
Using C++

Contents

1. Features of WebSphere MQ C++

2. Preparing message data

3. Reading messages

4. Writing a message to the dead-letter queue
5. Writing a message to the IMS bridge

6. Writing a message to the CICS bridge

7. Writing a message to the work header

8. Sample programs
8.1. Sample program HELLO WORLD (imqwrld.cpp)

8.1.1. On all platforms except z/OS

8.1.2. On z/OS

8.1.3. Sample code
8.2. Sample programs SPUT (imqsput.cpp) and SGET (imqsget.cpp)

8.2.1. On all platforms except z/OS

8.2.2. On z/OS

8.3. Sample program DPUT (imqdput.cpp)
9. Implicit operations

9.1. Connect

9.2. Open

9.3. Reopen
9.4. Close

9.5. Disconnect

10. Binary and character strings

11. Unsupported functions
12. C++ language considerations

12.1. Header files

12.2. Methods

12.3. Attributes
12.4. Data types

12.4.1. Elementary data types

12.5. Manipulating binary strings

12.6. Manipulating character strings
12.7. Initial state of objects

12.8. Using C from C++

12.9. Notational conventions

13. WebSphere MQ C++ classes
13.1. ImqAuthenticationRecord

13.1.1. Other relevant classes

13.1.2. Object attributes

13.1.3. Constructors
13.1.4. Object methods (public)

13.1.5. Object methods (protected)

13.2. ImqBinary

13.2.1. Other relevant classes
13.2.2. Object attributes

13.2.3. Constructors

13.2.4. Overloaded ImqItem methods

13.2.5. Object methods (public)
13.2.6. Object methods (protected)

13.2.7. Reason codes

13.3. ImqCache

13.3.1. Other relevant classes
13.3.2. Object attributes

13.3.3. Constructors

13.3.4. Object methods (public)

13.3.5. Reason codes
13.4. ImqChannel

13.4.1. Other relevant classes

13.4.2. Object attributes

13.4.3. Constructors
13.4.4. Object methods (public)

13.4.5. Reason codes

13.5. ImqCICSBridgeHeader

13.5.1. Other relevant classes
13.5.2. Object attributes

Page 1 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

13.5.3. Constructors

13.5.4. Overloaded ImqItem methods
13.5.5. Object methods (public)

13.5.6. Object data (protected)

13.5.7. Reason codes

13.5.8. Return codes
13.6. ImqDeadLetterHeader

13.6.1. Other relevant classes

13.6.2. Object attributes
13.6.3. Constructors

13.6.4. Overloaded ImqItem methods

13.6.5. Object methods (public)

13.6.6. Object data (protected)
13.6.7. Reason codes

13.7. ImqDistributionList

13.7.1. Other relevant classes

13.7.2. Object attributes
13.7.3. Constructors

13.7.4. Object methods (public)

13.7.5. Object methods (protected)

13.8. ImqError
13.8.1. Other relevant classes

13.8.2. Object attributes

13.8.3. Constructors

13.8.4. Object methods (public)
13.8.5. Object methods (protected)

13.8.6. Reason codes

13.9. ImqGetMessageOptions

13.9.1. Other relevant classes
13.9.2. Object attributes

13.9.3. Constructors

13.9.4. Object methods (public)

13.9.5. Object methods (protected)
13.9.6. Object data (protected)

13.9.7. Reason codes

13.10. ImqHeader

13.10.1. Other relevant classes
13.10.2. Object attributes

13.10.3. Constructors

13.10.4. Object methods (public)

13.11. ImqIMSBridgeHeader
13.11.1. Other relevant classes

13.11.2. Object attributes

13.11.3. Constructors

13.11.4. Overloaded ImqItem methods
13.11.5. Object methods (public)

13.11.6. Object data (protected)

13.11.7. Reason codes

13.12. ImqItem
13.12.1. Other relevant classes

13.12.2. Object attributes

13.12.3. Constructors

13.12.4. Class methods (public)
13.12.5. Object methods (public)

13.12.6. Reason codes

13.13. ImqMessage

13.13.1. Other relevant classes
13.13.2. Object attributes

13.13.3. Constructors

13.13.4. Object methods (public)

13.13.5. Object methods (protected)
13.13.6. Object data (protected)

13.14. ImqMessageTracker

13.14.1. Other relevant classes

13.14.2. Object attributes
13.14.3. Constructors

13.14.4. Object methods (public)

13.14.5. Reason codes

13.15. ImqNamelist
13.15.1. Other relevant classes

Page 2 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

13.15.2. Object attributes

13.15.3. Constructors
13.15.4. Object methods (public)

13.15.5. Reason codes

13.16. ImqObject

13.16.1. Other relevant classes
13.16.2. Class attributes

13.16.3. Object attributes

13.16.4. Constructors
13.16.5. Class methods (public)

13.16.6. Object methods (public)

13.16.7. Object methods (protected)

13.16.8. Object data (protected)
13.16.9. Reason codes

13.17. ImqProcess

13.17.1. Other relevant classes

13.17.2. Object attributes
13.17.3. Constructors

13.17.4. Object methods (public)

13.18. ImqPutMessageOptions

13.18.1. Other relevant classes
13.18.2. Object attributes

13.18.3. Constructors

13.18.4. Object methods (public)

13.18.5. Object data (protected)
13.18.6. Reason codes

13.19. ImqQueue

13.19.1. Other relevant classes

13.19.2. Object attributes
13.19.3. Constructors

13.19.4. Object methods (public)

13.19.5. Object methods (protected)

13.19.6. Reason codes
13.20. ImqQueueManager

13.20.1. Other relevant classes

13.20.2. Class attributes

13.20.3. Object attributes
13.20.4. Constructors

13.20.5. Destructors

13.20.6. Class methods (public)

13.20.7. Object methods (public)
13.20.8. Object methods (protected)

13.20.9. Object data (protected)

13.20.10. Reason codes

13.21. ImqReferenceHeader
13.21.1. Other relevant classes

13.21.2. Object attributes

13.21.3. Constructors

13.21.4. Overloaded ImqItem methods
13.21.5. Object methods (public)

13.21.6. Object data (protected)

13.21.7. Reason codes

13.22. ImqString
13.22.1. Other relevant classes

13.22.2. Object attributes

13.22.3. Constructors

13.22.4. Class methods (public)
13.22.5. Overloaded ImqItem methods

13.22.6. Object methods (public)

13.22.7. Object methods (protected)

13.22.8. Reason codes
13.23. ImqTrigger

13.23.1. Other relevant classes

13.23.2. Object attributes

13.23.3. Constructors
13.23.4. Overloaded ImqItem methods

13.23.5. Object methods (public)

13.23.6. Object data (protected)

13.23.7. Reason codes
13.24. ImqWorkHeader

Page 3 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

13.24.1. Other relevant classes

13.24.2. Object attributes
13.24.3. Constructors

13.24.4. Overloaded ImqItem methods

13.24.5. Object methods (public)

13.24.6. Object data (protected)
13.24.7. Reason codes

14. Building WebSphere MQ C++ programs

14.1. AIX
14.2. HP-UX

14.3. HP OpenVMS

14.4. i5

14.5. Linux
14.6. Solaris

14.7. Windows

14.8. z/OS Batch, RRS Batch and CICS

14.9. z/OS UNIX System Services
15. MQI cross reference

15.1. Data structure, class, and include-file cross reference

15.2. Class attribute cross reference

15.2.1. ImqAuthenticationRecord
15.2.2. ImqCache

15.2.3. ImqChannel

15.2.4. ImqCICSBridgeHeader

15.2.5. ImqDeadLetterHeader
15.2.6. ImqError

15.2.7. ImqGetMessageOptions

15.2.8. ImqHeader

15.2.9. ImqIMSBridgeHeader
15.2.10. ImqItem

15.2.11. ImqMessage

15.2.12. ImqMessageTracker

15.2.13. ImqNamelist
15.2.14. ImqObject

15.2.15. ImqProcess

15.2.16. ImqPutMessageOptions

15.2.17. ImqQueue
15.2.18. ImqQueueManager

15.2.19. ImqReferenceHeader

15.2.20. ImqTrigger

15.2.21. ImqWorkHeader

Using C++

Features of WebSphere MQ C++

Preparing message data

Reading messages

Writing a message to the dead-letter queue

Writing a message to the IMS bridge

Writing a message to the CICS bridge

Writing a message to the work header

Sample programs

Implicit operations

Binary and character strings

Unsupported functions

Page 4 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

C++ language considerations

WebSphere MQ C++ classes

The WebSphere® MQ C++ classes encapsulate the WebSphere MQ Message Queue Interface (MQI).

There is a single C++ header file, imqi.hpp, which covers all of these classes.

Building WebSphere MQ C++ programs
The URL of supported compilers is listed, together with the commands to use to compile, link and run

C++ programs and samples on WebSphere MQ platforms.

MQI cross reference

This build: January 26, 2011 11:58:01

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc10120_

1. Features of WebSphere MQ C++

WebSphere® MQ C++ provides the following features:

� Automatic initialization of WebSphere MQ data structures

� Just-in-time queue manager connection and queue opening

� Implicit queue closure and queue manager disconnection

� Dead-letter header transmission and receipt

� IMS™ bridge header transmission and receipt

� Reference message header transmission and receipt

� Trigger message receipt

� CICS® bridge header transmission and receipt

� Work header transmission and receipt

� Client channel definition

The following Booch class diagrams show that all the classes are broadly parallel to those WebSphere MQ

entities in the procedural MQI (for example using C) that have either handles or data structures. All classes
inherit from the ImqError class (see ImqError), which allows an error condition to be associated with each

object.

Figure 1. WebSphere MQ C++ classes (item handling)

Page 5 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

Figure 2. WebSphere MQ C++ classes (queue management)

Page 6 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

To interpret Booch class diagrams correctly, be aware of the following:

� Methods and noteworthy attributes are listed below the class name.

� A small triangle within a cloud denotes an abstract class.

� Inheritance is denoted by an arrow to the parent class.

� An undecorated line between clouds denotes a cooperative relationship between classes.

� A line decorated with a number denotes a referential relationship between two classes. The number

indicates the number of objects that can participate in a given relationship at any one time.

The following classes and data types are used in the C++ method signatures of the queue management classes

(see Figure 2) and the item handling classes (see Figure 1):

� The ImqBinary class (see ImqBinary), which encapsulates byte arrays such as MQBYTE24.

� The ImqBoolean data type, which is defined as typedef unsigned char ImqBoolean.

� The ImqString class (see ImqString), which encapsulates character arrays such as MQCHAR64.

Entities with data structures are subsumed within appropriate object classes. Individual data structure fields
(see MQI cross reference) are accessed with methods.

Entities with handles come under the ImqObject class hierarchy (see ImqObject) and provide encapsulated

interfaces to the MQI. Objects of these classes exhibit intelligent behavior that can reduce the number of

method invocations required relative to the procedural MQI. For example, you can establish and discard queue
manager connections as required, or you can open a queue with appropriate options, then close it.

The ImqMessage class (see ImqMessage) encapsulates the MQMD data structure and also acts as a holding

point for user data and items (see Reading messages) by providing cached buffer facilities. You can provide

fixed-length buffers for user data and use the buffer many times. The amount of data present in the buffer can

Page 7 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

vary from one use to the next. Alternatively, the system can provide and manage a buffer of flexible length.

Both the size of the buffer (the amount available for receipt of messages) and the amount actually used (either
the number of bytes for transmission or the number of bytes actually received) become important

considerations.

Parent topic: Using C++

This build: January 26, 2011 11:58:02

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc10220_

2. Preparing message data

When you send a message, message data is first prepared in a buffer managed by an ImqCache object (see

ImqCache). A buffer is associated (by inheritance) with each ImqMessage object (see ImqMessage): it can be
supplied by the application (using either the useEmptyBuffer or useFullBuffer method) or automatically by

the system. The advantage of the application supplying the message buffer is that no data copying is necessary

in many cases because the application can use prepared data areas directly. The disadvantage is that the

supplied buffer is of a fixed length.

The buffer can be reused, and the number of bytes transmitted can be varied each time, by using the

setMessageLength method before transmission.

When supplied automatically by the system, the number of bytes available is managed by the system, and data

can be copied into the message buffer using, for example, the ImqCache write method, or the ImqMessage
writeItem method. The message buffer grows according to need. As the buffer grows, there is no loss of

previously-written data. A large or multipart message can be written in sequential pieces.

The following examples show simplified message sends.

1. Use prepared data in a user-supplied buffer

char szBuffer[] = "Hello world" ;

msg.useFullBuffer(szBuffer, sizeof(szBuffer));

msg.setFormat(MQFMT_STRING);

2. Use prepared data in a user-supplied buffer, where the buffer size exceeds the data size

char szBuffer[24] = "Hello world" ;

msg.useEmptyBuffer(szBuffer, sizeof(szBuffer));

msg.setFormat(MQFMT_STRING);

msg.setMessageLength(12);

3. Copy data to a user-supplied buffer

char szBuffer[12];

msg.useEmptyBuffer(szBuffer, sizeof(szBuffer));

msg.setFormat(MQFMT_STRING);

msg.write(12, "Hello world");

4. Copy data to a system-supplied buffer

msg.setFormat(MQFMT_STRING);

msg.write(12, "Hello world");

5. Copy data to a system-supplied buffer using objects (objects set the message format as well as content)

ImqString strText("Hello world");

msg.writeItem(strText);

Parent topic: Using C++

This build: January 26, 2011 11:58:02

Page 8 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc10230_

3. Reading messages

When receiving data, the application or the system can supply a suitable message buffer. The same buffer can

be used for both multiple transmission and multiple receipt for a given ImqMessage object. If the message

buffer is supplied automatically, it grows to accommodate whatever length of data is received. However, if the
application supplies the message buffer, it might not be big enough. Then either truncation or failure might

occur, depending on the options used for message receipt.

Incoming data can be accessed directly from the message buffer, in which case the data length indicates the

total amount of incoming data. Alternatively, incoming data can be read sequentially from the message buffer.
In this case, the data pointer addresses the next byte of incoming data, and the data pointer and data length

are updated each time data is read.

Items are pieces of a message, all in the user area of the message buffer, that need to be processed

sequentially and separately. Apart from regular user data, an item might be a dead-letter header or a trigger
message. Items are always associated with message formats; message formats are not always associated with

items.

There is a class of object for each item that corresponds to a recognizable WebSphere® MQ message format.

There is one for a dead-letter header and one for a trigger message. There is no class of object for user data.
That is, once the recognizable formats have been exhausted, processing the remainder is left to the application

program. Classes for user data can be written by specializing the ImqItem class.

The following example shows a message receipt that takes account of a number of potential items that can

precede the user data, in an imaginary situation. Non-item user data is defined as anything that occurs after
items that can be identified. An automatic buffer (the default) is used to hold an arbitrary amount of message

data.

ImqQueue queue ;

ImqMessage msg ;

if (queue.get(msg)) {

 /* Process all items of data in the message buffer. */

 do while (msg.dataLength()) {

 ImqBoolean bFormatKnown = FALSE ;

 /* There remains unprocessed data in the message buffer. */

 /* Determine what kind of item is next. */

 if (msg.formatIs(MQFMT_DEAD_LETTER_HEADER)) {

 ImqDeadLetterHeader header ;

 /* The next item is a dead-letter header. */

 /* For the next statement to work and return TRUE, */

 /* the correct class of object pointer must be supplied. */

 bFormatKnown = TRUE ;

 if (msg.readItem(header)) {

 /* The dead-letter header has been extricated from the */

 /* buffer and transformed into a dead-letter object. */

 /* The encoding and character set of the dead-letter */

 /* object itself are MQENC_NATIVE and MQCCSI_Q_MGR. */

 /* The encoding and character set from the dead-letter */

 /* header have been copied to the message attributes */

 /* to reflect any remaining data in the buffer. */

 /* Process the information in the dead-letter object. */

 /* Note that the encoding and character set have */

 /* already been processed. */

 ...

 }

 /* There might be another item after this, */

 /* or just the user data. */

 }

 if (msg.formatIs(MQFMT_TRIGGER)) {

Page 9 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

 ImqTrigger trigger ;

 /* The next item is a trigger message. */

 /* For the next statement to work and return TRUE, */

 /* the correct class of object pointer must be supplied. */

 bFormatKnown = TRUE ;

 if (msg.readItem(trigger)) {

 /* The trigger message has been extricated from the */

 /* buffer and transformed into a trigger object. */

 /* Process the information in the trigger object. */

 ...

 }

 /* There is usually nothing after a trigger message. */

 }

 if (msg.formatIs(FMT_USERCLASS)) {

 UserClass object ;

 /* The next item is an item of a user-defined class. */

 /* For the next statement to work and return TRUE, */

 /* the correct class of object pointer must be supplied. */

 bFormatKnown = TRUE ;

 if (msg.readItem(object)) {

 /* The user-defined data has been extricated from the */

 /* buffer and transformed into a user-defined object. */

 /* Process the information in the user-defined object. */

 ...

 }

 /* Continue looking for further items. */

 }

 if (! bFormatKnown) {

 /* There remains data that is not associated with a specific*/

 /* item class. */

 char * pszDataPointer = msg.dataPointer(); /* Address.*/

 int iDataLength = msg.dataLength(); /* Length. */

 /* The encoding and character set for the remaining data are */

 /* reflected in the attributes of the message object, even */

 /* if a dead-letter header was present. */

 ...

 }

 }

}

In this example, FMT_USERCLASS is a constant representing the 8-character format name associated with an

object of class UserClass, and is defined by the application.

UserClass is derived from the ImqItem class (see ImqItem), and implements the virtual copyOut and pasteIn

methods from that class.

The next two examples show code from the ImqDeadLetterHeader class (see ImqDeadLetterHeader). The first

example shows custom-encapsulated message-writing code.

// Insert a dead-letter header.

// Return TRUE if successful.

ImqBoolean ImqDeadLetterHeader :: copyOut (ImqMessage & msg) {

 ImqBoolean bSuccess ;

 if (msg.moreBytes(sizeof(omqdlh))) {

 ImqCache cacheData(msg); // Preserve original message content.

 // Note original message attributes in the dead-letter header.

 setEncoding(msg.encoding());

 setCharacterSet(msg.characterSet());

 setFormat(msg.format());

 // Set the message attributes to reflect the dead-letter header.

 msg.setEncoding(MQENC_NATIVE);

 msg.setCharacterSet(MQCCSI_Q_MGR);

 msg.setFormat(MQFMT_DEAD_LETTER_HEADER);

 // Replace the existing data with the dead-letter header.

Page 10 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

 msg.clearMessage();

 if (msg.write(sizeof(omqdlh), (char *) & omqdlh)) {

 // Append the original message data.

 bSuccess = msg.write(cacheData.messageLength(),

 cacheData.bufferPointer());

 } else {

 bSuccess = FALSE ;

 }

 } else {

 bSuccess = FALSE ;

 }

 // Reflect and cache error in this object.

 if (! bSuccess) {

 setReasonCode(msg.reasonCode());

 setCompletionCode(msg.completionCode());

 }

 return bSuccess ;

}

The second example shows custom-encapsulated message-reading code.

// Read a dead-letter header.

// Return TRUE if successful.

ImqBoolean ImqDeadLetterHeader :: pasteIn (ImqMessage & msg) {

 ImqBoolean bSuccess = FALSE ;

 // First check that the eye-catcher is correct.

 // This is also our guarantee that the "character set" is correct.

 if (ImqItem::structureIdIs(MQDLH_STRUC_ID, msg)) {

 // Next check that the "encoding" is correct, as the MQDLH

 // contains numeric data.

 if (msg.encoding() == MQENC_NATIVE) {

 // Finally check that the "format" is correct.

 if (msg.formatIs(MQFMT_DEAD_LETTER_HEADER)) {

 char * pszBuffer = (char *) & omqdlh ;

 // Transfer the MQDLH from the message and move pointer on.

 if (bSuccess = msg.read(sizeof(omdlh), pszBuffer)) {

 // Update the encoding, character set and format of the

 // message to reflect the remaining data.

 msg.setEncoding(encoding());

 msg.setCharacterSet(characterSet());

 msg.setFormat(format());

 } else {

 // Reflect the cache error in this object.

 setReasonCode(msg.reasonCode());

 setCompletionCode(msg.completionCode());

 }

 } else {

 setReasonCode(MQRC_INCONSISTENT_FORMAT);

 setCompletionCode(MQCC_FAILED);

 }

 } else {

 setReasonCode(MQRC_ENCODING_ERROR);

 setCompletionCode(MQCC_FAILED);

 {

 } else {

 setReasonCode(MQRC_STRUC_ID_ERROR);

 setCompletionCode(MQCC_FAILED);

 }

 return bSuccess ;

}

With an automatic buffer, the buffer storage is volatile. That is, buffer data might be held at a different physical

location after each get method invocation. Therefore, each time buffer data is referenced, use the

bufferPointer or dataPointer methods to access message data.

You might want a program to set aside a fixed area for receiving message data. In this case, invoke the

useEmptyBuffer method before using the get method.

Using a fixed, nonautomatic area limits messages to a maximum size, so it is important to consider the
MQGMO_ACCEPT_TRUNCATED_MSG option of the ImqGetMessageOptions object. If this option is not specified

Page 11 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

(the default), the MQRC_TRUNCATED_MSG_FAILED reason code can be expected. If this option is specified, the

MQRC_TRUNCATED_MSG_ACCEPTED reason code might be expected depending on the design of the
application.

The next example shows how a fixed area of storage can be used to receive messages:

char * pszBuffer = new char[100];

msg.useEmptyBuffer(pszBuffer, 100);

gmo.setOptions(MQGMO_ACCEPT_TRUNCATED_MSG);

queue.get(msg, gmo);

delete [] pszBuffer ;

In this code fragment, the buffer can always be addressed directly, with pszBuffer, as opposed to using the

bufferPointer method. However, it is better to use the dataPointer method for general-purpose access. The
application (not the ImqCache class object) must discard a user-defined (nonautomatic) buffer.

Attention: Specifying a null pointer and zero length with useEmptyBuffer does not nominate a fixed length

buffer of length zero as might be expected. This combination is actually interpreted as a request to ignore any

previous user-defined buffer, and instead revert to the use of an automatic buffer.

Parent topic: Using C++

This build: January 26, 2011 11:58:02

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc10240_

4. Writing a message to the dead-letter queue

A typical case of a multipart message is one containing a dead-letter header. The data from a message that
cannot be processed is appended to the dead-letter header.

ImqQueueManager mgr ; // The queue manager.

ImqQueue queueIn ; // Incoming message queue.

ImqQueue queueDead ; // Dead-letter message queue.

ImqMessage msg ; // Incoming and outgoing message.

ImqDeadLetterHeader header ; // Dead-letter header information.

// Retrieve the message to be rerouted.

queueIn.setConnectionReference(mgr);

queueIn.setName(MY_QUEUE);

queueIn.get(msg);

// Set up the dead-letter header information.

header.setDestinationQueueManagerName(mgr.name());

header.setDestinationQueueName(queueIn.name());

header.setPutApplicationName(/* ? */);

header.setPutApplicationType(/* ? */);

header.setPutDate(/* TODAY */);

header.setPutTime(/* NOW */);

header.setDeadLetterReasonCode(FB_APPL_ERROR_1234);

// Insert the dead-letter header information. This will vary

// the encoding, character set and format of the message.

// Message data is moved along, past the header.

msg.writeItem(header);

// Send the message to the dead-letter queue.

queueDead.setConnectionReference(mgr);

queueDead.setName(mgr.deadLetterQueueName());

queueDead.put(msg);

Parent topic: Using C++

This build: January 26, 2011 11:58:02

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

Page 12 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

This topic's URL:

uc10250_

5. Writing a message to the IMS bridge

Messages sent to the WebSphere® MQ-IMS bridge might use a special header. The IMS™ bridge header is

prefixed to regular message data.

ImqQueueManager mgr; // The queue manager.

ImqQueue queueBridge; // IMS bridge message queue.

ImqMessage msg; // Outgoing message.

ImqIMSBridgeHeader header; // IMS bridge header.

// Set up the message.

//

// Here we are constructing a message with format

// MQFMT_IMS_VAR_STRING, and appropriate data.

//

msg.write(2, /* ? */); // Total message length.

msg.write(2, /* ? */); // IMS flags.

msg.write(7, /* ? */); // Transaction code.

msg.write(/* ? */, /* ? */); // String data.

msg.setFormat(MQFMT_IMS_VAR_STRING); // The format attribute.

// Set up the IMS bridge header information.

//

// The reply-to-format is often specified.

// Other attributes can be specified, but all have default values.

//

header.setReplyToFormat(/* ? */);

// Insert the IMS bridge header into the message.

//

// This will:

// 1) Insert the header into the message buffer, before the existing

// data.

// 2) Copy attributes out of the message descriptor into the header,

// for example the IMS bridge header format attribute will now

// be set to MQFMT_IMS_VAR_STRING.

// 3) Set up the message attributes to describe the header, in

// particular setting the message format to MQFMT_IMS.

//

msg.writeItem(header);

// Send the message to the IMS bridge queue.

//

queueBridge.setConnectionReference(mgr);

queueBridge.setName(/* ? */);

queueBridge.put(msg);

Parent topic: Using C++

This build: January 26, 2011 11:58:02

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc10260_

6. Writing a message to the CICS bridge

Messages sent to WebSphere® MQ for z/OS® using the CICS® bridge require a special header. The CICS
bridge header is prefixed to regular message data.

ImqQueueManager mgr ; // The queue manager.

ImqQueue queueIn ; // Incoming message queue.

ImqQueue queueBridge ; // CICS bridge message queue.

ImqMessage msg ; // Incoming and outgoing message.

ImqCicsBridgeHeader header ; // CICS bridge header information.

// Retrieve the message to be forwarded.

queueIn.setConnectionReference(mgr);

queueIn.setName(MY_QUEUE);

Page 13 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

queueIn.get(msg);

// Set up the CICS bridge header information.

// The reply-to format is often specified.

// Other attributes can be specified, but all have default values.

header.setReplyToFormat(/* ? */);

// Insert the CICS bridge header information. This will vary

// the encoding, character set and format of the message.

// Message data is moved along, past the header.

msg.writeItem(header);

// Send the message to the CICS bridge queue.

queueBridge.setConnectionReference(mgr);

queueBridge.setName(/* ? */);

queueBridge.put(msg);

Parent topic: Using C++

This build: January 26, 2011 11:58:02

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc10270_

7. Writing a message to the work header

Messages sent to WebSphere® MQ for z/OS®, which are destined for a queue managed by the z/OS Workload

Manager, require a special header. The work header is prefixed to regular message data.

ImqQueueManager mgr ; // The queue manager.

ImqQueue queueIn ; // Incoming message queue.

ImqQueue queueWLM ; // WLM managed queue.

ImqMessage msg ; // Incoming and outgoing message.

ImqWorkHeader header ; // Work header information

// Retrieve the message to be forwarded.

queueIn.setConnectionReference(mgr);

queueIn.setName(MY_QUEUE);

queueIn.get(msg);

// Insert the Work header information. This will vary

// the encoding, character set and format of the message.

// Message data is moved along, past the header.

msg.writeItem(header);

// Send the message to the WLM managed queue.

queueWLM.setConnectionReference(mgr);

queueWLM.setName(/* ? */);

queueWLM.put(msg);

Parent topic: Using C++

This build: January 26, 2011 11:58:03

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc10280_

8. Sample programs

The sample programs are:

� HELLO WORLD (imqwrld.cpp)

� SPUT (imqsput.cpp) and SGET (imqsget.cpp)

� DPUT (imqdput.cpp)

The sample programs are located in the directories shown in Table 1.

Page 14 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

Sample program HELLO WORLD (imqwrld.cpp)

Sample programs SPUT (imqsput.cpp) and SGET (imqsget.cpp)

Sample program DPUT (imqdput.cpp)

Parent topic: Using C++

This build: January 26, 2011 11:58:03

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc10290_

8.1. Sample program HELLO WORLD (imqwrld.cpp)

This program shows how to put and get a regular datagram (C structure) using the ImqMessage class. This

sample uses few method invocations, taking advantage of implicit method invocations such as open, close,

and disconnect.

On all platforms except z/OS

On z/OS

Sample code

Parent topic: Sample programs

This build: January 26, 2011 11:58:03

Notices | Trademarks | Downloads | Library | Support | Feedback

Table 1. Location of sample programs

Environment Directory containing source Directory containing built
programs

AIX <mqmtop>/samp <mqmtop>/samp/bin/ia

i5/OS /QIBM/ProdData/mqm/samp/ (see note 1)

HP-UX <mqmtop>/samp <mqmtop>/samp/bin/ah

(see note 2)

z/OS thlqual.SCSQCPPS None

Solaris <mqmtop>/samp <mqmtop>/samp/bin/as

Linux <mqmtop>/samp <mqmtop>/samp/bin/

Windows <mqmtop>\tools\cplus\samples <mqmtop>\tools\cplus\

samples\bin\vn
(see note 3)

Notes:

1. Programs built using the ILE C++ compiler for i5/OS® are in the library QMQM. The include
files are in /QIBM/ProdData/mqm/inc.

2. Programs built using the HP ANSI C++ compiler are found in directory

<mqmtop>/samp/bin/ah. For further information, see HP-UX

3. Programs built using the Microsoft Visual Studio are found in

<mqmtop>\tools\cplus\samples\bin\vn. For further information about these compilers, see
Windows .

Page 15 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc10300_

8.1.1. On all platforms except z/OS®

If you are using a server connection to WebSphere® MQ:

1. Run imqwrlds to use the existing default queue SYSTEM.DEFAULT.LOCAL.QUEUE.

2. Run imqwrlds SYSTEM.DEFAULT.MODEL.QUEUE to use a temporary dynamically assigned queue.

For details of executing C++ programs, see Building WebSphere MQ C++ programs.

Note:

1. If you are using a client connection to WebSphere MQ, either:

a. Set up the MQSERVER environment variable (see WebSphere MQ Clients for more information) and

run imqwrldc, or

b. Run imqwrldc queue-name queue-manager-name channel-definition where a typical channel-

definition might be SYSTEM.DEF.SVRCONN/TCP/hostname (1414)

Parent topic: Sample program HELLO WORLD (imqwrld.cpp)

This build: January 26, 2011 11:58:03

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc10310_

8.1.2. On z/OS®

Construct and run a batch job, using the sample JCL imqwrldr.

Parent topic: Sample program HELLO WORLD (imqwrld.cpp)

This build: January 26, 2011 11:58:03

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc10320_

8.1.3. Sample code

Here is the code for the HELLO WORLD sample program.

extern "C" {

#include <stdio.h>

}

#include <imqi.hpp> // WebSphere MQ C++

#define EXISTING_QUEUE "SYSTEM.DEFAULT.LOCAL.QUEUE"

#define BUFFER_SIZE 12

static char gpszHello[BUFFER_SIZE] = "Hello world" ;

int main (int argc, char * * argv) {

 ImqQueueManager manager ;

 int iReturnCode = 0 ;

 // Connect to the queue manager.

 if (argc > 2) {

 manager.setName(argv[2]);

 }

 if (manager.connect()) {

 ImqQueue * pqueue = new ImqQueue ;

Page 16 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

 ImqMessage * pmsg = new ImqMessage ;

 // Identify the queue which will hold the message.

 pqueue -> setConnectionReference(manager);

 if (argc > 1) {

 pqueue -> setName(argv[1]);

 // The named queue can be a model queue, which will result in

 // the creation of a temporary dynamic queue, which will be

 // destroyed as soon as it is closed. Therefore we must ensure

 // that such a queue is not automatically closed and reopened.

 // We do this by setting open options which will avoid the need

 // for closure and reopening.

 pqueue -> setOpenOptions(MQOO_OUTPUT │ MQOO_INPUT_SHARED │
 MQOO_INQUIRE);

 } else {

 pqueue -> setName(EXISTING_QUEUE);

 // The existing queue is not a model queue, and will not be

 // destroyed by automatic closure and reopening. Therefore we

 // will let the open options be selected on an as-needed basis.

 // The queue will be opened implicitly with an output option

 // during the "put", and then implicitly closed and reopened

 // with the addition of an input option during the "get".

 }

 // Prepare a message containing the text "Hello world".

 pmsg -> useFullBuffer(gpszHello , BUFFER_SIZE);

 pmsg -> setFormat(MQFMT_STRING);

 // Place the message on the queue, using default put message

 // Options.

 // The queue will be automatically opened with an output option.

 if (pqueue -> put(* pmsg)) {

 ImqString strQueue(pqueue -> name());

 // Discover the name of the queue manager.

 ImqString strQueueManagerName(manager.name());

 printf("The queue manager name is %s.\n",

 (char *)strQueueManagerName);

 // Show the name of the queue.

 printf("Message sent to %s.\n", (char *)strQueue);

 // Retrieve the data message just sent ("Hello world" expected)

 // from the queue, using default get message options. The queue

 // is automatically closed and reopened with an input option

 // if it is not already open with an input option. We get the

 // message just sent, rather than any other message on the

 // queue, because the "put" will have set the ID of the message

 // so, as we are using the same message object, the message ID

 // acts as in the message object, a filter which says that we

 // are interested in a message only if it has this

 // particular ID.

 if (pqueue -> get(* pmsg)) {

 int iDataLength = pmsg -> dataLength();

 // Show the text of the received message.

 printf("Message of length %d received, ", iDataLength);

 if (pmsg -> formatIs(MQFMT_STRING)) {

 char * pszText = pmsg -> bufferPointer();

 // If the last character of data is a null, then we can

 // assume that the data can be interpreted as a text

 // string.

 if (! pszText[iDataLength - 1]) {

 printf("text is \"%s\".\n", pszText);

 } else {

 printf("no text.\n");

 }

 } else {

 printf("non-text message.\n");

Page 17 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

 }

 } else {

 printf("ImqQueue::get failed with reason code %ld\n",

 pqueue -> reasonCode());

 iReturnCode = (int)pqueue -> reasonCode();

 }

 } else {

 printf("ImqQueue::open/put failed with reason code %ld\n",

 pqueue -> reasonCode());

 iReturnCode = (int)pqueue -> reasonCode();

 }

 // Deletion of the queue will ensure that it is closed.

 // If the queue is dynamic then it will also be destroyed.

 delete pqueue ;

 delete pmsg ;

 } else {

 printf("ImqQueueManager::connect failed with reason code %ld\n"

 manager.reasonCode());

 iReturnCode = (int)manager.reasonCode();

 }

 // Destruction of the queue manager ensures that it is

 // disconnected. If the queue object were still available

 // and open (which it is not), the queue would be closed

 // prior to disconnection.

 return iReturnCode ;

}

Parent topic: Sample program HELLO WORLD (imqwrld.cpp)

This build: January 26, 2011 11:58:03

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc10330_

8.2. Sample programs SPUT (imqsput.cpp) and SGET (imqsget.cpp)

These programs place messages to, and retrieve messages from, a named queue.

On all platforms except z/OS

On z/OS

Parent topic: Sample programs

This build: January 26, 2011 11:58:03

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc10340_

8.2.1. On all platforms except z/OS®

1. Run imqsputs queue-name.

2. Type in lines at the console, which are placed with WebSphere® MQ as messages.

3. Enter a null line to end the input.

4. Run imqsgets queue-name to retrieve all the lines and display them at the console.

Parent topic: Sample programs SPUT (imqsput.cpp) and SGET (imqsget.cpp)

This build: January 26, 2011 11:58:03

Page 18 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc10350_

8.2.2. On z/OS®

1. Construct and run a batch job using the sample JCL imqsputr. The messages are read from the SYSIN
data set.

2. Construct and run a batch job using the sample JCL imqsgetr. The messages are retrieved from the

queue and sent to the SYSPRINT data set.

These samples show the use of the following classes:

� ImqError (see ImqError)

� ImqMessage (see ImqMessage)

� ImqObject (see ImqObject)

� ImqQueue (see ImqQueue)

� ImqQueueManager (see ImqQueueManager)

Parent topic: Sample programs SPUT (imqsput.cpp) and SGET (imqsget.cpp)

This build: January 26, 2011 11:58:03

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc10360_

8.3. Sample program DPUT (imqdput.cpp)

This is a distribution list program that puts messages to a distribution list consisting of two queues. DPUT shows
the use of the ImqDistributionList class (see ImqDistributionList). This sample is not supported on z/OS®.

1. Run imqdputs queue-name-1 queue-name-2 to place messages on the two named queues.

2. Run imqsgets queue-name-1 and imqsgets queue-name-2 to retrieve the messages from those queues.

Parent topic: Sample programs

This build: January 26, 2011 11:58:03

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc10370_

9. Implicit operations

Several operations can occur implicitly, just in time, to satisfy the prerequisite conditions for the successful
execution of a method. These implicit operations are connect, open, reopen, close, and disconnect. You can

control connect and open implicit behavior using class attributes.

Connect

Open

Reopen

Close

Disconnect

Page 19 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

Parent topic: Using C++

This build: January 26, 2011 11:58:05

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc10380_

9.1. Connect

An ImqQueueManager object is connected automatically for any method that results in any call to the MQI (see

MQI cross reference).

