
Application Programming Reference

Contents

1. Data type descriptions

1.1. Introduction
1.1.1. Elementary data types

1.1.1.1. MQBOOL - boolean
1.1.1.2. MQBYTE - byte
1.1.1.3. MQBYTEn - string of n bytes
1.1.1.4. MQCHAR - character

1.1.1.5. MQCHARn - string of n characters
1.1.1.6. MQFLOAT32 - 32-but floating point number
1.1.1.7. MQFLOAT64 - 64-bit floating point number
1.1.1.8. MQHCONFIG - configuration handle
1.1.1.9. MQHCONN - connection handle

1.1.1.10. MQHMSG - message handle
1.1.1.11. MQHOBJ - object handle
1.1.1.12. MQINT8 - 8-bit signed integer
1.1.1.13. MQINT16 - 16-bit signed integer
1.1.1.14. MQINT32 - 32-bit signed integer

1.1.1.15. MQINT64 - 64-bit signed integer
1.1.1.16. MQLONG - 32-bit signed integer
1.1.1.17. MQPID - process identifier
1.1.1.18. MQPTR - pointer
1.1.1.19. MQTID - thread identifier

1.1.1.20. MQUINT8 - 8-bit signed integer
1.1.1.21. MQUINT16 - 16-bit signed integer
1.1.1.22. MQUINT32 - 32-bit signed integer
1.1.1.23. MQUINT64 - 64-bit signed integer
1.1.1.24. MQULONG - 32-bit unsigned integer
1.1.1.25. PMQACH - pointer to a data structure of type MQACH

1.1.1.26. PMQAIR - pointer to a data structure of type MQAIR
1.1.1.27. PMQAXC - pointer to a data structure of type MQAXC
1.1.1.28. PMQAXP - pointer to a data structure of type MQAXP
1.1.1.29. PMQBMHO - pointer to a data structure of type MQBMHO
1.1.1.30. PMQBO - pointer to a data structure of type MQBO

1.1.1.31. PMQBOOL - pointer to data of type MQBOOL
1.1.1.32. PMQBYTE - pointer to a data type of MQBYTE
1.1.1.33. PMQBYTEn - pointer to a data type of MQBYTEn
1.1.1.34. PMQCBC - pointer to a data structure of type MQCBC
1.1.1.35. PMQCBD - pointer to a data structure of type MQCBD

1.1.1.36. PMQCHAR - pointer to data of type MQCHAR
1.1.1.37. PMQCHARn - pointer to a data type of MQCHARn
1.1.1.38. PMQCHARV - pointer to a data structure of type MQCHARV
1.1.1.39. PMQCIH - pointer to a data structure of type of MQCIH
1.1.1.40. PMQCMHO - pointer to a data structure of type MQCMHO

1.1.1.41. PMQCNO - pointer to a data structure of type of MQCNO
1.1.1.42. PMQCSP - pointer to a data structure of type MQCSP
1.1.1.43. PMQCTLO - pointer to a data structure of type MQCTLO
1.1.1.44. PMQDH - pointer to a data structure of type MQDH
1.1.1.45. PMQDHO - pointer to a data structure of type MQDHO

1.1.1.46. PMQDLH - pointer to a data structure of type of MQDLH
1.1.1.47. PMQDMHO - pointer to a data structure of type MQDMHO
1.1.1.48. PMQDMPO - pointer to a data structure of type MQDMPO
1.1.1.49. PMQEPH - pointer to a data structure of type MQEPH
1.1.1.50. PMQFLOAT32 - pointer to data of type MQFLOAT32
1.1.1.51. PMQFLOAT64 - pointer to data of type MQFLOAT64

1.1.1.52. PMQFUNC - pointer to a function
1.1.1.53. PMQGMO - pointer to a data structure of type MQGMO
1.1.1.54. PMQHCONFIG - pointer to data of type MQHCONFIG
1.1.1.55. PMQHCONN - pointer to data of type MQHCONN
1.1.1.56. PMQHMSG - pointer to data of type MQHMSG

1.1.1.57. PMQHOBJ - pointer to data of type MQHOBJ
1.1.1.58. PMQIIH - pointer to a data structure of type MQIIH
1.1.1.59. PMQIMPO - pointer to a data structure of type MQIMPO
1.1.1.60. PMQINT8 - pointer to data of type MQINT8
1.1.1.61. PMQINT16 - pointer to data of type MQINT16

1.1.1.62. PMQINT32 - pointer to data of type MQINT32
1.1.1.63. PMQINT64 - pointer to data of type MQINT64
1.1.1.64. PMQLONG – pointer to data of type MQLONG
1.1.1.65. PMQMD – pointer to structure of type MQMD
1.1.1.66. PMQMDE - pointer to a data structure of type MQMDE

1.1.1.67. PMQMD1 - pointer to a data structure of type MQMD1
1.1.1.68. PMQMD2 - pointer to a data structure of type MQMD2
1.1.1.69. PMQMHBO - pointer to a data structure of type MQMHBO
1.1.1.70. PMQOD - pointer to a data structure of type MQOD
1.1.1.71. PMQOR - pointer to a data structure of type MQOR

1.1.1.72. PMQPD - pointer to a data structure of type MQPD
1.1.1.73. PMQPID - pointer to a process identifier
1.1.1.74. PMQMD - pointer to a data structure of type MQMD
1.1.1.75. PMQPMO - pointer to a data structure of type MQPMO
1.1.1.76. PMQPTR - pointer to data of type MQPTR
1.1.1.77. PMQRFH - pointer to a data structure of type MQRFH

1.1.1.78. PMQRFH2 - pointer to a data structure of type MQRFH2
1.1.1.79. PMQRMH - pointer to a data structure of type MQRMH

Page 1 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

1.1.1.80. PMQRR - pointer to a data structure of type MQRR
1.1.1.81. PMQSCO - pointer to a data structure of type MQSCO

1.1.1.82. PMQSD - pointer to a data structure of type MQSD
1.1.1.83. PMQSMPO - pointer to a data structure of type MQSMPO
1.1.1.84. PMQSRO - pointer to a data structure of type MQSRO
1.1.1.85. PMQSTS - pointer to a data structure of type MQSTS
1.1.1.86. PMQTID - pointer to a data structure of type MQTID

1.1.1.87. PMQTM - pointer to a data structure of type MQTM
1.1.1.88. PMQTMC2 - pointer to a data structure of type MQTMC2
1.1.1.89. PMQUINT8 - pointer to data of type MQUINT8
1.1.1.90. PMQUINT16 - pointer to data of type MQUINT16
1.1.1.91. PMQUINT32 - pointer to data of type MQUINT32

1.1.1.92. PMQUINT64 - pointer to data of type MQUINT64
1.1.1.93. PMQULONG – A pointer to data of type MQULONG
1.1.1.94. PMQVOID - pointer
1.1.1.95. PMQWIH - pointer to a data structure of type MQWIH
1.1.1.96. PMQXQH - pointer to a data structure of type MQXQH

1.1.1.97. C declarations
1.1.1.98. COBOL declarations
1.1.1.99. PL/I declarations
1.1.1.100. System/390 assembler declarations

1.1.2. Structure data types – introduction
1.1.2.1. Summary

1.1.2.2. Rules for structure data types
1.1.2.3. Conventions used in the descriptions

1.1.3. C programming
1.1.3.1. Header files
1.1.3.2. Functions

1.1.3.3. Parameters with undefined data type
1.1.3.4. Data types
1.1.3.5. Manipulating binary strings
1.1.3.6. Manipulating character strings
1.1.3.7. Initial values for structures

1.1.3.8. Initial values for dynamic structures
1.1.3.9. Use from C++
1.1.3.10. Notational conventions

1.1.4. COBOL programming
1.1.4.1. COPY files

1.1.4.2. Structures
1.1.4.3. Pointers
1.1.4.4. Named constants
1.1.4.5. Notational conventions

1.1.5. System/390 assembler programming
1.1.5.1. Macros

1.1.5.2. Structures
1.1.5.2.1. Specifying the name of the structure
1.1.5.2.2. Specifying the form of the structure
1.1.5.2.3. Controlling the version of the structure
1.1.5.2.4. Declaring one structure embedded within another

1.1.5.2.5. Specifying initial values for fields
1.1.5.2.6. Controlling the listing

1.1.5.3. CMQVERA macro
1.1.5.4. Notational conventions

1.2. MQAIR – Authentication information record

1.2.1. Overview
1.2.2. Fields

1.2.2.1. AuthInfoConnName (MQCHAR264)
1.2.2.2. AuthInfoType (MQLONG)
1.2.2.3. LDAPPassword (MQCHAR32)

1.2.2.4. LDAPUserNameLength (MQLONG)
1.2.2.5. LDAPUserNameOffset (MQLONG)
1.2.2.6. LDAPUserNamePtr (PMQCHAR)
1.2.2.7. OCSPResponderURL (MQCHAR256)
1.2.2.8. StrucId (MQCHAR4)

1.2.2.9. Version (MQLONG)
1.2.3. Initial values and language declarations

1.2.3.1. C declaration
1.2.3.2. COBOL declaration
1.2.3.3. Visual Basic declaration

1.3. MQBMHO - Buffer to message handle options

1.3.1. Overview
1.3.2. Fields

1.3.2.1. Options (MQLONG)
1.3.2.2. StrucId (MQCHAR4)
1.3.2.3. Version (MQLONG)

1.3.3. Initial values and language declarations
1.3.3.1. C declaration
1.3.3.2. COBOL declaration
1.3.3.3. PL/I declaration
1.3.3.4. System/390 assembler declaration

1.4. MQBO – Begin options
1.4.1. Overview
1.4.2. Fields

1.4.2.1. Options (MQLONG)
1.4.2.2. StrucId (MQCHAR4)

1.4.2.3. Version (MQLONG)
1.4.3. Initial values and language declarations

1.4.3.1. C declaration

Page 2 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

1.4.3.2. COBOL declaration
1.4.3.3. PL/I declaration

1.4.3.4. Visual Basic declaration
1.5. MQCBC - Call back context

1.5.1. Overview
1.5.2. Fields

1.5.2.1. BufferLength (MQLONG)

1.5.2.2. CallbackArea (MQPTR)
1.5.2.3. CallType (MQLONG)
1.5.2.4. CompCode (MQLONG)
1.5.2.5. ConnectionArea (MQPTR)
1.5.2.6. DataLength (MQLONG)

1.5.2.7. Flags (MQLONG)
1.5.2.8. Hobj (MQHOBJ)
1.5.2.9. Reason (MQLONG)
1.5.2.10. State (MQLONG)
1.5.2.11. StrucID (MQCHAR4)

1.5.2.12. Version (MQLONG)
1.5.2.13. ReconnectDelay (MQLONG)

1.5.3. Initial values and language declarations
1.5.3.1. C declaration
1.5.3.2. COBOL declaration
1.5.3.3. PL/I declaration

1.5.3.4. System/390 assembler declaration
1.6. MQCBD - Call back descriptor

1.6.1. Overview
1.6.2. Fields

1.6.2.1. CallbackArea (MQPTR)

1.6.2.2. CallbackFunction (MQPTR)
1.6.2.3. CallbackName (MQCHAR128)
1.6.2.4. CallbackType (MQLONG)
1.6.2.5. MaxMsgLength (MQLONG)
1.6.2.6. Options (MQLONG)

1.6.2.7. StrucID (MQCHAR4)
1.6.2.8. Version (MQLONG)

1.6.3. Initial values and language declarations
1.6.3.1. C declaration
1.6.3.2. COBOL declaration

1.6.3.3. PL/I declaration
1.7. MQCHARV - Variable length string

1.7.1. Overview
1.7.2. Fields

1.7.2.1. VSBufSize (MQLONG)
1.7.2.2. VSCCSID (MQLONG)

1.7.2.3. VSLength (MQLONG)
1.7.2.4. VSOffset (MQLONG)
1.7.2.5. VSPtr (MQPTR)

1.7.3. Initial values and language declarations
1.7.3.1. C declaration

1.7.3.2. COBOL declaration
1.7.3.3. PL/I declaration
1.7.3.4. System/390 assembler declaration

1.7.4. Redefinition of MQCCSI_APPL
1.8. MQCIH – CICS bridge header

1.8.1. Overview
1.8.2. Fields

1.8.2.1. AbendCode (MQCHAR4)
1.8.2.2. ADSDescriptor (MQLONG)
1.8.2.3. AttentionId (MQCHAR4)

1.8.2.4. Authenticator (MQCHAR8)
1.8.2.5. CancelCode (MQCHAR4)
1.8.2.6. CodedCharSetId (MQLONG)
1.8.2.7. CompCode (MQLONG)
1.8.2.8. ConversationalTask (MQLONG)

1.8.2.9. CursorPosition (MQLONG)
1.8.2.10. Encoding (MQLONG)
1.8.2.11. ErrorOffset (MQLONG)
1.8.2.12. Facility (MQBYTE8)
1.8.2.13. FacilityKeepTime (MQLONG)
1.8.2.14. FacilityLike (MQCHAR4)

1.8.2.15. Flags (MQLONG)
1.8.2.16. Format (MQCHAR8)
1.8.2.17. Function (MQCHAR4)
1.8.2.18. GetWaitInterval (MQLONG)
1.8.2.19. InputItem (MQLONG)

1.8.2.20. LinkType (MQLONG)
1.8.2.21. NextTransactionId (MQCHAR4)
1.8.2.22. OutputDataLength (MQLONG)
1.8.2.23. Reason (MQLONG)
1.8.2.24. RemoteSysId (MQCHAR4)

1.8.2.25. RemoteTransId (MQCHAR4)
1.8.2.26. ReplyToFormat (MQCHAR8)
1.8.2.27. Reserved1 (MQCHAR8)
1.8.2.28. Reserved2 (MQCHAR8)
1.8.2.29. Reserved3 (MQCHAR8)

1.8.2.30. Reserved4 (MQLONG)
1.8.2.31. ReturnCode (MQLONG)
1.8.2.32. StartCode (MQCHAR4)

Page 3 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

1.8.2.33. StrucId (MQCHAR4)
1.8.2.34. StrucLength (MQLONG)

1.8.2.35. TaskEndStatus (MQLONG)
1.8.2.36. TransactionId (MQCHAR4)
1.8.2.37. UOWControl (MQLONG)
1.8.2.38. Version (MQLONG)

1.8.3. Initial values and language declarations

1.8.3.1. C declaration
1.8.3.2. COBOL declaration
1.8.3.3. PL/I declaration
1.8.3.4. System/390 assembler declaration
1.8.3.5. Visual Basic declaration

1.9. MQCMHO - Create-message options
1.9.1. Overview
1.9.2. Fields

1.9.2.1. Options (MQLONG)
1.9.2.2. StrucId (MQCHAR4)

1.9.2.3. Version (MQLONG)
1.9.3. Initial values and language declarations

1.9.3.1. C declaration
1.9.3.2. COBOL declaration
1.9.3.3. PL/I declaration
1.9.3.4. System/390 assembler declaration

1.10. MQCNO – Connect options
1.10.1. Overview
1.10.2. Fields

1.10.2.1. ClientConnOffset (MQLONG)
1.10.2.2. ClientConnPtr (MQPTR)

1.10.2.3. ConnectionId (MQBYTE24)
1.10.2.4. ConnTag (MQBYTE128)
1.10.2.5. Options (MQLONG)
1.10.2.6. SecurityParmsOffset (MQLONG)
1.10.2.7. SecurityParmsPtr (PMQCSP)

1.10.2.8. SSLConfigOffset (MQLONG)
1.10.2.9. SSLConfigPtr (PMQSCO)
1.10.2.10. StrucId (MQCHAR4)
1.10.2.11. Version (MQLONG)

1.10.3. Initial values and language declarations

1.10.3.1. C declaration
1.10.3.2. COBOL declaration
1.10.3.3. PL/I declaration
1.10.3.4. System/390 assembler declaration
1.10.3.5. Visual Basic declaration

1.11. MQCSP – Security parameters

1.11.1. Overview
1.11.2. Fields

1.11.2.1. AuthenticationType (MQLONG)
1.11.2.2. CSPPasswordLength (MQLONG)
1.11.2.3. CSPPasswordOffset (MQLONG)

1.11.2.4. CSPPasswordPtr (MQPTR)
1.11.2.5. CSPUserIdLength (MQLONG)
1.11.2.6. CSPUserIdOffset (MQLONG)
1.11.2.7. CSPUserIdPtr (MQPTR)
1.11.2.8. Reserved1 (MQBYTE4)

1.11.2.9. Reserved2 (MQBYTE8)
1.11.2.10. StrucId (MQCHAR4)
1.11.2.11. Version (MQLONG)

1.11.3. Initial values and language declarations
1.11.3.1. C declaration

1.11.3.2. COBOL declaration
1.11.3.3. PL/I declaration
1.11.3.4. Visual Basic declaration

1.12. MQCTLO - Control call back options
1.12.1. Overview

1.12.2. Fields
1.12.2.1. ConnectionArea (MQPTR)
1.12.2.2. Options (MQLONG)
1.12.2.3. Reserved (MQLONG)
1.12.2.4. StrucID (MQCHAR4)
1.12.2.5. Version (MQLONG)

1.12.3. Initial values and language declarations
1.12.3.1. C declaration
1.12.3.2. COBOL declaration
1.12.3.3. PL/I declaration

1.13. MQDH – Distribution header

1.13.1. Overview
1.13.2. Fields

1.13.2.1. CodedCharSetId (MQLONG)
1.13.2.2. Encoding (MQLONG)
1.13.2.3. Flags (MQLONG)

1.13.2.4. Format (MQCHAR8)
1.13.2.5. ObjectRecOffset (MQLONG)
1.13.2.6. PutMsgRecFields (MQLONG)
1.13.2.7. PutMsgRecOffset (MQLONG)
1.13.2.8. RecsPresent (MQLONG)

1.13.2.9. StrucId (MQCHAR4)
1.13.2.10. StrucLength (MQLONG)
1.13.2.11. Version (MQLONG)

Page 4 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

1.13.3. Initial values and language declarations
1.13.3.1. C declaration

1.13.3.2. COBOL declaration
1.13.3.3. PL/I declaration
1.13.3.4. Visual Basic declaration

1.14. MQDLH – Dead-letter header
1.14.1. Overview

1.14.2. Fields
1.14.2.1. CodedCharSetId (MQLONG)
1.14.2.2. DestQMgrName (MQCHAR48)
1.14.2.3. DestQName (MQCHAR48)
1.14.2.4. Encoding (MQLONG)

1.14.2.5. Format (MQCHAR8)
1.14.2.6. PutApplName (MQCHAR28)
1.14.2.7. PutApplType (MQLONG)
1.14.2.8. PutDate (MQCHAR8)
1.14.2.9. PutTime (MQCHAR8)

1.14.2.10. Reason (MQLONG)
1.14.2.11. StrucId (MQCHAR4)
1.14.2.12. Version (MQLONG)

1.14.3. Initial values and language declarations
1.14.3.1. C declaration
1.14.3.2. COBOL declaration

1.14.3.3. PL/I declaration
1.14.3.4. System/390 assembler declaration
1.14.3.5. Visual Basic declaration

1.15. MQDMHO - Delete message handle options
1.15.1. Overview

1.15.2. Fields
1.15.2.1. Options (MQLONG)
1.15.2.2. StrucId (MQCHAR4)
1.15.2.3. Version (MQLONG)

1.15.3. Initial values and language declarations

1.15.3.1. C declaration
1.15.3.2. COBOL declaration
1.15.3.3. PL/I declaration
1.15.3.4. System/390 assembler declaration

1.16. MQDMPO - Delete message property options

1.16.1. Overview
1.16.2. Fields

1.16.2.1. Options (MQLONG)
1.16.2.2. StrucId (MQCHAR4)
1.16.2.3. Version (MQLONG)

1.16.3. Initial values and language declarations

1.16.3.1. C declaration
1.16.3.2. COBOL declaration
1.16.3.3. PL/I declaration
1.16.3.4. System/390 assembler declaration

1.17. MQEPH – Embedded PCF header

1.17.1. Overview
1.17.2. Fields

1.17.2.1. CodedCharSetId (MQLONG)
1.17.2.2. Encoding (MQLONG)
1.17.2.3. Flags (MQLONG)

1.17.2.4. Format (MQCHAR8)
1.17.2.5. PCFHeader (MQCFH)
1.17.2.6. StrucId (MQCHAR4)
1.17.2.7. StrucLength (MQLONG)
1.17.2.8. Version (MQLONG)

1.17.3. Initial values and language declarations
1.17.3.1. C declaration
1.17.3.2. COBOL declaration
1.17.3.3. PL/I declaration
1.17.3.4. System/390 assembler declaration

1.17.3.5. Visual Basic declaration
1.18. MQGMO – Get-message options

1.18.1. Overview
1.18.2. Fields

1.18.2.1. GroupStatus (MQCHAR)
1.18.2.2. MatchOptions (MQLONG)

1.18.2.3. MsgHandle (MQHMSG)
1.18.2.4. MsgToken (MQBYTE16)
1.18.2.5. Options (MQLONG)
1.18.2.6. Reserved1 (MQCHAR)
1.18.2.7. Reserved2 (MQLONG)

1.18.2.8. ResolvedQName (MQCHAR48)
1.18.2.9. ReturnedLength (MQLONG)
1.18.2.10. Segmentation (MQCHAR)
1.18.2.11. SegmentStatus (MQCHAR)
1.18.2.12. Signal1 (MQLONG)

1.18.2.13. Signal2 (MQLONG)
1.18.2.14. StrucId (MQCHAR4)
1.18.2.15. Version (MQLONG)
1.18.2.16. WaitInterval (MQLONG)

1.18.3. Initial values and language declarations

1.18.3.1. C declaration
1.18.3.2. COBOL declaration
1.18.3.3. PL/I declaration

Page 5 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

1.18.3.4. System/390 assembler declaration
1.18.3.5. Visual Basic declaration

1.19. MQIIH – IMS information header
1.19.1. Overview
1.19.2. Fields

1.19.2.1. Authenticator (MQCHAR8)
1.19.2.2. CodedCharSetId (MQLONG)

1.19.2.3. CommitMode (MQCHAR)
1.19.2.4. Encoding (MQLONG)
1.19.2.5. Flags (MQLONG)
1.19.2.6. Format (MQCHAR8)
1.19.2.7. LTermOverride (MQCHAR8)

1.19.2.8. MFSMapName (MQCHAR8)
1.19.2.9. ReplyToFormat (MQCHAR8)
1.19.2.10. Reserved (MQCHAR)
1.19.2.11. SecurityScope (MQCHAR)
1.19.2.12. StrucId (MQCHAR4)

1.19.2.13. StrucLength (MQLONG)
1.19.2.14. TranInstanceId (MQBYTE16)
1.19.2.15. TranState (MQCHAR)
1.19.2.16. Version (MQLONG)

1.19.3. Initial values and language declarations
1.19.3.1. C declaration

1.19.3.2. COBOL declaration
1.19.3.3. PL/I declaration
1.19.3.4. System/390 assembler declaration
1.19.3.5. Visual Basic declaration

1.20. MQIMPO - Inquire message property options

1.20.1. Overview
1.20.2. Fields

1.20.2.1. Options (MQLONG)
1.20.2.2. RequestedCCSID (MQLONG)
1.20.2.3. RequestedEncoding (MQLONG)

1.20.2.4. Reserved1 (MQCHAR)
1.20.2.5. ReturnedCCSID (MQLONG)
1.20.2.6. ReturnedEncoding (MQLONG)
1.20.2.7. ReturnedName (MQCHARV)
1.20.2.8. StrucId (MQCHAR4)

1.20.2.9. TypeString (MQCHAR8)
1.20.2.10. Version (MQLONG)

1.20.3. Initial values and language declarations
1.20.3.1. C declaration
1.20.3.2. COBOL declaration
1.20.3.3. PL/I declaration

1.20.3.4. System/390 assembler declaration
1.21. MQMD – Message descriptor

1.21.1. Overview
1.21.2. Fields

1.21.2.1. AccountingToken (MQBYTE32)

1.21.2.2. ApplIdentityData (MQCHAR32)
1.21.2.3. ApplOriginData (MQCHAR4)
1.21.2.4. BackoutCount (MQLONG)
1.21.2.5. CodedCharSetId (MQLONG)
1.21.2.6. CorrelId (MQBYTE24)

1.21.2.7. Encoding (MQLONG)
1.21.2.8. Expiry (MQLONG)

1.21.2.8.1. Expired messages on z/OS
1.21.2.9. Feedback (MQLONG)
1.21.2.10. Format (MQCHAR8)

1.21.2.11. GroupId (MQBYTE24)
1.21.2.12. MsgFlags (MQLONG)
1.21.2.13. MsgId (MQBYTE24)
1.21.2.14. MsgSeqNumber (MQLONG)
1.21.2.15. MsgType (MQLONG)

1.21.2.16. Offset (MQLONG)
1.21.2.17. OriginalLength (MQLONG)
1.21.2.18. Persistence (MQLONG)
1.21.2.19. Priority (MQLONG)
1.21.2.20. PutApplName (MQCHAR28)
1.21.2.21. PutApplType (MQLONG)

1.21.2.22. PutDate (MQCHAR8)
1.21.2.23. PutTime (MQCHAR8)
1.21.2.24. ReplyToQ (MQCHAR48)
1.21.2.25. ReplyToQMgr (MQCHAR48)
1.21.2.26. Report (MQLONG)

1.21.2.27. StrucId (MQCHAR4)
1.21.2.28. UserIdentifier (MQCHAR12)
1.21.2.29. Version (MQLONG)

1.21.3. Initial values and language declarations
1.21.3.1. C declaration

1.21.3.2. COBOL declaration
1.21.3.3. PL/I declaration
1.21.3.4. System/390 assembler declaration
1.21.3.5. Visual Basic declaration

1.22. MQMDE – Message descriptor extension

1.22.1. Overview
1.22.2. Fields

1.22.2.1. CodedCharSetId (MQLONG)

Page 6 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

1.22.2.2. Encoding (MQLONG)
1.22.2.3. Flags (MQLONG)

1.22.2.4. Format (MQCHAR8)
1.22.2.5. GroupId (MQBYTE24)
1.22.2.6. MsgFlags (MQLONG)
1.22.2.7. MsgSeqNumber (MQLONG)
1.22.2.8. Offset (MQLONG)

1.22.2.9. OriginalLength (MQLONG)
1.22.2.10. StrucId (MQCHAR4)
1.22.2.11. StrucLength (MQLONG)
1.22.2.12. Version (MQLONG)

1.22.3. Initial values and language declarations

1.22.3.1. C declaration
1.22.3.2. COBOL declaration
1.22.3.3. PL/I declaration
1.22.3.4. System/390 assembler declaration
1.22.3.5. Visual Basic declaration

1.23. MQMHBO - Message handle to buffer options
1.23.1. Overview
1.23.2. Fields

1.23.2.1. Options (MQLONG)
1.23.2.2. StrucId (MQCHAR4)
1.23.2.3. Version (MQLONG)

1.23.3. Initial values and language declarations
1.23.3.1. C declaration
1.23.3.2. COBOL declaration
1.23.3.3. PL/I declaration
1.23.3.4. System/390 assembler declaration

1.24. MQOD – Object descriptor
1.24.1. Overview
1.24.2. Fields

1.24.2.1. AlternateSecurityId (MQBYTE40)
1.24.2.2. AlternateUserId (MQCHAR12)

1.24.2.3. DynamicQName (MQCHAR48)
1.24.2.4. InvalidDestCount (MQLONG)
1.24.2.5. KnownDestCount (MQLONG)
1.24.2.6. ObjectName (MQCHAR48)
1.24.2.7. ObjectQMgrName (MQCHAR48)

1.24.2.8. ObjectRecOffset (MQLONG)
1.24.2.9. ObjectRecPtr (MQPTR)
1.24.2.10. ObjectString (MQCHARV)
1.24.2.11. ObjectType (MQLONG)
1.24.2.12. RecsPresent (MQLONG)
1.24.2.13. ResObjectString (MQCHARV)

1.24.2.14. ResolvedQMgrName (MQCHAR48)
1.24.2.15. ResolvedQName (MQCHAR48)
1.24.2.16. ResolvedType (MQLONG)
1.24.2.17. ResponseRecOffset (MQLONG)
1.24.2.18. ResponseRecPtr (MQPTR)

1.24.2.19. SelectionString (MQCHARV)
1.24.2.20. StrucId (MQCHAR4)
1.24.2.21. UnknownDestCount (MQLONG)
1.24.2.22. Version (MQLONG)

1.24.3. Initial values and language declarations

1.24.3.1. C declaration
1.24.3.2. COBOL declaration
1.24.3.3. PL/I declaration
1.24.3.4. System/390 assembler declaration
1.24.3.5. Visual Basic declaration

1.25. MQOR – Object record
1.25.1. Overview
1.25.2. Fields

1.25.2.1. ObjectName (MQCHAR48)
1.25.2.2. ObjectQMgrName (MQCHAR48)

1.25.3. Initial values and language declarations
1.25.3.1. C declaration
1.25.3.2. COBOL declaration
1.25.3.3. PL/I declaration
1.25.3.4. Visual Basic declaration

1.26. MQPD - Property descriptor

1.26.1. Overview
1.26.2. Fields

1.26.2.1. Context (MQLONG)
1.26.2.2. CopyOptions (MQLONG)
1.26.2.3. Options (MQLONG)

1.26.2.4. StrucId (MQCHAR4)
1.26.2.5. Support (MQLONG)
1.26.2.6. Version (MQLONG)

1.26.3. Initial values and language declarations
1.26.3.1. C declaration

1.26.3.2. COBOL declaration
1.26.3.3. PL/I declaration
1.26.3.4. System/390 assembler declaration

1.27. MQPMO – Put-message options
1.27.1. Overview

1.27.2. Fields
1.27.2.1. Action (MQLONG)
1.27.2.2. Context (MQHOBJ)

Page 7 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

1.27.2.3. InvalidDestCount (MQLONG)
1.27.2.4. KnownDestCount (MQLONG)

1.27.2.5. NewMsgHandle (MQLONG)
1.27.2.6. Options (MQLONG)
1.27.2.7. OriginalMsgHandle (MQHMSG)
1.27.2.8. PubLevel (MQLONG)
1.27.2.9. PutMsgRecFields (MQLONG)

1.27.2.10. PutMsgRecOffset (MQLONG)
1.27.2.11. PutMsgRecPtr (MQPTR)
1.27.2.12. RecsPresent (MQLONG)
1.27.2.13. ResolvedQMgrName (MQCHAR48)
1.27.2.14. ResolvedQName (MQCHAR48)

1.27.2.15. ResponseRecOffset (MQLONG)
1.27.2.16. ResponseRecPtr (MQPTR)
1.27.2.17. StrucId (MQCHAR4)
1.27.2.18. Timeout (MQLONG)
1.27.2.19. UnknownDestCount (MQLONG)

1.27.2.20. Version (MQLONG)
1.27.3. Initial values and language declarations

1.27.3.1. C declaration
1.27.3.2. COBOL declaration
1.27.3.3. PL/I declaration
1.27.3.4. System/390 assembler declaration

1.27.3.5. Visual Basic declaration
1.28. MQPMR – Put-message record

1.28.1. Overview
1.28.2. Fields

1.28.2.1. AccountingToken (MQBYTE32)

1.28.2.2. CorrelId (MQBYTE24)
1.28.2.3. Feedback (MQLONG)
1.28.2.4. GroupId (MQBYTE24)
1.28.2.5. MsgId (MQBYTE24)

1.28.3. Initial values and language declarations

1.28.3.1. C declaration
1.28.3.2. COBOL declaration
1.28.3.3. PL/I declaration
1.28.3.4. Visual Basic declaration

1.29. MQRFH – Rules and formatting header

1.29.1. Overview
1.29.2. Fields

1.29.2.1. CodedCharSetId (MQLONG)
1.29.2.2. Encoding (MQLONG)
1.29.2.3. Flags (MQLONG)
1.29.2.4. Format (MQCHAR8)

1.29.2.5. NameValueString (MQCHARn)
1.29.2.6. StrucId (MQCHAR4)
1.29.2.7. StrucLength (MQLONG)
1.29.2.8. Version (MQLONG)

1.29.3. Initial values and language declarations

1.29.3.1. C declaration
1.29.3.2. COBOL declaration
1.29.3.3. PL/I declaration
1.29.3.4. System/390 assembler declaration
1.29.3.5. Visual Basic declaration

1.30. MQRFH2 – Rules and formatting header 2
1.30.1. Overview
1.30.2. Fields

1.30.2.1. CodedCharSetId (MQLONG)
1.30.2.2. Encoding (MQLONG)

1.30.2.3. Flags (MQLONG)
1.30.2.4. Format (MQCHAR8)
1.30.2.5. NameValueCCSID (MQLONG)
1.30.2.6. NameValueData (MQCHARn)
1.30.2.7. NameValueLength (MQLONG)

1.30.2.8. StrucId (MQCHAR4)
1.30.2.9. StrucLength (MQLONG)
1.30.2.10. Version (MQLONG)

1.30.3. Initial values and language declarations
1.30.3.1. C declaration
1.30.3.2. COBOL declaration

1.30.3.3. PL/I declaration
1.30.3.4. System/390 assembler declaration
1.30.3.5. Visual Basic declaration

1.31. MQRMH – Reference message header
1.31.1. Overview

1.31.2. Fields
1.31.2.1. CodedCharSetId (MQLONG)
1.31.2.2. DataLogicalLength (MQLONG)
1.31.2.3. DataLogicalOffset (MQLONG)
1.31.2.4. DataLogicalOffset2 (MQLONG)

1.31.2.5. DestEnvLength (MQLONG)
1.31.2.6. DestEnvOffset (MQLONG)
1.31.2.7. DestNameLength (MQLONG)
1.31.2.8. DestNameOffset (MQLONG)
1.31.2.9. Encoding (MQLONG)

1.31.2.10. Flags (MQLONG)
1.31.2.11. Format (MQCHAR8)
1.31.2.12. ObjectInstanceId (MQBYTE24)

Page 8 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

1.31.2.13. ObjectType (MQCHAR8)
1.31.2.14. SrcEnvLength (MQLONG)

1.31.2.15. SrcEnvOffset (MQLONG)
1.31.2.16. SrcNameLength (MQLONG)
1.31.2.17. SrcNameOffset (MQLONG)
1.31.2.18. StrucId (MQCHAR4)
1.31.2.19. StrucLength (MQLONG)

1.31.2.20. Version (MQLONG)
1.31.3. Initial values and language declarations

1.31.3.1. C declaration
1.31.3.2. COBOL declaration
1.31.3.3. PL/I declaration

1.31.3.4. System/390 assembler declaration
1.31.3.5. Visual Basic declaration

1.32. MQRR – Response record
1.32.1. Overview
1.32.2. Fields

1.32.2.1. CompCode (MQLONG)
1.32.2.2. Reason (MQLONG)

1.32.3. Initial values and language declarations
1.32.3.1. C declaration
1.32.3.2. COBOL declaration
1.32.3.3. PL/I declaration

1.32.3.4. Visual Basic declaration
1.33. MQSCO – SSL configuration options

1.33.1. Overview
1.33.2. Fields

1.33.2.1. AuthInfoRecCount (MQLONG)

1.33.2.2. AuthInfoRecOffset (MQLONG)
1.33.2.3. AuthInfoRecPtr (PMQAIR)
1.33.2.4. CryptoHardware (MQCHAR256)
1.33.2.5. FipsRequired (MQLONG)
1.33.2.6. KeyRepository (MQCHAR256)

1.33.2.7. KeyResetCount (MQLONG)
1.33.2.8. StrucId (MQCHAR4)
1.33.2.9. Version (MQLONG)

1.33.3. Initial values and language declarations
1.33.3.1. C declaration

1.33.3.2. COBOL declaration
1.33.3.3. PL/I declaration
1.33.3.4. Visual Basic declaration

1.34. MQSD - Subscription descriptor
1.34.1. Overview
1.34.2. Fields

1.34.2.1. AlternateSecurityId (MQBYTE40)
1.34.2.2. AlternateUserId (MQCHAR12)
1.34.2.3. ObjectName (MQCHAR48)
1.34.2.4. ObjectString (MQCHARV)
1.34.2.5. Options (MQLONG)

1.34.2.6. PubAccountingToken (MQBYTE32)
1.34.2.7. PubApplIdentityData (MQCHAR32)
1.34.2.8. PubPriority (MQLONG)
1.34.2.9. ResObjectString (MQCHARV)
1.34.2.10. SelectionString (MQCHARV)

1.34.2.11. StrucId (MQCHAR4)
1.34.2.12. SubCorrelId (MQBYTE24)
1.34.2.13. SubExpiry (MQLONG)
1.34.2.14. SubLevel (MQLONG)
1.34.2.15. SubUserData (MQCHARV)

1.34.2.16. SubName (MQCHARV)
1.34.2.17. Version (MQLONG)

1.34.3. Using topic strings
1.34.4. Initial values and language declarations

1.34.4.1. C declaration

1.34.4.2. COBOL declaration
1.34.4.3. PL/I declaration
1.34.4.4. System/390 assembler declaration

1.35. MQSMPO - Set message property options
1.35.1. Overview
1.35.2. Fields

1.35.2.1. Options (MQLONG)
1.35.2.2. StrucId (MQCHAR4)
1.35.2.3. ValueCCSID (MQLONG)
1.35.2.4. ValueEncoding (MQLONG)
1.35.2.5. Version (MQLONG)

1.35.3. Initial values and language declarations
1.35.3.1. C declaration
1.35.3.2. COBOL declaration
1.35.3.3. PL/I declaration
1.35.3.4. System/390 assembler declaration

1.36. MQSRO - Subscription request options
1.36.1. Overview
1.36.2. Fields

1.36.2.1. NumPubs (MQLONG)
1.36.2.2. Options (MQLONG)

1.36.2.3. StrucId (MQCHAR4)
1.36.2.4. Version (MQLONG)

1.36.3. Initial values and language declarations

Page 9 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

1.36.3.1. C declaration
1.36.3.2. COBOL declaration

1.36.3.3. PL/I declaration
1.36.3.4. System/390 assembler declaration

1.37. MQSTS - Status structure
1.37.1. Overview
1.37.2. Fields

1.37.2.1. CompCode (MQLONG)
1.37.2.2. ObjectName(MQCHAR48)
1.37.2.3. ObjectQmgrName(MQCHAR48)
1.37.2.4. ObjectString (MQCHARV)
1.37.2.5. ObjectType(MQLONG)

1.37.2.6. OpenOptions (MQLONG)
1.37.2.7. PutFailureCount(MQLONG)
1.37.2.8. PutSuccessCount(MQLONG)
1.37.2.9. PutWarningCount(MQLONG)
1.37.2.10. SubName (MQCHARV)

1.37.2.11. SubOptions (MQLONG)
1.37.2.12. Reason(MQLONG)
1.37.2.13. ResolvedObjectName(MQCHAR48)
1.37.2.14. ResolvedQmgrName(MQCHAR48)
1.37.2.15. StrucId (MQCHAR4)
1.37.2.16. Version (MQLONG)

1.37.3. Initial values and language declarations
1.37.3.1. C declaration
1.37.3.2. COBOL declaration
1.37.3.3. PL/I declaration
1.37.3.4. System/390 assembler declaration

1.38. MQTM – Trigger message
1.38.1. Overview
1.38.2. Fields

1.38.2.1. ApplId (MQCHAR256)
1.38.2.2. ApplType (MQLONG)

1.38.2.3. EnvData (MQCHAR128)
1.38.2.4. ProcessName (MQCHAR48)
1.38.2.5. QName (MQCHAR48)
1.38.2.6. StrucId (MQCHAR4)
1.38.2.7. TriggerData (MQCHAR64)

1.38.2.8. UserData (MQCHAR128)
1.38.2.9. Version (MQLONG)

1.38.3. Initial values and language declarations
1.38.3.1. C declaration
1.38.3.2. COBOL declaration
1.38.3.3. PL/I declaration

1.38.3.4. System/390 assembler declaration
1.38.3.5. Visual Basic declaration

1.39. MQTMC2 – Trigger message 2 (character format)
1.39.1. Overview
1.39.2. Fields

1.39.2.1. ApplId (MQCHAR256)
1.39.2.2. ApplType (MQCHAR4)
1.39.2.3. EnvData (MQCHAR128)
1.39.2.4. ProcessName (MQCHAR48)
1.39.2.5. QMgrName (MQCHAR48)

1.39.2.6. QName (MQCHAR48)
1.39.2.7. StrucId (MQCHAR4)
1.39.2.8. TriggerData (MQCHAR64)
1.39.2.9. UserData (MQCHAR128)
1.39.2.10. Version (MQCHAR4)

1.39.3. Initial values and language declarations
1.39.3.1. C declaration
1.39.3.2. COBOL declaration
1.39.3.3. PL/I declaration
1.39.3.4. System/390 assembler declaration

1.39.3.5. Visual Basic declaration
1.40. MQWIH – Work information header

1.40.1. Overview
1.40.2. Fields

1.40.2.1. CodedCharSetId (MQLONG)
1.40.2.2. Encoding (MQLONG)

1.40.2.3. Flags (MQLONG)
1.40.2.4. Format (MQCHAR8)
1.40.2.5. MsgToken (MQBYTE16)
1.40.2.6. Reserved (MQCHAR32)
1.40.2.7. ServiceName (MQCHAR32)

1.40.2.8. ServiceStep (MQCHAR8)
1.40.2.9. StrucId (MQCHAR4)
1.40.2.10. StrucLength (MQLONG)
1.40.2.11. Version (MQLONG)

1.40.3. Initial values and language declarations

1.40.3.1. C declaration
1.40.3.2. COBOL declaration
1.40.3.3. PL/I declaration
1.40.3.4. System/390 assembler declaration
1.40.3.5. Visual Basic declaration

1.41. MQXP – Exit parameter block
1.41.1. Overview
1.41.2. Fields

Page 10 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

1.41.2.1. ExitCommand (MQLONG)
1.41.2.2. ExitId (MQLONG)

1.41.2.3. ExitParmCount (MQLONG)
1.41.2.4. ExitReason (MQLONG)
1.41.2.5. ExitResponse (MQLONG)
1.41.2.6. ExitUserArea (MQBYTE16)
1.41.2.7. Reserved (MQLONG)

1.41.2.8. StrucId (MQCHAR4)
1.41.2.9. Version (MQLONG)

1.41.3. Language declarations
1.41.3.1. C declaration
1.41.3.2. COBOL declaration

1.41.3.3. PL/I declaration
1.41.3.4. System/390 assembler declaration

1.42. MQXQH – Transmission-queue header
1.42.1. Overview
1.42.2. Fields

1.42.2.1. MsgDesc (MQMD1)
1.42.2.2. RemoteQMgrName (MQCHAR48)
1.42.2.3. RemoteQName (MQCHAR48)
1.42.2.4. StrucId (MQCHAR4)
1.42.2.5. Version (MQLONG)

1.42.3. Initial values and language declarations

1.42.3.1. C declaration
1.42.3.2. COBOL declaration
1.42.3.3. PL/I declaration
1.42.3.4. System/390 assembler declaration
1.42.3.5. Visual Basic declaration

2. Function calls
2.1. Call descriptions

2.1.1. Conventions used in the call descriptions
2.1.2. Using the calls in the C language

2.1.2.1. Declaring the Buffer parameter

2.2. MQBACK – Back out changes
2.2.1. Syntax
2.2.2. Parameters

2.2.2.1. Hconn (MQHCONN) – input
2.2.2.2. CompCode (MQLONG) – output

2.2.2.3. Reason (MQLONG) – output
2.2.3. Usage notes
2.2.4. Language invocations

2.2.4.1. C invocation
2.2.4.2. COBOL invocation
2.2.4.3. PL/I invocation

2.2.4.4. System/390 assembler invocation
2.2.4.5. Visual Basic invocation

2.3. MQBEGIN – Begin unit of work
2.3.1. Syntax
2.3.2. Parameters

2.3.2.1. Hconn (MQHCONN) – input
2.3.2.2. BeginOptions (MQBO) – input/output
2.3.2.3. CompCode (MQLONG) – output
2.3.2.4. Reason (MQLONG) – output

2.3.3. Usage notes

2.3.4. Language invocations
2.3.4.1. C invocation
2.3.4.2. COBOL invocation
2.3.4.3. PL/I invocation
2.3.4.4. Visual Basic invocation

2.4. MQBUFMH – Convert buffer into message handle
2.4.1. Syntax
2.4.2. Parameters

2.4.2.1. Hconn (MQHCONN) – input
2.4.2.2. Hmsg (MQHMSG) – input

2.4.2.3. BufMsgHOpts (MQBMHO) – input
2.4.2.4. MsgDesc (MQMD) – input/output
2.4.2.5. BufferLength (MQLONG) - input
2.4.2.6. Buffer (MQBYTExBufferLength) - input/output
2.4.2.7. DataLength (MQLONG) - output
2.4.2.8. CompCode (MQLONG) – output

2.4.2.9. Reason (MQLONG) – output
2.4.3. Usage notes
2.4.4. Language invocations

2.4.4.1. C invocation
2.4.4.2. COBOL invocation

2.4.4.3. PL/I invocation
2.4.4.4. System/390 assembler invocation

2.5. MQCB - Manage callback
2.5.1. Syntax
2.5.2. Parameters

2.5.2.1. Hconn (MQHCONN) – input
2.5.2.2. Operation (MQLONG) - input
2.5.2.3. CallbackDesc (MQCBD) – input
2.5.2.4. Hobj (MQHOBJ) – input
2.5.2.5. MsgDesc (MQMD) – input

2.5.2.6. GetMsgOpts (MQGMO) – input
2.5.2.7. CompCode (MQLONG) – output
2.5.2.8. Reason (MQLONG) – output

Page 11 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

2.5.3. Usage notes
2.5.3.1. Message consumer callback sequence

2.5.3.2. Message consumer connection usage
2.5.4. Language invocations

2.5.4.1. C invocation
2.5.4.2. COBOL invocation
2.5.4.3. PL/I invocation

2.6. MQCB_FUNCTION - Callback function
2.6.1. Syntax
2.6.2. Parameters

2.6.2.1. Hconn (MQHCONN) – input
2.6.2.2. MsgDesc (MQMD) – input

2.6.2.3. GetMsgOpts (MQGMO) – input
2.6.2.4. Buffer (MQBYTExBufferLength) - input
2.6.2.5. Context (MQCBC) - input/output

2.6.3. Usage notes
2.6.4. Language invocations

2.6.4.1. C invocation
2.6.4.2. COBOL invocation
2.6.4.3. PL/I invocation

2.7. MQCLOSE – Close object
2.7.1. Syntax
2.7.2. Parameters

2.7.2.1. Hconn (MQHCONN) – input
2.7.2.2. Hobj (MQHOBJ) – input/output
2.7.2.3. Options (MQLONG) – input
2.7.2.4. CompCode (MQLONG) – output
2.7.2.5. Reason (MQLONG) – output

2.7.3. Usage notes
2.7.4. Language invocations

2.7.4.1. C invocation
2.7.4.2. COBOL invocation
2.7.4.3. PL/I invocation

2.7.4.4. System/390 assembler invocation
2.7.4.5. Visual Basic invocation

2.8. MQCMIT – Commit changes
2.8.1. Syntax
2.8.2. Parameters

2.8.2.1. Hconn (MQHCONN) – input
2.8.2.2. CompCode (MQLONG) – output
2.8.2.3. Reason (MQLONG) – output

2.8.3. Usage notes
2.8.4. Language invocations

2.8.4.1. C invocation

2.8.4.2. COBOL invocation
2.8.4.3. PL/I invocation
2.8.4.4. System/390 assembler invocation
2.8.4.5. Visual Basic invocation

2.9. MQCONN – Connect queue manager

2.9.1. Syntax
2.9.2. Parameters

2.9.2.1. QMgrName (MQCHAR48) – input
2.9.2.2. Hconn (MQHCONN) – output
2.9.2.3. CompCode (MQLONG) – output

2.9.2.4. Reason (MQLONG) – output
2.9.3. Usage notes
2.9.4. Language invocations

2.9.4.1. C invocation
2.9.4.2. COBOL invocation

2.9.4.3. PL/I invocation
2.9.4.4. System/390 assembler invocation
2.9.4.5. Visual Basic invocation

2.10. MQCONNX – Connect queue manager (extended)
2.10.1. Syntax

2.10.2. Parameters
2.10.2.1. QMgrName (MQCHAR48) – input
2.10.2.2. ConnectOpts (MQCNO) – input/output
2.10.2.3. Hconn (MQHCONN) – output
2.10.2.4. CompCode (MQLONG) – output
2.10.2.5. Reason (MQLONG) – output

2.10.3. Usage notes
2.10.4. Language invocations

2.10.4.1. C invocation
2.10.4.2. COBOL invocation
2.10.4.3. PL/I invocation

2.10.4.4. System/390 assembler invocation
2.10.4.5. Visual Basic invocation

2.11. MQCRTMH – Create message handle
2.11.1. Syntax
2.11.2. Parameters

2.11.2.1. Hconn (MQHCONN) – input
2.11.2.2. CrtMsgHOpts (MQCMHO) – input
2.11.2.3. Hmsg (MQHMSG) – output
2.11.2.4. CompCode (MQLONG) – output
2.11.2.5. Reason (MQLONG) – output

2.11.3. Language invocations
2.11.3.1. C invocation
2.11.3.2. COBOL invocation

Page 12 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

2.11.3.3. PL/I invocation
2.11.3.4. System/390 assembler invocation

2.12. MQCTL - Control callbacks
2.12.1. Syntax
2.12.2. Parameters

2.12.2.1. Hconn (MQHCONN) – input
2.12.2.2. Operation (MQLONG) - input

2.12.2.3. ControlOpts (MQCTLO) – input
2.12.2.4. CompCode (MQLONG) – output
2.12.2.5. Reason (MQLONG) – output

2.12.3. Usage notes
2.12.4. Language invocations

2.12.4.1. C invocation
2.12.4.2. COBOL invocation
2.12.4.3. PL/I invocation

2.13. MQDISC – Disconnect queue manager
2.13.1. Syntax

2.13.2. Parameters
2.13.2.1. Hconn (MQHCONN) – input/output
2.13.2.2. CompCode (MQLONG) – output
2.13.2.3. Reason (MQLONG) – output

2.13.3. Usage notes
2.13.4. Language invocations

2.13.4.1. C invocation
2.13.4.2. COBOL invocation
2.13.4.3. PL/I invocation
2.13.4.4. System/390 assembler invocation
2.13.4.5. Visual Basic invocation

2.14. MQDLTMH – Delete message handle
2.14.1. Syntax
2.14.2. Parameters

2.14.2.1. Hconn (MQHCONN) – input
2.14.2.2. Hmsg (MQHMSG) – input/output

2.14.2.3. DltMsgHOpts (MQCMHO) – input
2.14.2.4. CompCode (MQLONG) – output
2.14.2.5. Reason (MQLONG) – output

2.14.3. Language invocations
2.14.3.1. C invocation

2.14.3.2. COBOL invocation
2.14.3.3. PL/I invocation
2.14.3.4. System/390 assembler invocation

2.15. MQDLTMP – Delete message property
2.15.1. Syntax
2.15.2. Parameters

2.15.2.1. Hconn (MQHCONN) – input
2.15.2.2. Hmsg (MQHMSG) – input
2.15.2.3. DltPropOpts (MQDMPO) – input
2.15.2.4. Name (MQCHARV) – input
2.15.2.5. CompCode (MQLONG) – output

2.15.2.6. Reason (MQLONG) – output
2.15.3. Language invocations

2.15.3.1. C invocation
2.15.3.2. COBOL invocation
2.15.3.3. PL/I invocation

2.15.3.4. System/390 assembler invocation
2.16. MQGET – Get message

2.16.1. Syntax
2.16.2. Parameters

2.16.2.1. Hconn (MQHCONN) – input

2.16.2.2. Hobj (MQHOBJ) – input
2.16.2.3. MsgDesc (MQMD) – input/output
2.16.2.4. GetMsgOpts (MQGMO) – input/output
2.16.2.5. BufferLength (MQLONG) – input
2.16.2.6. Buffer (MQBYTExBufferLength) – output

2.16.2.7. DataLength (MQLONG) – output
2.16.2.8. CompCode (MQLONG) – output
2.16.2.9. Reason (MQLONG) – output

2.16.3. Usage notes
2.16.4. Language invocations

2.16.4.1. C invocation

2.16.4.2. COBOL invocation
2.16.4.3. PL/I invocation
2.16.4.4. System/390 assembler invocation
2.16.4.5. Visual Basic invocation

2.17. MQINQ – Inquire object attributes

2.17.1. Syntax
2.17.2. Parameters

2.17.2.1. Hconn (MQHCONN) – input
2.17.2.2. Hobj (MQHOBJ) – input
2.17.2.3. SelectorCount (MQLONG) – input

2.17.2.4. Selectors (MQLONGxSelectorCount) – input
2.17.2.5. IntAttrCount (MQLONG) – input
2.17.2.6. IntAttrs (MQLONGxIntAttrCount) – output
2.17.2.7. CharAttrLength (MQLONG) – input
2.17.2.8. CharAttrs (MQCHARxCharAttrLength) – output

2.17.2.9. CompCode (MQLONG) – output
2.17.2.10. Reason (MQLONG) – output

2.17.3. Usage notes

Page 13 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

2.17.4. Language invocations
2.17.4.1. C invocation

2.17.4.2. COBOL invocation
2.17.4.3. PL/I invocation
2.17.4.4. System/390 assembler invocation
2.17.4.5. Visual Basic invocation

2.18. MQINQMP – Inquire message property

2.18.1. Syntax
2.18.2. Parameters

2.18.2.1. Hconn (MQHCONN) – input
2.18.2.2. Hmsg (MQHMSG) – input
2.18.2.3. InqPropOpts (MQIMPO) – input

2.18.2.4. Name (MQCHARV) – input
2.18.2.5. PropDesc (MQPD) – output
2.18.2.6. Type (MQLONG) – input/output
2.18.2.7. ValueLength (MQLONG) – input
2.18.2.8. Value (MQBYTExValueLength) – output

2.18.2.9. DataLength (MQLONG) – output
2.18.2.10. CompCode (MQLONG) – output
2.18.2.11. Reason (MQLONG) – output

2.18.3. Language invocations
2.18.3.1. C invocation
2.18.3.2. COBOL invocation

2.18.3.3. PL/I invocation
2.18.3.4. System/390 assembler invocation

2.19. MQMHBUF – Convert message handle into buffer
2.19.1. Syntax
2.19.2. Parameters

2.19.2.1. Hconn (MQHCONN) – input
2.19.2.2. Hmsg (MQHMSG) – input
2.19.2.3. MsgHBufOpts (MQMHBO) – input
2.19.2.4. Name (MQCHARV) - input
2.19.2.5. MsgDesc (MQMD) – input/output

2.19.2.6. BufferLength (MQLONG) - input
2.19.2.7. Buffer (MQBYTExBufferLength) - output
2.19.2.8. DataLength (MQLONG) - output
2.19.2.9. CompCode (MQLONG) – output
2.19.2.10. Reason (MQLONG) – output

2.19.3. Usage notes
2.19.4. Language invocations

2.19.4.1. C invocation
2.19.4.2. COBOL invocation
2.19.4.3. PL/I invocation
2.19.4.4. System/390 assembler invocation

2.20. MQOPEN – Open object
2.20.1. Syntax
2.20.2. Parameters

2.20.2.1. Hconn (MQHCONN) – input
2.20.2.2. ObjDesc (MQOD) – input/output

2.20.2.3. Options (MQLONG) – input
2.20.2.4. Hobj (MQHOBJ) – output
2.20.2.5. CompCode (MQLONG) – output
2.20.2.6. Reason (MQLONG) – output

2.20.3. Usage notes

2.20.4. Language invocations
2.20.4.1. C invocation
2.20.4.2. COBOL invocation
2.20.4.3. PL/I invocation
2.20.4.4. System/390 assembler invocation

2.20.4.5. Visual Basic invocation
2.21. MQPUT – Put message

2.21.1. Syntax
2.21.2. Parameters

2.21.2.1. Hconn (MQHCONN) – input

2.21.2.2. Hobj (MQHOBJ) – input
2.21.2.3. MsgDesc (MQMD) – input/output
2.21.2.4. PutMsgOpts (MQPMO) – input/output
2.21.2.5. BufferLength (MQLONG) – input
2.21.2.6. Buffer (MQBYTExBufferLength) – input
2.21.2.7. CompCode (MQLONG) – output

2.21.2.8. Reason (MQLONG) – output
2.21.3. Usage notes
2.21.4. Language invocations

2.21.4.1. C invocation
2.21.4.2. COBOL invocation

2.21.4.3. PL/I invocation
2.21.4.4. System/390 assembler invocation
2.21.4.5. Visual Basic invocation

2.22. MQPUT1 – Put one message
2.22.1. Syntax

2.22.2. Parameters
2.22.2.1. Hconn (MQHCONN) – input
2.22.2.2. ObjDesc (MQOD) – input/output
2.22.2.3. MsgDesc (MQMD) – input/output
2.22.2.4. PutMsgOpts (MQPMO) – input/output

2.22.2.5. BufferLength (MQLONG) – input
2.22.2.6. Buffer (MQBYTExBufferLength) – input
2.22.2.7. CompCode (MQLONG) – output

Page 14 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

2.22.2.8. Reason (MQLONG) – output
2.22.3. Usage notes

2.22.4. Language invocations
2.22.4.1. C invocation
2.22.4.2. COBOL invocation
2.22.4.3. PL/I invocation
2.22.4.4. System/390 assembler invocation

2.22.4.5. Visual Basic invocation
2.23. MQSET – Set object attributes

2.23.1. Syntax
2.23.2. Parameters

2.23.2.1. Hconn (MQHCONN) – input

2.23.2.2. Hobj (MQHOBJ) – input
2.23.2.3. SelectorCount (MQLONG) – input
2.23.2.4. Selectors (MQLONGxSelectorCount) – input
2.23.2.5. IntAttrCount (MQLONG) – input
2.23.2.6. IntAttrs (MQLONGxIntAttrCount) – input

2.23.2.7. CharAttrLength (MQLONG) – input
2.23.2.8. CharAttrs (MQCHARxCharAttrLength) – input
2.23.2.9. CompCode (MQLONG) – output
2.23.2.10. Reason (MQLONG) – output

2.23.3. Usage notes
2.23.4. Language invocations

2.23.4.1. C invocation
2.23.4.2. COBOL invocation
2.23.4.3. PL/I invocation
2.23.4.4. System/390 assembler invocation
2.23.4.5. Visual Basic invocation

2.24. MQSETMP – Set message property
2.24.1. Syntax
2.24.2. Parameters

2.24.2.1. Hconn (MQHCONN) – input
2.24.2.2. Hmsg (MQHMSG) – input

2.24.2.3. SetPropOpts (MQHMSG) – input
2.24.2.4. Name (MQCHARV) – input
2.24.2.5. PropDesc (MQPD) – input/output
2.24.2.6. Type (MQLONG) – input
2.24.2.7. ValueLength (MQLONG) – input

2.24.2.8. Value (MQBYTE X ValueLength) – input
2.24.2.9. CompCode (MQLONG) – output
2.24.2.10. Reason (MQLONG) – output

2.24.3. Language invocations
2.24.3.1. C invocation
2.24.3.2. COBOL invocation

2.24.3.3. PL/I invocation
2.24.3.4. System/390 assembler invocation

2.25. MQSTAT - Retrieve status information
2.25.1. Syntax
2.25.2. Parameters

2.25.2.1. Hconn (MQHCONN) - input
2.25.2.2. Type (MQLONG) - input
2.25.2.3. Stat (MQSTS) - input/output
2.25.2.4. CompCode (MQLONG) - output
2.25.2.5. Reason (MQLONG) - output

2.25.3. Usage notes
2.25.4. Language invocations

2.25.4.1. C invocation
2.25.4.2. COBOL invocation
2.25.4.3. PL/I invocation

2.25.4.4. System/390 assembler invocation
2.26. MQSUB - Register subscription

2.26.1. Syntax
2.26.2. Parameters

2.26.2.1. Hconn (MQHCONN) - input

2.26.2.2. SubDesc (MQSD) - input/output
2.26.2.3. Hobj (MQHOBJ) - input/output
2.26.2.4. Hsub (MQHOBJ) - output
2.26.2.5. CompCode (MQLONG) - output
2.26.2.6. Reason (MQLONG) - output

2.26.3. Usage notes

2.26.4. Language invocations
2.26.4.1. C invocation
2.26.4.2. COBOL invocation
2.26.4.3. PL/I invocation
2.26.4.4. System/390 assembler invocation

2.27. MQSUBRQ - Subscription request
2.27.1. Syntax
2.27.2. Parameters

2.27.2.1. Hconn (MQHCONN) - input
2.27.2.2. Hsub (MQHOBJ) - input

2.27.2.3. Action (MQLONG) - input
2.27.2.4. SubRqOpts (MQHOBJ) - input/output
2.27.2.5. CompCode (MQLONG) - output
2.27.2.6. Reason (MQLONG) - output

2.27.3. Usage notes

2.27.4. Language invocations
2.27.4.1. C invocation
2.27.4.2. COBOL invocation

Page 15 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

2.27.4.3. PL/I invocation
2.27.4.4. System/390 assembler invocation

3. Attributes of objects
3.1. Attributes for the queue manager

3.1.1. AccountingConnOverride (MQLONG)
3.1.2. AccountingInterval (MQLONG)
3.1.3. AdoptNewMCACheck (MQLONG)

3.1.4. AdoptNewMCAType (MQLONG)
3.1.5. AlterationDate (MQCHAR12)
3.1.6. AlterationTime (MQCHAR8)
3.1.7. AuthorityEvent (MQLONG)
3.1.8. BridgeEvent (MQLONG)

3.1.9. ChannelAutoDef (MQLONG)
3.1.10. ChannelAutoDefEvent (MQLONG)
3.1.11. ChannelAutoDefExit (MQCHARn)
3.1.12. ChannelEvent (MQLONG)
3.1.13. ChannelInitiatorControl (MQLONG)

3.1.14. ChannelMonitoring (MQLONG)
3.1.15. ChannelStatistics (MQLONG)
3.1.16. ChinitAdapters (MQLONG)
3.1.17. ChinitDispatchers (MQLONG)
3.1.18. ChinitTraceAutoStart (MQLONG)
3.1.19. ChinitTraceTableSize (MQLONG)

3.1.20. ClusterSenderMonitoringDefault (MQLONG)
3.1.21. ClusterSenderStatistics (MQLONG)
3.1.22. ClusterWorkloadData (MQCHAR32)
3.1.23. ClusterWorkloadExit (MQCHARn)
3.1.24. ClusterWorkloadLength (MQLONG)

3.1.25. CLWLMRUChannels (MQLONG)
3.1.26. CLWLUseQ (MQLONG)
3.1.27. CodedCharSetId (MQLONG)
3.1.28. CommandEvent (MQLONG)
3.1.29. CommandInputQName (MQCHAR48)

3.1.30. CommandLevel (MQLONG)
3.1.31. CommandServerControl (MQLONG)
3.1.32. ConfigurationEvent (MQLONG)
3.1.33. DeadLetterQName (MQCHAR48)
3.1.34. DefXmitQName (MQCHAR48)

3.1.35. DistLists (MQLONG)
3.1.36. DNSGroup (MQCHAR18)
3.1.37. DNSWLM (MQLONG)
3.1.38. ExpiryInterval (MQLONG)
3.1.39. IGQPutAuthority (MQLONG)
3.1.40. IGQUserId (MQLONG)

3.1.41. InhibitEvent (MQLONG)
3.1.42. IntraGroupQueuing (MQLONG)
3.1.43. IPAddressVersion (MQLONG)
3.1.44. ListenerTimer (MQLONG)
3.1.45. LocalEvent (MQLONG)

3.1.46. LoggerEvent (MQLONG)
3.1.47. LUGroupName (MQCHAR8)
3.1.48. LUName (MQCHAR8)
3.1.49. LU62ARMSuffix (MQCHAR2)
3.1.50. LU62Channels (MQLONG)

3.1.51. MaxActiveChannels (MQLONG)
3.1.52. MaxChannels (MQLONG)
3.1.53. MaxHandles (MQLONG)
3.1.54. MaxMsgLength (MQLONG)
3.1.55. MaxPriority (MQLONG)

3.1.56. MaxPropertiesLength (MQLONG)
3.1.57. MaxUncommittedMsgs (MQLONG)
3.1.58. MQIAccounting (MQLONG)
3.1.59. MQIStatistics (MQLONG)
3.1.60. MsgMarkBrowseInterval (MQLONG)

3.1.61. OutboundPortMax (MQLONG)
3.1.62. OutboundPortMin (MQLONG)
3.1.63. PerformanceEvent (MQLONG)
3.1.64. Platform (MQLONG)
3.1.65. PropertyControl (MQLONG)
3.1.66. PubSubNPInputMsg (MQLONG)

3.1.67. PubSubNPResponse (MQLONG)
3.1.68. PubSubMaxMsgRetryCount (MQLONG)
3.1.69. PubSubSyncPoint (MQLONG)
3.1.70. PubSubMode (MQLONG)
3.1.71. QMgrDesc (MQCHAR64)

3.1.72. QMgrIdentifier (MQCHAR48)
3.1.73. QMgrName (MQCHAR48)
3.1.74. QSGName (MQCHAR4)
3.1.75. QueueAccounting (MQLONG)
3.1.76. QueueMonitoring (MQLONG)

3.1.77. QueueStatistics (MQLONG)
3.1.78. ReceiveTimeout (MQLONG)
3.1.79. ReceiveTimeoutMin (MQLONG)
3.1.80. ReceiveTimeoutType (MQLONG)
3.1.81. RemoteEvent (MQLONG)

3.1.82. RepositoryName (MQCHAR48)
3.1.83. RepositoryNamelist (MQCHAR48)
3.1.84. ScyCase (MQCHAR48)

Page 16 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

3.1.85. SharedQMgrName (MQLONG)
3.1.86. SSLEvent (MQLONG)

3.1.87. SSLFIPSRequired (MQLONG)
3.1.88. SSLKeyResetCount (MQLONG)
3.1.89. StartStopEvent (MQLONG)
3.1.90. StatisticsInterval (MQLONG)
3.1.91. SyncPoint (MQLONG)

3.1.92. TCPChannels (MQLONG)
3.1.93. TCPKeepAlive (MQLONG)
3.1.94. TCPName (MQCHAR8)
3.1.95. TCPStackType (MQLONG)
3.1.96. TraceRouteRecording (MQLONG)

3.1.97. TreeLifeTime (MQLONG)
3.1.98. TriggerInterval (MQLONG)

3.2. Attributes for queues
3.2.1. AlterationDate (MQCHAR12)
3.2.2. AlterationTime (MQCHAR8)

3.2.3. BackoutRequeueQName (MQCHAR48)
3.2.4. BackoutThreshold (MQLONG)
3.2.5. BaseQName (MQCHAR48)
3.2.6. BaseType (MQCFIN)
3.2.7. CFStrucName (MQCHAR12)
3.2.8. ClusterName (MQCHAR48)

3.2.9. ClusterNamelist (MQCHAR48)
3.2.10. CLWLQueuePriority (MQLONG)
3.2.11. CLWLQueueRank (MQLONG)
3.2.12. CLWLUseQ (MQLONG)
3.2.13. CreationDate (MQCHAR12)

3.2.14. CreationTime (MQCHAR8)
3.2.15. CurrentQDepth (MQLONG)
3.2.16. DefaultPutResponse (MQLONG)
3.2.17. DefBind (MQLONG)
3.2.18. DefinitionType (MQLONG)

3.2.19. DefInputOpenOption (MQLONG)
3.2.20. DefPersistence (MQLONG)
3.2.21. DefPriority (MQLONG)
3.2.22. DefReadAhead (MQLONG)
3.2.23. DefPResp (MQLONG)

3.2.24. DistLists (MQLONG)
3.2.25. HardenGetBackout (MQLONG)
3.2.26. IndexType (MQLONG)
3.2.27. InhibitGet (MQLONG)
3.2.28. InhibitPut (MQLONG)
3.2.29. InitiationQName (MQCHAR48)

3.2.30. MaxMsgLength (MQLONG)
3.2.31. MaxQDepth (MQLONG)
3.2.32. MsgDeliverySequence (MQLONG)
3.2.33. NonPersistentMessageClass (MQLONG)
3.2.34. OpenInputCount (MQLONG)

3.2.35. OpenOutputCount (MQLONG)
3.2.36. ProcessName (MQCHAR48)
3.2.37. PropertyControl (MQLONG)
3.2.38. QDepthHighEvent (MQLONG)
3.2.39. QDepthHighLimit (MQLONG)

3.2.40. QDepthLowEvent (MQLONG)
3.2.41. QDepthLowLimit (MQLONG)
3.2.42. QDepthMaxEvent (MQLONG)
3.2.43. QDesc (MQCHAR64)
3.2.44. QName (MQCHAR48)

3.2.45. QServiceInterval (MQLONG)
3.2.46. QServiceIntervalEvent (MQLONG)
3.2.47. QSGDisp (MQLONG)
3.2.48. QueueAccounting (MQCHAR12)
3.2.49. QueueMonitoring (MQLONG)

3.2.50. QueueStatistics (MQCHAR12)
3.2.51. QType (MQLONG)
3.2.52. RemoteQMgrName (MQCHAR48)
3.2.53. RemoteQName (MQCHAR48)
3.2.54. RetentionInterval (MQLONG)
3.2.55. Scope (MQLONG)

3.2.56. Shareability (MQLONG)
3.2.57. StorageClass (MQCHAR8)
3.2.58. TriggerControl (MQLONG)
3.2.59. TriggerData (MQCHAR64)
3.2.60. TriggerDepth (MQLONG)

3.2.61. TriggerMsgPriority (MQLONG)
3.2.62. TriggerType (MQLONG)
3.2.63. Usage (MQLONG)
3.2.64. XmitQName (MQCHAR48)

3.3. Attributes for namelists

3.3.1. AlterationDate (MQCHAR12)
3.3.2. AlterationTime (MQCHAR8)
3.3.3. NameCount (MQLONG)
3.3.4. NamelistDesc (MQCHAR64)
3.3.5. NamelistName (MQCHAR48)

3.3.6. NamelistType (MQLONG)
3.3.7. Names (MQCHAR48xNameCount)
3.3.8. QSGDisp (MQLONG)

Page 17 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

3.4. Attributes for process definitions
3.4.1. AlterationDate (MQCHAR12)

3.4.2. AlterationTime (MQCHAR8)
3.4.3. ApplId (MQCHAR256)
3.4.4. ApplType (MQLONG)
3.4.5. EnvData (MQCHAR128)
3.4.6. ProcessDesc (MQCHAR64)

3.4.7. ProcessName (MQCHAR48)
3.4.8. QSGDisp (MQLONG)
3.4.9. UserData (MQCHAR128)

4. Return codes
4.1. Completion codes

4.2. Reason codes
5. Rules for validating MQI options

5.1. MQOPEN call
5.2. MQPUT call
5.3. MQPUT1 call

5.4. MQGET call
5.5. MQCLOSE call
5.6. MQSUB call

6. Machine encodings
6.1. Binary-integer encoding
6.2. Packed-decimal-integer encoding

6.3. Floating-point encoding
6.4. Constructing encodings
6.5. Analyzing encodings

6.5.1. Using bit operations
6.5.2. Using arithmetic

6.6. Summary of machine architecture encodings
7. Report options and message flags

7.1. Structure of the report field
7.2. Analyzing the report field

7.2.1. Using bit operations

7.2.2. Using arithmetic
7.3. Structure of the message-flags field

8. Data conversion
8.1. Conversion processing
8.2. Processing conventions

8.3. Conversion of report messages
8.4. MQDXP – Data-conversion exit parameter

8.4.1. Overview
8.4.2. Fields

8.4.2.1. AppOptions (MQLONG)
8.4.2.2. CodedCharSetId (MQLONG)

8.4.2.3. CompCode (MQLONG)
8.4.2.4. DataLength (MQLONG)
8.4.2.5. Encoding (MQLONG)
8.4.2.6. ExitOptions (MQLONG)
8.4.2.7. ExitResponse (MQLONG)

8.4.2.8. Hconn (MQHCONN)
8.4.2.9. Reason (MQLONG)
8.4.2.10. StrucId (MQCHAR4)
8.4.2.11. Version (MQLONG)

8.4.3. C declaration

8.4.4. COBOL declaration (i5/OS only)
8.4.5. System/390 assembler declaration

8.5. MQXCNVC – Convert characters
8.5.1. Syntax
8.5.2. Parameters

8.5.2.1. Hconn (MQHCONN) – input
8.5.2.2. Options (MQLONG) – input
8.5.2.3. SourceCCSID (MQLONG) – input
8.5.2.4. SourceLength (MQLONG) – input
8.5.2.5. SourceBuffer (MQCHAR×SourceLength) – input

8.5.2.6. TargetCCSID (MQLONG) – input
8.5.2.7. TargetLength (MQLONG) – input
8.5.2.8. TargetBuffer (MQCHAR×TargetLength) – output
8.5.2.9. DataLength (MQLONG) – output
8.5.2.10. CompCode (MQLONG) – output
8.5.2.11. Reason (MQLONG) – output

8.5.3. C invocation
8.5.4. COBOL invocation (i5/OS only)
8.5.5. System/390 assembler invocation

8.6. MQ_DATA_CONV_EXIT – Data conversion exit
8.6.1. Syntax

8.6.2. Parameters
8.6.2.1. DataConvExitParms (MQDXP) – input/output
8.6.2.2. MsgDesc (MQMD) – input/output
8.6.2.3. InBufferLength (MQLONG) – input
8.6.2.4. InBuffer (MQBYTE×InBufferLength) – input

8.6.2.5. OutBufferLength (MQLONG) – input
8.6.2.6. OutBuffer (MQBYTE×OutBufferLength) – output

8.6.3. Usage notes
8.6.4. C invocation
8.6.5. COBOL invocation (i5/OS only)

8.6.6. System/390 assembler invocation
9. Properties specified as MQRFH2 elements

9.1. Mapping property data types to MQRFH2 data types

Page 18 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

9.2. Supported MQRFH2 folders
9.3. Generation of MQRFH2 headers

9.4. MQRFH2 folder restrictions
9.5. MQRFH2 element name conflicts
9.6. Mapping from property names to MQRFH2 names
9.7. Mapping property descriptor fields into MQRFH2 headers
9.8. MQRFH2 headers that are not valid

10. Code page conversion
10.1. Codeset names and CCSIDs
10.2. National languages

10.2.1. US English
10.2.1.1. i5/OS

10.2.1.2. DEC-OVMS, SINIX, DC/OSx
10.2.1.3. NCR

10.2.2. German
10.2.3. Danish and Norwegian
10.2.4. Finnish and Swedish

10.2.5. Italian
10.2.6. Spanish
10.2.7. UK English /Gaelic
10.2.8. French
10.2.9. Multilingual
10.2.10. Portuguese

10.2.11. Icelandic
10.2.12. Eastern European languages
10.2.13. Cyrillic
10.2.14. Estonian
10.2.15. Latvian and Lithuanian

10.2.16. Ukranian
10.2.17. Greek
10.2.18. Turkish
10.2.19. Hebrew
10.2.20. Arabic

10.2.21. Farsi
10.2.22. Urdu
10.2.23. Thai
10.2.24. Lao
10.2.25. Vietnamese

10.2.26. Japanese Latin SBCS
10.2.27. Japanese Katakana SBCS
10.2.28. Japanese Kanji/ Latin Mixed
10.2.29. Japanese Kanji/ Katakana Mixed
10.2.30. Korean
10.2.31. Simplified Chinese

10.2.32. Traditional Chinese
10.3. z/OS conversion support
10.4. i5/OS conversion support
10.5. Unicode conversion support

10.5.1. WebSphere MQ AIX support for Unicode

10.5.2. WebSphere MQ HP-UX support for Unicode
10.5.3. WebSphere MQ (for Windows, Solaris, and Linux) and MQSeries (for Compaq NSK, OVMS, and Tru64) support for Unicode
10.5.4. i5/OS support for Unicode
10.5.5. WebSphere MQ for z/OS support for Unicode

Application Programming Reference

Data type descriptions

Function calls

Attributes of objects
This collection of topics lists only those WebSphere MQ objects that can be the subject of an MQINQ function call, and gives details of
the attributes that can be inquired on and the selectors to be used.

Return codes
For each WebSphere MQ Message Queue Interface (MQI) and WebSphere MQ Administration Interface (MQAI) call, a completion
code and a reason code are returned by the queue manager or by an exit routine, to indicate the success or failure of the call.

Rules for validating MQI options
This appendix lists the situations that produce an MQRC_OPTIONS_ERROR reason code from an MQCONNX, MQOPEN, MQPUT,
MQPUT1, MQGET, or MQCLOSE call.

Machine encodings

Report options and message flags

Data conversion
This collection of topics describes the interface to the data-conversion exit, and the processing performed by the queue manager when
data conversion is required.

Properties specified as MQRFH2 elements
Non-message descriptor properties can be specified as elements in MQRFH2 header folders. Overview of MQRFH2 elements being
specified as properties.

Page 19 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Code page conversion

Notices

This build: January 26, 2011 11:15:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr10120_

1. Data type descriptions

Introduction

This chapter introduces the data types used in the MQI, and gives you some guidance on using them in the supported programming
languages.

MQAIR – Authentication information record

The MQAIR structure represents the authentication information record.

MQBMHO – Buffer to message handle options
The following table summarizes the fields in the structure. MQBMHO structure - buffer to message handle options

MQBO – Begin options
The following table summarizes the fields in the structure.

MQCBC – Callback context
The following table summarizes the fields in the structure. Structure describing the callback routine.

MQCBD – Callback descriptor
The following table summarizes the fields in the structure. Structure specifying the callback function.

MQCHARV - Variable Length String

MQCIH – CICS bridge header
The following table summarizes the fields in the structure.

MQCMHO – Create-message options
The following table summarizes the fields in the structure.

MQCNO – Connect options
The following table summarizes the fields in the structure.

MQCSP – Security parameters

The following table summarizes the fields in the structure.

MQCTLO – Control callback options structure
The following table summarizes the fields in the structure. Structure specifying the control callback function.

MQDH – Distribution header
The following table summarizes the fields in the structure.

MQDLH – Dead-letter header
The following table summarizes the fields in the structure.

MQDMHO – Delete message handle options
The following table summarizes the fields in the structure.

MQDMPO – Delete message property options

The following table summarizes the fields in the structure. MQDMPO structure - delete message property options

MQEPH – Embedded PCF header
The following table summarizes the fields in the structure.

MQGMO – Get-message options
The following table summarizes the fields in the structure.

MQIIH – IMS information header
The following table summarizes the fields in the structure.

MQIMPO – Inquire message property options
The following table summarizes the fields in the structure. MQIMPO structure - inquire message property options

MQMD – Message descriptor
The following table summarizes the fields in the structure.

MQMDE – Message descriptor extension
The following table summarizes the fields in the structure.

Page 20 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

MQMHBO – Message handle to buffer options
The following table summarizes the fields in the structure. MQMHBO structure - message handle to buffer options

MQOD – Object descriptor

The following table summarizes the fields in the structure.

MQOR – Object record
The following table summarizes the fields in the structure.

MQPD – Property descriptor
The following table summarizes the fields in the structure.

MQPMO – Put-message options
The following table summarizes the fields in the structure.

MQPMR – Put-message record
The following table summarizes the fields in the structure.

MQRFH – Rules and formatting header

MQRFH2 – Rules and formatting header 2

MQRMH – Reference message header
The following table summarizes the fields in the structure.

MQRR – Response record

The following table summarizes the fields in the structure.

MQSCO – SSL configuration options
The following table summarizes the fields in the structure.

MQSD - Subscription descriptor

MQSMPO – Set message property options
The following table summarizes the fields in the structure.

MQSRO - Subscription request options

MQSTS – Status reporting structure
The following table summarizes the fields in the structure.

MQTM – Trigger message
The following table summarizes the fields in the structure.

MQTMC2 – Trigger message 2 (character format)
The following table summarizes the fields in the structure.

MQWIH – Work information header
The following table summarizes the fields in the structure.

MQXP – Exit parameter block
The following table summarizes the fields in the structure.

MQXQH – Transmission-queue header
The following table summarizes the fields in the structure.

Parent topic: Application Programming Reference

This build: January 26, 2011 11:15:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr10230_

1.1. Introduction

This chapter introduces the data types used in the MQI, and gives you some guidance on using them in the supported programming
languages.

Elementary data types

Structure data types – introduction
This section introduces the structure data types used in the MQI. The structure data types themselves are described in subsequent
chapters.

C programming
This section contains information to help you use the MQI from the C programming language.

Page 21 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

COBOL programming
This section contains information to help you use the MQI from the COBOL programming language.

System/390 assembler programming

This section contains information to help to you use the MQI from the System/390® Assembler programming language.

Parent topic: Data type descriptions

This build: January 26, 2011 11:15:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr10240_

1.1.1. Elementary data types

The data types used in the MQI (or in exit functions) are either:

� Elementary data types, or

� Aggregates of elementary data types (arrays or structures)

The following elementary data types are used in the MQI (or in exit functions):

� MQBOOL - Boolean

� MQBYTE – Byte

� MQBYTEn – String of n bytes

� MQCHAR – Single-byte character

� MQCHARn – String of n single-byte characters

� MQFLOAT32 – 32-bit floating-point number

� MQFLOAT64 – 64-bit floating-point number

� MQHCONFIG – Configuration handle

� MQHCONN – Connection handle

� MQHMSG – A message handle that gives access to a message

� MQHOBJ – Object handle

� MQINT8 – 8-bit integer

� MQINT16 – 16-bit integer

� MQINT32 – 32-bit integer

� MQINT64 – 64-bit integer

� MQLONG – Long integer

� MQPID – Process Id

� MQPTR – Pointer

� MQTID – Thread Id

� MQUINT8 – 8-bit unsigned integer

� MQUINT16 – 16-bit unsigned integer

� MQUINT32 – 32-bit unsigned integer

� MQUINT64 – 64-bit unsigned integer

� MQULONG – unsigned long integer

� PMQACH – Pointer to a data structure of type MQACH

� PMQAIR – Pointer to a data structure of type MQAIR

� PMQAXC – Pointer to a data structure of type MQAXC

� PMQAXP – Pointer to a data structure of type MQAXP

� PMQBMHO – Pointer to a data structure of type MQBMHO

� PMQBO – Pointer to a data structure of type MQBO

� PMQBOOL – Pointer to a data type of MQBOOL

� PMQBYTE – Pointer to data of type MQBYTE

� PMQBYTEn – Pointer to a data type of MQBYTEn, where n can be 8, 16, 24, 32, 40, 128

� PMQCBC – Pointer to a data structure of type MQCBC

� PMQCBD – Pointer to a data structure of type MQCBD

� PMQCHAR – Pointer to a data structure of type MQCHAR

� PMQCHARV – Pointer to a data structure of type MQCHARV

� PMQCHARn – Pointer to a data type of MQCHARn, where n can be 4, 8, 12, 20, 28, 32, 48, 64, 128, 256, 264

� PMQCIH – Pointer to a data structure of type MQCIH

� PMQCMHO – Pointer to a data structure of type MQCMHO

� PMQCNO – Pointer to a data structure of type MQCNO

� PMQCSP – Pointer to a data structure of type MQCSP

� PMQCTLO – Pointer to a data structure of type MQCTLO

� PMQDH – Pointer to a data structure of type MQDH

Page 22 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

� PMQDHO – Pointer to a data structure of type MQDHO

� PMQDLH – Pointer to a data structure of type MQDLH

� PMQDMHO – Pointer to a data structure of type MQDMHO

� PMQDMPO – Pointer to a data structure of type MQDMPO

� PMQEPH – Pointer to a data structure of type MQEPH

� PMQFLOAT32 – Pointer to a data type of MQFLOAT32

� PMQFLOAT64 – Pointer to a data type of MQFLOAT64

� PMQFUNC – Pointer to a function

� PMQGMO – Pointer to a data structure of type MQGMO

� PMQHCONFIG – Pointer to a data type of MQHCONFIG

� PMQHCONN – Pointer to a data type of MQHCONN

� PMQHMSG – Pointer to a data type of MQHMSG

� PMQHOBJ – Pointer to a data type of MQHOBJ

� PMQIIH – Pointer to a data structure of type MQIIH

� PMQIMPO – Pointer to a data structure of type MQIMPO

� PMQINT8 – Pointer to a data type of MQINT8

� PMQINT16 – Pointer to a data type of MQINT16

� PMQINT32 – Pointer to a data type of MQINT32

� PMQINT64 – Pointer to a data type of MQINT64

� PMQLONG – Pointer to a data type of MQLONG

� PMQMD – Pointer to a data structure of type MQMD

� PMQMDE – Pointer to a data structure of type MQMDE

� PMQMD1 – Pointer to a data structure of type MQMD1

� PMQMHBO – Pointer to a data structure of type MQMHBO

� PMQOD – Pointer to a data structure of type MQOD

� PMQOR – Pointer to a data structure of type MQOR

� PMQPD – Pointer to a data structure of type MQPD

� PMQPID – Pointer to a process ID

� PMQPMO – Pointer to a data structure of type MQPMO

� PMQPTR – Pointer to a data type of MQPTR

� PMQRFH – Pointer to a data structure of type MQRFH

� PMQRFH2 – Pointer to a data structure of type MQRFH2

� PMQRMH – Pointer to a data structure of type MQRMH

� PMQRR – Pointer to a data structure of type MQRR

� PMQSCO – Pointer to a data structure of type MQSCO

� PMQSD – Pointer to a data structure of type MQSD

� PMQSMPO – Pointer to a data structure of type MQSMPO

� PMQSRO – Pointer to a data structure of type MQSRO

� PMQSTS – Pointer to a data structure of type MQSTS

� PMQTID – Pointer to a thread ID

� PMQTM – Pointer to a data structure of type MQTM

� PMQTMC2 – Pointer to a data structure of type MQTMC2

� PMQUINT8 – Pointer to a data type of MQUINT8

� PMQUINT16 – Pointer to a data type of MQUINT16

� PMQUINT32 – Pointer to a data type of MQUINT32

� PMQUINT64 – Pointer to a data type of MQUINT64

� PMQULONG – Pointer to a data type of MQULONG

� PMQVOID – Pointer

� PMQWIH – Pointer to a data structure of type MQWIH

� PMQXQH – Pointer to a data structure of type MQXQH

These are described in detail below, followed by examples showing how to declare the elementary data types in the supported programming

languages.

MQBOOL - boolean
The MQBOOL data type represents a boolean value. The value 0 represents false. Any other value represents true.

MQBYTE - byte

The MQBYTE data type represents a single byte of data. No particular interpretation is placed on the byte; it is treated as a string of
bits, and not as a binary number or character. No special alignment is required.

MQBYTEn - string of n bytes

Each MQBYTEn data type represents a string of n bytes, where n can take any of the following values: 8, 16, 24, 32, 40, or 128. Each
byte is described by the MQBYTE data type. No special alignment is required.

MQCHAR - character

The MQCHAR data type represents a single-byte character, or one byte of a double-byte or multi-byte character. No special alignment

Page 23 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

is required.

MQCHARn - string of n characters
Each MQCHARn data type represents a string of n characters, where n can take any of the following values: 4, 8, 12, 20, 28, 32, 48,
64, 128, or 256. Each character is described by the MQCHAR data type. No special alignment is required.

MQFLOAT32 - 32–bit floating-point number
The MQFLOAT32 data type is a 32-bit floating-point number represented using the standard IEEE floating-point format. An
MQFLOAT32 must be aligned on a 4-byte boundary.

MQFLOAT64 - 64-bit floating-point number
The MQFLOAT64 data type is a 64-bit floating-point number represented using the standard IEEE floating-point format. An
MQFLOAT64 must be aligned on a 8-byte boundary.

MQHCONFIG - configuration handle
The MQHCONFIG data type represents a configuration handle, that is, the component that is being configured for a particular
installable service. A configuration handle must be aligned on its natural boundary.

MQHCONN - connection handle
The MQHCONN data type represents a connection handle, that is, the connection to a particular queue manager. A connection handle
must be aligned on a 4-byte boundary.

MQHMSG - message handle
The MQHMSG data type represents a message handle that gives access to a message. A message handle must be aligned on an 8-
byte boundary.

MQHOBJ - object handle
The MQHOBJ data type represents an object handle that gives access to an object. An object handle must be aligned on a 4-byte
boundary.

MQINT8 - 8–bit signed integer
The MQINT8 data type is an 8-bit signed integer that can take any value in the range -128 to +127, unless otherwise restricted by the
context.

MQINT16 - 16–but signed integer
The MQINT16 data type is a 16-bit signed integer that can take any value in the range -32 768 to +32 767, unless otherwise
restricted by the context. An MQINT16 must be aligned on a 2-byte boundary.

MQINT32 - 32–bit signed integer
The MQINT32 data type is a 32-bit signed binary integer that can take any value in the range -2 147 483 648 through +2 147 483
647, unless otherwise restricted by the context.

MQINT64
The MQINT64 data type is a 64-bit signed integer that can take any value in the range -9 223 372 036 854 775 808 through
 +9 223 372 036 854 775 807, unless otherwise restricted by the context.

MQLONG
The MQLONG data type is a 32-bit signed binary integer that can take any value in the range -2 147 483 648 through +2 147 483
647, unless otherwise restricted by the context.

MQPID - process identifier
The WebSphere MQ process identifier.

MQPTR - pointer

The MQPTR data type is the address of data of any type. A pointer must be aligned on its natural boundary; this is a 16-byte boundary
on i5/OS®, and an 8-byte boundary on other platforms.

MQTID - thread identifier

The WebSphere MQ thread identifier.

MQUINT8 - unsigned 8–bit integer
The MQUINT8 data type is an 8-bit unsigned integer that can take any value in the range 0 to +255, unless otherwise restricted by the

context.

MQUINT16 - unsigned 16–bit integer
The MQUINT16 data type is a 16-bit unsigned integer that can take any value in the range 0 through +65 535, unless otherwise

restricted by the context. An MQUINT16 must be aligned on a 2-byte boundary.

MQUINT32 - 32–bit unsigned integer
The MQUINT32 data type is a 32-bit unsigned binary integer.

MQUINT64 - 64–bit unsigned integer
The MQINT64 data type is a 64-bit unsigned integer that can take any value in the range 0 through +18 446 744 073 709 551 615,
unless otherwise restricted by the context.

MQULONG - 32–bit unsigned integer
The MQULONG data type is a 32-bit unsigned binary integer that can take any value in the range 0 through +4 294 967 294, unless
otherwise restricted by the context.

PMQACH - pointer to a data structure of type MQACH
A pointer to a data structure of type MQACH.

PMQAIR - pointer to a data structure of type MQAIR

Page 24 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

A pointer to a data structure of type MQAIR.

PMQAXC - pointer to a data structure of type MQAXC
A pointer to a data structure of type MQAXC.

PMQAXP - pointer to a data structure of type MQAXP
A pointer to a data structure of type MQAXP.

PMQBMHO - pointer to a data structure of type MQBMHO

A pointer to a data structure of type MQBMHO.

PMQBO - pointer to a data structure of type MQBO
A pointer to a data structure of type MQBO.

PMQBOOL - pointer to data of type MQBOOL
A pointer to data of type MQBOOL.

PMQBYTE - pointer to a data type of MQBYTE
A pointer to a data type of MQBYTE.

PMQBYTEn - pointer to a data structure of type MQBYTEn
A pointer to a data structure of type MQBYTEn, where n can be 8, 12, 16, 24, 32, 40, 48 or 128.

PMQCBC - pointer to a data structure of type MQCBC

A pointer to a data structure of type MQCBC.

PMQCBD - pointer to a data structure of type MQCBD
A pointer to a data structure of type MQCBD.

PMQCHAR - pointer to data of type MQCHAR
A pointer to data of type MQCHAR.

PMQCHARn - pointer to a data type of MQCHARn
A pointer to a data type of MQCHARn, where n can be 4, 8, 12, 20, 28, 32, 64, 128, 256, 264.

PMQCHARV - pointer to a data structure of type MQCHARV
A pointer to a data structure of type MQCHARV.

PMQCIH - pointer to a data structure of type of MQCIH

A pointer to a data structure of type of MQCIH

PMQCMHO - pointer to a data structure of type MQCMHO
A pointer to a data structure of type MQCMHO.

PMQCNO - pointer to a data structure of type of MQCNO
A pointer to a data structure of type of MQCNO

PMQCSP - pointer to a data structure of type MQCSP
A pointer to a data structure of type MQCSP.

PMQCTLO - pointer to a data structure of type MQCTLO
A pointer to a data structure of type MQCTLO.

PMQDH - pointer to a data structure of type MQDH

A pointer to a data structure of type MQDH.

PMQDHO - pointer to a data structure of type MQDHO
A pointer to a data structure of type MQDHO.

PMQDLH - pointer to a data structure of type of MQDLH
A pointer to a data structure of type of MQDLH.

PMQDMHO - pointer to a data structure of type MQDMHO
A pointer to a data structure of type MQDMHO.

PMQDMPO - pointer to a data structure of type MQDMPO
A pointer to a data structure of type MQDMPO.

PMQEPH - pointer to a data structure of type MQEPH

A pointer to a data structure of type MQEPH.

PMQFLOAT32 - pointer to data of type MQFLOAT32
A pointer to data of type MQFLOAT32.

PMQFLOAT64 - pointer to data of type MQFLOAT64
A pointer to data of type MQFLOAT64.

PMQFUNC - pointer to a function
A pointer to a function.

PMQGMO - pointer to a data structure of type MQGMO

Page 25 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

A pointer to a data structure of type MQGMO.

PMQHCONFIG - pointer to a data type of MQHCONFIG
A pointer to a data type of MQHCONFIG.

PMQHCONN - pointer to a data type of MQHCONN
A pointer to a data type of MQHCONN.

PMQHMSG - pointer to a data type of MQHMSG

A pointer to a data type of MQHMSG.

PMQHOBJ - pointer to data of type MQHOBJ
A pointer to data of type MQSMPO.

PMQIIH - pointer to a data structure of type MQIIH
A pointer to a data structure of type MQIIH.

PMQIMPO - pointer to a data structure of type MQIMPO
A pointer to a data structure of type MQIMPO.

PMQINT8 - pointer to data of type MQINT8
A pointer to data of type MQINT8.

PMQINT16 - pointer to data of type MQINT16

A pointer to data of type MQINT16.

PMQINT32 - pointer to data of type MQINT32
A pointer to data of type MQINT32.

PMQINT64 - pointer to data of type MQINT64
A pointer to data of type MQINT64.

PMQLONG - pointer to data of type MQLONG
A pointer to data of type MQLONG.

PMQMD - pointer to structure of type MQMD
A pointer to structure of type MQMD.

PMQMDE - pointer to a data structure of type MQMDE

A pointer to a data structure of type MQMDE.

PMQMD1 - pointer to a data structure of type MQMD1
A pointer to a data structure of type MQMD1

PMQMD2 - pointer to a data structure of type MQMD2
A pointer to a data structure of type MQMD2

PMQMHBO - pointer to a data structure of type MQMHBO
A pointer to a data structure of type MQMHBO.

PMQOD - pointer to a data structure of type MQOD
A pointer to a data structure of type MQOD.

PMQOR - pointer to a data structure of type MQOR

A pointer to a data structure of type MQOR.

PMQPD - pointer to a data structure of type MQPD
A pointer to a data structure of type MQPD.

PMQPID - pointer to a process identifier
A pointer to a process identifier.

PMQMD - pointer to a data structure of type MQMD
A pointer to a data structure of type MQMD.

PMQPMO - pointer to a data structure of type MQPMO
A pointer to a data structure of type MQPMO.

PMQPTR - pointer to data of type MQPTR

A pointer to data of type MQPTR.

PMQRFH - pointer to a data structure of type MQRFH
A pointer to a data structure of type MQRFH.

PMQRFH2 - pointer to a data structure of type MQRFH2
A pointer to a data structure of type MQRFH2.

PMQRMH - pointer to a data structure of type MQRMH

PMQRR - pointer to a data structure of type MQRR
A pointer to a data structure of type MQRR.

Page 26 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

PMQSCO - pointer to a data structure of type MQSCO
A pointer to a data structure of type MQSCO.

PMQSD - pointer to a data structure of type MQSD

A pointer to a data structure of type MQSD.

PMQSMPO - pointer to a data structure of type MQSMPO
A pointer to a data structure of type MQSMPO.

PMQSRO - pointer to a data structure of type MQSRO
A pointer to a data structure of type MQSRO.

PMQSTS - pointer to a data structure of type MQSTS
A pointer to a data structure of type MQSTS.

PMQTID - pointer to a data structure of type MQTID
A pointer to a data structure of type MQTID.

PMQTMA - pointer to a data structure of type MQTM

A pointer to a data structure of type MQTM.

PMQTMC2 - pointer to a data structure of type MQTMC2

PMQUINT8 - pointer to data of type MQUINT8
A pointer to data of type MQUINT8.

PMQUINT16 - pointer to data of type MQUINT16
A pointer to data of type MQUINT16.

PMQUINT32 - pointer to data of type MQUINT32

A pointer to data of type MQUINT32.

PMQUINT64 - pointer to data of type MQUINT64
A pointer to data of type MQUINT64.

PMQULONG - pointer to data of type MQULONG
A pointer to data of type MQULONG.

PMQVOID - pointer
The PMQVOID data type is a pointer.

PMQWIH - pointer to a data structure of type MQWIH
A pointer to a data structure of type MQWIH.

PMQXQH - pointer to a data structure of type MQXQH
A pointer to a data structure of type MQXQH.

C declarations

COBOL declarations

PL/I declarations
PL/I is supported on z/OS®.

System/390 assembler declarations
System/390® assembler is supported on z/OS only.

Parent topic: Introduction

This build: January 26, 2011 11:15:14

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr10250_

1.1.1.1. MQBOOL - boolean

The MQBOOL data type represents a boolean value. The value 0 represents false. Any other value represents true.

An MQBOOL must be aligned as for the MQLONG data type.

Parent topic: Elementary data types

This build: January 26, 2011 11:20:01

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40000_

Page 27 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

1.1.1.2. MQBYTE - byte

The MQBYTE data type represents a single byte of data. No particular interpretation is placed on the byte; it is treated as a string of bits,
and not as a binary number or character. No special alignment is required.

When MQBYTE data is sent between queue managers that use different character sets or encodings, the MQBYTE data is not converted in

any way. The MsgId and CorrelId fields in the MQMD structure are like this.

An array of MQBYTE is sometimes used to represent an area of main storage whose nature is not known to the queue manager. For
example, the area might contain application message data or a structure. The boundary alignment of this area must be compatible with the

nature of the data contained within it.

In the C programming language, any data type can be used for function parameters that are shown as arrays of MQBYTE. This is because
such parameters are always passed by address, and in C the function parameter is declared as a pointer-to-void.

Parent topic: Elementary data types

This build: January 26, 2011 11:15:14

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr10260_

1.1.1.3. MQBYTEn - string of n bytes

Each MQBYTEn data type represents a string of n bytes, where n can take any of the following values: 8, 16, 24, 32, 40, or 128. Each byte

is described by the MQBYTE data type. No special alignment is required.

If the data in the byte string is shorter than the defined length of the string, the data must be padded with nulls to fill the string.

When the queue manager returns byte strings to the application (for example, on the MQGET call), the queue manager pads with nulls to

the defined length of the string.

Named constants are available to define the lengths of byte string fields. These are listed in WebSphere MQ Constants.

Parent topic: Elementary data types

This build: January 26, 2011 11:15:14

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr10270_

1.1.1.4. MQCHAR - character

The MQCHAR data type represents a single-byte character, or one byte of a double-byte or multi-byte character. No special alignment is
required.

When MQCHAR data is sent between queue managers that use different character sets or encodings, the MQCHAR data usually requires
conversion in order for the data to be interpreted correctly. The queue manager does this automatically for MQCHAR data in the MQMD
structure. Conversion of MQCHAR data in the application message data is controlled by the MQGMO_CONVERT option specified on the
MQGET call; see the description of this option in MQGMO – Get-message options for further details.

Parent topic: Elementary data types

This build: January 26, 2011 11:15:14

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr10280_

1.1.1.5. MQCHARn - string of n characters

Each MQCHARn data type represents a string of n characters, where n can take any of the following values: 4, 8, 12, 20, 28, 32, 48, 64,
128, or 256. Each character is described by the MQCHAR data type. No special alignment is required.

If the data in the string is shorter than the defined length of the string, the data must be padded with blanks to fill the string. In some cases

a null character can be used to end the string prematurely, instead of padding with blanks; the null character and characters following it are
treated as blanks, up to the defined length of the string. The places where a null can be used are identified in the call and data type
descriptions.

When the queue manager returns character strings to the application (for example, on the MQGET call), the queue manager always pads
with blanks to the defined length of the string; the queue manager does not use the null character to delimit the string.

Named constants are available that define the lengths of character string fields and are listed in WebSphere MQ Constants.

Parent topic: Elementary data types

This build: January 26, 2011 11:15:14

Notices | Trademarks | Downloads | Library | Support | Feedback

Page 28 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr10290_

1.1.1.6. MQFLOAT32 - 32–bit floating-point number

The MQFLOAT32 data type is a 32-bit floating-point number represented using the standard IEEE floating-point format. An MQFLOAT32
must be aligned on a 4-byte boundary.

The use of MQFLOAT32 in C on z/OS® requires the use of the FLOAT(IEEE) compiler flag.

The use of MQFLOAT32 in COBOL is limited to compilers that support floating-point numbers in IEEE format. This may require the use of the
FLOAT(NATIVE) compiler flag.

Parent topic: Elementary data types

This build: January 26, 2011 11:20:02

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40010_

1.1.1.7. MQFLOAT64 - 64-bit floating-point number

The MQFLOAT64 data type is a 64-bit floating-point number represented using the standard IEEE floating-point format. An MQFLOAT64
must be aligned on a 8-byte boundary.

The use of MQFLOAT64 in C on z/OS® requires the use of the FLOAT(IEEE) compiler flag.

The use of MQFLOAT64 in COBOL is limited to compilers that support floating-point numbers in IEEE format. This may require the use of the
FLOAT(NATIVE) compiler flag.

Parent topic: Elementary data types

This build: January 26, 2011 11:20:02

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40020_

1.1.1.8. MQHCONFIG - configuration handle

The MQHCONFIG data type represents a configuration handle, that is, the component that is being configured for a particular installable
service. A configuration handle must be aligned on its natural boundary.

Note: Applications must test variables of this type for equality only.

Parent topic: Elementary data types

This build: January 26, 2011 11:20:43

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr44090_

1.1.1.9. MQHCONN - connection handle

The MQHCONN data type represents a connection handle, that is, the connection to a particular queue manager. A connection handle must
be aligned on a 4-byte boundary.

Note: Applications must test variables of this type for equality only.

Parent topic: Elementary data types

This build: January 26, 2011 11:15:14

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr10300_

1.1.1.10. MQHMSG - message handle

The MQHMSG data type represents a message handle that gives access to a message. A message handle must be aligned on an 8-byte
boundary.

Note: Applications must test variables of this type for equality only.

Page 29 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Parent topic: Elementary data types

This build: January 26, 2011 11:20:37

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42900_

1.1.1.11. MQHOBJ - object handle

The MQHOBJ data type represents an object handle that gives access to an object. An object handle must be aligned on a 4-byte boundary.

Note: Applications must test variables of this type for equality only.

Parent topic: Elementary data types

This build: January 26, 2011 11:15:14

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr10310_

1.1.1.12. MQINT8 - 8–bit signed integer

The MQINT8 data type is an 8-bit signed integer that can take any value in the range -128 to +127, unless otherwise restricted by the
context.

Parent topic: Elementary data types

This build: January 26, 2011 11:20:02

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40100_

1.1.1.13. MQINT16 - 16–but signed integer

The MQINT16 data type is a 16-bit signed integer that can take any value in the range -32 768 to +32 767, unless otherwise restricted by
the context. An MQINT16 must be aligned on a 2-byte boundary.

Parent topic: Elementary data types

This build: January 26, 2011 11:20:02

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40030_

1.1.1.14. MQINT32 - 32–bit signed integer

The MQINT32 data type is a 32-bit signed binary integer that can take any value in the range -2 147 483 648 through +2 147 483 647,
unless otherwise restricted by the context.

See the MQLONG definition.

Parent topic: Elementary data types

This build: January 26, 2011 11:15:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr10320_

1.1.1.15. MQINT64

The MQINT64 data type is a 64-bit signed integer that can take any value in the range -9 223 372 036 854 775 808 through
 +9 223 372 036 854 775 807, unless otherwise restricted by the context.

For COBOL, the valid range is limited to -999 999 999 999 999 999 through +999 999 999 999 999 999. A 64-bit integer must be aligned
on an 8-byte boundary.

Parent topic: Elementary data types

This build: January 26, 2011 11:15:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

Page 30 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This topic's URL:

fr10330_

1.1.1.16. MQLONG

The MQLONG data type is a 32-bit signed binary integer that can take any value in the range -2 147 483 648 through +2 147 483 647,
unless otherwise restricted by the context.

For COBOL, the valid range is limited to -999 999 999 through +999 999 999. An MQLONG must be aligned on a 4-byte boundary.

Parent topic: Elementary data types

This build: January 26, 2011 11:15:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr10340_

1.1.1.17. MQPID - process identifier

The WebSphere MQ process identifier.

This is the same identifier used in MQ trace and FFST™ dumps, but might be different from the operating system process identifier.

Parent topic: Elementary data types

This build: January 26, 2011 11:15:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr10350_

1.1.1.18. MQPTR - pointer

The MQPTR data type is the address of data of any type. A pointer must be aligned on its natural boundary; this is a 16-byte boundary on
i5/OS®, and an 8-byte boundary on other platforms.

Some programming languages support typed pointers; the MQI also uses these in a few cases (for example, PMQCHAR and PMQLONG in the
C programming language).

Parent topic: Elementary data types

This build: January 26, 2011 11:15:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr10360_

1.1.1.19. MQTID - thread identifier

The WebSphere MQ thread identifier.

This is the same identifier used in MQ trace and FFST™ dumps, but might be different from the operating system thread identifier.

Parent topic: Elementary data types

This build: January 26, 2011 11:15:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr10370_

1.1.1.20. MQUINT8 - unsigned 8–bit integer

The MQUINT8 data type is an 8-bit unsigned integer that can take any value in the range 0 to +255, unless otherwise restricted by the

context.

Parent topic: Elementary data types

This build: January 26, 2011 11:20:02

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40110_

1.1.1.21. MQUINT16 - unsigned 16–bit integer

Page 31 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

The MQUINT16 data type is a 16-bit unsigned integer that can take any value in the range 0 through +65 535, unless otherwise restricted
by the context. An MQUINT16 must be aligned on a 2-byte boundary.

Parent topic: Elementary data types

This build: January 26, 2011 11:20:02

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40040_

1.1.1.22. MQUINT32 - 32–bit unsigned integer

The MQUINT32 data type is a 32-bit unsigned binary integer.

See the definition of MQULONG - 32–bit unsigned integer MQULONG.

Parent topic: Elementary data types

This build: January 26, 2011 11:15:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr10380_

1.1.1.23. MQUINT64 - 64–bit unsigned integer

The MQINT64 data type is a 64-bit unsigned integer that can take any value in the range 0 through +18 446 744 073 709 551 615, unless
otherwise restricted by the context.

For COBOL, the valid range is limited to 0 through +999 999 999 999 999 999. A 64-bit integer must be aligned on an 8-byte boundary.

Parent topic: Elementary data types

This build: January 26, 2011 11:15:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr10390_

1.1.1.24. MQULONG - 32–bit unsigned integer

The MQULONG data type is a 32-bit unsigned binary integer that can take any value in the range 0 through +4 294 967 294, unless
otherwise restricted by the context.

For COBOL, the valid range is limited to 0 through +999 999 999. An MQULONG must be aligned on a 4-byte boundary.

Parent topic: Elementary data types

This build: January 26, 2011 11:15:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr10400_

1.1.1.25. PMQACH - pointer to a data structure of type MQACH

A pointer to a data structure of type MQACH.

Parent topic: Elementary data types

This build: January 26, 2011 11:20:45

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr44340_

1.1.1.26. PMQAIR - pointer to a data structure of type MQAIR

A pointer to a data structure of type MQAIR.

Parent topic: Elementary data types

This build: January 26, 2011 11:20:45

Page 32 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr44350_

1.1.1.27. PMQAXC - pointer to a data structure of type MQAXC

A pointer to a data structure of type MQAXC.

Parent topic: Elementary data types

This build: January 26, 2011 11:20:45

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr44360_

1.1.1.28. PMQAXP - pointer to a data structure of type MQAXP

A pointer to a data structure of type MQAXP.

Parent topic: Elementary data types

This build: January 26, 2011 11:20:45

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr44370_

1.1.1.29. PMQBMHO - pointer to a data structure of type MQBMHO

A pointer to a data structure of type MQBMHO.

Parent topic: Elementary data types

This build: January 26, 2011 11:20:44

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr44100_

1.1.1.30. PMQBO - pointer to a data structure of type MQBO

A pointer to a data structure of type MQBO.

Parent topic: Elementary data types

This build: January 26, 2011 11:20:45

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr44380_

1.1.1.31. PMQBOOL - pointer to data of type MQBOOL

A pointer to data of type MQBOOL.

Parent topic: Elementary data types

This build: January 26, 2011 11:20:02

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40050_

1.1.1.32. PMQBYTE - pointer to a data type of MQBYTE

A pointer to a data type of MQBYTE.

Page 33 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Parent topic: Elementary data types

This build: January 26, 2011 11:20:45

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr44390_

1.1.1.33. PMQBYTEn - pointer to a data structure of type MQBYTEn

A pointer to a data structure of type MQBYTEn, where n can be 8, 12, 16, 24, 32, 40, 48 or 128.

Parent topic: Elementary data types

This build: January 26, 2011 11:20:47

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr44650_

1.1.1.34. PMQCBC - pointer to a data structure of type MQCBC

A pointer to a data structure of type MQCBC.

Parent topic: Elementary data types

This build: January 26, 2011 11:20:44

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr44110_

1.1.1.35. PMQCBD - pointer to a data structure of type MQCBD

A pointer to a data structure of type MQCBD.

Parent topic: Elementary data types

This build: January 26, 2011 11:20:44

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr44110_

1.1.1.36. PMQCHAR - pointer to data of type MQCHAR

A pointer to data of type MQCHAR.

Parent topic: Elementary data types

This build: January 26, 2011 11:15:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr10410_

1.1.1.37. PMQCHARn - pointer to a data type of MQCHARn

A pointer to a data type of MQCHARn, where n can be 4, 8, 12, 20, 28, 32, 64, 128, 256, 264.

Parent topic: Elementary data types

This build: January 26, 2011 11:20:45

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr44400_

1.1.1.38. PMQCHARV - pointer to a data structure of type MQCHARV

Page 34 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

A pointer to a data structure of type MQCHARV.

Parent topic: Elementary data types

This build: January 26, 2011 11:20:44

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr44130_

1.1.1.39. PMQCIH - pointer to a data structure of type of MQCIH

A pointer to a data structure of type of MQCIH

.

Parent topic: Elementary data types

This build: January 26, 2011 11:20:45

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr44410_

1.1.1.40. PMQCMHO - pointer to a data structure of type MQCMHO

A pointer to a data structure of type MQCMHO.

Parent topic: Elementary data types

This build: January 26, 2011 11:20:44

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr44140_

1.1.1.41. PMQCNO - pointer to a data structure of type of MQCNO

A pointer to a data structure of type of MQCNO

.

Parent topic: Elementary data types

This build: January 26, 2011 11:20:46

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr44420_

1.1.1.42. PMQCSP - pointer to a data structure of type MQCSP

A pointer to a data structure of type MQCSP.

Parent topic: Elementary data types

This build: January 26, 2011 11:20:44

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr44150_

1.1.1.43. PMQCTLO - pointer to a data structure of type MQCTLO

A pointer to a data structure of type MQCTLO.

Parent topic: Elementary data types

This build: January 26, 2011 11:20:44

Notices | Trademarks | Downloads | Library | Support | Feedback

Page 35 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr44160_

1.1.1.44. PMQDH - pointer to a data structure of type MQDH

A pointer to a data structure of type MQDH.

Parent topic: Elementary data types

This build: January 26, 2011 11:20:44

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr44170_

1.1.1.45. PMQDHO - pointer to a data structure of type MQDHO

A pointer to a data structure of type MQDHO.

Parent topic: Elementary data types

This build: January 26, 2011 11:20:47

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr44660_

1.1.1.46. PMQDLH - pointer to a data structure of type of MQDLH

A pointer to a data structure of type of MQDLH.

Parent topic: Elementary data types

This build: January 26, 2011 11:20:46

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr44430_

1.1.1.47. PMQDMHO - pointer to a data structure of type MQDMHO

A pointer to a data structure of type MQDMHO.

Parent topic: Elementary data types

This build: January 26, 2011 11:20:44

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr44180_

1.1.1.48. PMQDMPO - pointer to a data structure of type MQDMPO

A pointer to a data structure of type MQDMPO.

Parent topic: Elementary data types

This build: January 26, 2011 11:20:44

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr44190_

1.1.1.49. PMQEPH - pointer to a data structure of type MQEPH

A pointer to a data structure of type MQEPH.

Parent topic: Elementary data types

This build: January 26, 2011 11:20:44

Page 36 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr44200_

1.1.1.50. PMQFLOAT32 - pointer to data of type MQFLOAT32

A pointer to data of type MQFLOAT32.

Parent topic: Elementary data types

This build: January 26, 2011 11:20:02

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40060_

1.1.1.51. PMQFLOAT64 - pointer to data of type MQFLOAT64

A pointer to data of type MQFLOAT64.

Parent topic: Elementary data types

This build: January 26, 2011 11:20:02

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40070_

1.1.1.52. PMQFUNC - pointer to a function

A pointer to a function.

Parent topic: Elementary data types

This build: January 26, 2011 11:20:46

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr44440_

1.1.1.53. PMQGMO - pointer to a data structure of type MQGMO

A pointer to a data structure of type MQGMO.

Parent topic: Elementary data types

This build: January 26, 2011 11:20:46

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr44450_

1.1.1.54. PMQHCONFIG - pointer to a data type of MQHCONFIG

A pointer to a data type of MQHCONFIG.

Parent topic: Elementary data types

This build: January 26, 2011 11:20:46

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr44460_

1.1.1.55. PMQHCONN - pointer to a data type of MQHCONN

A pointer to a data type of MQHCONN.

Parent topic: Elementary data types

Page 37 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This build: January 26, 2011 11:20:46

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr44470_

1.1.1.56. PMQHMSG - pointer to a data type of MQHMSG

A pointer to a data type of MQHMSG.

Parent topic: Elementary data types

This build: January 26, 2011 11:20:44

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr44210_

1.1.1.57. PMQHOBJ - pointer to data of type MQHOBJ

A pointer to data of type MQSMPO.

Parent topic: Elementary data types

This build: January 26, 2011 11:20:47

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr44690_

1.1.1.58. PMQIIH - pointer to a data structure of type MQIIH

A pointer to a data structure of type MQIIH.

Parent topic: Elementary data types

This build: January 26, 2011 11:20:46

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr44480_

1.1.1.59. PMQIMPO - pointer to a data structure of type MQIMPO

A pointer to a data structure of type MQIMPO.

Parent topic: Elementary data types

This build: January 26, 2011 11:20:44

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr44220_

1.1.1.60. PMQINT8 - pointer to data of type MQINT8

A pointer to data of type MQINT8.

Parent topic: Elementary data types

This build: January 26, 2011 11:20:02

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40120_

1.1.1.61. PMQINT16 - pointer to data of type MQINT16

A pointer to data of type MQINT16.

Page 38 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Parent topic: Elementary data types

This build: January 26, 2011 11:20:02

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40080_

1.1.1.62. PMQINT32 - pointer to data of type MQINT32

A pointer to data of type MQINT32.

Parent topic: Elementary data types

This build: January 26, 2011 11:15:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr10420_

1.1.1.63. PMQINT64 - pointer to data of type MQINT64

A pointer to data of type MQINT64.

Parent topic: Elementary data types

This build: January 26, 2011 11:15:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr10430_

1.1.1.64. PMQLONG - pointer to data of type MQLONG

A pointer to data of type MQLONG.

Parent topic: Elementary data types

This build: January 26, 2011 11:15:16

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr10440_

1.1.1.65. PMQMD - pointer to structure of type MQMD

A pointer to structure of type MQMD.

Parent topic: Elementary data types

This build: January 26, 2011 11:15:16

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr10450_

1.1.1.66. PMQMDE - pointer to a data structure of type MQMDE

A pointer to a data structure of type MQMDE.

Parent topic: Elementary data types

This build: January 26, 2011 11:20:46

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr44540_

1.1.1.67. PMQMD1 - pointer to a data structure of type MQMD1

A pointer to a data structure of type MQMD1

Parent topic: Elementary data types

Page 39 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This build: January 26, 2011 11:20:46

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr44530_

1.1.1.68. PMQMD2 - pointer to a data structure of type MQMD2

A pointer to a data structure of type MQMD2

Parent topic: Elementary data types

This build: January 26, 2011 11:20:47

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ir44700_

1.1.1.69. PMQMHBO - pointer to a data structure of type MQMHBO

A pointer to a data structure of type MQMHBO.

Parent topic: Elementary data types

This build: January 26, 2011 11:20:44

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr44230_

1.1.1.70. PMQOD - pointer to a data structure of type MQOD

A pointer to a data structure of type MQOD.

Parent topic: Elementary data types

This build: January 26, 2011 11:20:46

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr44550_

1.1.1.71. PMQOR - pointer to a data structure of type MQOR

A pointer to a data structure of type MQOR.

Parent topic: Elementary data types

This build: January 26, 2011 11:20:44

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr44240_

1.1.1.72. PMQPD - pointer to a data structure of type MQPD

A pointer to a data structure of type MQPD.

.

Parent topic: Elementary data types

This build: January 26, 2011 11:20:44

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr44250_

Page 40 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

1.1.1.73. PMQPID - pointer to a process identifier

A pointer to a process identifier.

Parent topic: Elementary data types

This build: January 26, 2011 11:20:44

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr44260_

1.1.1.74. PMQMD - pointer to a data structure of type MQMD

A pointer to a data structure of type MQMD.

Parent topic: Elementary data types

This build: January 26, 2011 11:20:45

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr44270_

1.1.1.75. PMQPMO - pointer to a data structure of type MQPMO

A pointer to a data structure of type MQPMO.

Parent topic: Elementary data types

This build: January 26, 2011 11:20:46

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr44560_

1.1.1.76. PMQPTR - pointer to data of type MQPTR

A pointer to data of type MQPTR.

Parent topic: Elementary data types

This build: January 26, 2011 11:20:46

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr44570_

1.1.1.77. PMQRFH - pointer to a data structure of type MQRFH

A pointer to a data structure of type MQRFH.

Parent topic: Elementary data types

This build: January 26, 2011 11:20:47

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr44670_

1.1.1.78. PMQRFH2 - pointer to a data structure of type MQRFH2

A pointer to a data structure of type MQRFH2.

Parent topic: Elementary data types

This build: January 26, 2011 11:20:46

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr44580_

Page 41 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

1.1.1.79. PMQRMH - pointer to a data structure of type MQRMH

Parent topic: Elementary data types

This build: January 26, 2011 11:20:46

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr44590_

1.1.1.80. PMQRR - pointer to a data structure of type MQRR

A pointer to a data structure of type MQRR.

Parent topic: Elementary data types

This build: January 26, 2011 11:20:45

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr44280_

1.1.1.81. PMQSCO - pointer to a data structure of type MQSCO

A pointer to a data structure of type MQSCO.

.

Parent topic: Elementary data types

This build: January 26, 2011 11:20:45

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr44290_

1.1.1.82. PMQSD - pointer to a data structure of type MQSD

A pointer to a data structure of type MQSD.

Parent topic: Elementary data types

This build: January 26, 2011 11:20:45

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr44300_

1.1.1.83. PMQSMPO - pointer to a data structure of type MQSMPO

A pointer to a data structure of type MQSMPO.

Parent topic: Elementary data types

This build: January 26, 2011 11:20:45

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr44310_

1.1.1.84. PMQSRO - pointer to a data structure of type MQSRO

A pointer to a data structure of type MQSRO.

Parent topic: Elementary data types

This build: January 26, 2011 11:20:45

Notices | Trademarks | Downloads | Library | Support | Feedback

Page 42 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr44320_

1.1.1.85. PMQSTS - pointer to a data structure of type MQSTS

A pointer to a data structure of type MQSTS.

Parent topic: Elementary data types

This build: January 26, 2011 11:20:45

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr44330_

1.1.1.86. PMQTID - pointer to a data structure of type MQTID

A pointer to a data structure of type MQTID.

Parent topic: Elementary data types

This build: January 26, 2011 11:20:47

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr44680_

1.1.1.87. PMQTMA - pointer to a data structure of type MQTM

A pointer to a data structure of type MQTM.

Parent topic: Elementary data types

This build: January 26, 2011 11:20:46

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr44600_

1.1.1.88. PMQTMC2 - pointer to a data structure of type MQTMC2

Parent topic: Elementary data types

This build: January 26, 2011 11:20:47

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr44610_

1.1.1.89. PMQUINT8 - pointer to data of type MQUINT8

A pointer to data of type MQUINT8.

Parent topic: Elementary data types

This build: January 26, 2011 11:20:02

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40130_

1.1.1.90. PMQUINT16 - pointer to data of type MQUINT16

A pointer to data of type MQUINT16.

Parent topic: Elementary data types

This build: January 26, 2011 11:20:02

Notices | Trademarks | Downloads | Library | Support | Feedback

Page 43 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40090_

1.1.1.91. PMQUINT32 - pointer to data of type MQUINT32

A pointer to data of type MQUINT32.

Parent topic: Elementary data types

This build: January 26, 2011 11:15:16

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr10460_

1.1.1.92. PMQUINT64 - pointer to data of type MQUINT64

A pointer to data of type MQUINT64.

Parent topic: Elementary data types

This build: January 26, 2011 11:15:16

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr10470_

1.1.1.93. PMQULONG - pointer to data of type MQULONG

A pointer to data of type MQULONG.

Parent topic: Elementary data types

This build: January 26, 2011 11:15:16

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr10480_

1.1.1.94. PMQVOID - pointer

The PMQVOID data type is a pointer.

Parent topic: Elementary data types

This build: January 26, 2011 11:20:47

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr44620_

1.1.1.95. PMQWIH - pointer to a data structure of type MQWIH

A pointer to a data structure of type MQWIH.

Parent topic: Elementary data types

This build: January 26, 2011 11:20:47

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr44630_

1.1.1.96. PMQXQH - pointer to a data structure of type MQXQH

A pointer to a data structure of type MQXQH.

Parent topic: Elementary data types

This build: January 26, 2011 11:20:47

Notices | Trademarks | Downloads | Library | Support | Feedback

Page 44 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr44640_

1.1.1.97. C declarations

Data type Representation

MQBOOL typedef MQLONG MQBOOL;

MQBYTE typedef unsigned char MQBYTE;

MQBYTE8 typedef MQBYTE MQBYTE8[8];

MQBYTE16 typedef MQBYTE MQBYTE16[16];

MQBYTE24 typedef MQBYTE MQBYTE24[24];

MQBYTE32 typedef MQBYTE MQBYTE32[32];

MQBYTE40 typedef MQBYTE MQBYTE40[40];

MQCHAR typedef char MQCHAR;

MQCHAR4 typedef MQCHAR MQCHAR4[4];

MQCHAR8 typedef MQCHAR MQCHAR8[8];

MQCHAR12 typedef MQCHAR MQCHAR12[12];

MQCHAR20 typedef MQCHAR MQCHAR20[20];

MQCHAR28 typedef MQCHAR MQCHAR28[28];

MQCHAR32 typedef MQCHAR MQCHAR32[32];

MQCHAR48 typedef MQCHAR MQCHAR48[48];

MQCHAR64 typedef MQCHAR MQCHAR64[64];

MQCHAR128 typedef MQCHAR MQCHAR128[128];

MQCHAR256 typedef MQCHAR MQCHAR256[256];

MQFLOAT32 typedef float MQFLOAT32;

MQFLOAT64 typedef double MQFLOAT64;

MQHCONFIG typedef void MQPOINTER MQHCONFIG;

MQHCONN typedef MQLONG MQHCONN;

MQHOBJ typedef MQLONG MQHOBJ;

MQINT8 typedef signed char MQINT8;

MQINT16 typedef short MQINT16;

MQINT64 On 64-bit UNIX systems:

typedef long;

On 32-bit AIX®, Solaris, and HP-UX:

typedef int64_t;

On i5/OS®, Linux, and z/OS®:

typedef long long;

On Windows:

typedef _int64;

MQLONG On i5/OS:

typedef long MQLONG;

other platforms:

if defined(MQ_64_BIT)

 typedef int MQLONG;

else

 typedef long MQLONG;

MQPID typedef MQLONG MQPID;

MQPTR typedef void MQPOINTER MQPTR;

MQTID typedef MQLONG MQTID;

MQUINT8 typedef unsigned char MQUINT8;

MQUINT16 typedef unsigned short MQUINT16;

MQUINT64 On 64-bit UNIX systems:

typedef unsigned long;

On 32-bit AIX, Solaris, and HP-UX:

typedef uint64_t;

Page 45 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

On i5/OS, Linux, and z/OS:

typedef unsigned long long;

On Windows:

typedef unsigned _int64;

MQULONG On i5/OS:

typedef unsigned long MQULONG;

other platforms:

if defined(MQ_64_BIT)

 typedef unsigned int MQULONG;

else

 typedef unsigned long MQULONG;

PMQBO typedef MQBO MQPOINTER PMQBO;

PMQBOOL typedef MQBOOL MQPOINTER PMQBOOL;

PMQBYTE typedef MQBYTE MQPOINTER PMQBYTE;

PMQBYTE8 typedef MQBYTE8[8] MQPOINTER PMQBYTE8[8];

PMQBYTE16 typedef MQBYTE16[16] MQPOINTER PMQBYTE16[16];

PMQBYTE24 typedef MQBYTE24[24] MQPOINTER PMQBYTE24[24];

PMQBYTE32 typedef MQBYTE32[32] MQPOINTER PMQBYTE32[32];

PMQBYTE40 typedef MQBYTE40[40] MQPOINTER PMQBYTE40[40];

PMQBYTE128 typedef MQBYTE128[128] MQPOINTER PMQBYTE128[128];

PMQCHAR typedef MQCHAR MQPOINTER PMQCHAR;

PMQCHAR4 typedef MQCHAR4[4] MQPOINTER PMQCHAR4[4];

PMQCHAR8 typedef MQCHAR8[8] MQPOINTER PMQCHAR8[8];

PMQCHAR12 typedef MQCHAR12[12] MQPOINTER PMQCHAR12[12];

PMQCHAR20 typedef MQCHAR20[20] MQPOINTER PMQCHAR20[20];

PMQCHAR28 typedef MQCHAR28[28] MQPOINTER PMQCHAR28[28];

PMQCHAR32 typedef MQCHAR32[32] MQPOINTER PMQCHAR32[32];

PMQCHAR48 typedef MQCHAR48[48] MQPOINTER PMQCHAR48[48];

PMQCHAR64 typedef MQCHAR64[64] MQPOINTER PMQCHAR64[64];

PMQCHAR128 typedef MQCHAR128[128] MQPOINTER PMQCHAR128[128];

PMQCHAR256 typedef MQCHAR256[256] MQPOINTER PMQCHAR256[256];

PMQCHAR264 typedef MQCHAR264[264] MQPOINTER PMQCHAR264[264];

PMQCIH typedef MQCIH MQPOINTER PMQCIH;

PMQCNO typedef MQCNO MQPOINTER PMQCNO;

PMQDLH typedef MQDLH MQPOINTER PMQDLH;

PMQFUNC typedef void MQPOINTER PMQFUNC;

PMQFLOAT32 typedef MQFLOAT32 MQPOINTER PMQFLOAT32;

PMQFLOAT64 typedef MQFLOAT64 MQPOINTER PMQFLOAT64;

PMQGMO typedef MQGMO MQPOINTER PMQGMO;

PMQHCONFIG typedef MQHCONFIG MQPOINTER PMQHCONFIG;

PMQHCONN typedef MQHCONN MQPOINTER PMQHCONN;

PMQHOBJ typedef MQHOBJ MQPOINTER PMQHOBJ;

PMQIIH typedef MQIIH MQPOINTER PMQIIH;

PMQINT8 typedef MQINT8 MQPOINTER PMQINT8;

PMQINT16 typedef MQINT16 MQPOINTER PMQINT16;

PMQLONG typedef MQLONG MQPOINTER PMQLONG;

PMQMD typedef MQMD MQPOINTER PMQMD;

PMQMD1 typedef MQMD1[1] MQPOINTER PMQMD1[1];

PMQMDE typedef MQMDE MQPOINTER PMQMDE;

PMQOD typedef MQOD MQPOINTER PMQOD;

PMQPMO typedef MQPMO MQPOINTER PMQPMO;

PMQPTR typedef MQPTR MQPOINTER PMQPTR;

Page 46 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

See Data types for a description of the MQPOINTER macro variable.

Parent topic: Elementary data types

This build: January 26, 2011 11:15:17

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr10490_

1.1.1.98. COBOL declarations

PMQRFH typedef MQRFH MQPOINTER PMQRFH;

PMQRFH2 typedef MQRFH2[2] MQPOINTER PMQRFH2[2];

PMQRMH typedef MQRMH MQPOINTER PMQRMH;

PMQTM typedef MQTM MQPOINTER PMQTM;

PMQTMC2 typedef MQTMC2[2] MQPOINTER PMQTMC2[2];

PMQUINT8 typedef MQUINT8 MQPOINTER PMQUINT8;

PMQUINT16 typedef MQUINT16 MQPOINTER PMQUINT16;

PMQULONG typedef MQULONG MQPOINTER PMQULONG;

PMQVOID typedef void MQPOINTER PMQVOID;

PMQWIH typedef MQWIH MQPOINTER PMQWIH;

PMQXQH typedef MQXQH MQPOINTER PMQXQH;

PPMQBO typedef PMQBO MQPOINTER PPMQBO;

PPMQBYTE typedef PMQBYTE MQPOINTER PPMQBYTE;

PPMQCHAR typedef PMQCHAR MQPOINTER PPMQCHAR;

PPMQCNO typedef PMQCNO MQPOINTER PPMQCNO;

PPMQGMO typedef PMQGMO MQPOINTER PPMQGMO;

PPMQHCONN typedef PMQHCONN MQPOINTER PPMQHCONN;

PPMQHOBJ typedef PMQHOBJ MQPOINTER PPMQHOBJ;

PPMQLONG typedef PMQLONG MQPOINTER PPMQLONG;

PPMQMD typedef PMQMD MQPOINTER PPMQMD;

PPMQOD typedef PMQOD MQPOINTER PPMQOD;

PPMQPMO typedef PMQPMO MQPOINTER PPMQPMO;

PPMQULONG typedef PMQULONG MQPOINTER PPMQULONG;

PPMQVOID typedef PMQVOID MQPOINTER PPMQVOID;

Where defined(MQ_64_BIT) means a 64 bit platform.

Data type Representation

MQBOOL PIC S9(9) BINARY

MQBYTE PIC X

MQBYTE8 PIC X(8)

MQBYTE16 PIC X(16)

MQBYTE24 PIC X(24)

MQBYTE32 PIC X(32)

MQBYTE40 PIC X(40)

MQCHAR PIC X

MQCHAR4 PIC X(4)

MQCHAR8 PIC X(8)

MQCHAR12 PIC X(12)

MQCHAR20 PIC X(20)

MQCHAR28 PIC X(28)

MQCHAR32 PIC X(32)

Page 47 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Parent topic: Elementary data types

This build: January 26, 2011 11:15:18

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr10500_

1.1.1.99. PL/I declarations

PL/I is supported on z/OS®.

MQCHAR48 PIC X(48)

MQCHAR64 PIC X(64)

MQCHAR128 PIC X(128)

MQCHAR256 PIC X(256)

MQFLOAT32 USAGE COMP-1

MQFLOAT64 USAGE COMP-2

MQHCONN PIC S9(9) BINARY

MQHOBJ PIC S9(9) BINARY

MQINT8 PIC S9(2) BINARY

MQINT16 PIC S9(4) BINARY

MQINT64 PIC S9(18) BINARY

MQLONG PIC S9(9) BINARY

MQPTR POINTER

MQUINT8 PIC 9(2) BINARY

MQUINT16 PIC 9(4) BINARY

MQUINT64 PIC 9(18) BINARY

MQULONG PIC 9(9) BINARY

Data type Representation

MQBOOL fixed bin(31)

MQBYTE char(1)

MQBYTE8 char(8)

MQBYTE16 char(16)

MQBYTE24 char(24)

MQBYTE32 char(32)

MQBYTE40 char(40)

MQCHAR char(1)

MQCHAR4 char(4)

MQCHAR8 char(8)

MQCHAR12 char(12)

MQCHAR20 char(20)

MQCHAR28 char(28)

MQCHAR32 char(32)

MQCHAR48 char(48)

MQCHAR64 char(64)

MQCHAR128 char(128)

MQCHAR256 char(256)

MQFLOAT32 binary float(21) ieee

MQFLOAT64 binary float(52) ieee

MQHCONN fixed bin(31)

MQHOBJ fixed bin(31)

Page 48 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Parent topic: Elementary data types

This build: January 26, 2011 11:15:18

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr10510_

1.1.1.100. System/390 assembler declarations

System/390® assembler is supported on z/OS® only.

MQINT8 fixed bin(7)

MQINT16 fixed bin(15)

MQINT64 fixed bin(63)

MQLONG fixed bin(31)

MQPTR pointer

MQUINT8 fixed bin(8)

MQUINT16 fixed bin(16)

MQUINT64 fixed bin(64)

MQULONG fixed bin(32)

Data type Representation

MQBOOL DS F

MQBYTE DS XL1

MQBYTE8 DS XL8

MQBYTE16 DS XL16

MQBYTE24 DS XL24

MQBYTE32 DS XL32

MQBYTE40 DS XL40

MQCHAR DS CL1

MQCHAR4 DS CL4

MQCHAR8 DS CL8

MQCHAR12 DS CL12

MQCHAR20 DS CL20

MQCHAR28 DS CL28

MQCHAR32 DS CL32

MQCHAR48 DS CL48

MQCHAR64 DS CL64

MQCHAR128 DS CL128

MQCHAR256 DS CL256

MQFLOAT32 DS EB

MQFLOAT64 DS DB

MQHCONN DS F

MQHOBJ DS F

MQINT8 DS XL1

MQINT16 DS H

MQINT64 DS D

MQLONG DS F

MQPTR DS F

MQUINT8 DS XL1

MQUINT16 DS H

MQUINT64 DS D

Page 49 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Parent topic: Elementary data types

This build: January 26, 2011 11:15:19

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr10520_

1.1.2. Structure data types – introduction

This section introduces the structure data types used in the MQI. The structure data types themselves are described in subsequent chapters.

Summary
The following tables summarize the structure data types used in the MQI.

Rules for structure data types

Conventions used in the descriptions

Parent topic: Introduction

This build: January 26, 2011 11:15:25

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr10530_

1.1.2.1. Summary

The following tables summarize the structure data types used in the MQI.

MQULONG DS F

Table 1. Structure data types used on MQI calls (or exit functions):

Structure Description Calls where used

MQACH API exit chain header

MQAIR Authentication information record MQCONNX

MQAXC API exit context

MQAXP API exit parameter

MQBMHO Buffer to message handle options MQBUFMH

MQBO Begin options MQBEGIN

MQCBD Callback descriptor MQCB

MQCBO Create-bag options mqCreateBag

MQCHARV Variable length string MQINQMP

MQCNO Connect options MQCONNX

MQCSP Security parameters MQCONNX

MQCTLO Callback options MQCTL

MQDMPO Delete message property options MQDLTMP

MQGMO Get-message options MQGET

MQIMPO Inquire message property options MQINQMP

MQMD Message descriptor MQBUFMH, MQMHBUF, MQCB, MQGET, MQPUT, MQPUT1

MQMHBO Message handle to buffer options MQMHBUF

MQOD Object descriptor MQOPEN, MQPUT1

MQOR Object record MQOPEN, MQPUT1

MQPD Property descriptor MQSETMP

MQPMO Put-message options MQPUT, MQPUT1

MQPMR Put-message record MQPUT, MQPUT1

MQRR Response record MQOPEN, MQPUT, MQPUT1

MQSCO SSL configuration options MQCONNX

MQSD Subscription descriptor MQSUB

MQSMPO Set message property option MQSETMP

MQSRO Subscription request options MQSUBRQ

MQSTS Status reporting structure MQSTAT

Table 2. Structure data types used in message data:

Structure Description

MQCIH CICS® information header

MQCFH PCF header

MQEPH Embedded PCF header

Page 50 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Note: The MQDXP structure (data conversion exit parameter) is described in Data conversion, together with the associated data conversion
calls.

Parent topic: Structure data types – introduction

This build: January 26, 2011 11:15:26

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr10540_

1.1.2.2. Rules for structure data types

Programming languages vary in their level of support for structures, and certain rules and conventions are adopted to map the MQI

structures consistently in each programming language:

1. Structures must be aligned on their natural boundaries.

� Most MQI structures require 4-byte alignment.

� On i5/OS®, structures containing pointers require 16-byte alignment; these are: MQCNO, MQOD, MQPMO.

2. Each field in a structure must be aligned on its natural boundary.

� Fields with data types that equate to MQLONG must be aligned on 4-byte boundaries.

� Fields with data types that equate to MQPTR must be aligned on 16-byte boundaries on i5/OS, and 4-byte boundaries in other
environments.

� Other fields are aligned on 1-byte boundaries.

3. The length of a structure must be a multiple of its boundary alignment.

� Most MQI structures have lengths that are multiples of 4 bytes.

� On i5/OS, structures containing pointers have lengths that are multiples of 16 bytes.

4. Where necessary, padding bytes or fields must be added to ensure compliance with the above rules.

Parent topic: Structure data types – introduction

This build: January 26, 2011 11:15:26

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr10550_

1.1.2.3. Conventions used in the descriptions

The description of each structure data type includes:

� An overview of the purpose and use of the structure

� Descriptions of the fields in the structure, in a form that is independent of the programming language

� Examples of how the structure is declared in each of the supported programming languages

The description of each structure data type contains the following sections:

Structure name

The name of the structure, followed by a summary of the fields in the structure.

Overview

A brief description of the purpose and use of the structure.

Fields

Descriptions of the fields. For each field, the name of the field is followed by its elementary data type in parentheses (). In text, field
names are shown using an italic typeface; for example Version.

There is also a description of the purpose of the field, together with a list of any values that the field can take. Names of constants are
shown in uppercase; for example MQGMO_STRUC_ID. A set of constants having the same prefix is shown using the * character, for
example: MQIA_*.

In the descriptions of the fields, the following terms are used:

MQDH Distribution header

MQDLH Dead letter (undelivered message) header

MQIIH IMS™ information header

MQMDE Message descriptor extension

MQRFH Rules and formatting header

MQRFH2 Rules and formatting header 2

MQRMH Reference message header

MQTM Trigger message

MQTMC2 Trigger message (character format 2)

MQWIH Work information header

MQXQH Transmission queue header

Page 51 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

input

You supply information in the field when you make a call.

output

The queue manager returns information in the field when the call completes or fails.

input/output

You supply information in the field when you make a call, and the queue manager changes the information when the call completes or
fails.

Initial values

A table showing the initial values for each field in the data definition files supplied with the MQI.

C declaration

Typical declaration of the structure in C.

COBOL declaration

Typical declaration of the structure in COBOL.

PL/I declaration

Typical declaration of the structure in PL/I.

System/390® assembler declaration

Typical declaration of the structure in System/390 assembler language.

Visual Basic declaration

Typical declaration of the structure in Visual Basic.

Parent topic: Structure data types – introduction

This build: January 26, 2011 11:15:26

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr10560_

1.1.3. C programming

This section contains information to help you use the MQI from the C programming language.

Header files
Header files are provided to help you write C application programs that use the MQI.

Functions
You do not need to specify all parameters that are passed by address every time you invoke a function.

Parameters with undefined data type

Data types

Manipulating binary strings
Declare strings of binary data as one of the MQBYTEn data types.

Manipulating character strings

When the queue manager returns character data to the application, the queue manager always pads the character data with blanks to
the defined length of the field; the queue manager does not return null-terminated strings.

Initial values for structures

The header files define various macro variables that you can use to provide initial values for the MQ structures when you declare
instances of those structures.

Initial values for dynamic structures

Use from C++

Notational conventions
This information shows how to invoke the functions and declare parameters.

Parent topic: Introduction

This build: January 26, 2011 11:15:26

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr10570_

1.1.3.1. Header files

Header files are provided to help you write C application programs that use the MQI.

These header files are summarized in Table 1.

Page 52 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

To improve the portability of applications, code the name of the header file in lowercase on the #include preprocessor directive:

#include "cmqc.h"

Parent topic: C programming

This build: January 26, 2011 11:15:27

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr10580_

1.1.3.2. Functions

You do not need to specify all parameters that are passed by address every time you invoke a function.

� Pass parameters that are input-only and of type MQHCONN, MQHOBJ, or MQLONG by value.

� Pass all other parameters by address.

Where a particular parameter is not required, use a null pointer as the parameter on the function invocation, in place of the address of the
parameter data. Parameters for which this is possible are identified in the call descriptions.

No parameter is returned as the value of the function; in C terminology, this means that all functions return void.

The attributes of the function are defined by the MQENTRY macro variable; the value of this macro variable depends on the environment.

Parent topic: C programming

This build: January 26, 2011 11:15:27

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr10590_

1.1.3.3. Parameters with undefined data type

The Buffer parameter on the MQGET, MQPUT, and MQPUT1 functions has an undefined data type. This parameter is used to send and

receive the application’s message data.

Parameters of this sort are shown in the C examples as arrays of MQBYTE. You can declare the parameters in this way, but it is usually more
convenient to declare them as the particular structure that describes the layout of the data in the message. Declare the actual function

parameter as a pointer-to-void, and specify the address of any sort of data as the parameter on the function invocation.

Parent topic: C programming

This build: January 26, 2011 11:15:27

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr10600_

1.1.3.4. Data types

Define all data types using the C typedef statement. For each data type, also define the corresponding pointer data type. The name of the
pointer data type is the name of the elementary or structure data type prefixed with the letter P to denote a pointer. Define the attributes of
the pointer using the MQPOINTER macro variable; the value of this macro variable depends on the environment. The following illustrates
how to declare pointer data types:

#define MQPOINTER * /* depends on environment */

…

typedef MQLONG MQPOINTER PMQLONG; /* pointer to MQLONG */

typedef MQMD MQPOINTER PMQMD; /* pointer to MQMD */

Parent topic: C programming

This build: January 26, 2011 11:15:27

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr10610_

1.1.3.5. Manipulating binary strings

Table 1. C header files

File Contents

CMQC Function prototypes, data types, and named constants for the main MQI

CMQXC Function prototypes, data types, and named constants for the data conversion exit

Page 53 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Declare strings of binary data as one of the MQBYTEn data types.

Whenever you copy, compare, or set fields of this type, use the C functions memcpy, memcmp, or memset; for example:

#include <string.h>

#include "cmqc.h"

MQMD MyMsgDesc;

memcpy(MyMsgDesc.MsgId, /* set "MsgId" field to nulls */

 MQMI_NONE, /* ...using named constant */

 sizeof(MyMsgDesc.MsgId));

memset(MyMsgDesc.CorrelId, /* set "CorrelId" field to nulls */

 0x00, /* ...using a different method */

 sizeof(MQBYTE24));

Do not use the string functions strcpy, strcmp, strncpy, or strncmp, because these do not work correctly for data declared with the
MQBYTEn data types.

Parent topic: C programming

This build: January 26, 2011 11:15:27

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr10620_

1.1.3.6. Manipulating character strings

When the queue manager returns character data to the application, the queue manager always pads the character data with blanks to the

defined length of the field; the queue manager does not return null-terminated strings.

Therefore, when copying, comparing, or concatenating such strings, use the string functions strncpy, strncmp, or strncat.

Do not use the string functions that require the string to be terminated by a null (strcpy, strcmp, strcat). Also, do not use the function
strlen to determine the length of the string; use instead the sizeof function to determine the length of the field.

Parent topic: C programming

This build: January 26, 2011 11:15:27

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr10630_

1.1.3.7. Initial values for structures

The header files define various macro variables that you can use to provide initial values for the MQ structures when you declare instances
of those structures.

These macro variables have names of the form MQxxx_DEFAULT, where MQxxx represents the name of the structure. They are used in the

following way:

MQMD MyMsgDesc = {MQMD_DEFAULT};

MQPMO MyPutOpts = {MQPMO_DEFAULT};

For some character fields (for example, the StrucId fields that occur in most structures, or the Format field that occurs in MQMD), the MQI

defines particular values that are valid. For each of the valid values, two macro variables are provided:

� One macro variable defines the value as a string whose length, excluding the implied null matches exactly the defined length of the

field. For example, for the Format field in MQMD the following macro variable is provided (� represents a blank character):

#define MQFMT_STRING "MQSTR���"

Use this form with the memcpy and memcmp functions.

� The other macro variable defines the value as an array of characters; the name of this macro variable is the name of the string form
suffixed with _ARRAY. For example:

#define MQFMT_STRING_ARRAY 'M','Q','S','T','R','�','�','�'

Use this form to initialize the field when you declare an instance of the structure with values different from those provided by the
MQMD_DEFAULT macro variable. (This is not always necessary; in some environments you can use the string form of the value in both
situations. However, the array form is recommended for declarations, because this is required for compatibility with the C++
programming language.)

Parent topic: C programming

This build: January 26, 2011 11:15:27

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr10640_

1.1.3.8. Initial values for dynamic structures

Page 54 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

When a variable number of instances of a structure is required, the instances are usually created in main storage obtained dynamically using
the calloc or malloc functions. To initialize the fields in such structures, the following technique is recommended:

1. Declare an instance of the structure using the appropriate MQxxx_DEFAULT macro variable to initialize the structure. This instance
becomes the “model” for other instances:

MQMD Model = {MQMD_DEFAULT}; /* declare model instance */

The static or auto keywords can be coded on the declaration in order to give the model instance static or dynamic lifetime, as
required.

2. Use the calloc or malloc functions to obtain storage for a dynamic instance of the structure:

PMQMD Instance;

Instance = malloc(sizeof(MQMD)); /* get storage for dynamic instance */

3. Use the memcpy function to copy the model instance to the dynamic instance:

memcpy(Instance,&Model,sizeof(MQMD)); /* initialize dynamic instance */

Parent topic: C programming

This build: January 26, 2011 11:15:27

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr10650_

1.1.3.9. Use from C++

For the C++ programming language, the header files contain the following additional statements that are included only when you use a C++
compiler:

#ifdef __cplusplus

 extern "C" {

#endif

/* rest of header file */

#ifdef __cplusplus

 }

#endif

Parent topic: C programming

This build: January 26, 2011 11:15:27

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr10660_

1.1.3.10. Notational conventions

This information shows how to invoke the functions and declare parameters.

In some cases, the parameters are arrays whose size is not fixed. For these, a lowercase n is used to represent a numeric constant. When
you code the declaration for that parameter, replace the n with the numeric value required.

Parent topic: C programming

This build: January 26, 2011 11:15:27

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr10670_

1.1.4. COBOL programming

This section contains information to help you use the MQI from the COBOL programming language.

COPY files
Various COPY files are provided to help you write COBOL application programs that use the MQI. There are two files containing named
constants, and two files for each of the structures.

Structures

Pointers
Some structures need to address optional data that might be discontiguous with the structure, such as the MQOR and MQRR records

addressed by the MQOD structure.

Named constants

Notational conventions

Parent topic: Introduction

Page 55 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This build: January 26, 2011 11:15:27

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr10680_

1.1.4.1. COPY files

Various COPY files are provided to help you write COBOL application programs that use the MQI. There are two files containing named
constants, and two files for each of the structures.

Each structure is provided in two forms: a form with initial values, and a form without:

� Use the structures with initial values in the WORKING-STORAGE SECTION of a COBOL program; they are contained in COPY files with
names suffixed with the letter V (for Values).

� Use the structures without initial values in the LINKAGE SECTION of a COBOL program; they are contained in COPY files with names

suffixed with the letter L (for Linkage).

The COPY files are summarized in Table 1. Not all the files listed are available in all environments.

Parent topic: COBOL programming

This build: January 26, 2011 11:15:27

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr10690_

1.1.4.2. Structures

In the COPY file, each structure declaration begins with a level-10 item; this enables you to declare several instances of the structure by
coding the level-01 declaration and then using the COPY statement to copy in the remainder of the structure declaration. To refer to the
appropriate instance, use the IN keyword:

* Declare two instances of MQMD

 01 MY-MQMD.

 COPY CMQMDV.

 01 MY-OTHER-MQMD.

 COPY CMQMDV.

*

* Set MSGTYPE field in MY-OTHER-MQMD

 MOVE MQMT-REQUEST TO MQMD-MSGTYPE IN MY-OTHER-MQMD.

Align the structures on appropriate boundaries. If you use the COPY statement to include a structure following an item that is not the level-

Table 1. COBOL COPY files

File (with initial

values)

File (without

initial values)

Contents

CMQAIRV CMQAIRL Authentication information record

CMQBOV CMQBOL Begin options structure

CMQCIHV CMQCIHL CICS® information header structure

CMQCNOV CMQCNOL Connect options structure

CMQDHV CMQDHL Distribution header structure

CMQDLHV CMQDLHL Dead letter header structure

CMQDXPV CMQDXPL Data conversion exit parameter structure

CMQGMOV CMQGMOL Get message options structure

CMQIIHV CMQIIHL IMS™ information header structure

CMQMDV CMQMDL Message descriptor structure

CMQMDEV CMQMDEL Message descriptor extension structure

CMQMD1V CMQMD1L Message descriptor structure version 1

CMQODV CMQODL Object descriptor structure

CMQORV CMQORL Object record structure

CMQPMOV CMQPMOL Put message options structure

CMQRFHV CMQRFHL Rules and formatting header structure

CMQRFH2V CMQRFH2L Rules and formatting header structure version 2

CMQRMHV CMQRMHL Reference message header structure

CMQRRV CMQRRL Response record structure

CMQSCOV CMQSCOL SSL configuration options

CMQTMV CMQTML Trigger message structure

CMQTMCV CMQTMCL Trigger message structure (character format)

CMQTMC2V CMQTMC2L Trigger message structure (character format) version 2

CMQWIHV CMQWIHL Work information header structure

CMQXQHV CMQXQHL Transmission queue header structure

CMQV – Named constants for main MQI

CMQXV – Named constants for data conversion exit

Page 56 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

01 item, ensure that the structure begins at the appropriate offset from the start of the level-01 item. Most MQI structures require 4-byte
alignment; the exceptions to this are MQCNO, MQOD, and MQPMO, which require 16-byte alignment on i5/OS®.

In this book, the names of fields in structures are shown without a prefix. In COBOL, the field names are prefixed with the name of the
structure followed by a hyphen. However, if the structure name ends with a numeric digit, indicating that the structure is a second or later
version of the original structure, the numeric digit is omitted from the prefix. Field names in COBOL are shown in uppercase (although
lowercase or mixed case can be used if required). For example, the field MsgType described in MQMD – Message descriptor becomes MQMD-

MSGTYPE in COBOL.

The V-suffix structures are declared with initial values for all the fields; you need to set only those fields where you want a value that is
different from the supplied initial value.

Parent topic: COBOL programming

This build: January 26, 2011 11:15:28

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr10700_

1.1.4.3. Pointers

Some structures need to address optional data that might be discontiguous with the structure, such as the MQOR and MQRR records
addressed by the MQOD structure.

To address this optional data, the structures contain fields that are declared with the pointer data type. However, COBOL does not support
the pointer data type in all environments. Because of this, the optional data can also be addressed using fields that contain the offset of the

data from the start of the structure.

If you want to port an application between environments, ascertain whether the pointer data type is available in all the intended
environments. If it is not, the application must address the optional data using the offset fields instead of the pointer fields.

In those environments where pointers are not supported, declare the pointer fields as byte strings of the appropriate length, with the initial

value being the all-null byte string. Do not alter this initial value if you are using the offset fields.

Parent topic: COBOL programming

This build: January 26, 2011 11:15:28

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr10710_

1.1.4.4. Named constants

In this book, the names of constants are shown containing the underscore character (_) as part of the name. In COBOL, use the hyphen
character (-) in place of the underscore.

Constants that have character-string values use the single-quote character as the string delimiter ('). In some environments you might need
to specify an appropriate compiler option to cause the compiler to accept the single quote as the string delimiter in place of the double

quote.

The named constants are declared in the COPY files as level-10 items. To use the constants, declare the level-01 item explicitly, and then
use the COPY statement to copy in the declarations of the constants:

* Declare a structure to hold the constants

 01 MY-MQ-CONSTANTS.

 COPY CMQV.

The above method causes the constants to occupy storage in the program even if they are not referenced. If you include the constants in

many separate programs within the same run unit, multiple copies of the constants will exist; this consumes main storage unnecessarily.
Avoid this by using one of the following techniques:

� Add the GLOBAL clause to the level-01 declaration:

* Declare a global structure to hold the constants

 01 MY-MQ-CONSTANTS GLOBAL.

 COPY CMQV.

This causes allocates storage for only one set of constants within the run unit; the constants, however, can be referenced by any
program within the run unit, not just the program that contains the level-01 declaration.

Note: The GLOBAL clause is not supported in all environments.

� Manually copy into each program only those constants that are referenced by that program; do not use the COPY statement to copy
all the constants into the program.

Parent topic: COBOL programming

This build: January 26, 2011 11:15:28

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr10720_

Page 57 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

1.1.4.5. Notational conventions

The later sections in this book show how to invoke the calls and declare parameters. In some cases, the parameters are tables or character
strings whose size is not fixed. For these, a lowercase n is used to represent a numeric constant. When you code the declaration for that
parameter, replace the n with the numeric value required.

Parent topic: COBOL programming

This build: January 26, 2011 11:15:28

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr10730_

1.1.5. System/390 assembler programming

This section contains information to help to you use the MQI from the System/390® Assembler programming language.

Macros
Various macros are provided to help you to write assembler application programs that use the MQI.

Structures
The structures are generated by macros that have various parameters to control the action of the macro. These parameters are
described in the following sections.

CMQVERA macro

Notational conventions

Parent topic: Introduction

This build: January 26, 2011 11:15:28

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr10740_

1.1.5.1. Macros

Various macros are provided to help you to write assembler application programs that use the MQI.

There are two macros for named constants, and one macro for each of the structures. These files are summarized in Table 1.

Parent topic: System/390 assembler programming

This build: January 26, 2011 11:15:28

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

Table 1. Assembler macros

File Contents

CMQA Named constants (equates) for main MQI

CMQCIHA CICS® information header structure

CMQCNOA Connect options structure

CMQDLHA Dead letter header structure

CMQDXPA Data conversion exit parameter structure

CMQGMOA Get message options structure

CMQIIHA IMS™ information header structure

CMQMDA Message descriptor structure

CMQMDEA Message descriptor extension structure

CMQODA Object descriptor structure

CMQPMOA Put message options structure

CMQRFHA Rules and formatting header structure

CMQRFH2A Rules and formatting header structure version 2

CMQRMHA Reference message header structure

CMQTMA Trigger message structure

CMQTMC2A Trigger message structure (character format) version 2

CMQVERA Structure version control

CMQWIHA Work information header structure

CMQXA Named constants for data conversion exit

CMQXPA API crossing exit parameter structure

CMQXQHA Transmission queue header structure

Page 58 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This topic's URL:

fr10750_

1.1.5.2. Structures

The structures are generated by macros that have various parameters to control the action of the macro. These parameters are described in
the following sections.

From time to time new versions of the MQ structures are introduced. The additional fields in a new version can cause a structure that

previously was smaller than 256 bytes to become larger than 256 bytes. Because of this, write assembler instructions that are intended to
copy an MQ structure, or to set an MQ structure to nulls, to work correctly with structures that might be larger than 256 bytes.
Alternatively, use the DCLVER macro parameter or CMQVERA macro with the VERSION parameter to declare a specific version of the
structure (see below).

Specifying the name of the structure
To declare more than one instance of a structure, the macro prefixes the name of each field in the structure with a user-specifiable
string and an underscore.

Specifying the form of the structure

Controlling the version of the structure
By default, the macros always declare the most recent version of each structure.

Declaring one structure embedded within another

Specifying initial values for fields

Specify the value to be used to initialize a field in a structure by coding the name of that field (without the prefix) as a parameter on
the macro invocation, accompanied by the value required.

Controlling the listing

Parent topic: System/390 assembler programming

This build: January 26, 2011 11:15:28

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr10760_

1.1.5.2.1. Specifying the name of the structure

To declare more than one instance of a structure, the macro prefixes the name of each field in the structure with a user-specifiable string
and an underscore.

The string used is the label specified on the invocation of the macro. If no label is specified, the name of the structure is used to construct
the prefix:

* Declare two object descriptors

 CMQODA , Prefix used="MQOD_" (the default)

MY_MQOD CMQODA , Prefix used="MY_MQOD_"

The structure declarations shown in this book use the default prefix.

Parent topic: Structures

This build: January 26, 2011 11:15:28

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr10770_

1.1.5.2.2. Specifying the form of the structure

Structure declarations can be generated by the macro in one of two forms, controlled by the DSECT parameter:

DSECT=YES

An assembler DSECT instruction is used to start a new data section; the structure definition immediately follows the DSECT statement.
The label on the macro invocation is used as the name of the data section; if no label is specified, the name of the structure is used.

DSECT=NO

Assembler DC instructions are used to define the structure at the current position in the routine. The fields are initialized with values,
which can be specified by coding the relevant parameters on the macro invocation. Fields for which no values are specified on the macro
invocation are initialized with default values.

The value specified must be uppercase. If the DSECT parameter is not specified, DSECT=NO is assumed.

Parent topic: Structures

This build: January 26, 2011 11:15:29

Notices | Trademarks | Downloads | Library | Support | Feedback

Page 59 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr10780_

1.1.5.2.3. Controlling the version of the structure

By default, the macros always declare the most recent version of each structure.

Although you can use the VERSION macro parameter to specify a value for the Version field in the structure, that parameter defines the

initial value for the Version field, and does not control the version of the structure actually declared. To control the version of the structure

that is declared, use the DCLVER parameter:

DCLVER=CURRENT

The version declared is the current (most recent) version.

DCLVER=SPECIFIED

The version declared is the version specified by the VERSION parameter. If you omit the VERSION parameter, the default is version 1.

If you specify the VERSION parameter, the value must be a self-defining numeric constant, or the named constant for the version

required (for example, MQCNO_VERSION_3). If you specify some other value, the structure is declared as if DCLVER=CURRENT had
been specified, even if the value of VERSION resolves to a valid value.

The value specified must be uppercase. If you omit the DCLVER parameter, the value used is taken from the MQDCLVER global macro
variable. You can set this variable using the CMQVERA macro (see below).

Parent topic: Structures

This build: January 26, 2011 11:15:29

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr10790_

1.1.5.2.4. Declaring one structure embedded within another

To declare one structure as a component of another structure, use the NESTED parameter:

NESTED=YES

The structure declaration is nested within another.

NESTED=NO

The structure declaration is not nested within another.

The value specified must be uppercase. If you omit the NESTED parameter, NESTED=NO is assumed.
Parent topic: Structures

This build: January 26, 2011 11:15:29

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr10800_

1.1.5.2.5. Specifying initial values for fields

Specify the value to be used to initialize a field in a structure by coding the name of that field (without the prefix) as a parameter on the
macro invocation, accompanied by the value required.

For example, to declare a message-descriptor structure with the MsgType field initialized with MQMT_REQUEST, and the ReplyToQ field

initialized with the string “MY_REPLY_TO_QUEUE”, use the following:

MY_MQMD CMQMDA MSGTYPE=MQMT_REQUEST, X

 REPLYTOQ=MY_REPLY_TO_QUEUE

If you specify a named constant (equate) as a value on the macro invocation, use the CMQA macro to define the named constant. Do not
enclose character string values in single quotes.

Parent topic: Structures

This build: January 26, 2011 11:15:29

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr10810_

1.1.5.2.6. Controlling the listing

Control the appearance of the structure declaration in the assembler listing using the LIST parameter:

LIST=YES

The structure declaration appears in the assembler listing.

Page 60 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

LIST=NO

The structure declaration does not appear in the assembler listing.

