPTIONS_ERROR.

QMgrName

name: "MQPSQMgrName" (string constant: MQPS_Q_MGR_NAME)

value: The invalid queue manager name that was specified when a command

fails with MQRCCF_Q_MGR_NAME_ERROR.

QName

name: "MQPSQName" (string constant: MQPS_Q_NAME)

value: The invalid queue name that was specified when a command fails with

MQRCCF_Q_NAME_ERROR.

RegistrationOptions

name: "MQPSRegOpts" (string constant: MQPS_REGISTRATION_OPTIONS)

value: The incorrect registration options that were specified when a command

fails with MQRCCF_REG_OPTIONS_ERROR.

StreamName

name: "MQPSStreamName" (string constant: MQPS_STREAM_NAME)

value: The unknown or incorrect stream name that was specified when a

command fails with MQRCCF_UNKNOWN_STREAM or

MQRCCF_STREAM_ERROR.

Topic

name: "MQPSTopic" (string constant: MQPS_TOPIC)

value: Up to 256 characters of the incorrect topic name that was specified

when a command fails with MQRCCF_TOPIC_ERROR.

UserId

name: "MQPSUserId" (string constant: MQPS_USER_ID)

value: The user ID to which the publisher or subscriber is currently assigned

when a command fails with MQRCCF_DUPLICATE_IDENTITY.

Examples:

 Here are some examples of the NameValueString in a Broker Response message. A

successful response is as follows:

 MQPSCompCode 0

 MQPSReason 0

 MQPSReasonText MQRC_NONE

Examples of failure responses are:

 MQPSCompCode 2

 MQPSReason 2102

 MQPSReasonText MQRC_RESOURCE_PROBLEM

 MQPSCompCode 2

 MQPSReason 3082

 MQPSReasonText MQRCCF_REG_OPTIONS_ERROR

 MQPSRegOpts DeregAll

144 WebSphere MQ: Publish/Subscribe User’s Guide

Error codes applicable to all commands:

 The following reason codes might be returned in the NameValueString of the

response message for any of the commands, in addition to the codes listed for each

command message. See WebSphere MQ Messages for detailed descriptions of these

codes.

 Reason Reason text Explanation

2334 MQRC_RFH_ERROR MQRFH structure not valid.

2335 MQRC_RFH_STRING_ERROR ″NameValueString″ field not valid.

2336 MQRC_RFH_COMMAND_ERROR Command not valid.

2337 MQRC_RFH_PARM_ERROR Parameter not valid.

2338 MQRC_RFH_DUPLICATE_PARM Duplicate parameter.

2339 MQRC_RFH_PARM_MISSING Parameter missing.

3016 MQRCCF_MSG_LENGTH_ERROR Message length not valid.

3023 MQRCCF_MD_FORMAT_ERROR Format not valid.

3050 MQRCCF_ENCODING_ERROR Encoding error.

3079 MQRCCF_INCORRECT_Q Command sent to wrong broker queue.

Problem determination

Problems with brokers are reported as AMQ58xx messages, which are described in

WebSphere MQ Messages.

Problems with the command messages sent to brokers by publisher and subscriber

applications are reported in broker response messages. Set the MsgType and Report

options in the message descriptor of the command message so that the broker

sends a response message.

Even if there are no problems with the brokers and command messages, you might

find that subscribers do not receive the publications they expect. Here is a list of

possible causes:

v One or more of the brokers in the network isn’t running.

v The subscription has expired, or failed to be made in the first place.

– Use the amqspsd sample to check that the broker has knowledge of the

subscribing application’s subscription.
v If the publishing application is running at a different broker, a channel might be

down.

– Check that all channels between the publishing and subscribing brokers have

been started. If not, the subscriber’s publication might be sitting on a

transmission queue.
v If the publishing application is running at a different broker, the subscription

might not have been propagated to that broker yet.

– Even though a subscribing application has received a positive reply to its

Register Subscriber command message, the subscription might not have

propagated to the publishing broker. Check all channels between the

subscribing and publishing brokers. Also check the

SYSTEM.BROKER.CONTROL.QUEUE at each broker, because an intermediate

broker might not have processed the propagated subscription yet.
v The publishing application might not have published successfully.

– Don’t always assume that the problem is with the subscribing application.

Make sure that the publishing application received a positive response

message from its broker. If it is publishing using MQMT_DATAGRAM

Chapter 7. Publish/subscribe deprecated function 145

messages and doesn’t specify either the MQRO_NAN or MQRO_PAN report

options, the broker won’t send it a reply message, even if the Publish

command messages fails. If such a publishing application doesn’t use the

NoReg publication option, it must set up a valid ReplyToQ in the message

descriptor.
v The broker might be putting the subscriber’s publications to the dead-letter

queue.

– There might be a problem with the subscriber’s queue. For example, it might

be put-inhibited or the publications might be too large for the queue. In this

case the broker, by default, puts these messages to the dead-letter queue

(DLQ). Check the DLQ at the subscriber’s broker. The broker also issues

message AMQ5882 if it has had to put a message to the DLQ.
v The stream might not be supported by all necessary brokers.

– If the publication is not being published on the default stream, all brokers in

the network between the publishing and subscribing brokers must support

the stream you are using. Use the amqspsd sample to check that the stream is

supported by all necessary brokers.

Managing the broker

Setting up a broker

Publishers, subscribers, and brokers communicate by using queues. Configuration

and monitoring of these queues can be performed by whatever technique is

currently in use for WebSphere MQ, whether supplied by WebSphere MQ or

available from third parties.

Before you can use WebSphere MQ Publish/Subscribe you need to do the

following things to set up your broker:

1. If necessary, define the queues that the broker needs to use.

2. Authorize applications to use these queues.

3. Review the default settings of the broker parameters in the queue manager

initialization file (qm.ini) or review them using WebSphere MQ Explorer.

For information about managing your brokers when they have been set up, see

“Controlling the broker” on page 150.

Broker queues

Brokers are event-driven; they wait for messages to arrive on their queues. The

broker needs several system queues, and can also have any number of stream

queues; these are described below.

System queues:

 The broker uses three system queues. These queues all have names beginning with

SYSTEM.BROKER, and are used for the purposes described below. These queues

are created automatically when the broker starts if they do not already exist. You

might want to alter access authority to these queues.

SYSTEM.BROKER.CONTROL.QUEUE

This is the broker’s control queue. Publisher and subscriber applications,

and other brokers, send all command messages (except publications and

requests to delete publications) to this queue.

146 WebSphere MQ: Publish/Subscribe User’s Guide

SYSTEM.BROKER.CONTROL.QUEUE is created as a predefined queue

based on the SYSTEM.DEFAULT.LOCAL.QUEUE.

SYSTEM.BROKER.DEFAULT.STREAM

This is the queue that receives all publication messages for the default

stream. Applications can also send requests to delete publications on the

default stream to this queue.

 SYSTEM.BROKER.DEFAULT.STREAM is created using

SYSTEM.BROKER.MODEL.STREAM if it exists, otherwise the broker

predefines it based on the SYSTEM.DEFAULT.LOCAL.QUEUE.

Note: SYSTEM.BROKER.DEFAULT.STREAM is created with a default

persistence of yes. This means that an application using the

MQPER_AS_Q_DEF option in the message descriptor (the default)

publishes persistent messages by default.

SYSTEM.BROKER.ADMIN.STREAM

This is the queue that the broker uses to publish its own broker

configuration information (for example the identity of its parent). If you

write your own administration applications, they can use the information

published on this stream. You can also publish information on this stream

(but not to topics with names beginning MQ/).

 SYSTEM.BROKER.ADMIN.STREAM is created using

SYSTEM.BROKER.MODEL.STREAM if it exists, otherwise the broker

predefines it based on the SYSTEM.DEFAULT.LOCAL.QUEUE.