Parent topic: Implicit operations

This build: January 26, 2011 11:58:05

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc10390_

9.2. Open

An ImqObject object is opened automatically for any method that results in an MQGET, MQINQ, MQPUT, or
MQSET call. Use the openFor method to specify one or more relevant open option values.

Parent topic: Implicit operations

This build: January 26, 2011 11:58:05

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc10400_

9.3. Reopen

An ImqObject is reopened automatically for any method that results in an MQGET, MQINQ, MQPUT, or MQSET

call, where the object is already open, but the existing open options are not adequate to allow the MQI call to

be successful. The object is temporarily closed using a temporary close options value of MQCO_NONE. Use the

openFor method to add a relevant open option.

Reopen can cause problems in specific circumstances:

� A temporary dynamic queue is destroyed when it is closed and can never be reopened.

� A queue opened for exclusive input (either explicitly or by default) might be accessed by others in the

window of opportunity during closure and reopening.

� A browse cursor position is lost when a queue is closed. This situation does not prevent closure and

reopening, but prevents subsequent use of the cursor until MQGMO_BROWSE_FIRST is used again.

� The context of the last message retrieved is lost when a queue is closed.

If any of these circumstances occur or can be foreseen, avoid reopens by explicitly setting adequate open
options before an object is opened (either explicitly or implicitly).

Setting the open options explicitly for complex queue-handling situations results in better performance and

avoids the problems associated with the use of reopen.

Parent topic: Implicit operations

This build: January 26, 2011 11:58:05

Notices | Trademarks | Downloads | Library | Support | Feedback

Page 20 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc10410_

9.4. Close

An ImqObject is closed automatically at any point where the object state would no longer be viable, for example

if an ImqObject connection reference is severed, or if an ImqObject object is destroyed.

Parent topic: Implicit operations

This build: January 26, 2011 11:58:05

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc10420_

9.5. Disconnect

An ImqQueueManager is disconnected automatically at any point where the connection would no longer be

viable, for example if an ImqObject connection reference is severed, or if an ImqQueueManager object is

destroyed.

Parent topic: Implicit operations

This build: January 26, 2011 11:58:05

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc10430_

10. Binary and character strings

Methods that set character (char *) data always take a copy of the data, but some methods might truncate the

copy, because certain limits are imposed by WebSphere® MQ.

The ImqString class (see ImqString) encapsulates the traditional char * and provides support for:

� Comparison

� Concatenation

� Copying

� Integer-to-text and text-to-integer conversion

� Token (word) extraction

� Uppercase translation

The ImqBinary class (see ImqBinary) encapsulates binary byte arrays of arbitrary size. In particular it is used to
hold the following attributes:

� accounting token (MQBYTE32)

� connection tag (MQBYTE128)

� correlation id (MQBYTE24)

� facility token (MQBYTE8)

� group id (MQBYTE24)

� instance id (MQBYTE24)

� message id (MQBYTE24)

� message token (MQBYTE16)

� transaction instance id (MQBYTE16)

Where these attributes belong to objects of the following classes:

� ImqCICSBridgeHeader (see ImqCICSBridgeHeader)

Page 21 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

� ImqGetMessageOptions (see ImqGetMessageOptions)

� ImqIMSBridgeHeader (see ImqIMSBridgeHeader)

� ImqMessageTracker (see ImqMessageTracker)

� ImqQueueManager (see ImqQueueManager)

� ImqReferenceHeader (see ImqReferenceHeader)

� ImqWorkHeader (see ImqWorkHeader)

The ImqBinary class also provides support for comparison and copying.
Parent topic: Using C++

This build: January 26, 2011 11:58:05

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc10440_

11. Unsupported functions

The WebSphere® MQ C++ classes and methods are independent of WebSphere MQ platform. They might
therefore offer some functions that are not supported on certain platforms. If you try to use a function on a

platform on which it is not supported, the function is detected by WebSphere MQ but not by the C++ language

bindings. WebSphere MQ reports the error to your program, like any other MQI error.

Parent topic: Using C++

This build: January 26, 2011 11:58:05

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc10450_

12. C++ language considerations

This chapter details the aspects of the C++ language usage and conventions that you must consider when
writing application programs that use the Message Queue Interface (MQI).

Header files

Methods

Attributes

Data types

Manipulating binary strings

Manipulating character strings

Initial state of objects

Using C from C++

Notational conventions

Parent topic: Using C++

This build: January 26, 2011 11:58:05

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

Page 22 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

This topic's URL:

uc10460_

12.1. Header files

Header files are provided as part of the definition of the MQI, to help you write WebSphere® MQ application

programs in the C++ language. These header files are summarized in the following table.

To improve the portability of applications, code the name of the header file in lowercase on the #include

preprocessor directive:

#include <imqi.hpp> // C++ classes

Parent topic: C++ language considerations

This build: January 26, 2011 11:58:05

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc10470_

12.2. Methods

Parameters that are const are for input only. Parameters whose signature includes a pointer (*) or a reference

(&) are passed by reference. Return values that do not include a pointer or a reference are passed by value; in

the case of returned objects, these are new entities that become the responsibility of the caller.

Some method signatures include items that take a default if not specified. Such items are always at the end of

signatures and are denoted by an equal sign (=); the value after the equal sign indicates the default value that

applies if the item is omitted.

All method names in these classes are mixed case, beginning with lowercase. Each word, except the first within
a method name, begins with a capital letter. Abbreviations are not used unless their meaning is widely

understood. Abbreviations used include id (for identity) and sync (for synchronization).

Parent topic: C++ language considerations

This build: January 26, 2011 11:58:05

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc10480_

12.3. Attributes

Object attributes are accessed using set and get methods. A set method begins with the word set; a get

method has no prefix. If an attribute is read-only, there is no set method.

Attributes are initialized to valid states during object construction, and the state of an object is always
consistent.

Parent topic: C++ language considerations

This build: January 26, 2011 11:58:05

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

Table 1. C/C++ header files

Filename Contents

IMQI.HPP C++ MQI Classes (includes CMQC.H and IMQTYPE.H)

IMQTYPE.H Defines the ImqBoolean data type

CMQC.H MQI data structures and manifest constants

Page 23 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

This topic's URL:

uc10490_

12.4. Data types

All data types are defined by the C typedef statement. The type ImqBoolean is defined as unsigned

character in IMQTYPE.H and can have the values TRUE and FALSE. You can use ImqBinary class objects in
place of MQBYTE arrays, and ImqString class objects in place of char *. Many methods return objects instead

of char or MQBYTE pointers to ease storage management. All return values become the responsibility of the

caller, and, in the case of a returned object, the storage can be easily disposed of using delete.

Elementary data types

Parent topic: C++ language considerations

This build: January 26, 2011 11:58:05

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc10500_

12.4.1. Elementary data types

The data type ImqBoolean is represented by typedef unsigned char ImqBoolean.

Parent topic: Data types

This build: January 26, 2011 11:58:05

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc10510_

12.5. Manipulating binary strings

Strings of binary data are declared as objects of the ImqBinary class. Objects of this class can be copied,

compared, and set using the familiar C operators. For example:

#include <imqi.hpp> // C++ classes

ImqMessage message ;

ImqBinary id, correlationId ;

MQBYTE24 byteId ;

correlationId.set(byteId, sizeof(byteId)); // Set.

id = message.id(); // Assign.

if (correlationId == id) { // Compare.

 ...

Parent topic: C++ language considerations

This build: January 26, 2011 11:58:05

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc10520_

12.6. Manipulating character strings

When character data is accepted or returned using MQI C++ methods, the character data is always null-

terminated and can be of any length. However, certain limits are imposed by WebSphere® MQ that might result
in information being truncated. To ease storage management, character data is often returned in ImqString

class objects. These objects can be cast to char * using the conversion operator provided, and used for read-

Page 24 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

only purposes in many situations where a char * is required.

Note: The char * conversion result from an ImqString class object might be null.

Although C functions can be used on the char *, there are special methods of the ImqString class that are
preferable; operator length() is the equivalent of strlen and storage() indicates the memory allocated for

the character data.

Parent topic: C++ language considerations

This build: January 26, 2011 11:58:06

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc10530_

12.7. Initial state of objects

All objects have a consistent initial state reflected by their attributes. The initial values are defined in the class

descriptions.

Parent topic: C++ language considerations

This build: January 26, 2011 11:58:06

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc10540_

12.8. Using C from C++

When using C functions from a C++ program, include headers as in the following example:

extern "C" {

#include <string.h>

}

Parent topic: C++ language considerations

This build: January 26, 2011 11:58:06

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc10550_

12.9. Notational conventions

This shows how to invoke the methods and declare the parameters:

ImqBoolean ImqQueue::get(ImqMessage & msg)

Declare and use the parameters as follows:

ImqQueueManager * pmanager ; // Queue manager

ImqQueue * pqueue ; // Message queue

ImqMessage msg ; // Message

char szBuffer[100]; // Buffer for message data

pmanager = new ImqQueueManager ;

pqueue = new ImqQueue ;

pqueue -> setName("myreplyq");

pqueue -> setConnectionReference(pmanager);

msg.useEmptyBuffer(szBuffer, sizeof(szBuffer));

Page 25 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

if (pqueue -> get(msg)) {

 long lDataLength = msg.dataLength();

 ...

}

Parent topic: C++ language considerations

This build: January 26, 2011 11:58:06

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc10560_

13. WebSphere MQ C++ classes

The WebSphere® MQ C++ classes encapsulate the WebSphere MQ Message Queue Interface (MQI). There is a
single C++ header file, imqi.hpp, which covers all of these classes.

For each class, the following information is shown:

Class hierarchy diagram

A class diagram showing the class in its inheritance relation to its immediate parent classes, if any.

Other relevant classes

Document links to other relevant classes, such as parent classes, and the classes of objects used in method

signatures.

Object attributes

Attributes of the class. These are in addition to those attributes defined for any parent classes. Many
attributes reflect WebSphere MQ data-structure members (see MQI cross reference). For detailed

descriptions, see the WebSphere MQ Application Programming Guide.

Constructors

Signatures of the special methods used to create an object of the class.

Object methods (public)

Signatures of methods that require an instance of the class for their operation, and that have no usage

restrictions.

Where it applies, the following information is also shown:

Class methods (public)

Signatures of methods that do not require an instance of the class for their operation, and that have no usage
restrictions.

Overloaded (parent class) methods

Signatures of those virtual methods that are defined in parent classes, but exhibit different, polymorphic,

behavior for this class.

Object methods (protected)

Signatures of methods that require an instance of the class for their operation, and are reserved for use by

the implementations of derived classes. This section is of interest only to class writers, as opposed to class
users.

Object data (protected)

Implementation details for object instance data available to the implementations of derived classes. This

section is of interest only to class writers, as opposed to class users.

Reason codes

MQRC_* values (see WebSphere MQ Messages) that can be expected from those methods that fail. For an

exhaustive list of reason codes that can occur for an object of a given class, consult the parent class
documentation. The documented list of reason codes for a given class does not include the reason codes for

parent classes.

Note:

1. Objects of these classes are not thread-safe. This ensures optimal performance, but take care not to

access any given object from more than one thread.

Page 26 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

2. It is recommended that, for a multithreaded program, a separate ImqQueueManager object is used for

each thread. Each manager object must have its own independent collection of other objects, ensuring

that objects in different threads are isolated from one another.

The classes are:

ImqAuthenticationRecord

ImqBinary

ImqCache

ImqChannel

ImqCICSBridgeHeader

ImqDeadLetterHeader

ImqDistributionList

ImqError

ImqGetMessageOptions

ImqHeader

ImqIMSBridgeHeader

ImqItem

ImqMessage

ImqMessageTracker

ImqNamelist

ImqObject

ImqProcess

ImqPutMessageOptions

ImqQueue

ImqQueueManager

ImqReferenceHeader

ImqString

ImqTrigger

ImqWorkHeader

Parent topic: Using C++

This build: January 26, 2011 11:58:06

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc10570_

Page 27 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

13.1. ImqAuthenticationRecord

Figure 1. ImqAuthenticationRecord class

This class encapsulates an authentication information record (MQAIR) for use during execution of the

ImqQueueManager::connect method, for custom SSL client connections. See the description of that method for
more details. This class is not available on the z/OS® platform.

Other relevant classes

ImqAuthenticationRecord - object attributes

Constructors

Object methods (public)

Object methods (protected)

Parent topic: WebSphere MQ C++ classes

This build: January 26, 2011 11:58:06

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc10580_

13.1.1. Other relevant classes

� ImqBoolean (see Elementary data types)

� ImqError (see ImqError)

� ImqQueueManager (see ImqQueueManager)

� ImqString (see ImqString)

Parent topic: ImqAuthenticationRecord

This build: January 26, 2011 11:58:06

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc10590_

13.1.2. ImqAuthenticationRecord - object attributes

Page 28 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

connection name

The name of the connection to the LDAP CRL server. This is the IP address or DNS name, followed optionally
by the port number, in parentheses.

connection reference

A reference to an ImqQueueManager object that provides the required connection to a (local) queue

manager. The initial value is zero. Do not confuse this with the queue manager name that identifies a queue

manager (possibly remote) for a named queue.

next authentication record

Next object of this class, in no particular order, having the same connection reference as this object. The
initial value is zero.

password

A password supplied for connection authentication to the LDAP CRL server.

previous authentication record

Previous object of this class, in no particular order, having the same connection reference as this object.

The initial value is zero.

type

The type of authentication information contained in the record.

user name

A user identifier supplied for authorization to the LDAP CRL server.

Parent topic: ImqAuthenticationRecord

This build: January 26, 2011 11:58:06

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc10600_

13.1.3. Constructors

ImqAuthenticationRecord();

The default constructor.

Parent topic: ImqAuthenticationRecord

This build: January 26, 2011 11:58:06

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc10610_

13.1.4. Object methods (public)

void operator = (const ImqAuthenticationRecord & air);

Copies instance data from air, replacing the existing instance data.

const ImqString & connectionName () const ;

Returns the connection name.

void setConnectionName (const ImqString & name);

Sets the connection name.

void setConnectionName (const char * name = 0);

Sets the connection name.

ImqQueueManager * connectionReference () const ;

Returns the connection reference.

void setConnectionReference (ImqQueueManager & manager);

Page 29 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

Sets the connection reference.

void setConnectionReference (ImqQueueManager * manager = 0);

Sets the connection reference.

void copyOut (MQAIR * pAir);

Copies instance data to pAir, replacing the existing instance data. This might involve allocating dependent

storage.

void clear (MQAIR * pAir);

Clears the structure and releases dependent storage referenced by pAir.

ImqAuthenticationRecord * nextAuthenticationRecord () const ;

Returns the next authentication record.

const ImqString & password () const ;

Returns the password.

void setPassword (const ImqString & password);

Sets the password.

void setPassword (const char * password = 0);

Sets the password.

ImqAuthenticationRecord * previousAuthenticationRecord () const ;

Returns the previous authentication record.

MQLONG type () const ;

Returns the type.

void setType (const MQLONG type);

Sets the type.

const ImqString & userName () const ;

Returns the user name.

void setUserName (const ImqString & name);

Sets the user name.

void setUserName (const char * name = 0);

Sets the user name.

Parent topic: ImqAuthenticationRecord

This build: January 26, 2011 11:58:06

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc10620_

13.1.5. Object methods (protected)

void setNextAuthenticationRecord (ImqAuthenticationRecord * pAir = 0);

Sets the next authentication record.

Attention: Use this function only if you are sure that it will not break the authentication record list.

void setPreviousAuthenticationRecord (ImqAuthenticationRecord * pAir = 0);

Sets the previous authentication record.

Attention: Use this function only if you are sure that it will not break the authentication record list.

Parent topic: ImqAuthenticationRecord

This build: January 26, 2011 11:58:06

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

Page 30 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

uc10630_

13.2. ImqBinary

Figure 1. ImqBinary class

This class encapsulates a binary byte array that can be used for ImqMessage accounting token, correlation

id, and message id values. It allows easy assignment, copying, and comparison.

Other relevant classes

Object attributes

Constructors

Overloaded ImqItem methods

Object methods (public)

Object methods (protected)

Reason codes

Parent topic: WebSphere MQ C++ classes

This build: January 26, 2011 11:58:06

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc10640_

13.2.1. Other relevant classes

� ImqItem (see ImqItem)

� ImqMessage (see ImqMessage)

Parent topic: ImqBinary

This build: January 26, 2011 11:58:06

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc10650_

Page 31 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

13.2.2. Object attributes

data

An array of bytes of binary data. The initial value is null.

data length

The number of bytes. The initial value is zero.

data pointer

The address of the first byte of the data. The initial value is zero.

Parent topic: ImqBinary

This build: January 26, 2011 11:58:06

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc10660_

13.2.3. Constructors

ImqBinary();

The default constructor.

ImqBinary(const ImqBinary & binary);

The copy constructor.

ImqBinary(const void * data, const size_t length);

Copies length bytes from data.

Parent topic: ImqBinary

This build: January 26, 2011 11:58:07

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc10670_

13.2.4. Overloaded ImqItem methods

virtual ImqBoolean copyOut(ImqMessage & msg);

Copies the data to the message buffer, replacing any existing content. Sets the msg format to

MQFMT_NONE.

See the ImqItem class method description for further details.

virtual ImqBoolean pasteIn(ImqMessage & msg);

Sets the data by transferring the remaining data from the message buffer, replacing the existing data.

To be successful, the ImqMessage format must be MQFMT_NONE.

See the ImqItem class method description for further details.

Parent topic: ImqBinary

This build: January 26, 2011 11:58:07

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc10680_

13.2.5. Object methods (public)

Page 32 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

void operator = (const ImqBinary & binary);

Copies bytes from binary.

ImqBoolean operator == (const ImqBinary & binary);

Compares this object with binary. It returns FALSE if not equal and TRUE otherwise. The objects are equal if

they have the same data length and the bytes match.

ImqBoolean copyOut(void * buffer, const size_t length, const char pad = 0);

Copies up to length bytes from the data pointer to buffer. If the data length is insufficient, the remaining

space in buffer is filled with pad bytes. buffer can be zero if length is also zero. length must not be negative.

It returns TRUE if successful.

size_t dataLength() const ;

Returns the data length.

ImqBoolean setDataLength(const size_t length);

Sets the data length. If the data length is changed as a result of this method, the data in the object is

uninitialized. It returns TRUE if successful.

void * dataPointer() const ;

Returns the data pointer.

ImqBoolean isNull() const ;

Returns TRUE if the data length is zero, or if all the data bytes are zero. Otherwise it returns FALSE.

ImqBoolean set(const void * buffer, const size_t length);

Copies length bytes from buffer. It returns TRUE if successful.

Parent topic: ImqBinary

This build: January 26, 2011 11:58:07

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc10690_

13.2.6. Object methods (protected)

void clear();

Reduces the data length to zero.

Parent topic: ImqBinary

This build: January 26, 2011 11:58:07

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc10700_

13.2.7. Reason codes

� MQRC_NO_BUFFER

� MQRC_STORAGE_NOT_AVAILABLE

� MQRC_INCONSISTENT_FORMAT

Parent topic: ImqBinary

This build: January 26, 2011 11:58:07

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc10710_

Page 33 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

13.3. ImqCache

Figure 1. ImqCache class

Use this class to hold or marshal data in memory. You can nominate a buffer of memory of fixed size, or the

system can provide a flexible amount of memory automatically. This class relates to the MQI calls listed in Table
1.

Other relevant classes

Object attributes

Constructors

Object methods (public)

Reason codes

Parent topic: WebSphere MQ C++ classes

This build: January 26, 2011 11:58:07

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc10720_

13.3.1. Other relevant classes

� ImqError (see ImqError).

Parent topic: ImqCache

This build: January 26, 2011 11:58:07

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc10730_

13.3.2. Object attributes

automatic buffer

Indicates whether buffer memory is managed automatically by the system (TRUE) or is supplied by the user

(FALSE). It is initially set to TRUE.

Page 34 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

This attribute is not set directly. It is set indirectly using either the useEmptyBuffer or the useFullBuffer

method.

If user storage is supplied, this attribute is FALSE, buffer memory cannot grow, and buffer overflow errors can

occur. The address and length of the buffer remain constant.

If user storage is not supplied, this attribute is TRUE, and buffer memory can grow incrementally to

accommodate an arbitrary amount of message data. However, when the buffer grows, the address of the
buffer might change, so be careful when using the buffer pointer and data pointer.

buffer length

The number of bytes of memory in the buffer. The initial value is zero.

buffer pointer

The address of the buffer memory. The initial value is null.

data length

The number of bytes succeeding the data pointer. This must be equal to or less than the message length.

The initial value is zero.

data offset

The number of bytes preceding the data pointer. This must be equal to or less than the message length.

The initial value is zero.

data pointer

The address of the part of the buffer that is to be written to or read from next. The initial value is null.

message length

The number of bytes of significant data in the buffer. The initial value is zero.

Parent topic: ImqCache

This build: January 26, 2011 11:58:07

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc10740_

13.3.3. Constructors

ImqCache();

The default constructor.

ImqCache(const ImqCache & cache);

The copy constructor.

Parent topic: ImqCache

This build: January 26, 2011 11:58:07

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc10750_

13.3.4. Object methods (public)

void operator = (const ImqCache & cache);

Copies up to message length bytes of data from the cache object to the object. If automatic buffer is

FALSE, the buffer length must already be sufficient to accommodate the copied data.

ImqBoolean automaticBuffer() const ;

Returns the automatic buffer value.

size_t bufferLength() const ;

Page 35 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

Returns the buffer length.

char * bufferPointer() const ;

Returns the buffer pointer.

void clearMessage();

Sets the message length and data offset to zero.

size_t dataLength() const ;

Returns the data length.

size_t dataOffset() const ;

Returns the data offset.

ImqBoolean setDataOffset(const size_t offset);

Sets the data offset. The message length is increased if necessary to ensure that it is no less than the

data offset. This method returns TRUE if successful.

char * dataPointer() const ;

Returns a copy of the data pointer.

size_t messageLength() const ;

Returns the message length.

ImqBoolean setMessageLength(const size_t length);

Sets the message length. Increases the buffer length if necessary to ensure that the message length is

no greater than the buffer length. Reduces the data offset if necessary to ensure that it is no greater than

the message length. It returns TRUE if successful.

ImqBoolean moreBytes(const size_t bytes-required);

Assures that bytes-required more bytes are available (for writing) between the data pointer and the end of

the buffer. It returns TRUE if successful.

If automatic buffer is TRUE, more memory is acquired as required; otherwise, the buffer length must

already be adequate.

ImqBoolean read(const size_t length, char * & external-buffer);

Copies length bytes, from the buffer starting at the data pointer position, into the external-buffer. After the

data has been copied, the data offset is increased by length. This method returns TRUE if successful.

ImqBoolean resizeBuffer(const size_t length);

Varies the buffer length, provided that automatic buffer is TRUE. This is achieved by reallocating the

buffer memory. Up to message length bytes of data from the existing buffer are copied to the new one. The
maximum number copied is length bytes. The buffer pointer is changed. The message length and data

offset are preserved as closely as possible within the confines of the new buffer. It returns TRUE if

successful, and FALSE if automatic buffer is FALSE.

Note: This method can fail with MQRC_STORAGE_NOT_AVAILABLE if there is any problem with system

resources.

ImqBoolean useEmptyBuffer(const char * external-buffer, const size_t length);

Identifies an empty user buffer, setting the buffer pointer to point to external-buffer, the buffer length to

length, and the message length to zero. Performs a clearMessage. If the buffer is fully primed with data,

use the useFullBuffer method instead. If the buffer is partially primed with data, use the

setMessageLength method to indicate the correct amount. This method returns TRUE if successful.

This method can be used to identify a fixed amount of memory, as described above (external-buffer is not

null and length is nonzero), in which case automatic buffer is set to FALSE, or it can be used to revert to

system-managed flexible memory (external-buffer is null and length is zero), in which case automatic

buffer is set to TRUE.

ImqBoolean useFullBuffer(const char * externalBuffer, const size_t length);

As for useEmptyBuffer, except that the message length is set to length. It returns TRUE if successful.

ImqBoolean write(const size_t length, const char * external-buffer);

Copies length bytes, from the external-buffer, into the buffer starting at the data pointer position. After the
data has been copied, the data offset is increased by length, and the message length is increased if

necessary to ensure that it is no less than the new data offset value. This method returns TRUE if successful.

If automatic buffer is TRUE, an adequate amount of memory is guaranteed; otherwise, the ultimate data

offset must not exceed the buffer length.

Page 36 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

Parent topic: ImqCache

This build: January 26, 2011 11:58:07

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc10760_

13.3.5. Reason codes

� MQRC_BUFFER_NOT_AUTOMATIC

� MQRC_DATA_TRUNCATED

� MQRC_INSUFFICIENT_BUFFER

� MQRC_INSUFFICIENT_DATA

� MQRC_NULL_POINTER

� MQRC_STORAGE_NOT_AVAILABLE

� MQRC_ZERO_LENGTH

Parent topic: ImqCache

This build: January 26, 2011 11:58:07

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc10770_

13.4. ImqChannel

Figure 1. ImqChannel class

This class encapsulates a channel definition (MQCD) for use during execution of the Manager::connect method,

for custom client connections. See the description of that method, and Sample program HELLO WORLD

(imqwrld.cpp), for more details. Not all the listed methods are applicable to all platforms; see the descriptions
of the DEFINE CHANNEL and ALTER CHANNEL commands in WebSphere MQ Script (MQSC) Command Reference

for more details. The ImqChannel class is not supported on z/OS®.

Other relevant classes

Object attributes
List of object attributes for the ImqChannel class.

Constructors

Page 37 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

Object methods (public)

Public object methods for the ImqChannel class.

Reason codes

Parent topic: WebSphere MQ C++ classes

This build: January 26, 2011 11:58:07

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc10780_

13.4.1. Other relevant classes

� ImqBoolean (see Elementary data types)

� ImqError (see ImqError)

� ImqQueueManager (see ImqQueueManager)

� ImqString (see ImqString)

Parent topic: ImqChannel

This build: January 26, 2011 11:58:07

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc10790_

13.4.2. Object attributes

List of object attributes for the ImqChannel class.

batch heart-beat

The number of milliseconds between checks that a remote channel is active. The initial value is 0.

channel name

The name of the channel. The initial value is null.

connection name

The name of the connection. For example, the IP address of a host computer. The initial value is null.

header compression

The list of header data compression techniques supported by the channel. The initial values are all set to

MQCOMPRESS_NOT_AVAILABLE.

heart-beat interval

The number of seconds between checks that a connection is still working. The initial value is 300.

keep alive interval

The number of seconds passed to the communications stack specifying the keep alive timing for the channel.
The initial value is MQKAI_AUTO.

local address

The local communications address for the channel.

maximum message length

The maximum length of message supported by the channel in a single communication. The initial value is

4 194 304.

message compression

The list of message data compression techniques supported by the channel. The initial values are all set to
MQCOMPRESS_NOT_AVAILABLE.

mode name

Page 38 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

The name of the mode. The initial value is null.

password

A password supplied for connection authentication. The initial value is null.

receive exit count

The number of receive exits. The initial value is zero. This attribute is read-only.

receive exit names

The names of receive exits.

receive user data

Data associated with receive exits.

security exit name

The name of a security exit to be invoked on the server side of the connection. The initial value is null.

security user data

Data to be passed to the security exit. The initial value is null.

send exit count

The number of send exits. The initial value is zero. This attribute is read-only.

send exit names

The names of send exits.

send user data

Data associated with send exits.

SSL CipherSpec

CipherSpec for use with SSL.

SSL client authentication type

Client authentication type for use with SSL.

SSL peer name

Peer name for use with SSL.

transaction program name

The name of the transaction program. The initial value is null.

transport type

The transport type of the connection. The initial value is MQXPT_LU62.

user id

A user identifier supplied for authorization. The initial value is null.

Parent topic: ImqChannel

This build: January 26, 2011 11:58:07

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc10800_

13.4.3. Constructors

ImqChannel() ;

The default constructor.

ImqChannel(const ImqChannel & channel);

The copy constructor.

Parent topic: ImqChannel

This build: January 26, 2011 11:58:07

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

Page 39 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

This topic's URL:

uc10810_

13.4.4. Object methods (public)

Public object methods for the ImqChannel class.

void operator = (const ImqChannel & channel);

Copies instance data from channel, replacing any existing instance data.

MQLONG batchHeartBeat() const ;

Returns the batch heart-beat.

ImqBoolean setBatchHeartBeat(const MQLONG heartbeat = 0L);

Sets the batch heart-beat . This method returns TRUE if successful.

ImqString channelName() const ;

Returns the channel name.

ImqBoolean setChannelName(const char * name = 0);

Sets the channel name. This method returns TRUE if successful.

ImqString connectionName() const ;

Returns the connection name.

ImqBoolean setConnectionName(const char * name = 0);

Sets the connection name. This method returns TRUE if successful.

size_t headerCompressionCount() const ;

Returns the supported header data compression techniques count.

ImqBoolean headerCompression(const size_t count, MQLONG compress []) const ;

Returns copies of the supported header data compression techniques in compress. This method returns
TRUE if successful.

ImqBoolean setHeaderCompression(const size_t count, const MQLONG compress []);

Sets the supported header data compression techniques to compress.

Sets the supported header data compression techniques count to count.

This method returns TRUE if successful.

MQLONG heartBeatInterval() const ;

Returns the heart-beat interval.

ImqBoolean setHeartBeatInterval(const MQLONG interval = 300L);

Sets the heart-beat interval. This method returns TRUE if successful.

MQLONG keepAliveInterval() const ;

Returns the keep alive interval.

ImqBoolean setKeepAliveInterval(const MQLONG interval = MQKAI_AUTO);

Sets the keep alive interval. This method returns TRUE if successful.

ImqString localAddress() const ;

Returns the local address.

ImqBoolean setLocalAddress (const char * address = 0);

Sets the local address. This method returns TRUE if successful.

MQLONG maximumMessageLength() const ;

Returns the maximum message length.

ImqBoolean setMaximumMessageLength(const MQLONG length = 4194304L);

Sets the maximum message length. This method returns TRUE if successful.

size_t messageCompressionCount() const ;

Returns the supported message data compression techniques count.

ImqBoolean messageCompression(const size_t count, MQLONG compress []) const ;

Returns copies of the supported message data compression techniques in compress. This method returns

Page 40 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

TRUE if successful.

ImqBoolean setMessageCompression(const size_t count, const MQLONG compress []);

Sets the supported message data compression techniques to compress.

Sets the supported message data compression techniques count to count.

This method returns TRUE if successful.

ImqString modeName() const ;

Returns the mode name.

ImqBoolean setModeName(const char * name = 0);

Sets the mode name. This method returns TRUE if successful.

ImqString password() const ;

Returns the password.

ImqBoolean setPassword(const char * password = 0);

Sets the password. This method returns TRUE if successful.

size_t receiveExitCount() const ;

Returns the receive exit count.

ImqString receiveExitName();

Returns the first of the receive exit names, if any. If the receive exit count is zero, it returns an empty

string.

ImqBoolean receiveExitNames(const size_t count, ImqString * names []);

Returns copies of the receive exit names in names. Sets any names in excess of receive exit count to null
strings. This method returns TRUE if successful.

ImqBoolean setReceiveExitName(const char * name = 0);

Sets the receive exit names to the single name. name can be blank or null. Sets the receive exit count to

either 1 or zero. Clears the receive user data. This method returns TRUE if successful.

ImqBoolean setReceiveExitNames(const size_t count, const char * names []);

Sets the receive exit names to names. Individual names values must not be blank or null. Sets the receive

exit count to count. Clears the receive user data. This method returns TRUE if successful.

ImqBoolean setReceiveExitNames(const size_t count, const ImqString * names []);

Sets the receive exit names to names. Individual names values must not be blank or null. Sets the receive

exit count to count. Clears the receive user data. This method returns TRUE if successful.

ImqString receiveUserData();

Returns the first of the receive user data items, if any. If the receive exit count is zero, returns an empty

string.

ImqBoolean receiveUserData(const size_t count, ImqString * data []);

Returns copies of the receive user data items in data. Sets any data in excess of receive exit count to null
strings. This method returns TRUE if successful.

ImqBoolean setReceiveUserData(const char * data = 0);

Sets the receive user data to the single item data. If data is not null, receive exit count must be at least

1. This method returns TRUE if successful.

ImqBoolean setReceiveUserData(const size_t count, const char * data []);

Sets the receive user data to data. count must be no greater than the receive exit count. This method

returns TRUE if successful.

ImqBoolean setReceiveUserData(const size_t count, const ImqString * data []);

Sets the receive user data to data. count must be no greater than the receive exit count. This method

returns TRUE if successful.

ImqString securityExitName() const ;

Returns the security exit name.

ImqBoolean setSecurityExitName(const char * name = 0);

Sets the security exit name. This method returns TRUE if successful.

ImqString securityUserData() const ;

Returns the security user data.

Page 41 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

ImqBoolean setSecurityUserData(const char * data = 0);

Sets the security user data. This method returns TRUE if successful.

size_t sendExitCount() const ;

Returns the send exit count.

ImqString sendExitName();

Returns the first of the send exit names, if any. Returns an empty string if the send exit count is zero.

ImqBoolean sendExitNames(const size_t count, ImqString * names []);

Returns copies of the send exit names in names. Sets any names in excess of send exit count to null

strings. This method returns TRUE if successful.

ImqBoolean setSendExitName(const char * name = 0);

Sets the send exit names to the single name. name can be blank or null. Sets the send exit count to either

1 or zero. Clears the send user data. This method returns TRUE if successful

ImqBoolean setSendExitNames(const size_t count, const char * names []);

Sets the send exit names to names. Individual names values must not be blank or null. Sets the send exit
count to count. Clears the send user data. This method returns TRUE if successful.

ImqBoolean setSendExitNames(const size_t count, const ImqString * names []);

Sets the send exit names to names. Individual names values must not be blank or null. Sets the send exit

count to count. Clears the send user data. This method returns TRUE if successful.

ImqString sendUserData();

Returns the first of the send user data items, if any. , Returns an empty string if the send exit count is

zero.

ImqBoolean sendUserData(const size_t count, ImqString * data []);

Returns copies of the send user data items in data. Sets any data in excess of send exit count to null
strings. This method returns TRUE if successful.

ImqBoolean setSendUserData(const char * data = 0);

Sets the send user data to the single item data. If data is not null, send exit count must be at least 1. This

method returns TRUE if successful.

ImqBoolean setSendUserData(const size_t count, const char * data []);

Sets the send user data to data. count must be no greater than the send exit count. This method returns
TRUE if successful.

ImqBoolean setSendUserData(const size_t count, const ImqString * data []);

Sets the send user data to data. count must be no greater than the send exit count. This method returns

TRUE if successful.

ImqString sslCipherSpecification() const ;

Returns the SSL cipher specification.

ImqBoolean setSslCipherSpecification(const char * name = 0);

Sets the SSL cipher specification. This method returns TRUE if successful.

MQLONG sslClientAuthentication() const ;

Returns the SSL client authentication type.

ImqBoolean setSslClientAuthentication(const MQLONG auth = MQSCA_REQUIRED);

Sets the SSL client authentication type. This method returns TRUE if successful.

ImqString sslPeerName() const ;

Returns the SSL peer name.

ImqBoolean setSslPeerName(const char * name = 0);

Sets the SSL peer name. This method returns TRUE if successful.

ImqString transactionProgramName() const ;

Returns the transaction program name.

ImqBoolean setTransactionProgramName(const char * name = 0);

Sets the transaction program name. This method returns TRUE if successful.

MQLONG transportType() const ;

Returns the transport type.

ImqBoolean setTransportType(const MQLONG type = MQXPT_LU62);

Page 42 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

Sets the transport type. This method returns TRUE if successful.

ImqString userId() const ;

Returns the user id.

ImqBoolean setUserId(const char * id = 0);

Sets the user id. This method returns TRUE if successful.

Parent topic: ImqChannel

This build: January 26, 2011 11:58:08

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc10820_

13.4.5. Reason codes

� MQRC_DATA_LENGTH_ERROR

� MQRC_ITEM_COUNT_ERROR

� MQRC_NULL_POINTER

� MQRC_SOURCE_BUFFER_ERROR

Parent topic: ImqChannel

This build: January 26, 2011 11:58:08

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc10830_

13.5. ImqCICSBridgeHeader

Figure 1. ImqCICSBridgeHeader class

This class encapsulates specific features of the MQCIH data structure (see Table 1). Objects of this class are

used by applications that send messages to the CICS® bridge through WebSphere® MQ for z/OS®.