The value specified must be uppercase. If you omit the LIST parameter, LIST=NO is assumed.
Parent topic: Structures

This build: January 26, 2011 11:15:29

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr10820_

1.1.5.3. CMQVERA macro

This macro allows you to set the default value to be used for the DCLVER parameter on the structure macros. The value specified by
CMQVERA is used by the structure macro only if you omit the DCLVER parameter from the invocation of the structure macro. The default
value is set by coding the CMQVERA macro with the DCLVER parameter:

DCLVER=CURRENT

The default version is set to the current (most recent) version.

DCLVER=SPECIFIED

The default version is set to the version specified by the VERSION parameter.

You must specify the DCLVER parameter, and the value must be uppercase. The value set by CMQVERA remains the default value until the
next invocation of CMQVERA, or the end of the assembly. If you omit CMQVERA, the default is DCLVER=CURRENT.
Parent topic: System/390 assembler programming

This build: January 26, 2011 11:15:29

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr10830_

1.1.5.4. Notational conventions

The later sections in this book show how to invoke the calls and declare parameters. In some cases, the parameters are arrays or character
strings whose size is not fixed. For these, a lowercase n is used to represent a numeric constant. When you code the declaration for that
parameter, replace the n with the numeric value required.

Parent topic: System/390 assembler programming

This build: January 26, 2011 11:15:29

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr10840_

1.2. MQAIR – Authentication information record

The MQAIR structure represents the authentication information record.

The following table summarizes the fields in the structure.

Overview for MQAIR
The MQAIR structure allows an application running as a WebSphere® MQ client to specify information about an authenticator that is to

be used for the client connection. The structure is an input parameter on the MQCONNX call.

Fields for MQAIR

Table 1. Fields in MQAIR

Field Description Topic

StrucId Structure identifier StrucId

Version Structure version number Version

AuthInfoType Type of authentication information AuthInfoType

AuthInfoConnName Connection name of LDAP CRL server AuthInfoConnName

LDAPUserNamePtr Address of LDAP user name LDAPUserNamePtr

LDAPUserNameOffset Offset of LDAP user name from start of MQSCO LDAPUserNameOffset

LDAPUserNameLength Length of LDAP user name LDAPUserNameLength

LDAPPassword Password to access LDAP server LDAPPassword

Note: The remaining fields are ignored if Version is less than MQAIR_VERSION_2.

OCSPResponderURL URL at which the OCSP responder can be contacted OCSPResponderURL

Page 61 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

The MQAIR structure contains the following fields; the fields are described in alphabetic order:

Initial values and language declarations for MQAIR

Parent topic: Data type descriptions

This build: January 26, 2011 11:15:29

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr10850_

1.2.1. Overview for MQAIR

The MQAIR structure allows an application running as a WebSphere® MQ client to specify information about an authenticator that is to be
used for the client connection. The structure is an input parameter on the MQCONNX call.

Availability: AIX®, HP-UX, Solaris, Linux and Windows clients.

Character set and encoding: Data in MQAIR must be in the character set and encoding of the local queue manager; these are given by

the CodedCharSetId queue manager attribute and MQENC_NATIVE, respectively.

Parent topic: MQAIR – Authentication information record

This build: January 26, 2011 11:15:29

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr10860_

1.2.2. Fields for MQAIR

The MQAIR structure contains the following fields; the fields are described in alphabetic order:

AuthInfoConnName (MQCHAR264)

This is either the host name or the network address of a host on which the LDAP server is running. This can be followed by an optional
port number, enclosed in parentheses. The default port number is 389.

AuthInfoType (MQLONG)

This is the type of authentication information contained in the record.

LDAPPassword (MQCHAR32)
This is the password needed to access the LDAP CRL server. If the value is shorter than the length of the field, terminate the value

with a null character, or pad it with blanks to the length of the field.

LDAPUserNameLength (MQLONG)

LDAPUserNameOffset (MQLONG)
This is the offset in bytes of the LDAP user name from the start of the MQAIR structure.

LDAPUserNamePtr (PMQCHAR)
This is the LDAP user name.

OCSPResponderURL (MQCHAR256)

For an MQAIR structure that represents connection details for an OCSP responder, this field contains the URL at which the responder
can be contacted.

StrucId (MQCHAR4)

Version (MQLONG)
The version number of the MQAIR structure.

Parent topic: MQAIR – Authentication information record

This build: January 26, 2011 11:15:30

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr10870_

1.2.2.1. AuthInfoConnName (MQCHAR264)

This is either the host name or the network address of a host on which the LDAP server is running. This can be followed by an optional port
number, enclosed in parentheses. The default port number is 389.

If the value is shorter than the length of the field, terminate the value with a null character, or pad it with blanks to the length of the field. If

the value is not valid, the call fails with reason code MQRC_AUTH_INFO_CONN_NAME_ERROR.

Page 62 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This is an input field. The length of this field is given by MQ_AUTH_INFO_CONN_NAME_LENGTH. The initial value of this field is the null
string in C, and blank characters in other programming languages.

Parent topic: Fields for MQAIR

This build: January 26, 2011 11:15:30

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr10880_

1.2.2.2. AuthInfoType (MQLONG)

This is the type of authentication information contained in the record.

The value must be:

MQAIT_CRL_LDAP

Certificate revocation using LDAP server.

If the value is not valid, the call fails with reason code MQRC_AUTH_INFO_TYPE_ERROR.

This is an input field. The initial value of this field is MQAIT_CRL_LDAP.

Parent topic: Fields for MQAIR

This build: January 26, 2011 11:15:30

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr10890_

1.2.2.3. LDAPPassword (MQCHAR32)

This is the password needed to access the LDAP CRL server. If the value is shorter than the length of the field, terminate the value with a
null character, or pad it with blanks to the length of the field.

If the LDAP server does not require a password, or you omit the LDAP user name, LDAPPassword must be null or blank. If you omit the

LDAP user name and LDAPPassword is not null or blank, the call fails with reason code MQRC_LDAP_PASSWORD_ERROR.

This is an input field. The length of this field is given by MQ_LDAP_PASSWORD_LENGTH. The initial value of this field is the null string in C,
and blank characters in other programming languages.

Parent topic: Fields for MQAIR

This build: January 26, 2011 11:15:30

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr10900_

1.2.2.4. LDAPUserNameLength (MQLONG)

This is the length in bytes of the LDAP user name addressed by the LDAPUserNamePtr or LDAPUserNameOffset field. The value must be in

the range zero through MQ_DISTINGUISHED_NAME_LENGTH. If the value is not valid, the call fails with reason code
MQRC_LDAP_USER_NAME_LENGTH_ERR.

If the LDAP server involved does not require a user name, set this field to zero.

This is an input field. The initial value of this field is 0.

Parent topic: Fields for MQAIR

This build: January 26, 2011 11:15:30

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr10910_

1.2.2.5. LDAPUserNameOffset (MQLONG)

This is the offset in bytes of the LDAP user name from the start of the MQAIR structure.

The offset can be positive or negative. The field is ignored if LDAPUserNameLength is zero.

You can use either LDAPUserNamePtr or LDAPUserNameOffset to specify the LDAP user name, but not both; see the description of the

Page 63 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

LDAPUserNamePtr field for details.

This is an input field. The initial value of this field is 0.

Parent topic: Fields for MQAIR

This build: January 26, 2011 11:15:30

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr10920_

1.2.2.6. LDAPUserNamePtr (PMQCHAR)

This is the LDAP user name.

It consists of the Distinguished Name of the user who is attempting to access the LDAP CRL server. If the value is shorter than the length
specified by LDAPUserNameLength, terminate the value with a null character, or pad it with blanks to the length LDAPUserNameLength. The

field is ignored if LDAPUserNameLength is zero.

You can supply the LDAP user name in one of two ways:

� By using the pointer field LDAPUserNamePtr

In this case, the application can declare a string that is separate from the MQAIR structure, and set LDAPUserNamePtr to the address

of the string.

Using LDAPUserNamePtr is recommended for programming languages that support the pointer data type in a fashion that is portable to

different environments (for example, the C programming language).

� By using the offset field LDAPUserNameOffset

In this case, the application must declare a compound structure containing the MQSCO structure followed by the array of MQAIR
records followed by the LDAP user name strings, and set LDAPUserNameOffset to the offset of the appropriate name string from the

start of the MQAIR structure. Ensure that this value is correct, and has a value that can be accommodated within an MQLONG (the

most restrictive programming language is COBOL, for which the valid range is -999 999 999 through +999 999 999).

Using LDAPUserNameOffset is recommended for programming languages that do not support the pointer data type, or that implement

the pointer data type in a fashion that might not be portable to different environments (for example, the COBOL programming
language).

Whichever technique is chosen, use only one of LDAPUserNamePtr and LDAPUserNameOffset; the call fails with reason code

MQRC_LDAP_USER_NAME_ERROR if both are nonzero.

This is an input field. The initial value of this field is the null pointer in those programming languages that support pointers, and an all-null
byte string otherwise.

Note: On platforms where the programming language does not support the pointer data type, this field is declared as a byte string of the
appropriate length.

Parent topic: Fields for MQAIR

This build: January 26, 2011 11:15:30

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr10930_

1.2.2.7. OCSPResponderURL (MQCHAR256)

For an MQAIR structure that represents connection details for an OCSP responder, this field contains the URL at which the responder can be
contacted.

The value of this field is an HTTP URL. This field takes priority over a URL in an AuthorityInfoAccess (AIA) certificate extension.

The value is ignored unless both the following statements are true:

� The MQAIR structure is Version 2 or later (the Version field is set to MQAIR_VERSION_2 or greater).

� The AuthInfoType field is set to MQAIT_OCSP.

If the field does not contain an HTTP URL in the correct format (and is not being ignored), the MQCONNX call fails with reason code
MQRC_OCSP_URL_ERROR.

This field is case-sensitive. It must start with the string http:// in lower case. The rest of the URL might be case-sensitive, depending on
the OCSP server implementation.

This field is not subject to data conversion.

Parent topic: Fields for MQAIR

This build: January 26, 2011 11:20:47

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr44730_

Page 64 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

1.2.2.8. StrucId (MQCHAR4)

The value must be:

MQAIR_STRUC_ID

Identifier for the authentication information record.

For the C programming language, the constant MQAIR_STRUC_ID_ARRAY is also defined; this has the same value as MQAIR_STRUC_ID,
but is an array of characters instead of a string.

This is always an input field. The initial value of this field is MQAIR_STRUC_ID.

Parent topic: Fields for MQAIR

This build: January 26, 2011 11:15:30

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr10940_

1.2.2.9. Version (MQLONG)

The version number of the MQAIR structure.

The value must be one of the following :

MQAIR_VERSION_1

Version-1 authentication information record.

MQAIR_VERSION_2

Version-2 authentication information record.

The following constant specifies the version number of the current version:

MQAIR_CURRENT_VERSION

Current version of authentication information record.

This is always an input field. The initial value of this field is MQAIR_VERSION_1.

Parent topic: Fields for MQAIR

This build: January 26, 2011 11:15:30

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr10950_

1.2.3. Initial values and language declarations for MQAIR

C declaration

COBOL declaration

Visual Basic declaration

Table 1. Initial values of fields in MQAIR

Field name Name of constant Value of constant

StrucId MQAIR_STRUC_ID 'AIR�'

Version MQAIR_VERSION_1 1

AuthInfoType MQAIT_CRL_LDAP 1

AuthInfoConnName None Null string or blanks

LDAPUserNamePtr None Null pointer or null bytes

LDAPUserNameOffset None 0

LDAPUserNameLength None 0

LDAPPassword None Null string or blanks

OCSPResponderURL None Null string or blanks

Notes:

1. The symbol � represents a single blank character.

2. In the C programming language, the macro variable MQAIR_DEFAULT contains the values listed above. Use it in the

following way to provide initial values for the fields in the structure:

MQAIR MyAIR = {MQAIR_DEFAULT};

Page 65 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Parent topic: MQAIR – Authentication information record

This build: January 26, 2011 11:15:31

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr10960_

1.2.3.1. C declaration

typedef struct tagMQAIR MQAIR;

struct tagMQAIR {

 MQCHAR4 StrucId; /* Structure identifier */

 MQLONG Version; /* Structure version number */

 MQLONG AuthInfoType; /* Type of authentication

 information */

 MQCHAR264 AuthInfoConnName; /* Connection name of CRL LDAP

 server */

 PMQCHAR LDAPUserNamePtr; /* Address of LDAP user name */

 MQLONG LDAPUserNameOffset; /* Offset of LDAP user name from start

 of MQAIR structure */

 MQLONG LDAPUserNameLength; /* Length of LDAP user name */

 MQCHAR32 LDAPPassword; /* Password to access LDAP server */

 MQCHAR256 OCSPResponderURL; /* URL of OCSP responder };

Parent topic: Initial values and language declarations for MQAIR

This build: January 26, 2011 11:15:31

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr10970_

1.2.3.2. COBOL declaration

** MQAIR structure

 10 MQAIR.

** Structure identifier

 15 MQAIR-STRUCID PIC X(4).

** Structure version number

 15 MQAIR-VERSION PIC S9(9) BINARY.

** Type of authentication information

 15 MQAIR-AUTHINFOTYPE PIC S9(9) BINARY.

** Connection name of CRL LDAP server

 15 MQAIR-AUTHINFOCONNNAME PIC X(264).

** Address of LDAP user name

 15 MQAIR-LDAPUSERNAMEPTR POINTER.

** Offset of LDAP user name from start of MQAIR structure

 15 MQAIR-LDAPUSERNAMEOFFSET PIC S9(9) BINARY.

** Length of LDAP user name

 15 MQAIR-LDAPUSERNAMELENGTH PIC S9(9) BINARY.

** Password to access LDAP server

 15 MQAIR-LDAPPASSWORD PIC X(32).

** URL of OCSP responder

 15 MQAIR-OCSPRESPONDERURL PIC X(256).

Parent topic: Initial values and language declarations for MQAIR

This build: January 26, 2011 11:15:31

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr10980_

1.2.3.3. Visual Basic declaration

Type MQAIR

 StrucId As String*4 'Structure identifier'

 Version As Long 'Structure version number'

 AuthInfoType As Long 'Type of authentication information'

 AuthInfoConnName As String*264 'Connection name of CRL LDAP server'

 LDAPUserNamePtr As MQPTR 'Address of LDAP user name'

 LDAPUserNameOffset As Long 'Offset of LDAP user name from start'

 'of MQAIR structure'

 LDAPUserNameLength As Long 'Length of LDAP user name'

 LDAPPassword As String*32 'Password to access LDAP server'

End Type

Parent topic: Initial values and language declarations for MQAIR

This build: January 26, 2011 11:15:31

Notices | Trademarks | Downloads | Library | Support | Feedback

Page 66 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11000_

1.3. MQBMHO – Buffer to message handle options

The following table summarizes the fields in the structure. MQBMHO structure - buffer to message handle options

Overview for MQBMHO
Availability: All. Buffer to message handle options structure - overview

Fields for MQBMHO
Buffer to message handle options structure - fields

Initial values and language declarations for MQBMHO
Buffer to message handle structure - Initial values

Parent topic: Data type descriptions

This build: January 26, 2011 11:20:36

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42795_

1.3.1. Overview for MQBMHO

Availability: All. Buffer to message handle options structure - overview

Purpose: The MQBMHO structure allows applications to specify options that control how message handles are produced from buffers. The

structure is an input parameter on the MQBUFMH call.

Character set and encoding: Data in MQBMHO must be in the character set of the application and encoding of the application
(MQENC_NATIVE).

Parent topic: MQBMHO – Buffer to message handle options

This build: January 26, 2011 11:20:36

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42800_

1.3.2. Fields for MQBMHO

Buffer to message handle options structure - fields

The MQBMHO structure contains the following fields; the fields are described in alphabetic order:

Options (MQLONG)
Buffer to message handle structure - Options field

StrucId (MQCHAR4)
Buffer to message handle structure - StrucId field

Version (MQLONG)
Buffer to message handle structure - Version field

Parent topic: MQBMHO – Buffer to message handle options

This build: January 26, 2011 11:20:36

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42810_

1.3.2.1. Options (MQLONG)

Buffer to message handle structure - Options field

Table 1. Fields in MQBMHO

Field Description Topic

StrucId Structure identifier StrucId

Version Structure version number Version

Options Options controlling the action of MQBMHO Options

Page 67 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

The value can be:

MQBMHO_DELETE_PROPERTIES

Properties that are added to the message handle are deleted from the buffer. If the call fails no properties are deleted.

Default options: If you do not need the option described, use the following option:

MQBMHO_NONE

No options specified.

This is always an input field. The initial value of this field is MQBMHO_DELETE_PROPERTIES.

Parent topic: Fields for MQBMHO

This build: January 26, 2011 11:20:37

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42840_

1.3.2.2. StrucId (MQCHAR4)

Buffer to message handle structure - StrucId field

This is the structure identifier. The value must be:

MQBMHO_STRUC_ID

Identifier for buffer to message handle structure.

For the C programming language, the constant MQBMHO_STRUC_ID_ARRAY is also defined; this has the same value as

MQBMHO_STRUC_ID, but is an array of characters instead of a string.

This is always an input field. The initial value of this field is MQBMHO_STRUC_ID.

Parent topic: Fields for MQBMHO

This build: January 26, 2011 11:20:37

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42820_

1.3.2.3. Version (MQLONG)

Buffer to message handle structure - Version field

This is the structure version number. The value must be:

MQBMHO_VERSION_1

Version number for buffer to message handle structure.

The following constant specifies the version number of the current version:

MQBMHO_CURRENT_VERSION

Current version of buffer to message handle structure.

This is always an input field. The initial value of this field is MQBMHO_VERSION_1.

Parent topic: Fields for MQBMHO

This build: January 26, 2011 11:20:37

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42830_

1.3.3. Initial values and language declarations for MQBMHO

Buffer to message handle structure - Initial values

Table 1. Initial values of fields in MQBMHO

Field name Name of constant Value of constant

StrucId MQBMHO_STRUC_ID 'BMHO'

Version MQBMHO_VERSION_1 1

Options MQBMHO_NONE 0

Page 68 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

C declaration
Buffer to message handle structure - C language declaration

COBOL declaration
Buffer to message handle structure - COBOL language declaration

PL/I declaration
Buffer to message handle structure - PL/I language declaration

System/390 assembler declaration

Buffer to message handle structure - Assembler language declaration

Parent topic: MQBMHO – Buffer to message handle options

This build: January 26, 2011 11:20:37

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42850_

1.3.3.1. C declaration

Buffer to message handle structure - C language declaration

typedef struct tagMQBMHO MQBMHO;

struct tagMQBMHO {

 MQCHAR4 StrucId; /* Structure identifier */

 MQLONG Version; /* Structure version number */

 MQLONG Options; /* Options that control the action of

 MQBUFMH */

};

Parent topic: Initial values and language declarations for MQBMHO

This build: January 26, 2011 11:20:37

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42860_

1.3.3.2. COBOL declaration

Buffer to message handle structure - COBOL language declaration

** MQBMHO structure

 10 MQBMHO.

** Structure identifier

 15 MQBMHO-STRUCID PIC X(4).

** Structure version number

 15 MQBMHO-VERSION PIC S9(9) BINARY.

** Options that control the action of MQBUFMH

 15 MQBMHO-OPTIONS PIC S9(9) BINARY.

Parent topic: Initial values and language declarations for MQBMHO

This build: January 26, 2011 11:20:37

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42870_

1.3.3.3. PL/I declaration

Buffer to message handle structure - PL/I language declaration

Dcl

 1 MQBMHO based,

 3 StrucId char(4), /* Structure identifier */

 3 Version fixed bin(31), /* Structure version number */

 3 Options fixed bin(31), /* Options that control the action

 of MQBUFMH */

Parent topic: Initial values and language declarations for MQBMHO

Notes:

1. In the C programming language, the macro variable MQBMHO_DEFAULT contains the values listed above. Use it in the
following way to provide initial values for the fields in the structure:

MQBMHO MyBMHO = {MQBMHO_DEFAULT};

Page 69 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This build: January 26, 2011 11:20:37

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42880_

1.3.3.4. System/390® assembler declaration

Buffer to message handle structure - Assembler language declaration

MQBMHO DSECT

MQBMHO_STRUCID DS CL4 Structure identifier

MQBMHO_VERSION DS F Structure version number

MQBMHO_OPTIONS DS F Options that control the

* action of MQBUFMH

MQBMHO_LENGTH EQU *-MQBMHO

MQBMHO_AREA DS CL(MQBMHO_LENGTH)

Parent topic: Initial values and language declarations for MQBMHO

This build: January 26, 2011 11:20:37

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42890_

1.4. MQBO – Begin options

The following table summarizes the fields in the structure.

Overview for MQBO
Availability: AIX®, HP-UX, i5/OS®, Solaris, Linux, Windows; not available for WebSphere® MQ clients.

Fields for MQBO

Initial values and language declarations for MQBO

Parent topic: Data type descriptions

This build: January 26, 2011 11:15:31

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11010_

1.4.1. Overview for MQBO

Availability: AIX®, HP-UX, i5/OS®, Solaris, Linux, Windows; not available for WebSphere® MQ clients.

Purpose: The MQBO structure allows the application to specify options relating to the creation of a unit of work. The structure is an

input/output parameter on the MQBEGIN call.

Character set and encoding: Data in MQBO must be in the character set and encoding of the local queue manager; these are given by
the CodedCharSetId queue-manager attribute and MQENC_NATIVE, respectively. However, if the application is running as an MQ client, the

structure must be in the character set and encoding of the client.

Parent topic: MQBO – Begin options

This build: January 26, 2011 11:15:32

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11020_

1.4.2. Fields for MQBO

The MQBO structure contains the following fields; the fields are described in alphabetic order:

Table 1. Fields in MQBO

Field Description Topic

StrucId Structure identifier StrucId

Version Structure version number Version

Options Options that control the action of MQBEGIN Options

Page 70 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Options (MQLONG)

StrucId (MQCHAR4)

Version (MQLONG)

Parent topic: MQBO – Begin options

This build: January 26, 2011 11:15:32

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11030_

1.4.2.1. Options (MQLONG)

The value must be:

MQBO_NONE

No options specified.

This is always an input field. The initial value of this field is MQBO_NONE.

Parent topic: Fields for MQBO

This build: January 26, 2011 11:15:32

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11040_

1.4.2.2. StrucId (MQCHAR4)

The value must be:

MQBO_STRUC_ID

Identifier for begin-options structure.

For the C programming language, the constant MQBO_STRUC_ID_ARRAY is also defined; this has the same value as MQBO_STRUC_ID,

but is an array of characters instead of a string.

This is always an input field. The initial value of this field is MQBO_STRUC_ID.

Parent topic: Fields for MQBO

This build: January 26, 2011 11:15:32

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11050_

1.4.2.3. Version (MQLONG)

The value must be:

MQBO_VERSION_1

Version number for begin-options structure.

The following constant specifies the version number of the current version:

MQBO_CURRENT_VERSION

Current version of begin-options structure.

This is always an input field. The initial value of this field is MQBO_VERSION_1.

Parent topic: Fields for MQBO

This build: January 26, 2011 11:15:32

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11060_

1.4.3. Initial values and language declarations for MQBO

Page 71 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

C declaration

COBOL declaration

PL/I declaration

Visual Basic declaration

Parent topic: MQBO – Begin options

This build: January 26, 2011 11:15:32

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11070_

1.4.3.1. C declaration

typedef struct tagMQBO MQBO;

struct tagMQBO {

 MQCHAR4 StrucId; /* Structure identifier */

 MQLONG Version; /* Structure version number */

 MQLONG Options; /* Options that control the action of MQBEGIN */

};

Parent topic: Initial values and language declarations for MQBO

This build: January 26, 2011 11:15:32

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11080_

1.4.3.2. COBOL declaration

** MQBO structure

 10 MQBO.

** Structure identifier

 15 MQBO-STRUCID PIC X(4).

** Structure version number

 15 MQBO-VERSION PIC S9(9) BINARY.

** Options that control the action of MQBEGIN

 15 MQBO-OPTIONS PIC S9(9) BINARY.

Parent topic: Initial values and language declarations for MQBO

This build: January 26, 2011 11:15:32

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11090_

1.4.3.3. PL/I declaration

dcl

 1 MQBO based,

 3 StrucId char(4), /* Structure identifier */

 3 Version fixed bin(31), /* Structure version number */

 3 Options fixed bin(31); /* Options that control the action of

 MQBEGIN */

Parent topic: Initial values and language declarations for MQBO

This build: January 26, 2011 11:15:32

Table 1. Initial values of fields in MQBO for MQBO

Field name Name of constant Value of constant

StrucId MQBO_STRUC_ID 'BO��'

Version MQBO_VERSION_1 1

Options MQBO_NONE 0

Notes:

1. The symbol � represents a single blank character.

2. In the C programming language, the macro variable MQBO_DEFAULT contains the values listed above. Use it in the

following way to provide initial values for the fields in the structure:

MQBO MyBO = {MQBO_DEFAULT};

Page 72 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11100_

1.4.3.4. Visual Basic declaration

Type MQBO

 StrucId As String*4 'Structure identifier'

 Version As Long 'Structure version number'

 Options As Long 'Options that control the action of MQBEGIN'

End Type

Parent topic: Initial values and language declarations for MQBO

This build: January 26, 2011 11:15:32

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11110_

1.5. MQCBC – Callback context

The following table summarizes the fields in the structure. Structure describing the callback routine.

Overview for MQCBC
Availability: AIX®, HP-UX, i5/OS®, Solaris, Linux, Windows, z/OS®, plus WebSphere® MQ clients connected to these systems.

Fields for MQCBC
Alphabetic list of fields for the MQCBC structure.

Initial values and language declarations for MQCBC
Callback context structure - initial values

Parent topic: Data type descriptions

This build: January 26, 2011 11:20:06

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40300_

1.5.1. Overview for MQCBC

Availability: AIX®, HP-UX, i5/OS®, Solaris, Linux, Windows, z/OS®, plus WebSphere® MQ clients connected to these systems.

Purpose: The MQCBC structure is used to specify context information that is passed to a callback function.

The structure is an input/output parameter on the call to a message consumer routine.

Version: The current version of MQCBC is MQCBC_VERSION_2.

Character set and encoding: Data in MQCBC will be in the character set and encoding of the local queue manager; these are given by the
CodedCharSetId queue-manager attribute and MQENC_NATIVE, respectively. However, if the application is running as an MQ client, the

Table 1. Fields in MQCBC

Field Description Topic

StrucID Structure identifier StrucID

Version Structure version number Version

CallType Why function has been called CallType

Hobj Object handle Hobj

CallbackArea Field for callback function to use CallbackArea

ConnectionArea Field for callback function to use ConnectionArea

CompCode Completion code CompCode

Reason Reason code Reason

State Indication of the state of the current consumer State

DataLength Message length DataLength

BufferLength Length of message buffer in bytes BufferLength

Flags General flags Flags

Note: The remaining field is ignored if Version is less than MQCBC_VERSION_2

ReconnectDelay Number of milliseconds before reconnection attempt ReconnectDelay

Page 73 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

structure will be in the character set and encoding of the client.

Parent topic: MQCBC – Callback context

This build: January 26, 2011 11:20:06

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40310_

1.5.2. Fields for MQCBC

Alphabetic list of fields for the MQCBC structure.

The MQCBC structure contains the following fields; the fields are described in alphabetical order:

BufferLength (MQLONG)
The buffer can be larger than both the MaxMsgLength value defined for the consumer and the ReturnedLength value in the MQGMO.

Callback context structure - BufferLength field

CallbackArea (MQPTR)
Callback context structure - CallbackArea field

CallType (MQLONG)
Callback Context structure - CallType field

CompCode (MQLONG)
Callback context structure - CompCode field

ConnectionArea (MQPTR)
Callback context structure - ConnectionArea field

DataLength (MQLONG)

This is the length in bytes of the application data in the message. If the value is zero, it means that the message contains no
application data. Callback context structure - DataLength field

Flags (MQLONG)

Flags containing information about this consumer. Callback context structure - Flags field

Hobj (MQHOBJ)
Callback context structure - Hobj field

Reason (MQLONG)
Callback context structure - Reason field

State (MQLONG)
An indication as to the state of the current consumer. This field is of most value to an application when a nonzero reason code is
passed to the consumer function.

StrucId (MQCHAR4)
Callback context structure - StrucId field

Version (MQLONG)

Callback context structure - Version field

ReconnectDelay (MQLONG)
ReconnectDelay indicates how long the queue manager will wait before trying to reconnect. The field can be modified by an event

handler to change the delay or stop reconnection altogether.

Parent topic: MQCBC – Callback context

This build: January 26, 2011 11:20:06

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40320_

1.5.2.1. BufferLength (MQLONG)

The buffer can be larger than both the MaxMsgLength value defined for the consumer and the ReturnedLength value in the MQGMO.

Callback context structure - BufferLength field

This is the length in bytes of the message buffer that has been passed to this function.

The actual message length is supplied in DataLength field.

The application can use the entire buffer for its own purposes for the duration of the callback function.

This is an input field to the message consumer function; it is not relevant to an exception handler function.

Page 74 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Parent topic: Fields for MQCBC

This build: January 26, 2011 11:20:08

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40410_

1.5.2.2. CallbackArea (MQPTR)

Callback context structure - CallbackArea field

This is a field that is available for the callback function to use.

The queue manager makes no decisions based on the contents of this field and it is passed unchanged from the CallbackArea field in the
MQCBD structure, which is a parameter on the MQCB call used to define the callback function.

Changes to the CallbackArea are preserved across the invocations of the callback function for an HObj. This field is not shared with callback

functions for other handles.

This is an input/output field to the callback function. The initial value of this field is a null pointer or null bytes.

Parent topic: Fields for MQCBC

This build: January 26, 2011 11:20:08

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40430_

1.5.2.3. CallType (MQLONG)

Callback Context structure - CallType field

Field containing information about why this function has been called; the following are defined.

Message delivery call types: These call types contain information about a message. The DataLength and BufferLength parameters are valid

for these call types.

MQCBCT_MSG_REMOVED

The message consumer function has been invoked with a message that has been destructively removed from the object handle.

If the value of CompCode is MQCC_WARNING, the value of the Reason field is MQRC_TRUNCATED_MSG_ACCEPTED or one of the codes

indicating a data conversion problem.

MQCBCT_MSG_NOT_REMOVED

The message consumer function has been invoked with a message that has not yet been destructively removed from the object handle.
The message can be destructively removed from the object handle using the MsgToken.

The message might not have been removed because:

� The MQGMO options requested a browse operation, MQGMO_BROWSE_*

� The message is larger than the available buffer and the MQGMO options do not specify MQGMO_ACCEPT_TRUNCATED_MSG

If the value of CompCode is MQCC_WARNING, the value of the Reason field is MQRC_TRUNCATED_MSG_FAILED or one of the codes

indicating a data conversion problem.

Callback control call types: These call types contain information about the control of the callback and do not contain details about a
message. These call types are requested using Options in the MQCBD structure.

The DataLength and BufferLength parameters are not valid for these call types.

MQCBCT_REGISTER_CALL

The purpose of this call type is to allow the callback function to perform some initial setup.

The callback function is invoked is immediately after the callback is registered, that is, upon return from an MQCB call using a value for
the Operation field of MQOP_REGISTER.

This call type is used both for message consumers and event handlers.

If requested, this is the first invocation of the callback function.

The value of the Reason field is MQRC_NONE.

MQCBCT_START_CALL

The purpose of this call type is to allow the callback function to perform some setup when it is started, for example, reinstating resources
that were cleaned up when it was previously stopped.

The callback function is invoked when the connection is started using either MQOP_START or MQOP_START_WAIT.

If a callback function is registered within another callback function, this call type is invoked when the callback returns.

Page 75 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This call type is used for message consumers only.

The value of the Reason field is MQRC_NONE.

MQCBCT_STOP_CALL

The purpose of this call type is to allow the callback function to perform some cleanup when it is stopped for a while, for example, cleaning
up additional resources that have been acquired during the consuming of messages.

The callback function is invoked when an MQCTL call is issued using a value for the Operation field of MQOP_STOP.

This call type is used for message consumers only.

The value of the Reason field is set to indicate the reason for stopping.

MQCBCT_DEREGISTER_CALL

The purpose of this call type is to allow the callback function to perform final cleanup at the end of the consume process. The callback
function is invoked when the:

� Callback function is deregistered using an MQCB call with MQOP_DEREGISTER.

� Queue is closed, causing an implicit deregister. In this instance the callback function is passed MQHO_UNUSABLE_HOBJ as the
object handle.

� MQDISC call completes – causing an implicit close and, therefore, a deregister. In this case the connection is not disconnected
immediately, and any ongoing transaction is not yet committed.

If any of these actions are taken inside the callback function itself, the action is invoked once the callback returns.

This call type is used both for message consumers and event handlers.

If requested, this is the last invocation of the callback function.

The value of the Reason field is set to indicate the reason for stopping.

MQCBCT_EVENT_CALL

Event handler function

The event handler function has been invoked without a message when the queue manager or connection stops or quiesces.:

This call can be used to take appropriate action for all callback functions.

Message consumer function

The message consumer function has been invoked without a message when an error (CompCode= MQCC_FAILED) has been detected that

is specific to the object handle; for example Reason code = MQRC_GET_INHIBITED.

The value of the Reason field is set to indicate the reason for the call.

This is an input field. MQCBCT_MSG_REMOVED and MQCBCT_MSG_NOT_REMOVED are applicable only to message consumer functions.

Parent topic: Fields for MQCBC

This build: January 26, 2011 11:20:07

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40350_

1.5.2.4. CompCode (MQLONG)

Callback context structure - CompCode field

This is the completion code. It indicates whether there were any problems consuming the message; it is one of the following:

MQCC_OK

Successful completion

MQCC_WARNING

Warning (partial completion)

MQCC_FAILED

Call failed

This is an input field. The initial value of this field is MQCC_OK.

Parent topic: Fields for MQCBC

This build: January 26, 2011 11:20:07

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40370_

Page 76 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

1.5.2.5. ConnectionArea (MQPTR)

Callback context structure - ConnectionArea field

This is a field that is available for the callback function to use.

The queue manager makes no decisions based on the contents of this field and it is passed unchanged from the ConnectionArea field in the
MQCTLO structure, which is a parameter on the MQCTL call used to control the callback function.

Any changes made to this field by the callback functions are preserved across the invocations of the callback function. This area can be used
to pass information that is to be shared by all callback functions. Unlike CallbackArea, this area is common across all callbacks for a

connection handle.

This is an input and output field. The initial value of this field is a null pointer or null bytes.

Parent topic: Fields for MQCBC

This build: January 26, 2011 11:20:08

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40440_

1.5.2.6. DataLength (MQLONG)

This is the length in bytes of the application data in the message. If the value is zero, it means that the message contains no application

data. Callback context structure - DataLength field

The DataLength field contains the length of the message but not necessarily the length of the message data passed to the consumer. It
could be that the message was truncated. Use the ReturnedLength field in the MQGMO to determine how much data has actually been
passed to the consumer.

If the reason code indicates the message has been truncated, you can use the DataLength field to determine how large the actual message
is. This allows you to determine the size of the buffer required to accommodate the message data, and then issue an MQCB call to update
the MaxMsgLength with an appropriate value.

If the MQGMO_CONVERT option is specified, the converted message could be larger than the value returned for DataLength. In such cases,

the application probably needs to issue an MQCB call to update the MaxMsgLength to to be greater than the value returned by the queue
manager for DataLength.

To avoid message truncation problems, specify MaxMsgLength as MQCBD_FULL_MSG_LENGTH. This causes the queue manager to allocate a
buffer for the full message length after data conversion. Be aware, however, that even if this option is specified, it is still possible that

sufficient storage is not available to correctly process the request. Applications should always check the returned reason code. For example,
if it is not possible to allocate sufficient storage to convert the message, the messages is returned to the application unconverted.

This is an input field to the message consumer function; it is not relevant to an event handler function.

Parent topic: Fields for MQCBC

This build: January 26, 2011 11:20:08

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40400_

1.5.2.7. Flags (MQLONG)

Flags containing information about this consumer. Callback context structure - Flags field

The following option is defined:

MQCBCF_READA_BUFFER_EMPTY

This flag can be returned if a previous MQCLOSE call using the MQCO_QUIESCE option failed with a reason code of
MQRC_READ_AHEAD_MSGS.

This code indicated that the last read ahead message is being returned and that the buffer is now empty. If the application issues another
MQCLOSE call using the MQCO_QUIESCE) option, it succeeds.

Note, that an application is not guaranteed to be given a message with this flag set, as there might still be messages in the read-ahead
buffer that do not match the current selection criteria. In this instance, the consumer function is invoked with the reason code

MQRC_HOBJ_QUIESCED.

If the read ahead buffer is completely empty, the consumer is invoked with the MQCBCF_READA_BUFFER_EMPTY flag and the reason code
MQRC_HOBJ_QUIESCED_NO_MSGS.

This is an input field to the message consumer function; it is not relevant to an event handler function.

Parent topic: Fields for MQCBC

This build: January 26, 2011 11:20:08

Notices | Trademarks | Downloads | Library | Support | Feedback

Page 77 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40420_

1.5.2.8. Hobj (MQHOBJ)

Callback context structure - Hobj field

This is the object handle for calls to the message consumer.

For an event handler, this value is MQHO_NONE

The application can use this handle and the message token in the Get Message Options block to get the message if a message has not been
removed from the queue.

This is always an input field. The initial value of this field is MQHO_UNUSABLE_HOBJ

Parent topic: Fields for MQCBC

This build: January 26, 2011 11:20:07

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40360_

1.5.2.9. Reason (MQLONG)

Callback context structure - Reason field

This is the reason code qualifying the CompCode

This is an input field. The initial value of this field is MQRC_NONE.

Parent topic: Fields for MQCBC

This build: January 26, 2011 11:20:07

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40380_

1.5.2.10. State (MQLONG)

An indication as to the state of the current consumer. This field is of most value to an application when a nonzero reason code is passed to
the consumer function.

You can use this field to simplify application programming because you do not need to code behavior for each reason code.

This is an input field. The initial value of this field is MQCS_NONE

Parent topic: Fields for MQCBC

This build: January 26, 2011 11:20:07

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

State Queue manager action Value of

constant

MQCS_NONE

This reason code represents a normal call with no

additional reason information

None; this is the normal operation. 0

MQCS_SUSPENDED_TEMPORARY

These reason codes represent temporary conditions.

The callback routine is called to report the condition
and then suspended. After a period of time the

system might attempt the operation again, which

can lead to the same condition being raised again.

1

MQCS_SUSPENDED_USER_ACTION

These reason codes represent conditions where the
callback needs to take action to resolve the

condition.

The consumer is suspended and the callback routine
is called to report the condition. The callback routine

should resolve the condition if possible and either

RESUME or close down the connection.

2

MQCS_SUSPENDED

These reason codes represent failures that prevent

further message callbacks.

The queue manager automatically suspends the

callback function. If the callback function is resumed

it is likely to receive the same reason code again.

3

MQCS_STOPPED

These reason codes represent the end of message

consumption.

Delivered to the exception handler and to callbacks

that specified MQCBDO_STOP_CALL. No further

messages can be consumed.

4

Page 78 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This topic's URL:

fr40390_

1.5.2.11. StrucId (MQCHAR4)

Callback context structure - StrucId field

This is the structure identifier; the value must be:

MQCBC_STRUC_ID

Identifier for callback context structure.

For the C programming language, the constant MQCBC_STRUC_ID_ARRAY is also defined; this has the same value as MQCBC_STRUC_ID,
but is an array of characters instead of a string.

This is always an input field. The initial value of this field is MQCBC_STRUC_ID.

Parent topic: Fields for MQCBC

This build: January 26, 2011 11:20:06

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40330_

1.5.2.12. Version (MQLONG)

Callback context structure - Version field

This is the structure version number; the value must be:

MQCBC_VERSION_1

Version-1 callback context structure.

The following constant specifies the version number of the current version:

MQCBC_CURRENT_VERSION

Current version of the callback context structure.

This is always an input field. The initial value of this field is MQCBC_VERSION_1.

The callback function is always passed the latest version of the structure.

Parent topic: Fields for MQCBC

This build: January 26, 2011 11:20:06

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40340_

1.5.2.13. ReconnectDelay (MQLONG)

ReconnectDelay indicates how long the queue manager will wait before trying to reconnect. The field can be modified by an event handler to
change the delay or stop reconnection altogether.

Use the ReconnectDelay field only if the value of the Reason field in the Callback Context is MQRC_RECONNECTING.

On entry to the event handler the value of ReconnectDelay is the number of milliseconds the queue manager is going to wait before making

a reconnection attempt. Table 1 lists the values that you can set to modify the behavior of the queue manager on return from the event
handler.

Parent topic: Fields for MQCBC

This build: January 26, 2011 11:20:07

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40395_

1.5.3. Initial values and language declarations for MQCBC

Table 1. ReconnectDelay values

Name Value Description

MQRD_NO_RECONNECT -1 Make no more reconnection attempts. An error is returned to the application.

MQRD_NO_DELAY 0 Try to reconnect immediately.

Milliseconds >0 Wait for this many milliseconds before retrying the connection.

Page 79 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Callback context structure - initial values

There are no initial values for the MQCBC structure. The structure is passed as a parameter to a callback routine. The queue manager
initializes the structure; applications never initialize it.

C declaration

Callback context structure - C language declaration

COBOL declaration

PL/I declaration

System/390 assembler declaration

Parent topic: MQCBC – Callback context

This build: January 26, 2011 11:20:08

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40450_

1.5.3.1. C declaration

Callback context structure - C language declaration

typedef struct tagMQCBC MQCBC;

struct tagMQCBC {

 MQCHAR4 StrucId; /* Structure identifier */

 MQLONG Version; /* Structure version number */

 MQLONG CallType; /* Why Function was called */

 MQHOBJ Hobj; /* Object Handle */

 MQPTR CallbackArea; /* Callback data passed to the function */

 MQPTR ConnectionArea; /* MQCTL data area passed to the function */

 MQLONG CompCode; /* Completion Code */

 MQLONG Reason; /* Reason Code */

 MQLONG State; /* Consumer State */

 MQLONG DataLength; /* Message Data Length */

 MQLONG BufferLength; /* Buffer Length */

 MQLONG Flags; /* Flags containing information about

 this consumer */

 /* Ver:1 */

 MQLONG ReconnectDelay; /* Number of milliseconds before */

 /* Ver:2 */ }; /* reconnect attempt */

Parent topic: Initial values and language declarations for MQCBC

This build: January 26, 2011 11:20:08

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40460_

1.5.3.2. COBOL declaration

** MQCBC structure

 10 MQCBC.

** Structure Identifier

 15 MQCBC-STRUCID PIC X(4).

** Structure Version

 15 MQCBC-VERSION PIC S9(9) BINARY.

 ** Call Type

 15 MQCBC-CALLTYPE PIC S9(9) BINARY.

** Object Handle

 15 MQCBC-HOBJ PIC S9(9) BINARY.

** Callback User Area

 15 MQCBC-CALLBACKAREA POINTER

** Connection Area

 15 MQCBC-CONNECTIONAREA POINTER

** Completion Code

 15 MQCBC-COMPCODE PIC S9(9) BINARY.

** Reason Code

 15 MQCBC-REASON PIC S9(9) BINARY.

** Consumer State

 15 MQCBC-STATE PIC S9(9) BINARY.

** Data Length

 15 MQCBC-DATALENGTH PIC S9(9) BINARY.

** Buffer Length

 15 MQCBC-BUFFERLENGTH PIC S9(9) BINARY.

** Flags

 15 MQCBC-FLAGS PIC S9(9) BINARY.

** Ver:1 **

** Number of milliseconds before reconnect attempt

 15 MQCBC-RECONNECTDELAY PIC S9(9) BINARY.

Page 80 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

** Ver:2 **

Parent topic: Initial values and language declarations for MQCBC

This build: January 26, 2011 11:20:08

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40470_

1.5.3.3. PL/I declaration

dcl

 1 MQCBC based,

 3 StrucId char(4), /* Structure identifier */

 3 Version fixed bin(31), /* Structure version */

 3 CallType fixed bin(31), /* Callback type */

 3 Hobj fixed bin(31), /* Object Handle */

 3 CallbackArea pointer, /* User area passed to the function */

 3 ConnectionArea pointer, /* Connection User Area */

 3 CompCode fixed bin(31); /* Completion Code */

 3 Reason fixed bin(31); /* Reason Code */

 3 State fixed bin(31); /* Consumer State */

 3 DataLength fixed bin(31); /* Message Data Length */

 3 BufferLength fixed bin(31); /* Message Buffer length */

 3 Flags fixed bin(31); /* Consumer Flags */

/* Ver:1 */

 3 ReconnectDelay fixed bin(31); /* Number of milliseconds before */

/* Ver:2 */ /* reconnect attempt */

Parent topic: Initial values and language declarations for MQCBC

This build: January 26, 2011 11:20:08

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40490_

1.5.3.4. System/390 assembler declaration

 MQCBC DSECT

 MQCBC DS 0F Force fullword alignment

 MQCBC_STRUCID DS CL4 Structure identifier

 MQCBC_VERSION DS F Structure version number

 MQCBC_CALLTYPE DS F Why Function was called

 MQCBC_HOBJ DS F Object Handle

 MQCBC_CALLBACKAREA DS A Callback data passed to the function

 MQCBC_CONNECTIONAREA DS A MQCTL Data area passed to the function

 MQCBC_COMPCODE DS F Completion Code

 MQCBC_REASON DS F Reason Code

 MQCBC_STATE DS F Consumer State

 MQCBC_DATALENGTH DS F Message Data Length

 MQCBC_BUFFERLENGTH DS F Buffer Length

 MQCBC_FLAGS DS F Flags containing information about this consumer

 MQCBC_RECONNECTDELAY DS F Number of milliseconds before reconnect

 MQCBC_LENGTH EQU *-MQCBC

 ORG MQCBC

 MQCBC_AREA DS CL(MQCBC_LENGTH)

Parent topic: Initial values and language declarations for MQCBC

This build: January 26, 2011 11:20:08

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40480_

1.6. MQCBD – Callback descriptor

The following table summarizes the fields in the structure. Structure specifying the callback function.

Table 1. Fields in MQCBD

Field Description Topic

StrucID Structure identifier StrucID

Version Structure version number Version

CallbackType Type of callback function CallbackType

Options Options controlling message consumption Options

Callback Area Field for callback function to use CallbackArea

CallbackFunction Whether the function is invoked as an API call CallbackFunction

CallbackName Whether the function is invoked as a dynamically-linked
program

CallbackName

Page 81 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Overview for MQCBD

Fields for MQCBD
Alphabetic list of fields for the MQCBD structure.

Initial values and language declarations for MQCBD

Callback descriptor structure - Initial values

Parent topic: Data type descriptions

This build: January 26, 2011 11:20:09

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40500_

1.6.1. Overview for MQCBD

Availability: AIX®, HP-UX, i5/OS®, Solaris, Linux, Windows, z/OS®, and WebSphere® MQ clients connected to these systems.

Purpose: The MQCBD structure is used to specify a callback function and the options controlling its use by the queue manager.

The structure is an input parameter on the MQCB call.

Version: The current version of MQCBD is MQCBD_VERSION_1.

Character set and encoding: Data in MQCBD must be in the character set and encoding of the local queue manager; these are given by
the CodedCharSetId queue-manager attribute and MQENC_NATIVE, respectively. However, if the application is running as an MQ client, the

structure must be in the character set and encoding of the client.

Parent topic: MQCBD – Callback descriptor

This build: January 26, 2011 11:20:09

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40510_

1.6.2. Fields for MQCBD

Alphabetic list of fields for the MQCBD structure.

The MQCBD structure contains the following fields; the fields are described in alphabetical order:

CallbackArea (MQPTR)
Callback descriptor structure - CallbackArea field

CallbackFunction (MQPTR)

Callback descriptor structure - CallbackFunction field

CallbackName (MQCHAR128)
Callback descriptor structure - CallbackName field

CallbackType (MQLONG)
Callback descriptor structure - CallbackType field

MaxMsgLength (MQLONG)
This is the length in bytes of the longest message that can be read from the handle and given to the callback routine. Callback
descriptor structure - MaxMsgLength field

Options (MQLONG)
Callback descriptor structure - Options field

StrucId (MQCHAR4)
Callback descriptor structure - StrucId field

Version (MQLONG)

Callback descriptor structure - Version field

Parent topic: MQCBD – Callback descriptor

This build: January 26, 2011 11:20:09

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

MaxMsgLength Length of longest message that can be read MaxMsgLength

Page 82 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This topic's URL:

fr40520_

1.6.2.1. CallbackArea (MQPTR)

Callback descriptor structure - CallbackArea field

This is a field that is available for the callback function to use.

The queue manager makes no decisions based on the contents of this field and it is passed unchanged from the CallbackArea field in the
MQCBC structure, which is a parameter on the callback function declaration.

The value is used only on an Operation having a value MQOP_REGISTER, with no currently defined callback, it does not replace a previous

definition.

This is an input and output field to the callback function. The initial value of this field is a null pointer or null bytes.

Parent topic: Fields for MQCBD

This build: January 26, 2011 11:20:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40620_

1.6.2.2. CallbackFunction (MQPTR)

Callback descriptor structure - CallbackFunction field

The callback function is invoked as a function call.

Use this field to specify a pointer to the call back function.

You must specify either CallbackFunction or CallbackName. If you specify both, the reason code MQRC_CALLBACK_ROUTINE_ERROR is

returned.

If neither CallbackName nor CallbackFunction is set, the call fails with the reason code MQRC_CALLBACK_ROUTINE_ERROR.

This option is not supported in the following environments:

� CICS® on z/OS®

� Programming languages and compilers that do not support function-pointer references

In such situations, the call fails with the reason code MQRC_CALLBACK_ROUTINE_ERROR.

On z/OS the function must expect to be called with OS linkage conventions. For example, in the C programming language, specify:

 #pragma linkage(MQCB_FUNCTION,OS)

This is an input field. The initial value of this field is a null pointer or null bytes.

Parent topic: Fields for MQCBD

This build: January 26, 2011 11:20:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40580_

1.6.2.3. CallbackName (MQCHAR128)

Callback descriptor structure - CallbackName field

The call back function is invoked as a dynamically linked program.

You must specify either CallbackFunction or CallbackName. If you specify both, the reason code MQRC_CALLBACK_ROUTINE_ERROR is

returned.

If neither CallbackName nor CallbackFunction is not set, the call fails with the reason code MQRC_CALLBACK_ROUTINE_ERROR.

The module is loaded when the first callback routine to use is registered, and unloaded when the last callback routine to use it deregisters.

Except where noted in the following text, the name is left-justified within the field, with no embedded blanks; the name itself is padded with
blanks to the length of the field. In the descriptions that follow, square brackets ([]) denote optional information:

i5/OS®

The callback name can be one of the following formats:

� Library "/" Program

� Library "/" ServiceProgram "("FunctionName")"

For example, MyLibrary/MyProgram(MyFunction).

The library name can be *LIBL. Both the library and program names are limited to a maximum of 10 characters.

Page 83 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

UNIX systems

The callback name is the name of a dynamically-loadable module or library, suffixed with the name of a function residing in that library.

The function name must be enclosed in parentheses. The library name can optionally be prefixed with a directory path:

 [path]library(function)

If the path is not specified the system search path is used.

The name is limited to a maximum of 128 characters.

Windows

The callback name is the name of a dynamic-link library, suffixed with the name of a function residing in that library. The function name
must be enclosed in parentheses .The library name can optionally be prefixed with a directory path and drive:

 [d:][path]library(function)

If the drive and path are not specified the system search path is used.

The name is limited to a maximum of 128 characters.

z/OS®

The callback name is the name of a load module that is valid for specification on the EP parameter of the LINK or LOAD macro.

The name is limited to a maximum of 8 characters.

z/OS CICS®

The callback name is the name of a load module that is valid for specification on the PROGRAM parameter of the EXEC CICS LINK
command macro.

The name is limited to a maximum of 8 characters.

The program can be defined as remote using the REMOTESYTEM option of the installed PROGRAM definition or by the dynamic routing
program.

The remote CICS region must be connected to WebSphere® MQ if the program is to use WebSphere MQ API calls. Note, however, that the
Hobj field in the MQCBC structure is not valid in a remote system.

If a failure occurs trying to load CallbackName, one of the following error codes is returned to the application:

� MQRC_MODULE_NOT_FOUND

� MQRC_MODULE_INVALID

� MQRC_MODULE_ENTRY_NOT_FOUND

A message is also written to the error log containing the name of the module for which the load was attempted, and the failing reason code
from the operating system.

This is an input field. The initial value of this field is a null string or blanks.

Parent topic: Fields for MQCBD

This build: January 26, 2011 11:20:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40590_

1.6.2.4. CallbackType (MQLONG)

Callback descriptor structure - CallbackType field

This is the type of the callback function. The value must be one of:

MQCBT_MESSAGE_CONSUMER

Defines this callback as a message consumer function.

A message consumer callback function is called when a message, meeting the selection criteria specified, is available on an object handle
and the connection is started.

MQCBT_EVENT_HANDLER

Defines this callback as the asynchronous event routine; it is not driven to consume messages for a handle.

Hobj is not required on the MQCB call defining the event handler and is ignored if specified.

The event handler is called for conditions that affect the whole message consumer environment. The consumer function is invoked without
a message when an event, for example, a queue manager or connection stopping, or quiescing, occurs. It is not called for conditions that
are specific to a single message consumer, for example, MQRC_GET_INHIBITED.

Events are delivered to the application, regardless of whether the connection is started or stopped, except in the following environments:

� CICS® on z/OS® environment

� nonthreaded applications

If the caller does not pass one of these values, the call fails with a Reason code of MQRC_CALLBACK_TYPE_ERROR

This is always an input field. The initial value of this field is MQCBT_MESSAGE_CONSUMER.

Page 84 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Parent topic: Fields for MQCBD

This build: January 26, 2011 11:20:09

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40550_

1.6.2.5. MaxMsgLength (MQLONG)

This is the length in bytes of the longest message that can be read from the handle and given to the callback routine. Callback descriptor

structure - MaxMsgLength field

If a message has a longer length, the callback routine receives MaxMsgLength bytes of the message, and reason code:

� MQRC_TRUNCATED_MSG_FAILED or

� MQRC_TRUNCATED_MSG_ACCEPTED if you specified MQGMO_ACCEPT_TRUNCATED_MSG.

The actual message length is supplied in the DataLength field of the MQCBC structure.

The following special value is defined:

MQCBD_FULL_MSG_LENGTH

The buffer length is adjusted by the system to return messages without truncation.

If insufficient memory is available to allocate a buffer to receive the message, the system calls the callback function with an
MQRC_STORAGE_NOT_AVAILABLE reason code.

If, for example, you request data conversion, and there is insufficient memory available to convert the message data, the unconverted
message is passed to the callback function.

This is an input field. The initial value of the MaxMsgLength field is MQCBD_FULL_MSG_LENGTH.

Parent topic: Fields for MQCBD

This build: January 26, 2011 11:20:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40570_

1.6.2.6. Options (MQLONG)

Callback descriptor structure - Options field

Any one, or all, of the following can be specified. If more than one option is required the values can be:

� Added together (do not add the same constant more than once), or

� Combined using the bitwise OR operation (if the programming language supports bit operations).

MQCBDO_FAIL_IF_QUIESCING

The MQCB call fails if the queue manager is in the quiescing state.

On z/OS®, this option also forces the MQCB call to fail if the connection (for a CICS® or IMS™ application) is in the quiescing state.

Specify MQGMO_FAIL_IF_QUIESCING, in the MQGMO options passed on the MQCB call, to cause notification to message consumers when
they are quiescing.

Control options: The following options control whether the callback function is called, without a message, when the state of the consumer
changes:

MQCBDO_REGISTER_CALL

The callback function is invoked with call type MQCBCT_REGISTER_CALL.

MQCBDO_START_CALL

The callback function is invoked with call type MQCBCT_START_CALL.

MQCBDO_STOP_CALL

The callback function is invoked with call type MQCBCT_STOP_CALL.

MQCBDO_DEREGISTER_CALL

The callback function is invoked with call type MQCBCT_DEREGISTER_CALL.

See CallType for further details about these call types.

Default option: If you do not need any of the options described, use the following option:

MQCBDO_NONE

Use this value to indicate that no other options have been specified; all options assume their default values.

MQCBDO_NONE is defined to aid program documentation; it is not intended that this option be used with any other, but as its value is
zero, such use cannot be detected.

Page 85 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This is an input field. The initial value of the Options field is MQCBDO_NONE.

Parent topic: Fields for MQCBD

This build: January 26, 2011 11:20:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40560_

1.6.2.7. StrucId (MQCHAR4)

Callback descriptor structure - StrucId field

This is the structure identifier; the value must be:

MQCBD_STRUC_ID

Identifier for callback descriptor structure.

For the C programming language, the constant MQCBD_STRUC_ID_ARRAY is also defined; this has the same value as MQCBD_STRUC_ID,
but is an array of characters instead of a string.

This is always an input field. The initial value of this field is MQCBD_STRUC_ID.

Parent topic: Fields for MQCBD

This build: January 26, 2011 11:20:09

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40530_

1.6.2.8. Version (MQLONG)

Callback descriptor structure - Version field

This is the structure version number; the value must be:

MQCBD_VERSION_1

Version-1 callback descriptor structure.

The following constant specifies the version number of the current version:

MQCBD_CURRENT_VERSION

Current version of callback descriptor structure.

This is always an input field. The initial value of this field is MQCBD_VERSION_1.

Parent topic: Fields for MQCBD

This build: January 26, 2011 11:20:09

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40540_

1.6.3. Initial values and language declarations for MQCBD

Callback descriptor structure - Initial values

Table 1. Initial values of fields in MQCBD

Field name Name of constant Value of constant

StrucId MQCBD_STRUC_ID 'CBD�'

Version MQCBD_VERSION_1 1

CallBackType MQCBT_MESSAGE_CONSUMER 1

Options MQCBDO_NONE 0

CallbackArea None Null pointer or null blanks

CallbackFunction None Null pointer or null blanks

CallbackName None Null string or blanks

MaxMsgLength MQCBD_FULL_MSG_LENGTH -1

Notes:

1. The symbol � represents a single blank character.

2. The value Null string or blanks denotes the null sting in the C programming language, and blank characters in other

Page 86 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

C declaration

Callback descriptor structure - C language declaration

COBOL declaration

PL/I declaration

Parent topic: MQCBD – Callback descriptor

This build: January 26, 2011 11:20:14

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40980_

1.6.3.1. C declaration

Callback descriptor structure - C language declaration

typedef struct tagMQCBD MQCBD;

 struct tagMQCBD {

 MQCHAR4 StrucId; /* Structure identifier */

 MQLONG Version; /* Structure version number */

 MQLONG CallBackType; /* Callback function type */

 MQLONG Options; /* Options controlling message

 consumption */

 MQPTR CallbackArea; /* User data passed to the function */

 MQPTR CallbackFunction; /* Callback function pointer */

 MQCHAR128 CallbackName; /* Callback name */

 MQLONG MaxMsgLength; /* Maximum message length */

 };

Parent topic: Initial values and language declarations for MQCBD

This build: January 26, 2011 11:20:14

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40990_

1.6.3.2. COBOL declaration

** MQCBCD structure

 10 MQCBD.

** Structure Identifier

 15 MQCBD-STRUCID PIC X(4).

** Structure Version

 15 MQCBD-VERSION PIC S9(9) BINARY.

 ** Callback Type

 15 MQCBD-CALLBACKTYPE PIC S9(9) BINARY.

** Options

 15 MQCBD-OPTIONS PIC S9(9) BINARY.

** Callback User Area

 15 MQCBD-CALLBACKAREA POINTER

** Callback Function Pointer

 15 MQCBD-CALLBACKFUNCTION FUNCTION-POINTER

** Callback Program Name

 15 MQCBD-CALLBACKNAME PIC X(128)

** Maximum Message Length

 15 MQCDB-MAXMSGLENGTH PIC S9(9) BINARY.

Parent topic: Initial values and language declarations for MQCBD

This build: January 26, 2011 11:20:14

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr41000_

1.6.3.3. PL/I declaration

dcl

 1 MQCBD based,

 3 StrucId char(4), /* Structure identifier*/

programming languages.

3. In the C programming language, the macro variable MQCBD_DEFAULT contains the values listed above. Use it in the

following way to provide initial values for the fields in the structure:

MQCBD MyCBD = {MQCBD_DEFAULT};

Page 87 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

 3 Version fixed bin(31), /* Structure version*/

 3 CallbackType fixed bin(31), /* Callback function type */

 3 Options fixed bin(31), /* Options */

 3 CallbackArea pointer, /* User area passed to the function */

 3 CallbackFunction pointer, /* Callback Function Pointer */

 3 CallbackName char(128), /* Callback Program Name */

 3 MaxMsgLength fixed bin(31); /* Maximum Message Length */

Parent topic: Initial values and language declarations for MQCBD

This build: January 26, 2011 11:20:14

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr41020_

1.7. MQCHARV - Variable Length String

The following table summarizes the fields in the structure.

Overview for MQCHARV

Fields for MQCHARV
The MQCHARV structure contains the following fields; the fields are described in alphabetic order:

Initial values and language declarations for MQCHARV

Redefinition of MQCCSI_APPL
The following examples show how you can override the value of MQCCSI_APPL in various programming languages. You can change the
value of MQCCSI_APPL, removing the need to set the VSCCSID for each variable length string separately.

Parent topic: Data type descriptions

This build: January 26, 2011 11:19:39

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr22600_

1.7.1. Overview for MQCHARV

Availability: AIX®, HP-UX, Solaris, Linux, i5/OS®, Windows, plus WebSphere® MQ clients connected to these systems.

Purpose: Use the MQCHARV structure to describe a variable length string.

Character set and encoding: Data in the MQCHARV must be in the encoding of the local queue manager that is given by MQENC_NATIVE
and the character set of the VSCCSID field within the structure. If the application is running as an MQ client, the structure must be in the
encoding of the client. Some character sets have a representation that depends on the encoding. If VSCCSID is one of these character sets,

the encoding used is the same encoding as that of the other fields in the MQCHARV. The character set identified by VSCCSID can be a
double-byte character set (DBCS).

Usage: The MQCHARV structure addresses data that might be discontiguous with the structure containing it. To address this data, fields
declared with the pointer data type can be used. Be aware that COBOL does not support the pointer data type in all environments. Because
of this, the data can also be addressed using fields that contain the offset of the data from the start of the structure containing the

MQCHARV.

COBOL programming

If you want to port an application between environments, you must ascertain whether the pointer data type is available in all the intended
environments. If not, the application must address the data using the offset fields instead of the pointer fields.

In those environments where pointers are not supported, you can declare the pointer fields as byte strings of the appropriate length, with
the initial value being the all-null byte string. Do not alter this initial value if you are using the offset fields. One way to do this without

changing the supplied copy books is to use the following:

COPY CMQCHRVV REPLACING POINTER BY ==BINARY PIC S9(9)==.

where CMQCHRVV can be exchanged for the copy book to be used.

Field Description Topic

VSPtr Pointer to the variable length string VSPtr

VSOffset Offset in bytes of the variable length string from the start of the

structure that contains this MQCHARV structure

VSOffset

VSLength The length in bytes of the variable length string addressed by the VSPtr
or VSOffset field.

VSLength

VSBufSize The size in bytes of the buffer addressed by the VSPtr or VSOffset field. VSBufSize

VSCCSID The character set identifier of the variable length string addressed by

the VSPtr or VSOffset field.

VSCCSID

Page 88 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Parent topic: MQCHARV - Variable Length String

This build: January 26, 2011 11:19:39

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr22610_

1.7.2. Fields for MQCHARV

The MQCHARV structure contains the following fields; the fields are described in alphabetic order:

VSBufSize (MQLONG)
This is the size in bytes of the buffer addressed by the VSPtr or VSOffset field.

VSCCSID (MQLONG)

This is the character set identifier of the variable length string addressed by the VSPtr or VSOffset field.

VSLength (MQLONG)
The length in bytes of the variable length string addressed by the VSPtr or VSOffset field.

VSOffset (MQLONG)
The offset can be positive or negative. You can use either the VSPtr or VSOffset field to specify the variable length string, but not both.
The offset in bytes of the variable length string from the start of the MQCHARV, or the structure containing it.

VSPtr (MQPTR)
This is a pointer to the variable length string.

Parent topic: MQCHARV - Variable Length String

This build: January 26, 2011 11:19:39

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr22620_

1.7.2.1. VSBufSize (MQLONG)

This is the size in bytes of the buffer addressed by the VSPtr or VSOffset field.

When the MQCHARV structure is used as an output field on a function call, this field must be initialised with the length of the buffer
provided. If the value of VSLength is greater than VSBufSize then only VSBufSize bytes of data are returned to the caller in the buffer.

This value must be a value greater than or equal to zero, or the following special value which is recognized:

MQVS_USE_VSLENGTH

When specified, the length of the buffer is taken from the VSLength field in the MQCHARV structure. Do not use this value when using the
structure as an output field and a buffer is provided.
This is the initial value of this field.

Parent topic: Fields for MQCHARV

This build: January 26, 2011 11:20:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr43440_

1.7.2.2. VSCCSID (MQLONG)

This is the character set identifier of the variable length string addressed by the VSPtr or VSOffset field.

The initial value of this field is MQCCSI_APPL which is defined by MQ to indicate that it should be changed to the true character set
identifier of the current process. As a result, the value MQCCSI_APPL is never associated with a variable length string. The initial value of
this field can be changed by defining a different value for the constant MQCCSI_APPL for your compile unit by the appropriate means for

your application’s programming language.

Parent topic: Fields for MQCHARV

This build: January 26, 2011 11:19:39

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr22630_

1.7.2.3. VSLength (MQLONG)

Page 89 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

The length in bytes of the variable length string addressed by the VSPtr or VSOffset field.

The initial value of this field is 0. The value must be either greater than or equal to zero or the following special value which is recognized:

MQVS_NULL_TERMINATED

If MQVS_NULL_TERMINATED is not specified, VSLength bytes are included as part of the string. If null characters are present they do not
delimit the string.

If MQVS_NULL_TERMINATED is specified, the string is delimited by the first null encountered in the string. The null itself is not included as
part of that string.

Note: The null character used to terminate a string if MQVS_NULL_TERMINATED is specified is a null from the codeset specified by
VSCCSID.

For example, in UTF-16 (UCS-2 CCSIDs 1200 and 13488), this is the two byte Unicode encoding where a null is represented by a 16 bit
number of all zeros. In UTF-16 it is common to find single bytes set to all zero which are part of characters (seven bit ASCII characters for

instance), but the strings will only be null terminated when two 'zero' bytes are found on an even byte boundary. It is possible to get two
'zero' bytes on an odd boundary when they are each part of valid characters, for exampe x'01' x'00 x'00' x'30' would be two valid Unicode
characters and would not null terminate the string.

Parent topic: Fields for MQCHARV

This build: January 26, 2011 11:19:39

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr22640_

1.7.2.4. VSOffset (MQLONG)

The offset can be positive or negative. You can use either the VSPtr or VSOffset field to specify the variable length string, but not both. The

offset in bytes of the variable length string from the start of the MQCHARV, or the structure containing it.

When the MQCHARV structure is embedded within another structure, this value is the offset in bytes of the variable length string from the
start of the structure that contains this MQCHARV structure. When the MQCHARV structure is not embedded within another structure, for
example, if it is specified as a parameter on a function call, the offset is relative to the start of the MQCHARV structure.

The initial value of this field is 0.

Parent topic: Fields for MQCHARV

This build: January 26, 2011 11:19:39

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr22650_

1.7.2.5. VSPtr (MQPTR)

This is a pointer to the variable length string.

You can use either the VSPtr or VSOffset field to specify the variable length string, but not both.

The initial value of this field is a null pointer or null bytes.

Parent topic: Fields for MQCHARV

This build: January 26, 2011 11:19:39

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr22660_

1.7.3. Initial values and language declarations for MQCHARV

Initial values of fields in MQCHARV

Field name Name of constant Value of constant

VSPtr None Null pointer or null bytes.

VSOffset None 0

VSBufSize MQVS_USE_VSLENGTH 0

VSLength None 0

VSCCSID MQCCSI_APPL -3

Note: In the C programming language, the macro variable MQCHARV_DEFAULT contains the values listed above. It can be used

in the following way to provide initial values for the fields in the structure:

MQCHARV MyVarStr = {MQCHARV_DEFAULT};

Page 90 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

C declaration for MQCHARV

COBOL declaration for MQCHARV

PL/I declaration

System/390 assembler declaration

Parent topic: MQCHARV - Variable Length String

This build: January 26, 2011 11:19:39

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr22670_

1.7.3.1. C declaration for MQCHARV

typedef struct tagMQCHARV MQCHARV;

struct tagMQCHARV {

 MQPTR VSPtr; /* Address of variable length string */

 MQLONG VSOffset; /* Offset of variable length string */

 MQLONG VSBufSize; /* Size of buffer */

 MQLONG VSLength; /* Length of variable length string */

 MQLONG VSCCSID; /* CCSID of variable length string */

};

Parent topic: Initial values and language declarations for MQCHARV

This build: January 26, 2011 11:19:40

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr22680_

1.7.3.2. COBOL declaration for MQCHARV

** MQCHARV structure

 10 MQCHARV.

** Address of variable length string

 15 MQCHARV-VSPTR POINTER.

** Offset of variable length string

 15 MQCHARV-VSOFFSET PIC S9(9) BINARY.

** Size of buffer

 15 MQCHARV-VSBUFSIZE PIC S9(9) BINARY.

** Length of variable length string

 15 MQCHARV-VSLENGTH PIC S9(9) BINARY.

** CCSID of variable length string

 15 MQCHARV-VSCCSID PIC S9(9) BINARY.

Parent topic: Initial values and language declarations for MQCHARV

This build: January 26, 2011 11:19:40

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr22700_

1.7.3.3. PL/I declaration

dcl

 1 MQCHARV based,

 3 VSPtr pointer, /* Address of variable length string */

 3 VSOffset fixed bin(31), /* Offset of variable length string */

 3 VSBufSize fixed bin(31), /* Size of buffer */

 3 VSLength fixed bin(31), /* Length of variable length string */

 3 VSCCSID fixed bin(31); /* CCSID of variable length string */

Parent topic: Initial values and language declarations for MQCHARV

This build: January 26, 2011 11:19:40

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr22710_

1.7.3.4. System/390® assembler declaration

Page 91 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

MQCHARV DSECT

MQCHARV_VSPTR DS F Address of variable length string

MQCHARV_VSOFFSET DS F Offset of variable length string

MQCHARV_VSBUFSIZE DS F Size of buffer

MQCHARV_VSLENGTH DS F Length of variable length string

MQCHARV_VSCCSID DS F CCSID of variable length string

*

MQCHARV_LENGTH EQU *-MQCHARV

 ORG MQCHARV

MQCHARV_AREA DS CL(MQCHARV_LENGTH)

Parent topic: Initial values and language declarations for MQCHARV

This build: January 26, 2011 11:19:40

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr22720_

1.7.4. Redefinition of MQCCSI_APPL

The following examples show how you can override the value of MQCCSI_APPL in various programming languages. You can change the
value of MQCCSI_APPL, removing the need to set the VSCCSID for each variable length string separately.

In these examples the CCSID is set to 1208; change this to the value you require. This becomes the default value, which you can override
by setting the VSCCSID in any specific instance of MQCHARV.

C usage

#define MQCCSI_APPL 1208

#include <cmqc.h>

COBOL usage

COPY CMQXYZV REPLACING -3 BY 1208.

PL/I usage

%MQCCSI_APPL = '1208';

%include syslib(cmqp);

System/390® assembler usage

MQCCSI_APPL EQU 1208

 CMQA LIST=NO

Parent topic: MQCHARV - Variable Length String

This build: January 26, 2011 11:19:40

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr22730_

1.8. MQCIH – CICS bridge header

The following table summarizes the fields in the structure.

Table 1. Fields in MQCIH

Field Description Topic

StrucId Structure identifier StrucId

Version Structure version number Version

StrucLength Length of MQCIH structure StrucLength

Encoding Reserved Encoding

CodedCharSetId Reserved CodedCharSetId

Format MQ format name of data that follows MQCIH Format

Flags Flags Flags

ReturnCode Return code from bridge ReturnCode

CompCode MQ completion code or CICS® EIBRESP CompCode

Reason MQ reason or feedback code, or CICS EIBRESP2 Reason

UOWControl Unit-of-work control UOWControl

GetWaitInterval Wait interval for MQGET call issued by bridge task GetWaitInterval

LinkType Link type LinkType

OutputDataLength Output COMMAREA data length OutputDataLength

FacilityKeepTime Bridge facility release time FacilityKeepTime

ADSDescriptor Send/receive ADS descriptor ADSDescriptor

ConversationalTask Whether task can be conversational ConversationalTask

TaskEndStatus Status at end of task TaskEndStatus

Page 92 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Overview for MQCIH

Availability: AIX®, HP-UX, z/OS®, Solaris, Linux, Windows, plus WebSphere® MQ clients connected to these systems.

Fields for MQCIH
The MQCIH structure contains the following fields; the fields are described in alphabetic order:

Initial values and language declarations for MQCIH

Parent topic: Data type descriptions

This build: January 26, 2011 11:15:33

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11120_

1.8.1. Overview for MQCIH

Availability: AIX®, HP-UX, z/OS®, Solaris, Linux, Windows, plus WebSphere® MQ clients connected to these systems.

Purpose: The MQCIH structure describes the information that can be present at the start of a message sent to the CICS® bridge through
WebSphere MQ for z/OS.

Format name: MQFMT_CICS.

Version: The current version of MQCIH is MQCIH_VERSION_2. Fields that exist only in the more-recent version of the structure are
identified as such in the descriptions that follow.

The header, COPY, and INCLUDE files provided for the supported programming languages contain the most-recent version of MQCIH, with

the initial value of the Version field set to MQCIH_VERSION_2.

Character set and encoding: Special conditions apply to the character set and encoding used for the MQCIH structure and application
message data:

� Applications that connect to the queue manager that owns the CICS bridge queue must provide an MQCIH structure that is in the

character set and encoding of the queue manager. This is because data conversion of the MQCIH structure is not performed in this
case.

� Applications that connect to other queue managers can provide an MQCIH structure that is in any of the supported character sets and

encodings; the receiving message channel agent connected to the queue manager that owns the CICS bridge queue converts the
MQCIH structure.

� The application message data following the MQCIH structure must be in the same character set and encoding as the MQCIH structure.

You cannot use the CodedCharSetId and Encoding fields in the MQCIH structure to specify the character set and encoding of the

application message data.

You must provide a data-conversion exit to convert the application message data if the data is not one of the built-in formats
supported by the queue manager.

Usage: If the application requires values that are the same as the initial values shown in Table 1, and the bridge is running with
AUTH=LOCAL or AUTH=IDENTIFY, you can omit the MQCIH structure from the message. In all other cases, the structure must be present.

The bridge accepts either a version-1 or a version-2 MQCIH structure, but for 3270 transactions, you must use a version-2 structure.

The application must ensure that fields documented as request fields have appropriate values in the message sent to the bridge; these fields

Facility Bridge facility token Facility

Function MQ call name or CICS EIBFN function Function

AbendCode Abend code AbendCode

Authenticator Password or passticket Authenticator

Reserved1 Reserved Reserved1

ReplyToFormat MQ format name of reply message ReplyToFormat

RemoteSysId Remote CICS system Id to use RemoteSysId

RemoteTransId CICS RTRANSID to use RemoteTransId

TransactionId Transaction to attach TransactionId

FacilityLike Terminal emulated attributes FacilityLike

AttentionId AID key AttentionId

StartCode Transaction start code StartCode

CancelCode Abend transaction code CancelCode

NextTransactionId Next transaction to attach NextTransactionId

Reserved2 Reserved Reserved2

Reserved3 Reserved Reserved3

Note: The remaining fields are not present if Version is less than MQCIH_VERSION_2.

CursorPosition Cursor position CursorPosition

ErrorOffset Offset of error in message ErrorOffset

InputItem Reserved InputItem

Reserved4 Reserved Reserved4

Page 93 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

are input to the bridge.

Fields documented as response fields are set by the CICS bridge in the reply message that the bridge sends to the application. Error
information is returned in the ReturnCode, Function, CompCode, Reason, and AbendCode fields, but not all of them are set in all cases. Table

1 shows which fields are set for different values of ReturnCode.

Parent topic: MQCIH – CICS bridge header

This build: January 26, 2011 11:15:37

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11130_

1.8.2. Fields for MQCIH

The MQCIH structure contains the following fields; the fields are described in alphabetic order:

AbendCode (MQCHAR4)

ADSDescriptor (MQLONG)
This is an indicator specifying whether to send ADS descriptors on SEND and RECEIVE BMS requests.

AttentionId (MQCHAR4)
This is the initial value of the AID key when the transaction is started. It is a 1-byte value, left justified.

Authenticator (MQCHAR8)

This is a password or passticket.

CancelCode (MQCHAR4)
This is the abend code to be used to terminate the transaction (normally a conversational transaction that is requesting more data).

Otherwise this field is set to blanks.

CodedCharSetId (MQLONG)
This is a reserved field; its value is not significant. The initial value of this field is 0.

CompCode (MQLONG)

ConversationalTask (MQLONG)
This field is an indicator specifying whether to allow the task to issue requests for more information, or to stop the task and issue an
abend message.

CursorPosition (MQLONG)
This is the initial cursor position when the transaction is started. Subsequently, for conversational transactions, the cursor position is in
the RECEIVE vector.

Encoding (MQLONG)
This is a reserved field; its value is not significant. The initial value of this field is 0.

ErrorOffset (MQLONG)

This is the position of invalid data detected by the bridge exit. This field provides the offset from the start of the message to the
location of the invalid data.

Facility (MQBYTE8)
This is an 8-byte bridge facility token.

FacilityKeepTime (MQLONG)
This is the length of time in seconds that the bridge facility is kept after the user transaction ends.

FacilityLike (MQCHAR4)
This is the name of an installed terminal that is to be used as a model for the bridge facility.

Flags (MQLONG)

Format (MQCHAR8)

Table 1. Contents of error information fields in MQCIH structure for MQCIH

ReturnCode Function CompCode Reason AbendCode

MQCRC_OK – – – –

MQCRC_BRIDGE_ERROR – – MQFB_CICS_* –

MQCRC_MQ_API_ERROR
MQCRC_BRIDGE_TIMEOUT

MQ call name MQ CompCode MQ Reason –

MQCRC_CICS_EXEC_ERROR

MQCRC_SECURITY_ERROR

MQCRC_PROGRAM_NOT_AVAILABLE
MQCRC_TRANSID_NOT_AVAILABLE

CICS EIBFN CICS EIBRESP CICS EIBRESP2 –

MQCRC_BRIDGE_ABEND

MQCRC_APPLICATION_ABEND

– – – CICS ABCODE

Page 94 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Function (MQCHAR4)

GetWaitInterval (MQLONG)

InputItem (MQLONG)
This is a reserved field.

LinkType (MQLONG)

NextTransactionId (MQCHAR4)

OutputDataLength (MQLONG)

Reason (MQLONG)

RemoteSysId (MQCHAR4)

RemoteTransId (MQCHAR4)

ReplyToFormat (MQCHAR8)

Reserved1 (MQCHAR8)

Reserved2 (MQCHAR8)

Reserved3 (MQCHAR8)

Reserved4 (MQLONG)

ReturnCode (MQLONG)

StartCode (MQCHAR4)

StrucId (MQCHAR4)

StrucLength (MQLONG)

TaskEndStatus (MQLONG)

TransactionId (MQCHAR4)

UOWControl (MQLONG)

Version (MQLONG)

Parent topic: MQCIH – CICS bridge header

This build: January 26, 2011 11:15:37

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11140_

1.8.2.1. AbendCode (MQCHAR4)

The value returned in this field is significant only if the ReturnCode field has the value MQCRC_APPLICATION_ABEND or

MQCRC_BRIDGE_ABEND. If it does, AbendCode contains the CICS® ABCODE value.

This is a response field. The length of this field is given by MQ_ABEND_CODE_LENGTH. The initial value of this field is 4 blank characters.

Parent topic: Fields for MQCIH

This build: January 26, 2011 11:15:37

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11150_

1.8.2.2. ADSDescriptor (MQLONG)

This is an indicator specifying whether to send ADS descriptors on SEND and RECEIVE BMS requests.

The following values are defined:

MQCADSD_NONE

Do not send or receive ADS descriptors.

Page 95 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

MQCADSD_SEND

Send ADS descriptors.

MQCADSD_RECV

Receive ADS descriptors.

MQCADSD_MSGFORMAT

Use message format for the ADS descriptors.

This sends or receives the ADS descriptors using the long form of the ADS descriptor. The long form has fields that are aligned on 4-byte
boundaries.

Set the ADSDescriptor field as follows:

� If you are not using ADS descriptors, set the field to MQCADSD_NONE.

� If you are using ADS descriptors with the same CCSID in each environment, set the field to the sum of MQCADSD_SEND and
MQCADSD_RECV.

� If you are using ADS descriptors with different CCSIDs in each environment, set the field to the sum of MQCADSD_SEND,
MQCADSD_RECV, and MQCADSD_MSGFORMAT.

This is a request field used only for 3270 transactions. The initial value of this field is MQCADSD_NONE.

Parent topic: Fields for MQCIH

This build: January 26, 2011 11:15:37

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11160_

1.8.2.3. AttentionId (MQCHAR4)

This is the initial value of the AID key when the transaction is started. It is a 1-byte value, left justified.

This is a request field used only for 3270 transactions. The length of this field is given by MQ_ATTENTION_ID_LENGTH. The initial value of
this field is 4 blanks.

Parent topic: Fields for MQCIH

This build: January 26, 2011 11:15:37

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11170_

1.8.2.4. Authenticator (MQCHAR8)

This is a password or passticket.

If user-identifier authentication is active for the CICS® bridge, Authenticator is used with the user identifier in the MQMD identity context

to authenticate the sender of the message.

This is a request field. The length of this field is given by MQ_AUTHENTICATOR_LENGTH. The initial value of this field is 8 blanks.

Parent topic: Fields for MQCIH

This build: January 26, 2011 11:15:37

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11180_

1.8.2.5. CancelCode (MQCHAR4)

This is the abend code to be used to terminate the transaction (normally a conversational transaction that is requesting more data).
Otherwise this field is set to blanks.

This is a request field used only for 3270 transactions. The length of this field is given by MQ_CANCEL_CODE_LENGTH. The initial value of

this field is 4 blanks.

Parent topic: Fields for MQCIH

This build: January 26, 2011 11:15:37

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11190_

Page 96 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

1.8.2.6. CodedCharSetId (MQLONG)

This is a reserved field; its value is not significant. The initial value of this field is 0.

The Character Set Id for supported structures which follow a MQCIH structure is the same as that of the MQCIH structure itself and
taken from any preceding MQ header.

Parent topic: Fields for MQCIH

This build: January 26, 2011 11:15:38

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11200_

1.8.2.7. CompCode (MQLONG)

The value returned in this field depends on ReturnCode; see Table 1.

This is a response field. The initial value of this field is MQCC_OK

Parent topic: Fields for MQCIH

This build: January 26, 2011 11:15:38

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11210_

1.8.2.8. ConversationalTask (MQLONG)

This field is an indicator specifying whether to allow the task to issue requests for more information, or to stop the task and issue an abend
message.

The value must be one of the following:

MQCCT_YES

The task is conversational.

MQCCT_NO

The task is not conversational.

This is a request field used only for 3270 transactions. The initial value of this field is MQCCT_NO.

Parent topic: Fields for MQCIH

This build: January 26, 2011 11:15:38

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11220_

1.8.2.9. CursorPosition (MQLONG)

This is the initial cursor position when the transaction is started. Subsequently, for conversational transactions, the cursor position is in the
RECEIVE vector.

This is a request field used only for 3270 transactions. The initial value of this field is 0. This field is not present if Version is less than

MQCIH_VERSION_2.

Parent topic: Fields for MQCIH

This build: January 26, 2011 11:15:38

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11230_

1.8.2.10. Encoding (MQLONG)

This is a reserved field; its value is not significant. The initial value of this field is 0.

The Encoding for supported structures which follow a MQCIH structure is the same as that of the MQCIH structure itself and taken
from any preceding MQ header.

Parent topic: Fields for MQCIH

This build: January 26, 2011 11:15:38

Page 97 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11240_

1.8.2.11. ErrorOffset (MQLONG)

This is the position of invalid data detected by the bridge exit. This field provides the offset from the start of the message to the location of
the invalid data.

This is a response field used only for 3270 transactions. The initial value of this field is 0. This field is not present if Version is less than

MQCIH_VERSION_2.

Parent topic: Fields for MQCIH

This build: January 26, 2011 11:15:38

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11250_

1.8.2.12. Facility (MQBYTE8)

This is an 8-byte bridge facility token.

A bridge facility token allows multiple transactions in a pseudo-conversation to use the same bridge facility (virtual 3270 terminal). In the
first, or only, message in a pseudo-conversation, set a value of MQCFAC_NONE; this tells CICS® to allocate a new bridge facility for this

message. A bridge facility token is returned in response messages when a nonzero FacilityKeepTime is specified on the input message.

Subsequent input messages within a pseudo-conversation must then use the same bridge facility token.

The following special value is defined:

MQCFAC_NONE

No facility token specified.

For the C programming language, the constant MQCFAC_NONE_ARRAY is also defined; this has the same value as MQCFAC_NONE, but is
an array of characters instead of a string.

This is both a request and a response field used only for 3270 transactions. The length of this field is given by MQ_FACILITY_LENGTH. The

initial value of this field is MQCFAC_NONE.

Parent topic: Fields for MQCIH

This build: January 26, 2011 11:15:38

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11260_

1.8.2.13. FacilityKeepTime (MQLONG)

This is the length of time in seconds that the bridge facility is kept after the user transaction ends.

For pseudo-conversational transactions specify a value that corresponds to the expected duration of a pseudo-conversation; specify zero for

the last transaction of a pseudo-conversation; for other transaction types specify zero.

This is a request field used only for 3270 transactions. The initial value of this field is 0.

Parent topic: Fields for MQCIH

This build: January 26, 2011 11:15:38

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11270_

1.8.2.14. FacilityLike (MQCHAR4)

This is the name of an installed terminal that is to be used as a model for the bridge facility.

A value of blanks means that FacilityLike is taken from the bridge transaction profile definition, or a default value is used.

This is a request field used only for 3270 transactions. The length of this field is given by MQ_FACILITY_LIKE_LENGTH. The initial value of
this field is 4 blanks.

Parent topic: Fields for MQCIH

This build: January 26, 2011 11:15:38

Page 98 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11280_

1.8.2.15. Flags (MQLONG)

The value must be:

MQCIH_NONE

No flags.

MQCIH_PASS_EXPIRATION

The reply message contains:

� The same expiry report options as the request message

� The remaining expiry time from the request message with no adjustment made for the bridge's processing time

If you omit this value, the expiry time is set to unlimited.

MQCIH_REPLY_WITHOUT_NULLS

The reply message length of a CICS® DPL program request is adjusted to exclude trailing nulls (X'00') at the end of the COMMAREA
returned by the DPL program. If this value is not set, the nulls might be significant, and the full COMMAREA is returned.

MQCIH_SYNC_ON_RETURN

The CICS link for DPL requests uses the SYNCONRETURN option. This causes CICS to take a syncpoint when the program completes if it is
shipped to another CICS region. The bridge does not specify to which CICS region to ship the request; that is controlled by the CICS
program definition or workload balancing facilities.

This is a request field. The initial value of this field is MQCIH_NONE.

Parent topic: Fields for MQCIH

This build: January 26, 2011 11:15:38

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11290_

1.8.2.16. Format (MQCHAR8)

This is the MQ format name of the data that follows the MQCIH structure.

On the MQPUT or MQPUT1 call, the application must set this field to the value appropriate to the data. The rules for coding this field are the
same as those for the Format field in MQMD.

This format name is also used for the reply message, if the ReplyToFormat field has the value MQFMT_NONE.

� For DPL requests, Format must be the format name of the COMMAREA.

� For 3270 requests, Format must be CSQCBDCI, and the bridge sets the format to CSQCBDCO for Reply messages.

The data-conversion exits for these formats must be installed on the queue manager where they are to run.

If the request message generates an error reply message, the error reply message has a format name of MQFMT_STRING.

This is a request field. The length of this field is given by MQ_FORMAT_LENGTH. The initial value of this field is MQFMT_NONE.

Parent topic: Fields for MQCIH

This build: January 26, 2011 11:15:38

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11300_

1.8.2.17. Function (MQCHAR4)

The value returned in this field depends on ReturnCode; see Table 1. The following values are possible when Function contains an MQ call

name:

MQCFUNC_MQCONN

MQCONN call.

MQCFUNC_MQGET

MQGET call.

MQCFUNC_MQINQ

MQINQ call.

MQCFUNC_MQOPEN

MQOPEN call.

Page 99 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

MQCFUNC_MQPUT

MQPUT call.

MQCFUNC_MQPUT1

MQPUT1 call.

MQCFUNC_NONE

No call.

In all cases, for the C programming language the constants MQCFUNC_*_ARRAY are also defined; these have the same values as the

corresponding MQCFUNC_* constants, but are arrays of characters instead of strings.

This is a response field. The length of this field is given by MQ_FUNCTION_LENGTH. The initial value of this field is MQCFUNC_NONE.

Parent topic: Fields for MQCIH

This build: January 26, 2011 11:15:39

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11310_

1.8.2.18. GetWaitInterval (MQLONG)

This field applies only when UOWControl has the value MQCUOWC_FIRST. It allows the sending application to specify the approximate time

in milliseconds that the MQGET calls issued by the bridge should wait for second and subsequent request messages for the unit of work

started by this message. This overrides the default wait interval used by the bridge. You can use the following special values:

MQCGWI_DEFAULT

Default wait interval.

This causes the CICS® bridge to wait for the period of time specified when the bridge was started.

MQWI_UNLIMITED

Unlimited wait interval.

This is a request field. The initial value of this field is MQCGWI_DEFAULT.

Parent topic: Fields for MQCIH

This build: January 26, 2011 11:15:39

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11320_

1.8.2.19. InputItem (MQLONG)

This is a reserved field.

The value must be 0. This field is not present if Version is less than MQCIH_VERSION_2.

Parent topic: Fields for MQCIH

This build: January 26, 2011 11:15:39

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11330_

1.8.2.20. LinkType (MQLONG)

This indicates the type of object that the bridge tries to link. The value must be one of the following:

MQCLT_PROGRAM

DPL program.

MQCLT_TRANSACTION

3270 transaction.

This is a request field. The initial value of this field is MQCLT_PROGRAM.

Parent topic: Fields for MQCIH

This build: January 26, 2011 11:15:39

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

Page 100 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This topic's URL:

fr11340_

1.8.2.21. NextTransactionId (MQCHAR4)

This is the name of the next transaction returned by the user transaction (usually by EXEC CICS® RETURN TRANSID). If there is no next
transaction, this field is set to blanks.

This is a response field used only for 3270 transactions. The length of this field is given by MQ_TRANSACTION_ID_LENGTH. The initial value
of this field is 4 blanks.

Parent topic: Fields for MQCIH

This build: January 26, 2011 11:15:39

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11350_

1.8.2.22. OutputDataLength (MQLONG)

This is the length of the user data to be returned to the client in a reply message. This length includes the 8-byte program name. The length

of the COMMAREA passed to the linked program is the maximum of this field and the length of the user data in the request message, minus
8.

Note: The length of the user data in a message is the length of the message excluding the MQCIH structure.

If the length of the user data in the request message is smaller than OutputDataLength, the DATALENGTH option of the LINK command is

used; this allows the LINK to be function-shipped efficiently to another CICS® region.

You can use the following special value:

MQCODL_AS_INPUT

Output length is same as input length.

This value might be needed even if no reply is requested, in order to ensure that the COMMAREA passed to the linked program is of
sufficient size.

This is a request field used only for DPL programs. The initial value of this field MQCODL_AS_INPUT.

Parent topic: Fields for MQCIH

This build: January 26, 2011 11:15:39

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11360_

1.8.2.23. Reason (MQLONG)

The value returned in this field depends on ReturnCode; see Table 1.

This is a response field. The initial value of this field is MQRC_NONE.

Parent topic: Fields for MQCIH

This build: January 26, 2011 11:15:39

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11370_

1.8.2.24. RemoteSysId (MQCHAR4)

This is the CICS® system identifier of the CICS system processing the request. If this field is blank, the CICS system request is processed
on the same CICS system as the bridge monitor. The SYSID used is returned in the Reply message.

For a 3270 pseudo-conversation, all subsequent messages in the conversation must specify the remote SYSID returned in the initial reply. If
specified, the SYSID must:

� Be active

� Have access to the WebSphere® MQ Request queue

� Be accessible by the CICS ISC links from the bridge monitor's CICS system

Parent topic: Fields for MQCIH

This build: January 26, 2011 11:15:39

Notices | Trademarks | Downloads | Library | Support | Feedback

Page 101 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11380_

1.8.2.25. RemoteTransId (MQCHAR4)

This is an optional Request field. The length of this field is given by MQ_TRANSACTION_ID_LENGTH. If specified, the field is used as the

RTRANSID value of CICS® START.

Parent topic: Fields for MQCIH

This build: January 26, 2011 11:15:40

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11390_

1.8.2.26. ReplyToFormat (MQCHAR8)

This is the MQ format name of the reply message that is sent in response to the current message. The rules for coding this are the same as
those for the Format field in MQMD.

This is a request field used only for DPL programs. The length of this field is given by MQ_FORMAT_LENGTH. The initial value of this field is

MQFMT_NONE.

Parent topic: Fields for MQCIH

This build: January 26, 2011 11:15:40

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11400_

1.8.2.27. Reserved1 (MQCHAR8)

This is a reserved field. The value must be 8 blanks.

Parent topic: Fields for MQCIH

This build: January 26, 2011 11:15:40

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11410_

1.8.2.28. Reserved2 (MQCHAR8)

This is a reserved field. The value must be 8 blanks.

Parent topic: Fields for MQCIH

This build: January 26, 2011 11:15:40

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11420_

1.8.2.29. Reserved3 (MQCHAR8)

This is a reserved field. The value must be 8 blanks.

Parent topic: Fields for MQCIH

This build: January 26, 2011 11:15:40

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11430_

1.8.2.30. Reserved4 (MQLONG)

This is a reserved field. The value must be 0. This field is not present if Version is less than MQCIH_VERSION_2.

Page 102 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Parent topic: Fields for MQCIH

This build: January 26, 2011 11:15:40

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11440_

1.8.2.31. ReturnCode (MQLONG)

This is the return code from the CICS® bridge describing the outcome of the processing performed by the bridge. The Function, CompCode,

Reason, and AbendCode fields might contain additional information (see Table 1). The value is one of the following:

MQCRC_APPLICATION_ABEND

(5, X'005') Application ended abnormally.

MQCRC_BRIDGE_ABEND

(4, X'004') CICS bridge ended abnormally.

MQCRC_BRIDGE_ERROR

(3, X'003') CICS bridge detected an error.

MQCRC_BRIDGE_TIMEOUT

(8, X'008') Second or later message within current unit of work not received within specified time.

MQCRC_CICS_EXEC_ERROR

(1, X'001') EXEC CICS statement detected an error.

MQCRC_MQ_API_ERROR

(2, X'002') MQ call detected an error.

MQCRC_OK

(0, X'000') No error.

MQCRC_PROGRAM_NOT_AVAILABLE

(7, X'007') Program not available.

MQCRC_SECURITY_ERROR

(6, X'006') Security error occurred.

MQCRC_TRANSID_NOT_AVAILABLE

(9, X'009') Transaction not available.

This is a response field. The initial value of this field is MQCRC_OK.

Parent topic: Fields for MQCIH

This build: January 26, 2011 11:15:40

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11450_

1.8.2.32. StartCode (MQCHAR4)

This is an indicator specifying whether the bridge emulates a terminal transaction or a transaction initiated with START. The value must be
one of the following:

MQCSC_START

Start.

MQCSC_STARTDATA

Start data.

MQCSC_TERMINPUT

Terminal input.

MQCSC_NONE

None.

In all cases, for the C programming language the constants MQCSC_*_ARRAY are also defined; these have the same values as the
corresponding MQCSC_* constants, but are arrays of characters instead of strings.

In the response from the bridge, this field is set to the start code appropriate to the next transaction ID contained in the
NextTransactionId field. The following start codes are possible in the response:

� MQCSC_START

� MQCSC_STARTDATA

� MQCSC_TERMINPUT

For CICS® Transaction Server Version 1.2, this field is a request field only; its value in the response is undefined.

For CICS Transaction Server Version 1.3 and subsequent releases, this is both a request and a response field.

Page 103 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This field is used only for 3270 transactions. The length of this field is given by MQ_START_CODE_LENGTH. The initial value of this field is
MQCSC_NONE.

Parent topic: Fields for MQCIH

This build: January 26, 2011 11:15:40

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11460_

1.8.2.33. StrucId (MQCHAR4)

The value must be:

MQCIH_STRUC_ID

Identifier for CICS® information header structure.

For the C programming language, the constant MQCIH_STRUC_ID_ARRAY is also defined; this has the same value as MQCIH_STRUC_ID,
but is an array of characters instead of a string.

This is a request field. The initial value of this field is MQCIH_STRUC_ID.

Parent topic: Fields for MQCIH

This build: January 26, 2011 11:15:40

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11470_

1.8.2.34. StrucLength (MQLONG)

The value must be one of the following:

MQCIH_LENGTH_1

Length of version-1 CICS® information header structure.

MQCIH_LENGTH_2

Length of version-2 CICS information header structure.

The following constant specifies the length of the current version:

MQCIH_CURRENT_LENGTH

Length of current version of CICS information header structure.

This is a request field. The initial value of this field is MQCIH_LENGTH_2.

Parent topic: Fields for MQCIH

This build: January 26, 2011 11:15:40

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11480_

1.8.2.35. TaskEndStatus (MQLONG)

This shows the status of the user transaction at end of task. One of the following values is returned:

MQCTES_NOSYNC

Not synchronized.

The user transaction has not yet completed and has not syncpointed. The MsgType field in MQMD is MQMT_REQUEST in this case.

MQCTES_COMMIT

Commit unit of work.

The user transaction has not yet completed, but has syncpointed the first unit of work. The MsgType field in MQMD is MQMT_DATAGRAM in

this case.

MQCTES_BACKOUT

Back out unit of work.

The user transaction has not yet completed. The current unit of work will be backed out. The MsgType field in MQMD is MQMT_DATAGRAM

in this case.

Page 104 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

MQCTES_ENDTASK

End task.

The user transaction has ended (or abended). The MsgType field in MQMD is MQMT_REPLY in this case.

This is a response field used only for 3270 transactions. The initial value of this field is MQCTES_NOSYNC.

Parent topic: Fields for MQCIH

This build: January 26, 2011 11:15:40

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11490_

1.8.2.36. TransactionId (MQCHAR4)

If LinkType has the value MQCLT_TRANSACTION, TransactionId is the transaction identifier of the user transaction to be run; specify a

nonblank value in this case.

If LinkType has the value MQCLT_PROGRAM, TransactionId is the transaction code under which all programs within the unit of work are to

be run. If you specify a blank value, the CICS® DPL bridge default transaction code (CKBP) is used. If the value is nonblank, you must have
defined it to CICS as a local transaction whose initial program is CSQCBP00. This field applies only when UOWControl has the value

MQCUOWC_FIRST or MQCUOWC_ONLY.

This is a request field. The length of this field is given by MQ_TRANSACTION_ID_LENGTH. The initial value of this field is 4 blanks.

Parent topic: Fields for MQCIH

This build: January 26, 2011 11:15:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11500_

1.8.2.37. UOWControl (MQLONG)

This controls the unit-of-work processing performed by the CICS® bridge. You can request the bridge to run a single transaction, or one or
more programs within a unit of work. The field indicates whether the CICS bridge starts a unit of work, performs the requested function
within the current unit of work, or ends the unit of work by committing it or backing it out. Various combinations are supported, to optimize
the data transmission flows.

The value must be one of the following:

MQCUOWC_ONLY

Start unit of work, perform function, then commit the unit of work.

MQCUOWC_CONTINUE

Additional data for the current unit of work (3270 only).

MQCUOWC_FIRST

Start unit of work and perform function.

MQCUOWC_MIDDLE

Perform function within current unit of work

MQCUOWC_LAST

Perform function, then commit the unit of work.

MQCUOWC_COMMIT

Commit the unit of work (DPL only).

MQCUOWC_BACKOUT

Back out the unit of work (DPL only).

This is a request field. The initial value of this field is MQCUOWC_ONLY.

Parent topic: Fields for MQCIH

This build: January 26, 2011 11:15:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11510_

1.8.2.38. Version (MQLONG)

The value must be one of the following:

Page 105 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

MQCIH_VERSION_1

Version-1 CICS® information header structure.

MQCIH_VERSION_2

Version-2 CICS information header structure.

Fields that exist only in the more-recent version of the structure are identified as such in the descriptions of the fields. The following
constant specifies the version number of the current version:

MQCIH_CURRENT_VERSION

Current version of CICS information header structure.

This is a request field. The initial value of this field is MQCIH_VERSION_2.

Parent topic: Fields for MQCIH

This build: January 26, 2011 11:15:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11520_

1.8.3. Initial values and language declarations for MQCIH

Table 1. Initial values of fields in MQCIH for MQCIH

Field name Name of constant Value of constant

StrucId MQCIH_STRUC_ID 'CIH�'

Version MQCIH_VERSION_2 2

StrucLength MQCIH_LENGTH_2 180

Encoding None 0

CodedCharSetId None 0

Format MQFMT_NONE Blanks

Flags MQCIH_NONE 0

ReturnCode MQCRC_OK 0

CompCode MQCC_OK 0

Reason MQRC_NONE 0

UOWControl MQCUOWC_ONLY 273

GetWaitInterval MQCGWI_DEFAULT -2

LinkType MQCLT_PROGRAM 1

OutputDataLength MQCODL_AS_INPUT -1

FacilityKeepTime None 0

ADSDescriptor MQCADSD_NONE 0

ConversationalTask MQCCT_NO 0

TaskEndStatus MQCTES_NOSYNC 0

Facility MQCFAC_NONE Nulls

Function MQCFUNC_NONE Blanks

AbendCode None Blanks

Authenticator None Blanks

Reserved1 None Blanks

ReplyToFormat MQFMT_NONE Blanks

RemoteSysId None Blanks

RemoteTransId None Blanks

TransactionId None Blanks

FacilityLike None Blanks

AttentionId None Blanks

StartCode MQCSC_NONE Blanks

CancelCode None Blanks

NextTransactionId None Blanks

Reserved2 None Blanks

Reserved3 None Blanks

CursorPosition None 0

ErrorOffset None 0

InputItem None 0

Reserved4 None 0

Notes:

1. The symbol � represents a single blank character.

2. In the C programming language, the macro variable MQCIH_DEFAULT contains the values listed above. Use it in the

following way to provide initial values for the fields in the structure:

MQCIH MyCIH = {MQCIH_DEFAULT};

Page 106 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

C declaration

COBOL declaration

PL/I declaration

System/390 assembler declaration

Visual Basic declaration

Parent topic: MQCIH – CICS bridge header

This build: January 26, 2011 11:15:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11530_

1.8.3.1. C declaration

typedef struct tagMQCIH MQCIH;

struct tagMQCIH {

 MQCHAR4 StrucId; /* Structure identifier */

 MQLONG Version; /* Structure version number */

 MQLONG StrucLength; /* Length of MQCIH structure */

 MQLONG Encoding; /* Reserved */

 MQLONG CodedCharSetId; /* Reserved */

 MQCHAR8 Format; /* MQ format name of data that follows

 MQCIH */

 MQLONG Flags; /* Flags */

 MQLONG ReturnCode; /* Return code from bridge */

 MQLONG CompCode; /* MQ completion code or CICS EIBRESP */

 MQLONG Reason; /* MQ reason or feedback code, or CICS

 EIBRESP2 */

 MQLONG UOWControl; /* Unit-of-work control */

 MQLONG GetWaitInterval; /* Wait interval for MQGET call issued

 by bridge task */

 MQLONG LinkType; /* Link type */

 MQLONG OutputDataLength; /* Output COMMAREA data length */

 MQLONG FacilityKeepTime; /* Bridge facility release time */

 MQLONG ADSDescriptor; /* Send/receive ADS descriptor */

 MQLONG ConversationalTask; /* Whether task can be conversational */

 MQLONG TaskEndStatus; /* Status at end of task */

 MQBYTE8 Facility; /* Bridge facility token */

 MQCHAR4 Function; /* MQ call name or CICS EIBFN

 function */

 MQCHAR4 AbendCode; /* Abend code */

 MQCHAR8 Authenticator; /* Password or passticket */

 MQCHAR8 Reserved1; /* Reserved */

 MQCHAR8 ReplyToFormat; /* MQ format name of reply message */

 MQCHAR4 RemoteSysId; /* Reserved */

 MQCHAR4 RemoteTransId; /* Reserved */

 MQCHAR4 TransactionId; /* Transaction to attach */

 MQCHAR4 FacilityLike; /* Terminal emulated attributes */

 MQCHAR4 AttentionId; /* AID key */

 MQCHAR4 StartCode; /* Transaction start code */

 MQCHAR4 CancelCode; /* Abend transaction code */

 MQCHAR4 NextTransactionId; /* Next transaction to attach */

 MQCHAR8 Reserved2; /* Reserved */

 MQCHAR8 Reserved3; /* Reserved */

 MQLONG CursorPosition; /* Cursor position */

 MQLONG ErrorOffset; /* Offset of error in message */

 MQLONG InputItem; /* Reserved */

 MQLONG Reserved4; /* Reserved */

};

Parent topic: Initial values and language declarations for MQCIH

This build: January 26, 2011 11:15:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11540_

1.8.3.2. COBOL declaration

** MQCIH structure

 10 MQCIH.

** Structure identifier

 15 MQCIH-STRUCID PIC X(4).

** Structure version number

 15 MQCIH-VERSION PIC S9(9) BINARY.

Page 107 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

** Length of MQCIH structure

 15 MQCIH-STRUCLENGTH PIC S9(9) BINARY.

** Reserved

 15 MQCIH-ENCODING PIC S9(9) BINARY.

** Reserved

 15 MQCIH-CODEDCHARSETID PIC S9(9) BINARY.

** MQ format name of data that follows MQCIH

 15 MQCIH-FORMAT PIC X(8).

** Flags

 15 MQCIH-FLAGS PIC S9(9) BINARY.

** Return code from bridge

 15 MQCIH-RETURNCODE PIC S9(9) BINARY.

** MQ completion code or CICS EIBRESP

 15 MQCIH-COMPCODE PIC S9(9) BINARY.

** MQ reason or feedback code, or CICS EIBRESP2

 15 MQCIH-REASON PIC S9(9) BINARY.

** Unit-of-work control

 15 MQCIH-UOWCONTROL PIC S9(9) BINARY.

** Wait interval for MQGET call issued by bridge task

 15 MQCIH-GETWAITINTERVAL PIC S9(9) BINARY.

** Link type

 15 MQCIH-LINKTYPE PIC S9(9) BINARY.

** Output COMMAREA data length

 15 MQCIH-OUTPUTDATALENGTH PIC S9(9) BINARY.

** Bridge facility release time

 15 MQCIH-FACILITYKEEPTIME PIC S9(9) BINARY.

** Send/receive ADS descriptor

 15 MQCIH-ADSDESCRIPTOR PIC S9(9) BINARY.

** Whether task can be conversational

 15 MQCIH-CONVERSATIONALTASK PIC S9(9) BINARY.

** Status at end of task

 15 MQCIH-TASKENDSTATUS PIC S9(9) BINARY.

** Bridge facility token

 15 MQCIH-FACILITY PIC X(8).

** MQ call name or CICS EIBFN function

 15 MQCIH-FUNCTION PIC X(4).

** Abend code

 15 MQCIH-ABENDCODE PIC X(4).

** Password or passticket

 15 MQCIH-AUTHENTICATOR PIC X(8).

** Reserved

 15 MQCIH-RESERVED1 PIC X(8).

** MQ format name of reply message

 15 MQCIH-REPLYTOFORMAT PIC X(8).

** Reserved

 15 MQCIH-REMOTESYSID PIC X(4).

** Reserved

 15 MQCIH-REMOTETRANSID PIC X(4).

** Transaction to attach

 15 MQCIH-TRANSACTIONID PIC X(4).

** Terminal emulated attributes

 15 MQCIH-FACILITYLIKE PIC X(4).

** AID key

 15 MQCIH-ATTENTIONID PIC X(4).

** Transaction start code

 15 MQCIH-STARTCODE PIC X(4).

** Abend transaction code

 15 MQCIH-CANCELCODE PIC X(4).

** Next transaction to attach

 15 MQCIH-NEXTTRANSACTIONID PIC X(4).

** Reserved

 15 MQCIH-RESERVED2 PIC X(8).

** Reserved

 15 MQCIH-RESERVED3 PIC X(8).

** Cursor position

 15 MQCIH-CURSORPOSITION PIC S9(9) BINARY.

** Offset of error in message

 15 MQCIH-ERROROFFSET PIC S9(9) BINARY.

** Reserved

 15 MQCIH-INPUTITEM PIC S9(9) BINARY.

** Reserved

 15 MQCIH-RESERVED4 PIC S9(9) BINARY.

Parent topic: Initial values and language declarations for MQCIH

This build: January 26, 2011 11:15:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11550_

1.8.3.3. PL/I declaration

dcl

 1 MQCIH based,

 3 StrucId char(4), /* Structure identifier */

 3 Version fixed bin(31), /* Structure version number */

 3 StrucLength fixed bin(31), /* Length of MQCIH structure */

 3 Encoding fixed bin(31), /* Reserved */

 3 CodedCharSetId fixed bin(31), /* Reserved */

 3 Format char(8), /* MQ format name of data that

Page 108 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

 follows MQCIH */

 3 Flags fixed bin(31), /* Flags */

 3 ReturnCode fixed bin(31), /* Return code from bridge */

 3 CompCode fixed bin(31), /* MQ completion code or CICS

 EIBRESP */

 3 Reason fixed bin(31), /* MQ reason or feedback code, or

 CICS EIBRESP2 */

 3 UOWControl fixed bin(31), /* Unit-of-work control */

 3 GetWaitInterval fixed bin(31), /* Wait interval for MQGET call

 issued by bridge task */

 3 LinkType fixed bin(31), /* Link type */

 3 OutputDataLength fixed bin(31), /* Output COMMAREA data length */

 3 FacilityKeepTime fixed bin(31), /* Bridge facility release time */

 3 ADSDescriptor fixed bin(31), /* Send/receive ADS descriptor */

 3 ConversationalTask fixed bin(31), /* Whether task can be

 conversational */

 3 TaskEndStatus fixed bin(31), /* Status at end of task */

 3 Facility char(8), /* Bridge facility token */

 3 Function char(4), /* MQ call name or CICS EIBFN

 function */

 3 AbendCode char(4), /* Abend code */

 3 Authenticator char(8), /* Password or passticket */

 3 Reserved1 char(8), /* Reserved */

 3 ReplyToFormat char(8), /* MQ format name of reply

 message */

 3 RemoteSysId char(4), /* Reserved */

 3 RemoteTransId char(4), /* Reserved */

 3 TransactionId char(4), /* Transaction to attach */

 3 FacilityLike char(4), /* Terminal emulated attributes */

 3 AttentionId char(4), /* AID key */

 3 StartCode char(4), /* Transaction start code */

 3 CancelCode char(4), /* Abend transaction code */

 3 NextTransactionId char(4), /* Next transaction to attach */

 3 Reserved2 char(8), /* Reserved */

 3 Reserved3 char(8), /* Reserved */

 3 CursorPosition fixed bin(31), /* Cursor position */

 3 ErrorOffset fixed bin(31), /* Offset of error in message */

 3 InputItem fixed bin(31), /* Reserved */

 3 Reserved4 fixed bin(31); /* Reserved */

Parent topic: Initial values and language declarations for MQCIH

This build: January 26, 2011 11:15:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11560_

1.8.3.4. System/390® assembler declaration

MQCIH DSECT

MQCIH_STRUCID DS CL4 Structure identifier

MQCIH_VERSION DS F Structure version number

MQCIH_STRUCLENGTH DS F Length of MQCIH structure

MQCIH_ENCODING DS F Reserved

MQCIH_CODEDCHARSETID DS F Reserved

MQCIH_FORMAT DS CL8 MQ format name of data that follows

* MQCIH

MQCIH_FLAGS DS F Flags

MQCIH_RETURNCODE DS F Return code from bridge

MQCIH_COMPCODE DS F MQ completion code or CICS EIBRESP

MQCIH_REASON DS F MQ reason or feedback code, or CICS

* EIBRESP2

MQCIH_UOWCONTROL DS F Unit-of-work control

MQCIH_GETWAITINTERVAL DS F Wait interval for MQGET call issued

* by bridge task

MQCIH_LINKTYPE DS F Link type

MQCIH_OUTPUTDATALENGTH DS F Output COMMAREA data length

MQCIH_FACILITYKEEPTIME DS F Bridge facility release time

MQCIH_ADSDESCRIPTOR DS F Send/receive ADS descriptor

MQCIH_CONVERSATIONALTASK DS F Whether task can be conversational

MQCIH_TASKENDSTATUS DS F Status at end of task

MQCIH_FACILITY DS XL8 Bridge facility token

MQCIH_FUNCTION DS CL4 MQ call name or CICS EIBFN function

MQCIH_ABENDCODE DS CL4 Abend code

MQCIH_AUTHENTICATOR DS CL8 Password or passticket

MQCIH_RESERVED1 DS CL8 Reserved

MQCIH_REPLYTOFORMAT DS CL8 MQ format name of reply message

MQCIH_REMOTESYSID DS CL4 Reserved

MQCIH_REMOTETRANSID DS CL4 Reserved

MQCIH_TRANSACTIONID DS CL4 Transaction to attach

MQCIH_FACILITYLIKE DS CL4 Terminal emulated attributes

MQCIH_ATTENTIONID DS CL4 AID key

MQCIH_STARTCODE DS CL4 Transaction start code

MQCIH_CANCELCODE DS CL4 Abend transaction code

MQCIH_NEXTTRANSACTIONID DS CL4 Next transaction to attach

MQCIH_RESERVED2 DS CL8 Reserved

MQCIH_RESERVED3 DS CL8 Reserved

MQCIH_CURSORPOSITION DS F Cursor position

MQCIH_ERROROFFSET DS F Offset of error in message

MQCIH_INPUTITEM DS F Reserved

Page 109 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

MQCIH_RESERVED4 DS F Reserved

*

MQCIH_LENGTH EQU *-MQCIH

 ORG MQCIH

MQCIH_AREA DS CL(MQCIH_LENGTH)

Parent topic: Initial values and language declarations for MQCIH

This build: January 26, 2011 11:15:42

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11570_

1.8.3.5. Visual Basic declaration

Type MQCIH

 StrucId As String*4 'Structure identifier'

 Version As Long 'Structure version number'

 StrucLength As Long 'Length of MQCIH structure'

 Encoding As Long 'Reserved'

 CodedCharSetId As Long 'Reserved'

 Format As String*8 'MQ format name of data that follows'

 'MQCIH'

 Flags As Long 'Flags'

 ReturnCode As Long 'Return code from bridge'

 CompCode As Long 'MQ completion code or CICS EIBRESP'

 Reason As Long 'MQ reason or feedback code, or CICS'

 'EIBRESP2'

 UOWControl As Long 'Unit-of-work control'

 GetWaitInterval As Long 'Wait interval for MQGET call issued'

 'by bridge task'

 LinkType As Long 'Link type'

 OutputDataLength As Long 'Output COMMAREA data length'

 FacilityKeepTime As Long 'Bridge facility release time'

 ADSDescriptor As Long 'Send/receive ADS descriptor'

 ConversationalTask As Long 'Whether task can be conversational'

 TaskEndStatus As Long 'Status at end of task'

 Facility As MQBYTE8 'Bridge facility token'

 Function As String*4 'MQ call name or CICS EIBFN function'

 AbendCode As String*4 'Abend code'

 Authenticator As String*8 'Password or passticket'

 Reserved1 As String*8 'Reserved'

 ReplyToFormat As String*8 'MQ format name of reply message'

 RemoteSysId As String*4 'Reserved'

 RemoteTransId As String*4 'Reserved'

 TransactionId As String*4 'Transaction to attach'

 FacilityLike As String*4 'Terminal emulated attributes'

 AttentionId As String*4 'AID key'

 StartCode As String*4 'Transaction start code'

 CancelCode As String*4 'Abend transaction code'

 NextTransactionId As String*4 'Next transaction to attach'

 Reserved2 As String*8 'Reserved'

 Reserved3 As String*8 'Reserved'

 CursorPosition As Long 'Cursor position'

 ErrorOffset As Long 'Offset of error in message'

 InputItem As Long 'Reserved'

 Reserved4 As Long 'Reserved'

End Type

Parent topic: Initial values and language declarations for MQCIH

This build: January 26, 2011 11:15:42

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11580_

1.9. MQCMHO – Create-message options

The following table summarizes the fields in the structure.

Overview for MQCMHO
Availability: AIX®, HP-UX, i5/OS®, Solaris, Linux, Windows, z/OS® and WebSphere® MQ clients.

Fields for MQCMHO

Initial values and language declarations for MQCMHO

Table 1. Fields in MQCMHO

Field Description Topic

StrucId Structure identifier StrucId

Version Structure version number Version

Options Options Options

Page 110 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Parent topic: Data type descriptions

This build: January 26, 2011 11:20:25

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42030_

1.9.1. Overview for MQCMHO

Availability: AIX®, HP-UX, i5/OS®, Solaris, Linux, Windows, z/OS® and WebSphere® MQ clients.

Purpose: The MQCMHO structure allows applications to specify options that control how message handles are created. The structure is an
input parameter on the MQCRTMH call.

Character set and encoding: Data in MQCMHO must be in the character set of the application and encoding of the application
(MQENC_NATIVE).

Parent topic: MQCMHO – Create-message options

This build: January 26, 2011 11:20:25

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42040_

1.9.2. Fields for MQCMHO

The MQCMHO structure contains the following fields; the fields are described in alphabetic order:

Options (MQLONG)

StrucId (MQCHAR4)

Version (MQLONG)

Parent topic: MQCMHO – Create-message options

This build: January 26, 2011 11:20:25

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42050_

1.9.2.1. Options (MQLONG)

One of the following options can be specified:

MQCMHO_VALIDATE

When MQSETMP is called to set a property in this message handle, the property name will be validated to ensure that it:

� contains no invalid characters.

� does not begin “JMS” or “usr.JMS” except for the following:

� JMSCorrelationID

� JMSReplyTo

� JMSType

� JMSXGroupID

� JMSXGroupSeq

These names are reserved for JMS properties.

� is not one of the following keywords, in any mixture of upper or lowercase:

� “AND”

� “BETWEEN”

� “ESCAPE”

� “FALSE”

� “IN”

� “IS”

� “LIKE”

� “NOT”

� “NULL”

� “OR”

� “TRUE”

Page 111 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

� does not begin “Body.” or “Root.” (except for “Root.MQMD.”).

If the property is MQ-defined (“mq.*”) and the name is recognized, the property descriptor fields will be set to the correct values for the

property. If the property is not recognized, the Support field of the property descriptor is set to MQPD_OPTIONAL.

MQCMHO_DEFAULT_VALIDATION

This specifies that the default level of validation of property names should occur.

The default level of validation is equivalent to that specified by MQCMHO_VALIDATE.

This is the default value.

MQCMHO_NO_VALIDATION

No validation on the property name will occur. See the description of MQCMHO_VALIDATE.

Default option: If none of the options described above is required, the following option can be used:

MQCMHO_NONE

All options assume their default values. Use this value to indicate that no other options have been specified. MQCMHO_NONE aids
program documentation; it is not intended that this option be used with any other, but as its value is zero, such use cannot be detected.

This is always an input field. The initial value of this field is MQCMHO_DEFAULT_VALIDATION.

Parent topic: Fields for MQCMHO

This build: January 26, 2011 11:20:25

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42080_

1.9.2.2. StrucId (MQCHAR4)

This is the structure identifier; the value must be:

MQCMHO_STRUC_ID

Identifier for create message handle options structure.

For the C programming language, the constant MQCMHO_STRUC_ID_ARRAY is also defined; this has the same value as

MQCMHO_STRUC_ID, but is an array of characters instead of a string.

This is always an input field. The initial value of this field is MQCMHO_STRUC_ID.

Parent topic: Fields for MQCMHO

This build: January 26, 2011 11:20:25

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42060_

1.9.2.3. Version (MQLONG)

This is the structure version number; the value must be:

MQCMHO_VERSION_1

Version-1 create message handle options structure.

The following constant specifies the version number of the current version:

MQCMHO_CURRENT_VERSION

Current version of create message handle options structure.

This is always an input field. The initial value of this field is MQCMHO_VERSION_1.

Parent topic: Fields for MQCMHO

This build: January 26, 2011 11:20:25

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42070_

1.9.3. Initial values and language declarations for MQCMHO

Table 1. Initial values of fields in MQCMHO

Field name Name of constant Value of constant

Page 112 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

C declaration

COBOL declaration

PL/I declaration

System/390 assembler declaration

Parent topic: MQCMHO – Create-message options

This build: January 26, 2011 11:20:25

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42090_

1.9.3.1. C declaration

struct tagMQCMHO {

 MQCHAR4 StrucId; /* Structure identifier */

 MQLONG Version; /* Structure version number */

 MQLONG Options; /* Options that control the action of MQCRTMH */

};

Parent topic: Initial values and language declarations for MQCMHO

This build: January 26, 2011 11:20:25

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42100_

1.9.3.2. COBOL declaration

** MQCMHO structure

 10 MQCMHO.

** Structure identifier

 15 MQCMHO-STRUCID PIC X(4).

** Structure version number

 15 MQCMHO-VERSION PIC S9(9) BINARY.

** Options that control the action of MQCRTMH

 15 MQCMHO-OPTIONS PIC S9(9) BINARY.

Parent topic: Initial values and language declarations for MQCMHO

This build: January 26, 2011 11:20:26

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42110_

1.9.3.3. PL/I declaration

dcl

 1 MQCMHO based,

 3 StrucId char(4), /* Structure identifier */

 3 Version fixed bin(31), /* Structure version number */

 3 Options fixed bin(31), /* Options that control the action of MQCRTMH */

Parent topic: Initial values and language declarations for MQCMHO

This build: January 26, 2011 11:20:26

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42120_

StrucId MQCMHO_STRUC_ID 'CMHO'

Version MQCMHO_VERSION_1 1

Options MQCMHO_DEFAULT_VALIDATION 0

Notes:

1. In the C programming language, the macro variable MQCMHO_DEFAULT contains the values listed above. It can be used

in the following way to provide initial values for the fields in the structure:

MQCMHO MyCMHO = {MQCMHO_DEFAULT};

Page 113 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

1.9.3.4. System/390® assembler declaration

MQCMHO DSECT

MQCMHO_STRUCID DS CL4 Structure identifier

MQCMHO_VERSION DS F Structure version number

MQCMHO_OPTIONS DS F Options that control the action of

* MQCRTMH

MQCMHO_LENGTH EQU *-MQCMHO

MQCMHO_AREA DS CL(MQCMHO_LENGTH)

Parent topic: Initial values and language declarations for MQCMHO

This build: January 26, 2011 11:20:26

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42130_

1.10. MQCNO – Connect options

The following table summarizes the fields in the structure.

Overview for MQCNO

Fields for MQCNO

Initial values and language declarations for MQCNO

Parent topic: Data type descriptions

This build: January 26, 2011 11:15:42

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11590_

1.10.1. Overview for MQCNO

Availability: All versions except MQCNO_VERSION_4: AIX®, HP-UX, i5/OS®, Solaris, Linux, Windows, plus WebSphere® MQ clients

connected to these systems.

Purpose: The MQCNO structure allows the application to specify options relating to the connection to the local queue manager. The
structure is an input/output parameter on the MQCONNX call.

See the WebSphere MQ Application Programming Guide for details of using shared handles within a global unit of work and the effect that

this has on, for example, XA transactions.

Version: The header, COPY, and INCLUDE files provided for the supported programming languages contain the most-recent version of
MQCNO, but with the initial value of the Version field set to MQCNO_VERSION_1. To use fields that are not present in the version-1

structure, the application must set the Version field to the version number of the version required.

Character set and encoding: Data in MQCNO must be in the character set and encoding of the local queue manager; these are given by
the CodedCharSetId queue-manager attribute and MQENC_NATIVE, respectively. However, if the application is running as a WebSphere MQ

client, the structure must be in the character set and encoding of the client.

Table 1. Fields in MQCNO

Field Description Topic

StrucId Structure identifier StrucId

Version Structure version number Version

Options Options that control the action of MQCONNX Options

Note: The remaining fields are ignored if Version is less than MQCNO_VERSION_2.

ClientConnOffset Offset of MQCD structure for client connection ClientConnOffset

ClientConnPtr Address of MQCD structure for client connection ClientConnPtr

Note: The remaining fields are ignored if Version is less than MQCNO_VERSION_3.

ConnTag Queue-manager connection tag ConnTag

Note: The remaining fields are ignored if Version is less than MQCNO_VERSION_4.

SSLConfigPtr Address of MQSCO structure for client connection SSLConfigPtr

SSLConfigOffset Offset of MQSCO structure for client connection SSLConfigOffset

Note: The remaining fields are ignored if Version is less than MQCNO_VERSION_5.

ConnectionId Unique connection ID ConnectionId

SecurityParmsOffset Security parameters SecurityParmsOffset

SecurityParmsPtr Security parameters SecurityParmsPtr

Page 114 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Parent topic: MQCNO – Connect options

This build: January 26, 2011 11:15:42

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11600_

1.10.2. Fields for MQCNO

The MQCNO structure contains the following fields; the fields are described in alphabetic order:

ClientConnOffset (MQLONG)

ClientConnPtr (MQPTR)

ConnectionId (MQBYTE24)

ConnTag (MQBYTE128)

Options (MQLONG)
Options that control the action of MQCONNX.

SecurityParmsOffset (MQLONG)

SecurityParmsPtr (PMQCSP)

SSLConfigOffset (MQLONG)

SSLConfigPtr (PMQSCO)

StrucId (MQCHAR4)

Version (MQLONG)

Parent topic: MQCNO – Connect options

This build: January 26, 2011 11:15:42

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11610_

1.10.2.1. ClientConnOffset (MQLONG)

This is the offset in bytes of an MQCD channel definition structure from the start of the MQCNO structure. The offset can be positive or
negative.

Use ClientConnOffset only when the application issuing the MQCONNX call is running as a WebSphere® MQ client. For information on how

to use this field, see the description of the ClientConnPtr field.

This is an input field. The initial value of this field is 0. This field is ignored if Version is less than MQCNO_VERSION_2.

Parent topic: Fields for MQCNO

This build: January 26, 2011 11:15:42

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11620_

1.10.2.2. ClientConnPtr (MQPTR)

Use ClientConnOffset and ClientConnPtr only when the application issuing the MQCONNX call is running as a WebSphere® MQ client. By

specifying one or other of these fields, the application can control the definition of the client connection channel by providing an MQCD
channel definition structure that contains the values required.

If the application is running as a WebSphere MQ client, but does not provide an MQCD structure, the MQSERVER environment variable is used

to select the channel definition. If MQSERVER is not set, the client channel table is used.

If the application is not running as a WebSphere MQ client, ClientConnOffset and ClientConnPtr are ignored.

If the application provides an MQCD structure, set the fields listed below to the values required; other fields in MQCD are ignored. You can
pad character strings with blanks to the length of the field, or terminated them with a null character. Refer to WebSphere MQ
Intercommunication for more information about the fields in the MQCD structure.

Page 115 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Provide the channel definition structure in one of two ways:

� By using the offset field ClientConnOffset

In this case, the application must declare a compound structure containing an MQCNO followed by the channel definition structure
MQCD, and set ClientConnOffset to the offset of the channel definition structure from the start of the MQCNO. Ensure that this offset

is correct. ClientConnPtr must be set to the null pointer or null bytes.

Use ClientConnOffset for programming languages that do not support the pointer data type, or that implement the pointer data type

in a way that is not portable to different environments (for example, the COBOL programming language).

For the Visual Basic programming language, a compound structure called MQCNOCD is provided in the header file CMQXB.BAS; this
structure contains an MQCNO structure followed by an MQCD structure. Initialize MQCNOCD by invoking the MQCNOCD_DEFAULTS
subroutine. MQCNOCD is used with the MQCONNXAny variant of the MQCONNX call; see the description of the MQCONNX call for
further details.

� By using the pointer field ClientConnPtr

In this case, the application can declare the channel definition structure separately from the MQCNO structure, and set ClientConnPtr

to the address of the channel definition structure. Set ClientConnOffset to zero.

Use ClientConnPtr for programming languages that support the pointer data type in a way that is portable to different environments

(for example, the C programming language).

In the C programming language, you can use the macro variable MQCD_CLIENT_CONN_DEFAULT to provide initial values for the
structure that are more suitable for use on the MQCONNX call than those provided by MQCD_DEFAULT.

Whichever technique you choose, you can use only one of ClientConnOffset and ClientConnPtr; the call fails with reason code

MQRC_CLIENT_CONN_ERROR if both are nonzero.

Once the MQCONNX call has completed, the MQCD structure is not referenced again.

This is an input field. The initial value of this field is the null pointer in those programming languages that support pointers, and an all-null
byte string otherwise. This field is ignored if Version is less than MQCNO_VERSION_2.

Note: On platforms where the programming language does not support the pointer data type, this field is declared as a byte string of the

Field in MQCD Value

ChannelName Channel name.

Version Structure version number. Must not be less than MQCD_VERSION_7.

TransportType Any supported transport type.

ModeName LU 6.2 mode name.

TpName LU 6.2 transaction program name.

SecurityExit Name of channel security exit.

SendExit Name of channel send exit.

ReceiveExit Name of channel receive exit.

MaxMsgLength Maximum length in bytes of messages that can be sent over the client connection

channel.

SecurityUserData User data for security exit.

SendUserData User data for send exit.

ReceiveUserData User data for receive exit.

UserIdentifier User identifier to be used to establish an LU 6.2 session.

Password Password to be used to establish an LU 6.2 session.

ConnectionName Connection name.

HeartbeatInterval Time in seconds between heartbeat flows.

StrucLength Length of the MQCD structure.

ExitNameLength Length of exit names addressed by SendExitPtr and ReceiveExitPtr. Must be

greater than zero if SendExitPtr or ReceiveExitPtr is set to a value that is not the

null pointer.

ExitDataLength Length of exit data addressed by SendUserDataPtr and ReceiveUserDataPtr. Must

be greater than zero if SendUserDataPtr or ReceiveUserDataPtr is set to a value

that is not the null pointer.

SendExitsDefined Number of send exits addressed by SendExitPtr. If zero, SendExit and

SendUserData provide the exit name and data. If greater than zero, SendExitPtr

and SendUserDataPtr provide the exit names and data, and SendExit and

SendUserData must be blank.

ReceiveExitsDefined Number of receive exits addressed by ReceiveExitPtr. If zero, ReceiveExit and

ReceiveUserData provide the exit name and data. If greater than zero,

ReceiveExitPtr and ReceiveUserDataPtr provide the exit names and data, and

ReceiveExit and ReceiveUserData must be blank.

SendExitPtr Address of name of first send exit.

SendUserDataPtr Address of data for first send exit.

ReceiveExitPtr Address of name of first receive exit.

ReceiveUserDataPtr Address of data for first receive exit.

LongRemoteUserIdLength Length of long remote user identifier.

LongRemoteUserIdPtr Address of long remote user identifier.

RemoteSecurityId Remote security identifier.

SSLCipherSpec SSL CipherSpec.

SSLPeerNamePtr Address of SSL peer name.

SSLPeerNameLength Length of SSL peer name.

KeepAliveInterval Value passed to the communications stack for keepalive timing for the channel

LocalAddress The local communications address, including the IP address of the local network

adapter to use, and a range of ports to use for outgoing connections.

Page 116 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

appropriate length, with the initial value being the all-null byte string.

Parent topic: Fields for MQCNO

This build: January 26, 2011 11:15:43

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11630_

1.10.2.3. ConnectionId (MQBYTE24)

This output parameter is a unique 24-byte identifier that allows MQ to reliably identify an application. An application can use this identifier
for correlation in PUT and GET calls.

The queue manager assigns a unique ID to all connections, however they are established. If an MQCONNX establishes the connection with a
version 5 MQCNO, the application can determine the ConnectionId from the returned MQCNO. The assigned identifier is guaranteed to be
unique among all other identifiers that MQ generates, such as CorrelId, MsgID, and GroupId.

Use the ConnectionId to identify long running units of work using the PCF command Inquire Connection or the MQSC command DISPLAY

CONN. The ConnectionId used by MQSC commands (CONN) is derived from the ConnectionId returned here. The PCF Inquire and Stop
Connection commands can use the ConnectionId returned here without modification.

You can use the ConnectionId to force the end of a long running unit of work, by specifying the ConnectionId using the PCF command Stop
Connection or the MQSC command STOP CONN. See WebSphere MQ Programmable Command Formats and Administration Interface and

WebSphere MQ Script (MQSC) Command Reference for more information on using these commands.

The initial value of this field is 24 null bytes in all programming languages.

This field is not returned if Version is less than MQCNO_VERSION_5.

The length of this field is given by MQ_CONNECTION_ID_LENGTH.

Parent topic: Fields for MQCNO

This build: January 26, 2011 11:15:43

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11640_

1.10.2.4. ConnTag (MQBYTE128)

This is a tag that the queue manager associates with the resources that are affected by the application during this connection. Each
application or application instance must use a different value for the tag, so that the queue manager can correctly serialize access to the
affected resources. See the descriptions of the MQCNO_*_CONN_TAG_* options for further details. The tag ceases to be valid when the
application terminates or issues the MQDISC call.

Note: Connection tag values beginning with MQ in upper, lower, or mixed case in either ASCII or EBCDIC are reserved for use by IBM®

products. Do not use connection tag values beginning with these letters.

Use the following special value if you require no tag:

MQCT_NONE

The value is binary zero for the length of the field.

For the C programming language, the constant MQCT_NONE_ARRAY is also defined; this has the same value as MQCT_NONE, but is an
array of characters instead of a string.

This field is used when connecting to a z/OS® queue manager. In other environments, specify the value MQCT_NONE.

This is an input field. The length of this field is given by MQ_CONN_TAG_LENGTH. The initial value of this field is MQCT_NONE. This field is
ignored if Version is less than MQCNO_VERSION_3.

Parent topic: Fields for MQCNO

This build: January 26, 2011 11:15:44

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11650_

1.10.2.5. Options (MQLONG)

Options that control the action of MQCONNX.

Accounting options

The following options control the type of accounting if the AccountingConnOverride queue manager attribute is set to MQMON_ENABLED:

Page 117 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

MQCNO_ACCOUNTING_MQI_ENABLED

When monitoring data collection is switched off in the queue manager definition by setting the MQIAccounting attribute to MQMON_OFF,

setting this flag enables MQI accounting data collection.

MQCNO_ACCOUNTING_MQI_DISABLED

When monitoring data collection is switched off in the queue manager definition by setting the MQIAccounting attribute to MQMON_OFF,

setting this flag stops MQI accounting data collection.

MQCNO_ACCOUNTING_Q_ENABLED

When queue-accounting data collection is switched off in the queue manager definition by setting the MQIAccounting attribute to

MQMON_OFF, setting this flag enables accounting data collection for those queues that specify a queue manager in the MQIAccounting

field of their queue definition.

MQCNO_ACCOUNTING_Q_DISABLED

When queue-accounting data collection is switched off in the queue manager definition by setting the MQIAccounting attribute to

MQMON_OFF, setting this flag switches off accounting data collection for those queues that specify a queue manager in the
MQIAccounting field of their queue definition.

If none of these flags are defined, the accounting for the connection is as defined in the Queue Manager attributes.

Binding options

The following options control the type of WebSphere® MQ binding to use. Specify only one of these options:

MQCNO_STANDARD_BINDING

The application and the local queue manager agent (the component that manages queuing operations) run in separate units of execution
(typically, in separate processes). This arrangement maintains the integrity of the queue manager; that is, it protects the queue manager
from errant programs.

If the queue manager supports multiple binding types, and you set MQCNO_STANDARD_BINDING, the queue manager uses the
DefaultBindType attribute in the Connection stanza in the qm.ini file (or the equivalent Windows registry entry) to select the actual

type of binding. If this stanza is not defined, or the value cannot be used or is not appropriate for the application, the queue manager
selects an appropriate binding type. The queue manager sets the actual binding type used in the connect options.

Use MQCNO_STANDARD_BINDING in situations where the application might not have been fully tested, or might be unreliable or
untrustworthy. MQCNO_STANDARD_BINDING is the default.

This option is supported in all environments.

MQCNO_FASTPATH_BINDING

The application and the local queue manager agent are part of the same unit of execution. This is in contrast to the typical method of
binding, where the application and the local queue manager agent run in separate units of execution.

MQCNO_FASTPATH_BINDING is ignored if the queue manager does not support this type of binding; processing continues as though the
option had not been specified.

MQCNO_FASTPATH_BINDING can be of advantage in situations where multiple processes consume more resources than the overall
resource used by the application. An application that uses the fastpath binding is known as a trusted application.

Consider the following important points when deciding whether to use the fastpath binding:

� Using the MQCNO_FASTPATH_BINDING option does not prevent an application altering or corrupting messages and other data areas
belonging to the queue manager. Use this option only in situations where you have fully evaluated these issues.

� The application must not use asynchronous signals or timer interrupts (such as sigkill) with MQCNO_FASTPATH_BINDING. There

are also restrictions on the use of shared memory segments. Refer to the WebSphere MQ Application Programming Guide for more
information.

� The application must use the MQDISC call to disconnect from the queue manager.

� The application must finish before you end the queue manager with the endmqm command.

� On i5/OS®, the job must run under a user profile that belongs to the QMQMADM group. Also, the program must not stop abnormally,

otherwise unpredictable results can occur.

� On UNIX systems, the mqm user identifier must be the effective user identifier, and the mqm group identifier must be the effective

group identifier. To make the application run in this way, configure the program so that it is owned by the mqm user identifier and

mqm group identifier, and then set the setuid and setgid permission bits on the program.

The WebSphere MQ Object Authority Manager (OAM) still uses the real user ID for authority checking.

� On Windows, the program must be a member of the mqm group. Fastpath binding is not supported for 64 bit applications.

The MQCNO_FASTPATH_BINDING option is supported in the following environments: AIX®, HP-UX, i5/OS, Solaris, Linux, and Windows.
On z/OS®, the option is accepted but ignored.

For more information about the implications of using trusted applications, see the WebSphere MQ Application Programming Guide.

MQCNO_SHARED_BINDING

With MQCNO_SHARED_BINDING, the application and the local-queue-manager agent share some resources. MQCNO_SHARED_BINDING
is ignored if the queue manager does not support this type of binding. Processing continues as though the option had not been specified.

MQCNO_ISOLATED_BINDING

In this case, the application process and the local queue manager agent are isolated from each other in that they do not share resources.
MQCNO_ISOLATED_BINDING is ignored if the queue manager does not support this type of binding. Processing continues as though the
option had not been specified.

On AIX, HP-UX, Solaris, Linux, and Windows, you can use the environment variable MQ_CONNECT_TYPE with the bind type specified by the

Options field, to control the type of binding used. If you specify this environment variable, it must have the value FASTPATHor STANDARD; if

Page 118 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

it has a different value, it is ignored. The value of the environment variable is case sensitive.

The environment variable and Options field interact as follows:

� If you omit the environment variable, or give it a value that is not supported, use of the fastpath binding is determined solely by the
Options field.

� If you give the environment variable a supported value, the fastpath binding is used only if both the environment variable and
Options field specify the fastpath binding.

Connection-tag options

These options are supported only when connecting to a z/OS queue manager and they control the use of the connection tag ConnTag. You

can specify only one of these options:

MQCNO_SERIALIZE_CONN_TAG_Q_MGR

This option requests exclusive use of the connection tag within the local queue manager. If the connection tag is already in use in the local

queue manager, the MQCONNX call fails with reason code MQRC_CONN_TAG_IN_USE. The outcome of the call is not affected by using the
connection tag elsewhere in the queue-sharing group to which the local queue manager belongs.

MQCNO_SERIALIZE_CONN_TAG_QSG

This option requests exclusive use of the connection tag within the queue-sharing group to which the local queue manager belongs. If the
connection tag is already in use in the queue-sharing group, the MQCONNX call fails with reason code MQRC_CONN_TAG_IN_USE.

MQCNO_RESTRICT_CONN_TAG_Q_MGR

This option requests shared use of the connection tag within the local queue manager. If the connection tag is already in use in the local
queue manager, the MQCONNX call can succeed if the requesting application is running in the same processing scope as the existing user

of the tag. If this condition is not satisfied, the MQCONNX call fails with reason code MQRC_CONN_TAG_IN_USE. The outcome of the call
is not affected by use of the connection tag elsewhere in the queue-sharing group to which the local queue manager belongs.

� Applications must run within the same MVS™ address space to share the connection tag. If the application using the connection tag
is a client application, MQCNO_RESTRICT_CONN_TAG_Q_MGR is not allowed.

MQCNO_RESTRICT_CONN_TAG_QSG

This option requests shared use of the connection tag within the queue-sharing group to which the local queue manager belongs. If the
connection tag is already in use in the queue-sharing group, the MQCONNX call can succeed provided the requesting application is running
in the same processing scope and is connected to the same queue manager, as the existing user of the tag.

If these conditions are not satisfied, the MQCONNX call fails with reason code MQRC_CONN_TAG_IN_USE.

� Applications must run within the same MVS address space to share the connection tag. If the application using the connection tag is
a client application, MQCNO_RESTRICT_CONN_TAG_QSG is not allowed.

If none of these options are specified, ConnTag is not used. These options are not valid if Version is less than MQCNO_VERSION_3.

Handle-sharing options

These options are supported in the following environments: AIX, HP-UX, i5/OS, Solaris, Linux, and Windows. They control the sharing of
handles between different threads (units of parallel processing) within the same process. You can specify only one of these options:

MQCNO_HANDLE_SHARE_NONE

This option indicates that connection and object handles can be used only by the thread that caused the handle to be allocated (that is,
the thread that issued the MQCONN, MQCONNX, or MQOPEN call). The handles cannot be used by other threads belonging to the same
process.

MQCNO_HANDLE_SHARE_BLOCK

This option indicates that connection and object handles allocated by one thread of a process can be used by other threads belonging to
the same process. However, only one thread at a time can use any particular handle; that is, only serial use of a handle is permitted. If a

thread tries to use a handle that is already in use by another thread, the call blocks (waits) until the handle becomes available.

MQCNO_HANDLE_SHARE_NO_BLOCK

This is the same as MQCNO_HANDLE_SHARE_BLOCK, except that if the handle is in use by another thread, the call completes immediately
with MQCC_FAILED and MQRC_CALL_IN_PROGRESS instead of blocking until the handle becomes available.

A thread can have zero or one non-shared handles:

� Each MQCONN or MQCONNX call that specifies MQCNO_HANDLE_SHARE_NONE returns a new nonshared handle on the first call, and
the same non-shared handle on the second and later calls (assuming no intervening MQDISC call). The reason code is

MQRC_ALREADY_CONNECTED for the second and later calls.

� Each MQCONNX call that specifies MQCNO_HANDLE_SHARE_BLOCK or MQCNO_HANDLE_SHARE_NO_BLOCK returns a new shared
handle on each call.

Object handles inherit the same sharing properties as the connection handle specified on the MQOPEN call that created the object handle.
Also, units of work inherit the same sharing properties as the connection handle used to start the unit of work; if the unit of work is started
in one thread using a shared handle, the unit of work can be updated in another thread using the same handle.

If you do not specify a handle-sharing option, the default is determined by the environment:

� In the Microsoft Transaction Server (MTS) environment, the default is the same as MQCNO_HANDLE_SHARE_BLOCK.

� In other environments, the default is the same as MQCNO_HANDLE_SHARE_NONE.

Page 119 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Reconnection options

Reconnection options determine if a connection is reconnectable. Only client connections are reconnectable.

MQCNO_RECONNECT_AS_DEF

The reconnection option is resolved to its default value. If no default is set, the value of this option resolves to DISABLED. The value of the
option is passed to the server, and can be queried by PCF and MQSC.

MQCNO_RECONNECT

The application can be reconnected to any queue manager consistent with the value of the QmgrName parameter of MQCONNX. Use the

MQCNO_RECONNECT option only if there is no affinity between the client application and the queue manager with which it initially
established a connection. The value of the option is passed to the server, and can be queried by PCF and MQSC.

MQCNO_RECONNECT_DISABLED

The application cannot be reconnected. The value of the option is not passed to the server.

MQCNO_RECONNECT_Q_MGR

The application can be reconnected only to the queue manager with which it originally connected. Use this value if a client can be
reconnected, but there is an affinity between the client application and the queue manager with which it originally established a

connection. Choose this value if you want a client to automatically reconnect to the standby instance of a highly available queue manager.
The value of the option is passed to the server, and can be queried by PCF and MQSC. Automatic client reconnect is not supported by
WebSphere MQ classes for Java.

Use the options MQCNO_RECONNECT, MQCNO_RECONNECT_DISABLED and MQCNO_RECONNECT_Q_MGR only for client connections. If the

options are used for a binding connection, MQCONNX fails with completion code MQCC_FAILED and reason code MQRC_OPTIONS_ERROR.

Conversation-sharing options

The following options apply only to TCP/IP client connections. For SNA, SPX and NetBios channels, these values are ignored and the channel
runs as in previous versions of the product

MQCNO_NO_CONV_SHARING

This option does not permit conversation sharing and the connection must be the only conversation on that channel instance.

You might use MQCNO_NO_CONV_SHARING in situations where conversations are heavily loaded and, therefore, where contention is a
possibility on the server-connection end of the channel instance on which the sharing conversations exist.

MQCNO_ALL_CONVS_SHARE

This option permits conversation sharing; the application does not place any limit on the number of connections on the channel instance.

This option is the default value.

If the application indicates that the channel instance can share, but the SharingConversations (SHARECNV) definition on the server-

connection end of the channel is set to one, no sharing occurs and no warning is given to the application.

Similarly, if the application indicates that sharing is permitted but the server-connection SharingConversations definition is set to zero,

no warning is given, and the application exhibits the same behavior as a client in versions of the product earlier than version 7.0; the
application setting relating to sharing conversations is ignored.

MQCNO_NO_CONV_SHARING and MQCNO_ALL_CONVS_SHARE are mutually exclusive. If both options are specified on a particular
connection, the connection is rejected with a reason code of MQRC_OPTIONS_ERROR.

Channel definition options

The following options control the use of the channel definition structure passed in the MQCNO:

MQCNO_CD_FOR_OUTPUT_ONLY

This option permits channel definition structure in the MQCNO to be used only to return the channel name used on a successful MQCONNX
call.

If a valid channel definition structure is not provided, the call fails with the reason code MQRC_CD_ERROR.

If the application is not running as a client, the option is ignored.

The returned channel name can be used on a subsequent MQCONNX call using the MQCNO_USE_CD_SELECTION option to reconnect
using the same channel definition. This can be useful when there are multiple applicable channel definitions in the client channel table.

MQCNO_USE_CD_SELECTION

This option permits MQCONNX call to connect using the channel name contained in the channel definition structure passed in the MQCNO.

If the MQSERVER environment variable is set, the channel definition defined by it is used. If MQSERVER is not set, the client channel table
is used.

If a channel definition with matching channel name and queue manager name is not found, the call fails with reason code
MQRC_Q_MGR_NAME_ERROR.

If a valid channel definition structure is not provided, the call fails with the reason code MQRC_CD_ERROR.

If the application is not running as a client, the option is ignored.

Page 120 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Default option

If you require none of the options described above, you can use the following option:

MQCNO_NONE

No options are specified.

Use MQCNO_NONE to aid program documentation. It is not intended that this option is used with any other MQCNO_* option, but because
its value is zero, such use cannot be detected.

Parent topic: Fields for MQCNO

This build: January 26, 2011 11:15:45

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11660_

1.10.2.6. SecurityParmsOffset (MQLONG)

This is the offset in bytes of the MQSCP structure from the start of the MQCNO structure. The offset can be positive or negative.

This is an input field. The initial value of this field is 0. This field is ignored if Version is less than MQCNO_VERSION_5.

The MQCSP structure is defined in MQCSP – Security parameters.

Parent topic: Fields for MQCNO

This build: January 26, 2011 11:15:45

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11670_

1.10.2.7. SecurityParmsPtr (PMQCSP)

The address of the MQSCP structure, used to specify a user ID and password for authentication by the authorization service.

This is an input field. The initial value of this field is a null pointer or null bytes. This field is ignored if Version is less than
MQCNO_VERSION_5.

The MQCSP structure is defined in MQCSP – Security parameters.

Parent topic: Fields for MQCNO

This build: January 26, 2011 11:15:45

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11680_

1.10.2.8. SSLConfigOffset (MQLONG)

This is the offset in bytes of an MQSCO structure from the start of the MQCNO structure. The offset can be positive or negative.

Use SSLConfigOffset only when the application issuing the MQCONNX call is running as a WebSphere® MQ client. For information on how

to use this field, see the description of the SSLConfigPtr field.

This is an input field. The initial value of this field is 0. This field is ignored if Version is less than MQCNO_VERSION_4.

Parent topic: Fields for MQCNO

This build: January 26, 2011 11:15:45

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11690_

1.10.2.9. SSLConfigPtr (PMQSCO)

Use SSLConfigPtr and SSLConfigOffset only when the application issuing the MQCONNX call is running as a WebSphere® MQ client and

the channel protocol is TCP/IP. If the application is not running as a WebSphere MQ client, or the channel protocol is not TCP/IP,
SSLConfigPtr and SSLConfigOffset are ignored.

By specifying SSLConfigPtr or SSLConfigOffset, plus either ClientConnPtr or ClientConnOffset, the application can control the use of

Page 121 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

SSL for the client connection. When the SSL information is specified in this way, the environment variables MQSSLKEYR and MQSSLCRYP are
ignored; any SSL-related information in the client channel definition table is also ignored.

The SSL information can be specified only on:

� The first MQCONNX call of the client process, or

� A subsequent MQCONNX call when all previous SSL/TLS connections to the queue manager have been concluded using MQDISC.

These are the only states in which the process-wide SSL environment can be initialized. If an MQCONNX call is issued specifying SSL
information when the SSL environment already exists, the SSL information on the call is ignored and the connection is made using the

existing SSL environment; the call returns completion code MQCC_WARNING and reason code MQRC_SSL_ALREADY_INITIALIZED in this
case.

You can provide the MQSCO structure in the same way as the MQCD structure, either by specifying an address in SSLConfigPtr, or by

specifying an offset in SSLConfigOffset; see the description of ClientConnPtr for details of how to do this. However, you can use no more

than one of SSLConfigPtr and SSLConfigOffset; the call fails with reason code MQRC_SSL_CONFIG_ERROR. if both are nonzero.

Once the MQCONNX call has completed, the MQSCO structure is not referenced again.

This is an input field. The initial value of this field is the null pointer in those programming languages that support pointers, and an all-null
byte string otherwise. This field is ignored if Version is less than MQCNO_VERSION_4.

Note: On platforms where the programming language does not support the pointer data type, this field is declared as a byte string of the

appropriate length.

Parent topic: Fields for MQCNO

This build: January 26, 2011 11:15:45

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11700_

1.10.2.10. StrucId (MQCHAR4)

The value must be:

MQCNO_STRUC_ID

Identifier for connect-options structure.

For the C programming language, the constant MQCNO_STRUC_ID_ARRAY is also defined; this has the same value as MQCNO_STRUC_ID,
but is an array of characters instead of a string.

This is always an input field. The initial value of this field is MQCNO_STRUC_ID.

Parent topic: Fields for MQCNO

This build: January 26, 2011 11:15:45

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11710_

1.10.2.11. Version (MQLONG)

The value must be one of the following:

MQCNO_VERSION_1

Version-1 connect-options structure.

MQCNO_VERSION_2

Version-2 connect-options structure.

MQCNO_VERSION_3

Version-3 connect-options structure.

MQCNO_VERSION_4

Version-4 connect-options structure.

MQCNO_VERSION_5

Version-5 connect-options structure.

This version of the MQCNO structure extends MQCNO_VERSION_3 on z/OS®, and MQCNO_VERSION_4 on all other platforms.

Fields that exist only in the more-recent versions of the structure are identified as such in the descriptions of the fields. The following
constant specifies the version number of the current version:

MQCNO_CURRENT_VERSION

Current version of connect-options structure.

This is always an input field. The initial value of this field is MQCNO_VERSION_1.

Page 122 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Parent topic: Fields for MQCNO

This build: January 26, 2011 11:15:46

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11720_

1.10.3. Initial values and language declarations for MQCNO

C declaration

COBOL declaration

PL/I declaration

System/390 assembler declaration

Visual Basic declaration

Parent topic: MQCNO – Connect options

This build: January 26, 2011 11:15:46

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11730_

1.10.3.1. C declaration

typedef struct tagMQCNO MQCNO;

struct tagMQCNO {

 MQCHAR4 StrucId; /* Structure identifier */

 MQLONG Version; /* Structure version number */

 MQLONG Options; /* Options that control the action of

 MQCONNX */

 MQLONG ClientConnOffset; /* Offset of MQCD structure for client

 connection */

 MQPTR ClientConnPtr; /* Address of MQCD structure for client

 connection */

 MQBYTE128 ConnTag; /* Queue-manager connection tag */

 PMQSCO SSLConfigPtr; /* Address of MQSCO structure for client

 connection */

 MQLONG SSLConfigOffset; /* Offset of MQSCO structure for client

 connection */

 MQBYTE24 ConnectionId; /* Unique connection identifier */

 MQLONG SecurityParmsOffset /* Security fields */

 PMQCSP SecurityParmsPtr /* Security parameters */

 };

Parent topic: Initial values and language declarations for MQCNO

This build: January 26, 2011 11:15:46

Notices | Trademarks | Downloads | Library | Support | Feedback

Table 1. Initial values of fields in MQCNO for MQCNO

Field name Name of constant Value of constant

StrucId MQCNO_STRUC_ID 'CNO�'

Version MQCNO_VERSION_1 1

Options MQCNO_NONE 0

ClientConnOffset None 0

ClientConnPtr None Null pointer or null bytes

ConnTag MQCT_NONE Nulls

SSLConfigPtr None Null pointer or null bytes

SSLConfigOffset None 0

ConnectionId None Null pointer or null bytes

SecurityParmsOffset None Null pointer or null bytes

SecurityParmsPtr None Null pointer or null bytes

Notes:

1. The symbol � represents a single blank character.

2. In the C programming language, the macro variable MQCNO_DEFAULT contains the values listed above. Use it in the
following way to provide initial values for the fields in the structure:

MQCNO MyCNO = {MQCNO_DEFAULT};

Page 123 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11740_

1.10.3.2. COBOL declaration

** MQCNO structure

 10 MQCNO.

** Structure identifier

 15 MQCNO-STRUCID PIC X(4).

** Structure version number

 15 MQCNO-VERSION PIC S9(9) BINARY.

** Options that control the action of MQCONNX

 15 MQCNO-OPTIONS PIC S9(9) BINARY.

** Offset of MQCD structure for client connection

 15 MQCNO-CLIENTCONNOFFSET PIC S9(9) BINARY.

** Address of MQCD structure for client connection

 15 MQCNO-CLIENTCONNPTR POINTER.

** Queue-manager connection tag

 15 MQCNO-CONNTAG PIC X(128).

** Address of MQSCO structure for client connection

 15 MQCNO-SSLCONFIGPTR POINTER.

** Offset of MQSCO structure for client connection

 15 MQCNO-SSLCONFIGOFFSET PIC S9(9) BINARY.

** Unique connection identifier

 15 MQCNO-CONNECTIONID PIC X(24).

** Offset of MQCSP structure for security parameters

 15 MQCNO-SECURITYPARMSOFFSET PIC S9(9) BINARY.

** Address of MQCSP structure for security parameters

 15 MQCNO-SECURITYPARMSPTR POINTER.

Parent topic: Initial values and language declarations for MQCNO

This build: January 26, 2011 11:15:46

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11750_

1.10.3.3. PL/I declaration

dcl

 1 MQCNO based,

 3 StrucId char(4), /* Structure identifier */

 3 Version fixed bin(31), /* Structure version number */

 3 Options fixed bin(31), /* Options that control the action

 of MQCONNX */

 3 ClientConnOffset fixed bin(31), /* Offset of MQCD structure for

 client connection */

 3 ClientConnPtr pointer, /* Address of MQCD structure for

 client connection */

 3 ConnTag char(128), /* Queue-manager connection tag */

 3 SSLConfigPtr pointer, /* Address of MQSCO structure for

 client connection */

 3 SSLConfigOffset fixed bin(31), /* Offset of MQSCO structure for

 client connection */

 3 ConnectionId char(24), /* Unique connection identifier

 3 SecurityParmsOffset fixed bin(31); /* Offset of MQCSP structure for

 security parameters */

 3 SecurityParmsPtr pointer, /* Address of MQCSP structure for

 security parameters */

Parent topic: Initial values and language declarations for MQCNO

This build: January 26, 2011 11:15:46

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11760_

1.10.3.4. System/390® assembler declaration

MQCNO DSECT

MQCNO_STRUCID DS CL4 Structure identifier

MQCNO_VERSION DS F Structure version number

MQCNO_OPTIONS DS F Options that control the action of

* MQCONNX

MQCNO_CLIENTCONNOFFSET DS F Offset of MQCD structure for client

* connection

MQCNO_CLIENTCONNPTR DS F Address of MQCD structure for client

* connection

MQCNO_CONNTAG DS XL128 Queue-manager connection tag

*

MQCNO_CONNECTIONID DS XL24 Unique connection identifier

*

Page 124 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

MQCNO_SSLCONFIGOFFSET DS F Offset of MQCSP structure for security

* parameters

MQCNO_SSLCONFIGPTR DS F Address of MQCSP structure for security

* parameters

MQCNO_LENGTH EQU *-MQCNO

 ORG MQCNO

MQCNO_AREA DS CL(MQCNO_LENGTH)

Parent topic: Initial values and language declarations for MQCNO

This build: January 26, 2011 11:15:46

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11770_

1.10.3.5. Visual Basic declaration

Type MQCNO

 StrucId As String*4 'Structure identifier'

 Version As Long 'Structure version number'

 Options As Long 'Options that control the action of'

 'MQCONNX'

 ClientConnOffset As Long 'Offset of MQCD structure for client'

 'connection'

 ClientConnPtr As MQPTR 'Address of MQCD structure for client'

 'connection'

 ConnTag As MQBYTE128 'Queue-manager connection tag'

 SSLConfigPtr As MQPTR 'Address of MQSCO structure for client'

 'connection'

 SSLConfigOffset As Long 'Offset of MQSCO structure for client'

 'connection'

 ConnectionId As MQBYTE24 'Unique connection identifier'

 SecurityParmsOffset As Long 'Offset of MQCSP structure for security'

 'parameters'

 SecurityParmsPtr As MQPTR 'Address of MQCSP structure for security'

 'parameters'

 End Type

Parent topic: Initial values and language declarations for MQCNO

This build: January 26, 2011 11:15:46

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11780_

1.11. MQCSP – Security parameters

The following table summarizes the fields in the structure.

Overview for MQCSP
Availability: All WebSphere® MQ products.

Fields for MQCSP

Initial values and language declarations for MQCSP

Parent topic: Data type descriptions

This build: January 26, 2011 11:15:47

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

Table 1. Fields in MQCSP

Field Description Topic

StrucId Structure identifier StrucId

Version Structure version number Version

AuthenticationType Type of authentication AuthenticationType

Reserved1 Required for pointer alignment on i5/OS® Reserved1

CSPUserIdPtr Address of user ID CSPUserIdPtr

CSPUserIdOffset Offset of user ID CSPUserIdOffset

CSPUserIdLength Length of user ID CSPUserIdLength

Reserved2 Required for pointer alignment on i5/OS Reserved2

CSPPasswordPtr Address of password CSPPasswordPtr

CSPPasswordOffset Offset of password CSPPasswordOffset

CSPPasswordLength Length of password CSPPasswordLength

Page 125 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

fr11790_

1.11.1. Overview for MQCSP

Availability: All WebSphere® MQ products.

Purpose: The MQCSP structure enables the authorization service to authenticate a user ID and password. You specify the MQCSP
connection security parameters structure on an MQCONNX call.