Other stream queues:

 Stream queues are used to process publications for all topics within a stream.

Applications send publications (and requests to delete publications) to a stream

queue. The stream queue must be a local queue at the broker, not an alias or

remote queue. Applications can send messages to a stream queue through an alias

or remote queue.

Publishing applications can register with the broker before they start sending

publications. If the application specifies that it will be using a stream queue that

does not yet exist, the broker might create a permanent dynamic queue with the

same name as the stream specified, based on the

SYSTEM.BROKER.MODEL.STREAM queue.

If the SYSTEM.BROKER.MODEL.STREAM queue does not exist, any message sent

by an application that refers to a stream for which there is no stream queue, is

rejected. The broker keeps information about which streams are known to it so

that, when it is restarted, it can recognize the stream queues.

Applications can also specify the stream name in a publication message. If a

publication message specifies the name of a stream that is different from the name

of the queue to which it was sent, the message is rejected. If the application does

not specify a stream name, it defaults to the name of the stream queue to which it

is sent.

If you are using a network of brokers, and you want to restrict a certain stream to

a particular sub-tree of the hierarchy, brokers immediately outside the sub-tree

must not have a SYSTEM.MODEL.STREAM.QUEUE defined. All stream queues for

streams that these brokers support must, therefore, be defined by the administrator.

Chapter 7. Publish/subscribe deprecated function 147

SYSTEM.BROKER.MODEL.STREAM:

 The SYSTEM.BROKER.MODEL.STREAM is a model queue definition that can be

used by the broker to create dynamic queues to receive publications for streams

other than the default stream. This is used only if the stream queue does not

already exist. This definition must specify that the dynamic queue to be created is

a permanent-dynamic queue. If this queue does not exist, all stream queues must

be defined by the administrator. (The administrator can also define stream queues

manually, even if this queue does exist.)

This queue is supplied as sample amqsfmda.tst. To create the queue from the

sample, use the following command:

runmqsc QMgrName < amqsfmda.tst

where QMgrName is the name of the queue manager.

Internal queues:

 The broker creates several other queues for its own internal use. These queues also

have names beginning with SYSTEM.BROKER. The broker uses them to store its

persistent state, such as subscriptions and retained publications.

Dead-letter queue:

 You are recommended to set up a dead-letter queue for each queue manager that

has a broker running on it. This enables the broker to continue operating when

problems are encountered, such as a subscriber’s queue being full. In this case

publications for that subscriber are put to the dead-letter queue, and the broker

continues to process publish command messages.

Without a dead-letter queue you might also have problems if you want to delete

that broker from the network (see “Deleting a broker from the network” on page

153).

Other considerations

Some things you should consider when setting up a broker are:

v Access control

v Backup

Access control:

 Normal WebSphere MQ access control techniques apply to applications and

brokers opening queues for Publish/Subscribe messages. These authorization

checks are carried out using standard WebSphere MQ functions. The authority is

tested before any message is sent to a particular identity after a broker restart, but

not necessarily each subsequent time a message is put (see “Streams” on page 83).

Any application putting a message to the broker’s

SYSTEM.BROKER.CONTROL.QUEUE must have authorization to put messages to

this queue.

A publisher must be authorized to put messages on the broker’s appropriate

stream queue.

148 WebSphere MQ: Publish/Subscribe User’s Guide

Subscribers must be authorized to browse the broker’s stream queue; this is

checked by the broker because the subscriber does not try to open the broker’s

stream queue. In addition, a subscriber must have authority to put messages on

the subscriber queue that the publications will be sent to.

There is no topic based security; the access check is for the stream and there are no

further checks on topics within a particular stream.

Backup:

 Normal WebSphere MQ backup and restore procedures apply, as described in the

WebSphere MQ System Administration Guide. When a queue manager is backed

up, a broker installed on that queue manager is backed up as well.

Broker configuration stanza

On UNIX® systems, broker parameters are controlled by the Broker stanza of the

queue manager configuration file, qm.ini. Figure 41 shows an example of this

stanza. On Windows, you can view and update these settings using the Broker

page of the queue manager properties in WebSphere MQ Explorer.

1. Right-click the queue manager and select Properties.

2. Select Broker in the left-hand pane of the dialog. The Broker properties are

displayed in the right-hand pane.

3. If you make any changes to the values, click Apply then OK.

The parameters are described in “Broker configuration parameters.”

Note: You do not need to list parameters if you are using their default values. Any

parameters that you do list are checked for validity. A blank entry is not valid.

Broker configuration parameters:

 DiscardNonPersistentInputMsg=yes|no

If the broker cannot process a nonpersistent input message, the broker might

attempt to write the input message to the dead-letter queue (depending on the

report options of the input message). If the attempt to write the input message

to the dead-letter queue fails, and the MQRO_DISCARD_MSG report option

was specified on the input message or DiscardNonPersistentInputMsg=yes, the

broker discards the input message. If DiscardNonPersistentInputMsg=no is

specified, the broker will only discard the input message if the

MQRO_DISCARD_MSG report option was set in the input message.

 The defaults are:

v DiscardNonPersistentInputMsg=no if SyncPointIfPersistent=no.

v DiscardNonPersistentInputMsg=yes if SyncPointIfPersistent=yes.

Note: If SyncPointIfPersistent=yes is set, DiscardNonPersistentInputMsg=no

must not be set.

DLQNonPersistentResponse=yes|no

If the broker attempts to generate a response message in response to a

Broker:

 DiscardNonPersistentInputMsg=no

 DLQNonPersistentResponse=yes

 DiscardNonPersistentResponse=no

 GroupId=nobody

Figure 41. Sample Broker stanza for qm.ini

Chapter 7. Publish/subscribe deprecated function 149

nonpersistent input message, and the response message cannot be delivered to

the reply-to queue, this attribute indicates whether the broker should write the

undeliverable response message to the dead-letter queue.

 The default is DLQNonPersistentResponse=yes.

DiscardNonPersistentResponse=yes|no

If the broker attempts to generate a response message in response to a

nonpersistent input message, and the response message cannot be delivered to

the reply-to queue or written to the dead-letter queue, this attribute indicates

whether the broker can discard the undeliverable response message.

 The default is:

v DiscardNonPersistentResponse=no if SyncPointIfPersistent=no.

v DiscardNonPersistentResponse=yes if SyncPointIfPersistent=yes.

Note: If SyncPointIfPersistent=yes is set, DiscardNonPersistentResponse=no

must not be set.

GroupId=group_identifier

Specifies the group that owns the stream queues created by the broker, except

the admin stream (for example, SYSTEM.BROKER.DEFAULT.STREAM). Users

in this group can access the stream queues. If this group does not exist, the

broker cannot run.

 If not specified, the following defaults are used (this normally means that all

users can access the stream queues):

AIX, Linux, and Solaris

v GroupId=nobody

HP-UX

v GroupId=nogroup

i5/OS

v GroupId=*PUBLIC

Windows

v GroupId=Users

Note: For WebSphere MQ for Windows, the GroupId is set to ‘Users’ or the

national language equivalent.

Controlling the broker

This chapter describes the following broker operations:

v “Starting a broker” on page 151

v “Stopping a broker” on page 151

v “Displaying the status of a broker” on page 151

v “Adding a stream” on page 151

v “Deleting a stream” on page 152

v “Adding a broker to a network” on page 152

v “Deleting a broker from the network” on page 153

150 WebSphere MQ: Publish/Subscribe User’s Guide

Starting a broker

mqconv7: Potential task?

Using triggering to start the broker:

 mqconv7: Potential task?

You can start a broker by enabling triggering on any of the broker’s queues.

Specify triggering on the first message. However, if a broker is triggered on more

than one of its stream queues, a trigger message is generated for each queue at

startup.

Stopping a broker

Displaying the status of a broker

To display the publish/subscribe status of a queue manager, use DISPLAY QMGR

or DISPLAY QMSTATUS. See DISPLAY QMGR or DISPLAY QMSTATUS for

details.