Other relevant classes

Object attributes

Constructors

Page 43 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

Overloaded ImqItem methods

Object methods (public)

Object data (protected)

Reason codes

Return codes

Parent topic: WebSphere MQ C++ classes

This build: January 26, 2011 11:58:08

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc10840_

13.5.1. Other relevant classes

� ImqBinary (see ImqBinary)

� ImqHeader (see ImqHeader)

� ImqItem (see ImqItem)

� ImqMessage (see ImqMessage)

� ImqString (see ImqString)

Parent topic: ImqCICSBridgeHeader

This build: January 26, 2011 11:58:08

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc10850_

13.5.2. Object attributes

ADS descriptor

Send/receive ADS descriptor. This is set using MQCADSD_NONE. The initial value is MQCADSD_NONE. The

following additional values are possible:

� MQCADSD_NONE

� MQCADSD_SEND

� MQCADSD_RECV

� MQCADSD_MSGFORMAT

attention identifier

AID key. The field must be of length MQ_ATTENTION_ID_LENGTH.

authenticator

RACF® password or passticket. The initial value contains blanks, of length MQ_AUTHENTICATOR_LENGTH.

bridge abend code

Bridge abend code, of length MQ_ABEND_CODE_LENGTH. The initial value is four blank characters. The value
returned in this field is dependent on the return code. See Table 1 for more details.

bridge cancel code

Bridge abend transaction code. The field is reserved, must contain blanks, and be of length

MQ_CANCEL_CODE_LENGTH.

bridge completion code

Completion code, which can contain either the WebSphere® MQ completion code or the CICS® EIBRESP

Page 44 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

value. The field has the initial value of MQCC_OK. The value returned in this field is dependent on the return

code. See Table 1 for more details.

bridge error offset

Bridge error offset. The initial value is zero. This attribute is read-only.

bridge reason code

Reason code. This field can contain either the WebSphere MQ reason or the CICS EIBRESP2 value. The field

has the initial value of MQRC_NONE. The value returned in this field is dependent on the return code. See

Table 1 for more details.

bridge return code

Return code from the CICS bridge. The initial value is MQCRC_OK.

conversational task

Whether the task can be conversational. The initial value is MQCCT_NO. The following additional values are

possible:

� MQCCT_YES

� MQCCT_NO

cursor position

Cursor position. The initial value is zero.

facility keep time

CICS bridge facility release time.

facility like

Terminal emulated attribute. The field must be of length MQ_FACILITY_LIKE_LENGTH.

facility token

BVT token value. The field must be of length MQ_FACILITY_LENGTH. The initial value is MQCFAC_NONE.

function

Function, which can contain either the WebSphere MQ call name or the CICS EIBFN function. The field has the

initial value of MQCFUNC_NONE, with length MQ_FUNCTION_LENGTH. The value returned in this field is
dependent on the return code. See Table 1 for more details.

The following additional values are possible when function contains a WebSphere MQ call name:

� MQCFUNC_MQCONN

� MQCFUNC_MQGET

� MQCFUNC_MQINQ

� MQCFUNC_NONE

� MQCFUNC_MQOPEN

� MQCFUNC_PUT

� MQCFUNC_MQPUT1

get wait interval

Wait interval for an MQGET call issued by the CICS bridge task. The initial value is MQCGWI_DEFAULT. The

field applies only when uow control has the value MQCUOWC_FIRST. The following additional values are

possible:

� MQCGWI_DEFAULT

� MQWI_UNLIMITED

link type

Link type. The initial value is MQCLT_PROGRAM. The following additional values are possible:

� MQCLT_PROGRAM

� MQCLT_TRANSACTION

next transaction identifier

ID of the next transaction to attach. The field must be of length MQ_TRANSACTION_ID_LENGTH.

output data length

COMMAREA data length. The initial value is MQCODL_AS_INPUT.

reply-to format

Format name of the reply message. The initial value is MQFMT_NONE with length MQ_FORMAT_LENGTH.

Page 45 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

start code

Transaction start code. The field must be of length MQ_START_CODE_LENGTH. The initial value is

MQCSC_NONE. The following additional values are possible:

� MQCSC_START

� MQCSC_STARTDATA

� MQCSC_TERMINPUT

� MQCSC_NONE

task end status

Task end status. The initial value is MQCTES_NOSYNC. The following additional values are possible:

� MQCTES_COMMIT

� MQCTES_BACKOUT

� MQCTES_ENDTASK

� MQCTES_NOSYNC

transaction identifier

ID of the transaction to attach. The initial value must contain blanks, and must be of length
MQ_TRANSACTION_ID_LENGTH. The field applies only when uow control has the value MQCUOWC_FIRST or

MQCUOWC_ONLY.

UOW control

UOW control. The initial value is MQCUOWC_ONLY. The following additional values are possible:

� MQCUOWC_FIRST

� MQCUOWC_MIDDLE

� MQCUOWC_LAST

� MQCUOWC_ONLY

� MQCUOWC_COMMIT

� MQCUOWC_BACKOUT

� MQCUOWC_CONTINUE

version

The MQCIH version number. The initial value is MQCIH_VERSION_2. The only other supported value is

MQCIH_VERSION_1.

Parent topic: ImqCICSBridgeHeader

This build: January 26, 2011 11:58:08

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc10860_

13.5.3. Constructors

ImqCICSBridgeHeader();

The default constructor.

ImqCICSBridgeHeader(const ImqCICSBridgeHeader & header);

The copy constructor.

Parent topic: ImqCICSBridgeHeader

This build: January 26, 2011 11:58:08

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc10870_

Page 46 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

13.5.4. Overloaded ImqItem methods

virtual ImqBoolean copyOut(ImqMessage & msg);

Inserts an MQCIH data structure into the message buffer at the beginning, moving existing message data

further along, and sets the message format to MQFMT_CICS.

See the parent class method description for more details.

virtual ImqBoolean pasteIn(ImqMessage & msg);

Reads an MQCIH data structure from the message buffer. To be successful, the encoding of the msg object
must be MQENC_NATIVE. Retrieve messages with MQGMO_CONVERT to MQENC_NATIVE. To be successful,

the ImqMessage format must be MQFMT_CICS.

See the parent class method description for more details.

Parent topic: ImqCICSBridgeHeader

This build: January 26, 2011 11:58:08

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc10880_

13.5.5. Object methods (public)

void operator = (const ImqCICSBridgeHeader & header);

Copies instance data from the header, replacing the existing instance data.

MQLONG ADSDescriptor() const;

Returns a copy of the ADS descriptor.

void setADSDescriptor(const MQLONG descriptor = MQCADSD_NONE);

Sets the ADS descriptor.

ImqString attentionIdentifier() const;

Returns a copy of the attention identifier, padded with trailing blanks to length

MQ_ATTENTION_ID_LENGTH.

void setAttentionIdentifier(const char * data = 0);

Sets the attention identifier, padded with trailing blanks to length MQ_ATTENTION_ID_LENGTH. If no data

is supplied, resets attention identifier to the initial value.

ImqString authenticator() const;

Returns a copy of the authenticator, padded with trailing blanks to length MQ_AUTHENTICATOR_LENGTH.

void setAuthenticator(const char * data = 0);

Sets the authenticator, padded with trailing blanks to length MQ_AUTHENTICATOR_LENGTH. If no data is

supplied, resets authenticator to the initial value.

ImqString bridgeAbendCode() const;

Returns a copy of the bridge abend code, padded with trailing blanks to length MQ_ABEND_CODE_LENGTH.

ImqString bridgeCancelCode() const;

Returns a copy of the bridge cancel code, padded with trailing blanks to length

MQ_CANCEL_CODE_LENGTH.

void setBridgeCancelCode(const char * data = 0);

Sets the bridge cancel code, padded with trailing blanks to length MQ_CANCEL_CODE_LENGTH. If no data

is supplied, resets the bridge cancel code to the initial value.

MQLONG bridgeCompletionCode() const;

Returns a copy of the bridge completion code.

MQLONG bridgeErrorOffset() const ;

Returns a copy of the bridge error offset.

MQLONG bridgeReasonCode() const;

Returns a copy of the bridge reason code.

Page 47 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

MQLONG bridgeReturnCode() const;

Returns the bridge return code.

MQLONG conversationalTask() const;

Returns a copy of the conversational task.

void setConversationalTask(const MQLONG task = MQCCT_NO);

Sets the conversational task.

MQLONG cursorPosition() const ;

Returns a copy of the cursor position.

void setCursorPosition(const MQLONG position = 0);

Sets the cursor position.

MQLONG facilityKeepTime() const;

Returns a copy of the facility keep time.

void setFacilityKeepTime(const MQLONG time = 0);

Sets the facility keep time.

ImqString facilityLike() const;

Returns a copy of the facility like, padded with trailing blanks to length MQ_FACILITY_LIKE_LENGTH.

void setFacilityLike(const char * name = 0);

Sets the facility like, padded with trailing blanks to length MQ_FACILITY_LIKE_LENGTH. If no name is

supplied, resets facility like the initial value.

ImqBinary facilityToken() const;

Returns a copy of the facility token.

ImqBoolean setFacilityToken(const ImqBinary & token);

Sets the facility token. The data length of token must be either zero or MQ_FACILITY_LENGTH. It returns

TRUE if successful.

void setFacilityToken(const MQBYTE8 token = 0);

Sets the facility token. token can be zero, which is the same as specifying MQCFAC_NONE. If token is

nonzero it must address MQ_FACILITY_LENGTH bytes of binary data. When using predefined values such as
MQCFAC_NONE, you might need to make a cast to ensure a signature match. For example, (MQBYTE *)

MQCFAC_NONE.

ImqString function() const;

Returns a copy of the function, padded with trailing blanks to length MQ_FUNCTION_LENGTH.

MQLONG getWaitInterval() const;

Returns a copy of the get wait interval.

void setGetWaitInterval(const MQLONG interval = MQCGWI_DEFA

Sets the get wait interval.

MQLONG linkType() const;

Returns a copy of the link type.

void setLinkType(const MQLONG type = MQCLT_PROGRAM);

Sets the link type.

ImqString nextTransactionIdentifier() const ;

Returns a copy of the next transaction identifier data, padded with trailing blanks to length

MQ_TRANSACTION_ID_LENGTH.

MQLONG outputDataLength() const;

Returns a copy of the output data length.

void setOutputDataLength(const MQLONG length = MQCODL_AS_INPUT);

Sets the output data length.

ImqString replyToFormat() const;

Returns a copy of the reply-to format name, padded with trailing blanks to length MQ_FORMAT_LENGTH.

void setReplyToFormat(const char * name = 0);

Sets the reply-to format, padded with trailing blanks to length MQ_FORMAT_LENGTH. If no name is

supplied, resets reply-to format to the initial value.

Page 48 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

ImqString startCode() const;

Returns a copy of the start code, padded with trailing blanks to length MQ_START_CODE_LENGTH.

void setStartCode(const char * data = 0);

Sets the start code data, padded with trailing blanks to length MQ_START_CODE_LENGTH. If no data is
supplied, resets start code to the initial value.

MQLONG taskEndStatus() const;

Returns a copy of the task end status.

ImqString transactionIdentifier() const;

Returns a copy of the transaction identifier data, padded with trailing blanks to the length

MQ_TRANSACTION_ID_LENGTH.

void setTransactionIdentifier(const char * data = 0);

Sets the transaction identifier, padded with trailing blanks to length MQ_TRANSACTION_ID_LENGTH. If no

data is supplied, resets transaction identifier to the initial value.

MQLONG UOWControl() const;

Returns a copy of the UOW control.

void setUOWControl(const MQLONG control = MQCUOWC_ONLY);

Sets the UOW control.

MQLONG version() const;

Returns the version number.

ImqBoolean setVersion(const MQLONG version = MQCIH_VERSION_2);

Sets the version number. It returns TRUE if successful.

Parent topic: ImqCICSBridgeHeader

This build: January 26, 2011 11:58:09

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc10890_

13.5.6. Object data (protected)

MQLONG olVersion

The maximum MQCIH version number that can be accommodated in the storage allocated for opcih.

PMQCIH opcih

The address of an MQCIH data structure. The amount of storage allocated is indicated by olVersion.

Parent topic: ImqCICSBridgeHeader

This build: January 26, 2011 11:58:09

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc10900_

13.5.7. Reason codes

� MQRC_BINARY_DATA_LENGTH_ERROR

� MQRC_WRONG_VERSION

Parent topic: ImqCICSBridgeHeader

This build: January 26, 2011 11:58:09

Notices | Trademarks | Downloads | Library | Support | Feedback

Page 49 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc10910_

13.5.8. Return codes

Parent topic: ImqCICSBridgeHeader

This build: January 26, 2011 11:58:09

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc10920_

13.6. ImqDeadLetterHeader

Figure 1. ImqDeadLetterHeader class

This class encapsulates features of the MQDLH data structure (see Table 1). Objects of this class are typically

used by an application that encounters an message that cannot be processed. A new message comprising a

dead-letter header and the message content is placed on the dead-letter queue, and the message is discarded.

Table 1. ImqCICSBridgeHeader class return codes

Return Code Function CompCode Reason Abend
Code

MQCRC_OK

MQCRC_BRIDGE_ERROR MQFB_CICS

MQCRC_MQ_API_ERROR WebSphere®

MQ call
name

WebSphere

MQ
CompCode

WebSphere

MQ Reason

MQCRC_BRIDGE_TIMEOUT WebSphere

MQ call
name

WebSphere

MQ
CompCode

WebSphere

MQ Reason

MQCRC_CICS_EXEC_ERROR CICS®

EIBFN

CICS

EIBRESP

CICS

EIBRESP2

MQCRC_SECURITY_ERROR CICS EIBFN CICS
EIBRESP

CICS
EIBRESP2

MQCRC_PROGRAM_NOT_AVAILABLE CICS EIBFN CICS
EIBRESP

CICS
EIBRESP2

MQCRC_TRANSID_NOT_AVAILABLE CICS EIBFN CICS

EIBRESP

CICS

EIBRESP2

MQCRC_BRIDGE_ABEND CICS
ABCODE

MQCRC_APPLICATION_ABEND CICS

ABCODE

Page 50 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

Other relevant classes

Object attributes

Constructors

Overloaded ImqItem methods

Object methods (public)

Object data (protected)

Reason codes

Parent topic: WebSphere MQ C++ classes

This build: January 26, 2011 11:58:09

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc10930_

13.6.1. Other relevant classes

� ImqHeader (see ImqHeader)

� ImqItem (see ImqItem)

� ImqMessage (see ImqMessage)

� ImqString (see ImqString)

Parent topic: ImqDeadLetterHeader

This build: January 26, 2011 11:58:09

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc10940_

13.6.2. Object attributes

dead-letter reason code

The reason the message arrived on the dead-letter queue. The initial value is MQRC_NONE.

destination queue manager name

The name of the original destination queue manager. The name is a string of length
MQ_Q_MGR_NAME_LENGTH. Its initial value is null.

destination queue name

The name of the original destination queue. The name is a string of length MQ_Q_NAME_LENGTH. Its initial

value is null.

put application name

The name of the application that put the message on the dead-letter queue. The name is a string of length

MQ_PUT_APPL_NAME_LENGTH. Its initial value is null.

put application type

The type of application that put the message on the dead-letter queue. The initial value is zero.

put date

The date when the message was put on the dead-letter queue. The date is a string of length

MQ_PUT_DATE_LENGTH. Its initial value is a null string.

put time

Page 51 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

The time when the message was put on the dead-letter queue. The time is a string of length

MQ_PUT_TIME_LENGTH. Its initial value is a null string.

Parent topic: ImqDeadLetterHeader

This build: January 26, 2011 11:58:09

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc10950_

13.6.3. Constructors

ImqDeadLetterHeader();

The default constructor.

ImqDeadLetterHeader(const ImqDeadLetterHeader & header);

The copy constructor.

Parent topic: ImqDeadLetterHeader

This build: January 26, 2011 11:58:09

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc10960_

13.6.4. Overloaded ImqItem methods

virtual ImqBoolean copyOut(ImqMessage & msg);

Inserts an MQDLH data structure into the message buffer at the beginning, moving existing message data

further along. Sets the msg format to MQFMT_DEAD_LETTER_HEADER.

See the ImqHeader class method description on page ImqHeader for further details.

virtual ImqBoolean pasteIn(ImqMessage & msg);

Reads an MQDLH data structure from the message buffer.

To be successful, the ImqMessage format must be MQFMT_DEAD_LETTER_HEADER.

See the ImqHeader class method description on page ImqHeader for further details.

Parent topic: ImqDeadLetterHeader

This build: January 26, 2011 11:58:09

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc10970_

13.6.5. Object methods (public)

void operator = (const ImqDeadLetterHeader & header);

Copies instance data is copied from header, replacing the existing instance data.

MQLONG deadLetterReasonCode() const ;

Returns the dead-letter reason code.

void setDeadLetterReasonCode(const MQLONG reason);

Sets the dead-letter reason code.

ImqString destinationQueueManagerName() const ;

Page 52 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

Returns the destination queue manager name, stripped of any trailing blanks.

void setDestinationQueueManagerName(const char * name);

Sets the destination queue manager name. Truncates data longer than MQ_Q_MGR_NAME_LENGTH (48
characters).

ImqString destinationQueueName() const ;

Returns a copy of the destination queue name, stripped of any trailing blanks.

void setDestinationQueueName(const char * name);

Sets the destination queue name. Truncates data longer than MQ_Q_NAME_LENGTH (48 characters).

ImqString putApplicationName() const ;

Returns a copy of the put application name, stripped of any trailing blanks.

void setPutApplicationName(const char * name = 0);

Sets the put application name. Truncates data longer than MQ_PUT_APPL_NAME_LENGTH (28 characters).

MQLONG putApplicationType() const ;

Returns the put application type.

void setPutApplicationType(const MQLONG type = MQAT_NO_CONTEXT);

Sets the put application type.

ImqString putDate() const ;

Returns a copy of the put date, stripped of any trailing blanks.

void setPutDate(const char * date = 0);

Sets the put date. Truncates data longer than MQ_PUT_DATE_LENGTH (8 characters).

ImqString putTime() const ;

Returns a copy of the put time, stripped of any trailing blanks.

void setPutTime(const char * time = 0);

Sets the put time. Truncates data longer than MQ_PUT_TIME_LENGTH (8 characters).

Parent topic: ImqDeadLetterHeader

This build: January 26, 2011 11:58:09

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc10980_

13.6.6. Object data (protected)

MQDLH omqdlh

The MQDLH data structure.

Parent topic: ImqDeadLetterHeader

This build: January 26, 2011 11:58:09

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc10990_

13.6.7. Reason codes

� MQRC_INCONSISTENT_FORMAT

� MQRC_STRUC_ID_ERROR

� MQRC_ENCODING_ERROR

Parent topic: ImqDeadLetterHeader

This build: January 26, 2011 11:58:09

Page 53 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11000_

13.7. ImqDistributionList

Figure 1. ImqDistributionList class

This class encapsulates a dynamic distribution list that references one or more queues for the purpose of

sending a message or messages to multiple destinations.

Other relevant classes

Object attributes

Constructors

Object methods (public)

Object methods (protected)

Parent topic: WebSphere MQ C++ classes

This build: January 26, 2011 11:58:09

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11010_

13.7.1. Other relevant classes

� ImqMessage (see ImqMessage)

� (see ImqQueue)

Parent topic: ImqDistributionList

This build: January 26, 2011 11:58:09

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

Page 54 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

This topic's URL:

uc11020_

13.7.2. Object attributes

first distributed queue

The first of one or more objects of class , in no particular order, in which the distribution list reference

addresses this object.

Initially there are no such objects. To open an ImqDistributionList successfully, there must be at least one

such object.

Note: When an ImqDistributionList object is opened, any open objects that reference it are automatically

closed.

Parent topic: ImqDistributionList

This build: January 26, 2011 11:58:09

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11030_

13.7.3. Constructors

ImqDistributionList();

The default constructor.

ImqDistributionList(const ImqDistributionList & list);

The copy constructor.

Parent topic: ImqDistributionList

This build: January 26, 2011 11:58:09

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11040_

13.7.4. Object methods (public)

void operator = (const ImqDistributionList & list);

All objects that reference this object are dereferenced before copying. No objects will reference this object
after the invocation of this method.

* firstDistributedQueue() const ;

Returns the first distributed queue.

Parent topic: ImqDistributionList

This build: January 26, 2011 11:58:09

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11050_

13.7.5. Object methods (protected)

void setFirstDistributedQueue(* queue = 0);

Sets the first distributed queue.

Page 55 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

Parent topic: ImqDistributionList

This build: January 26, 2011 11:58:09

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11060_

13.8. ImqError

Figure 1. ImqError class

This abstract class provides information on errors associated with an object. It relates to the MQI calls listed in
Table 1.

Other relevant classes

Object attributes

Constructors

Object methods (public)

Object methods (protected)

Reason codes

Parent topic: WebSphere MQ C++ classes

This build: January 26, 2011 11:58:09

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11070_

13.8.1. Other relevant classes

None.

Parent topic: ImqError

This build: January 26, 2011 11:58:09

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11080_

13.8.2. Object attributes

completion code

The most recent completion code. The initial value is zero. The following additional values are possible:

Page 56 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

� MQCC_OK

� MQCC_WARNING

� MQCC_FAILED

reason code

The most recent reason code. The initial value is zero.

Parent topic: ImqError

This build: January 26, 2011 11:58:09

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11090_

13.8.3. Constructors

ImqError();

The default constructor.

ImqError(const ImqError & error);

The copy constructor.

Parent topic: ImqError

This build: January 26, 2011 11:58:09

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11100_

13.8.4. Object methods (public)

void operator = (const ImqError & error);

Copies instance data from error, replacing the existing instance data.

void clearErrorCodes();

Sets the completion code and reason code both to zero.

MQLONG completionCode() const ;

Returns the completion code.

MQLONG reasonCode() const ;

Returns the reason code.

Parent topic: ImqError

This build: January 26, 2011 11:58:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11110_

13.8.5. Object methods (protected)

ImqBoolean checkReadPointer(const void * pointer, const size_t length);

Verifies that the combination of pointer and length is valid for read-only access, and returns TRUE if

successful.

ImqBoolean checkWritePointer(const void * pointer, const size_t length);

Verifies that the combination of pointer and length is valid for read-write access, and returns TRUE if

Page 57 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

successful.

void setCompletionCode(const MQLONG code = 0);

Sets the completion code.

void setReasonCode(const MQLONG code = 0);

Sets the reason code.

Parent topic: ImqError

This build: January 26, 2011 11:58:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11120_

13.8.6. Reason codes

� MQRC_BUFFER_ERROR

Parent topic: ImqError

This build: January 26, 2011 11:58:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11130_

13.9. ImqGetMessageOptions

Figure 1. ImqGetMessageOptions class

This class encapsulates the MQGMO data structure (see Table 1).

Other relevant classes

Object attributes

Constructors

Object methods (public)

Object methods (protected)

Page 58 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

Object data (protected)

Reason codes

Parent topic: WebSphere MQ C++ classes

This build: January 26, 2011 11:58:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11140_

13.9.1. Other relevant classes

� ImqString (see ImqString)

Parent topic: ImqGetMessageOptions

This build: January 26, 2011 11:58:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11150_

13.9.2. Object attributes

group status

Status of a message for a group of messages. The initial value is MQGS_NOT_IN_GROUP. The following

additional values are possible:

� MQGS_MSG_IN_GROUP

� MQGS_LAST_MSG_IN_GROUP

match options

Options for selecting incoming messages. The initial value is

MQMO_MATCH_MSG_ID | MQMO_MATCH_CORREL_ID. The following additional values are possible:

� MQMO_GROUP_ID

� MQMO_MATCH_MSG_SEQ_NUMBER

� MQMO_MATCH_OFFSET

� MQMO_MSG_TOKEN

� MQMO_NONE

message token

Message token. A binary value (MQBYTE16) of length MQ_MSG_TOKEN_LENGTH. The initial value is

MQMTOK_NONE.

options

Options applicable to a message. The initial value is MQGMO_NO_WAIT. The following additional values are
possible:

� MQGMO_WAIT

� MQGMO_SYNCPOINT

� MQGMO_SYNCPOINT_IF_PERSISTENT

� MQGMO_NO_SYNCPOINT

� MQGMO_MARK_SKIP_BACKOUT

� MQGMO_BROWSE_FIRST

� MQGMO_BROWSE_NEXT

� MQGMO_BROWSE_MSG_UNDER_CURSOR

Page 59 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

� MQGMO_MSG_UNDER_CURSOR

� MQGMO_LOCK

� MQGMO_UNLOCK

� MQGMO_ACCEPT_TRUNCATED_MSG

� MQGMO_SET_SIGNAL

� MQGMO_FAIL_IF_QUIESCING

� MQGMO_CONVERT

� MQGMO_LOGICAL_ORDER

� MQGMO_COMPLETE_MSG

� MQGMO_ALL_MSGS_AVAILABLE

� MQGMO_ALL_SEGMENTS_AVAILABLE

� MQGMO_NONE

resolved queue name

Resolved queue name. This attribute is read-only. Names are never longer than 48 characters and can be

padded to that length with nulls. The initial value is a null string.

returned length

Returned length. The initial value is MQRL_UNDEFINED. This attribute is read-only.

segmentation

The ability to segment a message. The initial value is MQSEG_INHIBITED. The additional value,
MQSEG_ALLOWED, is possible.

segment status

The segmentation status of a message. The initial value is MQSS_NOT_A_SEGMENT. The following additional

values are possible:

� MQSS_SEGMENT

� MQSS_LAST_SEGMENT

syncpoint participation

TRUE when messages are retrieved under syncpoint control.

wait interval

The length of time that the class get method pauses while waiting for a suitable message to arrive, if one is

not already available. The initial value is zero, which effects an indefinite wait. The additional value,

MQWI_UNLIMITED, is possible. This attribute is ignored unless the options include MQGMO_WAIT.

Parent topic: ImqGetMessageOptions

This build: January 26, 2011 11:58:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11160_

13.9.3. Constructors

ImqGetMessageOptions();

The default constructor.

ImqGetMessageOptions(const ImqGetMessageOptions & gmo);

The copy constructor.

Parent topic: ImqGetMessageOptions

This build: January 26, 2011 11:58:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11170_

Page 60 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

13.9.4. Object methods (public)

void operator = (const ImqGetMessageOptions & gmo);

Copies instance data from gmo, replacing the existing instance data.

MQCHAR groupStatus() const ;

Returns the group status.

void setGroupStatus(const MQCHAR status);

Sets the group status.

MQLONG matchOptions() const ;

Returns the match options.

void setMatchOptions(const MQLONG options);

Sets the match options.

ImqBinary messageToken() const;

Returns the message token.

ImqBoolean setMessageToken(const ImqBinary & token);

Sets the message token. The data length of token must be either zero or MQ_MSG_TOKEN_LENGTH. This

method returns TRUE if successful.

void setMessageToken(const MQBYTE16 token = 0);

Sets the message token. token can be zero, which is the same as specifying MQMTOK_NONE. If token is
nonzero, then it must address MQ_MSG_TOKEN_LENGTH bytes of binary data.

When using predefined values, such as MQMTOK_NONE, you might not need to make a cast to ensure a

signature match, for example (MQBYTE *)MQMTOK_NONE.

MQLONG options() const ;

Returns the options.

void setOptions(const MQLONG options);

Sets the options, including the syncpoint participation value.

ImqString resolvedQueueName() const ;

Returns a copy of the resolved queue name.

MQLONG returnedLength() const;

Returns the returned length.

MQCHAR segmentation() const ;

Returns the segmentation.

void setSegmentation(const MQCHAR value);

Sets the segmentation.

MQCHAR segmentStatus() const ;

Returns the segment status.

void setSegmentStatus(const MQCHAR status);

Sets the segment status.

ImqBoolean syncPointParticipation() const ;

Returns the syncpoint participation value, which is TRUE if the options include either MQGMO_SYNCPOINT

or MQGMO_SYNCPOINT_IF_PERSISTENT.

void setSyncPointParticipation(const ImqBoolean sync);

Sets the syncpoint participation value. If sync is TRUE, alters the options to include MQGMO_SYNCPOINT,
and to exclude both MQGMO_NO_SYNCPOINT and MQGMO_SYNCPOINT_IF_PERSISTENT. If sync is FALSE,

alters the options to include MQGMO_NO_SYNCPOINT, and to exclude both MQGMO_SYNCPOINT and

MQGMO_SYNCPOINT_IF_PERSISTENT.

MQLONG waitInterval() const ;

Returns the wait interval.

void setWaitInterval(const MQLONG interval);

Sets the wait interval.

Parent topic: ImqGetMessageOptions

Page 61 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

This build: January 26, 2011 11:58:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11180_

13.9.5. Object methods (protected)

static void setVersionSupported(const MQLONG);

Sets the MQGMO version. Defaults to MQGMO_VERSION_3.

Parent topic: ImqGetMessageOptions

This build: January 26, 2011 11:58:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11190_

13.9.6. Object data (protected)

MQGMO omqgmo

An MQGMO Version 2 data structure. Access MQGMO fields supported for MQGMO_VERSION_2 only.

PMQGMO opgmo

The address of an MQGMO data structure. The version number for this address is indicated in olVersion.

Inspect the version number before accessing MQGMO fields, to ensure that they are present.

MQLONG olVersion

The version number of the MQGMO data structure addressed by opgmo.

Parent topic: ImqGetMessageOptions

This build: January 26, 2011 11:58:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11200_

13.9.7. Reason codes

� MQRC_BINARY_DATA_LENGTH_ERROR

Parent topic: ImqGetMessageOptions

This build: January 26, 2011 11:58:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11210_

13.10. ImqHeader

Figure 1. ImqHeader class

Page 62 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

This abstract class encapsulates common features of the MQDLH data structure (see Table 1).

Other relevant classes

Object attributes

Constructors

Object methods (public)

Parent topic: WebSphere MQ C++ classes

This build: January 26, 2011 11:58:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11220_

13.10.1. Other relevant classes

� ImqCICSBridgeHeader (see ImqCICSBridgeHeader)

� ImqDeadLetterHeader (see ImqDeadLetterHeader)

� ImqIMSBridgeHeader (see ImqIMSBridgeHeader)

� ImqItem (see ImqItem)

� ImqMessage (see ImqMessage)

� ImqReferenceHeader (see ImqReferenceHeader)

� ImqString (see ImqString)

� ImqWorkHeader (see ImqWorkHeader)

Parent topic: ImqHeader

This build: January 26, 2011 11:58:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11230_

13.10.2. Object attributes

character set

Page 63 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

The original coded character set identifier. Initially MQCCSI_Q_MGR.

encoding

The original encoding. Initially MQENC_NATIVE.

format

The original format. Initially MQFMT_NONE.

header flags

The initial values are:

� Zero for objects of the ImqDeadLetterHeader class

� MQIIH_NONE for objects of the ImqIMSBridgeHeader class

� MQRMHF_LAST for objects of the ImqReferenceHeader class

� MQCIH_NONE for objects of the ImqCICSBridgeHeader class

� MQWIH_NONE for objects of the ImqWorkHeader class

Parent topic: ImqHeader

This build: January 26, 2011 11:58:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11240_

13.10.3. Constructors

ImqHeader();

The default constructor.

ImqHeader(const ImqHeader & header);

The copy constructor.

Parent topic: ImqHeader

This build: January 26, 2011 11:58:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11250_

13.10.4. Object methods (public)

void operator = (const ImqHeader & header);

Copies instance data from header, replacing the existing instance data.

virtual MQLONG characterSet() const ;

Returns the character set.

virtual void setCharacterSet(const MQLONG ccsid = MQCCSI_Q_MGR);

Sets the character set.

virtual MQLONG encoding() const ;

Returns the encoding.

virtual void setEncoding(const MQLONG encoding = MQENC_NATIVE);

Sets the encoding.

virtual ImqString format() const ;

Returns a copy of the format, including trailing blanks.

virtual void setFormat(const char * name = 0);

Sets the format, padded to 8 characters with trailing blanks.

virtual MQLONG headerFlags() const ;

Page 64 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

Returns the header flags.

virtual void setHeaderFlags(const MQLONG flags = 0);

Sets the header flags.

Parent topic: ImqHeader

This build: January 26, 2011 11:58:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11260_

13.11. ImqIMSBridgeHeader

Figure 1. ImqIMSBridgeHeader class

This class encapsulates features of the MQIIH data structure (see Table 1). Objects of this class are used by

applications that send messages to the IMS™ bridge through WebSphere® MQ for z/OS®.

Note: The ImqHeader character set and encoding must have default values and must not be set to any other

values.

Other relevant classes

Object attributes

Constructors

Overloaded ImqItem methods

Object methods (public)

Object data (protected)

Reason codes

Parent topic: WebSphere MQ C++ classes

This build: January 26, 2011 11:58:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11270_

Page 65 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

13.11.1. Other relevant classes

� ImqBinary (see ImqBinary)

� ImqHeader (see ImqHeader)

� ImqItem (see ImqItem)

� ImqMessage (see ImqMessage)

� ImqString (see ImqString)

Parent topic: ImqIMSBridgeHeader

This build: January 26, 2011 11:58:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11280_

13.11.2. Object attributes

authenticator

RACF password or passticket, of length MQ_AUTHENTICATOR_LENGTH. The initial value is MQIAUT_NONE.

commit mode

Commit mode. See the OTMA User's Guide for more information about IMS™ commit modes. The initial value
is MQICM_COMMIT_THEN_SEND. The additional value, MQICM_SEND_THEN_COMMIT, is possible.

logical terminal override

Logical terminal override, of length MQ_LTERM_OVERRIDE_LENGTH. The initial value is a null string.

message format services map name

MFS map name, of length MQ_MFS_MAP_NAME_LENGTH. The initial value is a null string.

reply-to format

Format of any reply, of length MQ_FORMAT_LENGTH. The initial value is MQFMT_NONE.

security scope

Scope of IMS security processing. The initial value is MQISS_CHECK. The additional value, MQISS_FULL, is

possible.

transaction instance id

Transaction instance identity, a binary (MQBYTE16) value of length MQ_TRAN_INSTANCE_ID_LENGTH. The
initial value is MQITII_NONE.

transaction state

State of the IMS conversation. The initial value is MQITS_NOT_IN_CONVERSATION. The additional value,

MQITS_IN_CONVERSATION, is possible.

Parent topic: ImqIMSBridgeHeader

This build: January 26, 2011 11:58:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11290_

13.11.3. Constructors

ImqIMSBridgeHeader();

The default constructor.

ImqIMSBridgeHeader(const ImqIMSBridgeHeader & header);

The copy constructor.

Parent topic: ImqIMSBridgeHeader

Page 66 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

This build: January 26, 2011 11:58:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11300_

13.11.4. Overloaded ImqItem methods

virtual ImqBoolean copyOut(ImqMessage & msg);

Inserts an MQIIH data structure into the message buffer at the beginning, moving existing message data
further along. Sets the msg format to MQFMT_IMS.

See the parent class method description for further details.

virtual ImqBoolean pasteIn(ImqMessage & msg);

Reads an MQIIH data structure from the message buffer.

To be successful, the encoding of the msg object must be MQENC_NATIVE. Retrieve messages with

MQGMO_CONVERT to MQENC_NATIVE.

To be successful, the ImqMessage format must be MQFMT_IMS.

See the parent class method description for further details.

Parent topic: ImqIMSBridgeHeader

This build: January 26, 2011 11:58:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11310_

13.11.5. Object methods (public)

void operator = (const ImqIMSBridgeHeader & header);

Copies instance data from header, replacing the existing instance data.

ImqString authenticator() const ;

Returns a copy of the authenticator, padded with trailing blanks to length MQ_AUTHENTICATOR_LENGTH.

void setAuthenticator(const char * name);

Sets the authenticator.

MQCHAR commitMode() const ;

Returns the commit mode.

void setCommitMode(const MQCHAR mode);

Sets the commit mode.

ImqString logicalTerminalOverride() const ;

Returns a copy of the logical terminal override.

void setLogicalTerminalOverride(const char * override);

Sets the logical terminal override.

ImqString messageFormatServicesMapName() const ;

Returns a copy of the message format services map name.

void setMessageFormatServicesMapName(const char * name);

Sets the message format services map name.

ImqString replyToFormat() const ;

Returns a copy of the reply-to format, padded with trailing blanks to length MQ_FORMAT_LENGTH.

void setReplyToFormat(const char * format);

Page 67 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

Sets the reply-to format, padded with trailing blanks to length MQ_FORMAT_LENGTH.

MQCHAR securityScope() const ;

Returns the security scope.

void setSecurityScope(const MQCHAR scope);

Sets the security scope.

ImqBinary transactionInstanceId() const ;

Returns a copy of the transaction instance id.

ImqBoolean setTransactionInstanceId(const ImqBinary & id);

Sets the transaction instance id. The data length of token must be either zero or

MQ_TRAN_INSTANCE_ID_LENGTH. This method returns TRUE if successful.

void setTransactionInstanceId(const MQBYTE16 id = 0);

Sets the transaction instance id. id can be zero, which is the same as specifying MQITII_NONE. If id is

nonzero, it must address MQ_TRAN_INSTANCE_ID_LENGTH bytes of binary data. When using predefined
values such as MQITII_NONE, you might need to make a cast to ensure a signature match, for example

(MQBYTE *)MQITII_NONE.

MQCHAR transactionState() const ;

Returns the transaction state.

void setTransactionState(const MQCHAR state);

Sets the transaction state.