Character set and encoding: Data in MQCSP must be in the character set and encoding of the local queue manager; these are given by

the CodedCharSetId queue-manager attribute and MQENC_NATIVE, respectively.

Parent topic: MQCSP – Security parameters

This build: January 26, 2011 11:15:47

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11800_

1.11.2. Fields for MQCSP

The MQCSP structure contains the following fields; the fields are described in alphabetic order:

AuthenticationType (MQLONG)

CSPPasswordLength (MQLONG)
This field is the length of the password to be used in authentication.

CSPPasswordOffset (MQLONG)
This is the offset in bytes of the password to be used in authentication. The offset can be positive or negative.

CSPPasswordPtr (MQPTR)

This is the address in bytes of the password to be used in authentication.

CSPUserIdLength (MQLONG)
This field is the length of the user ID to be used in authentication.

CSPUserIdOffset (MQLONG)
This is the offset in bytes of the user ID to be used in authentication. The offset can be positive or negative.

CSPUserIdPtr (MQPTR)
This is the address in bytes of the user ID to be used in authentication.

Reserved1 (MQBYTE4)
A reserved field, required for pointer alignment on i5/OS®.

Reserved2 (MQBYTE8)

A reserved field, required for pointer alignment on i5/OS.

StrucId (MQCHAR4)
Structure identifier.

Version (MQLONG)
Structure version number.

Parent topic: MQCSP – Security parameters

This build: January 26, 2011 11:15:47

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11810_

1.11.2.1. AuthenticationType (MQLONG)

This is the type of authentication to perform. Valid values are:

MQCSP_AUTH_NONE

Do not use user ID and password fields.

MQCSP_AUTH_USER_ID_AND_PWD

Authenticate user ID and password fields.

This is an input field. The initial value of this field is MQCSP_AUTH_NONE.

Parent topic: Fields for MQCSP

Page 126 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This build: January 26, 2011 11:15:47

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11820_

1.11.2.2. CSPPasswordLength (MQLONG)

This field is the length of the password to be used in authentication.

The maximum length of the password is dependent on the platform, see User IDs. If the length of the password is greater than the
maximum length, the authentication request fails with MQRC_NOT_AUTHORIZED.

This field is an input field. The initial value of this field is 0.

Parent topic: Fields for MQCSP

This build: January 26, 2011 11:15:47

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11830_

1.11.2.3. CSPPasswordOffset (MQLONG)

This is the offset in bytes of the password to be used in authentication. The offset can be positive or negative.

This is an input field. The initial value of this field is 0.

Parent topic: Fields for MQCSP

This build: January 26, 2011 11:15:47

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11840_

1.11.2.4. CSPPasswordPtr (MQPTR)

This is the address in bytes of the password to be used in authentication.

This is an input field. The initial value of this field is the null pointer in those programming languages that support pointers, and an all-null

byte string otherwise. This field is ignored if Version is less than MQCNO_VERSION_5.

Parent topic: Fields for MQCSP

This build: January 26, 2011 11:15:47

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11850_

1.11.2.5. CSPUserIdLength (MQLONG)

This field is the length of the user ID to be used in authentication.

The maximum length of the user ID is dependent on the platform, see User IDs. If the length of the user ID is greater than the maximum

length permitted, the authentication request fails with MQRC_NOT_AUTHORIZED.

This field is an input field. The initial value of this field is 0.

Parent topic: Fields for MQCSP

This build: January 26, 2011 11:15:47

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11860_

1.11.2.6. CSPUserIdOffset (MQLONG)

This is the offset in bytes of the user ID to be used in authentication. The offset can be positive or negative.

This is an input field. The initial value of this field is 0.

Parent topic: Fields for MQCSP

Page 127 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This build: January 26, 2011 11:15:47

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11870_

1.11.2.7. CSPUserIdPtr (MQPTR)

This is the address in bytes of the user ID to be used in authentication.

This is an input field. The initial value of this field is the null pointer in those programming languages that support pointers, and an all-null
byte string otherwise. This field is ignored if Version is less than MQCNO_VERSION_5.

Parent topic: Fields for MQCSP

This build: January 26, 2011 11:15:47

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11880_

1.11.2.8. Reserved1 (MQBYTE4)

A reserved field, required for pointer alignment on i5/OS®.

This is an input field. The initial value of this field is all null.

Parent topic: Fields for MQCSP

This build: January 26, 2011 11:15:47

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11890_

1.11.2.9. Reserved2 (MQBYTE8)

A reserved field, required for pointer alignment on i5/OS®.

This is an input field. The initial value of this field is all null.

Parent topic: Fields for MQCSP

This build: January 26, 2011 11:15:48

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11900_

1.11.2.10. StrucId (MQCHAR4)

Structure identifier.

The value must be:

MQCSP_STRUC_ID

Identifier for the security parameters structure.

For the C programming language, the constant MQCSP_STRUC_ID_ARRAY is also defined; this has the same value as MQCSP_STRUC_ID,
but is an array of characters instead of a string.

This is always an input field. The initial value of this field is MQCSPSTRUC_ID.

Parent topic: Fields for MQCSP

This build: January 26, 2011 11:15:48

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11910_

1.11.2.11. Version (MQLONG)

Structure version number.

The value must be:

Page 128 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

MQCSP_VERSION_1

Version-1 security parameters structure.

The following constant specifies the version number of the current version:

MQCSP_CURRENT_VERSION

Current version of security parameters structure.

This is always an input field. The initial value of this field is MQCSP_VERSION_1.

Parent topic: Fields for MQCSP

This build: January 26, 2011 11:15:48

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11920_

1.11.3. Initial values and language declarations for MQCSP

C declaration

COBOL declaration

PL/I declaration

Visual Basic declaration

Parent topic: MQCSP – Security parameters

This build: January 26, 2011 11:15:48

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11930_

1.11.3.1. C declaration

typedef struct tagMQCSP MQCSP;

struct tagMQCSP {

 MQCHAR4 StrucId; /* Structure identifier */

 MQLONG Version; /* Structure version number */

 MQLONG AuthenticationType; /* Type of authentication */

 MQBYTE4 Reserved1; /* Required for i5/OS pointer

 alignment */

 MQPTR CSPUserIdPtr; /* Address of user ID */

 MQLONG CSPUserIdOffset; /* Offset of user ID */

 MQLONG CSPUserIdLength; /* Length of user ID */

 MQBYTE8 Reserved2; /* Required for i5/OS pointer

 alignment */

 alignment */

 MQPTR CSPPasswordPtr; /* Address of password */

 MQLONG CSPPasswordOffset; /* Offset of password */

 MQLONG CSPPasswordLength; /* Length of password */

 };

Table 1. Initial values of fields in MQCSP for MQCSP

Field name Name of constant Value of constant

StrucId MQCSP_STRUC_ID 'CSP'

Version MQCSP_CURRENT_VERSION 1

AuthenticationType None MQCSP_AUTH_NONE

Reserved1 None Null string or blanks

CSPUserIdPtr None Null pointer or null bytes

CSPUserIdOffset None 0

CSPUserIdLength None 0

Reserved2 None Null string or blanks

CSPPasswordPtr None Null pointer or null bytes

CSPPasswordOffset None 0

CSPPasswordLength None 0

Notes:

1. The symbol � represents a single blank character.

2. In the C programming language, the macro variable MQCSP_DEFAULT contains the values listed above. It can be used in

the following way to provide initial values for the fields in the structure:

MQCSP MyCSP = {MQCSP_DEFAULT};

Page 129 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Parent topic: Initial values and language declarations for MQCSP

This build: January 26, 2011 11:15:54

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11940_

1.11.3.2. COBOL declaration

** MQCSP structure

 10 MQCSP.

** Structure identifier

 15 MQCSP-STRUCID PIC X(4).

** Structure version number

 15 MQCSP-VERSION PIC S9(9) BINARY.

** Type of authentication

 15 MQCSP-AUTHENTICATIONTYPE PIC S9(9) BINARY.

** Required for i5/OS pointer alignment

 15 MQCSP-RESERVED1 PIC X(4).

** Address of user ID

 15 MQCSP-CSPUSERIDPTR POINTER.

** Offset of user ID

 15 MQCSP-CSPUSERIDOFFSET PIC S9(9) BINARY.

** Length of user ID

 15 MQCSP-CSPUSERIDLENGTH PIC S9(9) BINARY.

** Required for i5/OS pointer alignment

 15 MQCSP-RESERVED2 PIC X(4).

** Address of password

 15 MQCSP-CSPPASSWORDPTR POINTER.

** Offset of password

 15 MQCSP-CSPPASSWORDOFFSET PIC S9(9) BINARY.

** Length of password

 15 MQCSP-CSPPASSWORDLENGTH PIC S9(9) BINARY.

Parent topic: Initial values and language declarations for MQCSP

This build: January 26, 2011 11:15:54

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11950_

1.11.3.3. PL/I declaration

dcl

 1 MQCSP based,

 3 StrucId char(4), /* Structure identifier */

 3 Version fixed bin(31), /* Structure version number */

 3 AuthenticationType fixed bin(31), /* Type of authentication */

 3 Reserved1 char(4), /* Required for i5/OS pointer

 alignment */

 3 CSPUserIdPtr pointer, /* Address of user ID */

 3 CSPUserIdOffset fixed bin(31), /* Offset of user ID */

 3 CSPUserIdLength fixed bin(31), /* Length of user ID */

 3 Reserved2 char(8), /* Required for i5/OS pointer

 alignment */

 3 CSPPasswordPtr pointer, /* Address of password */

 3 CSPPasswordOffset fixed bin(31), /* Offset of user ID */

 3 CSPPasswordLength fixed bin(31); /* Length of user ID */

Parent topic: Initial values and language declarations for MQCSP

This build: January 26, 2011 11:15:54

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11960_

1.11.3.4. Visual Basic declaration

Type MQCSP

 StrucId As String*4 'Structure identifier'

 Version As Long 'Structure version number'

 AuthenticationType As Long 'Type of authentication'

 Reserved1 As MQBYTE4 'Required for i5/OS pointer'

 'alignment'

 CSPUserIdPtr As MQPTR 'Address of user ID'

 CSPUserIdOffset As Long 'Offset of user ID'

 CSPUserIdLength As Long 'Length of user ID'

 Reserved2 As MQBYTE8 'Required for i5/OS pointer'

 'alignment'

 CSPPasswordPtr As MQPTR 'Address of password'

 CSPPasswordOffset As Long 'Offset of password'

Page 130 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

 CSPPasswordLength As Long 'Length of password'

End Type

Parent topic: Initial values and language declarations for MQCSP

This build: January 26, 2011 11:15:54

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11970_

1.12. MQCTLO – Control callback options structure

The following table summarizes the fields in the structure. Structure specifying the control callback function.

Overview for MQCTLO
Availability: AIX®, HP-UX, i5/OS®, Solaris, Linux, Windows, z/OS®, and WebSphere® MQ clients connected to these systems.
Overview of the MQCTLO structure.

Fields for MQCTLO
Alphabetic list of fields for the MQCTLO structure.

Initial values and language declarations for MQCTLO
Control options structure - Initial values

Parent topic: Data type descriptions

This build: January 26, 2011 11:20:13

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40900_

1.12.1. Overview for MQCTLO

Availability: AIX®, HP-UX, i5/OS®, Solaris, Linux, Windows, z/OS®, and WebSphere® MQ clients connected to these systems. Overview
of the MQCTLO structure.

Purpose: The MQCTLO structure is used to specify options relating to a control callbacks function.

The structure is an input and output parameter on the MQCTL call.

Version: The current version of MQCTLO is MQCTLO_VERSION_1.

Character set and encoding: Data in MQCTLO must be in the character set and encoding of the local queue manager; these are given by
the CodedCharSetId queue-manager attribute and MQENC_NATIVE, respectively. However, if the application is running as an MQ client, the

structure must be in the character set and encoding of the client.

Parent topic: MQCTLO – Control callback options structure

This build: January 26, 2011 11:20:13

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40910_

1.12.2. Fields for MQCTLO

Alphabetic list of fields for the MQCTLO structure.

The MQCTLO structure contains the following fields; the fields are described in alphabetical order:

ConnectionArea (MQPTR)
Control options structure - ConnectionArea field

Options (MQLONG)
Control options structure - Options field

Table 1. Fields in MQCTLO

Field Description Topic

StrucID Structure identifier StrucID

Version Structure version number Version

Options Options Options

Reserved Reserved field Options

ConnectionArea Field for callback function to use ConnectionArea

Page 131 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Reserved (MQLONG)

StrucId (MQCHAR4)
Control options structure - StrucId field

Version (MQLONG)
Control options structure - Version field

Parent topic: MQCTLO – Control callback options structure

This build: January 26, 2011 11:20:14

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40920_

1.12.2.1. ConnectionArea (MQPTR)

Control options structure - ConnectionArea field

This is a field that is available for the callback function to use.

The queue manager makes no decisions based on the contents of this field and it is passed unchanged to the ConnectionArea field in the
MQCBC structure, which is an input parameter to the callback.

This field is ignored for all operations other than MQOP_START and MQOP_START_WAIT.

This is an input and output field to the callback function. The initial value of this field is a null pointer or null bytes.

Parent topic: Fields for MQCTLO

This build: January 26, 2011 11:20:14

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40970_

1.12.2.2. Options (MQLONG)

Control options structure - Options field

Options that control the action of MQCTLO.

MQCTLO_FAIL_IF_QUIESCING

Force the MQCTLO call to fail if the queue manager or connection is in the quiescing state.

Specify MQGMO_FAIL_IF_QUIESCING, in the MQGMO options passed on the MQCB call, to cause notification to message consumers when
they are quiescing.

MQCTLO_THREAD_AFFINITY

This option informs the system that the application requires that all message consumers, for the same connection, are called on the same
thread. This thread will be used for all invocations of the consumers until the connection is stopped.

Default option: If you do not need any of the options described, use the following option:

MQCTLO_NONE

Use this value to indicate that no other options have been specified; all options assume their default values. MQCTLO_NONE is defined to
aid program documentation; it is not intended that this option be used with any other, but as its value is zero, such use cannot be
detected.

This is an input field. The initial value of the Options field is MQCTLO_NONE.

Parent topic: Fields for MQCTLO

This build: January 26, 2011 11:20:14

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40950_

1.12.2.3. Reserved (MQLONG)

This is a reserved field. The value must be zero.

Parent topic: Fields for MQCTLO

This build: January 26, 2011 11:20:14

Page 132 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40945_

1.12.2.4. StrucId (MQCHAR4)

Control options structure - StrucId field

This is the structure identifier; the value must be:

MQCTLO_STRUC_ID

Identifier for Control Options structure.

For the C programming language, the constant MQCTLO_STRUC_ID_ARRAY is also defined; this has the same value as
MQCTLO_STRUC_ID, but is an array of characters instead of a string.

This is always an input field. The initial value of this field is MQCTLO_STRUC_ID.

Parent topic: Fields for MQCTLO

This build: January 26, 2011 11:20:14

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40930_

1.12.2.5. Version (MQLONG)

Control options structure - Version field

This is the structure version number; the value must be:

MQCTLO_VERSION_1

Version-1 Control options structure.

The following constant specifies the version number of the current version:

MQCTLO_CURRENT_VERSION

Current version of Control options structure.

This is always an input field. The initial value of this field is MQCTLO_VERSION_1.

Parent topic: Fields for MQCTLO

This build: January 26, 2011 11:20:14

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40940_

1.12.3. Initial values and language declarations for MQCTLO

Control options structure - Initial values

C declaration
Control Options structure - C language declaration

COBOL declaration

PL/I declaration

Table 1. Initial values of fields in MQCTLO

Field name Name of constant Value of constant

StrucId MQCTLO_STRUC_ID 'CTLO'

Version MQCTLO_VERSION_1 1

Options MQCTLO_NONE Nulls

Reserved Reserved field

ConnectionArea None Null pointer or null bytes

Notes:

1. In the C programming language, the macro variable MQCTLO_DEFAULT contains the values listed above. Use it in the
following way to provide initial values for the fields in the structure:

MQCTLO MyCTLO = {MQCTLO_DEFAULT};

Page 133 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Parent topic: MQCTLO – Control callback options structure

This build: January 26, 2011 11:20:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr41030_

1.12.3.1. C declaration

Control Options structure - C language declaration

typedef struct tagMQCTLO MQCTLO;

 struct tagMQCTLO {

 MQCHAR4 StrucId; /* Structure identifier */

 MQLONG Version; /* Structure version number */

 MQLONG Options; /* Options that control the action of MQCTL */

 MQLONG Reserved; /* Reserved field */

 MQPTR ConnectionArea; /* Connection work area passed to the function */

 };

Parent topic: Initial values and language declarations for MQCTLO

This build: January 26, 2011 11:20:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr41040_

1.12.3.2. COBOL declaration

** MQCTLO structure

 10 MQCTLO.

** Structure Identifier

 15 MQCTLO-STRUCID PIC X(4).

** Structure Version

 15 MQCTLO-VERSION PIC S9(9) BINARY.

 ** Options

 15 MQCTLO-OPTIONS PIC S9(9) BINARY.

** Reserved

 15 MQCTLO-RESERVED PIC S9(9) BINARY.

** ConnectionArea

 15 MQCTLO-CONNECTIONAREA POINTER

Parent topic: Initial values and language declarations for MQCTLO

This build: January 26, 2011 11:20:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr41050_

1.12.3.3. PL/I declaration

dcl

 1 MQCTLO based,

 3 StrucId char(4), /* Structure identifier */

 3 Version fixed bin(31), /* Structure version */

 3 Options fixed bin(31), /* Options */

 3 Reserved fixed bin(31),

 3 ConnectionArea pointer; /* Connection work area */

Parent topic: Initial values and language declarations for MQCTLO

This build: January 26, 2011 11:20:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr41070_

1.13. MQDH – Distribution header

The following table summarizes the fields in the structure.

Table 1. Fields in MQDH

Field Description Topic

StrucId Structure identifier StrucId

Version Structure version number Version

StrucLength Length of MQDH structure plus following records StrucLength

Page 134 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Overview for MQDH
Availability: AIX®, HP-UX, i5/OS®, Solaris, Linux, Windows, plus WebSphere® MQ clients connected to these systems.

Fields for MQDH
The MQDH structure contains the following fields; the fields are described in alphabetic order:

Initial values and language declarations for MQDH

Parent topic: Data type descriptions

This build: January 26, 2011 11:15:54

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11980_

1.13.1. Overview for MQDH

Availability: AIX®, HP-UX, i5/OS®, Solaris, Linux, Windows, plus WebSphere® MQ clients connected to these systems.

Purpose: The MQDH structure describes the additional data that is present in a message when that message is a distribution-list message

stored on a transmission queue. A distribution-list message is a message that is sent to multiple destination queues. The additional data
consists of the MQDH structure followed by an array of MQOR records and an array of MQPMR records.

This structure is used by specialized applications that put messages directly on transmission queues, or that remove messages from
transmission queues (for example: message channel agents).

Applications that want to put messages to distribution lists must not use this structure. Instead, they must use the MQOD structure to define
the destinations in the distribution list, and the MQPMO structure to specify message properties or receive information about the messages
sent to the individual destinations.

Format name: MQFMT_DIST_HEADER.

Character set and encoding: Data in MQDH must be in the character set and encoding of the local queue manager; these are given by
the CodedCharSetId queue-manager attribute and MQENC_NATIVE for the C programming language, respectively.

Set the character set and encoding of the MQDH into the CodedCharSetId and Encoding fields in:

� The MQMD (if the MQDH structure is at the start of the message data), or

� The header structure that precedes the MQDH structure (all other cases).

Usage: When an application puts a message to a distribution list, and some or all of the destinations are remote, the queue manager
prefixes the application message data with the MQXQH and MQDH structures, and places the message on the relevant transmission queue.
The data therefore occurs in the following sequence when the message is on a transmission queue:

� MQXQH structure

� MQDH structure plus arrays of MQOR and MQPMR records

� Application message data

Depending on the destinations, the queue manager can generate more than one such message, and place it on different transmission
queues. In this case, the MQDH structures in those messages identify different subsets of the destinations defined by the distribution list
opened by the application.

An application that puts a distribution-list message directly on a transmission queue must conform to the sequence described above, and

must ensure that the MQDH structure is correct. If the MQDH structure is not valid, the queue manager can fail the MQPUT or MQPUT1 call
with reason code MQRC_DH_ERROR.

You can store messages on a queue in distribution-list form only if you have defined the queue as being able to support distribution list
messages (see the DistLists queue attribute described in Attributes for queues). If an application puts a distribution-list message directly

on a queue that does not support distribution lists, the queue manager splits the distribution list message into individual messages, and
places those on the queue instead.

Parent topic: MQDH – Distribution header

This build: January 26, 2011 11:15:55

Notices | Trademarks | Downloads | Library | Support | Feedback

Encoding Numeric encoding of data that follows array of MQPMR

records

Encoding

CodedCharSetId Character set identifier of data that follows array of

MQPMR records

CodedCharSetId

Format Format name of data that follows array of MQPMR

records

Format

Flags General flags Flags

PutMsgRecFields Flags indicating which MQPMR fields are present PutMsgRecFields

RecsPresent Number of object records present RecsPresent

ObjectRecOffset Offset of first object record from start of MQDH ObjectRecOffset

PutMsgRecOffset Offset of first put-message record from start of MQDH PutMsgRecOffset

Page 135 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr11990_

1.13.2. Fields for MQDH

The MQDH structure contains the following fields; the fields are described in alphabetic order:

CodedCharSetId (MQLONG)

Encoding (MQLONG)

Flags (MQLONG)

Format (MQCHAR8)

ObjectRecOffset (MQLONG)

PutMsgRecFields (MQLONG)

PutMsgRecOffset (MQLONG)

RecsPresent (MQLONG)

StrucId (MQCHAR4)

StrucLength (MQLONG)

Version (MQLONG)

Parent topic: MQDH – Distribution header

This build: January 26, 2011 11:15:55

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12000_

1.13.2.1. CodedCharSetId (MQLONG)

This is the character set identifier of the data that follows the arrays of MQOR and MQPMR records; it does not apply to character data in the
MQDH structure itself.

On the MQPUT or MQPUT1 call, the application must set this field to the value appropriate to the data. You can use the following special
value:

MQCCSI_INHERIT

Inherit character-set identifier of this structure.

Character data in the data following this structure is in the same character set as this structure.

The queue manager changes this value in the structure sent in the message to the actual character-set identifier of the structure. Provided
no error occurs, the MQGET call does not return the value MQCCSI_INHERIT.

You cannot use MQCCSI_INHERIT if the value of the PutApplType field in MQMD is MQAT_BROKER.

This value is supported in the following environments: AIX®, HP-UX, i5/OS®, Solaris, Linux, Windows, plus WebSphere® MQ clients
connected to these systems.

The initial value of this field is MQCCSI_UNDEFINED.

Parent topic: Fields for MQDH

This build: January 26, 2011 11:15:55

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12010_

1.13.2.2. Encoding (MQLONG)

This is the numeric encoding of the data that follows the arrays of MQOR and MQPMR records; it does not apply to numeric data in the
MQDH structure itself.

On the MQPUT or MQPUT1 call, the application must set this field to the value appropriate to the data.

The initial value of this field is 0.

Page 136 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Parent topic: Fields for MQDH

This build: January 26, 2011 11:15:55

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12020_

1.13.2.3. Flags (MQLONG)

You can specify the following flag:

MQDHF_NEW_MSG_IDS

Generate a new message identifier for each destination in the distribution list. Set this only when there are no put-message records
present, or when the records are present but they do not contain the MsgId field.

Using this flag defers generation of the message identifiers until the moment when the distribution-list message is finally split into
individual messages. This minimizes the amount of control information that must flow with the distribution-list message.

When an application puts a message to a distribution list, the queue manager sets MQDHF_NEW_MSG_IDS in the MQDH that it generates
when both of the following are true:

� There are no put-message records provided by the application, or the records provided do not contain the MsgId field.

� The MsgId field in MQMD is MQMI_NONE, or the Options field in MQPMO includes MQPMO_NEW_MSG_ID

If no flags are needed, specify the following:

MQDHF_NONE

No flags have been specified. MQDHF_NONE is defined to aid program documentation. It is not intended that this constant be used with
any other, but as its value is zero, such use cannot be detected.

The initial value of this field is MQDHF_NONE.

Parent topic: Fields for MQDH

This build: January 26, 2011 11:15:55

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12030_

1.13.2.4. Format (MQCHAR8)

This is the format name of the data that follows the arrays of MQOD and MQPMR records (whichever occurs last).

On the MQPUT or MQPUT1 call, the application must set this field to the value appropriate to the data. The rules for coding this field are the
same as those for the Format field in MQMD.

The initial value of this field is MQFMT_NONE.

Parent topic: Fields for MQDH

This build: January 26, 2011 11:15:55

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12040_

1.13.2.5. ObjectRecOffset (MQLONG)

This gives the offset in bytes of the first record in the array of MQOR object records containing the names of the destination queues. There
are RecsPresent records in this array. These records (plus any bytes skipped between the first object record and the previous field) are

included in the length given by the StrucLength field.

A distribution list must always contain at least one destination, so ObjectRecOffset must always be greater than zero.

The initial value of this field is 0.

Parent topic: Fields for MQDH

This build: January 26, 2011 11:15:55

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12050_

Page 137 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

1.13.2.6. PutMsgRecFields (MQLONG)

You can specify none or more of the following flags:

MQPMRF_MSG_ID

Message-identifier field is present.

MQPMRF_CORREL_ID

Correlation-identifier field is present.

MQPMRF_GROUP_ID

Group-identifier field is present.

MQPMRF_FEEDBACK

Feedback field is present.

MQPMRF_ACCOUNTING_TOKEN

Accounting-token field is present.

If no MQPMR fields are present, specify the following:

MQPMRF_NONE

No put-message record fields are present. MQPMRF_NONE is defined to aid program documentation. It is not intended that this constant
be used with any other, but as its value is zero, such use cannot be detected.

The initial value of this field is MQPMRF_NONE.

Parent topic: Fields for MQDH

This build: January 26, 2011 11:15:55

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12060_

1.13.2.7. PutMsgRecOffset (MQLONG)

This gives the offset in bytes of the first record in the array of MQPMR put message records containing the message properties. If present,
there are RecsPresent records in this array. These records (plus any bytes skipped between the first put message record and the previous

field) are included in the length given by the StrucLength field.

Put message records are optional; if no records are provided, PutMsgRecOffset is zero, and PutMsgRecFields has the value

MQPMRF_NONE.

The initial value of this field is 0.

Parent topic: Fields for MQDH

This build: January 26, 2011 11:15:55

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12070_

1.13.2.8. RecsPresent (MQLONG)

This is the number of destinations. A distribution list must always contain at least one destination, so RecsPresent must always be greater

than zero.

The initial value of this field is 0.

Parent topic: Fields for MQDH

This build: January 26, 2011 11:15:55

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12080_

1.13.2.9. StrucId (MQCHAR4)

The value must be:

MQDH_STRUC_ID

Identifier for distribution header structure.

For the C programming language, the constant MQDH_STRUC_ID_ARRAY is also defined; this has the same value as MQDH_STRUC_ID,
but is an array of characters instead of a string.

Page 138 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

The initial value of this field is MQDH_STRUC_ID.

Parent topic: Fields for MQDH

This build: January 26, 2011 11:15:55

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12090_

1.13.2.10. StrucLength (MQLONG)

This is the number of bytes from the start of the MQDH structure to the start of the message data following the arrays of MQOR and MQPMR

records. The data occurs in the following sequence:

� MQDH structure

� Array of MQOR records

� Array of MQPMR records

� Message data

The arrays of MQOR and MQPMR records are addressed by offsets contained within the MQDH structure. If these offsets result in unused

bytes between one or more of the MQDH structure, the arrays of records, and the message data, those unused bytes must be included in
the value of StrucLength, but the content of those bytes is not preserved by the queue manager. It is valid for the array of MQPMR records

to precede the array of MQOR records.

The initial value of this field is 0.

Parent topic: Fields for MQDH

This build: January 26, 2011 11:15:55

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12100_

1.13.2.11. Version (MQLONG)

The value must be:

MQDH_VERSION_1

Version number for distribution header structure.

The following constant specifies the version number of the current version:

MQDH_CURRENT_VERSION

Current version of distribution header structure.

The initial value of this field is MQDH_VERSION_1.

Parent topic: Fields for MQDH

This build: January 26, 2011 11:15:55

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12110_

1.13.3. Initial values and language declarations for MQDH

Table 1. Initial values of fields in MQDH for MQDH

Field name Name of constant Value of constant

StrucId MQDH_STRUC_ID 'DH��'

Version MQDH_VERSION_1 1

StrucLength None 0

Encoding None 0

CodedCharSetId MQCCSI_UNDEFINED 0

Format MQFMT_NONE Blanks

Flags MQDHF_NONE 0

PutMsgRecFields MQPMRF_NONE 0

RecsPresent None 0

ObjectRecOffset None 0

PutMsgRecOffset None 0

Page 139 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

C declaration

COBOL declaration

PL/I declaration

Visual Basic declaration

Parent topic: MQDH – Distribution header

This build: January 26, 2011 11:15:56

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12120_

1.13.3.1. C declaration

typedef struct tagMQDH MQDH;

struct tagMQDH {

 MQCHAR4 StrucId; /* Structure identifier */

 MQLONG Version; /* Structure version number */

 MQLONG StrucLength; /* Length of MQDH structure plus following

 MQOR and MQPMR records */

 MQLONG Encoding; /* Numeric encoding of data that follows

 the MQOR and MQPMR records */

 MQLONG CodedCharSetId; /* Character set identifier of data that

 follows the MQOR and MQPMR records */

 MQCHAR8 Format; /* Format name of data that follows the

 MQOR and MQPMR records */

 MQLONG Flags; /* General flags */

 MQLONG PutMsgRecFields; /* Flags indicating which MQPMR fields are

 present */

 MQLONG RecsPresent; /* Number of MQOR records present */

 MQLONG ObjectRecOffset; /* Offset of first MQOR record from start

 of MQDH */

 MQLONG PutMsgRecOffset; /* Offset of first MQPMR record from start

 of MQDH */

};

Parent topic: Initial values and language declarations for MQDH

This build: January 26, 2011 11:15:56

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12130_

1.13.3.2. COBOL declaration

** MQDH structure

 10 MQDH.

** Structure identifier

 15 MQDH-STRUCID PIC X(4).

** Structure version number

 15 MQDH-VERSION PIC S9(9) BINARY.

** Length of MQDH structure plus following MQOR and MQPMR records

 15 MQDH-STRUCLENGTH PIC S9(9) BINARY.

** Numeric encoding of data that follows the MQOR and MQPMR records

 15 MQDH-ENCODING PIC S9(9) BINARY.

** Character set identifier of data that follows the MQOR and MQPMR

** records

 15 MQDH-CODEDCHARSETID PIC S9(9) BINARY.

** Format name of data that follows the MQOR and MQPMR records

 15 MQDH-FORMAT PIC X(8).

** General flags

 15 MQDH-FLAGS PIC S9(9) BINARY.

** Flags indicating which MQPMR fields are present

 15 MQDH-PUTMSGRECFIELDS PIC S9(9) BINARY.

** Number of MQOR records present

 15 MQDH-RECSPRESENT PIC S9(9) BINARY.

** Offset of first MQOR record from start of MQDH

 15 MQDH-OBJECTRECOFFSET PIC S9(9) BINARY.

** Offset of first MQPMR record from start of MQDH

Notes:

1. The symbol � represents a single blank character.

2. In the C programming language, the macro variable MQDH_DEFAULT contains the values listed above. Use it in the

following way to provide initial values for the fields in the structure:

MQDH MyDH = {MQDH_DEFAULT};

Page 140 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

 15 MQDH-PUTMSGRECOFFSET PIC S9(9) BINARY.

Parent topic: Initial values and language declarations for MQDH

This build: January 26, 2011 11:15:56

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12140_

1.13.3.3. PL/I declaration

dcl

 1 MQDH based,

 3 StrucId char(4), /* Structure identifier */

 3 Version fixed bin(31), /* Structure version number */

 3 StrucLength fixed bin(31), /* Length of MQDH structure plus

 following MQOR and MQPMR

 records */

 3 Encoding fixed bin(31), /* Numeric encoding of data that

 follows the MQOR and MQPMR

 records */

 3 CodedCharSetId fixed bin(31), /* Character set identifier of data

 that follows the MQOR and MQPMR

 records */

 3 Format char(8), /* Format name of data that follows

 the MQOR and MQPMR records */

 3 Flags fixed bin(31), /* General flags */

 3 PutMsgRecFields fixed bin(31), /* Flags indicating which MQPMR

 fields are present */

 3 RecsPresent fixed bin(31), /* Number of MQOR records present */

 3 ObjectRecOffset fixed bin(31), /* Offset of first MQOR record from

 start of MQDH */

 3 PutMsgRecOffset fixed bin(31); /* Offset of first MQPMR record from

 start of MQDH */

Parent topic: Initial values and language declarations for MQDH

This build: January 26, 2011 11:15:56

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12150_

1.13.3.4. Visual Basic declaration

Type MQDH

 StrucId As String*4 'Structure identifier'

 Version As Long 'Structure version number'

 StrucLength As Long 'Length of MQDH structure plus following'

 'MQOR and MQPMR records'

 Encoding As Long 'Numeric encoding of data that follows'

 'the MQOR and MQPMR records'

 CodedCharSetId As Long 'Character set identifier of data that'

 'follows the MQOR and MQPMR records'

 Format As String*8 'Format name of data that follows the'

 'MQOR and MQPMR records'

 Flags As Long 'General flags'

 PutMsgRecFields As Long 'Flags indicating which MQPMR fields are'

 'present'

 RecsPresent As Long 'Number of MQOR records present'

 ObjectRecOffset As Long 'Offset of first MQOR record from start'

 'of MQDH'

 PutMsgRecOffset As Long 'Offset of first MQPMR record from start'

 'of MQDH'

End Type

Parent topic: Initial values and language declarations for MQDH

This build: January 26, 2011 11:15:56

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12160_

1.14. MQDLH – Dead-letter header

The following table summarizes the fields in the structure.

Table 1. Fields in MQDLH

Field Description Topic

StrucId Structure identifier StrucId

Version Structure version number Version

Page 141 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Overview for MQDLH
Availability: All WebSphere® MQ platforms.

Fields for MQDLH
The MQDLH structure contains the following fields; the fields are described in alphabetic order:

Initial values and language declarations for MQDLH

Parent topic: Data type descriptions

This build: January 26, 2011 11:15:56

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12170_

1.14.1. Overview for MQDLH

Availability: All WebSphere® MQ platforms.

Purpose: The MQDLH structure describes the information that prefixes the application message data of messages on the dead-letter
(undelivered-message) queue. A message can arrive on the dead-letter queue either because the queue manager or message channel agent
has redirected it to the queue, or because an application has put the message directly on the queue.

Format name: MQFMT_DEAD_LETTER_HEADER.

Character set and encoding: The fields in the MQDLH structure are in the character set and encoding given by the CodedCharSetId and

Encoding fields in the header structure that precedes MQDLH, or by those fields in the MQMD structure if the MQDLH is at the start of the

application message data.

The character set must be one that has single-byte characters for the characters that are valid in queue names.

Usage: Applications that put messages directly on the dead-letter queue must prefix the message data with an MQDLH structure, and
initialize the fields with appropriate values. However, the queue manager does not require that an MQDLH structure be present, or that valid

values have been specified for the fields.

If a message is too long to put on the dead-letter queue, the application must do one of the following:

� Truncate the message data to fit on the dead-letter queue.

� Record the message on auxiliary storage and place an exception report message on the dead-letter queue indicating this.

� Discard the message and return an error to its originator. If the message is (or might be) a critical message, do this only if it is known
that the originator still has a copy of the message; for example, a message received by a message channel agent from a

communication channel.

Which of the above is appropriate (if any) depends on the design of the application.

The queue manager performs special processing when a message that is a segment is put with an MQDLH structure at the front; see the

description of the MQMDE structure for further details.

Putting messages on the dead-letter queue: When a message is put on the dead-letter queue, the MQMD structure used for the MQPUT
or MQPUT1 call must be identical to the MQMD associated with the message (usually the MQMD returned by the MQGET call), with the
exception of the following:

� Set the CodedCharSetId and Encoding fields to whatever character set and encoding are used for fields in the MQDLH structure.

� Set the Format field to MQFMT_DEAD_LETTER_HEADER to indicate that the data begins with a MQDLH structure.

� Set the context fields (AccountingToken, ApplIdentityData, ApplOriginData, PutApplName, PutApplType, PutDate, PutTime,

UserIdentifier) by using a context option appropriate to the circumstances:

� An application putting on the dead-letter queue a message that is not related to any preceding message must use the

MQPMO_DEFAULT_CONTEXT option; this causes the queue manager to set all of the context fields in the message descriptor to
their default values.

� A server application putting on the dead-letter queue a messagethat it has just received must use the

MQPMO_PASS_ALL_CONTEXT option to preserve the original context information.

� A server application putting on the dead-letter queue a reply to a message that it has just received must use the
MQPMO_PASS_IDENTITY_CONTEXT option; this preserves the identity information but sets the origin information to be that of

the server application.

Reason Reason message arrived on dead-letter queue Reason

DestQName Name of original destination queue DestQName

DestQMgrName Name of original destination queue manager DestQMgrName

Encoding Numeric encoding of data that follows MQDLH Encoding

CodedCharSetId Character set identifier of data that follows MQDLH CodedCharSetId

Format Format name of data that follows MQDLH Format

PutApplType Type of application that put message on dead-letter

queue

PutApplType

PutApplName Name of application that put message on dead-letter

queue

PutApplName

PutDate Date when message was put on dead-letter queue PutDate

PutTime Time when message was put on dead-letter queue PutTime

Page 142 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

� A message channel agent putting on the dead-letter queue a messagethat it received from its communication channel must use
the MQPMO_SET_ALL_CONTEXT option to preserve the original context information.

In the MQDLH structure itself, set the fields as follows:

� Set the CodedCharSetId, Encoding, and Format fields to the values that describe the data that follows the MQDLH structure, usually

the values from the original message descriptor.

� Set the context fields PutApplType, PutApplName, PutDate, and PutTime to values appropriate to the application that is putting the

message on the dead-letter queue; these values are not related to the original message.

� Set other fields as appropriate.

Ensure that all fields have valid values, and that character fields are padded with blanks to the defined length of the field; do not end the
character data prematurely by using a null character, because the queue manager does not convert the null and subsequent characters to
blanks in the MQDLH structure.

Getting messages from the dead-letter queue: Applications that get messages from the dead-letter queue must verify that the
messages begin with an MQDLH structure. The application can determine whether an MQDLH structure is present by examining the Format

field in the message descriptor MQMD; if the field has the value MQFMT_DEAD_LETTER_HEADER, the message data begins with an MQDLH

structure. Be aware also that messages that applications get from the dead-letter queue might be truncated if they were originally too long
for the queue.

Parent topic: MQDLH – Dead-letter header

This build: January 26, 2011 11:15:56

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12180_

1.14.2. Fields for MQDLH

The MQDLH structure contains the following fields; the fields are described in alphabetic order:

CodedCharSetId (MQLONG)

DestQMgrName (MQCHAR48)

DestQName (MQCHAR48)

Encoding (MQLONG)

Format (MQCHAR8)

PutApplName (MQCHAR28)
This is the name of the application that put the message on the dead-letter (undelivered-message) queue.

PutApplType (MQLONG)
This is the type of application that put the message on the dead-letter (undelivered-message) queue.

PutDate (MQCHAR8)
The date when the message was put on the dead-letter (undelivered-message) queue.

PutTime (MQCHAR8)
This is time when the message was put on the dead-letter (undelivered-message) queue.

Reason (MQLONG)

StrucId (MQCHAR4)

Version (MQLONG)

Parent topic: MQDLH – Dead-letter header

This build: January 26, 2011 11:15:56

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12190_

1.14.2.1. CodedCharSetId (MQLONG)

This is the character set identifier of the data that follows the MQDLH structure (usually the data from the original message); it does not
apply to character data in the MQDLH structure itself.

On the MQPUT or MQPUT1 call, the application must set this field to the value appropriate to the data. The following special value can be
used:

MQCCSI_INHERIT

Page 143 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Character data in the data following this structure is in the same character set as this structure.

The queue manager changes this value in the structure sent in the message to the actual character-set identifier of the structure. Provided
no error occurs, the value MQCCSI_INHERIT is not returned by the MQGET call.

You cannot use MQCCSI_INHERIT if the value of the PutApplType field in MQMD is MQAT_BROKER.

This value is supported in the following environments: AIX®, HP-UX, z/OS®, i5/OS®, Solaris, Linux, Windows, plus WebSphere® MQ
clients connected to these systems.

The initial value of this field is MQCCSI_UNDEFINED.

Parent topic: Fields for MQDLH

This build: January 26, 2011 11:15:57

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12200_

1.14.2.2. DestQMgrName (MQCHAR48)

This is the name of the queue manager that was the original destination for the message.

The length of this field is given by MQ_Q_MGR_NAME_LENGTH. The initial value of this field is the null string in C, and 48 blank characters
in other programming languages.

Parent topic: Fields for MQDLH

This build: January 26, 2011 11:15:57

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12210_

1.14.2.3. DestQName (MQCHAR48)

This is the name of the message queue that was the original destination for the message.

The length of this field is given by MQ_Q_NAME_LENGTH. The initial value of this field is the null string in C, and 48 blank characters in
other programming languages.

Parent topic: Fields for MQDLH

This build: January 26, 2011 11:15:57

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12220_

1.14.2.4. Encoding (MQLONG)

This is the numeric encoding of the data that follows the MQDLH structure (usually the data from the original message); it does not apply to
numeric data in the MQDLH structure itself.

On the MQPUT or MQPUT1 call, the application must set this field to the value appropriate to the data.

The initial value of this field is 0.

Parent topic: Fields for MQDLH

This build: January 26, 2011 11:15:57

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12230_

1.14.2.5. Format (MQCHAR8)

This is the format name of the data that follows the MQDLH structure (usually the data from the original message).

On the MQPUT or MQPUT1 call, the application must set this field to the value appropriate to the data. The rules for coding this field are the
same as those for the Format field in MQMD.

The length of this field is given by MQ_FORMAT_LENGTH. The initial value of this field is MQFMT_NONE.

Parent topic: Fields for MQDLH

Page 144 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This build: January 26, 2011 11:15:57

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12240_

1.14.2.6. PutApplName (MQCHAR28)

This is the name of the application that put the message on the dead-letter (undelivered-message) queue.

The format of the name depends on the PutApplType field. The format can vary release to release. See the description of the PutApplName

field in MQMD – Message descriptor.

If the queue manager redirects the message to the dead-letter queue, PutApplName contains the first 28 characters of the queue-manager

name, padded with blanks if necessary.

The length of this field is given by MQ_PUT_APPL_NAME_LENGTH. The initial value of this field is the null string in C, and 28 blank
characters in other programming languages.

Parent topic: Fields for MQDLH

This build: January 26, 2011 11:15:57

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12250_

1.14.2.7. PutApplType (MQLONG)

This is the type of application that put the message on the dead-letter (undelivered-message) queue.

This field has the same meaning as the PutApplType field in the message descriptor MQMD (see MQMD – Message descriptor for details).

If the queue manager redirects the message to the dead-letter queue, PutApplType has the value MQAT_QMGR.

The initial value of this field is 0.

Parent topic: Fields for MQDLH

This build: January 26, 2011 11:15:57

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12260_

1.14.2.8. PutDate (MQCHAR8)

The date when the message was put on the dead-letter (undelivered-message) queue.

The format used for the date when this field is generated by the queue manager is:

� YYYYMMDD

where the characters represent:

YYYY

year (four numeric digits)

MM

month of year (01 through 12)

DD

day of month (01 through 31)

Greenwich Mean Time (GMT) is used for the PutDate and PutTime fields, subject to the system clock being set accurately to GMT.

The length of this field is given by MQ_PUT_DATE_LENGTH. The initial value of this field is the null string in C, and 8 blank characters in
other programming languages.

Parent topic: Fields for MQDLH

This build: January 26, 2011 11:15:57

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12270_

1.14.2.9. PutTime (MQCHAR8)

Page 145 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This is time when the message was put on the dead-letter (undelivered-message) queue.

The format used for the time when this field is generated by the queue manager is:

� HHMMSSTH

where the characters represent:

HH

hours (00 through 23)

MM

minutes (00 through 59)

SS

seconds (00 through 59; see note below)

T

tenths of a second (0 through 9)

H

hundredths of a second (0 through 9)

Note: If the system clock is synchronized to a very accurate time standard, it is possible on rare occasions for 60 or 61 to be returned for
the seconds in PutTime. This happens when leap seconds are inserted into the global time standard.

Greenwich Mean Time (GMT) is used for the PutDate and PutTime fields, subject to the system clock being set accurately to GMT.

The length of this field is given by MQ_PUT_TIME_LENGTH. The initial value of this field is the null string in C, and 8 blank characters in
other programming languages.

Parent topic: Fields for MQDLH

This build: January 26, 2011 11:15:57

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12280_

1.14.2.10. Reason (MQLONG)

This identifies the reason why the message was placed on the dead-letter queue instead of on the original destination queue. It should be
one of the MQFB_* or MQRC_* values (for example, MQRC_Q_FULL). See the description of the Feedback field in MQMD – Message

descriptor for details of the common MQFB_* values that can occur.

If the value is in the range MQFB_IMS_FIRST through MQFB_IMS_LAST, the actual IMS™ error code can be determined by subtracting

MQFB_IMS_ERROR from the value of the Reason field.

Some MQFB_* values occur only in this field. They relate to repository messages, trigger messages, or transmission-queue messages that
have been transferred to the dead-letter queue. These are:

MQFB_APPL_CANNOT_BE_STARTED

An application processing a trigger message cannot start the application named in the ApplId field of the trigger message (see MQTM –

Trigger message).

On z/OS®, the CKTI CICS® transaction is an example of an application that processes trigger messages.

MQFB_APPL_TYPE_ERROR

An application processing a trigger message cannot start the application because the ApplType field of the trigger message is not valid

(see MQTM – Trigger message).

On z/OS, the CKTI CICS transaction is an example of an application that processes trigger messages.

MQFB_BIND_OPEN_CLUSRCVR_DEL

The message was on the SYSTEM.CLUSTER.TRANSMIT.QUEUE intended for a cluster queue that was opened with the

MQOO_BIND_ON_OPEN option, but the remote cluster-receiver channel to be used to transmit the message to the destination queue was
deleted before the message could be sent. Because MQOO_BIND_ON_OPEN was specified, only the channel selected when the queue was
opened can be used to transmit the message. As this channel is no longer available, the message is placed on the dead-letter queue.

MQFB_NOT_A_REPOSITORY_MSG

The message is not a repository message.

MQFB_STOPPED_BY_CHAD_EXIT

The message was stopped by channel auto-definition exit.

MQFB_STOPPED_BY_MSG_EXIT

The message was stopped by channel message exit.

MQFB_TM_ERROR

The Format field in MQMD specifies MQFMT_TRIGGER, but the message does not begin with a valid MQTM structure. For example, the

StrucId mnemonic eye-catcher might not be valid, the Version might not be recognized, or the length of the trigger message might be

insufficient to contain the MQTM structure.

On z/OS, the CKTI CICS transaction is an example of an application that processes trigger messages and can generate this feedback code.

Page 146 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

MQFB_XMIT_Q_MSG_ERROR

A message channel agent has found that a message on the transmission queue is not in the correct format. The message channel agent

puts the message on the dead-letter queue using this feedback code.

The initial value of this field is MQRC_NONE.

Parent topic: Fields for MQDLH

This build: January 26, 2011 11:15:57

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12290_

1.14.2.11. StrucId (MQCHAR4)

This is the structure identifier. The value must be:

MQDLH_STRUC_ID

Identifier for dead-letter header structure.

For the C programming language, the constant MQDLH_STRUC_ID_ARRAY is also defined; this has the same value as MQDLH_STRUC_ID,
but is an array of characters instead of a string.

The initial value of this field is MQDLH_STRUC_ID.

Parent topic: Fields for MQDLH

This build: January 26, 2011 11:15:57

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12300_

1.14.2.12. Version (MQLONG)

This is the structure version number. The value must be:

MQDLH_VERSION_1

Version number for dead-letter header structure.

The following constant specifies the version number of the current version:

MQDLH_CURRENT_VERSION

Current version of dead-letter header structure.

The initial value of this field is MQDLH_VERSION_1.

Parent topic: Fields for MQDLH

This build: January 26, 2011 11:15:57

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12310_

1.14.3. Initial values and language declarations for MQDLH

Table 1. Initial values of fields in MQDLH for MQDLH

Field name Name of constant Value of constant

StrucId MQDLH_STRUC_ID 'DLH�'

Version MQDLH_VERSION_1 1

Reason MQRC_NONE 0

DestQName None Null string or blanks

DestQMgrName None Null string or blanks

Encoding None 0

CodedCharSetId MQCCSI_UNDEFINED 0

Format MQFMT_NONE Blanks

PutApplType None 0

PutApplName None Null string or blanks

PutDate None Null string or blanks

PutTime None Null string or blanks

Page 147 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

C declaration

COBOL declaration

PL/I declaration

System/390 assembler declaration

Visual Basic declaration

Parent topic: MQDLH – Dead-letter header

This build: January 26, 2011 11:15:58

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12320_

1.14.3.1. C declaration

typedef struct tagMQDLH MQDLH;

struct tagMQDLH {

 MQCHAR4 StrucId; /* Structure identifier */

 MQLONG Version; /* Structure version number */

 MQLONG Reason; /* Reason message arrived on dead-letter

 (undelivered-message) queue */

 MQCHAR48 DestQName; /* Name of original destination queue */

 MQCHAR48 DestQMgrName; /* Name of original destination queue

 manager */

 MQLONG Encoding; /* Numeric encoding of data that follows

 MQDLH */

 MQLONG CodedCharSetId; /* Character set identifier of data that

 follows MQDLH */

 MQCHAR8 Format; /* Format name of data that follows

 MQDLH */

 MQLONG PutApplType; /* Type of application that put message on

 dead-letter (undelivered-message)

 queue */

 MQCHAR28 PutApplName; /* Name of application that put message on

 dead-letter (undelivered-message)

 queue */

 MQCHAR8 PutDate; /* Date when message was put on dead-letter

 (undelivered-message) queue */

 MQCHAR8 PutTime; /* Time when message was put on the

 dead-letter (undelivered-message)

 queue */

};

Parent topic: Initial values and language declarations for MQDLH

This build: January 26, 2011 11:15:58

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12330_

1.14.3.2. COBOL declaration

** MQDLH structure

 10 MQDLH.

** Structure identifier

 15 MQDLH-STRUCID PIC X(4).

** Structure version number

 15 MQDLH-VERSION PIC S9(9) BINARY.

** Reason message arrived on dead-letter (undelivered-message) queue

 15 MQDLH-REASON PIC S9(9) BINARY.

** Name of original destination queue

 15 MQDLH-DESTQNAME PIC X(48).

** Name of original destination queue manager

 15 MQDLH-DESTQMGRNAME PIC X(48).

** Numeric encoding of data that follows MQDLH

 15 MQDLH-ENCODING PIC S9(9) BINARY.

** Character set identifier of data that follows MQDLH

Notes:

1. The symbol � represents a single blank character.

2. The value Null string or blanks denotes the null string in C, and blank characters in other programming languages.

3. In the C programming language, the macro variable MQDLH_DEFAULT contains the values listed above. Use it in the

following way to provide initial values for the fields in the structure:

MQDLH MyDLH = {MQDLH_DEFAULT};

Page 148 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

 15 MQDLH-CODEDCHARSETID PIC S9(9) BINARY.

** Format name of data that follows MQDLH

 15 MQDLH-FORMAT PIC X(8).

** Type of application that put message on dead-letter

** (undelivered-message) queue

 15 MQDLH-PUTAPPLTYPE PIC S9(9) BINARY.

** Name of application that put message on dead-letter

** (undelivered-message) queue

 15 MQDLH-PUTAPPLNAME PIC X(28).

** Date when message was put on dead-letter (undelivered-message)

** queue

 15 MQDLH-PUTDATE PIC X(8).

** Time when message was put on the dead-letter (undelivered-message)

** queue

 15 MQDLH-PUTTIME PIC X(8).

Parent topic: Initial values and language declarations for MQDLH

This build: January 26, 2011 11:15:58

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12340_

1.14.3.3. PL/I declaration

dcl

 1 MQDLH based,

 3 StrucId char(4), /* Structure identifier */

 3 Version fixed bin(31), /* Structure version number */

 3 Reason fixed bin(31), /* Reason message arrived on

 dead-letter (undelivered-message)

 queue */

 3 DestQName char(48), /* Name of original destination

 queue */

 3 DestQMgrName char(48), /* Name of original destination queue

 manager */

 3 Encoding fixed bin(31), /* Numeric encoding of data that

 follows MQDLH */

 3 CodedCharSetId fixed bin(31), /* Character set identifier of data

 that follows MQDLH */

 3 Format char(8), /* Format name of data that follows

 MQDLH */

 3 PutApplType fixed bin(31), /* Type of application that put

 message on dead-letter

 (undelivered-message) queue */

 3 PutApplName char(28), /* Name of application that put

 message on dead-letter

 (undelivered-message) queue */

 3 PutDate char(8), /* Date when message was put on

 dead-letter (undelivered-message)

 queue */

 3 PutTime char(8); /* Time when message was put on the

 dead-letter (undelivered-message)

 queue */

Parent topic: Initial values and language declarations for MQDLH

This build: January 26, 2011 11:15:58

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12350_

1.14.3.4. System/390® assembler declaration

MQDLH DSECT

MQDLH_STRUCID DS CL4 Structure identifier

MQDLH_VERSION DS F Structure version number

MQDLH_REASON DS F Reason message arrived on dead-letter

* (undelivered-message) queue

MQDLH_DESTQNAME DS CL48 Name of original destination queue

MQDLH_DESTQMGRNAME DS CL48 Name of original destination queue

* manager

MQDLH_ENCODING DS F Numeric encoding of data that follows

* MQDLH

MQDLH_CODEDCHARSETID DS F Character set identifier of data that

* follows MQDLH

MQDLH_FORMAT DS CL8 Format name of data that follows MQDLH

MQDLH_PUTAPPLTYPE DS F Type of application that put message on

* dead-letter (undelivered-message) queue

MQDLH_PUTAPPLNAME DS CL28 Name of application that put message on

* dead-letter (undelivered-message) queue

MQDLH_PUTDATE DS CL8 Date when message was put on

* dead-letter (undelivered-message) queue

MQDLH_PUTTIME DS CL8 Time when message was put on the

* dead-letter (undelivered-message) queue

Page 149 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

*

MQDLH_LENGTH EQU *-MQDLH

 ORG MQDLH

MQDLH_AREA DS CL(MQDLH_LENGTH)

Parent topic: Initial values and language declarations for MQDLH

This build: January 26, 2011 11:15:58

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12360_

1.14.3.5. Visual Basic declaration

Type MQDLH

 StrucId As String*4 'Structure identifier'

 Version As Long 'Structure version number'

 Reason As Long 'Reason message arrived on dead-letter'

 '(undelivered-message) queue'

 DestQName As String*48 'Name of original destination queue'

 DestQMgrName As String*48 'Name of original destination queue'

 'manager'

 Encoding As Long 'Numeric encoding of data that follows'

 'MQDLH'

 CodedCharSetId As Long 'Character set identifier of data that'

 'follows MQDLH'

 Format As String*8 'Format name of data that follows MQDLH'

 PutApplType As Long 'Type of application that put message on'

 'dead-letter (undelivered-message) queue'

 PutApplName As String*28 'Name of application that put message on'

 'dead-letter (undelivered-message) queue'

 PutDate As String*8 'Date when message was put on dead-letter'

 '(undelivered-message) queue'

 PutTime As String*8 'Time when message was put on the'

 'dead-letter (undelivered-message) queue'

End Type

Parent topic: Initial values and language declarations for MQDLH

This build: January 26, 2011 11:15:58

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12370_

1.15. MQDMHO – Delete message handle options

The following table summarizes the fields in the structure.

Overview for MQDMHO

Availability: All WebSphere® MQ systems and WebSphere MQ clients.

Fields for MQDMHO

Initial values and language declarations for MQDMHO

Parent topic: Data type descriptions

This build: January 26, 2011 11:20:26

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42200_

1.15.1. Overview for MQDMHO

Availability: All WebSphere® MQ systems and WebSphere MQ clients.

Purpose: The MQDMHO structure allows applications to specify options that control how message handles are deleted. The structure is an
input parameter on the MQDLTMH call.

Character set and encoding: Data in MQDMHO must be in the character set of the application and encoding of the application

(MQENC_NATIVE).

Table 1. Fields in MQDMHO

Field Description Topic

StrucId Structure identifier StrucId

Version Structure version number Version

Options Options Options

Page 150 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Parent topic: MQDMHO – Delete message handle options

This build: January 26, 2011 11:20:26

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42210_

1.15.2. Fields for MQDMHO

The MQDMHO structure contains the following fields; the fields are described in alphabetic order:

Options (MQLONG)

StrucId (MQCHAR4)

Version (MQLONG)

Parent topic: MQDMHO – Delete message handle options

This build: January 26, 2011 11:20:26

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42220_

1.15.2.1. Options (MQLONG)

The value must be:

MQDMHO_NONE

No options specified.

This is always an input field. The initial value of this field is MQDMHO_NONE.

Parent topic: Fields for MQDMHO

This build: January 26, 2011 11:20:27

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42250_

1.15.2.2. StrucId (MQCHAR4)

This is the structure identifier; the value must be:

MQDMHO_STRUC_ID

Identifier for delete message handle options structure.

For the C programming language, the constant MQDMHO_STRUC_ID_ARRAY is also defined; this has the same value as
MQDMHO_STRUC_ID, but is an array of characters instead of a string.

This is always an input field. The initial value of this field is MQDMHO_STRUC_ID.

Parent topic: Fields for MQDMHO

This build: January 26, 2011 11:20:26

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42230_

1.15.2.3. Version (MQLONG)

This is the structure version number; the value must be:

MQDMHO_VERSION_1

Version-1 delete message handle options structure.

The following constant specifies the version number of the current version:

MQDMHO_CURRENT_VERSION

Current version of delete message handle options structure.

Page 151 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This is always an input field. The initial value of this field is MQDMHO_VERSION_1.

Parent topic: Fields for MQDMHO

This build: January 26, 2011 11:20:27

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42240_

1.15.3. Initial values and language declarations for MQDMHO

C declaration

COBOL declaration

PL/I declaration

System/390 assembler declaration

Parent topic: MQDMHO – Delete message handle options

This build: January 26, 2011 11:20:27

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42260_

1.15.3.1. C declaration

typedef struct tagMQDMHO;

struct tagMQDMHO {

 MQCHAR4 StrucId; /* Structure identifier */

 MQLONG Version; /* Structure version number */

 MQLONG Options; /* Options that control the action of MQDLTMH */

};

Parent topic: Initial values and language declarations for MQDMHO

This build: January 26, 2011 11:20:27

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42270_

1.15.3.2. COBOL declaration

** MQDMHO structure

 10 MQDMHO.

** Structure identifier

 15 MQDMHO-STRUCID PIC X(4).

** Structure version number

 15 MQDMHO-VERSION PIC S9(9) BINARY.

** Options that control the action of MQDLTMH

 15 MQDMHO-OPTIONS PIC S9(9) BINARY.

Parent topic: Initial values and language declarations for MQDMHO

This build: January 26, 2011 11:20:27

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42280_

Table 1. Initial values of fields in MQDMHO

Field name Name of constant Value of constant

StrucId MQDMHO_STRUC_ID 'DMHO'

Version MQDMHO_VERSION_1 1

Options MQDMHO_NONE 0

Notes:

1. In the C programming language, the macro variable MQDMHO_DEFAULT contains the values listed above. It can be used

in the following way to provide initial values for the fields in the structure:

MQDMHO MyDMHO = {MQDMHO_DEFAULT};

Page 152 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

1.15.3.3. PL/I declaration

dcl

 1 MQDMHO based,

 3 StrucId char(4), /* Structure identifier */

 3 Version fixed bin(31), /* Structure version number */

 3 Options fixed bin(31), /* Options that control the action of MQDLTMH */

Parent topic: Initial values and language declarations for MQDMHO

This build: January 26, 2011 11:20:27

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42290_

1.15.3.4. System/390® assembler declaration

MQDMHO DSECT

MQDMHO_STRUCID DS CL4 Structure identifier

MQDMHO_VERSION DS F Structure version number

MQDMHO_OPTIONS DS F Options that control the action of

* MQDLTMH

MQDMHO_LENGTH EQU *-MQDMHO

MQDMHO_AREA DS CL(MQDMHO_LENGTH)

Parent topic: Initial values and language declarations for MQDMHO

This build: January 26, 2011 11:20:27

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42300_

1.16. MQDMPO – Delete message property options

The following table summarizes the fields in the structure. MQDMPO structure - delete message property options

Overview for MQDMPO
Availability: All WebSphere® MQ systems and WebSphere MQ clients.

Fields for MQDMPO
Delete message property options structure - fields

Initial values and language declarations for MQDMPO
Delete message property options structure - Initial values

Parent topic: Data type descriptions

This build: January 26, 2011 11:20:32

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42598_

1.16.1. Overview for MQDMPO

Availability: All WebSphere® MQ systems and WebSphere MQ clients.

Purpose: The MQDMPO structure allows applications to specify options that control how properties of messages are deleted. The structure
is an input parameter on the MQDLTMP call.

Character set and encoding: Data in MQDMPO must be in the character set of the application and encoding of the application
(MQENC_NATIVE).

Parent topic: MQDMPO – Delete message property options

This build: January 26, 2011 11:20:32

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

Table 1. Fields in MQDMPO

Field Description Topic

StrucId Structure identifier StrucId

Version Structure version number Version

Options Options controlling the action of MQDMPO Options

Page 153 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This topic's URL:

fr42600_

1.16.2. Fields for MQDMPO

Delete message property options structure - fields

The MQDMPO structure contains the following fields; the fields are described in alphabetic order:

Options (MQLONG)
Delete message property options structure - Options field

StrucId (MQCHAR4)

Delete message property options structure - StrucId field

Version (MQLONG)
Delete message property options structure - Version field

Parent topic: MQDMPO – Delete message property options

This build: January 26, 2011 11:20:33

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42610_

1.16.2.1. Options (MQLONG)

Delete message property options structure - Options field

Location options: The following options relate to the relative location of the property compared to the property cursor.

MQDMPO_DEL_FIRST

Deletes the first property that matches the specified name.

MQDMPO_DEL_PROP_UNDER_CURSOR

Deletes the property pointed to by the property cursor; that is the property that was last inquired by using either the MQIMPO_INQ_FIRST
or the MQIMPO_INQ_NEXT option.

The property cursor is reset when the message handle is reused, or when the message handle is specified in the MsgHandle field of the
MQGMO or MQPMO structure on an MQGET or MQPUT call respectively.

If this option is used when the property cursor has not yet been established, the call fails with completion code MQCC_FAILED and reason
MQRC_PROPERTY_NOT_AVAILABLE. If the property pointed to by the property cursor has already been deleted, then this call also fails
with completion code MQCC_FAILED and reason MQRC_PROPERTY_NOT_AVAILABLE.

If neither of these options is required, the following option can be used:

MQDPMO_NONE

No options specified.

This field is always an input field. The initial value of this field is MQDMPO_DEL_FIRST.

Parent topic: Fields for MQDMPO

This build: January 26, 2011 11:20:33

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42640_

1.16.2.2. StrucId (MQCHAR4)

Delete message property options structure - StrucId field

This is the structure identifier. The value must be:

MQDMPO_STRUC_ID

Identifier for delete message property options structure.

For the C programming language, the constant MQDMPO_STRUC_ID_ARRAY is also defined; this has the same value as
MQDMPO_STRUC_ID, but is an array of characters instead of a string.

This is always an input field. The initial value of this field is MQDMPO_STRUC_ID.

Parent topic: Fields for MQDMPO

This build: January 26, 2011 11:20:33

Notices | Trademarks | Downloads | Library | Support | Feedback

Page 154 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42620_

1.16.2.3. Version (MQLONG)

Delete message property options structure - Version field

This is the structure version number. The value must be:

MQDMPO_VERSION_1

Version number for delete message property options structure.

The following constant specifies the version number of the current version:

MQDMPO_CURRENT_VERSION

Current version of delete message property options structure.

This is always an input field. The initial value of this field is MQDMPO_VERSION_1.

Parent topic: Fields for MQDMPO

This build: January 26, 2011 11:20:33

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42630_

1.16.3. Initial values and language declarations for MQDMPO

Delete message property options structure - Initial values

C declaration
Delete message property options structure - C language declaration

COBOL declaration

Delete message property options structure - COBOL language declaration

PL/I declaration
Delete message property options structure - PL/I language declaration

System/390 assembler declaration
Delete message property options structure - Assembler language declaration

Parent topic: MQDMPO – Delete message property options

This build: January 26, 2011 11:20:33

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42650_

1.16.3.1. C declaration

Delete message property options structure - C language declaration

typedef struct tagMQDMPO MQDMPO;

struct tagMQDMPO {

 MQCHAR4 StrucId; /* Structure identifier */

 MQLONG Version; /* Structure version number */

 MQLONG Options; /* Options that control the action of

 MQDLTMP */

};

Parent topic: Initial values and language declarations for MQDMPO

This build: January 26, 2011 11:20:33

Table 1. Initial values of fields in MQDPMO

Field name Name of constant Value of constant

StrucId MQDMPO_STRUC_ID 'DMPO'

Version MQDMPO_VERSION_1 1

Options Options that control the action of MQDLTMP MQDMPO_NONE

Notes:

1. In the C programming language, the macro variable MQDMPO_DEFAULT contains the values listed above. Use it in the

following way to provide initial values for the fields in the structure:

MQDMPO MyDMPO = {MQDMPO_DEFAULT};

Page 155 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42660_

1.16.3.2. COBOL declaration

Delete message property options structure - COBOL language declaration

** MQDMPO structure

 10 MQDMPO.

** Structure identifier

 15 MQDMPO-STRUCID PIC X(4).

** Structure version number

 15 MQDMPO-VERSION PIC S9(9) BINARY.

** Options that control the action of MQDLTMP

 15 MQDMPO-OPTIONS PIC S9(9) BINARY.

Parent topic: Initial values and language declarations for MQDMPO

This build: January 26, 2011 11:20:33

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42670_

1.16.3.3. PL/I declaration

Delete message property options structure - PL/I language declaration

Dcl

 1 MQDPMO based,

 3 StrucId char(4), /* Structure identifier */

 3 Version fixed bin(31), /* Structure version number */

 3 Options fixed bin(31), /* Options that control the action

 of MQDLTMP */

Parent topic: Initial values and language declarations for MQDMPO

This build: January 26, 2011 11:20:33

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42680_

1.16.3.4. System/390® assembler declaration

Delete message property options structure - Assembler language declaration

MQDMPO DSECT

MQDMPO_STRUCID DS CL4 Structure identifier

MQDMPO_VERSION DS F Structure version number

MQDMPO_OPTIONS DS F Options that control the

* action of MQDLTMP

MQDMPO_LENGTH EQU *-MQDMPO

MQDMPO_AREA DS CL(MQDMPO_LENGTH)

Parent topic: Initial values and language declarations for MQDMPO

This build: January 26, 2011 11:20:33

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42690_

1.17. MQEPH – Embedded PCF header

The following table summarizes the fields in the structure.

Table 1. Fields in MQEPH

Field Description Topic

StrucId Structure identifier StrucId

Version Structure version number Version

StrucLength Length of MQEPH structure plus the MQCFH and

parameter structures that follow it

StrucLength

Encoding Numeric encoding of data that follows last PCF

parameter structure

Encoding

CodedCharSetId Character set identifier of data that follows last PCF CodedCharSetId

Page 156 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Overview for MQEPH
Availability: All WebSphere® MQ platforms.

Fields for MQEPH

Initial values and language declarations for MQEPH

Parent topic: Data type descriptions

This build: January 26, 2011 11:15:58

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12380_

1.17.1. Overview for MQEPH

Availability: All WebSphere® MQ platforms.

Purpose: The MQEPH structure describes the additional data that is present in a message when that message is a programmable command
format (PCF) message. The PCFHeader field defines the PCF parameters that follow this structure and this allows you to follow the PCF

message data with other headers.

Format name: MQFMT_EMBEDDED_PCF

Character set and encoding: Data in MQEPH must be in the character set and encoding of the local queue manager; these are given by

the CodedCharSetId queue-manager attribute and MQENC_NATIVE for the C programming language, respectively.

Set the character set and encoding of the MQEPH into the CodedCharSetId and Encoding fields in:

� The MQMD (if the MQEPH structure is at the start of the message data), or

� The header structure that precedes the MQEPH structure (all other cases).

Usage: You cannot use MQEPH structures to send commands to the command server or any other queue manager PCF-accepting server.

Similarly, the command server or any other queue manager PCF-accepting server do not generate responses or events containing MQEPH
structures.

Parent topic: MQEPH – Embedded PCF header

This build: January 26, 2011 11:15:58

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12390_

1.17.2. Fields for MQEPH

The MQEPH structure contains the following fields; the fields are described in alphabetic order:

CodedCharSetId (MQLONG)

Encoding (MQLONG)

Flags (MQLONG)

Format (MQCHAR8)

PCFHeader (MQCFH)

StrucId (MQCHAR4)

StrucLength (MQLONG)

Version (MQLONG)

Parent topic: MQEPH – Embedded PCF header

This build: January 26, 2011 11:15:58

parameter structure

Format Format name of data that follows last PCF parameter
structure

Format

Flags Flags Flags

PCFHeader Programmable command format (PCF) header PCFHeader

Page 157 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12400_

1.17.2.1. CodedCharSetId (MQLONG)

This is the character set identifier of the data that follows the MQEPH structure and the associated PCF parameters; it does not apply to
character data in the MQEPH structure itself.

The initial value of this field is MQCCSI_UNDEFINED.

Parent topic: Fields for MQEPH

This build: January 26, 2011 11:15:58

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12410_

1.17.2.2. Encoding (MQLONG)

This is the numeric encoding of the data that follows the MQEPH structure and the associated PCF parameters; it does not apply to character
data in the MQEPH structure itself.

The initial value of this field is 0.

Parent topic: Fields for MQEPH

This build: January 26, 2011 11:15:58

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12420_

1.17.2.3. Flags (MQLONG)

The following values are available:

MQEPH_NONE

No flags have been specified. MQEPH_NONE is defined to aid program documentation. It is not intended that this constant be used with
any other, but as its value is zero, such use cannot be detected.

MQEPH_CCSID_EMBEDDED

The character set of the parameters containing character data is specified individually within the CodedCharSetId field in each structure.
The character set of the StrucId and Format fields is defined by the CodedCharSetId field in the header structure that precedes the MQEPH
structure, or by the CodedCharSetId field in the MQMD if the MQEPH is at the start of the message.

The initial value of this field is MQEPH_NONE.

Parent topic: Fields for MQEPH

This build: January 26, 2011 11:15:58

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12430_

1.17.2.4. Format (MQCHAR8)

This is the format name of the data that follows the MQEPH structure and the associated PCF parameters.

The initial value of this field is MQFMT_NONE.

Parent topic: Fields for MQEPH

This build: January 26, 2011 11:15:58

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12440_

1.17.2.5. PCFHeader (MQCFH)

This is the programmable command format (PCF) header, defining the PCF parameters that follow the MQEPH structure. This enables you to

Page 158 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

follow the PCF message data with other headers.

The PCF header is initially defined with the the following values:

The application must change the Type from MQCFT_NONE to a valid structure type for the use it is making of the embedded PCF header.

Parent topic: Fields for MQEPH

This build: January 26, 2011 11:15:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12450_

1.17.2.6. StrucId (MQCHAR4)

The value must be:

MQEPH_STRUC_ID

Identifier for distribution header structure.

For the C programming language, the constant MQEPH_STRUC_ID_ARRAY is also defined; this has the same value as MQDH_STRUC_ID,
but is an array of characters instead of a string.

The initial value of this field is MQEPH_STRUC_ID.

Parent topic: Fields for MQEPH

This build: January 26, 2011 11:15:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12460_

1.17.2.7. StrucLength (MQLONG)

This is the amount of data preceding the next header structure. It includes:

� The length of the MQEPH header

� The length of all PCF parameters following the header

� Any blank padding following those parameters

StrucLength must be a multiple of 4.

The fixed length part of the structure is defined by MQEPH_STRUC_LENGTH_FIXED.

The initial value of this field is 68.

Parent topic: Fields for MQEPH

This build: January 26, 2011 11:15:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12470_

1.17.2.8. Version (MQLONG)

The value must be:

MQEPH_VERSION_1

Version number for embedded PCF header structure.

Table 1. Initial values of fields in MQDH

Field name Name of constant Value of constant

Type MQCFT_NONE 0

StrucLength MQCFH_STRUC_LENGH 36

Version MQCFH_VERSION_3 3

StrucLength None 0

Command MQCMD_NONE 0

MsgSeqNumber None 1

Control MQCFC_LAST 1

CompCode MQCC_OK 0

Reason MQRC_NONE 0

ParameterCount None 0

Page 159 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

The following constant specifies the version number of the current version:

MQCFH_VERSION_3

Current version of embedded PCF header structure.

The initial value of this field is MQEPH_VERSION_1.

Parent topic: Fields for MQEPH

This build: January 26, 2011 11:15:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12480_

1.17.3. Initial values and language declarations for MQEPH

C declaration

COBOL declaration

PL/I declaration

System/390 assembler declaration

Visual Basic declaration

Parent topic: MQEPH – Embedded PCF header

This build: January 26, 2011 11:15:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12490_

1.17.3.1. C declaration

typedef struct tagMQEPH MQEPH;

struct tagMQDH {

 MQCHAR4 StrucId; /* Structure identifier */

 MQLONG Version; /* Structure version number */

 MQLONG StrucLength; /* Total length of MQEPH including the MQCFH

 and parameter structures that follow it */

 MQLONG Encoding; /* Numeric encoding of data that follows last

 PCF parameter structure */

 MQLONG CodedCharSetId; /* Character set identifier of data that

 follows last PCF parameter structure */

 MQCHAR8 Format; /* Format name of data that follows last PCF

 parameter structure */

 MQLONG Flags; /* Flags */

 MQCFH PCFHeader; /* Programmable command format header */

 };

Parent topic: Initial values and language declarations for MQEPH

This build: January 26, 2011 11:15:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Table 1. Initial values of fields in MQEPH for MQEPH

Field name Name of constant Value of constant

StrucId MQEPH_STRUC_ID 'EPHb'

Version MQEPH_VERSION_1 1

StrucLength MQEPH_STRUC_LENGTH_FIXED 68

Encoding None 0

CodedCharSetId MQCCSI_UNDEFINED 0

Format MQFMT_NONE Blanks

Flags MQEPH_NONE 0

PCFHeader Names and values as defined in Table 1 0

Notes:

1. The symbol � represents a single blank character.

2. In the C programming language, the macro variable MQEPH_DEFAULT contains the values listed above. Use it in the

following way to provide initial values for the fields in the structure:

MQEPH MyEPH = {MQEPH_DEFAULT};

Page 160 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12500_

1.17.3.2. COBOL declaration

** MQEPH structure

 10 MQEPH.

** Structure identifier

 15 MQEPH-STRUCID PIC X(4).

** Structure version number

 15 MQEPH-VERSION PIC S9(9) BINARY.

** Total length of MQEPH structure including the MQCFH

** and parameter structures that follow it

 15 MQEPH-STRUCLENGTH PIC S9(9) BINARY.

** Numeric encoding of data that follows last

** PCF structure

 15 MQEPH-ENCODING PIC S9(9) BINARY.

** Character set identifier of data that

** follows last PCF parameter structure

 15 MQEPH-CODEDCHARSETID PIC S9(9) BINARY.

** Format name of data that follows last PCF

** parameter structure

 15 MQEPH-FORMAT PIC X(8).

** Flags

 15 MQEPH-FLAGS PIC S9(9) BINARY.

** Programmable command format header

 15 MQEPH-PCFHEADER.

** Structure type

 20 MQEPH-PCFHEADER-TYPE PIC S9(9) BINARY.

** Structure length

 20 MQEPH-PCFHEADER-STRUCLENGTH PIC S9(9) BINARY.

** Structure version number

 20 MQEPH-PCFHEADER-VERSION PIC S9(9) BINARY.

** Command identifier

 20 MQEPH-PCFHEADER-COMMAND PIC S9(9) BINARY.

** Message sequence number

 20 MQEPH-PCFHEADER-MSGSEQNUMBER PIC S9(9) BINARY.

** Control options

 20 MQEPH-PCFHEADER-CONTROL PIC S9(9) BINARY.

** Completion code

 20 MQEPH-PCFHEADER-COMPCODE PIC S9(9) BINARY.

** Reason code qualifying completion code

 20 MQEPH-PCFHEADER-REASON PIC S9(9) BINARY.

** Count of parameter structures

 20 MQEPH-PCFHEADER-PARAMETERCOUNT PIC S9(9) BINARY.

Parent topic: Initial values and language declarations for MQEPH

This build: January 26, 2011 11:15:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12510_

1.17.3.3. PL/I declaration

dcl

 1 MQEPH based,

 3 StrucId char(4), /* Structure identifier */

 3 Version fixed bin(31), /* Structure version number */

 3 StrucLength fixed bin(31), /* Total Length of MQEPH including the

 MQCFH and parameter structures that

 follow it

 3 Encoding fixed bin(31), /* Numeric encoding of data that follows

 last PCF parameter structure

 3 CodedCharSetId fixed bin(31), /* Character set identifier of data that

 follows last PCF parameter structure

 3 Format char(8), /* Format name of data that follows last

 PCF parameter structure */

 3 Flags fixed bin(31), /* Flags */

 3 PCFHeader, /* Programmable command format header

 5 Type fixed bin(31), /* Structure type */

 5 StrucLength fixed bin(31), /* Structure length */

 5 Version fixed bin(31), /* Structure version number */

 5 Command fixed bin(31), /* Command identifier */

 5 MsgseqNumber fixed bin(31), /* Message sequence number */

 5 Control fixed bin(31), /* Control options */

 5 CompCode fixed bin(31), /* Completion code */

 5 Reason fixed bin(31), /* Reason code qualifying completion code */

 5 ParameterCount fixed bin(31); /* Count of parameter structures */

Parent topic: Initial values and language declarations for MQEPH

This build: January 26, 2011 11:15:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Page 161 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12520_

1.17.3.4. System/390® assembler declaration

MQEPH DSECT

MQEPH_STRUCID DS CL4 Structure identifier

MQEPH_VERSION DS F Structure version number

MQEPH_STRUCLENGTH DS F Total length of MQEPH including the

* MQCFH and parameter structures that

 follow it

MQEPH_ENCODING DS F Numeric encoding of data that follows

* last PCF parameter structure

MQEPH_CODEDCHARSETID DS F Character set identifier of data that

* follows last PCF parameter structure

MQEPH_FORMAT DS CL8 Format name of data that follows last

* PCF parameter structure

MQEPH_FLAGS DS F Flags

MQEPH_PCFHEADER DS 0F Force fullword alignment

MQEPH_PCFHEADER_TYPE DS F Structure type

MQEPH_PCFHEADER_STRUCLENGTH DS F Structure length

MQEPH_PCFHEADER_VERSION DS F Structure version number

MQEPH_PCFHEADER_COMMAND DS F Command identifier

MQEPH_PCFHEADER_MSGSEQNUMBER DS F Structure length

MQEPH_PCFHEADER_CONTROL DS F Control options

MQEPH_PCFHEADER_COMPCODE DS F Completion code

MQEPH_PCFHEADER_REASON DS F Reason code qualifying completion code

MQEPH_PCFHEADER_PARAMETER COUNT DS F Count of parameter structures

MQEPH_PCFHEADER_LENGTH EQU *-MQEPH_PCFHEADER

 ORG MQEPH_PCFHEADER

MQEPH_PCFHEADER_AREA DS CL(MQEPH_PCFHEADER_LENGTH)

*

MQEPH_LENGTH EQU *-MQEPH

 ORG MQEPH

MQEPH_AREA DS CL(MQEPH_LENGTH)

Parent topic: Initial values and language declarations for MQEPH

This build: January 26, 2011 11:15:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12530_

1.17.3.5. Visual Basic declaration

Type MQEPH

 StrucId As String*4 'Structure identifier'

 Version As Long 'Structure version number'

 StrucLength As Long 'Total length of MQEPH structure including the MQCFH'

 'and parameter structures that follow it'

 Encoding As Long 'Numeric encoding of data that follows last'

 'PCF parameter structure'

 CodedCharSetId As Long 'Character set identifier of data that'

 'follows last PCF parameter structure'

 Format As String*8 'Format name of data that follows last PCF'

 'parameter structure'

 Flags As Long 'Flags'

 PCFHeader As MQCFH 'Programmable command format header'

 End Type

Global MQEPH_DEFAULT As MQEPH

Parent topic: Initial values and language declarations for MQEPH

This build: January 26, 2011 11:15:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12540_

1.18. MQGMO – Get-message options

The following table summarizes the fields in the structure.

Table 1. Fields in MQGMO

Field Description Topic

StrucId Structure identifier StrucId

Version Structure version number Version

Options Options that control the action of MQGET MQGMO - Options field

WaitInterval Wait interval WaitInterval

Signal1 Signal Signal1

Page 162 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Overview for MQGMO

Availability: All WebSphere® MQ platforms.

Fields for MQGMO

Initial values and language declarations for MQGMO

Parent topic: Data type descriptions

This build: January 26, 2011 11:16:00

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12550_

1.18.1. Overview for MQGMO

Availability: All WebSphere® MQ platforms.

Purpose: The MQGMO structure allows the application to control how messages are removed from queues. The structure is an input/output
parameter on the MQGET call.

Version: The current version of MQGMO is MQGMO_VERSION_4. Certain fields are available only in certain versions of MQGMO. If you need

to port applications between several environments, you must ensure that the version of MQGMO is consistent across all environments. Fields
that exist only in particular versions of the structure are identified as such in MQGMO - Get-message options and in the field descriptions.

The header, COPY, and INCLUDE files provided for the supported programming languages contain the most-recent version of MQGMO that is
supported by the environment, but with the initial value of the Version field set to MQGMO_VERSION_1. To use fields that are not present

in the version-1 structure, set the Version field to the version number of the version required.

Character set and encoding: Data in MQGMO must be in the character set and encoding of the local queue manager; these are given by
the CodedCharSetId queue-manager attribute and MQENC_NATIVE, respectively. However, if the application is running as an MQ client, the

structure must be in the character set and encoding of the client.

Parent topic: MQGMO – Get-message options

This build: January 26, 2011 11:16:00

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12560_

1.18.2. Fields for MQGMO

The MQGMO structure contains the following fields; the fields are described in alphabetic order:

GroupStatus (MQCHAR)
This flag indicates whether the message retrieved is in a group.

MatchOptions (MQLONG)

MsgHandle (MQHMSG)

Signal2 Signal identifier Signal2

ResolvedQName Resolved name of destination queue ResolvedQName

Note: The remaining fields are ignored if Version is less than MQGMO_VERSION_2.

MatchOptions Options controlling selection criteria used for MQGET MatchOptions

GroupStatus Flag indicating whether message retrieved is in a group GroupStatus

SegmentStatus Flag indicating whether message retrieved is a segment

of a logical message

SegmentStatus

Segmentation Flag indicating whether further segmentation is allowed
for the message retrieved

Segmentation

Reserved1 Reserved Reserved1

Note: The remaining fields are ignored if Version is less than MQGMO_VERSION_3.

MsgToken Message token MsgToken

ReturnedLength Length of message data returned (bytes) ReturnedLength

Note: The remaining fields are ignored if Version is less than MQGMO_VERSION_4.

Reserved2 Reserved Reserved2

MsgHandle The handle to a message that is to be populated with

the properties of the message being retrieved from the
queue.

MsgHandle

Page 163 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

MsgToken (MQBYTE16)
MsgToken field - MQGMO structure. This field is used by the queue manager to uniquely identify a message.

Options (MQLONG)

Reserved1 (MQCHAR)

Reserved2 (MQLONG)

ResolvedQName (MQCHAR48)

ReturnedLength (MQLONG)

Segmentation (MQCHAR)

SegmentStatus (MQCHAR)

Signal1 (MQLONG)

Signal2 (MQLONG)

StrucId (MQCHAR4)

Version (MQLONG)

Version is the structure version number.

WaitInterval (MQLONG)

Parent topic: MQGMO – Get-message options

This build: January 26, 2011 11:16:00

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12570_

1.18.2.1. GroupStatus (MQCHAR)

This flag indicates whether the message retrieved is in a group.

It has one of the following values:

MQGS_NOT_IN_GROUP

Message is not in a group.

MQGS_MSG_IN_GROUP

Message is in a group, but is not the last in the group.

MQGS_LAST_MSG_IN_GROUP

Message is the last in the group.

This is also the value returned if the group consists of only one message.

This is an output field. The initial value of this field is MQGS_NOT_IN_GROUP. This field is ignored if Version is less than

MQGMO_VERSION_2.

Parent topic: Fields for MQGMO

This build: January 26, 2011 11:16:00

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12580_

1.18.2.2. MatchOptions (MQLONG)

These options allow the application to choose which fields in the MsgDesc parameter to use to select the message returned by the MQGET

call. The application sets the required options in this field, and then sets the corresponding fields in the MsgDesc parameter to the values

required for those fields. Only messages that have those values in the MQMD for the message are candidates for retrieval using that
MsgDesc parameter on the MQGET call. Fields for which the corresponding match option is not specified are ignored when selecting the

message to be returned. If you specify no selection criteria on the MQGET call (that is, any message is acceptable), set MatchOptions to

MQMO_NONE.

� On z/OS®, the selection criteria that can be used might be restricted by the type of index used for the queue. See the IndexType

queue attribute for further details.

If you specify MQGMO_LOGICAL_ORDER, only certain messages are eligible for return by the next MQGET call:

� If there is no current group or logical message, only messages that have MsgSeqNumber equal to 1 and Offset equal to 0 are eligible

for return. In this situation, you can use one or more of the following match options to select which of the eligible messages is

Page 164 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

returned:

� MQMO_MATCH_MSG_ID

� MQMO_MATCH_CORREL_ID

� MQMO_MATCH_GROUP_ID

� If there is a current group or logical message, only the next message in the group or next segment in the logical message is eligible
for return, and this cannot be altered by specifying MQMO_* options.

In both of the above cases, you can specify match options that do not apply, but the value of the relevant field in the MsgDesc parameter

must match the value of the corresponding field in the message to be returned; the call fails with reason code
MQRC_MATCH_OPTIONS_ERROR is this condition is not satisfied.

MatchOptions is ignored if you specify either MQGMO_MSG_UNDER_CURSOR or MQGMO_BROWSE_MSG_UNDER_CURSOR.

You can specify one or more of the following match options:

MQMO_MATCH_MSG_ID

The message to be retrieved must have a message identifier that matches the value of the MsgId field in the MsgDesc parameter of the

MQGET call. This match is in addition to any other matches that might apply (for example, the correlation identifier).

If you omit this option, the MsgId field in the MsgDesc parameter is ignored, and any message identifier will match.

Note: The message identifier MQMI_NONE is a special value that matches any message identifier in the MQMD for the message.
Therefore, specifying MQMO_MATCH_MSG_ID with MQMI_NONE is the same as not specifying MQMO_MATCH_MSG_ID.

MQMO_MATCH_CORREL_ID

The message to be retrieved must have a correlation identifier that matches the value of the CorrelId field in the MsgDesc parameter of

the MQGET call. This match is in addition to any other matches that might apply (for example, the message identifier).

If you omit this option, the CorrelId field in the MsgDesc parameter is ignored, and any correlation identifier will match.

Note: The correlation identifier MQCI_NONE is a special value that matches any correlation identifier in the MQMD for the message.
Therefore, specifying MQMO_MATCH_CORREL_ID with MQCI_NONE is the same as not specifying MQMO_MATCH_CORREL_ID.

MQMO_MATCH_GROUP_ID

The message to be retrieved must have a group identifier that matches the value of the GroupId field in the MsgDesc parameter of the

MQGET call. This match is in addition to any other matches that might apply (for example, the correlation identifier).

If you omit this option, the GroupId field in the MsgDesc parameter is ignored, and any group identifier will match.

Note: The group identifier MQGI_NONE is a special value that matches any group identifier in the MQMD for the message. Therefore,

specifying MQMO_MATCH_GROUP_ID with MQGI_NONE is the same as not specifying MQMO_MATCH_GROUP_ID.

MQMO_MATCH_MSG_SEQ_NUMBER

The message to be retrieved must have a message sequence number that matches the value of the MsgSeqNumber field in the MsgDesc

parameter of the MQGET call. This match is in addition to any other matches that might apply (for example, the group identifier).

If you omit this option, the MsgSeqNumber field in the MsgDesc parameter is ignored, and any message sequence number will match.

MQMO_MATCH_OFFSET

The message to be retrieved must have an offset that matches the value of the Offset field in the MsgDesc parameter of the MQGET call.

This match is in addition to any other matches that might apply (for example, the message sequence number).

If you omit this option is not specified, the Offset field in the MsgDesc parameter is ignored, and any offset will match.

� This option is not supported on z/OS.

MQMO_MATCH_MSG_TOKEN

The message to be retrieved must have a message token that matches the value of the MsgToken field in the MQGMO structure specified

on the MQGET call.

You can specify this option for all local queues. If you specify it for a queue that has an IndexType of MQIT_MSG_TOKEN (a WLM-

managed queue), you can specify no other match options with MQMO_MATCH_MSG_TOKEN.

You cannot specify MQMO_MATCH_MSG_TOKEN with MQGMO_WAIT or MQGMO_SET_SIGNAL. If the application wants to wait for a
message to arrive on a queue that has an IndexType of MQIT_MSG_TOKEN, specify MQMO_NONE.

If you omit this option, the MsgToken field in MQGMO is ignored, and any message token will match.

If you specify none of the options described, you can use the following option:

MQMO_NONE

Use no matches in selecting the message to be returned; all messages on the queue are eligible for retrieval (but subject to control by the
MQGMO_ALL_MSGS_AVAILABLE, MQGMO_ALL_SEGMENTS_AVAILABLE, and MQGMO_COMPLETE_MSG options).

MQMO_NONE aids program documentation. It is not intended that this option be used with any other MQMO_* option, but as its value is
zero, such use cannot be detected.

This is an input field. The initial value of this field is MQMO_MATCH_MSG_ID with MQMO_MATCH_CORREL_ID. This field is ignored if
Version is less than MQGMO_VERSION_2.

Note: The initial value of the MatchOptions field is defined for compatibility with earlier MQSeries® queue managers. However, when

reading a series of messages from a queue without using selection criteria, this initial value requires the application to reset the MsgId and

CorrelId fields to MQMI_NONE and MQCI_NONE before each MQGET call. Avoid the need to reset MsgId and CorrelId by setting Version

to MQGMO_VERSION_2, and MatchOptions to MQMO_NONE.

Page 165 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Parent topic: Fields for MQGMO

This build: January 26, 2011 11:16:00

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12590_

1.18.2.3. MsgHandle (MQHMSG)

If the MQGMO_PROPERTIES_AS_Q_DEF option is specified and the PropertyControl queue attribute is not set to

MQPROP_FORCE_MQRFH2 then this is the handle to a message which will be populated with the properties of the message being

retrieved from the queue. The handle is created by an MQCRTMH call. Any properties already associated with the handle will be cleared
before retrieving a message.

The following value can also be specified:
MQHM_NONE
No message handle supplied.

No message descriptor is required on the MQGET call if a valid message handle is supplied and used on output to contain the message
properties, the message descriptor associated with the message handle is used for input fields.

If a message descriptor is specified on the MQGET call, it always takes precedence over the message descriptor associated with a message

handle.

If MQGMO_PROPERTIES_FORCE_MQRFH2 is specified, or the MQGMO_PROPERTIES_AS_Q_DEF is specified and the
PropertyControl queue attribute is MQPROP_FORCE_MQRFH2 then the call fails with reason code MQRC_MD_ERROR when no

message descriptor parameter is specified.

On return from the MQGET call, the properties and message descriptor associated with this message handle are updated to reflect the state
of the message retrieved (as well as the message descriptor if one was supplied on the MQGET call). The properties of the message can
then be inquired using the MQINQMP call.

Except for message descriptor extensions, when present, a property that can be inquired with the MQINQMP call is not contained in the

message data; if the message on the queue contained properties in the message data these are removed from the message data before the
data is returned to the application.

If no message handle is provided or Version is less than MQGMO_VERSION_4 then you must supply a valid message descriptor on the
MQGET call. Any message properties (except those contained in the message descriptor) are returned in the message data subject to the

value of the property options in the MQGMO structure and the PropertyControl queue attribute.

This is an always an input field. The initial value of this field is MQHM_NONE. This field is ignored if Version is less than

MQGMO_VERSION_4.

Parent topic: Fields for MQGMO

This build: January 26, 2011 11:20:24

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42022_

1.18.2.4. MsgToken (MQBYTE16)

MsgToken field - MQGMO structure. This field is used by the queue manager to uniquely identify a message.

This is a byte string that is generated by the queue manager to identify a message uniquely on a queue. The message token is generated
when the message is first placed on the queue manager, and remains with the message until the message is permanently removed from the

queue manager, unless the queue manager is restarted.

When the message is removed from the queue, the MsgToken that identified that instance of the message is no longer valid, and is never

reused. If the queue manager is restarted, the MsgToken that identified a message on the queue before restart might not be valid after

restart. However, the MsgToken is never reused to identify a different message instance. The MsgToken is generated by the queue manager

and is not visible to any external application.

When a message is returned by a call to MQGET where a Version 3 or higher MQGMO is supplied, the MsgToken identifying the message on

the queue is returned in the MQGMO by the queue manager. There is one exception to this: when the message is being removed from the
queue outside syncpoint, the queue manager might not return a MsgToken because it is not useful to identify the returned message on a

subsequent MQGET call. Applications should only use MsgToken to refer to the message on subsequent MQGET calls.

If a MsgToken is supplied and the MatchOption MQMO_MATCH_MSG_TOKEN is specified and neither MQGMO_MSG_UNDER_CURSOR nor

MQGMO_BROWSE_MSG_UNDER_CURSOR is specified, only the message identified by that MsgToken can be returned. The option is valid on

all local queues regardless of INDXTYPE, and on z/OS® you must use INDXTYPE(MSGTOKEN) only on Work Load Manager (WLM) queues.

Any other MatchOptions specified are checked, and if they do not match, MQRC_NO_MSG_AVAILABLE is returned. If

MQGMO_BROWSE_NEXT is coded with MQMO_MATCH_MSG_TOKEN, the message identified by the MsgToken is returned only if it is beyond

the browse-cursor for the calling handle.

If MQGMO_MSG_UNDER_CURSOR or MQGMO_BROWSE_MSG_UNDER_CURSOR is specified, MQMO_MATCH_MSG_TOKEN is ignored.

MQMO_MATCH_MSG_TOKEN is not valid with the following get message options:

Page 166 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

� MQGMO_WAIT

� MQGMO_SET_SIGNAL

For an MQGET call specifying MQMO_MATCH_MSG_TOKEN, an MQGMO of version 3 or later must be supplied to the call, otherwise
MQRC_WRONG_GMO_VERSION is returned.

If the MsgToken is not valid at this time, MQCC_FAILED with MQRC_NO_MSG_AVAILABLE is returned, unless there is another error.

Parent topic: Fields for MQGMO

This build: January 26, 2011 11:16:01

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12600_

1.18.2.5. Options (MQLONG)

These options control the action of MQGET. You can specify none or more of the options described below. If you need more than one the
values can be:

� Added together (do not add the same constant more than once), or

� Combined using the bitwise OR operation (if the programming language supports bit operations).

Combinations of options that are not valid are noted; all other combinations are valid.

Wait options: The following options relate to waiting for messages to arrive on the queue:

MQGMO_WAIT

The application waits until a suitable message arrives. The maximum time that the application waits is specified in WaitInterval.

If MQGET requests are inhibited, or MQGET requests become inhibited while waiting, the wait is canceled and the call completes with

MQCC_FAILED and reason code MQRC_GET_INHIBITED, regardless of whether there are suitable messages on the queue.

You can use this option with the MQGMO_BROWSE_FIRST or MQGMO_BROWSE_NEXT options.

If several applications are waiting on the same shared queue, the applications that are activated when a suitable message arrives are

described below.

Note: In the description below, a browse MQGET call is one that specifies one of the browse options, but not MQGMO_LOCK; an MQGET
call specifying the MQGMO_LOCK option is treated as a nonbrowse call.

� If one or more nonbrowse MQGET calls is waiting, but no browse MQGET calls are waiting, one is activated.

� If one or more browse MQGET calls is waiting, but no nonbrowse MQGET calls are waiting, all are activated.

� If one or more nonbrowse MQGET calls, and one or more browse MQGET calls are waiting, one nonbrowse MQGET call is activated,
and none, some, or all of the browse MQGET calls. (The number of browse MQGET calls activated cannot be predicted, because it
depends on the scheduling considerations of the operating system, and other factors.)

If more than one nonbrowse MQGET call is waiting on the same queue, only one is activated; in this situation the queue manager
attempts to give priority to waiting nonbrowse calls in the following order:

1. Specific get-wait requests that can be satisfied only by certain messages, for example, ones with a specific MsgId or CorrelId (or

both).

2. General get-wait requests that can be satisfied by any message.

Note the following points:

� Within the first category, no additional priority is given to more specific get-wait requests, for example those that specify both MsgId

and CorrelId.

� Within either category, it cannot be predicted which application is selected. In particular, the application waiting longest is not

necessarily the one selected.

� Path length, and priority-scheduling considerations of the operating system, can mean that a waiting application of lower operating
system priority than expected retrieves the message.

� It can also happen that an application that is not waiting retrieves the message in preference to one that is.

On z/OS, the following points apply:

� If you want the application to proceed with other work while waiting for the message to arrive, consider using the signal option
(MQGMO_SET_SIGNAL) instead. However the signal option is environment specific; applications that you to port between different
environments must not use it.

� If there is more than one MQGET call waiting for the same message, with a mixture of wait and signal options, each waiting call is
considered equally. It is an error to specify MQGMO_SET_SIGNAL with MQGMO_WAIT. It is also an error to specify this option with a
queue handle for which a signal is outstanding.

� If you specify MQGMO_WAIT or MQGMO_SET_SIGNAL for a queue that has an IndexType of MQIT_MSG_TOKEN, no selection criteria

are permitted. This means that:

� If you are using a version-1 MQGMO, set the MsgId and CorrelId fields in the MQMD specified on the MQGET call to

MQMI_NONE and MQCI_NONE respectively.

� If you are using a version-2 or later MQGMO, set the MatchOptions field to MQMO_NONE.

MQGMO_WAIT is ignored if specified with MQGMO_BROWSE_MSG_UNDER_CURSOR or MQGMO_MSG_UNDER_CURSOR; no error is raised.

MQGMO_NO_WAIT

Page 167 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

The application does not wait if no suitable message is available. This is the opposite of the MQGMO_WAIT option, and is defined to aid
program documentation. It is the default if neither is specified.

MQGMO_SET_SIGNAL

Use this option with the Signal1 and Signal2 fields to allow applications to proceed with other work while waiting for a message to arrive,

and also (if suitable operating system facilities are available) to wait for messages arriving on more than one queue.

Note: The MQGMO_SET_SIGNAL option is environment specific; do not use it for applications that you want to port.

If a currently available message satisfies the criteria specified in the message descriptor, or if a parameter error or other synchronous

error is detected, the call completes in the same way as if this option had not been specified.

If no message satisfying the criteria specified in the message descriptor is currently available, control returns to the application without
waiting for a message to arrive. The output fields in the message descriptor and the output parameters of the MQGET call are not set,
other than the CompCode and Reason parameters (which are set to MQCC_WARNING and MQRC_SIGNAL_REQUEST_ACCEPTED

respectively). When a suitable message arrives subsequently, the signal is delivered by posting the ECB.

The caller must then reissue the MQGET call to retrieve the message. The application can wait for this signal, using functions provided by
the operating system.

If the operating system provides a multiple wait mechanism, the application can use this technique to wait for a message arriving on any

one of several queues.

If a nonzero WaitInterval is specified, after this time the signal is delivered. The queue manager can also cancel the wait, in which case

the signal is delivered.

If more than one MQGET call has set a signal for the same message, the order in which applications are activated is the same as that
described for MQGMO_WAIT.

If there is more than one MQGET call waiting for the same message, with a mixture of wait and signal options, each waiting call is
considered equally.

Under certain conditions the MQGET call can retrieve a message, and a signal resulting from the arrival of the same message can be
delivered. When a signal is delivered, an application must be prepared for no message to be available.

A queue handle can have no more than one signal request outstanding.

This option is not valid with any of the following options:

� MQGMO_UNLOCK

� MQGMO_WAIT

This option is supported on z/OS only.

MQGMO_FAIL_IF_QUIESCING

Force the MQGET call to fail if the queue manager is in the quiescing state.

On z/OS, this option also forces the MQGET call to fail if the connection (for a CICS or IMS application) is in the quiescing state.

If this option is specified with MQGMO_WAIT or MQGMO_SET_SIGNAL, and the wait or signal is outstanding at the time the queue
manager enters the quiescing state:

� The wait is canceled and the call returns completion code MQCC_FAILED with reason code MQRC_Q_MGR_QUIESCING or
MQRC_CONNECTION_QUIESCING.

� The signal is canceled with an environment-specific signal completion code.

On z/OS, the signal completes with event completion code MQEC_Q_MGR_QUIESCING or MQEC_CONNECTION_QUIESCING.

If MQGMO_FAIL_IF_QUIESCING is not specified and the queue manager or connection enters the quiescing state, the wait or signal is not

canceled.

Syncpoint options: The following options relate to the participation of the MQGET call within a unit of work:

MQGMO_SYNCPOINT

The request is to operate within the normal unit-of-work protocols. The message is marked as being unavailable to other applications, but
it is deleted from the queue only when the unit of work is committed. The message is made available again if the unit of work is backed
out.

If neither this option nor MQGMO_NO_SYNCPOINT is specified, the inclusion of the get request in unit-of-work protocols is determined by
the environment:

� On z/OS, the get request is within a unit of work.

� In all other environments, the get request is not within a unit of work.

Because of these differences, an application that you want to port must not allow this option to default; specify MQGMO_SYNCPOINT or

MQGMO_NO_SYNCPOINT explicitly.

This option is not valid with any of the following options:

� MQGMO_BROWSE_FIRST

� MQGMO_BROWSE_MSG_UNDER_CURSOR

� MQGMO_BROWSE_NEXT

� MQGMO_LOCK

� MQGMO_NO_SYNCPOINT

� MQGMO_SYNCPOINT_IF_PERSISTENT

� MQGMO_UNLOCK

Page 168 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

MQGMO_SYNCPOINT_IF_PERSISTENT

The request is to operate within the normal unit-of-work protocols, but only if the message retrieved is persistent. A persistent message

has the value MQPER_PERSISTENT in the Persistence field in MQMD.

� If the message is persistent, the queue manager processes the call as though the application had specified MQGMO_SYNCPOINT
(see above for details).

� If the message is not persistent, the queue manager processes the call as though the application had specified
MQGMO_NO_SYNCPOINT (see below for details).

This option is not valid with any of the following options:

� MQGMO_BROWSE_FIRST

� MQGMO_BROWSE_MSG_UNDER_CURSOR

� MQGMO_BROWSE_NEXT

� MQGMO_COMPLETE_MSG

� MQGMO_MARK_SKIP_BACKOUT

� MQGMO_NO_SYNCPOINT

� MQGMO_SYNCPOINT

� MQGMO_UNLOCK

This option is supported in the following environments: AIX, HP-UX, z/OS, i5/OS, Solaris, and Linux, plus WebSphere MQ clients
connected to these systems.

MQGMO_NO_SYNCPOINT

The request is to operate outside the normal unit-of-work protocols. The message is deleted from the queue immediately (unless this is a

browse request). The message cannot be made available again by backing out the unit of work.

This option is assumed if you specify MQGMO_BROWSE_FIRST or MQGMO_BROWSE_NEXT.

If you specify neither this option nor MQGMO_SYNCPOINT, the inclusion of the get request in unit-of-work protocols is determined by the
environment:

� On z/OS, the get request is within a unit of work.

� In all other environments, the get request is not within a unit of work.

Because of these differences, an application that you want to port must not allow this option to default; specify either
MQGMO_SYNCPOINT or MQGMO_NO_SYNCPOINT explicitly.

This option is not valid with any of the following options:

� MQGMO_MARK_SKIP_BACKOUT

� MQGMO_SYNCPOINT

� MQGMO_SYNCPOINT_IF_PERSISTENT

MQGMO_MARK_SKIP_BACKOUT

Back out a unit of work without reinstating on the queue the message that was marked with this option.

When an application requests the backout of a unit of work containing a get request, a message that was retrieved using this option is not
restored to its previous state. (Other resource updates, however, are still backed out.) Instead, the message is treated as if it had been
retrieved by a get request without this option, in a new unit of work started by the backout request.

This is useful if the application retrieves a message, but only after some resources have been changed does it become apparent that the

unit of work cannot complete successfully. If you omit this option, backing out the unit of work reinstates the message on the queue, so
that the same sequence of events occurs when the message is next retrieved. However, if you specify this option on the original MQGET
call, backing out the unit of work backs out the updates to the other resources, but treats the message as if it had been retrieved under a
new unit of work. The application can perform appropriate error handling (such as sending a report message to the sender of the original
message, or placing the original message on the dead-letter queue), and then commit the new unit of work. Committing the new unit of
work removes the message permanently from the original queue.

MQGMO_MARK_SKIP_BACKOUT marks a single physical message. If the message belongs to a message group, the other messages in the
group are not marked. Similarly, if the marked message is a segment of a logical message, the other segments in the logical message are
not marked. Any message in a group can be marked, but if messages are retrieved using MQGMO_LOGICAL_ORDER, it is advantageous to
mark the first message in the group. When the unit of work is backed out, the first (marked) message is moved to the new unit of work,

while the second and later messages in the group are reinstated on the queue. However, that group is no longer eligible for retrieval by an
application using MQGMO_LOGICAL_ORDER, because the first message in the group is no longer on the queue. This prevents a second
instance of the application inadvertently processing messages in that group. However, the first instance of the application can retrieve the
second and later messages into the new unit of work using the MQGMO_LOGICAL_ORDER option as normal.

Occasionally you might need to back out the new unit of work (for example, because the dead-letter queue is full and the message must
not be discarded). Backing out the new unit of work reinstates the message on the original queue, which prevents the message being lost.
However, in this situation processing cannot continue. After backing out the new unit of work, the application must inform the operator or
administrator that there is an unrecoverable error, and then terminate.

This option has an effect only if the unit of work containing the get request is terminated by the application backing it out. (Such requests

use calls or commands that depend on the environment.) This option has no effect if the unit of work containing the get request is backed
out for any other reason (for example, because the transaction or system abends). In this situation, any message retrieved using this
option is reinstated on the queue in the same way as messages retrieved without this option.

Note:

1. If you have not applied IMS™ APAR PN60855, an IMS MPP or BMP application that backs out a unit of work containing a message
retrieved with the MQGMO_MARK_SKIP_BACKOUT option must issue an MQ call (any MQ call will do) before committing or backing

out the new unit of work.

2. A CICS® application that backs out a unit of work containing a message retrieved with the MQGMO_MARK_SKIP_BACKOUT option

Page 169 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

must issue an MQ call (any MQ call will do) before committing or backing out the new unit of work.

Within a unit of work, there can be only one get request marked as skipping backout, as well as none or several unmarked get requests.

If this option is specified, MQGMO_SYNCPOINT must also be specified. MQGMO_MARK_SKIP_BACKOUT is not valid with any of the

following options:

� MQGMO_BROWSE_FIRST

� MQGMO_BROWSE_MSG_UNDER_CURSOR

� MQGMO_BROWSE_NEXT

� MQGMO_LOCK

� MQGMO_NO_SYNCPOINT

� MQGMO_SYNCPOINT_IF_PERSISTENT

� MQGMO_UNLOCK

This option is supported only on z/OS.

Browse options: The following options relate to browsing messages on the queue:

MQGMO_BROWSE_FIRST

When a queue is opened with the MQOO_BROWSE option, a browse cursor is established, positioned logically before the first message on

the queue. You can then use MQGET calls specifying the MQGMO_BROWSE_FIRST, MQGMO_BROWSE_NEXT, or
MQGMO_BROWSE_MSG_UNDER_CURSOR option to retrieve messages from the queue nondestructively. The browse cursor marks the
position, within the messages on the queue, from which the next MQGET call with MQGMO_BROWSE_NEXT searches for a suitable
message.

An MQGET call with MQGMO_BROWSE_FIRST ignores the previous position of the browse cursor. The first message on the queue that
satisfies the conditions specified in the message descriptor is retrieved. The message remains on the queue, and the browse cursor is
positioned on this message.

After this call, the browse cursor is positioned on the message that has been returned. If the message is removed from the queue before
the next MQGET call with MQGMO_BROWSE_NEXT is issued, the browse cursor remains at the position in the queue that the message
occupied, even though that position is now empty.

The MQGMO_MSG_UNDER_CURSOR option can subsequently be used with a nonbrowse MQGET call if required, to remove the message

from the queue.

The browse cursor is not moved by a nonbrowse MQGET call using the same Hobj handle. Nor is it moved by a browse MQGET call that

returns a completion code of MQCC_FAILED, or a reason code of MQRC_TRUNCATED_MSG_FAILED.

Specify the MQGMO_LOCK option with this option, to lock the message that is browsed.

You can specify MQGMO_BROWSE_FIRST with any valid combination of the MQGMO_* and MQMO_* options that control the processing of
messages in groups and segments of logical messages.

If you specify MQGMO_LOGICAL_ORDER, the messages are browsed in logical order. If you omit that option, the messages are browsed in

physical order. When you specify MQGMO_BROWSE_FIRST, you can switch between logical order and physical order, but subsequent
MQGET calls using MQGMO_BROWSE_NEXT must browse the queue in the same order as the most-recent call that specified
MQGMO_BROWSE_FIRST for the queue handle.

The group and segment information that the queue manager retains for MQGET calls that browse messages on the queue is separate from

the group and segment information that the queue manager retains for MQGET calls that remove messages from the queue. When you
specify MQGMO_BROWSE_FIRST, the queue manager ignores the group and segment information for browsing, and scans the queue as
though there were no current group and no current logical message. If the MQGET call is successful (completion code MQCC_OK or
MQCC_WARNING), the group and segment information for browsing is set to that of the message returned; if the call fails, the group and
segment information remains the same as it was before the call.

This option is not valid with any of the following options:

� MQGMO_BROWSE_MSG_UNDER_CURSOR

� MQGMO_BROWSE_NEXT

� MQGMO_MARK_SKIP_BACKOUT

� MQGMO_MSG_UNDER_CURSOR

� MQGMO_SYNCPOINT

� MQGMO_SYNCPOINT_IF_PERSISTENT

� MQGMO_UNLOCK

It is also an error if the queue was not opened for browse.

MQGMO_BROWSE_NEXT

Advance the browse cursor to the next message on the queue that satisfies the selection criteria specified on the MQGET call. The

message is returned to the application, but remains on the queue.

After a queue has been opened for browse, the first browse call using the handle has the same effect whether it specifies the

MQGMO_BROWSE_FIRST or MQGMO_BROWSE_NEXT option.

If the message is removed from the queue before the next MQGET call with MQGMO_BROWSE_NEXT is issued, the browse cursor logically
remains at the position in the queue that the message occupied, even though that position is now empty.

Messages are stored on the queue in one of two ways:

� FIFO within priority (MQMDS_PRIORITY), or

� FIFO regardless of priority (MQMDS_FIFO)

Page 170 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

The MsgDeliverySequence queue attribute indicates which method applies (see Attributes for queues for details).

If the queue has a MsgDeliverySequence of MQMDS_PRIORITY, and a message arrives on the queue that is of a higher priority than the

one currently pointed to by the browse cursor, that message is not found during the current sweep of the queue using

MQGMO_BROWSE_NEXT. It can be found only after the browse cursor has been reset with MQGMO_BROWSE_FIRST (or by reopening the
queue).

The MQGMO_MSG_UNDER_CURSOR option can subsequently be used with a nonbrowse MQGET call if required, to remove the message
from the queue.

The browse cursor is not moved by nonbrowse MQGET calls using the same Hobj handle.

Specify the MQGMO_LOCK option with this option to lock the message that is browsed.

You can specify MQGMO_BROWSE_NEXT with any valid combination of the MQGMO_* and MQMO_* options that control the processing of
messages in groups and segments of logical messages.

If you specify MQGMO_LOGICAL_ORDER, the messages are browsed in logical order. If you omit that option, the messages are browsed in
physical order. When you specify MQGMO_BROWSE_FIRST, you can switch between logical order and physical order, but subsequent
MQGET calls using MQGMO_BROWSE_NEXT must browse the queue in the same order as the most-recent call that specified

MQGMO_BROWSE_FIRST for the queue handle. The call fails with reason code MQRC_INCONSISTENT_BROWSE if this condition is not
satisfied.

Note: Take special care when using an MQGET call to browse beyond the end of a message group (or logical message not in a group)
when MQGMO_LOGICAL_ORDER is not specified. For example, if the last message in the group precedes the first message in the group on

the queue, using MQGMO_BROWSE_NEXT to browse beyond the end of the group, specifying MQMO_MATCH_MSG_SEQ_NUMBER with
MsgSeqNumber set to 1 (to find the first message of the next group) returns the first message in the group already browsed. This can

happen immediately, or a number of MQGET calls later (if there are intervening groups).

To avoid the possibility of an infinite loop, open the queue twice for browse:

� Use the first handle to browse only the first message in each group.

� Use the second handle to browse only the messages within a specific group.

� Use the MQMO_* options to move the second browse cursor to the position of the first browse cursor, before browsing the messages
in the group.

� Do not use MQGMO_BROWSE_NEXT to browse beyond the end of a group.

The group and segment information that the queue manager retains for MQGET calls that browse messages on the queue is separate from
the group and segment information that it retains for MQGET calls that remove messages from the queue.

This option is not valid with any of the following options:

� MQGMO_BROWSE_FIRST

� MQGMO_BROWSE_MSG_UNDER_CURSOR

� MQGMO_MARK_SKIP_BACKOUT

� MQGMO_MSG_UNDER_CURSOR

� MQGMO_SYNCPOINT

� MQGMO_SYNCPOINT_IF_PERSISTENT

� MQGMO_UNLOCK

It is also an error if the queue was not opened for browse.

MQGMO_BROWSE_MSG_UNDER_CURSOR

Retrieve the message pointed to by the browse cursor nondestructively, regardless of the MQMO_* options specified in the MatchOptions

field in MQGMO.

The message pointed to by the browse cursor is the one that was last retrieved using either the MQGMO_BROWSE_FIRST or the

MQGMO_BROWSE_NEXT option. The call fails if neither of these calls has been issued for this queue since it was opened, or if the
message that was under the browse cursor has since been retrieved destructively.

The position of the browse cursor is not changed by this call.

The MQGMO_MSG_UNDER_CURSOR option can subsequently be used with a nonbrowse MQGET call if required, to remove the message

from the queue.

The browse cursor is not moved by a nonbrowse MQGET call using the same Hobj handle. Nor is it moved by a browse MQGET call that

returns a completion code of MQCC_FAILED, or a reason code of MQRC_TRUNCATED_MSG_FAILED.

If MQGMO_BROWSE_MSG_UNDER_CURSOR is specified with MQGMO_LOCK:

� If there is already a message locked, it must be the one under the cursor, so that is returned without unlocking and relocking it; the
message remains locked.

� If there is no locked message, the message under the browse cursor (if there is one) is locked and returned to the application; if

there is no message under the browse cursor the call fails.

If MQGMO_BROWSE_MSG_UNDER_CURSOR is specified without MQGMO_LOCK:

� If there is already a message locked, it must be the one under the cursor. This message is returned to the application and then
unlocked. Because the message is now unlocked, there is no guarantee that it can be browsed again, or retrieved destructively (it
can be retrieved destructively by another application getting messages from the queue).

� If there is no locked message, the message under the browse cursor (if there is one) is returned to the application; if there is no
message under the browse cursor the call fails.

If MQGMO_COMPLETE_MSG is specified with MQGMO_BROWSE_MSG_UNDER_CURSOR, the browse cursor must identify a message whose
Offset field in MQMD is zero. If this condition is not satisfied, the call fails with reason code MQRC_INVALID_MSG_UNDER_CURSOR.

Page 171 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

The group and segment information that the queue manager retains for MQGET calls that browse messages on the queue is separate from
the group and segment information that it retains for MQGET calls that remove messages from the queue.

This option is not valid with any of the following options:

� MQGMO_BROWSE_FIRST

� MQGMO_BROWSE_NEXT

� MQGMO_MARK_SKIP_BACKOUT

� MQGMO_MSG_UNDER_CURSOR

� MQGMO_SYNCPOINT

� MQGMO_SYNCPOINT_IF_PERSISTENT

� MQGMO_UNLOCK

It is also an error if the queue was not opened for browse.

MQGMO_MSG_UNDER_CURSOR

Retrieve the message pointed to by the browse cursor, regardless of the MQMO_* options specified in the MatchOptions field in MQGMO.

The message is removed from the queue.

The message pointed to by the browse cursor is the one that was last retrieved using either the MQGMO_BROWSE_FIRST or the
MQGMO_BROWSE_NEXT option.

If MQGMO_COMPLETE_MSG is specified with MQGMO_MSG_UNDER_CURSOR, the browse cursor must identify a message whose Offset

field in MQMD is zero. If this condition is not satisfied, the call fails with reason code MQRC_INVALID_MSG_UNDER_CURSOR.

This option is not valid with any of the following options:

� MQGMO_BROWSE_FIRST

� MQGMO_BROWSE_MSG_UNDER_CURSOR

� MQGMO_BROWSE_NEXT

� MQGMO_UNLOCK

It is also an error if the queue was not opened both for browse and for input. If the browse cursor is not currently pointing to a retrievable
message, an error is returned by the MQGET call.

MQGMO_MARK_BROWSE_HANDLE

After a successful call to MQGET that specifies this option, the message that is returned, or that is identified by the MsgToken that is

returned, is considered, by the object handle used in the call, to be marked. The message is not removed from the queue.

This option is valid only if one of the following options is also specified:

� MQGMO_BROWSE_FIRST

� MQGMO_BROWSE_MSG_UNDER_CURSOR

� MQGMO_BROWSE_NEXT

This option is not valid with any of the following options:

� MQGMO_ALL_MSGS_AVAILABLE

� MQGMO_ALL_SEGMENTS_AVAILABLE

� MQGMO_COMPLETE_MSG

� MQGMO_LOCK

� MQGMO_LOGICAL_ORDER

� MQGMO_UNLOCK

The message remains in this state until one of the following occurs:

� The object handle concerned is closed, either normally or otherwise.

� The message is unmarked for this handle by a call to MQGET with the option MQGMO_UNMARK_BROWSE_HANDLE.

� The message is returned from a call to destructive MQGET, which completes with MQCC_OK or MQCC_WARNING. This is true even if

the MQGET is subsequently rolled-back.

� The message expires.

MQGMO_MARK_BROWSE_CO_OP

After a successful call to MQGET that specifies this option, the message that is returned, or that is identified by the MsgToken that is

returned, is considered by any object handle that is part of the cooperating set of handles, to be marked for the cooperating set of
handles.

The message is not considered to be marked for each individual handle in the set at a handle level. That is, this option is not exactly
equivalent to each handle in the cooperating set browsing the message with MQGMO_MARK_BROWSE_HANDLE, but all handles in the set
can determine that the message has been marked. The message is not removed from the queue.

This option is valid only if the object handle used was returned by a successful call to MQOPEN that specified the MQOO_CO_OP option
and one of the following MQGMO options is also specified:

� MQGMO_BROWSE_FIRST

� MQGMO_BROWSE_MSG_UNDER_CURSOR

� MQGMO_BROWSE_NEXT

This option is not valid with any of the following options:

� MQGMO_ALL_MSGS_AVAILABLE

� MQGMO_ALL_SEGMENTS_AVAILABLE

� MQGMO_COMPLETE_MSG

Page 172 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

� MQGMO_LOCK

� MQGMO_LOGICAL_ORDER

� MQGMO_UNLOCK

If the message is already considered to be in this state, that is, with MQGMO_MARK_BROWSE_CO_OP, and the option

MQGMO_UNMARKED_BROWSE_MSG is not specified, the call fails with MQCC_FAILED and reason code
MQRC_MSG_MARKED_BROWSE_CO_OP.

The message remains in this state until one of the following occurs:

� All object handles in the cooperating set are closed.

� The message is unmarked for cooperating browsers by a call to MQGET with the option MQGMO_UNMARK_BROWSE_CO_OP.

� The message is automatically unmarked by the queue manager.

� The message is returned from a call to a non-browse MQGET. This is true even if the MQGET is subsequently rolled-back.

� The message expires.

MQGMO_UNMARKED_BROWSE_MSG

A call to MQGET that specifies this option does not return a message that is considered, by the handle that is used, to be marked. If the
handle that is used was returned by a successful call to MQOPEN, with the option MQOO_CO_OP, the call also does not return a message
that is considered to be marked for the cooperating set of handles with MQGMO_MARK_BROWSE_CO_OP.

This option is not valid with any of the following options:

� MQGMO_ALL_MSGS_AVAILABLE

� MQGMO_ALL_SEGMENTS_AVAILABLE

� MQGMO_COMPLETE_MSG

� MQGMO_LOCK

� MQGMO_LOGICAL_ORDER

� MQGMO_UNLOCK

MQGMO_UNMARK_BROWSE_CO_OP

After a call to MQGET that specifies this option, the message located is no longer considered by all other open handles in the set of
cooperating handles to be marked for the cooperating set. The message is still considered to be marked at handle level by any open

handle that considered it to be marked at handle level before this call.

This call is valid only using an open handle that was returned from a successful call to MQOPEN with the option MQOO_CO_OP, and

succeeds even if the message is not considered to be marked by the cooperating set of handles.

This option is not valid on a non-browse MQGET call, or with any of the following options:

� MQGMO_ALL_MSGS_AVAILABLE

� MQGMO_ALL_SEGMENTS_AVAILABLE

� MQGMO_COMPLETE_MSG

� MQGMO_LOCK

� MQGMO_LOGICAL_ORDER

� MQGMO_MARK_BROWSE_CO_OP

� MQGMO_UNLOCK

� MQGMO_UNMARKED_BROWSE_MSG

MQGMO_UNMARK_BROWSE_HANDLE

After a call to MQGET that specifies this option, the message located is no longer considered to be marked by this handle.

This call succeeds even if the message is not marked for this handle.

This option is not valid on a non-browse MQGET call, or with any of the following options:

� MQGMO_ALL_MSGS_AVAILABLE

� MQGMO_ALL_SEGMENTS_AVAILABLE

� MQGMO_COMPLETE_MSG

� MQGMO_LOCK

� MQGMO_LOGICAL_ORDER

� MQGMO_MARK_BROWSE_CO_OP

� MQGMO_UNLOCK

� MQGMO_UNMARKED_BROWSE_MSG

Lock options: The following options relate to locking messages on the queue:

MQGMO_LOCK

Lock the message that is browsed, so that the message becomes invisible to any other handle open for the queue. The option can be
specified only if one of the following options is also specified:

� MQGMO_BROWSE_FIRST

� MQGMO_BROWSE_NEXT

� MQGMO_BROWSE_MSG_UNDER_CURSOR

Only one message can be locked for each queue handle, but this can be a logical message or a physical message:

� If you specify MQGMO_COMPLETE_MSG, all the message segments that comprise the logical message are locked to the queue
handle (provided that they are all present on the queue and available for retrieval).

Page 173 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

� If you omit MQGMO_COMPLETE_MSG, only a single physical message is locked to the queue handle. If this message happens to be a
segment of a logical message, the locked segment prevents other applications using MQGMO_COMPLETE_MSG to retrieve or browse
the logical message.

The locked message is always the one under the browse cursor, and the message can be removed from the queue by a later MQGET call
that specifies the MQGMO_MSG_UNDER_CURSOR option. Other MQGET calls using the queue handle can also remove the message (for
example, a call that specifies the message identifier of the locked message).

If the call returns completion code MQCC_FAILED, or MQCC_WARNING with reason code MQRC_TRUNCATED_MSG_FAILED, no message is
locked.

If the application does not remove the message from the queue, the lock is released by:

� Issuing another MQGET call for this handle, specifying either MQGMO_BROWSE_FIRST or MQGMO_BROWSE_NEXT (with or without
MQGMO_LOCK); the message is unlocked if the call completes with MQCC_OK or MQCC_WARNING, but remains locked if the call
completes with MQCC_FAILED. However, the following exceptions apply:

� The message is not unlocked if MQCC_WARNING is returned with MQRC_TRUNCATED_MSG_FAILED.

� The message is unlocked if MQCC_FAILED is returned with MQRC_NO_MSG_AVAILABLE.

If you also specify MQGMO_LOCK, the message returned is locked. If you omit MQGMO_LOCK, there is no locked message after the
call.

If you specify MQGMO_WAIT, and no message is immediately available, the unlock on the original message occurs before the start
of the wait (providing the call is otherwise free from error).

� Issuing another MQGET call for this handle, with MQGMO_BROWSE_MSG_UNDER_CURSOR (without MQGMO_LOCK); the message is
unlocked if the call completes with MQCC_OK or MQCC_WARNING, but remains locked if the call completes with MQCC_FAILED.
However, the following exception applies:

� The message is not unlocked if MQCC_WARNING is returned with MQRC_TRUNCATED_MSG_FAILED.

� Issuing another MQGET call for this handle with MQGMO_UNLOCK.

� Issuing an MQCLOSE call for this handle (either explicitly, or implicitly by the application ending).

No special open option is required to specify this option, other than MQOO_BROWSE, which is needed to specify the accompanying browse
option.

This option is not valid with any of the following options:

� MQGMO_MARK_SKIP_BACKOUT

� MQGMO_SYNCPOINT

� MQGMO_SYNCPOINT_IF_PERSISTENT

� MQGMO_UNLOCK

MQGMO_UNLOCK

The message to be unlocked must have been previously locked by an MQGET call with the MQGMO_LOCK option. If there is no message
locked for this handle, the call completes with MQCC_WARNING and MQRC_NO_MSG_LOCKED.

The MsgDesc, BufferLength, Buffer, and DataLength parameters are not checked or altered if you specify MQGMO_UNLOCK. No

message is returned in Buffer.

No special open option is required to specify this option (although MQOO_BROWSE is needed to issue the lock request in the first place).

This option is not valid with any options except the following:

� MQGMO_NO_WAIT

� MQGMO_NO_SYNCPOINT

Both of these options are assumed whether specified or not.

Message-data options: The following options relate to the processing of the message data when the message is read from the queue:

MQGMO_ACCEPT_TRUNCATED_MSG

If the message buffer is too small to hold the complete message, allow the MQGET call to fill the buffer with as much of the message as

the buffer can hold, issue a warning completion code, and complete its processing. This means that:

� When browsing messages, the browse cursor is advanced to the returned message.

� When removing messages, the returned message is removed from the queue.

� Reason code MQRC_TRUNCATED_MSG_ACCEPTED is returned if no other error occurs.

Without this option, the buffer is still filled with as much of the message as it can hold, a warning completion code is issued, but
processing is not completed. This means that:

� When browsing messages, the browse cursor is not advanced.

� When removing messages, the message is not removed from the queue.

� Reason code MQRC_TRUNCATED_MSG_FAILED is returned if no other error occurs.

MQGMO_CONVERT

This option converts the application data in the message to conform to the CodedCharSetId and Encoding values specified in the MsgDesc

parameter on the MQGET call, before the data is copied to the Buffer parameter.

The Format field specified when the message was put is assumed by the conversion process to identify the nature of the data in the

message. The message data is converted by the queue manager for built-in formats, and by a user-written exit for other formats. See
Data conversion for details of the data-conversion exit.

� If conversion is successful, the CodedCharSetId and Encoding fields specified in the MsgDesc parameter are unchanged on return

from the MQGET call.

� If conversion fails (but the MQGET call otherwise completes without error), the message data is returned unconverted, and the
CodedCharSetId and Encoding fields in MsgDesc are set to the values for the unconverted message. The completion code is

MQCC_WARNING in this case.

Page 174 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

In either case, these fields describe the character-set identifier and encoding of the message data that is returned in the Buffer

parameter.

See the Format field described in MQMD – Message descriptor for a list of format names for which the queue manager performs the

conversion.

Group and segment options: The following options relate to the processing of messages in groups and segments of logical messages.
Before the option descriptions, here are some definitions of important terms:

Physical message

This is the smallest unit of information that can be placed on or removed from a queue; it often corresponds to the information specified
or retrieved on a single MQPUT, MQPUT1, or MQGET call. Every physical message has its own message descriptor (MQMD). Generally,

physical messages are distinguished by differing values for the message identifier (MsgId field in MQMD), although this is not enforced by

the queue manager.

Logical message

This is a single unit of application information. In the absence of system constraints, a logical message is the same as a physical message.
But where logical messages are extremely large, system constraints might make it advisable or necessary to split a logical message into

two or more physical messages, called segments.

A logical message that has been segmented consists of two or more physical messages that have the same nonnull group identifier

(GroupId field in MQMD), and the same message sequence number (MsgSeqNumber field in MQMD). The segments are distinguished by

differing values for the segment offset (Offset field in MQMD), which gives the offset of the data in the physical message from the start of

the data in the logical message. Because each segment is a physical message, the segments in a logical message usually have different
message identifiers.

A logical message that has not been segmented, but for which segmentation has been permitted by the sending application, also has a
nonnull group identifier, although in this case there is only one physical message with that group identifier if the logical message does not
belong to a message group. Logical messages for which segmentation has been inhibited by the sending application have a null group
identifier (MQGI_NONE), unless the logical message belongs to a message group.

Message group

This is a set of one or more logical messages that have the same nonnull group identifier. The logical messages in the group are

distinguished by different values for the message sequence number, which is an integer in the range 1 through n, where n is the number
of logical messages in the group. If one or more of the logical messages is segmented, there will be more than n physical messages in the
group.

MQGMO_LOGICAL_ORDER

This option controls the order in which messages are returned by successive MQGET calls for the queue handle. The option must be
specified on each of those calls in order to have an effect.

If MQGMO_LOGICAL_ORDER is specified for successive MQGET calls for the queue handle, messages in groups are returned in the order
given by their message sequence numbers, and segments of logical messages are returned in the order given by their segment offsets.
This order might be different from the order in which those messages and segments occur on the queue.

Note: Specifying MQGMO_LOGICAL_ORDER has no adverse consequences on messages that do not belong to groups and that are not
segments. In effect, such messages are treated as though each belonged to a message group consisting of only one message. Thus it is
perfectly safe to specify MQGMO_LOGICAL_ORDER when retrieving messages from queues that might contain a mixture of messages in
groups, message segments, and unsegmented messages not in groups.

To return the messages in the required order, the queue manager retains the group and segment information between successive MQGET
calls. This information identifies the current message group and current logical message for the queue handle, the current position within

the group and logical message, and whether the messages are being retrieved within a unit of work. Because the queue manager retains
this information, the application does not need to set the group and segment information before each MQGET call. Specifically, it means
that the application does not need to set the GroupId, MsgSeqNumber, and Offset fields in MQMD. However, the application must set the

MQGMO_SYNCPOINT or MQGMO_NO_SYNCPOINT option correctly on each call.

When the queue is opened, there is no current message group and no current logical message. A message group becomes the current
message group when a message that has the MQMF_MSG_IN_GROUP flag is returned by the MQGET call. With MQGMO_LOGICAL_ORDER
specified on successive calls, that group remains the current group until a message is returned that has:

� MQMF_LAST_MSG_IN_GROUP without MQMF_SEGMENT (that is, the last logical message in the group is not segmented), or

� MQMF_LAST_MSG_IN_GROUP with MQMF_LAST_SEGMENT (that is, the message returned is the last segment of the last logical
message in the group).

When such a message is returned, the message group is terminated, and on successful completion of that MQGET call there is no longer a
current group. In a similar way, a logical message becomes the current logical message when a message that has the MQMF_SEGMENT
flag is returned by the MQGET call, and that logical message is terminated when the message that has the MQMF_LAST_SEGMENT flag is
returned.

If no selection criteria are specified, successive MQGET calls return (in the correct order) the messages for the first message group on the
queue, then the messages for the second message group, and so on, until there are no more messages available. It is possible to select
the particular message groups returned by specifying one or more of the following options in the MatchOptions field:

� MQMO_MATCH_MSG_ID

� MQMO_MATCH_CORREL_ID

� MQMO_MATCH_GROUP_ID

However, these options are effective only when there is no current message group or logical message; see the MatchOptions field

described in MQGMO – Get-message options for further details.

Table 1 shows the values of the MsgId, CorrelId, GroupId, MsgSeqNumber, and Offset fields that the queue manager looks for when

attempting to find a message to return on the MQGET call. This applies both to removing messages from the queue, and browsing
messages on the queue. In the table, Either means Yes or No:

LOG ORD

Indicates whether the MQGMO_LOGICAL_ORDER option is specified on the call.

Cur grp

Page 175 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Indicates whether a current message group exists before the call.

Cur log msg

Indicates whether a current logical message exists before the call.

Other columns

Show the values that the queue manager looks for. Previous denotes the value returned for the field in the previous message for the
queue handle.

When multiple message groups are present on the queue and eligible for return, the groups are returned in the order determined by the
position on the queue of the first segment of the first logical message in each group (that is, the physical messages that have message

sequence numbers of 1, and offsets of 0, determine the order in which eligible groups are returned).

The MQGMO_LOGICAL_ORDER option affects units of work as follows:

� If the first logical message or segment in a group is retrieved within a unit of work, all the other logical messages and segments in
the group must be retrieved within a unit of work, if the same queue handle is used. However, they need not be retrieved within the
same unit of work. This allows a message group consisting of many physical messages to be split across two or more consecutive

units of work for the queue handle.

� If the first logical message or segment in a group is not retrieved within a unit of work, and the same queue handle is used, none of
the other logical messages and segments in the group can be retrieved within a unit of work.

If these conditions are not satisfied, the MQGET call fails with reason code MQRC_INCONSISTENT_UOW.

When MQGMO_LOGICAL_ORDER is specified, the MQGMO supplied on the MQGET call must not be less than MQGMO_VERSION_2, and the
MQMD must not be less than MQMD_VERSION_2. If this condition is not satisfied, the call fails with reason code
MQRC_WRONG_GMO_VERSION or MQRC_WRONG_MD_VERSION, as appropriate.

If MQGMO_LOGICAL_ORDER is not specified for successive MQGET calls for the queue handle, messages are returned without regard for
whether they belong to message groups, or whether they are segments of logical messages. This means that messages or segments from
a particular group or logical message might be returned out of order, or intermingled with messages or segments from other groups or
logical messages, or with messages that are not in groups and are not segments. In this situation, the particular messages that are
returned by successive MQGET calls is controlled by the MQMO_* options specified on those calls (see the MatchOptions field described in

MQGMO – Get-message options for details of these options).

This is the technique that can be used to restart a message group or logical message in the middle, after a system failure has occurred.
When the system restarts, the application can set the GroupId, MsgSeqNumber, Offset, and MatchOptions fields to the appropriate

values, and then issue the MQGET call with MQGMO_SYNCPOINT or MQGMO_NO_SYNCPOINT set, but without specifying
MQGMO_LOGICAL_ORDER. If this call is successful, the queue manager retains the group and segment information, and subsequent
MQGET calls using that queue handle can specify MQGMO_LOGICAL_ORDER as normal.

The group and segment information that the queue manager retains for the MQGET call is separate from the group and segment
information that it retains for the MQPUT call. In addition, the queue manager retains separate information for:

� MQGET calls that remove messages from the queue.

� MQGET calls that browse messages on the queue.

For any given queue handle, the application can mix MQGET calls that specify MQGMO_LOGICAL_ORDER with MQGET calls that do not.
However, note the following points:

� If you omit MQGMO_LOGICAL_ORDER, each successful MQGET call causes the queue manager to set the saved group and segment
information to the values corresponding to the message returned; this replaces the existing group and segment information retained
by the queue manager for the queue handle. Only the information appropriate to the action of the call (browse or remove) is
modified.

� If you omit MQGMO_LOGICAL_ORDER, the call does not fail if there is a current message group or logical message; the call might
succeed with an MQCC_WARNING completion code. Table 2 shows the various cases that can arise. In these cases, if the completion
code is not MQCC_OK, the reason code is one of the following (as appropriate):

� MQRC_INCOMPLETE_GROUP

� MQRC_INCOMPLETE_MSG

� MQRC_INCONSISTENT_UOW

Note: The queue manager does not check the group and segment information when browsing a queue, or when closing a queue
that was opened for browse but not input; in those cases the completion code is always MQCC_OK (assuming no other errors).

Table 1. MQGET options relating to messages in groups and segments of logical messages

Options

you
specify

Group and

log-msg
status before

call

Values the queue manager looks for

LOG
ORD

Cur
grp

Cur
log

msg

MsgId CorrelId GroupId MsgSeqNumber Offset

Yes No No Controlled by
MatchOptions

Controlled by
MatchOptions

Controlled by
MatchOptions

1 0

Yes No Yes Any message

identifier

Any correlation

identifier

Previous group

identifier

1 Previous offset

+ previous
segment

length

Yes Yes No Any message

identifier

Any correlation

identifier

Previous group

identifier

Previous

sequence
number + 1

0

Yes Yes Yes Any message

identifier

Any correlation

identifier

Previous group

identifier

Previous

sequence

number

Previous offset

+ previous

segment
length

No Either Either Controlled by
MatchOptions

Controlled by
MatchOptions

Controlled by
MatchOptions

Controlled by
MatchOptions

Controlled by
MatchOptions

Page 176 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Applications that want to retrieve messages and segments in logical order are recommended to specify MQGMO_LOGICAL_ORDER, as this
is the simplest option to use. This option relieves the application of the need to manage the group and segment information, because the
queue manager manages that information. However, specialized applications might need more control than that provided by the
MQGMO_LOGICAL_ORDER option, and this can be achieved by not specifying that option. The application must then ensure that the

MsgId, CorrelId, GroupId, MsgSeqNumber, and Offset fields in MQMD, and the MQMO_* options in MatchOptions in MQGMO, are set

correctly, before each MQGET call.

For example, an application that wants to forward physical messages that it receives, without regard for whether those messages are in
groups or segments of logical messages, must not specify MQGMO_LOGICAL_ORDER. In a complex network with multiple paths between

sending and receiving queue managers, the physical messages might arrive out of order. By specifying neither MQGMO_LOGICAL_ORDER,
nor the corresponding MQPMO_LOGICAL_ORDER on the MQPUT call, the forwarding application can retrieve and forward each physical
message as soon as it arrives, without having to wait for the next one in logical order to arrive.

You can specify MQGMO_LOGICAL_ORDER with any of the other MQGMO_* options, and with various of the MQMO_* options in
appropriate circumstances (see above).

� On z/OS, this option is supported for private and shared queues, but the queue must have an index type of MQIT_GROUP_ID. For

shared queues, the CFSTRUCT object that the queue maps to must be at CFLEVEL(3) or CFLEVEL(4).

� On AIX, HP-UX, i5/OS, Solaris, Linux, Windows, plus WebSphere MQ clients connected to these systems, this option is supported for
all local queues.

MQGMO_COMPLETE_MSG

Only a complete logical message can be returned by the MQGET call. If the logical message is segmented, the queue manager
reassembles the segments and returns the complete logical message to the application; the fact that the logical message was segmented
is not apparent to the application retrieving it.

Note: This is the only option that causes the queue manager to reassemble message segments. If not specified, segments are returned
individually to the application if they are present on the queue (and they satisfy the other selection criteria specified on the MQGET call).
Applications that do not want to receive individual segments must always specify MQGMO_COMPLETE_MSG.

To use this option, the application must provide a buffer that is big enough to accommodate the complete message, or specify the
MQGMO_ACCEPT_TRUNCATED_MSG option.

If the queue contains segmented messages with some of the segments missing (perhaps because they have been delayed in the network
and have not yet arrived), specifying MQGMO_COMPLETE_MSG prevents the retrieval of segments belonging to incomplete logical

messages. However, those message segments still contribute to the value of the CurrentQDepth queue attribute; this means that there

might be no retrievable logical messages, even though CurrentQDepth is greater than zero.

For persistent messages, the queue manager can reassemble the segments only within a unit of work:

� If the MQGET call is operating within a user-defined unit of work, that unit of work is used. If the call fails during the reassembly

process, the queue manager reinstates on the queue any segments that were removed during reassembly. However, the failure
does not prevent the unit of work being committed successfully.

� If the call is operating outside a user-defined unit of work, and there is no user-defined unit of work in existence, the queue

manager creates a unit of work for the duration of the call. If the call is successful, the queue manager commits the unit of work
automatically (the application does not need to do this). If the call fails, the queue manager backs out the unit of work.

� If the call is operating outside a user-defined unit of work, but a user-defined unit of work exists, the queue manager cannot

reassemble. If the message does not require reassembly, the call can still succeed. But if the message requires reassembly, the call
fails with reason code MQRC_UOW_NOT_AVAILABLE.

For nonpersistent messages, the queue manager does not require a unit of work to be available to perform reassembly.

Each physical message that is a segment has its own message descriptor. For the segments constituting a single logical message, most of
the fields in the message descriptor sre the same for all segments in the logical message; usually it is only the MsgId, Offset, and

MsgFlags fields that differ between segments in the logical message. However, if a segment is placed on a dead-letter queue at an

intermediate queue manager, the DLQ handler retrieves the message specifying the MQGMO_CONVERT option, and this can result in the
character set or encoding of the segment being changed. If the DLQ handler successfully sends the segment on its way, the segment
might have a character set or encoding that differs from the other segments in the logical message when the segment arrives at the
destination queue manager.

A logical message consisting of segments in which the CodedCharSetId and Encoding fields differ cannot be reassembled by the queue

manager into a single logical message. Instead, the queue manager reassembles and returns the first few consecutive segments at the
start of the logical message that have the same character-set identifiers and encodings, and the MQGET call completes with completion
code MQCC_WARNING and reason code MQRC_INCONSISTENT_CCSIDS or MQRC_INCONSISTENT_ENCODINGS, as appropriate. This
happens regardless of whether MQGMO_CONVERT is specified. To retrieve the remaining segments, the application must reissue the

MQGET call without the MQGMO_COMPLETE_MSG option, retrieving the segments one by one. MQGMO_LOGICAL_ORDER can be used to
retrieve the remaining segments in order.

An application that puts segments can also set other fields in the message descriptor to values that differ between segments. However,
there is no advantage in doing this if the receiving application uses MQGMO_COMPLETE_MSG to retrieve the logical message. When the
queue manager reassembles a logical message, it returns in the message descriptor the values from the message descriptor for the first

segment; the only exception is the MsgFlags field, which the queue manager sets to indicate that the reassembled message is the only

segment.

Table 2. Outcome when MQGET or MQCLOSE call is not consistent with group and segment information

Current call is Previous call was MQGET with

MQGMO_LOGICAL_ORDER

Previous call was MQGET

without
MQGMO_LOGICAL_ORDER

MQGET with MQGMO_LOGICAL_ORDER MQCC_FAILED MQCC_FAILED

MQGET without
MQGMO_LOGICAL_ORDER

MQCC_WARNING MQCC_OK

MQCLOSE with an unterminated group

or logical message

MQCC_WARNING MQCC_OK

Page 177 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

If MQGMO_COMPLETE_MSG is specified for a report message, the queue manager performs special processing. The queue manager
checks the queue to see if all the report messages of that report type relating to the different segments in the logical message are present
on the queue. If they are, they can be retrieved as a single message by specifying MQGMO_COMPLETE_MSG. For this to be possible,
either the report messages must be generated by a queue manager or MCA which supports segmentation, or the originating application

must request at least 100 bytes of message data (that is, the appropriate MQRO_*_WITH_DATA or MQRO_*_WITH_FULL_DATA options
must be specified). If less than the full amount of application data is present for a segment, the missing bytes are replaced by nulls in the
report message returned.

If MQGMO_COMPLETE_MSG is specified with MQGMO_MSG_UNDER_CURSOR or MQGMO_BROWSE_MSG_UNDER_CURSOR, the browse
cursor must be positioned on a message whose Offset field in MQMD has a value of 0. If this condition is not satisfied, the call fails with

reason code MQRC_INVALID_MSG_UNDER_CURSOR.

MQGMO_COMPLETE_MSG implies MQGMO_ALL_SEGMENTS_AVAILABLE, which need not therefore be specified.

MQGMO_COMPLETE_MSG can be specified with any of the other MQGMO_* options apart from MQGMO_SYNCPOINT_IF_PERSISTENT, and

with any of the MQMO_* options apart from MQMO_MATCH_OFFSET.

� On z/OS, this option is supported for private and shared queues, but the queue must have an index type of MQIT_GROUP_ID. For
shared queues, the CFSTRUCT object that the queue map to must be at CFLEVEL(3) or CFLEVEL(4).

� On AIX, HP-UX, i5/OS, Solaris, Linux, Windows, plus WebSphere MQ clients connected to these systems, this option is supported for

all local queues.

MQGMO_ALL_MSGS_AVAILABLE

Messages in a group become available for retrieval only when all messages in the group are available. If the queue contains message
groups with some of the messages missing (perhaps because they have been delayed in the network and have not yet arrived), specifying
MQGMO_ALL_MSGS_AVAILABLE prevents retrieval of messages belonging to incomplete groups. However, those messages still contribute
to the value of the CurrentQDepth queue attribute; this means that there may be no retrievable message groups, even though

CurrentQDepth is greater than zero. If there are no other messages that are retrievable, reason code MQRC_NO_MSG_AVAILABLE is

returned after the specified wait interval (if any) has expired.

The processing of MQGMO_ALL_MSGS_AVAILABLE depends on whether MQGMO_LOGICAL_ORDER is also specified:

� If both options are specified, MQGMO_ALL_MSGS_AVAILABLE has an effect only when there is no current group or logical message.
If there is a current group or logical message, MQGMO_ALL_MSGS_AVAILABLE is ignored. This means that
MQGMO_ALL_MSGS_AVAILABLE can remain on when processing messages in logical order.

� If MQGMO_ALL_MSGS_AVAILABLE is specified without MQGMO_LOGICAL_ORDER, MQGMO_ALL_MSGS_AVAILABLE always has an
effect. This means that the option must be turned off after the first message in the group has been removed from the queue, in
order to be able to remove the remaining messages in the group.

Successful completion of an MQGET call specifying MQGMO_ALL_MSGS_AVAILABLE means that at the time that the MQGET call was
issued, all the messages in the group were on the queue. However, be aware that other applications can still remove messages from the
group (the group is not locked to the application that retrieves the first message in the group).

If you omit this option, messages belonging to groups can be retrieved even when the group is incomplete.

MQGMO_ALL_MSGS_AVAILABLE implies MQGMO_ALL_SEGMENTS_AVAILABLE, which need not therefore be specified.

MQGMO_ALL_MSGS_AVAILABLE can be specified with any of the other MQGMO_* options, and with any of the MQMO_* options.

� On z/OS, this option is supported for private and shared queues, but the queue must have an index type of MQIT_GROUP_ID. For
shared queues, the CFSTRUCT object that the queue map to must be at CFLEVEL(3) or CFLEVEL(4).

� On AIX, HP-UX, i5/OS, Solaris, Linux, Windows, plus WebSphere MQ clients connected to these systems, this option is supported for
all local queues.

MQGMO_ALL_SEGMENTS_AVAILABLE

Segments in a logical message become available for retrieval only when all segments in the logical message are available. If the queue
contains segmented messages with some of the segments missing (perhaps because they have been delayed in the network and have not
yet arrived), specifying MQGMO_ALL_SEGMENTS_AVAILABLE prevents retrieval of segments belonging to incomplete logical messages.

However, those segments still contribute to the value of the CurrentQDepth queue attribute; this means that there might be no

retrievable logical messages, even though CurrentQDepth is greater than zero. If there are no other messages that are retrievable,

reason code MQRC_NO_MSG_AVAILABLE is returned after the specified wait interval (if any) has expired.

The processing of MQGMO_ALL_SEGMENTS_AVAILABLE depends on whether MQGMO_LOGICAL_ORDER is also specified:

� If both options are specified, MQGMO_ALL_SEGMENTS_AVAILABLE has an effect only when there is no current logical message. If
there is a current logical message, MQGMO_ALL_SEGMENTS_AVAILABLE is ignored. This means that
MQGMO_ALL_SEGMENTS_AVAILABLE can remain on when processing messages in logical order.

� If MQGMO_ALL_SEGMENTS_AVAILABLE is specified without MQGMO_LOGICAL_ORDER, MQGMO_ALL_SEGMENTS_AVAILABLE always
has an effect. This means that the option must be turned off after the first segment in the logical message has been removed from
the queue, in order to be able to remove the remaining segments in the logical message.

If this option is not specified, message segments can be retrieved even when the logical message is incomplete.

While both MQGMO_COMPLETE_MSG and MQGMO_ALL_SEGMENTS_AVAILABLE require all segments to be available before any of them

can be retrieved, the former returns the complete message, whereas the latter allows the segments to be retrieved one by one.

If MQGMO_ALL_SEGMENTS_AVAILABLE is specified for a report message, the queue manager checks the queue to see if there is at least
one report message for each of the segments that comprise the complete logical message. If there is, the
MQGMO_ALL_SEGMENTS_AVAILABLE condition is satisfied. However, the queue manager does not check the type of the report messages
present, and so there might be a mixture of report types in the report messages relating to the segments of the logical message. As a

result, the success of MQGMO_ALL_SEGMENTS_AVAILABLE does not imply that MQGMO_COMPLETE_MSG will succeed. If there is a
mixture of report types present for the segments of a particular logical message, those report messages must be retrieved one by one.

You can specify MQGMO_ALL_SEGMENTS_AVAILABLE with any of the other MQGMO_* options, and with any of the MQMO_* options.

� On z/OS, this option is supported for private and shared queues, but the queue must have an index type of MQIT_GROUP_ID. For
shared queues, the CFSTRUCT object that the queue map to must be at CFLEVEL(3) or CFLEVEL(4).

Page 178 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

� On AIX, HP-UX, i5/OS, Solaris, Linux, Windows, plus WebSphere MQ clients connected to these systems, this option is supported for
all local queues.

Property options: The following options relate to the properties of the message:

MQGMO_PROPERTIES_AS_Q_DEF

Properties of the message, except those contained in the message descriptor (or extension) should be represented as defined by the
PropertyControl queue attribute. If a MsgHandle is provided this option is ignored and the properties of the message are available via

the MsgHandle, unless the value of the PropertyControl queue attribute is MQPROP_FORCE_MQRFH2.

This is the default action if no property options are specified.

MQGMO_PROPERTIES_IN_HANDLE

Properties of the message should be made available via the MsgHandle. If no message handle is provided the call fails with reason

MQRC_HMSG_ERROR.

MQGMO_NO_PROPERTIES

No properties of the message, except those contained in the message descriptor (or extension) will be retrieved. If a MsgHandle is

provided it will be ignored.

MQGMO_PROPERTIES_FORCE_MQRFH2

Properties of the message, except those contained in the message descriptor (or extension) should be represented using MQRFH2
headers. This provides backward compatibility for applications which are expecting to retrieve properties but are unable to be changed to
use message handles. If a MsgHandle is provided it is ignored.

MQGMO_PROPERTIES_COMPATIBILITY

If the message contains a property with a prefix of "mcd.", "jms.", "usr.", or "mqext.", all message properties are delivered to the

application in an MQRFH2 header. Otherwise all properties of the message, except those contained in the message descriptor (or
extension), are discarded and are no longer accessible to the application.

Default option: If none of the options described above is required, the following option can be used:

MQGMO_NONE

Use this value to indicate that no other options have been specified; all options assume their default values. MQGMO_NONE aids program
documentation; it is not intended that this option be used with any other, but as its value is zero, such use cannot be detected.

The initial value of the Options field is MQGMO_NO_WAIT plus MQGMO_PROPERTIES_AS_Q_DEF.

Parent topic: Fields for MQGMO

This build: January 26, 2011 11:16:03

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12610_

1.18.2.6. Reserved1 (MQCHAR)

This is a reserved field. The initial value of this field is a blank character. This field is ignored if Version is less than MQGMO_VERSION_2.

Parent topic: Fields for MQGMO

This build: January 26, 2011 11:16:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12620_

1.18.2.7. Reserved2 (MQLONG)

This is a reserved field. The initial value of this field is 0. This field is ignored if Version is less than MQGMO_VERSION_4.

Parent topic: Fields for MQGMO

This build: January 26, 2011 11:20:24

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42021_

1.18.2.8. ResolvedQName (MQCHAR48)

This is an output field that the queue manager sets to the local name of the queue from which the message was retrieved, as defined to the
local queue manager. This is different from the name used to open the queue if:

Page 179 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

� An alias queue was opened (in which case, the name of the local queue to which the alias resolved is returned), or

� A model queue was opened (in which case, the name of the dynamic local queue is returned).

The length of this field is given by MQ_Q_NAME_LENGTH. The initial value of this field is the null string in C, and 48 blank characters in
other programming languages.

Parent topic: Fields for MQGMO

This build: January 26, 2011 11:16:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12630_

1.18.2.9. ReturnedLength (MQLONG)

This is an output field that the queue manager sets to the length in bytes of the message data returned by the MQGET call in the Buffer

parameter. If the queue manager does not support this capability, ReturnedLength is set to the value MQRL_UNDEFINED.

When messages are converted between encodings or character sets, the message data can sometimes change size. On return from the

MQGET call:

� If ReturnedLength is not MQRL_UNDEFINED, the number of bytes of message data returned is given by ReturnedLength.

� If ReturnedLength has the value MQRL_UNDEFINED, the number of bytes of message data returned is usually given by the smaller of

BufferLength and DataLength, but can be less than this if the MQGET call completes with reason code

MQRC_TRUNCATED_MSG_ACCEPTED. If this happens, the insignificant bytes in the Buffer parameter are set to nulls.

The following special value is defined:

MQRL_UNDEFINED

Length of returned data not defined.

On z/OS®, the value returned for the ReturnedLength field is always MQRL_UNDEFINED.

The initial value of this field is MQRL_UNDEFINED. This field is ignored if Version is less than MQGMO_VERSION_3.

Parent topic: Fields for MQGMO

This build: January 26, 2011 11:16:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12640_

1.18.2.10. Segmentation (MQCHAR)

This is a flag that indicates whether further segmentation is allowed for the message retrieved. It has one of the following values:

MQSEG_INHIBITED

Segmentation not allowed.

MQSEG_ALLOWED

Segmentation allowed.

On z/OS®, the queue manager always sets this field to MQSEG_INHIBITED.

This is an output field. The initial value of this field is MQSEG_INHIBITED. This field is ignored if Version is less than MQGMO_VERSION_2.

Parent topic: Fields for MQGMO

This build: January 26, 2011 11:16:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12650_

1.18.2.11. SegmentStatus (MQCHAR)

This is a flag that indicates whether the message retrieved is a segment of a logical message. It has one of the following values:

MQSS_NOT_A_SEGMENT

Message is not a segment.

MQSS_SEGMENT

Message is a segment, but is not the last segment of the logical message.

MQSS_LAST_SEGMENT

Page 180 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Message is the last segment of the logical message.

This is also the value returned if the logical message consists of only one segment.

On z/OS®, the queue manager always sets this field to MQSS_NOT_A_SEGMENT.

This is an output field. The initial value of this field is MQSS_NOT_A_SEGMENT. This field is ignored if Version is less than

MQGMO_VERSION_2.

Parent topic: Fields for MQGMO

This build: January 26, 2011 11:16:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12660_

1.18.2.12. Signal1 (MQLONG)

This is an input field that is used only in conjunction with the MQGMO_SET_SIGNAL option; it identifies a signal that is to be delivered when
a message is available.

Note: The data type and usage of this field are determined by the environment; for this reason, applications that you want to port between
different environments must not use signals.

� On z/OS®, this field must contain the address of an Event Control Block (ECB). The ECB must be cleared by the application before the
MQGET call is issued. The storage containing the ECB must not be freed until the queue is closed. The ECB is posted by the queue
manager with one of the signal completion codes described below. These completion codes are set in bits 2 through 31 of the ECB, the

area defined in the z/OS mapping macro IHAECB as being for a user completion code.

� In all other environments, this is a reserved field; its value is not significant.

The signal completion codes are:

MQEC_MSG_ARRIVED

A suitable message has arrived on the queue. This message has not been reserved for the caller; a second MQGET request must be
issued, but another application might retrieve the message before the second request is made.

MQEC_WAIT_INTERVAL_EXPIRED

The specified WaitInterval has expired without a suitable message arriving.

MQEC_WAIT_CANCELED

The wait was canceled for an indeterminate reason (such as the queue manager terminating or the queue being disabled). Reissue the
request if you want further diagnosis.

MQEC_Q_MGR_QUIESCING

The wait was canceled because the queue manager has entered the quiescing state (MQGMO_FAIL_IF_QUIESCING was specified on the
MQGET call).

MQEC_CONNECTION_QUIESCING

The wait was canceled because the connection has entered the quiescing state (MQGMO_FAIL_IF_QUIESCING was specified on the MQGET
call).

The initial value of this field is determined by the environment:

� On z/OS, the initial value is the null pointer.

� In all other environments, the initial value is 0.

Parent topic: Fields for MQGMO

This build: January 26, 2011 11:16:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12670_

1.18.2.13. Signal2 (MQLONG)

This is an input field that is used only in conjunction with the MQGMO_SET_SIGNAL option. It is a reserved field; its value is not significant.

The initial value of this field is 0.

Parent topic: Fields for MQGMO

This build: January 26, 2011 11:16:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12680_

1.18.2.14. StrucId (MQCHAR4)

Page 181 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This is the structure identifier. The value must be:

MQGMO_STRUC_ID

Identifier for get-message options structure.

For the C programming language, the constant MQGMO_STRUC_ID_ARRAY is also defined; this has the same value as
MQGMO_STRUC_ID, but is an array of characters instead of a string.

This is always an input field. The initial value of this field is MQGMO_STRUC_ID.

Parent topic: Fields for MQGMO

This build: January 26, 2011 11:16:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12690_

1.18.2.15. Version (MQLONG)

Version is the structure version number.

The value must be one of the following:

MQGMO_VERSION_1

Version-1 get-message options structure.

This version is supported in all environments.

MQGMO_VERSION_2

Version-2 get-message options structure.

This version is supported in all environments.

MQGMO_VERSION_3

Version-3 get-message options structure.

This version is supported in all environments.

MQGMO_VERSION_4

Version-4 get-message options structure.

This version is supported in all environments.

Fields that exist only in the more-recent versions of the structure are identified as such in the descriptions of the fields. The following
constant specifies the version number of the current version:

MQGMO_CURRENT_VERSION

Current version of get-message options structure.

This is always an input field. The initial value of this field is MQGMO_VERSION_1.

Parent topic: Fields for MQGMO

This build: January 26, 2011 11:16:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12700_

1.18.2.16. WaitInterval (MQLONG)

This is the approximate time, expressed in milliseconds, that the MQGET call waits for a suitable message to arrive (that is, a message

satisfying the selection criteria specified in the MsgDesc parameter of the MQGET call; see the MsgId field described in MQMD – Message

descriptor for more details). If no suitable message has arrived after this time has elapsed, the call completes with MQCC_FAILED and
reason code MQRC_NO_MSG_AVAILABLE.

On z/OS®, the period of time that the MQGET call actually waits is affected by system loading and work-scheduling considerations, and can
vary between the value specified for WaitInterval and approximately 250 milliseconds greater than WaitInterval.

WaitInterval is used in conjunction with the MQGMO_WAIT or MQGMO_SET_SIGNAL option. It is ignored if neither of these is specified. If

one of these is specified, WaitInterval must be greater than or equal to zero, or the following special value:

MQWI_UNLIMITED

Unlimited wait interval.

The initial value of this field is 0.