Adding a stream

The use of streams is deprecated in WebSphere MQ Version 7.0.

The following things need to happen for a stream to be created:

v A queue must be created to hold publications for that stream.

v Information about the stream has to be passed to other brokers in the network

that need to support the stream.

Creating a stream queue:

 mqconv7: Potential task?

The stream queue has the same name as the stream, and is usually created by the

operator. There should be one instance of the stream queue at each broker that

supports the stream.

Alternatively, you can let the broker create the stream queue dynamically when it

is needed. The queue is based on the model queue definition

SYSTEM.BROKER.MODEL.STREAM if this is available. If the model queue

definition is not available, the broker will not create stream queues dynamically.

Note: If the queue is created dynamically, the operator must grant the required

access authority to applications using the queue, so use dynamic stream queue

creation only in a test environment.

Informing other brokers about the stream:

 mqconv7: Potential task?

When a stream is first referenced by a publisher or subscriber (for example, when

a registration request is sent to the broker’s control queue) the broker informs its

neighbors that the stream exists. If the neighboring brokers also have a queue

Chapter 7. Publish/subscribe deprecated function 151

defined for the stream (or can create one using

SYSTEM.BROKER.MODEL.STREAM), they also recognize the stream and pass

information about it to their neighbors.

If a broker that is told about the stream does not have a queue for the stream and

does not have the SYSTEM.BROKER.MODEL.STREAM, it does not pass

information about the stream to its neighbors.

Deleting a stream

The use of streams is deprecated in WebSphere MQ Version 7.0.

Before you delete a stream, quiesce all applications that use the stream.

To delete a stream, you need to delete the stream queue. To delete the queue, you

must ensure that no applications (or channels) have the queue open. If there are

messages on the queue, you must remove them from the queue, or purge them

when you delete the queue.

You must also ensure that you do not have a definition of the

SYSTEM.BROKER.MODEL.STREAM on the broker. If you do, and the old one is

deleted, a new version of the stream queue is created dynamically when the broker

is restarted.

Deleting a stream on an isolated broker:

 mqconv7: Potential task?

To delete a stream on a broker that is not part of a broker network:

1. Delete the queue.

When the broker realizes that the queue no longer exists, it deregisters all

subscriptions to the stream, and publishes a message to the

SYSTEM.BROKER.ADMIN.STREAM advertising that the stream has been deleted.

Deleting a stream on a broker that is part of a network:

 mqconv7: Potential task?

A stream on a broker that is part of a broker network is deleted in the same way

as for an isolated broker. Other brokers in the network are advised that the stream

has been deleted and stop sending publications and subscription requests to the

broker for that stream. Messages sent from other brokers before they receive

notification that the stream has been deleted are handled as follows:

v Publication messages are put to the dead-letter queue.

v Registration messages are put to the dead-letter queue.

Adding a broker to a network

mqconv7: Potential task?

You are recommended to define the broker topology from the root down.

Before you can add a broker to the network, channels in both directions must exist

between the queue manager that hosts the new broker and the queue manager that

hosts the parent. Brokers use explicit addressing when sending messages to queues

152 WebSphere MQ: Publish/Subscribe User’s Guide

that reside on another queue manager. When the queue is opened by the broker,

both the queue and queue manager names are specified. To facilitate multi-broker

operation, this queue manager name must resolve to the appropriate transmission

queue. The simplest method of achieving this is for the transmission queue to have

the same name as the remote queue manager name.

If you do not adopt this naming scheme, queue manager alias definition can be

used to ensure that messages get placed on the appropriate transmission queue.

For example, to specify that messages sent to queue manager PARENT are placed

on transmission queue, PARENT.XMITQ:

DEFINE QREMOTE (PARENT) RNAME() RQMNAME(PARENT) XMITQ(PARENT.XMITQ)

To specify that messages sent to queue manager PARENT are placed on

transmission queue, PARENT.XMITQ on i5/OS:

CRTMQMQ QNAME(PARENT) QTYPE(*RMT) RMTMQMNAME(PARENT) TMQMNAME(PARENT.XMITQ)

Deleting a broker from the network

mqconv7: Potential task?

Brokers must always be deleted from the bottom of the broker hierarchy. You

cannot delete a broker if it has one or more child brokers. (See “Sequence of

commands for adding and deleting brokers” on page 154 for more information.)

The broker needs to delete any queues that were created by the broker, so these

queues need to be closed and empty.

1. Quiesce all applications that use the broker.

2. Applications and brokers can use channels to talk to the broker, so receiving

channels might have queues open. If a channel has a queue open, stop and

restart the channel.

3. Use the dltmqbrk command (DLTMQMBRK on i5/OS) to delete the broker.

This command is described in “dltmqbrk (Delete broker)” on page 155.

The broker performs the actions listed in “dltmqbrk (Delete broker)” on page 155

and sends a message to tell its parent broker that it is no longer active. This

message needs to be processed by its parent broker before the parent can be

deleted. The parent broker can process this message only while running.

If you do not quiesce all your applications before deleting the broker, messages

might be sent from other brokers before they receive notification that the broker

has been deleted. Because there is no broker to handle these messages, the queue

manager deals with them according to the report options set for these messages.

This means that publication and registration messages are put to the dead-letter

queue. Therefore, ensure that a dead-letter queue has been set up for this queue

manager before attempting to delete a broker.

Problems when deleting brokers:

 If you are cannot delete your broker, consider the following:

v Are any queues that are to be quiesced by the broker open to an application or a

channel?

If so, you will receive an error message containing reason code 5840. The error

log contains information about which queues cannot be quiesced.

v Does the broker have any children?

Chapter 7. Publish/subscribe deprecated function 153

If it does, you will receive an error message containing reason code 5838. The

error log contains information about the broker’s children.

Sequence of commands for adding and deleting brokers

mqconv7: Potential super task?

This example shows the sequence of commands for adding and deleting brokers in

a network. Queue manager A is to host the parent broker and queue manager B is

to host the child broker. Channels are defined between the two queue managers.

Broker A is the parent broker, so this must be created first. Broker B is then created

as a child broker of broker A. The sequence of commands to achieve this is as

follows:

 Use the following sequence for i5/OS:

When both brokers are deleted, broker B must be deleted first, and broker A must

be available for this to happen. Only when broker B has been deleted can broker A

be deleted. The sequence of commands to achieve this is as follows.

 Use the following sequence for i5/OS:

Control commands

This topic describes the commands that you can use to manage your brokers.

“Controlling the broker” on page 150 discusses the circumstances under which you

would use these commands. The commands are:

v “dltmqbrk (Delete broker)” on page 155

v “endmqbrk (End broker function)” on page 156

v “strmqbrk (Migrate WebSphere MQ Version 6.0 broker to Version 7.0)” on page

37

You can now use the following commands on i5/OS and issue them using the

command line. See chapter 2 ″Managing WebSphere MQ for i5/OS using CL

commands″ in the WebSphere MQ for i5/OS System Administration Guide for

further information about using the i5/OS command line.

v DLTMQMBRK - “dltmqbrk (Delete broker)” on page 155

START CHANNEL (B.to.A)

START CHANNEL (A.to.B)

STOP CHANNEL (A.to.B)

START CHANNEL (A.to.B)

dltmqbrk -m B

STOP CHANNEL (B.to.A)

START CHANNEL (B.to.A)

dltmqbrk -m A

ENDMQMCHL CHLNAME(A.to.B)

STRMQMCHL CHLNAME(A.to.B)

DLTMQMBRK MQMNAME(B)

ENDMQMCHL CHLNAME(B.to.A)

STRMQMCHL CHLNAME(B.to.A)

DLTMQMBRK MQMNAME(A)

154 WebSphere MQ: Publish/Subscribe User’s Guide

v ENDMQMBRK - “endmqbrk (End broker function)” on page 156

v STRMQMBRK - “strmqbrk (Migrate WebSphere MQ Version 6.0 broker to

Version 7.0)” on page 37

dltmqbrk (Delete broker)

Purpose

Use the dltmqbrk command to delete the broker. On i5/OS, the command name is

DLTMQMBRK. The broker must be stopped when this command is issued, and

the queue manager running. To delete more than one broker in the hierarchy, it is

essential that you stop and delete each broker one at a time. Do not attempt to

stop all the brokers in the hierarchy that you want to delete first and then try to

delete them.