Parent topic: ImqIMSBridgeHeader

This build: January 26, 2011 11:58:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11320_

13.11.6. Object data (protected)

MQIIH omqiih

The MQIIH data structure.

Parent topic: ImqIMSBridgeHeader

This build: January 26, 2011 11:58:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11330_

13.11.7. Reason codes

� MQRC_BINARY_DATA_LENGTH_ERROR

� MQRC_INCONSISTENT_FORMAT

� MQRC_ENCODING_ERROR

� MQRC_STRUC_ID_ERROR

Parent topic: ImqIMSBridgeHeader

This build: January 26, 2011 11:58:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11340_

Page 68 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

13.12. ImqItem

Figure 1. ImqItem class

This abstract class represents an item, perhaps one of several, within a message. Items are concatenated

together in a message buffer. Each specialization is associated with a particular data structure that begins with
a structure id.

Polymorphic methods in this abstract class allow items to be copied to and from messages. The ImqMessage

class readItem and writeItem methods provide another style of invoking these polymorphic methods that is

more natural for application programs.

This class relates to the MQI calls listed in Table 1.

Other relevant classes

Object attributes

Constructors

Class methods (public)

Object methods (public)

Reason codes

Parent topic: WebSphere MQ C++ classes

This build: January 26, 2011 11:58:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11350_

13.12.1. Other relevant classes

� ImqCache (see ImqCache)

� ImqError (see ImqError)

� ImqMessage (see ImqMessage)

Parent topic: ImqItem

This build: January 26, 2011 11:58:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Page 69 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11360_

13.12.2. Object attributes

structure id

A string of four characters at the beginning of the data structure. This attribute is read-only. This attribute is

recommended for derived classes. It is not included automatically.

Parent topic: ImqItem

This build: January 26, 2011 11:58:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11370_

13.12.3. Constructors

ImqItem();

The default constructor.

ImqItem(const ImqItem & item);

The copy constructor.

Parent topic: ImqItem

This build: January 26, 2011 11:58:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11380_

13.12.4. Class methods (public)

static ImqBoolean structureIdIs(const char * structure-id-to-test, const ImqMessage & msg);

Returns TRUE if the structure id of the next ImqItem in the incoming msg is the same as structure-id-to-

test. The next item is identified as that part of the message buffer currently addressed by the ImqCache data

pointer. This method relies on the structure id and therefore is not guaranteed to work for all ImqItem

derived classes.

Parent topic: ImqItem

This build: January 26, 2011 11:58:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11390_

13.12.5. Object methods (public)

void operator = (const ImqItem & item);

Copies instance data from item, replacing the existing instance data.

virtual ImqBoolean copyOut(ImqMessage & msg) = 0 ;

Writes this object as the next item in an outgoing message buffer, appending it to any existing items. If the

write operation is successful, increases the ImqCache data length. This method returns TRUE if successful.

Override this method to work with a specific subclass.

Page 70 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

virtual ImqBoolean pasteIn(ImqMessage & msg) = 0 ;

Reads this object destructively from the incoming message buffer. The read is destructive in that the

ImqCache data pointer is moved on. However, the buffer content remains the same, so data can be re-read
by resetting the ImqCache data pointer.

The (sub)class of this object must be consistent with the structure id found next in the message buffer of

the msg object.

The encoding of the msg object should be MQENC_NATIVE. It is recommended that messages be retrieved
with the ImqMessage encoding set to MQENC_NATIVE, and with the ImqGetMessageOptions options

including MQGMO_CONVERT.

If the read operation is successful, the ImqCache data length is reduced. This method returns TRUE if

successful.

Override this method to work with a specific subclass.

Parent topic: ImqItem

This build: January 26, 2011 11:58:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11400_

13.12.6. Reason codes

� MQRC_ENCODING_ERROR

� MQRC_STRUC_ID_ERROR

� MQRC_INCONSISTENT_FORMAT

� MQRC_INSUFFICIENT_BUFFER

� MQRC_INSUFFICIENT_DATA

Parent topic: ImqItem

This build: January 26, 2011 11:58:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11410_

13.13. ImqMessage

Figure 1. ImqMessage class

Page 71 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

This class encapsulates an MQMD data structure (see Table 1), and also handles the construction and

reconstruction of message data.

Other relevant classes

Object attributes

Constructors

Object methods (public)

Object methods (protected)

Object data (protected)

Parent topic: WebSphere MQ C++ classes

This build: January 26, 2011 11:58:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11420_

13.13.1. Other relevant classes

� ImqCache (see ImqCache)

� ImqItem (see ImqItem)

� ImqMessageTracker (see ImqMessageTracker)

� ImqString (see ImqString)

Parent topic: ImqMessage

This build: January 26, 2011 11:58:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11430_

13.13.2. Object attributes

application id data

Identity information associated with a message. The initial value is a null string.

application origin data

Origin information associated with a message. The initial value is a null string.

backout count

The number of times that a message has been tentatively retrieved and subsequently backed out. The initial

value is zero. This attribute is read-only.

character set

Coded Character Set Id. The initial value is MQCCSI_Q_MGR. The following additional values are possible:

� MQCCSI_INHERIT

� MQCCSI_EMBEDDED

You can also use a Coded Character Set Id of your choice. For information about this, see the code page

conversion tables in the WebSphere MQ Application Programming Reference.

encoding

Page 72 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

The machine encoding of the message data. The initial value is MQENC_NATIVE.

expiry

A time-dependent quantity that controls how long WebSphere® MQ retains an unretrieved message before
discarding it. The initial value is MQEI_UNLIMITED.

format

The name of the format (template) that describes the layout of data in the buffer. Names longer than eight

characters are truncated to eight characters. Names are always padded with blanks to eight characters. The

initial constant value is MQFMT_NONE. The following additional constants are possible:

� MQFMT_ADMIN

� MQFMT_CICS

� MQFMT_COMMAND_1

� MQFMT_COMMAND_2

� MQFMT_DEAD_LETTER_HEADER

� MQFMT_DIST_HEADER

� MQFMT_EVENT

� MQFMT_IMS

� MQFMT_IMS_VAR_STRING

� MQFMT_MD_EXTENSION

� MQFMT_PCF

� MQFMT_REF_MSG_HEADER

� MQFMT_RF_HEADER

� MQFMT_STRING

� MQFMT_TRIGGER

� MQFMT_WORK_INFO_HEADER

� MQFMT_XMIT_Q_HEADER

You can also use an application-specific string of your choice. For more information about this, see the Format

field of the message descriptor (MQMD) in the WebSphere MQ Application Programming Reference.

message flags

Segmentation control information. The initial value is MQMF_SEGMENTATION_INHIBITED. The following

additional values are possible:

� MQMF_SEGMENTATION_ALLOWED

� MQMF_MSG_IN_GROUP

� MQMF_LAST_MSG_IN_GROUP

� MQMF_SEGMENT

� MQMF_LAST_SEGMENT

� MQMF_NONE

message type

The broad categorization of a message. The initial value is MQMT_DATAGRAM. The following additional values

are possible:

� MQMT_SYSTEM_FIRST

� MQMT_SYSTEM_LAST

� MQMT_DATAGRAM

� MQMT_REQUEST

� MQMT_REPLY

� MQMT_REPORT

� MQMT_APPL_FIRST

� MQMT_APPL_LAST

You can also use an application-specific value of your choice. For more information about this, see the

MsgType field of the message descriptor (MQMD) in the WebSphere MQ Application Programming Reference.

offset

Page 73 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

Offset information. The initial value is zero.

original length

The original length of a segmented message. The initial value is MQOL_UNDEFINED.

persistence

Indicates that the message is important and must at all times be backed up using persistent storage. This

option implies a performance penalty. The initial value is MQPER_PERSISTENCE_AS_Q_DEF. The following

additional values are possible:

� MQPER_PERSISTENT

� MQPER_NOT_PERSISTENT

priority

The relative priority for transmission and delivery. Messages of the same priority are usually delivered in the

same sequence as they were supplied (although there are several criteria that must be satisfied to guarantee

this). The initial value is MQPRI_PRIORITY_AS_Q_DEF.

property validation

Specifies whether validation of properties should take place when a property of the message is set. The initial

value is MQCMHO_DEFAULT_VALIDATION. The following additional values are possible:

� MQCMHO_VALIDATE

� MQCMHO_NO_VALIDATION

The following methods act on property validation:

MQLONG propertyValidation() const ;

Returns the property validation option.

void setPropertyValidation(const MQLONG option);

Sets the property validation option.

put application name

The name of the application that put a message. The initial value is a null string.

put application type

The type of application that put a message. The initial value is MQAT_NO_CONTEXT. The following additional

values are possible:

� MQAT_AIX

� MQAT_CICS

� MQAT_CICS_BRIDGE

� MQAT_DOS

� MQAT_IMS

� MQAT_IMS_BRIDGE

� MQAT_MVS

� MQAT_NOTES_AGENT

� MQAT_OS2

� MQAT_OS390

� MQAT_OS400

� MQAT_QMGR

� MQAT_UNIX

� MQAT_WINDOWS

� MQAT_WINDOWS_NT

� MQAT_XCF

� MQAT_DEFAULT

� MQAT_UNKNOWN

� MQAT_USER_FIRST

� MQAT_USER_LAST

You can also use an application-specific string of your choice. For more information about this, see the

PutApplType field of the message descriptor (MQMD) in the WebSphere MQ Application Programming

Reference.

Page 74 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

put date

The date on which a message was put. The initial value is a null string.

put time

The time at which a message was put. The initial value is a null string.

reply-to queue manager name

The name of the queue manager to which any reply should be sent. The initial value is a null string.

reply-to queue name

The name of the queue to which any reply should be sent. The initial value is a null string.

report

Feedback information associated with a message. The initial value is MQRO_NONE. The following additional

values are possible:

� MQRO_EXCEPTION

� MQRO_EXCEPTION_WITH_DATA

� MQRO_EXCEPTION_WITH_FULL_DATA *

� MQRO_EXPIRATION

� MQRO_EXPIRATION_WITH_DATA

� MQRO_EXPIRATION_WITH_FULL_DATA *

� MQRO_COA

� MQRO_COA_WITH_DATA

� MQRO_COA_WITH_FULL_DATA *

� MQRO_COD

� MQRO_COD_WITH_DATA

� MQRO_COD_WITH_FULL_DATA *

� MQRO_PAN

� MQRO_NAN

� MQRO_NEW_MSG_ID

� MQRO_NEW_CORREL_ID

� MQRO_COPY_MSG_ID_TO_CORREL_ID

� MQRO_PASS_CORREL_ID

� MQRO_DEAD_LETTER_Q

� MQRO_DISCARD_MSG

where * indicates values that are not supported on WebSphere MQ for z/OS®.

sequence number

Sequence information identifying a message within a group. The initial value is one.

total message length

The number of bytes that were available during the most recent attempt to read a message. This number will
be greater than the ImqCache message length if the last message was truncated, or if the last message was

not read because truncation would have occurred. This attribute is read-only. The initial value is zero.

This attribute can be useful in any situation involving truncated messages.

user id

A user identity associated with a message. The initial value is a null string.

Parent topic: ImqMessage

This build: January 26, 2011 11:58:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11440_

13.13.3. Constructors

Page 75 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

ImqMessage();

The default constructor.

ImqMessage(const ImqMessage & msg);

The copy constructor. See the operator = method for details.

Parent topic: ImqMessage

This build: January 26, 2011 11:58:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11450_

13.13.4. Object methods (public)

void operator = (const ImqMessage & msg);

Copies the MQMD and message data from msg. If a buffer has been supplied by the user for this object, the

amount of data copied is restricted to the available buffer size. Otherwise, the system ensures that a buffer of
adequate size is made available for the copied data.

ImqString applicationIdData() const ;

Returns a copy of the application id data.

void setApplicationIdData(const char * data = 0);

Sets the application id data.

ImqString applicationOriginData() const ;

Returns a copy of the application origin data.

void setApplicationOriginData(const char * data = 0);

Sets the application origin data.

MQLONG backoutCount() const ;

Returns the backout count.

MQLONG characterSet() const ;

Returns the character set.

void setCharacterSet(const MQLONG ccsid = MQCCSI_Q_MGR);

Sets the character set.

MQLONG encoding() const ;

Returns the encoding.

void setEncoding(const MQLONG encoding = MQENC_NATIVE);

Sets the encoding.

MQLONG expiry() const ;

Returns the expiry.

void setExpiry(const MQLONG expiry);

Sets the expiry.

ImqString format() const ;

Returns a copy of the format, including trailing blanks.

ImqBoolean formatIs(const char * format-to-test) const ;

Returns TRUE if the format is the same as format-to-test.

void setFormat(const char * name = 0);

Sets the format, padded to eight characters with trailing blanks.

MQLONG messageFlags() const ;

Returns the message flags.

void setMessageFlags(const MQLONG flags);

Sets the message flags.

Page 76 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

MQLONG messageType() const ;

Returns the message type.

void setMessageType(const MQLONG type);

Sets the message type.

MQLONG offset() const ;

Returns the offset.

void setOffset(const MQLONG offset);

Sets the offset.

MQLONG originalLength() const ;

Returns the original length.

void setOriginalLength(const MQLONG length);

Sets the original length.

MQLONG persistence() const ;

Returns the persistence.

void setPersistence(const MQLONG persistence);

Sets the persistence.

MQLONG priority() const ;

Returns the priority.

void setPriority(const MQLONG priority);

Sets the priority.

ImqString putApplicationName() const ;

Returns a copy of the put application name.

void setPutApplicationName(const char * name = 0);

Sets the put application name.

MQLONG putApplicationType() const ;

Returns the put application type.

void setPutApplicationType(const MQLONG type = MQAT_NO_CONTEXT);

Sets the put application type.

ImqString putDate() const ;

Returns a copy of the put date.

void setPutDate(const char * date = 0);

Sets the put date.

ImqString putTime() const ;

Returns a copy of the put time.

void setPutTime(const char * time = 0);

Sets the put time.

ImqBoolean readItem(ImqItem & item);

Reads into the item object from the message buffer, using the ImqItem pasteIn method. It returns TRUE if

successful.

ImqString replyToQueueManagerName() const ;

Returns a copy of the reply-to queue manager name.

void setReplyToQueueManagerName(const char * name = 0);

Sets the reply-to queue manager name.

ImqString replyToQueueName() const ;

Returns a copy of the reply-to queue name.

void setReplyToQueueName(const char * name = 0);

Sets the reply-to queue name.

MQLONG report() const ;

Returns the report.

void setReport(const MQLONG report);

Page 77 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

Sets the report.

MQLONG sequenceNumber() const ;

Returns the sequence number.

void setSequenceNumber(const MQLONG number);

Sets the sequence number.

size_t totalMessageLength() const ;

Returns the total message length.

ImqString userId() const ;

Returns a copy of the user id.

void setUserId(const char * id = 0);

Sets the user id.

ImqBoolean writeItem(ImqItem & item);

Writes from the item object into the message buffer, using the ImqItem copyOut method. Writing can take

the form of insertion, replacement, or an append: this depends on the class of the item object. This method
returns TRUE if successful.

Parent topic: ImqMessage

This build: January 26, 2011 11:58:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11460_

13.13.5. Object methods (protected)

static void setVersionSupported(const MQLONG);

Sets the MQMD version. Defaults to MQMD_VERSION_2.

Parent topic: ImqMessage

This build: January 26, 2011 11:58:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11470_

13.13.6. Object data (protected)

MQMD1 omqmd

(WebSphere® MQ for z/OS® only.) The MQMD data structure.

MQMD2 omqmd

(Platforms other than z/OS.) The MQMD data structure.

Parent topic: ImqMessage

This build: January 26, 2011 11:58:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11480_

13.14. ImqMessageTracker

Figure 1. ImqMessageTracker class

Page 78 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

This class encapsulates those attributes of an ImqMessage or ImqQueue object that can be associated with

either object. It relates to the MQI calls listed in Table 1.

Other relevant classes

Object attributes

Constructors

Object methods (public)

Reason codes

Parent topic: WebSphere MQ C++ classes

This build: January 26, 2011 11:58:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11490_

13.14.1. Other relevant classes

� ImqBinary (see ImqBinary)

� ImqError (see ImqError)

� ImqMessage (see ImqMessage)

� ImqQueue (see ImqQueue)

Parent topic: ImqMessageTracker

This build: January 26, 2011 11:58:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11500_

13.14.2. Object attributes

accounting token

A binary value (MQBYTE32) of length MQ_ACCOUNTING_TOKEN_LENGTH. The initial value is MQACT_NONE.

correlation id

Page 79 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

A binary value (MQBYTE24) of length MQ_CORREL_ID_LENGTH that you assign to correlate messages. The

initial value is MQCI_NONE. The additional value, MQCI_NEW_SESSION, is possible.

feedback

Feedback information to be sent with a message. The initial value is MQFB_NONE. The following additional

values are possible:

� MQFB_SYSTEM_FIRST

� MQFB_SYSTEM_LAST

� MQFB_APPL_FIRST

� MQFB_APPL_LAST

� MQFB_COA

� MQFB_COD

� MQFB_EXPIRATION

� MQFB_PAN

� MQFB_NAN

� MQFB_QUIT

� MQFB_DATA_LENGTH_ZERO

� MQFB_DATA_LENGTH_NEGATIVE

� MQFB_DATA_LENGTH_TOO_BIG

� MQFB_BUFFER_OVERFLOW

� MQFB_LENGTH_OFF_BY_ONE

� MQFB_IIH_ERROR

� MQFB_NOT_AUTHORIZED_FOR_IMS

� MQFB_IMS_ERROR

� MQFB_IMS_FIRST

� MQFB_IMS_LAST

� MQFB_CICS_APPL_ABENDED

� MQFB_CICS_APPL_NOT_STARTED

� MQFB_CICS_BRIDGE_FAILURE

� MQFB_CICS_CCSID_ERROR

� MQFB_CICS_CIH_ERROR

� MQFB_CICS_COMMAREA_ERROR

� MQFB_CICS_CORREL_ID_ERROR

� MQFB_CICS_DLQ_ERROR

� MQFB_CICS_ENCODING_ERROR

� MQFB_CICS_INTERNAL_ERROR

� MQFB_CICS_NOT_AUTHORIZED

� MQFB_CICS_UOW_BACKED_OUT

� MQFB_CICS_UOW_ERROR

You can also use an application-specific string of your choice. For more information about this, see the
Feedback field of the message descriptor (MQMD) in the WebSphere MQ Application Programming Reference.

group id

A binary value (MQBYTE24) of length MQ_GROUP_ID_LENGTH unique within a queue. The initial value is
MQGI_NONE.

message id

A binary value (MQBYTE24) of length MQ_MSG_ID_LENGTH unique within a queue. The initial value is

MQMI_NONE.

Parent topic: ImqMessageTracker

This build: January 26, 2011 11:58:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Page 80 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11510_

13.14.3. Constructors

ImqMessageTracker();

The default constructor.

ImqMessageTracker(const ImqMessageTracker & tracker);

The copy constructor. See the operator = method for details.

Parent topic: ImqMessageTracker

This build: January 26, 2011 11:58:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11520_

13.14.4. Object methods (public)

void operator = (const ImqMessageTracker & tracker);

Copies instance data from tracker, replacing the existing instance data.

ImqBinary accountingToken() const ;

Returns a copy of the accounting token.

ImqBoolean setAccountingToken(const ImqBinary & token);

Sets the accounting token. The data length of token must be either zero or
MQ_ACCOUNTING_TOKEN_LENGTH. This method returns TRUE if successful.

void setAccountingToken(const MQBYTE32 token = 0);

Sets the accounting token. token can be zero, which is the same as specifying MQACT_NONE. If token is

nonzero, it must address MQ_ACCOUNTING_TOKEN_LENGTH bytes of binary data. When using predefined

values such as MQACT_NONE, you might need to make a cast to ensure a signature match; for example,

(MQBYTE *)MQACT_NONE.

ImqBinary correlationId() const ;

Returns a copy of the correlation id.

ImqBoolean setCorrelationId(const ImqBinary & token);

Sets the correlation id. The data length of token must be either zero or MQ_CORREL_ID_LENGTH. This

method returns TRUE if successful.

void setCorrelationId(const MQBYTE24 id = 0);

Sets the correlation id. id can be zero, which is the same as specifying MQCI_NONE. If id is nonzero, it must

address MQ_CORREL_ID_LENGTH bytes of binary data. When using predefined values such as MQCI_NONE,
you might need to make a cast to ensure a signature match; for example, (MQBYTE *)MQCI_NONE.

MQLONG feedback() const ;

Returns the feedback.

void setFeedback(const MQLONG feedback);

Sets the feedback.

ImqBinary groupId() const ;

Returns a copy of the group id.

ImqBoolean setGroupId(const ImqBinary & token);

Sets the group id. The data length of token must be either zero or MQ_GROUP_ID_LENGTH. This method

returns TRUE if successful.

void setGroupId(const MQBYTE24 id = 0);

Sets the group id. id can be zero, which is the same as specifying MQGI_NONE. If id is nonzero, it must

address MQ_GROUP_ID_LENGTH bytes of binary data. When using predefined values such as MQGI_NONE,

you might need to make a cast to ensure a signature match, for example (MQBYTE *)MQGI_NONE.

Page 81 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

ImqBinary messageId() const ;

Returns a copy of the message id.

ImqBoolean setMessageId(const ImqBinary & token);

Sets the message id. The data length of token must be either zero or MQ_MSG_ID_LENGTH. This method
returns TRUE if successful.

void setMessageId(const MQBYTE24 id = 0);

Sets the message id. id can be zero, which is the same as specifying MQMI_NONE. If id is nonzero, it must

address MQ_MSG_ID_LENGTH bytes of binary data. When using predefined values such as MQMI_NONE, you

might need to make a cast to ensure a signature match, for example (MQBYTE *)MQMI_NONE.

Parent topic: ImqMessageTracker

This build: January 26, 2011 11:58:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11530_

13.14.5. Reason codes

� MQRC_BINARY_DATA_LENGTH_ERROR

Parent topic: ImqMessageTracker

This build: January 26, 2011 11:58:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11540_

13.15. ImqNamelist

Figure 1. ImqNamelist class

This class encapsulates a namelist. It relates to the MQI calls listed in Table 1.

Other relevant classes

Object attributes

Constructors

Page 82 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

Object methods (public)

Reason codes

Parent topic: WebSphere MQ C++ classes

This build: January 26, 2011 11:58:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11550_

13.15.1. Other relevant classes

� ImqObject (see ImqObject)

� ImqString (see ImqString)

Parent topic: ImqNamelist

This build: January 26, 2011 11:58:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11560_

13.15.2. Object attributes

name count

The number of object names in namelist names. This attribute is read-only.

namelist names

Object names, the number of which is indicated by the name count. This attribute is read-only.

Parent topic: ImqNamelist

This build: January 26, 2011 11:58:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11570_

13.15.3. Constructors

ImqNamelist();

The default constructor.

ImqNamelist(const ImqNamelist & list);

The copy constructor. The ImqObject open status is false.

ImqNamelist(const char * name);

Sets the ImqObject name to name.

Parent topic: ImqNamelist

This build: January 26, 2011 11:58:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11580_

Page 83 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

13.15.4. Object methods (public)

void operator = (const ImqNamelist & list);

Copies instance data from list, replacing the existing instance data. The ImqObject open status is false.

ImqBoolean nameCount(MQLONG & count);

Provides a copy of the name count. It returns TRUE if successful.

MQLONG nameCount ();

Returns the name count without any indication of possible errors.

ImqBoolean namelistName (const MQLONG index, ImqString & name);

Provides a copy of one the namelist names by zero based index. It returns TRUE if successful.

ImqString namelistName (const MQLONG index);

Returns one of the namelist names by zero-based index without any indication of possible errors.

Parent topic: ImqNamelist

This build: January 26, 2011 11:58:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11590_

13.15.5. Reason codes

� MQRC_INDEX_ERROR

� MQRC_INDEX_NOT_PRESENT

Parent topic: ImqNamelist

This build: January 26, 2011 11:58:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11600_

13.16. ImqObject

Figure 1. ImqObject class

This class is abstract. When an object of this class is destroyed, it is automatically closed, and its
ImqQueueManager connection severed. This class relates to the MQI calls listed in Table 1.

Page 84 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

Other relevant classes

Class attributes

Object attributes

Constructors

Class methods (public)

Object methods (public)

Object methods (protected)

Object data (protected)

Reason codes

Parent topic: WebSphere MQ C++ classes

This build: January 26, 2011 11:58:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11610_

13.16.1. Other relevant classes

� ImqBinary (see ImqBinary)

� ImqError (see ImqError)

� ImqNamelist (see ImqNamelist)

� ImqQueue (see ImqQueue)

� ImqQueueManager (see ImqQueueManager)

� ImqString (see ImqString)

Parent topic: ImqObject

This build: January 26, 2011 11:58:13

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11620_

13.16.2. Class attributes

behavior

Controls the behavior of implicit opening.

IMQ_IMPL_OPEN (8L)

Implicit opening is allowed. This is the default.

Parent topic: ImqObject

This build: January 26, 2011 11:58:13

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11630_

Page 85 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

13.16.3. Object attributes

alteration date

The alteration date. This attribute is read-only.

alteration time

The alteration time. This attribute is read-only.

alternate user id

The alternate user id, up to MQ_USER_ID_LENGTH characters. The initial value is a null string.

alternate security id

The alternate security id. A binary value (MQBYTE40) of length MQ_SECURITY_ID_LENGTH. The initial value

is MQSID_NONE.

close options

Options that apply when an object is closed. The initial value is MQCO_NONE. This attribute is ignored during

implicit reopen operations, where a value of MQCO_NONE is always used.

connection reference

A reference to an ImqQueueManager object that provides the required connection to a (local) queue
manager. For an ImqQueueManager object, it is the object itself. The initial value is zero.

Note: Do not confuse this with the queue manager name that identifies a queue manager (possibly
remote) for a named queue.

description

The descriptive name (up to 64 characters) of the queue manager, queue, namelist, or process. This attribute

is read-only.

name

The name (up to 48 characters) of the queue manager, queue, namelist, or process. The initial value is a null
string. The name of a model queue changes after an open to the name of the resulting dynamic queue.

Note: An ImqQueueManager can have a null name, representing the default queue manager. The name

changes to the actual queue manager after a successful open. An ImqDistributionList is dynamic and must

have a null name.

next managed object

This is the next object of this class, in no particular order, having the same connection reference as this

object. The initial value is zero.

open options

Options that apply when an object is opened. The initial value is MQOO_INQUIRE. There are two ways to set

appropriate values:

1. Do not set the open options and do not use the open method. WebSphere® MQ automatically adjusts

the open options and automatically opens, reopens, and closes objects as required. This can result in

unnecessary reopen operations, because WebSphere MQ uses the openFor method, and this adds
open options incrementally only.

2. Set the open options before using any methods that result in an MQI call (see MQI cross reference).

This ensures that unnecessary reopen operations do not occur. Set open options explicitly if any of the
potential reopen problems are likely to occur (see Reopen).

If you use the open method, you must ensure that the open options are appropriate first. However,

using the open method is not mandatory; WebSphere MQ still exhibits the same behavior as in case 1,

but in this circumstance, the behavior is efficient.

Zero is not a valid value; set the appropriate value before attempting to open the object. This can be done

using either setOpenOptions(lOpenOptions) followed by open(), or openFor(lRequiredOpenOption).

Note:

1. MQOO_OUTPUT is substituted for MQOO_INQUIRE during the open method for a distribution list, as

MQOO_OUTPUT is the only valid open option at this time. However, it is good practice always to set

MQOO_OUTPUT explicitly in application programs that use the open method.

2. Specify MQOO_RESOLVE_NAMES if you want to use the resolved queue manager name and

resolved queue name attributes of the class.

open status

Whether the object is open (TRUE) or closed (FALSE). The initial value is FALSE. This attribute is read-only.

Page 86 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

previous managed object

The previous object of this class, in no particular order, having the same connection reference as this

object. The initial value is zero.

queue manager identifier

The queue manager identifier. This attribute is read-only.

Parent topic: ImqObject

This build: January 26, 2011 11:58:13

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11640_

13.16.4. Constructors

ImqObject();

The default constructor.

ImqObject(const ImqObject & object);

The copy constructor. The open status will be FALSE.

Parent topic: ImqObject

This build: January 26, 2011 11:58:13

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11650_

13.16.5. Class methods (public)

static MQLONG behavior();

Returns the behavior.

void setBehavior(const MQLONG behavior = 0);

Sets the behavior.

Parent topic: ImqObject

This build: January 26, 2011 11:58:13

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11660_

13.16.6. Object methods (public)

void operator = (const ImqObject & object);

Performs a close if necessary, and copies the instance data from object. The open status will be FALSE.

ImqBoolean alterationDate(ImqString & date);

Provides a copy of the alteration date. It returns TRUE if successful.

ImqString alterationDate();

Returns the alteration date without any indication of possible errors.

ImqBoolean alterationTime(ImqString & time);

Provides a copy of the alteration time. It returns TRUE if successful.

ImqString alterationTime();

Page 87 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

Returns the alteration time without any indication of possible errors.

ImqString alternateUserId() const ;

Returns a copy of the alternate user id.

ImqBoolean setAlternateUserId(const char * id);

Sets the alternate user id. The alternate user id can be set only while the open status is FALSE. This

method returns TRUE if successful.

ImqBinary alternateSecurityId() const ;

Returns a copy of the alternate security id.

ImqBoolean setAlternateSecurityId(const ImqBinary & token);

Sets the alternate security id. The alternate security id can be set only while the open status is FALSE.

The data length of token must be either zero or MQ_SECURITY_ID_LENGTH. It returns TRUE if successful.

ImqBoolean setAlternateSecurityId(const MQBYTE* token = 0);

Sets the alternate security id. token can be zero, which is the same as specifying MQSID_NONE. If token is
nonzero, it must address MQ_SECURITY_ID_LENGTH bytes of binary data. When using predefined values such

as MQSID_NONE, you might need to make a cast to ensure signature match; for example, (MQBYTE *)

MQSID_NONE.

The alternate security id can be set only while the open status is TRUE. It returns TRUE if successful.

ImqBoolean setAlternateSecurityId(const unsigned char * id = 0);

Sets the alternate security id.

ImqBoolean close();

Sets the open status to FALSE. It returns TRUE if successful.

MQLONG closeOptions() const ;

Returns the close options.

void setCloseOptions(const MQLONG options);

Sets the close options.

ImqQueueManager * connectionReference() const ;

Returns the connection reference.

void setConnectionReference(ImqQueueManager & manager);

Sets the connection reference.

void setConnectionReference(ImqQueueManager * manager = 0);

Sets the connection reference.

virtual ImqBoolean description(ImqString & description) = 0 ;

Provides a copy of the description. It returns TRUE if successful.

ImqString description();

Returns a copy of the description without any indication of possible errors.

virtual ImqBoolean name(ImqString & name);

Provides a copy of the name. It returns TRUE if successful.

ImqString name();

Returns a copy of the name without any indication of possible errors.

ImqBoolean setName(const char * name = 0);

Sets the name. The name can only be set while the open status is FALSE, and, for an ImqQueueManager,

while the connection status is FALSE. It returns TRUE if successful.

ImqObject * nextManagedObject() const ;

Returns the next managed object.

ImqBoolean open();

Changes the open status to TRUE by opening the object as necessary, using amongst other attributes the

open options and the name. This method uses the connection reference information and the
ImqQueueManager connect method if necessary to ensure that the ImqQueueManager connection status is

TRUE. It returns the open status.

ImqBoolean openFor(const MQLONG required-options = 0);

Attempts to ensure that the object is open with open options, or with open options that guarantee the

behavior implied by the required-options parameter value..

Page 88 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

If required-options is zero, input is required, and any input option suffices. So, if the open options already

contain one of:

� MQOO_INPUT_AS_Q_DEF

� MQOO_INPUT_SHARED

� MQOO_INPUT_EXCLUSIVE

the open options are already satisfactory and are not changed; if the open options do not already contain

any of the above, MQOO_INPUT_AS_Q_DEF is set in the open options.

If required-options is nonzero, the required options are added to the open options; if required-options is any
of the above, the others are reset.

If any of the open options are changed and the object is already open, the object is closed temporarily and

reopened in order to adjust the open options.

It returns TRUE if successful. Success indicates that the object is open with appropriate options.

MQLONG openOptions() const ;

Returns the open options.

ImqBoolean setOpenOptions(const MQLONG options);

Sets the open options. The open options can be set only while the open status is FALSE. It returns TRUE
if successful.

ImqBoolean openStatus() const ;

Returns the open status.

ImqObject * previousManagedObject() const ;

Returns the previous managed object.

ImqBoolean queueManagerIdentifier(ImqString & id);

Provides a copy of the queue manager identifier. It returns TRUE if successful.

ImqString queueManagerIdentifier();

Returns the queue manager identifier without any indication of possible errors.

Parent topic: ImqObject

This build: January 26, 2011 11:58:13

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11670_

13.16.7. Object methods (protected)

virtual ImqBoolean closeTemporarily();

Closes an object safely before reopening. It returns TRUE if successful. This method assumes that the open

status is TRUE.

MQHCONN connectionHandle() const ;

Returns the MQHCONN associated with the connection reference. This value is zero if there is no
connection reference or if the Manager is not connected.

ImqBoolean inquire(const MQLONG int-attr, MQLONG & value);

Returns an integer value, the index of which is an MQIA_* value. In case of error, the value is set to

MQIAV_UNDEFINED.

ImqBoolean inquire(const MQLONG char-attr, char * & buffer, const size_t length);

Returns a character string, the index of which is an MQCA_* value.

Note: Both the above methods return only a single attribute value. If a snapshot is required of more than one

value, where the values are consistent with each other for an instant, WebSphere® MQ C++ does not provide

this facility and you must use the MQINQ call with appropriate parameters.

virtual void openInformationDisperse();

Page 89 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

Disperses information from the variable section of the MQOD data structure immediately after an MQOPEN

call.

virtual ImqBoolean openInformationPrepare();

Prepares information for the variable section of the MQOD data structure immediately before an MQOPEN call,

and returns TRUE if successful.

ImqBoolean set(const MQLONG int-attr, const MQLONG value);

Sets a WebSphere MQ integer attribute.

ImqBoolean set(const MQLONG char-attr, const char * buffer, const size_t required-length);

Sets a WebSphere MQ character attribute.

void setNextManagedObject(const ImqObject * object = 0);

Sets the next managed object.

Attention: Use this function only if you are sure it will not break the managed object list.

void setPreviousManagedObject(const ImqObject * object = 0);

Sets the previous managed object.

Attention: Use this function only if you are sure it will not break the managed object list.

Parent topic: ImqObject

This build: January 26, 2011 11:58:13

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11680_

13.16.8. Object data (protected)

MQHOBJ ohobj

The WebSphere® MQ object handle (valid only when open status is TRUE).

MQOD omqod

The embedded MQOD data structure. The amount of storage allocated for this data structure is that required

for an MQOD Version 2. Inspect the version number (omqod.Version) and access the other fields as follows:

MQOD_VERSION_1

All other fields in omqod can be accessed.

MQOD_VERSION_2

All other fields in omqod can be accessed.

MQOD_VERSION_3

omqod.pmqod is a pointer to a dynamically allocated, larger, MQOD. No other fields in omqod can be

accessed. All fields addressed by omqod.pmqod can be accessed.

Note: omqod.pmqod.Version can be less than omqod.Version, indicating that the WebSphere MQ client has

more functionality than the WebSphere MQ server.

Parent topic: ImqObject

This build: January 26, 2011 11:58:13

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11690_

13.16.9. Reason codes

� MQRC_ATTRIBUTE_LOCKED

� MQRC_INCONSISTENT_OBJECT_STATE

Page 90 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

� MQRC_NO_CONNECTION_REFERENCE

� MQRC_STORAGE_NOT_AVAILABLE

� MQRC_REOPEN_SAVED_CONTEXT_ERR

� (reason codes from MQCLOSE)

� (reason codes from MQCONN)

� (reason codes from MQINQ)

� (reason codes from MQOPEN)

� (reason codes from MQSET)

Parent topic: ImqObject

This build: January 26, 2011 11:58:13

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11700_

13.17. ImqProcess

Figure 1. ImqProcess class

This class encapsulates an application process (a WebSphere® MQ object of type MQOT_PROCESS) that can be

triggered by a trigger monitor (see Table 1).

Other relevant classes

Object attributes

Constructors

Object methods (public)

Parent topic: WebSphere MQ C++ classes

This build: January 26, 2011 11:58:13

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11710_

13.17.1. Other relevant classes

Page 91 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

� ImqObject (see ImqObject)

Parent topic: ImqProcess

This build: January 26, 2011 11:58:14

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11720_

13.17.2. Object attributes

application id

The identity of the application process. This attribute is read-only.

application type

The type of the application process. This attribute is read-only.

environment data

The environment information for the process. This attribute is read-only.

user data

User data for the process. This attribute is read-only.

Parent topic: ImqProcess

This build: January 26, 2011 11:58:14

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11730_

13.17.3. Constructors

ImqProcess();

The default constructor.