Page 182 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Parent topic: Fields for MQGMO

This build: January 26, 2011 11:16:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12710_

1.18.3. Initial values and language declarations for MQGMO

C declaration

COBOL declaration

PL/I declaration

System/390 assembler declaration

Visual Basic declaration

Parent topic: MQGMO – Get-message options

This build: January 26, 2011 11:16:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12720_

1.18.3.1. C declaration

typedef struct tagMQGMO MQGMO;

struct tagMQGMO {

 MQCHAR4 StrucId; /* Structure identifier */

 MQLONG Version; /* Structure version number */

 MQLONG Options; /* Options that control the action of

 MQGET */

 MQLONG WaitInterval; /* Wait interval */

 MQLONG Signal1; /* Signal */

 MQLONG Signal2; /* Signal identifier */

 MQCHAR48 ResolvedQName; /* Resolved name of destination queue */

 MQLONG MatchOptions; /* Options controlling selection criteria

 used for MQGET */

 MQCHAR GroupStatus; /* Flag indicating whether message

 retrieved is in a group */

 MQCHAR SegmentStatus; /* Flag indicating whether message

 retrieved is a segment of a logical

Table 1. Initial values of fields in MQGMO for MQGMO

Field name Name of constant Value of constant

StrucId MQGMO_STRUC_ID 'GMO�'

Version MQGMO_VERSION_1 1

Options MQGMO_NO_WAIT 0

WaitInterval None 0

Signal1 None Null pointer on z/OS®; 0 otherwise

Signal2 None 0

ResolvedQName None Null string or blanks

MatchOptions MQMO_MATCH_MSG_ID +

MQMO_MATCH_CORREL_ID

3

GroupStatus MQGS_NOT_IN_GROUP '�'

SegmentStatus MQSS_NOT_A_SEGMENT '�'

Segmentation MQSEG_INHIBITED '�'

Reserved1 None '�'

MsgToken MQMTOK_NONE Nulls

ReturnedLength MQRL_UNDEFINED -1

Reserved2 None '�'

MsgHandle MQHM_NONE 0

Notes:

1. The symbol � represents a single blank character.

2. The value Null string or blanks denotes the null string in C, and blank characters in other programming languages.

3. In the C programming language, the macro variable MQGMO_DEFAULT contains the values listed above. It can be used in

the following way to provide initial values for the fields in the structure:

MQGMO MyGMO = {MQGMO_DEFAULT};

Page 183 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

 message */

 MQCHAR Segmentation; /* Flag indicating whether further

 segmentation is allowed for the message

 retrieved */

 MQCHAR Reserved1; /* Reserved */

 MQBYTE16 MsgToken; /* Message token */

 MQLONG ReturnedLength; /* Length of message data returned

 (bytes) */

 MQLONG Reserved2; /* Reserved */

 MQHMSG MsgHandle; /* Message handle */

};

� On z/OS®, the Signal1 field is declared as PMQLONG.

Parent topic: Initial values and language declarations for MQGMO

This build: January 26, 2011 11:16:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12730_

1.18.3.2. COBOL declaration

** MQGMO structure

 10 MQGMO.

** Structure identifier

 15 MQGMO-STRUCID PIC X(4).

** Structure version number

 15 MQGMO-VERSION PIC S9(9) BINARY.

** Options that control the action of MQGET

 15 MQGMO-OPTIONS PIC S9(9) BINARY.

** Wait interval

 15 MQGMO-WAITINTERVAL PIC S9(9) BINARY.

** Signal

 15 MQGMO-SIGNAL1 PIC S9(9) BINARY.

** Signal identifier

 15 MQGMO-SIGNAL2 PIC S9(9) BINARY.

** Resolved name of destination queue

 15 MQGMO-RESOLVEDQNAME PIC X(48).

** Options controlling selection criteria used for MQGET

 15 MQGMO-MATCHOPTIONS PIC S9(9) BINARY.

** Flag indicating whether message retrieved is in a group

 15 MQGMO-GROUPSTATUS PIC X.

** Flag indicating whether message retrieved is a segment of a

** logical message

 15 MQGMO-SEGMENTSTATUS PIC X.

** Flag indicating whether further segmentation is allowed for the

** message retrieved

 15 MQGMO-SEGMENTATION PIC X.

** Reserved

 15 MQGMO-RESERVED1 PIC X.

** Message token

 15 MQGMO-MSGTOKEN PIC X(16).

** Length of message data returned (bytes)

 15 MQGMO-RETURNEDLENGTH PIC S9(9) BINARY.

** Reserved

 15 MQGMO-RESERVED2 PIC S9(9) BINARY.

** Message handle

 15 MQGMO-MSGHANDLE PIC S9(18) BINARY.

� On z/OS®, the Signal1 field is declared as POINTER.

Parent topic: Initial values and language declarations for MQGMO

This build: January 26, 2011 11:16:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12740_

1.18.3.3. PL/I declaration

dcl

 1 MQGMO based,

 3 StrucId char(4), /* Structure identifier */

 3 Version fixed bin(31), /* Structure version number */

 3 Options fixed bin(31), /* Options that control the action of

 MQGET */

 3 WaitInterval fixed bin(31), /* Wait interval */

 3 Signal1 fixed bin(31), /* Signal */

 3 Signal2 fixed bin(31), /* Signal identifier */

 3 ResolvedQName char(48), /* Resolved name of destination

 queue */

 3 MatchOptions fixed bin(31), /* Options controlling selection

 criteria used for MQGET */

Page 184 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

 3 GroupStatus char(1), /* Flag indicating whether message

 retrieved is in a group */

 3 SegmentStatus char(1), /* Flag indicating whether message

 retrieved is a segment of a logical

 message */

 3 Segmentation char(1), /* Flag indicating whether further

 segmentation is allowed for the

 message retrieved */

 3 Reserved1 char(1), /* Reserved */

 3 MsgToken char(16), /* Message token */

 3 ReturnedLength fixed bin(31); /* Length of message data returned

 (bytes) */

 3 Reserved2 fixed bin(31); /* Reserved */

 3 MsgHandle fixed bin(63); /* Message handle */

� On z/OS®, the Signal1 field is declared as pointer.

Parent topic: Initial values and language declarations for MQGMO

This build: January 26, 2011 11:16:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12750_

1.18.3.4. System/390® assembler declaration

MQGMO DSECT

MQGMO_STRUCID DS CL4 Structure identifier

MQGMO_VERSION DS F Structure version number

MQGMO_OPTIONS DS F Options that control the action of

* MQGET

MQGMO_WAITINTERVAL DS F Wait interval

MQGMO_SIGNAL1 DS F Signal

MQGMO_SIGNAL2 DS F Signal identifier

MQGMO_RESOLVEDQNAME DS CL48 Resolved name of destination queue

MQGMO_MATCHOPTIONS DS F Options controlling selection criteria

* used for MQGET

MQGMO_GROUPSTATUS DS CL1 Flag indicating whether message

* retrieved is in a group

MQGMO_SEGMENTSTATUS DS CL1 Flag indicating whether message

* retrieved is a segment of a logical

* message

MQGMO_SEGMENTATION DS CL1 Flag indicating whether further

* segmentation is allowed for the message

* retrieved

MQGMO_RESERVED1 DS CL1 Reserved

MQGMO_MSGTOKEN DS XL16 Message token

MQGMO_RETURNEDLENGTH DS F Length of message data returned (bytes)

MQGMO_RESERVED2 DS F Reserved

MQGMO_MSGHANDLE DS D Message handle

MQGMO_LENGTH EQU *-MQGMO

 ORG MQGMO

MQGMO_AREA DS CL(MQGMO_LENGTH)

Parent topic: Initial values and language declarations for MQGMO

This build: January 26, 2011 11:16:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12760_

1.18.3.5. Visual Basic declaration

Type MQGMO

 StrucId As String*4 'Structure identifier'

 Version As Long 'Structure version number'

 Options As Long 'Options that control the action of MQGET'

 WaitInterval As Long 'Wait interval'

 Signal1 As Long 'Signal'

 Signal2 As Long 'Signal identifier'

 ResolvedQName As String*48 'Resolved name of destination queue'

 MatchOptions As Long 'Options controlling selection criteria'

 'used for MQGET'

 GroupStatus As String*1 'Flag indicating whether message'

 'retrieved is in a group'

 SegmentStatus As String*1 'Flag indicating whether message'

 'retrieved is a segment of a logical'

 'message'

 Segmentation As String*1 'Flag indicating whether further'

 'segmentation is allowed for the message'

 'retrieved'

 Reserved1 As String*1 'Reserved'

 MsgToken As MQBYTE16 'Message token'

 ReturnedLength As Long 'Length of message data returned (bytes)'

End Type

Page 185 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Parent topic: Initial values and language declarations for MQGMO

This build: January 26, 2011 11:16:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12770_

1.19. MQIIH – IMS™ information header

The following table summarizes the fields in the structure.

Overview for MQIIH
Availability: All WebSphere® MQ systems and WebSphere MQ clients.

Fields for MQIIH

Initial values and language declarations for MQIIH

Parent topic: Data type descriptions

This build: January 26, 2011 11:16:13

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12780_

1.19.1. Overview for MQIIH

Availability: All WebSphere® MQ systems and WebSphere MQ clients.

Purpose: The MQIIH structure describes the information that must be present at the start of a message sent to the IMS™ bridge through
WebSphere MQ for z/OS®.

Format name: MQFMT_IMS.

Character set and encoding: Special conditions apply to the character set and encoding used for the MQIIH structure and application
message data:

� Applications that connect to the queue manager that owns the IMS bridge queue must provide an MQIIH structure that is in the
character set and encoding of the queue manager. This is because data conversion of the MQIIH structure is not performed in this
case.

� Applications that connect to other queue managers can provide an MQIIH structure that is in any of the supported character sets and
encodings; the receiving message channel agent connected to the queue manager that owns the IMS bridge queue converts the
MQIIH.

Note: There is one exception to this. If the queue manager that owns the IMS bridge queue is using CICS® for distributed queuing,
the MQIIH must be in the character set and encoding of the queue manager that owns the IMS bridge queue.

� The application message data following the MQIIH structure must be in the same character set and encoding as the MQIIH structure.
Do not use the CodedCharSetId and Encoding fields in the MQIIH structure to specify the character set and encoding of the

application message data.

You must provide a data-conversion exit to convert the application message data if the data is not one of the built-in formats
supported by the queue manager.

Parent topic: MQIIH – IMS information header

This build: January 26, 2011 11:16:13

Table 1. Fields in MQIIH

Field Description Topic

StrucId Structure identifier StrucId

Version Structure version number Version

StrucLength Length of MQIIH structure StrucLength

Encoding Reserved Encoding

CodedCharSetId Reserved CodedCharSetId

Format MQ format name of data that follows MQIIH Format

Flags Flags Flags

LTermOverride Logical terminal override LTermOverride

MFSMapName Message format services map name MFSMapName

ReplyToFormat MQ format name of reply message ReplyToFormat

Authenticator RACF™ password or passticket Authenticator

TranInstanceId Transaction instance identifier TranInstanceId

TranState Transaction state TranState

CommitMode Commit mode CommitMode

SecurityScope Security scope SecurityScope

Reserved Reserved Reserved

Page 186 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12790_

1.19.2. Fields for MQIIH

The MQIIH structure contains the following fields; the fields are described in alphabetic order:

Authenticator (MQCHAR8)

CodedCharSetId (MQLONG)

CommitMode (MQCHAR)

Encoding (MQLONG)

Flags (MQLONG)

Format (MQCHAR8)

LTermOverride (MQCHAR8)

MFSMapName (MQCHAR8)

ReplyToFormat (MQCHAR8)

Reserved (MQCHAR)

SecurityScope (MQCHAR)

StrucId (MQCHAR4)

StrucLength (MQLONG)

TranInstanceId (MQBYTE16)

TranState (MQCHAR)

Version (MQLONG)

Parent topic: MQIIH – IMS information header

This build: January 26, 2011 11:16:13

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12800_

1.19.2.1. Authenticator (MQCHAR8)

This is the RACF® password or passticket. It is optional; if specified, it is used with the user ID in the MQMD security context to build a
Utoken that is sent to IMS™ to provide a security context. If it is not specified, the user ID is used without verification. This depends on the
setting of the RACF switches, which may require an authenticator to be present.

This is ignored if the first byte is blank or null. The following special value can be used:

MQIAUT_NONE

No authentication.

For the C programming language, the constant MQIAUT_NONE_ARRAY is also defined; this has the same value as MQIAUT_NONE, but is

an array of characters instead of a string.

The length of this field is given by MQ_AUTHENTICATOR_LENGTH. The initial value of this field is MQIAUT_NONE.

Parent topic: Fields for MQIIH

This build: January 26, 2011 11:16:13

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12810_

1.19.2.2. CodedCharSetId (MQLONG)

Page 187 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This is a reserved field; its value is not significant. The initial value of this field is 0.

The Character Set Id for supported structures which follow a MQIIH structure is the same as that of the MQIIH structure itself and taken
from any preceding MQ header.

Parent topic: Fields for MQIIH

This build: January 26, 2011 11:16:13

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12820_

1.19.2.3. CommitMode (MQCHAR)

This is the IMS™ commit mode. See the OTMA Reference for more information about IMS commit modes. The value must be one of the
following:

MQICM_COMMIT_THEN_SEND

Commit then send.

This mode implies double queuing of output, but shorter region occupancy times. Fast-path and conversational transactions cannot run
with this mode.

MQICM_SEND_THEN_COMMIT

Send then commit.

Any IMS transaction initiated as a result of a commit mpde of MQICM_SEND_THEN_COMMIT runs in RESPONSE mode regardless of how the
transaction is defined in the IMS system definition (MSGTYPE parameter in the TRANSACT macro). This also applies to transactions initiated

by means of a transaction switch.

The initial value of this field is MQICM_COMMIT_THEN_SEND.

Parent topic: Fields for MQIIH

This build: January 26, 2011 11:16:14

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12830_

1.19.2.4. Encoding (MQLONG)

This is a reserved field; its value is not significant. The initial value of this field is 0.

The Encoding for supported structures which follow a MQIIH structure is the same as that of the MQIIH structure itself and taken from any
preceding MQ header.

Parent topic: Fields for MQIIH

This build: January 26, 2011 11:16:14

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12840_

1.19.2.5. Flags (MQLONG)

The flags value must be:

MQIIH_NONE

No flags.

MQIIH_PASS_EXPIRATION

The reply message contains:

� The same expiry report options as the request message

� The remaining expiry time from the request message with no adjustment made for the bridge's processing time

If this value is not set, the expiry time is set to unlimited.

MQIIH_REPLY_FORMAT_NONE

Sets the MQIIH.Format field of the reply to MQFMT_NONE.

MQIIH_IGNORE_PURG

Sets the TMAMIPRG indicator in the OTMA prefix, which requests that OTMA ignores PURG calls on the TP PCB for CM0 transactions.

The initial value of this field is MQIIH_NONE.

Page 188 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Parent topic: Fields for MQIIH

This build: January 26, 2011 11:16:14

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12850_

1.19.2.6. Format (MQCHAR8)

This specifies the MQ format name of the data that follows the MQIIH structure.

On the MQPUT or MQPUT1 call, the application must set this field to the value appropriate to the data. The rules for coding this field are the

same as those for the Format field in MQMD.

The length of this field is given by MQ_FORMAT_LENGTH. The initial value of this field is MQFMT_NONE.

Parent topic: Fields for MQIIH

This build: January 26, 2011 11:16:14

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12860_

1.19.2.7. LTermOverride (MQCHAR8)

The logical terminal override, placed in the IO PCB field. It is optional; if it is not specified, the TPIPE name is used. It is ignored if the first
byte is blank, or null.

The length of this field is given by MQ_LTERM_OVERRIDE_LENGTH. The initial value of this field is 8 blank characters.

Parent topic: Fields for MQIIH

This build: January 26, 2011 11:16:14

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12870_

1.19.2.8. MFSMapName (MQCHAR8)

The message format services map name, placed in the IO PCB field. It is optional. On input it represents the MID, on output it represents
the MOD. It is ignored if the first byte is blank or null.

The length of this field is given by MQ_MFS_MAP_NAME_LENGTH. The initial value of this field is 8 blank characters.

Parent topic: Fields for MQIIH

This build: January 26, 2011 11:16:14

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12880_

1.19.2.9. ReplyToFormat (MQCHAR8)

This is the MQ format name of the reply message that is sent in response to the current message. The rules for coding this are the same as
those for the Format field in MQMD.

The length of this field is given by MQ_FORMAT_LENGTH. The initial value of this field is MQFMT_NONE.

Parent topic: Fields for MQIIH

This build: January 26, 2011 11:16:14

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12890_

1.19.2.10. Reserved (MQCHAR)

This is a reserved field; it must be blank.

Parent topic: Fields for MQIIH

Page 189 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This build: January 26, 2011 11:16:14

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12900_

1.19.2.11. SecurityScope (MQCHAR)

This indicates the IMS™ security processing required. The following values are defined:

MQISS_CHECK

Check security scope: an ACEE is built in the control region, but not in the dependent region.

MQISS_FULL

Full security scope: a cached ACEE is built in the control region and a non-cached ACEE is built in the dependent region. If you use
MQISS_FULL, ensure that the user ID for which the ACEE is built has access to the resources used in the dependent region.

If neither MQISS_CHECK nor MQISS_FULL is specified for this field, MQISS_CHECK is assumed.

The initial value of this field is MQISS_CHECK.

Parent topic: Fields for MQIIH

This build: January 26, 2011 11:16:14

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12910_

1.19.2.12. StrucId (MQCHAR4)

This is the structure identifier. The value must be:

MQIIH_STRUC_ID

Identifier for the IMS™ information header structure.

For the C programming language, the constant MQIIH_STRUC_ID_ARRAY is also defined; this has the same value as MQIIH_STRUC_ID,
but is an array of characters instead of a string.

The initial value of this field is MQIIH_STRUC_ID.

Parent topic: Fields for MQIIH

This build: January 26, 2011 11:16:14

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12920_

1.19.2.13. StrucLength (MQLONG)

This is the length of MQIIH structure. The value must be:

MQIIH_LENGTH_1

Length of the IMS™ information header structure.

The initial value of this field is MQIIH_LENGTH_1.

Parent topic: Fields for MQIIH

This build: January 26, 2011 11:16:14

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12930_

1.19.2.14. TranInstanceId (MQBYTE16)

This is the transaction instance identifier. This field is used by output messages from IMS™, so is ignored on first input. If you set
TranState to MQITS_IN_CONVERSATION, this must be provided in the next input, and all subsequent inputs, to enable IMS to correlate the

messages to the correct conversation. You can use the following special value:

MQITII_NONE

No transaction instance identifier.

Page 190 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

For the C programming language, the constant MQITII_NONE_ARRAY is also defined; this has the same value as MQITII_NONE, but is an
array of characters instead of a string.

The length of this field is given by MQ_TRAN_INSTANCE_ID_LENGTH. The initial value of this field is MQITII_NONE.

Parent topic: Fields for MQIIH

This build: January 26, 2011 11:16:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12940_

1.19.2.15. TranState (MQCHAR)

This indicates the IMS™ conversation state. This is ignored on first input because no conversation exists. On subsequent inputs it indicates

whether a conversation is active or not. On output it is set by IMS. The value must be one of the following:

MQITS_IN_CONVERSATION

In conversation.

MQITS_NOT_IN_CONVERSATION

Not in conversation.

MQITS_ARCHITECTED

Return transaction state data in architected form.

This value is used only with the IMS /DISPLAY TRAN command. It returns the transaction state data in the IMS architected form instead of

character form. See the WebSphere MQ Application Programming Guide for further details.

The initial value of this field is MQITS_NOT_IN_CONVERSATION.

Parent topic: Fields for MQIIH

This build: January 26, 2011 11:16:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12950_

1.19.2.16. Version (MQLONG)

This is the structure version number. The value must be:

MQIIH_VERSION_1

Version number for IMS™ information header structure.

The following constant specifies the version number of the current version:

MQIIH_CURRENT_VERSION

Current version of IMS information header structure.

The initial value of this field is MQIIH_VERSION_1.

Parent topic: Fields for MQIIH

This build: January 26, 2011 11:16:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12960_

1.19.3. Initial values and language declarations for MQIIH

Table 1. Initial values of fields in MQIIH for MQIIH

Field name Name of constant Value of constant

StrucId MQIIH_STRUC_ID 'IIH�'

Version MQIIH_VERSION_1 1

StrucLength MQIIH_LENGTH_1 84

Encoding None 0

CodedCharSetId None 0

Format MQFMT_NONE Blanks

Flags MQIIH_NONE 0

LTermOverride None Blanks

MFSMapName None Blanks

Page 191 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

C declaration

COBOL declaration

PL/I declaration

System/390 assembler declaration

Visual Basic declaration

Parent topic: MQIIH – IMS information header

This build: January 26, 2011 11:16:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12970_

1.19.3.1. C declaration

typedef struct tagMQIIH MQIIH;

struct tagMQIIH {

 MQCHAR4 StrucId; /* Structure identifier */

 MQLONG Version; /* Structure version number */

 MQLONG StrucLength; /* Length of MQIIH structure */

 MQLONG Encoding; /* Reserved */

 MQLONG CodedCharSetId; /* Reserved */

 MQCHAR8 Format; /* MQ format name of data that follows

 MQIIH */

 MQLONG Flags; /* Flags */

 MQCHAR8 LTermOverride; /* Logical terminal override */

 MQCHAR8 MFSMapName; /* Message format services map name */

 MQCHAR8 ReplyToFormat; /* MQ format name of reply message */

 MQCHAR8 Authenticator; /* RACF password or passticket */

 MQBYTE16 TranInstanceId; /* Transaction instance identifier */

 MQCHAR TranState; /* Transaction state */

 MQCHAR CommitMode; /* Commit mode */

 MQCHAR SecurityScope; /* Security scope */

 MQCHAR Reserved; /* Reserved */

};

Parent topic: Initial values and language declarations for MQIIH

This build: January 26, 2011 11:16:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12980_

1.19.3.2. COBOL declaration

** MQIIH structure

 10 MQIIH.

** Structure identifier

 15 MQIIH-STRUCID PIC X(4).

** Structure version number

 15 MQIIH-VERSION PIC S9(9) BINARY.

** Length of MQIIH structure

 15 MQIIH-STRUCLENGTH PIC S9(9) BINARY.

** Reserved

 15 MQIIH-ENCODING PIC S9(9) BINARY.

** Reserved

 15 MQIIH-CODEDCHARSETID PIC S9(9) BINARY.

** MQ format name of data that follows MQIIH

ReplyToFormat MQFMT_NONE Blanks

Authenticator MQIAUT_NONE Blanks

TranInstanceId MQITII_NONE Nulls

TranState MQITS_NOT_IN_CONVERSATION '�'

CommitMode MQICM_COMMIT_THEN_SEND '0'

SecurityScope MQISS_CHECK 'C'

Reserved None '�'

Notes:

1. The symbol � represents a single blank character.

2. In the C programming language, the macro variable MQIIH_DEFAULT contains the values listed above. It can be used in

the following way to provide initial values for the fields in the structure:

MQIIH MyIIH = {MQIIH_DEFAULT};

Page 192 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

 15 MQIIH-FORMAT PIC X(8).

** Flags

 15 MQIIH-FLAGS PIC S9(9) BINARY.

** Logical terminal override

 15 MQIIH-LTERMOVERRIDE PIC X(8).

** Message format services map name

 15 MQIIH-MFSMAPNAME PIC X(8).

** MQ format name of reply message

 15 MQIIH-REPLYTOFORMAT PIC X(8).

** RACF password or passticket

 15 MQIIH-AUTHENTICATOR PIC X(8).

** Transaction instance identifier

 15 MQIIH-TRANINSTANCEID PIC X(16).

** Transaction state

 15 MQIIH-TRANSTATE PIC X.

** Commit mode

 15 MQIIH-COMMITMODE PIC X.

** Security scope

 15 MQIIH-SECURITYSCOPE PIC X.

** Reserved

 15 MQIIH-RESERVED PIC X.

Parent topic: Initial values and language declarations for MQIIH

This build: January 26, 2011 11:16:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr12990_

1.19.3.3. PL/I declaration

dcl

 1 MQIIH based,

 3 StrucId char(4), /* Structure identifier */

 3 Version fixed bin(31), /* Structure version number */

 3 StrucLength fixed bin(31), /* Length of MQIIH structure */

 3 Encoding fixed bin(31), /* Reserved */

 3 CodedCharSetId fixed bin(31), /* Reserved */

 3 Format char(8), /* MQ format name of data that follows

 MQIIH */

 3 Flags fixed bin(31), /* Flags */

 3 LTermOverride char(8), /* Logical terminal override */

 3 MFSMapName char(8), /* Message format services map name */

 3 ReplyToFormat char(8), /* MQ format name of reply message */

 3 Authenticator char(8), /* RACF password or passticket */

 3 TranInstanceId char(16), /* Transaction instance identifier */

 3 TranState char(1), /* Transaction state */

 3 CommitMode char(1), /* Commit mode */

 3 SecurityScope char(1), /* Security scope */

 3 Reserved char(1); /* Reserved */

Parent topic: Initial values and language declarations for MQIIH

This build: January 26, 2011 11:16:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13000_

1.19.3.4. System/390® assembler declaration

MQIIH DSECT

MQIIH_STRUCID DS CL4 Structure identifier

MQIIH_VERSION DS F Structure version number

MQIIH_STRUCLENGTH DS F Length of MQIIH structure

MQIIH_ENCODING DS F Reserved

MQIIH_CODEDCHARSETID DS F Reserved

MQIIH_FORMAT DS CL8 MQ format name of data that follows

* MQIIH

MQIIH_FLAGS DS F Flags

MQIIH_LTERMOVERRIDE DS CL8 Logical terminal override

MQIIH_MFSMAPNAME DS CL8 Message format services map name

MQIIH_REPLYTOFORMAT DS CL8 MQ format name of reply message

MQIIH_AUTHENTICATOR DS CL8 RACF password or passticket

MQIIH_TRANINSTANCEID DS XL16 Transaction instance identifier

MQIIH_TRANSTATE DS CL1 Transaction state

MQIIH_COMMITMODE DS CL1 Commit mode

MQIIH_SECURITYSCOPE DS CL1 Security scope

MQIIH_RESERVED DS CL1 Reserved

*

MQIIH_LENGTH EQU *-MQIIH

 ORG MQIIH

MQIIH_AREA DS CL(MQIIH_LENGTH)

Parent topic: Initial values and language declarations for MQIIH

Page 193 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This build: January 26, 2011 11:16:16

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13010_

1.19.3.5. Visual Basic declaration

Type MQIIH

 StrucId As String*4 'Structure identifier'

 Version As Long 'Structure version number'

 StrucLength As Long 'Length of MQIIH structure'

 Encoding As Long 'Reserved'

 CodedCharSetId As Long 'Reserved'

 Format As String*8 'MQ format name of data that follows MQIIH'

 Flags As Long 'Flags'

 LTermOverride As String*8 'Logical terminal override'

 MFSMapName As String*8 'Message format services map name'

 ReplyToFormat As String*8 'MQ format name of reply message'

 Authenticator As String*8 'RACF password or passticket'

 TranInstanceId As MQBYTE16 'Transaction instance identifier'

 TranState As String*1 'Transaction state'

 CommitMode As String*1 'Commit mode'

 SecurityScope As String*1 'Security scope'

 Reserved As String*1 'Reserved'

End Type

Parent topic: Initial values and language declarations for MQIIH

This build: January 26, 2011 11:16:16

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13020_

1.20. MQIMPO – Inquire message property options

The following table summarizes the fields in the structure. MQIMPO structure - inquire message property options

Overview for MQIMPO
The inquire message properties options structure.

Fields for MQIMPO
Inquire message property options structure - fields

Initial values and language declarations for MQIMPO

Inquire message property options structure - Initial values

Parent topic: Data type descriptions

This build: January 26, 2011 11:20:29

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42435_

1.20.1. Overview for MQIMPO

The inquire message properties options structure.

Availability: All WebSphere® MQ systems and WebSphere MQ clients.

Purpose: The MQIMPO structure allows applications to specify options that control how properties of messages are inquired. The structure

Table 1. Fields in MQIMPO

Field Description Topic

StrucId Structure identifier StrucId

Version Structure version number Version

Options Options controlling the action of MQINQMP Options

RequestedEncoding Encoding into which the inquired property is to be

converted

RequestedEncoding

RequestedCCSID Character set of the inquired property RequestedCCSID

ReturnedEncoding Encoding of the returned value ReturnedEncoding

ReturnedCCSID Character set of returned value ReturnedCCSID

Reserved1 Reserved field ReturnedCCSID

ReturnedName Name of the inquired property ReturnedName

TypeString String representation of the data type of the property TypeString

Page 194 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

is an input parameter on the MQINQMP call.

Character set and encoding: Data in MQIMPO must be in the character set of the application and encoding of the application
(MQENC_NATIVE).

Parent topic: MQIMPO – Inquire message property options

This build: January 26, 2011 11:20:30

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42440_

1.20.2. Fields for MQIMPO

Inquire message property options structure - fields

The MQIMPO structure contains the following fields; the fields are described in alphabetic order:

Options (MQLONG)
Inquire message property options structure - Options field

RequestedCCSID (MQLONG)
Inquire message property options structure - RequestedCCSID field

RequestedEncoding (MQLONG)

Inquire message property options structure - RequestedEncoding field

Reserved1 (MQCHAR)

ReturnedCCSID (MQLONG)
Inquire message property options structure - ReturnedCCSID field

ReturnedEncoding (MQLONG)
Inquire message property options structure - ReturnedEncoding field

ReturnedName (MQCHARV)

Inquire message property options structure - ReturnedName field

StrucId (MQCHAR4)
Inquire message property options structure - StrucId field

TypeString (MQCHAR8)
Inquire message property options structure - TypeString field

Version (MQLONG)
Inquire message property options structure - Version field

Parent topic: MQIMPO – Inquire message property options

This build: January 26, 2011 11:20:30

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42450_

1.20.2.1. Options (MQLONG)

Inquire message property options structure - Options field

The following options control the action of MQINQMP. You can specify one or more of these options, and if you need more than one, the
values can be:

� Added together (do not add the same constant more than once), or

� Combined using the bitwise OR operation (if the programming language supports bit operations).

Combinations of options that are not valid are noted; all other combinations are valid.

Value data options: The following options relate to the processing of the value data when the property is retrieved from the message.

MQIMPO_CONVERT_VALUE

This option requests that the value of the property be converted to conform to the RequestedCCSID and RequestedEncoding values

specified before the MQINQMP call returns the property value in the Value area.

� If conversion is successful, the ReturnedCCSID and ReturnedEncoding fields are set to the same as RequestedCCSID and

RequestedEncoding on return from the MQINQMP call.

� If conversion fails, but the MQINQMP call otherwise completes without error, the property value is returned unconverted.

If the property is a string, the ReturnedCCSID and ReturnedEncoding fields are set to the character set and encoding of the

unconverted string.
The completion code is MQCC_WARNING in this case, with reason code MQRC_PROP_VALUE_NOT_CONVERTED. The property cursor

Page 195 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

is advanced to the returned property.

If the property value expands during conversion, and exceeds the size of the Value parameter, the value is returned unconverted, with

completion code MQCC_FAILED; the reason code is set to MQRC_PROPERTY_VALUE_TOO_BIG.

The DataLength parameter of the MQINQMP call returns the length that the property value would have converted to, in order to allow the

application to determine the size of the buffer required to accommodate the converted property value. The property cursor is unchanged.

This option also requests that:

� If the property name contains a wildcard, and

� The ReturnedName field is initialized with an address or offset for the returned name,

then the returned name is converted to conform to the RequestedCCSID and RequestedEncoding values.

� If conversion is successful, the VSCCSID field of ReturnedName and the encoding of the returned name are set to the input value of

RequestedCCSID and RequestedEncoding.

� If conversion fails, but the MQINQMP call otherwise completes without error or warning, the returned name is unconverted. The

completion code is MQCC_WARNING in this case, with reason code MQRC_PROP_NAME_NOT_CONVERTED.

The property cursor is advanced to the returned property. MQRC_PROP_VALUE_NOT_CONVERTED is returned if both the value and

the name are not converted.

If the returned name expands during conversion, and exceeds the size of the VSBufsize field of the RequestedName, the returned string is

left unconverted, with completion code MQCC_FAILED and the reason code is set to MQRC_PROPERTY_NAME_TOO_BIG.

The VSLength field of the MQCHARV structure returns the length that the property value would have converted to, in order to allow the

application to determine the size of the buffer required to accommodate the converted property value. The property cursor is unchanged.

MQIMPO_CONVERT_TYPE

This option requests that the value of the property be converted from its current data type, into the data type specified on the Type

parameter of the MQINQMP call.

� If conversion is successful, the Type parameter is unchanged on return of the MQINQMP call.

� If conversion fails, but the MQINQMP call otherwise completes without error, the call fails with reason
MQRC_PROP_CONV_NOT_SUPPORTED. The property cursor is unchanged.

If the conversion of the data type causes the value to expand during conversion, and the converted value exceeds the size of the Value

parameter, the value is returned unconverted, with completion code MQCC_FAILED and the reason code is set to
MQRC_PROPERTY_VALUE_TOO_BIG.

The DataLength parameter of the MQINQMP call returns the length that the property value would have converted to, in order to allow the

application to determine the size of the buffer required to accommodate the converted property value. The property cursor is unchanged.

If the value of the Type parameter of the MQINQMP call is not valid, the call fails with reason MQRC_PROPERTY_TYPE_ERROR.

If the requested data type conversion is not supported, the call fails with reason MQRC_PROP_CONV_NOT_SUPPORTED. The following data
type conversions are supported:

The general rules governing the supported conversions are as follows:

� Numeric property values can be converted from one data type to another, provided that no data is lost during the conversion.

For example, the value of a property with data type MQTYPE_INT32 can be converted into a value with data type MQTYPE_INT64,
but cannot be converted into a value with data type MQTYPE_INT16.

� A property value of any data type can be converted into a string.

� A string property value can be converted to any other data type provided the string is formatted correctly for the conversion. If an
application attempts to convert a string property value that is not formatted correctly, WebSphere® MQ returns reason code
MQRC_PROP_NUMBER_FORMAT_ERROR.

� If an application attempts a conversion that is not supported, WebSphere MQ returns reason code
MQRC_PROP_CONV_NOT_SUPPORTED.

The specific rules for converting a property value from one data type to another are as follows:

� When converting an MQTYPE_BOOLEAN property value to a string, the value TRUE is converted to the string "TRUE", and the value

false is converted to the string "FALSE".

� When converting an MQTYPE_BOOLEAN property value to a numeric data type, the value TRUE is converted to one, and the value
FALSE is converted to zero.

� When converting a string property value to an MQTYPE_BOOLEAN value, the string "TRUE" , or "1" , is converted to TRUE, and the
string "FALSE", or "0", is converted to FALSE.

Note that the terms "TRUE" and "FALSE" are not case sensitive.

Any other string cannot be converted; WebSphere MQ returns reason code MQRC_PROP_NUMBER_FORMAT_ERROR.

Property data type Supported target data types

MQTYPE_BOOLEAN MQTYPE_STRING, MQTYPE_INT8, MQTYPE_INT16, MQTYPE_INT32,

MQTYPE_INT64

MQTYPE_BYTE_STRING MQTYPE_STRING

MQTYPE_INT8 MQTYPE_STRING, MQTYPE_INT16, MQTYPE_INT32, MQTYPE_INT64

MQTYPE_INT16 MQTYPE_STRING, MQTYPE_INT32, MQTYPE_INT64

MQTYPE_INT32 MQTYPE_STRING, MQTYPE_INT64

MQTYPE_INT64 MQTYPE_STRING

MQTYPE_FLOAT32 MQTYPE_STRING, MQTYPE_FLOAT64

MQTYPE_FLOAT64 MQTYPE_STRING

MQTYPE_STRING MQTYPE_BOOLEAN, MQTYPE_INT8, MQTYPE_INT16, MQTYPE_INT32,

MQTYPE_INT64, MQTYPE_FLOAT32, MQTYPE_FLOAT64

MQTYPE_NULL None

Page 196 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

� When converting a string property value to a value with data type MQTYPE_INT8, MQTYPE_INT16, MQTYPE_INT32 or
MQTYPE_INT64, the string must have the following format:

[blanks][sign]digits

The meanings of the components of the string are as follows:

blanks

Optional leading blank characters

sign

An optional plus sign (+) or minus sign (-) character.

digits

A contiguous sequence of digit characters (0-9). At least one digit character must be present.

After the sequence of digit characters, the string can contain other characters that are not digit characters, but the conversion stops
as soon as the first of these characters is reached. The string is assumed to represent a decimal integer.

WebSphere MQ returns reason code MQRC_PROP_NUMBER_FORMAT_ERROR if the string is not formatted correctly.

� When converting a string property value to a value with data type MQTYPE_FLOAT32 or MQTYPE_FLOAT64, the string must have the

following format:

 [blanks][sign]digits[.digits][e_char[e_sign]e_digits]

The meanings of the components of the string are as follows:

blanks

Optional leading blank characters

sign

An optional plus sign (+) or minus sign (-) character.

digits

A contiguous sequence of digit characters (0-9). At least one digit character must be present.

e_char

An exponent character, which is either "E" or "e".

e_sign

An optional plus sign (+) or minus sign (-) character for the exponent.

e_digits

A contiguous sequence of digit characters (0-9) for the exponent. At least one digit character must be present if the string
contains an exponent character.

After the sequence of digit characters, or the optional characters representing an exponent, the string can contain other characters
that are not digit characters, but the conversion stops as soon as the first of these characters is reached. The string is assumed to
represent a decimal floating point number with an exponent that is a power of 10.

WebSphere MQ returns reason code MQRC_PROP_NUMBER_FORMAT_ERROR if the string is not formatted correctly.

� When converting a numeric property value to a string, the value is converted to the string representation of the value as a decimal
number, not the string containing the ASCII character for that value. For example, the integer 65 is converted to the string "65", not
the string "A".

� When converting a byte string property value to a string, each byte is converted to the two hexadecimal characters that represent
the byte. For example, the byte array {0xF1, 0x12, 0x00, 0xFF} is converted to the string "F11200FF".

MQIMPO_QUERY_LENGTH

Query the type and length of the property value. The length is returned in the DataLength parameter of the MQINQMP call. The property

value is not returned.

If a ReturnedName buffer is specified, the VSLength field of the MQCHARV structure is filled in with the length of the property name. The

property name is not returned.

Iteration options: The following options relate to iterating over properties, using a name with a wildcard character

MQIMPO_INQ_FIRST

Inquire on the first property that matches the specified name. After this call, a cursor is established on the property that is returned.

This is the default value.

The MQIMPO_INQ_PROP_UNDER_CURSOR option can subsequently be used with an MQINQMP call, if required, to inquire on the same
property again.

Note that there is only one property cursor; therefore, if the property name, specified in the MQINQMP call, changes the cursor is reset.

This option is not valid with either of the following options:

MQIMPO_INQ_NEXT

MQIMPO_INQ_PROP_UNDER_CURSOR

MQIMPO_INQ_NEXT

Inquires on the next property that matches the specified name, continuing the search from the property cursor. The cursor is advanced to
the property that is returned.

If this is the first MQINQMP call for the specified name, then the first property that matches the specified name is returned.

The MQIMPO_INQ_PROP_UNDER_CURSOR option can subsequently be used with an MQINQMP call if required, to inquire on the same
property again.

If the property under the cursor has been deleted, MQINQMP returns the next matching property following the one that has been deleted.

If a property is added that matches the wildcard, while an iteration is in progress, the property might or might not be returned during the

Page 197 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

completion of the iteration. The property is returned once the iteration restarts using MQIMPO_INQ_FIRST.

A property matching the wildcard that was deleted, while the iteration was in progress, is not returned subsequent to its deletion.

This option is not valid with either of the following options:

MQIMPO_INQ_FIRST

MQIMPO_INQ_PROP_UNDER_CURSOR

MQIMPO_INQ_PROP_UNDER_CURSOR

Retrieve the value of the property pointed to by the property cursor. The property pointed to by the property cursor is the one that was
last inquired, using either the MQIMPO_INQ_FIRST or the MQIMPO_INQ_NEXT option.

The property cursor is reset when the message handle is reused, when the message handle is specified in the MsgHandle field of the

MQGMO on an MQGET call, or when the message handle is specified in OriginalMsgHandle or NewMsgHandle fields of the MQPMO

structure on an MQPUT call.

If this option is used when the property cursor has not yet been established, or if the property pointed to by the property cursor has been
deleted, the call fails with completion code MQCC_FAILED and reason MQRC_PROPERTY_NOT_AVAILABLE.

This option is not valid with either of the following options:

MQIMPO_INQ_FIRST

MQIMPO_INQ_NEXT

If none of the options previously described is required, the following option can be used:

MQIMPO_NONE

Use this value to indicate that no other options have been specified; all options assume their default values.

MQIMPO_NONE aids program documentation; it is not intended that this option be used with any other, but as its value is zero, such use
cannot be detected.

This is always an input field. The initial value of this field is MQIMPO_INQ_FIRST.

Parent topic: Fields for MQIMPO

This build: January 26, 2011 11:20:31

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42480_

1.20.2.2. RequestedCCSID (MQLONG)

Inquire message property options structure - RequestedCCSID field

The character set that the inquired property value is to be converted into if the value is a character string. This is also the character set into
which the ReturnedName is to be converted when MQIMPO_CONVERT_VALUE or MQIMPO_CONVERT_TYPE is specified.

The initial value of this field is MQCCSI_APPL.

Parent topic: Fields for MQIMPO

This build: January 26, 2011 11:20:31

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42500_

1.20.2.3. RequestedEncoding (MQLONG)

Inquire message property options structure - RequestedEncoding field

This is the encoding into which the inquired property value is to be converted when MQIMPO_CONVERT_VALUE or MQIMPO_CONVERT_TYPE
is specified.

The initial value of this field is MQENC_NATIVE.

Parent topic: Fields for MQIMPO

This build: January 26, 2011 11:20:31

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42490_

1.20.2.4. Reserved1 (MQCHAR)

This is a reserved field. The initial value of this field is a blank character.

Page 198 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Parent topic: Fields for MQIMPO

This build: January 26, 2011 11:20:31

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42525_

1.20.2.5. ReturnedCCSID (MQLONG)

Inquire message property options structure - ReturnedCCSID field

On output, this is the character set of the value returned if the Type parameter of the MQINQMP call is MQTYPE_STRING.

If the MQIMPO_CONVERT_VALUE option is specified and conversion was successful, the ReturnedCCSID field, on return, is the same value

as the value passed in.

The initial value of this field is zero.

Parent topic: Fields for MQIMPO

This build: January 26, 2011 11:20:31

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42520_

1.20.2.6. ReturnedEncoding (MQLONG)

Inquire message property options structure - ReturnedEncoding field

On output, this is the encoding of the value returned.

If the MQIMPO_CONVERT_VALUE option is specified and conversion was successful, the ReturnedEncoding field, on return, is the same

value as the value passed in.

The initial value of this field is MQENC_NATIVE.

Parent topic: Fields for MQIMPO

This build: January 26, 2011 11:20:31

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42510_

1.20.2.7. ReturnedName (MQCHARV)

Inquire message property options structure - ReturnedName field

The actual name of the inquired property.

On input a string buffer can be passed in using the VSPtr or VSOffset field of the MQCHARV structure. The length of the string buffer is

specified using the VSBufsize field of the MQCHARV structure.

On return from the MQINQMP call, the string buffer is completed with the name of the property that was inquired, provided the string buffer
was long enough to fully contain the name. The VSLength field of the MQCHARV structure is filled in with the length of the property name.

The VSCCSID field of the MQCHARV structure is filled in to indicate the character set of the returned name, whether or not conversion of the

name failed.

This is an input/output field. The initial value of this field is MQCHARV_DEFAULT.

Parent topic: Fields for MQIMPO

This build: January 26, 2011 11:20:31

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42540_

1.20.2.8. StrucId (MQCHAR4)

Inquire message property options structure - StrucId field

This is the structure identifier. The value must be:

MQIMPO_STRUC_ID

Page 199 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Identifier for inquire message property options structure.

For the C programming language, the constant MQIMPO_STRUC_ID_ARRAY is also defined; this has the same value as
MQIMPO_STRUC_ID, but is an array of characters instead of a string.

This is always an input field. The initial value of this field is MQIMPO_STRUC_ID.

Parent topic: Fields for MQIMPO

This build: January 26, 2011 11:20:30

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42460_

1.20.2.9. TypeString (MQCHAR8)

Inquire message property options structure - TypeString field

A string representation of the data type of the property.

If the property was specified in an MQRFH2 header and the MQRFH2 dt attribute is not recognized, this field can be used to determine the

data type of the property. TypeString is returned in coded character set 1208 (UTF-8), and is the first eight bytes of the value of the dt

attribute of the property that failed to be recognized

This is always an output field. The initial value of this field is the null string in the C programming language, and 8 blank characters in other
programming languages.

Parent topic: Fields for MQIMPO

This build: January 26, 2011 11:20:31

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42550_

1.20.2.10. Version (MQLONG)

Inquire message property options structure - Version field

This is the structure version number. The value must be:

MQIMPO_VERSION_1

Version number for inquire message property options structure.

The following constant specifies the version number of the current version:

MQIMPO_CURRENT_VERSION

Current version of inquire message property options structure.

This is always an input field. The initial value of this field is MQIMPO_VERSION_1.

Parent topic: Fields for MQIMPO

This build: January 26, 2011 11:20:30

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42470_

1.20.3. Initial values and language declarations for MQIMPO

Inquire message property options structure - Initial values

Table 1. Initial values of fields in MQIPMO

Field name Name of constant Value of constant

StrucId MQIMPO_STRUC_ID 'IMPO'

Version MQIMPO_VERSION_1 1

Options MQIMPO_INQ_FIRST

RequestedEncoding MQENC_NATIVE

RequestedCCSID MQCCSI_APPL

ReturnedEncoding MQENC_NATIVE

ReturnedCCSID 0

Reserved1 0

ReturnedName MQCHARV_DEFAULT

TypeString Null string or blanks

Page 200 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

C declaration
Inquire message property options structure - C language declaration

COBOL declaration
Inquire message property options structure - COBOL language declaration

PL/I declaration
Inquire message property options structure - PL/I language declaration

System/390 assembler declaration

Inquire message property options structure - Assembler language declaration

Parent topic: MQIMPO – Inquire message property options

This build: January 26, 2011 11:20:31

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42560_

1.20.3.1. C declaration

Inquire message property options structure - C language declaration

typedef struct tagMQIMPO MQIMPO;

struct tagMQIMPO {

 MQCHAR4 StrucId; /* Structure identifier */

 MQLONG Version; /* Structure version number */

 MQLONG Options; /* Options that control the action of

 MQINQMP */

 MQLONG RequestedEncoding; /* Requested encoding of Value */

 MQLONG RequestedCCSID; /* Requested character set identifier

 of Value */

 MQLONG ReturnedEncoding; /* Returned encoding of Value */

 MQLONG ReturnedCCSID; /* Returned character set identifier

 of Value */

 MQCHAR Reserved1 /* Reserved field */

 MQCHARV ReturnedName; /* Returned property name */

 MQCHAR8 TypeString; /* Property data type as a string */

};

Parent topic: Initial values and language declarations for MQIMPO

This build: January 26, 2011 11:20:32

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42570_

1.20.3.2. COBOL declaration

Inquire message property options structure - COBOL language declaration

** MQIMPO structure

 10 MQIMPO.

** Structure identifier

 15 MQIMPO-STRUCID PIC X(4).

** Structure version number

 15 MQIMPO-VERSION PIC S9(9) BINARY.

** Options that control the action of MQINQMP

 15 MQIMPO-OPTIONS PIC S9(9) BINARY.

** Requested encoding of VALUE

 15 MQIMPO-REQUESTEDENCODING PIC S9(9) BINARY.

** Requested character set identifier of VALUE

 15 MQIMPO-REQUESTEDCCSID PIC S9(9) BINARY.

** Returned encoding of VALUE

 15 MQIMPO-RETURNEDENCODING PIC S9(9) BINARY.

** Returned character set identifier of VALUE

 15 MQIMPO-RETURNEDCCSID PIC S9(9) BINARY.

** Reserved field

 15 MQIMPO-RESERVED1

** Returned property name

 15 MQIMPO-RETURNEDNAME.

** Address of variable length string

 20 MQIMPO-RETURNEDNAME-VSPTR POINTER.

Notes:

1. The value Null string or blanks denotes the null string in C, and blank characters in other programming languages.

2. In the C programming language, the macro variable MQIMPO_DEFAULT contains the values listed above. Use it in the

following way to provide initial values for the fields in the structure:

MQIMPO MyIMPO = {MQIMPO_DEFAULT};

Page 201 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

** Offset of variable length string

 20 MQIMPO-RETURNEDNAME-VSOFFSET PIC S9(9) BINARY.

** CCSID of variable length string

 20 MQIMPO-RETURNEDNAME-VSCCSID PIC S9(9) BINARY.

** Property data type as string

 15 MQIMPO-TYPESTRING PIC S9(9) BINARY.

Parent topic: Initial values and language declarations for MQIMPO

This build: January 26, 2011 11:20:32

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42580_

1.20.3.3. PL/I declaration

Inquire message property options structure - PL/I language declaration

dcl

 1 MQIMPO based,

 3 StrucId char(4), /* Structure identifier */

 3 Version fixed bin(31), /* Structure version number */

 3 Options fixed bin(31), /* Options that control the

 action of MQINQMP */

 3 RequestedEncoding fixed bin(31), /* Requested encoding of

 Value */

 3 RequestedCCSID fixed bin(31), /* Requested character set

 identifier of Value */

 3 ReturnedEncoding fixed bin(31), /* Returned encoding of

 Value */

 3 ReturnedCCSID fixed bin(31), /* Returned character set

 identifier of Value */

 3 Reserved1 fixed bin(31), /* Reserved field */

 3 ReturnedName, /* Returned property name */

 5 ReturnedName_VSPtr pointer, /* Address of returned

 name */

 5 5 ReturnedName_VSOffset fixed bin(31), /* Offset of returned

 name */

 5 5 ReturnedName_VSCCSID fixed bin(31), /* CCSID of returned

 name */

 3 TypeString char(8); /* Property data type as

 string */

Parent topic: Initial values and language declarations for MQIMPO

This build: January 26, 2011 11:20:32

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42590_

1.20.3.4. System/390® assembler declaration

Inquire message property options structure - Assembler language declaration

MQIMPO DSECT

MQIMPO_STRUCID DS CL4 Structure identifier

MQIMPO_VERSION DS F Structure version number

MQIMPO_OPTIONS DS F Options that control the

* action of MQINQMP

MQIMPO_REQUESTEDENCODING DS F Requested encoding of VALUE

MQIMPO_REQUESTEDCCSID DS F Requested character set

* identifier of VALUE

MQIMPO_RETURNEDENCODING DS F Returned encoding of VALUE

MQIMPO_RETURNEDCCSID DS F Returned character set

* identifier of VALUE

MQIMPO_RESERVED1 DS F Reserved field

MQIMPO_RETURNEDNAME DS 0F Force fullword alignment

MQIMPO_RETURNEDNAME_VSPTR DS F Address of returned name

MQIMPO_RETURNEDNAME_VSOFFSET DS F Offset of returned name

MQIMPO_RETURNEDNAME_VSLENGTH DS F Length of returned name

MQIMPO_RETURNEDNAME_VSCCSID DS F CCSID of returned name

MQIMPO_RETURNEDNAME_LENGTH EQU *-MQIMPO_RETURNEDNAME

 ORG MQIMPO_RETURNEDNAME

MQIMPO_RETURNEDNAME_AREA DS CL(MQIMPO_RETURNEDNAME_LENGTH)

*

MQIMPO_TYPESTRING DS CL8 Property data type as string

MQIMPO_LENGTH EQU *-MQIMPO

MQIMPO_AREA DS CL(MQIMPO_LENGTH)

Parent topic: Initial values and language declarations for MQIMPO

This build: January 26, 2011 11:20:32

Notices | Trademarks | Downloads | Library | Support | Feedback

Page 202 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42595_

1.21. MQMD – Message descriptor

The following table summarizes the fields in the structure.

Overview for MQMD

Fields for MQMD

Initial values and language declarations for MQMD

Parent topic: Data type descriptions

This build: January 26, 2011 11:16:16

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13030_

1.21.1. Overview for MQMD

Availability: All WebSphere® MQ systems, plus WebSphere MQ clients connected to these systems.

Purpose: The MQMD structure contains the control information that accompanies the application data when a message travels between the
sending and receiving applications. The structure is an input/output parameter on the MQGET, MQPUT and MQPUT1 calls.

Version: The current version of MQMD is MQMD_VERSION_2. Applications that are intended to be portable between several environments
must ensure that the required version of MQMD is supported in all of the environments concerned. Fields that exist only in the more-recent
versions of the structure are identified as such in the descriptions that follow.

The header, COPY, and INCLUDE files provided for the supported programming languages contain the most-recent version of MQMD that is
supported by the environment, but with the initial value of the Version field set to MQMD_VERSION_1. To use fields that are not present in

the version-1 structure, the application must set the Version field to the version number of the version required.

A declaration for the version-1 structure is available with the name MQMD1.

Table 1. Fields in MQMD

Field Description Topic

StrucId Structure identifier StrucId

Version Structure version number Version

Report Options for report messages Report

MsgType Message type MsgType

Expiry Message lifetime MQMD - Expiry field

Feedback Feedback or reason code MQMD - Feedback field

Encoding Numeric encoding of message data Encoding

CodedCharSetId Character set identifier of message data CodedCharSetId

Format Format name of message data Format

Priority Message priority Priority

Persistence Message persistence Persistence

MsgId Message identifier MQMD - MsgId field

CorrelId Correlation identifier CorrelId

BackoutCount Backout counter BackoutCount

ReplyToQ Name of reply queue ReplyToQ

ReplyToQMgr Name of reply queue manager ReplyToQMgr

UserIdentifier User identifier UserIdentifier

AccountingToken Accounting token AccountingToken

ApplIdentityData Application data relating to identity ApplIdentityData

PutApplType Type of application that put the message PutApplType

PutApplName Name of application that put the message PutApplName

PutDate Date when message was put PutDate

PutTime Time when message was put PutTime

ApplOriginData Application data relating to origin ApplOriginData

Note: The remaining fields are ignored if Version is less than MQMD_VERSION_2.

GroupId Group identifier GroupId

MsgSeqNumber Sequence number of logical message within group MsgSeqNumber

Offset Offset of data in physical message from start of logical

message

Offset

MsgFlags Message flags MQMD - MsgFlags field

OriginalLength Length of original message OriginalLength

Page 203 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Character set and encoding: Data in MQMD must be in the character set and encoding of the local queue manager; these are given by
the CodedCharSetId queue-manager attribute and MQENC_NATIVE, respectively. However, if the application is running as an MQ client, the

structure must be in the character set and encoding of the client.

If the sending and receiving queue managers use different character sets or encodings, the data in MQMD is converted automatically. It is
not necessary for the application to convert the MQMD.

Using different versions of MQMD: A version-2 MQMD is generally equivalent to using a version-1 MQMD and prefixing the message data
with an MQMDE structure. However, if all the fields in the MQMDE structure have their default values, the MQMDE can be omitted. A
version-1 MQMD plus MQMDE are used as described below.

� On the MQPUT and MQPUT1 calls, if the application provides a version-1 MQMD, the application can optionally prefix the message data
with an MQMDE, setting the Format field in MQMD to MQFMT_MD_EXTENSION to indicate that an MQMDE is present. If the application

does not provide an MQMDE, the queue manager assumes default values for the fields in the MQMDE.

Note: Several of the fields that exist in the version-2 MQMD but not the version-1 MQMD are input/output fields on the MQPUT and

MQPUT1 calls. However, the queue manager does not return any values in the equivalent fields in the MQMDE on output from the
MQPUT and MQPUT1 calls; if the application requires those output values, it must use a version-2 MQMD.

� On the MQGET call, if the application provides a version-1 MQMD, the queue manager prefixes the message returned with an MQMDE,

but only if one or more of the fields in the MQMDE has a non-default value. The Format field in MQMD will have the value

MQFMT_MD_EXTENSION to indicate that an MQMDE is present.

The default values that the queue manager uses for the fields in the MQMDE are the same as the initial values of those fields, shown in
Table 1.

When a message is on a transmission queue, some of the fields in MQMD are set to particular values; see MQXQH – Transmission-queue

header for details.

Message context: Certain fields in MQMD contain the message context. There are two types of message context: identity context and
origin context. Usually:

� Identity context relates to the application that originally put the message

� Origin context relates to the application that most recently put the message.

These two applications can be the same application, but they can also be different applications (for example, when a message is forwarded

from one application to another).

Although identity and origin context usually have the meanings described above, the content of both types of context fields in MQMD
depends on the MQPMO_*_CONTEXT options that are specified when the message is put. As a result, identity context does not necessarily
relate to the application that originally put the message, and origin context does not necessarily relate to the application that most-recently
put the message; t depends on the design of the application suite.

The message channel agent (MCA) never alters message context. MCAs that receive messages from remote queue managers use the
context option MQPMO_SET_ALL_CONTEXT on the MQPUT or MQPUT1 call. This allows the receiving MCA to preserve exactly the message
context that travelled with the message from the sending MCA. However, the result is that the origin context does not relate to the
application that most recently put the message (the receiving MCA), but instead relates to an earlier application that put the message
(possibly the originating application itself).

In the descriptions below, the context fields are described as though they are used as described above. For more information about message
context, see the WebSphere MQ Application Programming Guide.

Parent topic: MQMD – Message descriptor

This build: January 26, 2011 11:16:16

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13040_

1.21.2. Fields for MQMD

The MQMD structure contains the following fields; the fields are described in alphabetic order:

AccountingToken (MQBYTE32)

ApplIdentityData (MQCHAR32)

ApplOriginData (MQCHAR4)

BackoutCount (MQLONG)

CodedCharSetId (MQLONG)
This field specifies the character set identifier of character data within the message body.

CorrelId (MQBYTE24)
The CorrelId field is property in the message header that may be used to identify a specific message or group of messages.

Encoding (MQLONG)

Expiry (MQLONG)

Feedback (MQLONG)
The Feedback field is used with a message of type MQMT_REPORT to indicate the nature of the report, and is only meaningful with

Page 204 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

that type of message.

Format (MQCHAR8)

GroupId (MQBYTE24)

MsgFlags (MQLONG)
MsgFlags are flags that specify attributes of the message, or control its processing

MsgId (MQBYTE24)

MsgSeqNumber (MQLONG)

This is the sequence number of a logical message within a group.

MsgType (MQLONG)

Offset (MQLONG)

OriginalLength (MQLONG)

Persistence (MQLONG)

Priority (MQLONG)

PutApplName (MQCHAR28)
This is the name of application that put the message, and is part of the origin context of the message. The contents differ between

platforms, and might differ between releases.

PutApplType (MQLONG)

PutDate (MQCHAR8)

PutTime (MQCHAR8)

ReplyToQ (MQCHAR48)

ReplyToQMgr (MQCHAR48)

Report (MQLONG)

StrucId (MQCHAR4)

UserIdentifier (MQCHAR12)

Version (MQLONG)

Parent topic: MQMD – Message descriptor

This build: January 26, 2011 11:16:17

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13050_

1.21.2.1. AccountingToken (MQBYTE32)

This is the accounting token, part of the identity context of the message. For more information about message context, see Overview for

MQMD; also see the WebSphere MQ Application Programming Guide.

AccountingToken allows an application to charge appropriately for work done as a result of the message. The queue manager treats this

information as a string of bits and does not check its content.

The queue manager generates this information as follows:

� The first byte of the field is set to the length of the accounting information present in the bytes that follow; this length is in the range
zero through 30, and is stored in the first byte as a binary integer.

� The second and subsequent bytes (as specified by the length field) are set to the accounting information appropriate to the

environment.

� On z/OS® the accounting information is set to:

� For z/OS batch, the accounting information from the JES JOB card or from a JES ACCT statement in the EXEC card (comma
separators are changed to X'FF'). This information is truncated, if necessary, to 31 bytes.

� For TSO, the user’s account number.

� For CICS®, the LU 6.2 unit of work identifier (UEPUOWDS) (26 bytes).

� For IMS™, the 8-character PSB name concatenated with the 16-character IMS recovery token.

� On i5/OS®, the accounting information is set to the accounting code for the job.

� On UNIX systems, the accounting information is set to the numeric user identifier, in ASCII characters.

� On Windows, the accounting information is set to a Windows security identifier (SID) in a compressed format. The SID uniquely

Page 205 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

identifies the user identifier stored in the UserIdentifier field. When the SID is stored in the AccountingToken field, the 6-byte

Identifier Authority (located in the third and subsequent bytes of the SID) is omitted. For example, if the Windows SID is 28
bytes long, 22 bytes of SID information are stored in the AccountingToken field.

� The last byte (byte 32) of the accounting field is set to the accounting token type (in this case MQACTT_NT_SECURITY_ID, x '0b'):

MQACTT_CICS_LUOW_ID

CICS LUOW identifier.

MQACTT_NT_SECURITY_ID

Windows security identifier.

MQACTT_OS400_ACCOUNT_TOKEN

i5/OS accounting token.

MQACTT_UNIX_NUMERIC_ID

UNIX systems numeric identifier.

MQACTT_USER

User-defined accounting token.

MQACTT_UNKNOWN

Unknown accounting-token type.
The accounting-token type is set to an explicit value only in the following environments: AIX®, HP-UX, i5/OS, Solaris, Linux, Windows,
plus WebSphere® MQ clients connected to these systems. In other environments, the accounting-token type is set to the value
MQACTT_UNKNOWN. In these environments use the PutApplType field to deduce the type of accounting token received.

� All other bytes are set to binary zero.

For the MQPUT and MQPUT1 calls, this is an input/output field if MQPMO_SET_IDENTITY_CONTEXT or MQPMO_SET_ALL_CONTEXT is
specified in the PutMsgOpts parameter. If neither MQPMO_SET_IDENTITY_CONTEXT nor MQPMO_SET_ALL_CONTEXT is specified, this field

is ignored on input and is an output-only field. For more information on message context, see the WebSphere MQ Application Programming
Guide.

After the successful completion of an MQPUT or MQPUT1 call, this field contains the AccountingToken that was transmitted with the

message if it was put to a queue. This will be the value of AccountingToken that is kept with the message if it is retained (see description of

MQPMO_RETAIN inMQPMO options (MQLONG) for more details about retained publications) but is not used as the AccountingToken when

the message is sent as a publication to subscribers since they provide a value to override AccountingToken in all publications sent to them.

If the message has no context, the field is entirely binary zero.

This is an output field for the MQGET call.

This field is not subject to any translation based on the character set of the queue manager; the field is treated as a string of bits, and not

as a string of characters.

The queue manager does nothing with the information in this field. The application must interpret the information if it wants to use the
information for accounting purposes.

You can use the following special value for the AccountingToken field:

MQACT_NONE

No accounting token is specified.

The value is binary zero for the length of the field.

For the C programming language, the constant MQACT_NONE_ARRAY is also defined; this has the same value as MQACT_NONE, but is an
array of characters instead of a string.

The length of this field is given by MQ_ACCOUNTING_TOKEN_LENGTH. The initial value of this field is MQACT_NONE.

Parent topic: Fields for MQMD

This build: January 26, 2011 11:16:17

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13060_

1.21.2.2. ApplIdentityData (MQCHAR32)

This is part of the identity context of the message. For more information about message context, see Overview for MQMD; also see the
WebSphere MQ Application Programming Guide.

ApplIdentityData is information that is defined by the application suite, and can be used to provide additional information about the

message or its originator. The queue manager treats this information as character data, but does not define the format of it. When the
queue manager generates this information, it is entirely blank.

For the MQPUT and MQPUT1 calls, this is an input/output field if MQPMO_SET_IDENTITY_CONTEXT or MQPMO_SET_ALL_CONTEXT is
specified in the PutMsgOpts parameter. If a null character is present, the null and any following characters are converted to blanks by the

queue manager. If neither MQPMO_SET_IDENTITY_CONTEXT nor MQPMO_SET_ALL_CONTEXT is specified, this field is ignored on input and
is an output-only field. For more information on message context, see the WebSphere MQ Application Programming Guide.

After the successful completion of an MQPUT or MQPUT1 call, this field contains the ApplIdentityData that was transmitted with the

message if it was put to a queue. This will be the value of ApplIdentityData that is kept with the message if it is retained (see description

of MQPMO_RETAIN for more details about retained publications) but is not used as the ApplIdentityData when the message is sent as a

Page 206 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

publication to subscribers because they provide a value to override ApplIdentityData in all publications sent to them. If the message has

no context, the field is entirely blank.

This is an output field for the MQGET call. The length of this field is given by MQ_APPL_IDENTITY_DATA_LENGTH. The initial value of this
field is the null string in C, and 32 blank characters in other programming languages.

Parent topic: Fields for MQMD

This build: January 26, 2011 11:16:17

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13070_

1.21.2.3. ApplOriginData (MQCHAR4)

This is part of the origin context of the message. For more information about message context, see Overview for MQMD; also see the
WebSphere MQ Application Programming Guide.

ApplOriginData is information that is defined by the application suite that can be used to provide additional information about the origin of

the message. For example, it could be set by applications running with suitable user authority to indicate whether the identity data is
trusted.

The queue manager treats this information as character data, but does not define the format of it. When the queue manager generates this
information, it is entirely blank.

For the MQPUT and MQPUT1 calls, this is an input/output field if MQPMO_SET_ALL_CONTEXT is specified in the PutMsgOpts parameter. Any

information following a null character within the field is discarded. The queue manager converts the null character and any following
characters to blanks. If MQPMO_SET_ALL_CONTEXT is not specified, this field is ignored on input and is an output-only field.

This is an output field for the MQGET call. The length of this field is given by MQ_APPL_ORIGIN_DATA_LENGTH. The initial value of this field
is the null string in C, and 4 blank characters in other programming languages.

Parent topic: Fields for MQMD

This build: January 26, 2011 11:16:17

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13080_

1.21.2.4. BackoutCount (MQLONG)

This is a count of the number of times that the message has been previously returned by the MQGET call as part of a unit of work, and

subsequently backed out. It helps the application to detect processing errors that are based on message content. The count excludes
MQGET calls that specify any of the MQGMO_BROWSE_* options.

The accuracy of this count is affected by the HardenGetBackout queue attribute; see Attributes for queues.

On z/OS®, a value of 255 means that the message has been backed out 255 or more times; the value returned is never greater than 255.

This is an output field for the MQGET call. It is ignored for the MQPUT and MQPUT1 calls. The initial value of this field is 0.

Parent topic: Fields for MQMD

This build: January 26, 2011 11:16:18

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13090_

1.21.2.5. CodedCharSetId (MQLONG)

This field specifies the character set identifier of character data within the message body.

Note: Character data in MQMD and the other MQ data structures that are parameters on calls must be in the character set of the queue
manager. This is defined by the queue manager’s CodedCharSetId attribute; see Attributes for the queue manager for details of this

attribute.

You must not use the following special value:

MQCCSI_APPL

This results in an incorrect value in the CodedCharSetId field of the MQMD and causes a return code of MQRC_SOURCE_CCSID_ERROR

(or MQRC_FORMAT_ERROR for z/OS) when the message is received using the MQGET call with the MQGMO_CONVERT option.

You can use the following special values:

Page 207 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

MQCCSI_Q_MGR

Character data in the message is in the queue manager’s character set.

On the MQPUT and MQPUT1 calls, the queue manager changes this value in the MQMD that is sent with the message to the true character
set identifier of the queue manager. As a result, the value MQCCSI_Q_MGR is never returned by the MQGET call.

MQCCSI_DEFAULT

The CodedCharSetId of the data in the String field is defined by the CodedCharSetId field in the header structure that precedes the

MQCFH structure, or by the CodedCharSetId field in the MQMD if the MQCFH is at the start of the message.

MQCCSI_INHERIT

Character data in the message is in the same character set as this structure; this is the queue manager’s character set. (For MQMD only,
MQCCSI_INHERIT has the same meaning as MQCCSI_Q_MGR).

The queue manager changes this value in the MQMD that is sent with the message to the actual character set identifier of MQMD.
Provided no error occurs, the value MQCCSI_INHERIT is not returned by the MQGET call.

Do not use MQCCSI_INHERIT if the value of the PutApplType field in MQMD is MQAT_BROKER.

MQCCSI_EMBEDDED

Character data in the message is in a character set whose identifier is contained within the message data itself. There can be any number
of character set identifiers embedded within the message data, applying to different parts of the data. This value must be used for PCF
messages (with a format of MQFMT_ADMIN, MQFMT_EVENT, or MQFMT_PCF) that contain data in a mixture of character sets. Each
MQCFST, MQCFSL, and MQCFSF structure contained within the PCF message must have an explicit character set identifier specified and
not MQCCSI_DEFAULT.

If a message of format MQFMT_EMBEDDED_PCF is to contain data in a mixture of character sets, do not use MQCCSI_EMBEDDED. Instead
set MQEPH_CCSID_EMBEDDED in the Flags field in the MQEPH structure. This is equivalent to setting MQCCSI_EMBEDDED in the

preceding structure. Each MQCFST, MQCFSL, and MQCFSF structure contained within the PCF message must then have an explicit
character set identifier specified and not MQCCSI_DEFAULT. For more information on the MQEPH structure, see MQEPH – Embedded PCF
header.

Specify this value only on the MQPUT and MQPUT1 calls. If it is specified on the MQGET call, it prevents conversion of the message.

On the MQPUT and MQPUT1 calls, the queue manager changes the values MQCCSI_Q_MGR and MQCCSI_INHERIT in the MQMD that is sent
with the message as described above, but does not change the MQMD specified on the MQPUT or MQPUT1 call. No other check is carried out
on the value specified.

Applications that retrieve messages must compare this field against the value the application is expecting; if the values differ, the

application might need to convert character data in the message.

If you specify the MQGMO_CONVERT option on the MQGET call, this field is an input/output field. The value specified by the application is
the coded character set identifier to which to convert the message data if necessary. If conversion is successful or unnecessary, the value is
unchanged (except that the value MQCCSI_Q_MGR or MQCCSI_INHERIT is converted to the actual value). If conversion is unsuccessful, the
value after the MQGET call represents the coded character set identifier of the unconverted message that is returned to the application.

Otherwise, this is an output field for the MQGET call, and an input field for the MQPUT and MQPUT1 calls. The initial value of this field is
MQCCSI_Q_MGR.

Parent topic: Fields for MQMD

This build: January 26, 2011 11:16:18

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13100_

1.21.2.6. CorrelId (MQBYTE24)

The CorrelId field is property in the message header that may be used to identify a specific message or group of messages.

This is a byte string that the application can use to relate one message to another, or to relate the message to other work that the
application is performing. The correlation identifier is a permanent property of the message, and persists across restarts of the queue
manager. Because the correlation identifier is a byte string and not a character string, the correlation identifier is not converted between
character sets when the message flows from one queue manager to another.

For the MQPUT and MQPUT1 calls, the application can specify any value. The queue manager transmits this value with the message and
delivers it to the application that issues the get request for the message.

If the application specifies MQPMO_NEW_CORREL_ID, the queue manager generates a unique correlation identifier which is sent with the
message, and also returned to the sending application on output from the MQPUT or MQPUT1 call.

A correlation identifier generated by the queue manager consists of a 3-byte product identifier (AMQ or CSQ in either ASCII or EBCDIC),
followed by one reserved byte and a product-specific implementation of a unique string. In WebSphere® MQ this product-specific
implementation string contains the first 12 characters of the queue-manager name, and a value derived from the system clock. All queue
managers that can intercommunicate must therefore have names that differ in the first 12 characters to ensure that message identifiers are
unique. The ability to generate a unique string also depends on the system clock not being changed backward. To eliminate the possibility of

a message identifier generated by the queue manager duplicating one generated by the application, the application must avoid generating
identifiers with initial characters in the range A through I in ASCII or EBCDIC (X'41' through X'49' and X'C1' through X'C9'). However, the
application is not prevented from generating identifiers with initial characters in these ranges.

This generated correlation identifier is kept with the message if it is retained, and is used as the correlation identifier when the message is

sent as a publication to subscribers who specify MQCI_NONE in the SubCorrelId field in the MQSD passed on the MQSUB call. See MQPMO

Page 208 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

options for more details about retained publications.

When the queue manager or a message channel agent generates a report message, it sets the CorrelId field in the way specified by the

Report field of the original message, either MQRO_COPY_MSG_ID_TO_CORREL_ID or MQRO_PASS_CORREL_ID. Applications that generate

report messages must also do this.

For the MQGET call, CorrelId is one of the five fields that can be used to select a particular message to be retrieved from the queue. See

the description of the MsgId field for details of how to specify values for this field.

Specifying MQCI_NONE as the correlation identifier has the same effect as not specifying MQMO_MATCH_CORREL_ID, that is, any

correlation identifier will match.

If the MQGMO_MSG_UNDER_CURSOR option is specified in the GetMsgOpts parameter on the MQGET call, this field is ignored.

On return from an MQGET call, the CorrelId field is set to the correlation identifier of the message returned (if any).

The following special values can be used:

MQCI_NONE

No correlation identifier is specified.

The value is binary zero for the length of the field.

For the C programming language, the constant MQCI_NONE_ARRAY is also defined; this has the same value as MQCI_NONE, but is an
array of characters instead of a string.

MQCI_NEW_SESSION

Message is the start of a new session.

This value is recognized by the CICS® bridge as indicating the start of a new session, that is, the start of a new sequence of messages.

For the C programming language, the constant MQCI_NEW_SESSION_ARRAY is also defined; this has the same value as
MQCI_NEW_SESSION, but is an array of characters instead of a string.

For the MQGET call, this is an input/output field. For the MQPUT and MQPUT1 calls, this is an input field if MQPMO_NEW_CORREL_ID is not
specified, and an output field if MQPMO_NEW_CORREL_ID is specified. The length of this field is given by MQ_CORREL_ID_LENGTH. The
initial value of this field is MQCI_NONE.

Note:

You cannot pass the correlation identifier of a publication in a hierarchy. The field is used by the queue manager.

Parent topic: Fields for MQMD

This build: January 26, 2011 11:16:21

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13110_

1.21.2.7. Encoding (MQLONG)

This specifies the numeric encoding of numeric data in the message; it does not apply to numeric data in the MQMD structure itself. The

numeric encoding defines the representation used for binary integers, packed-decimal integers, and floating-point numbers.

On the MQPUT or MQPUT1 call, the application must set this field to the value appropriate to the data. The queue manager does not check
that the field is valid. The following special value is defined:

MQENC_NATIVE

The encoding is the default for the programming language and machine on which the application is running.

Note: The value of this constant depends on the programming language and environment. For this reason, applications must be compiled
using the header, macro, COPY, or INCLUDE files appropriate to the environment in which the application will run.

Applications that put messages usually specify MQENC_NATIVE. Applications that retrieve messages must compare this field against the
value MQENC_NATIVE; if the values differ, the application might need to convert numeric data in the message. Use the MQGMO_CONVERT
option to request the queue manager to convert the message as part of the processing of the MQGET call. See Machine encodings for details
of how the Encoding field is constructed.

If you specify the MQGMO_CONVERT option on the MQGET call, this field is an input/output field. The value specified by the application is
the encoding to which to convert the message data if necessary. If conversion is successful or unnecessary, the value is unchanged. If
conversion is unsuccessful, the value after the MQGET call represents the encoding of the unconverted message that is returned to the
application.

In other cases, this is an output field for the MQGET call, and an input field for the MQPUT and MQPUT1 calls. The initial value of this field is
MQENC_NATIVE.

Parent topic: Fields for MQMD

This build: January 26, 2011 11:16:21

Notices | Trademarks | Downloads | Library | Support | Feedback

Page 209 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13120_

1.21.2.8. Expiry (MQLONG)

This is a period of time expressed in tenths of a second, set by the application that puts the message. The message becomes eligible to be
discarded if it has not been removed from the destination queue before this period of time elapses.

The value is decremented to reflect the time that the message spends on the destination queue, and also on any intermediate transmission
queues if the put is to a remote queue. It can also be decremented by message channel agents to reflect transmission times, if these are
significant. Likewise, an application forwarding this message to another queue might decrement the value if necessary, if it has retained the
message for a significant time. However, the expiration time is treated as approximate, and the value need not be decremented to reflect
small time intervals.

When the message is retrieved by an application using the MQGET call, the Expiry field represents the amount of the original expiry time

that still remains.

After a message’s expiry time has elapsed, it becomes eligible to be discarded by the queue manager. The message is discarded when a

browse or nonbrowse MQGET call occurs that would have returned the message had it not already expired. For example, a nonbrowse
MQGET call with the MatchOptions field in MQGMO set to MQMO_NONE reading from a FIFO ordered queue discards all the expired

messages up to the first unexpired message. With a priority ordered queue, the same call will discard expired messages of higher priority
and messages of an equal priority that arrived on the queue before the first unexpired message.

A message that has expired is never returned to an application (either by a browse or a non-browse MQGET call), so the value in the Expiry

field of the message descriptor after a successful MQGET call is either greater than zero, or the special value MQEI_UNLIMITED.

If a message is put on a remote queue, the message might expire (and be discarded) while it is on an intermediate transmission queue,

before the message reaches the destination queue.

A report is generated when an expired message is discarded, if the message specified one of the MQRO_EXPIRATION_* report options. If
none of these options is specified, no such report is generated; the message is assumed to be no longer relevant after this time period
(perhaps because a later message has superseded it).

Any other program that discards messages based on expiry time must also send an appropriate report message if one was requested.

Note:

1. If a message is put with an Expiry time of zero or a number greater than 999 999 999, the MQPUT or MQPUT1 call fails with reason

code MQRC_EXPIRY_ERROR; no report message is generated in this case.

2. Because a message whose expiry time has elapsed might not be discarded until later, there might be messages on a queue that have
passed their expiry time, and that are not therefore eligible for retrieval. These messages nevertheless count toward the number of
messages on the queue for all purposes, including depth triggering.

3. An expiration report is generated, if requested, when the message is discarded, not when it becomes eligible for discarding.

4. Discarding an expired message, and generating an expiration report if requested, are never part of the application’s unit of work, even

if the message was scheduled for discarding as a result of an MQGET call operating within a unit of work.

5. If a nearly-expired message is retrieved by an MQGET call within a unit of work, and the unit of work is subsequently backed out, the
message might become eligible to be discarded before it can be retrieved again.

6. If a nearly-expired message is locked by an MQGET call with MQGMO_LOCK, the message might become eligible to be discarded
before it can be retrieved by an MQGET call with MQGMO_MSG_UNDER_CURSOR; reason code MQRC_NO_MSG_UNDER_CURSOR is
returned on this subsequent MQGET call if that happens.

7. When a request message with an expiry time greater than zero is retrieved, the application can take one of the following actions when
it sends the reply message:

� Copy the remaining expiry time from the request message to the reply message.

� Set the expiry time in the reply message to an explicit value greater than zero.

� Set the expiry time in the reply message to MQEI_UNLIMITED.

The action to take depends on the design of the application. However, the default action for putting messages to a dead-letter
(undelivered-message) queue must be to preserve the remaining expiry time of the message, and to continue to decrement it.

8. Trigger messages are always generated with MQEI_UNLIMITED.

9. A message (normally on a transmission queue) that has a Format name of MQFMT_XMIT_Q_HEADER has a second message descriptor

within the MQXQH. It therefore has two Expiry fields associated with it. The following additional points should be noted in this case:

� When an application puts a message on a remote queue, the queue manager places the message initially on a local transmission
queue, and prefixes the application message data with an MQXQH structure. The queue manager sets the values of the two

Expiry fields to be the same as that specified by the application.

If an application puts a message directly on a local transmission queue, the message data must already begin with an MQXQH
structure, and the format name must be MQFMT_XMIT_Q_HEADER. In this case, the application need not set the values of these
two Expiry fields to be the same. (The queue manager checks that the Expiry field within the MQXQH contains a valid value,

and that the message data is long enough to include it). For an application that can write directly to the transmission queue, the

application has to create a transmission queue header with the embedded message descriptor. However, if the expiry value in
the message descriptor written to the transmission queue is inconsistent with the value in the embedded message descriptor, an
expiry error rejection occurs.

� When a message with a Format name of MQFMT_XMIT_Q_HEADER is retrieved from a queue (whether this is a normal or a

transmission queue), the queue manager decrements both these Expiry fields with the time spent waiting on the queue. No

error is raised if the message data is not long enough to include the Expiry field in the MQXQH.

� The queue manager uses the Expiry field in the separate message descriptor (that is, not the one in the message descriptor

embedded within the MQXQH structure) to test whether the message is eligible for discarding.

� If the initial values of the two Expiry fields are different, the Expiry time in the separate message descriptor when the message

is retrieved might be greater than zero (so the message is not eligible for discarding), while the time according to the Expiry

field in the MQXQH has elapsed. In this case the Expiry field in the MQXQH is set to zero.

Page 210 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

10. The expiry time on a reply message returned from the IMS™ bridge is unlimited unless MQIIH_PASS_EXPIRATION is set in the Flags
field of the MQIIH. See Flags for more information.

The following special value is recognized:

MQEI_UNLIMITED

The message has an unlimited expiration time.

This is an output field for the MQGET call, and an input field for the MQPUT and MQPUT1 calls. The initial value of this field is
MQEI_UNLIMITED.

Expired messages on z/OS
On WebSphere® MQ for z/OS®, messages that have expired are discarded by the next appropriate MQGET call.

Parent topic: Fields for MQMD

This build: January 26, 2011 11:16:21

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13130_

1.21.2.8.1. Expired messages on z/OS

On WebSphere® MQ for z/OS®, messages that have expired are discarded by the next appropriate MQGET call.

However, if no such call occurs, the expired message is not discarded, and, for some queues, a large number of expired messages can
accumulate. To remedy this, set the queue manager to scan queues periodically and discard expired messages on one or more queues in
one of the following ways:

Periodic scan

You can specify a period using the EXPRYINT (expiry interval) queue manager attribute. Each time the expiry interval is reached, the
queue manager looks for candidate queues that are worth scanning to discard expired messages.

The queue manager maintains information about the expired messages on each queue, and knows whether a scan for expired messages is
worthwhile. So, only a selection of queues is scanned at any time.

Shared queues are scanned by only one queue manager in a queue-sharing group. Generally, it is the first queue manager to restart, or
the first to have EXPRYINT set. If this queue manager terminates, another queue manager in the queue-sharing group takes over the
queue scanning. Set the expiry interval value for all queue managers within a queue-sharing group to the same value.

Explicit request

Issue the REFRESH QMGR TYPE(EXPIRY) command, specifying the queue or queues that you want scanned.

Parent topic: Expiry (MQLONG)

This build: January 26, 2011 11:16:22

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13140_

1.21.2.9. Feedback (MQLONG)

The Feedback field is used with a message of type MQMT_REPORT to indicate the nature of the report, and is only meaningful with that type

of message.

The field can contain one of the MQFB_* values, or one of the MQRC_* values. Feedback codes are grouped as follows:

MQFB_NONE

No feedback provided.

MQFB_SYSTEM_FIRST

Lowest value for system-generated feedback.

MQFB_SYSTEM_LAST

Highest value for system-generated feedback.

The range of system-generated feedback codes MQFB_SYSTEM_FIRST through MQFB_SYSTEM_LAST includes the general feedback codes

listed below (MQFB_*), and also the reason codes (MQRC_*) that can occur when the message cannot be put on the destination queue.

MQFB_APPL_FIRST

Lowest value for application-generated feedback.

MQFB_APPL_LAST

Highest value for application-generated feedback.

Applications that generate report messages must not use feedback codes in the system range (other than MQFB_QUIT), unless they want to
simulate report messages generated by the queue manager or message channel agent.

Page 211 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

On the MQPUT or MQPUT1 calls, the value specified must either be MQFB_NONE, or be within the system range or application range. This is
checked whatever the value of MsgType.

General feedback codes:

MQFB_COA

Confirmation of arrival on the destination queue (see MQRO_COA).

MQFB_COD

Confirmation of delivery to the receiving application (see MQRO_COD).

MQFB_EXPIRATION

Message was discarded because it had not been removed from the destination queue before its expiry time had elapsed.

MQFB_PAN

Positive action notification (see MQRO_PAN).

MQFB_NAN

Negative action notification (see MQRO_NAN).

MQFB_QUIT

End application.

This can be used by a workload scheduling program to control the number of instances of an application program that are running.
Sending an MQMT_REPORT message with this feedback code to an instance of the application program indicates to that instance that it

should stop processing. However, adherence to this convention is a matter for the application; it is not enforced by the queue manager.

Channel feedback codes:

MQFB_CHANNEL_COMPLETED

A channel ended normally.

MQFB_CHANNEL_FAIL

A channel ended abnormally and will go into STOPPED state.

MQFB_CHANNEL_FAIL_RETRY

A channel ended abnormally and will go into RETRY state.

IMS-bridge feedback codes: When the IMS™ bridge receives a nonzero IMS-OTMA sense code, the IMS bridge converts the sense code
from hexadecimal to decimal, adds the value MQFB_IMS_ERROR (300), and places the result in the Feedback field of the reply message.

This results in the feedback code having a value in the range MQFB_IMS_FIRST (301) through MQFB_IMS_LAST (399) when an IMS-OTMA

error has occurred.

The following feedback codes can be generated by the IMS bridge:

MQFB_DATA_LENGTH_ZERO

A segment length was zero in the application data of the message.

MQFB_DATA_LENGTH_NEGATIVE

A segment length was negative in the application data of the message.

MQFB_DATA_LENGTH_TOO_BIG

A segment length was too big in the application data of the message.

MQFB_BUFFER_OVERFLOW

The value of one of the length fields would cause the data to overflow the message buffer.

MQFB_LENGTH_OFF_BY_ONE

The value of one of the length fields was one byte too short.

MQFB_IIH_ERROR

The Format field in MQMD specifies MQFMT_IMS, but the message does not begin with a valid MQIIH structure.

MQFB_NOT_AUTHORIZED_FOR_IMS

The user ID contained in the message descriptor MQMD, or the password contained in the Authenticator field in the MQIIH structure,

failed the validation performed by the IMS bridge. As a result the message was not passed to IMS.

MQFB_IMS_ERROR

An unexpected error was returned by IMS. Consult the WebSphere® MQ error log on the system on which the IMS bridge resides for more
information about the error.

MQFB_IMS_FIRST

IMS-generated feedback codes occupy the range MQFB_IMS_FIRST (300) through MQFB_IMS_LAST (399). The IMS-OTMA sense code
itself is Feedback minus MQFB_IMS_ERROR.

MQFB_IMS_LAST

Highest value for IMS-generated feedback.

CICS-bridge feedback codes: The following feedback codes can be generated by the CICS® bridge:

MQFB_CICS_APPL_ABENDED

The application program specified in the message abended. This feedback code occurs only in the Reason field of the MQDLH structure.

MQFB_CICS_APPL_NOT_STARTED

The EXEC CICS LINK for the application program specified in the message failed. This feedback code occurs only in the Reason field of the

MQDLH structure.

Page 212 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

MQFB_CICS_BRIDGE_FAILURE

CICS bridge terminated abnormally without completing normal error processing.

MQFB_CICS_CCSID_ERROR

Character set identifier not valid.

MQFB_CICS_CIH_ERROR

CICS information header structure missing or not valid.

MQFB_CICS_COMMAREA_ERROR

Length of CICS commarea not valid.

MQFB_CICS_CORREL_ID_ERROR

Correlation identifier not valid.

MQFB_CICS_DLQ_ERROR

The CICS bridge task was unable to copy a reply to this request to the dead-letter queue. The request was backed out.

MQFB_CICS_ENCODING_ERROR

Encoding not valid.

MQFB_CICS_INTERNAL_ERROR

CICS bridge encountered an unexpected error.

This feedback code occurs only in the Reason field of the MQDLH structure.

MQFB_CICS_NOT_AUTHORIZED

User identifier not authorized or password not valid.

This feedback code occurs only in the Reason field of the MQDLH structure.

MQFB_CICS_UOW_BACKED_OUT

The unit of work was backed out, for one of the following reasons:

� A failure was detected while processing another request within the same unit of work.

� A CICS abend occurred while the unit of work was in progress.

MQFB_CICS_UOW_ERROR

Unit-of-work control field UOWControl not valid.

Trace-route message feedback codes:

MQFB_ACTIVITY

Used in conjunction with the MQFMT_EMBEDDED_PCF format to allow the option of user data following activity reports.

MQFB_MAX_ACTIVITIES

Returned when the trace-route message is discarded because the number of activities the message has been involved in exceeds the
maximum activities limit.

MQFB_NOT_FORWARDED

Returned when the trace-route message is discarded because it is about to be sent to a remote queue manager that does not support
trace-route messages.

MQFB_NOT_DELIVERED

Returned when the trace-route message is discarded because it is about to be put on a local queue.

MQFB_UNSUPPORTED_FORWARDING

Returned when the trace-route message is discarded because a value in the forwarding parameter is unrecognized, and is in the rejected
bit mask.

MQFB_UNSUPPORTED_DELIVERY

Returned when the trace-route message is discarded because a value in the delivery parameter is unrecognized, and is in the rejected bit
mask.

MQ reason codes: For exception report messages, Feedback contains an MQ reason code. Among possible reason codes are:

MQRC_PUT_INHIBITED

(2051, X'803') Put calls inhibited for the queue.

MQRC_Q_FULL

(2053, X'805') Queue already contains maximum number of messages.

MQRC_NOT_AUTHORIZED

(2035, X'7F3') Not authorized for access.

MQRC_Q_SPACE_NOT_AVAILABLE

(2056, X'808') No space available on disk for queue.

MQRC_PERSISTENT_NOT_ALLOWED

(2048, X'800') Queue does not support persistent messages.

MQRC_MSG_TOO_BIG_FOR_Q_MGR

(2031, X'7EF') Message length greater than maximum for queue manager.

MQRC_MSG_TOO_BIG_FOR_Q

(2030, X'7EE') Message length greater than maximum for queue.

For a full list of reason codes, see:

Page 213 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

� WebSphere MQ for z/OS Messages and Codes for WebSphere MQ for z/OS®

� WebSphere MQ Messages for all other WebSphere MQ platforms

.

This is an output field for the MQGET call, and an input field for MQPUT and MQPUT1 calls. The initial value of this field is MQFB_NONE.

Parent topic: Fields for MQMD

This build: January 26, 2011 11:16:22

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13150_

1.21.2.10. Format (MQCHAR8)

This is a name that the sender of the message uses to indicate to the receiver the nature of the data in the message. Any characters that
are in the queue manager’s character set can be specified for the name, but it is recommended that the name be restricted to the following:

� Uppercase A through Z

� Numeric digits 0 through 9

If other characters are used, it might not be possible to translate the name between the character sets of the sending and receiving queue
managers.

Pad the name with blanks to the length of the field, or use a null character to terminate the name before the end of the field; the null and
any subsequent characters are treated as blanks. Do not specify a name with leading or embedded blanks. For the MQGET call, the queue
manager returns the name padded with blanks to the length of the field.

The queue manager does not check that the name complies with the recommendations described above.

Names beginning MQ in upper, lower, and mixed case have meanings that are defined by the queue manager; do not use names beginning
with these letters for your own formats. The queue manager built-in formats are:

MQFMT_NONE

The nature of the data is undefined: the data cannot be converted when the message is retrieved from a queue using the
MQGMO_CONVERT option.

If you specify MQGMO_CONVERT on the MQGET call, and the character set or encoding of data in the message differs from that specified
in the MsgDesc parameter, the message is returned with the following completion and reason codes (assuming no other errors):

� Completion code MQCC_WARNING and reason code MQRC_FORMAT_ERROR if the MQFMT_NONE data is at the beginning of the

message.

� Completion code MQCC_OK and reason code MQRC_NONE if the MQFMT_NONE data is at the end of the message (that is, preceded

by one or more MQ header structures). The MQ header structures are converted to the requested character set and encoding in this
case.

For the C programming language, the constant MQFMT_NONE_ARRAY is also defined; this has the same value as MQFMT_NONE, but is an
array of characters instead of a string.

MQFMT_ADMIN

The message is a command-server request or reply message in programmable command format (PCF). Messages of this format can be

converted if the MQGMO_CONVERT option is specified on the MQGET call. Refer to WebSphere MQ Programmable Command Formats and
Administration Interface for more information about using programmable command format messages.

For the C programming language, the constant MQFMT_ADMIN_ARRAY is also defined; this has the same value as MQFMT_ADMIN, but is
an array of characters instead of a string.

MQFMT_CICS

The message data begins with the CICS® information header MQCIH, followed by the application data. The format name of the application
data is given by the Format field in the MQCIH structure.

On z/OS®, specify the MQGMO_CONVERT option on the MQGET call to convert messages that have format MQFMT_CICS.

For the C programming language, the constant MQFMT_CICS_ARRAY is also defined; this has the same value as MQFMT_CICS, but is an
array of characters instead of a string.

MQFMT_COMMAND_1

The message is an MQSC command-server reply message containing the object count, completion code, and reason code. Messages of
this format can be converted if the MQGMO_CONVERT option is specified on the MQGET call.

For the C programming language, the constant MQFMT_COMMAND_1_ARRAY is also defined; this has the same value as
MQFMT_COMMAND_1, but is an array of characters instead of a string.

MQFMT_COMMAND_2

The message is an MQSC command-server reply message containing information about the objects requested. Messages of this format

can be converted if the MQGMO_CONVERT option is specified on the MQGET call.

For the C programming language, the constant MQFMT_COMMAND_2_ARRAY is also defined; this has the same value as

MQFMT_COMMAND_2, but is an array of characters instead of a string.

MQFMT_DEAD_LETTER_HEADER

The message data begins with the dead-letter header MQDLH. The data from the original message immediately follows the MQDLH
structure. The format name of the original message data is given by the Format field in the MQDLH structure; see MQDLH – Dead-letter

Page 214 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

header for details of this structure. Messages of this format can be converted if the MQGMO_CONVERT option is specified on the MQGET
call.

COA and COD reports are not generated for messages that have a Format of MQFMT_DEAD_LETTER_HEADER.

For the C programming language, the constant MQFMT_DEAD_LETTER_HEADER_ARRAY is also defined; this has the same value as
MQFMT_DEAD_LETTER_HEADER, but is an array of characters instead of a string.

MQFMT_DIST_HEADER

The message data begins with the distribution-list header MQDH; this includes the arrays of MQOR and MQPMR records. The distribution-
list header can be followed by additional data. The format of the additional data (if any) is given by the Format field in the MQDH

structure; see MQDH – Distribution header for details of this structure. Messages with format MQFMT_DIST_HEADER can be converted if

the MQGMO_CONVERT option is specified on the MQGET call.

This format is supported in the following environments: AIX®, HP-UX, i5/OS®, Solaris, Linux, Windows, plus WebSphere® MQ clients
connected to these systems.

For the C programming language, the constant MQFMT_DIST_HEADER_ARRAY is also defined; this has the same value as
MQFMT_DIST_HEADER, but is an array of characters instead of a string.

MQFMT_EMBEDDED_PCF

Format for a trace-route message, provided that the PCF command value is set to MQCMD_TRACE_ROUTE. Using this format allows user
data to be sent along with the trace-route message, provided that their applications can cope with preceding PCF parameters.

The PCF header must be the first header, or the message will not be treated as a trace-route message. This means that the message
cannot be in a group, and that trace-route messages cannot be segmented. If a trace-route message is sent in a group the message is
rejected with reason code MQRC_MSG_NOT_ALLOWED_IN_GROUP.

Note that MQFMT_ADMIN can also be used for the format of a trace-route message, but in this case no user data can be sent along with
the trace-route message.

MQFMT_EVENT

The message is an MQ event message that reports an event that occurred. Event messages have the same structure as programmable
commands; refer to the WebSphere MQ Programmable Command Formats and Administration Interface book for more information about
this structure, and to the Monitoring WebSphere MQ book for information about events.

Version-1 event messages can be converted in all environments if the MQGMO_CONVERT option is specified on the MQGET call. Version-2
event messages can be converted only on z/OS.

For the C programming language, the constant MQFMT_EVENT_ARRAY is also defined; this has the same value as MQFMT_EVENT, but is

an array of characters instead of a string.

MQFMT_IMS

The message data begins with the IMS™ information header MQIIH, which is followed by the application data. The format name of the
application data is given by the Format field in the MQIIH structure.

Specfy the MQGMO_CONVERT option on the MQGET call to convert messages that have format MQFMT_IMS.

For the C programming language, the constant MQFMT_IMS_ARRAY is also defined; this has the same value as MQFMT_IMS, but is an
array of characters instead of a string.

MQFMT_IMS_VAR_STRING

The message is an IMS variable string, which is a string of the form llzzccc, where:

ll

is a 2-byte length field specifying the total length of the IMS variable string item. This length is equal to the length of ll (2 bytes), plus

the length of zz (2 bytes), plus the length of the character string itself. ll is a 2-byte binary integer in the encoding specified by the

Encoding field.

zz

is a 2-byte field containing flags that are significant to IMS. zz is a byte string consisting of two MQBYTE fields, and is transmitted

without change from sender to receiver (that is, zz is not subject to any conversion).

ccc

is a variable-length character string containing ll-4 characters. ccc is in the character set specified by the CodedCharSetId field.

On z/OS, the message data can consist of a sequence of IMS variable strings butted together, with each string being of the form llzzccc.

There must be no bytes skipped between successive IMS variable strings. This means that if the first string has an odd length, the second

string will be misaligned, that is, it will not begin on a boundary that is a multiple of two. Take care when constructing such strings on
machines that require alignment of elementary data types.

Use the MQGMO_CONVERT option on the MQGET call to convert messages that have format MQFMT_IMS_VAR_STRING.

For the C programming language, the constant MQFMT_IMS_VAR_STRING_ARRAY is also defined; this has the same value as

MQFMT_IMS_VAR_STRING, but is an array of characters instead of a string.

MQFMT_MD_EXTENSION

The message data begins with the message-descriptor extension MQMDE, and is optionally followed by other data (usually the application
message data). The format name, character set, and encoding of the data that follow the MQMDE are given by the Format,

CodedCharSetId, and Encoding fields in the MQMDE. See MQMDE – Message descriptor extension for details of this structure. Messages of

this format can be converted if the MQGMO_CONVERT option is specified on the MQGET call.

For the C programming language, the constant MQFMT_MD_EXTENSION_ARRAY is also defined; this has the same value as
MQFMT_MD_EXTENSION, but is an array of characters instead of a string.

Page 215 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

MQFMT_PCF

The message is a user-defined message that conforms to the structure of a programmable command format (PCF) message. Messages of

this format can be converted if the MQGMO_CONVERT option is specified on the MQGET call. Refer to the WebSphere MQ Programmable
Command Formats and Administration Interface book for more information about using programmable command format messages.

For the C programming language, the constant MQFMT_PCF_ARRAY is also defined; this has the same value as MQFMT_PCF, but is an

array of characters instead of a string.

MQFMT_REF_MSG_HEADER

The message data begins with the reference message header MQRMH, and is optionally followed by other data. The format name,
character set, and encoding of the data is given by the Format, CodedCharSetId, and Encoding fields in the MQRMH. See MQRMH –

Reference message header for details of this structure. Messages of this format can be converted if the MQGMO_CONVERT option is
specified on the MQGET call.

This format is supported in the following environments: AIX, HP-UX, i5/OS, Solaris, Linux, Windows, plus WebSphere MQ clients
connected to these systems.

For the C programming language, the constant MQFMT_REF_MSG_HEADER_ARRAY is also defined; this has the same value as
MQFMT_REF_MSG_HEADER, but is an array of characters instead of a string.

MQFMT_RF_HEADER

The message data begins with the rules and formatting header MQRFH, and is optionally followed by other data. The format name,
character set, and encoding of the data (if any) are given by the Format, CodedCharSetId, and Encoding fields in the MQRFH. Messages

of this format can be converted if the MQGMO_CONVERT option is specified on the MQGET call.

For the C programming language, the constant MQFMT_RF_HEADER_ARRAY is also defined; this has the same value as
MQFMT_RF_HEADER, but is an array of characters instead of a string.

MQFMT_RF_HEADER_2

The message data begins with the version-2 rules and formatting header MQRFH2, and is optionally followed by other data. The format
name, character set, and encoding of the optional data (if any) are given by the Format, CodedCharSetId, and Encoding fields in the

MQRFH2. Messages of this format can be converted if the MQGMO_CONVERT option is specified on the MQGET call.

For the C programming language, the constant MQFMT_RF_HEADER_2_ARRAY is also defined; this has the same value as
MQFMT_RF_HEADER_2, but is an array of characters instead of a string.

MQFMT_STRING

The application message data can be either an SBCS string (single-byte character set), or a DBCS string (double-byte character set).
Messages of this format can be converted if the MQGMO_CONVERT option is specified on the MQGET call.

For the C programming language, the constant MQFMT_STRING_ARRAY is also defined; this has the same value as MQFMT_STRING, but is
an array of characters instead of a string.

MQFMT_TRIGGER

The message is a trigger message, described by the MQTM structure; see MQTM – Trigger message for details of this structure. Messages
of this format can be converted if the MQGMO_CONVERT option is specified on the MQGET call.

For the C programming language, the constant MQFMT_TRIGGER_ARRAY is also defined; this has the same value as MQFMT_TRIGGER,
but is an array of characters instead of a string.

MQFMT_WORK_INFO_HEADER

The message data begins with the work information header MQWIH, which is followed by the application data. The format name of the
application data is given by the Format field in the MQWIH structure.

On z/OS, specify the MQGMO_CONVERT option on the MQGET call to convert the user data in messages that have format
MQFMT_WORK_INFO_HEADER. However, the MQWIH structure itself is always returned in the queue-manager’s character set and
encoding (that is, the MQWIH structure is converted whether or not the MQGMO_CONVERT option is specified).

For the C programming language, the constant MQFMT_WORK_INFO_HEADER_ARRAY is also defined; this has the same value as
MQFMT_WORK_INFO_HEADER, but is an array of characters instead of a string.

MQFMT_XMIT_Q_HEADER

The message data begins with the transmission queue header MQXQH. The data from the original message immediately follows the
MQXQH structure. The format name of the original message data is given by the Format field in the MQMD structure, which is part of the

transmission queue header MQXQH. See MQXQH – Transmission-queue header for details of this structure.

COA and COD reports are not generated for messages that have a Format of MQFMT_XMIT_Q_HEADER.

For the C programming language, the constant MQFMT_XMIT_Q_HEADER_ARRAY is also defined; this has the same value as
MQFMT_XMIT_Q_HEADER, but is an array of characters instead of a string.

This is an output field for the MQGET call, and an input field for the MQPUT and MQPUT1 calls. The length of this field is given by
MQ_FORMAT_LENGTH. The initial value of this field is MQFMT_NONE.

Parent topic: Fields for MQMD

This build: January 26, 2011 11:16:23

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13160_

1.21.2.11. GroupId (MQBYTE24)

Page 216 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This is a byte string that is used to identify the particular message group or logical message to which the physical message belongs.
GroupId is also used if segmentation is allowed for the message. In all these cases, GroupId has a non-null value, and one or more of the

following flags is set in the MsgFlags field:

� MQMF_MSG_IN_GROUP

� MQMF_LAST_MSG_IN_GROUP

� MQMF_SEGMENT

� MQMF_LAST_SEGMENT

� MQMF_SEGMENTATION_ALLOWED

If none of these flags is set, GroupId has the special null value MQGI_NONE.

The application does not need to set this field on the MQPUT or MQGET call if:

� On the MQPUT call, MQPMO_LOGICAL_ORDER is specified.

� On the MQGET call, MQMO_MATCH_GROUP_ID is not specified.

These are the recommended ways of using these calls for messages that are not report messages. However, if the application requires more
control, or the call is MQPUT1, the application must ensure that GroupId is set to an appropriate value.

Message groups and segments can be processed correctly only if the group identifier is unique. For this reason, applications must not
generate their own group identifiers; instead, applications must do one of the following:

� If MQPMO_LOGICAL_ORDER is specified, the queue manager automatically generates a unique group identifier for the first message in

the group or segment of the logical message, and uses that group identifier for the remaining messages in the group or segments of
the logical message, so the application does not need to take any special action. This is the recommended procedure.

� If MQPMO_LOGICAL_ORDER is not specified, the application must request the queue manager to generate the group identifier, by

setting GroupId to MQGI_NONE on the first MQPUT or MQPUT1 call for a message in the group or segment of the logical message. The

group identifier returned by the queue manager on output from that call must then be used for the remaining messages in the group
or segments of the logical message. If a message group contains segmented messages, the same group identifier must be used for all
segments and messages in the group.

When MQPMO_LOGICAL_ORDER is not specified, messages in groups and segments of logical messages can be put in any order (for
example, in reverse order), but the group identifier must be allocated by the first MQPUT or MQPUT1 call that is issued for any of

those messages.

On input to the MQPUT and MQPUT1 calls, the queue manager uses the value described in Table 1. On output from the MQPUT and MQPUT1

calls, the queue manager sets this field to the value that was sent with the message if the object opened is a single queue and not a
distribution list, but leaves it unchanged if the object opened is a distribution list. In the latter case, if the application needs to know the
group identifiers generated, the application must provide MQPMR records containing the GroupId field.

On input to the MQGET call, the queue manager uses the value described in Table 1. On output from the MQGET call, the queue manager
sets this field to the value for the message retrieved.

The following special value is defined:

MQGI_NONE

No group identifier specified.

The value is binary zero for the length of the field. This is the value that is used for messages that are not in groups, not segments of
logical messages, and for which segmentation is not allowed.

For the C programming language, the constant MQGI_NONE_ARRAY is also defined; this has the same value as MQGI_NONE, but is an
array of characters instead of a string.

The length of this field is given by MQ_GROUP_ID_LENGTH. The initial value of this field is MQGI_NONE. This field is ignored if Version is

less than MQMD_VERSION_2.

Parent topic: Fields for MQMD

This build: January 26, 2011 11:16:23

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13170_

1.21.2.12. MsgFlags (MQLONG)

MsgFlags are flags that specify attributes of the message, or control its processing

MsgFlags are divided into the following categories:

� Segmentation flags

� Status flags

Segmentation flags: When a message is too big for a queue, an attempt to put the message on the queue usually fails. Segmentation is a

technique whereby the queue manager or application splits the message into smaller pieces called segments, and places each segment on
the queue as a separate physical message. The application that retrieves the message can either retrieve the segments one by one, or
request the queue manager to reassemble the segments into a single message that is returned by the MQGET call. The latter is achieved by
specifying the MQGMO_COMPLETE_MSG option on the MQGET call, and supplying a buffer that is big enough to accommodate the complete
message. (See MQGMO – Get-message options for details of the MQGMO_COMPLETE_MSG option.) A message can be segmented at the

sending queue manager, at an intermediate queue manager, or at the destination queue manager.

You can specify one of the following to control the segmentation of a message:

Page 217 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

MQMF_SEGMENTATION_INHIBITED

This option prevents the message being broken into segments by the queue manager. If specified for a message that is already a

segment, this option prevents the segment being broken into smaller segments.

The value of this flag is binary zero. This is the default.

MQMF_SEGMENTATION_ALLOWED

This option allows the message to be broken into segments by the queue manager. If specified for a message that is already a segment,
this option allows the segment to be broken into smaller segments. MQMF_SEGMENTATION_ALLOWED can be set without either

MQMF_SEGMENT or MQMF_LAST_SEGMENT being set.

� On z/OS®, the queue manager does not support the segmentation of messages. If a message is too big for the queue, the MQPUT
or MQPUT1 call fails with reason code MQRC_MSG_TOO_BIG_FOR_Q. However, the MQMF_SEGMENTATION_ALLOWED option can
still be specified, and allows the message to be segmented at a remote queue manager.

When the queue manager segments a message, the queue manager turns on the MQMF_SEGMENT flag in the copy of the MQMD that is
sent with each segment, but does not alter the settings of these flags in the MQMD provided by the application on the MQPUT or MQPUT1
call. For the last segment in the logical message, the queue manager also turns on the MQMF_LAST_SEGMENT flag in the MQMD that is
sent with the segment.

Note: Take care when putting messages with MQMF_SEGMENTATION_ALLOWED but without MQPMO_LOGICAL_ORDER. If the message

is:

� Not a segment, and

� Not in a group, and

� Not being forwarded,

the application must reset the GroupId field to MQGI_NONE before each MQPUT or MQPUT1 call, so that the queue manager can generate

a unique group identifier for each message. If this is not done, unrelated messages can have the same group identifier, which might lead
to incorrect processing subsequently. See the descriptions of the GroupId field and the MQPMO_LOGICAL_ORDER option for more

information about when to reset the GroupId field.

The queue manager splits messages into segments as necessary so that the segments (plus any required header data) fit on the queue.
However, there is a lower limit for the size of a segment generated by the queue manager (see below), and only the last segment created
from a message can be smaller than this limit. (The lower limit for the size of an application-generated segment is one byte.) Segments
generated by the queue manager might be of unequal length. The queue-manager processes the message as follows:

� User-defined formats are split on boundaries that are multiples of 16 bytes; the queue manager does not generate segments that
are smaller than 16 bytes (other than the last segment).

� Built-in formats other than MQFMT_STRING are split at points appropriate to the nature of the data present. However, the queue
manager never splits a message in the middle of an MQ header structure. This means that a segment containing a single MQ header
structure cannot be split further by the queue manager, and as a result the minimum possible segment size for that message is

greater than 16 bytes.

The second or later segment generated by the queue manager begins with one of the following:

� An MQ header structure

� The start of the application message data

� Part of the way through the application message data

� MQFMT_STRING is split without regard for the nature of the data present (SBCS, DBCS, or mixed SBCS/DBCS). When the string is
DBCS or mixed SBCS/DBCS, this might result in segments that cannot be converted from one character set to another (see below).
The queue manager never splits MQFMT_STRING messages into segments that are smaller than 16 bytes (other than the last

segment).

� The queue manger sets the Format, CodedCharSetId, and Encoding fields in the MQMD of each segment to describe correctly the

data present at the start of the segment; the format name is either the name of a built-in format, or the name of a user-defined
format.

� The Report field in the MQMD of segments with Offset greater than zero is modified. For each report type, if the report option is

MQRO_*_WITH_DATA, but the segment cannot contain any of the first 100 bytes of user data (that is, the data following any MQ
header structures that may be present), the report option is changed to MQRO_*.

The queue manager follows the above rules, but otherwise splits messages unpredictably; do not make assumptions about where a
message is split.

For persistent messages, the queue manager can perform segmentation only within a unit of work:

� If the MQPUT or MQPUT1 call is operating within a user-defined unit of work, that unit of work is used. If the call fails during the

segmentation process, the queue manager removes any segments that were placed on the queue as a result of the failing call.
However, the failure does not prevent the unit of work being committed successfully.

� If the call is operating outside a user-defined unit of work, and there is no user-defined unit of work in existence, the queue

manager creates a unit of work just for the duration of the call. If the call is successful, the queue manager commits the unit of work
automatically. If the call fails, the queue manager backs out the unit of work.

� If the call is operating outside a user-defined unit of work, but a user-defined unit of work exists, the queue manager cannot
perform segmentation. If the message does not require segmentation, the call can still succeed. But if the message requires
segmentation, the call fails with reason code MQRC_UOW_NOT_AVAILABLE.

For nonpersistent messages, the queue manager does not require a unit of work to be available in order to perform segmentation.

Take special care when converting data in messages that might be segmented:

� If the receiving application converts data on the MQGET call, and specifies the MQGMO_COMPLETE_MSG option, the data-conversion
exit is passed the complete message for the exit to convert, and the fact that the message was segmented is be apparent to the
exit.

� If the receiving application retrieves one segment at a time, the data-conversion exit is invoked to convert one segment at a time.
The exit must therefore be capable of converting the data in a segment independently of the data in any of the other segments.

If the nature of the data in the message is such that arbitrary segmentation of the data on 16-byte boundaries might result in
segments that cannot be converted by the exit, or the format is MQFMT_STRING and the character set is DBCS or mixed
SBCS/DBCS, the sending application must create and put the segments, specifying MQMF_SEGMENTATION_INHIBITED to suppress
further segmentation. In this way, the sending application can ensure that each segment contains sufficient information to allow the

Page 218 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

data-conversion exit to convert the segment successfully.

� If sender conversion is specified for a sending message channel agent (MCA), the MCA converts only messages that are not
segments of logical messages; the MCA never attempts to convert messages that are segments.

This flag is an input flag on the MQPUT and MQPUT1 calls, and an output flag on the MQGET call. On the latter call, the queue manager also
echoes the value of the flag to the Segmentation field in MQGMO.

The initial value of this flag is MQMF_SEGMENTATION_INHIBITED.

Status flags: These are flags that indicate whether the physical message belongs to a message group, is a segment of a logical message,
both, or neither. One or more of the following can be specified on the MQPUT or MQPUT1 call, or returned by the MQGET call:

MQMF_MSG_IN_GROUP

Message is a member of a group.

MQMF_LAST_MSG_IN_GROUP

Message is the last logical message in a group.

If this flag is set, the queue manager turns on MQMF_MSG_IN_GROUP in the copy of MQMD that is sent with the message, but does not

alter the settings of these flags in the MQMD provided by the application on the MQPUT or MQPUT1 call.

It is valid for a group to consist of only one logical message. If this is the case, MQMF_LAST_MSG_IN_GROUP is set, but the
MsgSeqNumber field has the value one.

MQMF_SEGMENT

Message is a segment of a logical message.

When MQMF_SEGMENT is specified without MQMF_LAST_SEGMENT, the length of the application message data in the segment (excluding
the lengths of any MQ header structures that might be present) must be at least one. If the length is zero, the MQPUT or MQPUT1 call fails
with reason code MQRC_SEGMENT_LENGTH_ZERO.

On z/OS, this option is not supported if the message is being put on a queue that has an index type of MQIT_GROUP_ID.

MQMF_LAST_SEGMENT

Message is the last segment of a logical message.

If this flag is set, the queue manager turns on MQMF_SEGMENT in the copy of MQMD that is sent with the message, but does not alter the

settings of these flags in the MQMD provided by the application on the MQPUT or MQPUT1 call.

A logical message can consist of only one segment. If this is the case, MQMF_LAST_SEGMENT is set, but the Offset field has the value

zero.

When MQMF_LAST_SEGMENT is specified, the length of the application message data in the segment (excluding the lengths of any header
structures that might be present) can be zero.

On z/OS, this option is not supported if the message is being put on a queue that has an index type of MQIT_GROUP_ID.

The application must ensure that these flags are set correctly when putting messages. If MQPMO_LOGICAL_ORDER is specified, or was
specified on the preceding MQPUT call for the queue handle, the settings of the flags must be consistent with the group and segment
information retained by the queue manager for the queue handle. The following conditions apply to successive MQPUT calls for the queue
handle when MQPMO_LOGICAL_ORDER is specified:

� If there is no current group or logical message, all these flags (and combinations of them) are valid.

� Once MQMF_MSG_IN_GROUP has been specified, it must remain on until MQMF_LAST_MSG_IN_GROUP is specified. The call fails with
reason code MQRC_INCOMPLETE_GROUP if this condition is not satisfied.

� Once MQMF_SEGMENT has been specified, it must remain on until MQMF_LAST_SEGMENT is specified. The call fails with reason code
MQRC_INCOMPLETE_MSG if this condition is not satisfied.

� Once MQMF_SEGMENT has been specified without MQMF_MSG_IN_GROUP, MQMF_MSG_IN_GROUP must remain off until after

MQMF_LAST_SEGMENT has been specified. The call fails with reason code MQRC_INCOMPLETE_MSG if this condition is not satisfied.

Table 1 shows the valid combinations of the flags, and the values used for various fields.

These flags are input flags on the MQPUT and MQPUT1 calls, and output flags on the MQGET call. On the latter call, the queue manager also

echoes the values of the flags to the GroupStatus and SegmentStatus fields in MQGMO.

You cannot use grouped or segmented messages with Publish/Subscribe.

Default flags: The following can be specified to indicate that the message has default attributes:

MQMF_NONE

No message flags (default message attributes).

This inhibits segmentation, and indicates that the message is not in a group and is not a segment of a logical message. MQMF_NONE is
defined to aid program documentation. It is not intended that this flag be used with any other, but as its value is zero, such use cannot be

detected.

The MsgFlags field is partitioned into subfields; for details see Report options and message flags.

The initial value of this field is MQMF_NONE. This field is ignored if Version is less than MQMD_VERSION_2.

Parent topic: Fields for MQMD

This build: January 26, 2011 11:16:24

Notices | Trademarks | Downloads | Library | Support | Feedback

Page 219 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13180_

1.21.2.13. MsgId (MQBYTE24)

This is a byte string that is used to distinguish one message from another. Generally, no two messages should have the same message

identifier, although this is not disallowed by the queue manager. The message identifier is a permanent property of the message, and
persists across restarts of the queue manager. Because the message identifier is a byte string and not a character string, the message
identifier is not converted between character sets when the message flows from one queue manager to another.

For the MQPUT and MQPUT1 calls, if MQMI_NONE or MQPMO_NEW_MSG_ID is specified by the application, the queue manager generates a

unique message identifier 1 when the message is put, and places it in the message descriptor sent with the message. The queue manager
also returns this message identifier in the message descriptor belonging to the sending application. The application can use this value to

record information about particular messages, and to respond to queries from other parts of the application.

If the message is being put to a topic, the queue manager generates unique message identifiers as necessary for each message published.
If MQPMO_NEW_MSG_ID is specified by the application, the queue manager generates a unique message identifier to return on output. If
MQMI_NONE is specified by the application, the value of the MsgId field in the MQMD is unchanged on return from the call.

See the description of MQPMO_RETAIN in MQPMO options (MQLONG) for more details about retained publications.

If the message is being put to a distribution list, the queue manager generates unique message identifiers as necessary, but the value of the
MsgId field in MQMD is unchanged on return from the call, even if MQMI_NONE or MQPMO_NEW_MSG_ID was specified. If the application

needs to know the message identifiers generated by the queue manager, the application must provide MQPMR records containing the MsgId

field.

The sending application can also specify a value for the message identifier other than MQMI_NONE; this stops the queue manager

generating a unique message identifier. An application that is forwarding a message can use this to propagate the message identifier of the
original message.

The queue manager does not use this field except to:

� Generate a unique value if requested, as described above

� Deliver the value to the application that issues the get request for the message

� Copy the value to the CorrelId field of any report message that it generates about this message (depending on the Report options)

When the queue manager or a message channel agent generates a report message, it sets the MsgId field in the way specified by the

Report field of the original message, either MQRO_NEW_MSG_ID or MQRO_PASS_MSG_ID. Applications that generate report messages

must also do this.

For the MQGET call, MsgId is one of the five fields that can be used to retrieve a particular message from the queue. Normally the MQGET

call returns the next message on the queue, but a particular message can be obtained by specifying one or more of the five selection
criteria, in any combination; these fields are:

� MsgId

� CorrelId

� GroupId

� MsgSeqNumber

� Offset

The application sets one or more of these field to the values required, and then sets the corresponding MQMO_* match options in the
MatchOptions field in MQGMO to use those fields as selection criteria. Only messages that have the specified values in those fields are

candidates for retrieval. The default for the MatchOptions field (if not altered by the application) is to match both the message identifier and

the correlation identifier.

On z/OS®, the selection criteria that you can use are restricted by the type of index used for the queue. See the IndexType queue attribute

for further details.

Normally, the message returned is the first message on the queue that satisfies the selection criteria. But if MQGMO_BROWSE_NEXT is
specified, the message returned is the next message that satisfies the selection criteria; the scan for this message starts with the message
following the current cursor position.

Note: The queue is scanned sequentially for a message that satisfies the selection criteria, so retrieval times are slower than if no selection

criteria are specified, especially if many messages have to be scanned before a suitable one is found. The exceptions to this are:

� an MQGET call by CorrelId on 64-bit distributed platforms where the CorrelId index eliminates the need to perform a true sequential
scan.

� an MQGET call by IndexType on z/OS.

In both these cases, retrieval performance is improved.

See Table 1 for more information about how selection criteria are used in various situations.

Specifying MQMI_NONE as the message identifier has the same effect as not specifying MQMO_MATCH_MSG_ID, that is, any message
identifier matches.

This field is ignored if the MQGMO_MSG_UNDER_CURSOR option is specified in the GetMsgOpts parameter on the MQGET call.

On return from an MQGET call, the MsgId field is set to the message identifier of the message returned (if any).

The following special value can be used:

Page 220 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

MQMI_NONE

No message identifier is specified.

The value is binary zero for the length of the field.

For the C programming language, the constant MQMI_NONE_ARRAY is also defined; this has the same value as MQMI_NONE, but is an

array of characters instead of a string.

This is an input/output field for the MQGET, MQPUT, and MQPUT1 calls. The length of this field is given by MQ_MSG_ID_LENGTH. The initial
value of this field is MQMI_NONE.

Parent topic: Fields for MQMD
1 A MsgId generated by the queue manager consists of a 4-byte product identifier (AMQ� or CSQ� in either ASCII or EBCDIC, where �

represents a blank), followed by a product-specific implementation of a unique string. In WebSphere® MQ this contains the first 12
characters of the queue-manager name, and a value derived from the system clock. All queue managers that can intercommunicate must
therefore have names that differ in the first 12 characters, in order to ensure that message identifiers are unique. The ability to generate a
unique string also depends on the system clock not being changed backward. To eliminate the possibility of a message identifier generated
by the queue manager duplicating one generated by the application, the application must avoid generating identifiers with initial characters

in the range A through I in ASCII or EBCDIC (X'41' through X'49' and X'C1' through X'C9'). However, the application is not prevented from
generating identifiers with initial characters in these ranges.

This build: January 26, 2011 11:16:24

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13190_

1.21.2.14. MsgSeqNumber (MQLONG)

This is the sequence number of a logical message within a group.

Sequence numbers start at 1, and increase by 1 for each new logical message in the group, up to a maximum of 999 999 999. A physical
message that is not in a group has a sequence number of 1.

The application does not have to set this field on the MQPUT or MQGET call if:

� On the MQPUT call, MQPMO_LOGICAL_ORDER is specified.

� On the MQGET call, MQMO_MATCH_MSG_SEQ_NUMBER is not specified.

These are the recommended ways of using these calls for messages that are not report messages. However, if the application requires more
control, or the call is MQPUT1, the application must ensure that MsgSeqNumber is set to an appropriate value.

On input to the MQPUT and MQPUT1 calls, the queue manager uses the value described in Table 1. On output from the MQPUT and MQPUT1

calls, the queue manager sets this field to the value that was sent with the message.

On input to the MQGET call, the queue manager uses the value shown in Table 1. On output from the MQGET call, the queue manager sets
this field to the value for the message retrieved.

The initial value of this field is one. This field is ignored if Version is less than MQMD_VERSION_2.

Parent topic: Fields for MQMD

This build: January 26, 2011 11:16:25

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13200_

1.21.2.15. MsgType (MQLONG)

This indicates the type of the message. Message types are grouped as follows:

MQMT_SYSTEM_FIRST

Lowest value for system-defined message types.

MQMT_SYSTEM_LAST

Highest value for system-defined message types.

The following values are currently defined within the system range:

MQMT_DATAGRAM

The message is one that does not require a reply.

MQMT_REQUEST

The message is one that requires a reply.

Specify the name of the queue to which to send the reply in the ReplyToQ field. The Report field indicates how to set the MsgId and

CorrelId of the reply.

MQMT_REPLY

The message is the reply to an earlier request message (MQMT_REQUEST). The message must be sent to the queue indicated by the

Page 221 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

ReplyToQ field of the request message. Use the Report field of the request to control how to set the MsgId and CorrelId of the reply.

Note: The queue manager does not enforce the request-reply relationship; this is an application responsibility.

MQMT_REPORT

The message is reporting on some expected or unexpected occurrence, usually related to some other message (for example, a request

message was received that contained data that was not valid). Send the message to the queue indicated by the ReplyToQ field of the

message descriptor of the original message. Set the Feedback field s to indicate the nature of the report. Use the Report field of the

original message to control how to set the MsgId and CorrelId of the report message.

Report messages generated by the queue manager or message channel agent are always sent to the ReplyToQ queue, with the Feedback

and CorrelId fields set as described above.

Application-defined values can also be used. They must be within the following range:

MQMT_APPL_FIRST

Lowest value for application-defined message types.

MQMT_APPL_LAST

Highest value for application-defined message types.

For the MQPUT and MQPUT1 calls, the MsgType value must be within either the system-defined range or the application-defined range; if it

is not, the call fails with reason code MQRC_MSG_TYPE_ERROR.

This is an output field for the MQGET call, and an input field for MQPUT and MQPUT1 calls. The initial value of this field is MQMT_DATAGRAM.

Parent topic: Fields for MQMD

This build: January 26, 2011 11:16:25

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13210_

1.21.2.16. Offset (MQLONG)

This is the offset in bytes of the data in the physical message from the start of the logical message of which the data forms part. This data is

called a segment. The offset is in the range 0 through 999 999 999. A physical message that is not a segment of a logical message has an
offset of zero.

The application does not need to set this field on the MQPUT or MQGET call if:

� On the MQPUT call, MQPMO_LOGICAL_ORDER is specified.

� On the MQGET call, MQMO_MATCH_OFFSET is not specified.

These are the recommended ways of using these calls for messages that are not report messages. However, if the application does not

comply with these conditions, or the call is MQPUT1, the application must ensure that Offset is set to an appropriate value.

On input to the MQPUT and MQPUT1 calls, the queue manager uses the value described in Table 1. On output from the MQPUT and MQPUT1
calls, the queue manager sets this field to the value that was sent with the message.

For a report message reporting on a segment of a logical message, the OriginalLength field (provided it is not MQOL_UNDEFINED) is used

to update the offset in the segment information retained by the queue manager.

On input to the MQGET call, the queue manager uses the value shown in Table 1. On output from the MQGET call, the queue manager sets
this field to the value for the message retrieved.

The initial value of this field is zero. This field is ignored if Version is less than MQMD_VERSION_2.

Parent topic: Fields for MQMD

This build: January 26, 2011 11:16:25

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13220_

1.21.2.17. OriginalLength (MQLONG)

This field is relevant only for report messages that are segments. It specifies the length of the message segment to which the report
message relates; it does not specify the length of the logical message of which the segment forms part, or the length of the data in the
report message.

Note: When generating a report message for a message that is a segment, the queue manager and message channel agent copy into the
MQMD for the report message the GroupId, MsgSeqNumber, Offset, and MsgFlags, fields from the original message. As a result, the report

message is also a segment. Applications that generate report messages must do the same, and set the OriginalLength field correctly.

The following special value is defined:

MQOL_UNDEFINED

Original length of message not defined.

Page 222 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

OriginalLength is an input field on the MQPUT and MQPUT1 calls, but the value that the application provides is accepted only in particular

circumstances:

� If the message being put is a segment and is also a report message, the queue manager accepts the value specified. The value must

be:

� Greater than zero if the segment is not the last segment

� Not less than zero if the segment is the last segment

� Not less than the length of data present in the message

If these conditions are not satisfied, the call fails with reason code MQRC_ORIGINAL_LENGTH_ERROR.

� If the message being put is a segment but not a report message, the queue manager ignores the field and uses the length of the
application message data instead.

� In all other cases, the queue manager ignores the field and uses the value MQOL_UNDEFINED instead.

This is an output field on the MQGET call.

The initial value of this field is MQOL_UNDEFINED. This field is ignored if Version is less than MQMD_VERSION_2.

Parent topic: Fields for MQMD

This build: January 26, 2011 11:16:25

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13230_

1.21.2.18. Persistence (MQLONG)

This indicates whether the message survives system failures and restarts of the queue manager. For the MQPUT and MQPUT1 calls, the
value must be one of the following:

MQPER_PERSISTENT

The message survives system failures and restarts of the queue manager. Once the message has been put, and the unit of work in which
it was put has been committed (if the message is put as part of a unit of work), the message is preserved on auxiliary storage. It remains
there until the message is removed from the queue, and the unit of work in which it was got has been committed (if the message is
retrieved as part of a unit of work).

When a persistent message is sent to a remote queue, a store-and-forward mechanism holds the message at each queue manager along
the route to the destination, until the message is known to have arrived at the next queue manager.

Persistent messages cannot be placed on:

� Temporary dynamic queues

� Shared queues that map to a CFSTRUCT object at CFLEVEL(2) or below, or where the CFSTRUCT object is defined as RECOVER(NO).

Persistent messages can be placed on permanent dynamic queues, and predefined queues.

MQPER_NOT_PERSISTENT

The message does not usually survive system failures or queue manager restarts. This applies even if an intact copy of the message is
found on auxiliary storage when the queue manager restarts.

In the case of NPMCLASS (HIGH) queues nonpersistent messages survive a normal queue manager shutdown and restart.

In the case of shared queues, nonpersistent messages survive queue manager restarts in the queue-sharing group, but do not survive
failures of the coupling facility used to store messages on the shared queues.

MQPER_PERSISTENCE_AS_Q_DEF

� If the queue is a cluster queue, the persistence of the message is taken from the DefPersistence attribute defined at the

destination queue manager that owns the particular instance of the queue on which the message is placed. Usually, all instances of a
cluster queue have the same value for the DefPersistence attribute, although this is not mandated.

The value of DefPersistence is copied into the Persistence field when the message is placed on the destination queue. If

DefPersistence is changed subsequently, messages that have already been placed on the queue are not affected.

� If the queue is not a cluster queue, the persistence of the message is taken from the DefPersistence attribute defined at the local

queue manager, even if the destination queue manager is remote.

If there is more than one definition in the queue-name resolution path, the default persistence is taken from the value of this
attribute in the first definition in the path. This can be:

� An alias queue

� A local queue

� A local definition of a remote queue

� A queue-manager alias

� A transmission queue (for example, the DefXmitQName queue)

The value of DefPersistence is copied into the Persistence field when the message is put. If DefPersistence is changed

subsequently, messages that have already been put are not affected.

Both persistent and nonpersistent messages can exist on the same queue.

When replying to a message, applications must use the persistence of the request message for the reply message.

For an MQGET call, the value returned is either MQPER_PERSISTENT or MQPER_NOT_PERSISTENT.

Page 223 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This is an output field for the MQGET call, and an input field for the MQPUT and MQPUT1 calls. The initial value of this field is
MQPER_PERSISTENCE_AS_Q_DEF.

Parent topic: Fields for MQMD

This build: January 26, 2011 11:16:25

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13240_

1.21.2.19. Priority (MQLONG)

For the MQPUT and MQPUT1 calls, the value must be greater than or equal to zero; zero is the lowest priority. The following special value
can also be used:

MQPRI_PRIORITY_AS_Q_DEF

� If the queue is a cluster queue, the priority for the message is taken from the DefPriority attribute as defined at the destination

queue manager that owns the particular instance of the queue on which the message is placed. Usually, all instances of a cluster
queue have the same value for the DefPriority attribute, although this is not mandated.

The value of DefPriority is copied into the Priority field when the message is placed on the destination queue. If DefPriority is

changed subsequently, messages that have already been placed on the queue are not affected.

� If the queue is not a cluster queue, the priority for the message is taken from the DefPriority attribute as defined at the local

queue manager, even if the destination queue manager is remote.

If there is more than one definition in the queue-name resolution path, the default priority is taken from the value of this attribute in
the first definition in the path. This can be:

� An alias queue

� A local queue

� A local definition of a remote queue

� A queue-manager alias

� A transmission queue (for example, the DefXmitQName queue)

The value of DefPriority is copied into the Priority field when the message is put. If DefPriority is changed subsequently,

messages that have already been put are not affected.

The value returned by the MQGET call is always greater than or equal to zero; the value MQPRI_PRIORITY_AS_Q_DEF is never returned.

If a message is put with a priority greater than the maximum supported by the local queue manager (this maximum is given by the
MaxPriority queue-manager attribute), the message is accepted by the queue manager, but placed on the queue at the queue manager’s

maximum priority; the MQPUT or MQPUT1 call completes with MQCC_WARNING and reason code MQRC_PRIORITY_EXCEEDS_MAXIMUM.
However, the Priority field retains the value specified by the application that put the message.

On z/OS®, if a message with a MsgSeqNumber of 1 is put to a queue that has a message delivery sequence of MQMDS_PRIORITY and an
index type of MQIT_GROUP_ID, the queue might treat the message with a different priority. If the message was placed on the queue with a

priority of 0 or 1, it is processed as though it has a priority of 2. This is because the order of messages placed on this type of queue is
optimized to enable efficient group completeness tests. For more information on the message delivery sequence MQMDS_PRIORITY and the
index type MQIT_GROUP_ID, see MsgDeliverySequence attribute.

When replying to a message, applications must use the priority of the request message for the reply message. In other situations, specifying

MQPRI_PRIORITY_AS_Q_DEF allows priority tuning to be carried out without changing the application.

This is an output field for the MQGET call, and an input field for the MQPUT and MQPUT1 calls. The initial value of this field is
MQPRI_PRIORITY_AS_Q_DEF.

Parent topic: Fields for MQMD

This build: January 26, 2011 11:16:25

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13250_

1.21.2.20. PutApplName (MQCHAR28)

This is the name of application that put the message, and is part of the origin context of the message. The contents differ between
platforms, and might differ between releases.

For more information about message context, see Overview for MQMD; also see the WebSphere MQ Application Programming Guide.

The format of PutApplName depends on the value of PutApplType and can change from one release to another. Changes are rare, but do

happen if the environment changes.

When the queue manager sets this field (that is, for all options except MQPMO_SET_ALL_CONTEXT), it sets the field to a value that is
determined by the environment:

� On z/OS®, the queue manager uses:

� For z/OS batch, the 8-character job name from the JES JOB card

� For TSO, the 7-character TSO user identifier

Page 224 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

� For CICS®, the 8-character applid, followed by the 4-character tranid

� For IMS™, the 8-character IMS system identifier, followed by the 8-character PSB name

� For XCF, the 8-character XCF group name, followed by the 16-character XCF member name

� For a message generated by a queue manager, the first 28 characters of the queue manager name

� For distributed queuing without CICS, the 8-character jobname of the channel initiator followed by the 8-character name of the
module putting to the dead-letter queue followed by an 8-character task identifier.

The name or names are each padded to the right with blanks, as is any space in the remainder of the field. Where there is more than
one name, there is no separator between them.

� On Windows systems, the queue manager uses:

� For a CICS application, the CICS transaction name

� For a non-CICS application, the rightmost 28 characters of the fully-qualified name of the executable

� On i5/OS®, the queue manager uses the fully-qualified job name.

� On UNIX systems, the queue manager uses:

� For a CICS application, the CICS transaction name

� For a non-CICS application, at least the rightmost 14 characters of the fully-qualified name of the executable, if this is available
to the queue manager, and blanks otherwise.

For the MQPUT and MQPUT1 calls, this is an input/output field if MQPMO_SET_ALL_CONTEXT is specified in the PutMsgOpts parameter. Any

information following a null character within the field is discarded. The null character and any following characters are converted to blanks

by the queue manager. If MQPMO_SET_ALL_CONTEXT is not specified, this field is ignored on input and is an output-only field.

Parent topic: Fields for MQMD

This build: January 26, 2011 11:16:26

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13260_

1.21.2.21. PutApplType (MQLONG)

This is the type of application that put the message, and is part of the origin context of the message. For more information about message
context, see Overview for MQMD; also see the WebSphere MQ Application Programming Guide.

PutApplType can have one of the following standard types. You can also define your own types, but only with values in the range

MQAT_USER_FIRST through MQAT_USER_LAST.

MQAT_AIX

AIX® application (same value as MQAT_UNIX).

MQAT_BROKER

Broker.

MQAT_CICS

CICS® transaction.

MQAT_CICS_BRIDGE

CICS bridge.

MQAT_CICS_VSE

CICS/VSE transaction.

MQAT_DOS

WebSphere® MQ client application on PC DOS.

MQAT_DQM

Distributed queue manager agent.

MQAT_GUARDIAN

Tandem Guardian application (same value as MQAT_NSK).

MQAT_IMS

IMS™ application.

MQAT_IMS_BRIDGE

IMS bridge.

MQAT_JAVA

Java.

MQAT_MVS

MVS™ or TSO application (same value as MQAT_ZOS).

MQAT_NOTES_AGENT

Lotus Notes® Agent application.

MQAT_NSK

Compaq NonStop Kernel application.

MQAT_OS390

OS/390® application (same value as MQAT_ZOS).

Page 225 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

MQAT_OS400

i5/OS® application.

MQAT_QMGR

Queue manager.

MQAT_UNIX

UNIX application.

MQAT_VMS

Digital OpenVMS application.

MQAT_VOS

Stratus VOS application.

MQAT_WINDOWS

16-bit Windows application.

MQAT_WINDOWS_NT

32-bit Windows application.

MQAT_WLM

z/OS® workload manager application.

MQAT_XCF

XCF.

MQAT_ZOS

z/OS application.

MQAT_DEFAULT

Default application type.

This is the default application type for the platform on which the application is running.

Note: The value of this constant is environment-specific. Because of this, always compile the application using the header, include, or
COPY files that are appropriate to the platform on which the application will run.

MQAT_UNKNOWN

Use this value to indicate that the application type is unknown, even though other context information is present.

MQAT_USER_FIRST

Lowest value for user-defined application type.

MQAT_USER_LAST

Highest value for user-defined application type.

The following special value can also occur:

MQAT_NO_CONTEXT

This value is set by the queue manager when a message is put with no context (that is, the MQPMO_NO_CONTEXT context option is

specified).

When a message is retrieved, PutApplType can be tested for this value to decide whether the message has context (it is recommended

that PutApplType is never set to MQAT_NO_CONTEXT, by an application using MQPMO_SET_ALL_CONTEXT, if any of the other context

fields are nonblank).

When the queue manager generates this information as a result of an application put, the field is set to a value that is determined by the

environment. On i5/OS, it is set to MQAT_OS400; the queue manager never uses MQAT_CICS on i5/OS.

For the MQPUT and MQPUT1 calls, this is an input/output field if MQPMO_SET_ALL_CONTEXT is specified in the PutMsgOpts parameter. If

MQPMO_SET_ALL_CONTEXT is not specified, this field is ignored on input and is an output-only field.

This is an output field for the MQGET call. The initial value of this field is MQAT_NO_CONTEXT.

Parent topic: Fields for MQMD

This build: January 26, 2011 11:16:26

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13270_

1.21.2.22. PutDate (MQCHAR8)

This is the date when the message was put, and is part of the origin context of the message. For more information about message
context, see Overview for MQMD; also see the WebSphere MQ Application Programming Guide.

The format used for the date when this field is generated by the queue manager is:

� YYYYMMDD

where the characters represent:

YYYY

year (four numeric digits)

Page 226 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

MM

month of year (01 through 12)

DD

day of month (01 through 31)

Greenwich Mean Time (GMT) is used for the PutDate and PutTime fields, subject to the system clock being set accurately to GMT.

If the message was put as part of a unit of work, the date is that when the message was put, and not the date when the unit of work was

committed.

For the MQPUT and MQPUT1 calls, this is an input/output field if MQPMO_SET_ALL_CONTEXT is specified in the PutMsgOpts parameter. The

contents of the field are not checked by the queue manager, except that any information following a null character within the field is

discarded. The queue manager converts the null character and any following characters to blanks. If MQPMO_SET_ALL_CONTEXT is not
specified, this field is ignored on input and is an output-only field.

This is an output field for the MQGET call. The length of this field is given by MQ_PUT_DATE_LENGTH. The initial value of this field is the null
string in C, and 8 blank characters in other programming languages.

Parent topic: Fields for MQMD

This build: January 26, 2011 11:16:26

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13280_

1.21.2.23. PutTime (MQCHAR8)

This is the time when the message was put, and is part of the origin context of the message. For more information about message

context, see Overview for MQMD; also see the WebSphere MQ Application Programming Guide.

The format used for the time when this field is generated by the queue manager is:

� HHMMSSTH

where the characters represent (in order):

HH

hours (00 through 23)

MM

minutes (00 through 59)

SS

seconds (00 through 59; see note below)

T

tenths of a second (0 through 9)

H

hundredths of a second (0 through 9)

Note: If the system clock is synchronized to a very accurate time standard, it is possible on rare occasions for 60 or 61 to be returned for
the seconds in PutTime. This happens when leap seconds are inserted into the global time standard.

Greenwich Mean Time (GMT) is used for the PutDate and PutTime fields, subject to the system clock being set accurately to GMT.

If the message was put as part of a unit of work, the time is that when the message was put, and not the time when the unit of work was
committed.

For the MQPUT and MQPUT1 calls, this is an input/output field if MQPMO_SET_ALL_CONTEXT is specified in the PutMsgOpts parameter. The

queue manager does not check the contents of the field, except that any information following a null character within the field is discarded.
The queue manger converts the null character and any following characters to blanks. If MQPMO_SET_ALL_CONTEXT is not specified, this
field is ignored on input and is an output-only field.

This is an output field for the MQGET call. The length of this field is given by MQ_PUT_TIME_LENGTH. The initial value of this field is the null
string in C, and 8 blank characters in other programming languages.

Parent topic: Fields for MQMD

This build: January 26, 2011 11:16:26

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13290_

1.21.2.24. ReplyToQ (MQCHAR48)

This is the name of the message queue to which the application that issued the get request for the message sends MQMT_REPLY and
MQMT_REPORT messages. The name is the local name of a queue that is defined on the queue manager identified by ReplyToQMgr. This

queue must not be a model queue, although the sending queue manager does not verify this when the message is put.

Page 227 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

For the MQPUT and MQPUT1 calls, this field must not be blank if the MsgType field has the value MQMT_REQUEST, or if any report messages

are requested by the Report field. However, the value specified (or substituted; see below) is passed on to the application that issues the

get request for the message, whatever the message type.

If the ReplyToQMgr field is blank, the local queue manager looks up the ReplyToQ name in its own queue definitions. If a local definition of a

remote queue exists with this name, the ReplyToQ value in the transmitted message is replaced by the value of the RemoteQName attribute

from the definition of the remote queue, and this value is returned in the message descriptor when the receiving application issues an
MQGET call for the message. If a local definition of a remote queue does not exist, ReplyToQ is unchanged.

If the name is specified, it can contain trailing blanks; the first null character and characters following it are treated as blanks. Otherwise no
check is made that the name satisfies the naming rules for queues; this is also true for the name transmitted, if the ReplyToQ is replaced in

the transmitted message. The only check made is that a name has been specified, if the circumstances require it.

If a reply-to queue is not required, set the ReplyToQ field to blanks, or (in the C programming language) to the null string, or to one or

more blanks followed by a null character; do not leave the field uninitialized.

For the MQGET call, the queue manager always returns the name padded with blanks to the length of the field.

If a message that requires a report message cannot be delivered, and the report message also cannot be delivered to the queue specified,

both the original message and the report message go to the dead-letter (undelivered-message) queue (see the DeadLetterQName attribute

described in Attributes for the queue manager).

This is an output field for the MQGET call, and an input field for the MQPUT and MQPUT1 calls. The length of this field is given by

MQ_Q_NAME_LENGTH. The initial value of this field is the null string in C, and 48 blank characters in other programming languages.

Parent topic: Fields for MQMD

This build: January 26, 2011 11:16:26

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13300_

1.21.2.25. ReplyToQMgr (MQCHAR48)

This is the name of the queue manager to which to send the reply message or report message. ReplyToQ is the local name of a queue that

is defined on this queue manager.

If the ReplyToQMgr field is blank, the local queue manager looks up the ReplyToQ name in its queue definitions. If a local definition of a

remote queue exists with this name, the ReplyToQMgr value in the transmitted message is replaced by the value of the RemoteQMgrName

attribute from the definition of the remote queue, and this value is returned in the message descriptor when the receiving application issues
an MQGET call for the message. If a local definition of a remote queue does not exist, the ReplyToQMgr that is transmitted with the message

is the name of the local queue manager.

If the name is specified, it can contain trailing blanks; the first null character and characters following it are treated as blanks. Otherwise no
check is made that the name satisfies the naming rules for queue managers, or that this name is known to the sending queue manager; this
is also true for the name transmitted, if the ReplyToQMgr is replaced in the transmitted message. For more information about names, see

the WebSphere MQ Application Programming Guide.

If a reply-to queue is not required, set the ReplyToQMgr field to blanks, or (in the C programming language) to the null string, or to one or

more blanks followed by a null character; do not leave the field uninitialized.

For the MQGET call, the queue manager always returns the name padded with blanks to the length of the field.

This is an output field for the MQGET call, and an input field for the MQPUT and MQPUT1 calls. The length of this field is given by
MQ_Q_MGR_NAME_LENGTH. The initial value of this field is the null string in C, and 48 blank characters in other programming languages.

Parent topic: Fields for MQMD

This build: January 26, 2011 11:16:27

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13310_

1.21.2.26. Report (MQLONG)

A report message is a message about another message, used to inform an application about expected or unexpected events that relate to

the original message. The Report field enables the application sending the original message to specify which report messages are required,

whether the application message data is to be included in them, and also (for both reports and replies) how the message and correlation
identifiers in the report or reply message are to be set. Any or all (or none) of the following types of report message can be requested:

� Exception

� Expiration

� Confirm on arrival (COA)

� Confirm on delivery (COD)

� Positive action notification (PAN)

� Negative action notification (NAN)

Page 228 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

If more than one type of report message is required, or other report options are needed, the values can be:

� Added together (do not add the same constant more than once), or

� Combined using the bitwise OR operation (if the programming language supports bit operations).

The application that receives the report message can determine the reason that the report was generated by examining the Feedback field

in the MQMD; see the Feedback field for more details.

The use of report options when putting a message to a topic can cause zero, one or many report messages to be generated and sent to the
application. This is because the publication message may be sent to zero, one or many subscribing applications.

Exception options: Specify one of the options listed below to request an exception report message.

MQRO_EXCEPTION

A message channel agent generates this type of report when a message is sent to another queue manager and the message cannot be
delivered to the specified destination queue. For example, the destination queue or an intermediate transmission queue might be full, or

the message might be too big for the queue.

Generation of the exception report message depends on the persistence of the original message, and the speed of the message channel
(normal or fast) through which the original message travels:

� For all persistent messages, and for nonpersistent messages traveling through normal message channels, the exception report is

generated only if the action specified by the sending application for the error condition can be completed successfully. The sending
application can specify one of the following actions to control the disposition of the original message when the error condition arises:

� MQRO_DEAD_LETTER_Q (this places the original message on the dead-letter queue).

� MQRO_DISCARD_MSG (this discards the original message).

If the action specified by the sending application cannot be completed successfully, the original message is left on the transmission
queue, and no exception report message is generated.

� For nonpersistent messages traveling through fast message channels, the original message is removed from the transmission queue
and the exception report generated even if the specified action for the error condition cannot be completed successfully. For
example, if MQRO_DEAD_LETTER_Q is specified, but the original message cannot be placed on the dead-letter queue because that
queue is full, the exception report message is generated and the original message discarded.

Refer to the WebSphere MQ Intercommunication book for more information about normal and fast message channels.

An exception report is not generated if the application that put the original message can be notified synchronously of the problem by
means of the reason code returned by the MQPUT or MQPUT1 call.

Applications can also send exception reports, to indicate that a message cannot be processed (for example, because it is a debit

transaction that would cause the account to exceed its credit limit).

Message data from the original message is not included with the report message.

Do not specify more than one of MQRO_EXCEPTION, MQRO_EXCEPTION_WITH_DATA, and MQRO_EXCEPTION_WITH_FULL_DATA.

MQRO_EXCEPTION_WITH_DATA

This is the same as MQRO_EXCEPTION, except that the first 100 bytes of the application message data from the original message are
included in the report message. If the original message contains one or more MQ header structures, they are included in the report

message, in addition to the 100 bytes of application data.

Do not specify more than one of MQRO_EXCEPTION, MQRO_EXCEPTION_WITH_DATA, and MQRO_EXCEPTION_WITH_FULL_DATA.

MQRO_EXCEPTION_WITH_FULL_DATA

Exception reports with full data required.

This is the same as MQRO_EXCEPTION, except that all the application message data from the original message is included in the report
message.

Do not specify more than one of MQRO_EXCEPTION, MQRO_EXCEPTION_WITH_DATA, and MQRO_EXCEPTION_WITH_FULL_DATA.

Expiration options: Specify one of the options listed below to request an expiration report message.

MQRO_EXPIRATION

This type of report is generated by the queue manager if the message is discarded before delivery to an application because its expiry
time has passed (see the Expiry field). If this option is not set, no report message is generated if a message is discarded for this reason

(even if you specify one of the MQRO_EXCEPTION_* options).

Message data from the original message is not included with the report message.

Do not specify more than one of MQRO_EXPIRATION, MQRO_EXPIRATION_WITH_DATA, and MQRO_EXPIRATION_WITH_FULL_DATA.

MQRO_EXPIRATION_WITH_DATA

This is the same as MQRO_EXPIRATION, except that the first 100 bytes of the application message data from the original message are
included in the report message. If the original message contains one or more MQ header structures, they are included in the report
message, in addition to the 100 bytes of application data.

Do not specify more than one of MQRO_EXPIRATION, MQRO_EXPIRATION_WITH_DATA, and MQRO_EXPIRATION_WITH_FULL_DATA.

MQRO_EXPIRATION_WITH_FULL_DATA

This is the same as MQRO_EXPIRATION, except that all the application message data from the original message is included in the report
message.

Do not specify more than one of MQRO_EXPIRATION, MQRO_EXPIRATION_WITH_DATA, and MQRO_EXPIRATION_WITH_FULL_DATA.

Confirm-on-arrival options: Specify one of the options listed below to request a confirm-on-arrival report message.

Page 229 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

MQRO_COA

This type of report is generated by the queue manager that owns the destination queue when the message is placed on the destination

queue. Message data from the original message is not included with the report message.

If the message is put as part of a unit of work, and the destination queue is a local queue, the COA report message generated by the
queue manager can be retrieved only if the unit of work is committed.

A COA report is not generated if the Format field in the message descriptor is MQFMT_XMIT_Q_HEADER or

MQFMT_DEAD_LETTER_HEADER. This prevents a COA report being generated if the message is put on a transmission queue, or is
undeliverable and put on a dead-letter queue.

In the case of an IMS bridge queue, the COA report is generated when the message reaches the IMS queue (acknowledgment received
from IMS) and not when the message is put in the MQ bridge queue. That means that if IMS is not active, no COA report is generated until
IMS is started and a message is queued on the IMS queue.

Do not specify more than one of MQRO_COA, MQRO_COA_WITH_DATA, and MQRO_COA_WITH_FULL_DATA.

MQRO_COA_WITH_DATA

This is the same as MQRO_COA, except that the first 100 bytes of the application message data from the original message are included in

the report message. If the original message contains one or more MQ header structures, they are included in the report message, in
addition to the 100 bytes of application data.

Do not specify more than one of MQRO_COA, MQRO_COA_WITH_DATA, and MQRO_COA_WITH_FULL_DATA.

MQRO_COA_WITH_FULL_DATA

This is the same as MQRO_COA, except that all the application message data from the original message is included in the report message.

Do not specify more than one of MQRO_COA, MQRO_COA_WITH_DATA, and MQRO_COA_WITH_FULL_DATA.

Confirm-on-delivery options: Specify one of the options listed below to request a confirm-on-delivery report message.

MQRO_COD

This type of report is generated by the queue manager when an application retrieves the message from the destination queue in a way
that deletes the message from the queue. Message data from the original message is not included with the report message.

If the message is retrieved as part of a unit of work, the report message is generated within the same unit of work, so that the report is

not available until the unit of work is committed. If the unit of work is backed out, the report is not sent.

A COD report is not always generated if a message is retrieved with the MQGMO_MARK_SKIP_BACKOUT option. If the primary unit of
work is backed out but the secondary unit of work is committed, the message is removed from the queue, but a COD report is not
generated.

A COD report is not generated if the Format field in the message descriptor is MQFMT_DEAD_LETTER_HEADER. This prevents a COD

report being generated if the message is undeliverable and put on a dead-letter queue.

MQRO_COD is not valid if the destination queue is an XCF queue.

Do not specify more than one of MQRO_COD, MQRO_COD_WITH_DATA, and MQRO_COD_WITH_FULL_DATA.

MQRO_COD_WITH_DATA

This is the same as MQRO_COD, except that the first 100 bytes of the application message data from the original message are included in
the report message. If the original message contains one or more MQ header structures, they are included in the report message, in
addition to the 100 bytes of application data.

If MQGMO_ACCEPT_TRUNCATED_MSG is specified on the MQGET call for the original message, and the message retrieved is truncated,
the amount of application message data placed in the report message depends on the environment:

� On z/OS®, it is the minimum of:

� The length of the original message

� The length of the buffer used to retrieve the message

� 100 bytes.

� In other environments, it is the minimum of:

� The length of the original message

� 100 bytes.

MQRO_COD_WITH_DATA is not valid if the destination queue is an XCF queue.

Do not specify more than one of MQRO_COD, MQRO_COD_WITH_DATA, and MQRO_COD_WITH_FULL_DATA.

MQRO_COD_WITH_FULL_DATA

This is the same as MQRO_COD, except that all the application message data from the original message is included in the report message.

MQRO_COD_WITH_FULL_DATA is not valid if the destination queue is an XCF queue.

Do not specify more than one of MQRO_COD, MQRO_COD_WITH_DATA, and MQRO_COD_WITH_FULL_DATA.

Action-notification options: Specify one or both of the options listed below to request that the receiving application send a positive-action
or negative-action report message.

MQRO_PAN

This type of report is generated by the application that retrieves the message and acts upon it. It indicates that the action requested in
the message has been performed successfully. The application generating the report determines whether any data is to be included with

Page 230 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

the report.

Other than conveying this request to the application retrieving the message, the queue manager takes no action based on this option. The
retrieving application must generate the report if appropriate.

MQRO_NAN

This type of report is generated by the application that retrieves the message and acts upon it. It indicates that the action requested in
the message has not been performed successfully. The application generating the report determines whether any data is to be included

with the report. For example, you might want to include some data indicating why the request could not be performed.

Other than conveying this request to the application retrieving the message, the queue manager takes no action based on this option. The
retrieving application must generate the report if appropriate.

The application must determine which conditions correspond to a positive action and which correspond to a negative action. However, if the
request has been only partially performed, generate a NAN report rather than a PAN report if requested. Every possible condition must
correspond to either a positive action, or a negative action, but not both.

Message-identifier options: Specify one of the options listed below to control how the MsgId of the report message (or of the reply

message) is to be set.

MQRO_NEW_MSG_ID

This is the default action, and indicates that if a report or reply is generated as a result of this message, a new MsgId is generated for the

report or reply message.

MQRO_PASS_MSG_ID

If a report or reply is generated as a result of this message, the MsgId of this message is copied to the MsgId of the report or reply

message.

The MsgId of a publication message will be different for each subscriber that receives a copy of the publication and therefore the MsgId

copied into the report or reply message will be different for each one.

If this option is not specified, MQRO_NEW_MSG_ID is assumed.

Correlation-identifier options: Specify one of the options listed below to control how the CorrelId of the report message (or of the reply

message) is to be set.

MQRO_COPY_MSG_ID_TO_CORREL_ID

This is the default action, and indicates that if a report or reply is generated as a result of this message, the MsgId of this message is

copied to the CorrelId of the report or reply message.

The MsgId of a publication message will be different for each subscriber that receives a copy of the publication and therefore the MsgId

copied into the CorrelId of the report or reply message will be different for each one.

MQRO_PASS_CORREL_ID

If a report or reply is generated as a result of this message, the CorrelId of this message is copied to the CorrelId of the report or reply

message.

The CorrelId of a publication message will be specific to a subscriber unless it uses the MQSO_SET_CORREL_ID option and sets the

SubCorrelId field in the MQSD to MQCI_NONE. Therefore it is possible that the CorrelId copied into the CorrelId of the report or reply

message will be different for each one.

If this option is not specified, MQRO_COPY_MSG_ID_TO_CORREL_ID is assumed.

Servers replying to requests or generating report messages must check whether the MQRO_PASS_MSG_ID or MQRO_PASS_CORREL_ID
options were set in the original message. If they were, the servers must take the action described for those options. If neither is set, the
servers must take the corresponding default action.

Disposition options: Specify one of the options listed below to control the disposition of the original message when it cannot be delivered
to the destination queue. The application can set the disposition options independently of requesting exception reports.

MQRO_DEAD_LETTER_Q

This is the default action, and places the message on the dead-letter queue if the message cannot be delivered to the destination queue.
This happens in the following situations:

� When the application that put the original message cannot be notified synchronously of the problem by means of the reason code
returned by the MQPUT or MQPUT1 call. An exception report message is generated, if one was requested by the sender.

� When the application that put the original message was putting to a topic

An exception report message is generated, if one was requested by the sender.

MQRO_DISCARD_MSG

This discards the message if it cannot be delivered to the destination queue. This happens in the following situations:

� When the application that put the original message cannot be notified synchronously of the problem by means of the reason code
returned by the MQPUT or MQPUT1 call. An exception report message is generated, if one was requested by the sender.

� When the application that put the original message was putting to a topic

An exception report message is generated, if one was requested by the sender.

If you want to return the original message to the sender, without the original message being placed on the dead-letter queue, the sender
must specify MQRO_DISCARD_MSG with MQRO_EXCEPTION_WITH_FULL_DATA.

MQRO_PASS_DISCARD_AND_EXPIRY

If this option is set on a message, and a report or reply is generated because of it, the message descriptor of the report inherits:

� MQRO_DISCARD_MSG if it was set.

� The remaining expiry time of the message (if this is not an expiry report). If this is an expiry report the expiry time is set to 60
seconds.

Page 231 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Activity option

MQRO_ACTIVITY

Using this value allows the route of any message to be traced throughout a queue manager network. The report option can be specified
on any current user message, instantly allowing you to begin calculating the route of the message through the network.

If the application generating the message cannot switch on activity reports, reports can be turned on using an API crossing exit supplied
by queue manager administrators.

Note:

1. The fewer the queue managers in the network that are able to generate activity reports, the less detailed the route.

2. The activity reports might be difficult to place in the correct order to determine the route taken.

3. The activity reports might not be able to find a route to their requested destination.

4. Messages with this report option set must be accepted by any queue manager, even if they do not understand the option. This
allows the report option to be set on any user message, even if they are processed by a non Version 6.0 or later queue manager.

5. If a process, either a queue manager or a user process, performs an activity on a message with this option set it can choose to

generate and put an activity report.

Default option: Specify the following if no report options are required:

MQRO_NONE

Use this value to indicate that no other options have been specified. MQRO_NONE is defined to aid program documentation. It is not
intended that this option be used with any other, but as its value is zero, such use cannot be detected.

General information:

1. All report types required must be specifically requested by the application sending the original message. For example, if a COA report
is requested but an exception report is not, a COA report is generated when the message is placed on the destination queue, but no

exception report is generated if the destination queue is full when the message arrives there. If no Report options are set, no report

messages are generated by the queue manager or message channel agent (MCA).

Some report options can be specified even though the local queue manager does not recognize them; this is useful when the option is
to be processed by the destination queue manager. See Report options and message flags for more details.

If a report message is requested, the name of the queue to which to send the report must be specified in the ReplyToQ field. When a

report message is received, the nature of the report can be determined by examining the Feedback field in the message descriptor.

2. If the queue manager or MCA that generates a report message cannot put the report message on the reply queue (for example,
because the reply queue or transmission queue is full), the report message is placed instead on the dead-letter queue. If that also
fails, or there is no dead-letter queue, the action taken depends on the type of the report message:

� If the report message is an exception report, the message that generated the exception report is left on its transmission queue;

this ensures that the message is not lost.

� For all other report types, the report message is discarded and processing continues normally. This is done because either the
original message has already been delivered safely (for COA or COD report messages), or is no longer of any interest (for an

expiration report message).

Once a report message has been placed successfully on a queue (either the destination queue or an intermediate transmission queue),
the message is no longer subject to special processing; it is treated just like any other message.

3. When the report is generated, the ReplyToQ queue is opened and the report message put using the authority of the UserIdentifier

in the MQMD of the message causing the report, except in the following cases:

� Exception reports generated by a receiving MCA are put with whatever authority the MCA used when it tried to put the message

causing the report.

� COA reports generated by the queue manager are put with whatever authority was used when the message causing the report
was put on the queue manager generating the report. For example, if the message was put by a receiving MCA using the MCA's

user identifier, the queue manager puts the COA report using the MCA's user identifier.

Applications generating reports must use the same authority as they use to generate a reply; this is usually the authority of the user
identifier in the original message.

If the report has to travel to a remote destination, senders and receivers can decide whether to accept it, in the same way as they do

for other messages.

4. If a report message with data is requested:

� The report message is always generated with the amount of data requested by the sender of the original message. If the report
message is too big for the reply queue, the processing described above occurs; the report message is never truncated to fit on

the reply queue.

� If the Format of the original message is MQFMT_XMIT_Q_HEADER, the data included in the report does not include the MQXQH.

The report data starts with the first byte of the data beyond the MQXQH in the original message. This occurs whether or not the
queue is a transmission queue.