The broker must not have children when this command is issued, because they

might be cut off from the rest of the network as a result. If the broker has children

and this command is issued, an error message naming at least one child broker is

received. Delete any children before you delete the broker.

The broker performs the following actions:

1. Put-inhibits its input queues (SYSTEM.BROKER.CONTROL.QUEUE and all

stream queues).

2. Deregisters all its subscribers and publishers.

3. Sends Delete Publication commands to its parent for its metatopics.

4. Deregisters all its subscriptions with the parent.

5. Processes any messages on its input queues according to their report options.

Note: You must have a dead-letter queue, because any input messages are

processed according to their report options. If there is no dead-letter queue,

commands might fail.

6. Deletes internal queues (purging any messages on the queues).

7. Deletes any empty input queues. that were created by the broker in question

(but does not remove the stream queues).

8. Terminates.

If the queue manager terminates before the broker has finished deleting itself (the

finish is indicated by a message to the operator), the operator must issue dltmqbrk

again when the queue manager has been restarted.

Syntax

AIX, HP-UX, Linux, Solaris, and Windows

�� dltmqbrk -m QMgrName ��

Required parameters

AIX, HP-UX, Linux, Solaris, and Windows

Chapter 7. Publish/subscribe deprecated function 155

-m QMgrName

The name of the queue manager for which the broker function is to be deleted.

Syntax

i5/OS

�� DLTMQMBRK MQMNAME (QMgrName) ��

Required parameters

i5/OS

MQMNAME(QMgrName)

The name of the queue manager for which the broker function is to be deleted.

Return codes

0 Command completed normally

10 Command completed with unexpected results

20 An error occurred during processing

Examples

 dltmqbrk -m exampleQM Deletes the broker on exampleQM.

endmqbrk (End broker function)

The endmqbrk command is accepted for compatibility with earlier releases, but

has no effect. To disable publish/subscribe on a queue manager, use the ALTER

QMGR command. See ALTER QMGR for details.

strmqbrk (Migrate WebSphere MQ Version 6.0 broker to Version

7.0)

Purpose

Use the strmqbrk command to migrate WebSphere MQ Version 6.0 broker state to

WebSphere MQ Version 7.0 publish/subscribe.

In WebSphere MQ Version 6.0, strmqbrk started a broker. The WebSphere MQ

Version 7.0 publish/subscribe engine cannot be started in this manner. To enable

publish/subscribe for a queue manager, use the ALTER QMGR command; for

details, see ALTER QMGRin the WebSphere MQ Script (MQSC) Command Reference.

System programming

Writing system management applications

Brokers communicate with their neighbors in the hierarchy to establish the

topology, and to inform their neighbors about the streams they support. They do

156 WebSphere MQ: Publish/Subscribe User’s Guide

this by publishing broker administration messages, as retained messages, using the

WebSphere MQ Programmable Command Format (PCF).

Note that the format of administration information (including metatopics) might

be changed in future products.

A PCF message starts with an MQCFH structure, which includes a definition of the

type of command the message represents. This is followed by a succession of

MQCFIN (integer parameter) and MQCFST (string parameter) structures. The PCF

format is described in WebSphere MQ Programmable Command Formats and

Administration Interface. The WebSphere MQ administration interface (MQAI) has

been provided to help you write PCF applications. It is also described in

WebSphere MQ Programmable Command Formats and Administration Interface.

The SYSTEM.BROKER.ADMIN.STREAM queue is used for broker administration

messages. System management applications can subscribe to these messages,

provided that they have the correct security authorization. Subscription requests

for these topics are sent to the SYSTEM.BROKER.CONTROL.QUEUE in the normal

way.

Topics starting ‘MQ/’ are reserved for WebSphere MQ use, but other topics can be

defined. The broker passes these publications to subscribers in the same way as for

other streams.

Brokers publish on the ‘MQ/QMgrName/Children’ and ‘MQ/QMgrName/Parent’ topics

if applicable. This enables applications to build a view of the broker topology.

The ‘MQ/QMgrName/StreamSupport’ topic is published on by all brokers. This

enables applications to build a view of the stream topology in relation to the

broker topology.

Brokers also publish messages to this queue when a stream or broker has been

deleted, and when a subscription has been deregistered by the broker because it is

no longer valid.

This chapter discusses the following topics:

v “Format of broker administration messages”

v “MQCFH - PCF header” on page 159

Metatopics are published on the stream to which they relate so the relevant ones

are published on SYSTEM.BROKER.ADMIN.STREAM. For information about

metatopics see “Metatopics” on page 162.

Format of broker administration messages

The broker sends administration messages as Publish messages in PCF format. The

following parameters are always present:

PublicationOptions (MQCFIN)

MQPUBO_RETAIN_PUBLICATION is set if the publication is retained.

StreamName (MQCFST)

Set to the reserved stream name ‘SYSTEM.BROKER.ADMIN.STREAM’.

Topic (MQCFST)

This is one of the following:

v ‘MQ/QMgrName/Event/SubscriptionDeregistered’

Chapter 7. Publish/subscribe deprecated function 157

v ‘MQ/QMgrName/Event/StreamDeleted’

v ‘MQ/QMgrName/Event/BrokerDeleted’

v ‘MQ/QMgrName/StreamSupport’

v ‘MQ/QMgrName/Children’

v ‘MQ/QMgrName/Parent’

where QMgrName is the queue manager name of the broker sending the message

(this is 48 characters long, padded with blanks if necessary).

PublishTimestamp (MQCFST)

Set to the time of publication (Universal time).

Subscription deregistered message:

 An ‘MQ/QMgrName/Event/SubscriptionDeregistered’ message is published when a

subscription is deregistered by the broker because it has become invalid (for

example, it is no longer authorized).

For ‘MQ/QMgrName/Event/SubscriptionDeregistered’ messages, the following

group of parameters is published to identify the subscription that has been

removed by the broker:

v RegistrationStreamName

v RegistrationTopic

v RegistrationQMgrName

v RegistrationQName

v RegistrationCorrelId (if applicable)

v RegistrationUserIdentifier

v RegistrationRegistrationOptions

These additional parameters are described in “Message format for metatopics” on

page 164.

Stream deleted message:

 An ‘MQ/QMgrName/Event/StreamDeleted’ message is published when a stream is

deleted. The following additional parameter is present:

RegistrationStreamName (MQCFST)

Name of deleted stream (parameter identifier:

MQCACF_REG_STREAM_NAME).

Broker deleted message:

 When a broker is deleted with the dltmqbrk command, it publishes an

‘MQ/QMgrName/Event/BrokerDeleted’ message.

The administrator is advised to stop affected application programs before making

changes to broker network and stream topology. However, a program could be

written to subscribe to these administrative event topics and take appropriate

action. In the case of the BrokerDeleted event, such a program cannot rely on this

message being propagated to the parent, but the program will receive the message

if it has subscribed to this topic at the affected broker.

Stream support messages:

158 WebSphere MQ: Publish/Subscribe User’s Guide

An ‘MQ/QMgrName/StreamSupport’ message (a retained publication) gives

information about which streams the broker supports. The following parameter is

repeated for each stream supported:

SupportedStreamName (MQCFST)

Name of supported stream (parameter identifier:

MQCACF_SUPPORTED_STREAM_NAME).