ImqProcess(const ImqProcess & process);

The copy constructor. The ImqObject open status is FALSE.

ImqProcess(const char * name);

Sets the ImqObject name.

Parent topic: ImqProcess

This build: January 26, 2011 11:58:14

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11740_

13.17.4. Object methods (public)

void operator = (const ImqProcess & process);

Performs a close if necessary, and then copies instance data from process. The ImqObject open status will

be FALSE.

ImqBoolean applicationId(ImqString & id);

Provides a copy of the application id. It returns TRUE if successful.

ImqString applicationId();

Returns the application id without any indication of possible errors.

Page 92 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

ImqBoolean applicationType(MQLONG & type);

Provides a copy of the application type. It returns TRUE if successful.

MQLONG applicationType();

Returns the application type without any indication of possible errors.

ImqBoolean environmentData(ImqString & data);

Provides a copy of the environment data. It returns TRUE if successful.

ImqString environmentData();

Returns the environment data without any indication of possible errors.

ImqBoolean userData(ImqString & data);

Provides a copy of the user data. It returns TRUE if successful.

ImqString userData();

Returns the user data without any indication of possible errors.

Parent topic: ImqProcess

This build: January 26, 2011 11:58:14

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11750_

13.18. ImqPutMessageOptions

Figure 1. ImqPutMessageOptions class

This class encapsulates the MQPMO data structure (see Table 1).

Other relevant classes

Object attributes

Constructors

Object methods (public)

Object data (protected)

Reason codes

Parent topic: WebSphere MQ C++ classes

This build: January 26, 2011 11:58:14

Page 93 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11760_

13.18.1. Other relevant classes

� ImqError (see ImqError)

� ImqMessage (see ImqMessage)

� ImqQueue (see ImqQueue)

� ImqString (see ImqString)

Parent topic: ImqPutMessageOptions

This build: January 26, 2011 11:58:14

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11770_

13.18.2. Object attributes

context reference

An ImqQueue that provides a context for messages. Initially there is no reference.

options

The put message options. The initial value is MQPMO_NONE. The following additional values are possible:

� MQPMO_SYNCPOINT

� MQPMO_NO_SYNCPOINT

� MQPMO_NEW_MSG_ID

� MQPMO_NEW_CORREL_ID

� MQPMO_LOGICAL_ORDER

� MQPMO_NO_CONTEXT

� MQPMO_DEFAULT_CONTEXT

� MQPMO_PASS_IDENTITY_CONTEXT

� MQPMO_PASS_ALL_CONTEXT

� MQPMO_SET_IDENTITY_CONTEXT

� MQPMO_SET_ALL_CONTEXT

� MQPMO_ALTERNATE_USER_AUTHORITY

� MQPMO_FAIL_IF_QUIESCING

record fields

The flags that control the inclusion of put message records when a message is put. The initial value is

MQPMRF_NONE. The following additional values are possible:

� MQPMRF_MSG_ID

� MQPMRF_CORREL_ID

� MQPMRF_GROUP_ID

� MQPMRF_FEEDBACK

� MQPMRF_ACCOUNTING_TOKEN

ImqMessageTracker attributes are taken from the object for any field that is specified. ImqMessageTracker

attributes are taken from the ImqMessage object for any field that is not specified.

resolved queue manager name

Name of a destination queue manager determined during a put. The initial value is null. This attribute is read-

Page 94 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

only.

resolved queue name

Name of a destination queue determined during a put. The initial value is null. This attribute is read-only.

syncpoint participation

TRUE when messages are put under syncpoint control.

Parent topic: ImqPutMessageOptions

This build: January 26, 2011 11:58:14

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11780_

13.18.3. Constructors

ImqPutMessageOptions();

The default constructor.

ImqPutMessageOptions(const ImqPutMessageOptions & pmo);

The copy constructor.

Parent topic: ImqPutMessageOptions

This build: January 26, 2011 11:58:14

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11790_

13.18.4. Object methods (public)

void operator = (const ImqPutMessageOptions & pmo);

Copies instance data from pmo, replacing the existing instance data.

ImqQueue * contextReference() const ;

Returns the context reference.

void setContextReference(const ImqQueue & queue);

Sets the context reference.

void setContextReference(const ImqQueue * queue = 0);

Sets the context reference.

MQLONG options() const ;

Returns the options.

void setOptions(const MQLONG options);

Sets the options, including the syncpoint participation value.

MQLONG recordFields() const ;

Returns the record fields.

void setRecordFields(const MQLONG fields);

Sets the record fields.

ImqString resolvedQueueManagerName() const ;

Returns a copy of the resolved queue manager name.

ImqString resolvedQueueName() const ;

Returns a copy of the resolved queue name.

ImqBoolean syncPointParticipation() const ;

Returns the syncpoint participation value, which is TRUE if the options include MQPMO_SYNCPOINT.

Page 95 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

void setSyncPointParticipation(const ImqBoolean sync);

Sets the syncpoint participation value. If sync is TRUE, the options are altered to include

MQPMO_SYNCPOINT, and to exclude MQPMO_NO_SYNCPOINT. If sync is FALSE, the options are altered to
include MQPMO_NO_SYNCPOINT, and to exclude MQPMO_SYNCPOINT.

Parent topic: ImqPutMessageOptions

This build: January 26, 2011 11:58:14

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11800_

13.18.5. Object data (protected)

MQPMO omqpmo

The MQPMO data structure.

Parent topic: ImqPutMessageOptions

This build: January 26, 2011 11:58:14

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11810_

13.18.6. Reason codes

� MQRC_STORAGE_NOT_AVAILABLE

Parent topic: ImqPutMessageOptions

This build: January 26, 2011 11:58:14

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11820_

13.19. ImqQueue

Figure 1. ImqQueue class

This class encapsulates a message queue (a WebSphere® MQ object of type MQOT_Q). It relates to the MQI

Page 96 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

calls listed in Table 1.

Other relevant classes

Object attributes

Constructors

Object methods (public)

Object methods (protected)

Reason codes

Parent topic: WebSphere MQ C++ classes

This build: January 26, 2011 11:58:14

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11830_

13.19.1. Other relevant classes

� ImqCache (see ImqCache)

� ImqDistributionList (see ImqDistributionList)

� ImqGetMessageOptions (see ImqGetMessageOptions)

� ImqMessage (see ImqMessage)

� ImqMessageTracker (see ImqMessageTracker)

� ImqObject (see ImqObject)

� ImqPutMessageOptions (see ImqPutMessageOptions)

� ImqQueueManager (see ImqQueueManager)

� ImqString (see ImqString)

Parent topic: ImqQueue

This build: January 26, 2011 11:58:14

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11840_

13.19.2. Object attributes

backout requeue name

Excessive backout requeue name. This attribute is read-only.

backout threshold

Backout threshold. This attribute is read-only.

base queue name

Name of the queue that the alias resolves to. This attribute is read-only.

cluster name

Cluster name. This attribute is read-only.

cluster namelist name

Cluster namelist name. This attribute is read-only.

Page 97 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

cluster workload rank

Cluster workload rank. This attribute is read-only.

cluster workload priority

Cluster workload priority. This attribute is read-only.

cluster workload use queue

Cluster workload use queue value. This attribute is read-only.

creation date

Queue creation data. This attribute is read-only.

creation time

Queue creation time. This attribute is read-only.

current depth

Number of messages on the queue. This attribute is read-only.

default bind

Default bind. This attribute is read-only.

default input open option

Default open-for-input option. This attribute is read-only.

default persistence

Default message persistence. This attribute is read-only.

default priority

Default message priority. This attribute is read-only.

definition type

Queue definition type. This attribute is read-only.

depth high event

Control attribute for queue depth high events. This attribute is read-only.

depth high limit

High limit for the queue depth. This attribute is read-only.

depth low event

Control attribute for queue depth low events. This attribute is read-only.

depth low limit

Low limit for the queue depth. This attribute is read-only.

depth maximum event

Control attribute for queue depth maximum events. This attribute is read-only.

distribution list reference

Optional reference to an ImqDistributionList that can be used to distribute messages to more than one queue,

including this one. The initial value is null.

Note: When an ImqQueue object is opened, any open ImqDistributionList object that it references is

automatically closed.

distribution lists

The capability of a transmission queue to support distribution lists. This attribute is read-only.

dynamic queue name

Dynamic queue name. The initial value is AMQ.* for all Personal Computer and UNIX platforms.

harden get backout

Whether to harden the backout count. This attribute is read-only.

index type

Index type. This attribute is read-only.

inhibit get

Whether get operations are allowed. The initial value is dependent on the queue definition. This attribute is
valid for an alias or local queue only.

inhibit put

Page 98 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

Whether put operations are allowed. The initial value is dependent on the queue definition.

initiation queue name

Name of the initiation queue. This attribute is read-only.

maximum depth

Maximum number of messages allowed on the queue. This attribute is read-only.

maximum message length

Maximum length for any message on this queue, which can be less than the maximum for any queue

managed by the associated queue manager. This attribute is read-only.

message delivery sequence

Whether message priority is relevant. This attribute is read-only.

next distributed queue

Next object of this class, in no particular order, having the same distribution list reference as this object.

The initial value is zero.

If an object in a chain is deleted, the previous object and next object are updated so that their distributed

queue links no longer point to the deleted object.

non-persistent message class

Level of reliability for non-persistent messages put to this queue. This attribute is read-only.

open input count

Number of ImqQueue objects that are open for input. This attribute is read-only.

open output count

Number of ImqQueue objects that are open for output. This attribute is read-only.

previous distributed queue

Previous object of this class, in no particular order, having the same distribution list reference as this

object. The initial value is zero.

If an object in a chain is deleted, the previous object and next object are updated so that their distributed
queue links no longer point to the deleted object.

process name

Name of the process definition. This attribute is read-only.

queue accounting

Level of accounting information for queues. This attribute is read-only.

queue manager name

Name of the queue manager (possibly remote) where the queue resides. Do not confuse the queue manager

named here with the ImqObject connection reference, which references the (local) queue manager

providing a connection. The initial value is null.

queue monitoring

Level of monitoring data collection for the queue. This attribute is read-only.

queue statistics

Level of statistics data for the queue. This attribute is read-only.

queue type

Queue type. This attribute is read-only.

remote queue manager name

Name of the remote queue manager. This attribute is read-only.

remote queue name

Name of the remote queue as known on the remote queue manager. This attribute is read-only.

resolved queue manager name

Resolved queue manager name. This attribute is read-only.

resolved queue name

Resolved queue name. This attribute is read-only.

retention interval

Queue retention interval. This attribute is read-only.

Page 99 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

scope

Scope of the queue definition. This attribute is read-only.

service interval

Service interval. This attribute is read-only.

service interval event

Control attribute for service interval events. This attribute is read-only.

shareability

Whether the queue can be shared. This attribute is read-only.

storage class

Storage class. This attribute is read-only.

transmission queue name

Name of the transmission queue. This attribute is read-only.

trigger control

Trigger control. The initial value depends on the queue definition. This attribute is valid for a local queue only.

trigger data

Trigger data. The initial value depends on the queue definition. This attribute is valid for a local queue only.

trigger depth

Trigger depth. The initial value depends on the queue definition. This attribute is valid for a local queue only.

trigger message priority

Threshold message priority for triggers. The initial value depends on the queue definition. This attribute is
valid for a local queue only.

trigger type

Trigger type. The initial value depends on the queue definition. This attribute is valid for a local queue only.

usage

Usage. This attribute is read-only.

Parent topic: ImqQueue

This build: January 26, 2011 11:58:14

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11850_

13.19.3. Constructors

ImqQueue();

The default constructor.

ImqQueue(const ImqQueue & queue);

The copy constructor. The ImqObject open status will be FALSE.

ImqQueue(const char * name);

Sets the ImqObject name.

Parent topic: ImqQueue

This build: January 26, 2011 11:58:14

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11860_

13.19.4. Object methods (public)

Page 100 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

void operator = (const ImqQueue & queue);

Performs a close if necessary, and then copies instance data from queue. The ImqObject open status will be
FALSE.

ImqBoolean backoutRequeueName(ImqString & name);

Provides a copy of the backout requeue name. It returns TRUE if successful.

ImqString backoutRequeueName();

Returns the backout requeue name without any indication of possible errors.

ImqBoolean backoutThreshold(MQLONG & threshold);

Provides a copy of the backout threshold. It returns TRUE if successful.

MQLONG backoutThreshold();

Returns the backout threshold value without any indication of possible errors.

ImqBoolean baseQueueName(ImqString & name);

Provides a copy of the base queue name. It returns TRUE if successful.

ImqString baseQueueName();

Returns the base queue name without any indication of possible errors.

ImqBoolean clusterName(ImqString & name);

Provides a copy of the cluster name. It returns TRUE if successful.

ImqString clusterName();

Returns the cluster name without any indication of possible errors.

ImqBoolean clusterNamelistName(ImqString & name);

Provides a copy of the cluster namelist name. It returns TRUE if successful.

ImqString clusterNamelistName();

Returns the cluster namelist name without any indication of errors.

ImqBoolean clusterWorkLoadPriority (MQLONG & priority);

Provides a copy of the cluster workload priority value. It returns TRUE if successful.

MQLONG clusterWorkLoadPriority ();

Returns the cluster workload priority value without any indication of possible errors.

ImqBoolean clusterWorkLoadRank (MQLONG & rank);

Provides a copy of the cluster workload rank value. It returns TRUE if successful.

MQLONG clusterWorkLoadRank ();

Returns the cluster workload rank value without any indication of possible errors.

ImqBoolean clusterWorkLoadUseQ (MQLONG & useq);

Provides a copy of the cluster workload use queue value. It returns TRUE if successful.

MQLONG clusterWorkLoadUseQ ();

Returns the cluster workload use queue value without any indication of possible errors.

ImqBoolean creationDate(ImqString & date);

Provides a copy of the creation date. It returns TRUE if successful.

ImqString creationDate();

Returns the creation date without any indication of possible errors.

ImqBoolean creationTime(ImqString & time);

Provides a copy of the creation time. It returns TRUE if successful.

ImqString creationTime();

Returns the creation time without any indication of possible errors.

ImqBoolean currentDepth(MQLONG & depth);

Provides a copy of the current depth. It returns TRUE if successful.

MQLONG currentDepth();

Returns the current depth without any indication of possible errors.

ImqBoolean defaultInputOpenOption(MQLONG & option);

Page 101 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

Provides a copy of the default input open option. It returns TRUE if successful.

MQLONG defaultInputOpenOption();

Returns the default input open option without any indication of possible errors.

ImqBoolean defaultPersistence(MQLONG & persistence);

Provides a copy of the default persistence. It returns TRUE if successful.

MQLONG defaultPersistence();

Returns the default persistence without any indication of possible errors.

ImqBoolean defaultPriority(MQLONG & priority);

Provides a copy of the default priority. It returns TRUE if successful.

MQLONG defaultPriority();

Returns the default priority without any indication of possible errors.

ImqBoolean defaultBind(MQLONG & bind);

Provides a copy of the default bind. It returns TRUE if successful.

MQLONG defaultBind();

Returns the default bind without any indication of possible errors.

ImqBoolean definitionType(MQLONG & type);

Provides a copy of the definition type. It returns TRUE if successful.

MQLONG definitionType();

Returns the definition type without any indication of possible errors.

ImqBoolean depthHighEvent(MQLONG & event);

Provides a copy of the enablement state of the depth high event. It returns TRUE if successful.

MQLONG depthHighEvent();

Returns the enablement state of the depth high event without any indication of possible errors.

ImqBoolean depthHighLimit(MQLONG & limit);

Provides a copy of the depth high limit. It returns TRUE if successful.

MQLONG depthHighLimit();

Returns the depth high limit value without any indication of possible errors.

ImqBoolean depthLowEvent(MQLONG & event);

Provides a copy of the enablement state of the depth low event. It returns TRUE if successful.

MQLONG depthLowEvent();

Returns the enablement state of the depth low event without any indication of possible errors.

ImqBoolean depthLowLimit(MQLONG & limit);

Provides a copy of the depth low limit. It returns TRUE if successful.

MQLONG depthLowLimit();

Returns the depth low limit value without any indication of possible errors.

ImqBoolean depthMaximumEvent(MQLONG & event);

Provides a copy of the enablement state of the depth maximum event. It returns TRUE if successful.

MQLONG depthMaximumEvent();

Returns the enablement state of the depth maximum event without any indication of possible errors.

ImqDistributionList * distributionListReference() const ;

Returns the distribution list reference.

void setDistributionListReference(ImqDistributionList & list);

Sets the distribution list reference.

void setDistributionListReference(ImqDistributionList * list = 0);

Sets the distribution list reference.

ImqBoolean distributionLists(MQLONG & support);

Provides a copy of the distribution lists value. It returns TRUE if successful.

MQLONG distributionLists();

Returns the distribution lists value without any indication of possible errors.

ImqBoolean setDistributionLists(const MQLONG support);

Page 102 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

Sets the distribution lists value. It returns TRUE if successful.

ImqString dynamicQueueName() const ;

Returns a copy of the dynamic queue name.

ImqBoolean setDynamicQueueName(const char * name);

Sets the dynamic queue name. The dynamic queue name can be set only while the ImqObject open

status is FALSE. It returns TRUE if successful.

ImqBoolean get(ImqMessage & msg, ImqGetMessageOptions & options);

Retrieves a message from the queue, using the specified options. Invokes the ImqObject openFor method if

necessary to ensure that the ImqObject open options include either one of the MQOO_INPUT_* values, or

the MQOO_BROWSE value, depending on the options. If the msg object has an ImqCache automatic buffer,
the buffer grows to accommodate any message retrieved. The clearMessage method is invoked against the

msg object before retrieval.

This method returns TRUE if successful.

Note: The result of the method invocation is FALSE if the ImqObject reason code is
MQRC_TRUNCATED_MSG_FAILED, even though this reason code is classified as a warning. If a truncated

message is accepted, the ImqCache message length reflects the truncated length. In either event, the

ImqMessage total message length indicates the number of bytes that were available.

ImqBoolean get(ImqMessage & msg);

As for the previous method, except that default get message options are used.

ImqBoolean get(ImqMessage & msg, ImqGetMessageOptions & options, const size_t buffer-size);

As for the previous two methods, except that an overriding buffer-size is indicated. If the msg object employs

an ImqCache automatic buffer, the resizeBuffer method is invoked on the msg object prior to message

retrieval, and the buffer does not grow further to accommodate any larger message.

ImqBoolean get(ImqMessage & msg, const size_t buffer-size);

As for the previous method, except that default get message options are used.

ImqBoolean hardenGetBackout(MQLONG & harden);

Provides a copy of the harden get backout value. It returns TRUE if successful.

MQLONG hardenGetBackout();

Returns the harden get backout value without any indication of possible errors.

ImqBoolean indexType(MQLONG & type);

Provides a copy of the index type. It returns TRUE if successful.

MQLONG indexType();

Returns the index type without any indication of possible errors.

ImqBoolean inhibitGet(MQLONG & inhibit);

Provides a copy of the inhibit get value. It returns TRUE if successful.

MQLONG inhibitGet();

Returns the inhibit get value without any indication of possible errors.

ImqBoolean setInhibitGet(const MQLONG inhibit);

Sets the inhibit get value. It returns TRUE if successful.

ImqBoolean inhibitPut(MQLONG & inhibit);

Provides a copy of the inhibit put value. It returns TRUE if successful.

MQLONG inhibitPut();

Returns the inhibit put value without any indication of possible errors.

ImqBoolean setInhibitPut(const MQLONG inhibit);

Sets the inhibit put value. It returns TRUE if successful.

ImqBoolean initiationQueueName(ImqString & name);

Provides a copy of the initiation queue name. It returns TRUE if successful.

ImqString initiationQueueName();

Returns the initiation queue name without any indication of possible errors.

ImqBoolean maximumDepth(MQLONG & depth);

Provides a copy of the maximum depth. It returns TRUE if successful.

MQLONG maximumDepth();

Page 103 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

Returns the maximum depth without any indication of possible errors.

ImqBoolean maximumMessageLength(MQLONG & length);

Provides a copy of the maximum message length. It returns TRUE if successful.

MQLONG maximumMessageLength();

Returns the maximum message length without any indication of possible errors.

ImqBoolean messageDeliverySequence(MQLONG & sequence);

Provides a copy of the message delivery sequence. It returns TRUE if successful.

MQLONG messageDeliverySequence();

Returns the message delivery sequence value without any indication of possible errors.

ImqQueue * nextDistributedQueue() const ;

Returns the next distributed queue.

ImqBoolean nonPersistentMessageClass (MQLONG & monq);

Provides a copy of the non persistent message class value. It returns TRUE if successful.

MQLONG nonPersistentMessageClass ();

Returns the non persistent message class value without any indication of possible errors.

ImqBoolean openInputCount(MQLONG & count);

Provides a copy of the open input count. It returns TRUE if successful.

MQLONG openInputCount();

Returns the open input count without any indication of possible errors.

ImqBoolean openOutputCount(MQLONG & count);

Provides a copy of the open output count. It returns TRUE if successful.

MQLONG openOutputCount();

Returns the open output count without any indication of possible errors.

ImqQueue * previousDistributedQueue() const ;

Returns the previous distributed queue.

ImqBoolean processName(ImqString & name);

Provides a copy of the process name. It returns TRUE if successful.

ImqString processName();

Returns the process name without any indication of possible errors.

ImqBoolean put(ImqMessage & msg);

Places a message onto the queue, using default put message options. Uses the ImqObject openFor method if
necessary to ensure that the ImqObject open options include MQOO_OUTPUT.

This method returns TRUE if successful.

ImqBoolean put(ImqMessage & msg, ImqPutMessageOptions & pmo);

Places a message onto the queue, using the specified pmo. Uses the ImqObject openFor method as

necessary to ensure that the ImqObject open options include MQOO_OUTPUT, and (if the pmo options

include any of MQPMO_PASS_IDENTITY_CONTEXT, MQPMO_PASS_ALL_CONTEXT,

MQPMO_SET_IDENTITY_CONTEXT, or MQPMO_SET_ALL_CONTEXT) corresponding MQOO_*_CONTEXT
values.

This method returns TRUE if successful.

Note: If the pmo includes a context reference, the referenced object is opened, if necessary, to provide a

context.

ImqBoolean queueAccounting (MQLONG & acctq);

Provides a copy of the queue accounting value. It returns TRUE if successful.

MQLONG queueAccounting ();

Returns the queue accounting value without any indication of possible errors.

ImqString queueManagerName() const ;

Returns the queue manager name.

ImqBoolean setQueueManagerName(const char * name);

Sets the queue manager name. The queue manager name can be set only while the ImqObject open

Page 104 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

status is FALSE. This method returns TRUE if successful.

ImqBoolean queueMonitoring (MQLONG & monq);

Provides a copy of the queue monitoring value. It returns TRUE if successful.

MQLONG queueMonitoring ();

Returns the queue monitoring value without any indication of possible errors.

ImqBoolean queueStatistics (MQLONG & statq);

Provides a copy of the queue statistics value. It returns TRUE if successful.

MQLONG queueStatistics ();

Returns the queue statistics value without any indication of possible errors.

ImqBoolean queueType(MQLONG & type);

Provides a copy of the queue type value. It returns TRUE if successful.

MQLONG queueType();

Returns the queue type without any indication of possible errors.

ImqBoolean remoteQueueManagerName(ImqString & name);

Provides a copy of the remote queue manager name. It returns TRUE if successful.

ImqString remoteQueueManagerName();

Returns the remote queue manager name without any indication of possible errors.

ImqBoolean remoteQueueName(ImqString & name);

Provides a copy of the remote queue name. It returns TRUE if successful.

ImqString remoteQueueName();

Returns the remote queue name without any indication of possible errors.

ImqBoolean resolvedQueueManagerName(ImqString & name);

Provides a copy of the resolved queue manager name. It returns TRUE if successful.

Note: This method fails unless MQOO_RESOLVE_NAMES is among the ImqObject open options.

ImqString resolvedQueueManagerName() ;

Returns the resolved queue manager name, without any indication of possible errors.

ImqBoolean resolvedQueueName(ImqString & name);

Provides a copy of the resolved queue name. It returns TRUE if successful.

Note: This method fails unless MQOO_RESOLVE_NAMES is among the ImqObject open options.

ImqString resolvedQueueName() ;

Returns the resolved queue name, without any indication of possible errors.

ImqBoolean retentionInterval(MQLONG & interval);

Provides a copy of the retention interval. It returns TRUE if successful.

MQLONG retentionInterval();

Returns the retention interval without any indication of possible errors.

ImqBoolean scope(MQLONG & scope);

Provides a copy of the scope. It returns TRUE if successful.

MQLONG scope();

Returns the scope without any indication of possible errors.

ImqBoolean serviceInterval(MQLONG & interval);

Provides a copy of the service interval. It returns TRUE if successful.

MQLONG serviceInterval();

Returns the service interval without any indication of possible errors.

ImqBoolean serviceIntervalEvent(MQLONG & event);

Provides a copy of the enablement state of the service interval event. It returns TRUE if successful.

MQLONG serviceIntervalEvent();

Returns the enablement state of the service interval event without any indication of possible errors.

ImqBoolean shareability(MQLONG & shareability);

Provides a copy of the shareability value. It returns TRUE if successful.

Page 105 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

MQLONG shareability();

Returns the shareability value without any indication of possible errors.

ImqBoolean storageClass(ImqString & class);

Provides a copy of the storage class. It returns TRUE if successful.

ImqString storageClass();

Returns the storage class without any indication of possible errors.

ImqBoolean transmissionQueueName(ImqString & name);

Provides a copy of the transmission queue name. It returns TRUE if successful.

ImqString transmissionQueueName();

Returns the transmission queue name without any indication of possible errors.

ImqBoolean triggerControl(MQLONG & control);

Provides a copy of the trigger control value. It returns TRUE if successful.

MQLONG triggerControl();

Returns the trigger control value without any indication of possible errors.

ImqBoolean setTriggerControl(const MQLONG control);

Sets the trigger control value. It returns TRUE if successful.

ImqBoolean triggerData(ImqString & data);

Provides a copy of the trigger data. It returns TRUE if successful.

ImqString triggerData();

Returns a copy of the trigger data without any indication of possible errors.

ImqBoolean setTriggerData(const char * data);

Sets the trigger data. It returns TRUE if successful.

ImqBoolean triggerDepth(MQLONG & depth);

Provides a copy of the trigger depth. It returns TRUE if successful.

MQLONG triggerDepth();

Returns the trigger depth without any indication of possible errors.

ImqBoolean setTriggerDepth(const MQLONG depth);

Sets the trigger depth. It returns TRUE if successful.

ImqBoolean triggerMessagePriority(MQLONG & priority);

Provides a copy of the trigger message priority. It returns TRUE if successful.

MQLONG triggerMessagePriority();

Returns the trigger message priority without any indication of possible errors.

ImqBoolean setTriggerMessagePriority(const MQLONG priority);

Sets the trigger message priority. It returns TRUE if successful.

ImqBoolean triggerType(MQLONG & type);

Provides a copy of the trigger type. It returns TRUE if successful.

MQLONG triggerType();

Returns the trigger type without any indication of possible errors.

ImqBoolean setTriggerType(const MQLONG type);

Sets the trigger type. It returns TRUE if successful.

ImqBoolean usage(MQLONG & usage);

Provides a copy of the usage value. It returns TRUE if successful.

MQLONG usage();

Returns the usage value without any indication of possible errors.

Parent topic: ImqQueue

This build: January 26, 2011 11:58:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

Page 106 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

This topic's URL:

uc11870_

13.19.5. Object methods (protected)

void setNextDistributedQueue(ImqQueue * queue = 0);

Sets the next distributed queue.

Attention: Use this function only if you are sure it will not break the distributed queue list.

void setPreviousDistributedQueue(ImqQueue * queue = 0);

Sets the previous distributed queue.

Attention: Use this function only if you are sure it will not break the distributed queue list.

Parent topic: ImqQueue

This build: January 26, 2011 11:58:16

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11880_

13.19.6. Reason codes

� MQRC_ATTRIBUTE_LOCKED

� MQRC_CONTEXT_OBJECT_NOT_VALID

� MQRC_CONTEXT_OPEN_ERROR

� MQRC_CURSOR_NOT_VALID

� MQRC_NO_BUFFER

� MQRC_REOPEN_EXCL_INPUT_ERROR

� MQRC_REOPEN_INQUIRE_ERROR

� MQRC_REOPEN_TEMPORARY_Q_ERROR

� (reason codes from MQGET)

� (reason codes from MQPUT)

Parent topic: ImqQueue

This build: January 26, 2011 11:58:16

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11890_

13.20. ImqQueueManager

Figure 1. ImqQueueManager class

Page 107 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

This class encapsulates a queue manager (a WebSphere® MQ object of type MQOT_Q_MGR). It relates to the

MQI calls listed in Table 1. Not all the listed methods are applicable to all platforms; see the description of the

ALTER QMGR command in WebSphere MQ Script (MQSC) Command Reference for more details.

Other relevant classes

Class attributes

Object attributes

Constructors

Destructors

Class methods (public)

Object methods (public)

Object methods (protected)

Object data (protected)

Reason codes

Parent topic: WebSphere MQ C++ classes

This build: January 26, 2011 11:58:16

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11900_

13.20.1. Other relevant classes

� ImqAuthenticationRecord (see ImqAuthenticationRecord)

� ImqChannel (see ImqChannel)

� ImqObject (see ImqObject)

Parent topic: ImqQueueManager

This build: January 26, 2011 11:58:16

Page 108 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11910_

13.20.2. Class attributes

behavior

Controls the behavior of implicit connection and disconnection.

IMQ_EXPL_DISC_BACKOUT (0L)

An explicit call to the disconnect method implies backout. This attribute is mutually exclusive with

IMQ_EXPL_DISC_COMMIT.

IMQ_EXPL_DISC_COMMIT (1L)

An explicit call to the disconnect method implies commit (the default). This attribute is mutually exclusive

with IMQ_EXPL_DISC_BACKOUT.

IMQ_IMPL_CONN (2L)

Implicit connection is allowed (the default).

IMQ_IMPL_DISC_BACKOUT (0L)

An implicit call to the disconnect method, which can occur during object destruction, implies backout. This
attribute is mutually exclusive with the IMQ_IMPL_DISC_COMMIT.

IMQ_IMPL_DISC_COMMIT (4L)

An implicit call to the disconnect method, which can occur during object destruction, implies commit (the

default). This attribute is mutually exclusive with IMQ_IMPL_DISC_BACKOUT.

Parent topic: ImqQueueManager

This build: January 26, 2011 11:58:16

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11920_

13.20.3. Object attributes

accounting connections override

Allows applications to override the setting of the MQI accounting and queue accounting values.This attribute

is read-only.

accounting interval

How long before intermediate accounting records are written (in seconds). This attribute is read-only.

activity recording

Controls the generation of activity reports. This attribute is read-only.

adopt new mca check

The elements checked to determine if an MCA should be adopted when a new inbound channel is detected
that has the same name as an MCA that is already active. This attribute is read-only.

adopt new mca type

Whether an orphaned instance of an MCA of a given channel type should be restarted automatically when a

new inbound channel request matching the adopt new mca check parameters is detected. This attribute is

read-only.

authentication type

Indicates the type of authentication which is being performed.

authority event

Controls authority events. This attribute is read-only.

begin options

Options that apply to the begin method. The initial value is MQBO_NONE.

Page 109 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

bridge event

Whether IMS™ Bridge events are generated. This attribute is read-only.

channel auto definition

Channel auto definition value. This attribute is read-only.

channel auto definition event

Channel auto definition event value. This attribute is read-only.

channel auto definition exit

Channel auto definition exit name. This attribute is read-only.

channel event

Whether channel events are generated. This attribute is read-only.

channel initiator adapters

The number of adapter subtasks to use for processing WebSphere® MQ calls. This attribute is read-only.

channel initiator control

Whether the Channel Initiator should be started automatically when the Queue Manager is started. This

attribute is read-only.

channel initiator dispatchers

The number of dispatchers to use for the channel initiator. This attribute is read-only.

channel initiator trace autostart

Whether channel initiator trace should start automatically or not. This attribute is read-only.

channel initiator trace table size

The size of the channel initiator's trace data space (in MB). This attribute is read-only.

channel monitoring

Controls the collection of online monitoring data for channels. This attribute is read-only.

channel reference

A reference to a channel definition for use during client connection. While connected, this attribute can be set

to null, but cannot be changed to any other value. The initial value is null.

channel statistics

Controls the collection of statistics data for channels. This attribute is read-only.

character set

Coded character set identifier (CCSID). This attribute is read-only.

cluster sender monitoring

Controls the collection of online monitoring data for automatically-defined cluster sender channels. This

attribute is read-only.

cluster sender statistics

Controls the collection of statistics data for automatically defined cluster sender channels. This attribute is

read-only.

cluster workload data

Cluster workload exit data. This attribute is read-only.

cluster workload exit

Cluster workload exit name. This attribute is read-only.

cluster workload length

Cluster workload length. This attribute is read-only.

cluster workload mru

Cluster workload most recently used channels value. This attribute is read-only.

cluster workload use queue

Cluster workload use queue value. This attribute is read-only.

command event

Whether command events are generated. This attribute is read-only.

command input queue name

System command input queue name. This attribute is read-only.

command level

Page 110 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

Command level supported by the queue manager. This attribute is read-only.

command server control

Whether the Command Server should be started automatically when the Queue Manager is started. This
attribute is read-only.

connect options

Options that apply to the connect method. The initial value is MQCNO_NONE. The following additional values

may be possible, depending on platform:

� MQCNO_STANDARD_BINDING

� MQCNO_FASTPATH_BINDING

� MQCNO_HANDLE_SHARE_NONE

� MQCNO_HANDLE_SHARE_BLOCK

� MQCNO_HANDLE_SHARE_NO_BLOCK

� MQCNO_SERIALIZE_CONN_TAG_Q_MGR

� MQCNO_SERIALIZE_CONN_TAG_QSG

� MQCNO_RESTRICT_CONN_TAG_Q_MGR

� MQCNO_RESTRICT_CONN_TAG_QSG

connection id

A unique identifier that allows MQ to reliably identify an application.

connection status

TRUE when connected to the queue manager. This attribute is read-only.

connection tag

A tag to be associated with a connection. This attribute can only be set when not connected. The initial value

is null.

cryptographic hardware

Configuration details for cryptographic hardware. For MQ client connections.

dead-letter queue name

Name of the dead-letter queue. This attribute is read-only.

default transmission queue name

Default transmission queue name. This attribute is read-only.

distribution lists

Capability of the queue manager to support distribution lists.

dns group

The name of the group that the TCP listener that handles inbound transmissions for the queue-sharing group

should join when using Workload Manager Dynamic Domain Name Services support. This attribute is read-
only.

dns wlm

Whether the TCP listener that handles inbound transmissions for the queue-sharing group should register with

Workload Manager for Dynamic Domain Name Services. This attribute is read-only.

first authentication record

The first of one or more objects of class ImqAuthenticationRecord, in no particular order, in which the

ImqAuthenticationRecord connection reference addresses this object. For MQ client connections.

first managed object

The first of one or more objects of class ImqObject, in no particular order, in which the ImqObject
connection reference addresses this object. The initial value is zero.

inhibit event

Controls inhibit events. This attribute is read-only.

ip address version

Which IP protocol (IPv4 or IPv6) to use for a channel connection. This attribute is read-only.

key repository

Location of the key database file in which keys and certificates are stored. For WebSphere MQ client

connections.

key reset count

Page 111 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

The number of unencrypted bytes sent and received within an SSL conversation before the secret key is

renegotiated. This attribute applies only to client connections using MQCONNX. See also ssl key reset count.

listener timer

The time interval (in seconds) between attempts by WebSphere MQ to restart the listener if there has been

an APPC or TCP/IP failure. This attribute is read-only.

local event

Controls local events. This attribute is read-only.

logger event

Controls whether recovery log events are generated. This attribute is read-only.

lu group name

The generic LU name that the LU 6.2 listener that handles inbound transmissions for the queue-sharing group
should use. This attribute is read-only.

lu name

The name of the LU to use for outbound LU 6.2 transmissions. This attribute is read-only.

lu62 arm suffix

The suffix of the SYS1.PARMLIB member APPCPMxx, that nominates the LUADD for this channel initiator. This

attribute is read-only.

lu62 channels

The maximum number of channels that can be current or clients that can be connected, that use the LU 6.2

transmission protocol. This attribute is read-only.

maximum active channels

The maximum number of channels that can be active at any time. This attribute is read-only.

maximum channels

The maximum number of channels that can be current (including server-connection channels with connected

clients). This attribute is read-only.

maximum handles

Maximum number of handles. This attribute is read-only.

maximum message length

Maximum possible length for any message on any queue managed by this queue manager. This attribute is
read-only.

maximum priority

Maximum message priority. This attribute is read-only.

maximum uncommitted messages

Maximum number of uncommitted messages within a unit or work. This attribute is read-only.

mqi accounting

Controls the collection of accounting information for MQI data. This attribute is read-only.

mqi statistics

Controls the collection of statistics monitoring information for the queue manager. This attribute is read-only.

outbound port maximum

The higher end of the range of port numbers to be used when binding outgoing channels. This attribute is

read-only.

outbound port minimum

The lower end of the range of port numbers to be used when binding outgoing channels. This attribute is

read-only.

password

password associated with user ID

performance event

Controls performance events. This attribute is read-only.

platform

Platform on which the queue manager resides. This attribute is read-only.

queue accounting

Controls the collection of accounting information for queues. This attribute is read-only.