5. If a COA, COD, or expiration report message is received at the reply queue, it is guaranteed that the original message arrived, was
delivered, or expired, as appropriate. However, if one or more of these report messages is requested and is not received, the reverse
cannot be assumed, because one of the following might have occurred:

a. The report message is held up because a link is down.

b. The report message is held up because a blocking condition exists at an intermediate transmission queue or at the reply queue
(for example, the queue is full or inhibited for puts).

c. The report message is on a dead-letter queue.

d. When the queue manager was attempting to generate the report message, it could neither put it on the appropriate queue, nor

on the dead-letter queue, so the report message could not be generated.

e. A failure of the queue manager occurred between the action being reported (arrival, delivery, or expiry), and generation of the
corresponding report message. (This does not happen for COD report messages if the application retrieves the original message

within a unit of work, as the COD report message is generated within the same unit of work.)

Exception report messages can be held up in the same way for reasons 1, 2, and 3 above. However, when an MCA cannot generate an
exception report message (the report message cannot be put either on the reply queue or the dead-letter queue), the original

Page 232 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

message remains on the transmission queue at the sender, and the channel is closed. This occurs irrespective of whether the report
message was to be generated at the sending or the receiving end of the channel.

6. If the original message is temporarily blocked (resulting in an exception report message being generated and the original message
being put on a dead-letter queue), but the blockage clears and an application then reads the original message from the dead-letter
queue and puts it again to its destination, the following might occur:

� Even though an exception report message has been generated, the original message eventually arrives successfully at its

destination.

� More than one exception report message is generated in respect of a single original message, because the original message
might encounter another blockage later.

Report messages when putting to a topic:

1. Reports can be generated when putting a message to a topic. This message will be sent to all subscribers to the topic, which could be
zero, one or many. This should be taken into account when choosing to use report options as many report messages could be
generated as a result.

2. When putting a message to a topic, there may be many destination queues that are to be given a copy of the message. If some of
these destination queues have a problem, such as queue full, then the successful completion of the MQPUT depends on the setting of
NPMSGDLV or PMSGDLV (depending on the persistence of the message). If the setting is such that message delivery to the destination
queue must be successful (for example, it is a persistent message to a durable subscriber and PMSGDLV is set to ALL or ALLDUR),

then success is defined as one of the following criteria being met:

� Successful put to the subscriber queue

� Use of MQRO_DEAD_LETTER_Q and a successful put to the Dead-letter queue if the subscriber queue cannot take the message

� Use of MQRO_DISCARD_MSG if the subscriber queue cannot take the message.

Report messages for message segments:

1. Report messages can be requested for messages that have segmentation allowed (see the description of the
MQMF_SEGMENTATION_ALLOWED flag). If the queue manager finds it necessary to segment the message, a report message can be

generated for each of the segments that subsequently encounters the relevant condition. Applications must be prepared to receive
multiple report messages for each type of report message requested. Use the GroupId field in the report message to correlate the

multiple reports with the group identifier of the original message, and the Feedback field identify the type of each report message.

2. If MQGMO_LOGICAL_ORDER is used to retrieve report messages for segments, be aware that reports of different types might be
returned by the successive MQGET calls. For example, if both COA and COD reports are requested for a message that is segmented by
the queue manager, the MQGET calls for the report messages might return the COA and COD report messages interleaved in an

unpredictable fashion. Avoid this by using the MQGMO_COMPLETE_MSG option (optionally with MQGMO_ACCEPT_TRUNCATED_MSG).
MQGMO_COMPLETE_MSG causes the queue manager to reassemble report messages that have the same report type. For example,
the first MQGET call might reassemble all the COA messages relating to the original message, and the second MQGET call might
reassemble all the COD messages. Which is reassembled first depends on which type of report message occurs first on the queue.

3. Applications that themselves put segments can specify different report options for each segment. However, note the following points:

� If the segments are retrieved using the MQGMO_COMPLETE_MSG option, only the report options in the first segment are
honored by the queue manager.

� If the segments are retrieved one by one, and most of them have one of the MQRO_COD_* options, but at least one segment
does not, you cannot use the MQGMO_COMPLETE_MSG option to retrieve the report messages with a single MQGET call, or use
the MQGMO_ALL_SEGMENTS_AVAILABLE option to detect when all the report messages have arrived.

4. In an MQ network, the queue managers can have different capabilities. If a report message for a segment is generated by a queue
manager or MCA that does not support segmentation, the queue manager or MCA does not by default include the necessary segment
information in the report message, and this might make it difficult to identify the original message that caused the report to be

generated. Avoid this difficulty by requesting data with the report message, that is, by specifying the appropriate
MQRO_*_WITH_DATA or MQRO_*_WITH_FULL_DATA options. However, be aware that if MQRO_*_WITH_DATA is specified, less than
100 bytes of application message data might be returned to the application that retrieves the report message, if the report message is
generated by a queue manager or MCA that does not support segmentation.

Contents of the message descriptor for a report message: When the queue manager or message channel agent (MCA) generates a
report message, it sets the fields in the message descriptor to the following values, and then puts the message in the normal way.

Field in MQMD Value used

StrucId MQMD_STRUC_ID

Version MQMD_VERSION_2

Report MQRO_NONE

MsgType MQMT_REPORT

Expiry MQEI_UNLIMITED

Feedback As appropriate for the nature of the report (MQFB_COA, MQFB_COD,

MQFB_EXPIRATION, or an MQRC_* value)

Encoding Copied from the original message descriptor

CodedCharSetId Copied from the original message descriptor

Format Copied from the original message descriptor

Priority Copied from the original message descriptor

Persistence Copied from the original message descriptor

MsgId As specified by the report options in the original message descriptor

CorrelId As specified by the report options in the original message descriptor

BackoutCount 0

ReplyToQ Blanks

ReplyToQMgr Name of queue manager

UserIdentifier As set by the MQPMO_PASS_IDENTITY_CONTEXT option

AccountingToken As set by the MQPMO_PASS_IDENTITY_CONTEXT option

ApplIdentityData As set by the MQPMO_PASS_IDENTITY_CONTEXT option

PutApplType MQAT_QMGR, or as appropriate for the message channel agent

Page 233 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

An application generating a report is recommended to set similar values, except for the following:

� The ReplyToQMgr field can be set to blanks (the queue manager changes this to the name of the local queue manager when the

message is put).

� Set the context fields using the option that would have been used for a reply, normally MQPMO_PASS_IDENTITY_CONTEXT.

Analyzing the report field: The Report field contains subfields; because of this, applications that need to check whether the sender of the

message requested a particular report must use one of the techniques described in Analyzing the report field.

This is an output field for the MQGET call, and an input field for the MQPUT and MQPUT1 calls. The initial value of this field is MQRO_NONE.

Parent topic: Fields for MQMD

This build: January 26, 2011 11:16:28

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13320_

1.21.2.27. StrucId (MQCHAR4)

This is the structure identifier, and must be:

MQMD_STRUC_ID

Identifier for message descriptor structure.

For the C programming language, the constant MQMD_STRUC_ID_ARRAY is also defined; this has the same value as MQMD_STRUC_ID,
but is an array of characters instead of a string.

This is always an input field. The initial value of this field is MQMD_STRUC_ID.

Parent topic: Fields for MQMD

This build: January 26, 2011 11:16:28

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13330_

1.21.2.28. UserIdentifier (MQCHAR12)

This is part of the identity context of the message. For more information about message context, see Overview for MQMD; also see the
WebSphere MQ Application Programming Guide.

UserIdentifier specifies the user identifier of the application that originated the message. The queue manager treats this information as

character data, but does not define the format of it.

After a message has been received, use UserIdentifier in the AlternateUserId field of the ObjDesc parameter of a subsequent MQOPEN

or MQPUT1 call to perform the authorization check for the UserIdentifier user instead of the application performing the open.

When the queue manager generates this information for an MQPUT or MQPUT1 call:

� On z/OS®, the queue manager uses the AlternateUserId from the ObjDesc parameter of the MQOPEN or MQPUT1 call if the

MQOO_ALTERNATE_USER_AUTHORITY or MQPMO_ALTERNATE_USER_AUTHORITY option was specified. If the relevant option was not
specified, the queue manager uses a user identifier determined from the environment.

� In other environments, the queue manager always uses a user identifier determined from the environment.

When the user identifier is determined from the environment:

� On z/OS, the queue manager uses:

� For MVS™ (batch), the user identifier from the JES JOB card or started task

� For TSO, the user identifier propagated to the job during job submission

� For CICS®, the user identifier associated with the task

� For IMS™, the user identifier depends on the type of application:

� For:

PutApplName First 28 bytes of the queue-manager name or message channel agent name. For

report messages generated by the IMS™ bridge, this field contains the XCF group
name and XCF member name of the IMS system to which the message relates.

PutDate Date when report message is sent

PutTime Time when report message is sent

ApplOriginData Blanks

GroupId Copied from the original message descriptor

MsgSeqNumber Copied from the original message descriptor

Offset Copied from the original message descriptor

MsgFlags Copied from the original message descriptor

OriginalLength Copied from the original message descriptor if not MQOL_UNDEFINED, and set to the

length of the original message data otherwise

Page 234 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

� Nonmessage BMP regions

� Nonmessage IFP regions

� Message BMP and message IFP regions that have not issued a successful GU call

the queue manager uses the user identifier from the region JES JOB card or the TSO user identifier. If these are blank or
null, it uses the name of the program specification block (PSB).

� For:

� Message BMP and message IFP regions that have issued a successful GU call

� MPP regions

the queue manager uses one of:

� The signed-on user identifier associated with the message

� The logical terminal (LTERM) name

� The user identifier from the region JES JOB card

� The TSO user identifier

� The PSB name

� On i5/OS®, the queue manager uses the name of the user profile associated with the application job.

� On UNIX systems, the queue manager uses:

� The application’s logon name

� The effective user identifier of the process if no logon is available

� The user identifier associated with the transaction, if the application is a CICS transaction

� On Windows systems, the queue manager uses the first 12 characters of the logged-on user name.

This field is normally an output field generated by the queue manager but for an MQPUT or MQPUT1 call you can make this field an
input/output field and specify the UserIdentification field instead of letting the queue manager generate this information. Specify either

MQPMO_SET_IDENTITY_CONTEXT or MQPMO_SET_ALL_CONTEXT in the PutMsgOpts parameter and specify a user ID in the UserIdentifier
field if you do not want the queue manager to generate the UserIdentifier field for an MQPUT or MQPUT1 call.

For the MQPUT and MQPUT1 calls, this is an input/output field if MQPMO_SET_IDENTITY_CONTEXT or MQPMO_SET_ALL_CONTEXT is
specified in the PutMsgOpts parameter. Any information following a null character within the field is discarded. The queue manager converts

the null character and any following characters to blanks. If MQPMO_SET_IDENTITY_CONTEXT or MQPMO_SET_ALL_CONTEXT is not
specified, this field is ignored on input and is an output-only field.

After the successful completion of an MQPUT or MQPUT1 call, this field contains the UserIdentifier that was transmitted with the message

if it was put to a queue. This will be the value of UserIdentifier that is kept with the message if it is retained (see description of

MQPMO_RETAIN for more details about retained publications) but is not used as the UserIdentifier when the message is sent as a

publication to subscribers because they provide a value to override UserIdentifier in all publications sent to them. If the message has no

context, the field is entirely blank.

This is an output field for the MQGET call. The length of this field is given by MQ_USER_ID_LENGTH. The initial value of this field is the null
string in C, and 12 blank characters in other programming languages.

Parent topic: Fields for MQMD

This build: January 26, 2011 11:16:28

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13340_

1.21.2.29. Version (MQLONG)

This is the structure version number, and must be one of the following:

MQMD_VERSION_1

Version-1 message descriptor structure.

This version is supported in all environments.

MQMD_VERSION_2

Version-2 message descriptor structure.

This version is supported in all WebSphere® MQ V6.0 and later environments, plus WebSphere MQ clients connected to these systems.

Note: When a version-2 MQMD is used, the queue manager performs additional checks on any MQ header structures that might be
present at the beginning of the application message data; for further details see the usage notes for the MQPUT call.

Fields that exist only in the more-recent version of the structure are identified as such in the descriptions of the fields. The following
constant specifies the version number of the current version:

MQMD_CURRENT_VERSION

Current version of message descriptor structure.

This is always an input field. The initial value of this field is MQMD_VERSION_1.

Parent topic: Fields for MQMD

Page 235 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This build: January 26, 2011 11:16:29

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13350_

1.21.3. Initial values and language declarations for MQMD

C declaration

COBOL declaration

PL/I declaration

System/390 assembler declaration

Visual Basic declaration

Parent topic: MQMD – Message descriptor

This build: January 26, 2011 11:16:29

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13360_

1.21.3.1. C declaration

typedef struct tagMQMD MQMD;

Table 1. Initial values of fields in MQMD for MQMD

Field name Name of constant Value of constant

StrucId MQMD_STRUC_ID 'MD��'

Version MQMD_VERSION_1 1

Report MQRO_NONE 0

MsgType MQMT_DATAGRAM 8

Expiry MQEI_UNLIMITED -1

Feedback MQFB_NONE 0

Encoding MQENC_NATIVE Depends on environment

CodedCharSetId MQCCSI_Q_MGR 0

Format MQFMT_NONE Blanks

Priority MQPRI_PRIORITY_AS_Q_DEF -1

Persistence MQPER_PERSISTENCE_AS_Q_DEF 2

MsgId MQMI_NONE Nulls

CorrelId MQCI_NONE Nulls

BackoutCount None 0

ReplyToQ None Null string or blanks

ReplyToQMgr None Null string or blanks

UserIdentifier None Null string or blanks

AccountingToken MQACT_NONE Nulls

ApplIdentityData None Null string or blanks

PutApplType MQAT_NO_CONTEXT 0

PutApplName None Null string or blanks

PutDate None Null string or blanks

PutTime None Null string or blanks

ApplOriginData None Null string or blanks

GroupId MQGI_NONE Nulls

MsgSeqNumber None 1

Offset None 0

MsgFlags MQMF_NONE 0

OriginalLength MQOL_UNDEFINED -1

Notes:

1. The symbol � represents a single blank character.

2. The value Null string or blanks denotes the null string in C, and blank characters in other programming languages.

3. In the C programming language, the macro variable MQMD_DEFAULT contains the values listed above. It can be used in

the following way to provide initial values for the fields in the structure:

MQMD MyMD = {MQMD_DEFAULT};

Page 236 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

struct tagMQMD {

 MQCHAR4 StrucId; /* Structure identifier */

 MQLONG Version; /* Structure version number */

 MQLONG Report; /* Options for report messages */

 MQLONG MsgType; /* Message type */

 MQLONG Expiry; /* Message lifetime */

 MQLONG Feedback; /* Feedback or reason code */

 MQLONG Encoding; /* Numeric encoding of message data */

 MQLONG CodedCharSetId; /* Character set identifier of message

 data */

 MQCHAR8 Format; /* Format name of message data */

 MQLONG Priority; /* Message priority */

 MQLONG Persistence; /* Message persistence */

 MQBYTE24 MsgId; /* Message identifier */

 MQBYTE24 CorrelId; /* Correlation identifier */

 MQLONG BackoutCount; /* Backout counter */

 MQCHAR48 ReplyToQ; /* Name of reply queue */

 MQCHAR48 ReplyToQMgr; /* Name of reply queue manager */

 MQCHAR12 UserIdentifier; /* User identifier */

 MQBYTE32 AccountingToken; /* Accounting token */

 MQCHAR32 ApplIdentityData; /* Application data relating to

 identity */

 MQLONG PutApplType; /* Type of application that put the

 message */

 MQCHAR28 PutApplName; /* Name of application that put the

 message */

 MQCHAR8 PutDate; /* Date when message was put */

 MQCHAR8 PutTime; /* Time when message was put */

 MQCHAR4 ApplOriginData; /* Application data relating to origin */

 MQBYTE24 GroupId; /* Group identifier */

 MQLONG MsgSeqNumber; /* Sequence number of logical message

 within group */

 MQLONG Offset; /* Offset of data in physical message

 from start of logical message */

 MQLONG MsgFlags; /* Message flags */

 MQLONG OriginalLength; /* Length of original message */

};

Parent topic: Initial values and language declarations for MQMD

This build: January 26, 2011 11:16:29

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13370_

1.21.3.2. COBOL declaration

** MQMD structure

 10 MQMD.

** Structure identifier

 15 MQMD-STRUCID PIC X(4).

** Structure version number

 15 MQMD-VERSION PIC S9(9) BINARY.

** Options for report messages

 15 MQMD-REPORT PIC S9(9) BINARY.

** Message type

 15 MQMD-MSGTYPE PIC S9(9) BINARY.

** Message lifetime

 15 MQMD-EXPIRY PIC S9(9) BINARY.

** Feedback or reason code

 15 MQMD-FEEDBACK PIC S9(9) BINARY.

** Numeric encoding of message data

 15 MQMD-ENCODING PIC S9(9) BINARY.

** Character set identifier of message data

 15 MQMD-CODEDCHARSETID PIC S9(9) BINARY.

** Format name of message data

 15 MQMD-FORMAT PIC X(8).

** Message priority

 15 MQMD-PRIORITY PIC S9(9) BINARY.

** Message persistence

 15 MQMD-PERSISTENCE PIC S9(9) BINARY.

** Message identifier

 15 MQMD-MSGID PIC X(24).

** Correlation identifier

 15 MQMD-CORRELID PIC X(24).

** Backout counter

 15 MQMD-BACKOUTCOUNT PIC S9(9) BINARY.

** Name of reply queue

 15 MQMD-REPLYTOQ PIC X(48).

** Name of reply queue manager

 15 MQMD-REPLYTOQMGR PIC X(48).

** User identifier

 15 MQMD-USERIDENTIFIER PIC X(12).

** Accounting token

 15 MQMD-ACCOUNTINGTOKEN PIC X(32).

** Application data relating to identity

 15 MQMD-APPLIDENTITYDATA PIC X(32).

** Type of application that put the message

 15 MQMD-PUTAPPLTYPE PIC S9(9) BINARY.

** Name of application that put the message

Page 237 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

 15 MQMD-PUTAPPLNAME PIC X(28).

** Date when message was put

 15 MQMD-PUTDATE PIC X(8).

** Time when message was put

 15 MQMD-PUTTIME PIC X(8).

** Application data relating to origin

 15 MQMD-APPLORIGINDATA PIC X(4).

** Group identifier

 15 MQMD-GROUPID PIC X(24).

** Sequence number of logical message within group

 15 MQMD-MSGSEQNUMBER PIC S9(9) BINARY.

** Offset of data in physical message from start of logical message

 15 MQMD-OFFSET PIC S9(9) BINARY.

** Message flags

 15 MQMD-MSGFLAGS PIC S9(9) BINARY.

** Length of original message

 15 MQMD-ORIGINALLENGTH PIC S9(9) BINARY.

Parent topic: Initial values and language declarations for MQMD

This build: January 26, 2011 11:16:29

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13380_

1.21.3.3. PL/I declaration

dcl

 1 MQMD based,

 3 StrucId char(4), /* Structure identifier */

 3 Version fixed bin(31), /* Structure version number */

 3 Report fixed bin(31), /* Options for report messages */

 3 MsgType fixed bin(31), /* Message type */

 3 Expiry fixed bin(31), /* Message lifetime */

 3 Feedback fixed bin(31), /* Feedback or reason code */

 3 Encoding fixed bin(31), /* Numeric encoding of message

 data */

 3 CodedCharSetId fixed bin(31), /* Character set identifier of

 message data */

 3 Format char(8), /* Format name of message data */

 3 Priority fixed bin(31), /* Message priority */

 3 Persistence fixed bin(31), /* Message persistence */

 3 MsgId char(24), /* Message identifier */

 3 CorrelId char(24), /* Correlation identifier */

 3 BackoutCount fixed bin(31), /* Backout counter */

 3 ReplyToQ char(48), /* Name of reply queue */

 3 ReplyToQMgr char(48), /* Name of reply queue manager */

 3 UserIdentifier char(12), /* User identifier */

 3 AccountingToken char(32), /* Accounting token */

 3 ApplIdentityData char(32), /* Application data relating to

 identity */

 3 PutApplType fixed bin(31), /* Type of application that put the

 message */

 3 PutApplName char(28), /* Name of application that put the

 message */

 3 PutDate char(8), /* Date when message was put */

 3 PutTime char(8), /* Time when message was put */

 3 ApplOriginData char(4), /* Application data relating to

 origin */

 3 GroupId char(24), /* Group identifier */

 3 MsgSeqNumber fixed bin(31), /* Sequence number of logical

 message within group */

 3 Offset fixed bin(31), /* Offset of data in physical

 message from start of logical

 message */

 3 MsgFlags fixed bin(31), /* Message flags */

 3 OriginalLength fixed bin(31); /* Length of original message */

Parent topic: Initial values and language declarations for MQMD

This build: January 26, 2011 11:16:29

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13390_

1.21.3.4. System/390® assembler declaration

MQMD DSECT

MQMD_STRUCID DS CL4 Structure identifier

MQMD_VERSION DS F Structure version number

MQMD_REPORT DS F Options for report messages

MQMD_MSGTYPE DS F Message type

MQMD_EXPIRY DS F Message lifetime

MQMD_FEEDBACK DS F Feedback or reason code

MQMD_ENCODING DS F Numeric encoding of message data

Page 238 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

MQMD_CODEDCHARSETID DS F Character set identifier of message

* data

MQMD_FORMAT DS CL8 Format name of message data

MQMD_PRIORITY DS F Message priority

MQMD_PERSISTENCE DS F Message persistence

MQMD_MSGID DS XL24 Message identifier

MQMD_CORRELID DS XL24 Correlation identifier

MQMD_BACKOUTCOUNT DS F Backout counter

MQMD_REPLYTOQ DS CL48 Name of reply queue

MQMD_REPLYTOQMGR DS CL48 Name of reply queue manager

MQMD_USERIDENTIFIER DS CL12 User identifier

MQMD_ACCOUNTINGTOKEN DS XL32 Accounting token

MQMD_APPLIDENTITYDATA DS CL32 Application data relating to identity

MQMD_PUTAPPLTYPE DS F Type of application that put the

* message

MQMD_PUTAPPLNAME DS CL28 Name of application that put the

* message

MQMD_PUTDATE DS CL8 Date when message was put

MQMD_PUTTIME DS CL8 Time when message was put

MQMD_APPLORIGINDATA DS CL4 Application data relating to origin

MQMD_GROUPID DS XL24 Group identifier

MQMD_MSGSEQNUMBER DS F Sequence number of logical message

* within group

MQMD_OFFSET DS F Offset of data in physical message

* from start of logical message

MQMD_MSGFLAGS DS F Message flags

MQMD_ORIGINALLENGTH DS F Length of original message

*

MQMD_LENGTH EQU *-MQMD

 ORG MQMD

MQMD_AREA DS CL(MQMD_LENGTH)

Parent topic: Initial values and language declarations for MQMD

This build: January 26, 2011 11:16:29

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13400_

1.21.3.5. Visual Basic declaration

Type MQMD

 StrucId As String*4 'Structure identifier'

 Version As Long 'Structure version number'

 Report As Long 'Options for report messages'

 MsgType As Long 'Message type'

 Expiry As Long 'Message lifetime'

 Feedback As Long 'Feedback or reason code'

 Encoding As Long 'Numeric encoding of message data'

 CodedCharSetId As Long 'Character set identifier of message'

 'data'

 Format As String*8 'Format name of message data'

 Priority As Long 'Message priority'

 Persistence As Long 'Message persistence'

 MsgId As MQBYTE24 'Message identifier'

 CorrelId As MQBYTE24 'Correlation identifier'

 BackoutCount As Long 'Backout counter'

 ReplyToQ As String*48 'Name of reply queue'

 ReplyToQMgr As String*48 'Name of reply queue manager'

 UserIdentifier As String*12 'User identifier'

 AccountingToken As MQBYTE32 'Accounting token'

 ApplIdentityData As String*32 'Application data relating to identity'

 PutApplType As Long 'Type of application that put the'

 'message'

 PutApplName As String*28 'Name of application that put the'

 'message'

 PutDate As String*8 'Date when message was put'

 PutTime As String*8 'Time when message was put'

 ApplOriginData As String*4 'Application data relating to origin'

 GroupId As MQBYTE24 'Group identifier'

 MsgSeqNumber As Long 'Sequence number of logical message'

 'within group'

 Offset As Long 'Offset of data in physical message'

 'from start of logical message'

 MsgFlags As Long 'Message flags'

 OriginalLength As Long 'Length of original message'

End Type

Parent topic: Initial values and language declarations for MQMD

This build: January 26, 2011 11:16:29

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13410_

1.22. MQMDE – Message descriptor extension

Page 239 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

The following table summarizes the fields in the structure.

Overview for MQMDE
Availability: All WebSphere® MQ systems, plus WebSphere MQ clients connected to these systems.

Fields for MQMDE

Initial values and language declarations for MQMDE

Parent topic: Data type descriptions

This build: January 26, 2011 11:16:29

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13420_

1.22.1. Overview for MQMDE

Availability: All WebSphere® MQ systems, plus WebSphere MQ clients connected to these systems.

Purpose: The MQMDE structure describes the data that sometimes occurs preceding the application message data. The structure contains
those MQMD fields that exist in the version-2 MQMD, but not in the version-1 MQMD.

Format name: MQFMT_MD_EXTENSION.

Character set and encoding: Data in MQMDE must be in the character set and encoding of the local queue manager; these are given by
the CodedCharSetId queue-manager attribute and MQENC_NATIVE for the C programming language.

Set the character set and encoding of the MQMDE into the CodedCharSetId and Encoding fields in:

� The MQMD (if the MQMDE structure is at the start of the message data), or

� The header structure that precedes the MQMDE structure (all other cases).

If the MQMDE is not in the queue manager’s character set and encoding, the MQMDE is accepted but not honored, that is, the MQMDE is
treated as message data.

Note: On Windows, applications compiled with Micro Focus COBOL use a value of MQENC_NATIVE that is different from the queue-

manager’s encoding. Although numeric fields in the MQMD structure on the MQPUT, MQPUT1, and MQGET calls must be in the Micro Focus
COBOL encoding, numeric fields in the MQMDE structure must be in the queue-manager’s encoding. This latter is given by MQENC_NATIVE
for the C programming language, and has the value 546.

Usage: Applications that use a version-2 MQMD will not encounter an MQMDE structure. However, specialized applications, and applications
that continue to use a version-1 MQMD, might encounter an MQMDE in some situations. The MQMDE structure can occur in the following

circumstances:

� Specified on the MQPUT and MQPUT1 calls

� Returned by the MQGET call

� In messages on transmission queues

These are described below.

MQMDE specified on MQPUT and MQPUT1 calls: On the MQPUT and MQPUT1 calls, if the application provides a version-1 MQMD, the
application can optionally prefix the message data with an MQMDE, setting the Format field in MQMD to MQFMT_MD_EXTENSION to indicate

that an MQMDE is present. If the application does not provide an MQMDE, the queue manager assumes default values for the fields in the
MQMDE. The default values that the queue manager uses are the same as the initial values for the structure; see Table 1.

If the application provides a version-2 MQMD and prefixes the application message data with an MQMDE, the structures are processed as
shown in Table 1.

Table 1. Fields in MQMDE

Field Description Topic

StrucId Structure identifier StrucId

Version Structure version number Version

StrucLength Length of MQMDE structure StrucLength

Encoding Numeric encoding of data that follows MQMDE Encoding

CodedCharSetId Character set identifier of data that follows MQMDE CodedCharSetId

Format Format name of data that follows MQMDE Format

Flags General flags Flags

GroupId Group identifier GroupId

MsgSeqNumber Sequence number of logical message within group MsgSeqNumber

Offset Offset of data in physical message from start of logical

message

Offset

MsgFlags Message flags MsgFlags

OriginalLength Length of original message OriginalLength

Table 1. Queue-manager action when MQMDE specified on MQPUT or MQPUT1 for MQMDE

MQMD Values of Values of corresponding fields in Action taken by queue manager

Page 240 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

There is one special case. If the application uses a version-2 MQMD to put a message that is a segment (that is, the MQMF_SEGMENT or
MQMF_LAST_SEGMENT flag is set), and the format name in the MQMD is MQFMT_DEAD_LETTER_HEADER, the queue manager generates an
MQMDE structure and inserts it between the MQDLH structure and the data that follows it. In the MQMD that the queue manager retains
with the message, the version-2 fields are set to their default values.

Several of the fields that exist in the version-2 MQMD but not the version-1 MQMD are input/output fields on MQPUT and MQPUT1. However,
the queue manager does not return any values in the equivalent fields in the MQMDE on output from the MQPUT and MQPUT1 calls; if the
application requires those output values, it must use a version-2 MQMD.

MQMDE returned by MQGET call: On the MQGET call, if the application provides a version-1 MQMD, the queue manager prefixes the

message returned with an MQMDE, but only if one or more of the fields in the MQMDE has a nondefault value. The queue manager sets the
Format field in MQMD to the value MQFMT_MD_EXTENSION to indicate that an MQMDE is present.

If the application provides an MQMDE at the start of the Buffer parameter, the MQMDE is ignored. On return from the MQGET call, it is

replaced by the MQMDE for the message (if one is needed), or overwritten by the application message data (if the MQMDE is not needed).

If the MQGET call returns an MQMDE, the data in the MQMDE is usually in the queue manager’s character set and encoding. However the
MQMDE might be in some other character set and encoding if:

� The MQMDE was treated as data on the MQPUT or MQPUT1 call (see Table 1 for the circumstances that can cause this).

� The message was received from a remote queue manager connected by a TCP connection, and the receiving message channel agent
(MCA) was not set up correctly (see the WebSphere MQ Intercommunication manual for further information).

Note: On Windows, applications compiled with Micro Focus COBOL use a value of MQENC_NATIVE that is different from the queue-
manager’s encoding (see above).

MQMDE in messages on transmission queues: Messages on transmission queues are prefixed with the MQXQH structure, which
contains within it a version-1 MQMD. An MQMDE might also be present, positioned between the MQXQH structure and application message

data, but it is usually present only if one or more of the fields in the MQMDE has a nondefault value.

Other MQ header structures can also occur between the MQXQH structure and the application message data. For example, when the dead-
letter header MQDLH is present, and the message is not a segment, the order is:

� MQXQH (containing a version-1 MQMD)

� MQMDE

� MQDLH

� application message data

Parent topic: MQMDE – Message descriptor extension

This build: January 26, 2011 11:16:30

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13430_

1.22.2. Fields for MQMDE

The MQMDE structure contains the following fields; the fields are described in alphabetic order:

CodedCharSetId (MQLONG)

Encoding (MQLONG)

Flags (MQLONG)

Format (MQCHAR8)

GroupId (MQBYTE24)

MsgFlags (MQLONG)

MsgSeqNumber (MQLONG)

Offset (MQLONG)

version version-2

fields

MQMDE

1 – Valid MQMDE is honored

2 Default Valid MQMDE is honored

2 Not default Valid MQMDE is treated as message data

1 or 2 Any Not valid Call fails with an appropriate reason

code

1 or 2 Any MQMDE is in the wrong character set or

encoding, or is an unsupported version

MQMDE is treated as message data

Note: On z/OS®, if the application specifies a version-1 MQMD with an MQMDE, the queue manager validates the MQMDE only

if the queue has an IndexType of MQIT_GROUP_ID.

Page 241 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

OriginalLength (MQLONG)

StrucId (MQCHAR4)

StrucLength (MQLONG)

Version (MQLONG)

Parent topic: MQMDE – Message descriptor extension

This build: January 26, 2011 11:16:30

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13440_

1.22.2.1. CodedCharSetId (MQLONG)

This specifies the character set identifier of the data that follows the MQMDE structure; it does not apply to character data in the MQMDE
structure itself.

On the MQPUT or MQPUT1 call, the application must set this field to the value appropriate to the data. The queue manager does not check

that this field is valid. The following special value can be used:

MQCCSI_INHERIT

Character data in the data following this structure is in the same character set as this structure.

The queue manager changes this value in the structure sent in the message to the actual character-set identifier of the structure. Provided
no error occurs, the value MQCCSI_INHERIT is not returned by the MQGET call.

MQCCSI_INHERIT cannot be used if the value of the PutApplType field in MQMD is MQAT_BROKER.

This value is supported in the following environments: AIX®, HP-UX, i5/OS®, Solaris, Linux, Windows, plus WebSphere® MQ clients
connected to these systems.

The initial value of this field is MQCCSI_UNDEFINED.

Parent topic: Fields for MQMDE

This build: January 26, 2011 11:16:30

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13450_

1.22.2.2. Encoding (MQLONG)

This specifies the numeric encoding of the data that follows the MQMDE structure; it does not apply to numeric data in the MQMDE structure
itself.

On the MQPUT or MQPUT1 call, the application must set this field to the value appropriate to the data. The queue manager does not check

that the field is valid. See the Encoding field described in MQMD – Message descriptor for more information about data encodings.

The initial value of this field is MQENC_NATIVE.

Parent topic: Fields for MQMDE

This build: January 26, 2011 11:16:30

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13460_

1.22.2.3. Flags (MQLONG)

The following flag can be specified:

MQMDEF_NONE

No flags.

The initial value of this field is MQMDEF_NONE.

Parent topic: Fields for MQMDE

This build: January 26, 2011 11:16:30

Notices | Trademarks | Downloads | Library | Support | Feedback

Page 242 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13470_

1.22.2.4. Format (MQCHAR8)

This specifies the format name of the data that follows the MQMDE structure.

On the MQPUT or MQPUT1 call, the application must set this field to the value appropriate to the data. The queue manager does not check
that this field is valid. See the Format field described in MQMD – Message descriptor for more information about format names.

The initial value of this field is MQFMT_NONE.

Parent topic: Fields for MQMDE

This build: January 26, 2011 11:16:30

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13480_

1.22.2.5. GroupId (MQBYTE24)

See the GroupId field described in MQMD – Message descriptor. The initial value of this field is MQGI_NONE.

Parent topic: Fields for MQMDE

This build: January 26, 2011 11:16:30

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13490_

1.22.2.6. MsgFlags (MQLONG)

See the MsgFlags field described in MQMD – Message descriptor. The initial value of this field is MQMF_NONE.

Parent topic: Fields for MQMDE

This build: January 26, 2011 11:16:30

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13500_

1.22.2.7. MsgSeqNumber (MQLONG)

See the MsgSeqNumber field described in MQMD – Message descriptor. The initial value of this field is 1.

Parent topic: Fields for MQMDE

This build: January 26, 2011 11:16:30

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13510_

1.22.2.8. Offset (MQLONG)

See the Offset field described in MQMD – Message descriptor. The initial value of this field is 0.

Parent topic: Fields for MQMDE

This build: January 26, 2011 11:16:31

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13520_

1.22.2.9. OriginalLength (MQLONG)

See the OriginalLength field described in MQMD – Message descriptor. The initial value of this field is MQOL_UNDEFINED.

Page 243 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Parent topic: Fields for MQMDE

This build: January 26, 2011 11:16:31

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13530_

1.22.2.10. StrucId (MQCHAR4)

The value must be:

MQMDE_STRUC_ID

Identifier for message descriptor extension structure.

For the C programming language, the constant MQMDE_STRUC_ID_ARRAY is also defined; this has the same value as MQMDE_STRUC_ID,
but is an array of characters instead of a string.

The initial value of this field is MQMDE_STRUC_ID.

Parent topic: Fields for MQMDE

This build: January 26, 2011 11:16:31

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13540_

1.22.2.11. StrucLength (MQLONG)

This is the length of the MQMDE structure; the following value is defined:

MQMDE_LENGTH_2

Length of version-2 message descriptor extension structure.

The initial value of this field is MQMDE_LENGTH_2.

Parent topic: Fields for MQMDE

This build: January 26, 2011 11:16:31

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13550_

1.22.2.12. Version (MQLONG)

This is the structure version number; the value must be:

MQMDE_VERSION_2

Version-2 message descriptor extension structure.

The following constant specifies the version number of the current version:

MQMDE_CURRENT_VERSION

Current version of message descriptor extension structure.

The initial value of this field is MQMDE_VERSION_2.

Parent topic: Fields for MQMDE

This build: January 26, 2011 11:16:31

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13560_

1.22.3. Initial values and language declarations for MQMDE

Table 1. Initial values of fields in MQMDE for MQMDE

Field name Name of constant Value of constant

StrucId MQMDE_STRUC_ID 'MDE�'

Version MQMDE_VERSION_2 2

StrucLength MQMDE_LENGTH_2 72

Page 244 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

C declaration

COBOL declaration

PL/I declaration

System/390 assembler declaration

Visual Basic declaration

Parent topic: MQMDE – Message descriptor extension

This build: January 26, 2011 11:16:31

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13570_

1.22.3.1. C declaration

typedef struct tagMQMDE MQMDE;

struct tagMQMDE {

 MQCHAR4 StrucId; /* Structure identifier */

 MQLONG Version; /* Structure version number */

 MQLONG StrucLength; /* Length of MQMDE structure */

 MQLONG Encoding; /* Numeric encoding of data that follows

 MQMDE */

 MQLONG CodedCharSetId; /* Character-set identifier of data that

 follows MQMDE */

 MQCHAR8 Format; /* Format name of data that follows

 MQMDE */

 MQLONG Flags; /* General flags */

 MQBYTE24 GroupId; /* Group identifier */

 MQLONG MsgSeqNumber; /* Sequence number of logical message

 within group */

 MQLONG Offset; /* Offset of data in physical message from

 start of logical message */

 MQLONG MsgFlags; /* Message flags */

 MQLONG OriginalLength; /* Length of original message */

};

Parent topic: Initial values and language declarations for MQMDE

This build: January 26, 2011 11:16:31

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13580_

1.22.3.2. COBOL declaration

** MQMDE structure

 10 MQMDE.

** Structure identifier

 15 MQMDE-STRUCID PIC X(4).

** Structure version number

 15 MQMDE-VERSION PIC S9(9) BINARY.

** Length of MQMDE structure

 15 MQMDE-STRUCLENGTH PIC S9(9) BINARY.

** Numeric encoding of data that follows MQMDE

 15 MQMDE-ENCODING PIC S9(9) BINARY.

Encoding MQENC_NATIVE Depends on environment

CodedCharSetId MQCCSI_UNDEFINED 0

Format MQFMT_NONE Blanks

Flags MQMDEF_NONE 0

GroupId MQGI_NONE Nulls

MsgSeqNumber None 1

Offset None 0

MsgFlags MQMF_NONE 0

OriginalLength MQOL_UNDEFINED -1

Notes:

1. The symbol � represents a single blank character.

2. In the C programming language, the macro variable MQMDE_DEFAULT contains the values listed above. It can be used in

the following way to provide initial values for the fields in the structure:

MQMDE MyMDE = {MQMDE_DEFAULT};

Page 245 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

** Character-set identifier of data that follows MQMDE

 15 MQMDE-CODEDCHARSETID PIC S9(9) BINARY.

** Format name of data that follows MQMDE

 15 MQMDE-FORMAT PIC X(8).

** General flags

 15 MQMDE-FLAGS PIC S9(9) BINARY.

** Group identifier

 15 MQMDE-GROUPID PIC X(24).

** Sequence number of logical message within group

 15 MQMDE-MSGSEQNUMBER PIC S9(9) BINARY.

** Offset of data in physical message from start of logical message

 15 MQMDE-OFFSET PIC S9(9) BINARY.

** Message flags

 15 MQMDE-MSGFLAGS PIC S9(9) BINARY.

** Length of original message

 15 MQMDE-ORIGINALLENGTH PIC S9(9) BINARY.

Parent topic: Initial values and language declarations for MQMDE

This build: January 26, 2011 11:16:31

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13590_

1.22.3.3. PL/I declaration

dcl

 1 MQMDE based,

 3 StrucId char(4), /* Structure identifier */

 3 Version fixed bin(31), /* Structure version number */

 3 StrucLength fixed bin(31), /* Length of MQMDE structure */

 3 Encoding fixed bin(31), /* Numeric encoding of data that

 follows MQMDE */

 3 CodedCharSetId fixed bin(31), /* Character-set identifier of data

 that follows MQMDE */

 3 Format char(8), /* Format name of data that follows

 MQMDE */

 3 Flags fixed bin(31), /* General flags */

 3 GroupId char(24), /* Group identifier */

 3 MsgSeqNumber fixed bin(31), /* Sequence number of logical message

 within group */

 3 Offset fixed bin(31), /* Offset of data in physical message

 from start of logical message */

 3 MsgFlags fixed bin(31), /* Message flags */

 3 OriginalLength fixed bin(31); /* Length of original message */

Parent topic: Initial values and language declarations for MQMDE

This build: January 26, 2011 11:16:31

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13600_

1.22.3.4. System/390® assembler declaration

MQMDE DSECT

MQMDE_STRUCID DS CL4 Structure identifier

MQMDE_VERSION DS F Structure version number

MQMDE_STRUCLENGTH DS F Length of MQMDE structure

MQMDE_ENCODING DS F Numeric encoding of data that follows

* MQMDE

MQMDE_CODEDCHARSETID DS F Character-set identifier of data that

* follows MQMDE

MQMDE_FORMAT DS CL8 Format name of data that follows MQMDE

MQMDE_FLAGS DS F General flags

MQMDE_GROUPID DS XL24 Group identifier

MQMDE_MSGSEQNUMBER DS F Sequence number of logical message

* within group

MQMDE_OFFSET DS F Offset of data in physical message from

* start of logical message

MQMDE_MSGFLAGS DS F Message flags

MQMDE_ORIGINALLENGTH DS F Length of original message

*

MQMDE_LENGTH EQU *-MQMDE

 ORG MQMDE

MQMDE_AREA DS CL(MQMDE_LENGTH)

Parent topic: Initial values and language declarations for MQMDE

This build: January 26, 2011 11:16:31

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

Page 246 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

fr13610_

1.22.3.5. Visual Basic declaration

Type MQMDE

 StrucId As String*4 'Structure identifier'

 Version As Long 'Structure version number'

 StrucLength As Long 'Length of MQMDE structure'

 Encoding As Long 'Numeric encoding of data that follows'

 'MQMDE'

 CodedCharSetId As Long 'Character-set identifier of data that'

 'follows MQMDE'

 Format As String*8 'Format name of data that follows MQMDE'

 Flags As Long 'General flags'

 GroupId As MQBYTE24 'Group identifier'

 MsgSeqNumber As Long 'Sequence number of logical message within'

 'group'

 Offset As Long 'Offset of data in physical message from'

 'start of logical message'

 MsgFlags As Long 'Message flags'

 OriginalLength As Long 'Length of original message'

End Type

Parent topic: Initial values and language declarations for MQMDE

This build: January 26, 2011 11:16:31

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13620_

1.23. MQMHBO – Message handle to buffer options

The following table summarizes the fields in the structure. MQMHBO structure - message handle to buffer options

Overview for MQMHBO
Availability: All WebSphere® MQ systems and WebSphere MQ clients.

Fields for MQMHBO
Message handle to buffer options structure - fields

Initial values and language declarations for MQMHBO
Message handle to buffer structure - Initial values

Parent topic: Data type descriptions

This build: January 26, 2011 11:20:35

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42695_

1.23.1. Overview for MQMHBO

Availability: All WebSphere® MQ systems and WebSphere MQ clients.

Purpose: The MQMHBO structure allows applications to specify options that control how buffers are produced from message handles. The
structure is an input parameter on the MQMHBUF call.

Character set and encoding: Data in MQMHBO must be in the character set of the application and encoding of the application
(MQENC_NATIVE).

Parent topic: MQMHBO – Message handle to buffer options

This build: January 26, 2011 11:20:35

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42700_

1.23.2. Fields for MQMHBO

Message handle to buffer options structure - fields

Table 1. Fields in MQMHBO

Field Description Topic

StrucId Structure identifier StrucId

Version Structure version number Version

Options Options controlling the action of MQMHBUF Options

Page 247 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

The MQMHBO structure contains the following fields; the fields are described in alphabetic order:

Options (MQLONG)
Message handle to buffer options structure - Options field

StrucId (MQCHAR4)

Message handle to buffer options structure - StrucId field

Version (MQLONG)
Message handle to buffer options structure - Version field

Parent topic: MQMHBO – Message handle to buffer options

This build: January 26, 2011 11:20:35

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42710_

1.23.2.1. Options (MQLONG)

Message handle to buffer options structure - Options field

These options control the action of MQMHBUF.

You must specify the following option:

MQMHBO_PROPERTIES_IN_MQRFH2

When converting properties from a message handle into a buffer, convert them into the MQRFH2 format.

Optionally, you can also specify the following value. If required values can be:

� Added together (do not add the same constant more than once), or

� Combined using the bitwise OR operation (if the programming language supports bit operations).

MQMHBO_DELETE_PROPERTIES

Properties that are added to the buffer are deleted from the message handle. If the call fails no properties are deleted.

This is always an input field. The initial value of this field is MQMHBO_PROPERTIES_IN_MQRFH2.

Parent topic: Fields for MQMHBO

This build: January 26, 2011 11:20:36

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42740_

1.23.2.2. StrucId (MQCHAR4)

Message handle to buffer options structure - StrucId field

This is the structure identifier. The value must be:

MQMHBO_STRUC_ID

Identifier for message handle to buffer options structure.

For the C programming language, the constant MQMHBO_STRUC_ID_ARRAY is also defined; this has the same value as
MQMHBO_STRUC_ID, but is an array of characters instead of a string.

This is always an input field. The initial value of this field is MQMHBO_STRUC_ID.

Parent topic: Fields for MQMHBO

This build: January 26, 2011 11:20:36

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42720_

1.23.2.3. Version (MQLONG)

Message handle to buffer options structure - Version field

This is the structure version number. The value must be:

MQMHBO_VERSION_1

Page 248 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Version number for message handle to buffer options structure.

The following constant specifies the version number of the current version:

MQMHBO_CURRENT_VERSION

Current version of message handle to buffer options structure.

This is always an input field. The initial value of this field is MQMHBO_VERSION_1.

Parent topic: Fields for MQMHBO

This build: January 26, 2011 11:20:36

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42730_

1.23.3. Initial values and language declarations for MQMHBO

Message handle to buffer structure - Initial values

C declaration
Message handle to buffer options structure - C language declaration

COBOL declaration
Message handle to buffer options structure - COBOL language declaration

PL/I declaration
Message handle to buffer options structure - PL/I language declaration

System/390 assembler declaration

Message handle to buffer options structure - Assembler language declaration

Parent topic: MQMHBO – Message handle to buffer options

This build: January 26, 2011 11:20:36

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42750_

1.23.3.1. C declaration

Message handle to buffer options structure - C language declaration

typedef struct tagMQMHBO MQMHBO;

struct tagMQMHBO {

 MQCHAR4 StrucId; /* Structure identifier */

 MQLONG Version; /* Structure version number */

 MQLONG Options; /* Options that control the action of

 MQMHBUF */

};

Parent topic: Initial values and language declarations for MQMHBO

This build: January 26, 2011 11:20:36

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42760_

1.23.3.2. COBOL declaration

Message handle to buffer options structure - COBOL language declaration

Table 1. Initial values of fields in MQMHBO

Field name Name of constant Value of constant

StrucId MQMHBO_STRUC_ID 'MHBO'

Version MQMHBO_VERSION_1 1

Options MQMHBO_PROPERTIES_IN_MQRFH2

Notes:

1. The value Null string or blanks denotes the null string in C, and blank characters in other programming languages.

2. In the C programming language, the macro variable MQMHBO_DEFAULT contains the values listed above. Use it in the
following way to provide initial values for the fields in the structure:

MQMHBO MyMHBO = {MQMHBO_DEFAULT};

Page 249 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

** MQMHBO structure

 10 MQMHBO.

** Structure identifier

 15 MQMHBO-STRUCID PIC X(4).

** Structure version number

 15 MQMHBO-VERSION PIC S9(9) BINARY.

** Options that control the action of MQMHBUF

 15 MQMHBO-OPTIONS PIC S9(9) BINARY.

Parent topic: Initial values and language declarations for MQMHBO

This build: January 26, 2011 11:20:36

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42770_

1.23.3.3. PL/I declaration

Message handle to buffer options structure - PL/I language declaration

Dcl

 1 MQMHBO based,

 3 StrucId char(4), /* Structure identifier */

 3 Version fixed bin(31), /* Structure version number */

 3 Options fixed bin(31), /* Options that control the action

 of MQMHBUF */

Parent topic: Initial values and language declarations for MQMHBO

This build: January 26, 2011 11:20:36

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42780_

1.23.3.4. System/390® assembler declaration

Message handle to buffer options structure - Assembler language declaration

MQMHBO DSECT

MQMHBO_STRUCID DS CL4 Structure identifier

MQMHBO_VERSION DS F Structure version number

MQMHBO_OPTIONS DS F Options that control the

* action of MQMHBUF

MQMHBO_LENGTH EQU *-MQMHBO

MQMHBO_AREA DS CL(MQMHBO_LENGTH)

Parent topic: Initial values and language declarations for MQMHBO

This build: January 26, 2011 11:20:36

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42790_

1.24. MQOD – Object descriptor

The following table summarizes the fields in the structure.

Field Description Topic

StrucId Structure identifier StrucId

Version Structure version number Version

ObjectType Object type ObjectType

ObjectName Object name ObjectName

ObjectQMgrName Object queue manager name ObjectQMgrName

DynamicQName Dynamic queue name DynamicQName

AlternateUserId Alternate user identifier AlternateUserId

Note: The remaining fields are ignored if Version is less than MQOD_VERSION_2.

RecsPresent Number of object records present RecsPresent

KnownDestCount Number of local queues opened successfully KnownDestCount

UnknownDestCount Number of remote queues opened successfully UnknownDestCount

InvalidDestCount Number of queues that failed to open InvalidDestCount

ObjectRecOffset Offset of first object record from start of MQOD ObjectRecOffset

ResponseRecOffset Offset of first response record from start of MQOD ResponseRecOffset

ObjectRecPtr Address of first object record ObjectRecPtr

Page 250 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Overview for MQOD

Fields for MQOD

Initial values and language declarations for MQOD

Parent topic: Data type descriptions

This build: January 26, 2011 11:16:32

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13630_

1.24.1. Overview for MQOD

Availability: All WebSphere® MQ systems, plus WebSphere MQ clients connected to those systems.

Purpose: The MQOD structure is used to specify an object by name. The following types of object are valid:

� Queue or distribution list

� Namelist

� Process definition

� Queue manager

� Topic

The structure is an input/output parameter on the MQOPEN and MQPUT1 calls.

Version: The current version of MQOD is MQOD_VERSION_4. Applications that you want to port between several environments must
ensure that the required version of MQOD is supported in all the environments concerned. Fields that exist only in the more-recent versions
of the structure are identified as such in the descriptions that follow.

The header, COPY, and INCLUDE files provided for the supported programming languages contain the most-recent version of MQOD that is
supported by the environment, but with the initial value of the Version field set to MQOD_VERSION_1. To use fields that are not present in

the version-1 structure, the application must set the Version field to the version number of the version required.

To open a distribution list, Version must be MQOD_VERSION_2 or greater.

Character set and encoding: Data in MQOD must be in the character set and encoding of the local queue manager; these are given by
the CodedCharSetId queue-manager attribute and MQENC_NATIVE, respectively. However, if the application is running as an MQ client, the

structure must be in the character set and encoding of the client.

Parent topic: MQOD – Object descriptor

This build: January 26, 2011 11:16:32

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13640_

1.24.2. Fields for MQOD

The MQOD structure contains the following fields; the fields are described in alphabetic order:

AlternateSecurityId (MQBYTE40)

AlternateUserId (MQCHAR12)

DynamicQName (MQCHAR48)

InvalidDestCount (MQLONG)

ResponseRecPtr Address of first response record ResponseRecPtr

Note: The remaining fields are ignored if Version is less than MQOD_VERSION_3.

AlternateSecurityId Alternate security identifier AlternateSecurityId

ResolvedQName Resolved queue name ResolvedQName

ResolvedQMgrName Resolved queue manager name ResolvedQMgrName

Note: The remaining fields are ignored if Version is less than MQOD_VERSION_4.

ObjectString Long object name ObjectString

SelectionString Selection string SelectionString

ResObjectString Resolved long object name ResObjectString

ResolvedType Resolved object type ResolvedType

Page 251 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

KnownDestCount (MQLONG)

ObjectName (MQCHAR48)

ObjectQMgrName (MQCHAR48)

ObjectRecOffset (MQLONG)

ObjectRecPtr (MQPTR)

ObjectString (MQCHARV)
The ObjectString field specifies the long object name.

ObjectType (MQLONG)

RecsPresent (MQLONG)

ResObjectString (MQCHARV)
The ResObjectString field is the long object name after the queue manager resolves the name provided in the ObjectName field.

ResolvedQMgrName (MQCHAR48)

ResolvedQName (MQCHAR48)

ResolvedType (MQLONG)
The type of the resolved (base) object being opened.

ResponseRecOffset (MQLONG)

ResponseRecPtr (MQPTR)

SelectionString (MQCHARV)
This is the string used to provide the selection criteria used when retrieving messages off a queue.

StrucId (MQCHAR4)

UnknownDestCount (MQLONG)

Version (MQLONG)

Parent topic: MQOD – Object descriptor

This build: January 26, 2011 11:16:32

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13650_

1.24.2.1. AlternateSecurityId (MQBYTE40)

This is a security identifier that is passed with the AlternateUserId to the authorization service to allow appropriate authorization checks to

be performed. AlternateSecurityId is used only if:

� MQOO_ALTERNATE_USER_AUTHORITY is specified on the MQOPEN call, or

� MQPMO_ALTERNATE_USER_AUTHORITY is specified on the MQPUT1 call,

and the AlternateUserId field is not entirely blank up to the first null character or the end of the field.

On Windows, AlternateSecurityId can be used to supply the Windows security identifier (SID) that uniquely identifies the

AlternateUserId. The SID for a user can be obtained from the Windows system by use of the LookupAccountName() Windows API call.

On z/OS®, this field is ignored.

The AlternateSecurityId field has the following structure:

� The first byte is a binary integer containing the length of the significant data that follows; the value excludes the length byte itself. If

no security identifier is present, the length is zero.

� The second byte indicates the type of security identifier that is present; the following values are possible:

MQSIDT_NT_SECURITY_ID

Windows security identifier.

MQSIDT_NONE

No security identifier.

� The third and subsequent bytes up to the length defined by the first byte contain the security identifier itself.

� Remaining bytes in the field are set to binary zero.

You can use the following special value:

MQSID_NONE

Page 252 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

No security identifier specified.

The value is binary zero for the length of the field.

For the C programming language, the constant MQSID_NONE_ARRAY is also defined; this has the same value as MQSID_NONE, but is an

array of characters instead of a string.

This is an input field. The length of this field is given by MQ_SECURITY_ID_LENGTH. The initial value of this field is MQSID_NONE. This field
is ignored if Version is less than MQOD_VERSION_3.

Parent topic: Fields for MQOD

This build: January 26, 2011 11:16:32

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13660_

1.24.2.2. AlternateUserId (MQCHAR12)

If you specify MQOO_ALTERNATE_USER_AUTHORITY for the MQOPEN call, or MQPMO_ALTERNATE_USER_AUTHORITY for the MQPUT1 call,

this field contains an alternate user identifier that is used to check the authorization for the open, in place of the user identifier that the
application is currently running under. Some checks, however, are still carried out with the current user identifier (for example, context
checks).

If MQOO_ALTERNATE_USER_AUTHORITY or MQPMO_ALTERNATE_USER_AUTHORITY is specified and this field is entirely blank up to the first
null character or the end of the field, the open can succeed only if no user authorization is needed to open this object with the options

specified.

If neither MQOO_ALTERNATE_USER_AUTHORITY nor MQPMO_ALTERNATE_USER_AUTHORITY is specified, this field is ignored.

The following differences exist in the environments indicated:

� On z/OS®, only the first 8 characters of AlternateUserId are used to check the authorization for the open. However, the current user

identifier must be authorized to specify this particular alternate user identifier; all 12 characters of the alternate user identifier are
used for this check. The user identifier must contain only characters allowed by the external security manager.

If AlternateUserId is specified for a queue, the value can be used subsequently by the queue manager when messages are put. If

the MQPMO_*_CONTEXT options specified on the MQPUT or MQPUT1 call cause the queue manager to generate the identity context
information, the queue manager places the AlternateUserId into the UserIdentifier field in the MQMD of the message, in place of

the current user identifier.

� In other environments, AlternateUserId is used only for access control checks on the object being opened. If the object is a queue,

AlternateUserId does not affect the content of the UserIdentifier field in the MQMD of messages sent using that queue handle.

This is an input field. The length of this field is given by MQ_USER_ID_LENGTH. The initial value of this field is the null string in C, and 12
blank characters in other programming languages.

Parent topic: Fields for MQOD

This build: January 26, 2011 11:16:33

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13670_

1.24.2.3. DynamicQName (MQCHAR48)

This is the name of a dynamic queue that is to be created by the MQOPEN call. This is of relevance only when ObjectName specifies the

name of a model queue; in all other cases DynamicQName is ignored.

The characters that are valid in the name are the same as those for ObjectName (see above), except that an asterisk is also valid (see

below). A name that is completely blank (or one in which only blanks appear before the first null character) is not valid if ObjectName is the

name of a model queue.

If the last nonblank character in the name is an asterisk (*), the queue manager replaces the asterisk with a string of characters that

guarantees that the name generated for the queue is unique at the local queue manager. To allow a sufficient number of characters for this,
the asterisk is valid only in positions 1 through 33. There must be no characters other than blanks or a null character following the asterisk.

It is valid for the asterisk to appear in the first character position, in which case the name consists solely of the characters generated by the
queue manager.

On z/OS®, do not use a name with the asterisk in the first character position, as there can be no security checks made on a queue whose
full name is generated automatically.

This is an input field. The length of this field is given by MQ_Q_NAME_LENGTH. The initial value of this field is determined by the
environment:

� On z/OS, the value is 'CSQ.*'.

� On other platforms, the value is 'AMQ.*'.

The value is a null-terminated string in C, and a blank-padded string in other programming languages.

Parent topic: Fields for MQOD

Page 253 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This build: January 26, 2011 11:16:33

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13680_

1.24.2.4. InvalidDestCount (MQLONG)

This is the number of queues in the distribution list that failed to open successfully. If present, this field is also set when opening a single
queue that is not in a distribution list.

Note: If present, this field is set only if the CompCode parameter on the MQOPEN or MQPUT1 call is MQCC_OK or MQCC_WARNING; it is not

set if the CompCode parameter is MQCC_FAILED.

This is an output field. The initial value of this field is 0. This field is ignored if Version is less than MQOD_VERSION_2.

Parent topic: Fields for MQOD

This build: January 26, 2011 11:16:33

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13690_

1.24.2.5. KnownDestCount (MQLONG)

This is the number of queues in the distribution list that resolve to local queues and that were opened successfully. The count does not

include queues that resolve to remote queues (even though a local transmission queue is used initially to store the message). If present,
this field is also set when opening a single queue that is not in a distribution list.

This is an output field. The initial value of this field is 0. This field is ignored if Version is less than MQOD_VERSION_2.

Parent topic: Fields for MQOD

This build: January 26, 2011 11:16:33

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13700_

1.24.2.6. ObjectName (MQCHAR48)

This is the local name of the object as defined on the queue manager identified by ObjectQMgrName. The name can contain the following

characters:

� Uppercase alphabetic characters (A through Z)

� Lowercase alphabetic characters (a through z)

� Numeric digits (0 through 9)

� Period (.), forward slash (/), underscore (_), percent (%)

The name must not contain leading or embedded blanks, but can contain trailing blanks. Use a null character to indicate the end of
significant data in the name; the null and any characters following it are treated as blanks. The following restrictions apply in the

environments indicated:

� On systems that use EBCDIC Katakana, lowercase characters cannot be used.

� On z/OS®:

� Avoid names that begin or end with an underscore; they cannot be processed by the operations and control panels.

� The percent character has a special meaning to RACF®. If RACF is used as the external security manager, names must not
contain the percent. If they do, those names are not included in any security checks when RACF generic profiles are used.

� On i5/OS®, names containing lowercase characters, forward slash, or percent, must be enclosed in quotation marks when specified on
commands. These quotation marks must not be specified for names that occur as fields in structures or as parameters on calls.

The full topic name can be built from two different fields: ObjectName and ObjectString. For details of how these two fields are used, see

Using topic strings.

The following points apply to the types of object indicated:

� If ObjectName is the name of a model queue, the queue manager creates a dynamic queue with the attributes of the model queue,

and returns in the ObjectName field the name of the queue created. A model queue can be specified only on the MQOPEN call; a model

queue is not valid on the MQPUT1 call.

� If ObjectName is the name of an alias queue with TARGTYPE(TOPIC), a security check is first made on the named alias queue; this is

normal when alias queues are used. When the security check completes successfully, the MQOPEN call will continue and will behave
like an MQOPEN call on an MQOT_TOPIC; this includes making a security check against the administrative topic object.

� If ObjectName and ObjectQMgrName identify a shared queue owned by the queue-sharing group to which the local queue manager

belongs, there must not also be a queue definition of the same name on the local queue manager. If there is such a definition (a local

queue, alias queue, remote queue, or model queue), the call fails with reason code MQRC_OBJECT_NOT_UNIQUE.

� If the object being opened is a distribution list (that is, RecsPresent is present and greater than zero), ObjectName must be blank or

Page 254 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

the null string. If this condition is not satisfied, the call fails with reason code MQRC_OBJECT_NAME_ERROR.

� If ObjectType is MQOT_Q_MGR, special rules apply; in this case the name must be entirely blank up to the first null character or the

end of the field.

This is an input/output field for the MQOPEN call when ObjectName is the name of a model queue, and an input-only field in all other cases.

The length of this field is given by MQ_Q_NAME_LENGTH. The initial value of this field is the null string in C, and 48 blank characters in

other programming languages.

Parent topic: Fields for MQOD

This build: January 26, 2011 11:16:34

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13710_

1.24.2.7. ObjectQMgrName (MQCHAR48)

This is the name of the queue manager on which the ObjectName object is defined. The characters that are valid in the name are the same

as those for ObjectName (see above). A name that is entirely blank up to the first null character or the end of the field denotes the queue

manager to which the application is connected (the local queue manager).

The following points apply to the types of object indicated:

� If ObjectType is MQOT_TOPIC, MQOT_NAMELIST, MQOT_PROCESS, or MQOT_Q_MGR, ObjectQMgrName must be blank or the name of

the local queue manager.

� If ObjectName is the name of a model queue, the queue manager creates a dynamic queue with the attributes of the model queue,

and returns in the ObjectQMgrName field the name of the queue manager on which the queue is created; this is the name of the local

queue manager. A model queue can be specified only on the MQOPEN call; a model queue is not valid on the MQPUT1 call.

� If ObjectName is the name of a cluster queue, and ObjectQMgrName is blank, the destination of messages sent using the queue handle

returned by the MQOPEN call is chosen by the queue manager (or cluster workload exit, if one is installed) as follows:

� If MQOO_BIND_ON_OPEN is specified, the queue manager selects a particular instance of the cluster queue while processing the

MQOPEN call, and all messages put using this queue handle are sent to that instance.

� If MQOO_BIND_NOT_FIXED is specified, the queue manager can choose a different instance of the destination queue (residing

on a different queue manager in the cluster) for each successive MQPUT call that uses this queue handle.

If the application needs to send a message to a specific instance of a cluster queue (that is, a queue instance that resides on a
particular queue manager in the cluster), the application must specify the name of that queue manager in the ObjectQMgrName field.

This forces the local queue manager to send the message to the specified destination queue manager.

� If ObjectName is the name of a shared queue that is owned by the queue-sharing group to which the local queue manager belongs,

ObjectQMgrName can be the name of the queue-sharing group, the name of the local queue manager, or blank; the message is placed

on the same queue whichever of these values is specified.

Queue-sharing groups are supported only on z/OS®.

� If ObjectName is the name of a shared queue that is owned by a remote queue-sharing group (that is, a queue-sharing group to which

the local queue manager does not belong), ObjectQMgrName muat be the name of the queue-sharing group. You can use the name of

a queue manager that belongs to that group, but this can delay the message if that particular queue manager is not available when
the message arrives at the queue-sharing group.

� If the object being opened is a distribution list (that is, RecsPresent is greater than zero), ObjectQMgrName must be blank or the null

string. If this condition is not satisfied, the call fails with reason code MQRC_OBJECT_Q_MGR_NAME_ERROR.

This is an input/output field for the MQOPEN call when ObjectName is the name of a model queue, and an input-only field in all other cases.

The length of this field is given by MQ_Q_MGR_NAME_LENGTH. The initial value of this field is the null string in C, and 48 blank characters

in other programming languages.

Parent topic: Fields for MQOD

This build: January 26, 2011 11:16:39

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13720_

1.24.2.8. ObjectRecOffset (MQLONG)

This is the offset in bytes of the first MQOR object record from the start of the MQOD structure. The offset can be positive or negative.
ObjectRecOffset is used only when a distribution list is being opened. The field is ignored if RecsPresent is zero.

When a distribution list is being opened, an array of one or more MQOR object records must be provided in order to specify the names of

the destination queues in the distribution list. This can be done in one of two ways:

� By using the offset field ObjectRecOffset.

In this case, the application must declare its own structure containing an MQOD followed by the array of MQOR records (with as many
array elements as are needed), and set ObjectRecOffset to the offset of the first element in the array from the start of the MQOD.

Ensure that this offset is correct and has a value that can be accommodated within an MQLONG (the most restrictive programming
language is COBOL, for which the valid range is -999 999 999 through +999 999 999).

Use ObjectRecOffset for programming languages that do not support the pointer data type, or that implement the pointer data type

in a way that is not portable to different environments (for example, the COBOL programming language).

� By using the pointer field ObjectRecPtr.

In this case, the application can declare the array of MQOR structures separately from the MQOD structure, and set ObjectRecPtr to

Page 255 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

the address of the array.

Use ObjectRecPtr for programming languages that support the pointer data type in a way that is portable to different environments

(for example, the C programming language).

Whatever technique you choose, use one of ObjectRecOffset and ObjectRecPtr; the call fails with reason code

MQRC_OBJECT_RECORDS_ERROR if both are zero, or both are nonzero.

This is an input field. The initial value of this field is 0. This field is ignored if Version is less than MQOD_VERSION_2.

Parent topic: Fields for MQOD

This build: January 26, 2011 11:16:39

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13730_

1.24.2.9. ObjectRecPtr (MQPTR)

This is the address of the first MQOR object record. ObjectRecPtr is used only when a distribution list is being opened. The field is ignored if

RecsPresent is zero.

You can use either ObjectRecPtr or ObjectRecOffset to specify the object records, but not both; see the description of the

ObjectRecOffset field above for details. If you do not use ObjectRecPtr, set it to the null pointer or null bytes.

This is an input field. The initial value of this field is the null pointer in those programming languages that support pointers, and an all-null
byte string otherwise. This field is ignored if Version is less than MQOD_VERSION_2.

Note: On platforms where the programming language does not support the pointer data type, this field is declared as a byte string of the
appropriate length, with the initial value being the all-null byte string.

Parent topic: Fields for MQOD

This build: January 26, 2011 11:16:39

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13740_

1.24.2.10. ObjectString (MQCHARV)

The ObjectString field specifies the long object name.

This specifies the long object name to be used. This field is only referenced for certain values of ObjectType, and is ignored for all other

values. See the description of ObjectType for details of which values indicate that this field is used.

If ObjectString is specified incorrectly, according to the description of how to use the MQCHARV structure, or if it exceeds the maximum

length, the call fails with reason code MQRC_OBJECT_STRING_ERROR.

This is an input field. The initial values of the fields in this structure are the same as those in the MQCHARV structure.

The full topic name can be built from two different fields: ObjectName and ObjectString. For details of how these two fields are used, see

Using topic strings.

Parent topic: Fields for MQOD

This build: January 26, 2011 11:16:39

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13745_

1.24.2.11. ObjectType (MQLONG)

The type of object being named in the object descriptor. Possible values are:

MQOT_Q

Queue. The name of the object is found in the ObjectName field.

MQOT_NAMELIST

Namelist. The name of the object is found in the ObjectName field

MQOT_PROCESS

Process definition. The name of the object is found in the ObjectName field

MQOT_Q_MGR

Queue manager. The name of the object is found in the ObjectName field

MQOT_TOPIC

Page 256 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Topic. The full topic name can be built from two different fields: ObjectName and ObjectString.

For details of how those two fields are used, see Using topic strings.

This is always an input field. The initial value of this field is MQOT_Q.

Parent topic: Fields for MQOD

This build: January 26, 2011 11:16:39

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13750_

1.24.2.12. RecsPresent (MQLONG)

This is the number of MQOR object records that have been provided by the application. If this number is greater than zero, it indicates that
a distribution list is being opened, with RecsPresent being the number of destination queues in the list. A distribution list can contain only

one destination.

The value of RecsPresent must not be less than zero, and if it is greater than zero ObjectType must be MQOT_Q; the call fails with reason

code MQRC_RECS_PRESENT_ERROR if these conditions are not satisfied.

On z/OS®, this field must be zero.

This is an input field. The initial value of this field is 0. This field is ignored if Version is less than MQOD_VERSION_2.

Parent topic: Fields for MQOD

This build: January 26, 2011 11:16:39

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13760_

1.24.2.13. ResObjectString (MQCHARV)

The ResObjectString field is the long object name after the queue manager resolves the name provided in the ObjectName field.

This field is returned only for topics and queue aliases that reference a topic object.

If the long object name is provided in ObjectString and nothing is provided in ObjectName, then the value returned in this field is the same

as provided in ObjectString.

If this field is omitted (that is ResObjectString.VSBufSize is zero) then the ResObjectString will not be returned, but the length will be

returned in ResObjectString.VSLength.

If the buffer length (provided in ResObjectStrng.VSBufSize) is shorter than the full ResObjectString, the string will be truncated and will

return as many of the rightmost characters as can fit in the provided buffer.

If ResObjectString is specified incorrectly, according to the description of how to use the MQCHARV structure, or if it exceeds the

maximum length, the call fails with reason code MQRC_RES_OBJECT_STRING_ERROR.

Parent topic: Fields for MQOD

This build: January 26, 2011 11:16:39

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13785_

1.24.2.14. ResolvedQMgrName (MQCHAR48)

This is the name of the destination queue manager after the local queue manager resolves the name. The name returned is the name of the
queue manager that owns the queue identified by ResolvedQName. ResolvedQMgrName can be the name of the local queue manager.

If ResolvedQName is a shared queue that is owned by the queue-sharing group to which the local queue manager belongs,

ResolvedQMgrName is the name of the queue-sharing group. If the queue is owned by some other queue-sharing group, ResolvedQName can

be the name of the queue-sharing group or the name of a queue manager that is a member of the queue-sharing group (the nature of the

value returned is determined by the queue definitions that exist at the local queue manager).

A nonblank value is returned only if the object is a single queue opened for browse, input, or output (or any combination). If the object
opened is any of the following, ResolvedQMgrName is set to blanks:

� Not a queue

� A queue, but not opened for browse, input, or output

� A cluster queue with MQOO_BIND_NOT_FIXED specified (or with MQOO_BIND_AS_Q_DEF in effect when the DefBind queue attribute

has the value MQBND_BIND_NOT_FIXED)

� A distribution list

Page 257 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This is an output field. The length of this field is given by MQ_Q_NAME_LENGTH. The initial value of this field is the null string in C, and 48
blank characters in other programming languages. This field is ignored if Version is less than MQOD_VERSION_3.

Parent topic: Fields for MQOD

This build: January 26, 2011 11:16:39

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13770_

1.24.2.15. ResolvedQName (MQCHAR48)

This is the name of the destination queue after the local queue manager resolves the name. The name returned is the name of a queue that

exists on the queue manager identified by ResolvedQMgrName.

A nonblank value is returned only if the object is a single queue opened for browse, input, or output (or any combination). If the object
opened is any of the following, ResolvedQName is set to blanks:

� Not a queue

� A queue, but not opened for browse, input, or output

� A distribution list

� An alias queue that references a topic object (refer to ResObjectString instead).

� An alias queue resolves to a topic object.

This is an output field. The length of this field is given by MQ_Q_NAME_LENGTH. The initial value of this field is the null string in C, and 48
blank characters in other programming languages. This field is ignored if Version is less than MQOD_VERSION_3.

Parent topic: Fields for MQOD

This build: January 26, 2011 11:16:39

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13780_

1.24.2.16. ResolvedType (MQLONG)

The type of the resolved (base) object being opened.

The possible values are:

MQOT_Q

The resolved object is a queue. This value applies when a queue is opened directly or when an alias queue pointing to a queue is opened.

MQOT_TOPIC

The resolved object is a topic. This value applies when a topic is opened directly or when an alias queue pointing to a topic object is
opened.

MQOT_NONE

The resolved type is neither a queue nor a topic.

Parent topic: Fields for MQOD

This build: January 26, 2011 11:20:40

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr43300_

1.24.2.17. ResponseRecOffset (MQLONG)

This is the offset in bytes of the first MQRR response record from the start of the MQOD structure. The offset can be positive or negative.
ResponseRecOffset is used only when a distribution list is being opened. The field is ignored if RecsPresent is zero.

When a distribution list is being opened, you can provide an array of one or more MQRR response records in order to identify the queues
that failed to open (CompCode field in MQRR), and the reason for each failure (Reason field in MQRR). The data is returned in the array of

response records in the same order as the queue names occur in the array of object records. The queue manager sets the response records
only when the outcome of the call is mixed (that is, some queues were opened successfully while others failed, or all failed but for different

reasons); reason code MQRC_MULTIPLE_REASONS from the call indicates this case. If the same reason code applies to all queues, that
reason is returned in the Reason parameter of the MQOPEN or MQPUT1 call, and the response records are not set. Response records are

optional, but if they are supplied there must be RecsPresent of them.

The response records can be provided in the same way as the object records, either by specifying an offset in ResponseRecOffset, or by

specifying an address in ResponseRecPtr; see the description of ObjectRecOffset above for details of how to do this. However, no more

than one of ResponseRecOffset and ResponseRecPtr can be used; the call fails with reason code MQRC_RESPONSE_RECORDS_ERROR if

both are nonzero.

Page 258 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

For the MQPUT1 call, these response records are used to return information about errors that occur when the message is sent to the queues
in the distribution list, as well as errors that occur when the queues are opened. The completion code and reason code from the put

operation for a queue replace those from the open operation for that queue only if the completion code from the latter was MQCC_OK or
MQCC_WARNING.

This is an input field. The initial value of this field is 0. This field is ignored if Version is less than MQOD_VERSION_2.

Parent topic: Fields for MQOD

This build: January 26, 2011 11:16:39

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13790_

1.24.2.18. ResponseRecPtr (MQPTR)

This is the address of the first MQRR response record. ResponseRecPtr is used only when a distribution list is being opened. The field is

ignored if RecsPresent is zero.

Use either ResponseRecPtr or ResponseRecOffset to specify the response records, but not both; see the description of the

ResponseRecOffset field above for details. If you do not use ResponseRecPtr, set it to the null pointer or null bytes.

This is an input field. The initial value of this field is the null pointer in those programming languages that support pointers, and an all-null
byte string otherwise. This field is ignored if Version is less than MQOD_VERSION_2.

Note: On platforms where the programming language does not support the pointer data type, this field is declared as a byte string of the
appropriate length, with the initial value being the all-null byte string.

Parent topic: Fields for MQOD

This build: January 26, 2011 11:16:39

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13800_

1.24.2.19. SelectionString (MQCHARV)

This is the string used to provide the selection criteria used when retrieving messages off a queue.

SelectionString must not be provided in the following cases:

� If ObjectType is not MQOT_Q

� If the queue being opened is not being opened using one of the MQOO_BROWSE, or MQOO_INPUT_* options

If SelectionString is provided in these cases, the call fails with reason code MQRC_SELECTOR_INVALID_FOR_TYPE.

If SelectionString is specified incorrectly, according to the description of how to use the MQCHARV structure, or if it exceeds the

maximum length, the call fails with reason code MQRC_SELECTION_STRING_ERROR.

SelectionString usage is described in Selectors.

Parent topic: Fields for MQOD

This build: January 26, 2011 11:20:00

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr36010_

1.24.2.20. StrucId (MQCHAR4)

This is the structure identifier; the value must be:

MQOD_STRUC_ID

Identifier for object descriptor structure.

For the C programming language, the constant MQOD_STRUC_ID_ARRAY is also defined; this has the same value as MQOD_STRUC_ID,
but is an array of characters instead of a string.

This is always an input field. The initial value of this field is MQOD_STRUC_ID.

Parent topic: Fields for MQOD

This build: January 26, 2011 11:16:39

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

Page 259 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This topic's URL:

fr13810_

1.24.2.21. UnknownDestCount (MQLONG)

This is the number of queues in the distribution list that resolve to remote queues and that were opened successfully. If present, this field is
also set when opening a single queue that is not in a distribution list.

This is an output field. The initial value of this field is 0. This field is ignored if Version is less than MQOD_VERSION_2.

Parent topic: Fields for MQOD

This build: January 26, 2011 11:16:39

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13820_

1.24.2.22. Version (MQLONG)

This is the structure version number; the value must be one of the following:

MQOD_VERSION_1

Version-1 object descriptor structure.

MQOD_VERSION_2

Version-2 object descriptor structure.

MQOD_VERSION_3

Version-3 object descriptor structure.

MQOD_VERSION_4

Version-4 object descriptor structure.

All versions are supported in all WebSphere® MQ V7.0 environments.

Fields that exist only in the more-recent versions of the structure are identified as such in the descriptions of the fields. The following
constant specifies the version number of the current version:

MQOD_CURRENT_VERSION

Current version of object descriptor structure.

This is always an input field. The initial value of this field is MQOD_VERSION_1.

Parent topic: Fields for MQOD

This build: January 26, 2011 11:16:40

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13830_

1.24.3. Initial values and language declarations for MQOD

Field name Name of constant Value of constant

StrucId MQOD_STRUC_ID 'OD��'

Version MQOD_VERSION_1 1

ObjectType MQOT_Q 1

ObjectName None Null string or blanks

ObjectQMgrName None Null string or blanks

DynamicQName None 'CSQ.*' on z/OS®; 'AMQ.*'

otherwise

AlternateUserId None Null string or blanks

RecsPresent None 0

KnownDestCount None 0

UnknownDestCount None 0

InvalidDestCount None 0

ObjectRecOffset None 0

ResponseRecOffset None 0

ObjectRecPtr None Null pointer or null bytes

ResponseRecPtr None Null pointer or null bytes

AlternateSecurityId MQSID_NONE Nulls

ResolvedQName None Null string or blanks

ResolvedQMgrName None Null string or blanks

Page 260 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

C declaration

COBOL declaration

PL/I declaration

System/390 assembler declaration

Visual Basic declaration

Parent topic: MQOD – Object descriptor

This build: January 26, 2011 11:16:40

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13840_

1.24.3.1. C declaration

typedef struct tagMQOD MQOD;

struct tagMQOD {

 MQCHAR4 StrucId; /* Structure identifier */

 MQLONG Version; /* Structure version number */

 MQLONG ObjectType; /* Object type */

 MQCHAR48 ObjectName; /* Object name */

 MQCHAR48 ObjectQMgrName; /* Object queue manager name */

 MQCHAR48 DynamicQName; /* Dynamic queue name */

 MQCHAR12 AlternateUserId; /* Alternate user identifier */

 /* Ver:1 */

 MQLONG RecsPresent; /* Number of object records present */

 MQLONG KnownDestCount; /* Number of local queues opened

 successfully */

 MQLONG UnknownDestCount; /* Number of remote queues opened

 successfully */

 MQLONG InvalidDestCount; /* Number of queues that failed to

 open */

 MQLONG ObjectRecOffset; /* Offset of first object record from

 start of MQOD */

 MQLONG ResponseRecOffset; /* Offset of first response record

 from start of MQOD */

 MQPTR ObjectRecPtr; /* Address of first object record */

 MQPTR ResponseRecPtr; /* Address of first response record */

 /* Ver:2 */

 MQBYTE40 AlternateSecurityId; /* Alternate security identifier */

 MQCHAR48 ResolvedQName; /* Resolved queue name */

 MQCHAR48 ResolvedQMgrName; /* Resolved queue manager name */

 /* Ver:3 */

 MQCHARV ObjectString; /* Object Long name */

 MQCHARV SelectionString; /* Message Selector */

 MQCHARV ResObjectString; /* Resolved Long object name*/

 MQLONG ResolvedType /* Alias queue resolved

 oject type */

 /* Ver:4 */

};

Parent topic: Initial values and language declarations for MQOD

This build: January 26, 2011 11:16:40

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13850_

1.24.3.2. COBOL declaration

** MQOD structure

ObjectString MQCHARV_DEFAULT As defined for MQCHARV

SelectionString MQCHARV_DEFAULT As defined for MQCHARV

ResObjectString MQCHARV_DEFAULT As defined for MQCHARV

ResolvedType MQOT_NONE 0

Notes:

1. The symbol � represents a single blank character.

2. The value Null string or blanks denotes the null string in C, and blank characters in other programming languages.

3. In the C programming language, the macro variable MQOD_DEFAULT contains the values listed above. It can be used in

the following way to provide initial values for the fields in the structure:

MQOD MyOD = {MQOD_DEFAULT};

Page 261 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

 10 MQOD.

** Structure identifier

 15 MQOD-STRUCID PIC X(4).

** Structure version number

 15 MQOD-VERSION PIC S9(9) BINARY.

** Object type

 15 MQOD-OBJECTTYPE PIC S9(9) BINARY.

** Object name

 15 MQOD-OBJECTNAME PIC X(48).

** Object queue manager name

 15 MQOD-OBJECTQMGRNAME PIC X(48).

** Dynamic queue name

 15 MQOD-DYNAMICQNAME PIC X(48).

** Alternate user identifier

 15 MQOD-ALTERNATEUSERID PIC X(12).

** Number of object records present

 15 MQOD-RECSPRESENT PIC S9(9) BINARY.

** Number of local queues opened successfully

 15 MQOD-KNOWNDESTCOUNT PIC S9(9) BINARY.

** Number of remote queues opened successfully

 15 MQOD-UNKNOWNDESTCOUNT PIC S9(9) BINARY.

** Number of queues that failed to open

 15 MQOD-INVALIDDESTCOUNT PIC S9(9) BINARY.

** Offset of first object record from start of MQOD

 15 MQOD-OBJECTRECOFFSET PIC S9(9) BINARY.

** Offset of first response record from start of MQOD

 15 MQOD-RESPONSERECOFFSET PIC S9(9) BINARY.

** Address of first object record

 15 MQOD-OBJECTRECPTR POINTER.

** Address of first response record

 15 MQOD-RESPONSERECPTR POINTER.

** Alternate security identifier

 15 MQOD-ALTERNATESECURITYID PIC X(40).

** Resolved queue name

 15 MQOD-RESOLVEDQNAME PIC X(48).

** Resolved queue manager name

 15 MQOD-RESOLVEDQMGRNAME PIC X(48).

** Object Long name

 15 MQOD-OBJECTSTRING.

** Address of variable length string

 20 MQOD-OBJECTSTRING-VSPTR POINTER.

** Offset of variable length string

 20 MQOD-OBJECTSTRING-VSOFFSET PIC S9(9) BINARY.

** size of buffer

 20 MQOD-OBJECTSTRING-VSBUFSIZE PIC S9(9) BINARY.

** Length of variable length string

 20 MQOD-OBJECTSTRING-VSLENGTH PIC S9(9) BINARY.

** CCSID of variable length string

 20 MQOD-OBJECTSTRING-VSCCSID PIC S9(9) BINARY.

** Message Selector

 15 MQOD-SELECTIONSTRING.

** Address of variable length string

 20 MQOD-SELECTIONSTRING-VSPTR POINTER.

** Offset of variable length string

 20 MQOD-SELECTIONSTRING-VSOFFSET PIC S9(9) BINARY.

** size of buffer

 20 MQOD-SELECTIONSTRING-VSBUFSIZE PIC S9(9) BINARY.

** Length of variable length string

 20 MQOD-SELECTIONSTRING-VSLENGTH PIC S9(9) BINARY.

** CCSID of variable length string

 20 MQOD-SELECTIONSTRING-VSCCSID PIC S9(9) BINARY.

** Resolved Long object name

 15 MQOD-RESOBJECTSTRING.

** Address of variable length string

 20 MQOD-RESOBJECTSTRING-VSPTR POINTER.

** Offset of variable length string

 20 MQOD-RESOBJECTSTRING-VSOFFSET PIC S9(9) BINARY.

** size of buffer

 20 MQOD-RESOBJECTSTRING-VSBUFSIZE PIC S9(9) BINARY.

** Length of variable length string

 20 MQOD-RESOBJECTSTRING-VSLENGTH PIC S9(9) BINARY.

** CCSID of variable length string

 20 MQOD-RESOBJECTSTRING-VSCCSID PIC S9(9) BINARY.

** Alias queue resolved object type

 15 MQOD-RESOLVEDTYPE PIC S9(9) BINARY.

Parent topic: Initial values and language declarations for MQOD

This build: January 26, 2011 11:16:40

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13860_

1.24.3.3. PL/I declaration

dcl

 1 MQOD based,

 3 StrucId char(4), /* Structure identifier */

 3 Version fixed bin(31), /* Structure version number */

 3 ObjectType fixed bin(31), /* Object type */

Page 262 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

 3 ObjectName char(48), /* Object name */

 3 ObjectQMgrName char(48), /* Object queue manager name */

 3 DynamicQName char(48), /* Dynamic queue name */

 3 AlternateUserId char(12), /* Alternate user identifier */

 3 RecsPresent fixed bin(31), /* Number of object records

 present */

 3 KnownDestCount fixed bin(31), /* Number of local queues opened

 successfully */

 3 UnknownDestCount fixed bin(31), /* Number of remote queues opened

 successfully */

 3 InvalidDestCount fixed bin(31), /* Number of queues that failed to

 open */

 3 ObjectRecOffset fixed bin(31), /* Offset of first object record

 from start of MQOD */

 3 ResponseRecOffset fixed bin(31), /* Offset of first response record

 from start of MQOD */

 3 ObjectRecPtr pointer, /* Address of first object record */

 3 ResponseRecPtr pointer, /* Address of first response

 record */

 3 AlternateSecurityId char(40), /* Alternate security identifier */

 3 ResolvedQName char(48), /* Resolved queue name */

 3 ResolvedQMgrName char(48), /* Resolved queue manager name */

 3 ObjectString, /* Object Long name */

 5 VSPtr pointer, /* Address of variable length string */

 5 VSOffset fixed bin(31), /* Offset of variable length string */

 5 VSBufSize fixed bin(31), /* size of buffer */

 5 VSLength fixed bin(31), /* Length of variable length string */

 5 VSCCSID fixed bin(31), /* CCSID of variable length string */

 3 SelectionString, /* Message Selection */

 5 VSPtr pointer, /* Address of variable length string */

 5 VSOffset fixed bin(31), /* Offset of variable length string */

 5 VSBufSize fixed bin(31), /* size of buffer */

 5 VSLength fixed bin(31), /* Length of variable length string */

 5 VSCCSID fixed bin(31), /* CCSID of variable length string */

 3 ResObjectString, /* Resolved Long object name */

 5 VSPtr pointer, /* Address of variable length string */

 5 VSOffset fixed bin(31), /* Offset of variable length string */

 5 VSBufSize fixed bin(31), /* size of buffer */

 5 VSLength fixed bin(31), /* Length of variable length string */

 5 VSCCSID fixed bin(31), /* CCSID of variable length string */

 3 ResolvedType fixed bin(31); /* Alias queue resolved object type */

Parent topic: Initial values and language declarations for MQOD

This build: January 26, 2011 11:16:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13870_

1.24.3.4. System/390® assembler declaration

MQOD DSECT

MQOD_STRUCID DS CL4 Structure identifier

MQOD_VERSION DS F Structure version number

MQOD_OBJECTTYPE DS F Object type

MQOD_OBJECTNAME DS CL48 Object name

MQOD_OBJECTQMGRNAME DS CL48 Object queue manager name

MQOD_DYNAMICQNAME DS CL48 Dynamic queue name

MQOD_ALTERNATEUSERID DS CL12 Alternate user identifier

MQOD_RECSPRESENT DS F Number of object records present

MQOD_KNOWNDESTCOUNT DS F Number of local queues opened

* successfully

MQOD_UNKNOWNDESTCOUNT DS F Number of remote queues opened

* successfully

MQOD_INVALIDDESTCOUNT DS F Number of queues that failed to

* open

MQOD_OBJECTRECOFFSET DS F Offset of first object record from

* start of MQOD

MQOD_RESPONSERECOFFSET DS F Offset of first response record

* from start of MQOD

MQOD_OBJECTRECPTR DS F Address of first object record

MQOD_RESPONSERECPTR DS F Address of first response record

MQOD_ALTERNATESECURITYID DS XL40 Alternate security identifier

MQOD_RESOLVEDQNAME DS CL48 Resolved queue name

MQOD_RESOLVEDQMGRNAME DS CL48 Resolved queue manager name

MQOD_OBJECTSTRING DS F Object Long name

MQOD_OBJECTSTRING_VSPTR DS F Address of variable length string

MQOD_OBJECTSTRING_VSOFFSET DS F Offset of variable length string

MQOD_OBJECTSTRING_VSBUFSIZE DS F size of buffer

MQOD_OBJECTSTRING_VSLENGTH DS F Length of variable length string

MQOD_OBJECTSTRING_VSCCSID DS F CCSID of variable length string

MQOD_OBJECTSTRING_LENGTH EQU *- MQOD_OBJECTSTRING

 ORG MQOD_OBJECTSTRING

MQOD_OBJECTSTRING_AREA DS CL(MQOD_OBJECTSTRING_LENGTH)

*

MQOD_SELECTIONSTRING DS F Message Selector

MQOD_SELECTIONSTRING_VSPTR DS F Address of variable length string

MQOD_SELECTIONSTRING_VSOFFSET DS F Offset of variable length string

MQOD_SELECTIONSTRING_VSBUFSIZE DS F size of buffer

MQOD_SELECTIONSTRING_VSLENGTH DS F Length of variable length string

Page 263 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

MQOD_SELECTIONSTRING_VSCCSID DS F CCSID of variable length string

MQOD_SELECTIONSTRING_LENGTH EQU *- MQOD_SELECTIONSTRING

 ORG MQOD_SELECTIONSTRING

MQOD_SELECTIONSTRING_AREA DS CL(MQOD_SELECTIONSTRING_LENGTH)

*

MQOD_RESOBJECTSTRING DS F Resolved Long object name

MQOD_RESOBJECTSTRING_VSPTR DS F Address of variable length string

MQOD_RESOBJECTSTRING_VSOFFSET DS F Offset of variable length string

MQOD_RESOBJECTSTRING_VSBUFSIZE DS F size of buffer

MQOD_RESOBJECTSTRING_VSLENGTH DS F Length of variable length string

MQOD_RESOBJECTSTRING_VSCCSID DS F CCSID of variable length string

MQOD_RESOBJECTSTRING_LENGTH EQU *- MQOD_RESOBJECTSTRING

 ORG MQOD_RESOBJECTSTRING

MQOD_RESOBJECTSTRING_AREA DS CL(MQOD_RESOBJECTSTRING_LENGTH)

MQOD_RESOLVEDTYPE DS F Alias queue object resolved type

*

MQOD_LENGTH EQU *-MQOD

 ORG MQOD

MQOD_AREA DS CL(MQOD_LENGTH)

Parent topic: Initial values and language declarations for MQOD

This build: January 26, 2011 11:16:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13880_

1.24.3.5. Visual Basic declaration

Type MQOD

 StrucId As String*4 'Structure identifier'

 Version As Long 'Structure version number'

 ObjectType As Long 'Object type'

 ObjectName As String*48 'Object name'

 ObjectQMgrName As String*48 'Object queue manager name'

 DynamicQName As String*48 'Dynamic queue name'

 AlternateUserId As String*12 'Alternate user identifier'

 RecsPresent As Long 'Number of object records present'

 KnownDestCount As Long 'Number of local queues opened'

 'successfully'

 UnknownDestCount As Long 'Number of remote queues opened'

 'successfully'

 InvalidDestCount As Long 'Number of queues that failed to'

 'open'

 ObjectRecOffset As Long 'Offset of first object record from'

 'start of MQOD'

 ResponseRecOffset As Long 'Offset of first response record'

 'from start of MQOD'

 ObjectRecPtr As MQPTR 'Address of first object record'

 ResponseRecPtr As MQPTR 'Address of first response record'

 AlternateSecurityId As MQBYTE40 'Alternate security identifier'

 ResolvedQName As String*48 'Resolved queue name'

 ResolvedQMgrName As String*48 'Resolved queue manager name'

End Type

Parent topic: Initial values and language declarations for MQOD

This build: January 26, 2011 11:16:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13890_

1.25. MQOR – Object record

The following table summarizes the fields in the structure.

Overview for MQOR
Availability: AIX®, HP-UX, i5/OS®, Solaris, Linux, Windows, plus WebSphere® MQ clients connected to these systems.

Fields for MQOR

Initial values and language declarations for MQOR

Parent topic: Data type descriptions

This build: January 26, 2011 11:16:41

Table 1. Fields in MQOR

Field Description Topic

ObjectName Object name ObjectName

ObjectQMgrName Object queue manager name ObjectQMgrName

Page 264 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13900_

1.25.1. Overview for MQOR

Availability: AIX®, HP-UX, i5/OS®, Solaris, Linux, Windows, plus WebSphere® MQ clients connected to these systems.

Purpose: Use the MQOR structure to specify the queue name and queue-manager name of a single destination queue. MQOR is an input
structure for the MQOPEN and MQPUT1 calls.

Character set and encoding: Data in MQOR must be in the character set and encoding of the local queue manager; these are given by

the CodedCharSetId queue-manager attribute and MQENC_NATIVE, respectively. However, if the application is running as an MQ client, the

structure must be in the character set and encoding of the client.

Usage: By providing an array of these structures on the MQOPEN call, you can open a list of queues; this list is called a distribution list.
Each message put using the queue handle returned by that MQOPEN call is placed on each of the queues in the list, provided that the queue

was opened successfully.

Parent topic: MQOR – Object record

This build: January 26, 2011 11:16:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13910_

1.25.2. Fields for MQOR

The MQOR structure contains the following fields; the fields are described in alphabetic order:

ObjectName (MQCHAR48)

ObjectQMgrName (MQCHAR48)

Parent topic: MQOR – Object record

This build: January 26, 2011 11:16:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13920_

1.25.2.1. ObjectName (MQCHAR48)

This is the same as the ObjectName field in the MQOD structure (see MQOD for details), except that:

� It must be the name of a queue.

� It must not be the name of a model queue.

This is always an input field. The initial value of this field is the null string in C, and 48 blank characters in other programming languages.

Parent topic: Fields for MQOR

This build: January 26, 2011 11:16:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13930_

1.25.2.2. ObjectQMgrName (MQCHAR48)

This is the same as the ObjectQMgrName field in the MQOD structure (see MQOD for details).

This is always an input field. The initial value of this field is the null string in C, and 48 blank characters in other programming languages.

Parent topic: Fields for MQOR

This build: January 26, 2011 11:16:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13940_

Page 265 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

1.25.3. Initial values and language declarations for MQOR

C declaration

COBOL declaration

PL/I declaration

Visual Basic declaration

Parent topic: MQOR – Object record

This build: January 26, 2011 11:16:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13950_

1.25.3.1. C declaration

typedef struct tagMQOR MQOR;

struct tagMQOR {

 MQCHAR48 ObjectName; /* Object name */

 MQCHAR48 ObjectQMgrName; /* Object queue manager name */

};

Parent topic: Initial values and language declarations for MQOR

This build: January 26, 2011 11:16:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13960_

1.25.3.2. COBOL declaration

** MQOR structure

 10 MQOR.

** Object name

 15 MQOR-OBJECTNAME PIC X(48).

** Object queue manager name

 15 MQOR-OBJECTQMGRNAME PIC X(48).

Parent topic: Initial values and language declarations for MQOR

This build: January 26, 2011 11:16:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13970_

1.25.3.3. PL/I declaration

dcl

 1 MQOR based,

 3 ObjectName char(48), /* Object name */

 3 ObjectQMgrName char(48); /* Object queue manager name */

Parent topic: Initial values and language declarations for MQOR

This build: January 26, 2011 11:16:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

Table 1. Initial values of fields in MQOR for MQOR

Field name Name of constant Value of constant

ObjectName None Null string or blanks

ObjectQMgrName None Null string or blanks

Notes:

1. The value Null string or blanks denotes the null string in C, and blank characters in other programming languages.

2. In the C programming language, the macro variable MQOR_DEFAULT contains the values listed above. It can be used in

the following way to provide initial values for the fields in the structure:

MQOR MyOR = {MQOR_DEFAULT};

Page 266 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

fr13980_

1.25.3.4. Visual Basic declaration

Type MQOR

 ObjectName As String*48 'Object name'

 ObjectQMgrName As String*48 'Object queue manager name'

End Type

Parent topic: Initial values and language declarations for MQOR

This build: January 26, 2011 11:16:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr13990_

1.26. MQPD – Property descriptor

The following table summarizes the fields in the structure.

Overview for MQPD
Availability: AIX®, HP-UX, i5/OS®, Solaris, Linux, Windows, z/OS® and WebSphere® MQ clients.

Fields for MQPD

Initial values and language declarations for MQPD

Parent topic: Data type descriptions

This build: January 26, 2011 11:20:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr43500_

1.26.1. Overview for MQPD

Availability: AIX®, HP-UX, i5/OS®, Solaris, Linux, Windows, z/OS® and WebSphere® MQ clients.

Purpose: The MQPD is used to define the attributes of a property. The structure is an input/output parameter on the MQSETMP call and an

output parameter on the MQINQMP call.

Character set and encoding: Data in MQPD must be in the character set of the application and encoding of the application
(MQENC_NATIVE).

Parent topic: MQPD – Property descriptor

This build: January 26, 2011 11:20:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr43510_

1.26.2. Fields for MQPD

The MQPD structure contains the following fields; the fields are described in alphabetic order:

Context (MQLONG)

CopyOptions (MQLONG)

Options (MQLONG)

StrucId (MQCHAR4)

Table 1. Fields in MQPD

Field Description Topic

StrucId Structure identifier StrucId

Version Structure version number Version

Options Options Options

Support Required support for message property Support

Context Message context to which property belongs Context

CopyOptions Copy options to which property belongs CopyOptions

Page 267 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Support (MQLONG)

Version (MQLONG)

Parent topic: MQPD – Property descriptor

This build: January 26, 2011 11:20:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr43520_

1.26.2.1. Context (MQLONG)

This describes what message context the property belongs to.

When a queue manager receives a message containing a WebSphere® MQ-defined property that the queue manager recognizes as being
incorrect. the queue manager corrects the value of the Context field.

The following option can be specified:

MQPD_USER_CONTEXT

The property is associated with the user context.

No special authorization is required to be able to set a property associated with the user context using the MQSETMP call.

On a WebSphere MQ Version 7.0 queue manager, a property associated with the user context is saved as described for

MQOO_SAVE_ALL_CONTEXT. An MQPUT call with MQPMO_PASS_ALL_CONTEXT specified, causes the property to be copied from the saved
context into the new message.

If the option previously described is not required, the following option can be used:

MQPD_NO_CONTEXT

The property is not associated with a message context.

An unrecognized value is rejected with a Reasoncode of MQRC_PD_ERROR

This is an input/output field to the MQSETMP call and an output field from the MQINQMP call. The initial value of this field is
MQPD_NO_CONTEXT.

Parent topic: Fields for MQPD

This build: January 26, 2011 11:20:42

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr43570_

1.26.2.2. CopyOptions (MQLONG)

This describes which type of messages the property should be copied into. This is an output only field for recognized WebSphere® MQ-
defined properties; WebSphere MQ sets the appropriate value.

When a queue manager receives a message containing a WebSphere MQ-defined property that the queue manager recognizes as being
incorrect. the queue manager corrects the value of the CopyOptions field.

You can specify one or more of these options, and if you need more than one, the values can be:

� Added together (do not add the same constant more than once), or

� Combined using the bitwise OR operation (if the programming language supports bit operations).

MQCOPY_FORWARD

This property iscopied into a message being forwarded.

MQCOPY_PUBLISH

This property is copied into the message received by a subscriber when a message is being published.

MQCOPY_REPLY

This property is copied into a reply message.

MQCOPY_REPORT

This property is copied into a report message.

MQCOPY_ALL

This property is copied into all types of subsequent messages.

Default option: The following option can be specified to supply the default set of copy options:

MQCOPY_DEFAULT

This property is copied into a message being forwarded, into a report message, or into a message received by a subscriber when a

Page 268 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

message is being published.

This is equivalent to specifying the combination of options MQCOPY_FORWARD, plus MQCOPY_REPORT, plus MQCOPY_PUBLISH.

If none of the options described above is required, use the following option:

MQCOPY_NONE

Use this value to indicate that no other copy options have been specified; programmatically no relationship exists between this property
and subsequent messages. This is always returned for message descriptor properties.

This is an input/output field to the MQSETMP call and an output field from the MQINQMP call. The initial value of this field is
MQCOPY_DEFAULT.

Parent topic: Fields for MQPD

This build: January 26, 2011 11:20:42

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr43575_

1.26.2.3. Options (MQLONG)

The value must be:

MQPD_NONE

No options specified

This is always an input field. The initial value of this field is MQPD_NONE.

Parent topic: Fields for MQPD

This build: January 26, 2011 11:20:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr43550_

1.26.2.4. StrucId (MQCHAR4)

This is the structure identifier; the value must be:

MQPD_STRUC_ID

Identifier for property descriptor structure.

For the C programming language, the constant MQPD_STRUC_ID_ARRAY is also defined; this has the same value as
MQPD_STRUC_ID, but is an array of characters instead of a string.

This is always an input field. The initial value of this field is MQPD_STRUC_ID.

Parent topic: Fields for MQPD

This build: January 26, 2011 11:20:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr43530_

1.26.2.5. Support (MQLONG)

This field describes what level of support for the message property is required of the queue manager, in order for the message containing
this property to be put to a queue. This applies only to WebSphere® MQ-defined properties; support for all other properties is optional.

The field is automatically set to the correct value when the WebSphere MQ-defined property is known by the queue manager. If the property
is not recognized, MQPD_SUPPORT_OPTIONAL is assigned. When a queue manager receives a message containing a WebSphere MQ-defined

property that the queue manager recognizes as being incorrect. the queue manager corrects the value of the Support field.

When setting a WebSphere MQ-defined property using the MQSETMP call on a message handle where the MQCMHO_NO_VALIDATION option
was set, Support becomes an input field. This allows an application to put a WebSphere MQ-defined property, with the correct value, where

the property is unsupported by the connected queue manager, but where the message is intended to be processed on another queue
manager.

The value MQPD_SUPPORT_OPTIONAL is always assigned to properties that are not WebSphere MQ-defined properties.

If a WebSphere MQ Version 7.0 queue manager, that supports message properties, receives a property that contains an unrecognized

Support value, the property is treated as if:

� MQPD_SUPPORT_REQUIRED was specified if any of the unrecognized values are contained in the MQPD_REJECT_UNSUP_MASK.

� MQPD_SUPPORT_REQUIRED_IF_LOCAL was specified if any of the unrecognized values are contained in the

Page 269 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

MQPD_ACCEPT_UNSUP_IF_XMIT_MASK

� MQPD_SUPPORT_OPTIONAL was specified otherwise.

One of the following values is returned by the MQINQMP call, or one of the values can be specified, when using the MQSETMP call on a

message handle where the MQCMHO_NO_VALIDATION option is set:

MQPD_SUPPORT_OPTIONAL

The property is accepted by a queue manager even if it is not supported. The property can be discarded in order for the message to flow
to a queue manager that does not support message properties. This value is also assigned to properties that are not WebSphere MQ-
defined.

MQPD_SUPPORT_REQUIRED

Support for the property is required. The message is rejected by a queue manager that does not support the WebSphere MQ-defined
property. The MQPUT or MQPUT1 call fails with completion code MQCC_FAILED and reason code MQRC_UNSUPPORTED_PROPERTY.

MQPD_SUPPORT_REQUIRED_IF_LOCAL

The message is rejected by a queue manager that does not support the WebSphere MQ-defined property if the message is destined for a
local queue. The MQPUT or MQPUT1 call fails with completion code MQCC_FAILED and reason code MQRC_UNSUPPORTED_PROPERTY.

The MQPUT or MQPUT1 call succeeds if the message is destined for a remote queue manager.

This is an output field on the MQINQMP call and an input field on the MQSETMP call if the message handle was created with the
MQCMHO_NO_VALIDATION option set. The initial value of this field is MQPD_SUPPORT_OPTIONAL.

Parent topic: Fields for MQPD

This build: January 26, 2011 11:20:42

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr43560_

1.26.2.6. Version (MQLONG)

This is the structure version number; the value must be:

MQPD_VERSION_1
Version-1 property descriptor structure.

The following constant specifies the version number of the current version:

MQPD_CURRENT_VERSION
Current version of property descriptor structure.

This is always an input field. The initial value of this field is MQPD_VERSION_1.

Parent topic: Fields for MQPD

This build: January 26, 2011 11:20:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr43540_

1.26.3. Initial values and language declarations for MQPD

C declaration

COBOL declaration

PL/I declaration

System/390 assembler declaration

Table 1. Initial values of fields in MQPD

Field name Name of constant Value of constant

StrucId MQPD_STRUC_ID 'PD'

Version MQPD_VERSION_1 1

Options MQPD_NONE 0

Support MQPD_SUPPORT_OPTIONAL 0

Context MQPD_NO_CONTEXT 0

CopyOptions MQCOPY_DEFAULT 0

Notes:

1. In the C programming language, the macro variable MQPD_DEFAULT contains the values listed above. It can be used in

the following way to provide initial values for the fields in the structure:

MQPD MyPD = {MQPD_DEFAULT};

Page 270 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Parent topic: MQPD – Property descriptor

This build: January 26, 2011 11:20:42

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr43580_

1.26.3.1. C declaration

typedef struct tagMQPD MQPD;

struct tagMQPD {

 MQCHAR4 StrucId; /* Structure identifier */

 MQLONG Version; /* Structure version number */

 MQLONG Options; /* Options that control the action of

 MQSETMP and MQINQMP */

 MQLONG Support; /* Property support option */

 MQLONG Context; /* Property context */

 MQLONG CopyOptions; /* Property copy options */

};

Parent topic: Initial values and language declarations for MQPD

This build: January 26, 2011 11:20:43

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr43590_

1.26.3.2. COBOL declaration

** MQPD structure

 10 MQPD.

** Structure identifier

 15 MQPD-STRUCID PIC X(4).

** Structure version number

 15 MQPD-VERSION PIC S9(9) BINARY.

** Options that control the action of MQSETMP and

** MQINQMP

 15 MQPD-OPTIONS PIC S9(9) BINARY.

** Property support option

 15 MQPD-SUPPORT PIC S9(9) BINARY.

** Property context

 15 MQPD-CONTEXT PIC S9(9) BINARY.

** Property copy options

 15 MQPD-COPYOPTIONS PIC S9(9) BINARY.

Parent topic: Initial values and language declarations for MQPD

This build: January 26, 2011 11:20:43

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr43600_

1.26.3.3. PL/I declaration

dcl

 1 MQPD based,

 3 StrucId char(4), /* Structure identifier */

 3 Version fixed bin(31), /* Structure version number */

 3 Options fixed bin(31), /* Options that control the action

 of MQSETMP and MQINQMP */

 3 Support fixed bin(31), /* Property support option */

 3 Context fixed bin(31), /* Property context */

 3 CopyOptions fixed bin(31); /* Property copy options */

Parent topic: Initial values and language declarations for MQPD

This build: January 26, 2011 11:20:43

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr43610_

1.26.3.4. System/390® assembler declaration

MQPD DSECT

MQPD_STRUCID DS CL4 Structure identifier

MQPD_VERSION DS F Structure version number

Page 271 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

MQPD_OPTIONS DS F Options that control the

* action of MQSETMP and MQINQMP

MQPD_SUPPORT DS F Property support option

MQPD_CONTEXT DS F Property context

MQPD_COPYOPTIONS DS F Property copy options

MQPD_LENGTH EQU *-MQPD

MQPD_AREA DS CL(MQPD_LENGTH)

Parent topic: Initial values and language declarations for MQPD

This build: January 26, 2011 11:20:43

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr43620_

1.27. MQPMO – Put-message options

The following table summarizes the fields in the structure.

Overview for MQPMO
Availability: All WebSphere® MQ systems, plus WebSphere MQ clients connected to these systems.

Fields for MQPMO

Initial values and language declarations for MQPMO

Parent topic: Data type descriptions

This build: January 26, 2011 11:16:42

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14000_

1.27.1. Overview for MQPMO

Availability: All WebSphere® MQ systems, plus WebSphere MQ clients connected to these systems.

Purpose: The MQPMO structure allows the application to specify options that control how messages are placed on queues, or published to

topics. The structure is an input/output parameter on the MQPUT and MQPUT1 calls.

Version: The current version of MQPMO is MQPMO_VERSION_3. Certain fields are available only in certain versions of MQGPO. If you need

Table 1. MQPMO structure

Field Description Topic

StrucId Structure identifier StrucId

Version Structure version number Version

Options Options that control the action of MQPUT and MQPUT1 Options

Timeout Reserved Timeout

Context Object handle of input queue Context

KnownDestCount Number of messages sent successfully to local queues KnownDestCount

UnknownDestCount Number of messages sent successfully to remote

queues

UnknownDestCount

InvalidDestCount Number of messages that could not be sent InvalidDestCount

ResolvedQName Resolved name of destination queue ResolvedQName

ResolvedQMgrName Resolved name of destination queue manager ResolvedQMgrName

Note: The remaining fields are ignored if Version is less than MQPMO_VERSION_2.

RecsPresent Number of put message records or response records

present

RecsPresent

PutMsgRecFields Flags indicating which MQPMR fields are present PutMsgRecFields

PutMsgRecOffset Offset of first put-message record from start of MQPMO PutMsgRecOffset

ResponseRecOffset Offset of first response record from start of MQPMO ResponseRecOffset

PutMsgRecPtr Address of first put message record PutMsgRecPtr

ResponseRecPtr Address of first response record ResponseRecPtr

Note: The remaining fields are ignored if Version is less than MQPMO_VERSION_3.

OriginalMsgHandle Original message handle OriginalMsgHandle

NewMsgHandle New message handle NewMsgHandle

Action Type of put being performed and the relationship

between the original message specified by the

OriginalMsgHandle field and the new message

specified by the NewMsgHandle field

Action

PubLevel Level of subscription targeted by the publication PubLevel

Page 272 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

to port applications between several environments, you must ensure that the version of MQPMO is consistent across all environments. Fields
that exist only in particular versions of the structure are identified as such in MQPMO - Put-message options and in the field descriptions.

The header, COPY, and INCLUDE files provided for the supported programming languages contain the most-recent version of MQPMO that is
supported by the environment, but with the initial value of the Version field set to MQPMO_VERSION_1. To use fields that are not present

in the version-1 structure, the application must set the Version field to the version number of the version required.

Character set and encoding: Data in MQPMO must be in the character set and encoding of the local queue manager; these are given by
the CodedCharSetId queue-manager attribute and MQENC_NATIVE, respectively. However, if the application is running as an MQ client, the

structure must be in the character set and encoding of the client.

Parent topic: MQPMO – Put-message options

This build: January 26, 2011 11:16:42

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14010_

1.27.2. Fields for MQPMO

The MQPMO structure contains the following fields; the fields are described in alphabetic order:

Action (MQLONG)
This specifies the type of put being performed and the relationship between the original message specified by the OriginalMsgHandle
field and the new message specified by the NewMsgHandle field. The properties of the message are chosen by the queue manager
according to the value of the Action specified.

Context (MQHOBJ)

InvalidDestCount (MQLONG)

KnownDestCount (MQLONG)

NewMsgHandle (MQHMSG)

MQPMO options (MQLONG)

Scope option. You can specify any or none of the MQPMO options.

OriginalMsgHandle (MQHMSG)

PubLevel (MQLONG)
The initial value of this field is 9. The level of subscription targeted by this publication. Only those subscriptions with the highest
SubLevel less than or equal to this value will receive this publication. This value must be in the range zero to 9; zero is the lowest
level.

PutMsgRecFields (MQLONG)

PutMsgRecOffset (MQLONG)

PutMsgRecPtr (MQPTR)

RecsPresent (MQLONG)

ResolvedQMgrName (MQCHAR48)

ResolvedQName (MQCHAR48)

ResponseRecOffset (MQLONG)

ResponseRecPtr (MQPTR)

StrucId (MQCHAR4)

Timeout (MQLONG)

UnknownDestCount (MQLONG)

Version (MQLONG)
Structure version number.

Parent topic: MQPMO – Put-message options

This build: January 26, 2011 11:16:42

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14020_

Page 273 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

1.27.2.1. Action (MQLONG)

This specifies the type of put being performed and the relationship between the original message specified by the OriginalMsgHandle field
and the new message specified by the NewMsgHandle field. The properties of the message are chosen by the queue manager according to
the value of the Action specified.

You can choose to supply the contents of the message descriptor using the MsgDesc parameter on the MQPUT or MQPUT1 calls. Alternatively
it is possible not to supply the MsgDesc parameter, or to specify that it is output-only by including MQPMO_MD_FOR_OUTPUT_ONLY in the
Options field of the MQPMO structure.

If the MsgDesc parameter is not supplied, or if it is specified to be output-only, then the message descriptor for the new message is

populated from the message handle fields of the MQPMO, according to the rules described in this topic.

The context setting and passing activities described in Controlling context information take effect after the message descriptor has been
composed.

If an incorrect action value is specified, the call fails with the reason code MQRC_ACTION_ERROR.

Any one of the following actions can be specified:

MQACTP_NEW

A new message is being put, and no relationship to a previous message is being specified by the program. The message descriptor is
composed as follows:

� If a MsgDesc is supplied on the MQPUT or MQPUT1 call, and MQPMO_MD_FOR_OUTPUT_ONLY is not in the MQPMO.Options, this is
used as the message descriptor unmodified.

� If a MsgDesc is not supplied, or MQPMO_MD_FOR_OUTPUT_ONLY is in the MQPMO.Options then the queue manager generates the
message descriptor using a combination of properties from OriginalMsgHandle and NewMsgHandle. Any message descriptor fields
explicitly set on the new message handle take precedence over those in the original message handle.

Message data is taken from the MQPUT or MQPUT1 Buffer parameter.

MQACTP_FORWARD

A previously retrieved message is being forwarded. The original message handle specifies the message that was previously retrieved.

The new message handle specifies any modifications to the properties (including any in the message descriptor) in the original message
handle.

The message descriptor is composed as follows:

� If a MsgDesc is supplied on the MQPUT or MQPUT1 call, and MQPMO_MD_FOR_OUTPUT_ONLY is not in the MQPMO.Options, this is

used as the message descriptor unmodified.

� If a MsgDesc is not supplied, or MQPMO_MD_FOR_OUTPUT_ONLY is in the MQPMO.Options then the queue manager generates the
message descriptor using a combination of properties from OriginalMsgHandle and NewMsgHandle. Any message descriptor fields

explicitly set on the new message handle take precedence over those in the original message handle.

� If MQPMO_NEW_MSG_ID or MQPMO_NEW_CORREL_ID are specified in the MQPMO.Options, then these are honoured.

The message properties are composed as follows:

� All properties from the original message handle which have MQCOPY_FORWARD in the MQPD.CopyOptions

� All properties from the new message handle. For each property in the new message handle that has the same name as a property in

the original message handle, the value is taken from the new message handle. The only exception to this rule is the special case
when the property in the new message handle has the same name as a property in the original message handle, but the value of the
property is null. In this case the property is removed from the message.

The message data to be forwarded is taken from the MQPUT or MQPUT1 Buffer parameter.

MQACTP_REPLY

A reply is being made to a previously retrieved message. The original message handle specifies the message that was previously
retrieved.

The new message handle specifies any modifications to the properties (including any in the message descriptor) in the original message

handle.

The message descriptor is composed as follows:

� If a MsgDesc is supplied on the MQPUT or MQPUT1 call, and MQPMO_MD_FOR_OUTPUT_ONLY is not in the MQPMO.Options, this is
used as the message descriptor unmodified.

� If a MsgDesc is not supplied, or MQPMO_MD_FOR_OUTPUT_ONLY is in the MQPMO.Options then initial message descriptor fields are
chosen as follows:

Table 1. Reply message handle transformation

Field in MQMD Value used

Report If MQRO_PASS_DISCARD_AND_EXPIRY

and MQRO_DISCARD_MSG are set:

MQRO_DISCARD_MSG
otherwise

MQRO_NONE

MsgType MQMT_REPLY

Expiry If MQRO_PASS_DISCARD_AND_EXPIRY
is set:

Copied from the input message

otherwise

MQEI_UNLIMITED

Feedback MQFB_NONE

MsgId If MQPMO_NEW_MSG_ID is set:

Page 274 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

� The message descriptor is then modified by the new message handle – any message descriptor fields explicitly set as properties in
the new message handle take precedence over the message descriptor fields as described above.

The message properties are composed as follows:

� All properties from the original message handle which have MQCOPY_REPLY in the MQPD.CopyOptions

� All properties from the new message handle. For each property in the new message handle that has the same name as a property in
the original message handle, the value is taken from the new message handle. The only exception to this rule is the special case

when the property in the new message handle has the same name as a property in the original message handle, but the value of the
property is null. In this case the property is removed from the message.

The message data to be forwarded is taken from the MQPUT/MQPUT1 Buffer parameter.

MQACTP_REPORT

A report is being generated as a result of a previously retrieved message. The original message handle specifies the message causing the
report to be generated.

The new message handle specifies any modifications to the properties (including any in the message descriptor) in the original message
handle.

The message descriptor is composed as follows:

� If a MsgDesc is supplied on the MQPUT or MQPUT1 call, and MQPMO_MD_FOR_OUTPUT_ONLY is not in the MQPMO.Options, this is
used as the message descriptor unmodified.

� If a MsgDesc is not supplied, or MQPMO_MD_FOR_OUTPUT_ONLY is in the MQPMO.Options then initial message descriptor fields are
chosen as follows:

A new message identifier is generated

else if MQRO_PASS_MSG_ID is set:

Copied from the input message
otherwise

MQMI_NONE

CorrelId If MQPMO_NEW_CORREL_ID is set:

A new correlation identifier is generated

else if MQRO_COPY_MSG_ID_TO_CORREL_ID is set:

Copied from the MsgId field of the
input message

else if MQRO_PASS_CORREL_ID is set:

Copied from the CorrelId field of the

input message

otherwise
MQCI_NONE

BackoutCount 0

ReplyToQ Blanks

ReplyToQMgr Blanks

GroupId MQGI_NONE

MsgSeqNumber 1

Offset 0

MsgFlags MQMF_NONE

OriginalLength MQOL_UNDEFINED

Table 2. Report message handle transformation

Field in MQMD Value used

Report If MQRO_PASS_DISCARD_AND_EXPIRY and

MQRO_DISCARD_MSG are set:

MQRO_DISCARD_MSG

otherwise
MQRO_NONE

MsgType MQMT_REPORT

Expiry If MQRO_PASS_DISCARD_AND_EXPIRY

is set:
Copied from the input message

otherwise

MQEI_UNLIMITED

MsgId If MQPMO_NEW_MSG_ID is set:

A new message identifier is generated
else if MQRO_PASS_MSG_ID is set:

Copied from the input message

otherwise

MQMI_NONE

CorrelId If MQPMO_NEW_CORREL_ID is set:

A new correlation identifier is generated
else if MQRO_COPY_MSG_ID_TO_CORREL_ID is set:

Copied from the MsgId field of the

input message

else if MQRO_PASS_CORREL_ID is set:

Copied from the CorrelId field of the
input message

otherwise

MQCI_NONE

BackoutCount 0

ReplyToQ Blanks

ReplyToQMgr Blanks

Page 275 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

� The message descriptor is then modified by the new message handle – any message descriptor fields explicitly set as properties in

the new message handle take precedence over the message descriptor fields as described above.

The message properties are composed as follows:

� All properties from the original message handle which have MQCOPY_REPORT in the MQPD.CopyOptions

� All properties from the new message handle. For each property in the new message handle that has the same name as a property in
the original message handle, the value is taken from the new message handle. The only exception to this rule is the special case
when the property in the new message handle has the same name as a property in the original message handle, but the value of the
property is null. In this case the property is removed from the message.

The Feedback field in the resultant MQMD represents the report that is to be generated. A Feedback value of MQFB_NONE causes the
MQPUT or MQPUT1 call to fail with reason code MQRC_FEEDBACK_ERROR.

To choose the user data of the report message, WebSphere MQ consults the Report and Feedback fields in the resultant MQMD, and the

Buffer and BufferLength parameters of the MQPUT or MQPUT1 call.

� If Feedback is MQFB_COA, MQFB_COD or MQFB_EXPIRATION then the value of Report is inspected.

� If any of the following cases is true, the full message data from Buffer for a length of BufferLength is used.

� Feedback is MQFB_EXPIRATION and Report contains MQRO_EXPIRATION_WITH_FULL_DATA

� Feedback is MQFB_COD and Report contains MQRO_COD_WITH_FULL_DATA

� Feedback is MQFB_COA and Report contains MQRO_COA_WITH_FULL_DATA

� If any of the following cases is true, the first 100 bytes of the message (or BufferLength if this is less than 100) from Buffer are used

� Feedback is MQFB_EXPIRATION and Report contains MQRO_EXPIRATION_WITH_DATA

� Feedback is MQFB_COD and Report contains MQRO_COD_WITH_DATA

� Feedback is MQFB_COA and Report contains MQRO_COA_WITH_DATA

� If Feedback is MQFB_EXPIRATION, MQFB_COD or MQFB_COA, and Report does not contain the *_WITH_FULL_DATA or
*_WITH_DATA options relevant to that Feeback value, then no user data is included with the message.

� If Feedback takes a different value from those listed above, then Buffer and BufferLength are used as normal.

The derivation of the user data is shown in the following table:

Parent topic: Fields for MQPMO

This build: January 26, 2011 11:20:24

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42011_

1.27.2.2. Context (MQHOBJ)

If MQPMO_PASS_IDENTITY_CONTEXT or MQPMO_PASS_ALL_CONTEXT is specified, this field must contain the input queue handle from
which context information to be associated with the message being put is taken.

If neither MQPMO_PASS_IDENTITY_CONTEXT nor MQPMO_PASS_ALL_CONTEXT is specified, this field is ignored.

This is an input field. The initial value of this field is 0.

Parent topic: Fields for MQPMO

This build: January 26, 2011 11:16:43

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14030_

1.27.2.3. InvalidDestCount (MQLONG)

This is the number of messages that could not be sent to queues in the distribution list. The count includes queues that failed to open, as
well as queues that were opened successfully but for which the put operation failed. This field is also set when putting a message to a single
queue that is not in a distribution list.

OriginalLength Set to the BufferLength

Table 3. Source of user data

 MQFB_COA MQFB_COD MQFB_EXPIRATION

MQRO_EXPIRATION_WITH_FULL_DATA None None Buffer(Bufferlength)

MQRO_COD_WITH_FULL_DATA None Buffer(Bufferlength) None

MQRO_COA_WITH_FULL_DATA Buffer(Bufferlength) None None

MQRO_EXPIRATION_WITH_DATA None None Buffer(First 100 bytes)

MQRO_COD_WITH_DATA None Buffer(First 100

bytes)

None

MQRO_COA_WITH_DATA Buffer(First 100

bytes)

None None

Page 276 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Note: This field is set if the CompCode parameter on the MQPUT or MQPUT1 call is MQCC_OK or MQCC_WARNING; it might be set if the

CompCode parameter is MQCC_FAILED, but do not rely on this in application code.

This is an output field. The initial value of this field is 0. This field is not set if Version is less than MQPMO_VERSION_2.

This field is undefined on z/OS® because distribution lists are not supported.

Parent topic: Fields for MQPMO

This build: January 26, 2011 11:16:43

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14040_

1.27.2.4. KnownDestCount (MQLONG)

This is the number of messages that the current MQPUT or MQPUT1 call has sent successfully to queues in the distribution list that are local

queues. The count does not include messages sent to queues that resolve to remote queues (even though a local transmission queue is
used initially to store the message). This field is also set when putting a message to a single queue that is not in a distribution list.

This is an output field. The initial value of this field is 0. This field is not set if Version is less than MQPMO_VERSION_2.

This field is undefined on z/OS® because distribution lists are not supported.

Parent topic: Fields for MQPMO

This build: January 26, 2011 11:16:43

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14050_

1.27.2.5. NewMsgHandle (MQHMSG)

This is an optional handle to the message being put subject to the value of the Action field. It defines the properties of the message and
overrides the values of the OriginalMsgHandle, if specified.

On return from the MQPUT or MQPUT1 call the contents of the handle will reflect the message that was actually put.

This is an input field. The initial value of this field is MQHM_NONE. This field is ignored if Version is less than MQPMO_VERSION_3.

Parent topic: Fields for MQPMO

This build: January 26, 2011 11:20:23

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42010_

1.27.2.6. MQPMO options (MQLONG)

Scope option. You can specify any or none of the MQPMO options.

If more than one option is required, the values you specify for the options can be used in the following ways:

� The values can be added together. Do not add the same constant more than once.

� The values can be combined using the bitwise OR operation, if the programming language supports bitwise operations.

Combinations that are not valid are noted; any other combinations are valid.

The following option controls the scope of the publications sent:

MQPMO_SCOPE_QMGR

The publication is sent only to subscribers that have subscribed on this queue manager. The publication is not forwarded to any remote
publish/subscribe queue managers that have made a subscription to this queue manager. This overrides any behavior that has been set
using the PUBSCOPE topic attribute.

Note: If not set, the publication scope is determined by the PUBSCOPE topic attribute.

Publishing options. The following options control the way messages are published to a topic:

MQPMO_SUPPRESS_REPLYTO

Any information specified in the ReplyToQ and ReplyToQMgr fields of the MQMD of this publication is not passed on to subscribers. If this

option is used with a report option that requires a ReplyToQ, the call fails with MQRC_MISSING_REPLY_TO_Q.

MQPMO_RETAIN

The publication being sent is to be retained by the queue manager. This allows a subscriber to request a copy of this publication after the

Page 277 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

time it was published, by using the MQSUBRQ call. It also allows a publication to be sent to applications which make their subscription
after the time this publication was made (unless they choose not to be sent it by using the option MQSO_NEW_PUBLICATIONS_ONLY). If

an application is sent a publication which was retained, this is indicated by the MQIsRetained message property of that publication.

Only one publication can be retained at each node of the topic tree. Therefore, if there already is a retained publication for this topic,
published by any other application, it is replaced with this publication. It is therefore better to avoid having more than one publisher
retaining messages on the same topic.

When retained publications are requested by a subscriber, the subscription used might contain a wildcard in the topic, in which case a
number of retained publications might match (at various nodes in the topic tree) and several publications might be sent to the requesting
application. See the description of the MQSUBRQ call for more details.

For information about how retained publications interact with subscription levels, see Intercepting publications.

If this option is used and the publication cannot be retained, the message is not published and the call fails with
MQRC_PUT_NOT_RETAINED.

MQPMO_NOT_OWN_SUBS

Tells the queue manager that the application does not want to send any of its publications to subscriptions it owns. Subscriptions are
considered to be owned by the same application if the connection handles are the same.

MQPMO_WARN_IF_NO_SUBS_MATCHED

If no subscription matches the publication, return a completion code (CompCode) of MQCC_WARNING and reason code

MQRC_NO_SUBS_MATCHED.

If MQRC_NO_SUBS_MATCHED is returned by the put operation, the publication was not delivered to any subscriptions. However, if the
MQPMO_RETAIN option is specified on the put operation, the message is retained and delivered to any subsequently defined matching
subscription.

A subscription on the topic matches the publication if any of the following conditions are met:

� The message is delivered to the subscription queue

� The message would have been delivered to the subscription queue but a problem with the queue means that the message cannot be
put to the queue, and it was consequently placed on the dead letter queue or discarded.

� A routing exit is defined that suppresses delivery of the message to the subscription

A subscription on the topic does not match the publication if any of the following conditions are met:

� The subscription has a selection string that does not match the publication

� The subscription specified the MQSO_PUBLICATION_ON_REQUEST option

� The publication is not delivered because the MQPMO_NOT_OWN_SUBS option was specified on the put operation and the

subscription matches the identity of the publisher

Syncpoint options. The following options relate to the participation of the MQPUT or MQPUT1 call within a unit of work:

MQPMO_SYNCPOINT

The request is to operate within the normal unit-of-work protocols. The message is not visible outside the unit of work until the unit of
work is committed. If the unit of work is backed out, the message is deleted.

If neither this option nor MQPMO_NO_SYNCPOINT is specified, the inclusion of the put request in unit-of-work protocols is determined by
the environment running the queue manager and not the environment running the application. On z/OS®, the put request is within a unit
of work. In all other environments, the put request is not within a unit of work.

Because of these differences, an application that you want to port must not allow this option to default; specify either MQPMO_SYNCPOINT
or MQPMO_NO_SYNCPOINT explicitly.

Do not specify MQPMO_SYNCPOINT with MQPMO_NO_SYNCPOINT.

MQPMO_NO_SYNCPOINT

The request is to operate outside the normal unit-of-work protocols. The message is available immediately, and it cannot be deleted by
backing out a unit of work.

If neither this option nor MQPMO_SYNCPOINT is specified, the inclusion of the put request in unit-of-work protocols is determined by the
environment running the queue manager and not the environment running the application. On z/OS, the put request is within a unit of
work. In all other environments, the put request is not within a unit of work.

Because of these differences, an application that you want to port must not allow this option to default; specify either MQPMO_SYNCPOINT

or MQPMO_NO_SYNCPOINT explicitly.

Do not specify MQPMO_NO_SYNCPOINT with MQPMO_SYNCPOINT.

Message-identifier and correlation-identifier options. The following options request the queue manager to generate a new message

identifier or correlation identifier:

MQPMO_NEW_MSG_ID

The queue manager replaces the contents of the MsgId field in MQMD with a new message identifier. This message identifier is sent with

the message, and returned to the application on output from the MQPUT or MQPUT1 call.

This option can also be specified when the message is being put to a distribution list; see the description of the MsgId field in the MQPMR

structure for details.

Using this option relieves the application of the need to reset the MsgId field to MQMI_NONE before each MQPUT or MQPUT1 call.

MQPMO_NEW_CORREL_ID

Page 278 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

The queue manager replaces the contents of the CorrelId field in MQMD with a new correlation identifier. This correlation identifier is sent

with the message, and returned to the application on output from the MQPUT or MQPUT1 call.

This option can also be specified when the message is being put to a distribution list; see the description of the CorrelId field in the

MQPMR structure for details.

MQPMO_NEW_CORREL_ID is useful in situations where the application requires a unique correlation identifier.

Group and segment options. The following options relate to the processing of messages in groups and segments of logical messages.

Read the definitions that follow to help you to understand the option.

Physical message

This is the smallest unit of information that can be placed on or removed from a queue; it often corresponds to the information specified
or retrieved on a single MQPUT, MQPUT1, or MQGET call. Every physical message has its own message descriptor (MQMD). Generally,
physical messages are distinguished by differing values for the message identifier (MsgId field in MQMD), although this is not enforced by

the queue manager.

Logical message

This is a single unit of application information for non-z/OS platforms only . In the absence of system constraints, a logical message is
the same as a physical message. But where logical messages are extremely large, system constraints might make it advisable or
necessary to split a logical message into two or more physical messages, called segments.

A logical message that has been segmented consists of two or more physical messages that have the same non-null group identifier
(GroupId field in MQMD), and the same message sequence number (MsgSeqNumber field in MQMD). The segments are distinguished by

differing values for the segment offset (Offset field in MQMD), which gives the offset of the data in the physical message from the start of

the data in the logical message. Because each segment is a physical message, the segments in a logical message usually have differing
message identifiers.

A logical message that has not been segmented, but for which segmentation has been permitted by the sending application, also has a
non-null group identifier, although in this case there is only one physical message with that group identifier if the logical message does not
belong to a message group. Logical messages for which segmentation has been inhibited by the sending application have a null group

identifier (MQGI_NONE), unless the logical message belongs to a message group.

Message group

This is a set of one or more logical messages that have the same non-null group identifier. The logical messages in the group are
distinguished by differing values for the message sequence number, which is an integer in the range 1 through n, where n is the number
of logical messages in the group. If one or more of the logical messages is segmented, there are more than n physical messages in the
group.

MQPMO_LOGICAL_ORDER

This option tells the queue manager how the application puts messages in groups and segments of logical messages. It can be specified
only on the MQPUT call; it is not valid on the MQPUT1 call.

If MQPMO_LOGICAL_ORDER is specified, it indicates that the application uses successive MQPUT calls to:

� Put the segments in each logical message in the order of increasing segment offset, starting from 0, with no gaps.

� Put all the segments in one logical message before putting the segments in the next logical message.

� Put the logical messages in each message group in the order of increasing message sequence number, starting from 1, with no

gaps. WebSphere® MQ increments the message sequence number automatically.

� Put all the logical messages in one message group before putting logical messages in the next message group.

The above order is called logical order.

Because the application has told the queue manager how it puts messages in groups and segments of logical messages, the application
does not have to maintain and update the group and segment information on each MQPUT call, because the queue manager does this.
Specifically, it means that the application does not need to set the GroupId, MsgSeqNumber, and Offset fields in MQMD, becauses the

queue manager sets these to the appropriate values. The application needs to set only the MsgFlags field in MQMD, to indicate when

messages belong to groups or are segments of logical messages, and to indicate the last message in a group or last segment of a logical
message.

After a message group or logical message has been started, subsequent MQPUT calls must specify the appropriate MQMF_* flags in
MsgFlags in MQMD. If the application tries to put a message that is not in a group when there is an unterminated message group, or put a

message that is not a segment when there is an unterminated logical message, the call fails with reason code MQRC_INCOMPLETE_GROUP
or MQRC_INCOMPLETE_MSG, as appropriate. However, the queue manager retains the information about the current message group or
current logical message, and the application can terminate them by sending a message (possibly with no application message data)
specifying MQMF_LAST_MSG_IN_GROUP or MQMF_LAST_SEGMENT as appropriate, before reissuing the MQPUT call to put the message

that is not in the group or not a segment.

Table 1 shows the combinations of options and flags that are valid, and the values of the GroupId, MsgSeqNumber, and Offset fields that

the queue manager uses in each case. Combinations of options and flags that are not shown in the table are not valid. The columns in the
table have the following meanings; Either means Yes or No:

LOG ORD

Whether the MQPMO_LOGICAL_ORDER option is specified on the call.

MIG

Whether the MQMF_MSG_IN_GROUP or MQMF_LAST_MSG_IN_GROUP option is specified on the call.

SEG

Whether the MQMF_SEGMENT or MQMF_LAST_SEGMENT option is specified on the call.

SEG OK

Whether the MQMF_SEGMENTATION_ALLOWED option is specified on the call.

Cur grp

Whether a current message group exists before the call.

Cur log msg

Page 279 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Whether a current logical message exists before the call.

Other columns

Show the values that the queue manager uses. Previous denotes the value used for the field in the previous message for the queue
handle.

When you specify MQPMO_LOGICAL_ORDER, the queue manager requires that all messages in a group and segments in a logical message
are put with the same value in the Persistence field in MQMD, that is, all must be persistent, or all must be nonpersistent. If this

condition is not satisfied, the MQPUT call fails with reason code MQRC_INCONSISTENT_PERSISTENCE.

The MQPMO_LOGICAL_ORDER option affects units of work as follows:

� If the first physical message in a group or logical message is put within a unit of work, all the other physical messages in the group
or logical message must be put within a unit of work, if the same queue handle is used. However, they need not be put within the
same unit of work. This allows a message group or logical message that consists of many physical messages to be split across two
or more consecutive units of work for the queue handle.

� If the first physical message in a group or logical message is not put within a unit of work, none of the other physical messages in
the group or logical message can be put within a unit of work, if the same queue handle is used.

If these conditions are not satisfied, the MQPUT call fails with reason code MQRC_INCONSISTENT_UOW.

When MQPMO_LOGICAL_ORDER is specified, the MQMD supplied on the MQPUT call must not be less than MQMD_VERSION_2. If this

condition is not satisfied, the call fails with reason code MQRC_WRONG_MD_VERSION.

If MQPMO_LOGICAL_ORDER is not specified, messages in groups and segments of logical messages can be put in any order, and it is not
necessary to put complete message groups or complete logical messages. It is the application's responsibility to ensure that the GroupId,

MsgSeqNumber, Offset, and MsgFlags fields have appropriate values.

Use this technique to restart a message group or logical message in the middle, after a system failure has occurred. When the system
restarts, the application can set the GroupId, MsgSeqNumber, Offset, MsgFlags, and Persistence fields to the appropriate values, and

then issue the MQPUT call with MQPMO_SYNCPOINT or MQPMO_NO_SYNCPOINT set as desired, but without specifying

MQPMO_LOGICAL_ORDER. If this call is successful, the queue manager retains the group and segment information, and subsequent
MQPUT calls using that queue handle can specify MQPMO_LOGICAL_ORDER as normal.

The group and segment information that the queue manager retains for the MQPUT call is separate from the group and segment
information that it retains for the MQGET call.

For any given queue handle, the application can mix MQPUT calls that specify MQPMO_LOGICAL_ORDER with MQPUT calls that do not, but
note the following points:

� If MQPMO_LOGICAL_ORDER is not specified, each successful MQPUT call causes the queue manager to set the group and segment
information for the queue handle to the values specified by the application; this replaces the existing group and segment information
retained by the queue manager for the queue handle.

Table 1. MQPUT options relating to messages in groups and segments of logical messages

Options you specify Group and

log-msg
status

before call

Values the queue manager uses

LOG

ORD

MIG SEG SEG

OK

Cur

grp

Cur

log

msg

GroupId MsgSeqNumber Offset

Yes No No No No No MQGI_NONE 1 0

Yes No No Yes No No New group id 1 0

Yes No Yes Either No No New group id 1 0

Yes No Yes Either No Yes Previous group id 1 Previous offset +

previous segment

length

Yes Yes Either Either No No New group id 1 0

Yes Yes Either Either Yes No Previous group id Previous sequence

number + 1

0

Yes Yes Yes Either Yes Yes Previous group id Previous sequence
number

Previous offset +
previous segment

length

No No No No Either Either MQGI_NONE 1 0

No No No Yes Either Either New group id if

MQGI_NONE, else

value in field

1 0

No No Yes Either Either Either New group id if
MQGI_NONE, else

value in field

1 Value in field

No Yes No Either Either Either New group id if

MQGI_NONE, else
value in field

Value in field 0

No Yes Yes Either Either Either New group id if

MQGI_NONE, else

value in field

Value in field Value in field

Notes:

� MQPMO_LOGICAL_ORDER is not valid on the MQPUT1 call.

� For the MsgId field, the queue manager generates a new message identifier if MQPMO_NEW_MSG_ID or MQMI_NONE is

specified, and uses the value in the field otherwise.

� For the CorrelId field, the queue manager generates a new correlation identifier if MQPMO_NEW_CORREL_ID is specified,

and uses the value in the field otherwise.

Page 280 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

� If MQPMO_LOGICAL_ORDER is not specified, the call does not fail if there is a current message group or logical message; the call
might succeed with an MQCC_WARNING completion code. Table 2 shows the various cases that can arise. In these cases, if the
completion code is not MQCC_OK, the reason code is one of the following (as appropriate):

� MQRC_INCOMPLETE_GROUP

� MQRC_INCOMPLETE_MSG

� MQRC_INCONSISTENT_PERSISTENCE

� MQRC_INCONSISTENT_UOW

Note: The queue manager does not check the group and segment information for the MQPUT1 call.

For applications that put messages and segments in logical order, specify MQPMO_LOGICAL_ORDER, as this is the simplest option to use.
This option relieves the application of the need to manage the group and segment information, because the queue manager manages that
information. However, specialized applications might need more control than that provided by the MQPMO_LOGICAL_ORDER option, and
this can be achieved by not specifying that option. If this is done, the application must ensure that the GroupId, MsgSeqNumber, Offset,

and MsgFlags fields in MQMD are set correctly, before each MQPUT or MQPUT1 call.

For example, an application that wants to forward physical messages that it receives, without regard for whether those messages are in
groups or segments of logical messages, must not specify MQPMO_LOGICAL_ORDER. There are two reasons for this:

� If the messages are retrieved and put in order, specifying MQPMO_LOGICAL_ORDER assigns a new group identifier to the messages,

and this might make it difficult or impossible for the originator of the messages to correlate any reply or report messages that result
from the message group.

� In a complex network with multiple paths between sending and receiving queue managers, the physical messages might arrive out

of order. By specifying neither MQPMO_LOGICAL_ORDER nor the corresponding MQGMO_LOGICAL_ORDER on the MQGET call, the
forwarding application can retrieve and forward each physical message as soon as it arrives, without having to wait for the next one
in logical order to arrive.

Applications that generate report messages for messages in groups or segments of logical messages must also not specify

MQPMO_LOGICAL_ORDER when putting the report message.

MQPMO_LOGICAL_ORDER can be specified with any of the other MQPMO_* options.

Context options. The following options control the processing of message context:

MQPMO_NO_CONTEXT

Both identity and origin context are set to indicate no context. This means that the context fields in MQMD are set to:

� Blanks for character fields

� Nulls for byte fields

� Zeros for numeric fields

MQPMO_DEFAULT_CONTEXT

The message is to have default context information associated with it, for both identity and origin. The queue manager sets the context
fields in the message descriptor as follows:

For more information on message context, see the WebSphere MQ Application Programming Guide.

This is the default action if no context options are specified.

MQPMO_PASS_IDENTITY_CONTEXT

The message is to have context information associated with it. Identity context is taken from the queue handle specified in the Context

field. Origin context information is generated by the queue manager in the same way that it is for MQPMO_DEFAULT_CONTEXT (see above
for values). For more information on message context, see the WebSphere MQ Application Programming Guide.

For the MQPUT call, the queue must have been opened with the MQOO_PASS_IDENTITY_CONTEXT option (or an option that implies it).
For the MQPUT1 call, the same authorization check is carried out as for the MQOPEN call with the MQOO_PASS_IDENTITY_CONTEXT
option.

MQPMO_PASS_ALL_CONTEXT

The message is to have context information associated with it. Context is taken from the queue handle specified in the Context field. For

more information on message context, see Controlling context information.

Table 2. Outcome when MQPUT or MQCLOSE call is not consistent with group and segment information

Current call is Previous call was MQPUT with

MQPMO_LOGICAL_ORDER

Previous call was MQPUT

without
MQPMO_LOGICAL_ORDER

MQPUT with MQPMO_LOGICAL_ORDER MQCC_FAILED MQCC_FAILED

MQPUT without
MQPMO_LOGICAL_ORDER

MQCC_WARNING MQCC_OK

MQCLOSE with an unterminated group

or logical message

MQCC_WARNING MQCC_OK

Field in MQMD Value used

UserIdentifier Determined from the environment if possible; set to blanks otherwise.

AccountingToken Determined from the environment if possible; set to MQACT_NONE otherwise.

ApplIdentityData Set to blanks.

PutApplType Determined from the environment.

PutApplName Determined from the environment if possible; set to blanks otherwise.

PutDate Set to the date when message is put.

PutTime Set to the time when message is put.

ApplOriginData Set to blanks.

Page 281 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

For the MQPUT call, the queue must have been opened with the MQOO_PASS_ALL_CONTEXT option (or an option that implies it). For the
MQPUT1 call, the same authorization check is carried out as for the MQOPEN call with the MQOO_PASS_ALL_CONTEXT option.

MQPMO_SET_IDENTITY_CONTEXT

The message is to have context information associated with it. The application specifies the identity context in the MQMD structure. Origin
context information is generated by the queue manager in the same way that it is for MQPMO_DEFAULT_CONTEXT (see above for values).
For more information on message context, see the WebSphere MQ Application Programming Guide.

For the MQPUT call, the queue must have been opened with the MQOO_SET_IDENTITY_CONTEXT option (or an option that implies it). For
the MQPUT1 call, the same authorization check is carried out as for the MQOPEN call with the MQOO_SET_IDENTITY_CONTEXT option.

MQPMO_SET_ALL_CONTEXT

The message is to have context information associated with it. The application specifies the identity, origin, and user context in the MQMD
structure. For more information on message context, see the WebSphere MQ Application Programming Guide.

For the MQPUT call, the queue must have been opened with the MQOO_SET_ALL_CONTEXT option. For the MQPUT1 call, the same
authorization check is carried out as for the MQOPEN call with the MQOO_SET_ALL_CONTEXT option.

You can specify only one of the MQPMO_*_CONTEXT context options. If you specify none, MQPMO_DEFAULT_CONTEXT is assumed.

Property options. The following option relates to the properties of the message:

MQPMO_MD_FOR_OUTPUT_ONLY

The message descriptor parameter should only be used for output to return the message descriptor of the message that was actually put.
The message descriptor fields associated with the NewMsgHandle , OriginalMsgHandle, or both fields, of the MQPMO structure should be

used for input.

If a valid message handle is not provided then the call fails with reason code MQRC_MD_ERROR.

Put response options. The following options control the response returned to an MQPUT or MQPUT1 call. You can specify only one of these
options. If neither MQPMO_ASYNC_RESPONSE nor MQPMO_SYNC_RESPONSE is specified, MQPMO_RESPONSE_AS_Q_DEF or
MQPMO_RESPONSE_AS_TOPIC_DEF is assumed.

MQPMO_ASYNC_RESPONSE

The MQPMO_ASYNC_RESPONSE option requests that an MQPUT or MQPUT1 operation is completed without the application waiting for the
queue manager to complete the call. Using this option can improve messaging performance, particularly for applications using client
bindings. An application can periodically check, using the MQSTAT verb, whether an error has occurred during any previous asynchronous

calls.
With this option, only the following fields are guaranteed to be completed in the MQMD;

� ApplIdentityData

� PutApplType

� PutApplName

� ApplOriginData

Additionally, if either or both of MQPMO_NEW_MSG_ID or MQPMO_NEW_CORREL_ID are specified as options, the MsgId and CorrelId

returned are also completed. (MQPMO_NEW_MSG_ID can be implicitly specified by specifying a blank MsgId field).
Only the fields specified above are completed. Other information that would normally be returned in the MQMD or MQPMO structure is
undefined.
When requesting asynchronous put response for MQPUT1, the ResolvedQName and ResolvedQMgrName returned in the MQOD structure

are undefined.

When requesting asynchronous put response for MQPUT or MQPUT1, a CompCode and Reason of MQCC_OK and MQRC_NONE does not
necessarily mean that the message was successfully put to a queue. When developing an MQI application that uses asynchronous put
response and requires confirmation that messages have been put to a queue you should check both CompCode and Reason codes from
the put operations and also use MQSTAT to query asynchronous error information.
Although the success or failure of each individual MQPUT or MQPUT1 call may not be returned immediately, the first error that occurred
under an asynchronous call can be determined later through a call to MQSTAT.

If a persistent message under syncpoint fails to be delivered using asynchronous put response, and you attempt to commit the
transaction, the commit fails and the transaction is backed out with a completion code of MQCC_FAILED and a reason of
MQRC_BACKED_OUT. The application can make a call to MQSTAT to determine the cause of a previous MQPUT or MQPUT1 failure.

MQPMO_SYNC_RESPONSE

Specifying this put response type ensures that the MQPUT or MQPUT1 operation is always issued synchronously. If the put operation is

successful, all fields in the MQMD and MQPMO are completed.
This option ensures a synchronous response irrespective of the default put response value defined on the queue or topic object.

MQPMO_RESPONSE_AS_Q_DEF

If this value is specified for an MQPUT call, the put response type used is taken from the DEFPRESP value specified on the queue when it
was first opened by the application. If a client application is connected to a queue manager at a level earlier than Version 7.0, it behaves
as if MQPMO_SYNC_RESPONSE was specified.

If this option is specified for an MQPUT1 call, the value of the DEFPRESP attribute is not known before the request is sent to the server.
By default, if the MQPUT1 call is using MQPMO_SYNCPOINT it behaves as for MQPMO_ASYNC_RESPONSE, and if it is using
MQPMO_NO_SYNCPOINT it behaves as for MQPMO_SYNC_RESPONSE. However, you can override this default behavior by setting the
Put1DefaultAlwaysSync property in the client configuration file, see CHANNELS stanza of the client configuration file.

MQPMO_RESPONSE_AS_TOPIC_DEF

This is a synonym for MQPMO_RESPONSE_AS_Q_DEF for use with topic objects.

Other options. The following options control authorization checking, what happens when the queue manager is quiescing, and resolving
queue and queue manager names:

MQPMO_ALTERNATE_USER_AUTHORITY

This indicates that the AlternateUserId field in the ObjDesc parameter of the MQPUT1 call contains a user identifier that is to be used to

validate authority to put messages on the queue. The call can succeed only if this AlternateUserId is authorized to open the queue with

the specified options, regardless of whether the user identifier under which the application is running is authorized to do so. (This does not

Page 282 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

apply to the context options specified, however, which are always checked against the user identifier under which the application is
running.)

This option is valid only with the MQPUT1 call.

MQPMO_FAIL_IF_QUIESCING

This option forces the MQPUT or MQPUT1 call to fail if the queue manager is in the quiescing state.

On z/OS, this option also forces the MQPUT or MQPUT1 call to fail if the connection (for a CICS® or IMS™ application) is in the quiescing
state.

The call returns completion code MQCC_FAILED with reason code MQRC_Q_MGR_QUIESCING or MQRC_CONNECTION_QUIESCING.

MQPMO_RESOLVE_LOCAL_Q

Use this option to fill ResolvedQName in the MQPMO structure with the name of the local queue to which the message is put, and

ResolvedQMgrName with the name of the local queue manager that hosts the local queue. For more detail on this, see

MQOO_RESOLVE_LOCAL_Q.

If you are authorized to put to a queue, you have the required authority to specify this flag on the MQPUT call; no special authority is
needed.

Default option. If you need none of the options described, use the following option:

MQPMO_NONE

Use this value to indicate that no other options have been specified; all options assume their default values. MQPMO_NONE is defined to

aid program documentation; it is not intended that this option be used with any other, but as its value is zero, such use cannot be
detected.

This is an input field. The initial value of the Options field is MQPMO_NONE.

Parent topic: Fields for MQPMO

This build: January 26, 2011 11:16:45

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14060_

1.27.2.7. OriginalMsgHandle (MQHMSG)

This is an optional handle to a message. It may have been previously retrieved from a queue. The use of this handle is subject to the value

of the Action field; see also NewMsgHandle.

The contents of the original message handle will not be altered by the MQPUT or MQPUT1 call.

This is an input field. The initial value of this field is MQHM_NONE. This field is ignored if Version is less than MQPMO_VERSION_3.

Parent topic: Fields for MQPMO

This build: January 26, 2011 11:20:23

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42000_

1.27.2.8. PubLevel (MQLONG)

The initial value of this field is 9. The level of subscription targeted by this publication. Only those subscriptions with the highest SubLevel
less than or equal to this value will receive this publication. This value must be in the range zero to 9; zero is the lowest level.

For information, see Intercepting publications.

Parent topic: Fields for MQPMO

This build: January 26, 2011 11:20:00

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr36020_

1.27.2.9. PutMsgRecFields (MQLONG)

This field contains flags that indicate which MQPMR fields are present in the put message records provided by the application. Use
PutMsgRecFields only when the message is being put to a distribution list. The field is ignored if RecsPresent is zero, or both

PutMsgRecOffset and PutMsgRecPtr are zero.

For fields that are present, the queue manager uses for each destination the values from the fields in the corresponding put message
record. For fields that are absent, the queue manager uses the values from the MQMD structure.

Page 283 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Use one or more of the following flags to indicate which fields are present in the put message records:

MQPMRF_MSG_ID

Message-identifier field is present.

MQPMRF_CORREL_ID

Correlation-identifier field is present.

MQPMRF_GROUP_ID

Group-identifier field is present.

MQPMRF_FEEDBACK

Feedback field is present.

MQPMRF_ACCOUNTING_TOKEN

Accounting-token field is present.

If you specify this flag, specify either MQPMO_SET_IDENTITY_CONTEXT or MQPMO_SET_ALL_CONTEXT in the Options field; if this

condition is not satisfied, the call fails with reason code MQRC_PMO_RECORD_FLAGS_ERROR.

If no MQPMR fields are present, the following can be specified:

MQPMRF_NONE

No put-message record fields are present.

If this value is specified, either RecsPresent must be zero, or both PutMsgRecOffset and PutMsgRecPtr must be zero.

MQPMRF_NONE is defined to aid program documentation. It is not intended that this constant be used with any other, but as its value is
zero, such use cannot be detected.

If PutMsgRecFields contains flags that are not valid, or put message records are provided but PutMsgRecFields has the value

MQPMRF_NONE, the call fails with reason code MQRC_PMO_RECORD_FLAGS_ERROR.

This is an input field. The initial value of this field is MQPMRF_NONE. This field is ignored if Version is less than MQPMO_VERSION_2.

Parent topic: Fields for MQPMO

This build: January 26, 2011 11:16:46

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14070_

1.27.2.10. PutMsgRecOffset (MQLONG)

This is the offset in bytes of the first MQPMR put message record from the start of the MQPMO structure. The offset can be positive or
negative. PutMsgRecOffset is used only when the message is being put to a distribution list. The field is ignored if RecsPresent is zero.

When the message is being put to a distribution list, an array of one or more MQPMR put message records can be provided in order to
specify certain properties of the message for each destination individually; these properties are:

� Message identifier

� Correlation identifier

� Group identifier

� Feedback value

� Accounting token

You do not need to specify all these properties, but whatever subset you choose, specify the fields in the correct order. See the description
of the MQPMR structure for further details.

Usually, there must be as many put message records as there are object records specified by MQOD when the distribution list is opened;

each put message record supplies the message properties for the queue identified by the corresponding object record. Queues in the
distribution list that fail to open must still have put message records allocated for them at the appropriate positions in the array, although
the message properties are ignored in this case.

The number of put message records can differ from the number of object records. If there are fewer put message records than object

records, the message properties for the destinations that do not have put message records are taken from the corresponding fields in the
message descriptor MQMD. If there are more put message records than object records, the excess are not used (although it must still be
possible to access them). Put message records are optional, but if they are supplied there must be RecsPresent of them.

Provide the put message records in a similar way to the object records in MQOD, either by specifying an offset in PutMsgRecOffset, or by

specifying an address in PutMsgRecPtr; for details of how to do this, see the ObjectRecOffset field described in MQOD – Object descriptor.

No more than one of PutMsgRecOffset and PutMsgRecPtr can be used; the call fails with reason code MQRC_PUT_MSG_RECORDS_ERROR

if both are nonzero.

This is an input field. The initial value of this field is 0. This field is ignored if Version is less than MQPMO_VERSION_2.

Parent topic: Fields for MQPMO

This build: January 26, 2011 11:16:46

Page 284 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14080_

1.27.2.11. PutMsgRecPtr (MQPTR)

This is the address of the first MQPMR put message record. Use PutMsgRecPtr only when the message is being put to a distribution list. The

field is ignored if RecsPresent is zero.

You can use either PutMsgRecPtr or PutMsgRecOffset can be used to specify the put message records, but not both; see the description of

the PutMsgRecOffset field above for details. If you do not use PutMsgRecPtr, set it to the null pointer or null bytes.

This is an input field. The initial value of this field is the null pointer in those programming languages that support pointers, and an all-null
byte string otherwise. This field is ignored if Version is less than MQPMO_VERSION_2.

Note: On platforms where the programming language does not support the pointer data type, this field is declared as a byte string of the
appropriate length, with the initial value being the all-null byte string.

Parent topic: Fields for MQPMO

This build: January 26, 2011 11:16:46

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14090_

1.27.2.12. RecsPresent (MQLONG)

This is the number of MQPMR put message records or MQRR response records that have been provided by the application. This number can
be greater than zero only if the message is being put to a distribution list. Put message records and response records are optional; the
application need not provide any records, or it can choose to provide records of only one type. However, if the application provides records
of both types, it must provide RecsPresent records of each type.

The value of RecsPresent need not be the same as the number of destinations in the distribution list. If too many records are provided, the

excess are not used; if too few records are provided, default values are used for the message properties for those destinations that do not
have put message records (see PutMsgRecOffset below).

If RecsPresent is less than zero, or is greater than zero but the message is not being put to a distribution list, the call fails with reason code

MQRC_RECS_PRESENT_ERROR.

This is an input field. The initial value of this field is 0. This field is ignored if Version is less than MQPMO_VERSION_2.

Parent topic: Fields for MQPMO

This build: January 26, 2011 11:16:46

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14100_

1.27.2.13. ResolvedQMgrName (MQCHAR48)

This is the name of the destination queue manager after name resolution has been performed by the local queue manager. The name
returned is the name of the queue manager that owns the queue identified by ResolvedQName, and can be the name of the local queue

manager.

If ResolvedQName is a shared queue that is owned by the queue-sharing group to which the local queue manager belongs,

ResolvedQMgrName is the name of the queue-sharing group. If the queue is owned by some other queue-sharing group, ResolvedQName can

be the name of the queue-sharing group or the name of a queue manager that is a member of the queue-sharing group (the nature of the

value returned is determined by the queue definitions that exist at the local queue manager).

A nonblank value is returned only if the object is a single queue; if the object is a distribution list or a topic, the value returned is undefined.

This is an output field. The length of this field is given by MQ_Q_MGR_NAME_LENGTH. The initial value of this field is the null string in C,
and 48 blank characters in other programming languages.

Parent topic: Fields for MQPMO

This build: January 26, 2011 11:16:46

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14110_

1.27.2.14. ResolvedQName (MQCHAR48)

Page 285 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This is the name of the destination queue after name resolution has been performed by the local queue manager. The name returned is the
name of a queue that exists on the queue manager identified by ResolvedQMgrName.

A nonblank value is returned only if the object is a single queue; if the object is a distribution list or a topic, the value returned is undefined.

This is an output field. The length of this field is given by MQ_Q_NAME_LENGTH. The initial value of this field is the null string in C, and 48
blank characters in other programming languages.

Parent topic: Fields for MQPMO

This build: January 26, 2011 11:16:46

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14120_

1.27.2.15. ResponseRecOffset (MQLONG)

This is the offset in bytes of the first MQRR response record from the start of the MQPMO structure. The offset can be positive or negative.
ResponseRecOffset is used only when the message is being put to a distribution list. The field is ignored if RecsPresent is zero.

When putting the message to a distribution list, you can provide an array of one or more MQRR response records to identify the queues to
which the message was not sent successfully (CompCode field in MQRR), and the reason for each failure (Reason field in MQRR). The

message might not have been sent either because the queue failed to open, or because the put operation failed. The queue manager sets
the response records only when the outcome of the call is mixed (that is, some messages were sent successfully while others failed, or all
failed but for differing reasons); reason code MQRC_MULTIPLE_REASONS from the call indicates this case. If the same reason code applies
to all queues, that reason is returned in the Reason parameter of the MQPUT or MQPUT1 call, and the response records are not set.

Usually, there are as many response records as there are object records specified by MQOD when the distribution list is opened; when
necessary, each response record is set to the completion code and reason code for the put to the queue identified by the corresponding
object record. Queues in the distribution list that fail to open must still have response records allocated for them at the appropriate positions
in the array, although they are set to the completion code and reason code resulting from the open operation, rather than the put operation.

The number of response records can differ from the number of object records. If there are fewer response records than object records, the
application might not be able to identify all the destinations for which the put operation failed, or the reasons for the failures. If there are
more response records than object records, the excess are not used (although it must still be possible to access them). Response records
are optional, but if they are supplied there must be RecsPresent of them.

Provide the response records in a similar way to the object records in MQOD, either by specifying an offset in ResponseRecOffset, or by

specifying an address in ResponseRecPtr; for details of how to do this, see the ObjectRecOffset field described in MQOD – Object

descriptor. However, use no more than one of ResponseRecOffset and ResponseRecPtr; the call fails with reason code

MQRC_RESPONSE_RECORDS_ERROR if both are nonzero.

For the MQPUT1 call, this field must be zero. This is because the response information (if requested) is returned in the response records
specified by the object descriptor MQOD.

This is an input field. The initial value of this field is 0. This field is ignored if Version is less than MQPMO_VERSION_2.

Parent topic: Fields for MQPMO

This build: January 26, 2011 11:16:46

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14130_

1.27.2.16. ResponseRecPtr (MQPTR)

This is the address of the first MQRR response record. ResponseRecPtr is used only when the message is being put to a distribution list. The

field is ignored if RecsPresent is zero.