Children messages:

 An ‘MQ/QMgrName/Children’ message (a retained publication) gives information

about a broker’s children. It is published only by those brokers that have children.

The following parameter is repeated for each child:

QMgrName (MQCFST)

Queue manager name of child broker (parameter identifier:

MQCACF_CHILD_Q_MGR_NAME).

 This list gives all the broker’s immediate children in the hierarchy.

Parent messages:

 An ‘MQ/QMgrName/Parent’ message (a retained publication) gives information

about a broker’s parent. It is published only by those brokers that have a parent.

The following parameter occurs once:

QMgrName (MQCFST)

Queue manager name of parent broker (parameter identifier:

MQCACF_PARENT_Q_MGR_NAME).

MQCFH - PCF header

Each message or response in PCF format starts with an MQCFH structure. The

field contents of the MQCFH structure for WebSphere MQ Publish/Subscribe are

as follows:

Type (MQLONG)

Structure type.

 The following values are valid:

MQCFT_COMMAND

Command message (for example, Publish, Register Subscribers).

MQCFT_RESPONSE

Message is a response to a command.

StrucLength (MQLONG)

Structure length. The value must be MQCFH_STRUC_LENGTH.

Version (MQLONG)

Structure version number. The value must be MQCFH_VERSION_1.

Command (MQLONG)

Command identifier.

 For a command message, this identifies the function to be performed. For a

response message, it identifies the command to which this is the reply. The

following values are valid:

MQCMD_DELETE_PUBLICATION

Delete Publication

Chapter 7. Publish/subscribe deprecated function 159

MQCMD_DEREGISTER_PUBLISHER

Deregister Publisher

MQCMD_DEREGISTER_SUBSCRIBER

Deregister Subscriber

MQCMD_PUBLISH

Publish

MQCMD_REGISTER_PUBLISHER

Register Publisher

MQCMD_REGISTER_SUBSCRIBER

Register Subscriber

MQCMD_REQUEST_UPDATE

Request Update

MQCMD_BROKER_INTERNAL

Used internally by brokers

MsgSeqNumber (MQLONG)

Message sequence number. The value must be 1 for WebSphere MQ

Publish/Subscribe messages and responses.

Control (MQLONG)

Control options.

 The value must be MQCFC_LAST for WebSphere MQ Publish/Subscribe

messages and responses.

CompCode (MQLONG)

Completion code.

 This field is meaningful only for a response; its value is not significant for a

command. The following values are possible:

MQCC_OK

Command completed successfully.

MQCC_WARNING

Command completed with warning.

MQCC_FAILED

Command failed.

Reason (MQLONG)

Reason code qualifying completion code.

 This field is meaningful only for a response; its value is not significant for a

command.

The reason codes that might be returned in response to a command are listed

in “Reason codes returned from publish/subscribe messages.”

ParameterCount (MQLONG)

Count of parameter structures (MQCFIN, MQCFST) following.

 The value of this field is zero or greater.

Reason codes returned from publish/subscribe messages:

 The following reason codes can be returned by a broker in response to any

command message in PCF format. They are described in WebSphere MQ

Programmable Command Formats and Administration Interface.

160 WebSphere MQ: Publish/Subscribe User’s Guide

MQRCCF_CFH_COMMAND_ERROR

Command identifier not valid.

MQRCCF_CFH_CONTROL_ERROR

Control option not valid.

MQRCCF_CFH_LENGTH_ERROR

Structure length not valid.

MQRCCF_CFH_MSG_SEQ_NUMBER_ERROR

Message sequence number not valid.

MQRCCF_CFH_PARM_COUNT_ERROR

Parameter count not valid.

MQRCCF_CFH_TYPE_ERROR

Type not valid.

MQRCCF_CFH_VERSION_ERROR

Structure version number not valid.

MQRCCF_CFIN_DUPLICATE_PARM

Duplicate MQCFIN parameter.

MQRCCF_CFIN_LENGTH_ERROR

MQCFIN structure length not valid.

MQRCCF_CFIN_PARM_ID_ERROR

Parameter identifier not valid.

MQRCCF_CFST_DUPLICATE_PARM

Duplicate MQCFST parameter.

MQRCCF_CFST_LENGTH_ERROR

MQCFST structure length not valid.

MQRCCF_CFST_PARM_ID_ERROR

Parameter identifier not valid.

MQRCCF_CFST_STRING_LENGTH_ERR

MQCFST string length not valid.

MQRCCF_COMMAND_FAILED

Command failed.

MQRCCF_ENCODING_ERROR

Encoding error.

MQRCCF_INCORRECT_Q

Command sent to wrong broker queue.

MQRCCF_MD_FORMAT_ERROR

Format not valid.

MQRCCF_MSG_LENGTH_ERROR

Message length not valid.

MQRCCF_PARM_COUNT_TOO_SMALL

Mandatory parameter for command missing.

MQRCCF_STRUCTURE_TYPE_ERROR

Structure type invalid.

The following reason codes might be returned by a broker in response to a

command message in PCF format, depending on the parameters used in that

message. They are described in WebSphere MQ Messages.

Chapter 7. Publish/subscribe deprecated function 161

MQRCCF_CORREL_ID_ERROR

Correlation identifier used as part of identity but is all binary zero.

MQRCCF_DEL_OPTIONS_ERROR

Invalid delete options supplied.

MQRCCF_DUPLICATE_IDENTITY

Publisher or subscriber identity already assigned to another user ID.

MQRCCF_INCORRECT_STREAM

Stream name different from queue name.

MQRCCF_NO_RETAINED_MSG

No retained message exists for this topic.

MQRCCF_NOT_AUTHORIZED

Subscriber not authorized to browse broker’s stream queue or subscriber

queue.

MQRCCF_NOT_REGISTERED

Publisher or subscriber not registered.

MQRCCF_PUB_OPTIONS_ERROR

Invalid publication options supplied.

MQRCCF_Q_MGR_NAME_ERROR

Queue manager name invalid.

MQRCCF_Q_NAME_ERROR

Queue name invalid.

MQRCCF_REG_OPTIONS_ERROR

Invalid registration options supplied.

MQRCCF_STREAM_ERROR

Stream name too long or contains invalid characters.

MQRCCF_TOPIC_ERROR

Topic name has an invalid length or contains invalid characters.

MQRCCF_UNKNOWN_STREAM

Stream not defined to broker and cannot be created.

Metatopics

Brokers publish information about the publishers and subscribers that are

registered with them. The information is published as a special set of topics,

known as metatopics, within each supported stream.

Each broker publishes on metatopics to each stream to describe the publishers,

subscribers and topics on that stream. Metatopics include subscribers to

metatopics. All metatopic publications are global.

Metatopics always begin with ‘MQ/’, and topics starting with ‘MQ/’ are reserved

for all streams. These metatopic strings are of the form:

v ‘MQ/S/QMgrName/Publishers/Topics’

v ‘MQ/S/QMgrName/Publishers/Summary’

v ‘MQ/S/QMgrName/Publishers/Summary/Topic’

v ‘MQ/S/QMgrName/Publishers/Identities’

v ‘MQ/S/QMgrName/Publishers/Identities/Topic’

v ‘MQ/SA/QMgrName/Publishers/AllIdentities’

162 WebSphere MQ: Publish/Subscribe User’s Guide

v ‘MQ/SA/QMgrName/Publishers/AllIdentities/Topic’
v ‘MQ/S/QMgrName/Subscribers/Topics’

v ‘MQ/S/QMgrName/Subscribers/Summary’

v ‘MQ/S/QMgrName/Subscribers/Summary/Topic’

v ‘MQ/S/QMgrName/Subscribers/Identities’

v ‘MQ/S/QMgrName/Subscribers/Identities/Topic’

v ‘MQ/SA/QMgrName/Subscribers/AllIdentities’

v ‘MQ/SA/QMgrName/Subscribers/AllIdentities/Topic’

Where:

v QMgrName is the name of the broker’s queue manager. This is 48 characters long

padded with blanks if necessary.

v Topic is any topic for which the broker has a registered publisher or subscriber

(depending on whether the subscription is for publishers or subscribers).