Page 112 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

queue monitoring

Controls the collection of online monitoring data for queues. This attribute is read-only.

queue statistics

Controls the collection of statistics data for queues. This attribute is read-only.

receive timeout

Approximately how long a TCP/IP message channel will wait to receive data, including heartbeats, from its
partner, before returning to the inactive state. This attribute is read-only.

receive timeout minimum

The minimum time that a TCP/IP channel will wait to receive data, including heartbeats, from its partner,

before returning to the inactive state. This attribute is read-only.

receive timeout type

A qualifier applied to receive timeout. This attribute is read-only.

remote event

Controls remote events. This attribute is read-only.

repository name

Repository name. This attribute is read-only.

repository namelist

Repository namelist name. This attribute is read-only.

shared queue manager name

Whether MQOPENs of a shared queue where the ObjectQMgrName is another queue manager in the queue–

sharing group should resolve to an open of the shared queue on the local queue manager. This attribute is

read-only.

ssl event

Whether SSL events are generated. This attribute is read-only.

ssl FIPS required

Whether only FIPS-certified algorithms should be used if the cryptography is executed in WebSphere MQ
software. This attribute is read-only.

ssl key reset count

The number of unencrypted bytes sent and received within an SSL conversation before the secret key is

renegotiated. This attribute is read-only.

start-stop event

Controls start-stop events. This attribute is read-only.

statistics interval

How often statistics monitoring data is written to the monitoring queue. This attribute is read-only.

syncpoint availability

Availability of syncpoint participation. This attribute is read-only.

Note: Queue manager-coordinated global units of work are not supported on the i5/OS® platform. You can
program a unit of work, externally coordinated by i5/OS, using the _Rcommit and _Rback native system calls.

Start this type of unit of work by starting the WebSphere MQ application under job-level commitment control

using the STRCMTCTL command. See the WebSphere MQ Application Programming Guide for further details.

Backout and commit are supported on the i5/OS platform for local units of work coordinated by a queue
manager.

tcp channels

The maximum number of channels that can be current or clients that can be connected, that use the TCP/IP

transmission protocol. This attribute is read-only.

tcp keepalive

Whether the TCP KEEPALIVE facility is to be used to check that the other end of the connection is still
available. This attribute is read-only.

tcp name

The name of either the sole or default TCP/IP system to be used, depending on the value of tcp stack type.

This attribute is read-only.

tcp stack type

Whether the channel initiator is permitted to only use the TCP/IP address space specified in tcp name or can

Page 113 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

bind to any selected TCP/IP address. This attribute is read-only.

trace route recording

Controls the recording of route tracing information. This attribute is read-only.

trigger interval

Trigger interval. This attribute is read-only.

user id

On UNIX platforms, the application's real user ID. On Windows platforms, the application's user ID.

Parent topic: ImqQueueManager

This build: January 26, 2011 11:58:16

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11930_

13.20.4. Constructors

ImqQueueManager();

The default constructor.

ImqQueueManager(const ImqQueueManager & manager);

The copy constructor. The connection status will be FALSE.

ImqQueueManager(const char * name);

Sets the ImqObject name to name.

Parent topic: ImqQueueManager

This build: January 26, 2011 11:58:16

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11940_

13.20.5. Destructors

When an ImqQueueManager object is destroyed, it is automatically disconnected.

Parent topic: ImqQueueManager

This build: January 26, 2011 11:58:16

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11950_

13.20.6. Class methods (public)

static MQLONG behavior();

Returns the behavior.

void setBehavior(const MQLONG behavior = 0);

Sets the behavior.

Parent topic: ImqQueueManager

This build: January 26, 2011 11:58:16

Notices | Trademarks | Downloads | Library | Support | Feedback

Page 114 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11960_

13.20.7. Object methods (public)

void operator = (const ImqQueueManager & mgr);

Disconnects if necessary, and copies instance data from mgr. The connection status is be FALSE.

ImqBoolean accountingConnOverride (MQLONG & statint);

Provides a copy of the accounting connections override value. It returns TRUE if successful.

MQLONG accountingConnOverride ();

Returns the accounting connections override value without any indication of possible errors.

ImqBoolean accountingInterval (MQLONG & statint);

Provides a copy of the accounting interval value. It returns TRUE if successful.

MQLONG accountingInterval ();

Returns the accounting interval value without any indication of possible errors.

ImqBoolean activityRecording (MQLONG & rec);

Provides a copy of the activity recording value. It returns TRUE if successful.

MQLONG activityRecording ();

Returns the activity recording value without any indication of possible errors.

ImqBoolean adoptNewMCACheck (MQLONG & check);

Provides a copy of the adopt new MCA check value. It returns TRUE if successful.

MQLONG adoptNewMCACheck ();

Returns the adopt new MCA check value without any indication of possible errors.

ImqBoolean adoptNewMCAType (MQLONG & type);

Provides a copy of the adopt new MCA type. It returns TRUE if successful.

MQLONG adoptNewMCAType ();

Returns the adopt new MCA type without any indication of possible errors.

QLONG authenticationType () const;

Returns the authentication type.

void setAuthenticationType (const MQLONG type = MQCSP_AUTH_NONE);

Sets the authentication type.

ImqBoolean authorityEvent(MQLONG & event);

Provides a copy of the enablement state of the authority event. It returns TRUE if successful.

MQLONG authorityEvent();

Returns the enablement state of the authority event without any indication of possible errors.

ImqBoolean backout();

Backs out uncommitted changes. It returns TRUE if successful.

ImqBoolean begin();

Begins a unit of work. The begin options affect the behavior of this method. It returns TRUE if successful,

but it also returns TRUE even if the underlying MQBEGIN call returns MQRC_NO_EXTERNAL_PARTICIPANTS or
MQRC_PARTICIPANT_NOT_AVAILABLE (which are both associated with MQCC_WARNING).

MQLONG beginOptions() const ;

Returns the begin options.

void setBeginOptions(const MQLONG options = MQBO_NONE);

Sets the begin options.

ImqBoolean bridgeEvent (MQLONG & event);

Provides a copy of the bridge event value. It returns TRUE if successful.

MQLONG bridgeEvent ();

Returns the bridge event value without any indication of possible errors.

ImqBoolean channelAutoDefinition(MQLONG & value);

Page 115 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

Provides a copy of the channel auto definition value. It returns TRUE if successful.

MQLONG channelAutoDefinition();

Returns the channel auto definition value without any indication of possible errors.

ImqBoolean channelAutoDefinitionEvent(MQLONG & value);

Provides a copy of the channel auto definition event value. It returns TRUE if successful.

MQLONG channelAutoDefinitionEvent();

Returns the channel auto definition event value without any indication of possible errors.

ImqBoolean channelAutoDefinitionExit(ImqString & name);

Provides a copy of the channel auto definition exit name. It returns TRUE if successful.

ImqString channelAutoDefinitionExit();

Returns the channel auto definition exit name without any indication of possible errors.

ImqBoolean channelEvent (MQLONG & event);

Provides a copy of the channel event value. It returns TRUE if successful.

MQLONG channelEvent();

Returns the channel event value without any indication of possible errors.

MQLONG channelInitiatorAdapters ();

Returns the channel initiator adapters value without any indication of possible errors.

ImqBoolean channelInitiatorAdapters (MQLONG & adapters);

Provides a copy of the channel initiator adapters value. It returns TRUE if successful.

MQLONG channelInitiatorControl ();

Returns the channel initiator startup value without any indication of possible errors.

ImqBoolean channelInitiatorControl (MQLONG & init);

Provides a copy of the channel initiator control startup value. It returns TRUE if successful.

MQLONG channelInitiatorDispatchers ();

Returns the channel initiator dispatchers value without any indication of possible errors.

ImqBoolean channelInitiatorDispatchers (MQLONG & dispatchers);

Provides a copy of the channel initiator dispatchers value. It returns TRUE if successful.

MQLONG channelInitiatorTraceAutoStart ();

Returns the channel initiator trace auto start value without any indication of possible errors.

ImqBoolean channelInitiatorTraceAutoStart (MQLONG & auto);

Provides a copy of the channel initiator trace auto start value. It returns TRUE if successful.

MQLONG channelInitiatorTraceTableSize ();

Returns the channel initiator trace table size value without any indication of possible errors.

ImqBoolean channelInitiatorTraceTableSize (MQLONG & size);

Provides a copy of the channel initiator trace table size value. It returns TRUE if successful.

ImqBoolean channelMonitoring (MQLONG & monchl);

Provides a copy of the channel monitoring value. It returns TRUE if successful.

MQLONG channelMonitoring ();

Returns the channel monitoring value without any indication of possible errors.

ImqBoolean channelReference(ImqChannel * & pchannel);

Provides a copy of the channel reference. If the channel reference is invalid, sets pchannel to null. This

method returns TRUE if successful.

ImqChannel * channelReference();

Returns the channel reference without any indication of possible errors.

ImqBoolean setChannelReference(ImqChannel & channel);

Sets the channel reference. This method returns TRUE if successful.

ImqBoolean setChannelReference(ImqChannel * channel = 0);

Sets or resets the channel reference. This method returns TRUE if successful.

ImqBoolean channelStatistics (MQLONG & statchl);

Provides a copy of the channel statistics value. It returns TRUE if successful.

Page 116 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

MQLONG channelStatistics ();

Returns the channel statistics value without any indication of possible errors.

ImqBoolean characterSet(MQLONG & ccsid);

Provides a copy of the character set. It returns TRUE if successful.

MQLONG characterSet();

Returns a copy of the character set, without any indication of possible errors.

MQLONG clientSslKeyResetCount () const;

Returns the SSL key reset count value used on client connections.

void setClientSslKeyResetCount(const MQLONG count);

Sets the SSL key reset count used on client connections.

ImqBoolean clusterSenderMonitoring (MQLONG & monacls);

Provides a copy of the cluster sender monitoring default value. It returns TRUE if successful.

MQLONG clusterSenderMonitoring ();

Returns the cluster sender monitoring default value without any indication of possible errors.

ImqBoolean clusterSenderStatistics (MQLONG & statacls);

Provides a copy of the cluster sender statistics value. It returns TRUE if successful.

MQLONG clusterSenderStatistics ();

Returns the cluster sender statistics value without any indication of possible errors.

ImqBoolean clusterWorkloadData(ImqString & data);

Provides a copy of the cluster workload exit data. It returns TRUE if successful.

ImqString clusterWorkloadData();

Returns the cluster workload exit data without any indication of possible errors.

ImqBoolean clusterWorkloadExit(ImqString & name);

Provides a copy of the cluster workload exit name. It returns TRUE if successful.

ImqString clusterWorkloadExit();

Returns the cluster workload exit name without any indication of possible errors.

ImqBoolean clusterWorkloadLength(MQLONG & length);

Provides a copy of the cluster workload length. It returns TRUE if successful.

MQLONG clusterWorkloadLength();

Returns the cluster workload length without any indication of possible errors.

ImqBoolean clusterWorkLoadMRU (MQLONG & mru);

Provides a copy of the cluster workload most recently used channels value. It returns TRUE if successful.

MQLONG clusterWorkLoadMRU ();

Returns the cluster workload most recently used channels value without any indication of possible errors.

ImqBoolean clusterWorkLoadUseQ (MQLONG & useq);

Provides a copy of the cluster workload use queue value. It returns TRUE if successful.

MQLONG clusterWorkLoadUseQ ();

Returns the cluster workload use queue value without any indication of possible errors.

ImqBoolean commandEvent (MQLONG & event);

Provides a copy of the command event value. It returns TRUE if successful.

MQLONG commandEvent ();

Returns the command event value without any indication of possible errors.

ImqBoolean commandInputQueueName(ImqString & name);

Provides a copy of the command input queue name. It returns TRUE if successful.

ImqString commandInputQueueName();

Returns the command input queue name without any indication of possible errors.

ImqBoolean commandLevel(MQLONG & level);

Provides a copy of the command level. It returns TRUE if successful.

MQLONG commandLevel();

Page 117 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

Returns the command level without any indication of possible errors.

MQLONG commandServerControl ();

Returns the command server startup value without any indication of possible errors.

ImqBoolean commandServerControl (MQLONG & server);

Provides a copy of the command server control startup value. It returns TRUE if successful.

ImqBoolean commit();

Commits uncommitted changes. It returns TRUE if successful.

ImqBoolean connect();

Connects to the queue manager with the given ImqObject name, the default being the local queue manager.

If you want to connect to a specific queue manager, use the ImqObject setName method before connection.

If there is a channel reference, it is used to pass information about the channel definition to MQCONNX in
an MQCD. The ChannelType in the MQCD is set to MQCHT_CLNTCONN. channel reference information,

which is only meaningful for client connections, is ignored for server connections. The connect options affect

the behavior of this method. This method sets the connection status to TRUE if successful. It returns the

new connection status.

If there is a first authentication record, the chain of authentication records is used to authenticate digital
certificates for secure client channels.

You can connect more than one ImqQueueManager object to the same queue manager. All use the same

MQHCONN connection handle and share UOW functionality for the connection associated with the thread. The

first ImqQueueManager to connect obtains the MQHCONN handle. The last ImqQueueManager to disconnect
performs the MQDISC.

For a multithreaded program, it is recommended that a separate ImqQueueManager object is used for each

thread.

ImqBinary connectionId () const ;

Returns the connection ID.

ImqBinary connectionTag () const ;

Returns the connection tag.

ImqBoolean setConnectionTag (const MQBYTE128 tag = 0);

Sets the connection tag. If tag is zero, clears the connection tag. This method returns TRUE if successful.

ImqBoolean setConnectionTag (const ImqBinary & tag);

Sets the connection tag. The data length of tag must be either zero (to clear the connection tag) or

MQ_CONN_TAG_LENGTH. This method returns TRUE if successful.

MQLONG connectOptions() const ;

Returns the connect options.

void setConnectOptions(const MQLONG options = MQCNO_NONE);

Sets the connect options.

ImqBoolean connectionStatus() const ;

Returns the connection status.

ImqString cryptographicHardware ();

Returns the cryptographic hardware.

ImqBoolean setCryptographicHardware (const char * hardware = 0);

Sets the cryptographic hardware. This method returns TRUE if successful.

ImqBoolean deadLetterQueueName(ImqString & name);

Provides a copy of the dead-letter queue name. It returns TRUE if successful.

ImqString deadLetterQueueName();

Returns a copy of the dead-letter queue name, without any indication of possible errors.

ImqBoolean defaultTransmissionQueueName(ImqString & name);

Provides a copy of the default transmission queue name. It returns TRUE if successful.

ImqString defaultTransmissionQueueName();

Returns the default transmission queue name without any indication of possible errors.

ImqBoolean disconnect();

Disconnects from the queue manager and sets the connection status to FALSE. Closes all ImqProcess and

Page 118 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

ImqQueue objects associated with this object, and severs their connection reference before disconnection.

If more than one ImqQueueManager object is connected to the same queue manager, only the last to
disconnect performs a physical disconnection; others perform a logical disconnection. Uncommitted changes

are committed on physical disconnection only.

This method returns TRUE if successful. If it is called when there is no existing connection, the return code is

also true.

ImqBoolean distributionLists(MQLONG & support);

Provides a copy of the distribution lists value. It returns TRUE if successful.

MQLONG distributionLists();

Returns the distribution lists value without any indication of possible errors.

ImqBoolean dnsGroup (ImqString & group);

Provides a copy of the DNS group name. It returns TRUE if successful.

ImqString dnsGroup ();

Returns the DNS group name without any indication of possible errors.

ImqBoolean dnsWlm (MQLONG & wlm);

Provides a copy of the DNS WLM value. It returns TRUE if successful.

MQLONG dnsWlm ();

Returns the DNS WLM value without any indication of possible errors.

ImqAuthenticationRecord * firstAuthenticationRecord () const ;

Returns the first authentication record.

void setFirstAuthenticationRecord (const ImqAuthenticationRecord * air = 0);

Sets the first authentication record.

ImqObject * firstManagedObject() const ;

Returns the first managed object.

ImqBoolean inhibitEvent(MQLONG & event);

Provides a copy of the enablement state of the inhibit event. It returns TRUE if successful.

MQLONG inhibitEvent();

Returns the enablement state of the inhibit event without any indication of possible errors.

ImqBoolean ipAddressVersion (MQLONG & version);

Provides a copy of the IP address version value. It returns TRUE if successful.

MQLONG ipAddressVersion ();

Returns the IP address version value without any indication of possible errors.

ImqBoolean keepAlive (MQLONG & keepalive);

Provides a copy of the keep alive value. It returns TRUE if successful.

MQLONG keepAlive ();

Returns the keep alive value without any indication of possible errors.

ImqString keyRepository ();

Returns the key repository.

ImqBoolean setKeyRepository (const char * repository = 0);

Sets the key repository. It returns TRUE if successful.

ImqBoolean listenerTimer (MQLONG & timer);

Provides a copy of the listener timer value. It returns TRUE if successful.

MQLONG listenerTimer ();

Returns the listener timer value without any indication of possible errors.

ImqBoolean localEvent(MQLONG & event);

Provides a copy of the enablement state of the local event. It returns TRUE if successful.

MQLONG localEvent();

Returns the enablement state of the local event without any indication of possible errors.

ImqBoolean loggerEvent (MQLONG & count);

Provides a copy of the logger event value. It returns TRUE if successful.

Page 119 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

MQLONG loggerEvent ();

Returns the logger event value without any indication of possible errors.

ImqBoolean luGroupName (ImqString & name);.

Provides a copy of the LU group name. It returns TRUE if successful

ImqString luGroupName ();

Returns the LU group name without any indication of possible errors.

ImqBoolean lu62ARMSuffix (ImqString & suffix);

Provides a copy of the LU62 ARM suffix. It returns TRUE if successful.

ImqString lu62ARMSuffix ();

Returns the LU62 ARM suffix without any indication of possible errors

ImqBoolean luName (ImqString & name);

Provides a copy of the LU name. It returns TRUE if successful.

ImqString luName ();

Returns the LU name without any indication of possible errors.

ImqBoolean maximumActiveChannels (MQLONG & channels);

Provides a copy of the maximum active channels value. It returns TRUE if successful.

MQLONG maximumActiveChannels ();

Returns the maximum active channels value without any indication of possible errors.

ImqBoolean maximumCurrentChannels (MQLONG & channels);

Provides a copy of the maximum current channels value. It returns TRUE if successful.

MQLONG maximumCurrentChannels ();

Returns the maximum current channels value without any indication of possible errors.

ImqBoolean maximumHandles(MQLONG & number);

Provides a copy of the maximum handles. It returns TRUE if successful.

MQLONG maximumHandles();

Returns the maximum handles without any indication of possible errors.

ImqBoolean maximumLu62Channels (MQLONG & channels);

Provides a copy of the maximum LU62 channels value. It returns TRUE if successful.

MQLONG maximumLu62Channels ();.

Returns the maximum LU62 channels value without any indication of possible errors

ImqBoolean maximumMessageLength(MQLONG & length);

Provides a copy of the maximum message length. It returns TRUE if successful.

MQLONG maximumMessageLength();

Returns the maximum message length without any indication of possible errors.

ImqBoolean maximumPriority(MQLONG & priority);

Provides a copy of the maximum priority. It returns TRUE if successful.

MQLONG maximumPriority();

Returns a copy of the maximum priority, without any indication of possible errors.

ImqBoolean maximumTcpChannels (MQLONG & channels);

Provides a copy of the maximum TCP channels value. It returns TRUE if successful.

MQLONG maximumTcpChannels ();

Returns the maximum TCP channels value without any indication of possible errors.

ImqBoolean maximumUncommittedMessages(MQLONG & number);

Provides a copy of the maximum uncommitted messages. It returns TRUE if successful.

MQLONG maximumUncommittedMessages();

Returns the maximum uncommitted messages without any indication of possible errors.

ImqBoolean mqiAccounting (MQLONG & statint);

Provides a copy of the MQI accounting value. It returns TRUE if successful.

MQLONG mqiAccounting ();

Page 120 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

Returns the MQI accounting value without any indication of possible errors.

ImqBoolean mqiStatistics (MQLONG & statmqi);

Provides a copy of the MQI statistics value. It returns TRUE if successful.

MQLONG mqiStatistics ();

Returns the MQI statistics value without any indication of possible errors.

ImqBoolean outboundPortMax (MQLONG & max);

Provides a copy of the maximum outbound port value. It returns TRUE if successful.

MQLONG outboundPortMax ();

Returns the maximum outbound port value without any indication of possible errors.

ImqBoolean outboundPortMin (MQLONG & min);

Provides a copy of the minimum outbound port value. It returns TRUE if successful.

MQLONG outboundPortMin ();

Returns the minimum outbound port value without any indication of possible errors.

ImqBinary password () const;

Returns the password used on client connections.

ImqBoolean setPassword (const ImqString & password);

Sets the password used on client connections.

ImqBoolean setPassword (const char * = 0 password);

Sets the password used on client connections.

ImqBoolean setPassword (const ImqBinary & password);

Sets the password used on client connections.

ImqBoolean performanceEvent(MQLONG & event);

Provides a copy of the enablement state of the performance event. It returns TRUE if successful.

MQLONG performanceEvent();

Returns the enablement state of the performance event without any indication of possible errors.

ImqBoolean platform(MQLONG & platform);

Provides a copy of the platform. It returns TRUE if successful.

MQLONG platform();

Returns the platform without any indication of possible errors.

ImqBoolean queueAccounting (MQLONG & acctq);

Provides a copy of the queue accounting value. It returns TRUE if successful.

MQLONG queueAccounting ();

Returns the queue accounting value without any indication of possible errors.

ImqBoolean queueMonitoring (MQLONG & monq);

Provides a copy of the queue monitoring value. It returns TRUE if successful.

MQLONG queueMonitoring ();

Returns the queue monitoring value without any indication of possible errors.

ImqBoolean queueStatistics (MQLONG & statq);

Provides a copy of the queue statistics value. It returns TRUE if successful.

MQLONG queueStatistics ();

Returns the queue statistics value without any indication of possible errors.

ImqBoolean receiveTimeout (MQLONG & timeout);

Provides a copy of the receive timeout value. It returns TRUE if successful.

MQLONG receiveTimeout ();

Returns the receive timeout value without any indication of possible errors.

ImqBoolean receiveTimeoutMin (MQLONG & min);

Provides a copy of the minimum receive timeout value. It returns TRUE if successful.

MQLONG receiveTimeoutMin ();

Returns the minimum receive timeout value without any indication of possible errors.

ImqBoolean receiveTimeoutType (MQLONG & type);

Page 121 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

Provides a copy of the receive timeout type. It returns TRUE if successful.

MQLONG receiveTimeoutType ();

Returns the receive timeout type without any indication of possible errors.

ImqBoolean remoteEvent(MQLONG & event);

Provides a copy of the enablement state of the remote event. It returns TRUE if successful.

MQLONG remoteEvent();

Returns the enablement state of the remote event without any indication of possible errors.

ImqBoolean repositoryName(ImqString & name);

Provides a copy of the repository name. It returns TRUE if successful.

ImqString repositoryName();

Returns the repository name without any indication of possible errors.

ImqBoolean repositoryNamelistName(ImqString & name);

Provides a copy of the repository namelist name. It returns TRUE if successful.

ImqString repositoryNamelistName();

Returns a copy of the repository namelist name without any indication of possible errors.

ImqBoolean sharedQueueQueueManagerName (MQLONG & name);

Provides a copy of the shared queue queue manager name value. It returns TRUE if successful.

MQLONG sharedQueueQueueManagerName ();

Returns the shared queue queue manager name value without any indication of possible errors.

ImqBoolean sslEvent (MQLONG & event);

Provides a copy of the SSL event value. It returns TRUE if successful.

MQLONG sslEvent ();

Returns the SSL event value without any indication of possible errors.

ImqBoolean sslFips (MQLONG & sslfips);

Provides a copy of the SSL FIPS value. It returns TRUE if successful.

MQLONG sslFips ();

Returns the SSL FIPS value without any indication of possible errors.

ImqBoolean sslKeyResetCount (MQLONG & count);

Provides a copy of the SSL key reset count value. It returns TRUE if successful.

MQLONG sslKeyResetCount ();

Returns the SSL key reset count value without any indication of possible errors.

ImqBoolean startStopEvent(MQLONG & event);

Provides a copy of the enablement state of the start-stop event. It returns TRUE if successful.

MQLONG startStopEvent();

Returns the enablement state of the start-stop event without any indication of possible errors.

ImqBoolean statisticsInterval (MQLONG & statint);

Provides a copy of the statistics interval value. It returns TRUE if successful.

MQLONG statisticsInterval ();

Returns the statistics interval value without any indication of possible errors.

ImqBoolean syncPointAvailability(MQLONG & sync);

Provides a copy of the syncpoint availability value. It returns TRUE if successful.

MQLONG syncPointAvailability();

Returns a copy of the syncpoint availability value, without any indication of possible errors.

ImqBoolean tcpName (ImqString & name);

Provides a copy of the TCP system name. It returns TRUE if successful.

ImqString tcpName ();

Returns the TCP system name without any indication of possible errors.

ImqBoolean tcpStackType (MQLONG & type);

Provides a copy of the TCP stack type. It returns TRUE if successful.

MQLONG tcpStackType ();

Page 122 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

Returns the TCP stack type without any indication of possible errors.

ImqBoolean traceRouteRecording (MQLONG & routerec);

Provides a copy of the trace route recording value. It returns TRUE if successful.

MQLONG traceRouteRecording ();

Returns the trace route recording value without any indication of possible errors.

ImqBoolean triggerInterval(MQLONG & interval);

Provides a copy of the trigger interval. It returns TRUE if successful.

MQLONG triggerInterval();

Returns the trigger interval without any indication of possible errors.

ImqBinary userId () const;

Returns the user ID used on client connections.

ImqBoolean setUserId (const ImqString & id);

Sets the user ID used on client connections.

ImqBoolean setUserId (const char * = 0 id);

Sets the user ID used on client connections.

ImqBoolean setUserId (const ImqBinary & id);

Sets the user ID used on client connections.

Parent topic: ImqQueueManager

This build: January 26, 2011 11:58:17

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11970_

13.20.8. Object methods (protected)

void setFirstManagedObject(const ImqObject * object = 0);

Sets the first managed object.

Parent topic: ImqQueueManager

This build: January 26, 2011 11:58:17

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11980_

13.20.9. Object data (protected)

MQHCONN ohconn

The WebSphere® MQ connection handle (meaningful only while the connection status is TRUE).

Parent topic: ImqQueueManager

This build: January 26, 2011 11:58:17

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc11990_

13.20.10. Reason codes

� MQRC_ATTRIBUTE_LOCKED

Page 123 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

� MQRC_ENVIRONMENT_ERROR

� MQRC_FUNCTION_NOT_SUPPORTED

� MQRC_REFERENCE_ERROR

� (reason codes for MQBACK)

� (reason codes for MQBEGIN)

� (reason codes for MQCMIT)

� (reason codes for MQCONNX)

� (reason codes for MQDISC)

� (reason codes for MQCONN)

Parent topic: ImqQueueManager

This build: January 26, 2011 11:58:17

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc12000_

13.21. ImqReferenceHeader

Figure 1. ImqReferenceHeader class

This class encapsulates features of the MQRMH data structure. It relates to the MQI calls listed in Table 1.

Other relevant classes

Object attributes

Constructors

Overloaded ImqItem methods

Object methods (public)

Object data (protected)

Reason codes

Parent topic: WebSphere MQ C++ classes

This build: January 26, 2011 11:58:17

Notices | Trademarks | Downloads | Library | Support | Feedback

Page 124 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc12010_

13.21.1. Other relevant classes

� ImqBinary (see ImqBinary)

� ImqHeader (see ImqHeader)

� ImqItem (see ImqItem)

� ImqMessage (see ImqMessage)

� ImqString (see ImqString)

Parent topic: ImqReferenceHeader

This build: January 26, 2011 11:58:17

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc12020_

13.21.2. Object attributes

destination environment

Environment for the destination. The initial value is a null string.

destination name

Name of the data destination. The initial value is a null string.

instance id

Instance identifier. A binary value (MQBYTE24) of length MQ_OBJECT_INSTANCE_ID_LENGTH. The initial
value is MQOII_NONE.

logical length

Logical, or intended, length of message data that follows this header. The initial value is zero.

logical offset

Logical offset for the message data that follows, to be interpreted in the context of the data as a whole, at the

ultimate destination. The initial value is zero.

logical offset 2

High-order extension to the logical offset. The initial value is zero.

reference type

Reference type. The initial value is a null string.

source environment

Environment for the source. The initial value is a null string.

source name

Name of the data source. The initial value is a null string.

Parent topic: ImqReferenceHeader

This build: January 26, 2011 11:58:17

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc12030_

13.21.3. Constructors

ImqReferenceHeader();

The default constructor.

Page 125 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

ImqReferenceHeader(const ImqReferenceHeader & header);

The copy constructor.

Parent topic: ImqReferenceHeader

This build: January 26, 2011 11:58:17

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc12040_

13.21.4. Overloaded ImqItem methods

virtual ImqBoolean copyOut(ImqMessage & msg);

Inserts an MQRMH data structure into the message buffer at the beginning, moving existing message data

further along, and sets the msg format to MQFMT_REF_MSG_HEADER.

See the ImqHeader class method description on ImqHeader for further details.

virtual ImqBoolean pasteIn(ImqMessage & msg);

Reads an MQRMH data structure from the message buffer.

To be successful, the ImqMessage format must be MQFMT_REF_MSG_HEADER.

See the ImqHeader class method description on ImqHeader for further details.

Parent topic: ImqReferenceHeader

This build: January 26, 2011 11:58:18

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc12050_

13.21.5. Object methods (public)

void operator = (const ImqReferenceHeader & header);

Copies instance data from header, replacing the existing instance data.

ImqString destinationEnvironment() const ;

Returns a copy of the destination environment.

void setDestinationEnvironment(const char * environment = 0);

Sets the destination environment.

ImqString destinationName() const ;

Returns a copy of the destination name.

void setDestinationName(const char * name = 0);

Sets the destination name.

ImqBinary instanceId() const ;

Returns a copy of the instance id.

ImqBoolean setInstanceId(const ImqBinary & id);

Sets the instance id. The data length of token must be either 0 or MQ_OBJECT_INSTANCE_ID_LENGTH.

This method returns TRUE if successful.

void setInstanceId(const MQBYTE24 id = 0);

Sets the instance id. id can be zero, which is the same as specifying MQOII_NONE. If id is nonzero, it must
address MQ_OBJECT_INSTANCE_ID_LENGTH bytes of binary data. When using pre-defined values such as

MQOII_NONE, you might need to make a cast to ensure a signature match, for example (MQBYTE *)

MQOII_NONE.

MQLONG logicalLength() const ;

Page 126 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

Returns the logical length.

void setLogicalLength(const MQLONG length);

Sets the logical length.

MQLONG logicalOffset() const ;

Returns the logical offset.

void setLogicalOffset(const MQLONG offset);

Sets the logical offset.

MQLONG logicalOffset2() const ;

Returns the logical offset 2.

void setLogicalOffset2(const MQLONG offset);

Sets the logical offset 2.

ImqString referenceType() const ;

Returns a copy of the reference type.

void setReferenceType(const char * name = 0);

Sets the reference type.

ImqString sourceEnvironment() const ;

Returns a copy of the source environment.

void setSourceEnvironment(const char * environment = 0);

Sets the source environment.

ImqString sourceName() const ;

Returns a copy of the source name.

void setSourceName(const char * name = 0);

Sets the source name.

Parent topic: ImqReferenceHeader

This build: January 26, 2011 11:58:18

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc12060_

13.21.6. Object data (protected)

MQRMH omqrmh

The MQRMH data structure.

Parent topic: ImqReferenceHeader

This build: January 26, 2011 11:58:18

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc12070_

13.21.7. Reason codes

� MQRC_BINARY_DATA_LENGTH_ERROR

� MQRC_STRUC_LENGTH_ERROR

� MQRC_STRUC_ID_ERROR

� MQRC_INSUFFICIENT_DATA

� MQRC_INCONSISTENT_FORMAT

� MQRC_ENCODING_ERROR

Page 127 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

Parent topic: ImqReferenceHeader

This build: January 26, 2011 11:58:18

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc12080_

13.22. ImqString

Figure 1. ImqString class

This class provides character string storage and manipulation for null-terminated strings. Use an ImqString in

place of a char * in most situations where a parameter calls for a char *.

Other relevant classes

Object attributes

Constructors

Class methods (public)

Overloaded ImqItem methods

Object methods (public)

Object methods (protected)

Reason codes

Parent topic: WebSphere MQ C++ classes

This build: January 26, 2011 11:58:18

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc12090_

13.22.1. Other relevant classes

� ImqItem (see ImqItem)

� ImqMessage (see ImqMessage)

Page 128 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

Parent topic: ImqString

This build: January 26, 2011 11:58:18

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc12100_

13.22.2. Object attributes

characters

Characters in the storage that precede a trailing null.

length

Number of bytes in the characters. If there is no storage, the length is zero. The initial value is zero.

storage

A volatile array of bytes of arbitrary size. A trailing null must always be present in the storage after the

characters, so that the end of the characters can be detected. Methods ensure that this situation is

maintained, but ensure, when setting bytes in the array directly, that a trailing null exists after modification.
Initially, there is no storage attribute.

Parent topic: ImqString

This build: January 26, 2011 11:58:18

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc12110_

13.22.3. Constructors

ImqString();

The default constructor.

ImqString(const ImqString & string);

The copy constructor.

ImqString(const char c);

The characters comprise c.

ImqString(const char * text);

The characters are copied from text.

ImqString(const void * buffer, const size_t length);

Copies length bytes starting from buffer and assigns them to the characters. Substitution is made for any

null characters copied. The substitution character is a period (.). No special consideration is given to any other

non-printable or non-displayable characters copied.

Parent topic: ImqString

This build: January 26, 2011 11:58:18

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc12120_

13.22.4. Class methods (public)

static ImqBoolean copy(char * destination-buffer, const size_t length, const char * source-buffer,
const char pad = 0);

Copies up to length bytes from source-buffer to destination-buffer. If the number of characters in source-
buffer is insufficient, fills the remaining space in destination-buffer with pad characters. source-buffer can be

Page 129 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

zero. destination-buffer can be zero if length is also zero. Any error codes are lost. This method returns TRUE

if successful.

static ImqBoolean copy (char * destination-buffer, const size_t length, const char * source-buffer,

ImqError & error-object, const char pad = 0);

Copies up to length bytes from source-buffer to destination-buffer. If the number of characters in source-

buffer is insufficient, fills the remaining space in destination-buffer with pad characters. source-buffer can be

zero. destination-buffer can be zero if length is also zero. Any error codes are set in error-object. This method
returns TRUE if successful.

Parent topic: ImqString

This build: January 26, 2011 11:58:18

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc12130_

13.22.5. Overloaded ImqItem methods

virtual ImqBoolean copyOut(ImqMessage & msg);

Copies the characters to the message buffer, replacing any existing content. Sets the msg format to
MQFMT_STRING.

See the parent class method description for further details.

virtual ImqBoolean pasteIn(ImqMessage & msg);

Sets the characters by transferring the remaining data from the message buffer, replacing the existing

characters.

To be successful, the encoding of the msg object must be MQENC_NATIVE. Retrieve messages with

MQGMO_CONVERT to MQENC_NATIVE.

To be successful, the ImqMessage format must be MQFMT_STRING.

See the parent class method description for further details.

Parent topic: ImqString

This build: January 26, 2011 11:58:18

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc12140_

13.22.6. Object methods (public)

char & operator [] (const size_t offset) const ;

References the character at offset offset in the storage. Ensure that the relevant byte exists and is
addressable.

ImqString operator () (const size_t offset, const size_t length = 1) const ;

Returns a substring by copying bytes from the characters starting at offset. If length is zero, returns the rest

of the characters. If the combination of offset and length does not produce a reference within the

characters, returns an empty ImqString.

void operator = (const ImqString & string);

Copies instance data from string, replacing the existing instance data.

ImqString operator + (const char c) const ;

Returns the result of appending c to the characters.

ImqString operator + (const char * text) const ;

Returns the result of appending text to the characters. This can also be inverted. For example:

strOne + “string two” ;

Page 130 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

“string one” + strTwo ;

Note: Although most compilers accept strOne + “string two”; Microsoft Visual C++ requires strOne +

(char *)“string two” ;

ImqString operator + (const ImqString & string1) const ;

Returns the result of appending string1 to the characters.

ImqString operator + (const double number) const ;

Returns the result of appending number to the characters after conversion to text.