Use either ResponseRecPtr or ResponseRecOffset to specify the response records, but not both; see the description of the

ResponseRecOffset field above for details. If you do not use ResponseRecPtr set it to the null pointer or null bytes.

For the MQPUT1 call, this field must be the null pointer or null bytes. This is because the response information (if requested) is returned in
the response records specified by the object descriptor MQOD.

This is an input field. The initial value of this field is the null pointer in those programming languages that support pointers, and an all-null
byte string otherwise. This field is ignored if Version is less than MQPMO_VERSION_2.

Note: On platforms where the programming language does not support the pointer data type, this field is declared as a byte string of the
appropriate length, with the initial value being the all-null byte string.

Parent topic: Fields for MQPMO

This build: January 26, 2011 11:16:46

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

Page 286 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This topic's URL:

fr14140_

1.27.2.17. StrucId (MQCHAR4)

This is the structure identifier; the value must be:

MQPMO_STRUC_ID

Identifier for put-message options structure.

For the C programming language, the constant MQPMO_STRUC_ID_ARRAY is also defined; this has the same value as MQPMO_STRUC_ID,
but is an array of characters instead of a string.

This is always an input field. The initial value of this field is MQPMO_STRUC_ID.

Parent topic: Fields for MQPMO

This build: January 26, 2011 11:16:47

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14150_

1.27.2.18. Timeout (MQLONG)

This is a reserved field; its value is not significant. The initial value of this field is -1.

Parent topic: Fields for MQPMO

This build: January 26, 2011 11:16:47

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14160_

1.27.2.19. UnknownDestCount (MQLONG)

This is the number of messages that the current MQPUT or MQPUT1 call has sent successfully to queues in the distribution list that resolve
to remote queues. Messages that the queue manager retains temporarily in distribution-list form count as the number of individual

destinations that those distribution lists contain. This field is also set when putting a message to a single queue that is not in a distribution
list.

This is an output field. The initial value of this field is 0. This field is not set if Version is less than MQPMO_VERSION_2.

This field is undefined on z/OS® because distribution lists are not supported.

Parent topic: Fields for MQPMO

This build: January 26, 2011 11:16:47

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14170_

1.27.2.20. Version (MQLONG)

Structure version number.

The value must be one of the following:

MQPMO_VERSION_1

Version-1 put-message options structure.

This version is supported in all environments.

MQPMO_VERSION_2

Version-2 put-message options structure.

This version is supported in the following environments: AIX®, HP-UX, i5/OS®, Solaris, Linux, Windows, plus WebSphere® MQ clients
connected to these systems.

MQPMO_VERSION_3

Version-3 put-message options structure.

This version is supported in all environments.

Fields that exist only in the more-recent version of the structure are identified as such in the descriptions of the fields. The following

Page 287 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

constant specifies the version number of the current version:

MQPMO_CURRENT_VERSION

Current version of put-message options structure.

This is always an input field. The initial value of this field is MQPMO_VERSION_1.

Parent topic: Fields for MQPMO

This build: January 26, 2011 11:16:47

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14180_

1.27.3. Initial values and language declarations for MQPMO

C declaration

COBOL declaration

PL/I declaration

System/390 assembler declaration

Visual Basic declaration

Parent topic: MQPMO – Put-message options

This build: January 26, 2011 11:16:48

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14190_

1.27.3.1. C declaration

typedef struct tagMQPMO MQPMO;

struct tagMQPMO {

 MQCHAR4 StrucId; /* Structure identifier */

 MQLONG Version; /* Structure version number */

Table 1. Initial values of fields in MQPMO

Field name Name of constant Value of constant

StrucId MQPMO_STRUC_ID 'PMO�'

Version MQPMO_VERSION_1 1

Options MQPMO_NONE 0

Timeout None -1

Context None 0

KnownDestCount None 0

UnknownDestCount None 0

InvalidDestCount None 0

ResolvedQName None Null string or blanks

ResolvedQMgrName None Null string or blanks

RecsPresent None 0

PutMsgRecFields MQPMRF_NONE 0

PutMsgRecOffset None 0

ResponseRecOffset None 0

PutMsgRecPtr None Null pointer or null bytes

ResponseRecPtr None Null pointer or null bytes

OriginalMsgHandle MQHM_NONE 0

NewMsgHandle MQHM_NONE 0

Action MQACTP_NEW 0

PubLevel None 9

Notes:

1. The symbol � represents a single blank character.

2. The value Null string or blanks denotes the null string in C, and blank characters in other programming languages.

3. In the C programming language, the macro variable MQPMO_DEFAULT contains the values listed above. Use it in the

following way to provide initial values for the fields in the structure:

MQPMO MyPMO = {MQPMO_DEFAULT};

Page 288 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

 MQLONG Options; /* Options that control the action of

 MQPUT and MQPUT1 */

 MQLONG Timeout; /* Reserved */

 MQHOBJ Context; /* Object handle of input queue */

 MQLONG KnownDestCount; /* Number of messages sent

 successfully to local queues */

 MQLONG UnknownDestCount; /* Number of messages sent

 successfully to remote queues */

 MQLONG InvalidDestCount; /* Number of messages that could not

 be sent */

 MQCHAR48 ResolvedQName; /* Resolved name of destination

 queue */

 MQCHAR48 ResolvedQMgrName; /* Resolved name of destination queue

 manager */

 /* Ver:1 */

 MQLONG RecsPresent; /* Number of put message records or

 response records present */

 MQLONG PutMsgRecFields; /* Flags indicating which MQPMR fields

 are present */

 MQLONG PutMsgRecOffset; /* Offset of first put message record

 from start of MQPMO */

 MQLONG ResponseRecOffset; /* Offset of first response record

 from start of MQPMO */

 MQPTR PutMsgRecPtr; /* Address of first put message

 record */

 MQPTR ResponseRecPtr; /* Address of first response record */

 /* Ver:2 */

 MQHMSG OriginalMsgHandle; /* Original message handle */

 MQHMSG NewMsgHandle; /* New message handle */

 MQLONG Action; /* The action being performed */

 MQLONG PubLevel; /* Subscription level */

 /* Ver:3 */

};

Parent topic: Initial values and language declarations for MQPMO

This build: January 26, 2011 11:16:49

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14200_

1.27.3.2. COBOL declaration

** MQPMO structure

 10 MQPMO.

** Structure identifier

 15 MQPMO-STRUCID PIC X(4).

** Structure version number

 15 MQPMO-VERSION PIC S9(9) BINARY.

** Options that control the action of MQPUT and MQPUT1

 15 MQPMO-OPTIONS PIC S9(9) BINARY.

** Reserved

 15 MQPMO-TIMEOUT PIC S9(9) BINARY.

** Object handle of input queue

 15 MQPMO-CONTEXT PIC S9(9) BINARY.

** Number of messages sent successfully to local queues

 15 MQPMO-KNOWNDESTCOUNT PIC S9(9) BINARY.

** Number of messages sent successfully to remote queues

 15 MQPMO-UNKNOWNDESTCOUNT PIC S9(9) BINARY.

** Number of messages that could not be sent

 15 MQPMO-INVALIDDESTCOUNT PIC S9(9) BINARY.

** Resolved name of destination queue

 15 MQPMO-RESOLVEDQNAME PIC X(48).

** Resolved name of destination queue manager

 15 MQPMO-RESOLVEDQMGRNAME PIC X(48).

** Number of put message records or response records present

 15 MQPMO-RECSPRESENT PIC S9(9) BINARY.

** Flags indicating which MQPMR fields are present

 15 MQPMO-PUTMSGRECFIELDS PIC S9(9) BINARY.

** Offset of first put message record from start of MQPMO

 15 MQPMO-PUTMSGRECOFFSET PIC S9(9) BINARY.

** Offset of first response record from start of MQPMO

 15 MQPMO-RESPONSERECOFFSET PIC S9(9) BINARY.

** Address of first put message record

 15 MQPMO-PUTMSGRECPTR POINTER.

** Address of first response record

 15 MQPMO-RESPONSERECPTR POINTER.

** Original message handle

 15 MQPMO-ORIGINALMSGHANDLE PIC S9(18) BINARY.

** New message handle

 15 MQPMO-NEWMSGHANDLE PIC S9(18) BINARY.

** The action being performed

 15 MQPMO-ACTION PIC S9(9) BINARY.

** Publish level

 15 MQPMO-PUBLEVEL PIC S9(9) BINARY.

Parent topic: Initial values and language declarations for MQPMO

This build: January 26, 2011 11:16:49

Page 289 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14210_

1.27.3.3. PL/I declaration

dcl

 1 MQPMO based,

 3 StrucId char(4), /* Structure identifier */

 3 Version fixed bin(31), /* Structure version number */

 3 Options fixed bin(31), /* Options that control the action

 of MQPUT and MQPUT1 */

 3 Timeout fixed bin(31), /* Reserved */

 3 Context fixed bin(31), /* Object handle of input queue */

 3 KnownDestCount fixed bin(31), /* Number of messages sent

 successfully to local queues */

 3 UnknownDestCount fixed bin(31), /* Number of messages sent

 successfully to remote queues */

 3 InvalidDestCount fixed bin(31), /* Number of messages that could

 not be sent */

 3 ResolvedQName char(48), /* Resolved name of destination

 queue */

 3 ResolvedQMgrName char(48), /* Resolved name of destination

 queue manager */

 3 RecsPresent fixed bin(31), /* Number of put message records or

 response records present */

 3 PutMsgRecFields fixed bin(31), /* Flags indicating which MQPMR

 fields are present */

 3 PutMsgRecOffset fixed bin(31), /* Offset of first put message

 record from start of MQPMO */

 3 ResponseRecOffset fixed bin(31), /* Offset of first response record

 from start of MQPMO */

 3 PutMsgRecPtr pointer, /* Address of first put message

 record */

 3 ResponseRecPtr pointer, /* Address of first response

 record */

 3 OriginalMsgHandle fixed bin(63), /* Original message handle */

 3 NewMsgHandle fixed bin(63); /* New message handle */

 3 Action fixed bin(31); /* The action being performed */

 3 PubLevel fixed bin(31); /* Publish level */

Parent topic: Initial values and language declarations for MQPMO

This build: January 26, 2011 11:16:49

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14220_

1.27.3.4. System/390® assembler declaration

MQPMO DSECT

MQPMO_STRUCID DS CL4 Structure identifier

MQPMO_VERSION DS F Structure version number

MQPMO_OPTIONS DS F Options that control the action of

* MQPUT and MQPUT1

MQPMO_TIMEOUT DS F Reserved

MQPMO_CONTEXT DS F Object handle of input queue

MQPMO_KNOWNDESTCOUNT DS F Number of messages sent successfully

* to local queues

MQPMO_UNKNOWNDESTCOUNT DS F Number of messages sent successfully

* to remote queues

MQPMO_INVALIDDESTCOUNT DS F Number of messages that could not be

* sent

MQPMO_RESOLVEDQNAME DS CL48 Resolved name of destination queue

MQPMO_RESOLVEDQMGRNAME DS CL48 Resolved name of destination queue

* manager

MQPMO_RECSPRESENT DS F Number of put message records or

* response records present

MQPMO_PUTMSGRECFIELDS DS F Flags indicating which MQPMR

* fields are present

MQPMO_PUTMSGRECOFFSET DS F Offset of first put message record

* from start of MQPMO

MQPMO_RESPONSERECOFFSET DS F Offset of first response record

* from start of MQPMO

MQPMO_PUTMSGRECPTR DS F Address of first put message

* record

MQPMO_RESPONSERECPTR DS F Address of first response record

MQPMO_ORIGINALMSGHANDLE DS D Original message handle

MQPMO_NEWMSGHANDLE DS D New message handle

MQPMO_ACTION DS F The action being performed

MQPMO_PUBLEVEL DS F Publish level

*

MQPMO_LENGTH EQU *-MQPMO

 ORG MQPMO

MQPMO_AREA DS CL(MQPMO_LENGTH)

Page 290 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Parent topic: Initial values and language declarations for MQPMO

This build: January 26, 2011 11:16:50

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14230_

1.27.3.5. Visual Basic declaration

Type MQPMO

 StrucId As String*4 'Structure identifier'

 Version As Long 'Structure version number'

 Options As Long 'Options that control the action of'

 'MQPUT and MQPUT1'

 Timeout As Long 'Reserved'

 Context As Long 'Object handle of input queue'

 KnownDestCount As Long 'Number of messages sent successfully'

 'to local queues'

 UnknownDestCount As Long 'Number of messages sent successfully'

 'to remote queues'

 InvalidDestCount As Long 'Number of messages that could not be'

 'sent'

 ResolvedQName As String*48 'Resolved name of destination queue'

 ResolvedQMgrName As String*48 'Resolved name of destination queue'

 'manager'

 RecsPresent As Long 'Number of put message records or'

 'response records present'

 PutMsgRecFields As Long 'Flags indicating which MQPMR fields'

 'are present'

 PutMsgRecOffset As Long 'Offset of first put message record'

 'from start of MQPMO'

 ResponseRecOffset As Long 'Offset of first response record from'

 'start of MQPMO'

 PutMsgRecPtr As MQPTR 'Address of first put message record'

 ResponseRecPtr As MQPTR 'Address of first response record'

End Type

Parent topic: Initial values and language declarations for MQPMO

This build: January 26, 2011 11:16:50

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14240_

1.28. MQPMR – Put-message record

The following table summarizes the fields in the structure.

Overview for MQPMR
Availability: AIX®, HP-UX, i5/OS®, Solaris, Linux, Windows, plus WebSphere® MQ clients connected to these systems.

Fields for MQPMR

Initial values and language declarations for MQPMR
There are no initial values defined for this structure, as no structure declarations are provided in the header, COPY, and INCLUDE files

for the supported programming languages. The sample declarations below show how to declare the structure if all the fields are
required.

Parent topic: Data type descriptions

This build: January 26, 2011 11:16:50

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14250_

1.28.1. Overview for MQPMR

Availability: AIX®, HP-UX, i5/OS®, Solaris, Linux, Windows, plus WebSphere® MQ clients connected to these systems.

Table 1. Fields in MQPMR

Field Description Topic

MsgId Message identifier MsgId

CorrelId Correlation identifier CorrelId

GroupId Group identifier GroupId

Feedback Feedback or reason code Feedback

AccountingToken Accounting token AccountingToken

Page 291 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Purpose: Use the MQPMR structure to specify various message properties for a single destination when putting a message to a distribution
list. MQPMR is an input/output structure for the MQPUT and MQPUT1 calls.

Character set and encoding: Data in MQPMR must be in the character set and encoding of the local queue manager; these are given by
the CodedCharSetId queue-manager attribute and MQENC_NATIVE, respectively. However, if the application is running as an MQ client, the

structure must be in the character set and encoding of the client.

Usage: By providing an array of these structures on the MQPUT or MQPUT1 call, you can specify different values for each destination queue
in a distribution list. Some of the fields are input only, others are input/output.

Note: This structure is unusual in that it does not have a fixed layout. The fields in this structure are optional, and the presence or absence
of each field is indicated by the flags in the PutMsgRecFields field in MQPMO. Fields that are present must occur in the following order:

� MsgId

� CorrelId

� GroupId

� Feedback

� AccountingToken

Fields that are absent occupy no space in the record.

Because MQPMR does not have a fixed layout, no definition of it is provided in the header, COPY, and INCLUDE files for the supported
programming languages. The application programmer must create a declaration containing the fields that are required by the application,
and set the flags in PutMsgRecFields to indicate the fields that are present.

Parent topic: MQPMR – Put-message record

This build: January 26, 2011 11:16:50

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14260_

1.28.2. Fields for MQPMR

The MQPMR structure contains the following fields; the fields are described in alphabetic order:

AccountingToken (MQBYTE32)

CorrelId (MQBYTE24)

Feedback (MQLONG)

GroupId (MQBYTE24)

MsgId (MQBYTE24)

Parent topic: MQPMR – Put-message record

This build: January 26, 2011 11:16:50

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14270_

1.28.2.1. AccountingToken (MQBYTE32)

This is the accounting token to be used for the message sent to the queue whose name was specified by the corresponding element in the
array of MQOR structures provided on the MQOPEN or MQPUT1 call. It is processed in the same way as the AccountingToken field in MQMD

for a put to a single queue. See the description of AccountingToken in MQMD – Message descriptor for information about the content of this

field.

If this field is not present, the value in MQMD is used.

This is an input field.

Parent topic: Fields for MQPMR

This build: January 26, 2011 11:16:50

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14280_

1.28.2.2. CorrelId (MQBYTE24)

Page 292 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This is the correlation identifier to be used for the message sent to the queue whose name was specified by the corresponding element in
the array of MQOR structures provided on the MQOPEN or MQPUT1 call. It is processed in the same way as the CorrelId field in MQMD for a

put to a single queue.

If this field is not present in the MQPMR record, or there are fewer MQPMR records than destinations, the value in MQMD is used for those
destinations that do not have an MQPMR record containing a CorrelId field.

If MQPMO_NEW_CORREL_ID is specified, a single new correlation identifier is generated and used for all the destinations in the distribution
list, regardless of whether they have MQPMR records. This is different from the way that MQPMO_NEW_MSG_ID is processed (see MsgId

field).

This is an input/output field.

Parent topic: Fields for MQPMR

This build: January 26, 2011 11:16:50

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14290_

1.28.2.3. Feedback (MQLONG)

This is the feedback code to be used for the message sent to the queue whose name was specified by the corresponding element in the
array of MQOR structures provided on the MQOPEN or MQPUT1 call. It is processed in the same way as the Feedback field in MQMD for a put

to a single queue.

If this field is not present, the value in MQMD is used.

This is an input field.

Parent topic: Fields for MQPMR

This build: January 26, 2011 11:16:50

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14300_

1.28.2.4. GroupId (MQBYTE24)

This is the group identifier to be used for the message sent to the queue whose name was specified by the corresponding element in the
array of MQOR structures provided on the MQOPEN or MQPUT1 call. It is processed in the same way as the GroupId field in MQMD for a put

to a single queue.

If this field is not present in the MQPMR record, or there are fewer MQPMR records than destinations, the value in MQMD is used for those
destinations that do not have an MQPMR record containing a GroupId field. The value is processed as documented in Table 1, but with the

following differences:

� In those cases where a new group identifier would be used, the queue manager generates a different group identifier for each

destination (that is, no two destinations have the same group identifier).

� In those cases where the value in the field would be used, the call fails with reason code MQRC_GROUP_ID_ERROR.

This is an input/output field.

Parent topic: Fields for MQPMR

This build: January 26, 2011 11:16:50

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14310_

1.28.2.5. MsgId (MQBYTE24)

This is the message identifier to be used for the message sent to the queue whose name was specified by the corresponding element in the

array of MQOR structures provided on the MQOPEN or MQPUT1 call. It is processed in the same way as the MsgId field in MQMD for a put to

a single queue.

If this field is not present in the MQPMR record, or there are fewer MQPMR records than destinations, the value in MQMD is used for those
destinations that do not have an MQPMR record containing a MsgId field. If that value is MQMI_NONE, a new message identifier is generated

for each of those destinations (that is, no two of those destinations have the same message identifier).

If MQPMO_NEW_MSG_ID is specified, new message identifiers are generated for all the destinations in the distribution list, regardless of
whether they have MQPMR records. This is different from the way that MQPMO_NEW_CORREL_ID is processed (see CorrelId field).

This is an input/output field.

Page 293 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Parent topic: Fields for MQPMR

This build: January 26, 2011 11:16:50

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14320_

1.28.3. Initial values and language declarations for MQPMR

There are no initial values defined for this structure, as no structure declarations are provided in the header, COPY, and INCLUDE files for

the supported programming languages. The sample declarations below show how to declare the structure if all the fields are required.

C declaration

COBOL declaration

PL/I declaration

Visual Basic declaration

Parent topic: MQPMR – Put-message record

This build: January 26, 2011 11:16:50

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14330_

1.28.3.1. C declaration

typedef struct tagMQPMR MQPMR;

struct tagMQPMR {

 MQBYTE24 MsgId; /* Message identifier */

 MQBYTE24 CorrelId; /* Correlation identifier */

 MQBYTE24 GroupId; /* Group identifier */

 MQLONG Feedback; /* Feedback or reason code */

 MQBYTE32 AccountingToken; /* Accounting token */

};

Parent topic: Initial values and language declarations for MQPMR

This build: January 26, 2011 11:16:50

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14340_

1.28.3.2. COBOL declaration

** MQPMR structure

 10 MQPMR.

** Message identifier

 15 MQPMR-MSGID PIC X(24).

** Correlation identifier

 15 MQPMR-CORRELID PIC X(24).

** Group identifier

 15 MQPMR-GROUPID PIC X(24).

** Feedback or reason code

 15 MQPMR-FEEDBACK PIC S9(9) BINARY.

** Accounting token

 15 MQPMR-ACCOUNTINGTOKEN PIC X(32).

Parent topic: Initial values and language declarations for MQPMR

This build: January 26, 2011 11:16:50

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14350_

1.28.3.3. PL/I declaration

dcl

 1 MQPMR based,

 3 MsgId char(24), /* Message identifier */

 3 CorrelId char(24), /* Correlation identifier */

 3 GroupId char(24), /* Group identifier */

Page 294 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

 3 Feedback fixed bin(31), /* Feedback or reason code */

 3 AccountingToken char(32); /* Accounting token */

Parent topic: Initial values and language declarations for MQPMR

This build: January 26, 2011 11:16:50

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14360_

1.28.3.4. Visual Basic declaration

Type MQPMR

 MsgId As MQBYTE24 'Message identifier'

 CorrelId As MQBYTE24 'Correlation identifier'

 GroupId As MQBYTE24 'Group identifier'

 Feedback As Long 'Feedback or reason code'

 AccountingToken As MQBYTE32 'Accounting token'

End Type

Parent topic: Initial values and language declarations for MQPMR

This build: January 26, 2011 11:16:50

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14370_

1.29. MQRFH – Rules and formatting header

Overview for MQRFH

Availability: All WebSphere® MQ systems, plus WebSphere MQ clients connected to these systems.

Fields for MQRFH

Initial values and language declarations for MQRFH

Parent topic: Data type descriptions

This build: January 26, 2011 11:16:51

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14380_

1.29.1. Overview for MQRFH

Availability: All WebSphere® MQ systems, plus WebSphere MQ clients connected to these systems.

Purpose: The MQRFH structure defines the layout of the rules and formatting header. Use this header to send string data in the form of
name/value pairs.

Format name: MQFMT_RF_HEADER.

Character set and encoding: The fields in the MQRFH structure (including NameValueString) are in the character set and encoding given

by the CodedCharSetId and Encoding fields in the header structure that precedes the MQRFH, or by those fields in the MQMD structure if

the MQRFH is at the start of the application message data.

The character set must be one that has single-byte characters for the characters that are valid in queue names.

Parent topic: MQRFH – Rules and formatting header

This build: January 26, 2011 11:16:51

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14390_

1.29.2. Fields for MQRFH

The MQRFH structure contains the following fields; the fields are described in alphabetic order:

CodedCharSetId (MQLONG)

Page 295 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Encoding (MQLONG)

Flags (MQLONG)

Format (MQCHAR8)

NameValueString (MQCHARn)

StrucId (MQCHAR4)

StrucLength (MQLONG)

Version (MQLONG)

Parent topic: MQRFH – Rules and formatting header

This build: January 26, 2011 11:16:51

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14400_

1.29.2.1. CodedCharSetId (MQLONG)

This specifies the character set identifier of the data that follows NameValueString; it does not apply to character data in the MQRFH

structure itself.

On the MQPUT or MQPUT1 call, the application must set this field to the value appropriate to the data. The following special value can be
used:

MQCCSI_INHERIT

Character data in the data following this structure is in the same character set as this structure.

The queue manager changes this value in the structure sent in the message to the actual character-set identifier of the structure. Provided
no error occurs, the value MQCCSI_INHERIT is not returned by the MQGET call.

MQCCSI_INHERIT cannot be used if the value of the PutApplType field in MQMD is MQAT_BROKER.

The initial value of this field is MQCCSI_UNDEFINED.

Parent topic: Fields for MQRFH

This build: January 26, 2011 11:16:51

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14410_

1.29.2.2. Encoding (MQLONG)

This specifies the numeric encoding of the data that follows NameValueString; it does not apply to numeric data in the MQRFH structure

itself.

On the MQPUT or MQPUT1 call, the application must set this field to the value appropriate to the data.

The initial value of this field is MQENC_NATIVE.

Parent topic: Fields for MQRFH

This build: January 26, 2011 11:16:51

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14420_

1.29.2.3. Flags (MQLONG)

The following can be specified:

MQRFH_NONE

No flags.

The initial value of this field is MQRFH_NONE.

Parent topic: Fields for MQRFH

Page 296 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This build: January 26, 2011 11:16:51

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14430_

1.29.2.4. Format (MQCHAR8)

This specifies the format name of the data that follows NameValueString.

On the MQPUT or MQPUT1 call, the application must set this field to the value appropriate to the data. The rules for coding this field are the
same as those for the Format field in MQMD.

The initial value of this field is MQFMT_NONE.

Parent topic: Fields for MQRFH

This build: January 26, 2011 11:16:51

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14440_

1.29.2.5. NameValueString (MQCHARn)

This is a variable-length character string containing name/value pairs in the form:

name1 value1 name2 value2 name3 value3 ...

Each name or value must be separated from the adjacent name or value by one or more blank characters; these blanks are not significant.
A name or value can contain significant blanks by prefixing and suffixing the name or value with the double-quote character; all characters
between the open double-quote and the matching close double-quote are treated as significant. In the following example, the name is
FAMOUS_WORDS, and the value is Hello World:

FAMOUS_WORDS "Hello World"

A name or value can contain any characters other than the null character (which acts as a delimiter for NameValueString; see below).

However, to assist interoperability an application can restrict names to the following characters:

� First character: upper or lowercase alphabetic (A through Z, or a through z), or underscore.

� Subsequent characters: upper or lowercase alphabetic, decimal digit (0 through 9), underscore, hyphen, or dot.

If a name or value contains one or more double-quote characters, the name or value must be enclosed in double quotes, and each double
quote within the string must be doubled:

Famous_Words "The program displayed ""Hello World"""

Names and values are case sensitive, that is, lowercase letters are not considered to be the same as uppercase letters. For example,
FAMOUS_WORDS and Famous_Words are two different names.

The length in bytes of NameValueString is equal to StrucLength minus MQRFH_STRUC_LENGTH_FIXED. To avoid problems converting the

user data in some environments, make this length a multiple of four. Pad NameValueString with blanks to this length, or terminate it earlier

by placing a null character following the last significant character in the string. The null character and the bytes following it, up to the

specified length of NameValueString, are ignored.

Note: Because the length of this field is not fixed, the field is omitted from the declarations of the structure that are provided for the
supported programming languages.

Parent topic: Fields for MQRFH

This build: January 26, 2011 11:16:51

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14450_

1.29.2.6. StrucId (MQCHAR4)

This is the structure identifier; the value must be:

MQRFH_STRUC_ID

Identifier for rules and formatting header structure.

For the C programming language, the constant MQRFH_STRUC_ID_ARRAY is also defined; this has the same value as MQRFH_STRUC_ID,
but is an array of characters instead of a string.

The initial value of this field is MQRFH_STRUC_ID.

Parent topic: Fields for MQRFH

This build: January 26, 2011 11:16:51

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

Page 297 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This topic's URL:

fr14460_

1.29.2.7. StrucLength (MQLONG)

This is the length in bytes of the MQRFH structure, including the NameValueString field at the end of the structure. The length does not

include any user data that follows the NameValueString field.

To avoid problems converting the user data in some environments, StrucLength must be a multiple of four.

The following constant gives the length of the fixed part of the structure, that is, the length excluding the NameValueString field:

MQRFH_STRUC_LENGTH_FIXED

Length of fixed part of MQRFH structure.

The initial value of this field is MQRFH_STRUC_LENGTH_FIXED.

Parent topic: Fields for MQRFH

This build: January 26, 2011 11:16:51

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14470_

1.29.2.8. Version (MQLONG)

This is the structure version number; the value must be:

MQRFH_VERSION_1

Version-1 rules and formatting header structure.

The initial value of this field is MQRFH_VERSION_1.

Parent topic: Fields for MQRFH

This build: January 26, 2011 11:16:51

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14480_

1.29.3. Initial values and language declarations for MQRFH

C declaration

COBOL declaration

PL/I declaration

System/390 assembler declaration

Visual Basic declaration

Parent topic: MQRFH – Rules and formatting header

This build: January 26, 2011 11:16:52

Table 1. Initial values of fields in MQRFH for MQRFH

Field name Name of constant Value of constant

StrucId MQRFH_STRUC_ID 'RFH�'

Version MQRFH_VERSION_1 1

StrucLength MQRFH_STRUC_LENGTH_FIXED 32

Encoding MQENC_NATIVE Depends on environment

CodedCharSetId MQCCSI_UNDEFINED 0

Format MQFMT_NONE Blanks

Flags MQRFH_NONE 0

Notes:

1. The symbol � represents a single blank character.

2. In the C programming language, the macro variable MQRFH_DEFAULT contains the values listed above. It can be used in

the following way to provide initial values for the fields in the structure:

MQRFH MyRFH = {MQRFH_DEFAULT};

Page 298 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14490_

1.29.3.1. C declaration

typedef struct tagMQRFH MQRFH;

struct tagMQRFH {

 MQCHAR4 StrucId; /* Structure identifier */

 MQLONG Version; /* Structure version number */

 MQLONG StrucLength; /* Total length of MQRFH including

 NameValueString */

 MQLONG Encoding; /* Numeric encoding of data that follows

 NameValueString */

 MQLONG CodedCharSetId; /* Character set identifier of data that

 follows NameValueString */

 MQCHAR8 Format; /* Format name of data that follows

 NameValueString */

 MQLONG Flags; /* Flags */

};

Parent topic: Initial values and language declarations for MQRFH

This build: January 26, 2011 11:16:52

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14500_

1.29.3.2. COBOL declaration

** MQRFH structure

 10 MQRFH.

** Structure identifier

 15 MQRFH-STRUCID PIC X(4).

** Structure version number

 15 MQRFH-VERSION PIC S9(9) BINARY.

** Total length of MQRFH including NAMEVALUESTRING

 15 MQRFH-STRUCLENGTH PIC S9(9) BINARY.

** Numeric encoding of data that follows NAMEVALUESTRING

 15 MQRFH-ENCODING PIC S9(9) BINARY.

** Character set identifier of data that follows NAMEVALUESTRING

 15 MQRFH-CODEDCHARSETID PIC S9(9) BINARY.

** Format name of data that follows NAMEVALUESTRING

 15 MQRFH-FORMAT PIC X(8).

** Flags

 15 MQRFH-FLAGS PIC S9(9) BINARY.

Parent topic: Initial values and language declarations for MQRFH

This build: January 26, 2011 11:16:52

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14510_

1.29.3.3. PL/I declaration

dcl

 1 MQRFH based,

 3 StrucId char(4), /* Structure identifier */

 3 Version fixed bin(31), /* Structure version number */

 3 StrucLength fixed bin(31), /* Total length of MQRFH including

 NameValueString */

 3 Encoding fixed bin(31), /* Numeric encoding of data that

 follows NameValueString */

 3 CodedCharSetId fixed bin(31), /* Character set identifier of data

 that follows NameValueString */

 3 Format char(8), /* Format name of data that follows

 NameValueString */

 3 Flags fixed bin(31); /* Flags */

Parent topic: Initial values and language declarations for MQRFH

This build: January 26, 2011 11:16:52

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14520_

Page 299 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

1.29.3.4. System/390® assembler declaration

MQRFH DSECT

MQRFH_STRUCID DS CL4 Structure identifier

MQRFH_VERSION DS F Structure version number

MQRFH_STRUCLENGTH DS F Total length of MQRFH including

* NAMEVALUESTRING

MQRFH_ENCODING DS F Numeric encoding of data that follows

* NAMEVALUESTRING

MQRFH_CODEDCHARSETID DS F Character set identifier of data that

* follows NAMEVALUESTRING

MQRFH_FORMAT DS CL8 Format name of data that follows

* NAMEVALUESTRING

MQRFH_FLAGS DS F Flags

*

MQRFH_LENGTH EQU *-MQRFH

 ORG MQRFH

MQRFH_AREA DS CL(MQRFH_LENGTH)

Parent topic: Initial values and language declarations for MQRFH

This build: January 26, 2011 11:16:52

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14530_

1.29.3.5. Visual Basic declaration

Type MQRFH

 StrucId As String*4 'Structure identifier'

 Version As Long 'Structure version number'

 StrucLength As Long 'Total length of MQRFH including'

 'NameValueString'

 Encoding As Long 'Numeric encoding of data that follows'

 'NameValueString'

 CodedCharSetId As Long 'Character set identifier of data that'

 'follows NameValueString'

 Format As String*8 'Format name of data that follows'

 'NameValueString'

 Flags As Long 'Flags'

End Type

Parent topic: Initial values and language declarations for MQRFH

This build: January 26, 2011 11:16:52

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14540_

1.30. MQRFH2 – Rules and formatting header 2

Overview for MQRFH2

Availability: All WebSphere® MQ systems, plus WebSphere MQ clients connected to these systems.

Fields for MQRFH2

Initial values and language declarations for MQRFH2

Parent topic: Data type descriptions

This build: January 26, 2011 11:16:52

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14550_

1.30.1. Overview for MQRFH2

Availability: All WebSphere® MQ systems, plus WebSphere MQ clients connected to these systems.

Purpose: The MQRFH2 header is based on the MQRFH header, but it allows Unicode strings to be transported without translation, and it can
carry numeric data types.

The MQRFH2 structure defines the format of the version-2 rules and formatting header. Use this header to send data that has been encoded
using an XML-like syntax. A message can contain two or more MQRFH2 structures in series, with user data optionally following the last

MQRFH2 structure in the series.

Format name: MQFMT_RF_HEADER_2.

Page 300 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Character set and encoding: Special rules apply to the character set and encoding used for the MQRFH2 structure:

� Fields other than NameValueData are in the character set and encoding given by the CodedCharSetId and Encoding fields in the

header structure that precedes MQRFH2, or by those fields in the MQMD structure if the MQRFH2 is at the start of the application

message data.

The character set must be one that has single-byte characters for the characters that are valid in queue names.

When MQGMO_CONVERT is specified on the MQGET call, the queue manager converts these fields to the requested character set and

encoding.

� NameValueData is in the character set given by the NameValueCCSID field. Only certain Unicode character sets are valid for

NameValueCCSID (see the description of NameValueCCSID for details).

Some character sets have a representation that depends on the encoding. If NameValueCCSID is one of these character sets,

NameValueData must be in the same encoding as the other fields in the MQRFH2.

When MQGMO_CONVERT is specified on the MQGET call, the queue manager converts NameValueData to the requested encoding, but

does not change its character set.

Parent topic: MQRFH2 – Rules and formatting header 2

This build: January 26, 2011 11:16:52

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14560_

1.30.2. Fields for MQRFH2

The MQRFH2 structure contains the following fields; the fields are described in alphabetic order:

CodedCharSetId (MQLONG)

Encoding (MQLONG)

Flags (MQLONG)

Format (MQCHAR8)

NameValueCCSID (MQLONG)

NameValueData (MQCHARn)

NameValueLength (MQLONG)

StrucId (MQCHAR4)

StrucLength (MQLONG)

Version (MQLONG)

Parent topic: MQRFH2 – Rules and formatting header 2

This build: January 26, 2011 11:16:52

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14570_

1.30.2.1. CodedCharSetId (MQLONG)

This specifies the character set identifier of the data that follows the last NameValueData field; it does not apply to character data in the

MQRFH2 structure itself.

On the MQPUT or MQPUT1 call, the application must set this field to the value appropriate to the data. The following special value can be
used:

MQCCSI_INHERIT

Character data in the data following this structure is in the same character set as this structure.

The queue manager changes this value in the structure sent in the message to the actual character-set identifier of the structure. Provided
no error occurs, the value MQCCSI_INHERIT is not returned by the MQGET call.

MQCCSI_INHERIT cannot be used if the value of the PutApplType field in MQMD is MQAT_BROKER.

The initial value of this field is MQCCSI_INHERIT.

Parent topic: Fields for MQRFH2

This build: January 26, 2011 11:16:53

Notices | Trademarks | Downloads | Library | Support | Feedback

Page 301 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14580_

1.30.2.2. Encoding (MQLONG)

This specifies the numeric encoding of the data that follows the last NameValueData field; it does not apply to numeric data in the MQRFH2

structure itself.

On the MQPUT or MQPUT1 call, the application must set this field to the value appropriate to the data.

The initial value of this field is MQENC_NATIVE.

Parent topic: Fields for MQRFH2

This build: January 26, 2011 11:16:53

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14590_

1.30.2.3. Flags (MQLONG)

The following value must be specified:

MQRFH_NONE

No flags.

The initial value of this field is MQRFH_NONE.

Parent topic: Fields for MQRFH2

This build: January 26, 2011 11:16:53

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14600_

1.30.2.4. Format (MQCHAR8)

This specifies the format name of the data that follows the last NameValueData field.

On the MQPUT or MQPUT1 call, the application must set this field to the value appropriate to the data. The rules for coding this field are the
same as those for the Format field in MQMD.

The initial value of this field is MQFMT_NONE.

Parent topic: Fields for MQRFH2

This build: January 26, 2011 11:16:53

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14610_

1.30.2.5. NameValueCCSID (MQLONG)

This specifies the coded character set identifier of the data in the NameValueData field. This is different from the character set of the other

strings in the MQRFH2 structure, and can be different from the character set of the data (if any) that follows the last NameValueData field at

the end of the structure.

NameValueCCSID must have one of the following values:

For the UCS-2 character sets, the encoding (byte order) of the NameValueData must be the same as the encoding of the other fields in the

MQRFH2 structure. Surrogate characters (X'D800' through X'DFFF') are not supported.

Note: If NameValueCCSID does not have one of the values listed above, and the MQRFH2 structure requires conversion on the MQGET call,

the call completes with reason code MQRC_SOURCE_CCSID_ERROR and the message is returned unconverted.

CCSID Meaning

1200 UCS-2 open-ended

13488 UCS-2 2.0 subset

17584 UCS-2 2.1 subset (includes the Euro symbol)

1208 UTF-8

Page 302 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

The initial value of this field is 1208.

Parent topic: Fields for MQRFH2

This build: January 26, 2011 11:16:53

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14620_

1.30.2.6. NameValueData (MQCHARn)

This is a variable-length character string containing data encoded using an XML-like syntax. The length in bytes of this string is given by the

NameValueLength field that precedes the NameValueData field.

The NameValueLength and NameValueData fields are optional, but if present they must occur as a pair and be adjacent. The pair of fields

can be repeated as many times as required, for example:

length1 data1 length2 data2 length3 data3

Note:

1. Because these fields are optional, they are omitted from the declarations of the structure that are provided for the various
programming languages supported.

2. For further information on the method of terminating the following NameValue fields, see topic NameValueString

NameValueData is not converted to the character set specified on the MQGET call when the message is retrieved with the MQGMO_CONVERT

option in effect; NameValueData remains in its original character set. However, NameValueData is converted to the encoding specified on the

MQGET call.

Syntax of name/value data: The string consists of a single folder that contains zero or more properties. The folder is delimited by XML
start and end tags whose name is the name of the folder:

<folder> property1 property2 ... </folder>

Optionally, the content='properties' element can be included in the folder start tag. This indicates that the content of the folder is to be

treated as message properties. This element must only be used with user-defined folders and not IBM-defined folders, for example, <mq> or

<jms>.

For example:

<com.ourcompany content='properties'> ... </com.ourcompany>

Characters following the folder end tag, up to the length defined by NameValueLength, must be blank. Within the folder, each property is

composed of a name and a value, and optionally a data type:

<name dt="datatype">value</name>

In these examples, be aware of the following information:

� Specify the delimiter characters (<, =, ", /, and >) exactly as shown. The parameter value can be wrapped in either double quotes or
apostrophes, for example dt="datatype" or dt='datatype'

� name is the user-specified name of the property; see below for more information about names.

� datatype is an optional user-specified data type of the property; see below for valid data types.

� value is the user-specified value of the property; see below for more information about values.

� Blanks are significant between the > character that precedes a value, and the < character that follows the value, and at least one blank

must precede dt=. Elsewhere you can code blanks freely between tags, or preceding or following tags (for example, in order to

improve readability); these blanks are not significant.

If properties are related to each other, you can group them together by enclosing them within XML start and end tags whose name is the
name of the group:

<folder> <group> property1 property2 ... </group> </folder>

With certain exceptions, groups can be nested within other groups, without limit, and a given group can occur more than once within a

folder. A folder can also contain some properties in groups and other properties not in groups. The exceptions are that groups are not
allowed in the <mq> folder or in a folder whose name starts with or is any of the following lowercase strings: ibm, mcd, jms, sib, usr, wmq.

Groups are also not allowed in a folder whose name starts with or is the lowercase string mq, except for mq_usr, where groups are allowed.

Names of properties, groups, and folders: The names of properties, groups, and folders must be valid XML tag names, with the
exception of the colon character, which is not permitted in a property, group, or folder name. In particular, be aware of the following
requirements:

� Names must start with a letter or an underscore. Valid letters are defined in the W3C XML specification, and consist essentially of
Unicode categories Ll, Lu, Lo, Lt, and Nl.

� The remaining characters in a name can be letters, decimal digits, underscores, hyphens, or dots. These correspond to Unicode
categories Ll, Lu, Lo, Lt, Nl, Mc, Mn, Lm, and Nd.

� The Unicode compatibility characters (X'F900' and above) are not permitted in any part of a name.

� Names must not start with the string XML in any mixture of upper or lowercase.

In addition:

� Names are case-sensitive. For example, ABC, abc, and Abc are three different names.

� Each folder has a separate namespace. As a result, a group or property in one folder does not conflict with a group or property of the
same name in another folder.

Page 303 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

� Groups and properties occupy the same namespace within a folder. As a result, a property cannot have the same name as a group
within the folder containing that property.

Generally, programs that analyze the NameValueData field must ignore properties or groups that have names that the program does not

recognize, provided that those properties or groups are correctly formed.

Data types of properties: Each property can have an optional data type. If specified, the data type must be one of the following values, in

upper, lower, or mixed case:

Values of properties: The value of a property can consist of any characters, except as detailed below. Each occurrence in the value of a
character marked as mandatory must be replaced by the corresponding escape sequence. Each occurrence in the value of a character
marked as optional can be replaced by the corresponding escape sequence, but this is not required.

Note: The & character at the start of an escape sequence must not be replaced by &.

In the following example, the blanks in the value are significant; however, no escape sequences are needed:

<Famous_Words>The program displayed "Hello World"</Famous_Words>

Parent topic: Fields for MQRFH2

Related concepts
Properties specified as MQRFH2 elements

This build: January 26, 2011 11:16:54

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14630_

1.30.2.7. NameValueLength (MQLONG)

This specifies the length in bytes of the data in the NameValueData field.

Note: The NameValueLength and NameValueData fields are optional, but if present they must occur as a pair and be adjacent. The pair of

fields can be repeated as many times as required, for example:

length1 data1 length2 data2 length3 data3

Because these fields are optional, they are omitted from the declarations of the structure that are provided for the various programming
languages supported.

Parent topic: Fields for MQRFH2

This build: January 26, 2011 11:16:54

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14640_

1.30.2.8. StrucId (MQCHAR4)

Data type Used for

string Any sequence of characters. Certain characters must be specified using escape sequences (see

below).

boolean The character 0 or 1 (1 denotes TRUE).

bin.hex Hexadecimal digits representing octets.

i1 Integer number in the range -128 through +127, expressed using only decimal digits and optional

sign.

i2 Integer number in the range -32 768 through +32 767, expressed using only decimal digits and

optional sign.

i4 Integer number in the range -2 147 483 648 through +2 147 483 647, expressed using only decimal
digits and optional sign.

i8 Integer number in the range -9 223 372 036 854 775 808 through +9 223 372 036 854 775 807,

expressed using only decimal digits and optional sign.

int Integer number in the range -9 223 372 036 854 775 808 through +9 223 372 036 854 775 807,

expressed using only decimal digits and optional sign. This can be used in place of i1, i2, i4, or i8 if

the sender does not want to imply a particular precision.

r4 Floating-point number with magnitude in the range 1.175E-37 through 3.402 823 47E+38, expressed

using decimal digits, optional sign, optional fractional digits, and optional exponent.

r8 Floating-point number with magnitude in the range 2.225E-307 through 1.797 693 134 862 3E+308

expressed using decimal digits, optional sign, optional fractional digits, and optional exponent.

Character Escape sequence Usage

& & Mandatory

< < Mandatory

> > Optional

" " Optional

' ' Optional

Page 304 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This is the structure identifier; the value must be:

MQRFH_STRUC_ID

Identifier for rules and formatting header structure.

For the C programming language, the constant MQRFH_STRUC_ID_ARRAY is also defined; this has the same value as MQRFH_STRUC_ID,
but is an array of characters instead of a string.

The initial value of this field is MQRFH_STRUC_ID.

Parent topic: Fields for MQRFH2

This build: January 26, 2011 11:16:54

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14650_

1.30.2.9. StrucLength (MQLONG)

This is the length in bytes of the MQRFH2 structure, including the NameValueLength and NameValueData fields at the end of the structure. It

is valid for there to be multiple pairs of NameValueLength and NameValueData fields at the end of the structure, in the sequence:

length1, data1, length2, data2, …

StrucLength does not include any user data that may follow the last NameValueData field at the end of the structure.

To avoid problems with converting the user data in some environments, StrucLength must be a multiple of four.

The following constant gives the length of the fixed part of the structure, that is, the length excluding the NameValueLength and

NameValueData fields:

MQRFH_STRUC_LENGTH_FIXED_2

Length of fixed part of MQRFH2 structure.

The initial value of this field is MQRFH_STRUC_LENGTH_FIXED_2.

Parent topic: Fields for MQRFH2

This build: January 26, 2011 11:16:54

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14660_

1.30.2.10. Version (MQLONG)

This is the structure version number; the value must be:

MQRFH_VERSION_2

Version-2 rules and formatting header structure.

The initial value of this field is MQRFH_VERSION_2.

Parent topic: Fields for MQRFH2

This build: January 26, 2011 11:16:54

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14670_

1.30.3. Initial values and language declarations for MQRFH2

Table 1. Initial values of fields in MQRFH2 for MQRFH2

Field name Name of constant Value of constant

StrucId MQRFH_STRUC_ID 'RFH�'

Version MQRFH_VERSION_2 2

StrucLength MQRFH_STRUC_LENGTH_FIXED_2 36

Encoding MQENC_NATIVE Depends on environment

CodedCharSetId MQCCSI_INHERIT -2

Format MQFMT_NONE Blanks

Flags MQRFH_NONE 0

NameValueCCSID None 1208

Page 305 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

C declaration

COBOL declaration

PL/I declaration

System/390 assembler declaration

Visual Basic declaration

Parent topic: MQRFH2 – Rules and formatting header 2

This build: January 26, 2011 11:16:54

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14680_

1.30.3.1. C declaration

typedef struct tagMQRFH2 MQRFH2;

struct tagMQRFH2 {

 MQCHAR4 StrucId; /* Structure identifier */

 MQLONG Version; /* Structure version number */

 MQLONG StrucLength; /* Total length of MQRFH2 including all

 NameValueLength and NameValueData

 fields */

 MQLONG Encoding; /* Numeric encoding of data that follows

 last NameValueData field */

 MQLONG CodedCharSetId; /* Character set identifier of data that

 follows last NameValueData field */

 MQCHAR8 Format; /* Format name of data that follows last

 NameValueData field */

 MQLONG Flags; /* Flags */

 MQLONG NameValueCCSID; /* Character set identifier of

 NameValueData */

};

Parent topic: Initial values and language declarations for MQRFH2

This build: January 26, 2011 11:16:54

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14690_

1.30.3.2. COBOL declaration

** MQRFH2 structure

 10 MQRFH2.

** Structure identifier

 15 MQRFH2-STRUCID PIC X(4).

** Structure version number

 15 MQRFH2-VERSION PIC S9(9) BINARY.

** Total length of MQRFH2 including all NAMEVALUELENGTH and

** NAMEVALUEDATA fields

 15 MQRFH2-STRUCLENGTH PIC S9(9) BINARY.

** Numeric encoding of data that follows last NAMEVALUEDATA field

 15 MQRFH2-ENCODING PIC S9(9) BINARY.

** Character set identifier of data that follows last NAMEVALUEDATA

** field

 15 MQRFH2-CODEDCHARSETID PIC S9(9) BINARY.

** Format name of data that follows last NAMEVALUEDATA field

 15 MQRFH2-FORMAT PIC X(8).

** Flags

 15 MQRFH2-FLAGS PIC S9(9) BINARY.

** Character set identifier of NAMEVALUEDATA

 15 MQRFH2-NAMEVALUECCSID PIC S9(9) BINARY.

Parent topic: Initial values and language declarations for MQRFH2

This build: January 26, 2011 11:16:54

Notices | Trademarks | Downloads | Library | Support | Feedback

Notes:

1. The symbol � represents a single blank character.

2. In the C programming language, the macro variable MQRFH2_DEFAULT contains the values listed above. Use it in the

following way to provide initial values for the fields in the structure:

MQRFH2 MyRFH2 = {MQRFH2_DEFAULT};

Page 306 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14700_

1.30.3.3. PL/I declaration

dcl

 1 MQRFH2 based,

 3 StrucId char(4), /* Structure identifier */

 3 Version fixed bin(31), /* Structure version number */

 3 StrucLength fixed bin(31), /* Total length of MQRFH2 including

 all NameValueLength and

 NameValueData fields */

 3 Encoding fixed bin(31), /* Numeric encoding of data that

 follows last NameValueData field */

 3 CodedCharSetId fixed bin(31), /* Character set identifier of data

 that follows last NameValueData

 field */

 3 Format char(8), /* Format name of data that follows

 last NameValueData field */

 3 Flags fixed bin(31), /* Flags */

 3 NameValueCCSID fixed bin(31); /* Character set identifier of

 NameValueData */

Parent topic: Initial values and language declarations for MQRFH2

This build: January 26, 2011 11:16:54

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14710_

1.30.3.4. System/390® assembler declaration

MQRFH DSECT

MQRFH_STRUCID DS CL4 Structure identifier

MQRFH_VERSION DS F Structure version number

MQRFH_STRUCLENGTH DS F Total length of MQRFH2 including all

* NAMEVALUELENGTH and NAMEVALUEDATA fields

MQRFH_ENCODING DS F Numeric encoding of data that follows

* last NAMEVALUEDATA field

MQRFH_CODEDCHARSETID DS F Character set identifier of data that

* follows last NAMEVALUEDATA field

MQRFH_FORMAT DS CL8 Format name of data that follows last

* NAMEVALUEDATA field

MQRFH_FLAGS DS F Flags

MQRFH_NAMEVALUECCSID DS F Character set identifier of

* NAMEVALUEDATA

*

MQRFH_LENGTH EQU *-MQRFH

 ORG MQRFH

MQRFH_AREA DS CL(MQRFH_LENGTH)

Parent topic: Initial values and language declarations for MQRFH2

This build: January 26, 2011 11:16:54

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14720_

1.30.3.5. Visual Basic declaration

Type MQRFH2

 StrucId As String*4 'Structure identifier'

 Version As Long 'Structure version number'

 StrucLength As Long 'Total length of MQRFH2 including all'

 'NameValueLength and NameValueData fields'

 Encoding As Long 'Numeric encoding of data that follows'

 'last NameValueData field'

 CodedCharSetId As Long 'Character set identifier of data that'

 'follows last NameValueData field'

 Format As String*8 'Format name of data that follows last'

 'NameValueData field'

 Flags As Long 'Flags'

 NameValueCCSID As Long 'Character set identifier of NameValueData'

End Type

Parent topic: Initial values and language declarations for MQRFH2

This build: January 26, 2011 11:16:55

Notices | Trademarks | Downloads | Library | Support | Feedback

Page 307 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14730_

1.31. MQRMH – Reference message header

The following table summarizes the fields in the structure.

Overview for MQRMH
Availability: AIX®, HP-UX, i5/OS®, Solaris, Linux, Windows, plus WebSphere® MQ clients connected to these systems.

Fields for MQRMH

Initial values and language declarations for MQRMH

Parent topic: Data type descriptions

This build: January 26, 2011 11:16:55

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14740_

1.31.1. Overview for MQRMH

Availability: AIX®, HP-UX, i5/OS®, Solaris, Linux, Windows, plus WebSphere® MQ clients connected to these systems.

Purpose: The MQRMH structure defines the format of a reference message header. This header is used with user-written message channel
exits to send extremely large amounts of data (called bulk data) from one queue manager to another. The difference compared to normal

messaging is that the bulk data is not stored on a queue; instead, only a reference to the bulk data is stored on the queue. This reduces the
possibility of MQ resources being exhausted by a small number of extremely large messages.

Format name: MQFMT_REF_MSG_HEADER.

Character set and encoding: Character data in MQRMH, and the strings addressed by the offset fields, must be in the character set of the
local queue manager; this is given by the CodedCharSetId queue-manager attribute. Numeric data in MQRMH must be in the native

machine encoding; this is given by the value of MQENC_NATIVE for the C programming language.

Set the character set and encoding of the MQRMH into the CodedCharSetId and Encoding fields in:

� The MQMD (if the MQRMH structure is at the start of the message data), or

� The header structure that precedes the MQRMH structure (all other cases).

Usage: An application puts a message consisting of an MQRMH, but omitting the bulk data. When a message channel agent (MCA) reads
the message from the transmission queue, a user-supplied message exit is invoked to process the reference message header. The exit can
append to the reference message the bulk data identified by the MQRMH structure, before the MCA sends the message through the channel

to the next queue manager.

At the receiving end, a message exit that waits for reference messages must exist. When a reference message is received, the exit must
create the object from the bulk data that follows the MQRMH in the message, and then pass on the reference message without the bulk
data. The reference message can later be retrieved by an application reading the reference message (without the bulk data) from a queue.

Table 1. Fields in MQRMH

Field Description Topic

StrucId Structure identifier StrucId

Version Structure version number Version

StrucLength Total length of MQRMH, including strings at end of fixed
fields, but not the bulk data

StrucLength

Encoding Numeric encoding of bulk data Encoding

CodedCharSetId Character set identifier of bulk data CodedCharSetId

Format Format name of bulk data Format

Flags Reference message flags Flags

ObjectType Object type ObjectType

ObjectInstanceId Object instance identifier ObjectInstanceId

SrcEnvLength Length of source environment data SrcEnvLength

SrcEnvOffset Offset of source environment data SrcEnvOffset

SrcNameLength Length of source object name SrcNameLength

SrcNameOffset Offset of source object name SrcNameOffset

DestEnvLength Length of destination environment data DestEnvLength

DestEnvOffset Offset of destination environment data DestEnvOffset

DestNameLength Length of destination object name DestNameLength

DestNameOffset Offset of destination object name DestNameOffset

DataLogicalLength Length of bulk data DataLogicalLength

DataLogicalOffset Low offset of bulk data DataLogicalOffset

DataLogicalOffset2 High offset of bulk data DataLogicalOffset2

Page 308 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Normally, the MQRMH structure is all that is in the message. However, if the message is on a transmission queue, one or more additional
headers precede the MQRMH structure.

A reference message can also be sent to a distribution list. In this case, the MQDH structure and its related records precede the MQRMH
structure when the message is on a transmission queue.

Note: Do not send a reference message as a segmented message, because the message exit cannot process it correctly.

Data conversion: For data conversion purposes, converting the MQRMH structure includes conversion of the source environment data,

source object name, destination environment data, and destination object name. Any other bytes within StrucLength bytes of the start of

the structure are either discarded or have undefined values after data conversion. The bulk data is converted provided that all the following
are true:

� The bulk data is present in the message when the data conversion is performed.

� The Format field in MQRMH has a value other than MQFMT_NONE.

� A user-written data-conversion exit exists with the format name specified.

Be aware, however, that usually the bulk data is not present in the message when the message is on a queue, and that as a result the bulk
data is converted by the MQGMO_CONVERT option.

Parent topic: MQRMH – Reference message header

This build: January 26, 2011 11:16:55

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14750_

1.31.2. Fields for MQRMH

The MQRMH structure contains the following fields; the fields are described in alphabetic order:

CodedCharSetId (MQLONG)

DataLogicalLength (MQLONG)

DataLogicalOffset (MQLONG)

DataLogicalOffset2 (MQLONG)

DestEnvLength (MQLONG)

DestEnvOffset (MQLONG)

DestNameLength (MQLONG)

DestNameOffset (MQLONG)

Encoding (MQLONG)

Flags (MQLONG)

Format (MQCHAR8)

ObjectInstanceId (MQBYTE24)

ObjectType (MQCHAR8)

SrcEnvLength (MQLONG)

SrcEnvOffset (MQLONG)

SrcNameLength (MQLONG)

SrcNameOffset (MQLONG)

StrucId (MQCHAR4)

StrucLength (MQLONG)
The total length of MQRMH, including strings at the end of fixed fields, but not the bulk data.

Version (MQLONG)

Parent topic: MQRMH – Reference message header

This build: January 26, 2011 11:16:56

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

Page 309 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This topic's URL:

fr14760_

1.31.2.1. CodedCharSetId (MQLONG)

This specifies the character set identifier of the bulk data; it does not apply to character data in the MQRMH structure itself.

On the MQPUT or MQPUT1 call, the application must set this field to the value appropriate to the data. The following special value can be
used:

MQCCSI_INHERIT

Character data in the data following this structure is in the same character set as this structure.

The queue manager changes this value in the structure sent in the message to the actual character-set identifier of the structure. Provided
no error occurs, the value MQCCSI_INHERIT is not returned by the MQGET call.

Do not use MQCCSI_INHERIT if the value of the PutApplType field in MQMD is MQAT_BROKER.

This value is supported in the following environments: AIX®, HP-UX, i5/OS®, Solaris, Linux, Windows, plus WebSphere® MQ clients
connected to these systems.

The initial value of this field is MQCCSI_UNDEFINED.

Parent topic: Fields for MQRMH

This build: January 26, 2011 11:16:56

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14770_

1.31.2.2. DataLogicalLength (MQLONG)

The DataLogicalLength field specifies the length of the bulk data referenced by the MQRMH structure.

If the bulk data is actually present in the message, the data begins at an offset of StrucLength bytes from the start of the MQRMH

structure. The length of the entire message minus StrucLength gives the length of the bulk data present.

If data is present in the message, DataLogicalLength specifies the amount of that data that is relevant. The normal case is for

DataLogicalLength to have the same value as the length of data present in the message.

If the MQRMH structure represents the remaining data in the object (starting from the specified logical offset), you can use the value zero
for DataLogicalLength, provided that the bulk data is not actually present in the message.

If no data is present, the end of MQRMH coincides with the end of the message.

The initial value of this field is 0.

Parent topic: Fields for MQRMH

This build: January 26, 2011 11:16:56

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14780_

1.31.2.3. DataLogicalOffset (MQLONG)

This field specifies the low offset of the bulk data from the start of the object of which the bulk data forms part. The offset of the bulk data
from the start of the object is called the logical offset. This is not the physical offset of the bulk data from the start of the MQRMH structure;
that offset is given by StrucLength.

To allow large objects to be sent using reference messages, the logical offset is divided into two fields, and the actual logical offset is given
by the sum of these two fields:

� DataLogicalOffset represents the remainder obtained when the logical offset is divided by 1 000 000 000. It is thus a value in the

range 0 through 999 999 999.

� DataLogicalOffset2 represents the result obtained when the logical offset is divided by 1 000 000 000. It is thus the number of

complete multiples of 1 000 000 000 that exist in the logical offset. The number of multiples is in the range 0 through 999 999 999.

The initial value of this field is 0.

Parent topic: Fields for MQRMH

This build: January 26, 2011 11:16:56

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14790_

Page 310 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

1.31.2.4. DataLogicalOffset2 (MQLONG)

This field specifies the high offset of the bulk data from the start of the object of which the bulk data forms part. It is a value in the range 0
through 999 999 999. See DataLogicalOffset for details.

The initial value of this field is 0.

Parent topic: Fields for MQRMH

This build: January 26, 2011 11:16:56

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14800_

1.31.2.5. DestEnvLength (MQLONG)

This is the length of the destination environment data. If this field is zero, there is no destination environment data, and DestEnvOffset is

ignored.

Parent topic: Fields for MQRMH

This build: January 26, 2011 11:16:56

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14810_

1.31.2.6. DestEnvOffset (MQLONG)

This field specifies the offset of the destination environment data from the start of the MQRMH structure. Destination environment data can
be specified by the creator of the reference message, if that data is known to the creator. For example, on Windows the destination
environment data might be the directory path of the object where the bulk data is to be stored. However, if the creator does not know the

destination environment data, it is the responsibility of the user-supplied message exit to determine any environment information needed.

The length of the destination environment data is given by DestEnvLength; if this length is zero, there is no destination environment data,

and DestEnvOffset is ignored. If present, the destination environment data must reside completely within StrucLength bytes from the

start of the structure.

Applications must not assume that the destination environment data is contiguous with any of the data addressed by the SrcEnvOffset,

SrcNameOffset, and DestNameOffset fields.

The initial value of this field is 0.

Parent topic: Fields for MQRMH

This build: January 26, 2011 11:16:56

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14820_

1.31.2.7. DestNameLength (MQLONG)

The length of the destination object name. If this field is zero, there is no destination object name, and DestNameOffset is ignored.

Parent topic: Fields for MQRMH

This build: January 26, 2011 11:16:56

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14830_

1.31.2.8. DestNameOffset (MQLONG)

This field specifies the offset of the destination object name from the start of the MQRMH structure. The destination object name can be
specified by the creator of the reference message, if that data is known to the creator. However, if the creator does not know the

destination object name, it is the responsibility of the user-supplied message exit to identify the object to be created or modified.

The length of the destination object name is given by DestNameLength; if this length is zero, there is no destination object name, and

DestNameOffset is ignored. If present, the destination object name must reside completely within StrucLength bytes from the start of the

structure.

Applications must not assume that the destination object name is contiguous with any of the data addressed by the SrcEnvOffset,

SrcNameOffset, and DestEnvOffset fields.

Page 311 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

The initial value of this field is 0.

Parent topic: Fields for MQRMH

This build: January 26, 2011 11:16:56

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14840_

1.31.2.9. Encoding (MQLONG)

This specifies the numeric encoding of the bulk data; it does not apply to numeric data in the MQRMH structure itself.

On the MQPUT or MQPUT1 call, the application must set this field to the value appropriate to the data.

The initial value of this field is MQENC_NATIVE.

Parent topic: Fields for MQRMH

This build: January 26, 2011 11:16:56

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14850_

1.31.2.10. Flags (MQLONG)

These are reference message flags. The following flags are defined:

MQRMHF_LAST

This flag indicates that the reference message represents or contains the last part of the referenced object.

MQRMHF_NOT_LAST

Reference message does not contain or represent last part of object. MQRMHF_NOT_LAST aids program documentation. It is not intended

that this option be used with any other, but as its value is zero, such use cannot be detected.

The initial value of this field is MQRMHF_NOT_LAST.

Parent topic: Fields for MQRMH

This build: January 26, 2011 11:16:56

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14860_

1.31.2.11. Format (MQCHAR8)

This specifies the format name of the bulk data.

On the MQPUT or MQPUT1 call, the application must set this field to the value appropriate to the data. The rules for coding this field are the

same as those for the Format field in MQMD.

The initial value of this field is MQFMT_NONE.

Parent topic: Fields for MQRMH

This build: January 26, 2011 11:16:56

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14870_

1.31.2.12. ObjectInstanceId (MQBYTE24)

Use this field to identify a specific instance of an object. If it is not needed, set it to the following value:

MQOII_NONE

No object instance identifier specified. The value is binary zero for the length of the field.

For the C programming language, the constant MQOII_NONE_ARRAY is also defined; this has the same value as MQOII_NONE, but is an
array of characters instead of a string.

The length of this field is given by MQ_OBJECT_INSTANCE_ID_LENGTH. The initial value of this field is MQOII_NONE.

Page 312 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Parent topic: Fields for MQRMH

This build: January 26, 2011 11:16:56

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14880_

1.31.2.13. ObjectType (MQCHAR8)

This is a name that the message exit can use to recognize types of reference message that it supports. The name must conform to the same
rules as the Format field described above.

The initial value of this field is 8 blanks.

Parent topic: Fields for MQRMH

This build: January 26, 2011 11:16:56

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14890_

1.31.2.14. SrcEnvLength (MQLONG)

The length of the source environment data. If this field is zero, there is no source environment data, and SrcEnvOffset is ignored.

The initial value of this field is 0.

Parent topic: Fields for MQRMH

This build: January 26, 2011 11:16:56

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14900_

1.31.2.15. SrcEnvOffset (MQLONG)

This field specifies the offset of the source environment data from the start of the MQRMH structure. Source environment data can be
specified by the creator of the reference message, if that data is known to the creator. For example, on Windows the source environment
data might be the directory path of the object containing the bulk data. However, if the creator does not know the source environment data,
the user-supplied message exit must determine any environment information needed.

The length of the source environment data is given by SrcEnvLength; if this length is zero, there is no source environment data, and

SrcEnvOffset is ignored. If present, the source environment data must reside completely within StrucLength bytes from the start of the

structure.

Applications must not assume that the environment data starts immediately after the last fixed field in the structure or that it is contiguous

with any of the data addressed by the SrcNameOffset, DestEnvOffset, and DestNameOffset fields.

The initial value of this field is 0.

Parent topic: Fields for MQRMH

This build: January 26, 2011 11:16:57

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14910_

1.31.2.16. SrcNameLength (MQLONG)

The length of the source object name. If this field is zero, there is no source object name, and SrcNameOffset is ignored.

The initial value of this field is 0.

Parent topic: Fields for MQRMH

This build: January 26, 2011 11:16:57

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14920_

Page 313 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

1.31.2.17. SrcNameOffset (MQLONG)

This field specifies the offset of the source object name from the start of the MQRMH structure. The source object name can be specified by
the creator of the reference message, if that data is known to the creator. However, if the creator does not know the source object name,
the user-supplied message exit must identify the object to be accessed.

The length of the source object name is given by SrcNameLength; if this length is zero, there is no source object name, and SrcNameOffset

is ignored. If present, the source object name must reside completely within StrucLength bytes from the start of the structure.

Applications must not assume that the source object name is contiguous with any of the data addressed by the SrcEnvOffset,

DestEnvOffset, and DestNameOffset fields.

The initial value of this field is 0.

Parent topic: Fields for MQRMH

This build: January 26, 2011 11:16:57

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14930_

1.31.2.18. StrucId (MQCHAR4)

This is the structure identifier; the value must be:

MQRMH_STRUC_ID

Identifier for reference message header structure.

For the C programming language, the constant MQRMH_STRUC_ID_ARRAY is also defined; this has the same value as MQRMH_STRUC_ID,
but is an array of characters instead of a string.

The initial value of this field is MQRMH_STRUC_ID.

Parent topic: Fields for MQRMH

This build: January 26, 2011 11:16:57

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14940_

1.31.2.19. StrucLength (MQLONG)

The total length of MQRMH, including strings at the end of fixed fields, but not the bulk data.

The initial value of this field is zero.

Parent topic: Fields for MQRMH

This build: January 26, 2011 11:16:57

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14950_

1.31.2.20. Version (MQLONG)

The structure version number. The value must be:

MQRMH_VERSION_1

Version-1 reference message header structure.

The following constant specifies the version number of the current version:

MQRMH_CURRENT_VERSION

Current version of reference message header structure.

The initial value of this field is MQRMH_VERSION_1.

Parent topic: Fields for MQRMH

This build: January 26, 2011 11:16:57

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

Page 314 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

fr14960_

1.31.3. Initial values and language declarations for MQRMH

C declaration

COBOL declaration

PL/I declaration

System/390 assembler declaration

Visual Basic declaration

Parent topic: MQRMH – Reference message header

This build: January 26, 2011 11:16:57

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14970_

1.31.3.1. C declaration

typedef struct tagMQRMH MQRMH;

struct tagMQRMH {

 MQCHAR4 StrucId; /* Structure identifier */

 MQLONG Version; /* Structure version number */

 MQLONG StrucLength; /* Total length of MQRMH, including

 strings at end of fixed fields, but

 not the bulk data */

 MQLONG Encoding; /* Numeric encoding of bulk data */

 MQLONG CodedCharSetId; /* Character set identifier of bulk

 data */

 MQCHAR8 Format; /* Format name of bulk data */

 MQLONG Flags; /* Reference message flags */

 MQCHAR8 ObjectType; /* Object type */

 MQBYTE24 ObjectInstanceId; /* Object instance identifier */

 MQLONG SrcEnvLength; /* Length of source environment data */

 MQLONG SrcEnvOffset; /* Offset of source environment data */

 MQLONG SrcNameLength; /* Length of source object name */

 MQLONG SrcNameOffset; /* Offset of source object name */

 MQLONG DestEnvLength; /* Length of destination environment

 data */

 MQLONG DestEnvOffset; /* Offset of destination environment

 data */

Table 1. Initial values of fields in MQRMH for MQRMH

Field name Name of constant Value of constant

StrucId MQRMH_STRUC_ID 'RMH�'

Version MQRMH_VERSION_1 1

StrucLength None 0

Encoding MQENC_NATIVE Depends on environment

CodedCharSetId MQCCSI_UNDEFINED 0

Format MQFMT_NONE Blanks

Flags MQRMHF_NOT_LAST 0

ObjectType None Blanks

ObjectInstanceId MQOII_NONE Nulls

SrcEnvLength None 0

SrcEnvOffset None 0

SrcNameLength None 0

SrcNameOffset None 0

DestEnvLength None 0

DestEnvOffset None 0

DestNameLength None 0

DestNameOffset None 0

DataLogicalLength None 0

DataLogicalOffset None 0

DataLogicalOffset2 None 0

Notes:

1. The symbol � represents a single blank character.

2. In the C programming language, the macro variable MQRMH_DEFAULT contains the values listed above. Use it in the

following way to provide initial values for the fields in the structure:

MQRMH MyRMH = {MQRMH_DEFAULT};

Page 315 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

 MQLONG DestNameLength; /* Length of destination object name */

 MQLONG DestNameOffset; /* Offset of destination object name */

 MQLONG DataLogicalLength; /* Length of bulk data */

 MQLONG DataLogicalOffset; /* Low offset of bulk data */

 MQLONG DataLogicalOffset2; /* High offset of bulk data */

};

Parent topic: Initial values and language declarations for MQRMH

This build: January 26, 2011 11:16:57

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14980_

1.31.3.2. COBOL declaration

** MQRMH structure

 10 MQRMH.

** Structure identifier

 15 MQRMH-STRUCID PIC X(4).

** Structure version number

 15 MQRMH-VERSION PIC S9(9) BINARY.

** Total length of MQRMH, including strings at end of fixed fields,

** but not the bulk data

 15 MQRMH-STRUCLENGTH PIC S9(9) BINARY.

** Numeric encoding of bulk data

 15 MQRMH-ENCODING PIC S9(9) BINARY.

** Character set identifier of bulk data

 15 MQRMH-CODEDCHARSETID PIC S9(9) BINARY.

** Format name of bulk data

 15 MQRMH-FORMAT PIC X(8).

** Reference message flags

 15 MQRMH-FLAGS PIC S9(9) BINARY.

** Object type

 15 MQRMH-OBJECTTYPE PIC X(8).

** Object instance identifier

 15 MQRMH-OBJECTINSTANCEID PIC X(24).

** Length of source environment data

 15 MQRMH-SRCENVLENGTH PIC S9(9) BINARY.

** Offset of source environment data

 15 MQRMH-SRCENVOFFSET PIC S9(9) BINARY.

** Length of source object name

 15 MQRMH-SRCNAMELENGTH PIC S9(9) BINARY.

** Offset of source object name

 15 MQRMH-SRCNAMEOFFSET PIC S9(9) BINARY.

** Length of destination environment data

 15 MQRMH-DESTENVLENGTH PIC S9(9) BINARY.

** Offset of destination environment data

 15 MQRMH-DESTENVOFFSET PIC S9(9) BINARY.

** Length of destination object name

 15 MQRMH-DESTNAMELENGTH PIC S9(9) BINARY.

** Offset of destination object name

 15 MQRMH-DESTNAMEOFFSET PIC S9(9) BINARY.

** Length of bulk data

 15 MQRMH-DATALOGICALLENGTH PIC S9(9) BINARY.

** Low offset of bulk data

 15 MQRMH-DATALOGICALOFFSET PIC S9(9) BINARY.

** High offset of bulk data

 15 MQRMH-DATALOGICALOFFSET2 PIC S9(9) BINARY.

Parent topic: Initial values and language declarations for MQRMH

This build: January 26, 2011 11:16:57

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr14990_

1.31.3.3. PL/I declaration

dcl

 1 MQRMH based,

 3 StrucId char(4), /* Structure identifier */

 3 Version fixed bin(31), /* Structure version number */

 3 StrucLength fixed bin(31), /* Total length of MQRMH,

 including strings at end of

 fixed fields, but not the bulk

 data */

 3 Encoding fixed bin(31), /* Numeric encoding of bulk

 data */

 3 CodedCharSetId fixed bin(31), /* Character set identifier of

 bulk data */

 3 Format char(8), /* Format name of bulk data */

 3 Flags fixed bin(31), /* Reference message flags */

 3 ObjectType char(8), /* Object type */

 3 ObjectInstanceId char(24), /* Object instance identifier */

Page 316 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

 3 SrcEnvLength fixed bin(31), /* Length of source environment

 data */

 3 SrcEnvOffset fixed bin(31), /* Offset of source environment

 data */

 3 SrcNameLength fixed bin(31), /* Length of source object name */

 3 SrcNameOffset fixed bin(31), /* Offset of source object name */

 3 DestEnvLength fixed bin(31), /* Length of destination

 environment data */

 3 DestEnvOffset fixed bin(31), /* Offset of destination

 environment data */

 3 DestNameLength fixed bin(31), /* Length of destination object

 name */

 3 DestNameOffset fixed bin(31), /* Offset of destination object

 name */

 3 DataLogicalLength fixed bin(31), /* Length of bulk data */

 3 DataLogicalOffset fixed bin(31), /* Low offset of bulk data */

 3 DataLogicalOffset2 fixed bin(31); /* High offset of bulk data */

Parent topic: Initial values and language declarations for MQRMH

This build: January 26, 2011 11:16:57

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15000_

1.31.3.4. System/390® assembler declaration

MQRMH DSECT

MQRMH_STRUCID DS CL4 Structure identifier

MQRMH_VERSION DS F Structure version number

MQRMH_STRUCLENGTH DS F Total length of MQRMH, including

* strings at end of fixed fields, but

* not the bulk data

MQRMH_ENCODING DS F Numeric encoding of bulk data

MQRMH_CODEDCHARSETID DS F Character set identifier of bulk

* data

MQRMH_FORMAT DS CL8 Format name of bulk data

MQRMH_FLAGS DS F Reference message flags

MQRMH_OBJECTTYPE DS CL8 Object type

MQRMH_OBJECTINSTANCEID DS XL24 Object instance identifier

MQRMH_SRCENVLENGTH DS F Length of source environment data

MQRMH_SRCENVOFFSET DS F Offset of source environment data

MQRMH_SRCNAMELENGTH DS F Length of source object name

MQRMH_SRCNAMEOFFSET DS F Offset of source object name

MQRMH_DESTENVLENGTH DS F Length of destination environment

* data

MQRMH_DESTENVOFFSET DS F Offset of destination environment

* data

MQRMH_DESTNAMELENGTH DS F Length of destination object name

MQRMH_DESTNAMEOFFSET DS F Offset of destination object name

MQRMH_DATALOGICALLENGTH DS F Length of bulk data

MQRMH_DATALOGICALOFFSET DS F Low offset of bulk data

MQRMH_DATALOGICALOFFSET2 DS F High offset of bulk data

*

MQRMH_LENGTH EQU *-MQRMH

 ORG MQRMH

MQRMH_AREA DS CL(MQRMH_LENGTH)

Parent topic: Initial values and language declarations for MQRMH

This build: January 26, 2011 11:16:57

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15010_

1.31.3.5. Visual Basic declaration

Type MQRMH

 StrucId As String*4 'Structure identifier'

 Version As Long 'Structure version number'

 StrucLength As Long 'Total length of MQRMH, including'

 'strings at end of fixed fields, but'

 'not the bulk data'

 Encoding As Long 'Numeric encoding of bulk data'

 CodedCharSetId As Long 'Character set identifier of bulk data'

 Format As String*8 'Format name of bulk data'

 Flags As Long 'Reference message flags'

 ObjectType As String*8 'Object type'

 ObjectInstanceId As MQBYTE24 'Object instance identifier'

 SrcEnvLength As Long 'Length of source environment data'

 SrcEnvOffset As Long 'Offset of source environment data'

 SrcNameLength As Long 'Length of source object name'

 SrcNameOffset As Long 'Offset of source object name'

 DestEnvLength As Long 'Length of destination environment'

 'data'

Page 317 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

 DestEnvOffset As Long 'Offset of destination environment'

 'data'

 DestNameLength As Long 'Length of destination object name'

 DestNameOffset As Long 'Offset of destination object name'

 DataLogicalLength As Long 'Length of bulk data'

 DataLogicalOffset As Long 'Low offset of bulk data'

 DataLogicalOffset2 As Long 'High offset of bulk data'

End Type

Parent topic: Initial values and language declarations for MQRMH

This build: January 26, 2011 11:16:57

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15020_

1.32. MQRR – Response record

The following table summarizes the fields in the structure.

Overview for MQRR
Availability: AIX®, HP-UX, i5/OS®, Solaris, Linux, Windows, plus WebSphere® MQ clients connected to these systems.

Fields for MQRR

Initial values and language declarations for MQRR

Parent topic: Data type descriptions

This build: January 26, 2011 11:16:58

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15030_

1.32.1. Overview for MQRR

Availability: AIX®, HP-UX, i5/OS®, Solaris, Linux, Windows, plus WebSphere® MQ clients connected to these systems.

Purpose: Use the MQRR structure to receive the completion code and reason code resulting from the open or put operation for a single
destination queue, when the destination is a distribution list. MQRR is an output structure for the MQOPEN, MQPUT, and MQPUT1 calls.

Character set and encoding: Data in MQRR must be in the character set and encoding of the local queue manager; these are given by the
CodedCharSetId queue-manager attribute and MQENC_NATIVE, respectively. However, if the application is running as an MQ client, the

structure must be in the character set and encoding of the client.

Usage: By providing an array of these structures on the MQOPEN and MQPUT calls, or on the MQPUT1 call, you can determine the
completion codes and reason codes for all the queues in a distribution list when the outcome of the call is mixed, that is, when the call
succeeds for some queues in the list but fails for others. Reason code MQRC_MULTIPLE_REASONS from the call indicates that the response

records (if provided by the application) have been set by the queue manager.

Parent topic: MQRR – Response record

This build: January 26, 2011 11:16:58

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15040_

1.32.2. Fields for MQRR

The MQRR structure contains the following fields; the fields are described in alphabetic order:

CompCode (MQLONG)

Reason (MQLONG)

Parent topic: MQRR – Response record

This build: January 26, 2011 11:16:58

Notices | Trademarks | Downloads | Library | Support | Feedback

Table 1. Fields in MQRR

Field Description Topic

CompCode Completion code for queue CompCode

Reason Reason code for queue Reason

Page 318 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15050_

1.32.2.1. CompCode (MQLONG)

This is the completion code resulting from the open or put operation for the queue whose name was specified by the corresponding element

in the array of MQOR structures provided on the MQOPEN or MQPUT1 call.

This is always an output field. The initial value of this field is MQCC_OK.

Parent topic: Fields for MQRR

This build: January 26, 2011 11:16:58

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15060_

1.32.2.2. Reason (MQLONG)

This is the reason code resulting from the open or put operation for the queue whose name was specified by the corresponding element in
the array of MQOR structures provided on the MQOPEN or MQPUT1 call.

This is always an output field. The initial value of this field is MQRC_NONE.

Parent topic: Fields for MQRR

This build: January 26, 2011 11:16:58

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15070_

1.32.3. Initial values and language declarations for MQRR

C declaration

COBOL declaration

PL/I declaration

Visual Basic declaration

Parent topic: MQRR – Response record

This build: January 26, 2011 11:16:58

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15080_

1.32.3.1. C declaration

typedef struct tagMQRR MQRR;

struct tagMQRR {

 MQLONG CompCode; /* Completion code for queue */

 MQLONG Reason; /* Reason code for queue */

};

Parent topic: Initial values and language declarations for MQRR

This build: January 26, 2011 11:16:58

Notices | Trademarks | Downloads | Library | Support | Feedback

Table 1. Initial values of fields in MQRR for MQRR

Field name Name of constant Value of constant

CompCode MQCC_OK 0

Reason MQRC_NONE 0

Notes:

1. In the C programming language, the macro variable MQRR_DEFAULT contains the values listed above. Use it in the

following way to provide initial values for the fields in the structure:

MQRR MyRR = {MQRR_DEFAULT};

Page 319 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15090_

1.32.3.2. COBOL declaration

** MQRR structure

 10 MQRR.

** Completion code for queue

 15 MQRR-COMPCODE PIC S9(9) BINARY.

** Reason code for queue

 15 MQRR-REASON PIC S9(9) BINARY.

Parent topic: Initial values and language declarations for MQRR

This build: January 26, 2011 11:16:58

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15100_

1.32.3.3. PL/I declaration

dcl

 1 MQRR based,

 3 CompCode fixed bin(31), /* Completion code for queue */

 3 Reason fixed bin(31); /* Reason code for queue */

Parent topic: Initial values and language declarations for MQRR

This build: January 26, 2011 11:16:58

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15110_

1.32.3.4. Visual Basic declaration

Type MQRR

 CompCode As Long 'Completion code for queue'

 Reason As Long 'Reason code for queue'

End Type

Parent topic: Initial values and language declarations for MQRR

This build: January 26, 2011 11:16:58

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15120_

1.33. MQSCO – SSL configuration options

The following table summarizes the fields in the structure.

Overview for MQSCO
Availability: AIX®, HP-UX, Solaris, Linux and Windows clients.

Fields for MQSCO

Table 1. Fields in MQSCO

Field Description Topic

StrucId Structure identifier StrucId

Version Structure version number Version

KeyRepository Location of key repository KeyRepository

CryptoHardware Details of cryptographic hardware CryptoHardware

AuthInfoRecCount Number of MQAIR records present AuthInfoRecCount

AuthInfoRecOffset Offset of first MQAIR record from start of MQSCO AuthInfoRecOffset

AuthInfoRecPtr Address of first MQAIR record AuthInfoRecPtr

Note: The remaining fields are ignored if Version is less than MQSCO_VERSION_2.

KeyResetCount SSL secret key reset count KeyResetCount

FipsRequired Use FIPS-certified cryptographic algorithms in

WebSphere® MQ

FipsRequired (MQLONG)

Page 320 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Initial values and language declarations for MQSCO

Parent topic: Data type descriptions

This build: January 26, 2011 11:16:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15130_

1.33.1. Overview for MQSCO

Availability: AIX®, HP-UX, Solaris, Linux and Windows clients.

Purpose: The MQSCO structure (in conjunction with the SSL fields in the MQCD structure) allows an application running as a WebSphere®
MQ client to specify configuration options that control the use of SSL for the client connection when the channel protocol is TCP/IP. The
structure is an input parameter on the MQCONNX call.

If the channel protocol for the client channel is not TCP/IP, the MQSCO structure is ignored.

Character set and encoding: Data in MQSCO must be in the character set and encoding of the local queue manager; these are given by
the CodedCharSetId queue-manager attribute and MQENC_NATIVE, respectively.

Parent topic: MQSCO – SSL configuration options

This build: January 26, 2011 11:16:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15140_

1.33.2. Fields for MQSCO

The MQSCO structure contains the following fields; the fields are described in alphabetic order:

AuthInfoRecCount (MQLONG)

AuthInfoRecOffset (MQLONG)

AuthInfoRecPtr (PMQAIR)

CryptoHardware (MQCHAR256)

This field gives configuration details for cryptographic hardware connected to the client system.

FipsRequired (MQLONG)
WebSphere® MQ can be configured with cryptographic hardware so that the cryptography modules used are those provided by the

hardware product; these can either be FIPS-certified, or not, to a particular level depending on the cryptographic hardware product in
use. Use this field to specify that only FIPS-certified algorithms are used if the cryptography is provided in WebSphere MQ-provided
software.

KeyRepository (MQCHAR256)

KeyResetCount (MQLONG)

StrucId (MQCHAR4)

Version (MQLONG)

Parent topic: MQSCO – SSL configuration options

This build: January 26, 2011 11:16:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15150_

1.33.2.1. AuthInfoRecCount (MQLONG)

This is the number of authentication information (MQAIR) records addressed by the AuthInfoRecPtr or AuthInfoRecOffset fields. For more

information, see MQAIR – Authentication information record. The value must be zero or greater. If the value is not valid, the call fails with
reason code MQRC_AUTH_INFO_REC_COUNT_ERROR.

This is an input field. The initial value of this field is 0.

Parent topic: Fields for MQSCO

Page 321 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This build: January 26, 2011 11:16:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15160_

1.33.2.2. AuthInfoRecOffset (MQLONG)

This is the offset in bytes of the first authentication information record from the start of the MQSCO structure. The offset can be positive or
negative. The field is ignored if AuthInfoRecCount is zero.

You can use either AuthInfoRecOffset or AuthInfoRecPtr to specify the MQAIR records, but not both; see the description of the

AuthInfoRecPtr field for details.

This is an input field. The initial value of this field is 0.

Parent topic: Fields for MQSCO

This build: January 26, 2011 11:16:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15170_

1.33.2.3. AuthInfoRecPtr (PMQAIR)

This is the address of the first authentication information record. The field is ignored if AuthInfoRecCount is zero.

You can provide the array of MQAIR records in one of two ways:

� By using the pointer field AuthInfoRecPtr

In this case, the application can declare an array of MQAIR records that is separate from the MQSCO structure, and set
AuthInfoRecPtr to the address of the array.

Using AuthInfoRecPtr is recommended for programming languages that support the pointer data type in a fashion that is portable to

different environments (for example, the C programming language).

� By using the offset field AuthInfoRecOffset

In this case, the application must declare a compound structure containing an MQSCO followed by the array of MQAIR records, and set
AuthInfoRecOffset to the offset of the first record in the array from the start of the MQSCO structure. Ensure that this value is

correct, and has a value that can be accommodated within an MQLONG (the most restrictive programming language is COBOL, for
which the valid range is -999 999 999 through +999 999 999).

Using AuthInfoRecOffset is recommended for programming languages that do not support the pointer data type, or that implement

the pointer data type in a fashion that is not portable to different environments (for example, the COBOL programming language).

Whatever technique you choose, only one of AuthInfoRecPtr and AuthInfoRecOffset can be used; the call fails with reason code

MQRC_AUTH_INFO_REC_ERROR if both are nonzero.

This is an input field. The initial value of this field is the null pointer in those programming languages that support pointers, and an all-null
byte string otherwise.

Note: On platforms where the programming language does not support the pointer data type, this field is declared as a byte string of the
appropriate length.

Parent topic: Fields for MQSCO

This build: January 26, 2011 11:16:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15180_

1.33.2.4. CryptoHardware (MQCHAR256)

This field gives configuration details for cryptographic hardware connected to the client system.

Set the field to a string of the following format, or leave it blank or null:

GSK_PKCS11=<the PKCS #11 driver path and file name>;<the PKCS #11

token label>;<the PKCS #11 token password>;<symmetric cipher setting>;

To use cryptographic hardware which conforms to the PKCS #11 interface, for example, the IBM® 4960 or IBM 4764, the PKCS #11 driver
path, PKCS #11 token label, and PKCS #11 token password strings must be specified, each terminated by a semi-colon.

The PKCS #11 driver path is an absolute path to the shared library providing support for the PKCS #11 card. The PKCS #11 driver file
name is the name of the shared library. An example of the value required for the PKCS #11 path and file name is:

/usr/lib/pkcs11/PKCS11_API.so

The PKCS #11 token label must be entirely in lowercase. If you have configured your hardware with a mixed case or uppercase token label,
re-configure it with this lowercase label.

If no cryptographic hardware configuration is required, set the field to blank or null.

Page 322 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

If the value is shorter than the length of the field, terminate the value with a null character, or pad it with blanks to the length of the field. If
the value is not valid, or leads to a failure when used to configure the cryptographic hardware, the call fails with reason code
MQRC_CRYPTO_HARDWARE_ERROR.

This is an input field. The length of this field is given by MQ_SSL_CRYPTO_HARDWARE_LENGTH. The initial value of this field is the null
string in C, and blank characters in other programming languages.

Parent topic: Fields for MQSCO

This build: January 26, 2011 11:16:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15190_

1.33.2.5. FipsRequired (MQLONG)

WebSphere® MQ can be configured with cryptographic hardware so that the cryptography modules used are those provided by the
hardware product; these can either be FIPS-certified, or not, to a particular level depending on the cryptographic hardware product in use.

Use this field to specify that only FIPS-certified algorithms are used if the cryptography is provided in WebSphere MQ-provided software.

When WebSphere MQ is installed an implementation of SSL cryptography is also installed which provides some FIPS-certified modules.

The values can be:

MQSSL_FIPS_NO

This is the default value. When set to this value:

� Any CipherSpec supported on a particular platform can be used.

� If you are using GSKit v7 and running without the use of cryptographic hardware, the following CipherSpecs run using FIPS 140–2
certified cryptography on the WebSphere MQ platforms:

� TLS_RSA_WITH_3DES_EDE_CBC_SHA

� FIPS_WITH_3DES_EDE_CBC_SHA

� TLS_RSA_WITH_AES_128_CBC_SHA

� TLS_RSA_WITH_AES_256_CBC_SHA

� If you are using GSKit v8 and running without the use of cryptographic hardware, the following CipherSpecs run using FIPS 140–2
certified cryptography on the WebSphere MQ platforms:

� At TLS 1.0:

� TLS_RSA_WITH_AES_128_CBC_SHA256

� TLS_RSA_WITH_AES_256_CBC_SHA256

� TLS_RSA_WITH_3DES_EDE_CBC_SHA

� At TLS 1.2:

� TLS_RSA_WITH_AES_128_CBC_SHA256

� TLS_RSA_WITH_AES_256_CBC_SHA256

MQSSL_FIPS_YES

When set to this value, unless you are using cryptographic hardware to perform the cryptography:

� Only FIPS-certified cryptographic algorithms can be used in the CipherSpec applying to this client connection.

� If you are using GSKit v7, inbound and outbound SSL channel connections succeed only if one of the following Cipher Specs are
used:

� TLS_RSA_WITH_3DES_EDE_CBC_SHA

� FIPS_WITH_3DES_EDE_CBC_SHA

� TLS_RSA_WITH_AES_128_CBC_SHA

� TLS_RSA_WITH_AES_256_CBC_SHA

� If you are using GSKit v8, inbound and outbound SSL channel connections succeed only if one of the following Cipher Specs is
used:

� At TLS 1.0:

� TLS_RSA_WITH_AES_128_CBC_SHA256

� TLS_RSA_WITH_AES_256_CBC_SHA256

� TLS_RSA_WITH_3DES_EDE_CBC_SHA

� At TLS 1.2:

� TLS_RSA_WITH_AES_128_CBC_SHA256

� TLS_RSA_WITH_AES_256_CBC_SHA256

See Alternative SSL and TLS support for Windows, UNIX, and Linux systems for more information about using GSKit v8.

Parent topic: Fields for MQSCO

This build: January 26, 2011 11:17:00

Page 323 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15200_

1.33.2.6. KeyRepository (MQCHAR256)

This field is relevant only for WebSphere® MQ clients running on UNIX systems and Windows systems. It specifies the location of the key
database file in which keys and certificates are stored. The key database file must have a file name of the form zzz.kdb, where zzz is user-

selectable. The KeyRepository field contains the path to this file, along with the file name stem (all characters in the file name up to but not

including the final .kdb). The .kdb file suffix is added automatically.

Each key database file has an associated password stash file. This holds encrypted passwords that are used to allow programmatic access to
the key database. The password stash file must reside in the same directory and have the same file stem as the key database, and must
end with the suffix .sth.

For example, if the KeyRepository field has the value /xxx/yyy/key, the key database file must be /xxx/yyy/key.kdb, and the password

stash file must be /xxx/yyy/key.sth, where xxx and yyy represent directory names.

If the value is shorter than the length of the field, terminate the value with a null character, or pad it with blanks to the length of the field.
The value is not checked; if there is an error in accessing the key repository, the call fails with reason code

MQRC_KEY_REPOSITORY_ERROR.

To run an SSL connection from a WebSphere MQ client, set KeyRepository to a valid key database file name.

This is an input field. The length of this field is given by MQ_SSL_KEY_REPOSITORY_LENGTH. The initial value of this field is the null string
in C, and blank characters in other programming languages.

Parent topic: Fields for MQSCO

This build: January 26, 2011 11:17:00

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15210_

1.33.2.7. KeyResetCount (MQLONG)

This represents the total number of unencrypted bytes sent and received within an SSL conversation before the secret key is renegotiated.
The number of bytes includes control information sent by the MCA.

If you specify an SSL/TLS secret key reset count between 1 byte and 32Kb, SSL/TLS channels will use a secret key reset count of 32Kb. This

is to avoid the processing cost of excessive key resets which would occur for small SSL/TLS secret key reset values.

This is an input field. The value is a number between 0 and 999 999 999, with a default value of 0. Use a value of 0 to indicate that secret
keys are never renegotiated.

Parent topic: Fields for MQSCO

This build: January 26, 2011 11:17:00

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15220_

1.33.2.8. StrucId (MQCHAR4)

This is the structure identifier; the value must be:

MQSCO_STRUC_ID

Identifier for SSL configuration options structure.

For the C programming language, the constant MQSCO_STRUC_ID_ARRAY is also defined; this has the same value as MQSCO_STRUC_ID,
but is an array of characters instead of a string.

This is always an input field. The initial value of this field is MQSCO_STRUC_ID.

Parent topic: Fields for MQSCO

This build: January 26, 2011 11:17:00

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15230_

1.33.2.9. Version (MQLONG)

Page 324 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This is the structure version number; the value must be:

MQSCO_VERSION_1

Version-1 SSL configuration options structure.

MQSCO_VERSION_2

Version-2 SSL configuration options structure.

The following constant specifies the version number of the current version:

MQSCO_CURRENT_VERSION

Current version of SSL configuration options structure.

This is always an input field. The initial value of this field is MQSCO_VERSION_2

Parent topic: Fields for MQSCO

This build: January 26, 2011 11:17:00

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15240_

1.33.3. Initial values and language declarations for MQSCO

C declaration

COBOL declaration

PL/I declaration

Visual Basic declaration

Parent topic: MQSCO – SSL configuration options

This build: January 26, 2011 11:17:00

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15250_

1.33.3.1. C declaration

typedef struct tagMQSCO MQSCO;

struct tagMQSCO {

 MQCHAR4 StrucId; /* Structure identifier */

 MQLONG Version; /* Structure version number */

 MQCHAR256 KeyRepository; /* Location of SSL key repository */

 MQCHAR256 CryptoHardware; /* Cryptographic hardware configuration

 string */

 MQLONG AuthInfoRecCount; /* Number of MQAIR records present */

 MQLONG AuthInfoRecOffset; /* Offset of first MQAIR record from

 start of MQSCO structure */

 PMQAIR AuthInfoRecPtr; /* Address of first MQAIR record */

};

Parent topic: Initial values and language declarations for MQSCO

This build: January 26, 2011 11:17:00

Table 1. Initial values of fields in MQSCO

Field name Name of constant Value of constant

StrucId MQSCO_STRUC_ID 'SCO�'

Version MQSCO_CURRENT_VERSION 1

KeyRepository None Null string or blanks

CryptoHardware None Null string or blanks

AuthInfoRecCount None 0

AuthInfoRecOffset None 0

AuthInfoRecPtr None Null pointer or null bytes

Notes:

1. The symbol � represents a single blank character.

2. In the C programming language, the macro variable MQSCO_DEFAULT contains the values listed above. Use it in the

following way to provide initial values for the fields in the structure:

MQSCO MySCO = {MQSCO_DEFAULT};

Page 325 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15260_

1.33.3.2. COBOL declaration

** MQSCO structure

 10 MQSCO.

** Structure identifier

 15 MQSCO-STRUCID PIC X(4).

** Structure version number

 15 MQSCO-VERSION PIC S9(9) BINARY.

** Location of SSL key repository

 15 MQSCO-KEYREPOSITORY PIC X(256).

** Cryptographic hardware configuration string

 15 MQSCO-CRYPTOHARDWARE PIC X(256).

** Number of MQAIR records present

 15 MQSCO-AUTHINFORECCOUNT PIC S9(9) BINARY.

** Offset of first MQAIR record from start of MQSCO structure

 15 MQSCO-AUTHINFORECOFFSET PIC S9(9) BINARY.

** Address of first MQAIR record

 15 MQSCO-AUTHINFORECPTR POINTER.

Parent topic: Initial values and language declarations for MQSCO

This build: January 26, 2011 11:17:00

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15270_

1.33.3.3. PL/I declaration

dcl

 1 MQSCO based,

 3 StrucId char(4), /* Structure identifier */

 3 Version fixed bin(31), /* Structure version number */

 3 KeyRepository char(256), /* Location of SSL key

 repository */

 3 CryptoHardware char(256), /* Cryptographic hardware

 configuration string */

 3 AuthInfoRecCount fixed bin(31), /* Number of MQAIR records

 present */

 3 AuthInfoRecOffset fixed bin(31), /* Offset of first MQAIR record

 from start of MQSCO structure */

 3 AuthInfoRecPtr pointer; /* Address of first MQAIR record */

Parent topic: Initial values and language declarations for MQSCO

This build: January 26, 2011 11:17:01

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15280_

1.33.3.4. Visual Basic declaration

Type MQSCO

 StrucId As String*4 'Structure identifier'

 Version As Long 'Structure version number'

 KeyRepository As String*256 'Location of SSL key repository'

 CryptoHardware As String*256 'Cryptographic hardware configuration'

 'string'

 AuthInfoRecCount As Long 'Number of MQAIR records present'

 AuthInfoRecOffset As Long 'Offset of first MQAIR record from'

 'start of MQSCO structure'

 AuthInfoRecPtr As MQPTR 'Address of first MQAIR record'

End Type

Parent topic: Initial values and language declarations for MQSCO

This build: January 26, 2011 11:17:01

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15290_

1.34. MQSD - Subscription descriptor

The following table summarizes the fields in the structure.

Page 326 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Overview for MQSD

Fields for MQSD

Using topic strings

Initial values and language declarations for MQSD

Parent topic: Data type descriptions

This build: January 26, 2011 11:19:53

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr35020_

1.34.1. Overview for MQSD

Availability: AIX®, HP-UX, i5/OS®, Solaris, Linux, Windows, z/OS®, plus WebSphere® MQ clients connected to these systems.

Purpose: The MQSD structure is used to specify details about the subscription being made.

The structure is an input/output parameter on the MQSUB call for more information see Usage notes for MQSUB

Managed subscriptions: If an application has no specific need to use a particular queue as the destination for those publications that

match its subscription, it can make use of the managed subscription feature. If an application elects to use a managed subscription, the
queue manager informs the subscriber about the destination where published messages will be sent, by providing an object handle as an
output from the MQSUB call. For more information, see Hobj (MQHOBJ) - input/output.

When the subscription is removed, the queue manager also undertakes to clean up messages that have not been retrieved from the

managed destination, in the following situations:

� When the subscription is removed - by use of MQCLOSE with MQCO_REMOVE_SUB - and the managed Hobj is closed.

� By implicit means when the connection is lost to an application using a non-durable subscription (MQSO_NON_DURABLE)

� By expiration when a subscription is removed because it has expired and the managed Hobj is closed.

You must use managed subscriptions with non-durable subscriptions, so that this clean up can occur, and so that messages for closed non-
durable subscriptions do not take up space in your queue manager. Durable subscriptions can also use managed destinations.

Version: The current version of MQSD is MQSD_VERSION_1.

Character set and encoding: Data in MQSD must be in the character set and encoding of the local queue manager; these are given by the
CodedCharSetId queue-manager attribute and MQENC_NATIVE, respectively. However, if the application is running as an MQ client, the

structure must be in the character set and encoding of the client.

Parent topic: MQSD - Subscription descriptor

This build: January 26, 2011 11:19:54

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr35030_

1.34.2. Fields for MQSD

The MQSD structure contains the following fields; the fields are described in alphabetical order:

Field Description Topic

StrucId Structure identifier StrucId

Version Structure version number Version

Options Options Options

ObjectName Object name ObjectName

AlternateUserId Alternate User Id AlternateUserId

AlternateSecurityId Alternate Security Id AlternateSecurityId

SubExpiry Subscription Expiry SubExpiry

ObjectString Object String ObjectString

SubName Subscription Name SubName

SubUserData Subscription user data SubUserData

SubCorrelId Subscription Correlation Id SubCorrelId

PubPriority Publication priority PubPriority

PubAccountingToken Publication Accounting Token PubAccountingToken

PubAppIdentityData Publication application identity data PubAppIdentityData

SelectionString String providing selection criteria SelectionString

SubLevel Subscription Level SubLevel

ResObjectString Long object name ResObjectString

Page 327 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

AlternateSecurityId (MQBYTE40)

AlternateUserId (MQCHAR12)

ObjectName (MQCHAR48)

ObjectString (MQCHARV)

Options (MQLONG)

This provides options to control the action of the MQSUB call.

PubAccountingToken (MQBYTE32)

PubApplIdentityData (MQCHAR32)

PubPriority (MQLONG)

ResObjectString (MQCHARV)
This is the long object name after the queue manager resolves the name provided in ObjectName.

SelectionString (MQCHARV)
This is the string used to provide the selection criteria used when subscribing for messages from a topic.

StrucId (MQCHAR4)

SubCorrelId (MQBYTE24)

This field contains a correlation identifier common to all publications matching this subscription.

SubExpiry (MQLONG)

SubLevel (MQLONG)
This is the level associated with the subscription. Publications will only be delivered to this subscription if it is in the set of
subscriptions with the highest SubLevel value less than or equal to the PubLevel used at publication time.

SubUserData (MQCHARV)

SubName (MQCHARV)

Version (MQLONG)

Parent topic: MQSD - Subscription descriptor

This build: January 26, 2011 11:19:54

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr35040_

1.34.2.1. AlternateSecurityId (MQBYTE40)

This is a security identifier that is passed with the AlternateUserId to the authorization service to allow appropriate authorization checks to
be performed.

AlternateSecurityId is used only if MQSO_ALTERNATE_USER_AUTHORITY is specified, and the AlternateUserId field is not entirely blank up
to the first null character or the end of the field.

On return from an MQSUB call using MQSO_RESUME, this field is unchanged.

See the description of AlternateSecurityId (MQBYTE40) in the MQOD data type for more information.

Parent topic: Fields for MQSD

This build: January 26, 2011 11:19:56

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr35100_

1.34.2.2. AlternateUserId (MQCHAR12)

If you specify MQSO_ALTERNATE_USER_AUTHORITY, this field contains an alternate user identifier that is used to check the authorization

for the subscription and for output to the destination queue (specified in the Hobj parameter of the MQSUB call), in place of the user

identifier that the application is currently running under.

If successful, the user identifier specified in this field is recorded as the subscription owning user identifier in place of the user identifier that

the application is currently running under.

If MQSO_ALTERNATE_USER_AUTHORITY is specified and this field is entirely blank up to the first null character or the end of the field, the

Page 328 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

subscription can succeed only if no user authorization is needed to subscribe to this topic with the options specified or the destination queue
for output.

If MQSO_ALTERNATE_USER_AUTHORITY is not specified, this field is ignored.

The following differences exist in the environments indicated:

� On z/OS®, only the first 8 characters of AlternateUserId are used to check the authorization for the subscription. However, the current
user identifier must be authorized to specify this particular alternate user identifier; all 12 characters of the alternate user identifier
are used for this check. The user identifier must contain only characters allowed by the external security manager.

On return from an MQSUB call using MQSO_RESUME, this field is unchanged.

This is an input field. The length of this field is given by MQ_USER_ID_LENGTH. The initial value of this field is the null string in C, and 12
blank characters in other programming languages.

Parent topic: Fields for MQSD

This build: January 26, 2011 11:19:56

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr35090_

1.34.2.3. ObjectName (MQCHAR48)

This is the name of the topic object as defined on the local queue manager.

The name can contain the following characters:

� Uppercase alphabetic characters (A through Z)

� Lowercase alphabetic characters (a through z)

� Numeric digits (0 through 9)

� Period (.), forward slash (/), underscore (_), percent (%)

The name must not contain leading or embedded blanks, but can contain trailing blanks. Use a null character to indicate the end of

significant data in the name; the null and any characters following it are treated as blanks. The following restrictions apply in the
environments indicated:

� On systems that use EBCDIC Katakana, lowercase characters cannot be used.

� On z/OS®:

� Avoid names that begin or end with an underscore; they cannot be processed by the operations and control panels.

� The percent character has a special meaning to RACF®. If RACF is used as the external security manager, names must not
contain the percent. If they do, those names are not included in any security checks when RACF generic profiles are used.

� On i5/OS®, names containing lowercase characters, forward slash, or percent, must be enclosed in quotation marks when specified on
commands. These quotation marks must not be specified for names that occur as fields in structures or as parameters on calls.

The ObjectName is used to form the full topic name.

The full topic name can be built from two different fields: ObjectName and ObjectString. For details of how these two fields are used, see

Using topic strings.

If the object identified by the ObjectName field cannot be found, the call fails with reason code MQRC_UNKNOWN_OBJECT_NAME even if

there is a string specified in ObjectString.

On return from an MQSUB call using the MQSO_RESUME option this field is unchanged.

The length of this field is given by MQ_TOPIC_NAME_LENGTH. The initial value of this field is the null string in C, and 48 blank characters in

other programming languages.

If altering an existing subscription using the MQSO_ALTER option, the name of the topic object subscribed to cannot be changed. This field
and the ObjectString field can be omitted. If they are provided, they must resolve to the same full topic name. If they do not, the call fails

with MQRC_TOPIC_NOT_ALTERABLE.

Parent topic: Fields for MQSD

Related reference
Using topic strings

This build: January 26, 2011 11:19:56

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr35080_

1.34.2.4. ObjectString (MQCHARV)

This is the long object name to be used.

The ObjectString is used to form the Full topic name.

Page 329 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

The full topic name can be built from two different fields: ObjectName and ObjectString. For details of how these two fields are used, see

Using topic strings.

The maximum length of ObjectString is 10240.

If ObjectString is not specified correctly, according to the description of how to use the MQCHARV structure, or if it exceeds the

maximum length, the call fails with reason code MQRC_OBJECT_STRING_ERROR.

This is an input field. The initial values of the fields in this structure are the same as those in the MQCHARV structure.

If there are wildcards in the ObjectString the interpretation of those wildcards can be controlled using the Wildcard options specified in the

Options field of the MQSD.

On return from an MQSUB call using the MQSO_RESUME option this field is unchanged. The full topic name used is returned in the
ResObjectString field if a buffer is provided.

If altering an existing subscription using the MQSO_ALTER option, the long name of the topic object subscribed to cannot be changed. This

field and the ObjectName field can be omitted. If they are provided they must resolve to the same full topic name or the call fails with

MQRC_TOPIC_NOT_ALTERABLE.

Parent topic: Fields for MQSD

This build: January 26, 2011 11:19:56

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr35130_

1.34.2.5. Options (MQLONG)

This provides options to control the action of the MQSUB call.

You must specify at least one of the following options:

� MQSO_ALTER

� MQSO_RESUME

� MQSO_CREATE

The values you specify for the options can be used in the following ways:

� The values can be added together. Do not add the same constant more than once.

� The values can be combined using the bitwise OR operation, if the programming language supports bitwise operations.

Combinations that are not valid are noted in this topic; any other combinations are valid.

Access or creation options: Access and creation options control whether a subscription is created, or whether an existing subscription is
returned or altered. You must specify at least one of these options. The table displays valid combinations of access and creation options.

MQSO_CREATE

Create a new subscription for the topic specified. If a subscription using the same SubName already exists, the call fails with

MQRC_SUB_ALREADY_EXISTS. This failure can be avoided by combining the MQSO_CREATE option with MQSO_RESUME. The SubName is

not always necessary. For more details see the description of that field.

Combining MQSO_CREATE with MQSO_RESUME returns a handle to a pre-existing subscription for the specified SubName if one is found; if

there is no existing subscription, a new one is created using all the fields provided in the MQSD.

MQSO_CREATE can also be combined with MQSO_ALTER to similar effect.

MQSO_RESUME

Combination of

options

Notes

MQSO_CREATE Creates a subscription if one doesn't exist. This combination fails if the subscription already exists.

MQSO_RESUME Resumes an existing subscription. This combination fails if no subscription exists.

MQSO_CREATE +
MQSO_RESUME

Creates a subscription if one doesn't exist and resumes a matching one, if it does exist. This
combination is useful when it is used in an application that will be run a number of times.

MQSO_ALTER (see note) Resumes an existing subscription, altering any fields to match that specified in the MQSD. This

combination fails if no subscription exists.

MQSO_CREATE +

MQSO_ALTER (see note)

Creates a subscription if one doesn't exist and resumes a matching one, if it does exist, altering

any fields to match that specified in the MQSD. This combination is useful combination when used

in an application that wants to ensure its subscription is in a certain state before proceeding.

Note:

Options specifying MQSO_ALTER can also specify MQSO_RESUME, but this combination has no additional effect to specifying

MQSO_ALTER alone. In other words, MQSO_ALTER implies MQSO_RESUME, because calling MQSUB to alter a subscription
implies that the subscription will also be resumed. The opposite is not true, however: resuming a subscription does not imply it

is to be altered.

Page 330 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Return a handle to a pre-existing subscription which matches that specified by SubName. No changes are made to the matching

subscription's attributes and they will be returned on output in the MQSD structure. Only the following MQSD fields are used: StrucId,
Version, Options, AlternateUserId and AlternateSecurityId, and SubName.

The call fails with reason code MQRC_NO_SUBSCRIPTION if a subscription does not exist matching the full subscription name. This failure
can be avoided by combining the MQSO_CREATE option with MQSO_RESUME.

The user ID of the subscription is the user ID that created the subscription, or if it has been subsequently altered by a different user ID, it
is the user ID of the most recent successful alteration. If an AlternateUserId is used, and use of alternate user IDs is allowed for that user,

the alternate user ID will be recorded as the user ID that created the subscription instead of the user ID under which the subscription was
made.

If a matching subscription exists that was created without the MQSO_ANY_USERID option, and the user ID of the subscription is different
from that of the application requesting a handle to the subscription, the call fails with reason code MQRC_IDENTITY_MISMATCH.

If a matching subscription exists and is currently in use by another application, the call fails with MQRC_SUBSCRIPTION_IN_USE. If it is
currently in use by the same connection the call will not fail and a handle to the subscription will be returned.

If the subscription named in SubName is not a valid subscription to resume or alter from an application, the call will fail with
MQRC_INVALID_SUBSCRIPTION.

MQSO_RESUME is implied by MQSO_ALTER so you do not need to combine it with that option. However, combining the two options does
not cause an error.

MQSO_ALTER

Return a handle to a pre-existing subscription with the full subscription name matching that specified by the name in SubName. Any

attributes of the subscription that are different from that specified in the MQSD are altered in the subscription unless alteration is
disallowed for that attribute. Details are noted in the description of each attribute and are summarized in the table below. If you try to

alter an attribute that can not be changed, or to alter a subscription that has set the MQSO_IMMUTABLE option, the call fails with the
reason code shown in the table below.

The call fails with reason code MQRC_NO_SUBSCRIPTION if a subscription matching the full subscription name does not exist. You can
avoid this failure by combining the MQSO_CREATE option with MQSO_ALTER.

Combining MQSO_CREATE with MQSO_ALTER returns a handle to a pre-existing subscription for the specified SubName if one is found; if

there is no existing subscription, a new one is created using all the fields provided in the MQSD.

The user ID of the subscription is the user ID that created the subscription, or if it has been subsequently altered by a different user ID, it

is the user ID of the most recent, successful alteration. If an AlternateUserId is used, and use of alternate user IDs is allowed for that
user, then the alternate user ID will be recorded as the user ID that created the subscription instead of the user ID under which the
subscription was made.

If a matching subscription exists that was created without the option MQSO_ANY_USERID and the user ID of the subscription is different

from that of the application requesting a handle to the subscription, the call fails with reason code MQRC_IDENTITY_MISMATCH.

If a matching subscription exists and is currently in use by another application, the call fails with MQRC_SUBSCRIPTION_IN_USE. If it is
currently in use by the same connection the call will not fail and a handle to the subscription will be returned.

If the subscription named in SubName is not a valid subscription to resume or alter from an application, the call will fail with

MQRC_INVALID_SUBSCRIPTION.

The following table shows the ability of MQSO_ALTER to alter attribute values in MQSD and MQSUB.

Data type

descriptor or
function call

Field name Can this

attribute be
altered using

MQSO_ALTER

Reason Code

MQSD Durability options No MQRC_DURABILITY_NOT_ALTERABLE

MQSD Destination Options Yes None

MQSD Registration options Yes (see note 1) MQRC_GROUPING_NOT_ALTERABLE if you try to alter
MQSO_GROUP_SUB

MQSD Publication options Yes (see note 2) None

MQSD Wildcard options No MQRC_TOPIC_NOT_ALTERABLE

MQSD Other options No (see note 3) None

MQSD ObjectName No MQRC_TOPIC_NOT_ALTERABLE

MQSD AlternateUserId No (see note 4) None

MQSD AlternateSecurityId No (see note 4) None

MQSD SubExpiry Yes None

MQSD ObjectString No MQRC_TOPIC_NOT_ALTERABLE

MQSD SubName No (see note 5) None

MQSD SubUserData Yes None

MQSD SubCorrelId Yes (see note 6) MQRC_GROUPING_NOT_ALTERABLE when in a grouped

subscription

MQSD PubPriority Yes None

MQSD PubAccountingToken Yes None

MQSD PubApplIdentityData Yes None

MQSD SubLevel No MQRC_SUBLEVEL_NOT_ALTERABLE

MQSUB Hobj Yes (see note 6) MQRC_GROUPING_NOT_ALTERABLE when in a grouped

Page 331 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Durability options: The following options control how durable the subscription is. You can specify only one of these options. If you are
altering an existing subscription using the MQSO_ALTER option, you cannot change the durability of the subscription. On return from an

MQSUB call using MQSO_RESUME the appropriate durability option is set.

MQSO_DURABLE

Request that the subscription to this topic remains until it is explicitly removed using MQCLOSE with the MQCO_REMOVE_SUB option. If
this subscription is not explicitly removed it will remain even after this application's connection to the queue manager is closed.
If a durable subscription is requested to a topic that is defined as not allowing durable subscriptions, the call fails with
MQRC_DURABILITY_NOT_ALLOWED.

MQSO_NON_DURABLE

Request that the subscription to this topic is removed when the application's connection to the queue manager is closed, if it has not

already been explicitly removed. MQSO_NON_DURABLE is the opposite of the MQSO_DURABLE option, and is defined to aid program
documentation. It is the default if neither is specified.

Destination options: The following option controls the destination that publications for a topic that has been subscribed to are sent to. If
altering an existing subscription using the MQSO_ALTER option, the destination used for publications for the subscription can be changed.

On return from an MQSUB call using MQSO_RESUME this option will set if appropriate.

MQSO_MANAGED

Request that the destination that the publications are sent to is managed by the queue manager.

The object handle returned in Hobj represents a queue manager managed queue and is for use with subsequent MQGET, MQCB, MQINQ,

or MQCLOSE calls.

An object handle returned from a previous MQSUB call cannot be provided in the Hobj parameter when MQSO_MANAGED is not specified.

Scope Option: The following option controls the scope of the subscription being made. If altering an existing subscription using the
MQSO_ALTER option, this subscription scope option cannot be changed. On returning from an MQSUB call using MQSO-RESUME, the

appropriate scope option will be set.

MQSO_SCOPE_QMGR

This subscription is made only on the local queue manager. No proxy subscription is distributed to other queue managers in the network.
Only publications that are published at this queue manager are sent to this subscriber. This overrides any behavior set using the
SUBSCOPE topic attribute.

Note: If not set, the subscription scope is determined by the SUBSCOPE topic attribute.

Registration options: The following options control the details of the registration that is made to the queue manager for this subscription.

If altering an existing subscription using the MQSO_ALTER option, these registration options can be changed. On return from an MQSUB call
using MQSO_RESUME the appropriate registration options will be set.

MQSO_GROUP_SUB

This subscription is to be grouped with other subscriptions of the same SubLevel using the same queue and specifying the same
correlation ID so that any publications to topics that would cause more than one publication message to be provided to the group of
subscriptions, due to an overlapping set of topic strings being used, only causes one message to be delivered to the queue. If this option
is not used, then each unique subscription (identified by SubName) that matches is provided with a copy of the publication which could

mean more than one copy of the publication may be placed on the queue shared by a number of subscriptions.

Only the most significant subscription in the group is provided with a copy of the publication. The most significant subscription is based on
the Full topic name up to the point where a wildcard is found. If a mixture of wildcard schemes is used within the group, only the position
of the wildcard is important. You are advised not to combine different wildcard schemes within a group of subscriptions that share the

same queue.

When creating a new grouped subscription it must still have a unique SubName, but if it matches the full topic name of an existing
subscription in the group, the call will fail with MQRC_DUPLICATE_GROUP_SUB.

If the most significant subscription in group also specifies MQSO_NOT_OWN_PUBS and this is a publication from the same application,

then no publication is delivered to the queue.

When altering a subscription made with this option, the fields which imply the grouping, Hobj on the MQSUB call (representing the queue
and queue manager name), and the SubCorrelId cannot be changed. Attempting to alter them will cause the call will fail with
MQRC_GROUPING_NOT_ALTERABLE.

This option must be combined with MQSO_SET_CORREL_ID with a SubCorrelId that is not set to MQCI_NONE, and cannot be combined
with MQSO_MANAGED.

MQSO_ANY_USERID

When MQSO_ANY_USERID is specified, the identity of the subscriber is not restricted to a single user ID. This allows any user to alter or
resume the subscription when they have suitable authority. Only a single user may have the subscription at any one time. An attempt to

subscription

Notes:

1. MQSO_GROUP_SUB cannot be altered.

2. MQSO_NEW_PUBLICATIONS_ONLY cannot be altered because it is not part of the subscription

3. These options are not part of the subscription

4. This attribute is not part of the subscription

5. This attribute is the identity of the subscription being altered

6. Alterable except when part of a grouped sub (MQSO_GROUP_SUB)

Page 332 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

resume use of a subscription currently in use by another application will cause the call to fail with MQRC_SUBSCRIPTION_IN_USE.

To add this option to an existing subscription the MQSUB call (using MQSO_ALTER) must come from the same user ID as the original
subscription itself.

If an MQSUB call refers to an existing subscription with MQSO_ANY_USERID set, and the user ID differs from the original subscription, the
call succeeds only if the new user ID has authority to subscribe to the topic. On successful completion, future publications to this
subscriber are put to the subscriber's queue with the new user ID set in the publication message.

Do not specify both MQSO_ANY_USERID and MQSO_FIXED_USERID. If neither is specified, the default is MQSO_FIXED_USERID.

MQSO_FIXED_USERID

When MQSO_FIXED_USERID is specified, the subscription can be altered or resumed by only the last user ID to alter the subscription. If
the subscription has not been altered, it is the user ID that created the subscription.

If an MQSUB verb refers to an existing subscription with MQSO_ANY_USERID set and alters the subscription using MQSO_ALTER to use

option MQSO_FIXED_USERID, the user ID of the subscription is now fixed at this new user ID. The call succeeds only if the new user ID
has authority to subscribe to the topic.

If a user ID other than the one recorded as owning a subscription tries to resume or alter an MQSO_FIXED_USERID subscription, the call
fails with MQRC_IDENTITY_MISMATCH. The owning user ID of a subscription can be viewed using the DISPLAY SBSTATUS command.

Do not specify both MQSO_ANY_USERID and MQSO_FIXED_USERID. If neither is specified, the default is MQSO_FIXED_USERID.

Publication options: The following options control the way publications are sent to this subscriber. If altering an existing subscription using
the MQSO_ALTER option, these publication options can be changed.

MQSO_NOT_OWN_PUBS

Tells the broker that the application does not want to see any of its own publications. Publications are considered to have originated from
the same application if the connection handles are the same. On return from an MQSUB call using MQSO_RESUME this option will be set if

appropriate.

MQSO_NEW_PUBLICATIONS_ONLY

No currently retained publications are to be sent, when this subscription is created, only new publications. This option only applies when
MQSO_CREATE is specified. Any subsequent changes to a subscription do not alter the flow of publications and so any publications that
have been retained on a topic, will have already been sent to the subscriber as new publications.
If this option is specified without MQSO_CREATE the call fails with MQRC_OPTIONS_ERROR. On return from an MQSUB call using

MQSO_RESUME this option will not be set even if the subscription was created using this option.
If this option is not used, previously retained messages will be sent to the destination queue provided. If this action fails due to an error,
either MQRC_RETAINED_MSG_Q_ERROR or MQRC_RETAINED_NOT_DELIVERED, the creation of the subscription will fail.

MQSO_PUBLICATIONS_ON_REQUEST

Setting this option indicates that the subscriber will request information specifically when required. The queue manager will not to send

unsolicited messages to the subscriber. The retained publication (or possibly multiple publications if a wildcard is specified in the topic) will
be sent to the subscriber each time a MQSUBRQ call is made using the Hsub handle from a previous MQSUB call. No publications will be
sent as a result of the MQSUB call using this option. On return from an MQSUB call using MQSO_RESUME this option will be set if
appropriate.
This option is not valid in combination with a SubLevel greater than 1.

Read ahead options: The following options control whether non-persistent messages are sent to an application ahead of the application

requesting them.

MQSO_READ_AHEAD_AS_Q_DEF

If the MQSUB call uses a managed handle, the default read ahead attribute of the model queue associated with the topic subscribed to
determines whether messages are sent to the application before the application requests them.
This is the default value.

MQSO_NO_READ_AHEAD

If the MQSUB call uses a managed handle, messages are not sent to the application before the application requests them.

MQSO_READ_AHEAD

If the MQSUB call uses a managed handle, messages might be sent to the application before the application requests them.

Note:

The following notes apply to the read ahead options:

1. Only one of these options can be specified. If both MQOO_READ_AHEAD and MQOO_NO_READ_AHEAD are specified, reason code
MQRC_OPTIONS_ERROR is returned. These options are only applicable if MQSO_MANAGED is specified.

2. They are not applicable for MQSUB when a queue is passed which has been opened previously. Read ahead might not be enabled
when requested. The MQGET options used on the first MQGET call might prevent read ahead from being enabled. Also, read ahead is
disabled when the client is connecting to a queue manager where read ahead is not supported. If the application is not running as a
WebSphere® MQ client, these options are ignored.

Wildcard options: The following options control how wildcards are interpreted in the string provided in the ObjectString field of the MQSD.
You can specify only one of these options. If altering an existing subscription using the MQSO_ALTER option, these wildcard options cannot
be changed. On return from an MQSUB call using MQSO_RESUME the appropriate wildcard option will be set.

MQSO_WILDCARD_CHAR

Wildcards only operate on characters within the topic string.

The behavior defined by MQSO_WILDCARD_CHAR is shown in the table below.

Page 333 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

For example, publishing on the following topic:

/level0/level1/level2/level3/level4

matches subscribers using the following topics:

*

/*

/ level0/level1/level2/level3/*

/ level0/level1/*/level3/level4

/ level0/level1/le?el2/level3/level4

Note: This use of wildcards supplies exactly the meaning provided in WebSphere MQ V6 and WebSphere MB V6 when using MQRFH1
formatted messages for Publish/Subscribe. It is recommended that this is not used for newly written applications and is only used for

applications that were previously running against that version and have not been changed to use the default wildcard behaviour as
described in MQSO_WILDCARD_TOPIC.

MQSO_WILDCARD_TOPIC

Wildcards only operate on topic elements within the topic string. This is the default behavior if none is chosen.

The behavior required by MQSO_WILDCARD_TOPIC is shown in the following table:

For example, publishing on the following topic:

/level0/level1/level2/level3/level4

matches subscribers using the following topics:

/#

/ level0/level1/level2/level3/#

/ level0/level1/+/level3/level4

Note: This use of wildcards supplies the meaning provided in WebSphere Message Brokers Version 6 when using MQRFH2 formatted
messages for Publish/Subscribe.

Other options: The following options control the way the API call is issued rather than the subscription. On return from an MQSUB call
using MQSO_RESUME these options will be unchanged. See AlternateUserId (MQCHAR12) for more details.

MQSO_ALTERNATE_USER_AUTHORITY

The AlternateUserId field contains a user identifier to use to validate this MQSUB call. The call can succeed only if this AlternateUserId is

authorized to open the object with the specified access options, regardless of whether the user identifier under which the application is
running is authorized to do so.

MQSO_SET_CORRELID

The subscription is to use the correlation identifier supplied in the SubCorrelId field. If this option is not specified, a correlation identifier

will be automatically created by the queue manager at subscription time and will be returned to the application in the SubCorrelId field.

See SubCorrelId (MQBYTE24) for more information.

This option cannot be combined with MQSO_MANAGED.

MQSO_SET_IDENTITY_CONTEXT

The subscription is to use the accounting token and application identity data supplied in the PubAccountingToken and

PubApplIdentityData fields.

If this option is specified, the same authorization check is carried out as if the destination queue was accessed using an MQOPEN call with
MQOO_SET_IDENTITY_CONTEXT, except in the case where the MQSO_MANAGED option is also used in which case there is no
authorization check on the destination queue.

If this option is not specified, the publications sent to this subscriber will have default context information associated with them as follows:

Special

Character

Behaviour

Forward slash (/) No significance, just another character

Asterisk (*) Wildcard, zero or more characters

Question mark (?) Wildcard, one character

Percent sign (%) Escape character to allow the characters (*), (?) or (%) to be used in a string and not be interpreted as a

special character, for example, (%*), (%?) or (%%).

Special Character Behaviour

(/) Topic level separator

Number sign (#) Wildcard: multiple topic level

Plus sign (+) Wildcard: single topic level

Notes:

The (+) and (#) are not treated as wildcards if they are mixed in with other characters (including themselves) within a topic
level. In the following string, the (#) and (+) characters are treated as ordinary characters.

level0/level1/#+/level3/level#

Field in MQMD Value used

UserIdentifier The user ID associated with the subscription at the time the subscription was made.

AccountingToken Determined from the environment if possible; Set to MQACT_NONE if not.

ApplIdentityData Set to blanks

Page 334 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This option is only valid with MQSO_CREATE and MQSO_ALTER. If used with MQSO_RESUME, the PubAccountingToken and

PubApplIdentityData fields are ignored, so this option has no effect.

If a subscription is altered without using this option where previously the subscription had supplied identity context information, default
context information will be generated for the altered subscription.

If a subscription allowing different user IDs to use it with option MQSO_ANY_USERID, is resumed by a different user ID, default identity
context will be generated for the new user ID now owning the subscription and any subsequent publications will be delivered containing

the new identity context.

MQSO_FAIL_IF_QUIESCING

The MQSUB call fails if the queue manager is in quiescing state. On z/OS®, for a CICS® or IMS™ application, this option also forces the
MQSUB call to fail if the connection is in quiescing state.

Parent topic: Fields for MQSD

This build: January 26, 2011 11:19:55

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr35070_

1.34.2.6. PubAccountingToken (MQBYTE32)

This is the value that will be in the AccountingToken field of the Message Descriptor (MQMD) of all publication messages matching this

subscription. AccountingToken is part of the identity context of the message. For more information about message context, see the

Application Programming Guide. For more information about the AccountingToken field in the MQMD, see AccountingToken (MQBYTE32)

You can use the following special value for the PubAccountingToken field:

MQACT_NONE

No accounting token is specified.

The value is binary zero for the length of the field.

For the C programming language, the constant MQACT_NONE_ARRAY is also defined; this has the same value as MQACT_NONE, but is an
array of characters instead of a string.

If the option MQSO_SET_IDENTITY_CONTEXT is not specified, the accounting token is generated by the queue manager as default context

information and this field is an output field which contains the AccountingToken which will be set in each message published for this

subscription.

If the option MQSO_SET_IDENTITY_CONTEXT is specified, the accounting token is being generated by the user and this field is an input field
which contains the AccountingToken to be set in each publication for this subscription.

The length of this field is given by MQ_ACCOUNTING_TOKEN_LENGTH. The initial value of this field is MQACT_NONE.

If altering an existing subscription using the MQSO_ALTER option, the value of AccountingToken in any future publication messages can be

changed.

On return from an MQSUB call using MQSO_RESUME, this field is set to the current AccountingToken being used for the subscription.

Parent topic: Fields for MQSD

This build: January 26, 2011 11:19:57

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr35180_

1.34.2.7. PubApplIdentityData (MQCHAR32)

This is the value that will be in the ApplIdentityData field of the Message Descriptor (MQMD) of all publication messages matching this

subscription. ApplIdentityData is part of the identity context of the message. For more information about message context, see Message

context. For more information about the ApplIdentityData field in the MQMD, see ApplIdentityData (MQCHAR32)

If the option MQSO_SET_IDENTITY_CONTEXT is not specified, the ApplIdentityData which will be set in each message published for this

subscription is blanks, as default context information.

If the option MQSO_SET_IDENTITY_CONTEXT is specified, the PubApplIdentityData is being generated by the user and this field is an

input field which contains the ApplIdentityData to be set in each publication for this subscription.

The length of this field is given by MQ_APPL_IDENTITY_DATA_LENGTH. The initial value of this field is the null string in C, and 32 blank
characters in other programming languages.

If altering an existing subscription using the MQSO_ALTER option, the ApplIdentityData of any future publication messages can be

changed.

Page 335 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

On return from an MQSUB call using MQSO_RESUME, this field is set to the current ApplIdentityData being used for the subscription.

Parent topic: Fields for MQSD

This build: January 26, 2011 11:19:57

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr35190_

1.34.2.8. PubPriority (MQLONG)

This is the value that will be in the Priority field of the Message Descriptor (MQMD) of all publication messages matching this subscription.

For more information about the Priority field in the MQMD, see Priority (MQLONG).

The value must be greater than or equal to zero; zero is the lowest priority. The following special values can also be used:

MQPRI_PRIORITY_AS_Q_DEF

When a subscription queue is provided in the Hobj field in the MQSUB call, and is not a managed handle, then the priority for the message

is taken from the DefPriority attribute of this queue. If the queue is a cluster queue or there is more than one definition in the queue-

name resolution path then the priority is determined when the publication message is put to the queue as described for Priority

(MQLONG).

If the MQSUB call uses a managed handle, the priority for the message is taken from the DefPriority attribute of the model queue

associated with the topic subscribed to.

MQPRI_PRIORITY_AS_PUBLISHED

The priority for the message is the priority of the original publication. This is the initial value of the field.

If altering an existing subscription using the MQSO_ALTER option, the Priority of any future publication messages can be changed.

On return from an MQSUB call using MQSO_RESUME, this field is set to the current priority being used for the subscription.

Parent topic: Fields for MQSD

This build: January 26, 2011 11:19:57

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr35170_

1.34.2.9. ResObjectString (MQCHARV)

This is the long object name after the queue manager resolves the name provided in ObjectName.

If the long object name is provided in ObjectString and nothing is provided in ObjectName, then the value returned in this field is the same

as provided in ObjectString.

If this field is omitted (that is ResObjectString.VSBufSize is zero) then the ResObjectString will not be returned, but the length will be

returned in ResObjectString.VSLength. If the length is shorter than the full ResObjectString then it will be truncated and will return as many

of the rightmost characters as can fit in the provided length.

If ResObjectString is specified incorrectly, according to the description of how to use the MQCHARV structure, or if it exceeds the

maximum length, the call fails with reason code MQRC_RES_OBJECT_STRING_ERROR.

Parent topic: Fields for MQSD

This build: January 26, 2011 11:19:58

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr35265_

1.34.2.10. SelectionString (MQCHARV)

This is the string used to provide the selection criteria used when subscribing for messages from a topic.

This variable length field will be returned on output from an MQSUB call using the MQSO_RESUME option, if a buffer is provided, and also
there is a positive buffer length in VSBufSize. If no buffer is provided on the call, only the length of the selection string will be returned in
the VSLength field of the MQCHARV. If the buffer provided is smaller than the space required to return the field, only VSBufSize bytes are

returned in the provided buffer.

If SelectionString is specified incorrectly, according to the description of how to use the MQCHARV structure, or if it exceeds the

maximum length, the call fails with reason code MQRC_SELECTION_STRING_ERROR.

SelectionString usage is described in Selectors.

Page 336 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Parent topic: Fields for MQSD

This build: January 26, 2011 11:20:39

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr43100_

1.34.2.11. StrucId (MQCHAR4)

This is the structure identifier; the value must be:

MQSD_STRUC_ID

Identifier for Subscription Descriptor structure.

For the C programming language, the constant MQSD_STRUC_ID_ARRAY is also defined; this has the same value as MQSD_STRUC_ID,
but is an array of characters instead of a string.

This is always an input field. The initial value of this field is MQSD_STRUC_ID.

Parent topic: Fields for MQSD

This build: January 26, 2011 11:19:54

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr35050_

1.34.2.12. SubCorrelId (MQBYTE24)

This field contains a correlation identifier common to all publications matching this subscription.

Attention: a correlation identifier can only be passed between queue managers in a publish/subscribe cluster, not a hierarchy.

All publications sent to match this subscription contain this correlation identifier in the message descriptor. If multiple subscriptions get their
publications from the same queue, using MQGET by correlation identifier allows only publications for a specific subscription to be obtained.

This correlation identifier can either be generated by the queue manager or by the user.

If the option MQSO_SET_CORREL_ID is not specified, the correlation identifier is generated by the queue manager and this field is an
output field containing the correlation identifier that will be set in each message published for this subscription. The generated correlation
identifier consists of a 4–byte product identifier (AMQX or CSQM in either ASCII or EBCDIC) followed by a product specific implementation of

a unique string.

If the option MQSO_SET_CORREL_ID is specified, the correlation identifier is generated by the user and this field is an input field containing
the correlation identifier to be set in each publication for this subscription. In this case, if the field contains MQCI_NONE, the correlation
identifier that is set in each message published for this subscription is the correlation identifier created by the original put of the message.

If the option MQSO_GROUP_SUB is specified and the correlation identifier specified is the same as an existing grouped subscription using
the same queue and an overlapping topic string, only the most significant subscription in the group is provided with a copy of the
publication.

The length of this field is given by MQ_CORREL_ID_LENGTH. The initial value of this field is MQCI_NONE.

If you are altering an existing subscription using the MQSO_ALTER option, and this field is an input field, then the subscription correlation
identifier can be changed, unless the subscription is a grouped subscription, that is, it has been created using the option
MQSO_GROUP_SUB, in which case the subscription correlation identifier cannot be changed.

On return from an MQSUB call using MQSO_RESUME, this field is set to the current correlation identifier for the subscription.

Parent topic: Fields for MQSD

This build: January 26, 2011 11:19:56

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr35160_

1.34.2.13. SubExpiry (MQLONG)

This is the period of time expressed in tenths of a second after which the subscription expires. No more publications will match this
subscription after this interval has passed. As soon as a subscription expires publications are no longer sent to the queue, however the

publications that are already there are not affected in any way.SubExpiry has NO EFFECT on publication expiry.

The following special value is recognized:

MQEI_UNLIMITED

The subscription has an unlimited expiration time.

If altering an existing subscription using the MQSO_ALTER option, the expiry of the subscription can be changed.

Page 337 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

On return from an MQSUB call using the MQSO_RESUME option this field will be set to the original expiry of the subscription and not the
remaining expiry time.

Parent topic: Fields for MQSD

This build: January 26, 2011 11:19:56

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr35120_

1.34.2.14. SubLevel (MQLONG)

This is the level associated with the subscription. Publications will only be delivered to this subscription if it is in the set of subscriptions with

the highest SubLevel value less than or equal to the PubLevel used at publication time.

The value must be in the range zero to 9. Zero is the lowest level.

The initial value of this field is 1.

For more information see Intercepting publications.

If altering an existing subscription using the MQSO_ALTER option, then the SubLevel cannot be changed.

Combining a SubLevel with a value greater than 1 with the option MQSO_PUBLICATIONS_ON_REQUEST is not allowed.

On return from an MQSUB call using MQSO_RESUME, this field is set to the current level being used for the subscription.

Parent topic: Fields for MQSD

This build: January 26, 2011 11:19:58

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr35260_

1.34.2.15. SubUserData (MQCHARV)

This specifies the subscription user data. The data provided on the subscription in this field will be included as the MQSubUserData message
property of every publication sent to this subscription.

The maximum length of SubUserData is 10240.

If SubUserData is specified incorrectly, according to the description of how to use the MQCHARV structure, or if it exceeds the maximum

length, the call fails with reason code MQRC_SUB_USER_DATA_ERROR.

This is an input field. The initial values of the fields in this structure are the same as those in the MQCHARV structure.

If altering an existing subscription using the MQSO_ALTER option, the subscription user data can be changed.

This variable length field is returned on output from an MQSUB call using the MQSO_RESUME option, if a buffer is provided and there is a
positive buffer length in VSBufLen. If no buffer is provided on the call, only the length of the subscription user date is returned in the

VSLength field of the MQCHARV. If the buffer provided is smaller than the space required to return the field, only VSBufLen bytes are

returned in the provided buffer.

Parent topic: Fields for MQSD

This build: January 26, 2011 11:19:56

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr35150_

1.34.2.16. SubName (MQCHARV)

This specifies the subscription name. This field is only required if Options specifies the option MQSO_DURABLE, but if provided will be used

by the queue manager for MQSO_NON_DURABLE as well.

If specified, SubName must be unique within the queue manager, because it is the method used to identify the subscription.

The maximum length of SubName is 10240.

This field serves two purposes. For an MQSO_DURABLE subscription, you use this field to identify a subscription so you can resume it after it

has been created if you have either closed the handle to the subscription (using the MQCO_KEEP_SUB option) or have been disconnected
from the queue manager. This is done using the MQSUB call with the MQSO_RESUME option. It is also displayed in the administrative view
of subscriptions in the SUBNAME field in DISPLAY SBSTATUS.

If SubName is specified incorrectly, according to the description of how to use the MQCHARV structure, is left out when it is required (that

Page 338 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

is SubName.VSLength is zero), or if it exceeds the maximum length, the call fails with reason code MQRC_SUB_NAME_ERROR.

This is an input field. The initial values of the fields in this structure are the same as those in the MQCHARV structure.

If altering an existing subscription using the MQSO_ALTER option, the subscription name cannot be changed, because it is the identifying
field used to find the referenced subscription. It is not changed on output from an MQSUB call with the MQSO_RESUME option.

Parent topic: Fields for MQSD

This build: January 26, 2011 11:19:56

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr35140_

1.34.2.17. Version (MQLONG)

This is the structure version number; the value must be:

MQSD_VERSION_1

Version-1 Subscription Descriptor structure.

The following constant specifies the version number of the current version:

MQSD_CURRENT_VERSION

Current version of Subscription Descriptor structure.

This is always an input field. The initial value of this field is MQSD_VERSION_1.

Parent topic: Fields for MQSD

This build: January 26, 2011 11:19:54

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr35060_

1.34.3. Using topic strings

The full topic name is created by the concatenation of two fields used in publish/subscribe MQI calls, in the order listed.

1. The value of the TOPICSTR parameter of the topic object named in ObjectName field.

2. The value of the ObjectString field, if the VSLength provided for that variable length string is non-zero.

A forward slash (/) character is inserted between the two provided elements in the resultant combined topic name.

These fields are considered to be provided if the first character of the field is neither a blank character nor a null character. If only one of the
fields is provided, it is used unchanged as the topic name. If neither field has a value, the call fails with reason code

MQRC_UNKNOWN_OBJECT_NAME .

Notes:

1. The (/) character is considered to be a special character providing structure to the full topic name in the topic tree and must not be

used for any other reason as the structure of the topic tree will be affected. This means that the topic "/Football" is not the same as
the topic "Football".

2. If the full topic name is not valid, the call fails with reason code MQRC_TOPIC_STRING_ERROR.

3. The following wildcard characters are special characters: plus sign (+), number sign (#), asterisk (*), and question mark (?). They are
not considered invalid, however you must take care to understand the behavior when using them. You might prefer not to use these
characters in your topic strings when publishing.

� Publishing on a topic string with (#) or (+) mixed in with other characters (including themselves) within a topic level, can be

subscribed to with either wildcard scheme.

� Publishing on a topic string with (#) or (+) as the only character between two (/) characters will produce a topic string that
cannot be subscribed to explicitly by an application using the wildcard scheme MQSO_WILDCARD_TOPIC. This will result in the

application getting more publications than expected.

Parent topic: MQSD - Subscription descriptor

Table 1. Topic string concatenation examples

TOPICSTR ObjectString Concatenation

result

Comment

/Football Scores /Football/Scores

/Football/ Scores /Football//Scores This produces an "empty node" between the

two strings

/Football /Scores /Football//Scores This produces an "empty node" between the

two strings

/Football/ /Scores /Football///Scores This produces two "empty nodes" between the
two strings

Page 339 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This build: January 26, 2011 11:20:00

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr36000_

1.34.4. Initial values and language declarations for MQSD

C declaration

COBOL declaration

PL/I declaration

System/390 assembler declaration

Parent topic: MQSD - Subscription descriptor

This build: January 26, 2011 11:19:57

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr35200_

1.34.4.1. C declaration

typedef struct tagMQSD MQSD;

struct tagMQSD {

 MQCHAR4 StrucId; /* Structure identifier */

 MQLONG Version; /* Structure version number */

 MQLONG Options; /* Options associated with subscribing */

 MQCHAR48 ObjectName; /* Object name */

 MQCHAR12 AlternateUserId; /* Alternate user identifier */

 MQBYTE40 AlternateSecurityId; /* Alternate security identifier */

 MQLONG SubExpiry; /* Expiry of Subscription */

 MQCHARV ObjectString; /* Object Long name */

 MQCHARV SubName; /* Subscription name */

 MQCHARV SubUserData; /* Subscription User data */

 MQBYTE24 SubCorrelId; /* Correlation Id related to this subscription */

 MQLONG PubPriority; /* Priority set in publications */

 MQBYTE32 PubAccountingToken; /* Accounting Token set in publications */

 MQCHAR32 PubApplIdentityData; /* Appl Identity Data set in publications */

Field name Name of constant Value of constant

StrucId MQSD_STRUC_ID 'SD��'

Version MQSD_VERSION_1 1

Options MQSO_NON_DURABLE 0

ObjectName None Null string or blanks

AlternateUserId None Null string or blanks

AlternateSecurityId MQSID_NONE Nulls

SubExpiry MQEI_UNLIMITED -1

ObjectString None Names and values as defined for

MQCHARV

SubName None Names and values as defined for

MQCHARV

SubUserData None Names and values as defined for

MQCHARV

SubCorrelId MQCI_NONE Nulls

PubPriority MQPRI_PRIORITY_AS_Q_DEF -3

PubAccountingToken MQACT_NONE Nulls

PubApplIdentityData None Null string or blanks

Selection String None Names and values as defined for

MQCHARV

SubLevel None 1

ResObjectString None Names and values as defined for

MQCHARV

Notes:

1. The symbol � represents a single blank character.

2. The value Null string or blanks denotes the null string in C, and blank characters in other programming languages.

3. In the C programming language, the macro variable MQSD_DEFAULT contains the values listed above. It can be used in

the following way to provide initial values for the fields in the structure:

MQSD MySD = {MQSD_DEFAULT};

Page 340 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

 MQCHARV SelectionString; /* Message selector structure */

 MQLONG SubLevel; /* Subscription level */

 MQCHARV ResObjectString; /* Resolved Long object name*/

 /* Ver:1 */

};

Parent topic: Initial values and language declarations for MQSD

This build: January 26, 2011 11:19:57

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr35210_

1.34.4.2. COBOL declaration

** Address of variable length string

 20 MQSD-OBJECTSTRING-VSPTR POINTER.

** Offset of variable length string

 20 MQSD-OBJECTSTRING-VSOFFSET PIC S9(9) BINARY.

** size of buffer

 20 MQSD-OBJECTSTRING-VSBUFSIZE PIC S9(9) BINARY.

** Length of variable length string

 20 MQSD-OBJECTSTRING-VSLENGTH PIC S9(9) BINARY.

** CCSID of variable length string

 20 MQSD-OBJECTSTRING-VSCCSID PIC S9(9) BINARY.

** Subscription name

 15 MQSD-SUBNAME.

** Address of variable length string

 20 MQSD-SUBNAME-VSPTR POINTER.

** Offset of variable length string

 20 MQSD-SUBNAME-VSOFFSET PIC S9(9) BINARY.

** size of buffer

 20 MQSD-SUBNAME-VSBUFSIZE PIC S9(9) BINARY.

** Length of variable length string

 20 MQSD-SUBNAME-VSLENGTH PIC S9(9) BINARY.

** CCSID of variable length string

 20 MQSD-SUBNAME-VSCCSID PIC S9(9) BINARY.

** Subscription User data

 15 MQSD-SUBUSERDATA.

** Address of variable length string

 20 MQSD-SUBUSERDATA-VSPTR POINTER.

** Offset of variable length string

 20 MQSD-SUBUSERDATA-VSOFFSET PIC S9(9) BINARY.

** size of buffer

 20 MQSD-SUBUSERDATA-VSBUFSIZE PIC S9(9) BINARY.

** Length of variable length string

 20 MQSD-SUBUSERDATA-VSLENGTH PIC S9(9) BINARY.

** CCSID of variable length string

 20 MQSD-SUBUSERDATA-VSCCSID PIC S9(9) BINARY.

** Correlation Id related to this subscription

 15 MQSD-SUBCORRELID PIC X(24).

** Priority set in publications

 15 MQSD-PUBPRIORITY PIC S9(9) BINARY.

** Accounting Token set in publications

 15 MQSD-PUBACCOUNTINGTOKEN PIC X(32).

** Appl Identity Data set in publications

 15 MQSD-PUBAPPLIDENTITYDATA PIC X(32).

** Message Selector

 15 MQSD-SELECTIONSTRING.

** Address of variable length string

 20 MQSD-SELECTIONSTRING-VSPTR POINTER.

** Offset of variable length string

 20 MQSD-SELECTIONSTRING-VSOFFSET PIC S9(9) BINARY.

** size of buffer

 20 MQSD-SELECTIONSTRING-VSBUFSIZE PIC S9(9) BINARY.

** Length of variable length string

 20 MQSD-SELECTIONSTRING-VSLENGTH PIC S9(9) BINARY.

** CCSID of variable length string

 20 MQSD-SELECTIONSTRING-VSCCSID PIC S9(9) BINARY.

** Selection criteria

 20 MQSD-SELECTIONSTRING-SUBLEVEL PIC S9(9) BINARY.

** Long object name

 20 MQSD-SELECTIONSTRING-RESOBJSTRING PIC S9(9) BINARY.

Parent topic: Initial values and language declarations for MQSD

This build: January 26, 2011 11:19:57

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr35220_

1.34.4.3. PL/I declaration

dcl

 1 MQSD based,

 3 StrucId char(4), /* Structure identifier */

Page 341 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

 3 Version fixed bin(31), /* Structure version number */

 3 Options fixed bin(31), /* Options associated with subscribing */

 3 ObjectName char(48), /* Object name */

 3 AlternateUserId char(12), /* Alternate user identifier */

 3 AlternateSecurityId char(40), /* Alternate security identifier */

 3 SubExpiry fixed bin(31), /* Expiry of Subscription */

 3 ObjectString, /* Object Long name */

 5 VSPtr pointer, /* Address of variable length string */

 5 VSOffset fixed bin(31), /* Offset of variable length string */

 5 VSBufSize fixed bin(31), /* size of buffer */

 5 VSLength fixed bin(31), /* Length of variable length string */

 5 VSCCSID fixed bin(31); /* CCSID of variable length string */

 3 SubName, /* Subscription name */

 5 VSPtr pointer, /* Address of variable length string */

 5 VSOffset fixed bin(31), /* Offset of variable length string */

 5 VSBufSize fixed bin(31), /* size of buffer */

 5 VSLength fixed bin(31), /* Length of variable length string */

 5 VSCCSID fixed bin(31); /* CCSID of variable length string */

 3 SubUserData, /* Subscription User data */

 5 VSPtr pointer, /* Address of variable length string */

 5 VSOffset fixed bin(31), /* Offset of variable length string */

 5 VSBufSize fixed bin(31), /* size of buffer */

 5 VSLength fixed bin(31), /* Length of variable length string */

 5 VSCCSID fixed bin(31), /* CCSID of variable length string */

 3 SubCorrelId char(24), /* Correlation Id related to this subscription */

 3 PubPriority fixed bin(31), /* Priority set in publications */

 3 PubAccountingToken char(32), /* Accounting Token set in publications */

 3 PubApplIdentityData char(32), /* Appl Identity Data set in publications */

 3 SelectionString, /* Message Selection */

 5 VSPtr pointer, /* Address of variable length string */

 5 VSOffset fixed bin(31), /* Offset of variable length string */

 5 VSBufSize fixed bin(31), /* size of buffer */

 5 VSLength fixed bin(31), /* Length of variable length string */

 5 VSCCSID fixed bin(31), /* CCSID of variable length string */

 3 SubLevel fixed bin(31), /* Subscription level */

 3 ResObjectString, /* Resolved Long object name */

 5 VSPtr pointer, /* Address of variable length string */

 5 VSOffset fixed bin(31), /* Offset of variable length string */

 5 VSBufSize fixed bin(31), /* size of buffer */

 5 VSLength fixed bin(31), /* Length of variable length string */

 5 VSCCSID fixed bin(31); /* CCSID of variable length string */

Parent topic: Initial values and language declarations for MQSD

This build: January 26, 2011 11:19:58

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr35230_

1.34.4.4. System/390® assembler declaration

MQSD DSECT

MQSD_STRUCID DS CL4 Structure identifier

MQSD_VERSION DS F Structure version number

MQSD-OPTIONS DS F Options associated with subscribing

MQSD_OBJECTNAME DS CL48 Object name

MQSD_ALTERNATEUSERID DS CL12 Alternate user identifier

MQSD_ALTERNATESECURITYID DS CL40 Alternate security identifier

MQSD_SUBEXPIRY DS F Expiry of Subscription

MQSD_OBJECTSTRING DS 0F Object Long name

MQSD_OBJECTSTRING_VSPTR DS F Address of variable length string

MQSD_OBJECTSTRING_VSOFFSET DS F Offset of variable length string

MQSD_OBJECTSTRING_VSBUFSIZE DS F size of buffer

MQSD_OBJECTSTRING_VSLENGTH DS F Length of variable length string

MQSD_OBJECTSTRING_VSCCSID DS F CCSID of variable length string

MQSD_OBJECTSTRING_LENGTH EQU *-MQSD_OBJECTSTRING

 ORG MQSD_OBJECTSTRING

MQSD_OBJECTSTRING_AREA DS CL(MQSD_OBJECTSTRING_LENGTH)

*

MQSD_SUBNAME DS 0F Subscription name

MQSD_SUBNAME_VSPTR DS F Address of variable length string

MQSD_SUBNAME_VSOFFSET DS F Offset of variable length string

MQSD_SUBNAME_VSBUFSIZE DS F size of buffer

MQSD_SUBNAME_VSLENGTH DS F Length of variable length string

MQSD_SUBNAME_VSCCSID DS F CCSID of variable length string

MQSD_SUBNAME_LENGTH EQU *-MQSD_SUBNAME

 ORG MQSD_SUBNAME

MQSD_SUBNAME_AREA DS CL(MQSD_SUBNAME_LENGTH)

*

MQSD_SUBUSERDATA DS 0F Subscription User data

MQSD_SUBUSERDATA_VSPTR DS F Address of variable length string

MQSD_SUBUSERDATA_VSOFFSET DS F Offset of variable length string

MQSD_SUBUSERDATA_VSBUFSIZE DS F size of buffer

MQSD_SUBUSERDATA_VSLENGTH DS F Length of variable length string

MQSD_SUBUSERDATA_VSCCSID DS F CCSID of variable length string

MQSD_SUBUSERDATA_LENGTH EQU *-MQSD_SUBUSERDATA

 ORG MQSD_SUBUSERDATA

MQSD_SUBUSERDATA_AREA DS CL(MQSD_SUBUSERDATA_LENGTH)

*

MQSD_SUBCORRELID DS CL24 Correlation Id related to this subscription

Page 342 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

MQSD_PUBPRIORITY DS F Priority set in publications

MQSD_PUBACCOUNTINGTOKEN DS CL32 Accounting Token set in publications

MQSD_PUBAPPLIDENTITYDATA DS CL32 Appl Identity Data set in publications

*

MQSD_SELECTIONSTRING DS F Message Selector

MQSD_SELECTIONSTRING_VSPTR DS F Address of variable length string

MQSD_SELECTIONSTRING_VSOFFSET DS F Offset of variable length string

MQSD_SELECTIONSTRING_VSBUFSIZE DS F size of buffer

MQSD_SELECTIONSTRING_VSLENGTH DS F Length of variable length string

MQSD_SELECTIONSTRING_VSCCSID DS F CCSID of variable length string

MQSD_SELECTIONSTRING_LENGTH EQU *- MQSD_SELECTIONSTRING

 ORG MQSD_SELECTIONSTRING

MQSD_SELECTIONSTRING_AREA DS CL(MQSD_SELECTIONSTRING_LENGTH)

*

MQSD-SUBLEVEL DS F Subscription level

*

MQSD_RESOBJECTSTRING DS F Resolved Long object name

MQSD_RESOBJECTSTRING_VSPTR DS F Address of variable length string

MQSD_RESOBJECTSTRING_VSOFFSET DS F Offset of variable length string

MQSD_RESOBJECTSTRING_VSBUFSIZE DS F size of buffer

MQSD_RESOBJECTSTRING_VSLENGTH DS F Length of variable length string

MQSD_RESOBJECTSTRING_VSCCSID DS F CCSID of variable length string

MQSD_RESOBJECTSTRING_LENGTH EQU *- MQSD_RESOBJECTSTRING

 ORG MQSD_RESOBJECTSTRING

MQSD_RESOBJECTSTRING_AREA DS CL(MQSD_RESOBJECTSTRING_LENGTH)

*

MQSD_LENGTH EQU *-MQSD

 ORG MQSD

MQSD_AREA DS CL(MQSD_LENGTH)

Parent topic: Initial values and language declarations for MQSD

This build: January 26, 2011 11:19:58

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr35250_

1.35. MQSMPO – Set message property options

The following table summarizes the fields in the structure.

Overview for MQSMPO
Availability: All WebSphere® MQ systems and WebSphere MQ clients.

Fields for MQSMPO

Initial values and language declarations for MQSMPO

Parent topic: Data type descriptions

This build: January 26, 2011 11:20:28

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42310_

1.35.1. Overview for MQSMPO

Availability: All WebSphere® MQ systems and WebSphere MQ clients.

Purpose: The MQSMPO structure allows applications to specify options that control how properties of messages are set. The structure is an
input parameter on the MQSETMP call.

Character set and encoding: Data in MQSMPO must be in the character set of the application and encoding of the application
(MQENC_NATIVE).

Parent topic: MQSMPO – Set message property options

This build: January 26, 2011 11:20:28

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

Table 1. Fields in MQSMPO

Field Description Topic

StrucId Structure identifier StrucId

Version Structure version number Version

Options Options Options

ValueEncoding Property value encoding ValueEncoding

ValueCCSID Property value character set ValueCCSID

Page 343 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This topic's URL:

fr42320_

1.35.2. Fields for MQSMPO

The MQSMPO structure contains the following fields; the fields are described in alphabetic order:

Options (MQLONG)

StrucId (MQCHAR4)

ValueCCSID (MQLONG)

ValueEncoding (MQLONG)

Version (MQLONG)

Parent topic: MQSMPO – Set message property options

This build: January 26, 2011 11:20:28

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42330_

1.35.2.1. Options (MQLONG)

Location options: The following options relate to the relative location of the property compared to the property cursor:

MQSMPO_SET_FIRST

Sets the value of the first property that matches the specified name, or if it does not exist, adds a new property after all other properties
with a matching hierarchy.

MQSMPO_SET_PROP_UNDER_CURSOR

Sets the value of the property pointed to by the property cursor. The property pointed to by the property cursor is the one that was last
inquired using either the MQIMPO_INQ_FIRST or the MQIMPO_INQ_NEXT option.

The property cursor is reset when the message handle is reused, or when the message handle is specified in the MsgHandle field of the

MQGMO or MQPMO structure on an MQGET or MQPUT call respectively.

If this option is used when the property cursor has not yet been established or if the property pointer to by the property cursor has been
deleted, the call fails with completion code MQCC_FAILED and reason code MQRC_PROPERTY_NOT_AVAILABLE.

MQSMPO_SET_PROP_BEFORE_CURSOR

Sets a new property before the property pointed to by the property cursor. The property pointed to by the property cursor is the one that
was last inquired using either the MQIMPO_INQ_FIRST or the MQIMPO_INQ_NEXT option.

The property cursor is reset when the message handle is reused, or when the message handle is specified in the MsgHandle field of the

MQGMO or MQPMO structure on an MQGET or MQPUT call respectively

If this option is used when the property cursor has not yet been established or if the property pointer to by the property cursor has been
deleted, the call fails with completion code MQCC_FAILED and reason code MQRC_PROPERTY_NOT_AVAILABLE.

MQSMPO_SET_PROP_AFTER_CURSOR

Sets a new property after the property pointed to by the property cursor. The property pointed to by the property cursor is the one that
was last inquired using either the MQIMPO_INQ_FIRST or the MQIMPO_INQ_NEXT option.

The property cursor is reset when the message handle is reused, or when the message handle is specified in the MsgHandle field of the

MQGMO or MQPMO structure on an MQGET or MQPUT call respectively.

If this option is used when the property cursor has not yet been established or if the property pointer to by the property cursor has been

deleted, the call fails with completion code MQCC_FAILED and reason code MQRC_PROPERTY_NOT_AVAILABLE.

If you need none of the options described, use the following option:

MQSMPO_NONE

No options specified.

This is always an input field. The initial value of this field is MQSMPO_SET_FIRST.

Parent topic: Fields for MQSMPO

This build: January 26, 2011 11:20:28

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42360_

Page 344 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

1.35.2.2. StrucId (MQCHAR4)

This is the structure identifier; the value must be:

MQSMPO_STRUC_ID

Identifier for set message property options structure.

For the C programming language, the constant MQSMPO_STRUC_ID_ARRAY is also defined; this has the same value as
MQSMPO_STRUC_ID, but is an array of characters instead of a string.

This is always an input field. The initial value of this field is MQSMPO_STRUC_ID.

Parent topic: Fields for MQSMPO

This build: January 26, 2011 11:20:28

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42340_

1.35.2.3. ValueCCSID (MQLONG)

The character set of the property value to be set if the value is a character string.

This is always an input field. The initial value of this field is MQCCSI_APPL.

Parent topic: Fields for MQSMPO

This build: January 26, 2011 11:20:28

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42380_

1.35.2.4. ValueEncoding (MQLONG)

The encoding of the property value to be set if the value is numeric.

This is always an input field. The initial value of this field is MQENC_NATIVE.

Parent topic: Fields for MQSMPO

This build: January 26, 2011 11:20:28

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42370_

1.35.2.5. Version (MQLONG)

This is the structure version number; the value must be:

MQSMPO_VERSION_1

Version-1 set message property options structure.

The following constant specifies the version number of the current version:

MQSMPO_CURRENT_VERSION

Current version of set message property options structure.

This is always an input field. The initial value of this field is MQSMPO_VERSION_1.