Metatopics that do not include Topic each represent a single metatopic (for one

broker), so a broker receiving a Register Subscriber message for one of these

metatopics generates one retained Publish message as a result (additional retained

Publish messages are generated whenever the information changes). However, for

metatopics that do include Topic, one retained Publish message is generated for

each registered topic that matches the Topic specification (and again further

messages are generated as the information changes).

The strings in the fifth part of the metatopic offer varying levels of detail, as

follows:

Summary

Minimal information including counts. If Topic is included, one message is

generated for each matching topic.

Topics A list of registered topics in a single message.

Identities

Identities of publishers or subscribers, including user ID and time of

registration. If Topic is included, one message is generated for each

matching topic, otherwise all identities are packaged into a single message.

Anonymous publishers or subscribers are not included (this means that no

message is generated for topics that have only anonymous publishers and

subscribers registered).

AllIdentities

This is the equivalent of Identities for authorized metatopics (see

“Authorized metatopics”) and gives the same information, but also

includes anonymous publishers and subscribers.

 If an application subscribes to an ‘AllIdentities’ metatopic, the application

requires altusr authority for the queue manager, as well as the normal

browse authority for that stream queue.

Authorized metatopics:

 There is a subclass of metatopics, called authorized metatopics, that are available

only to users with altusr authority for that queue manager. These show the

identities of all publishers and subscribers, including the anonymous ones.

Subscribers (who must be authorized) receive only authorized metatopics by

specifying at least the first six characters ‘MQ/SA/’. A wildcard subscription of the

Chapter 7. Publish/subscribe deprecated function 163

form ’MQ/S*’ gives no metatopics at all, ‘MQ/SA/*’ gives all the authorized

metatopics and ‘MQ/S/*’ gives all the others.

Message format for metatopics:

 These messages are sent as Publish messages in PCF format with

MQPUBO_RETAIN_PUBLICATION (for ongoing subscriptions registered with

Register Subscriber). In these messages, Command is MQCMD_PUBLISH, and Type

is MQCFT_COMMAND.

The following table summarizes which parameters are included for which

metatopics. An explanation of each parameter follows the table.

 Table 18. Parameters for publisher and subscriber information messages

Topics Summary Summary

/<Topic>

Identities

1 Identities

/<Topic>

1

Number of messages sent 1 1 1 for each

topic

1 1 for each

topic

StreamName Y Y Y Y Y

Topic Y Y Y Y Y

PublishTimestamp Y Y Y Y Y

BrokerCount Y Y Y Y Y

ApplCount Y Y Y Y Y

AnonymousCount Y Y Y Y Y

RegistrationTopic Y

2 N N

3 N N

3

RegistrationQMgrName N N N Y Y

RegistrationQName N N N Y Y

RegistrationCorrelId N N N Y Y

RegistrationUserIdentifier N N N Y Y

RegistrationRegistrationOptions N N N N Y

RegistrationTime N N N N Y

RegistrationSubName N N N N Y

RegistrationSubUserData N N N N Y

RegistrationSubIdentity N N N N Y

4

Notes:

1. ‘AllIdentities’ subscriptions are the same except that they include anonymous as well as

non-anonymous publishers and subscribers.

2. Repeated for each registered topic.

3. Topic parameter contains the registered topic.

4. Repeated.

164 WebSphere MQ: Publish/Subscribe User’s Guide

Notices

This information was developed for products and services offered in the United

States. IBM may not offer the products, services, or features discussed in this

information in other countries. Consult your local IBM representative for

information on the products and services currently available in your area. Any

reference to an IBM product, program, or service is not intended to state or imply

that only that IBM product, program, or service may be used. Any functionally

equivalent product, program, or service that does not infringe any IBM intellectual

property right may be used instead. However, it is the user’s responsibility to

evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this information. The furnishing of this information does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing,

IBM Corporation,

North Castle Drive,

Armonk, NY 10504-1785,

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation,

Licensing,

2-31 Roppongi 3-chome, Minato-k,u

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the information. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

information at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1996, 2008 165

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM United Kingdom Laboratories,

Mail Point 151,

Hursley Park,

Winchester,

Hampshire,

England

SO21 2JN.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Programming License Agreement, or any equivalent agreement

between us.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application

programs conforming to IBM’s application programming interfaces.

The following are trademarks of International Business Machines Corporation in

the United States, or other countries, or both:

 AIX DB2 Universal Database i5/OS

IBM IBMLink MQSeries

OS/2 RACF SupportPac

Tivoli WebSphere z/OS

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

Microsoft®, Windows, Windows NT®, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

166 WebSphere MQ: Publish/Subscribe User’s Guide

Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Other company, product, or service names may be trademarks or service marks of

others.