ImqString operator + (const long number) const ;

Returns the result of appending number to the characters after conversion to text.

void operator += (const char c);

Appends c to the characters.

void operator += (const char * text);

Appends text to the characters.

void operator += (const ImqString & string);

Appends string to the characters.

void operator += (const double number);

Appends number to the characters after conversion to text.

void operator += (const long number);

Appends number to the characters after conversion to text.

operator char * () const ;

Returns the address of the first byte in the storage. This value can be zero, and is volatile. Use this method
only for read-only purposes.

ImqBoolean operator < (const ImqString & string) const ;

Compares the characters with those of string using the compare method. The result is TRUE if less than and

FALSE if greater than or equal to.

ImqBoolean operator > (const ImqString & string) const ;

Compares the characters with those of string using the compare method. The result is TRUE if greater than

and FALSE if less than or equal to.

ImqBoolean operator <= (const ImqString & string) const ;

Compares the characters with those of string using the compare method. The result is TRUE if less than or

equal to and FALSE if greater than.

ImqBoolean operator >= (const ImqString & string) const ;

Compares the characters with those of string using the compare method. The result is TRUE if greater than

or equal to and FALSE if less than.

ImqBoolean operator == (const ImqString & string) const ;

Compares the characters with those of string using the compare method. It returns either TRUE or FALSE.

ImqBoolean operator != (const ImqString & string) const ;

Compares the characters with those of string using the compare method. It returns either TRUE or FALSE.

short compare(const ImqString & string) const ;

Compares the characters with those of string. The result is zero if the characters are equal, negative if less

than and positive if greater than. Comparison is case sensitive. A null ImqString is regarded as less than a

nonnull ImqString.

ImqBoolean copyOut(char * buffer, const size_t length, const char pad = 0);

Copies up to length bytes from the characters to the buffer. If the number of characters is insufficient, fills
the remaining space in buffer with pad characters. buffer can be zero if length is also zero. It returns TRUE if

successful.

size_t copyOut(long & number) const ;

Sets number from the characters after conversion from text, and returns the number of characters involved

in the conversion. If this is zero, no conversion has been performed and number is not set. A convertible

character sequence must begin with the following values:

<blank(s)>

<+│->
digit(s)

Page 131 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

size_t copyOut(ImqString & token, const char c = ‘ ’) const ;

If the characters contain one or more characters that are different from c, identifies a token as the first

contiguous sequence of such characters. In this case token is set to that sequence, and the value returned is
the sum of the number of leading characters c and the number of bytes in the sequence. Otherwise, returns

zero and does not set token.

size_t cutOut(long & number);

Sets number as for the copy method, but also removes from characters the number of bytes indicated by

the return value. For example, the string shown in the following example can be cut into three numbers by
using cutOut(number) three times:

strNumbers = “-1 0 +55 ”;

while (strNumbers.cutOut(number));

number becomes -1, then 0, then 55

leaving strNumbers == “ ”

size_t cutOut(ImqString & token, const char c = ‘ ’);

Sets token as for the copyOut method, and removes from characters the strToken characters and also any
characters c that precede the token characters. If c is not a blank, removes characters c that directly succeed

the token characters. Returns the number of characters removed. For example, the string shown in the

following example can be cut into three tokens by using cutOut(token) three times:

strText = “ Program Version 1.1 ”;

while (strText.cutOut(token));

// token becomes “Program”, then “Version”,

// then “1.1” leaving strText == “ ”

The following example shows how to parse a DOS path name:

strPath = “C:\OS2\BITMAP\OS2LOGO.BMP”

strPath.cutOut(strDrive, ':');

strPath.stripLeading(':');

while (strPath.cutOut(strFile, '\'));

// strDrive becomes “C”.

// strFile becomes “OS2”, then “BITMAP”,

// then “OS2LOGO.BMP” leaving strPath empty.

ImqBoolean find(const ImqString & string);

Searches for an exact match for string anywhere within the characters. If no match is found, it returns
FALSE. Otherwise, it returns TRUE. If string is null, it returns TRUE.

ImqBoolean find(const ImqString & string, size_t & offset);

Searches for an exact match for string somewhere within the characters from offset offset onwards. If string

is null, it returns TRUE without updating offset. If no match is found, it returns FALSE (the value of offset

might have been increased). If a match is found, it returns TRUE and updates offset to the offset of string
within the characters.

size_t length() const ;

Returns the length.

ImqBoolean pasteIn(const double number, const char * format = “%f”);

Appends number to the characters after conversion to text. It returns TRUE if successful.

The specification format is used to format the floating point conversion. If specified, it must be one suitable

for use with printf and floating point numbers, for example %.3f.

ImqBoolean pasteIn(const long number);

Appends number to the characters after conversion to text. It returns TRUE if successful.

ImqBoolean pasteIn(const void * buffer, const size_t length);

Appends length bytes from buffer to the characters, and adds a final trailing null. Substitutes any null

characters copied. The substitution character is a period (.). No special consideration is given to any other
nonprintable or nondisplayable characters copied. This method returns TRUE if successful.

ImqBoolean set(const char * buffer, const size_t length);

Sets the characters from a fixed-length character field, which might contain a null. Appends a null to the

characters from the fixed-length field if necessary. This method returns TRUE if successful.

ImqBoolean setStorage(const size_t length);

Page 132 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

Allocates (or reallocates) the storage. Preserves any original characters, including any trailing null, if there

is still room for them, but does not initialize any additional storage.

This method returns TRUE if successful.

size_t storage() const ;

Returns the number of bytes in the storage.

size_t stripLeading(const char c = ‘ ’);

Strips leading characters c from the characters and returns the number removed.

size_t stripTrailing(const char c = ‘ ’);

Strips trailing characters c from the characters and returns the number removed.

ImqString upperCase() const ;

Returns an uppercase copy of the characters.

Parent topic: ImqString

This build: January 26, 2011 11:58:19

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc12150_

13.22.7. Object methods (protected)

ImqBoolean assign(const ImqString & string);

Equivalent to the equivalent operator = method, but non-virtual. It returns TRUE if successful.

Parent topic: ImqString

This build: January 26, 2011 11:58:19

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc12160_

13.22.8. Reason codes

� MQRC_DATA_TRUNCATED

� MQRC_NULL_POINTER

� MQRC_STORAGE_NOT_AVAILABLE

� MQRC_BUFFER_ERROR

� MQRC_INCONSISTENT_FORMAT

Parent topic: ImqString

This build: January 26, 2011 11:58:19

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc12170_

13.23. ImqTrigger

Figure 1. ImqTrigger class

Page 133 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

This class encapsulates the MQTM data structure (see Table 1). Objects of this class are typically used by a

trigger monitor program, whose task is to wait for these particular messages and act on them to ensure that

other WebSphere® MQ applications are started when messages are waiting for them.

See the IMQSTRG sample program for a usage example.

Other relevant classes

Object attributes

Constructors

Overloaded ImqItem methods

Object methods (public)

Object data (protected)

Reason codes

Parent topic: WebSphere MQ C++ classes

This build: January 26, 2011 11:58:19

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc12180_

13.23.1. Other relevant classes

� ImqGetMessageOptions (see ImqGetMessageOptions)

� ImqItem (see ImqItem)

� ImqMessage (see ImqMessage)

� ImqString (see ImqString)

Parent topic: ImqTrigger

This build: January 26, 2011 11:58:19

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc12190_

Page 134 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

13.23.2. Object attributes

application id

Identity of the application that sent the message. The initial value is a null string.

application type

Type of application that sent the message. The initial value is zero. The following additional values are
possible:

� MQAT_AIX

� MQAT_CICS

� MQAT_DOS

� MQAT_IMS

� MQAT_MVS

� MQAT_NOTES_AGENT

� MQAT_OS2

� MQAT_OS390

� MQAT_OS400

� MQAT_UNIX

� MQAT_WINDOWS

� MQAT_WINDOWS_NT

� MQAT_USER_FIRST

� MQAT_USER_LAST

environment data

Environment data for the process. The initial value is a null string.

process name

Process name. The initial value is a null string.

queue name

Name of the queue to be started. The initial value is a null string.

trigger data

Trigger data for the process. The initial value is a null string.

user data

User data for the process. The initial value is a null string.

Parent topic: ImqTrigger

This build: January 26, 2011 11:58:19

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc12200_

13.23.3. Constructors

ImqTrigger();

The default constructor.

ImqTrigger(const ImqTrigger & trigger);

The copy constructor.

Parent topic: ImqTrigger

This build: January 26, 2011 11:58:19

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

Page 135 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

uc12210_

13.23.4. Overloaded ImqItem methods

virtual ImqBoolean copyOut(ImqMessage & msg);

Writes an MQTM data structure to the message buffer, replacing any existing content. Sets the msg format

to MQFMT_TRIGGER.

See the ImqItem class method description on ImqItem for further details.

virtual ImqBoolean pasteIn(ImqMessage & msg);

Reads an MQTM data structure from the message buffer.

To be successful, the ImqMessage format must be MQFMT_TRIGGER.

See the ImqItem class method description on ImqItem for further details.

Parent topic: ImqTrigger

This build: January 26, 2011 11:58:19

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc12220_

13.23.5. Object methods (public)

void operator = (const ImqTrigger & trigger);

Copies instance data from trigger, replacing the existing instance data.

ImqString applicationId() const ;

Returns a copy of the application id.

void setApplicationId(const char * id);

Sets the application id.

MQLONG applicationType() const ;

Returns the application type.

void setApplicationType(const MQLONG type);

Sets the application type.

ImqBoolean copyOut(MQTMC2 * ptmc2);

Encapsulates the MQTM data structure, which is the one received on initiation queues. Fills in an equivalent

MQTMC2 data structure provided by the caller, and sets the QMgrName field (which is not present in the

MQTM data structure) to all blanks. The MQTMC2 data structure is traditionally used as a parameter to
applications started by a trigger monitor. This method returns TRUE if successful.

ImqString environmentData() const ;

Returns a copy of the environment data.

void setEnvironmentData(const char * data);

Sets the environment data.

ImqString processName() const ;

Returns a copy of the process name.

void setProcessName(const char * name);

Sets the process name, padded with blanks to 48 characters.

ImqString queueName() const ;

Returns a copy of the queue name.

void setQueueName(const char * name);

Sets the queue name, padding with blanks to 48 characters.

ImqString triggerData() const ;

Returns a copy of the trigger data.

Page 136 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

void setTriggerData(const char * data);

Sets the trigger data.

ImqString userData() const ;

Returns a copy of the user data.

void setUserData(const char * data);

Sets the user data.

Parent topic: ImqTrigger

This build: January 26, 2011 11:58:20

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc12230_

13.23.6. Object data (protected)

MQTM omqtm

The MQTM data structure.

Parent topic: ImqTrigger

This build: January 26, 2011 11:58:20

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc12240_

13.23.7. Reason codes

� MQRC_NULL_POINTER

� MQRC_INCONSISTENT_FORMAT

� MQRC_ENCODING_ERROR

� MQRC_STRUC_ID_ERROR

Parent topic: ImqTrigger

This build: January 26, 2011 11:58:20

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc12250_

13.24. ImqWorkHeader

Figure 1. ImqWorkHeader class

Page 137 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

This class encapsulates specific features of the MQWIH data structure (see Table 1). Objects of this class are

used by applications putting messages to the queue managed by the z/OS® Workload Manager.

Other relevant classes

Object attributes

Constructors

Overloaded ImqItem methods

Object methods (public)

Object data (protected)

Reason codes

Parent topic: WebSphere MQ C++ classes

This build: January 26, 2011 11:58:20

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc12260_

13.24.1. Other relevant classes

� ImqBinary (see ImqBinary)

� ImqHeader (see ImqHeader)

� ImqItem (see ImqItem)

� ImqMessage (see ImqMessage)

� ImqString (see ImqString)

Parent topic: ImqWorkHeader

This build: January 26, 2011 11:58:20

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc12270_

13.24.2. Object attributes

Page 138 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

message token

Message token for the z/OS® Workload Manager, of length MQ_MSG_TOKEN_LENGTH. The initial value is
MQMTOK_NONE.

service name

The 32-character name of a process. The name is initially blanks.

service step

The 8-character name of a step within the process. The name is initially blanks.

Parent topic: ImqWorkHeader

This build: January 26, 2011 11:58:20

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc12280_

13.24.3. Constructors

ImqWorkHeader();

The default constructor.

ImqWorkHeader(const ImqWorkHeader & header);

The copy constructor.

Parent topic: ImqWorkHeader

This build: January 26, 2011 11:58:20

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc12290_

13.24.4. Overloaded ImqItem methods

virtual ImqBoolean copyOut(ImqMessage & msg);

Inserts an MQWIH data structure into the beginning of the message buffer, moving the existing message data
further along, and sets the msg format to MQFMT_WORK_INFO_HEADER.

See the parent class method description for more details.

virtual ImqBoolean pasteIn(ImqMessage & msg);

Reads an MQWIH data structure from the message buffer.

To be successful, the encoding of the msg object must be MQENC_NATIVE. Retrieve messages with

MQGMO_CONVERT to MQENC_NATIVE.

The ImqMessage format must be MQFMT_WORK_INFO_HEADER.

See the parent class method description for more details.

Parent topic: ImqWorkHeader

This build: January 26, 2011 11:58:20

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc12300_

13.24.5. Object methods (public)

Page 139 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

void operator = (const ImqWorkHeader & header);

Copies instance data from header, replacing the existing instance data.

ImqBinary messageToken () const;

Returns the message token.

ImqBoolean setMessageToken(const ImqBinary & token);

Sets the message token. The data length of token must be either zero or MQ_MSG_TOKEN_LENGTH. It

returns TRUE if successful.

void setMessageToken(const MQBYTE16 token = 0);

Sets the message token. token can be zero, which is the same as specifying MQMTOK_NONE. If token is

nonzero, it must address MQ_MSG_TOKEN_LENGTH bytes of binary data.

When using predefined values such as MQMTOK_NONE, you might need make a cast to ensure a signature
match; for example, (MQBYTE *)MQMTOK_NONE.

ImqString serviceName () const;

Returns the service name, including trailing blanks.

void setServiceName(const char * name);

Sets the service name.

ImqString serviceStep () const;

Returns the service step, including trailing blanks.

void setServiceStep(const char * step);

Sets the service step.

Parent topic: ImqWorkHeader

This build: January 26, 2011 11:58:20

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc12310_

13.24.6. Object data (protected)

MQWIH omqwih

The MQWIH data structure.

Parent topic: ImqWorkHeader

This build: January 26, 2011 11:58:20

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc12320_

13.24.7. Reason codes

� MQRC_BINARY_DATA_LENGTH_ERROR

Parent topic: ImqWorkHeader

This build: January 26, 2011 11:58:20

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc12330_

Page 140 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

14. Building WebSphere MQ C++ programs

The URL of supported compilers is listed, together with the commands to use to compile, link and run C++

programs and samples on WebSphere MQ platforms.

The compilers for each supported platform and version of WebSphere MQ are listed on the WebSphere MQ

system requirements page at http://www.ibm.com/software/integration/wmq/requirements/.

The command you need to compile and link your WebSphere MQ C++ program depends on your installation

and requirements. The examples that follow show typical compile and link commands for some of the compilers
using the default installation of WebSphere MQ on a number of platforms.

AIX

Build WebSphere MQ C++ programs on AIX using the XL C Enterprise Edition compiler.

HP-UX

To build WebSphere® MQ C++ programs on HP-UX, use the aC++ or aCC compilers.

HP OpenVMS
Build WebSphere MQ C++ programs on HP OpenVMS using the HP C++ compiler

i5

Build WebSphere MQ C++ programs on i5 using the ILE C++ compiler.

Linux
Build WebSphere MQ C++ programs on Linux using the GNU g++ compiler.

Solaris

Build WebSphere MQ C++ programs on Solaris using the Sun ONE compiler.

Windows

Build WebSphere MQ C++ programs on Windows using the Microsoft Visual Studio C++ compiler.

z/OS Batch, RRS Batch and CICS

Build WebSphere MQ C++ programs on z/OS for the Batch, RRS batch or CICS environments and run the

sample programs.

z/OS UNIX System Services

Build WebSphere MQ C++ programs on z/OS for Unix System Services.

Parent topic: Using C++

This build: January 26, 2011 11:58:20

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc12340_

14.1. AIX®

Build WebSphere MQ C++ programs on AIX using the XL C Enterprise Edition compiler.

Client

32-bit unthreaded application

xlC -o imqsputc_32 imqsput.cpp -qchars=signed -I/usr/mqm/inc

-L/usr/mqm/lib -limqc23ia -limqb23ia -lmqic

32-bit threaded application

xlC_r -o imqsputc_32_r imqsput.cpp -qchars=signed -I/usr/mqm/inc

-L/usr/mqm/lib -limqc23ia_r -limqb23ia_r -lmqic_r

Page 141 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

64-bit unthreaded application

xlC -q64 -o imqsputc_64 imqsput.cpp -qchars=signed -I/usr/mqm/inc

-L/usr/mqm/lib64 -limqc23ia -limqb23ia -lmqic

64-bit threaded application

xlC_r -q64 -o imqsputc_64_r imqsput.cpp -qchars=signed -I/usr/mqm/inc

-L/usr/mqm/lib64 -limqc23ia_r -limqb23ia_r -lmqic_r

Server

32-bit unthreaded application

xlC -o imqsput_32 imqsput.cpp -qchars=signed -I/usr/mqm/inc

-L/usr/mqm/lib -limqs23ia -limqb23ia -lmqm

32-bit threaded application

xlC_r -o imqsput_32_r imqsput.cpp -qchars=signed -I/usr/mqm/inc

-L/usr/mqm/lib -limqs23ia_r -limqb23ia_r -lmqm_r

64-bit unthreaded application

xlC -q64 -o imqsput_64 imqsput.cpp -qchars=signed -I/usr/mqm/inc

-L/usr/mqm/lib64 -limqs23ia -limqb23ia -lmqm

64-bit threaded application

xlC_r -q64 -o imqsput_64_r imqsput.cpp -qchars=signed -I/usr/mqm/inc

-L/usr/mqm/lib64 -limqs23ia_r -limqb23ia_r -lmqm_r

Parent topic: Building WebSphere MQ C++ programs

This build: January 26, 2011 11:58:20

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc12360_

14.2. HP-UX

To build WebSphere® MQ C++ programs on HP-UX, use the aC++ or aCC compilers.

The HP ANSI C++ compiler supports two distinct runtime environments for C++ applications, the Classic C++

runtime and the Standard C++ runtime.

On HP-UX (PA-RISC), WebSphere MQ supports both the Classic and Standard runtimes. Use the aC++

compiler.

� libimqi23ah.sl provides the WebSphere MQ C++ classes for the Classic runtime.

� libimqi23bh.sl provides the WebSphere MQ C++ classes for the Standard runtime.

On HP-UX Itanium, WebSphere MQ supports only the Standard runtime. Use the aCC compiler.

� libimqi23bh.sl provides the WMQ C++ classes for the Standard runtime.

� For compatibility with earlier releases, a symbolic link is provided from libimqi23ah.sl to libimqi23bh.sl.

PA-RISC using Classic runtime

Client: PA-RISC Classic

32-bit unthreaded application

aCC -Wl,+b,: -D_HPUX_SOURCE -o imqsputc_32 imqsput.cpp -I/opt/mqm/inc

-L/opt/mqm/lib -L/usr/lib -limqi23ah -lmqic

32-bit threaded application

aCC -Wl,+b,: -D_HPUX_SOURCE -o imqsputc_32_r imqsput.cpp -I/opt/mqm/inc

Page 142 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

-L/opt/mqm/lib -L/usr/lib -limqi23ah_r -lmqic_r -lpthread

64-bit unthreaded application

aCC +DD64 -Wl,+noenvvar -D_HPUX_SOURCE -o imqsputc_64 imqsput.cpp

-I/opt/mqm/inc -L/opt/mqm/lib64 -L/usr/lib/pa20_64 -limqi23ah -lmqic

64-bit threaded application

aCC +DD64 -Wl,+noenvvar -D_HPUX_SOURCE -o imqsputc_64_r imqsput.cpp

-I/opt/mqm/inc -L/opt/mqm/lib64 -L/usr/lib/pa20_64 -limqi23ah_r -lmqic_r

-lpthread

Server: PA-RISC Classic

32-bit unthreaded application

aCC -Wl,+b,: -D_HPUX_SOURCE -o imqsputc_32 imqsput.cpp -I/opt/mqm/inc

-L/opt/mqm/lib -L/usr/lib -limqi23ah -lmqic

32-bit threaded application

aCC -Wl,+b,: -D_HPUX_SOURCE -o imqsputc_32_r imqsput.cpp -I/opt/mqm/inc

-L/opt/mqm/lib -L/usr/lib -limqi23ah_r -lmqic_r -lpthread

64-bit unthreaded application

aCC +DD64 -Wl,+noenvvar -D_HPUX_SOURCE -o imqsputc_64 imqsput.cpp

-I/opt/mqm/inc -L/opt/mqm/lib64 -L/usr/lib/pa20_64 -limqi23ah -lmqic

64-bit threaded application

aCC +DD64 -Wl,+noenvvar -D_HPUX_SOURCE -o imqsputc_64_r imqsput.cpp

-I/opt/mqm/inc -L/opt/mqm/lib64 -L/usr/lib/pa20_64 -limqi23ah_r -lmqic_r

-lpthread

PA-RISC using Standard runtime

Client: PA-RISC Standard

32-bit unthreaded application

aCC -Wl,+b,: -D_HPUX_SOURCE -o imqsputc_32 imqsput.cpp -I/opt/mqm/inc

-L/opt/mqm/lib -L/usr/lib -limqi23bh -lmqic

32-bit threaded application

aCC -Wl,+b,: -D_HPUX_SOURCE -o imqsputc_32_r imqsput.cpp -I/opt/mqm/inc

-L/opt/mqm/lib -L/usr/lib -limqi23bh_r -lmqic_r -lpthread

64-bit unthreaded application

aCC +DD64 -Wl,+noenvvar -D_HPUX_SOURCE -o imqsputc_64 imqsput.cpp

-I/opt/mqm/inc -L/opt/mqm/lib64 -L/usr/lib/pa20_64 -limqi23bh -lmqic

64-bit threaded application

aCC +DD64 -Wl,+noenvvar -D_HPUX_SOURCE -o imqsputc_64_r imqsput.cpp

-I/opt/mqm/inc -L/opt/mqm/lib64 -L/usr/lib/pa20_64 -limqi23bh_r -lmqic_r

-lpthread

Server: PA-RISC Standard

32-bit unthreaded application

aCC -Wl,+b,: -D_HPUX_SOURCE -o imqsput_32 imqsput.cpp -I/opt/mqm/inc

-L/opt/mqm/lib -L/usr/lib -limqi23bh -lmqm

32-bit threaded application

aCC -Wl,+b,: -D_HPUX_SOURCE -o imqsput_32_r imqsput.cpp -I/opt/mqm/inc

-L/opt/mqm/lib -L/usr/lib -limqi23bh_r -lmqm_r -lpthread

64-bit unthreaded application

aCC +DD64 -Wl,+noenvvar -D_HPUX_SOURCE -o imqsput_64 imqsput.cpp

-I/opt/mqm/inc -L/opt/mqm/lib64 -L/usr/lib/pa20_64 -limqi23bh -lmqm

64-bit threaded application

Page 143 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

aCC +DD64 -Wl,+noenvvar -D_HPUX_SOURCE -o imqsput_64_r imqsput.cpp

-I/opt/mqm/inc -L/opt/mqm/lib64 -L/usr/lib/pa20_64 -limqi23bh_r -lmqm_r

-lpthread

IA64 (IPF)

Client: IA64 (IPF)

32-bit unthreaded application

aCC -Wl,+b,: +e -D_HPUX_SOURCE -o imqsputc_32 imqsput.cpp -I/opt/mqm/inc

-L/opt/mqm/lib -L/usr/lib/hpux32 -limqi23bh -lmqic

32-bit threaded application

aCC -Wl,+b,: +e -D_HPUX_SOURCE -o imqsputc_32_r imqsput.cpp -I/opt/mqm/inc

-L/opt/mqm/lib -L/usr/lib/hpux32 -limqi23bh_r -lmqic_r -lpthread

64-bit unthreaded application

aCC +DD64 +e -Wl,+noenvvar -D_HPUX_SOURCE -o imqsputc_64 imqsput.cpp

-I/opt/mqm/inc -L/opt/mqm/lib64 -L/usr/lib/hpux64 -limqi23bh -lmqic

64-bit threaded application

aCC +DD64 +e -Wl,+noenvvar -D_HPUX_SOURCE -o imqsputc_64_r imqsput.cpp

-I/opt/mqm/inc -L/opt/mqm/lib64 -L/usr/lib/hpux64 -limqi23bh_r -lmqic_r

-lpthread

Server: IA64 (IPF)

32-bit unthreaded application

aCC -Wl,+b,: +e -D_HPUX_SOURCE -o imqsput_32 imqsput.cpp -I/opt/mqm/inc

-L/opt/mqm/lib -L/usr/lib/hpux32 -limqi23bh -lmqm

32-bit threaded application

aCC -Wl,+b,: +e -D_HPUX_SOURCE -o imqsput_32_r imqsput.cpp -I/opt/mqm/inc

-L/opt/mqm/lib -L/usr/lib/hpux32 -limqi23bh_r -lmqm_r -lpthread

64-bit unthreaded application

aCC +DD64 +e -Wl,+noenvvar -D_HPUX_SOURCE -o imqsput_64 imqsput.cpp

-I/opt/mqm/inc -L/opt/mqm/lib64 -L/usr/lib/hpux64 -limqi23bh -lmqm

64-bit threaded application

aCC +DD64 +e -Wl,+noenvvar -D_HPUX_SOURCE -o imqsput_64_r imqsput.cpp

-I/opt/mqm/inc -L/opt/mqm/lib64 -L/usr/lib/hpux64 -limqi23bh_r -lmqm_r

-lpthread

Parent topic: Building WebSphere MQ C++ programs

This build: January 26, 2011 11:58:20

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc12390_

14.3. HP OpenVMS

Build WebSphere MQ C++ programs on HP OpenVMS using the HP C++ compiler

Client

Alpha and IA64(IPF)

Create a DCL script file, compile_link_client.com, containing the lines:

$CXX /include_directory=mqs_include imqsput.cxx

$CXXLINK/exe=imqsputc imqsput.obj,sys$input/options

sys$share:imqc/shareable

Page 144 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

sys$share:imqb/shareable

$ EXIT

Run the DCL script with the command

$ @compile_link_client.com

Server

Alpha and IA64(IPF)

Create a DCL script file, compile_link_server.com, containing the lines:

$CXX /include_directory=mqs_include imqsput.cxx

$CXXLINK/exe=imqsput imqsput.obj,sys$input/options

sys$share:imqs/shareable

sys$share:imqb/shareable

$ EXIT

Run the DCL script with the command

$ @compile_link_server.com

Parent topic: Building WebSphere MQ C++ programs

This build: January 26, 2011 11:58:21

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc12565_

14.4. i5

Build WebSphere MQ C++ programs on i5 using the ILE C++ compiler.

IBM® ILE C++ for i5/OS® is a native compiler for C++ programs. The following instructions describe how to
use this compiler to create WebSphere® MQ C++ applications using the Hello World! WebSphere MQ sample

program as an example .

1. Install the ILE C++ for i5/OS compiler as directed in the Read Me first! manual that accompanies the

product.

2. Ensure that the QCXXN library is in your library list.

3. Create the HELLO WORLD sample program:

a. Create a module:

 CRTCPPMOD MODULE(MYLIB/IMQWRLD) +

 SRCSTMF('/QIBM/ProdData/mqm/samp/imqwrld.cpp') +

 INCDIR('/QIBM/ProdData/mqm/inc') DFTCHAR(*SIGNED) +

 TERASPACE(*YES)

The source for the C++ sample programs can be found in /QIBM/ProdData/mqm/samp and the

include files in /QIBM/ProdData/mqm/inc.

Alternatively, the source can be found in library SRCFILE(QCPPSRC/LIB) SRCMBR(IMQWRLD).

b. Bind this with WebSphere MQ-supplied service programs to produce a program object:

 CRTPGM PGM(MYLIB/IMQWRLD) MODULE(MYLIB/IMQWRLD) +

 BNDSRVPGM(QMQM/IMQB23I4 QMQM/IMQS23I4)

To build a threaded application use the re-entrant service programs:

 CRTPGM PGM(MYLIB/IMQWRLD) MODULE(MYLIB/IMQWRLD) +

 BNDSRVPGM(QMQM/IMQB23I4[_R] QMQM/IMQS23I4[_R])

c. Execute the HELLO WORLD sample program, using SYSTEM.DEFAULT.LOCAL.QUEUE:

 CALL PGM(MYLIB/IMQWRLD)

Parent topic: Building WebSphere MQ C++ programs

This build: January 26, 2011 11:58:21

Notices | Trademarks | Downloads | Library | Support | Feedback

Page 145 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc12560_

14.5. Linux

Build WebSphere MQ C++ programs on Linux using the GNU g++ compiler.

System p

Client: System p

32-bit unthreaded application

g++ -m32 -o imqsputc_32 imqsput.cpp -fsigned-char -I/opt/mqm/inc

-L/opt/mqm/lib -Wl,-rpath=/opt/mqm/lib -Wl,-rpath=/usr/lib -limqc23gl

-limqb23gl -lmqic

32-bit threaded application

g++ -m32 -o imqsputc_r32 imqsput.cpp -fsigned-char -I/opt/mqm/inc

-L/opt/mqm/lib -Wl,-rpath=/opt/mqm/lib -Wl,-rpath=/usr/lib -limqc23gl_r

-limqb23gl_r -lmqic_r

64-bit unthreaded application

g++ -m64 -o imqsputc_64 imqsput.cpp -fsigned-char -I/opt/mqm/inc

-L/opt/mqm/lib64 -Wl,-rpath=/opt/mqm/lib64 -Wl,-rpath=/usr/lib64

-limqc23gl -limqb23gl -lmqic

64-bit threaded application

g++ -m64 -o imqsputc_r64 imqsput.cpp -fsigned-char -I/opt/mqm/inc

-L/opt/mqm/lib64 -Wl,-rpath=/opt/mqm/lib64 -Wl,-rpath=/usr/lib64

-limqc23gl_r -limqb23gl_r -lmqic_r

Server: System p

32-bit unthreaded application

g++ -m32 -o imqsput_32 imqsput.cpp -fsigned-char -I/opt/mqm/inc

-L/opt/mqm/lib -Wl,-rpath=/opt/mqm/lib -Wl,-rpath=/usr/lib -limqs23gl

-limqb23gl -lmqm

32-bit threaded application

g++ -m32 -o imqsput_r32 imqsput.cpp -fsigned-char -I/opt/mqm/inc

-L/opt/mqm/lib -Wl,-rpath=/opt/mqm/lib -Wl,-rpath=/usr/lib -limqs23gl_r

-limqb23gl_r -lmqm_r

64-bit unthreaded application

g++ -m64 -o imqsput_64 imqsput.cpp -fsigned-char -I/opt/mqm/inc

-L/opt/mqm/lib64 -Wl,-rpath=/opt/mqm/lib64 -Wl,-rpath=/usr/lib64

-limqs23gl -limqb23gl -lmqm

64-bit threaded application

g++ -m64 -o imqsput_r64 imqsput.cpp -fsigned-char -I/opt/mqm/inc

-L/opt/mqm/lib64 -Wl,-rpath=/opt/mqm/lib64 -Wl,-rpath=/usr/lib64

-limqs23gl_r -limqb23gl_r -lmqm_r

System z

Client: System z

32-bit unthreaded application

g++ -m31 -fsigned-char -o imqsputc_32 imqsput.cpp -I/opt/mqm/inc

-L/opt/mqm/lib -Wl,-rpath=/opt/mqm/lib -Wl,-rpath=/usr/lib

-limqc23gl -limqb23gl -lmqic

32-bit threaded application

g++ -m31 -fsigned-char -o imqsputc_32_r imqsput.cpp -I/opt/mqm/inc

-L/opt/mqm/lib -Wl,-rpath=/opt/mqm/lib -Wl,-rpath=/usr/lib

Page 146 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

-limqc23gl_r -limqb23gl_r -lmqic_r

-lpthread

64-bit unthreaded application

g++ -m64 -fsigned-char -o imqsputc_64 imqsput.cpp -I/opt/mqm/inc

-L/opt/mqm/lib64 -Wl,-rpath=/opt/mqm/lib64 -Wl,-rpath=/usr/lib64

-limqc23gl -limqb23gl -lmqic

64-bit threaded application

g++ -m64 -fsigned-char -o imqsputc_64_r imqsput.cpp -I/opt/mqm/inc

-L/opt/mqm/lib64 -Wl,-rpath=/opt/mqm/lib64 -Wl,-rpath=/usr/lib64

-limqc23gl_r -limqb23gl_r -lmqic_r -lpthread

Server: System z

32-bit unthreaded application

g++ -m31 -fsigned-char -o imqsput_32 imqsput.cpp -I/opt/mqm/inc

-L/opt/mqm/lib -Wl,-rpath=/opt/mqm/lib -Wl,-rpath=/usr/lib

-limqs23gl -limqb23gl -lmqm

32-bit threaded application

g++ -m31 -fsigned-char -o imqsput_32_r imqsput.cpp -I/opt/mqm/inc

-L/opt/mqm/lib -Wl,-rpath=/opt/mqm/lib -Wl,-rpath=/usr/lib

-limqs23gl_r -limqb23gl_r -lmqm_r -lpthread

64-bit unthreaded application

g++ -m64 -fsigned-char -o imqsput_64 imqsput.cpp -I/opt/mqm/inc

-L/opt/mqm/lib64 -Wl,-rpath=/opt/mqm/lib64 -Wl,-rpath=/usr/lib64

-limqs23gl -limqb23gl -lmqm

64-bit threaded application

g++ -m64 -fsigned-char -o imqsput_64_r imqsput.cpp -I/opt/mqm/inc

-L/opt/mqm/lib64 -Wl,-rpath=/opt/mqm/lib64 -Wl,-rpath=/usr/lib64

-limqs23gl_r -limqb23gl_r -lmqm_r -lpthread

System x (32-bit)

Client: System x (32-bit)

32-bit unthreaded application

g++ -m32 -fsigned-char -o imqsputc_32 imqsput.cpp -I/opt/mqm/inc

-L/opt/mqm/lib -Wl, -rpath=/opt/mqm/lib -L/opt/mqm/lib -Wl,

-rpath=/opt/mqm/lib -Wl,-rpath=/usr/lib -limqc23gl -limqb23gl -lmqic

32-bit threaded application

g++ -m32 -fsigned-char -o imqsputc_32_r imqsput.cpp -I/opt/mqm/inc

-L/opt/mqm/lib -Wl,-rpath=/opt/mqm/lib -L/opt/mqm/lib

-Wl,-rpath=/opt/mqm/lib -Wl,-rpath=/usr/lib -limqc23gl_r -limqb23gl_r

-lmqic_r -lpthread

64-bit unthreaded application

g++ -m64 -fsigned-char -o imqsputc_64 imqsput.cpp -I/opt/mqm/inc

-L/opt/mqm/lib64 -Wl,-rpath=/opt/mqm/lib64 -L/opt/mqm/lib64

-Wl,-rpath=/opt/mqm/lib64 -Wl,-rpath=/usr/lib64 -limqc23gl -limqb23gl

-lmqic

64-bit threaded application

g++ -m64 -fsigned-char -o imqsputc_64_r imqsput.cpp -I/opt/mqm/inc

-L/opt/mqm/lib64 -Wl,-rpath=/opt/mqm/lib64 -L/opt/mqm/lib64

-Wl,-rpath=/opt/mqm/lib64 -Wl,-rpath=/usr/lib64 -limqc23gl_r -limqb23gl_r

-lmqic_r -lpthread

Server: System x (32-bit)

32-bit unthreaded application

g++ -m32 -fsigned-char -o imqsput_32 imqsput.cpp -I/opt/mqm/inc

-L/opt/mqm/lib -Wl,-rpath=/opt/mqm/lib -L/opt/mqm/lib

Page 147 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

-Wl,-rpath=/opt/mqm/lib -Wl,-rpath=/usr/lib -limqs23gl -limqb23gl -lmqm

32-bit threaded application

g++ -m32 -fsigned-char -o imqsput_32_r imqsput.cpp -I/opt/mqm/inc

-L/opt/mqm/lib -Wl,-rpath=/opt/mqm/lib -L/opt/mqm/lib

-Wl,-rpath=/opt/mqm/lib -Wl,-rpath=/usr/lib -limqs23gl_r -limqb23gl_r

-lmqm_r -lpthread

64-bit unthreaded application

g++ -m64 -fsigned-char -o imqsput_64 imqsput.cpp -I/opt/mqm/inc

-L/opt/mqm/lib64 -Wl,-rpath=/opt/mqm/lib64 -L/opt/mqm/lib64

-Wl,-rpath=/opt/mqm/lib64 -Wl,-rpath=/usr/lib64 -limqs23gl -limqb23gl -lmqm

64-bit threaded application

g++ -m64 -fsigned-char -o imqsput_64_r imqsput.cpp -I/opt/mqm/inc

-L/opt/mqm/lib64 -Wl,-rpath=/opt/mqm/lib64 -L/opt/mqm/lib64

-Wl,-rpath=/opt/mqm/lib64 -Wl,-rpath=/usr/lib64 -limqs23gl_r -limqb23gl_r

-lmqm_r -lpthread

Parent topic: Building WebSphere MQ C++ programs

This build: January 26, 2011 11:58:21

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc12460_

14.6. Solaris

Build WebSphere MQ C++ programs on Solaris using the Sun ONE compiler.