Parent topic: Fields for MQSMPO

This build: January 26, 2011 11:20:28

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42350_

1.35.3. Initial values and language declarations for MQSMPO

Table 1. Initial values of fields in MQSMPO

Field name Name of constant Value of constant

Page 345 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

C declaration

COBOL declaration

PL/I declaration

System/390 assembler declaration

Parent topic: MQSMPO – Set message property options

This build: January 26, 2011 11:20:29

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42390_

1.35.3.1. C declaration

typedef struct tagMQSMPO MQSMPO;

struct tagMQSMPO {

 MQCHAR4 StrucId; /* Structure identifier */

 MQLONG Version; /* Structure version number */

 MQLONG Options; /* Options that control the action of MQSETMP */

 MQLONG ValueEncoding; /* Encoding of Value */

 MQLONG ValueCCSID; /* Character set identifier of Value */

};

Parent topic: Initial values and language declarations for MQSMPO

This build: January 26, 2011 11:20:29

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42400_

1.35.3.2. COBOL declaration

** MQSMPO structure

 10 MQSMPO.

** Structure identifier

 15 MQSMPO-STRUCID PIC X(4).

** Structure version number

 15 MQSMPO-VERSION PIC S9(9) BINARY.

** Options that control the action of MQSETMP

 15 MQSMPO-OPTIONS PIC S9(9) BINARY.

** Encoding of VALUE

 15 MQSMPO-VALUEENCODING PIC S9(9) BINARY.

** Character set identifier of VALUE

 15 MQSMPO-VALUECCSID PIC S9(9) BINARY.

Parent topic: Initial values and language declarations for MQSMPO

This build: January 26, 2011 11:20:29

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42410_

1.35.3.3. PL/I declaration

dcl

 1 MQSMPO based,

 3 StrucId char(4), /* Structure identifier */

 3 Version fixed bin(31), /* Structure version number */

StrucId MQSMPO_STRUC_ID 'SMPO'

Version MQSMPO_VERSION_1 1

Options MQSMPO_NONE 0

ValueEncoding MQENC_NATIVE Depends on environment

ValueCCSID MQCCSI_APPL -3

Notes:

1. The value Null string or blanks denotes the null string in C, and blank characters in other programming languages.

2. In the C programming language, the macro variable MQSMPO_DEFAULT contains the values listed above. It can be used in
the following way to provide initial values for the fields in the structure:

MQSMPO MySMPO = {MQSMPO_DEFAULT};

Page 346 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

 3 Options fixed bin(31), /* Options that control the action of MQSETMP */

 3 ValueEncoding fixed bin(31), /* Encoding of Value */

 3 ValueCCSID fixed bin(31), /* Character set identifier of Value */

Parent topic: Initial values and language declarations for MQSMPO

This build: January 26, 2011 11:20:29

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42420_

1.35.3.4. System/390® assembler declaration

MQSMPO DSECT

MQSMPO_STRUCID DS CL4 Structure identifier

MQSMPO_VERSION DS F Structure version number

MQSMPO_OPTIONS DS F Options that control the action of

* MQSETMP

MQSMPO_VALUEENCODING DS F Encoding of VALUE

MQSMPO_VALUECCSID DS F Character set identifier of VALUE

MQSMPO_LENGTH EQU *-MQSMPO

MQSMPO_AREA DS CL(MQSMPO_LENGTH)

Parent topic: Initial values and language declarations for MQSMPO

This build: January 26, 2011 11:20:29

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr42430_

1.36. MQSRO - Subscription request options

Overview for MQSRO

Fields for MQSRO

Initial values and language declarations for MQSRO

Parent topic: Data type descriptions

This build: January 26, 2011 11:19:58

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr35500_

1.36.1. Overview for MQSRO

Availability: AIX®, HP-UX, i5/OS®, Solaris, Linux, Windows, z/OS® plus WebSphere® MQ clients connected to these systems.

Purpose: The MQSRO structure allows the application to specify options that control how a subscription request is made. The structure is
an input/output parameter on the MQSUBRQ call.

Version: The current version of MQSRO is MQSRO_VERSION_1.

Character set and encoding: Data in MQSRO must be in the character set and encoding of the local queue manager; these are given by
the CodedCharSetId queue-manager attribute and MQENC_NATIVE, respectively. However, if the application is running as an MQ client, the

structure must be in the character set and encoding of the client.

Parent topic: MQSRO - Subscription request options

This build: January 26, 2011 11:19:58

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr35510_

1.36.2. Fields for MQSRO

Field Description Topic

StrucId Structure identifier StrucId

Version Structure version number Version

Options Options Options

NumPubs Number of publications NumPubs

Page 347 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

The MQSRO structure contains the following fields; the fields are described in alphabetical order:

NumPubs (MQLONG)

Options (MQLONG)

StrucId (MQCHAR4)

Version (MQLONG)

Parent topic: MQSRO - Subscription request options

This build: January 26, 2011 11:19:58

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr35040_

1.36.2.1. NumPubs (MQLONG)

This is an output field, returned to the application to indicate the number of publications sent to the subscription queue as a result of this

call. Although this number of publications have been sent as a result of this call, there is no guarantee that this many messages will be
available for the application to get, especially if they are non-persistent messages.

There may be more than one publication if the topic subscribed to contained a wildcard. If no wildcards were present in the topic string
when the subscription represented by Hsub was created, then at most one publication is sent as a result of this call.

Parent topic: Fields for MQSRO

This build: January 26, 2011 11:19:58

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr35270_

1.36.2.2. Options (MQLONG)

One of the following options must be specified. Only one option can be specified.

MQSRO_FAIL_IF_QUIESCING

The MQSUBRQ call fails if the queue manager is in the quiescing state. On z/OS®, for a CICS® or IMS™ application, this option also
forces the MQSUBRQ call to fail if the connection is in a quiescing state.

Default option: If the option described above is not required, the following option must be used:

MQSRO_NONE

Use this value to indicate that no other options have been specified; all options assume their default values.

MQSRO_NONE helps program documentation. Although it is not intended that this option be used with any other, because its value is
zero, this use cannot be detected.

Parent topic: Fields for MQSRO

This build: January 26, 2011 11:19:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr35550_

1.36.2.3. StrucId (MQCHAR4)

This is the structure identifier; the value must be:

MQSRO_STRUC_ID

Identifier for Subscription Request Options structure.

For the C programming language, the constant MQSRO_STRUC_ID_ARRAY is also defined; this has the same value as MQSRO_STRUC_ID,
but is an array of characters instead of a string.

This is always an input field. The initial value of this field is MQSRO_STRUC_ID.

Parent topic: Fields for MQSRO

This build: January 26, 2011 11:19:58

Notices | Trademarks | Downloads | Library | Support | Feedback

Page 348 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr35050_

1.36.2.4. Version (MQLONG)

This is the structure version number; the value must be:

MQSRO_VERSION_1

Version-1 Subscription Request Options structure.

The following constant specifies the version number of the current version:

MQSRO_CURRENT_VERSION

Current version of Subscription Request Options structure.

This is always an input field. The initial value of this field is MQSRO_VERSION_1.

Parent topic: Fields for MQSRO

This build: January 26, 2011 11:19:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr35060_

1.36.3. Initial values and language declarations for MQSRO

C declaration

COBOL declaration

PL/I declaration

System/390 assembler declaration

Parent topic: MQSRO - Subscription request options

This build: January 26, 2011 11:19:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr35600_

1.36.3.1. C declaration

typedef struct tagMQSRO MQSRO;

struct tagMQSRO {

 MQCHAR4 StrucId; /* Structure identifier */

 MQLONG Version; /* Structure version number */

 MQLONG Options; /* Options that control the action of MQSUBRQ */

 MQLONG NumPubs; /* Number of publications sent */

 /* Ver:1 */

};

Parent topic: Initial values and language declarations for MQSRO

This build: January 26, 2011 11:19:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr35210_

Field name Name of constant Value of constant

StrucId MQSRO_STRUC_ID 'SRO�'

Version MQSRO_VERSION_1 1

Options MQSRO_NONE 0

NumPubs None 0

Notes:

1. The symbol � represents a single blank character.

2. In the C programming language, the macro variable MQSRO_DEFAULT contains the values listed above. It can be used in
the following way to provide initial values for the fields in the structure:

MQSRO MySRO = {MQSRO_DEFAULT};

Page 349 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

1.36.3.2. COBOL declaration

** MQSRO structure

 10 MQSRO.

** Structure identifier

 15 MQSRO-STRUCID PIC X(4).

** Structure version number

 15 MQSRO-VERSION PIC S9(9) BINARY.

** Options that control the action of MQSUBRQ

 15 MQSRO-OPTIONS PIC S9(9) BINARY.

** Number of publications sent

 15 MQSRO-NUMPUBS PIC S9(9) BINARY.

Parent topic: Initial values and language declarations for MQSRO

This build: January 26, 2011 11:19:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr35210_

1.36.3.3. PL/I declaration

dcl

 1 MQSRO based,

 3 StrucId char(4), /* Structure identifier */

 3 Version fixed bin(31), /* Structure version number */

 3 Options fixed bin(31), /* Options that control the action of MQSUBRQ */

 3 NumPubs fixed bin(31); /* Number of publications sent */

Parent topic: Initial values and language declarations for MQSRO

This build: January 26, 2011 11:19:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr35210_

1.36.3.4. System/390® assembler declaration

MQSRO DSECT

MQSRO_STRUCID DS CL4 Structure identifier

MQSRO_VERSION DS F Structure version number

MQSRO_OPTIONS DS F Options that control the action of MQSUBRQ

MQSRO_NUMPUBS DS F Number of publications sent

*

MQSRO_LENGTH EQU *-MQSRO

 ORG MQSRO

MQSRO_AREA DS CL(MQSRO_LENGTH)

Parent topic: Initial values and language declarations for MQSRO

This build: January 26, 2011 11:19:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr35210_

1.37. MQSTS – Status reporting structure

The following table summarizes the fields in the structure.

Table 1. Fields in MQSTS

Field Description Topic

StrucId Structure identifier StrucId

Version Structure version number Version

CompCode Completion code of first error CompCode

Reason Reason code of first error Reason

PutSuccessCount Number of successful asynchronous put calls SuccessCount

PutWarningcount Number of asynchronous put calls which had warnings WarningCount

PutFailureCount Number of failed asynchronous put calls FailureCount

ObjectType Type of failing object ObjectType

ObjectName Name of failing object ObjectName

ObjectQMgrName Name of queue manager owning the failing object ObjectQMgrName

ResolvedObjectName Resolved name of destination queue ResolvedObjectName

ResolvedQMgrName Resolved name of destination queue manager ResolvedQMgrName

Page 350 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Overview for MQSTS
Purpose: The MQSTS structure is an output parameter from the MQSTAT command.

Fields for MQSTS

Initial values and language declarations for MQSTS

Parent topic: Data type descriptions

This build: January 26, 2011 11:17:01

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15291_

1.37.1. Overview for MQSTS

Purpose: The MQSTS structure is an output parameter from the MQSTAT command.

Character set and encoding: Character data in MQSTS is in the character set of the local queue manager; this is given by the
CodedCharSetId queue-manager attribute. Numeric data in MQSTS is in the native machine encoding; this is given by Encoding.

Usage: The MQSTAT command is used to retrieve status information. This information is returned in an MQSTS structure. For information

about MQSTAT, see MQSTAT – Retrieve status information.

Parent topic: MQSTS – Status reporting structure

This build: January 26, 2011 11:17:01

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15292_

1.37.2. Fields for MQSTS

The MQSTS structure contains the following fields; the fields are described in alphabetic order:

CompCode (MQLONG)
The completion code of the operation being reported on.

ObjectName (MQCHAR48)
The name of the object being reported on.

ObjectQMgrName (MQCHAR48)
The name of the queue manager being reported on.

ObjectString (MQCHARV)
Long object name of failing object being reported on. Present only in Version 2 of MQSTS or higher.

ObjectType (MQLONG)

The type of the object named in ObjectName being reported on.

OpenOptions (MQLONG)

The OpenOptions used to open the object being reported upon. Present only in Version 2 of MQSTS or higher.

PutFailureCount (MQLONG)

The number of asynchronous put operations that failed.

PutSuccessCount (MQLONG)
The number of asynchronous put operations that succeeded.

PutWarningCount (MQLONG)
The number of asynchronous put operations that ended with a warning.

SubName (MQCHARV)
The name of the failing subscription. Present only in Version 2 of MQSTS or higher.

Note: The remaining fields are ignored if Version is less than MQSTS_VERSION_2.

ObjectString Long object name of failing object ObjectString

SubName Subscription name of failing subscription SubName

OpenOptions Open options associated with the failure OpenOptions

SubOptions Subscription options associated with the failure SubOptions

Page 351 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

SubOptions (MQLONG)
The SubOptions used to open the failing subscription. Present only in Version 2 of MQSTS or higher.

Reason (MQLONG)
The reason code of the operation being reported on.

ResolvedObjectName (MQCHAR48)

The name of the object named in ObjectName after the local queue manager resolves the name.

ResolvedQMgrName (MQCHAR48)
The name of the destination queue manager after the local queue manager resolves the name.

StrucId (MQCHAR4)
The identifier for the status reporting structure, MQSTS.

Version (MQLONG)
The structure version number.

Parent topic: MQSTS – Status reporting structure

This build: January 26, 2011 11:17:02

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15293_

1.37.2.1. CompCode (MQLONG)

The completion code of the operation being reported on.

The interpretation of CompCode depends on the value of the MQSTAT Type parameter.

MQSTAT_TYPE_ASYNC_ERROR

This is the completion code resulting from a previous asynchronous put operation on the object specified in ObjectName.

MQSTAT_TYPE_RECONNECTION

If the connection is reconnecting or failed to reconnect this is the completion code that caused the connection to begin reconnecting.

If the connection is currently connected the value is MQCC_OK.

MQSTAT_TYPE_RECONNECTION_ERROR

If the connection failed to reconnect this is the completion code that caused the reconnection to fail.

If the connection is currently connected, or reconnecting, the value is MQCC_OK.

CompCode is always an output field. Its initial value is MQCC_OK.

Parent topic: Fields for MQSTS

This build: January 26, 2011 11:17:02

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15296_

1.37.2.2. ObjectName (MQCHAR48)

The name of the object being reported on.

The interpretation of ObjectName depends on the value of the MQSTAT Type parameter.

MQSTAT_TYPE_ASYNC_ERROR

This is the name of the queue or topic used in the put operation, the failure of which is reported in the CompCode and Reason fields in the

MQSTS structure.

MQSTAT_TYPE_RECONNECTION

If the connection is reconnecting, this is the name of the queue manager associated with the connection.

MQSTAT_TYPE_RECONNECTION_ERROR

If the connection failed to reconnect, this is the name of the object which caused reconnection to fail. The reason for the failure is reported

in the CompCode and Reason fields in the MQSTS structure.

Page 352 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

ObjectName is an output field. Its initial value is the null string in C, and 48 blank characters in other programming languages.

Parent topic: Fields for MQSTS

This build: January 26, 2011 11:17:03

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr1529c_

1.37.2.3. ObjectQMgrName (MQCHAR48)

The name of the queue manager being reported on.

The interpretation of ObjectQMgrName depends on the value of the MQSTAT Type parameter.

MQSTAT_TYPE_ASYNC_ERROR

This is the name of the queue manager on which the ObjectName object is defined. A name that is entirely blank up to the first null

character or the end of the field denotes the queue manager to which the application is connected (the local queue manager).

MQSTAT_TYPE_RECONNECTION

Blank.

MQSTAT_TYPE_RECONNECTION_ERROR

If the connection failed to reconnect, this is the name of the object which caused reconnection to fail. The reason for the failure is reported
in the CompCode and Reason fields in the MQSTS structure.

ObjectQMgrName is an output field. Its value is the null string in C, and 48 blank characters in other programming languages.

Parent topic: Fields for MQSTS

This build: January 26, 2011 11:17:03

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr1529d_

1.37.2.4. ObjectString (MQCHARV)

Long object name of failing object being reported on. Present only in Version 2 of MQSTS or higher.

The interpretation of ObjectString depends on the value of the MQSTAT Type parameter.

MQSTAT_TYPE_ASYNC_ERROR

This is the long object name of the queue or topic used in the MQPUT operation, which failed.

MQSTAT_TYPE_RECONNECTION

Zero length string

MQSTAT_TYPE_RECONNECTION_ERROR

This is the long object name of the object that caused the reconnection to fail.

ObjectString is an output field. Its initial value is a zero length string.

Parent topic: Fields for MQSTS

This build: January 26, 2011 11:17:07

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr1529m_

1.37.2.5. ObjectType (MQLONG)

The type of the object named in ObjectName being reported on.

Possible values of ObjectType are listed in MQOT_* (Object Types).

ObjectType is an output field. Its initial value is MQOT_Q.

Parent topic: Fields for MQSTS

Page 353 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This build: January 26, 2011 11:17:03

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr1529b_

1.37.2.6. OpenOptions (MQLONG)

The OpenOptions used to open the object being reported upon. Present only in Version 2 of MQSTS or higher.

The value of OpenOptions depends on the value of the MQSTAT Type parameter.

MQSTAT_TYPE_ASYNC_ERROR

Zero.

MQSTAT_TYPE_RECONNECTION

Zero.

MQSTAT_TYPE_RECONNECTION_ERROR

The OpenOptions used when the failure occurred. The reason for the failure is reported in the CompCode and Reason fields in the MQSTS

structure.

OpenOptions is an output field. Its initial value is zero.

Parent topic: Fields for MQSTS

This build: January 26, 2011 11:17:08

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr1529o_

1.37.2.7. PutFailureCount (MQLONG)

The number of asynchronous put operations that failed.

The value of PutFailureCount depends on the value of the MQSTAT Type parameter.

MQSTAT_TYPE_ASYNC_ERROR

The number of asynchronous put operations to the object named in the MQSTS structure that completed with MQCC_FAILED.

MQSTAT_TYPE_RECONNECTION

Zero.

MQSTAT_TYPE_RECONNECTION_ERROR

Zero.

PutFailureCount is an output field. Its initial value is zero.

Parent topic: Fields for MQSTS

This build: January 26, 2011 11:17:02

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr1529a_

1.37.2.8. PutSuccessCount (MQLONG)

The number of asynchronous put operations that succeeded.

The value of PutSuccessCount depends on the value of the MQSTAT Type parameter.

MQSTAT_TYPE_ASYNC_ERROR

The number of asynchronous put operations to the object named in the MQSTS structure that completed with MQCC_OK.

MQSTAT_TYPE_RECONNECTION

Zero.

MQSTAT_TYPE_RECONNECTION_ERROR

Zero.

Page 354 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

PutSuccessCount is an output field. Its initial value is zero.

Parent topic: Fields for MQSTS

This build: January 26, 2011 11:17:02

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15298_

1.37.2.9. PutWarningCount (MQLONG)

The number of asynchronous put operations that ended with a warning.

The value of PutWarningCount depends on the value of the MQSTAT Type parameter.

MQSTAT_TYPE_ASYNC_ERROR

The number of asynchronous put operations to the object named in the MQSTS structure that completed with MQCC_WARNING.

MQSTAT_TYPE_RECONNECTION

Zero.

MQSTAT_TYPE_RECONNECTION_ERROR

Zero.

PutWarningCount is an output field. Its initial value is zero.

Parent topic: Fields for MQSTS

This build: January 26, 2011 11:17:02

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15299_

1.37.2.10. SubName (MQCHARV)

The name of the failing subscription. Present only in Version 2 of MQSTS or higher.

The interpretation of SubName depends on the value of the MQSTAT Type parameter.

MQSTAT_TYPE_ASYNC_ERROR

Zero length string.

MQSTAT_TYPE_RECONNECTION

Zero length string.

MQSTAT_TYPE_RECONNECTION_ERROR

The name of the subscription that caused reconnection to fail. If no subscription name is available, or the failure is not related to a
subscription, this is a zero-length string.

SubName is an output field. Its initial value is a zero length string.

Parent topic: Fields for MQSTS

This build: January 26, 2011 11:17:07

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr1529n_

1.37.2.11. SubOptions (MQLONG)

The SubOptions used to open the failing subscription. Present only in Version 2 of MQSTS or higher.

The interpretation of SubOptions depends on the value of the MQSTAT Type parameter.

MQSTAT_TYPE_ASYNC_ERROR

Zero.

MQSTAT_TYPE_RECONNECTION

Zero.

Page 355 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

MQSTAT_TYPE_RECONNECTION_ERROR

The SubOptions used when the failure occurred. If the failure is not related to subscribing to a topic, the value returned is zero.

SubOptions is an output field. Its initial value is zero.

Parent topic: Fields for MQSTS

This build: January 26, 2011 11:17:08

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr1529p_

1.37.2.12. Reason (MQLONG)

The reason code of the operation being reported on.

The interpretation of Reason depends on the value of the MQSTAT Type parameter.

MQSTAT_TYPE_ASYNC_ERROR

This is the reason code resulting from a previous asynchronous put operation on the object specified in ObjectName.

MQSTAT_TYPE_RECONNECTION

If the connection is reconnecting or failed to reconnect this is the reason code that caused the reconnection to begin reconnecting.

If the connection is currently connected the value is MQRC_NONE.

MQSTAT_TYPE_RECONNECTION_ERROR

If the connection failed to reconnect this is the reason code that caused the reconnection to fail.

If the connection is currently connected, or reconnecting, the value is MQRC_NONE.

Reason is an output field. Its initial value is MQRC_NONE.

Parent topic: Fields for MQSTS

This build: January 26, 2011 11:17:02

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15297_

1.37.2.13. ResolvedObjectName (MQCHAR48)

The name of the object named in ObjectName after the local queue manager resolves the name.

The interpretation of ResolvedObjectName depends on the value of the MQSTAT Type parameter.

MQSTAT_TYPE_ASYNC_ERROR

ResolvedObjectName is the name of the object named in ObjectName after the local queue manager resolves the name. The name

returned is the name of an object that exists on the queue manager identified by ResolvedQMgrName.

MQSTAT_TYPE_RECONNECTION

Blank.

MQSTAT_TYPE_RECONNECTION_ERROR

Blank.

ResolvedObjectName is an output field. Its initial value is the null string in C, and 48 blank characters in other programming languages.

Parent topic: Fields for MQSTS

This build: January 26, 2011 11:17:03

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr1529e_

1.37.2.14. ResolvedQMgrName (MQCHAR48)

The name of the destination queue manager after the local queue manager resolves the name.

Page 356 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

The interpretation of ResolvedQMgrName depends on the value of the MQSTAT Type parameter.

MQSTAT_TYPE_ASYNC_ERROR

ResolvedQMgrName is the name of the destination queue manager after the local queue manager resolves the name. The name returned is

the name of the queue manager that owns the object identified by ResolvedObjectName. ResolvedQMgrName might be the name of the

local queue manager.

MQSTAT_TYPE_RECONNECTION

Blank.

MQSTAT_TYPE_RECONNECTION_ERROR

Blank.

ResolvedQMgrName is always an output field. Its initial value is the null string in C, and 48 blank characters in other programming

languages.

Parent topic: Fields for MQSTS

This build: January 26, 2011 11:17:03

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr1529f_

1.37.2.15. StrucId (MQCHAR4)

The identifier for the status reporting structure, MQSTS.

StrucId is the structure identifier. The value must be:

MQSTS_STRUC_ID

Identifier for status reporting structure.

For the C programming language, the constant MQSTS_STRUC_ID_ARRAY is also defined; this has the same value as MQSTS_STRUC_ID, but is

an array of characters instead of a string.

StrucId is always an input field. Its initial value is MQSTS_STRUC_ID.

Parent topic: Fields for MQSTS

This build: January 26, 2011 11:17:02

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15294_

1.37.2.16. Version (MQLONG)

The structure version number.

The value must be either:

MQSTS_VERSION_1

Version 1 status reporting structure.

MQSTS_VERSION_2

Version 2 status reporting structure.

The following constant specifies the version number of the current version:

MQSTS_CURRENT_VERSION

Current version of status reporting structure. The current version is MQSTS_VERSION_2.

Version is always an input field. Its initial value is MQSTS_VERSION_1.

Parent topic: Fields for MQSTS

This build: January 26, 2011 11:17:02

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15295_

Page 357 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

1.37.3. Initial values and language declarations for MQSTS

C declaration

COBOL declaration

PL/I declaration (z/OS only)

System/390 assembler declaration (z/OS only)

Parent topic: MQSTS – Status reporting structure

This build: January 26, 2011 11:17:04

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr1529g_

1.37.3.1. C declaration

typedef struct tagMQSTS MQSTS;

struct tagMQSTS {

 MQCHAR4 StrucId; /* Structure identifier */

 MQLONG Version; /* Structure version number */

 MQLONG CompCode; /* Completion Code of first error */

 MQLONG Reason; /* Reason Code of first error */

 MQLONG PutSuccessCount; /* Number of Async calls succeeded */

 MQLONG PutWarningCount; /* Number of Async calls had warnings */

 MQLONG PutFailureCount; /* Number of Async calls had failures */

 MQLONG ObjectType; /* Failing object type */

 MQCHAR48 ObjectName; /* Failing object name */

 MQCHAR48 ObjectQMgrName; /* Failing object queue manager name */

 MQCHAR48 ResolvedObjectName; /* Resolved name of destination queue */

 MQCHAR48 ResolvedQMgrName; /* Resolved name of destination qmgr */

/* Ver:1 */

 MQCHARV ObjectString; /* Failing object long name */

 MQCHARV SubName; /* Failing subscription name */

 MQLONG OpenOptions; /* Failing open options */

 MQLONG SubOptions; /* Failing subscription options */

/* Ver:2 */

};

Parent topic: Initial values and language declarations for MQSTS

This build: January 26, 2011 11:17:07

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

Table 1. Initial values of fields in MQSTS

Field name Name of constant Value of constant

StrucId MQSTS_STRUC_ID 'STS�'

Version MQSTS_VERSION_1 1

CompCode MQCC_OK 0

Reason MQRC_NONE 0

PutSuccessCount None 0

PutWarningCount None 0

PutFailureCount None 0

ObjectType MQOT_Q 1

ObjectName None Null string or blanks

ObjectQMgrName None Null string or blanks

ResolvedObjectName None Null string or blanks

ResolvedQMgrName None Null string or blanks

ObjectString MQCHARV_DEFAULT {NULL,0,0,0,-3}

SubName MQCHARV_DEFAULT {NULL,0,0,0,-3}

OpenOptions None 0

SubOptions None 0

Notes:

1. The symbol � represents a single blank character.

2. The value Null string or blanks denotes the null string in C, and blank characters in other programming languages.

3. In the C programming language, the macro variable MQSTS_DEFAULT contains the values listed above. It can be used in

the following way to provide initial values for the fields in the structure:

MQSTS MySTS = {MQSTS_DEFAULT};

Page 358 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This topic's URL:

fr1529h_

1.37.3.2. COBOL declaration

 ** MQSTS structure

 10 MQSTS.

 ** Structure identifier

 15 MQSTS-STRUCID PIC X(4).

 ** Structure version number

 15 MQSTS-VERSION PIC S9(9) BINARY.

 ** Completion Code of first error

 15 MQSTS-COMPCODE PIC S9(9) BINARY.

 ** Reason Code of first error

 15 MQSTS-REASON PIC S9(9) BINARY.

 ** Number of Async put calls succeeded

 15 MQSTS-PUTSUCCESSCOUNT PIC S9(9) BINARY.

 ** Number of Async put calls had warnings

 15 MQSTS-PUTWARNINGCOUNT PIC S9(9) BINARY.

 ** Number of Async put calls had failures

 15 MQSTS-PUTFAILURECOUNT PIC S9(9) BINARY.

 ** Failing object type

 15 MQSTS-OBJECTTYPE PIC S9(9) BINARY.

 ** Failing object name

 15 MQSTS-OBJECTNAME PIC X(48).

 ** Failing object queue manager

 15 MQSTS-OBJECTQMGRNAME PIC X(48).

 ** Resolved name of destination queue

 15 MQSTS-RESOLVEDOBJECTNAME PIC X(48).

 ** Resolved name of destination qmgr

 15 MQSTS-RESOLVEDQMGRNAME PIC X(48).

 ** Ver:1 **

 ** Failing object long name

 15 MQSTS-OBJECTSTRING.

 ** Address of variable length string

 20 MQSTS-OBJECTSTRING-VSPTR POINTER.

 ** Offset of variable length string

 20 MQSTS-OBJECTSTRING-VSOFFSET PIC S9(9) BINARY.

 ** Size of buffer

 20 MQSTS-OBJECTSTRING-VSBUFSIZE PIC S9(9) BINARY.

 ** Length of variable length string

 20 MQSTS-OBJECTSTRING-VSLENGTH PIC S9(9) BINARY.

 ** CCSID of variable length string

 20 MQSTS-OBJECTSTRING-VSCCSID PIC S9(9) BINARY.

 ** Failing subscription name

 15 MQSTS-SUBNAME.

 ** Address of variable length string

 20 MQSTS-SUBNAME-VSPTR POINTER.

 ** Offset of variable length string

 20 MQSTS-SUBNAME-VSOFFSET PIC S9(9) BINARY.

 ** Size of buffer

 20 MQSTS-SUBNAME-VSBUFSIZE PIC S9(9) BINARY.

 ** Length of variable length string

 20 MQSTS-SUBNAME-VSLENGTH PIC S9(9) BINARY.

 ** CCSID of variable length string

 20 MQSTS-SUBNAME-VSCCSID PIC S9(9) BINARY.

 ** Failing open options

 15 MQSTS-OPENOPTIONS PIC S9(9) BINARY.

 ** Failing subscription options

 15 MQSTS-SUBOPTIONS PIC S9(9) BINARY.

 ** Ver:2 **

Parent topic: Initial values and language declarations for MQSTS

This build: January 26, 2011 11:17:07

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr1529i_

1.37.3.3. PL/I declaration (z/OS® only)

dcl

 1 MQSTS based,

 3 StrucId char(4), /* Structure identifier */

 3 Version fixed bin(31), /* Structure version number */

 3 CompCode fixed bin(31), /* Completion code */

 3 Reason fixed bin(31), /* Reason code */

 3 PutSuccessCount fixed bin(31), /* Put success count */

 3 PutWarningCount fixed bin(31), /* Put warning count */

 3 PutFailureCount fixed bin(31), /* Put failure count */

 3 ObjectType fixed bin(31), /* Object type */

 3 ObjectName char(48), /* Object name */

 3 ObjectQmgrName char(48), /* Object queue manager */

 3 ResolvedObjectName char(48), /* Resolved Object name */

 3 ResolvedQmgrName char(48); /* Resolved Object queue manager */

 /* Ver:1 */

 3 ObjectString, /* Failing object long name */

Page 359 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

 5 VSPtr pointer, /* Address of variable length string */

 5 VSOffset fixed bin(31), /* Offset of variable length string */

 5 VSBufSize fixed bin(31), /* Size of buffer */

 5 VSLength fixed bin(31), /* Length of variable length string */

 5 VSCCSID fixed bin(31); /* CCSID of variable length string */

 3 SubName, /* Failing subscription name */

 5 VSPtr pointer, /* Address of variable length string */

 5 VSOffset fixed bin(31), /* Offset of variable length string */

 5 VSBufSize fixed bin(31), /* Size of buffer */

 5 VSLength fixed bin(31), /* Length of variable length string */

 5 VSCCSID fixed bin(31); /* CCSID of variable length string */

 3 OpenOptions fixed bin(31), /* Failing open options */

 3 SubOptions fixed bin(31); /* Failing subscription options */

 /* Ver:2 */

Parent topic: Initial values and language declarations for MQSTS

This build: January 26, 2011 11:17:07

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr1529j_

1.37.3.4. System/390® assembler declaration (z/OS® only)

 MQSTS DSECT

 MQSTS_STRUCID DS CL4 Structure identifier

 MQSTS_VERSION DS F Structure version number

 MQSTS_COMPCODE DS F Completion code

 MQSTS_REASON DS F Reason code

 MQSTS_PUTSUCCESSCOUNT DS F Success count

 MQSTS_PUTWARNINGCOUNT DS F Warning count

 MQSTS_PUTFAILURECOUNT DS F Failure count

 MQSTS_OBJTYPE DS F Object type

 MQSTS_OBJNAME DS CL48 Object name

 MQSTS_OBJQMGR DS CL48 Object queue manager

 MQSTS_ROBJNAME DS CL48 Resolved object name

 MQSTS_ROBJQMGR DS CL48 Resolved object queue manager

 MQSTS_OBJECTSTRING DS 0F Force fullword alignment

 MQSTS_OBJECTSTRING_VSPTR DS A Address of variable length string

 MQSTS_OBJECTSTRING_VSOFFSET DS F Offset of variable length string

 MQSTS_OBJECTSTRING_VSBUFSIZE DS F Size of buffer

 MQSTS_OBJECTSTRING_VSLENGTH DS F Length of variable length string

 MQSTS_OBJECTSTRING_VSCCSID DS F CCSID of variable length string

 MQSTS_OBJECTSTRING_LENGTH EQU *-MQSTS_OBJECTSTRING

 ORG MQSTS_OBJECTSTRING

 MQSTS_OBJECTSTRING_AREA DS CL(MQSTS_OBJECTSTRING_LENGTH)

 *

 MQSTS_SUBNAME DS 0F Force fullword alignment

 MQSTS_SUBNAME_VSPTR DS A Address of variable length string

 MQSTS_SUBNAME_VSOFFSET DS F Offset of variable length string

 MQSTS_SUBNAME_VSBUFSIZE DS F Size of buffer

 MQSTS_SUBNAME_VSLENGTH DS F Length of variable length string

 MQSTS_SUBNAME_VSCCSID DS F CCSID of variable length string

 MQSTS_SUBNAME_LENGTH EQ *-MQSTS_SUBNAME

 ORG MQSTS_SUBNAME

 MQSTS_SUBNAME_AREA DS CL(MQSTS_SUBNAME_LENGTH)

 *

 MQSTS_OPENOPTIONS DS F Failing open options

 MQSTS_SUBOPTIONS DS F Failing subscription option

 MQSTS_LENGTH EQU *-MQSTS

 ORG MQSTS

 MQSTS_AREA DS CL(MQSTS_LENGTH)

Parent topic: Initial values and language declarations for MQSTS

This build: January 26, 2011 11:17:07

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr1529k_

1.38. MQTM – Trigger message

The following table summarizes the fields in the structure.

Table 1. Fields in MQTM

Field Description Topic

StrucId Structure identifier StrucId

Version Structure version number Version

QName Name of triggered queue QName

ProcessName Name of process object ProcessName

TriggerData Trigger data TriggerData

ApplType Application type ApplType

Page 360 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Overview for MQTM
Purpose: The MQTM structure describes the data in the trigger message that is sent by the queue manager to a trigger-monitor

application when a trigger event occurs for a queue.

Fields for MQTM

Initial values and language declarations for MQTM

Parent topic: Data type descriptions

This build: January 26, 2011 11:17:08

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15300_

1.38.1. Overview for MQTM

Purpose: The MQTM structure describes the data in the trigger message that is sent by the queue manager to a trigger-monitor application
when a trigger event occurs for a queue.

This structure is part of the WebSphere® MQ Trigger Monitor Interface (TMI), which is one of the WebSphere MQ framework interfaces.

Format name: MQFMT_TRIGGER.

Character set and encoding: Character data in MQTM is in the character set of the queue manager that generates the MQTM. Numeric
data in MQTM is in the machine encoding of the queue manager that generates the MQTM.

The character set and encoding of the MQTM are given by the CodedCharSetId and Encoding fields in:

� The MQMD (if the MQTM structure is at the start of the message data), or

� The header structure that precedes the MQTM structure (all other cases).

Usage: A trigger-monitor application might need to pass some or all of the information in the trigger message to the application that the
trigger-monitor application starts. Information that might be needed by the started application includes QName, TriggerData, and UserData.

The trigger-monitor application can pass the MQTM structure directly to the started application, or pass an MQTMC2 structure instead,
depending on what is permitted by the environment and convenient for the started application. For information about MQTMC2, see
MQTMC2 – Trigger message 2 (character format).

� On z/OS®, for an MQAT_CICS application that is started using the CKTI transaction, the entire trigger message structure MQTM is
made available to the started transaction; the information can be retrieved by using the EXEC CICS® RETRIEVE command.

� On i5/OS®, the trigger-monitor application provided with WebSphere MQ passes an MQTMC2 structure to the started application.

For information about using triggers, see the WebSphere MQ Application Programming Guide.

MQMD for a trigger message: The fields in the MQMD of a trigger message generated by the queue manager are set as follows:

ApplId Application identifier ApplId

EnvData Environment data EnvData

UserData User data UserData

Field in MQMD Value used

StrucId MQMD_STRUC_ID

Version MQMD_VERSION_1

Report MQRO_NONE

MsgType MQMT_DATAGRAM

Expiry MQEI_UNLIMITED

Feedback MQFB_NONE

Encoding MQENC_NATIVE

CodedCharSetId Queue manager’s CodedCharSetId attribute

Format MQFMT_TRIGGER

Priority Initiation queue’s DefPriority attribute

Persistence MQPER_NOT_PERSISTENT

MsgId A unique value

CorrelId MQCI_NONE

BackoutCount 0

ReplyToQ Blanks

ReplyToQMgr Name of queue manager

UserIdentifier Blanks

AccountingToken MQACT_NONE

ApplIdentityData Blanks

PutApplType MQAT_QMGR, or as appropriate for the message channel agent

PutApplName First 28 bytes of the queue-manager name

PutDate Date when trigger message is sent

PutTime Time when trigger message is sent

Page 361 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

An application that generates a trigger message is recommended to set similar values, except for the following:

� The Priority field can be set to MQPRI_PRIORITY_AS_Q_DEF (the queue manager will change this to the default priority for the

initiation queue when the message is put).

� The ReplyToQMgr field can be set to blanks (the queue manager will change this to the name of the local queue manager when the

message it put).

� Set the context fields as appropriate for the application.

Parent topic: MQTM – Trigger message

This build: January 26, 2011 11:17:09

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15310_

1.38.2. Fields for MQTM

The MQTM structure contains the following fields; the fields are described in alphabetic order:

ApplId (MQCHAR256)

ApplType (MQLONG)

EnvData (MQCHAR128)

ProcessName (MQCHAR48)

QName (MQCHAR48)

StrucId (MQCHAR4)

TriggerData (MQCHAR64)

UserData (MQCHAR128)

Version (MQLONG)

Parent topic: MQTM – Trigger message

This build: January 26, 2011 11:17:09

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15320_

1.38.2.1. ApplId (MQCHAR256)

This is a character string that identifies the application to be started, and is used by the trigger-monitor application that receives the trigger
message. The queue manager initializes this field with the value of the ApplId attribute of the process object identified by the ProcessName

field; see Attributes for process definitions for details of this attribute. The content of this data is of no significance to the queue manager.

The meaning of ApplId is determined by the trigger-monitor application. The trigger monitor provided by WebSphere® MQ requires ApplId

to be the name of an executable program. The following notes apply to the environments indicated:

� On z/OS®, ApplId is:

� A CICS® transaction identifier, for applications started using the CICS trigger-monitor transaction CKTI

� An IMS™ transaction identifier, for applications started using the IMS trigger monitor CSQQTRMN

� On Windows systems, the program name can be prefixed with a drive and directory path.

� On i5/OS®, the program name can be prefixed with a library name and / character.

� On UNIX systems, the program name can be prefixed with a directory path.

The length of this field is given by MQ_PROCESS_APPL_ID_LENGTH. The initial value of this field is the null string in C, and 256 blank
characters in other programming languages.

Parent topic: Fields for MQTM

This build: January 26, 2011 11:17:09

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15330_

ApplOriginData Blanks

Page 362 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

1.38.2.2. ApplType (MQLONG)

This identifies the nature of the program to be started, and is used by the trigger-monitor application that receives the trigger message. The
queue manager initializes this field with the value of the ApplType attribute of the process object identified by the ProcessName field; see

Attributes for process definitions for details of this attribute. The content of this data is of no significance to the queue manager.

ApplType can have one of the following standard values. User-defined types can also be used, but should be restricted to values in the

range MQAT_USER_FIRST through MQAT_USER_LAST:

MQAT_AIX

AIX® application (same value as MQAT_UNIX).

MQAT_BATCH

Batch application

MQAT_BROKER

Broker application

MQAT_CICS

CICS® transaction.

MQAT_CICS_BRIDGE

CICS bridge application.

MQAT_CICS_VSE

CICS/VSE transaction.

MQAT_DOS

WebSphere® MQ client application on PC DOS.

MQAT_IMS

IMS™ application.

MQAT_IMS_BRIDGE

IMS bridge application.

MQAT_JAVA

Java application.

MQAT_MVS

MVS™ or TSO application (same value as MQAT_ZOS).

MQAT_NOTES_AGENT

Lotus Notes® Agent application.

MQAT_NSK

Compaq NonStop Kernel application.

MQAT_OS390

OS/390® application (same value as MQAT_ZOS).

MQAT_OS400

i5/OS® application.

MQAT_RRS_BATCH

RRS batch application.

MQAT_UNIX

UNIX application.

MQAT_UNKNOWN

Application of unknown type.

MQAT_USER

User-defined application type.

MQAT_VMS

Digital OpenVMS application.

MQAT_VOS

Stratus VOS application.

MQAT_WINDOWS

16-bit Windows application.

MQAT_WINDOWS_NT

32-bit Windows application.

MQAT_WLM

z/OS® workload manager application.

MQAT_XCF

XCF.

MQAT_ZOS

z/OS application.

MQAT_USER_FIRST

Lowest value for user-defined application type.

MQAT_USER_LAST

Page 363 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Highest value for user-defined application type.

The initial value of this field is 0.

Parent topic: Fields for MQTM

This build: January 26, 2011 11:17:09

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15340_

1.38.2.3. EnvData (MQCHAR128)

This is a character string that contains environment-related information pertaining to the application to be started, and is used by the
trigger-monitor application that receives the trigger message. The queue manager initializes this field with the value of the EnvData

attribute of the process object identified by the ProcessName field; see Attributes for process definitions for details of this attribute. The

content of this data is of no significance to the queue manager.

On z/OS®, for a CICS® application started using the CKTI transaction, or an IMS™ application to be started using the CSQQTRMN
transaction, this information is not used.

The length of this field is given by MQ_PROCESS_ENV_DATA_LENGTH. The initial value of this field is the null string in C, and 128 blank
characters in other programming languages.

Parent topic: Fields for MQTM

This build: January 26, 2011 11:17:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15350_

1.38.2.4. ProcessName (MQCHAR48)

This is the name of the queue-manager process object specified for the triggered queue, and can be used by the trigger-monitor application
that receives the trigger message. The queue manager initializes this field with the value of the ProcessName attribute of the queue

identified by the QName field; see Attributes for queues for details of this attribute.

Names that are shorter than the defined length of the field are always padded to the right with blanks; they are not ended prematurely by a
null character.

The length of this field is given by MQ_PROCESS_NAME_LENGTH. The initial value of this field is the null string in C, and 48 blank characters
in other programming languages.

Parent topic: Fields for MQTM

This build: January 26, 2011 11:17:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15360_

1.38.2.5. QName (MQCHAR48)

This is the name of the queue for which a trigger event occurred, and is used by the application started by the trigger-monitor application.
The queue manager initializes this field with the value of the QName attribute of the triggered queue; see Attributes for queues for details of

this attribute.

Names that are shorter than the defined length of the field are padded to the right with blanks; they are not ended prematurely by a null
character.

The length of this field is given by MQ_Q_NAME_LENGTH. The initial value of this field is the null string in C, and 48 blank characters in
other programming languages.

Parent topic: Fields for MQTM

This build: January 26, 2011 11:17:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15370_

1.38.2.6. StrucId (MQCHAR4)

This is the structure identifier. The value must be:

Page 364 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

MQTM_STRUC_ID

Identifier for trigger message structure.

For the C programming language, the constant MQTM_STRUC_ID_ARRAY is also defined; this has the same value as MQTM_STRUC_ID,
but is an array of characters instead of a string.

The initial value of this field is MQTM_STRUC_ID.

Parent topic: Fields for MQTM

This build: January 26, 2011 11:17:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15380_

1.38.2.7. TriggerData (MQCHAR64)

This is free-format data for use by the trigger-monitor application that receives the trigger message. The queue manager initializes this field
with the value of the TriggerData attribute of the queue identified by the QName field; see Attributes for queues for details of this attribute.

The content of this data is of no significance to the queue manager.

On z/OS®, for a CICS® application started using the CKTI transaction, this information is not used.

The length of this field is given by MQ_TRIGGER_DATA_LENGTH. The initial value of this field is the null string in C, and 64 blank characters
in other programming languages.

Parent topic: Fields for MQTM

This build: January 26, 2011 11:17:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15390_

1.38.2.8. UserData (MQCHAR128)

This is a character string that contains user information relevant to the application to be started, and is used by the trigger-monitor

application that receives the trigger message. The queue manager initializes this field with the value of the UserData attribute of the

process object identified by the ProcessName field; see Attributes for process definitions for details of this attribute. The content of this data

is of no significance to the queue manager.

The length of this field is given by MQ_PROCESS_USER_DATA_LENGTH. The initial value of this field is the null string in C, and 128 blank
characters in other programming languages.

Parent topic: Fields for MQTM

This build: January 26, 2011 11:17:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15400_

1.38.2.9. Version (MQLONG)

This is the structure version number. The value must be:

MQTM_VERSION_1

Version number for trigger message structure.

The following constant specifies the version number of the current version:

MQTM_CURRENT_VERSION

Current version of trigger message structure.

The initial value of this field is MQTM_VERSION_1.

Parent topic: Fields for MQTM

This build: January 26, 2011 11:17:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15410_

1.38.3. Initial values and language declarations for MQTM

Page 365 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

C declaration

COBOL declaration

PL/I declaration

System/390 assembler declaration

Visual Basic declaration

Parent topic: MQTM – Trigger message

This build: January 26, 2011 11:17:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15420_

1.38.3.1. C declaration

typedef struct tagMQTM MQTM;

struct tagMQTM {

 MQCHAR4 StrucId; /* Structure identifier */

 MQLONG Version; /* Structure version number */

 MQCHAR48 QName; /* Name of triggered queue */

 MQCHAR48 ProcessName; /* Name of process object */

 MQCHAR64 TriggerData; /* Trigger data */

 MQLONG ApplType; /* Application type */

 MQCHAR256 ApplId; /* Application identifier */

 MQCHAR128 EnvData; /* Environment data */

 MQCHAR128 UserData; /* User data */

};

Parent topic: Initial values and language declarations for MQTM

This build: January 26, 2011 11:17:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15430_

1.38.3.2. COBOL declaration

** MQTM structure

 10 MQTM.

** Structure identifier

 15 MQTM-STRUCID PIC X(4).

** Structure version number

 15 MQTM-VERSION PIC S9(9) BINARY.

** Name of triggered queue

 15 MQTM-QNAME PIC X(48).

** Name of process object

 15 MQTM-PROCESSNAME PIC X(48).

** Trigger data

 15 MQTM-TRIGGERDATA PIC X(64).

** Application type

 15 MQTM-APPLTYPE PIC S9(9) BINARY.

Table 1. Initial values of fields in MQTM for MQTM

Field name Name of constant Value of constant

StrucId MQTM_STRUC_ID 'TM��'

Version MQTM_VERSION_1 1

QName None Null string or blanks

ProcessName None Null string or blanks

TriggerData None Null string or blanks

ApplType None 0

ApplId None Null string or blanks

EnvData None Null string or blanks

UserData None Null string or blanks

Notes:

1. The symbol � represents a single blank character.

2. The value Null string or blanks denotes the null string in C, and blank characters in other programming languages.

3. In the C programming language, the macro variable MQTM_DEFAULT contains the values listed above. Use it in the

following way to provide initial values for the fields in the structure:

MQTM MyTM = {MQTM_DEFAULT};

Page 366 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

** Application identifier

 15 MQTM-APPLID PIC X(256).

** Environment data

 15 MQTM-ENVDATA PIC X(128).

** User data

 15 MQTM-USERDATA PIC X(128).

Parent topic: Initial values and language declarations for MQTM

This build: January 26, 2011 11:17:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15440_

1.38.3.3. PL/I declaration

dcl

 1 MQTM based,

 3 StrucId char(4), /* Structure identifier */

 3 Version fixed bin(31), /* Structure version number */

 3 QName char(48), /* Name of triggered queue */

 3 ProcessName char(48), /* Name of process object */

 3 TriggerData char(64), /* Trigger data */

 3 ApplType fixed bin(31), /* Application type */

 3 ApplId char(256), /* Application identifier */

 3 EnvData char(128), /* Environment data */

 3 UserData char(128); /* User data */

Parent topic: Initial values and language declarations for MQTM

This build: January 26, 2011 11:17:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15450_

1.38.3.4. System/390® assembler declaration

MQTM DSECT

MQTM_STRUCID DS CL4 Structure identifier

MQTM_VERSION DS F Structure version number

MQTM_QNAME DS CL48 Name of triggered queue

MQTM_PROCESSNAME DS CL48 Name of process object

MQTM_TRIGGERDATA DS CL64 Trigger data

MQTM_APPLTYPE DS F Application type

MQTM_APPLID DS CL256 Application identifier

MQTM_ENVDATA DS CL128 Environment data

MQTM_USERDATA DS CL128 User data

*

MQTM_LENGTH EQU *-MQTM

 ORG MQTM

MQTM_AREA DS CL(MQTM_LENGTH)

Parent topic: Initial values and language declarations for MQTM

This build: January 26, 2011 11:17:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15460_

1.38.3.5. Visual Basic declaration

Type MQTM

 StrucId As String*4 'Structure identifier'

 Version As Long 'Structure version number'

 QName As String*48 'Name of triggered queue'

 ProcessName As String*48 'Name of process object'

 TriggerData As String*64 'Trigger data'

 ApplType As Long 'Application type'

 ApplId As String*256 'Application identifier'

 EnvData As String*128 'Environment data'

 UserData As String*128 'User data'

End Type

Parent topic: Initial values and language declarations for MQTM

This build: January 26, 2011 11:17:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

Page 367 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

fr15470_

1.39. MQTMC2 – Trigger message 2 (character format)

The following table summarizes the fields in the structure.

Overview for MQTMC2
Purpose: When a trigger-monitor application retrieves a trigger message (MQTM) from an initiation queue, the trigger monitor might
need to pass some or all of the information in the trigger message to the application that the trigger monitor starts.

Fields for MQTMC2

Initial values and language declarations for MQTMC2

Parent topic: Data type descriptions

This build: January 26, 2011 11:17:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15480_

1.39.1. Overview for MQTMC2

Purpose: When a trigger-monitor application retrieves a trigger message (MQTM) from an initiation queue, the trigger monitor might need
to pass some or all of the information in the trigger message to the application that the trigger monitor starts.

Information that the started application might need includes QName, TriggerData, and UserData. The trigger monitor application can pass

the MQTM structure directly to the started application, or pass an MQTMC2 structure instead, depending on what is permitted by the
environment and convenient for the started application.

This structure is part of the WebSphere® MQ Trigger Monitor Interface (TMI), which is one of the WebSphere MQ framework interfaces.

Character set and encoding: Character data in MQTMC2 is in the character set of the local queue manager; this is given by the
CodedCharSetId queue-manager attribute.

Usage: The MQTMC2 structure is very similar to the format of the MQTM structure. The difference is that the non-character fields in MQTM
are changed in MQTMC2 to character fields of the same length, and the queue manager name is added at the end of the structure.

� On z/OS®, for an MQAT_IMS application that is started using the CSQQTRMN application, an MQTMC2 structure is made available to
the started application.

� On i5/OS®, the trigger monitor application provided with WebSphere MQ passes an MQTMC2 structure to the started application.

Parent topic: MQTMC2 – Trigger message 2 (character format)

This build: January 26, 2011 11:17:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15490_

1.39.2. Fields for MQTMC2

The MQTMC2 structure contains the following fields; the fields are described in alphabetic order:

ApplId (MQCHAR256)

ApplType (MQCHAR4)

Application type.

EnvData (MQCHAR128)
Environment data.

Table 1. Fields in MQTMC2

Field Description Topic

StrucId Structure identifier StrucId

Version Structure version number Version

QName Name of triggered queue QName

ProcessName Name of process object ProcessName

TriggerData Trigger data TriggerData

ApplType Application type ApplType

ApplId Application identifier ApplId

EnvData Environment data EnvData

UserData User data UserData

QMgrName Queue manager name QMgrName

Page 368 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

ProcessName (MQCHAR48)
Name of process object.

QMgrName (MQCHAR48)

Queue manager name.

QName (MQCHAR48)
Name of triggered queue.

StrucId (MQCHAR4)
Structure identifier.

TriggerData (MQCHAR64)
Trigger data.

UserData (MQCHAR128)
User data.

Version (MQCHAR4)

Structure version number.

Parent topic: MQTMC2 – Trigger message 2 (character format)

This build: January 26, 2011 11:17:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15500_

1.39.2.1. ApplId (MQCHAR256)

Application identifier.

See the ApplId field in the MQTM structure.

Parent topic: Fields for MQTMC2

This build: January 26, 2011 11:17:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15510_

1.39.2.2. ApplType (MQCHAR4)

Application type.

This field always contains blanks, whatever the value in the ApplType field in the MQTM structure of the original trigger message.

Parent topic: Fields for MQTMC2

This build: January 26, 2011 11:17:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15520_

1.39.2.3. EnvData (MQCHAR128)

Environment data.

See the EnvData field in the MQTM structure.

Parent topic: Fields for MQTMC2

This build: January 26, 2011 11:17:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15530_

1.39.2.4. ProcessName (MQCHAR48)

Name of process object.

See the ProcessName field in the MQTM structure.

Page 369 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Parent topic: Fields for MQTMC2

This build: January 26, 2011 11:17:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15540_

1.39.2.5. QMgrName (MQCHAR48)

Queue manager name.

This is the name of the queue manager at which the trigger event occurred.

Parent topic: Fields for MQTMC2

This build: January 26, 2011 11:17:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15550_

1.39.2.6. QName (MQCHAR48)

Name of triggered queue.

See the QName field in the MQTM structure.

Parent topic: Fields for MQTMC2

This build: January 26, 2011 11:17:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15560_

1.39.2.7. StrucId (MQCHAR4)

Structure identifier.

The value must be:

MQTMC_STRUC_ID

Identifier for trigger message (character format) structure.

For the C programming language, the constant MQTMC_STRUC_ID_ARRAY is also defined; this has the same value as MQTMC_STRUC_ID,
but is an array of characters instead of a string.

Parent topic: Fields for MQTMC2

This build: January 26, 2011 11:17:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15570_

1.39.2.8. TriggerData (MQCHAR64)

Trigger data.

See the TriggerData field in the MQTM structure.

Parent topic: Fields for MQTMC2

This build: January 26, 2011 11:17:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15580_

1.39.2.9. UserData (MQCHAR128)

User data.

See the UserData field in the MQTM structure.

Parent topic: Fields for MQTMC2

Page 370 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This build: January 26, 2011 11:17:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15590_

1.39.2.10. Version (MQCHAR4)

Structure version number.

The value must be:

MQTMC_VERSION_2

Version 2 trigger message (character format) structure.

For the C programming language, the constant MQTMC_VERSION_2_ARRAY is also defined; this has the same value as
MQTMC_VERSION_2, but is an array of characters instead of a string.

The following constant specifies the version number of the current version:

MQTMC_CURRENT_VERSION

Current version of trigger message (character format) structure.

Parent topic: Fields for MQTMC2

This build: January 26, 2011 11:17:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15600_

1.39.3. Initial values and language declarations for MQTMC2

C declaration

COBOL declaration

PL/I declaration

System/390 assembler declaration

Visual Basic declaration

Parent topic: MQTMC2 – Trigger message 2 (character format)

This build: January 26, 2011 11:17:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15610_

Table 1. Initial values of fields in MQTMC2 for MQTMC2

Field name Name of constant Value of constant

StrucId MQTMC_STRUC_ID 'TMC�'

Version MQTMC_VERSION_2 '���2'

QName None Null string or blanks

ProcessName None Null string or blanks

TriggerData None Null string or blanks

ApplType None Blanks

ApplId None Null string or blanks

EnvData None Null string or blanks

UserData None Null string or blanks

QMgrName None Null string or blanks

Notes:

1. The symbol � represents a single blank character.

2. The value Null string or blanks denotes the null string in C, and blank characters in other programming languages.

3. In the C programming language, the macro variable MQTMC2_DEFAULT contains the values listed above. Use it in the

following way to provide initial values for the fields in the structure:

MQTMC2 MyTMC = {MQTMC2_DEFAULT};

Page 371 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

1.39.3.1. C declaration

typedef struct tagMQTMC2 MQTMC2;

struct tagMQTMC2 {

 MQCHAR4 StrucId; /* Structure identifier */

 MQCHAR4 Version; /* Structure version number */

 MQCHAR48 QName; /* Name of triggered queue */

 MQCHAR48 ProcessName; /* Name of process object */

 MQCHAR64 TriggerData; /* Trigger data */

 MQCHAR4 ApplType; /* Application type */

 MQCHAR256 ApplId; /* Application identifier */

 MQCHAR128 EnvData; /* Environment data */

 MQCHAR128 UserData; /* User data */

 MQCHAR48 QMgrName; /* Queue manager name */

};

Parent topic: Initial values and language declarations for MQTMC2

This build: January 26, 2011 11:17:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15620_

1.39.3.2. COBOL declaration

** MQTMC2 structure

 10 MQTMC2.

** Structure identifier

 15 MQTMC2-STRUCID PIC X(4).

** Structure version number

 15 MQTMC2-VERSION PIC X(4).

** Name of triggered queue

 15 MQTMC2-QNAME PIC X(48).

** Name of process object

 15 MQTMC2-PROCESSNAME PIC X(48).

** Trigger data

 15 MQTMC2-TRIGGERDATA PIC X(64).

** Application type

 15 MQTMC2-APPLTYPE PIC X(4).

** Application identifier

 15 MQTMC2-APPLID PIC X(256).

** Environment data

 15 MQTMC2-ENVDATA PIC X(128).

** User data

 15 MQTMC2-USERDATA PIC X(128).

** Queue manager name

 15 MQTMC2-QMGRNAME PIC X(48).

Parent topic: Initial values and language declarations for MQTMC2

This build: January 26, 2011 11:17:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15630_

1.39.3.3. PL/I declaration

dcl

 1 MQTMC2 based,

 3 StrucId char(4), /* Structure identifier */

 3 Version char(4), /* Structure version number */

 3 QName char(48), /* Name of triggered queue */

 3 ProcessName char(48), /* Name of process object */

 3 TriggerData char(64), /* Trigger data */

 3 ApplType char(4), /* Application type */

 3 ApplId char(256), /* Application identifier */

 3 EnvData char(128), /* Environment data */

 3 UserData char(128), /* User data */

 3 QMgrName char(48); /* Queue manager name */

Parent topic: Initial values and language declarations for MQTMC2

This build: January 26, 2011 11:17:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15640_

1.39.3.4. System/390® assembler declaration

MQTMC DSECT

Page 372 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

MQTMC_STRUCID DS CL4 Structure identifier

MQTMC_VERSION DS CL4 Structure version number

MQTMC_QNAME DS CL48 Name of triggered queue

MQTMC_PROCESSNAME DS CL48 Name of process object

MQTMC_TRIGGERDATA DS CL64 Trigger data

MQTMC_APPLTYPE DS CL4 Application type

MQTMC_APPLID DS CL256 Application identifier

MQTMC_ENVDATA DS CL128 Environment data

MQTMC_USERDATA DS CL128 User data

MQTMC_QMGRNAME DS CL48 Queue manager name

*

MQTMC_LENGTH EQU *-MQTMC

 ORG MQTMC

MQTMC_AREA DS CL(MQTMC_LENGTH)

Parent topic: Initial values and language declarations for MQTMC2

This build: January 26, 2011 11:17:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15650_

1.39.3.5. Visual Basic declaration

Type MQTMC2

 StrucId As String*4 'Structure identifier'

 Version As String*4 'Structure version number'

 QName As String*48 'Name of triggered queue'

 ProcessName As String*48 'Name of process object'

 TriggerData As String*64 'Trigger data'

 ApplType As String*4 'Application type'

 ApplId As String*256 'Application identifier'

 EnvData As String*128 'Environment data'

 UserData As String*128 'User data'

 QMgrName As String*48 'Queue manager name'

End Type

Parent topic: Initial values and language declarations for MQTMC2

This build: January 26, 2011 11:17:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15660_

1.40. MQWIH – Work information header

The following table summarizes the fields in the structure.

Overview for MQWIH

Availability: All WebSphere® MQ systems, plus WebSphere MQ clients connected to these systems.

Fields for MQWIH

Initial values and language declarations for MQWIH

Parent topic: Data type descriptions

This build: January 26, 2011 11:17:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15670_

Table 1. Fields in MQWIH

Field Description Topic

StrucId Structure identifier StrucId

Version Structure version number Version

StrucLength Length of MQWIH structure StrucLength

Encoding Numeric encoding of data that follows MQWIH Encoding

CodedCharSetId Character-set identifier of data that follows MQWIH CodedCharSetId

Format Format name of data that follows MQWIH Format

Flags Flags Flags

ServiceName Service name ServiceName

ServiceStep Service step name ServiceStep

MsgToken Message token MsgToken

Reserved Reserved Reserved

Page 373 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

1.40.1. Overview for MQWIH

Availability: All WebSphere® MQ systems, plus WebSphere MQ clients connected to these systems.

Purpose: The MQWIH structure describes the information that must be present at the start of a message that is to be handled by the
z/OS® workload manager.

Format name: MQFMT_WORK_INFO_HEADER.

Character set and encoding: The fields in the MQWIH structure are in the character set and encoding given by the CodedCharSetId and

Encoding fields in the header structure that precedes MQWIH, or by those fields in the MQMD structure if the MQWIH is at the start of the

application message data.

The character set must be one that has single-byte characters for the characters that are valid in queue names.

Usage: If a message is to be processed by the z/OS workload manager, the message must begin with an MQWIH structure.

Parent topic: MQWIH – Work information header

This build: January 26, 2011 11:17:13

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15680_

1.40.2. Fields for MQWIH

The MQWIH structure contains the following fields; the fields are described in alphabetic order:

CodedCharSetId (MQLONG)

Encoding (MQLONG)

Flags (MQLONG)

Format (MQCHAR8)

MsgToken (MQBYTE16)

Reserved (MQCHAR32)

ServiceName (MQCHAR32)

ServiceStep (MQCHAR8)

StrucId (MQCHAR4)

StrucLength (MQLONG)

Version (MQLONG)

Parent topic: MQWIH – Work information header

This build: January 26, 2011 11:17:13

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15690_

1.40.2.1. CodedCharSetId (MQLONG)

This specifies the character set identifier of the data that follows the MQWIH structure; it does not apply to character data in the MQWIH

structure itself.

On the MQPUT or MQPUT1 call, the application must set this field to the value appropriate to the data. You can use the following special
value:

MQCCSI_INHERIT

Character data in the data following this structure is in the same character set as this structure.

The queue manager changes this value in the structure sent in the message to the actual character-set identifier of the structure. Provided
no error occurs, the value MQCCSI_INHERIT is not returned by the MQGET call.

MQCCSI_INHERIT cannot be used if the value of the PutApplType field in MQMD is MQAT_BROKER.

The initial value of this field is MQCCSI_UNDEFINED.

Page 374 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Parent topic: Fields for MQWIH

This build: January 26, 2011 11:17:13

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15700_

1.40.2.2. Encoding (MQLONG)

This specifies the numeric encoding of the data that follows the MQWIH structure; it does not apply to numeric data in the MQWIH structure
itself.

On the MQPUT or MQPUT1 call, the application must set this field to the value appropriate to the data.

The initial value of this field is 0.

Parent topic: Fields for MQWIH

This build: January 26, 2011 11:17:13

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15710_

1.40.2.3. Flags (MQLONG)

The value must be:

MQWIH_NONE

No flags.

The initial value of this field is MQWIH_NONE.

Parent topic: Fields for MQWIH

This build: January 26, 2011 11:17:13

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15720_

1.40.2.4. Format (MQCHAR8)

This specifies the format name of the data that follows the MQWIH structure.

On the MQPUT or MQPUT1 call, the application must set this field to the value appropriate to the data. The rules for coding this field are the
same as those for the Format field in MQMD.

The length of this field is given by MQ_FORMAT_LENGTH. The initial value of this field is MQFMT_NONE.

Parent topic: Fields for MQWIH

This build: January 26, 2011 11:17:13

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15730_

1.40.2.5. MsgToken (MQBYTE16)

This is a message token that uniquely identifies the message.

For the MQPUT and MQPUT1 calls, this field is ignored. The length of this field is given by MQ_MSG_TOKEN_LENGTH. The initial value of this
field is MQMTOK_NONE.

Parent topic: Fields for MQWIH

This build: January 26, 2011 11:17:13

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15740_

Page 375 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

1.40.2.6. Reserved (MQCHAR32)

This is a reserved field; it must be blank.

Parent topic: Fields for MQWIH

This build: January 26, 2011 11:17:13

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15750_

1.40.2.7. ServiceName (MQCHAR32)

This is the name of the service that is to process the message.

The length of this field is given by MQ_SERVICE_NAME_LENGTH. The initial value of this field is 32 blank characters.

Parent topic: Fields for MQWIH

This build: January 26, 2011 11:17:13

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15760_

1.40.2.8. ServiceStep (MQCHAR8)

This is the name of the step of ServiceName to which the message relates.

The length of this field is given by MQ_SERVICE_STEP_LENGTH. The initial value of this field is 8 blank characters.

Parent topic: Fields for MQWIH

This build: January 26, 2011 11:17:13

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15770_

1.40.2.9. StrucId (MQCHAR4)

This is the structure identifier. The value must be:

MQWIH_STRUC_ID

Identifier for work information header structure.

For the C programming language, the constant MQWIH_STRUC_ID_ARRAY is also defined; this has the same value as MQWIH_STRUC_ID,
but is an array of characters instead of a string.

The initial value of this field is MQWIH_STRUC_ID.

Parent topic: Fields for MQWIH

This build: January 26, 2011 11:17:13

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15780_

1.40.2.10. StrucLength (MQLONG)

This is the length of the MQWIH structure. The value must be:

MQWIH_LENGTH_1

Length of version-1 work information header structure.

The following constant specifies the length of the current version:

MQWIH_CURRENT_LENGTH

Length of current version of work information header structure.

The initial value of this field is MQWIH_LENGTH_1.

Parent topic: Fields for MQWIH

Page 376 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This build: January 26, 2011 11:17:13

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15790_

1.40.2.11. Version (MQLONG)

This is the structure version number. The value must be:

MQWIH_VERSION_1

Version-1 work information header structure.

The following constant specifies the version number of the current version:

MQWIH_CURRENT_VERSION

Current version of work information header structure.

The initial value of this field is MQWIH_VERSION_1.

Parent topic: Fields for MQWIH

This build: January 26, 2011 11:17:13

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15800_

1.40.3. Initial values and language declarations for MQWIH

C declaration

COBOL declaration

PL/I declaration

System/390 assembler declaration

Visual Basic declaration

Parent topic: MQWIH – Work information header

This build: January 26, 2011 11:17:13

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15810_

1.40.3.1. C declaration

Table 1. Initial values of fields in MQWIH for MQWIH

Field name Name of constant Value of constant

StrucId MQWIH_STRUC_ID 'WIH�'

Version MQWIH_VERSION_1 1

StrucLength MQWIH_LENGTH_1 120

Encoding None 0

CodedCharSetId MQCCSI_UNDEFINED 0

Format MQFMT_NONE Blanks

Flags MQWIH_NONE 0

ServiceName None Blanks

ServiceStep None Blanks

MsgToken MQMTOK_NONE Nulls

Reserved None Blanks

Notes:

1. The symbol � represents a single blank character.

2. In the C programming language, the macro variable MQWIH_DEFAULT contains the values listed above. Use it in the

following way to provide initial values for the fields in the structure:

MQWIH MyWIH = {MQWIH_DEFAULT};

Page 377 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

typedef struct tagMQWIH MQWIH;

struct tagMQWIH {

 MQCHAR4 StrucId; /* Structure identifier */

 MQLONG Version; /* Structure version number */

 MQLONG StrucLength; /* Length of MQWIH structure */

 MQLONG Encoding; /* Numeric encoding of data that follows

 MQWIH */

 MQLONG CodedCharSetId; /* Character-set identifier of data that

 follows MQWIH */

 MQCHAR8 Format; /* Format name of data that follows

 MQWIH */

 MQLONG Flags; /* Flags */

 MQCHAR32 ServiceName; /* Service name */

 MQCHAR8 ServiceStep; /* Service step name */

 MQBYTE16 MsgToken; /* Message token */

 MQCHAR32 Reserved; /* Reserved */

};

Parent topic: Initial values and language declarations for MQWIH

This build: January 26, 2011 11:17:13

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15820_

1.40.3.2. COBOL declaration

** MQWIH structure

 10 MQWIH.

** Structure identifier

 15 MQWIH-STRUCID PIC X(4).

** Structure version number

 15 MQWIH-VERSION PIC S9(9) BINARY.

** Length of MQWIH structure

 15 MQWIH-STRUCLENGTH PIC S9(9) BINARY.

** Numeric encoding of data that follows MQWIH

 15 MQWIH-ENCODING PIC S9(9) BINARY.

** Character-set identifier of data that follows MQWIH

 15 MQWIH-CODEDCHARSETID PIC S9(9) BINARY.

** Format name of data that follows MQWIH

 15 MQWIH-FORMAT PIC X(8).

** Flags

 15 MQWIH-FLAGS PIC S9(9) BINARY.

** Service name

 15 MQWIH-SERVICENAME PIC X(32).

** Service step name

 15 MQWIH-SERVICESTEP PIC X(8).

** Message token

 15 MQWIH-MSGTOKEN PIC X(16).

** Reserved

 15 MQWIH-RESERVED PIC X(32).

Parent topic: Initial values and language declarations for MQWIH

This build: January 26, 2011 11:17:14

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15830_

1.40.3.3. PL/I declaration

dcl

 1 MQWIH based,

 3 StrucId char(4), /* Structure identifier */

 3 Version fixed bin(31), /* Structure version number */

 3 StrucLength fixed bin(31), /* Length of MQWIH structure */

 3 Encoding fixed bin(31), /* Numeric encoding of data that

 follows MQWIH */

 3 CodedCharSetId fixed bin(31), /* Character-set identifier of data

 that follows MQWIH */

 3 Format char(8), /* Format name of data that follows

 MQWIH */

 3 Flags fixed bin(31), /* Flags */

 3 ServiceName char(32), /* Service name */

 3 ServiceStep char(8), /* Service step name */

 3 MsgToken char(16), /* Message token */

 3 Reserved char(32); /* Reserved */

Parent topic: Initial values and language declarations for MQWIH

This build: January 26, 2011 11:17:14

Notices | Trademarks | Downloads | Library | Support | Feedback

Page 378 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15840_

1.40.3.4. System/390® assembler declaration

MQWIH DSECT

MQWIH_STRUCID DS CL4 Structure identifier

MQWIH_VERSION DS F Structure version number

MQWIH_STRUCLENGTH DS F Length of MQWIH structure

MQWIH_ENCODING DS F Numeric encoding of data that follows

* MQWIH

MQWIH_CODEDCHARSETID DS F Character-set identifier of data that

* follows MQWIH

MQWIH_FORMAT DS CL8 Format name of data that follows MQWIH

MQWIH_FLAGS DS F Flags

MQWIH_SERVICENAME DS CL32 Service name

MQWIH_SERVICESTEP DS CL8 Service step name

MQWIH_MSGTOKEN DS XL16 Message token

MQWIH_RESERVED DS CL32 Reserved

*

MQWIH_LENGTH EQU *-MQWIH

 ORG MQWIH

MQWIH_AREA DS CL(MQWIH_LENGTH)

Parent topic: Initial values and language declarations for MQWIH

This build: January 26, 2011 11:17:14

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15850_

1.40.3.5. Visual Basic declaration

Type MQWIH

 StrucId As String*4 'Structure identifier'

 Version As Long 'Structure version number'

 StrucLength As Long 'Length of MQWIH structure'

 Encoding As Long 'Numeric encoding of data that follows'

 'MQWIH'

 CodedCharSetId As Long 'Character-set identifier of data that'

 'follows MQWIH'

 Format As String*8 'Format name of data that follows MQWIH'

 Flags As Long 'Flags'

 ServiceName As String*32 'Service name'

 ServiceStep As String*8 'Service step name'

 MsgToken As MQBYTE16 'Message token'

 Reserved As String*32 'Reserved'

End Type

Parent topic: Initial values and language declarations for MQWIH

This build: January 26, 2011 11:17:14

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15860_

1.41. MQXP – Exit parameter block

The following table summarizes the fields in the structure.

Overview for MQXP

Availability: z/OS®.

Fields for MQXP

Language declarations

Table 1. Fields in MQXP

Field Description Topic

StrucId Structure identifier StrucId

Version Structure version number Version

ExitId Exit identifier ExitId

ExitReason Reason for invocation of exit ExitReason

ExitResponse Response from exit ExitResponse

ExitCommand API call code ExitCommand

ExitParmCount Parameter count ExitParmCount

ExitUserArea User area ExitUserArea

Page 379 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This structure is supported in the following programming languages.

Parent topic: Data type descriptions

This build: January 26, 2011 11:17:14

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15870_

1.41.1. Overview for MQXP

Availability: z/OS®.

Purpose: The MQXP structure is used as an input/output parameter to the API-crossing exit. For more information on this exit, see the
WebSphere MQ Application Programming Guide.

Character set and encoding: Character data in MQXP is in the character set of the local queue manager; this is given by the
CodedCharSetId queue-manager attribute. Numeric data in MQXP is in the native machine encoding; this is given by MQENC_NATIVE.

Parent topic: MQXP – Exit parameter block

This build: January 26, 2011 11:17:14

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15880_

1.41.2. Fields for MQXP

The MQXP structure contains the following fields; the fields are described in alphabetic order:

ExitCommand (MQLONG)

ExitId (MQLONG)

ExitParmCount (MQLONG)

ExitReason (MQLONG)

ExitResponse (MQLONG)

ExitUserArea (MQBYTE16)

Reserved (MQLONG)

StrucId (MQCHAR4)

Version (MQLONG)

Parent topic: MQXP – Exit parameter block

This build: January 26, 2011 11:17:14

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15890_

1.41.2.1. ExitCommand (MQLONG)

This field is set on entry to the exit routine. It identifies the API call that caused the exit to be invoked:

MQXC_MQBACK

The MQBACK call.

MQXC_MQCLOSE

The MQCLOSE call.

MQXC_MQCMIT

The MQCMIT call.

MQXC_MQGET

The MQGET call.

MQXC_MQINQ

The MQINQ call.

MQXC_MQOPEN

Page 380 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

The MQOPEN call.

MQXC_MQPUT

The MQPUT call.

MQXC_MQPUT1

The MQPUT1 call.

MQXC_MQSET

The MQSET call.

This is an input field to the exit.

Parent topic: Fields for MQXP

This build: January 26, 2011 11:17:14

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15900_

1.41.2.2. ExitId (MQLONG)

This is set on entry to the exit routine, and indicates the type of exit:

MQXT_API_CROSSING_EXIT

API-crossing exit for CICS®.

This is an input field to the exit.

Parent topic: Fields for MQXP

This build: January 26, 2011 11:17:14

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15910_

1.41.2.3. ExitParmCount (MQLONG)

This field is set on entry to the exit routine. It contains the number of parameters that the MQ call takes. These are:

This is an input field to the exit.

Parent topic: Fields for MQXP

This build: January 26, 2011 11:17:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15920_

1.41.2.4. ExitReason (MQLONG)

This is set on entry to the exit routine. For the API-crossing exit it indicates whether the routine is called before or after execution of the API
call:

MQXR_BEFORE

Before API execution.

MQXR_AFTER

After API execution.

This is an input field to the exit.

Parent topic: Fields for MQXP

Call name Number of parameters

MQBACK 3

MQCLOSE 5

MQCMIT 3

MQGET 9

MQINQ 10

MQOPEN 6

MQPUT 8

MQPUT1 8

MQSET 10

Page 381 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This build: January 26, 2011 11:17:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15930_

1.41.2.5. ExitResponse (MQLONG)

The value is set by the exit to communicate with the caller. The following values are defined:

MQXCC_OK

Exit completed successfully.

MQXCC_SUPPRESS_FUNCTION

Suppress function.

When this value is set by an API-crossing exit called before the API call, the API call is not performed. The CompCode for the call is set to

MQCC_FAILED, the Reason is set to MQRC_SUPPRESSED_BY_EXIT, and all other parameters remain as the exit left them.

When this value is set by an API-crossing exit called after the API call, it is ignored by the queue manager.

MQXCC_SKIP_FUNCTION

Skip function.

When this value is set by an API-crossing exit called before the API call, the API call is not performed; the CompCode and Reason and all

other parameters remain as the exit left them.

When this value is set by an API-crossing exit called after the API call, it is ignored by the queue manager.

This is an output field from the exit.

Parent topic: Fields for MQXP

This build: January 26, 2011 11:17:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15940_

1.41.2.6. ExitUserArea (MQBYTE16)

This is a field that is available for the exit to use. It is initialized to binary zero for the length of the field before the first invocation of the
exit for the task, and thereafter any changes made to this field by the exit are preserved across invocations of the exit. The following value
is defined:

MQXUA_NONE

No user information.

The value is binary zero for the length of the field.

For the C programming language, the constant MQXUA_NONE_ARRAY is also defined; this has the same value as MQXUA_NONE, but is an
array of characters instead of a string.

The length of this field is given by MQ_EXIT_USER_AREA_LENGTH. This is an input/output field to the exit.

Parent topic: Fields for MQXP

This build: January 26, 2011 11:17:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15950_

1.41.2.7. Reserved (MQLONG)

This is a reserved field. Its value is not significant to the exit.

Parent topic: Fields for MQXP

This build: January 26, 2011 11:17:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15960_

1.41.2.8. StrucId (MQCHAR4)

Page 382 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This is the structure identifier. The value must be:

MQXP_STRUC_ID

Identifier for exit parameter structure.

For the C programming language, the constant MQXP_STRUC_ID_ARRAY is also defined; this has the same value as MQXP_STRUC_ID, but
is an array of characters instead of a string.

This is an input field to the exit.

Parent topic: Fields for MQXP

This build: January 26, 2011 11:17:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15970_

1.41.2.9. Version (MQLONG)

This is the structure version number. The value must be:

MQXP_VERSION_1

Version number for exit parameter-block structure.

Note: When a new version of this structure is introduced, the layout of the existing part is not changed. The exit must therefore check that
the version number is equal to or greater than the lowest version that contains the fields that the exit needs to use.

This is an input field to the exit.

Parent topic: Fields for MQXP

This build: January 26, 2011 11:17:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15980_

1.41.3. Language declarations

This structure is supported in the following programming languages.

C declaration

COBOL declaration

PL/I declaration

System/390 assembler declaration

Parent topic: MQXP – Exit parameter block

This build: January 26, 2011 11:17:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr15990_

1.41.3.1. C declaration

typedef struct tagMQXP MQXP;

struct tagMQXP {

 MQCHAR4 StrucId; /* Structure identifier */

 MQLONG Version; /* Structure version number */

 MQLONG ExitId; /* Exit identifier */

 MQLONG ExitReason; /* Reason for invocation of exit */

 MQLONG ExitResponse; /* Response from exit */

 MQLONG ExitCommand; /* API call code */

 MQLONG ExitParmCount; /* Parameter count */

 MQLONG Reserved; /* Reserved */

 MQBYTE16 ExitUserArea; /* User area */

};

Parent topic: Language declarations

This build: January 26, 2011 11:17:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Page 383 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16000_

1.41.3.2. COBOL declaration

** MQXP structure

 10 MQXP.

** Structure identifier

 15 MQXP-STRUCID PIC X(4).

** Structure version number

 15 MQXP-VERSION PIC S9(9) BINARY.

** Exit identifier

 15 MQXP-EXITID PIC S9(9) BINARY.

** Reason for invocation of exit

 15 MQXP-EXITREASON PIC S9(9) BINARY.

** Response from exit

 15 MQXP-EXITRESPONSE PIC S9(9) BINARY.

** API call code

 15 MQXP-EXITCOMMAND PIC S9(9) BINARY.

** Parameter count

 15 MQXP-EXITPARMCOUNT PIC S9(9) BINARY.

** Reserved

 15 MQXP-RESERVED PIC S9(9) BINARY.

** User area

 15 MQXP-EXITUSERAREA PIC X(16).

Parent topic: Language declarations

This build: January 26, 2011 11:17:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16010_

1.41.3.3. PL/I declaration

dcl

 1 MQXP based,

 3 StrucId char(4), /* Structure identifier */

 3 Version fixed bin(31), /* Structure version number */

 3 ExitId fixed bin(31), /* Exit identifier */

 3 ExitReason fixed bin(31), /* Reason for invocation of exit */

 3 ExitResponse fixed bin(31), /* Response from exit */

 3 ExitCommand fixed bin(31), /* API call code */

 3 ExitParmCount fixed bin(31), /* Parameter count */

 3 Reserved fixed bin(31), /* Reserved */

 3 ExitUserArea char(16); /* User area */

Parent topic: Language declarations

This build: January 26, 2011 11:17:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16020_

1.41.3.4. System/390® assembler declaration

MQXP DSECT

MQXP_STRUCID DS CL4 Structure identifier

MQXP_VERSION DS F Structure version number

MQXP_EXITID DS F Exit identifier

MQXP_EXITREASON DS F Reason for invocation of exit

MQXP_EXITRESPONSE DS F Response from exit

MQXP_EXITCOMMAND DS F API call code

MQXP_EXITPARMCOUNT DS F Parameter count

MQXP_RESERVED DS F Reserved

MQXP_EXITUSERAREA DS XL16 User area

*

MQXP_LENGTH EQU *-MQXP

 ORG MQXP

MQXP_AREA DS CL(MQXP_LENGTH)

Parent topic: Language declarations

This build: January 26, 2011 11:17:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16030_

1.42. MQXQH – Transmission-queue header

Page 384 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

The following table summarizes the fields in the structure.

Overview for MQXQH
Availability: All WebSphere® MQ systems and WebSphere MQ clients.

Fields for MQXQH

Initial values and language declarations for MQXQH

Parent topic: Data type descriptions

This build: January 26, 2011 11:17:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16040_

1.42.1. Overview for MQXQH

Availability: All WebSphere® MQ systems and WebSphere MQ clients.

Purpose: The MQXQH structure describes the information that is prefixed to the application message data of messages when they are on
transmission queues. A transmission queue is a special type of local queue that temporarily holds messages destined for remote queues
(that is, destined for queues that do not belong to the local queue manager). A transmission queue is denoted by the Usage queue attribute

having the value MQUS_TRANSMISSION.

Format name: MQFMT_XMIT_Q_HEADER.

Character set and encoding: Data in MQXQH must be in the character set and encoding of the local queue manager; these are given by
the CodedCharSetId queue-manager attribute and MQENC_NATIVE for the C programming language, respectively.

Set the character set and encoding of the MQXQH into the CodedCharSetId and Encoding fields in:

� The separate MQMD (if the MQXQH structure is at the start of the message data), or

� The header structure that precedes the MQXQH structure (all other cases).

Usage: A message that is on a transmission queue has two message descriptors:

� One message descriptor is stored separately from the message data; this is called the separate message descriptor, and is generated

by the queue manager when the message is placed on the transmission queue. Some of the fields in the separate message descriptor
are copied from the message descriptor provided by the application on the MQPUT or MQPUT1 call (see below for details).

The separate message descriptor is the one that is returned to the application in the MsgDesc parameter of the MQGET call when the

message is removed from the transmission queue.

� A second message descriptor is stored within the MQXQH structure as part of the message data; this is called the embedded message
descriptor, and is a copy of the message descriptor that was provided by the application on the MQPUT or MQPUT1 call (with minor
variations; see below for details).

The embedded message descriptor is always a version-1 MQMD. If the message put by the application has nondefault values for one
or more of the version-2 fields in the MQMD, an MQMDE structure follows the MQXQH, and is in turn followed by the application
message data (if any). The MQMDE is either:

� Generated by the queue manager (if the application uses a version-2 MQMD to put the message), or

� Already present at the start of the application message data (if the application uses a version-1 MQMD to put the message).

The embedded message descriptor is the one that is returned to the application in the MsgDesc parameter of the MQGET call when the

message is removed from the final destination queue.

Fields in the separate message descriptor: The fields in the separate message descriptor are set by the queue manager as shown

below. If the queue manager does not support the version-2 MQMD, a version-1 MQMD is used without loss of function.

Table 1. Fields in MQXQH

Field Description Topic

StrucId Structure identifier StrucId

Version Structure version number Version

RemoteQName Name of destination queue RemoteQName

RemoteQMgrName Name of destination queue manager RemoteQMgrName

MsgDesc Original message descriptor MsgDesc

Field in separate MQMD Value used

StrucId MQMD_STRUC_ID

Version MQMD_VERSION_2

Report Copied from the embedded message descriptor, but with the bits identified by

MQRO_ACCEPT_UNSUP_IF_XMIT_MASK set to zero. (This prevents a COA or COD

report message being generated when a message is placed on or removed from a
transmission queue.)

MsgType Copied from the embedded message descriptor.

Expiry Copied from the embedded message descriptor.

Feedback Copied from the embedded message descriptor.

Encoding MQENC_NATIVE (see note below)

CodedCharSetId Queue manager’s CodedCharSetId attribute.

Page 385 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

� On Windows, the value of MQENC_NATIVE for Micro Focus COBOL differs from the value for C. The value in the Encoding field in the

separate message descriptor is always the value for C in these environments; this value is 546 in decimal. Also, the integer fields in

the MQXQH structure are in the encoding that corresponds to this value (the native Intel encoding).

Fields in the embedded message descriptor: The fields in the embedded message descriptor have the same values as those in the

MsgDesc parameter of the MQPUT or MQPUT1 call, with the exception of the following:

� The Version field always has the value MQMD_VERSION_1.

� If the Priority field has the value MQPRI_PRIORITY_AS_Q_DEF, it is replaced by the value of the queue’s DefPriority attribute.

� If the Persistence field has the value MQPER_PERSISTENCE_AS_Q_DEF, it is replaced by the value of the queue’s DefPersistence

attribute.

� If the MsgId field has the value MQMI_NONE, or the MQPMO_NEW_MSG_ID option was specified, or the message is a distribution-list

message, MsgId is replaced by a new message identifier generated by the queue manager.

When a distribution-list message is split into smaller distribution-list messages placed on different transmission queues, the MsgId field

in each of the new embedded message descriptors is the same as that in the original distribution-list message.

� If the MQPMO_NEW_CORREL_ID option was specified, CorrelId is replaced by a new correlation identifier generated by the queue

manager.

� The context fields are set as indicated by the MQPMO_*_CONTEXT options specified in the PutMsgOpts parameter; the context fields

are:

� AccountingToken

� ApplIdentityData

� ApplOriginData

� PutApplName

� PutApplType

� PutDate

� PutTime

� UserIdentifier

� The version-2 fields (if they were present) are removed from the MQMD, and moved into an MQMDE structure, if one or more of the
version-2 fields has a nondefault value.

Putting messages on remote queues: When an application puts a message on a remote queue (either by specifying the name of the
remote queue directly, or by using a local definition of the remote queue), the local queue manager:

� Creates an MQXQH structure containing the embedded message descriptor

� Appends an MQMDE if one is needed and is not already present

� Appends the application message data

� Places the message on an appropriate transmission queue

Putting messages directly on transmission queues: An application can also put a message directly on a transmission queue. In this
case the application must prefix the application message data with an MQXQH structure, and initialize the fields with appropriate values. In
addition, the Format field in the MsgDesc parameter of the MQPUT or MQPUT1 call must have the value MQFMT_XMIT_Q_HEADER.

Character data in the MQXQH structure created by the application must be in the character set of the local queue manager (defined by the
CodedCharSetId queue-manager attribute), and integer data must be in the native machine encoding. In addition, character data in the

MQXQH structure must be padded with blanks to the defined length of the field; the data must not be ended prematurely by using a null
character, because the queue manager does not convert the null and subsequent characters to blanks in the MQXQH structure.

However, the queue manager does not check that an MQXQH structure is present, or that valid values have been specified for the fields.

Format MQFMT_XMIT_Q_HEADER

Priority Copied from the embedded message descriptor.

Persistence Copied from the embedded message descriptor.

MsgId A new value is generated by the queue manager. This message identifier is different

from the MsgId that the queue manager may have generated for the embedded

message descriptor (see above).

CorrelId The MsgId from the embedded message descriptor.

BackoutCount 0

ReplyToQ Copied from the embedded message descriptor.

ReplyToQMgr Copied from the embedded message descriptor.

UserIdentifier Copied from the embedded message descriptor.

AccountingToken Copied from the embedded message descriptor.

ApplIdentityData Copied from the embedded message descriptor.

PutApplType MQAT_QMGR

PutApplName First 28 bytes of the queue-manager name.

PutDate Date when message was put on transmission queue.

PutTime Time when message was put on transmission queue.

ApplOriginData Blanks

GroupId MQGI_NONE

MsgSeqNumber 1

Offset 0

MsgFlags MQMF_NONE

OriginalLength MQOL_UNDEFINED

Page 386 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Getting messages from transmission queues: Applications that get messages from a transmission queue must process the information
in the MQXQH structure in an appropriate fashion. The presence of the MQXQH structure at the beginning of the application message data is

indicated by the value MQFMT_XMIT_Q_HEADER being returned in the Format field in the MsgDesc parameter of the MQGET call. The values

returned in the CodedCharSetId and Encoding fields in the MsgDesc parameter indicate the character set and encoding of the character and

integer data in the MQXQH structure, respectively. The character set and encoding of the application message data are defined by the
CodedCharSetId and Encoding fields in the embedded message descriptor.

Parent topic: MQXQH – Transmission-queue header

This build: January 26, 2011 11:17:17

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16050_

1.42.2. Fields for MQXQH

The MQXQH structure contains the following fields; the fields are described in alphabetic order:

MsgDesc (MQMD1)

RemoteQMgrName (MQCHAR48)

RemoteQName (MQCHAR48)

StrucId (MQCHAR4)

Version (MQLONG)

Parent topic: MQXQH – Transmission-queue header

This build: January 26, 2011 11:17:17

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16060_

1.42.2.1. MsgDesc (MQMD1)

This is the embedded message descriptor, and is a close copy of the message descriptor MQMD that was specified as the MsgDesc parameter

on the MQPUT or MQPUT1 call when the message was originally put to the remote queue.

Note: This is a version-1 MQMD.

The initial values of the fields in this structure are the same as those in the MQMD structure.

Parent topic: Fields for MQXQH

This build: January 26, 2011 11:17:17

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16070_

1.42.2.2. RemoteQMgrName (MQCHAR48)

This is the name of the queue manager or queue-sharing group that owns the queue that is the apparent eventual destination for the
message.

If the message is a distribution-list message, RemoteQMgrName is blank.

The length of this field is given by MQ_Q_MGR_NAME_LENGTH. The initial value of this field is the null string in C, and 48 blank characters
in other programming languages.

Parent topic: Fields for MQXQH

This build: January 26, 2011 11:17:17

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16080_

1.42.2.3. RemoteQName (MQCHAR48)

Page 387 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This is the name of the message queue that is the apparent eventual destination for the message (this might prove not to be the eventual
destination if, for example, this queue is defined at RemoteQMgrName to be a local definition of another remote queue).

If the message is a distribution-list message (that is, the Format field in the embedded message descriptor is MQFMT_DIST_HEADER),

RemoteQName is blank.

The length of this field is given by MQ_Q_NAME_LENGTH. The initial value of this field is the null string in C, and 48 blank characters in
other programming languages.

Parent topic: Fields for MQXQH

This build: January 26, 2011 11:17:17

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16090_

1.42.2.4. StrucId (MQCHAR4)

This is the structure identifier. The value must be:

MQXQH_STRUC_ID

Identifier for transmission-queue header structure.

For the C programming language, the constant MQXQH_STRUC_ID_ARRAY is also defined; this has the same value as MQXQH_STRUC_ID,
but is an array of characters instead of a string.

The initial value of this field is MQXQH_STRUC_ID.

Parent topic: Fields for MQXQH

This build: January 26, 2011 11:17:17

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16100_

1.42.2.5. Version (MQLONG)

This is the structure version number. The value must be:

MQXQH_VERSION_1

Version number for transmission-queue header structure.

The following constant specifies the version number of the current version:

MQXQH_CURRENT_VERSION

Current version of transmission-queue header structure.

The initial value of this field is MQXQH_VERSION_1.

Parent topic: Fields for MQXQH

This build: January 26, 2011 11:17:17

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16110_

1.42.3. Initial values and language declarations for MQXQH

Table 1. Initial values of fields in MQXQH for MQXQH

Field name Name of constant Value of constant

StrucId MQXQH_STRUC_ID 'XQH�'

Version MQXQH_VERSION_1 1

RemoteQName None Null string or blanks

RemoteQMgrName None Null string or blanks

MsgDesc Same names and values as MQMD; see Table 1 –

Notes:

1. The symbol � represents a single blank character.

2. The value Null string or blanks denotes the null string in C, and blank characters in other programming languages.

3. In the C programming language, the macro variable MQXQH_DEFAULT contains the values listed above. Use it in the

following way to provide initial values for the fields in the structure:

Page 388 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

C declaration

COBOL declaration

PL/I declaration

System/390 assembler declaration

Visual Basic declaration

Parent topic: MQXQH – Transmission-queue header

This build: January 26, 2011 11:17:17

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16120_

1.42.3.1. C declaration

typedef struct tagMQXQH MQXQH;

struct tagMQXQH {

 MQCHAR4 StrucId; /* Structure identifier */

 MQLONG Version; /* Structure version number */

 MQCHAR48 RemoteQName; /* Name of destination queue */

 MQCHAR48 RemoteQMgrName; /* Name of destination queue manager */

 MQMD1 MsgDesc; /* Original message descriptor */

};

Parent topic: Initial values and language declarations for MQXQH

This build: January 26, 2011 11:17:17

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16130_

1.42.3.2. COBOL declaration

** MQXQH structure

 10 MQXQH.

** Structure identifier

 15 MQXQH-STRUCID PIC X(4).

** Structure version number

 15 MQXQH-VERSION PIC S9(9) BINARY.

** Name of destination queue

 15 MQXQH-REMOTEQNAME PIC X(48).

** Name of destination queue manager

 15 MQXQH-REMOTEQMGRNAME PIC X(48).

** Original message descriptor

 15 MQXQH-MSGDESC.

** Structure identifier

 20 MQXQH-MSGDESC-STRUCID PIC X(4).

** Structure version number

 20 MQXQH-MSGDESC-VERSION PIC S9(9) BINARY.

** Report options

 20 MQXQH-MSGDESC-REPORT PIC S9(9) BINARY.

** Message type

 20 MQXQH-MSGDESC-MSGTYPE PIC S9(9) BINARY.

** Expiry time

 20 MQXQH-MSGDESC-EXPIRY PIC S9(9) BINARY.

** Feedback or reason code

 20 MQXQH-MSGDESC-FEEDBACK PIC S9(9) BINARY.

** Numeric encoding of message data

 20 MQXQH-MSGDESC-ENCODING PIC S9(9) BINARY.

** Character set identifier of message data

 20 MQXQH-MSGDESC-CODEDCHARSETID PIC S9(9) BINARY.

** Format name of message data

 20 MQXQH-MSGDESC-FORMAT PIC X(8).

** Message priority

 20 MQXQH-MSGDESC-PRIORITY PIC S9(9) BINARY.

** Message persistence

 20 MQXQH-MSGDESC-PERSISTENCE PIC S9(9) BINARY.

** Message identifier

 20 MQXQH-MSGDESC-MSGID PIC X(24).

** Correlation identifier

 20 MQXQH-MSGDESC-CORRELID PIC X(24).

** Backout counter

 20 MQXQH-MSGDESC-BACKOUTCOUNT PIC S9(9) BINARY.

** Name of reply-to queue

MQXQH MyXQH = {MQXQH_DEFAULT};

Page 389 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

 20 MQXQH-MSGDESC-REPLYTOQ PIC X(48).

** Name of reply queue manager

 20 MQXQH-MSGDESC-REPLYTOQMGR PIC X(48).

** User identifier

 20 MQXQH-MSGDESC-USERIDENTIFIER PIC X(12).

** Accounting token

 20 MQXQH-MSGDESC-ACCOUNTINGTOKEN PIC X(32).

** Application data relating to identity

 20 MQXQH-MSGDESC-APPLIDENTITYDATA PIC X(32).

** Type of application that put the message

 20 MQXQH-MSGDESC-PUTAPPLTYPE PIC S9(9) BINARY.

** Name of application that put the message

 20 MQXQH-MSGDESC-PUTAPPLNAME PIC X(28).

** Date when message was put

 20 MQXQH-MSGDESC-PUTDATE PIC X(8).

** Time when message was put

 20 MQXQH-MSGDESC-PUTTIME PIC X(8).

** Application data relating to origin

 20 MQXQH-MSGDESC-APPLORIGINDATA PIC X(4).

Parent topic: Initial values and language declarations for MQXQH

This build: January 26, 2011 11:17:17

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16140_

1.42.3.3. PL/I declaration

dcl

 1 MQXQH based,

 3 StrucId char(4), /* Structure identifier */

 3 Version fixed bin(31), /* Structure version number */

 3 RemoteQName char(48), /* Name of destination queue */

 3 RemoteQMgrName char(48), /* Name of destination queue

 manager */

 3 MsgDesc, /* Original message descriptor */

 5 StrucId char(4), /* Structure identifier */

 5 Version fixed bin(31), /* Structure version number */

 5 Report fixed bin(31), /* Report options */

 5 MsgType fixed bin(31), /* Message type */

 5 Expiry fixed bin(31), /* Expiry time */

 5 Feedback fixed bin(31), /* Feedback or reason code */

 5 Encoding fixed bin(31), /* Numeric encoding of message

 data */

 5 CodedCharSetId fixed bin(31), /* Character set identifier of

 message data */

 5 Format char(8), /* Format name of message data */

 5 Priority fixed bin(31), /* Message priority */

 5 Persistence fixed bin(31), /* Message persistence */

 5 MsgId char(24), /* Message identifier */

 5 CorrelId char(24), /* Correlation identifier */

 5 BackoutCount fixed bin(31), /* Backout counter */

 5 ReplyToQ char(48), /* Name of reply-to queue */

 5 ReplyToQMgr char(48), /* Name of reply queue manager */

 5 UserIdentifier char(12), /* User identifier */

 5 AccountingToken char(32), /* Accounting token */

 5 ApplIdentityData char(32), /* Application data relating to

 identity */

 5 PutApplType fixed bin(31), /* Type of application that put the

 message */

 5 PutApplName char(28), /* Name of application that put the

 message */

 5 PutDate char(8), /* Date when message was put */

 5 PutTime char(8), /* Time when message was put */

 5 ApplOriginData char(4); /* Application data relating to

 origin */

Parent topic: Initial values and language declarations for MQXQH

This build: January 26, 2011 11:17:17

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16150_

1.42.3.4. System/390® assembler declaration

MQXQH DSECT

MQXQH_STRUCID DS CL4 Structure identifier

MQXQH_VERSION DS F Structure version number

MQXQH_REMOTEQNAME DS CL48 Name of destination queue

MQXQH_REMOTEQMGRNAME DS CL48 Name of destination queue

* manager

MQXQH_MSGDESC DS 0F Force fullword alignment

MQXQH_MSGDESC_STRUCID DS CL4 Structure identifier

Page 390 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

MQXQH_MSGDESC_VERSION DS F Structure version number

MQXQH_MSGDESC_REPORT DS F Report options

MQXQH_MSGDESC_MSGTYPE DS F Message type

MQXQH_MSGDESC_EXPIRY DS F Expiry time

MQXQH_MSGDESC_FEEDBACK DS F Feedback or reason code

MQXQH_MSGDESC_ENCODING DS F Numeric encoding of message

* data

MQXQH_MSGDESC_CODEDCHARSETID DS F Character set identifier of

* message data

MQXQH_MSGDESC_FORMAT DS CL8 Format name of message data

MQXQH_MSGDESC_PRIORITY DS F Message priority

MQXQH_MSGDESC_PERSISTENCE DS F Message persistence

MQXQH_MSGDESC_MSGID DS XL24 Message identifier

MQXQH_MSGDESC_CORRELID DS XL24 Correlation identifier

MQXQH_MSGDESC_BACKOUTCOUNT DS F Backout counter

MQXQH_MSGDESC_REPLYTOQ DS CL48 Name of reply-to queue

MQXQH_MSGDESC_REPLYTOQMGR DS CL48 Name of reply queue manager

MQXQH_MSGDESC_USERIDENTIFIER DS CL12 User identifier

MQXQH_MSGDESC_ACCOUNTINGTOKEN DS XL32 Accounting token

MQXQH_MSGDESC_APPLIDENTITYDATA DS CL32 Application data relating to

* identity

MQXQH_MSGDESC_PUTAPPLTYPE DS F Type of application that put

* the message

MQXQH_MSGDESC_PUTAPPLNAME DS CL28 Name of application that put

* the message

MQXQH_MSGDESC_PUTDATE DS CL8 Date when message was put

MQXQH_MSGDESC_PUTTIME DS CL8 Time when message was put

MQXQH_MSGDESC_APPLORIGINDATA DS CL4 Application data relating to

* origin

MQXQH_MSGDESC_LENGTH EQU *-MQXQH_MSGDESC

 ORG MQXQH_MSGDESC

MQXQH_MSGDESC_AREA DS CL(MQXQH_MSGDESC_LENGTH)

*

MQXQH_LENGTH EQU *-MQXQH

 ORG MQXQH

MQXQH_AREA DS CL(MQXQH_LENGTH)

Parent topic: Initial values and language declarations for MQXQH

This build: January 26, 2011 11:17:17

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16160_

1.42.3.5. Visual Basic declaration

Type MQXQH

 StrucId As String*4 'Structure identifier'

 Version As Long 'Structure version number'

 RemoteQName As String*48 'Name of destination queue'

 RemoteQMgrName As String*48 'Name of destination queue manager'

 MsgDesc As MQMD1 'Original message descriptor'

End Type

Parent topic: Initial values and language declarations for MQXQH

This build: January 26, 2011 11:17:17

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16170_

2. Function calls

Call descriptions

MQBACK – Back out changes
The MQBACK call indicates to the queue manager that all the message gets and puts that have occurred since the last syncpoint are to

be backed out.

MQBEGIN – Begin unit of work
The MQBEGIN call begins a unit of work that is coordinated by the queue manager, and that can involve external resource managers.

MQBUFMH - Convert buffer into message handle
The MQBUFMH function call converts a buffer into a message handle and is the inverse of the MQMHBUF call.

MQCB – Manage callback
Manage callback function

MQCB_FUNCTION – Callback function
Callback function for event handling and asynchronous message consumption

MQCLOSE – Close object

Page 391 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

The MQCLOSE call relinquishes access to an object, and is the inverse of the MQOPEN and MQSUB calls.

MQCMIT – Commit changes
The MQCMIT call indicates to the queue manager that the application has reached a syncpoint, and that all the message gets and puts
that have occurred since the last syncpoint are to be made permanent.

MQCONN – Connect queue manager
The MQCONN call connects an application program to a queue manager.

MQCONNX – Connect queue manager (extended)
The MQCONNX call connects an application program to a queue manager. It provides a queue manager connection handle, which is
used by the application on subsequent MQ calls.

MQCRTMH – Create message handle

MQCTL – Control callback
The MQCTL call performs controlling actions on the object handles opened for a connection.

MQDISC – Disconnect queue manager
The MQDISC call breaks the connection between the queue manager and the application program, and is the inverse of the MQCONN
or MQCONNX call.

MQDLTMH – Delete message handle

MQDLTMP - Delete message property

MQGET – Get message
The MQGET call retrieves a message from a local queue that has been opened using the MQOPEN call.

MQINQ – Inquire object attributes
The MQINQ call returns an array of integers and a set of character strings containing the attributes of an object.

MQINQMP - Inquire message property

MQMHBUF - Convert message handle into buffer

The MQMHBUF converts a message handle into a buffer and is the inverse of the MQBUFMH call.

MQOPEN – Open object
The MQOPEN call establishes access to an object.

MQPUT – Put message
The MQPUT call puts a message on a queue or distribution list, or to a topic. The queue, distribution list or topic must already be open.

MQPUT1 – Put one message
The MQPUT1 call puts one message on a queue, or distribution list, or to a topic.

MQSET – Set object attributes
Use the MQSET call to change the attributes of an object represented by a handle. The object must be a queue.

MQSETMP – Set message property

Call that sets a property of a message handle.

MQSTAT – Retrieve status information
Use the MQSTAT call to retrieve status information. The type of status information returned is determined by the Type value specified

on the call.

MQSUB - Register subscription

MQSUBRQ - Subscription request

Parent topic: Application Programming Reference

This build: January 26, 2011 11:17:18

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16180_

2.1. Call descriptions

This part of the book describes the MQI calls:

� MQBACK – Back out

� MQBEGIN – Begin unit of work

� MQBUFMH – Convert buffer into message handle

� MQCB – Manage callback

� MQCB_FUNCTION – Callback function

� MQCLOSE – Close object

� MQCMIT – Commit

Page 392 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

� MQCONN – Connect to queue manager

� MQCONNX – Connect to queue manager with options

� MQCRTMH – Create message handle

� MQCTL – Control callback

� MQDISC – Disconnect from queue manager

� MQDLTMH – Delete message handle

� MQDLTMP – Delete message property

� MQGET – Get message

� MQINQ – Inquire about object attributes

� MQINQMP – Inquire message property

� MQMHBUF – Convert message handle into buffer

� MQOPEN – Open object

� MQPUT – Put message

� MQPUT1 – Put one message

� MQSET – Set object attributes

� MQSETMP – Set message handle property

� MQSTAT – Retrieve status information

� MQSUB – Register subscription

� MQSUBRQ – Subscription request

Online help on the UNIX platforms, in the form of man pages, is available for these calls.

Note: The calls associated with data conversion, MQXCNVC and MQ_DATA_CONV_EXIT, are in Data conversion.

Conventions used in the call descriptions
For each call, this collection of topics gives a description of the parameters and usage of the call in a format that is independent of
programming language. This is followed by typical invocations of the call, and typical declarations of its parameters, in each of the
supported programming languages.

Using the calls in the C language
Parameters that are input only and of type MQHCONN, MQHOBJ, MQHMSG, or MQLONG are passed by value. For all other parameters,
the address of the parameter is passed by value.

Parent topic: Function calls

This build: January 26, 2011 11:17:18

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16190_

2.1.1. Conventions used in the call descriptions

For each call, this collection of topics gives a description of the parameters and usage of the call in a format that is independent of
programming language. This is followed by typical invocations of the call, and typical declarations of its parameters, in each of the
supported programming languages.

The description of each call contains the following sections:

Call name

The call name, followed by a brief description of the purpose of the call.

Parameters

For each parameter, the name is followed by its data type in parentheses () and one of the following:

input

You supply information in the parameter when you make the call.

output

The queue manager returns information in the parameter when the call completes or fails.

input/output

You supply information in the parameter when you make the call, and the queue manager changes the information when the call
completes or fails.

For example:

Compcode (MQLONG) — output

In some cases, the data type is a structure. In all cases, there is more information about the data type or structure in Elementary data
types.

The last two parameters in each call are a completion code and a reason code. The completion code indicates whether the call completed
successfully, partially, or not at all. Further information about the partial success or the failure of the call is given in the reason code. You
will find more information about each completion and reason code in Return codes.

Usage notes

Additional information about the call, describing how to use it and any restrictions on its use.

Page 393 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Assembler language invocation

Typical invocation of the call, and declaration of its parameters, in assembler language.

C invocation

Typical invocation of the call, and declaration of its parameters, in C.

COBOL invocation

Typical invocation of the call, and declaration of its parameters, in COBOL.

PL/I invocation

Typical invocation of the call, and declaration of its parameters, in PL/I.

All parameters are passed by reference.

Visual Basic invocation

Typical invocation of the call, and declaration of its parameters, in Visual Basic.

Other notation conventions are:

Constants

Names of constants are shown in uppercase; for example, MQOO_OUTPUT. A set of constants having the same prefix is shown like this:

MQIA_*. See Constants for the value of a constant.

Arrays

In some calls, parameters are arrays of character strings whose size is not fixed. In the descriptions of these parameters, a lowercase n
represents a numeric constant. When you code the declaration for that parameter, replace the n with the numeric value that you require.

Parent topic: Call descriptions

This build: January 26, 2011 11:17:18

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16200_

2.1.2. Using the calls in the C language

Parameters that are input only and of type MQHCONN, MQHOBJ, MQHMSG, or MQLONG are passed by value. For all other parameters, the

address of the parameter is passed by value.

You do not need to specify all parameters that are passed by address every time that you invoke a function. Where you do not need a
particular parameter, specify a null pointer as the parameter on the function invocation, in place of the address of parameter data.
Parameters for which this is possible are identified in the call descriptions.

No parameter is returned as the value of the call; in C terminology, this means that all calls return void.

Declaring the Buffer parameter

Parent topic: Call descriptions

This build: January 26, 2011 11:17:18

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16210_

2.1.2.1. Declaring the Buffer parameter

The MQGET, MQPUT, and MQPUT1 calls each have one parameter that has an undefined data type: the Buffer parameter. Use this

parameter to send and receive the application’s message data.

Parameters of this sort are shown in the C examples as arrays of MQBYTE. You can declare the parameters in this way, but it is usually more
convenient to declare them as the particular structure that describes the layout of the data in the message. The function prototype declares
the parameter as a pointer-to-void, so that you can specify the address of any sort of data as the parameter on the call invocation.

Pointer-to-void is a pointer to data of undefined format. It is defined as:

 typedef void *PMQVOID;

Parent topic: Using the calls in the C language

This build: January 26, 2011 11:17:21

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16220_

2.2. MQBACK – Back out changes

Page 394 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

The MQBACK call indicates to the queue manager that all the message gets and puts that have occurred since the last syncpoint are to be
backed out.

Messages put as part of a unit of work are deleted; messages retrieved as part of a unit of work are reinstated on the queue.

� On z/OS®, this call is used only by batch programs (including IMS™ batch DL/I programs).

� On i5/OS®, this call is not supported for applications running in compatibility mode.

Syntax for MQBACK

Parameters for MQBACK

The MQBACK call has the following parameters.

Usage notes for MQBACK
Usage notes for MQBACK.

Language invocations for MQBACK
The MQBACK call is supported in the programming languages shown below.

Parent topic: Function calls

This build: January 26, 2011 11:17:22

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16230_

2.2.1. Syntax for MQBACK

MQBACK (Hconn, CompCode, Reason)

Parent topic: MQBACK – Back out changes

This build: January 26, 2011 11:17:22

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16240_

2.2.2. Parameters for MQBACK

The MQBACK call has the following parameters.

Hconn (MQHCONN) – input

CompCode (MQLONG) – output

Reason (MQLONG) – output

Parent topic: MQBACK – Back out changes

This build: January 26, 2011 11:17:22

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16250_

2.2.2.1. Hconn (MQHCONN) – input

This handle represents the connection to the queue manager. The value of Hconn was returned by a previous MQCONN or MQCONNX call.

Parent topic: Parameters for MQBACK

This build: January 26, 2011 11:17:22

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16260_

2.2.2.2. CompCode (MQLONG) – output

The completion code; it is one of the following:

Page 395 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

MQCC_OK

Successful completion.

MQCC_FAILED

Call failed.

Parent topic: Parameters for MQBACK

This build: January 26, 2011 11:17:22

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16270_

2.2.2.3. Reason (MQLONG) – output

The reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:

MQRC_ADAPTER_SERV_LOAD_ERROR

(2130, X'852') Unable to load adapter service module.

MQRC_API_EXIT_ERROR

(2374, X'946') API exit failed.

MQRC_ASID_MISMATCH

(2157, X'86D') Primary and home ASIDs differ.

MQRC_CALL_IN_PROGRESS

(2219, X'8AB') MQI call entered before previous call complete.

MQRC_CF_STRUC_IN_USE

(2346, X'92A') Coupling-facility structure in use.

MQRC_CONNECTION_BROKEN

(2009, X'7D9') Connection to queue manager lost.

MQRC_ENVIRONMENT_ERROR

(2012, X'7DC') Call not valid in environment.

MQRC_HCONN_ERROR

(2018, X'7E2') Connection handle not valid.

MQRC_OBJECT_DAMAGED

(2101, X'835') Object damaged.

MQRC_OUTCOME_MIXED

(2123, X'84B') Result of commit or back-out operation is mixed.

MQRC_Q_MGR_STOPPING

(2162, X'872') Queue manager shutting down.

MQRC_RESOURCE_PROBLEM

(2102, X'836') Insufficient system resources available.

MQRC_STORAGE_MEDIUM_FULL

(2192, X'890') External storage medium is full.

MQRC_STORAGE_NOT_AVAILABLE

(2071, X'817') Insufficient storage available.

MQRC_UNEXPECTED_ERROR

(2195, X'893') Unexpected error occurred.

See Return codes for more details.

Parent topic: Parameters for MQBACK

This build: January 26, 2011 11:17:22

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16280_

2.2.3. Usage notes for MQBACK

Usage notes for MQBACK.

Page 396 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

1. You can use this call only when the queue manager itself coordinates the unit of work. This can be:

� A local unit of work, where the changes affect only MQ resources.

� A global unit of work, where the changes can affect resources belonging to other resource managers, as well as affecting MQ
resources.

For further details about local and global units of work, see MQBEGIN – Begin unit of work.

2. In environments where the queue manager does not coordinate the unit of work, use the appropriate back-out call instead of

MQBACK. The environment might also support an implicit back out caused by the application terminating abnormally.

� On z/OS, use the following calls:

� Batch programs (including IMS batch DL/I programs) can use the MQBACK call if the unit of work affects only MQ

resources. However, if the unit of work affects both MQ resources and resources belonging to other resource managers (for
example, DB2®), use the SRRBACK call provided by the z/OS Recoverable Resource Service (RRS). The SRRBACK call
backs out changes to resources belonging to the resource managers that have been enabled for RRS coordination.

� CICS applications must use the EXEC CICS SYNCPOINT ROLLBACK command to back out the unit of work. Do not use the

MQBACK call for CICS applications.

� IMS applications (other than batch DL/I programs) must use IMS calls such as ROLB to back out the unit of work. Do not

use the MQBACK call for IMS applications (other than batch DL/I programs).

� On i5/OS, use this call for local units of work coordinated by the queue manager. This means that a commitment definition must
not exist at job level, that is, the STRCMTCTL command with the CMTSCOPE(*JOB) parameter must not have been issued for the

job.

3. If an application ends with uncommitted changes in a unit of work, the disposition of those changes depends on whether the
application ends normally or abnormally. See the usage notes in MQDISC – Disconnect queue manager for further details.

4. When an application puts or gets messages in groups or segments of logical messages, the queue manager retains information
relating to the message group and logical message for the last successful MQPUT and MQGET calls. This information is associated with
the queue handle, and includes such things as:

� The values of the GroupId, MsgSeqNumber, Offset, and MsgFlags fields in MQMD.

� Whether the message is part of a unit of work.

� For the MQPUT call: whether the message is persistent or nonpersistent.

The queue manager keeps three sets of group and segment information, one set for each of the following:

� The last successful MQPUT call (this can be part of a unit of work).

� The last successful MQGET call that removed a message from the queue (this can be part of a unit of work).

� The last successful MQGET call that browsed a message on the queue (this cannot be part of a unit of work).

5. The information associated with the MQGET call is restored to the value that it had before the first successful MQGET call for that
queue handle in the current unit of work.

Queues that were updated by the application after the unit of work started, but outside the scope of the unit of work, do not have
their group and segment information restored if the unit of work is backed out.
Restoring the group and segment information to its previous value when a unit of work is backed out allows the application to spread a
large message group or large logical message consisting of many segments across several units of work, and to restart at the correct
point in the message group or logical message if one of the units of work fails.
Using several units of work might be advantageous if the local queue manager has only limited queue storage. However, the
application must maintain sufficient information to be able to restart putting or getting messages at the correct point in the event that
a system failure occurs.
For details of how to restart at the correct point after a system failure, see the MQPMO_LOGICAL_ORDER option described in MQPMO –
Put-message options, and the MQGMO_LOGICAL_ORDER option described in MQGMO – Get-message options.
The remaining usage notes apply only when the queue manager coordinates the units of work.

6. A unit of work has the same scope as a connection handle. All MQ calls that affect a particular unit of work must be performed using

the same connection handle. Calls issued using a different connection handle (for example, calls issued by another application) affect a
different unit of work. See the Hconn parameter described in MQCONN – Connect queue manager for information about the scope of

connection handles.

7. Only messages that were put or retrieved as part of the current unit of work are affected by this call.

8. A long-running application that issues MQGET, MQPUT, or MQPUT1 calls within a unit of work, but that never issues a commit or
backout call, can fill queues with messages that are not available to other applications. To guard against this possibility, the
administrator must set the MaxUncommittedMsgs queue-manager attribute to a value that is low enough to prevent runaway

applications filling the queues, but high enough to allow the expected messaging applications to work correctly.

Parent topic: MQBACK – Back out changes

This build: January 26, 2011 11:17:22

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16290_

2.2.4. Language invocations for MQBACK

The MQBACK call is supported in the programming languages shown below.

C invocation

COBOL invocation

Page 397 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

PL/I invocation

System/390 assembler invocation

Visual Basic invocation

Parent topic: MQBACK – Back out changes

This build: January 26, 2011 11:17:22

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16300_

2.2.4.1. C invocation

MQBACK (Hconn, &CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /* Connection handle */

MQLONG CompCode; /* Completion code */

MQLONG Reason; /* Reason code qualifying CompCode */

Parent topic: Language invocations for MQBACK

This build: January 26, 2011 11:17:22

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16310_

2.2.4.2. COBOL invocation

 CALL 'MQBACK' USING HCONN, COMPCODE, REASON.

Declare the parameters as follows:

** Connection handle

 01 HCONN PIC S9(9) BINARY.

** Completion code

 01 COMPCODE PIC S9(9) BINARY.

** Reason code qualifying COMPCODE

 01 REASON PIC S9(9) BINARY.

Parent topic: Language invocations for MQBACK

This build: January 26, 2011 11:17:23

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16320_

2.2.4.3. PL/I invocation

call MQBACK (Hconn, CompCode, Reason);

Declare the parameters as follows:

dcl Hconn fixed bin(31); /* Connection handle */

dcl CompCode fixed bin(31); /* Completion code */

dcl Reason fixed bin(31); /* Reason code qualifying CompCode */

Parent topic: Language invocations for MQBACK

This build: January 26, 2011 11:17:23

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16330_

2.2.4.4. System/390® assembler invocation

 CALL MQBACK,(HCONN,COMPCODE,REASON)

Declare the parameters as follows:

HCONN DS F Connection handle

COMPCODE DS F Completion code

REASON DS F Reason code qualifying COMPCODE

Page 398 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Parent topic: Language invocations for MQBACK

This build: January 26, 2011 11:17:23

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16340_

2.2.4.5. Visual Basic invocation

MQBACK Hconn, CompCode, Reason

Declare the parameters as follows:

Dim Hconn As Long 'Connection handle'

Dim CompCode As Long 'Completion code'

Dim Reason As Long 'Reason code qualifying CompCode'

Parent topic: Language invocations for MQBACK

This build: January 26, 2011 11:17:23

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16350_

2.3. MQBEGIN – Begin unit of work

The MQBEGIN call begins a unit of work that is coordinated by the queue manager, and that can involve external resource managers.

� This call is supported in the following environments: AIX®, HP-UX, i5/OS®, Solaris, Linux, Windows.

Syntax for MQBEGIN

Parameters for MQBEGIN
The MQBEGIN call has the following parameters.

Usage notes for MQBEGIN
Consider these points when using MQBEGIN.

Language invocations for MQBEGIN

The MQBEGIN call is supported in the programming languages shown below.

Parent topic: Function calls

This build: January 26, 2011 11:17:23

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16360_

2.3.1. Syntax for MQBEGIN

MQBEGIN (Hconn, BeginOptions, CompCode, Reason)

Parent topic: MQBEGIN – Begin unit of work

This build: January 26, 2011 11:17:23

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16370_

2.3.2. Parameters for MQBEGIN

The MQBEGIN call has the following parameters.

Hconn (MQHCONN) – input

BeginOptions (MQBO) – input/output

CompCode (MQLONG) – output

Reason (MQLONG) – output

Page 399 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Parent topic: MQBEGIN – Begin unit of work

This build: January 26, 2011 11:17:23

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16380_

2.3.2.1. Hconn (MQHCONN) – input

This handle represents the connection to the queue manager. The value of Hconn was returned by a previous MQCONN or MQCONNX call.

Hconn must be a nonshared connection handle. If a shared connection handle is specified, the call fails with reason code

MQRC_HCONN_ERROR. See the description of the MQCNO_HANDLE_SHARE_* options in MQCNO – Connect options for more information
about shared and nonshared handles.

Parent topic: Parameters for MQBEGIN

This build: January 26, 2011 11:17:23

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16390_

2.3.2.2. BeginOptions (MQBO) – input/output

These are options that control the action of MQBEGIN, as described in see MQBO – Begin options.

If no options are required, programs written in C or S/390® assembler can specify a null parameter address, instead of specifying the
address of an MQBO structure.

Parent topic: Parameters for MQBEGIN

This build: January 26, 2011 11:17:23

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16400_

2.3.2.3. CompCode (MQLONG) – output

This is the completion code; it is one of the following:

MQCC_OK

Successful completion.

MQCC_WARNING

Warning (partial completion).

MQCC_FAILED

Call failed.

Parent topic: Parameters for MQBEGIN

This build: January 26, 2011 11:17:23

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16410_

2.3.2.4. Reason (MQLONG) – output

This is the reason code qualifying CompCode. If CompCode is MQCC_OK:

MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_WARNING:

MQRC_NO_EXTERNAL_PARTICIPANTS

(2121, X'849') No participating resource managers registered.

MQRC_PARTICIPANT_NOT_AVAILABLE

(2122, X'84A') Participating resource manager not available.

If CompCode is MQCC_FAILED:

Page 400 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

MQRC_API_EXIT_ERROR

(2374, X'946') API exit failed.

MQRC_BO_ERROR

(2134, X'856') Begin-options structure not valid.

MQRC_CALL_IN_PROGRESS

(2219, X'8AB') MQI call entered before previous call complete.

MQRC_CONNECTION_BROKEN

(2009, X'7D9') Connection to queue manager lost.

MQRC_ENVIRONMENT_ERROR

(2012, X'7DC') Call not valid in environment.

MQRC_HCONN_ERROR

(2018, X'7E2') Connection handle not valid.

MQRC_OPTIONS_ERROR

(2046, X'7FE') Options not valid or not consistent.

MQRC_Q_MGR_STOPPING

(2162, X'872') Queue manager shutting down.

MQRC_RESOURCE_PROBLEM

(2102, X'836') Insufficient system resources available.

MQRC_STORAGE_NOT_AVAILABLE

(2071, X'817') Insufficient storage available.

MQRC_UNEXPECTED_ERROR

(2195, X'893') Unexpected error occurred.

MQRC_UOW_IN_PROGRESS

(2128, X'850') Unit of work already started.

For more information on these reason codes, see

� WebSphere MQ for z/OS Messages and Codes for WebSphere® MQ for z/OS®

� WebSphere MQ Messages for all other WebSphere MQ platforms

.

Parent topic: Parameters for MQBEGIN

This build: January 26, 2011 11:17:24

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16420_

2.3.3. Usage notes for MQBEGIN

Consider these points when using MQBEGIN.

1. Use the MQBEGIN call to start a unit of work that is coordinated by the queue manager and that might involve changes to resources
owned by other resource managers. The queue manager supports three types of unit-of-work:

� Queue-manager-coordinated local unit of work: This is a unit of work in which the queue manager is the only resource
manager participating, and so the queue manager acts as the unit-of-work coordinator.

� To start this type of unit of work, specify the MQPMO_SYNCPOINT or MQGMO_SYNCPOINT option on the first MQPUT,
MQPUT1, or MQGET call in the unit of work.

� To commit or back out this type of unit of work, use the MQCMIT or MQBACK call.

� Queue-manager-coordinated global unit of work: This is a unit of work in which the queue manager acts as the unit-of-
work coordinator, both for MQ resources and for resources belonging to other resource managers. Those resource managers
cooperate with the queue manager to ensure that all changes to resources in the unit of work are committed or backed out

together.

� To start this type of unit of work, use the MQBEGIN call.

� To commit or back out this type of unit of work, use the MQCMIT and MQBACK calls.

� Externally-coordinated global unit of work: This is a unit of work in which the queue manager is a participant, but the
queue manager does not act as the unit-of-work coordinator. Instead, there is an external unit-of-work coordinator with which

the queue manager cooperates.

� To start this type of unit of work, use the relevant call provided by the external unit-of-work coordinator.

If the MQBEGIN call is used to try to start the unit of work, the call fails with reason code MQRC_ENVIRONMENT_ERROR.

� To commit or back out this type of unit of work, use the commit and back-out calls provided by the external unit-of-work
coordinator.

If you use the MQCMIT or MQBACK call to commit or back out the unit of work, the call fails with reason code
MQRC_ENVIRONMENT_ERROR.

2. If the application ends with uncommitted changes in a unit of work, the disposition of those changes depends on whether the
application ends normally or abnormally. See the usage notes in MQDISC – Disconnect queue manager for further details.

3. An application can participate in only one unit of work at a time. The MQBEGIN call fails with reason code MQRC_UOW_IN_PROGRESS
if there is already a unit of work in existence for the application, regardless of which type of unit of work it is.

Page 401 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

4. The MQBEGIN call is not valid in an MQ client environment. An attempt to use the call fails with reason code
MQRC_ENVIRONMENT_ERROR.

5. When the queue manager is acting as the unit-of-work coordinator for global units of work, the resource managers that can participate

in the unit of work are defined in the queue manager’s configuration file.

6. On i5/OS®, the three types of unit of work are supported as follows:

� Queue-manager-coordinated local unit of work can be used only when a commitment definition does not exist at the job
level, that is, the STRCMTCTL command with the CMTSCOPE(*JOB) parameter must not have been issued for the job.

� Queue-manager-coordinated global unit of work is not supported.

� Externally-coordinated global unit of work can be used only when a commitment definition exists at job level, that is, the
STRCMTCTL command with the CMTSCOPE(*JOB) parameter must have been issued for the job. If this has been done, the i5/OS

COMMIT and ROLLBACK operations apply to MQ resources as well as to resources belonging to other participating resource

managers.

Parent topic: MQBEGIN – Begin unit of work

This build: January 26, 2011 11:17:24

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16430_

2.3.4. Language invocations for MQBEGIN

The MQBEGIN call is supported in the programming languages shown below.

C invocation

COBOL invocation

PL/I invocation

Visual Basic invocation

Parent topic: MQBEGIN – Begin unit of work

This build: January 26, 2011 11:17:24

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16440_

2.3.4.1. C invocation

MQBEGIN (Hconn, &BeginOptions, &CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /* Connection handle */

MQBO BeginOptions; /* Options that control the action of MQBEGIN */

MQLONG CompCode; /* Completion code */

MQLONG Reason; /* Reason code qualifying CompCode */

Parent topic: Language invocations for MQBEGIN

This build: January 26, 2011 11:17:24

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16450_

2.3.4.2. COBOL invocation

 CALL 'MQBEGIN' USING HCONN, BEGINOPTIONS, COMPCODE, REASON.

Declare the parameters as follows:

** Connection handle

 01 HCONN PIC S9(9) BINARY.

** Options that control the action of MQBEGIN

 01 BEGINOPTIONS.

 COPY CMQBOV.

** Completion code

 01 COMPCODE PIC S9(9) BINARY.

** Reason code qualifying COMPCODE

 01 REASON PIC S9(9) BINARY.

Parent topic: Language invocations for MQBEGIN

Page 402 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This build: January 26, 2011 11:17:24

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16460_

2.3.4.3. PL/I invocation

call MQBEGIN (Hconn, BeginOptions, CompCode, Reason);

Declare the parameters as follows:

dcl Hconn fixed bin(31); /* Connection handle */

dcl BeginOptions like MQBO; /* Options that control the action of

 MQBEGIN */

dcl CompCode fixed bin(31); /* Completion code */

dcl Reason fixed bin(31); /* Reason code qualifying CompCode */

Parent topic: Language invocations for MQBEGIN

This build: January 26, 2011 11:17:24

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16470_

2.3.4.4. Visual Basic invocation

MQBEGIN Hconn, BeginOptions, CompCode, Reason

Declare the parameters as follows:

Dim Hconn As Long 'Connection handle'

Dim BeginOptions As MQBO 'Options that control the action of MQBEGIN'

Dim CompCode As Long 'Completion code'

Dim Reason As Long 'Reason code qualifying CompCode'

Parent topic: Language invocations for MQBEGIN

This build: January 26, 2011 11:17:24

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16480_

2.4. MQBUFMH - Convert buffer into message handle

The MQBUFMH function call converts a buffer into a message handle and is the inverse of the MQMHBUF call.

This call takes a message descriptor and MQRFH2 properties in the buffer and makes them available through a message handle. The
MQRFH2 properties in the message data are, optionally, removed. The Encoding, CodedCharSetId, and Format fields of the message

descriptor are updated, if necessary, to correctly describe the contents of the buffer after the properties have been removed.

Syntax for MQBUFMH

Parameters for MQBUFMH

Usage notes for MQBUFMH

Language invocations for MQBUFMH
The MQBUFMH call is supported in the programming languages shown below.

Parent topic: Function calls

This build: January 26, 2011 11:19:48

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr25700_

2.4.1. Syntax for MQBUFMH

MQBUFMH (Hconn, Hmsg, BufMsgHOpts, MsgDesc, Buffer, BufferLength, DataLength, CompCode, Reason)

Parent topic: MQBUFMH - Convert buffer into message handle

This build: January 26, 2011 11:19:48

Page 403 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr25710

2.4.2. Parameters for MQBUFMH

The MQBUFMH call has the following parameters.

Hconn (MQHCONN) – input

Hmsg (MQHMSG) – input
This is the message handle for which a buffer is required. The value was returned by a previous MQCRTMH call.

BufMsgHOpts (MQBMHO) – input
The MQBMHO structure allows applications to specify options that control how message handles are produced from buffers.

MsgDesc (MQMD) – input/output

BufferLength (MQLONG) - input

Buffer (MQBYTExBufferLength) - input/output

DataLength (MQLONG) - output

CompCode (MQLONG) – output

Reason (MQLONG) – output

Parent topic: MQBUFMH - Convert buffer into message handle

This build: January 26, 2011 11:19:48

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr25720_

2.4.2.1. Hconn (MQHCONN) – input

This handle represents the connection to the queue manager. The value of Hconn must match the connection handle that was used to create

the message handle specified in the Hmsg parameter.

If the message handle was created using MQHC_UNASSOCIATED_HCONN, a valid connection must be established on the thread converting
a buffer into a message handle. If a valid connection is not established, the call fails with MQRC_CONNECTION_BROKEN.

Parent topic: Parameters for MQBUFMH

This build: January 26, 2011 11:19:50

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr25730_

2.4.2.2. Hmsg (MQHMSG) – input

This is the message handle for which a buffer is required. The value was returned by a previous MQCRTMH call.

Parent topic: Parameters for MQBUFMH

This build: January 26, 2011 11:19:50

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr25740_

2.4.2.3. BufMsgHOpts (MQBMHO) – input

The MQBMHO structure allows applications to specify options that control how message handles are produced from buffers.

See MQBMHO – Buffer to message handle options for details.

Parent topic: Parameters for MQBUFMH

This build: January 26, 2011 11:19:50

Notices | Trademarks | Downloads | Library | Support | Feedback

Page 404 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr25550_

2.4.2.4. MsgDesc (MQMD) – input/output

The MsgDesc structure contains the message descriptor properties and describes the contents of the buffer area.

On output from the call, the properties are optionally removed from the buffer area and, in this case, the message descriptor is updated to
correctly describe the buffer area.

Data in this structure must be in the character set and encoding of the application.

Parent topic: Parameters for MQBUFMH

This build: January 26, 2011 11:19:50

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr25770_

2.4.2.5. BufferLength (MQLONG) - input

BufferLength is the length of the Buffer area, in bytes.

A BufferLength of zero bytes is valid, and indicates that the buffer area contains no data.

Parent topic: Parameters for MQBUFMH

This build: January 26, 2011 11:19:50

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr25780_

2.4.2.6. Buffer (MQBYTExBufferLength) - input/output

Buffer defines the area containing the message buffer. For most data, you should align the buffer on a 4-byte boundary.

If Buffer contains character or numeric data, set the CodedCharSetId and Encoding fields in the MsgDesc parameter to the values

appropriate to the data; this enables the data to be converted, if necessary.

If properties are found in the message buffer they are optionally removed; they later become available from the message handle on return
from the call.

In the C programming language, the parameter is declared as a pointer-to-void, which means the address of any type of data can be
specified as the parameter.

If the BufferLength parameter is zero, Buffer is not referred to; in this case, the parameter address passed by programs written in C or

System/390® assembler can be null.

Parent topic: Parameters for MQBUFMH

This build: January 26, 2011 11:19:51

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr25790_

2.4.2.7. DataLength (MQLONG) - output

DataLength is the length, in bytes, of the buffer which might have the properties removed.

Parent topic: Parameters for MQBUFMH

This build: January 26, 2011 11:19:51

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr25800_

2.4.2.8. CompCode (MQLONG) – output

The completion code; it is one of the following:

Page 405 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

MQCC_OK

Successful completion.

MQCC_FAILED

Call failed.

Parent topic: Parameters for MQBUFMH

This build: January 26, 2011 11:19:51

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr25810_

2.4.2.9. Reason (MQLONG) – output

The reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:

MQRC_ADAPTER_NOT_AVAILABLE

(2204, X'089C') Adapter not available.

MQRC_ADAPTER_SERV_LOAD_ERROR

(2130, X'852') Unable to load adapter service module.

MQRC_ASID_MISMATCH

(2157, X'86D') Primary and home ASIDs differ.

MQRC_BMHO_ERROR

(2489, X'09B9') Buffer to message handle options structure not valid.

MQRC_BUFFER_ERROR

(2004, X'07D4') Buffer parameter not valid.

MQRC_BUFFER_LENGTH_ERROR

(2005, X'07D5') Buffer length parameter not valid.

MQRC_CALL_IN_PROGRESS

(2219, X'08AB') MQI call entered before previous call completed.

MQRC_CONNECTION_BROKEN

(2009, X'07D9') Connection to queue manager lost.

MQRC_HMSG_ERROR

(2460, X'099C') Message handle not valid.

MQRC_MD_ERROR

(2026, X'07EA') Message descriptor not valid.

MQRC_MSG_HANDLE_IN_USE

(2499, X'09C3') Message handle already in use.

MQRC_OPTIONS_ERROR

(2046, X'07FE') Options not valid or not consistent.

MQRC_RFH_ERROR

(2334, X'091E') MQRFH2 structure not valid.

MQRC_RFH_FORMAT_ERROR

(2421, X'0975') An MQRFH2 folder containing properties could not be parsed.

MQRC_UNEXPECTED_ERROR

(2195, X'893') Unexpected error occurred.

Parent topic: Parameters for MQBUFMH

This build: January 26, 2011 11:19:51

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr25620_

2.4.3. Usage notes for MQBUFMH

MQBUFMH calls cannot be intercepted by API exits – a buffer is converted into a message handle in the application space; the call does not

reach the queue manager.

Page 406 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Parent topic: MQBUFMH - Convert buffer into message handle

This build: January 26, 2011 11:19:51

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr25825_

2.4.4. Language invocations for MQBUFMH

The MQBUFMH call is supported in the programming languages shown below.

C invocation

COBOL invocation

PL/I invocation

System/390 assembler invocation

Parent topic: MQBUFMH - Convert buffer into message handle

This build: January 26, 2011 11:19:51

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr25830_

2.4.4.1. C invocation

MQBUFMH (Hconn, Hmsg, &BufMsgHOpts, &MsgDesc, BufferLength, Buffer,

 &DataLength, &CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /* Connection handle */

MQHMSG Hmsg; /* Message handle */

MQBMHO BufMsgHOpts; /* Options that control the action of MQBUFMH */

MQMD MsgDesc; /* Message descriptor */

MQLONG BufferLength; /* Length in bytes of the Buffer area */

MQBYTE Buffer[n]; /* Area to contain the message buffer */

MQLONG DataLength; /* Length of the output buffer */

MQLONG CompCode; /* Completion code */

MQLONG Reason; /* Reason code qualifying CompCode */

Parent topic: Language invocations for MQBUFMH

This build: January 26, 2011 11:19:51

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr25840_

2.4.4.2. COBOL invocation

CALL ‘MQBUFMH’ USING HCONN, HMSG, BUFMSGHOPTS, MSGDESC, BUFFERLENGTH,

 BUFFER, DATALENGTH, COMPCODE, REASON.

Declare the parameters as follows:

** Connection handle

 01 HCONN PIC S9(9) BINARY.

** Message handle

 01 HMSG PIC S9(18) BINARY.

** Options that control the action of MQBUFMH

 01 BUFMSGHOPTS.

 COPY CMQBMHOV.

** Message descriptor

 01 MSGDESC.

 COPY CMQMD.

** Length in bytes of the Buffer area

 01 BUFFERLENGTH PIC S9(9) BINARY.

** Area to contain the message buffer

 01 BUFFER PIC X(n).

** Length of the output buffer

 01 DATALENGTH PIC S9(9) BINARY.

** Completion code

 01 COMPCODE PIC S9(9) BINARY.

** Reason code qualifying COMPCODE

 01 REASON PIC S9(9) BINARY.

Page 407 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Parent topic: Language invocations for MQBUFMH

This build: January 26, 2011 11:19:52

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr25850_

2.4.4.3. PL/I invocation

call MQBUFMH (Hconn, Hmsg, BufMsgHOpts, MsgDesc, BufferLength, Buffer,

 DataLength, CompCode, Reason);

Declare the parameters as follows:

dcl Hconn fixed bin(31); /* Connection handle */

dcl Hmsg fixed bin(63); /* Message handle */

dcl BufMsgHOpts like MQBMHO; /* Options that control the action of

 MQBUFMH */

dcl MsgDesc like MQMD; /* Message descriptor */

dcl BufferLength fixed bin(31); /* Length in bytes of the Buffer area */

dcl Buffer char(n); /* Area to contain the message buffer */

dcl DataLength fixed bin(31); /* Length of the output buffer */

dcl CompCode fixed bin(31); /* Completion code */

dcl Reason fixed bin(31); /* Reason code qualifying CompCode */

Parent topic: Language invocations for MQBUFMH

This build: January 26, 2011 11:19:52

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr25860_

2.4.4.4. System/390® assembler invocation

CALL MQBUFMH,(HCONN,HMSG,BUFMSGHOPTS,MSGDESC,BUFFERLENGTH,BUFFER,

 DATALENGTH,COMPCODE,REASON)

Declare the parameters as follows:

HCONN DS F Connection handle

HMSG DS D Message handle

BUFMSGHOPTS CMQBMHOA , Options that control the action of MQBUFMH

MSGDESC CMQMDA , Message descriptor

BUFFERLENGTH DS F Length in bytes of the BUFFER area

BUFFER DS CL(n) Area to contain the properties

DATALENGTH DS F Length of the output buffer

COMPCODE DS F Completion code

REASON DS F Reason code qualifying COMPCODE

Parent topic: Language invocations for MQBUFMH

This build: January 26, 2011 11:19:52

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr25880_

2.5. MQCB – Manage callback

Manage callback function

The MQCB call reregisters a callback for the specified object handle and controls activation and changes to the callback.

A callback is a piece of code (specified as either the name of a function that can be dynamically linked or as function pointer) that is called
by WebSphere® MQ when certain events occur.

To use MQCB and MQCTL on a V7 client you must be connected to a V7 server and the SHARECNV parameter of the channel must have a
non-zero value.

The types of callback that can be defined are:

Message consumer

A message consumer callback function is called when a message, meeting the selection criteria specified, is available on an object handle.

Only one callback function can be registered against each object handle. If a single queue is to be read with multiple selection criteria then

the queue must be opened multiple times and a consumer function registered on each handle.

Event handler

The event handler is called for conditions that affect the whole callback environment.

The function is called when an event condition occurs, for example, a queue manager or connection stopping or quiescing.

Page 408 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

The function is not called for conditions that are specific to a single message consumer, for example MQRC_GET_INHIBITED; it is called
however if a callback function does not end normally.

Syntax for MQCB

Message callback function - syntax

Parameters for MQCB
The MQCB call has the following parameters. Manage callback function - parameters

Usage notes for MQCB
MQCB function call - Usage notes

Language invocations for MQCB
Manage callback function - Language invocations

Parent topic: Function calls

This build: January 26, 2011 11:20:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr41100_

2.5.1. Syntax for MQCB

Message callback function - syntax

MQCB (Hconn, Operation, CallbackDesc, Hobj, MsgDesc,

GetMsgOpts, CompCode, Reason)

Parent topic: MQCB – Manage callback

This build: January 26, 2011 11:20:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr41110_

2.5.2. Parameters for MQCB

The MQCB call has the following parameters. Manage callback function - parameters

Hconn (MQHCONN) – input
Manage callback function - Hconn parameter

Operation (MQLONG) – input

Manage callback function - Operation parameter

CallbackDesc (MQCBD) – input
Manage callback function -CallbackDesc parameter

Hobj (MQHOBJ) – input
Manage callback function -Hobj parameter

MsgDesc (MQMD) – input
Manage callback function -MsgDesc parameter

GetMsgOpts (MQGMO) – input
Manage callback function - GetMsgOpts parameter

CompCode (MQLONG) – output
Manage callback function - CompCode parameter

Reason (MQLONG) – output

Manage callback function - Reason parameter

Parent topic: MQCB – Manage callback

This build: January 26, 2011 11:20:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr41120_

2.5.2.1. Hconn (MQHCONN) – input

Page 409 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Manage callback function - Hconn parameter

This handle represents the connection to the queue manager. The value of Hconn was returned by a previous MQCONN or MQCONNX call.

On z/OS® for CICS® applications, and on i5/OS® for applications running in compatibility mode, the MQCONN call can be omitted, and the
following value specified for Hconn:

MQHC_DEF_HCONN

Default connection handle.

Parent topic: Parameters for MQCB

This build: January 26, 2011 11:20:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr41130_

2.5.2.2. Operation (MQLONG) – input

Manage callback function - Operation parameter

The operation being processed on the callback defined for the specified object handle. You must specify one of the following options; if more
than one option is required, the values can be:

� Added together (do not add the same constant more than once), or

� Combined using the bitwise OR operation (if the programming language supports bit operations).

MQOP_REGISTER

Define the callback function for the specified object handle. This operation defines the function to be called and the selection criteria to be
used.

If a callback function is already defined for the object handle the definition is replaced. If an error is detected while replacing the callback,
the function is deregistered.

If a callback is registered in the same callback function in which it was previously deregistered, this is treated as a replace operation; any
initial or final calls are not invoked.

You can use MQOP_REGISTER in conjunction with MQOP_SUSPEND or MQOP_RESUME.

MQOP_DEREGISTER

Stop the consuming of messages for the object handle and removes the handle from those eligible for a callback.

A callback is automatically deregistered if the associated handle is closed.

If MQOP_DEREGISTER is called from within a consumer, and the callback has a stop call defined, it is invoked upon return from the
consumer.

If this operation is issued against an Hobj with no registered consumer, the call returns with MQRC_CALLBACK_NOT_REGISTERED.

MQOP_SUSPEND

Suspends the consuming of messages for the object handle.

If this operation is applied to an event handler, the event handler does not get events while suspended, and any events missed while in
the suspended state are not provided to the operation when it is resumed.

While suspended, the consumer function continues to get the control type callbacks.

MQOP_RESUME

Resume the consuming of messages for the object handle.

If this operation is applied to an event handler, the event handler does not get events while suspended, and any events missed while in
the suspended state are not provided to the operation when it is resumed.

Parent topic: Parameters for MQCB

This build: January 26, 2011 11:20:16

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr41140_

2.5.2.3. CallbackDesc (MQCBD) – input

Manage callback function -CallbackDesc parameter

This is a structure that identifies the callback function that is being registered by the application and the options used when registering it.

See MQCBD for details of the structure.

Page 410 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Callback descriptor is required only for the MQOP_REGISTER option; if the descriptor is not required, the parameter address passed can be
null.

Parent topic: Parameters for MQCB

This build: January 26, 2011 11:20:16

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr41160_

2.5.2.4. Hobj (MQHOBJ) – input

Manage callback function -Hobj parameter

This handle represents the access that has been established to the object from which a message is to be consumed. This is a handle that
has been returned from a previous MQOPEN or MQSUB call (in the Hobj parameter).

Hobj is not required when defining an event handler routine (MQCBT_EVENT_HANDLER) and should be specified as MQHO_NONE.

If this Hobj has been returned from an MQOPEN call, the queue must have been opened with one or more of the following options:

� MQOO_INPUT_SHARED

� MQOO_INPUT_EXCLUSIVE

� MQOO_INPUT_AS_Q_DEF

� MQOO_BROWSE

Parent topic: Parameters for MQCB

This build: January 26, 2011 11:20:16

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr41150_

2.5.2.5. MsgDesc (MQMD) – input

Manage callback function -MsgDesc parameter

This structure describes the attributes of the message required, and the attributes of the message retrieved.

The MsgDesc parameter defines the attributes of the messages required by the consumer, and the version of the MQMD to be passed to the

message consumer.

The MsgId, CorrelId, GroupId, MsgSeqNumber, and Offset in the MQMD are used for message selection, depending on the options specified

in the GetMsgOpts parameter.

The Encoding and CodedCharSetId are used for message conversion if you specify the MQGMO_CONVERT option.

See MQMD for details.

MsgDesc is used for MQOP_REGISTER and if you require values other than the default for any fields. MsgDesc is not used for an event

handler.

If the descriptor is not required the parameter address passed can be null.

Note, that if multiple consumers are registered against the same queue with overlapping selectors, the chosen consumer for each message
is undefined.

Parent topic: Parameters for MQCB

This build: January 26, 2011 11:20:16

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr41170_

2.5.2.6. GetMsgOpts (MQGMO) – input

Manage callback function - GetMsgOpts parameter

The GetMsgOpts parameter controls how the message consumer gets messages. All options of this parameter have meanings as described

in MQGMO – Get-message options, when used on an MQGET call, except:

MQGMO_SET_SIGNAL

This option is not permitted.

MQGMO_BROWSE_FIRST, MQGMO_BROWSE_NEXT, MQGMO_MARK_*

Page 411 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

The order of messages delivered to a browsing consumer is dictated by the combinations of these options. Significant combinations are:

MQGMO_BROWSE_FIRST

The first message on the queue is delivered repeatedly to the consumer. This option is useful when the consumer destructively
consumes the message in the callback. Use this option with care.

MQGMO_BROWSE_NEXT

The consumer is given each message on the queue, from the current cursor position until the end of the queue is reached.

MQGMO_BROWSE_FIRST + MQGMO_BROWSE_NEXT

The cursor is reset to the start of the queue. The consumer is then given each message until the cursor reaches the end of the queue.

MQGMO_BROWSE_FIRST + MQGMO_MARK_*

Starting at the beginning of the queue, the consumer is given the first nonmarked message on the queue, which is then marked for this
consumer. This combination ensures that the consumer can receive new messages added behind the current cursor point.

MQGMO_BROWSE_NEXT + MQGMO_MARK_*

Starting at the cursor position, the consumer is given the next nonmarked message on the queue, which is then marked for this
consumer. Use this combination with care because messages can be added to the queue behind the current cursor position.

MQGMO_BROWSE_FIRST + MQGMO_BROWSE_NEXT + MQGMO_MARK_*

This combination is not permitted. If used the call returns MQRC_OPTIONS_ERROR.

MQGMO_NO_WAIT, MQGMO_WAIT and WaitInterval

These options control how the consumer is invoked.

MQGMO_NO_WAIT

The consumer is never called with MQRC_NO_MSG_AVAILABLE. The consumer is only called for messages and events.

MQGMO_WAIT with a zero WaitInterval

The MQRC_NO_MSG_AVAILABLE code is passed to the consumer when there are no messages available and either the consumer has
just been started or the consumer has been delivered at least one message since the last "no messages" reason code.
This prevents the consumer from polling in a busy loop when a zero wait interval is specified.

MQGMO_WAIT and a positive WaitInterval

The consumer is called after the specified wait interval with reason code MQRC_NO_MSG_AVAILABLE. This call is made regardless of
whether any messages have been delivered to the consumer. This allows the user to perform heartbeat or batch type processing.

MQGMO_WAIT and WaitInterval of MQWI_UNLIMITED

This specifies an infinite wait before returning MQRC_NO_MSG_AVAILABLE. The consumer is never called with
MQRC_NO_MSG_AVAILABLE.

GetMsgOpts is used only for MQOP_REGISTER and if you require values other than the default for any fields. GetMsgOpts is not used for an

event handler.

If the GetMsgOpts are not required, the parameter address passed can be null. Using this parameter is the same as specifying

MQGMO_DEFAULT together with MQGMO_FAIL_IF_QUIESCING.

If a message properties handle is provided in the MQGMO structure, a copy is provided in the MQGMO structure that is passed into the
consumer callback. On return from the MQCB call, the application can delete the message properties handle.

Parent topic: Parameters for MQCB

This build: January 26, 2011 11:20:16

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr41180_

2.5.2.7. CompCode (MQLONG) – output

Manage callback function - CompCode parameter

The completion code; it is one of the following:

MQCC_OK

Successful completion.

MQCC_WARNING

Warning (partial completion).

MQCC_FAILED

Call failed.

Parent topic: Parameters for MQCB

This build: January 26, 2011 11:20:16

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr41190_

2.5.2.8. Reason (MQLONG) – output

Manage callback function - Reason parameter

Page 412 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

The reason codes listed below are the ones that the queue manager can return for the Reason parameter.

If CompCode is MQCC_OK:

MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:

MQRC_ADAPTER_NOT_AVAILABLE

(2204, X'89C') Adapter not available.

MQRC_ADAPTER_CONV_LOAD_ERROR

(2133, X'855') Unable to load data conversion services modules.

MQRC_ADAPTER_SERV_LOAD_ERROR

(2130, X'852') Unable to load adapter service module.

MQRC_API_EXIT_ERROR

(2374, X'946') API exit failed.

MQRC_API_EXIT_LOAD_ERROR

(2183, X'887') Unable to load API exit.

MQRC_ASID_MISMATCH

(2157, X'86D') Primary and home ASIDs differ.

MQRC_BUFFER_LENGTH_ERROR

(2005, X'7D5') Buffer length parameter not valid.

MQRC_CALL_IN_PROGRESS

(2219, X'8AB') MQI call entered before previous call complete.

MQRC_CALLBACK_LINK_ERROR

(2487, X'9B7') Incorrect callback type field.

MQRC_CALLBACK_NOT_REGISTERED

(2448, X'990') Unable to deregister, suspend, or resume because there is no registered callback.

MQRC_CALLBACK_ROUTINE_ERROR

(2486, X'9B6') Either CallbackFunction or CallbackName must be specified but not both.

MQRC_CALLBACK_TYPE_ERROR

(2483, X'9B3') Incorrect callback type field.

MQRC_CBD_OPTIONS_ERROR

(2484, X'9B4') Incorrect MQCBD options field.

MQRC_CICS_WAIT_FAILED

(2140, X'85C') Wait request rejected by CICS®.

MQRC_CONNECTION_BROKEN

(2009, X'7D9') Connection to queue manager lost.

MQRC_CONNECTION_NOT_AUTHORIZED

(2217, X'8A9') Not authorized for connection.

MQRC_CONNECTION_QUIESCING

(2202, X'89A') Connection quiescing.

MQRC_CONNECTION_STOPPING

(2203, X'89B') Connection shutting down.

MQRC_CORREL_ID_ERROR

(2207, X'89F') Correlation-identifier error.

MQRC_DATA_LENGTH_ERROR

(2010, X'7DA') Data length parameter not valid.

MQRC_FUNCTION_NOT_SUPPORTED

(2298, X'8FA') The function requested is not available in the current environment.

MQRC_GET_INHIBITED

(2016, X'7E0') Gets inhibited for the queue.

MQRC_GLOBAL_UOW_CONFLICT

(2351, X'92F') Global units of work conflict.

MQRC_GMO_ERROR

(2186, X'88A') Get-message options structure not valid.

MQRC_HANDLE_IN_USE_FOR_UOW

(2353, X'931') Handle in use for global unit of work.

MQRC_HCONN_ERROR

(2018, X'7E2') Connection handle not valid.

MQRC_HOBJ_ERROR

(2019, X'7E3') Object handle not valid.

MQRC_INCONSISTENT_BROWSE

Page 413 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

(2259, X'8D3') Inconsistent browse specification.

MQRC_INCONSISTENT_UOW

(2245, X'8C5') Inconsistent unit-of-work specification.

MQRC_INVALID_MSG_UNDER_CURSOR

(2246, X'8C6') Message under cursor not valid for retrieval.

MQRC_LOCAL_UOW_CONFLICT

(2352, X'930') Global unit of work conflicts with local unit of work.

MQRC_MATCH_OPTIONS_ERROR

(2247, X'8C7') Match options not valid.

MQRC_MAX_MSG_LENGTH_ERROR

(2485, X'9B4') Incorrect MaxMsgLength field.

MQRC_MD_ERROR

(2026, X'7EA') Message descriptor not valid.

MQRC_MODULE_ENTRY_NOT_FOUND

(2497, X'9C1') The specified function entry point could not be found in the module.

MQRC_MODULE_INVALID

(2496, X'9C0') Module found, however it is of the wrong type; not 32 bit, 64 bit, or a valid dynamic link library.

MQRC_MODULE_NOT_FOUND

(2495, X'9BF') Module not found in the search path or not authorized to load.

MQRC_MSG_SEQ_NUMBER_ERROR

(2250, X'8CA') Message sequence number not valid.

MQRC_MSG_TOKEN_ERROR

(2331, X'91B') Use of message token not valid.

MQRC_NO_MSG_AVAILABLE

(2033, X'7F1') No message available.

MQRC_NO_MSG_UNDER_CURSOR

(2034, X'7F2') Browse cursor not positioned on message.

MQRC_NOT_OPEN_FOR_BROWSE

(2036, X'7F4') Queue not open for browse.

MQRC_NOT_OPEN_FOR_INPUT

(2037, X'7F5') Queue not open for input.

MQRC_OBJECT_CHANGED

(2041, X'7F9') Object definition changed since opened.

MQRC_OBJECT_DAMAGED

(2101, X'835') Object damaged.

MQRC_OPERATION_ERROR

(2206, X'89E') Incorrect operation code on API Call.

MQRC_OPTIONS_ERROR

(2046, X'7FE') Options not valid or not consistent.

MQRC_PAGESET_ERROR

(2193, X'891') Error accessing page-set data set.

MQRC_Q_DELETED

(2052, X'804') Queue has been deleted.

MQRC_Q_INDEX_TYPE_ERROR

(2394, X'95A') Queue has wrong index type.

MQRC_Q_MGR_NAME_ERROR

(2058, X'80A') Queue manager name not valid or not known.

MQRC_Q_MGR_NOT_AVAILABLE

(2059, X'80B') Queue manager not available for connection.

MQRC_Q_MGR_QUIESCING

(2161, X'871') Queue manager quiescing.

MQRC_Q_MGR_STOPPING

(2162, X'872') Queue manager shutting down.

MQRC_RESOURCE_PROBLEM

(2102, X'836') Insufficient system resources available.

MQRC_SIGNAL_OUTSTANDING

(2069, X'815') Signal outstanding for this handle.

MQRC_STORAGE_NOT_AVAILABLE

(2071, X'817') Insufficient storage available.

MQRC_SUPPRESSED_BY_EXIT

(2109, X'83D') Call suppressed by exit program.

MQRC_SYNCPOINT_LIMIT_REACHED

Page 414 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

(2024, X'7E8') No more messages can be handled within current unit of work.

MQRC_SYNCPOINT_NOT_AVAILABLE

(2072, X'818') Syncpoint support not available.

MQRC_UNEXPECTED_ERROR

(2195, X'893') Unexpected error occurred.

MQRC_UOW_ENLISTMENT_ERROR

(2354, X'932') Enlistment in global unit of work failed.

MQRC_UOW_MIX_NOT_SUPPORTED

(2355, X'933') Mixture of unit-of-work calls not supported.

MQRC_UOW_NOT_AVAILABLE

(2255, X'8CF') Unit of work not available for the queue manager to use.

MQRC_WAIT_INTERVAL_ERROR

(2090, X'82A') Wait interval in MQGMO not valid.

MQRC_WRONG_GMO_VERSION

(2256, X'8D0') Wrong version of MQGMO supplied.

MQRC_WRONG_MD_VERSION

(2257, X'8D1') Wrong version of MQMD supplied.

Parent topic: Parameters for MQCB

This build: January 26, 2011 11:20:17

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr41200_

2.5.3. Usage notes for MQCB

MQCB function call - Usage notes

1. MQCB is used to define the action to be invoked for each message, matching the specified criteria, available on the queue. When the
action is processed, either the message is removed from the queue and passed to the defined message consumer, or a message token
is provided, which is used to retrieve the message.

2. MQCB can be used to define callback routines before starting consumption with MQCTL or it can be used from within a callback
routine.

3. To use MQCB from outside of a callback routine, you must first suspend message consumption by using MQCTL and resume

consumption afterwards.

4. MQCB is not supported within the IMS™ adapter.

Message consumer callback sequence

Message consumer connection usage

Parent topic: MQCB – Manage callback

This build: January 26, 2011 11:20:17

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr41210_

2.5.3.1. Message consumer callback sequence

You can configure a consumer to invoke callback at key points during the lifecycle of the consumer. For example:

� when the consumer is first registered,

� when the connection is started,

� when the connection is stopped and

� when the consumer is deregistered, either explicitly, or implicitly by an MQCLOSE.

This allows the consumer to maintain state associated with the consumer. When a callback is requested by an application, the rules for
consumer invocation are as follows:

REGISTER

Is always the first type of invocation of the callback.

Table 1. MQCTL verb definitions

Verb Meaning

MQCTL(START) MQCTL call using the MQOP_START Operation

MQCTL(STOP) MQCTL call using the MQOP_STOP Operation

MQCTL(WAIT) MQCTL call using the MQOP_START_WAIT Operation

Page 415 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Is always called on the same thread, as the MQCB(REGISTER) call.

START

Is always called synchronously with the MQCTL(START) verb.

� All START callbacks are completed before the MQCTL(START) verb returns.

Is on the same thread as the message delivery if THREAD_AFFINITY is requested.
The call with start is not guaranteed if, for example, a previous callback issues MQCTL(STOP) during the MQCTL(START).

STOP

No further messages or events are delivered after this call until the connection is restarted.
A STOP is guaranteed if the application was previously called for START, or a message, or an event.

DEREGISTER

Is always the last type of invocation of the callback.

Ensure that your application performs thread-based initialization and cleanup in the START and STOP callbacks. You can do nonthread-based
initialization and cleanup with REGISTER and DEREGISTER callbacks.

Do not make any assumptions about the life and availability of the thread other than what is stated. For example, do not rely on a thread
staying alive beyond the last call to DEREGISTER. Similarly, when you have chosen not to use THREAD_AFFINITY, do not assume that the
thread exists whenever the connection is started.

If your application has particular requirements for thread characteristics, it can always create a thread accordingly, then use MQCTL(WAIT).
This has the effect of ‘donating’ the thread to MQ for asynchronous message delivery.

Parent topic: Usage notes for MQCB

This build: January 26, 2011 11:20:40

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr43350_

2.5.3.2. Message consumer connection usage

Normally, when an application issues another MQI call while one is outstanding, the call fails with reason code MQRC_CALL_IN_PROGRESS.

There are special cases, however, when the application needs to issue a further MQI call before the previous call has completed. For
example, the consumer can be invoked during an MQCB call with MQOP_REGISTER.

In such an instance, when as a result of the application issuing either an MQCB or MQCTL verb, the application is called back, the application
is allowed to issue a further MQI call. This means you can issue, for example, an MQOPEN call, in the consumer function when called with a
CallType type of MQCBCT_REGISTER. Any MQI call, with the exception of MQDISC, is allowed.

Parent topic: Usage notes for MQCB

Related reference
Message consumer callback sequence

This build: January 26, 2011 11:20:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr43360_

2.5.4. Language invocations for MQCB

Manage callback function - Language invocations

The MQCB call is supported in the following programming languages.

C invocation
MQCB function call - C language invocation

COBOL invocation

PL/I invocation

Parent topic: MQCB – Manage callback

This build: January 26, 2011 11:20:17

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr41220_

2.5.4.1. C invocation

Page 416 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

MQCB function call - C language invocation

MQCB (Hconn, Operation, CallbackDesc, Hobj, MsgDesc,

GetMsgOpts, &CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /* Connection handle */

MQLONG Operation; /* Operation being processed */

MQCBD CallbackDesc; /* Callback descriptor */

MQHOBJ HObj /* Object handle */

MQMD MsgDesc /* Message descriptor attributes */

MQGMO GetMsgOpts /* Message options */

MQLONG CompCode; /* Completion code */

MQLONG Reason; /* Reason code qualifying CompCode */

Parent topic: Language invocations for MQCB

This build: January 26, 2011 11:20:17

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr41230_

2.5.4.2. COBOL invocation

CALL ‘MQCB’ USING HCONN, OPERATION, CBDESC, HOBJ, MSGDESC,

 GETMSGOPTS, COMPCODE, REASON.