Notices 167

168 WebSphere MQ: Publish/Subscribe User’s Guide

Index

A
access control

defining 148

using streams 84

AccountingToken parameter
publications forwarded by broker 96

adding a broker to a network 152

adding a stream 151

adding and removing brokers 154

ALTER QMGR command 35

ALTER QMGR PARENT 36

ALTER TOPIC command
PROXYSUB attribute 22

amqsfmda.tst sample 148

Application Messaging Interface 98

application programming 88

applications, system management 156

ApplIdentityData parameter
publications forwarded by broker 96

ApplOriginData parameter
publications forwarded by broker 97

authorization checks 102, 148

B
backup 149

broker
adding to a network 152

administration messages 157

backup 149

configuration parameters 149

controlling 150

deleting from a network 153

deregistering as a publisher 102

deregistering as subscriber 106

finding children 159

finding parent 159

finding supported streams 159

interactions with subscriber and

publisher 89

registering as a publisher 99

registering as a subscriber 102

response message 142

setting up 146

stanza of qm.ini 149

broker deleted message 158

broker hierarchy, example 85

broker networks 85

broker queues, defining 146

broker response message 142

C
child broker 85

children messages 159

cluster queue managers,

publish/subscribe
key roles 32

other considerations 34

cluster queues 97, 146

cluster scope
PUBSCOPE topic attribute 34

SUBSCOPE topic attribute 34

clustered topics
publish/subscribe 31

clusters, use of
publish/subscribe 29

CodedCharSetId field
MQRFH structure 108

Command field
MQCFH structure 159

command message
name/value pairs 115

PCF format 156

RFH format 106

structure 88

Command parameter
Broker response message 143

Delete Publication command 116

Deregister Publisher command 117

Deregister Subscriber command 119

Publish command 122

Register Publisher command 127

Register Subscriber command 129

Request Update command 137

CompCode field
MQCFH structure 160

CompCode parameter
Broker response message 142

configuration file 149

control commands
deregister or delete broker function

(dltmqbrk) 155

end broker function (endmqbrk) 156

migrate broker function

(strmqbrk) 37, 156

Control field
MQCFH structure 160

controlling brokers 150

CorrelId parameter
message sent to broker 95

publications forwarded by broker 96

response messages 140

creating queues 146

D
data conversion 97

data, publication 112

dead-letter queue 148

dead-letter queue processing 139

DEFINE QREMOTE command 35

defining queues 146

Delete Publication command 116

DeleteOptions parameter
Broker response message 143

Delete Publication command 116

deleting a broker from a network 153

deleting a stream 152

deleting publications 101

deregister or delete broker function,

control command 155

Deregister Publisher command 117

Deregister Subscriber command 119

deregistering as a publisher 102

deregistering as a subscriber 106

DiscardNonPersistentInputMsg

parameter 149

DiscardNonPersistentResponse

parameter 150

DISPLAY PUBSUB command 35

DISPLAY PUBSUB TYPE(CHILD) 36

DISPLAY PUBSUB TYPE(PARENT) 36

distributed publish/subscribe
security 25

DLQNonPersistentResponse

parameter 149

dltmqbrk command 155

double-byte character sets 113

E
Encoding field

MQRFH structure 108

end broker function, control

command 156

endmqbrk command 156

error codes
Broker response message 145

Delete Publication command 117

Deregister Publisher command 118

Deregister Subscriber command 121

Publish command 126

Register Publisher command 128

Register Subscriber command 136

Request Update command 138

error handling 139

error response 142

ErrorId parameter
Broker response message 143

ErrorPos parameter
Broker response message 143

event publications 6

example
broker hierarchy 85

Broker response message 144

dltmqbrk command 156

multiple queue manager

configuration 19

multiple subscriptions 20, 87

NameValueString 110

propagation of publications 21, 87

propagation of subscriptions 20, 86

publication data 112

publish/subscribe queue manger

configuration 4

qm.ini broker stanza 149

Expiry parameter
message sent to broker 95

publications forwarded by broker 96

© Copyright IBM Corp. 1996, 2008 169

F
Flags field

MQRFH structure 108

Format field
MQRFH structure 108

Format parameter
message sent to broker 95

publications forwarded by broker 96

response messages 141

G
global publications

publishing 101

group messages 97

GroupId parameter 150

I
identity of publisher and subscriber 92

identity of subscription 94

initialization file 149

IntegerData parameter
Publish command 122

internal queues 148

L
limitations 97

local publications
publishing 101

M
managing brokers 150

message descriptor (MQMD)
message sent to broker 95

publications forwarded by broker 96

response messages 140

message flow 89

message format
broker response 142

commands 106, 115

metatopic 164

message order 53

messages
broker administration 157

group 97

response 140

segmented 97

metatopics 162

MQCFH structure 159

MQCFT_* values 159

MQMD (message descriptor)
message sent to broker 95

publications forwarded by broker 96

response messages 140

MQRFH 107

MQRFH_* values 107, 108

MQRFH_DEFAULT 110

MsgId parameter
response messages 141

MsgSeqNumber field
MQCFH structure 160

MsgType parameter
message sent to broker 95

publications forwarded by broker 96

response messages 141

multiple subscriptions, example 20, 87

N
name of subscription 94

NameValueString 110

NameValueString field 108

network
adding a broker 152

broker 85

deleting a broker 153

O
OK response 141

P
ParameterCount field

MQCFH structure 160

ParameterId parameter
Broker response message 143

parent broker 85

parent messages 159

persistence 97

Persistence parameter
publications forwarded by broker 96

response messages 141

Priority parameter
publications forwarded by broker 96

response messages 141

problem determination 145

proxy subscription aggregation
publish/subscribe 22

proxy subscriptions 19

PROXYSUB attribute
ALTER TOPIC command 22

publication aggregation
publish/subscribe 22

publication data 112

publication propagation, example 21, 87

PublicationOptions parameter
Broker response message 144

Publish command 123

publications
deleting 101

Publish command 122

publish everywhere 22

publish/subscribe
command messages 106, 115

overlapping topics 24

proxy subscription aggregation 22

publication aggregation 22

publication scope 23

publish everywhere 22

PUBSCOPE topic attribute 23

cluster scope 34

scope 23

SUBSCOPE topic attribute 24

cluster scope 34

subscription scope 24

system queue errors 28

publish/subscribe (continued)
wild card rules 23

publish/subscribe cluster queue

managers, key roles 32

publish/subscribe cluster queue

managers, other considerations 34

publish/subscribe clustered topics 31

publish/subscribe clusters 29

publish/subscribe clusters and

hierarchies
more about routing mechanism 22

proxy subscriptions 19

queue manager names 19

publisher
deregistering with the broker 102

identity 92

interactions with subscriber and

broker 89

introduction 3

registering with the broker 99

writing applications 99

publishing information 100

PublishTimestamp parameter
Publish command 124

PutApplName parameter
publications forwarded by broker 96

response messages 141

PutApplType
publications forwarded by broker 96

PutApplType parameter
response messages 141

PutDate parameter
publications forwarded by broker 96

PutTime parameter
publications forwarded by broker 96

Q
qm.ini 149

QMgrName parameter
Broker response message 144

Deregister Publisher command 117

Deregister Subscriber command 119

Publish command 124

Register Publisher command 127

Register Subscriber command 129

Request Update command 137

QName parameter
Broker response message 144

Deregister Publisher command 117

Deregister Subscriber command 119

Publish command 124

Register Publisher command 127

Register Subscriber command 129

Request Update command 137

queue manager hierarchies
connecting 35

disconnecting 36

queue manager initialization file 149

queue managers
hierarchies 35

parent and child 35

queues
cluster 97

dead letter 148

internal 148

stream 147

170 WebSphere MQ: Publish/Subscribe User’s Guide

queues (continued)
SYSTEM.BROKER.ADMIN.STREAM 147

SYSTEM.BROKER.CONTROL.QUEUE 146

SYSTEM.BROKER.DEFAULT.STREAM 147

SYSTEM.BROKER.MODEL.STREAM 148

R
reason codes

PCF messages 160

Reason field
MQCFH structure 160

Reason parameter
Broker response message 142

ReasonText parameter
Broker response message 143

Register Publisher command 127

Register Subscriber command 129

registering as a publisher 99

registering as a subscriber 102

registration
changing for subscriber 105

RegistrationOptions parameter
Broker response message 144

Deregister Publisher command 118

Deregister Subscriber command 119

Publish command 124

Register Publisher command 127

Register Subscriber command 129

Request Update command 137

ReplyToQ parameter
message sent to broker 95

publications forwarded by broker 96

ReplyToQMgr parameter
message sent to broker 95

publications forwarded by broker 96

Report parameter
message sent to broker 95

publications forwarded by broker 96

response messages 141

request update
message flow 90

Request Update command 137

requesting information 105

response messages 140

retained publication
introduction 6

publishing 101

return codes
dltmqbrk command 156

RFH definitions
Delete Publication 116

Deregister Publisher 117

Deregister Subscriber 119

Publish 122

Register Publisher 127

Register Subscriber 129

Request Update 137

root broker 85

routing mechanism 19

rules and formatting header
definition 107

use of 110

S
security

distributed publish/subscribe 25

security, setting up 148

segmented messages 97

SequenceNumber parameter
Publish command 125

starting a broker 151

state publications 5

stopping a broker 151

stream
adding 151

deleting 152

finding which are supported 159

implementation 83

reasons for using 83

stream deleted message 158

stream queues 147

stream support messages 159

StreamName parameter
Broker response message 144

Delete Publication command 116

Deregister Publisher command 118

Deregister Subscriber command 120

Publish command 125

Register Publisher command 128

Register Subscriber command 134

Request Update command 138

StringData parameter
Publish command 126

strmqbrk command 37, 156

StrucId field
MQRFH structure 107

StrucLength field
MQCFH structure 159

MQRFH structure 107

structures
MQCFH 159

MQRFH 107

SubIdentity parameter
Deregister Subscriber command 120

Register Subscriber command 134

SubName parameter
Deregister Subscriber command 121

Register Subscriber command 135

Request Update command 138

subscriber
broker restart 105

changing registration 105

deregistering with the broker 106

identity 92

interactions with publisher and

broker 89

introduction 4

message arrival order 53

registering with the broker 102

writing applications 102

subscription
identity 94

name 94

subscription deregistered message 158

subscription propagation, example 20,

86

subscriptions
passing between brokers 86

SubUserData parameter
Register Subscriber command 135

system design 19

system management programs 156

SYSTEM.BROKER.ADMIN.STREAM 147

SYSTEM.BROKER.CONTROL.QUEUE 146

SYSTEM.BROKER.DEFAULT.STREAM 147

SYSTEM.BROKER.MODEL.STREAM 148

T
topic attribute

PUBSCOPE 23

SUBSCOPE 24

Topic parameter
Broker response message 144

Delete Publication command 116

Deregister Publisher command 118

Deregister Subscriber command 121

Publish command 122

Register Publisher command 127

Register Subscriber command 129

Request Update command 137

topics
introduction 4

overlapping 24

triggering a broker 151

Type field
MQCFH structure 159

U
unit of work 97

UserId parameter
Broker response message 144

publications forwarded by broker 96

V
Version field

MQCFH structure 159

MQRFH structure 107

W
Warning response 141

wild card rules
publish/subscribe 23

writing applications 88

Index 171

172 WebSphere MQ: Publish/Subscribe User’s Guide

Sending your comments to IBM

If you especially like or dislike anything about this book, please use one of the

methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on

the accuracy, organization, subject matter, or completeness of this book.