SPARC

Client: SPARC

32-bit application

CC -xarch=v8plus -mt -o imqsputc_32 imqsput.cpp -I/opt/mqm/inc

-L/opt/mqm/lib -R/opt/mqm/lib -R/usr/lib/32 -limqc23as -limqb23as

-lmqic -lmqmcs -lmqmzse -lsocket -lnsl -ldl

64-bit application

CC -xarch=v9 -mt -o imqsputc_64 imqsput.cpp -I/opt/mqm/inc

-L/opt/mqm/lib64 -R/opt/mqm/lib64 -R/usr/lib/64 -limqc23as -limqb23as

-lmqic -lmqmcs -lmqmzse -lsocket -lnsl -ldl

Server: SPARC

32-bit application

CC -xarch=v8plus -mt -o imqsput_32 imqsput.cpp -I/opt/mqm/inc

-L/opt/mqm/lib -R/opt/mqm/lib -R/usr/lib/32 -limqs23as -limqb23as

-lmqm -lmqmcs -lmqmzse -lsocket -lnsl -ldl

64-bit application

CC -xarch=v9 -mt -o imqsput_64 imqsput.cpp -I/opt/mqm/inc

-L/opt/mqm/lib64 -R/opt/mqm/lib64 -R/usr/lib/64 -limqs23as -limqb23as

-lmqm -lmqmcs -lmqmzse -lsocket -lnsl -ldl

x86-64

Client: x86-64

Page 148 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

32-bit application

CC -xarch=386 -mt -o imqsputc_32 imqsput.cpp -I/opt/mqm/inc

-L/opt/mqm/lib -R/opt/mqm/lib -R/usr/lib/32 -limqc23as -limqb23as

-lmqic -lmqmcs -lmqmzse -lsocket -lnsl -ldl

64-bit application

CC -xarch=amd64 -mt -o imqsputc_64 imqsput.cpp -I/opt/mqm/inc

-L/opt/mqm/lib64 -R/opt/mqm/lib64 -R/usr/lib/64 -limqc23as -limqb23as

-lmqic -lmqmcs -lmqmzse -lsocket -lnsl -ldl

Server: x86-64

32-bit application

CC -xarch=386 -mt -o imqsput_32 imqsput.cpp -I/opt/mqm/inc

-L/opt/mqm/lib -R/opt/mqm/lib -R/usr/lib/32 -limqs23as -limqb23as

-lmqm -lmqmcs -lmqmzse -lsocket -lnsl -ldl

64-bit application

CC -xarch=amd64 -mt -o imqsput_64 imqsput.cpp -I/opt/mqm/inc

-L/opt/mqm/lib64 -R/opt/mqm/lib64 -R/usr/lib/64 -limqs23as -limqb23as

-lmqm -lmqmcs -lmqmzse -lsocket -lnsl -ldl

Parent topic: Building WebSphere MQ C++ programs

This build: January 26, 2011 11:58:21

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc12490_

14.7. Windows

 Build WebSphere MQ C++ programs on Windows using the Microsoft Visual Studio C++ compiler.

Library (.lib) files and dll files for use with 32-bit applications are installed in install_location/Tools/Lib,

files for use with 64-bit applications are installed in install_location/Tools/Lib64.

Client

cl -MD imqsput.cpp /Feimqsputc.exe imqb23vn.lib imqc23vn.lib

Server

 cl -MD imqsput.cpp /Feimqsput.exe imqb23vn.lib imqs23vn.lib

Parent topic: Building WebSphere MQ C++ programs

This build: January 26, 2011 11:58:21

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc12520_

14.8. z/OS Batch, RRS Batch and CICS

Build WebSphere MQ C++ programs on z/OS for the Batch, RRS batch or CICS environments and run the

sample programs.

You can write C++ programs for three of the environments that WebSphere® MQ for z/OS® supports:

� Batch

� RRS batch

� CICS®

Page 149 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

Compile, prelink and link

Create an z/OS application by compiling, pre-linking, and link-editing your C++ source code.

WebSphere MQ C++ for z/OS is implemented as z/OS DLLs for the IBM® C++ for z/OS language. Using DLLs,

you concatenate the supplied definition sidedecks with the compiler output at pre-link time. This allows the

linker to check your calls to the WebSphere MQ C++ member functions.

Note: There are three sets of sidedecks for each of the three environments.

To build a WebSphere MQ for z/OS C++ application, create and run JCL. Use the following procedure:

1. If your application runs under CICS, use the CICS-supplied procedure to translate CICS commands in your

program.

In addition, for CICS applications you need to:

a. Add the SCSQLOAD library to the DFHRPL concatenation.

b. Define the CSQCAT1 CEDA group using the member IMQ4B100 in the SCSQPROC library.

c. Install CSQCAT1.

2. Compile the program to produce object code. The JCL for your compilation must include statements that

make the product data definition files available to the compiler. The data definitions are supplied in the
following WebSphere MQ for z/OS libraries:

� thlqual.SCSQC370

� thlqual.SCSQHPPS

Be sure to specify the /cxx compiler option.

Note: The name thlqual is the high level qualifier of the WebSphere MQ installation library on z/OS.

3. Pre-link the object code created in step 2, including the following definition sidedecks, which are supplied

in thlqual.SCSQDEFS:

a. imqs23dm and imqb23dm for batch

b. imqs23dr and imqb23dr for RRS batch

c. imqs23dc and imqb23dc for CICS

These are the corresponding DLLs.

a. imqs23im and imqb23im for batch

b. imqs23ir and imqb23ir for RRS batch

c. imqs23ic and imqb23ic for CICS

4. Link-edit the object code created in step 3, to produce a load module, and store it in your application load

library.

To run batch or RRS batch programs, include the libraries thlqual.SCSQAUTH and thlqual.SCSQLOAD in the
STEPLIB or JOBLIB data set concatenation.

To run a CICS program, first get your system administrator to define it to CICS as a WebSphere MQ program

and transaction. You can then run it in the usual way.

Run the sample programs

The programs are described in Sample programs.

The sample applications are supplied in source form only. The files are:

To run the samples, compile and link-edit them as with any C++ program (see z/OS Batch, RRS Batch and

CICS). Use the supplied JCL to construct and run a batch job. You must initially customize the JCL, by following

the commentary included with it.

Table 1. z/OS sample program files

Sample Source program (in library
thlqual.SCSQCPPS)

JCL (in library
thlqual.SCSQPROC)

HELLO WORLD imqwrld imqwrldr

SPUT imqsput imqsputr

SGET imqsget imqsgetr

Page 150 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

Parent topic: Building WebSphere MQ C++ programs

This build: January 26, 2011 11:58:21

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc12570_

14.9. z/OS® UNIX System Services

Build WebSphere MQ C++ programs on z/OS for Unix System Services.

To build an application under the UNIX System Services shell, you must give the compiler access to the

WebSphere® MQ include files (located in thlqual.SCSQC370 and hlqual.SCSQHPPS), and link against two of

the DLL sidedecks (located in thlqual.SCSQDEFS). At runtime, the application needs access to the WebSphere

MQ data sets thlqual.SCSQLOAD, thlqual.SCSQAUTH, and one of the language specific data sets, such as

thlqual.SCSQANLE1.

Compiling

1. Copy the sample into the HFS using the TSO oput command, or use FTP. The rest of this example

assumes that you have copied the sample into a directory called /u/fred/sample, and named it

imqwrld.cpp.

2. Log into the UNIX System Services shell, and change to the directory where you placed the sample.

3. Set up the C++ compiler so that it can accept the DLL sidedeck and .cpp files as input:

/u/fred/sample:> export _CXX_EXTRA_ARGS=1

/u/fred/sample:> export _CXX_CXXSUFFIX="cpp"

4. Compile and link the sample program. The following command links the program with the batch

sidedecks; the RRS batch sidedecks can be used instead. The \ character is used to split the command

over more than one line. Do not enter this character; enter the command as a single line:

/u/fred/sample:> c++ -o imqwrld -I "//'thlqual.SCSQC370'" \

-I "//'thlqual.SCSQHPPS'" imqwrld.cpp \

"//'thlqual.SCSQDEFS(IMQS23DM)'" "//'thlqual.SCSQDEFS(IMQB23DM)'"

For more information on the TSO oput command, refer to the z/OS UNIX System Services Command
Reference.

You can also use the make utility to simplify building C++ programs. Here is a sample makefile to build the

HELLO WORLD C++ sample program. It separates the compile and link stages. Set up the environment as in

step 3 above before running make.

flags = -I "//'thlqual.SCSQC370'" -I "//'thlqual.SCSQHPPS'"

decks = "//'thlqual.SCSQDEFS(IMQS23DM)'" "//'thlqual.SCSQDEFS(IMQB23DM)'"

imqwrld: imqwrld.o

 c++ -o imqwrld imqwrld.o $(decks)

imqwrld.o: imqwrld.cpp

 c++ -c -o imqwrld $(flags) imqwrld.cpp

Refer to z/OS UNIX System Services Programming Tools for more information on using make.

Running

1. Log into the UNIX System Services shell, and change to the directory where you built the sample.

2. Set up the STEPLIB environment variable to include the WebSphere MQ data sets:

/u/fred/sample:> export STEPLIB=$STEPLIB:thlqual.SCSQLOAD

/u/fred/sample:> export STEPLIB=$STEPLIB:thlqual.SCSQAUTH

/u/fred/sample:> export STEPLIB=$STEPLIB:thlqual.SCSQANLE

3. Run the sample:

/u/fred/sample:> ./imqwrld

Parent topic: Building WebSphere MQ C++ programs

Page 151 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

1 You can link with any of the sidedecks listed in "Pre-link the object code" to run your UNIX system service in

any of the three environments, z/OS Batch, RRS Batch and CICS

This build: January 26, 2011 11:58:22

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc12590_

15. MQI cross reference

This appendix contains information relating C++ to the MQI; read it together with the WebSphere MQ

Application Programming Reference.

The information covers:

� Data structure, class, and include-file cross reference

� C++ class attribute cross reference

Data structure, class, and include-file cross reference

C++ class attribute cross reference
The topics in this section contain cross-reference information for each C++ class. These cross references

relate to the use of the underlying WebSphere MQ procedural interfaces.

Parent topic: Using C++

This build: January 26, 2011 11:58:22

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc12620_

15.1. Data structure, class, and include-file cross reference

Table 1. Data structure, class, and include-file cross reference

Data structure Class Include file

MQAIR ImqAuthenticationRecord imqair.hpp

 ImqBinary imqbin.hpp

 ImqCache imqcac.hpp

MQCD ImqChannel imqchl.hpp

MQCIH ImqCICSBridgeHeader imqcih.hpp

MQDLH ImqDeadLetterHeader imqdlh.hpp

MQOR ImqDistributionList imqdst.hpp

 ImqError imqerr.hpp

MQGMO ImqGetMessageOptions imqgmo.hpp

 ImqHeader imqhdr.hpp

MQIIH ImqIMSBridgeHeader imqiih.hpp

 ImqItem imqitm.hpp

MQMD ImqMessage imqmsg.hpp

 ImqMessageTracker imqmtr.hpp

 ImqNamelist imqnml.hpp

MQOD, MQRR ImqObject imqobj.hpp

MQPMO, MQPMR, MQRR ImqPutMessageOptions imqpmo.hpp

 ImqProcess imqpro.hpp

 ImqQueue imqque.hpp

MQBO, MQCNO, MQCSP ImqQueueManager imqmgr.hpp

Page 152 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

Parent topic: MQI cross reference

This build: January 26, 2011 11:58:22

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc12630_

15.2. C++ class attribute cross reference

The topics in this section contain cross-reference information for each C++ class. These cross references

relate to the use of the underlying WebSphere® MQ procedural interfaces.

 Read this together with the WebSphere MQ Application Programming Reference. The classes ImqBinary,

ImqDistributionList, and ImqString have no attributes that fall into this category and are excluded.

ImqAuthenticationRecord

ImqCache

ImqChannel

ImqCICSBridgeHeader

ImqDeadLetterHeader

ImqError

ImqGetMessageOptions

ImqHeader

ImqIMSBridgeHeader

ImqItem

ImqMessage

ImqMessageTracker

ImqNamelist

ImqObject

ImqProcess

ImqPutMessageOptions

ImqQueue

ImqQueueManager

MQRMH ImqReferenceHeader imqrfh.hpp

 ImqString imqstr.hpp

MQTM ImqTrigger imqtrg.hpp

MQTMC

MQTMC2 ImqTrigger imqtrg.hpp

MQXQH

MQWIH ImqWorkHeader imqwih.hpp

Page 153 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

ImqReferenceHeader

ImqTrigger

ImqWorkHeader

Notices

Parent topic: MQI cross reference

This build: January 26, 2011 11:58:22

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc12640_

15.2.1. ImqAuthenticationRecord

Parent topic: C++ class attribute cross reference

This build: January 26, 2011 11:58:22

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc12650_

15.2.2. ImqCache

Parent topic: C++ class attribute cross reference

This build: January 26, 2011 11:58:22

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc12660_

Table 1. ImqAuthenticationRecord cross reference

Attribute Data
structure

Field Call

connection name MQAIR AuthInfoConnName MQCONNX

password MQAIR LDAPPassword MQCONNX

type MQAIR AuthInfoType MQCONNX

user name MQAIR LDAPUserNamePtr MQCONNX

 MQAIR LDAPUserNameOffset MQCONNX

 MQAIR LDAPUserNameLength MQCONNX

Table 1. ImqCache cross reference

Attribute Call

automatic buffer MQGET

buffer length MQGET

buffer pointer MQGET, MQPUT

data length MQGET

data offset MQGET

data pointer MQGET

message length MQGET, MQPUT

Page 154 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

15.2.3. ImqChannel

Parent topic: C++ class attribute cross reference

This build: January 26, 2011 11:58:22

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc12670_

15.2.4. ImqCICSBridgeHeader

Table 1. ImqChannel cross reference

Attribute Data
structure

Field Call

batch heart-beat MQCD BatchHeartbeat MQCONNX

channel name MQCD ChannelName MQCONNX

connection name MQCD ConnectionName MQCONNX

 MQCD ShortConnectionName MQCONNX

header compression MQCD HdrCompList MQCONNX

heart-beat interval MQCD HeartbeatInterval MQCONNX

keep alive interval MQCD KeepAliveInterval MQCONNX

local address MQCD LocalAddress MQCONNX

maximum message length MQCD MaxMsgLength MQCONNX

message compression MQCD MsgCompList MQCONNX

mode name MQCD ModeName MQCONNX

password MQCD Password MQCONNX

receive exit count MQCD MQCONNX

receive exit names MQCD ReceiveExit MQCONNX

 MQCD ReceiveExitsDefined MQCONNX

 MQCD ReceiveExitPtr MQCONNX

receive user data MQCD ReceiveUserData MQCONNX

 MQCD ReceiveUserDataPtr MQCONNX

security exit name MQCD SecurityExit MQCONNX

security user data MQCD SecurityUserData MQCONNX

send exit count MQCD MQCONNX

send exit names MQCD SendExit MQCONNX

 MQCD SendExitsDefined MQCONNX

 MQCD SendExitPtr MQCONNX

send user data MQCD SendUserData MQCONNX

 MQCD SendUserDataPtr MQCONNX

SSL CipherSpec MQCD sslCipherSpecification MQCONNX

SSL client authentication type MQCD sslClientAuthentication MQCONNX

SSL peer name MQCD sslPeerName MQCONNX

transaction program name MQCD TpName MQCONNX

transport type MQCD TransportType MQCONNX

user id MQCD UserIdentifier MQCONNX

Table 1. ImqCICSBridgeHeader cross reference

Attribute Data
structure

Field

bridge abend code MQCIH AbendCode

ADS descriptor MQCIH AdsDescriptor

attention identifier MQCIH AttentionId

Page 155 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

Parent topic: C++ class attribute cross reference

This build: January 26, 2011 11:58:23

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc12680_

15.2.5. ImqDeadLetterHeader

Parent topic: C++ class attribute cross reference

This build: January 26, 2011 11:58:23

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc12690_

15.2.6. ImqError

authenticator MQCIH Authenticator

bridge completion code MQCIH BridgeCompletionCode

bridge error offset MQCIH ErrorOffset

bridge reason code MQCIH BridgeReason

bridge cancel code MQCIH CancelCode

conversational task MQCIH ConversationalTask

cursor position MQCIH CursorPosition

facility token MQCIH Facility

facility keep time MQCIH FacilityKeepTime

facility like MQCIH FacilityLike

function MQCIH Function

get wait interval MQCIH GetWaitInterval

link type MQCIH LinkType

next transaction identifier MQCIH NextTransactionId

output data length MQCIH OutputDataLength

reply-to format MQCIH ReplyToFormat

bridge return code MQCIH ReturnCode

start code MQCIH StartCode

task end status MQCIH TaskEndStatus

transaction identifier MQCIH TransactionId

uow control MQCIH UowControl

version MQCIH Version

Table 1. ImqDeadLetterHeader cross reference

Attribute Data
structure

Field

dead-letter reason code MQDLH Reason

destination queue manager name MQDLH DestQMgrName

destination queue name MQDLH DestQName

put application name MQDLH PutApplName

put application type MQDLH PutApplType

put date MQDLH PutDate

put time MQDLH PutTime

Table 1. ImqError cross reference

Page 156 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

Parent topic: C++ class attribute cross reference

This build: January 26, 2011 11:58:23

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc12700_

15.2.7. ImqGetMessageOptions

Parent topic: C++ class attribute cross reference

This build: January 26, 2011 11:58:23

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc12710_

15.2.8. ImqHeader

Parent topic: C++ class attribute cross reference

This build: January 26, 2011 11:58:23

Notices | Trademarks | Downloads | Library | Support | Feedback

Attribute Call

completion code MQBACK, MQBEGIN, MQCLOSE, MQCMIT, MQCONN,
MQCONNX, MQDISC, MQGET, MQINQ, MQOPEN, MQPUT,

MQSET

reason code MQBACK, MQBEGIN, MQCLOSE, MQCMIT, MQCONN,
MQCONNX, MQDISC, MQGET, MQINQ, MQOPEN, MQPUT,

MQSET

Table 1. ImqGetMessageOptions cross reference

Attribute Data
structure

Field

group status MQGMO GroupStatus

match options MQGMO MatchOptions

message token MQGMO MessageToken

options MQGMO Options

resolved queue name MQGMO ResolvedQName

returned length MQGMO ReturnedLength

segmentation MQGMO Segmentation

segment status MQGMO SegmentStatus

 MQGMO Signal1

 MQGMO Signal2

syncpoint participation MQGMO Options

wait interval MQGMO WaitInterval

Table 1. ImqHeader cross reference

Attribute Data
structure

Field

character set MQDLH, MQIIH CodedCharSetId

encoding MQDLH, MQIIH Encoding

format MQDLH, MQIIH Format

header flags MQIIH, MQRMH Flags

Page 157 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc12720_

15.2.9. ImqIMSBridgeHeader

Parent topic: C++ class attribute cross reference

This build: January 26, 2011 11:58:23

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc12730_

15.2.10. ImqItem

Parent topic: C++ class attribute cross reference

This build: January 26, 2011 11:58:23

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc12740_

15.2.11. ImqMessage

Table 1. ImqIMSBridgeHeader cross reference

Attribute Data
structure

Field

authenticator MQIIH Authenticator

commit mode MQIIH CommitMode

logical terminal override MQIIH LTermOverride

message format services map name MQIIH MFSMapName

reply-to format MQIIH ReplyToFormat

security scope MQIIH SecurityScope

transaction instance id MQIIH TranInstanceId

transaction state MQIIH TranState

Table 1. ImqItem cross reference

Attribute Call

structure id MQGET

Table 1. ImqMessage cross reference

Attribute Data
structure

Field Call

application id data MQMD ApplIdentityData

application origin data MQMD ApplOriginData

backout count MQMD BackoutCount

character set MQMD CodedCharSetId

encoding MQMD Encoding

expiry MQMD Expiry

format MQMD Format

message flags MQMD MsgFlags

message type MQMD MsgType

offset MQMD Offset

original length MQMD OriginalLength

Page 158 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

Parent topic: C++ class attribute cross reference

This build: January 26, 2011 11:58:23

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc12750_

15.2.12. ImqMessageTracker

Parent topic: C++ class attribute cross reference

This build: January 26, 2011 11:58:23

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc12760_

15.2.13. ImqNamelist

Parent topic: C++ class attribute cross reference

This build: January 26, 2011 11:58:23

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc12770_

15.2.14. ImqObject

persistence MQMD Persistence

priority MQMD Priority

put application name MQMD PutApplName

put application type MQMD PutApplType

put date MQMD PutDate

put time MQMD PutTime

reply-to queue manager name MQMD ReplyToQMgr

reply-to queue name MQMD ReplyToQ

report MQMD Report

sequence number MQMD MsgSeqNumber

total message length DataLength MQGET

user id MQMD UserIdentifier

Table 1. ImqMessageTracker cross reference

Attribute Data
structure

Field

accounting token MQMD AccountingToken

correlation id MQMD CorrelId

feedback MQMD Feedback

group id MQMD GroupId

message id MQMD MsgId

Table 1. ImqNamelist cross reference

Attribute Inquiry Call

name count MQIA_NAME_COUNT MQINQ

namelist name MQCA_NAMELIST_NAME MQINQ

Page 159 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

Parent topic: C++ class attribute cross reference

This build: January 26, 2011 11:58:23

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc12780_

15.2.15. ImqProcess

Parent topic: C++ class attribute cross reference

This build: January 26, 2011 11:58:23

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc12790_

15.2.16. ImqPutMessageOptions

Table 1. ImqObject cross reference

Attribute Data
structure

Field Inquiry Call

alteration date MQCA_ALTERATION_DATE MQINQ

alteration time MQCA_ALTERATION_TIME MQINQ

alternate user id MQOD AlternateUserId

alternate

security id

close options MQCLOSE

description MQCA_Q_DESC,

MQCA_Q_MGR_DESC,
MQCA_PROCESS_DESC

MQINQ

name MQOD ObjectName MQCA_Q_MGR_NAME,

MQCQ_Q_NAME,
MQCA_PROCESS_NAME

MQINQ

open options MQOPEN

open status MQOPEN,
MQCLOSE

queue manager

identifier

queue

manager
identifier

 MQCA_Q_MGR_IDENTIFIER MQINQ

Table 1. ImqProcess cross reference

Attribute Inquiry Call

application id MQCA_APPL_ID MQINQ

application type MQIA_APPL_TYPE MQINQ

environment data MQCA_ENV_DATA MQINQ

user data MQCA_USER_DATA MQINQ

Table 1. ImqPutMessageOptions cross reference

Attribute Data
structure

Field

context reference MQPMO Context

 MQPMO InvalidDestCount

 MQPMO KnownDestCount

options MQPMO Options

record fields MQPMO PutMsgRecFields

Page 160 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

Parent topic: C++ class attribute cross reference

This build: January 26, 2011 11:58:23

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc12800_

15.2.17. ImqQueue

resolved queue manager name MQPMO ResolvedQMgrName

resolved queue name MQPMO ResolvedQName

 MQPMO Timeout

 MQPMO UnknownDestCount

syncpoint participation MQPMO Options

Table 1. ImqQueue cross reference

Attribute Data
structure

Field Inquiry Call

backout

requeue
name

 MQCA_BACKOUT_REQ_Q_NAME MQINQ

backout

threshold

 MQIA_BACKOUT_THRESHOLD MQINQ

base queue
name

 MQCA_BASE_Q_NAME MQINQ

cluster
name

 MQCA_CLUSTER_NAME MQINQ

cluster

namelist
name

 MQCA_CLUSTER_NAMELIST MQINQ

cluster

workload
rank

 MQIA_CLWL_Q_RANK MQINQ

cluster

workload
priority

 MQIA_CLWL_Q_PRIORITY MQINQ

cluster
workload

use queue

 MQIA_CLWL_USEQ MQINQ

creation
date

 MQCA_CREATION_DATE MQINQ

creation

time

 MQCA_CREATION_TIME MQINQ

current

depth

 MQIA_CURRENT_Q_DEPTH MQINQ

default bind MQIA_DEF_BIND MQINQ

default input
open option

 MQIA_DEF_INPUT_OPEN_OPTION MQINQ

default

persistence

 MQIA_DEF_PERSISTENCE MQINQ

default

priority

 MQIA_DEF_PRIORITY MQINQ

definition
type

 MQIA_DEFINITION_TYPE MQINQ

depth high

event

 MQIA_Q_DEPTH_HIGH_EVENT MQINQ

depth high
limit

 MQIA_Q_DEPTH_HIGH_LIMIT MQINQ

depth low MQIA_Q_DEPTH_LOW_EVENT MQINQ

Page 161 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

event

depth low

limit

 MQIA_Q_DEPTH_LOW_LIMIT MQINQ

depth
maximum

event

 MQIA_Q_DEPTH_MAX_LIMIT MQINQ

distribution

lists

 MQIA_DIST_LISTS MQINQ,

MQSET

dynamic
queue name

MQOD DynamicQName

harden get

backout

 MQIA_HARDEN_GET_BACKOUT MQINQ

index type MQIA_INDEX_TYPE MQINQ

inhibit get MQIA_INHIBIT_GET MQINQ,

MQSET

inhibit put MQIA_INHIBIT_PUT MQINQ,
MQSET

initiation

queue name

 MQCA_INITIATION_Q_NAME MQINQ

maximum

depth

 MQIA_MAX_Q_DEPTH MQINQ

maximum
message

length

 MQIA_MAX_MSG_LENGTH MQINQ

message
delivery

sequence

 MQIA_MSG_DELIVERY_SEQUENCE MQINQ

next
distributed

queue

non

persistent
message

class

 MQIA_NPM_CLASS MQINQ

open input
count

 MQIA_OPEN_INPUT_COUNT MQINQ

open output

count

 MQIA_OPEN_OUTPUT_COUNT MQINQ

previous
distributed

queue

process

name

 MQCA_PROCESS_NAME MQINQ

queue
accounting

 MQIA_ACCOUNTING_Q MQINQ

queue

manager
name

MQOD ObjectQMgrName

queue

monitoring

 MQIA_MONITORING_Q MQINQ

queue

statistics

 MQIA_STATISTICS_Q MQINQ

queue type MQIA_Q_TYPE MQINQ

remote
queue

manager
name

 MQCA_REMOTE_Q_MGR_NAME MQINQ

remote
queue name

 MQCA_REMOTE_Q_NAME MQINQ

resolved

queue
manager

MQOD ResolvedQMgrName

Page 162 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

Parent topic: C++ class attribute cross reference

This build: January 26, 2011 11:58:24

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc12810_

15.2.18. ImqQueueManager

name

resolved

queue name

MQOD ResolvedQName

retention
interval

 MQIA_RETENTION_INTERVAL MQINQ

scope MQIA_SCOPE MQINQ

service
interval

 MQIA_Q_SERVICE_INTERVAL MQINQ

service

interval
event

 MQIA_Q_SERVICE_INTERVAL_EVENT MQINQ

shareability MQIA_SHAREABILITY MQINQ

storage
class

 MQCA_STORAGE_CLASS MQINQ

transmission

queue name

 MQCA_XMIT_Q_NAME MQINQ

trigger
control

 MQIA_TRIGGER_CONTROL MQINQ,
MQSET

trigger data MQCA_TRIGGER_DATA MQINQ,
MQSET

trigger

depth

 MQIA_TRIGGER_DEPTH MQINQ,

MQSET

trigger
message

priority

 MQIA_TRIGGER_MSG_PRIORITY MQINQ,
MQSET

trigger type MQIA_TRIGGER_TYPE MQINQ,
MQSET

usage MQIA_USAGE MQINQ

Table 1. ImqQueueManager cross reference

Attribute Data
structure

Field Inquiry Call

accounting

connections
override

 MQIA_ACCOUNTING_CONN_OVERRIDE MQINQ

accounting

interval

 MQIA_ACCOUNTING_INTERVAL MQINQ

activity
recording

 MQIA_ACTIVITY_RECORDING MQINQ

adopt new

mca check

 MQIA_ADOPTNEWMCA_CHECK MQINQ

adopt new

mca type

 MQIA_ADOPTNEWMCA_TYPE MQINQ

authentication
type

MQCSP AuthenticationType MQCONNX

authority

event

 MQIA_AUTHORITY_EVENT MQINQ

begin options MQBO Options MQBEGIN

bridge event MQIA_BRIDGE_EVENT MQINQ

Page 163 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

channel auto

definition

 MQIA_CHANNEL_AUTO_DEF MQINQ

channel auto
definition

event

 MQIA_CHANNEL_AUTO_EVENT MQIA

channel auto
definition exit

 MQIA_CHANNEL_AUTO_EXIT MQIA

channel event MQIA_CHANNEL_EVENT MQINQ

channel
initiator

adapters

 MQIA_CHINIT_ADAPTERS MQINQ

channel
initiator

control

 MQIA_CHINIT_CONTROL MQINQ

channel

initiator
dispatchers

 MQIA_CHINIT_DISPATCHERS MQINQ

channel

initiator trace
auto start

 MQIA_CHINIT_TRACE_AUTO_START MQINQ

channel

initiator trace
table size

 MQIA_CHINIT_TRACE_TABLE_SIZE MQINQ

channel

monitoring

 MQIA_MONITORING_CHANNEL MQINQ

channel

reference

MQCD ChannelType MQCONNX

channel
statistics

 MQIA_STATISTICS_CHANNEL MQINQ

character set MQIA_CODED_CHAR_SET_ID MQINQ

cluster sender

monitoring

 MQIA_MONITORING_AUTO_CLUSSDR MQINQ

cluster sender

statistics

 MQIA_STATISTICS_AUTO_CLUSSDR MQINQ

cluster
workload data

 MQCA_CLUSTER_WORKLOAD_DATA MQINQ

cluster

workload exit

 MQCA_CLUSTER_WORKLOAD_EXIT MQINQ

cluster
workload

length

 MQIA_CLUSTER_WORKLOAD_LENGTH MQINQ

cluster

workload mru

 MQIA_CLWL_MRU_CHANNELS MQINQ

cluster
workload use

queue

 MQIA_CLWL_USEQ MQINQ

command
event

 MQIA_COMMAND_EVENT MQINQ

command

input queue
name

 MQCA_COMMAND_INPUT_Q_NAME MQINQ

command
level

 MQIA_COMMAND_LEVEL MQINQ

command

server control

 MQIA_CMD_SERVER_CONTROL MQINQ

connect
options

MQCNO Options MQCONN,
MQCONNX

connection id MQCNO ConnectionId MQCONNX

connection
status

 MQCONN,
MQCONNX,

MQDISC

connection MQCD ConnTag MQCONNX

Page 164 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

tag

cryptographic

hardware

MQSCO CryptoHardware MQCONNX

dead-letter
queue name

 MQCA_DEAD_LETTER_Q_NAME MQINQ

default
transmission

queue name

 MQCA_DEF_XMIT_Q_NAME MQINQ

distribution
lists

 MQIA_DIST_LISTS MQINQ

dns group MQCA_DNS_GROUP MQINQ

dns wlm MQIA_DNS_WLM MQINQ

first
authentication

record

MQSCO AuthInfoRecOffset MQCONNX

 MQSCO AuthInfoRecPtr MQCONNX

inhibit event MQIA_INHIBIT_EVENT MQINQ

ip address

version

 MQIA_IP_ADDRESS_VERSION MQINQ

key
repository

MQSCO KeyRepository MQCONNX

key reset

count

MQSCO KeyResetCount MQCONNX

listener timer MQIA_LISTENER_TIMER MQINQ

local event MQIA_LOCAL_EVENT MQINQ

logger event MQIA_LOGGER_EVENT MQINQ

lu group

name

 MQCA_LU_GROUP_NAME MQINQ

lu name MQCA_LU_NAME MQINQ

lu62 arm

suffix

 MQCA_LU62_ARM_SUFFIX MQINQ

lu62 channels MQIA_LU62_CHANNELS MQINQ

maximum
active

channels

 MQIA_ACTIVE_CHANNELS MQINQ

maximum

channels

 MQIA_MAX_CHANNELS MQINQ

maximum
handles

 MQIA_MAX_HANDLES MQINQ

maximum

message
length

 MQIA_MAX_MSG_LENGTH MQINQ

maximum

priority

 MQIA_MAX_PRIORITY MQINQ

maximum

uncommitted
messages

 MQIA_MAX_UNCOMMITTED_MSGS MQINQ

mqi

accounting

 MQIA_ACCOUNTING_MQI MQINQ

mqi statistics MQIA_STATISTICS_MQI MQINQ

outbound port
maximum

 MQIA_OUTBOUND_PORT_MAX MQINQ

outbound port
minimum

 MQIA_OUTBOUND_PORT_MIN MQINQ

password MQCSP CSPPasswordPtr MQCONNX

MQCSP CSPPasswordOffset MQCONNX

MQCSP CSPPasswordLength MQCONNX

performance
event

 MQIA_PERFORMANCE_EVENT MQINQ

Page 165 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

Parent topic: C++ class attribute cross reference

This build: January 26, 2011 11:58:25

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc12820_

15.2.19. ImqReferenceHeader

platform MQIA_PLATFORM MQINQ

queue

accounting

 MQIA_ACCOUNTING_Q MQINQ

queue
monitoring

 MQIA_MONITORING_Q MQINQ

queue
statistics

 MQIA_STATISTICS_Q MQINQ

receive

timeout

 MQIA_RECEIVE_TIMEOUT MQINQ

receive
timeout

minimum

 MQIA_RECEIVE_TIMEOUT_MIN MQINQ

receive

timeout type

 MQIA_RECEIVE_TIMEOUT_TYPE MQINQ

remote event MQIA_REMOTE_EVENT MQINQ

repository
name

 MQCA_REPOSITORY_NAME MQINQ

repository

namelist

 MQCA_REPOSITORY_NAMELIST MQINQ

shared queue

queue
manager

name

 MQIA_SHARED_Q_Q_MGR_NAME MQINQ

ssl event MQIA_SSL_EVENT MQINQ

ssl fips MQIA_SSL_FIPS_REQUIRED MQINQ

ssl key reset
count

 MQIA_SSL_RESET_COUNT MQINQ

start-stop
event

 MQIA_START_STOP_EVENT MQINQ

statistics

interval

 MQIA_STATISTICS_INTERVAL MQINQ

syncpoint
availability

 MQIA_SYNCPOINT MQINQ

tcp channels MQIA_TCP_CHANNELS MQINQ

tcp keep alive MQIA_TCP_KEEP_ALIVE MQINQ

tcp name MQCA_TCP_NAME MQINQ

tcp stack type MQIA_TCP_STACK_TYPE MQINQ

trace route

recording

 MQIA_TRACE_ROUTE_RECORDING MQINQ

trigger
interval

 MQIA_TRIGGER_INTERVAL MQINQ

user id MQCSP CSPUserIdPtr MQCONNX

MQCSP CSPUserIdOffset MQCONNX

MQCSP CSPUserIdLength MQCONNX

Table 1. ImqReferenceHeader

Attribute Data Field

Page 166 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

Parent topic: C++ class attribute cross reference

This build: January 26, 2011 11:58:25

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc12830_

15.2.20. ImqTrigger

Parent topic: C++ class attribute cross reference

This build: January 26, 2011 11:58:25

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc12840_

15.2.21. ImqWorkHeader

Parent topic: C++ class attribute cross reference

This build: January 26, 2011 11:58:25

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

uc12850_

structure

destination environment MQRMH DestEnvLength, DestEnvOffset

destination name MQRMH DestNameLength, DestNameOffset

instance id MQRMH ObjectInstanceId

logical length MQRMH DataLogicalLength

logical offset MQRMH DataLogicalOffset

logical offset 2 MQRMH DataLogicalOffset2

reference type MQRMH ObjectType

source environment MQRMH SrcEnvLength, SrcEnvOffset

source name MQRMH SrcNameLength, SrcNameOffset

Table 1. ImqTrigger cross reference

Attribute Data
structure

Field

application id MQTM ApplId

application type MQTM ApplType

environment data MQTM EnvData

process name MQTM ProcessName

queue name MQTM QName

trigger data MQTM TriggerData

user data MQTM UserData

Table 1. ImqWorkHeader cross reference

Attribute Data
structure

Field

message token MQWIH MessageToken

service name MQWIH ServiceName

service step MQWIH ServiceStep

Page 167 of 167Using C++

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.amqzan.doc/uc101...