Please limit your comments to the information in this book and the way in which

the information is presented.

To make comments about the functions of IBM products or systems, talk to your

IBM representative or to your IBM authorized remarketer.

When you send comments to IBM , you grant IBM a nonexclusive right to use or

distribute your comments in any way it believes appropriate, without incurring

any obligation to you.

You can send your comments to IBM in any of the following ways:

v By mail, to this address:

User Technologies Department (MP095)

IBM United Kingdom Laboratories

Hursley Park

WINCHESTER,

Hampshire

SO21 2JN

United Kingdom

v By fax:

– From outside the U.K., after your international access code use 44-1962-816151

– From within the U.K., use 01962-816151
v Electronically, use the appropriate network ID:

– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL

– IBMLink™: HURSLEY(IDRCF)

– Internet: idrcf@hursley.ibm.com

Whichever method you use, ensure that you include:

v The publication title and order number

v The topic to which your comment applies

v Your name and address/telephone number/fax number/network ID.

© Copyright IBM Corp. 1996, 2008 173

174 WebSphere MQ: Publish/Subscribe User’s Guide

���

SC34-6950-00

Sp
in
e
in
fo
rm
at
io
n:

 �
�

�

W
eb

Sp
he

re

M

Q

Pu
bl

ish
/S

ub
sc

ri
be

U

se
r’

s
G

ui
de

Ve

rs
io

n
7.0

	Contents
	Figures
	Tables
	Chapter 1. What's new in publish/subscribe in WebSphere MQ Version 7.0?
	Benefits of WebSphere Version 7.0 publish/subscribe

	Chapter 2. Introduction to WebSphere MQ publish/subscribe messaging
	Overview of publish/subscribe components
	Example of a single queue manager publish/subscribe configuration
	Publishers and publications
	State and event information
	Retained publications

	Subscribers and subscriptions
	Managed queues and publish/subscribe
	Subscription durability
	Selection strings

	WebSphere MQ topics
	Topic names
	Special characters in topics
	The topic level separator
	The multilevel wildcard
	The single-level wildcard
	When wildcards are not wild

	Topic trees
	Administrative topic objects
	SYSTEM.BASE.TOPIC

	Chapter 3. Distributed publish/subscribe
	How does distributed publish/subscribe work?
	Proxy subscription aggregation and publication aggregration
	More on routing mechanisms
	Wildcard rules

	Controlling the flow of publications and subscriptions
	Publication scope
	Subscription scope
	Overlapping topics

	Retained publications
	Distributed publish/subscribe security
	Distributed publish/subscribe system queues
	Publish/subscribe system queue errors

	Publish/subscribe topologies
	Publish/subscribe clusters
	Cluster topics
	Key roles for publish/subscribe cluster queue managers
	Overlapping cluster support and publish/subscribe
	Subscription scope and publication scope in publish/subscribe clusters
	REFRESH CLUSTER considerations

	Publish/subscribe hierarchies
	Connecting a queue manager to a hierarchy
	Disconnecting a queue manager from a hierarchy

	Chapter 4. Migrating to WebSphere Version 7.0 publish/subscribe
	strmqbrk (Migrate WebSphere MQ Version 6.0 broker to Version 7.0)
	Publish/subscribe command messages
	Delete Publication - Version 7 replacement
	Deregister publisher - Version 7 replacement
	Deregister subscriber - Version 7 replacement
	Publish - Version 7 replacement
	Register publisher - Version 7 replacement
	Register subscriber - Version 7 replacement
	Request Update - Version 7 replacement

	WebSphere MQ publish/subscribe topology migration
	Migrating a WebSphere MQ Version 6.0 publish/subscribe hierarchy to a WebSphere MQ Version 7.0 publish/subscribe cluster
	Migrating a WebSphere MQ Version 6.0 publish/subscribe hierarchy to a Version 7.0 publish/subscribe cluster - all queue managers simultaneously
	Migrating a WebSphere MQ Version 6.0 publish/subscribe hierarchy to a Version 7.0 publish/subscribe cluster - queue manager by queue manager

	Migrating a WebSphere MQ Version 6.0 publish/subscribe hierarchy to a WebSphere MQ Version 7.0 hierarchy
	Migrating a WebSphere MQ Version 6.0 two queue manager publish/subscribe hierarchy to a Version 7.0 hierarchy - parent first
	Migrating a WebSphere MQ Version 6.0 two publish/subscribe queue manager hierarchy to a Version 7.0 hierarchy - child first

	Chapter 5. Writing publish/subscribe applications
	Message ordering
	Intercepting publications
	Publishing options
	Subscription options
	Subscriptions and message persistence
	Subscriptions and retained publications
	Grouping subscriptions

	Publish/subscribe message properties

	Chapter 6. WebSphere MQ publish/subscribe security
	Example publish/subscribe security setup
	Grant access to a user to subscribe to a topic
	Grant access to a user to subscribe to a topic deeper within the tree
	Grant another user access to subscribe to only the topic deeper within the tree
	Change access control to avoid additional messages
	Grant access to a user to publish to a topic
	Grant access to a user to publish to a topic deeper within the tree
	Grant access for publish and subscribe

	Topic objects
	Subscription security
	MQSO_ANY_USERID subscription option

	Chapter 7. Publish/subscribe deprecated function
	How does it work?
	Streams
	Version 6 wild card schema
	Broker networks
	Passing subscription information between brokers

	Writing publish/subscribe applications
	Introduction to writing applications
	Message flows
	Publisher and subscriber identity
	The message descriptor
	Persistence and units of work
	Limitations
	Using the Application Messaging Interface

	Writing publisher applications
	Registering with the broker
	Publishing information
	Deleting information
	Deregistering with the broker

	Writing subscriber applications
	Registering as a subscriber
	Requesting information
	Deregistering as a subscriber

	Format of command messages
	MQRFH – Rules and formatting header
	Publish/Subscribe name/value strings
	Publication data

	Publish/Subscribe command messages
	Delete Publication
	Deregister Publisher
	Deregister Subscriber
	Publish
	Register Publisher
	Register Subscriber
	Request Update

	Error handling and response messages
	Error handling by the broker
	Response messages
	Broker responses
	Problem determination

	Managing the broker
	Setting up a broker
	Broker queues
	Other considerations
	Broker configuration stanza

	Controlling the broker
	Starting a broker
	Stopping a broker
	Displaying the status of a broker
	Adding a stream
	Deleting a stream
	Adding a broker to a network
	Deleting a broker from the network
	Sequence of commands for adding and deleting brokers

	Control commands
	dltmqbrk (Delete broker)
	endmqbrk (End broker function)
	strmqbrk (Migrate WebSphere MQ Version 6.0 broker to Version 7.0)

	System programming
	Writing system management applications
	Format of broker administration messages
	MQCFH - PCF header
	Metatopics

	Notices
	Index
	Sending your comments to IBM