Declare the parameters as follows:

** Connection handle

 01 HCONN PIC S9(9) BINARY.

** Operation

 01 OPERATION PIC S9(9) BINARY.

** Callback Descriptior

 01 CBDESC.

 COPY CMQCBDV.

01 HOBJ PIC S9(9) BINARY.

** Message Descriptior

 01 MSGDESC.

 COPY CMQMDV.

** Get Message Options

 01 GETMSGOPTS.

 COPY CMQGMOV.

** Completion code

 01 COMPCODE PIC S9(9) BINARY.

** Reason code qualifying COMPCODE

 01 REASON PIC S9(9) BINARY.

Parent topic: Language invocations for MQCB

This build: January 26, 2011 11:20:17

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr41240_

2.5.4.3. PL/I invocation

call MQCB(Hconn, Operation, CallbackDesc, Hobj, MsgDesc, GetMsgOpts,

 CompCode, Reason)

Declare the parameters as follows:

dcl Hconn fixed bin(31); /* Connection handle */

dcl Operation fixed bin(31); /* Operation */

dcl CallbackDesc like MQCBDV; /* Callback Descriptor */

dcl Hobj fixed bin(31); /* Object Handle */

dcl MsgDesc like MQMDV; /* Message Descriptor */

dcl GetMsgOpts like MQGMOV; /* Get Message Options */

dcl CompCode fixed bin(31); /* Completion code */

dcl Reason fixed bin(31); /* Reason code qualifying CompCode */

Parent topic: Language invocations for MQCB

This build: January 26, 2011 11:20:17

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr41250_

Page 417 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

2.6. MQCB_FUNCTION – Callback function

 Callback function for event handling and asynchronous message consumption

The MQCB_FUNCTION call definition is provided solely to describe the parameters that are passed to the callback function. No entry point
called MQCB_FUNCTION is actually provided by the queue manager.

The specification of the actual function to be called is an input to the MQCB call and is passed in through the MQCBD structure.

Syntax for MQCB_FUNCTION
Callback function - syntax

Parameters for MQCB_FUNCTION
Callback function - parameters.

Usage notes for MQCB_FUNCTION
Callback function - Usage notes

Language invocations for MQCB_FUNCTION
The MQCB_FUNCTION call is supported in the programming languages shown below. Callback function - Language invocations

Parent topic: Function calls

This build: January 26, 2011 11:20:21

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr41500_

2.6.1. Syntax for MQCB_FUNCTION

Callback function - syntax

MQCB_FUNCTION (Hconn, MsgDesc, GetMsgOpts, Buffer, Context)

Parent topic: MQCB_FUNCTION – Callback function

This build: January 26, 2011 11:20:21

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr41510_

2.6.2. Parameters for MQCB_FUNCTION

Callback function - parameters.

Table 1. Parameter names used by MQCB_FUNCTION call

Name Data type Input/Output Description

MsgDesc MQMD Input This structure describes the attributes of the

message retrieved. See MQMD – Message

descriptor for details of this structure.

The version of MQMD passed is the latest

version of the MQMD supported.

When a version 4 MQGMO is used to request a
message handle, the MsgDesc container is

passed as nulls

This is an input to message consumers, it is not

used by event handlers.

GetMsgOpts MQGMO Input Options used to control the actions of the
message consumer. It also contains additional

information about the message returned. See

MQGMO – Get-message options for details of

this structure.

The version of MQGMO passed is the latest

version of the MQGMO supported.

This is an input to message consumers, it is not
used by event handlers.

Buffer MQBYTExBufferLength Input This is the area containing the message data.

This is an input to message consumers, it is not

used by event handlers.

Context MQCBC Input and
Output

This structure provides context information to
the callback functions. see MQCBC – Callback

context for details of this structure.

Page 418 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Hconn (MQHCONN) – input
Callback function - Hconn parameter

MsgDesc (MQMD) – input

Callback function -MsgDesc parameter

GetMsgOpts (MQGMO) – input
Callback function -GetMsgOpts parameter

Buffer (MQBYTExBufferLength) – input
Callback function - Buffer parameter

Context – input/output
Callback function -Context parameter

Parent topic: MQCB_FUNCTION – Callback function

This build: January 26, 2011 11:20:21

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr41520_

2.6.2.1. Hconn (MQHCONN) – input

Callback function - Hconn parameter

This handle represents the connection to the queue manager. The value of Hconn was returned by a previous MQCONN or MQCONNX call.

On z/OS® for CICS® applications, and on i5/OS® for applications running in compatibility mode, the MQCONN call can be omitted, and the

following value specified for Hconn:

MQHC_DEF_HCONN

Default connection handle.

Parent topic: Parameters for MQCB_FUNCTION

This build: January 26, 2011 11:20:22

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr41530_

2.6.2.2. MsgDesc (MQMD) – input

Callback function -MsgDesc parameter

This structure describes the attributes of the message retrieved.

See MQMD – Message descriptor for details.

The version of MQMD passed is the same version as passed on the MQCB call that defined the consumer function.

The address of the MQMD is passed as null characters if a version 4 MQGMO was used to request that a Message Handle be returned instead
of an MQMD.

This is an input field to the message consumer function; it is not relevant to an exception handler function.

Parent topic: Parameters for MQCB_FUNCTION

This build: January 26, 2011 11:20:22

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr41540_

2.6.2.3. GetMsgOpts (MQGMO) – input

Callback function -GetMsgOpts parameter

Options used to control the actions of the message consumer. This parameter also contains additional information about the message

returned.

See MQGMO for details.

The version of MQGMO passed is the latest version supported.

Page 419 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This is an input field to the message consumer function; it is not relevant to an exception handler function.

Parent topic: Parameters for MQCB_FUNCTION

This build: January 26, 2011 11:20:22

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr41550_

2.6.2.4. Buffer (MQBYTExBufferLength) – input

Callback function - Buffer parameter

This is the area containing the message data.

If no message is available for this call, or if the message contains no message data, the address of the Buffer is passed as nulls.

This is an input field to the message consumer function; it is not relevant to an exception handler function.

Parent topic: Parameters for MQCB_FUNCTION

This build: January 26, 2011 11:20:22

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr41560_

2.6.2.5. Context – input/output

Callback function -Context parameter

This structure provides context information to the callback functions. See MQCBC – Callback context for details.

Parent topic: Parameters for MQCB_FUNCTION

This build: January 26, 2011 11:20:22

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr41570_

2.6.3. Usage notes for MQCB_FUNCTION

Callback function - Usage notes

1. Be aware that if your callback routines use services that could delay or block the thread, for example, MQGET with wait, this could
delay the dispatch of other callbacks.

2. A separate unit of work is not automatically established for each invocation of a callback routine, so routines can either issue a commit
call, or defer committing, until a logical batch of work has been processed. When the batch of work is committed, it commits the
messages for all callback functions that have been invoked since the last syncpoint.

3. Programs invoked by CICS® LINK or CICS START retrieve parameters using CICS services through named objects known as channel
containers. The container names are the same as the parameter names in the table, Parameter names used by the MQCB_FUNCTION.
For more information, see your CICS documentation.

4. Callback routines can issue an MQDISC call, but not for their own connection. For example, if a callback routine has created a
connection, then it can also disconnect the connection.

5. A callback routine should not, in general, rely on being invoked from the same thread each time. If this is required, use the
MQCTLO_THREAD_AFFINITY when the connection is started.

6. When a callback routine receives a nonzero reason code, it must take appropriate action.

7. MQCB_FUNCTION is not supported within the IMS™ adapter.

Parent topic: MQCB_FUNCTION – Callback function

This build: January 26, 2011 11:20:23

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr41700_

2.6.4. Language invocations for MQCB_FUNCTION

The MQCB_FUNCTION call is supported in the programming languages shown below. Callback function - Language invocations

C invocation

Page 420 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

MQCB_FUNCTION function call - C language invocation

COBOL invocation

PL/I invocation

Parent topic: MQCB_FUNCTION – Callback function

This build: January 26, 2011 11:20:23

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr41710_

2.6.4.1. C invocation

MQCB_FUNCTION function call - C language invocation

MQCB_FUNCTION (Hconn, MsgDesc, GetMsgOpts, Buffer, &Context);

Declare the parameters as follows:

MQHCONN Hconn; /* Connection handle */

MQMD MsgDesc /* Message descriptor attributes */

MQGMO GetMsgOpts /* Message options */

MQBYTE Buffer[n]; /* Area to contain the message data */

MQCBC Context /* Context information */

Parent topic: Language invocations for MQCB_FUNCTION

This build: January 26, 2011 11:20:23

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr41720_

2.6.4.2. COBOL invocation

CALL ‘MQCB_FUNCTION’ USING HCONN, MSGDESC, GETMSGOPTS,

 BUFFER, CONTEXT.

Declare the parameters as follows:

** Connection handle

 01 HCONN PIC S9(9) BINARY.

** Message Descriptor

 01 MSGDESC.

 COPY CMQMDV.

** Get Message Options

 01 GETMSGOPTS.

 COPY CMQGMOV.

** Message Buffer

 01 BUFFER PIC X(n)

** Consumer Context

 01 CONTEXT

 COPY CMQCBCV.

Parent topic: Language invocations for MQCB_FUNCTION

This build: January 26, 2011 11:20:23

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr41730_

2.6.4.3. PL/I invocation

call MQCB_FUNTION(Hconn, MsgDesc, GetMsgOpts, Buffer, Context)

Declare the parameters as follows:

dcl Hconn fixed bin(31); /* Connection handle */

dcl MsgDesc like MQMD; /* Message Descriptor */

dcl GetMsgOpts like MQGMO; /* Get Message Options */

dcl Buffer pointer; /* Pointer to message */

dcl Context like MQCBC; /* Callback Context */

Parent topic: Language invocations for MQCB_FUNCTION

This build: January 26, 2011 11:20:23

Page 421 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr41740_

2.7. MQCLOSE – Close object

The MQCLOSE call relinquishes access to an object, and is the inverse of the MQOPEN and MQSUB calls.

Syntax for MQCLOSE

Parameters for MQCLOSE
The MQCLOSE call has the following parameters.

Usage notes for MQCLOSE

Consider these points when using MQCLOSE.

Language invocations for MQCLOSE
The MQCLOSE call is supported in the programming languages shown below.

Parent topic: Function calls

This build: January 26, 2011 11:17:24

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16490_

2.7.1. Syntax for MQCLOSE

MQCLOSE (Hconn, Hobj, Options, CompCode, Reason)

Parent topic: MQCLOSE – Close object

This build: January 26, 2011 11:17:24

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16500_

2.7.2. Parameters for MQCLOSE

The MQCLOSE call has the following parameters.

Hconn (MQHCONN) – input

Hobj (MQHOBJ) – input/output

Options (MQLONG) – input

CompCode (MQLONG) – output

Reason (MQLONG) – output

Parent topic: MQCLOSE – Close object

This build: January 26, 2011 11:17:24

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16510_

2.7.2.1. Hconn (MQHCONN) – input

This handle represents the connection to the queue manager. The value of Hconn was returned by a previous MQCONN or MQCONNX call.

On z/OS® for CICS® applications, and on i5/OS® for applications running in compatibility mode, you can omit the MQCONN call, and
specify the following value for Hconn:

MQHC_DEF_HCONN

Default connection handle.

Page 422 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Parent topic: Parameters for MQCLOSE

This build: January 26, 2011 11:17:25

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16520_

2.7.2.2. Hobj (MQHOBJ) – input/output

This handle represents the object that is being closed. The object can be of any type. The value of Hobj was returned by a previous MQOPEN

call.

On successful completion of the call, the queue manager sets this parameter to a value that is not a valid handle for the environment. This
value is:

MQHO_UNUSABLE_HOBJ

Unusable object handle.

On z/OS®, Hobj is set to a value that is undefined.

Parent topic: Parameters for MQCLOSE

This build: January 26, 2011 11:17:25

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16530_

2.7.2.3. Options (MQLONG) – input

This parameter controls how the object is closed.

Only permanent dynamic queues and subscriptions can be closed in more than one way, because they must be either retained or deleted;
these are queues whose DefinitionType attribute has the value MQQDT_PERMANENT_DYNAMIC (see the DefinitionType attribute

described in Attributes for queues). The close options are summarized in this topic.

Durable subscriptions can either be kept or removed; these are created using the MQSUB call with the MQSO_DURABLE option.

When closing the handle to a managed destination (that is the Hobj parameter returned on an MQSUB call which used the MQSO_MANAGED

option) the queue manager will clean up any publications that have not been retrieved when the associated subscription has also been

removed. The subscription is removed using the MQCO_REMOVE_SUB option on the Hsub parameter returned on an MQSUB call. Note that

MQCO_REMOVE_SUB is the default behaviour on MQCLOSE for a non-durable subscription.

When closing a handle to a non-managed destination you are responsible for cleaning up the queue where publications are sent. Close the

subscription using MQCO_REMOVE_SUB first and then process messages off the queue until there are none left.

You must specify one option only from the following:

Dynamic queue options: These options control how permanent dynamic queues are closed.

MQCO_DELETE

The queue is deleted if either of the following is true:

� It is a permanent dynamic queue, created by a previous MQOPEN call , and there are no messages on the queue and no
uncommitted get or put requests outstanding for the queue (either for the current task or any other task).

� It is the temporary dynamic queue that was created by the MQOPEN call that returned Hobj. In this case, all the messages on the

queue are purged.

In all other cases, including the case where the Hobj was returned on an MQSUB call, the call fails with reason code

MQRC_OPTION_NOT_VALID_FOR_TYPE, and the object is not deleted.

On z/OS®, if the queue is a dynamic queue that has been logically deleted, and this is the last handle for it, the queue is physically
deleted. See MQCLOSE usage notes for further details.

MQCO_DELETE_PURGE

The queue is deleted, and any messages on it purged, if either of the following is true:

� It is a permanent dynamic queue, created by a previous MQOPEN call, and there are no uncommitted get or put requests
outstanding for the queue (either for the current task or any other task).

� It is the temporary dynamic queue that was created by the MQOPEN call that returned Hobj.

In all other cases, including the case where the Hobj was returned on an MQSUB call, the call fails with reason code

MQRC_OPTION_NOT_VALID_FOR_TYPE, and the object is not deleted.

The table shows which close options are valid, and whether the object is retained or deleted.

Type of object or queue MQCO_NONE MQCO_DELETE MQCO_DELETE_PURGE

Object other than a queue Retained Not valid Not valid

Predefined queue Retained Not valid Not valid

Page 423 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Subscription closure options: These options control whether durable subscriptions are removed when the handle is closed, and whether

publications still waiting to be read by the application are cleaned up. These options are only valid for use with an object handle returned in
the Hsub parameter of an MQSUB call.

MQCO_KEEP_SUB

The handle to the subscription is closed but the subscription made is kept. Publications will continue to be sent to the destination specified
in the subscription. This option is only valid if the subscription was made with the option MQSO_DURABLE.
MQCO_KEEP_SUB is the default if the subscription is durable

MQCO_REMOVE_SUB

The subscription is removed and the handle to the subscription is closed.
The Hobj parameter of the MQSUB call is not invalidated by closure of the Hsub parameter and may continue to be used for MQGET or

MQCB to receive the remaining publications. When the Hobj parameter of the MQSUB call is also closed, if it was a managed destination

any un-retrieved publications will be removed.

MQCO_REMOVE_SUB is the default if the subscription is non-durable.

These subscription closure options are summarized in the following tables.

To close a durable subscription handle but retain the subscription, use the following subscription closure options:

To unsubscribe, either by closing a durable subscription handle and unsubscribing it or closing a non-durable subscription handle, use the
following subscription closure options:

Read ahead options: The following options control what happens to non-persistent messages which have been sent to the client before an
application requested them and have not yet been consumed by the application. These messages are stored in the client read ahead buffer
waiting to be requested by the application and can either be discarded or consumed from the queue before the MQCLOSE is completed.

MQCO_IMMEDIATE

The object is closed immediately and any messages which have been sent to the client before an application requested them are discarded
and are not available to be consumed by any application. This is the default value.

MQCO_QUIESCE

A request to close the object is made, but if any messages which have been sent to the client before an application requested them, still

reside in the client read ahead buffer, the MQCLOSE call will return with a warning of MQRC_READ_AHEAD_MSGS and the object handle
will remain valid.

The application can then continue to use the object handle to retrieve messages until no more are available, and then close the object
again. No more messages will be sent to the client ahead of an application requesting then, read ahead is now turned off.

Applications are advised to use MQCO_QUIESCE rather than trying to reach a point where there are no more messages in the client read
ahead buffer, because a message could arrive between the last MQGET call and the following MQCLOSE which would be discarded if
MQCO_IMMEDIATE was used.

If an MQCLOSE with MQCO_QUIESCE is issued from within an asynchronous callback function, the same behavior of reading ahead
messages applies. If the warning MQRC_READ_AHEAD_MSGS is returned, then the callback function will be called at least one more time.
When the last remaining message that was read ahead has been passed to the callback function the MQCBC ConsumerFlags field is set to
MQCBCF_READA_BUFFER_EMPTY.

Default option: If you require none of the options described above, you can use the following option:

MQCO_NONE

No optional close processing required.

This must be specified for:

� Objects other than queues

� Predefined queues

� Temporary dynamic queues (but only in those cases where Hobj is not the handle returned by the MQOPEN call that created the

queue).

Permanent dynamic queue Retained Deleted if empty and

no pending updates

Messages deleted; queue deleted if

no pending updates

Temporary dynamic queue (call

issued by creator of queue)

Deleted Deleted Deleted

Temporary dynamic queue (call not

issued by creator of queue)

Retained Not valid Not valid

Distribution list Retained Not valid Not valid

Managed subscription destination Retained Not valid Not valid

Distribution list (subscription has
been removed)

Messages deleted;
queue deleted

Not valid Not valid

Task Subscription closure option

Keep publications on an MQOPENed handle MQCO_KEEP_SUB

Remove publications on an MQOPENed handle Action not allowed

Keep publications on an MQSO_MANAGED handle MQCO_KEEP_SUB

Remove publications on an MQSO_MANAGED handle Action not allowed

Task Subscription closure option

Keep publications on an MQOPENed handle MQCO_REMOVE_SUB

Remove publications on an MQOPENed handle Action not allowed

Keep publications on an MQSO_MANAGED handle MQCO_REMOVE_SUB

Page 424 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

� Distribution lists

In all the above cases, the object is retained and not deleted.

If this option is specified for a temporary dynamic queue:

� The queue is deleted, if it was created by the MQOPEN call that returned Hobj; any messages that are on the queue are purged.

� In all other cases the queue (and any messages on it) are retained.

If this option is specified for a permanent dynamic queue, the queue is retained and not deleted.

On z/OS, if the queue is a dynamic queue that has been logically deleted, and this is the last handle for it, the queue is physically deleted.
See MQCLOSE usage notes for further details.

Parent topic: Parameters for MQCLOSE

This build: January 26, 2011 11:17:25

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16540_

2.7.2.4. CompCode (MQLONG) – output

The completion code; it is one of the following:

MQCC_OK

Successful completion.

MQCC_WARNING

Warning (partial completion).

MQCC_FAILED

Call failed.

Parent topic: Parameters for MQCLOSE

This build: January 26, 2011 11:17:26

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16550_

2.7.2.5. Reason (MQLONG) – output

The reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_WARNING:

MQRC_INCOMPLETE_GROUP

(2241, X'8C1') Message group not complete.

MQRC_INCOMPLETE_MSG

(2242, X'8C2') Logical message not complete.

If CompCode is MQCC_FAILED:

MQRC_ADAPTER_NOT_AVAILABLE

(2204, X'89C') Adapter not available.

MQRC_ADAPTER_SERV_LOAD_ERROR

(2130, X'852') Unable to load adapter service module.

MQRC_API_EXIT_ERROR

(2374, X'946') API exit failed.

MQRC_API_EXIT_LOAD_ERROR

(2183, X'887') Unable to load API exit.

MQRC_ASID_MISMATCH

(2157, X'86D') Primary and home ASIDs differ.

MQRC_CALL_IN_PROGRESS

(2219, X'8AB') MQI call entered before previous call complete.

MQRC_CF_STRUC_FAILED

(2373, X'945') Coupling-facility structure failed.

Page 425 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

MQRC_CF_STRUC_IN_USE

(2346, X'92A') Coupling-facility structure in use.

MQRC_CICS_WAIT_FAILED

(2140, X'85C') Wait request rejected by CICS®.

MQRC_CONNECTION_BROKEN

(2009, X'7D9') Connection to queue manager lost.

MQRC_CONNECTION_NOT_AUTHORIZED

(2217, X'8A9') Not authorized for connection.

MQRC_CONNECTION_STOPPING

(2203, X'89B') Connection shutting down.

MQRC_HCONN_ERROR

(2018, X'7E2') Connection handle not valid.

MQRC_HOBJ_ERROR

(2019, X'7E3') Object handle not valid.

MQRC_NOT_AUTHORIZED

(2035, X'7F3') Not authorized for access.

MQRC_OBJECT_DAMAGED

(2101, X'835') Object damaged.

MQRC_OPTION_NOT_VALID_FOR_TYPE

(2045, X'7FD') On an MQOPEN or MQCLOSE call: option not valid for object type.

MQRC_OPTIONS_ERROR

(2046, X'7FE') Options not valid or not consistent.

MQRC_PAGESET_ERROR

(2193, X'891') Error accessing page-set data set.

MQRC_Q_MGR_NAME_ERROR

(2058, X'80A') Queue manager name not valid or not known.

MQRC_Q_MGR_NOT_AVAILABLE

(2059, X'80B') Queue manager not available for connection.

MQRC_Q_MGR_STOPPING

(2162, X'872') Queue manager shutting down.

MQRC_Q_NOT_EMPTY

(2055, X'807') Queue contains one or more messages or uncommitted put or get requests.

MQRC_READ_AHEAD_MSGS

(nnnn, X'xxx') The client has read ahead messages that have not yet been consumed by the application.

MQRC_RESOURCE_PROBLEM

(2102, X'836') Insufficient system resources available.

MQRC_SECURITY_ERROR

(2063, X'80F') Security error occurred.

MQRC_STORAGE_NOT_AVAILABLE

(2071, X'817') Insufficient storage available.

MQRC_SUPPRESSED_BY_EXIT

(2109, X'83D') Call suppressed by exit program.

MQRC_UNEXPECTED_ERROR

(2195, X'893') Unexpected error occurred.

For detailed information on these codes, see:

� WebSphere MQ for z/OS Messages and Codes for WebSphere® MQ for z/OS®

� WebSphere MQ Messages for all other WebSphere MQ platforms

Parent topic: Parameters for MQCLOSE

This build: January 26, 2011 11:17:26

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16560_

2.7.3. Usage notes for MQCLOSE

Consider these points when using MQCLOSE.

1. When an application issues the MQDISC call, or ends either normally or abnormally, any objects that were opened by the application
and are still open are closed automatically with the MQCO_NONE option.

2. The following points apply if the object being closed is a queue:

� If operations on the queue were performed as part of a unit of work, the queue can be closed before or after the syncpoint
occurs without affecting the outcome of the syncpoint. If the queue is triggered, performing a rollback before closing the queue

Page 426 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

can cause a trigger message to be issued. For details, see WebSphere MQ Application Programming Guide.

� If the queue was opened with the MQOO_BROWSE option, the browse cursor is destroyed. If the queue is subsequently
reopened with the MQOO_BROWSE option, a new browse cursor is created (see MQOO_BROWSE).

� If a message is currently locked for this handle at the time of the MQCLOSE call, the lock is released (see MQGMO_LOCK).

� On z/OS®, if there is an MQGET request with the MQGMO_SET_SIGNAL option outstanding against the queue handle being

closed, the request is canceled (see MQGMO_SET_SIGNAL). Signal requests for the same queue but lodged against different
handles (Hobj) are not affected (unless a dynamic queue is being deleted, in which case they are also canceled).

3. The following points apply if the object being closed is a dynamic queue (either permanent or temporary):

� For a dynamic queue, you can specify the MQCO_DELETE and MQCO_DELETE_PURGE options regardless of the options specified
on the corresponding MQOPEN call.

� When a dynamic queue is deleted, all MQGET calls with the MQGMO_WAIT option that are outstanding against the queue are
canceled and reason code MQRC_Q_DELETED is returned. See MQGMO_WAIT.
Although applications cannot access a deleted queue, the queue is not removed from the system, and associated resources are
not freed, until such time as all handles that reference the queue have been closed, and all units of work that affect the queue
have been either committed or backed out.

On z/OS, a queue that has been logically deleted but not yet removed from the system prevents the creation of a new queue
with the same name as the deleted queue; the MQOPEN call fails with reason code MQRC_NAME_IN_USE in this case. Also, such
a queue can still be displayed using MQSC commands, even though it cannot be accessed by applications.

� When a permanent dynamic queue is deleted, if the Hobj handle specified on the MQCLOSE call is not the one that was returned

by the MQOPEN call that created the queue, a check is made that the user identifier that was used to validate the MQOPEN call is
authorized to delete the queue. If the MQOO_ALTERNATE_USER_AUTHORITY option was specified on the MQOPEN call, the user

identifier checked is the AlternateUserId.

This check is not performed if:

� The handle specified is the one returned by the MQOPEN call that created the queue.

� The queue being deleted is a temporary dynamic queue.

� When a temporary dynamic queue is closed, if the Hobj handle specified on the MQCLOSE call is the one that was returned by

the MQOPEN call that created the queue, the queue is deleted. This occurs regardless of the close options specified on the
MQCLOSE call. If there are messages on the queue, they are discarded; no report messages are generated.

If there are uncommitted units of work that affect the queue, the queue and its messages are still deleted, but the units of work
do not fail. However, as described above, the resources associated with the units of work are not freed until each of the units of
work has been either committed or backed out.

4. The following points apply if the object being closed is a distribution list:

� The only valid close option for a distribution list is MQCO_NONE; the call fails with reason code MQRC_OPTIONS_ERROR or
MQRC_OPTION_NOT_VALID_FOR_TYPE if any other options are specified.

� When a distribution list is closed, individual completion codes and reason codes are not returned for the queues in the list; only
the CompCode and Reason parameters of the call are available for diagnostic purposes.

If a failure occurs closing one of the queues, the queue manager continues processing and attempts to close the remaining

queues in the distribution list. The CompCode and Reason parameters of the call are set to return information describing the

failure. It is possible for the completion code to be MQCC_FAILED, even though most of the queues were closed successfully. The
queue that encountered the error is not identified.

If there is a failure on more than one queue, it is not defined which failure is reported in the CompCode and Reason parameters.

5. On i5/OS®, if the application was connected implicitly when the first MQOPEN call was issued, an implicit MQDISC occurs when the
last MQCLOSE is issued.

Only applications running in compatibility mode can be connected implicitly; other applications must issue the MQCONN or MQCONNX

call to connect to the queue manager explicitly.

Parent topic: MQCLOSE – Close object

This build: January 26, 2011 11:17:26

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16570_

2.7.4. Language invocations for MQCLOSE

The MQCLOSE call is supported in the programming languages shown below.

C invocation

COBOL invocation

PL/I invocation

System/390 assembler invocation

Visual Basic invocation

Parent topic: MQCLOSE – Close object

This build: January 26, 2011 11:17:26

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

Page 427 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

fr16580_

2.7.4.1. C invocation

MQCLOSE (Hconn, &Hobj, Options, &CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /* Connection handle */

MQHOBJ Hobj; /* Object handle */

MQLONG Options; /* Options that control the action of MQCLOSE */

MQLONG CompCode; /* Completion code */

MQLONG Reason; /* Reason code qualifying CompCode */

Parent topic: Language invocations for MQCLOSE

This build: January 26, 2011 11:17:26

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16590_

2.7.4.2. COBOL invocation

 CALL 'MQCLOSE' USING HCONN, HOBJ, OPTIONS, COMPCODE, REASON.

Declare the parameters as follows:

** Connection handle

 01 HCONN PIC S9(9) BINARY.

** Object handle

 01 HOBJ PIC S9(9) BINARY.

** Options that control the action of MQCLOSE

 01 OPTIONS PIC S9(9) BINARY.

** Completion code

 01 COMPCODE PIC S9(9) BINARY.

** Reason code qualifying COMPCODE

 01 REASON PIC S9(9) BINARY.

Parent topic: Language invocations for MQCLOSE

This build: January 26, 2011 11:17:26

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16600_

2.7.4.3. PL/I invocation

call MQCLOSE (Hconn, Hobj, Options, CompCode, Reason);

Declare the parameters as follows:

dcl Hconn fixed bin(31); /* Connection handle */

dcl Hobj fixed bin(31); /* Object handle */

dcl Options fixed bin(31); /* Options that control the action of

 MQCLOSE */

dcl CompCode fixed bin(31); /* Completion code */

dcl Reason fixed bin(31); /* Reason code qualifying CompCode */

Parent topic: Language invocations for MQCLOSE

This build: January 26, 2011 11:17:27

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16610_

2.7.4.4. System/390® assembler invocation

 CALL MQCLOSE,(HCONN,HOBJ,OPTIONS,COMPCODE,REASON)

Declare the parameters as follows:

HCONN DS F Connection handle

HOBJ DS F Object handle

OPTIONS DS F Options that control the action of MQCLOSE

COMPCODE DS F Completion code

REASON DS F Reason code qualifying COMPCODE

Parent topic: Language invocations for MQCLOSE

This build: January 26, 2011 11:17:27

Notices | Trademarks | Downloads | Library | Support | Feedback

Page 428 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16620_

2.7.4.5. Visual Basic invocation

MQCLOSE Hconn, Hobj, Options, CompCode, Reason

Declare the parameters as follows:

Dim Hconn As Long 'Connection handle'

Dim Hobj As Long 'Object handle'

Dim Options As Long 'Options that control the action of MQCLOSE'

Dim CompCode As Long 'Completion code'

Dim Reason As Long 'Reason code qualifying CompCode'

Parent topic: Language invocations for MQCLOSE

This build: January 26, 2011 11:17:27

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16630_

2.8. MQCMIT – Commit changes

The MQCMIT call indicates to the queue manager that the application has reached a syncpoint, and that all the message gets and puts that
have occurred since the last syncpoint are to be made permanent.

Messages put as part of a unit of work are made available to other applications; messages retrieved as part of a unit of work are deleted.

� On z/OS®, the call is used only by batch programs (including IMS™ batch DL/I programs).

� On i5/OS®, this call is not supported for applications running in compatibility mode.

Syntax for MQCMIT

Parameters for MQCMIT
The MQCMIT call has the following parameters.

Usage notes for MQCMIT

Language invocations for MQCMIT

The MQCMIT call is supported in the programming languages shown below.

Parent topic: Function calls

This build: January 26, 2011 11:17:27

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16640_

2.8.1. Syntax for MQCMIT

MQCMIT (Hconn, CompCode, Reason)

Parent topic: MQCMIT – Commit changes

This build: January 26, 2011 11:17:27

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16650_

2.8.2. Parameters for MQCMIT

The MQCMIT call has the following parameters.

Hconn (MQHCONN) – input

CompCode (MQLONG) – output

Reason (MQLONG) – output

Parent topic: MQCMIT – Commit changes

Page 429 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This build: January 26, 2011 11:17:27

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16660_

2.8.2.1. Hconn (MQHCONN) – input

This handle represents the connection to the queue manager. The value of Hconn was returned by a previous MQCONN or MQCONNX call.

Parent topic: Parameters for MQCMIT

This build: January 26, 2011 11:17:27

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16670_

2.8.2.2. CompCode (MQLONG) – output

The completion code; it is one of the following:

MQCC_OK

Successful completion.

MQCC_WARNING

Warning (partial completion).

MQCC_FAILED

Call failed.

Parent topic: Parameters for MQCMIT

This build: January 26, 2011 11:17:27

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16680_

2.8.2.3. Reason (MQLONG) – output

The reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_WARNING:

MQRC_BACKED_OUT

(2003, X'7D3') Unit of work backed out.

MQRC_OUTCOME_PENDING

(2124, X'84C') Result of commit operation is pending.

If CompCode is MQCC_FAILED:

MQRC_ADAPTER_SERV_LOAD_ERROR

(2130, X'852') Unable to load adapter service module.

MQRC_API_EXIT_ERROR

(2374, X'946') API exit failed.

MQRC_ASID_MISMATCH

(2157, X'86D') Primary and home ASIDs differ.

MQRC_CALL_IN_PROGRESS

(2219, X'8AB') MQI call entered before previous call complete.

MQRC_CALL_INTERRUPTED

(2549, X'9F5') MQPUT or MQCMIT was interrupted and reconnection processing cannot reestablish a definite outcome.

MQRC_CF_STRUC_IN_USE

(2346, X'92A') Coupling-facility structure in use.

MQRC_CONNECTION_BROKEN

(2009, X'7D9') Connection to queue manager lost.

Page 430 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

MQRC_ENVIRONMENT_ERROR

(2012, X'7DC') Call not valid in environment.

MQRC_HCONN_ERROR

(2018, X'7E2') Connection handle not valid.

MQRC_OBJECT_DAMAGED

(2101, X'835') Object damaged.

MQRC_OUTCOME_MIXED

(2123, X'84B') Result of commit or back-out operation is mixed.

MQRC_Q_MGR_STOPPING

(2162, X'872') Queue manager shutting down.

MQRC_RECONNECT_FAILED

(2548, X'9F4') After reconnecting, an error occurred reinstating the handles for a reconnectable connection.

MQRC_RESOURCE_PROBLEM

(2102, X'836') Insufficient system resources available.

MQRC_STORAGE_MEDIUM_FULL

(2192, X'890') External storage medium is full.

MQRC_STORAGE_NOT_AVAILABLE

(2071, X'817') Insufficient storage available.

MQRC_UNEXPECTED_ERROR

(2195, X'893') Unexpected error occurred.

For detailed information on these codes, see:

� WebSphere MQ for z/OS Messages and Codes for WebSphere® MQ for z/OS®

� WebSphere MQ Messages for all other WebSphere MQ platforms

Parent topic: Parameters for MQCMIT

This build: January 26, 2011 11:17:28

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16690_

2.8.3. Usage notes for MQCMIT

1. Use this call only when the queue manager itself coordinates the unit of work. This can be:

� A local unit of work, where the changes affect only MQ resources.

� A global unit of work, where the changes can affect resources belonging to other resource managers, as well as affecting MQ

resources.

For further details about local and global units of work, see MQBEGIN – Begin unit of work.

2. In environments where the queue manager does not coordinate the unit of work, the appropriate commit call must be used instead of
MQCMIT. The environment might also support an implicit commit caused by the application terminating normally.

� On z/OS®, use the following calls:

� Batch programs (including IMS™ batch DL/I programs) can use the MQCMIT call if the unit of work affects only MQ
resources. However, if the unit of work affects both MQ resources and resources belonging to other resource managers (for
example, DB2®), use the SRRCMIT call provided by the z/OS Recoverable Resource Service (RRS). The SRRCMIT call

commits changes to resources belonging to the resource managers that have been enabled for RRS coordination.

� CICS® applications must use the EXEC CICS SYNCPOINT command to commit the unit of work explicitly. Alternatively,

ending the transaction results in an implicit commit of the unit of work. The MQCMIT call cannot be used for CICS
applications.

� IMS applications (other than batch DL/I programs) must use IMS calls such as GU and CHKP to commit the unit of work.

The MQCMIT call cannot be used for IMS applications (other than batch DL/I programs).

� On i5/OS®, use this call for local units of work coordinated by the queue manager. This means that a commitment definition
must not exist at job level, that is, the STRCMTCTL command with the CMTSCOPE(*JOB) parameter must not have been issued for

the job.

3. If an application ends with uncommitted changes in a unit of work, the disposition of those changes depends on whether the
application ends normally or abnormally. See MQDISC usage notes for further details.

4. When an application puts or gets messages in groups or segments of logical messages, the queue manager retains information

relating to the message group and logical message for the last successful MQPUT and MQGET calls. This information is associated with
the queue handle, and includes such things as:

� The values of the GroupId, MsgSeqNumber, Offset, and MsgFlags fields in MQMD.

� Whether the message is part of a unit of work.

� For the MQPUT call: whether the message is persistent or nonpersistent.

When a unit of work is committed, the queue manager retains the group and segment information, and the application can continue
putting or getting messages in the current message group or logical message.

Retaining the group and segment information when a unit of work is committed allows the application to spread a large message
group or large logical message consisting of many segments across several units of work. Using several units of work is advantageous
if the local queue manager has only limited queue storage. However, the application must maintain sufficient information to restart
putting or getting messages at the correct point in the event that a system failure occurs. For details of how to restart at the correct

Page 431 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

point after a system failure, see MQPMO_LOGICAL_ORDER and MQGMO_LOGICAL_ORDER.

The remaining usage notes apply only when the queue manager coordinates the units of work:

5. A unit of work has the same scope as a connection handle; all MQ calls that affect a particular unit of work must be performed using
the same connection handle. Calls issued using a different connection handle (for example, calls issued by another application) affect a
different unit of work. See the Hconn parameter described in MQCONN for information about the scope of connection handles.

6. Only messages that were put or retrieved as part of the current unit of work are affected by this call.

7. A long-running application that issues MQGET, MQPUT, or MQPUT1 calls within a unit of work, but that never issues a commit or back-
out call, can fill queues with messages that are not available to other applications. To guard against this, the administrator must set
the MaxUncommittedMsgs queue-manager attribute to a value that is low enough to prevent runaway applications filling the queues,

but high enough to allow the expected messaging applications to work correctly.

8. On UNIX and Windows systems, if the Reason parameter is MQRC_CONNECTION_BROKEN (with a CompCode of MQCC_FAILED), or

MQRC_UNEXPECTED_ERROR it is possible that the unit of work was successfully committed.

Parent topic: MQCMIT – Commit changes

This build: January 26, 2011 11:17:28

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16700_

2.8.4. Language invocations for MQCMIT

The MQCMIT call is supported in the programming languages shown below.

C invocation

COBOL invocation

PL/I invocation

System/390 assembler invocation

Visual Basic invocation

Parent topic: MQCMIT – Commit changes

This build: January 26, 2011 11:17:28

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16710_

2.8.4.1. C invocation

MQCMIT (Hconn, &CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /* Connection handle */

MQLONG CompCode; /* Completion code */

MQLONG Reason; /* Reason code qualifying CompCode */

Parent topic: Language invocations for MQCMIT

This build: January 26, 2011 11:17:28

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16720_

2.8.4.2. COBOL invocation

 CALL 'MQCMIT' USING HCONN, COMPCODE, REASON.

Declare the parameters as follows:

** Connection handle

 01 HCONN PIC S9(9) BINARY.

** Completion code

 01 COMPCODE PIC S9(9) BINARY.

** Reason code qualifying COMPCODE

 01 REASON PIC S9(9) BINARY.

Parent topic: Language invocations for MQCMIT

This build: January 26, 2011 11:17:28

Notices | Trademarks | Downloads | Library | Support | Feedback

Page 432 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16730_

2.8.4.3. PL/I invocation

call MQCMIT (Hconn, CompCode, Reason);

Declare the parameters as follows:

dcl Hconn fixed bin(31); /* Connection handle */

dcl CompCode fixed bin(31); /* Completion code */

dcl Reason fixed bin(31); /* Reason code qualifying CompCode */

Parent topic: Language invocations for MQCMIT

This build: January 26, 2011 11:17:28

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16740_

2.8.4.4. System/390® assembler invocation

 CALL MQCMIT,(HCONN,COMPCODE,REASON)

Declare the parameters as follows:

HCONN DS F Connection handle

COMPCODE DS F Completion code

REASON DS F Reason code qualifying COMPCODE

Parent topic: Language invocations for MQCMIT

This build: January 26, 2011 11:17:28

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16750_

2.8.4.5. Visual Basic invocation

MQCMIT Hconn, CompCode, Reason

Declare the parameters as follows:

Dim Hconn As Long 'Connection handle'

Dim CompCode As Long 'Completion code'

Dim Reason As Long 'Reason code qualifying CompCode'

Parent topic: Language invocations for MQCMIT

This build: January 26, 2011 11:17:28

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16760_

2.9. MQCONN – Connect queue manager

The MQCONN call connects an application program to a queue manager.

It provides a queue manager connection handle, which the application uses on subsequent message queuing calls.

� On z/OS®, CICS® applications do not have to issue this call. These applications are connected automatically to the queue manager to
which the CICS system is connected. However, the MQCONN and MQDISC calls are still accepted from CICS applications.

� On i5/OS®, applications running in compatibility mode do not have to issue this call. These applications are connected automatically

to the queue manager when they issue the first MQOPEN call. However, the MQCONN and MQDISC calls are still accepted from i5/OS
applications.

Other applications (that is, applications not running in compatibility mode) must use the MQCONN or MQCONNX call to connect to the
queue manager, and the MQDISC call to disconnect from the queue manager. This is the recommended style of programming.

Syntax for MQCONN

Parameters for MQCONN

The MQCONN call has the following parameters.

Usage notes for MQCONN

Language invocations for MQCONN

Page 433 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

The MQCONN call is supported in the programming languages shown below.

Parent topic: Function calls

This build: January 26, 2011 11:17:29

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16770_

2.9.1. Syntax for MQCONN

MQCONN (QMgrName, Hconn, CompCode, Reason)

Parent topic: MQCONN – Connect queue manager

This build: January 26, 2011 11:17:29

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16780_

2.9.2. Parameters for MQCONN

The MQCONN call has the following parameters.

QMgrName (MQCHAR48) – input
Queue manager names can contain certain characters, and there are other restrictions on their formation. You can use special values

of QMgrName to indicate a default queue manager, a queue-sharing group, or a choice of queue managers.

Hconn (MQHCONN) – output

CompCode (MQLONG) – output

Reason (MQLONG) – output

The reason code qualifying CompCode.

Parent topic: MQCONN – Connect queue manager

This build: January 26, 2011 11:17:29

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16790_

2.9.2.1. QMgrName (MQCHAR48) – input

Queue manager names can contain certain characters, and there are other restrictions on their formation. You can use special values of

QMgrName to indicate a default queue manager, a queue-sharing group, or a choice of queue managers.

This is the name of the queue manager to which the application wants to connect. The name can contain the following characters:

� Uppercase alphabetic characters (A through Z)

� Lowercase alphabetic characters (a through z)

� Numeric digits (0 through 9)

� Period (.), forward slash (/), underscore (_), percent (%)

The name must not contain leading or embedded blanks, but can contain trailing blanks. A null character can be used to indicate the end of
significant data in the name; the null and any characters following it are treated as blanks. The following restrictions apply in the
environments indicated:

� On systems that use EBCDIC Katakana, lowercase characters cannot be used.

� On z/OS®, names that begin or end with an underscore cannot be processed by the operations and control panels. For this reason,
avoid such names.

� On i5/OS®, enclose names containing lowercase characters, forward slash, or percent in quotation marks when specified on

commands. Do not specify these quotation marks in the QMgrName parameter.

If the name consists entirely of blanks, the name of the default queue manager is used.

The name specified for QMgrName must be the name of a connectable queue manager.

On z/OS, the queue managers to which it is possible to connect are determined by the environment:

� For CICS®, you can use only the queue manager to which the CICS system is connected. The QMgrName parameter must still be

specified, but its value is ignored; blanks are recommended.

� For IMS™, only queue managers that are listed in the subsystem definition table (CSQQDEFV), and listed in the SSM table in IMS, are

connectable (see usage note 6).

Page 434 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

� For z/OS batch and TSO, only queue managers that reside on the same system as the application are connectable (see usage note 6).

Queue-sharing groups:On systems where several queue managers exist and are configured to form a queue-sharing group, the name of
the queue-sharing group can be specified for QMgrName in place of the name of a queue manager. This allows the application to connect to

any queue manager that is available in the queue-sharing group and that is on the same z/OS image as the application. The system can also
be configured so that using a blank QMgrName connects to the queue-sharing group instead of to the default queue manager.

If QMgrName specifies the name of the queue-sharing group, but there is also a queue manager with that name on the system, connection is

made to the latter in preference to the former. Only if that connection fails is connection to one of the queue managers in the queue-sharing
group attempted.

If the connection is successful, you can use the handle returned by the MQCONN or MQCONNX call to access all the resources (both shared
and nonshared) that belong to the queue manager to which connection has been made. Access to these resources is subject to the usual
authorization controls.

If the application issues two MQCONN or MQCONNX calls to establish concurrent connections, and one or both calls specifies the name of the

queue-sharing group, the second call returns completion code MQCC_WARNING and reason code MQRC_ALREADY_CONNECTED when it
connects to the same queue manager as the first call.

Queue-sharing groups are supported only on z/OS. Connection to a queue-sharing group is supported only in the batch, RRS batch, and TSO
environments.

MQ client applications: For MQ client applications, a connection is attempted for each client-connection channel definition with the
specified queue-manager name, until one is successful. The queue manager, however, must have the same name as the specified name. If
an all-blank name is specified, each client-connection channel with an all-blank queue-manager name is tried until one is successful; in this
case there is no check against the actual name of the queue manager.

MQ client applications are not supported in z/OS, but z/OS can act as an MQ server, to which MQ client applications can connect.

MQ client queue-manager groups: If the specified name starts with an asterisk (*), the queue manager to which connection is made
might have a different name from that specified by the application. The specified name (without the asterisk) defines a group of queue
managers that are eligible for connection. The implementation selects one from the group by trying each one in turn until one is found to
which a connection can be made. The order in which connections are attempted is influenced by the client channel weight and connection

affinity values of the candidate channels. If none of the queue managers in the group is available for connection, the call fails. Each queue
manager is tried once only. If an asterisk alone is specified for the name, an implementation-defined default queue-manager group is used.

Queue-manager groups are supported only for applications running in an MQ-client environment; the call fails if a non-client application
specifies a queue-manager name beginning with an asterisk. A group is defined by providing several client connection channel definitions

with the same queue-manager name (the specified name without the asterisk), to communicate with each of the queue managers in the
group. The default group is defined by providing one or more client connection channel definitions, each with a blank queue-manager name
(specifying an all-blank name therefore has the same effect as specifying a single asterisk for the name for a client application).

After connecting to one queue manager of a group, an application can specify blanks in the usual way in the queue-manager name fields in
the message and object descriptors to mean the name of the queue manager to which the application has connected (the local queue

manager). If the application needs to know this name, use the MQINQ call to inquire the QMgrName queue-manager attribute.

Prefixing an asterisk to the connection name implies that the application does not depend on connecting to a particular queue manager in
the group. Suitable applications are:

� Applications that put messages but do not get messages.

� Applications that put request messages and then get the reply messages from a temporary dynamic queue.

Unsuitable applications are those that need to get messages from a particular queue at a particular queue manager; such applications must
not prefix the name with an asterisk.

If you specify an asterisk, the maximum length of the remainder of the name is 47 characters.

Queue-manager groups are not supported on z/OS.

The length of this parameter is given by MQ_Q_MGR_NAME_LENGTH.

Parent topic: Parameters for MQCONN

This build: January 26, 2011 11:17:29

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16800_

2.9.2.2. Hconn (MQHCONN) – output

This handle represents the connection to the queue manager. Specify it on all subsequent message queuing calls issued by the application.
It ceases to be valid when the MQDISC call is issued, or when the unit of processing that defines the scope of the handle terminates.

Handle scope: The scope of the handle returned depends on the call used to connect to the queue manager (MQCONN or MQCONNX). If the
call used is MQCONNX, the scope of the handle also depends on the MQCNO_HANDLE_SHARE_* option specified in the Options field of the

MQCNO structure.

� If the call is MQCONN, or the MQCNO_HANDLE_SHARE_NONE option is specified, the handle returned is a nonshared handle.

The scope of a nonshared handle is the smallest unit of parallel processing supported by the platform on which the application is
running (see Table 1 for details); the handle is not valid outside the unit of parallel processing from which the call was issued.

� If you specify the MQCNO_HANDLE_SHARE_BLOCK or MQCNO_HANDLE_SHARE_NO_BLOCK option, the handle returned is a shared
handle.

The scope of a shared handle is the process that owns the thread from which the call was issued; the handle can be used from any

Page 435 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

thread that belongs to that process. Not all platforms support threads.

The scope of nonshared handles on various platforms is shown in Table 1.

On z/OS for CICS applications, and on i5/OS for applications running in compatibility mode, the value returned is:

MQHC_DEF_HCONN

Default connection handle.

Parent topic: Parameters for MQCONN

This build: January 26, 2011 11:17:30

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16810_

2.9.2.3. CompCode (MQLONG) – output

The completion code; it is one of the following:

MQCC_OK

Successful completion.

MQCC_WARNING

Warning (partial completion).

MQCC_FAILED

Call failed.

Parent topic: Parameters for MQCONN

This build: January 26, 2011 11:17:30

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16820_

2.9.2.4. Reason (MQLONG) – output

The reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_WARNING:

MQRC_ALREADY_CONNECTED

(2002, X'7D2') Application already connected.

MQRC_CLUSTER_EXIT_LOAD_ERROR

(2267, X'8DB') Unable to load cluster workload exit.

MQRC_SSL_ALREADY_INITIALIZED

(2391, X'957') SSL already initialized.

If CompCode is MQCC_FAILED:

MQRC_ADAPTER_CONN_LOAD_ERROR

(2129, X'851') Unable to load adapter connection module.

MQRC_ADAPTER_DEFS_ERROR

(2131, X'853') Adapter subsystem definition module not valid.

Table 1. Scope of nonshared handles on various platforms

Platform Scope of nonshared handle

z/OS®
� CICS®: the CICS task

� IMS™: the task, up to the next syncpoint (excluding
subtasks of the task)

� z/OS batch and TSO: the task (excluding subtasks of

the task)

i5/OS® Job

UNIX systems Thread

16-bit Windows applications Process

32-bit Windows applications Thread

Page 436 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

MQRC_ADAPTER_DEFS_LOAD_ERROR

(2132, X'854') Unable to load adapter subsystem definition module.

MQRC_ADAPTER_NOT_AVAILABLE

(2204, X'89C') Adapter not available.

MQRC_ADAPTER_SERV_LOAD_ERROR

(2130, X'852') Unable to load adapter service module.

MQRC_ADAPTER_STORAGE_SHORTAGE

(2127, X'84F') Insufficient storage for adapter.

MQRC_ANOTHER_Q_MGR_CONNECTED

(2103, X'837') Another queue manager already connected.

MQRC_API_EXIT_ERROR

(2374, X'946') API exit failed.

MQRC_API_EXIT_INIT_ERROR

(2375, X'947') API exit initialization failed.

MQRC_API_EXIT_TERM_ERROR

(2376, X'948') API exit termination failed.

MQRC_ASID_MISMATCH

(2157, X'86D') Primary and home ASIDs differ.

MQRC_BUFFER_LENGTH_ERROR

(2005, X'7D5') Buffer length parameter not valid.

MQRC_CALL_IN_PROGRESS

(2219, X'8AB') MQI call entered before previous call complete.

MQRC_CONN_ID_IN_USE

(2160, X'870') Connection identifier already in use.

MQRC_CONNECTION_BROKEN

(2009, X'7D9') Connection to queue manager lost.

MQRC_CONNECTION_ERROR

(2273, X'8E1') Error processing MQCONN call.

MQRC_CONNECTION_QUIESCING

(2202, X'89A') Connection quiescing.

MQRC_CONNECTION_STOPPING

(2203, X'89B') Connection shutting down.

MQRC_CRYPTO_HARDWARE_ERROR

(2382, X'94E') Cryptographic hardware configuration error.

MQRC_DUPLICATE_RECOV_COORD

(2163, X'873') Recovery coordinator already exists.

MQRC_ENVIRONMENT_ERROR

(2012, X'7DC') Call not valid in environment.

MQRC_HCONN_ERROR

(2018, X'7E2') Connection handle not valid.

MQRC_HOST_NOT_AVAILABLE

(2538, X'9EA') An MQCONN call was issued from a client to connect to a queue manager but the attempt to allocate a conversation to
the remote system failed.

MQRC_KEY_REPOSITORY_ERROR

(2381, X'94D') Key repository not valid.

MQRC_MAX_CONNS_LIMIT_REACHED

(2025, X'7E9') Maximum number of connections reached.

MQRC_NOT_AUTHORIZED

(2035, X'7F3') Not authorized for access.

MQRC_OPEN_FAILED

(2137, X'859') Object not opened successfully.

MQRC_Q_MGR_NAME_ERROR

(2058, X'80A') Queue manager name not valid or not known.

MQRC_Q_MGR_NOT_AVAILABLE

(2059, X'80B') Queue manager not available for connection.

MQRC_Q_MGR_QUIESCING

(2161, X'871') Queue manager quiescing.

MQRC_Q_MGR_STOPPING

(2162, X'872') Queue manager shutting down.

MQRC_RESOURCE_PROBLEM

(2102, X'836') Insufficient system resources available.

MQRC_SECURITY_ERROR

Page 437 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

(2063, X'80F') Security error occurred.

MQRC_SSL_INITIALIZATION_ERROR

(2393, X'959') SSL initialization error.

MQRC_STORAGE_NOT_AVAILABLE

(2071, X'817') Insufficient storage available.

MQRC_UNEXPECTED_ERROR

(2195, X'893') Unexpected error occurred.

For detailed information on these codes, see:

� WebSphere MQ for z/OS Messages and Codes for WebSphere® MQ for z/OS®

� WebSphere MQ Messages for all other WebSphere MQ platforms

Parent topic: Parameters for MQCONN

This build: January 26, 2011 11:17:30

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16830_

2.9.3. Usage notes for MQCONN

1. The queue manager to which connection is made using the MQCONN call is called the local queue manager.

2. Queues that are owned by the local queue manager appear to the application as local queues. It is possible to put messages on and
get messages from these queues.

Shared queues that are owned by the queue-sharing group to which the local queue manager belongs appear to the application as
local queues. It is possible to put messages on and get messages from these queues.

Queues that are owned by remote queue managers appear as remote queues. It is possible to put messages on these queues, but not
to get messages from these queues.

3. If the queue manager fails while an application is running, the application must issue the MQCONN call again to obtain a new
connection handle to use on subsequent MQ calls. The application can issue the MQCONN call periodically until the call succeeds.

If an application is not sure whether it is connected to the queue manager, the application can safely issue an MQCONN call to obtain a
connection handle. If the application is already connected, the handle returned is the same as that returned by the previous MQCONN
call, but with completion code MQCC_WARNING and reason code MQRC_ALREADY_CONNECTED.

4. When the application has finished using MQ calls, the application must use the MQDISC call to disconnect from the queue manager.

5. On z/OS®:

� Batch, TSO, and IMS™ applications must issue the MQCONN call to use the other MQ calls. These applications can connect to
more than one queue manager concurrently.

If the queue manager fails, the application must issue the call again after the queue manager has restarted to obtain a new

connection handle.

Although IMS applications can issue the MQCONN call repeatedly, even when already connected, this is not recommended for

online message processing programs (MPPs).

� CICS® applications do not have to issue the MQCONN call to use the other MQ calls, but can do so if they want; both the
MQCONN call and the MQDISC call are accepted. However, it is not possible to connect to more than one queue manager

concurrently.

If the queue manager fails, these applications are automatically reconnected when the queue manager restarts, and so do not
need to issue the MQCONN call.

6. On z/OS, to define the available queue managers:

� For batch applications, system programmers can use the CSQBDEF macro to create a module (CSQBDEFV) that defines the
default queue-manager name, or queue-sharing group name.

� For IMS applications, system programmers can use the CSQQDEFX macro to create a module (CSQQDEFV) that defines the
names of the available queue managers and specifies the default queue manager.

In addition, each queue manager must be defined to the IMS control region and to each dependent region accessing that queue
manager. To do this, you must create a subsystem member in the IMS.PROCLIB library and identify the subsystem member to
the applicable IMS regions. If an application attempts to connect to a queue manager that is not defined in the subsystem
member for its IMS region, the application abends.

For more information on using these macros, see the WebSphere MQ for z/OS System Setup Guide.

7. On i5/OS®, applications written for previous releases of the queue manager can run without recompiling. This is called compatibility

mode. This mode of operation provides a compatible run-time environment for applications. It comprises the following:

� The service program AMQZSTUB residing in the library QMQM.

AMQZSTUB provides the same public interface as previous releases, and has the same signature. Use this service program to

access the MQI through bound procedure calls.

� The program QMQM residing in the library QMQM.

QMQM provides a means of accessing the MQI through dynamic program calls.

� Programs MQCLOSE, MQCONN, MQDISC, MQGET, MQINQ, MQOPEN, MQPUT, MQPUT1, and MQSET residing in the library QMQM.

These programs also provide a means of accessing the MQI through dynamic program calls, but with a parameter list that
corresponds to the standard descriptions of the MQ calls.

These three interfaces do not include capabilities that were introduced in MQSeries® Version 5.1. For example, the MQBACK, MQCMIT,
and MQCONNX calls are not supported. The support provided by these interfaces is for single-threaded applications only.

Support for the new MQ calls in single-threaded applications, and for all MQ calls in multi-threaded applications, is provided through
the service programs LIBMQM and LIBMQM_R.

8. On i5/OS, programs that end abnormally are not automatically disconnected from the queue manager. Write applications to allow for
the possibility of the MQCONN or MQCONNX call returning completion code MQCC_WARNING and reason code
MQRC_ALREADY_CONNECTED. Use the connection handle returned in this situation as normal.

Page 438 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Parent topic: MQCONN – Connect queue manager

This build: January 26, 2011 11:17:31

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16840_

2.9.4. Language invocations for MQCONN

The MQCONN call is supported in the programming languages shown below.

C invocation

COBOL invocation

PL/I invocation

System/390 assembler invocation

Visual Basic invocation

Parent topic: MQCONN – Connect queue manager

This build: January 26, 2011 11:17:31

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16850_

2.9.4.1. C invocation

MQCONN (QMgrName, &Hconn, &CompCode, &Reason);

Declare the parameters as follows:

MQCHAR48 QMgrName; /* Name of queue manager */

MQHCONN Hconn; /* Connection handle */

MQLONG CompCode; /* Completion code */

MQLONG Reason; /* Reason code qualifying CompCode */

Parent topic: Language invocations for MQCONN

This build: January 26, 2011 11:17:31

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16860_

2.9.4.2. COBOL invocation

 CALL 'MQCONN' USING QMGRNAME, HCONN, COMPCODE, REASON.

Declare the parameters as follows:

** Name of queue manager

 01 QMGRNAME PIC X(48).

** Connection handle

 01 HCONN PIC S9(9) BINARY.

** Completion code

 01 COMPCODE PIC S9(9) BINARY.

** Reason code qualifying COMPCODE

 01 REASON PIC S9(9) BINARY.

Parent topic: Language invocations for MQCONN

This build: January 26, 2011 11:17:31

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16870_

2.9.4.3. PL/I invocation

call MQCONN (QMgrName, Hconn, CompCode, Reason);

Declare the parameters as follows:

dcl QMgrName char(48); /* Name of queue manager */

Page 439 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

dcl Hconn fixed bin(31); /* Connection handle */

dcl CompCode fixed bin(31); /* Completion code */

dcl Reason fixed bin(31); /* Reason code qualifying CompCode */

Parent topic: Language invocations for MQCONN

This build: January 26, 2011 11:17:31

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16880_

2.9.4.4. System/390® assembler invocation

 CALL MQCONN,(QMGRNAME,HCONN,COMPCODE,REASON)

Declare the parameters as follows:

QMGRNAME DS CL48 Name of queue manager

HCONN DS F Connection handle

COMPCODE DS F Completion code

REASON DS F Reason code qualifying COMPCODE

Parent topic: Language invocations for MQCONN

This build: January 26, 2011 11:17:31

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16890_

2.9.4.5. Visual Basic invocation

MQCONN QMgrName, Hconn, CompCode, Reason

Declare the parameters as follows:

Dim QMgrName As String*48 'Name of queue manager'

Dim Hconn As Long 'Connection handle'

Dim CompCode As Long 'Completion code'

Dim Reason As Long 'Reason code qualifying CompCode'

Parent topic: Language invocations for MQCONN

This build: January 26, 2011 11:17:31

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16900_

2.10. MQCONNX – Connect queue manager (extended)

The MQCONNX call connects an application program to a queue manager. It provides a queue manager connection handle, which is used by
the application on subsequent MQ calls.

The MQCONNX call is similar to the MQCONN call, except that MQCONNX allows options to be specified to control the way that the call
works.

� This call is supported on all WebSphere® MQ systems, and WebSphere MQ clients connected to these systems.

� On i5/OS®, this call is not supported for applications running in compatibility mode.

Syntax for MQCONNX

Parameters for MQCONNX
The MQCONNX call has the following parameters.

Usage notes for MQCONNX

Language invocations for MQCONNX
The MQCONNX call is supported in the programming languages shown below.

Parent topic: Function calls

This build: January 26, 2011 11:17:31

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16910_

Page 440 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

2.10.1. Syntax for MQCONNX

MQCONNX (QMgrName, ConnectOpts, Hconn, CompCode, Reason)

Parent topic: MQCONNX – Connect queue manager (extended)

This build: January 26, 2011 11:17:31

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16920_

2.10.2. Parameters for MQCONNX

The MQCONNX call has the following parameters.

QMgrName (MQCHAR48) – input

ConnectOpts (MQCNO) – input/output

Hconn (MQHCONN) – output

CompCode (MQLONG) – output

Reason (MQLONG) – output
The reason code qualifying CompCode

Parent topic: MQCONNX – Connect queue manager (extended)

This build: January 26, 2011 11:17:31

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16930_

2.10.2.1. QMgrName (MQCHAR48) – input

See the QMgrName parameter described in MQCONN – Connect queue manager for details.

Parent topic: Parameters for MQCONNX

This build: January 26, 2011 11:17:31

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16940_

2.10.2.2. ConnectOpts (MQCNO) – input/output

See MQCNO – Connect options for details.

Parent topic: Parameters for MQCONNX

This build: January 26, 2011 11:17:31

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16950_

2.10.2.3. Hconn (MQHCONN) – output

See the Hconn parameter described in MQCONN – Connect queue manager for details. This parameter forms one part of a unique identifier

that allows WebSphere® MQ to reliably identify an application if you disconnect it from the queue manager. It is given a 24 byte connection
identifier and the value of Hconn is formed by taking the last eight bytes of the identifier and converting it to its 16 character hexadecimal

equivalent.

Note: You can specify Hconn only, for connections associated with queue managers that MQSC is being run against.

Parent topic: Parameters for MQCONNX

This build: January 26, 2011 11:17:32

Notices | Trademarks | Downloads | Library | Support | Feedback

Page 441 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16960_

2.10.2.4. CompCode (MQLONG) – output

See the CompCode parameter described in MQCONN – Connect queue manager for details.

Parent topic: Parameters for MQCONNX

This build: January 26, 2011 11:17:32

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16970_

2.10.2.5. Reason (MQLONG) – output

The reason code qualifying CompCode

The following codes can be returned by the MQCONN and MQCONNX calls. For a list of additional codes that can be returned by the
MQCONNX call, see below.

If CompCode is MQCC_OK:

MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_WARNING:

MQRC_ALREADY_CONNECTED

(2002, X'7D2') Application already connected.

MQRC_CLUSTER_EXIT_LOAD_ERROR

(2267, X'8DB') Unable to load cluster workload exit.

MQRC_SSL_ALREADY_INITIALIZED

(2391, X'957') SSL already initialized.

If CompCode is MQCC_FAILED:

MQRC_ADAPTER_CONN_LOAD_ERROR

(2129, X'851') Unable to load adapter connection module.

MQRC_ADAPTER_DEFS_ERROR

(2131, X'853') Adapter subsystem definition module not valid.

MQRC_ADAPTER_DEFS_LOAD_ERROR

(2132, X'854') Unable to load adapter subsystem definition module.

MQRC_ADAPTER_NOT_AVAILABLE

(2204, X'89C') Adapter not available.

MQRC_ADAPTER_SERV_LOAD_ERROR

(2130, X'852') Unable to load adapter service module.

MQRC_ADAPTER_STORAGE_SHORTAGE

(2127, X'84F') Insufficient storage for adapter.

MQRC_ANOTHER_Q_MGR_CONNECTED

(2103, X'837') Another queue manager already connected.

MQRC_API_EXIT_ERROR

(2374, X'946') API exit failed.

MQRC_API_EXIT_INIT_ERROR

(2375, X'947') API exit initialization failed.

MQRC_API_EXIT_TERM_ERROR

(2376, X'948') API exit termination failed.

MQRC_ASID_MISMATCH

(2157, X'86D') Primary and home ASIDs differ.

MQRC_BUFFER_LENGTH_ERROR

(2005, X'7D5') Buffer length parameter not valid.

MQRC_CALL_IN_PROGRESS

(2219, X'8AB') MQI call entered before previous call complete.

MQRC_CONN_ID_IN_USE

(2160, X'870') Connection identifier already in use.

MQRC_CONNECTION_BROKEN

(2009, X'7D9') Connection to queue manager lost.

Page 442 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

MQRC_CONNECTION_ERROR

(2273, X'8E1') Error processing MQCONN call.

MQRC_CONNECTION_QUIESCING

(2202, X'89A') Connection quiescing.

MQRC_CONNECTION_STOPPING

(2203, X'89B') Connection shutting down.

MQRC_CRYPTO_HARDWARE_ERROR

(2382, X'94E') Cryptographic hardware configuration error.

MQRC_DUPLICATE_RECOV_COORD

(2163, X'873') Recovery coordinator already exists.

MQRC_ENVIRONMENT_ERROR

(2012, X'7DC') Call not valid in environment.

MQRC_HCONN_ERROR

(2018, X'7E2') Connection handle not valid.

MQRC_HOST_NOT_AVAILABLE

(2538, X'9EA') An MQCONN call was issued from a client to connect to a queue manager but the attempt to allocate a conversation to
the remote system failed.

MQRC_KEY_REPOSITORY_ERROR

(2381, X'94D') Key repository not valid.

MQRC_MAX_CONNS_LIMIT_REACHED

(2025, X'7E9') Maximum number of connections reached.

MQRC_NOT_AUTHORIZED

(2035, X'7F3') Not authorized for access.

MQRC_OPEN_FAILED

(2137, X'859') Object not opened successfully.

MQRC_Q_MGR_NAME_ERROR

(2058, X'80A') Queue manager name not valid or not known.

MQRC_Q_MGR_NOT_AVAILABLE

(2059, X'80B') Queue manager not available for connection.

MQRC_Q_MGR_QUIESCING

(2161, X'871') Queue manager quiescing.

MQRC_Q_MGR_STOPPING

(2162, X'872') Queue manager shutting down.

MQRC_RESOURCE_PROBLEM

(2102, X'836') Insufficient system resources available.

MQRC_SECURITY_ERROR

(2063, X'80F') Security error occurred.

MQRC_SSL_INITIALIZATION_ERROR

(2393, X'959') SSL initialization error.

MQRC_STORAGE_NOT_AVAILABLE

(2071, X'817') Insufficient storage available.

MQRC_UNEXPECTED_ERROR

(2195, X'893') Unexpected error occurred.

The following additional reason codes can be returned by the MQCONNX call:

If CompCode is MQCC_FAILED:

MQRC_AIR_ERROR

(2385, X'951') Authentication information record not valid.

MQRC_AUTH_INFO_CONN_NAME_ERROR

(2387, X'953') Authentication information connection name not valid.

MQRC_AUTH_INFO_REC_COUNT_ERROR

(2383, X'94F') Authentication information record count not valid.

MQRC_AUTH_INFO_REC_ERROR

(2384, X'950') Authentication information record fields not valid.

MQRC_AUTH_INFO_TYPE_ERROR

(2386, X'952') Authentication information type not valid.

MQRC_CD_ERROR

(2277, X'8E5') Channel definition not valid.

MQRC_CLIENT_CONN_ERROR

(2278, X'8E6') Client connection fields not valid.

MQRC_CNO_ERROR

(2139, X'85B') Connect-options structure not valid.

Page 443 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

MQRC_CONN_TAG_IN_USE

(2271, X'8DF') Connection tag in use.

MQRC_CONN_TAG_NOT_USABLE

(2350, X'92E') Connection tag not usable.

MQRC_LDAP_PASSWORD_ERROR

(2390, X'956') LDAP password not valid.

MQRC_LDAP_USER_NAME_ERROR

(2388, X'954') LDAP user name fields not valid.

MQRC_LDAP_USER_NAME_LENGTH_ERR

(2389, X'955') LDAP user name length not valid.

MQRC_OPTIONS_ERROR

(2046, X'7FE') Options not valid or not consistent.

MQRC_SCO_ERROR

(2380, X'94C') SSL configuration options structure not valid.

MQRC_SSL_CONFIG_ERROR

(2392, X'958') SSL configuration error.

For detailed information on these codes, see:

� WebSphere MQ for z/OS Messages and Codes for WebSphere® MQ for z/OS®

� WebSphere MQ Messages for all other WebSphere MQ platforms

Parent topic: Parameters for MQCONNX

This build: January 26, 2011 11:17:32

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16980_

2.10.3. Usage notes for MQCONNX

For the Visual Basic programming language, the following point applies:

� The ConnectOpts parameter is declared as being of type MQCNO. If the application is running as a WebSphere® MQ client, and you

want to specify the parameters of the client-connection channel, declare the ConnectOpts parameter as being of type Any, so that the

application can specify a MQCNOCD structure on the call in place of a MQCNO structure. However, this means that the ConnectOpts

parameter cannot be checked to ensure that it is the correct data type.

Parent topic: MQCONNX – Connect queue manager (extended)

This build: January 26, 2011 11:17:33

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr16990_

2.10.4. Language invocations for MQCONNX

The MQCONNX call is supported in the programming languages shown below.

C invocation

COBOL invocation

PL/I invocation

System/390 assembler invocation

Visual Basic invocation

Parent topic: MQCONNX – Connect queue manager (extended)

This build: January 26, 2011 11:17:33

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17000_

2.10.4.1. C invocation

MQCONNX (QMgrName, &ConnectOpts, &Hconn, &CompCode, &Reason);

Page 444 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Declare the parameters as follows:

MQCHAR48 QMgrName; /* Name of queue manager */

MQCNO ConnectOpts; /* Options that control the action of MQCONNX */

MQHCONN Hconn; /* Connection handle */

MQLONG CompCode; /* Completion code */

MQLONG Reason; /* Reason code qualifying CompCode */

Parent topic: Language invocations for MQCONNX

This build: January 26, 2011 11:17:33

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17010_

2.10.4.2. COBOL invocation

 CALL 'MQCONNX' USING QMGRNAME, CONNECTOPTS, HCONN, COMPCODE,

 REASON.

Declare the parameters as follows:

** Name of queue manager

 01 QMGRNAME PIC X(48).

** Options that control the action of MQCONNX

 01 CONNECTOPTS.

 COPY CMQCNOV.

** Connection handle

 01 HCONN PIC S9(9) BINARY.

** Completion code

 01 COMPCODE PIC S9(9) BINARY.

** Reason code qualifying COMPCODE

 01 REASON PIC S9(9) BINARY.

Parent topic: Language invocations for MQCONNX

This build: January 26, 2011 11:17:33

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17020_

2.10.4.3. PL/I invocation

call MQCONNX (QMgrName, ConnectOpts, Hconn, CompCode, Reason);

Declare the parameters as follows:

dcl QMgrName char(48); /* Name of queue manager */

dcl ConnectOpts like MQCNO; /* Options that control the action of

 MQCONNX */

dcl Hconn fixed bin(31); /* Connection handle */

dcl CompCode fixed bin(31); /* Completion code */

dcl Reason fixed bin(31); /* Reason code qualifying CompCode */

Parent topic: Language invocations for MQCONNX

This build: January 26, 2011 11:17:33

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17030_

2.10.4.4. System/390® assembler invocation

 CALL MQCONNX,(QMGRNAME,CONNECTOPTS,HCONN,COMPCODE,REASON)

Declare the parameters as follows:

QMGRNAME DS CL48 Name of queue manager

CONNECTOPTS CMQCNOA , Options that control the action of MQCONNX

HCONN DS F Connection handle

COMPCODE DS F Completion code

REASON DS F Reason code qualifying COMPCODE

Parent topic: Language invocations for MQCONNX

This build: January 26, 2011 11:17:33

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17040_

Page 445 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

2.10.4.5. Visual Basic invocation

MQCONNX QMgrName, ConnectOpts, Hconn, CompCode, Reason

Declare the parameters as follows:

Dim QMgrName As String*48 'Name of queue manager'

Dim ConnectOpts As MQCNO 'Options that control the action of'

 'MQCONNX'

Dim Hconn As Long 'Connection handle'

Dim CompCode As Long 'Completion code'

Dim Reason As Long 'Reason code qualifying CompCode'

Parent topic: Language invocations for MQCONNX

This build: January 26, 2011 11:17:39

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17050_

2.11. MQCRTMH – Create message handle

The MQCRTMH call returns a message handle. An application can use it on subsequent message queuing calls:

� Use the MQSETMP call to set a property of the message handle.

� Use the MQINQMP call to inquire on the value of a property of the message handle.

� Use the MQDLTMP call to delete a property of the message handle.

The message handle can be used on the MQPUT and MQPUT1 calls to associate the properties of the message handle with those of the
message being put. Similarly by specifying a message handle on the MQGET call, the properties of the message being retrieved can be
accessed using the message handle when the MQGET call completes.

Use MQDLTMH to delete the message handle.

Syntax for MQCRTMH

Parameters for MQCRTMH
The MQCRTMH call has the following parameters.

Language invocations for MQCRTMH

The MQCRTMH call is supported in the programming languages shown below.

Parent topic: Function calls

This build: January 26, 2011 11:20:02

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40140_

2.11.1. Syntax for MQCRTMH

MQCRTMH (Hconn, CrtMsgHOpts, Hmsg, CompCode, Reason)

Parent topic: MQCRTMH – Create message handle

This build: January 26, 2011 11:20:02

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40150_

2.11.2. Parameters for MQCRTMH

The MQCRTMH call has the following parameters.

Hconn (MQHCONN) – input

CrtMsgHOpts (MQCMHO) – input

Hmsg (MQHMSG) – output

CompCode (MQLONG) – output

Reason (MQLONG) – output

Page 446 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Parent topic: MQCRTMH – Create message handle

This build: January 26, 2011 11:20:03

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40160_

2.11.2.1. Hconn (MQHCONN) – input

This handle represents the connection to the queue manager. The value of Hconn was returned by a previous MQCONN or MQCONNX call. If

the connection to the queue manager ceases to be valid and no WebSphere® MQ call is operating on the message handle, MQDLTMH is

implicitly called to delete the message.

Alternatively, you can specify the following value:

MQHC_UNASSOCIATED_HCONN

The connection handle does not represent a connection to any particular queue manager.

When this value is used, the message handle must be deleted with an explicit call to MQDLTMH in order to release any storage allocated to
it; WebSphere MQ never implicitly deletes the message handle.

There must be at least one valid connection to a queue manager established on the thread creating the message handle, otherwise the
call fails with MQRC_HCONN_ERROR.

On z/OS® for CICS® applications, and on i5/OS® for applications running in compatibility mode, the MQCONN call can be omitted, and you
can specify the following value for Hconn:

MQHC_DEF_CONN

Default connection handle

Parent topic: Parameters for MQCRTMH

This build: January 26, 2011 11:20:03

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40170_

2.11.2.2. CrtMsgHOpts (MQCMHO) – input

The options that control the action of MQCRTMH. See MQCMHO for details.

Parent topic: Parameters for MQCRTMH

This build: January 26, 2011 11:20:03

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40180_

2.11.2.3. Hmsg (MQHMSG) – output

On output a message handle is returned that can be used to set, inquire and delete properties of the message handle. Initially the message
handle contains no properties.

A message handle also has an associated message descriptor. Initially this contains the default values. The values of the associated
message descriptor fields can be set and inquired using the MQSETMP and MQINQMP calls. The MQDLTMP call will reset a field of the
message descriptor back to its default value.

If the Hconn parameter is specified as the value MQHC_UNASSOCIATED_HCONN then the returned message handle can be used on MQGET,

MQPUT, or MQPUT1 calls with any connection within the unit of processing, but can only be in use by one WebSphere® MQ call at a time. If
the handle is in use when a second WebSphere MQ call attempts to use the same message handle, the second WebSphere MQ call fails with
reason code MQRC_MSG_HANDLE_IN_USE.

If the Hconn parameter is not MQHC_UNASSOCIATED_HCONN then the returned message handle can only be used on the specified
connection.

The same Hconn parameter value must be used on the subsequent MQI calls where this message handle is used:

� MQDLTMH

� MQSETMP

� MQINQMP

� MQDLTMP

� MQMHBUF

� MQBUFMH

The returned message handle ceases to be valid when the MQDLTMH call is issued for the message handle, or when the unit of processing

Page 447 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

that defines the scope of the handle terminates. MQDLTMH is called implicitly if a specific connection is supplied when the message handle is
created and the connection to the queue manager ceases to be valid, for example, if MQDBC is called..

Parent topic: Parameters for MQCRTMH

This build: January 26, 2011 11:20:03

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40190_

2.11.2.4. CompCode (MQLONG) – output

The completion code; it is one of the following:

MQCC_OK

Successful completion.

MQCC_FAILED

Call failed.

Parent topic: Parameters for MQCRTMH

This build: January 26, 2011 11:20:03

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40200_

2.11.2.5. Reason (MQLONG) – output

The reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:

MQRC_ADAPTER_NOT_AVAILABLE

(2204, X'089C') Adapter not available.

MQRC_ADAPTER_SERV_LOAD_ERROR

(2130, X'852') Unable to load adapter service module.

MQRC_ASID_MISMATCH

(2157, X'86D') Primary and home ASIDs differ.

MQRC_CALL_IN_PROGRESS

(2219, X'08AB') MQI call entered before previous call completed.

MQRC_CMHO_ERROR

(2461, X'099D') Create message handle options structure not valid.

MQRC_CONNECTION_BROKEN

(2273, X'7D9') Connection to queue manager lost.

MQRC_HANDLE_NOT_AVAILABLE

(2017, X'07E1') No more handles available.

MQRC_HCONN_ERROR

(2018, X'7E2') Connection handle not valid.

MQRC_HMSG_ERROR

(2460, X'099C') Message handle pointer not valid.

MQRC_OPTIONS_ERROR

(2046, X'07FE') Options not valid or not consistent.

MQRC_STORAGE_NOT_AVAILABLE

(2071, X'817') Insufficient storage available.

MQRC_UNEXPECTED_ERROR

(2195, X'893') Unexpected error occurred.

See Return codes for more details.

Parent topic: Parameters for MQCRTMH

This build: January 26, 2011 11:20:03

Notices | Trademarks | Downloads | Library | Support | Feedback

Page 448 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40210_

2.11.3. Language invocations for MQCRTMH

The MQCRTMH call is supported in the programming languages shown below.

C invocation

COBOL invocation

PL/I invocation

System/390 assembler invocation

Parent topic: MQCRTMH – Create message handle

This build: January 26, 2011 11:20:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40680_

2.11.3.1. C invocation

MQCRTMH (Hconn, &CrtMsgHOpts, &Hmsg, &CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /* Connection handle */

MQCMHO CrtMsgHOpts; /* Options that control the action of MQCRTMH */

MQHMSG Hmsg; /* Message handle */

MQLONG CompCode; /* Completion code */

MQLONG Reason; /* Reason code qualifying CompCode */

Parent topic: Language invocations for MQCRTMH

This build: January 26, 2011 11:20:03

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40220_

2.11.3.2. COBOL invocation

 CALL 'MQCRTMH' USING HCONN, CRTMSGOPTS, HMSG, COMPCODE, REASON.

Declare the parameters as follows:

** Connection handle

 01 HCONN PIC S9(9) BINARY.

** Options that control the action of MQCRTMH

 01 CRTMSGHOPTS.

 COPY CMQCMHOV.

** Message handle

 01 HMSG PIC S9(18) BINARY.

** Completion code

 01 COMPCODE PIC S9(9) BINARY.

** Reason code qualifying COMPCODE

 01 REASON PIC S9(9) BINARY.

Parent topic: Language invocations for MQCRTMH

This build: January 26, 2011 11:20:05

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40230_

2.11.3.3. PL/I invocation

call MQCRTMH (Hconn, CrtMsgHOpts, Hmsg, CompCode, Reason);

Declare the parameters as follows:

dcl Hconn fixed bin(31); /* Connection handle */

dcl CrtMsgHOpts like MQCMHO; /* Options that control the action of MQCRTMH */

dcl Hmsg fixed bin(63); /* Message handle */

dcl CompCode fixed bin(31); /* Completion code */

Page 449 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

dcl Reason fixed bin(31); /* Reason code qualifying CompCode */

Parent topic: Language invocations for MQCRTMH

This build: January 26, 2011 11:20:05

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40240_

2.11.3.4. System/390® assembler invocation

 CALL MQCRTMH,(HCONN,CRTMSGHOPTS,HMSG,COMPCODE,REASON)

Declare the parameters as follows:

HCONN DS F Connection handle

CRTMSGHOPTS CMQCMHOA , Options that control the action of MQCRTMH

HMSG DS D Message handle

COMPCODE DS F Completion code

REASON DS F Reason code qualifying COMPCODE

Parent topic: Language invocations for MQCRTMH

This build: January 26, 2011 11:20:05

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40260_

2.12. MQCTL – Control callback

The MQCTL call performs controlling actions on the object handles opened for a connection.

Syntax for MQCTL
Control callback function - syntax

Parameters for MQCTL
The MQCTL call has the following parameters. Control callback function - parameters

Usage notes for MQCTL
Control callback function - Usage notes

Language invocations for MQCTL

Control call backs function - Language invocations

Parent topic: Function calls

This build: January 26, 2011 11:20:17

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr41300_

2.12.1. Syntax for MQCTL

Control callback function - syntax

MQCTL (Hconn, Operation, ControlOpts, CompCode, Reason)

Parent topic: MQCTL – Control callback

This build: January 26, 2011 11:20:18

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr41310_

2.12.2. Parameters for MQCTL

The MQCTL call has the following parameters. Control callback function - parameters

Hconn (MQHCONN) – input
Control callback function - Hconn parameter

Operation (MQLONG) – input

Control callback function - Operation parameter

Page 450 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

ControlOpts (MQCTLO) – input
Control callback function - ControlOpts parameter

CompCode (MQLONG) – output

Control callback function -CompCode parameter

Reason (MQLONG) – output
Control callback function - Reason parameter

Parent topic: MQCTL – Control callback

This build: January 26, 2011 11:20:18

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr41320_

2.12.2.1. Hconn (MQHCONN) – input

Control callback function - Hconn parameter

This handle represents the connection to the queue manager. The value of Hconn was returned by a previous MQCONN or MQCONNX call.

On z/OS® for CICS® applications, and on i5/OS® for applications running in compatibility mode, the MQCONN call can be omitted, and you
can specify the following special value for Hconn:

MQHC_DEF_HCONN

Default connection handle.

Parent topic: Parameters for MQCTL

This build: January 26, 2011 11:20:18

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr41330_

2.12.2.2. Operation (MQLONG) – input

Control callback function - Operation parameter

The operation being processed on the callback defined for the specified object handle. You must specify one, and one only, of the following
options:

MQOP_START

Start the consuming of messages for all defined message consumer functions for the specified connection handle.

Callbacks run on a thread started by the system, which is different from any of the application threads.

This operation gives control of the provided connection handle to system. The only MQI calls which can be issued by a thread other than
the consumer thread are:

� MQCTL with Operation MQOP_STOP

� MQCTL with Operation MQOP_SUSPEND

� MQDISC - This performs MQCTL with Operation MQOP_STOP before disconnection the HConn.

MQRC_HCONN_ASYNC_ACTIVE is returned if a WebSphere® MQ API call is issued while the connection handle is started, and the call does
not originate from a message consumer function.

If a message consumer stops the connection during the MQCBCT_START_CALL then the MQCTL call will return with a failure reason code
of MQRC_CONNECTION_STOPPED.

This can be issued in a consumer function. For the same connection as the callback routine, its only purpose is to cancel a previously
issued MQOP_STOP operation.

This option is not supported in the following environments: CICS® on z/OS® or if the application is bound with a nonthreaded WebSphere
MQ library.

MQOP_START_WAIT

Start the consuming of messages for all defined message consumer functions for the specified connection handle.

Message consumers run on the same thread and control is not returned to the caller of MQCTL until:

� Released by the use of the MQCTL MQOP_STOP or MQOP_SUSPEND operations, or

� All consumer routines have been deregistered or suspended.

If all consumers are deregistered or suspended, an implicit MQOP_STOP operation is issued.

This option cannot be used from within a callback routine, either for the current connection handle or any other connection handle. If the
call is attempted it returns with MQRC_ENVIRONMENT_ERROR.

Page 451 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

If, at any time during an MQOP_START_WAIT operation there are no registered, non-suspended consumers the call fails with a reason
code of MQRC_NO_CALLBACKS_ACTIVE.

If, during an MQOP_START_WAIT operation, the connection is suspended, the MQCTL call returns a warning reason code of

MQRC_CONNECTION_SUSPENDED; at this point the connection remains ‘started’.

The application can choose to issue MQOP_STOP or MQOP_RESUME. In this instance, the MQOP_RESUME operation blocks.

This option is not supported in a single threaded client.

MQOP_STOP

Stop the consuming of messages, and wait for all consumers to complete their operations before this option completes. This operation
releases the connection handle.

If issued from within a callback routine, this option does not take effect until the routine exits. No more message consumer routines are
called after the consumer routines for messages already read have completed, and after stop calls (if requested) to callback routines have
been made.

If issued outside a callback routine, control does not return to the caller until the consumer routines for messages already read have
completed, and after stop calls (if requested) to callbacks have been made. The callbacks themselves, however, remain registered.

This function has no effect on read ahead messages. You must ensure that consumers run MQCLOSE(MQCO_QUIESCE), from within the

callback function, to determine whether there are any further messages available to be delivered.

MQOP_SUSPEND

Pause the consuming of messages. This operation releases the connection handle.

This does not have any effect on the reading ahead of messages for the application. If you intend to stop consuming messages for a long
period of time, consider closing the queue and reopening it when consumption should continue.

If issued from within a callback routine, it does not take effect until the routine exits. No more message consumer routines will be called
after the current routine exits.

If issued outside a callback, control does not return to the caller until the current consumer routine has completed and no more are called.

MQOP_RESUME

Resume the consuming of messages.

This option is normally issued from the main application thread, but it can also be used from within a callback routine to cancel an earlier
suspension request issued in the same routine.

If the MQOP_RESUME is used to resume an MQOP_START_WAIT then the operation will block.

Parent topic: Parameters for MQCTL

This build: January 26, 2011 11:20:18

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr41340_

2.12.2.3. ControlOpts (MQCTLO) – input

Control callback function - ControlOpts parameter

Options that control the action of MQCTL

See MQCTLO for details of the structure.

Parent topic: Parameters for MQCTL

This build: January 26, 2011 11:20:18

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr41350_

2.12.2.4. CompCode (MQLONG) – output

Control callback function -CompCode parameter

The completion code; it is one of the following:

MQCC_OK

Successful completion.

MQCC_WARNING

Warning (partial completion).

MQCC_FAILED

Call failed.

Page 452 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Parent topic: Parameters for MQCTL

This build: January 26, 2011 11:20:20

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr41360_

2.12.2.5. Reason (MQLONG) – output

Control callback function - Reason parameter

The following codes can be returned by the MQCONN and MQCONNX calls. For a list of additional codes that can be returned by the
MQCONNX call, see below.

If CompCode is MQCC_OK:

MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:

MQRC_ADAPTER_CONV_LOAD_ERROR

(2133, X'855') Unable to load data conversion services modules.

MQRC_ADAPTER_NOT_AVAILABLE

(2204, X'89C') Adapter not available.

MQRC_ADAPTER_SERV_LOAD_ERROR

(2130, X'852') Unable to load adapter service module.

MQRC_API_EXIT_ERROR

(2374, X'946') API exit failed.

MQRC_API_EXIT_LOAD_ERROR

(2183, X'887') Unable to load API exit.

MQRC_ASID_MISMATCH

(2157, X'86D') Primary and home ASIDs differ.

MQRC_BUFFER_LENGTH_ERROR

(2005, X'7D5') Buffer length parameter not valid.

MQRC_CALLBACK_LINK_ERROR

(2487, X'9B7') Unable to call the callback routine

MQRC_CALLBACK_NOT_ REGISTERED

(2448, X'990') Unable to Deregister, Suspend, or Resume because there is no registered callback

MQRC_CALLBACK_ROUTINE_ERROR

(2486, X'9B6') Either, both CallbackFunction and CallbackName have been specified on an MQOP_REGISTER call.
Or either CallbackFunction or CallbackName have been specified but does not match the currently registered callback function.

MQRC_CALLBACK_TYPE_ERROR

(2483, X'9B3') Incorrect CallBackType field.

MQRC_CALL_IN_PROGRESS

(2219, X'8AB') MQI call entered before previous call complete.

MQRC_CBD_ERROR

(2444, X'98C') Option block is incorrect.

MQRC_CBD_OPTIONS_ERROR

(2484, X'9B4') Incorrect MQCBD options field.

MQRC_CICS_WAIT_FAILED

(2140, X'85C') Wait request rejected by CICS®.

MQRC_CONNECTION_BROKEN

(2009, X'7D9') Connection to queue manager lost.

MQRC_CONNECTION_NOT_AUTHORIZED

(2217, X'8A9') Not authorized for connection.

MQRC_CONNECTION_QUIESCING

(2202, X'89A') Connection quiescing.

MQRC_CONNECTION_STOPPING

(2203, X'89B') Connection shutting down.

MQRC_CORREL_ID_ERROR

(2207, X'89F') Correlation-identifier error.

MQRC_FUNCTION_NOT_SUPPORTED

(2298, X'8FA') The function requested is not available in the current environment.

MQRC_GET_INHIBITED

(2016, X'7E0') Gets inhibited for the queue.

Page 453 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

MQRC_GLOBAL_UOW_CONFLICT

(2351, X'92F') Global units of work conflict.

MQRC_GMO_ERROR

(2186, X'88A') Get-message options structure not valid.

MQRC_HANDLE_IN_USE_FOR_UOW

(2353, X'931') Handle in use for global unit of work.

MQRC_HCONN_ERROR

(2018, X'7E2') Connection handle not valid.

MQRC_HOBJ_ERROR

(2019, X'7E3') Object handle not valid.

MQRC_INCONSISTENT_BROWSE

(2259, X'8D3') Inconsistent browse specification.

MQRC_INCONSISTENT_UOW

(2245, X'8C5') Inconsistent unit-of-work specification.

MQRC_INVALID_MSG_UNDER_CURSOR

(2246, X'8C6') Message under cursor not valid for retrieval.

MQRC_LOCAL_UOW_CONFLICT

(2352, X'930') Global unit of work conflicts with local unit of work.

MQRC_MATCH_OPTIONS_ERROR

(2247, X'8C7') Match options not valid.

MQRC_MAX_MSG_LENGTH_ERROR

(2485, X'9B5') Incorrect MaxMsgLength field

MQRC_MD_ERROR

(2026, X'7EA') Message descriptor not valid.

MQRC_MODULE_ENTRY_NOT_FOUND

(2497, X'9C1')The specified function entry point could not be found in the module.

MQRC_MODULE_INVALID

(2496, X'9C0') Module is found but is of the wrong type (32bit/64bit) or is not a valid dll.

MQRC_MODULE_NOT_FOUND

(2495, X'9BF') Module not found in the search path or not authorised to load.

MQRC_MSG_ID_ERROR

(2206, X'89E') Message-identifier error.

MQRC_MSG_SEQ_NUMBER_ERROR

(2250, X'8CA') Message sequence number not valid.

MQRC_MSG_TOKEN_ERROR

(2331, X'91B') Use of message token not valid.

MQRC_NOT_OPEN_FOR_BROWSE

(2036, X'7F4') Queue not open for browse.

MQRC_NOT_OPEN_FOR_INPUT

(2037, X'7F5') Queue not open for input.

MQRC_OBJECT_CHANGED

(2041, X'7F9') Object definition changed since opened.

MQRC_OBJECT_DAMAGED

(2101, X'835') Object damaged.

MQRC_OPERATION_ERROR

(2488, X'9B8') Incorrect Operation code on API Call

MQRC_OPTIONS_ERROR

(2046, X'7FE') Options not valid or not consistent.

MQRC_PAGESET_ERROR

(2193, X'891') Error accessing page-set data set.

MQRC_Q_DELETED

(2052, X'804') Queue has been deleted.

MQRC_Q_INDEX_TYPE_ERROR

(2394, X'95A') Queue has wrong index type.

MQRC_Q_MGR_NAME_ERROR

(2058, X'80A') Queue manager name not valid or not known.

MQRC_Q_MGR_NOT_AVAILABLE

(2059, X'80B') Queue manager not available for connection.

MQRC_Q_MGR_QUIESCING

(2161, X'871') Queue manager quiescing.

MQRC_Q_MGR_STOPPING

(2162, X'872') Queue manager shutting down.

Page 454 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

MQRC_RESOURCE_PROBLEM

(2102, X'836') Insufficient system resources available.

MQRC_SIGNAL_OUTSTANDING

(2069, X'815') Signal outstanding for this handle.

MQRC_STORAGE_NOT_AVAILABLE

(2071, X'817') Insufficient storage available.

MQRC_SUPPRESSED_BY_EXIT

(2109, X'83D') Call suppressed by exit program.

MQRC_SYNCPOINT_NOT_AVAILABLE

(2072, X'818') Syncpoint support not available.

MQRC_UNEXPECTED_ERROR

(2195, X'893') Unexpected error occurred.

MQRC_UOW_ENLISTMENT_ERROR

(2354, X'932') Enlistment in global unit of work failed.

MQRC_UOW_MIX_NOT_SUPPORTED

(2355, X'933') Mixture of unit-of-work calls not supported.

MQRC_UOW_NOT_AVAILABLE

(2255, X'8CF') Unit of work not available for the queue manager to use.

MQRC_WAIT_INTERVAL_ERROR

(2090, X'82A') Wait interval in MQGMO not valid.

MQRC_WRONG_GMO_VERSION

(2256, X'8D0') Wrong version of MQGMO supplied.

MQRC_WRONG_MD_VERSION

(2257, X'8D1') Wrong version of MQMD supplied.

Parent topic: Parameters for MQCTL

This build: January 26, 2011 11:20:21

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr41370_

2.12.3. Usage notes for MQCTL

Control callback function - Usage notes

1. Callback routines must check the responses from all services they invoke, and if the routine detects a condition that can not be
resolved, it must issue an MQCB MQOP_DEREGISTER command to prevent repeated calls to the callback routine.

2. On z/OS, when Operation is MQOP_START:

� Programs which use asynchronous callback routines must be authorized to use z/OS UNIX System Services (USS).

� Language Environment (LE) programs which use asynchronous callback routines must use the LE runtime option POSIX(ON).

� Non-LE programs which use asynchronous callback routines must not use the USS pthread_create interface (callable service
BPX1PTC).

3. MQCTL is not supported within the IMS™ adapter.

Parent topic: MQCTL – Control callback

This build: January 26, 2011 11:20:21

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr41380_

2.12.4. Language invocations for MQCTL

Control call backs function - Language invocations

The MQCTL call is supported in the programming languages shown below.

C invocation
MQCTL function call - C language invocation

COBOL invocation

PL/I invocation

Parent topic: MQCTL – Control callback

Page 455 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This build: January 26, 2011 11:20:21

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr41390_

2.12.4.1. C invocation

MQCTL function call - C language invocation

MQCTL (Hconn, Operation, ControlOpts, &CompCode, &Reason)

Declare the parameters as follows:

MQHCONN Hconn; /* Connection handle */

MQLONG Operation; /* Operation being processed */

MQCTLO ControlOpts /* Options that control the action of MQCTL */

MQLONG CompCode; /* Completion code */

MQLONG Reason; /* Reason code qualifying CompCode */

Parent topic: Language invocations for MQCTL

This build: January 26, 2011 11:20:21

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr41400_

2.12.4.2. COBOL invocation

CALL ‘MQCTL’ USING HCONN, OPERATION, CTLOPTS, COMPCODE, REASON.

Declare the parameters as follows:

** Connection handle

 01 HCONN PIC S9(9) BINARY.

** Operation

 01 OPERATION PIC S9(9) BINARY.

** Control Options

 01 CTLOPTS.

 COPY CMQCTLOV.

** Completion code

 01 COMPCODE PIC S9(9) BINARY.

** Reason code qualifying COMPCODE

 01 REASON PIC S9(9) BINARY.

Parent topic: Language invocations for MQCTL

This build: January 26, 2011 11:20:21

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr41410_

2.12.4.3. PL/I invocation

call MQCTL(Hconn, Operation, CtlOpts, CompCode, Reason)

Declare the parameters as follows:

dcl Hconn fixed bin(31); /* Connection handle */

dcl Operation fixed bin(31); /* Operation */

dcl CtlOpts like MQCTLO; /* Options that control the action of MQCTL */

dcl CompCode fixed bin(31); /* Completion code */

dcl Reason fixed bin(31); /* Reason code qualifying CompCode */

Parent topic: Language invocations for MQCTL

This build: January 26, 2011 11:20:21

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr41420_

2.13. MQDISC – Disconnect queue manager

The MQDISC call breaks the connection between the queue manager and the application program, and is the inverse of the MQCONN or

Page 456 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

MQCONNX call.

� On z/OS®, all applications that use asynchronous message consumption, event handling or call back, the main control thread must
issue an MQDISC call before ending. See Asynchronous consumption of WebSphere® MQ messages for more details.

� On z/OS, CICS® applications do not need to issue this call to disconnect from the queue manager, but might need to issue it to end
the use of a connection tag.

� On i5/OS®, applications running in compatibility mode do not need to issue this call. See MQCONN – Connect queue manager for

more information.

Syntax for MQDISC

Parameters for MQDISC
The MQDISC call has the following parameters.

Usage notes for MQDISC
Consider these points when using MQDISC.

Language invocations for MQDISC
The MQDISC call is supported in the programming languages shown below.

Parent topic: Function calls

This build: January 26, 2011 11:17:39

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17060_

2.13.1. Syntax for MQDISC

MQDISC (Hconn, CompCode, Reason)

Parent topic: MQDISC – Disconnect queue manager

This build: January 26, 2011 11:17:39

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17070_

2.13.2. Parameters for MQDISC

The MQDISC call has the following parameters.

Hconn (MQHCONN) – input/output

CompCode (MQLONG) – output

Reason (MQLONG) – output

Parent topic: MQDISC – Disconnect queue manager

This build: January 26, 2011 11:17:39

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17080_

2.13.2.1. Hconn (MQHCONN) – input/output

This handle represents the connection to the queue manager. The value of Hconn was returned by a previous MQCONN or MQCONNX call.

On z/OS® for CICS® applications, and on i5/OS® for applications running in compatibility mode, you can omit the MQCONN call, and
specify the following value for Hconn:

MQHC_DEF_HCONN

Default connection handle.

On successful completion of the call, the queue manager sets Hconn to a value that is not a valid handle for the environment. This value is:

MQHC_UNUSABLE_HCONN

Unusable connection handle.

Page 457 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

On z/OS, Hconn is set to a value that is undefined.

Parent topic: Parameters for MQDISC

This build: January 26, 2011 11:17:39

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17090_

2.13.2.2. CompCode (MQLONG) – output

The completion code; it is one of the following:

MQCC_OK

Successful completion.

MQCC_WARNING

Warning (partial completion).

MQCC_FAILED

Call failed.

Parent topic: Parameters for MQDISC

This build: January 26, 2011 11:17:39

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17100_

2.13.2.3. Reason (MQLONG) – output

Reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_WARNING:

MQRC_BACKED_OUT

(2003, X'7D3') Unit of work backed out.

MQRC_CONN_TAG_NOT_RELEASED

(2344, X'928') Connection tag not released.

MQRC_OUTCOME_PENDING

(2124, X'84C') Result of commit operation is pending.

If CompCode is MQCC_FAILED:

MQRC_ADAPTER_DISC_LOAD_ERROR

(2138, X'85A') Unable to load adapter disconnection module.

MQRC_ADAPTER_NOT_AVAILABLE

(2204, X'89C') Adapter not available.

MQRC_ADAPTER_SERV_LOAD_ERROR

(2130, X'852') Unable to load adapter service module.

MQRC_API_EXIT_ERROR

(2374, X'946') API exit failed.

MQRC_API_EXIT_INIT_ERROR

(2375, X'947') API exit initialization failed.

MQRC_API_EXIT_TERM_ERROR

(2376, X'948') API exit termination failed.

MQRC_ASID_MISMATCH

(2157, X'86D') Primary and home ASIDs differ.

MQRC_CALL_IN_PROGRESS

(2219, X'8AB') MQI call entered before previous call complete.

MQRC_CONNECTION_BROKEN

(2009, X'7D9') Connection to queue manager lost.

MQRC_CONNECTION_STOPPING

(2203, X'89B') Connection shutting down.

Page 458 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

MQRC_HCONN_ERROR

(2018, X'7E2') Connection handle not valid.

MQRC_OUTCOME_MIXED

(2123, X'84B') Result of commit or back-out operation is mixed.

MQRC_PAGESET_ERROR

(2193, X'891') Error accessing page-set data set.

MQRC_Q_MGR_NAME_ERROR

(2058, X'80A') Queue manager name not valid or not known.

MQRC_Q_MGR_NOT_AVAILABLE

(2059, X'80B') Queue manager not available for connection.

MQRC_Q_MGR_STOPPING

(2162, X'872') Queue manager shutting down.

MQRC_RESOURCE_PROBLEM

(2102, X'836') Insufficient system resources available.

MQRC_STORAGE_NOT_AVAILABLE

(2071, X'817') Insufficient storage available.

MQRC_UNEXPECTED_ERROR

(2195, X'893') Unexpected error occurred.

For detailed information on these codes, see:

� WebSphere MQ for z/OS Messages and Codes for WebSphere® MQ for z/OS®

� WebSphere MQ Messages for all other WebSphere MQ platforms

Parent topic: Parameters for MQDISC

This build: January 26, 2011 11:17:40

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17110_

2.13.3. Usage notes for MQDISC

Consider these points when using MQDISC.

1. If an MQDISC call is issued when the connection still has objects open under that connection, the queue manager closes those objects,
with the close options set to MQCO_NONE.

2. If the application ends with uncommitted changes in a unit of work, the disposition of those changes depends on how the application
ends:

a. If the application issues the MQDISC call before ending:

� For a queue-manager-coordinated unit of work, the queue manager issues the MQCMIT call on behalf of the application.
The unit of work is committed if possible, and backed out if not.

� For an externally-coordinated unit of work, there is no change in the status of the unit of work; however, the queue
manager typically indicates that the unit of work must be committed when asked by the unit-of-work coordinator.

On z/OS®, CICS®, IMS™ (other than batch DL/1 programs), and RRS applications are like this.

b. If the application ends normally but without issuing the MQDISC call, the action taken depends on the environment:

� On z/OS, except for WebSphere MQ Java or WebSphere MQ JMS applications, the actions described in note 2a occur.

� In all other cases, the actions described in note 2c occur.

Because of the differences between environments, ensure that applications that you want to port either commit or back out the
unit of work before they end.

c. If the application ends abnormally without issuing the MQDISC call, the unit of work is backed out.

3. On z/OS, the following points apply:

� CICS applications do not have to issue the MQDISC call to disconnect from the queue manager, because the CICS system itself
connects to the queue manager, and the MQDISC call has no effect on this connection.

� CICS, IMS (other than batch DL/1 programs), and RRS applications use units of work that are coordinated by an external unit-
of-work coordinator. As a result, the MQDISC call does not affect the status of the unit of work (if any) that exists when the call
is issued.

However the MQDISC call does indicate the end of use of the connection tag ConnTag that was associated with the connection by

an earlier MQCONNX call issued by the application. If there is an active unit of work that references the connection tag when the
MQDISC call is issued, the call completes with completion code MQCC_WARNING and reason code
MQRC_CONN_TAG_NOT_RELEASED. The connection tag does not become available for reuse until the external unit-of-work
coordinator has resolved the unit of work.

4. On i5/OS®, applications running in compatibility mode do not have to issue this call; see the MQCONN call for more details.

Parent topic: MQDISC – Disconnect queue manager

This build: January 26, 2011 11:17:40

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

Page 459 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This topic's URL:

fr17120_

2.13.4. Language invocations for MQDISC

The MQDISC call is supported in the programming languages shown below.

C invocation

COBOL invocation

PL/I invocation

System/390 assembler invocation

Visual Basic invocation

Parent topic: MQDISC – Disconnect queue manager

This build: January 26, 2011 11:17:40

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17130_

2.13.4.1. C invocation

MQDISC (&Hconn, &CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /* Connection handle */

MQLONG CompCode; /* Completion code */

MQLONG Reason; /* Reason code qualifying CompCode */

Parent topic: Language invocations for MQDISC

This build: January 26, 2011 11:17:40

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17140_

2.13.4.2. COBOL invocation

 CALL 'MQDISC' USING HCONN, COMPCODE, REASON.

Declare the parameters as follows:

** Connection handle

 01 HCONN PIC S9(9) BINARY.

** Completion code

 01 COMPCODE PIC S9(9) BINARY.

** Reason code qualifying COMPCODE

 01 REASON PIC S9(9) BINARY.

Parent topic: Language invocations for MQDISC

This build: January 26, 2011 11:17:40

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17150_

2.13.4.3. PL/I invocation

call MQDISC (Hconn, CompCode, Reason);

Declare the parameters as follows:

dcl Hconn fixed bin(31); /* Connection handle */

dcl CompCode fixed bin(31); /* Completion code */

dcl Reason fixed bin(31); /* Reason code qualifying CompCode */

Parent topic: Language invocations for MQDISC

This build: January 26, 2011 11:17:40

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

Page 460 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This topic's URL:

fr17160_

2.13.4.4. System/390® assembler invocation

 CALL MQDISC,(HCONN,COMPCODE,REASON)

Declare the parameters as follows:

HCONN DS F Connection handle

COMPCODE DS F Completion code

REASON DS F Reason code qualifying COMPCODE

Parent topic: Language invocations for MQDISC

This build: January 26, 2011 11:17:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17170_

2.13.4.5. Visual Basic invocation

MQDISC Hconn, CompCode, Reason

Declare the parameters as follows:

Dim Hconn As Long 'Connection handle'

Dim CompCode As Long 'Completion code'

Dim Reason As Long 'Reason code qualifying CompCode'

Parent topic: Language invocations for MQDISC

This build: January 26, 2011 11:17:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17180_

2.14. MQDLTMH – Delete message handle

The MQDLTMH call deletes a message handle and is the inverse of the MQCRTMH call.

Syntax for MQDLTMH

Parameters for MQDLTMH

Language invocations for MQDLTMH
The call is supported in the programming languages shown below.

Parent topic: Function calls

This build: January 26, 2011 11:20:05

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40270_

2.14.1. Syntax for MQDLTMH

MQDLTMH (Hconn, Hmsg, DltMsgHOpts, CompCode, Reason)

Parent topic: MQDLTMH – Delete message handle

This build: January 26, 2011 11:20:05

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40280_

2.14.2. Parameters for MQDLTMH

The MQDLTMH call has the following parameters:

Hconn (MQHCONN) – input
This handle represents the connection to the queue manager.

Page 461 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Hmsg (MQHMSG) – input/output
This is the message handle to be deleted. The value was returned by a previous MQCRTMH call.

DltMsgHOpts (MQDMHO) – input

CompCode (MQLONG) – output

Reason (MQLONG) – output

Parent topic: MQDLTMH – Delete message handle

This build: January 26, 2011 11:20:05

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40290_

2.14.2.1. Hconn (MQHCONN) – input

This handle represents the connection to the queue manager.

The value must match the connection handle that was used to create the message handle specified in the Hmsg parameter.

If the message handle was created using MQHC_UNASSOCIATED_HCONN then a valid connection must be established on the thread

deleting the message handle, otherwise the call fails with MQRC_CONNECTION_BROKEN.

Parent topic: Parameters for MQDLTMH

This build: January 26, 2011 11:20:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40630_

2.14.2.2. Hmsg (MQHMSG) – input/output

This is the message handle to be deleted. The value was returned by a previous MQCRTMH call.

On successful completion of the call, the handle is set to an invalid value for the environment. This value is:

MQHM_UNUSABLE_HMSG

Unusable message handle.

The message handle cannot be deleted if another MQ call is in progress that was passed the same message handle.

Parent topic: Parameters for MQDLTMH

This build: January 26, 2011 11:20:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40640_

2.14.2.3. DltMsgHOpts (MQDMHO) – input

See MQDMHO for details.

Parent topic: Parameters for MQDLTMH

This build: January 26, 2011 11:20:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40650_

2.14.2.4. CompCode (MQLONG) – output

The completion code; it is one of the following:

MQCC_OK

Successful completion.

MQCC_FAILED

Call failed.

Parent topic: Parameters for MQDLTMH

Page 462 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This build: January 26, 2011 11:20:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40660_

2.14.2.5. Reason (MQLONG) – output

The reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:

MQRC_ADAPTER_NOT_AVAILABLE

(2204, X'089C') Adapter not available.

MQRC_ADAPTER_SERV_LOAD_ERROR

(2130, X'852') Unable to load adapter service module.

MQRC_ASID_MISMATCH

(2157, X'86D') Primary and home ASIDs differ.

MQRC_CALL_IN_PROGRESS

(2219, X'08AB') MQI call entered before previous call completed.

MQRC_CONNECTION_BROKEN

(2009, X'07D9') Connection to queue manager lost.

MQRC_DMHO_ERROR

(2462, X'099E') Delete message handle options structure not valid.

MQRC_HMSG_ERROR

(2460, X'099C') Message handle pointer not valid.

MQRC_MSG_HANDLE_IN_USE

(2499, X'09C3') Message handle already in use.

MQRC_OPTIONS_ERROR

(2046, X'07FE') Options not valid or not consistent.

MQRC_STORAGE_NOT_AVAILABLE

(2071, X'817') Insufficient storage available.

MQRC_UNEXPECTED_ERROR

(2195, X'893') Unexpected error occurred.

See Return codes for more details.

Parent topic: Parameters for MQDLTMH

This build: January 26, 2011 11:20:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40670_

2.14.3. Language invocations for MQDLTMH

The call is supported in the programming languages shown below.

C invocation
Parameters used for the C invocation of MQDLTMH.

COBOL invocation
Parameters used for the COBOL invocation of MQDLTMH.

PL/I invocation

Parameters used for the PL/I invocation of MQDLTMH.

System/390 assembler invocation
Parameters used for the System/390® assembler invocation of MQDLTMH.

Parent topic: MQDLTMH – Delete message handle

This build: January 26, 2011 11:20:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Page 463 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40715_

2.14.3.1. C invocation

Parameters used for the C invocation of MQDLTMH.

MQDLTMH (Hconn, &Hmsg, &DltMsgHOpts, &CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /* Connection handle */

MQHMSG Hmsg; /* Message handle */

MQDMHO DltMsgHOpts; /* Options that control the action of MQDLTMH */

MQLONG CompCode; /* Completion code */

MQLONG Reason; /* Reason code qualifying CompCode */

Parent topic: Language invocations for MQDLTMH

This build: January 26, 2011 11:20:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40720_

2.14.3.2. COBOL invocation

Parameters used for the COBOL invocation of MQDLTMH.

 CALL 'MQDLTMH' USING HCONN, HMSG, DLTMSGOPTS, COMPCODE, REASON.

Declare the parameters as follows:

** Connection handle

 01 HCONN PIC S9(9) BINARY.

** Message handle

 01 HMSG PIC S9(18) BINARY.

** Options that control the action of MQDLTMH

 01 DLTMSGHOPTS.

 COPY CMQDMHOV.

** Completion code

 01 COMPCODE PIC S9(9) BINARY.

** Reason code qualifying COMPCODE

 01 REASON PIC S9(9) BINARY.

Parent topic: Language invocations for MQDLTMH

This build: January 26, 2011 11:20:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40730_

2.14.3.3. PL/I invocation

Parameters used for the PL/I invocation of MQDLTMH.

call MQDLTMH (Hconn, Hmsg, DltMsgHOpts, CompCode, Reason);

Declare the parameters as follows:

dcl Hconn fixed bin(31); /* Connection handle */

dcl Hmsg fixed bin(63); /* Message handle */

dcl DltMsgHOpts like MQDMHO; /* Options that control the action of MQDLTMH */

dcl CompCode fixed bin(31); /* Completion code */

dcl Reason fixed bin(31); /* Reason code qualifying CompCode */

Parent topic: Language invocations for MQDLTMH

This build: January 26, 2011 11:20:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40740_

2.14.3.4. System/390 assembler invocation

Parameters used for the System/390® assembler invocation of MQDLTMH.

 CALL MQDLTMH,(HCONN,HMSG,DLTMSGHOPTS,COMPCODE,REASON)

Declare the parameters as follows:

HCONN DS F Connection handle

Page 464 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

HMSG DS D Message handle

DLTMSGHOPTS CMQDMHOA , Options that control the action of MQDLTMH

COMPCODE DS F Completion code

REASON DS F Reason code qualifying COMPCODE

Parent topic: Language invocations for MQDLTMH

This build: January 26, 2011 11:20:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40760_

2.15. MQDLTMP - Delete message property

The MQDLTMP call deletes a property from a message handle and is the inverse of the MQSETMP call.

Syntax for MQDLTMP

Parameters for MQDLTMP

Language invocations for MQDLTMP

Parent topic: Function calls

This build: January 26, 2011 11:19:45

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr25400_

2.15.1. Syntax for MQDLTMP

MQDLTMP (Hconn, Hmsg, DltPropOpts, Name, CompCode, Reason)

Parent topic: MQDLTMP - Delete message property

This build: January 26, 2011 11:19:45

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr25410_

2.15.2. Parameters for MQDLTMP

The MQDLTMP call has the following parameters.

Hconn (MQHCONN) - input

Hmsg (MQHMSG) - input

DltPropOps (MQDMPO) - Input

Name (MQCHARV) - input

CompCode (MQLONG) – output

Reason (MQLONG) – output

Parent topic: MQDLTMP - Delete message property

This build: January 26, 2011 11:19:45

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr25420_

2.15.2.1. Hconn (MQHCONN) - input

This handle represents the connection to the queue manager. The value must match the connection handle that was used to create the
message handle specified in the Hmsg parameter.

If the message handle was created using MQHC_UNASSOCIATED_HCONN then a valid connection must be established on the thread
deleting the message handle otherwise the call fails with MQRC_CONNECTION_BROKEN.

Page 465 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Parent topic: Parameters for MQDLTMP

This build: January 26, 2011 11:19:45

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr25430_

2.15.2.2. Hmsg (MQHMSG) - input

This is the message handle containing the property to be deleted. The value was returned by a previous MQCRTMH call.

Parent topic: Parameters for MQDLTMP

This build: January 26, 2011 11:19:45

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr25440_

2.15.2.3. DltPropOps (MQDMPO) - Input

See the MQDMPO data type for details.

Parent topic: Parameters for MQDLTMP

This build: January 26, 2011 11:19:45

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr25450_

2.15.2.4. Name (MQCHARV) - input

The name of the property to delete. See the WebSphere MQ Application Programming Guide for further information on property names.

Wildcards are not allowed in the property name.

Parent topic: Parameters for MQDLTMP

This build: January 26, 2011 11:19:45

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr25460_

2.15.2.5. CompCode (MQLONG) – output

The completion code; it is one of the following:

MQCC_OK

Successful completion.

MQCC_WARNING

Warning (partial completion).

MQCC_FAILED

Call failed.

Parent topic: Parameters for MQDLTMP

This build: January 26, 2011 11:19:45

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr25470_

2.15.2.6. Reason (MQLONG) – output

The reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE

(0, X'000') No reason to report.

Page 466 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

If CompCode is MQCC_WARNING:

MQRC_PROPERTY_NOT_AVAILABLE

(2471, X'09A7') Property not available.

MQRC_RFH_FORMAT_ERROR

(2421, X'0975') An MQRFH2 folder containing properties could not be parsed.

If CompCode is MQCC_FAILED:

MQRC_ADAPTER_NOT_AVAILABLE

(2204, X'089C') Adapter not available.

MQRC_ADAPTER_SERV_LOAD_ERROR

(2130, X'0852') Unable to load adapter service module.

MQRC_ASID_MISMATCH

(2157, X'086D') Primary and home ASIDs differ.

MQRC_CALL_IN_PROGRESS

(2219, X'08AB') MQI call entered before previous call completed.

MQRC_CONNECTION_BROKEN

(2009, X'07D9') Connection to queue manager lost.

MQRC_DMPO_ERROR

(2481, X'09B1') Delete message property options structure not valid.

MQRC_HMSG_ERROR

(2460, X'099C') Message handle not valid.

MQRC_MSG_HANDLE_IN_USE

(2499, X'09C3') Message handle already in use.

MQRC_OPTIONS_ERROR

(2046, X'07FE') Options not valid or not consistent.

MQRC_PROPERTY_NAME_ERROR

(2442, X'098A') Invalid property name.

MQRC_SOURCE_CCSID_ERROR

(2111, X'083F') Property name coded character set identifier not valid.

MQRC_UNEXPECTED_ERROR

(2195, X'0893') Unexpected error occurred.

For detailed information on these codes, see:

� WebSphere MQ for z/OS Messages and Codes for WebSphere® MQ for z/OS®

� WebSphere MQ Messages for all other WebSphere MQ platforms

Parent topic: Parameters for MQDLTMP

This build: January 26, 2011 11:19:46

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr25480_

2.15.3. Language invocations for MQDLTMP

C invocation

COBOL invocation

PL/I invocation

System/390 assembler invocation
Parameters used for the System/390® assembler invocation of MQDLTMP.

Parent topic: MQDLTMP - Delete message property

This build: January 26, 2011 11:19:46

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr25490_

2.15.3.1. C invocation

MQDLTMP (Hconn, Hmsg, &DltPropOpts, &Name, &CompCode, &Reason)

Page 467 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Declare the parameters as follows:

MQHCONN Hconn; /* Connection handle */

MQHMSG Hmsg; /* Message handle */

MQDMPO DltPropOpts; /* Options that control the action of MQDLTMP */

MQCHARV Name; /* Property name */

MQLONG CompCode; /* Completion code */

MQLONG Reason; /* Reason code qualifying CompCode */

Parent topic: Language invocations for MQDLTMP

This build: January 26, 2011 11:19:52

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr26100_

2.15.3.2. COBOL invocation

CALL ‘MQDLTMP’ USING HCONN, HMSG, DLTPROPOPTS, NAME, COMPCODE, REASON.

Declare the parameters as follows:

** Connection handle

 01 HCONN PIC S9(9) BINARY.

** Message handle

 01 HMSG PIC S9(18) BINARY.

** Options that control the action of MQDLTMP

 01 DLTPROPOPTS.

 COPY CMQDMPOV.

** Property name

 01 NAME

 COPY CMQCHRVV.

** Completion code

 01 COMPCODE PIC S9(9) BINARY.

** Reason code qualifying COMPCODE

 01 REASON PIC S9(9) BINARY.

Parent topic: Language invocations for MQDLTMP

This build: January 26, 2011 11:19:52

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr26110_

2.15.3.3. PL/I invocation

call MQDLTMP (Hconn, Hmsg, DltPropOpts, Name, CompCode, Reason);

Declare the parameters as follows:

dcl Hconn fixed bin(31); /* Connection handle */

dcl Hmsg fixed bin(63); /* Message handle */

dcl DltPropOpts like MQDMPO; /* Options that control the action of MQDLTMP */

dcl Name like MQCHARV; /* Property name */

dcl CompCode fixed bin(31); /* Completion code */

dcl Reason fixed bin(31); /* Reason code qualifying CompCode */

Parent topic: Language invocations for MQDLTMP

This build: January 26, 2011 11:19:52

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr26120_

2.15.3.4. System/390 assembler invocation

Parameters used for the System/390® assembler invocation of MQDLTMP.

 CALL MQDLTMP,(HCONN,HMSG,DLTPROPOPTS,NAME,COMPCODE,REASON)

Declare the parameters as follows:

HCONN DS F Connection handle

HMSG DS D Message handle

DLTPROPOPTS CMQDMPOA , Options that control the action of MQDLTMP

NAME CMQCHRVA , Property name

COMPCODE DS F Completion code

REASON DS F Reason code qualifying COMPCODE

Parent topic: Language invocations for MQDLTMP

This build: January 26, 2011 11:19:52

Page 468 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr26140_

2.16. MQGET – Get message

The MQGET call retrieves a message from a local queue that has been opened using the MQOPEN call.

Syntax for MQGET

Parameters for MQGET

The MQGET call has the following parameters.

Usage notes for MQGET
Guidance information for the MQGET call.

Language invocations for MQGET
The MQGET call is supported in the programming languages shown below.

Parent topic: Function calls

This build: January 26, 2011 11:17:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17190_

2.16.1. Syntax for MQGET

MQGET (Hconn, Hobj, MsgDesc, GetMsgOpts, BufferLength,

Buffer, DataLength, CompCode, Reason)

Parent topic: MQGET – Get message

This build: January 26, 2011 11:17:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17200_

2.16.2. Parameters for MQGET

The MQGET call has the following parameters.

Hconn (MQHCONN) – input

Hobj (MQHOBJ) – input

MsgDesc (MQMD) – input/output

GetMsgOpts (MQGMO) – input/output

BufferLength (MQLONG) – input

Buffer (MQBYTExBufferLength) – output

DataLength (MQLONG) – output

CompCode (MQLONG) – output

Reason (MQLONG) – output
Reason codes that can be returned from an MQGET call.

Parent topic: MQGET – Get message

This build: January 26, 2011 11:17:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17210_

2.16.2.1. Hconn (MQHCONN) – input

Page 469 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This handle represents the connection to the queue manager. The value of Hconn was returned by a previous MQCONN or MQCONNX call.

On z/OS® for CICS® applications, and on i5/OS® for applications running in compatibility mode, the MQCONN call can be omitted, and the
following value specified for Hconn:

MQHC_DEF_HCONN

Default connection handle.

Parent topic: Parameters for MQGET

This build: January 26, 2011 11:17:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17220_

2.16.2.2. Hobj (MQHOBJ) – input

This handle represents the queue from which a message is to be retrieved. The value of Hobj was returned by a previous MQOPEN call. The

queue must have been opened with one or more of the following options (see MQOPEN – Open object for details):

� MQOO_INPUT_SHARED

� MQOO_INPUT_EXCLUSIVE

� MQOO_INPUT_AS_Q_DEF

� MQOO_BROWSE

Parent topic: Parameters for MQGET

This build: January 26, 2011 11:17:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17230_

2.16.2.3. MsgDesc (MQMD) – input/output

This structure describes the attributes of the message required, and the attributes of the message retrieved. See MQMD – Message
descriptor for details.

If BufferLength is less than the message length, MsgDesc is filled by the queue manager, whether or not

MQGMO_ACCEPT_TRUNCATED_MSG is specified on the GetMsgOpts parameter (see MQGMO - Options field).

If the application provides a version-1 MQMD, the message returned has an MQMDE prefixed to the application message data, but only if
one or more of the fields in the MQMDE has a nondefault value. If all the fields in the MQMDE have default values, the MQMDE is omitted. A
format name of MQFMT_MD_EXTENSION in the Format field in MQMD indicates that an MQMDE is present.

The application does not need to provide an MQMD structure provided that a valid message handle is supplied in the MsgHandle field. If
nothing is provided in this field, the descriptor of the message is taken from the descriptor associated with the message handles.

If MQGMO_PROPERTIES_FORCE_MQRFH2 is specified, or MQGMO_PROPERTIES_AS_Q_DEF is specified and the PropertyControl queue

attribute is MQPROP_FORCE_MQRFH2, the call fails with reason code MQRC_MD_ERROR.

If match options are specified and the message descriptor associated with the message handle is being used, the input fields used for

matching come from the message handle.

Parent topic: Parameters for MQGET

This build: January 26, 2011 11:17:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17240_

2.16.2.4. GetMsgOpts (MQGMO) – input/output

See MQGMO – Get-message options for details.

Parent topic: Parameters for MQGET

This build: January 26, 2011 11:17:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17250_

Page 470 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

2.16.2.5. BufferLength (MQLONG) – input

This is the length in bytes of the Buffer area. Specify zero for messages that have no data, or if the message is to be removed from the

queue and the data discarded (you must specify MQGMO_ACCEPT_TRUNCATED_MSG in this case).

Note: The length of the longest message that it is possible to read from the queue is given by the MaxMsgLength queue attribute; see

Attributes for queues.

Parent topic: Parameters for MQGET

This build: January 26, 2011 11:17:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17260_

2.16.2.6. Buffer (MQBYTExBufferLength) – output

This is the area to contain the message data. Align the buffer on a boundary appropriate to the nature of the data in the message. 4-byte
alignment should be suitable for most messages (including messages containing MQ header structures), but some messages might require
more stringent alignment. For example, a message containing a 64-bit binary integer might require 8-byte alignment.

If BufferLength is less than the message length, as much of the message as possible is moved into Buffer; this happens whether or not

MQGMO_ACCEPT_TRUNCATED_MSG is specified on the GetMsgOpts parameter (see MQGMO - Options field for more information).

The character set and encoding of the data in Buffer are given by the CodedCharSetId and Encoding fields returned in the MsgDesc

parameter. If these are different from the values required by the receiver, the receiver must convert the application message data to the

character set and encoding required. The MQGMO_CONVERT option can be used (with a user-written exit if necessary) to convert the
message data; see MQGMO – Get-message options for details of this option.

Note: All the other parameters on the MQGET call are in the character set and encoding of the local queue manager (given by the
CodedCharSetId queue-manager attribute and MQENC_NATIVE, respectively).

If the call fails, the contents of the buffer might still have changed.

In the C programming language, the parameter is declared as a pointer-to-void: the address of any type of data can be specified as the
parameter.

If the BufferLength parameter is zero, Buffer is not referred to; in this case, the parameter address passed by programs written in C or

System/390® assembler can be null.

Parent topic: Parameters for MQGET

This build: January 26, 2011 11:17:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17270_

2.16.2.7. DataLength (MQLONG) – output

This is the length in bytes of the application data in the message. If this is greater than BufferLength, only BufferLength bytes are

returned in the Buffer parameter (that is, the message is truncated). If the value is zero, the message contains no application data.

If BufferLength is less than the message length, DataLength is still filled in by the queue manager, whether or not

MQGMO_ACCEPT_TRUNCATED_MSG is specified on the GetMsgOpts parameter (see MQGMO - Options field for more information). This

allows the application to determine the size of the buffer required to accommodate the message data, and then reissue the call with a buffer
of the appropriate size.

However, if the MQGMO_CONVERT option is specified, and the converted message data is too long to fit in Buffer, the value returned for

DataLength is:

� The length of the unconverted data, for queue-manager defined formats.

In this case, if the nature of the data causes it to expand during conversion, the application must allocate a buffer somewhat bigger

than the value returned by the queue manager for DataLength.

� The value returned by the data-conversion exit, for application-defined formats.

Parent topic: Parameters for MQGET

This build: January 26, 2011 11:17:42

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17280_

2.16.2.8. CompCode (MQLONG) – output

The completion code; it is one of the following:

Page 471 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

MQCC_OK

Successful completion.

MQCC_WARNING

Warning (partial completion).

MQCC_FAILED

Call failed.

Parent topic: Parameters for MQGET

This build: January 26, 2011 11:17:42

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17290_

2.16.2.9. Reason (MQLONG) – output

Reason codes that can be returned from an MQGET call.

The reason codes listed below are the ones that the queue manager can return for the Reason parameter. If the application specifies the

MQGMO_CONVERT option, and a user-written exit is invoked to convert some or all of the message data, the exit decides what value is
returned for the Reason parameter. As a result, values other than those documented below are possible.

If CompCode is MQCC_OK:

MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_WARNING:

MQRC_CONVERTED_MSG_TOO_BIG

(2120, X'848') Converted data too big for buffer.

MQRC_CONVERTED_STRING_TOO_BIG

(2190, X'88E') Converted string too big for field.

MQRC_DBCS_ERROR

(2150, X'866') DBCS string not valid.

MQRC_FORMAT_ERROR

(2110, X'83E') Message format not valid.

MQRC_INCOMPLETE_GROUP

(2241, X'8C1') Message group not complete.

MQRC_INCOMPLETE_MSG

(2242, X'8C2') Logical message not complete.

MQRC_INCONSISTENT_CCSIDS

(2243, X'8C3') Message segments have differing CCSIDs.

MQRC_INCONSISTENT_ENCODINGS

(2244, X'8C4') Message segments have differing encodings.

MQRC_INCONSISTENT_UOW

(2245, X'8C5') Inconsistent unit-of-work specification.

MQRC_MSG_TOKEN_ERROR

(2331, X'91B') Invalid use of message token.

MQRC_NO_MSG_LOCKED

(2209, X'8A1') No message locked.

MQRC_NOT_CONVERTED

(2119, X'847') Message data not converted.

MQRC_OPTIONS_CHANGED

(nnnn, X'xxx') Options that were required to be consistent have been changed.

MQRC_PARTIALLY_CONVERTED

(2272, X'8E0') Message data partially converted.

MQRC_SIGNAL_REQUEST_ACCEPTED

(2070, X'816') No message returned (but signal request accepted).

MQRC_SOURCE_BUFFER_ERROR

(2145, X'861') Source buffer parameter not valid.

MQRC_SOURCE_CCSID_ERROR

(2111, X'83F') Source coded character set identifier not valid.

MQRC_SOURCE_DECIMAL_ENC_ERROR

(2113, X'841') Packed-decimal encoding in message not recognized.

MQRC_SOURCE_FLOAT_ENC_ERROR

Page 472 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

(2114, X'842') Floating-point encoding in message not recognized.

MQRC_SOURCE_INTEGER_ENC_ERROR

(2112, X'840') Source integer encoding not recognized.

MQRC_SOURCE_LENGTH_ERROR

(2143, X'85F') Source length parameter not valid.

MQRC_TARGET_BUFFER_ERROR

(2146, X'862') Target buffer parameter not valid.

MQRC_TARGET_CCSID_ERROR

(2115, X'843') Target coded character set identifier not valid.

MQRC_TARGET_DECIMAL_ENC_ERROR

(2117, X'845') Packed-decimal encoding specified by receiver not recognized.

MQRC_TARGET_FLOAT_ENC_ERROR

(2118, X'846') Floating-point encoding specified by receiver not recognized.

MQRC_TARGET_INTEGER_ENC_ERROR

(2116, X'844') Target integer encoding not recognized.

MQRC_TRUNCATED_MSG_ACCEPTED

(2079, X'81F') Truncated message returned (processing completed).

MQRC_TRUNCATED_MSG_FAILED

(2080, X'820') Truncated message returned (processing not completed).

If CompCode is MQCC_FAILED:

MQRC_ADAPTER_NOT_AVAILABLE

(2204, X'89C') Adapter not available.

MQRC_ADAPTER_CONV_LOAD_ERROR

(2133, X'855') Unable to load data conversion services modules.

MQRC_ADAPTER_SERV_LOAD_ERROR

(2130, X'852') Unable to load adapter service module.

MQRC_API_EXIT_ERROR

(2374, X'946') API exit failed.

MQRC_API_EXIT_LOAD_ERROR

(2183, X'887') Unable to load API exit.

MQRC_ASID_MISMATCH

(2157, X'86D') Primary and home ASIDs differ.

MQRC_BACKED_OUT

(2003, X'7D3') Unit of work backed out.

MQRC_BUFFER_ERROR

(2004, X'7D4') Buffer parameter not valid.

MQRC_BUFFER_LENGTH_ERROR

(2005, X'7D5') Buffer length parameter not valid.

MQRC_CALL_IN_PROGRESS

(2219, X'8AB') MQI call entered before previous call complete.

MQRC_CF_STRUC_FAILED

(2373, X'945') Coupling-facility structure failed.

MQRC_CF_STRUC_IN_USE

(2346, X'92A') Coupling-facility structure in use.

MQRC_CF_STRUC_LIST_HDR_IN_USE

(2347, X'92B') Coupling-facility structure list-header in use.

MQRC_CICS_WAIT_FAILED

(2140, X'85C') Wait request rejected by CICS®.

MQRC_CONNECTION_BROKEN

(2009, X'7D9') Connection to queue manager lost.

MQRC_CONNECTION_NOT_AUTHORIZED

(2217, X'8A9') Not authorized for connection.

MQRC_CONNECTION_QUIESCING

(2202, X'89A') Connection quiescing.

MQRC_CONNECTION_STOPPING

(2203, X'89B') Connection shutting down.

MQRC_CORREL_ID_ERROR

(2207, X'89F') Correlation-identifier error.

MQRC_DATA_LENGTH_ERROR

(2010, X'7DA') Data length parameter not valid.

MQRC_DB2_NOT_AVAILABLE

Page 473 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

(2342, X'926') DB2® subsystem not available.

MQRC_GET_INHIBITED

(2016, X'7E0') Gets inhibited for the queue.

MQRC_GLOBAL_UOW_CONFLICT

(2351, X'92F') Global units of work conflict.

MQRC_GMO_ERROR

(2186, X'88A') Get-message options structure not valid.

MQRC_HANDLE_IN_USE_FOR_UOW

(2353, X'931') Handle in use for global unit of work.

MQRC_HCONN_ERROR

(2018, X'7E2') Connection handle not valid.

MQRC_HOBJ_ERROR

(2019, X'7E3') Object handle not valid.

MQRC_INCONSISTENT_BROWSE

(2259, X'8D3') Inconsistent browse specification.

MQRC_INCONSISTENT_UOW

(2245, X'8C5') Inconsistent unit-of-work specification.

MQRC_INVALID_MSG_UNDER_CURSOR

(2246, X'8C6') Message under cursor not valid for retrieval.

MQRC_LOCAL_UOW_CONFLICT

(2352, X'930') Global unit of work conflicts with local unit of work.

MQRC_MATCH_OPTIONS_ERROR

(2247, X'8C7') Match options not valid.

MQRC_MD_ERROR

(2026, X'7EA') Message descriptor not valid.

MQRC_MSG_ID_ERROR

(2206, X'89E') Message-identifier error.

MQRC_MSG_SEQ_NUMBER_ERROR

(2250, X'8CA') Message sequence number not valid.

MQRC_MSG_TOKEN_ERROR

(2331, X'91B') Use of message token not valid.

MQRC_NO_MSG_AVAILABLE

(2033, X'7F1') No message available.

MQRC_NO_MSG_UNDER_CURSOR

(2034, X'7F2') Browse cursor not positioned on message.

MQRC_NOT_OPEN_FOR_BROWSE

(2036, X'7F4') Queue not open for browse.

MQRC_NOT_OPEN_FOR_INPUT

(2037, X'7F5') Queue not open for input.

MQRC_OBJECT_CHANGED

(2041, X'7F9') Object definition changed since opened.

MQRC_OBJECT_DAMAGED

(2101, X'835') Object damaged.

MQRC_OPTIONS_ERROR

(2046, X'7FE') Options not valid or not consistent.

MQRC_PAGESET_ERROR

(2193, X'891') Error accessing page-set data set.

MQRC_Q_DELETED

(2052, X'804') Queue has been deleted.

MQRC_Q_INDEX_TYPE_ERROR

(2394, X'95A') Queue has wrong index type.

MQRC_Q_MGR_NAME_ERROR

(2058, X'80A') Queue manager name not valid or not known.

MQRC_Q_MGR_NOT_AVAILABLE

(2059, X'80B') Queue manager not available for connection.

MQRC_Q_MGR_QUIESCING

(2161, X'871') Queue manager quiescing.

MQRC_Q_MGR_STOPPING

(2162, X'872') Queue manager shutting down.

MQRC_RESOURCE_PROBLEM

(2102, X'836') Insufficient system resources available.

MQRC_SECOND_MARK_NOT_ALLOWED

Page 474 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

(2062, X'80E') A message is already marked.

MQRC_SIGNAL_OUTSTANDING

(2069, X'815') Signal outstanding for this handle.

MQRC_SIGNAL1_ERROR

(2099, X'833') Signal field not valid.

MQRC_STORAGE_MEDIUM_FULL

(2192, X'890') External storage medium is full.

MQRC_STORAGE_NOT_AVAILABLE

(2071, X'817') Insufficient storage available.

MQRC_SUPPRESSED_BY_EXIT

(2109, X'83D') Call suppressed by exit program.

MQRC_SYNCPOINT_LIMIT_REACHED

(2024, X'7E8') No more messages can be handled within current unit of work.

MQRC_SYNCPOINT_NOT_AVAILABLE

(2072, X'818') Syncpoint support not available.

MQRC_UNEXPECTED_ERROR

(2195, X'893') Unexpected error occurred.

MQRC_UOW_ENLISTMENT_ERROR

(2354, X'932') Enlistment in global unit of work failed.

MQRC_UOW_MIX_NOT_SUPPORTED

(2355, X'933') Mixture of unit-of-work calls not supported.

MQRC_UOW_NOT_AVAILABLE

(2255, X'8CF') Unit of work not available for the queue manager to use.

MQRC_WAIT_INTERVAL_ERROR

(2090, X'82A') Wait interval in MQGMO not valid.

MQRC_WRONG_GMO_VERSION

(2256, X'8D0') Wrong version of MQGMO supplied.

MQRC_WRONG_MD_VERSION

(2257, X'8D1') Wrong version of MQMD supplied.

For detailed information on these codes, see:

� WebSphere MQ for z/OS Messages and Codes for WebSphere® MQ for z/OS®

� WebSphere MQ Messages for all other WebSphere MQ platforms

Parent topic: Parameters for MQGET

This build: January 26, 2011 11:17:43

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17300_

2.16.3. Usage notes for MQGET

Guidance information for the MQGET call.

1. The message retrieved is normally deleted from the queue. This deletion can occur as part of the MQGET call itself, or as part of a sync
point.

The browse options are: MQGMO_BROWSE_FIRST, MQGMO_BROWSE_NEXT, and MQGMO_BROWSE_MSG_UNDER_CURSOR.

2. If the MQGMO_LOCK option is specified with one of the browse options, the browsed message is locked so that it is visible only to this
handle.

If the MQGMO_UNLOCK option is specified, a previously locked message is unlocked. No message is retrieved in this case, and the
MsgDesc, BufferLength, Buffer, and DataLength parameters are not checked or altered.

3. For applications issuing an MQGET call, the message retrieved can be lost if the application terminates abnormally or the connection
is severed while processing the call. This issue arises because the surrogate running on the same platform as the queue manager that
issues the MQGET call on behalf of the application cannot detect the loss of the application until the surrogate is about to return the
message to the application, after the message has been removed from the queue. This issue can occur for both persistent messages
and nonpersistent messages.

To eliminate the risk of losing messages in this way, always retrieve messages within units of work. That is, by specifying the

MQGMO_SYNCPOINT option on the MQGET call, and using the MQCMIT or MQBACK calls to commit or back out the unit of work when
message processing is complete. If MQGMO_SYNCPOINT is specified, and the client terminates abnormally or the connection is
severed, the surrogate backs out the unit of work on the queue manager and the message is reinstated on the queue. For more
information about sync points, see Syncpoint considerations in WebSphere MQ applications.

This situation can arise with WebSphere MQ clients as well as with applications that are running on the same platform as the queue-
manager.

4. If an application puts a sequence of messages on a particular queue within a single unit of work, and then commits that unit of work
successfully, the messages become available for retrieval as follows:

� If the queue is a nonshared queue (that is, a local queue), all messages within the unit of work become available at the same
time.

� If the queue is a shared queue, messages within the unit of work become available in the order in which they were put, but not

Page 475 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

all at the same time. When the system is heavily laden, it is possible for the first message in the unit of work to be retrieved
successfully, but for the MQGET call for the second or subsequent message in the unit of work to fail with

MQRC_NO_MSG_AVAILABLE. If this issue occurs, the application must wait a short while and then try the operation again.

5. If an application puts a sequence of messages on the same queue without using message groups, the order of those messages is
preserved if certain conditions are satisfied. See MQPUT usage notes for details. If the conditions are satisfied, the messages are
presented to the receiving application in the order in which they were sent, if:

� Only one receiver is getting messages from the queue.

If there are two or more applications getting messages from the queue, they must agree with the sender the mechanism to be
used to identify messages that belong to a sequence. For example, the sender might set all the CorrelId fields in the messages

in a sequence to a value that was unique to that sequence of messages.

� The receiver does not deliberately change the order of retrieval, for example by specifying a particular MsgId or CorrelId.

If the sending application puts the messages as a message group, the messages are presented to the receiving application in the
correct order if the receiving application specifies the MQGMO_LOGICAL_ORDER option on the MQGET call. For more information about
message groups, see:

� MQMD - MsgFlags field

� MQPMO_LOGICAL_ORDER

� MQGMO_LOGICAL_ORDER

If the user is getting messages in a group under sync point, they must ensure that the complete group is processed before attempting
to finish the transaction.

6. Applications must test for the feedback code MQFB_QUIT in the Feedback field of the MsgDesc parameter, and end if they find this

value. See MQMD - Feedback field for more information.

7. If the queue identified by Hobj was opened with the MQOO_SAVE_ALL_CONTEXT option, and the completion code from the MQGET

call is MQCC_OK or MQCC_WARNING, the context associated with the queue handle Hobj is set to the context of the message that has

been retrieved (unless the MQGMO_BROWSE_FIRST, MQGMO_BROWSE_NEXT, or MQGMO_BROWSE_MSG_UNDER_CURSOR option is
set, in which case the context is marked as not available).

You can use the saved context on a subsequent MQPUT or MQPUT1 call by specifying the MQPMO_PASS_IDENTITY_CONTEXT or
MQPMO_PASS_ALL_CONTEXT options. This enables the context of the message received to be transferred in whole or in part to

another message (for example, when the message is forwarded to another queue). For more information about message context, see
the WebSphere MQ Application Programming Guide.

8. If you include the MQGMO_CONVERT option in the GetMsgOpts parameter, the application message data is converted to the

representation requested by the receiving application, before the data is placed in the Buffer parameter:

� The Format field in the control information in the message identifies the structure of the application data, and the

CodedCharSetId and Encoding fields in the control information in the message specify its character-set identifier and encoding.

� The application issuing the MQGET call specifies in the CodedCharSetId and Encoding fields in the MsgDesc parameter the

character-set identifier and encoding to which to convert the application message data.

When conversion of the message data is necessary, the conversion is performed either by the queue manager itself or by a user-
written exit, depending on the value of the Format field in the control information in the message:

� The following format names are formats that are converted by the queue manager; these formats are called “built-in” formats:

� MQFMT_ADMIN

� MQFMT_CICS (z/OS® only)

� MQFMT_COMMAND_1

� MQFMT_COMMAND_2

� MQFMT_DEAD_LETTER_HEADER

� MQFMT_DIST_HEADER

� MQFMT_EVENT version 1

� MQFMT_EVENT version 2 (z/OS only)

� MQFMT_IMS

� MQFMT_IMS_VAR_STRING

� MQFMT_MD_EXTENSION

� MQFMT_PCF

� MQFMT_REF_MSG_HEADER

� MQFMT_RF_HEADER

� MQFMT_RF_HEADER_2

� MQFMT_STRING

� MQFMT_TRIGGER

� MQFMT_WORK_INFO_HEADER (z/OS only)

� MQFMT_XMIT_Q_HEADER

� The format name MQFMT_NONE is a special value that indicates that the nature of the data in the message is undefined. As a
consequence, the queue manager does not attempt conversion when the message is retrieved from the queue.

Note: If MQGMO_CONVERT is specified on the MQGET call for a message that has a format name of MQFMT_NONE, and the
character set or encoding of the message differs from that specified in the MsgDesc parameter, the message is returned in the

Buffer parameter (assuming no other errors), but the call completes with completion code MQCC_WARNING and reason code

MQRC_FORMAT_ERROR.

You can use MQFMT_NONE either when the nature of the message data means that it does not require conversion, or when the
sending and receiving applications have agreed between themselves the form in which to send the message data.

� All other format names pass the message to a user-written exit for conversion. The exit has the same name as the format, apart
from environment-specific additions. User-specified format names must not begin with the letters MQ.

See Data conversion for details of the data-conversion exit.

User data in the message can be converted between any supported character sets and encodings. However, be aware that, if the
message contains one or more WebSphere MQ header structures, the message cannot be converted from or to a character set that
has double-byte or multi-byte characters for any of the characters that are valid in queue names. Reason code

Page 476 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

MQRC_SOURCE_CCSID_ERROR or MQRC_TARGET_CCSID_ERROR results if this is attempted, and the message is returned
unconverted. Unicode character set UCS-2 is an example of such a character set.

On return from MQGET, the following reason code indicates that the message was converted successfully:

� MQRC_NONE

The following reason code indicates that the message might have been converted successfully; the application must check the
CodedCharSetId and Encoding fields in the MsgDesc parameter to find out:

� MQRC_TRUNCATED_MSG_ACCEPTED

All other reason codes indicate that the message was not converted.

Note: The interpretation of this reason code is true for conversions performed by a user-written exit only if the exit conforms to the
processing guidelines described in Data conversion.

9. When using the object-oriented interface to get messages, you can choose not to specify a buffer to hold the message data for an
MQGET call. In previous versions of WebSphere® MQ it was possible for MQGET to fail with reason code
MQRC_CONVERTED_MSG_TO_BIG, however, even when a buffer was not specified. In WebSphere MQ Version 7, when you get a
message using an object-oriented application without restricting the size of the receive message buffer, the application does not fail
with MQRC_CONVERTED_MSG_TOO_BIG, and receives the converted message. This is true of the following environments:

� .NET, including fully managed applications

� C++

� Java (WebSphere MQ classes for Java)

Note: For all clients, if the value of sharingConversations is zero, the channel operates as it did before WebSphere MQ Version 7.0,

and message handling reverts to Version 6 behavior. In this situation, if the buffer is too small to receive the converted message, the

unconverted message is returned, with reason code MQRC_CONVERTED_MSG_TOO_BIG. For more information about
sharingConversations, see Using sharing conversations.

10. For the built-in formats, the queue manager can perform default conversion of character strings in the message when the
MQGMO_CONVERT option is specified. Default conversion allows the queue manager to use an installation-specified default character
set that approximates the actual character set, when converting string data. As a result, the MQGET call can succeed with completion
code MQCC_OK, instead of completing with MQCC_WARNING and reason code MQRC_SOURCE_CCSID_ERROR or
MQRC_TARGET_CCSID_ERROR.

Note: The result of using an approximate character set to convert string data is that some characters might be converted incorrectly.
To avoid this, use characters in the string that are common to both the actual character set and the default character set.

Default conversion applies both to the application message data and to character fields in the MQMD and MQMDE structures:

� Default conversion of the application message data occurs only when all the following are true:

� The application specifies MQGMO_CONVERT.

� The message contains data that must be converted either from or to a character set that is not supported.

� Default conversion was enabled when the queue manager was installed or restarted.

� Default conversion of the character fields in the MQMD and MQMDE structures occurs as necessary, if default conversion is
enabled for the queue manager. The conversion is performed even if the MQGMO_CONVERT option is not specified by the
application on the MQGET call.

11. For the Visual Basic programming language, the following points apply:

� If the size of the Buffer parameter is less than the length specified by the BufferLength parameter, the call fails with reason

code MQRC_STORAGE_NOT_AVAILABLE.

� The Buffer parameter is declared as being of type String. If the data to be retrieved from the queue is not of type String, use

the MQGETAny call in place of MQGET.

The MQGETAny call has the same parameters as the MQGET call, except that the Buffer parameter is declared as being of type

Any, allowing any type of data to be retrieved. However, this means that Buffer cannot be checked to ensure that it is at least

BufferLength bytes in size.

12. Not all MQGET options are supported when read ahead is enabled. The following table indicated which options are allowed and whether
they can be altered between MQGET calls.

Table 1. MQGET options permitted when read ahead is enabled

 Permitted when read
ahead is enabled and can

be altered between
MQGET calls

Permitted when read ahead is
enabled but cannot be altered

between MQGET callsa

MQGET options that are
not permitted when read

ahead is enabledb

MQGET MD

values
MsgIdc

CorrelIdc

Encoding

CodedCharSetId

MQGET

MQGMO

options

MQGMO_WAIT

MQGMO_NO_WAIT

MQGMO_FAIL_IF_QUIESCING

MQGMO_BROWSE_FIRSTd

MQGMO_BROWSE_NEXTd

MQGMO_BROWSE_MESSAGE

_UNDER_CURSORd

MQGMO_SYNCPOINT_IF_PERSISTENT

MQGMO_NO_SYNCPOINT

MQGMO_ACCEPT_TRUNCATED_MSG

MQGMO_CONVERT

MQGMO_LOGICAL_ORDER
MQGMO_COMPLETE_MSG

MQGMO_ALL_MSGS_AVAILABLE

MQGMO_ALL_SEGMENTS_AVAILABLE

MQGMO_MARK_BROWSE_HANDLE

MQGMO_MARK_BROWSE_CO_OP
MQGMO_UNMARK_BROWSE_CO_OP

MQGMO_UNMARK_BROWSE_HANDLE

MQGMO_UNMARKED_BROWSE_MSG

MQGMO_PROPERTIES_FORCE_MQRFH2

MQGMO_NO_PROPERTIES
MQGMO_PROPERTIES_IN_HANDLE

MQGMO_PROPERTIES_COMPATIBILITY

MQGMO_SET_SIGNAL

MQGMO_SYNCPOINT

MQGMO_MARK_SKIP

_BACKOUT

MQGMO_MSG_UNDER

_CURSORd

MQGMO_LOCK

MQGMO_UNLOCK

MQGMO

values

 MsgHandle

Page 477 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

a. If these options are altered between MQGET calls an MQRC_OPTIONS_CHANGED reason code is returned.

b. If these options are specified on the first MQGET call then read ahead is disabled. If these options are specified on a subsequent

MQGET call a reason code MQRC_OPTIONS_ERROR is returned.

c. The client application needs to be aware that if the MsgId and CorrelId values are altered between MQGET calls messages with

the previous values might have been sent to the client and will remain in the client read ahead buffer until consumed (or
automatically purged).

d. The first MQGET call determines whether messages are to be browsed or got from a queue when read ahead is enabled. If the

application attempts to use a combination of browse and get an MQRC_OPTIONS_CHANGED reason code is returned.

e. MQGMO_MSG_UNDER_CURSOR is not possible with read ahead. Messages can be browsed or got when read ahead is enabled
but not a combination of both.

13. Applications can destructively get uncommitted messages only if those messages were put in the same local unit of work as the get.
Applications cannot get uncommitted messages nondestructively.

14. Messages under a browse cursor can be retrieved in a unit of work. It is not possible to retrieve an uncommitted message in this way.

Parent topic: MQGET – Get message

This build: January 26, 2011 11:17:44

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17310_

2.16.4. Language invocations for MQGET

The MQGET call is supported in the programming languages shown below.

C invocation

COBOL invocation

PL/I invocation

System/390 assembler invocation

Visual Basic invocation

Parent topic: MQGET – Get message

This build: January 26, 2011 11:17:44

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17320_

2.16.4.1. C invocation

MQGET (Hconn, Hobj, &MsgDesc, &GetMsgOpts, BufferLength, Buffer,

 &DataLength, &CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /* Connection handle */

MQHOBJ Hobj; /* Object handle */

MQMD MsgDesc; /* Message descriptor */

MQGMO GetMsgOpts; /* Options that control the action of MQGET */

MQLONG BufferLength; /* Length in bytes of the Buffer area */

MQBYTE Buffer[n]; /* Area to contain the message data */

MQLONG DataLength; /* Length of the message */

MQLONG CompCode; /* Completion code */

MQLONG Reason; /* Reason code qualifying CompCode */

Parent topic: Language invocations for MQGET

This build: January 26, 2011 11:17:44

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17330_

2.16.4.2. COBOL invocation

 CALL 'MQGET' USING HCONN, HOBJ, MSGDESC, GETMSGOPTS, BUFFERLENGTH,

 BUFFER, DATALENGTH, COMPCODE, REASON.

Page 478 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Declare the parameters as follows:

** Connection handle

 01 HCONN PIC S9(9) BINARY.

** Object handle

 01 HOBJ PIC S9(9) BINARY.

** Message descriptor

 01 MSGDESC.

 COPY CMQMDV.

** Options that control the action of MQGET

 01 GETMSGOPTS.

 COPY CMQGMOV.

** Length in bytes of the BUFFER area

 01 BUFFERLENGTH PIC S9(9) BINARY.

** Area to contain the message data

 01 BUFFER PIC X(n).

** Length of the message

 01 DATALENGTH PIC S9(9) BINARY.

** Completion code

 01 COMPCODE PIC S9(9) BINARY.

** Reason code qualifying COMPCODE

 01 REASON PIC S9(9) BINARY.

Parent topic: Language invocations for MQGET

This build: January 26, 2011 11:17:44

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17340_

2.16.4.3. PL/I invocation

call MQGET (Hconn, Hobj, MsgDesc, GetMsgOpts, BufferLength, Buffer,

 DataLength, CompCode, Reason);

Declare the parameters as follows:

dcl Hconn fixed bin(31); /* Connection handle */

dcl Hobj fixed bin(31); /* Object handle */

dcl MsgDesc like MQMD; /* Message descriptor */

dcl GetMsgOpts like MQGMO; /* Options that control the action of

 MQGET */

dcl BufferLength fixed bin(31); /* Length in bytes of the Buffer

 area */

dcl Buffer char(n); /* Area to contain the message data */

dcl DataLength fixed bin(31); /* Length of the message */

dcl CompCode fixed bin(31); /* Completion code */

dcl Reason fixed bin(31); /* Reason code qualifying CompCode */

Parent topic: Language invocations for MQGET

This build: January 26, 2011 11:17:44

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17350_

2.16.4.4. System/390® assembler invocation

 CALL MQGET,(HCONN,HOBJ,MSGDESC,GETMSGOPTS,BUFFERLENGTH,

 BUFFER,DATALENGTH,COMPCODE,REASON)

Declare the parameters as follows:

HCONN DS F Connection handle

HOBJ DS F Object handle

MSGDESC CMQMDA , Message descriptor

GETMSGOPTS CMQGMOA , Options that control the action of MQGET

BUFFERLENGTH DS F Length in bytes of the BUFFER area

BUFFER DS CL(n) Area to contain the message data

DATALENGTH DS F Length of the message

COMPCODE DS F Completion code

REASON DS F Reason code qualifying COMPCODE

Parent topic: Language invocations for MQGET

This build: January 26, 2011 11:17:44

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17360_

2.16.4.5. Visual Basic invocation

Page 479 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

MQGET Hconn, Hobj, MsgDesc, GetMsgOpts, BufferLength, Buffer,

 DataLength, CompCode, Reason

Declare the parameters as follows:

Dim Hconn As Long 'Connection handle'

Dim Hobj As Long 'Object handle'

Dim MsgDesc As MQMD 'Message descriptor'

Dim GetMsgOpts As MQGMO 'Options that control the action of MQGET'

Dim BufferLength As Long 'Length in bytes of the Buffer area'

Dim Buffer As String 'Area to contain the message data'

Dim DataLength As Long 'Length of the message'

Dim CompCode As Long 'Completion code'

Dim Reason As Long 'Reason code qualifying CompCode'

Parent topic: Language invocations for MQGET

This build: January 26, 2011 11:17:44

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17370_

2.17. MQINQ – Inquire object attributes

The MQINQ call returns an array of integers and a set of character strings containing the attributes of an object.

The following types of object are valid:

� Queue manager

� Queue

� Namelist

� Process definition

Syntax for MQINQ

Parameters for MQINQ

The MQINQ call has the following parameters.

Usage notes for MQINQ
Consider the following points when you intend to use the MQINQ call.

Language invocations for MQINQ
The MQINQ call is supported in the programming languages shown below.

Parent topic: Function calls

This build: January 26, 2011 11:17:44

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17380_

2.17.1. Syntax for MQINQ

MQINQ (Hconn, Hobj, SelectorCount, Selectors, IntAttrCount,

IntAttrs, CharAttrLength, CharAttrs, CompCode, Reason)

Parent topic: MQINQ – Inquire object attributes

This build: January 26, 2011 11:17:44

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17390_

2.17.2. Parameters for MQINQ

The MQINQ call has the following parameters.

Hconn (MQHCONN) – input

Hobj (MQHOBJ) – input

SelectorCount (MQLONG) – input

Selectors (MQLONGxSelectorCount) – input

Page 480 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This is an array of SelectorCount attribute selectors; each selector identifies an attribute (integer or character) whose value is

required.

IntAttrCount (MQLONG) – input

IntAttrs (MQLONGxIntAttrCount) – output

CharAttrLength (MQLONG) – input

CharAttrs (MQCHARxCharAttrLength) – output

CompCode (MQLONG) – output

Reason (MQLONG) – output

Parent topic: MQINQ – Inquire object attributes

This build: January 26, 2011 11:17:44

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17400_

2.17.2.1. Hconn (MQHCONN) – input

This handle represents the connection to the queue manager. The value of Hconn was returned by a previous MQCONN or MQCONNX call.

On z/OS® for CICS® applications, and on i5/OS® for applications running in compatibility mode, the MQCONN call can be omitted, and the
following value specified for Hconn:

MQHC_DEF_HCONN

Default connection handle.

Parent topic: Parameters for MQINQ

This build: January 26, 2011 11:17:44

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17410_

2.17.2.2. Hobj (MQHOBJ) – input

This handle represents the object (of any type) whose attributes are required. The handle must have been returned by a previous MQOPEN
call that specified the MQOO_INQUIRE option.

Parent topic: Parameters for MQINQ

This build: January 26, 2011 11:17:44

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17420_

2.17.2.3. SelectorCount (MQLONG) – input

This is the count of selectors that are supplied in the Selectors array. It is the number of attributes that are to be returned. Zero is a valid

value. The maximum number allowed is 256.

Parent topic: Parameters for MQINQ

This build: January 26, 2011 11:17:45

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17430_

2.17.2.4. Selectors (MQLONGxSelectorCount) – input

This is an array of SelectorCount attribute selectors; each selector identifies an attribute (integer or character) whose value is required.

Each selector must be valid for the type of object that Hobj represents, otherwise the call fails with completion code MQCC_FAILED and

reason code MQRC_SELECTOR_ERROR.

In the special case of queues:

Page 481 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

� If the selector is not valid for queues of any type, the call fails with completion code MQCC_FAILED and reason code
MQRC_SELECTOR_ERROR.

� If the selector applies only to queues of type or types other than that of the object, the call succeeds with completion code

MQCC_WARNING and reason code MQRC_SELECTOR_NOT_FOR_TYPE.

� If the queue being inquired is a cluster queue, the selectors that are valid depend on how the queue was resolved; see Usage notes

for MQINQ for further details.

You can specify selectors in any order. Attribute values that correspond to integer attribute selectors (MQIA_* selectors) are returned in

IntAttrs in the same order in which these selectors occur in Selectors. Attribute values that correspond to character attribute selectors

(MQCA_* selectors) are returned in CharAttrs in the same order in which those selectors occur. MQIA_* selectors can be interleaved with

the MQCA_* selectors; only the relative order within each type is important.

Note:

1. The integer and character attribute selectors are allocated within two different ranges; the MQIA_* selectors reside within the range

MQIA_FIRST through MQIA_LAST, and the MQCA_* selectors within the range MQCA_FIRST through MQCA_LAST.

For each range, the constants MQIA_LAST_USED and MQCA_LAST_USED define the highest value that the queue manager will accept.

2. If all of the MQIA_* selectors occur first, the same element numbers can be used to address corresponding elements in the Selectors

and IntAttrs arrays.

3. If the SelectorCount parameter is zero, Selectors is not referred to; in this case, the parameter address passed by programs written

in C or System/390® assembler might be null.

The attributes that can be inquired are listed in the following tables. For the MQCA_* selectors, the constant that defines the length in bytes
of the resulting string in CharAttrs is given in parentheses.

The tables that follow list the selectors, by object, in alphabetic order, as follows:

� Table 1 MQINQ attribute selectors for queues

� Table 2 MQINQ attribute selectors for namelists

� Table 3 MQINQ attribute selectors for process definitions

� Table 4 MQINQ attribute selectors for the queue manager

All selectors are supported on all WebSphere® MQ platforms, except where indicated in the Note column as follows:

Not z/OS®

Supported on all platforms except z/OS

z/OS

Supported only on z/OS

Table 1. MQINQ attribute selectors for queues

Selector Description Note

MQCA_ALTERATION_DATE Date of most-recent alteration (MQ_DATE_LENGTH)

MQCA_ALTERATION_TIME Time of most-recent alteration (MQ_TIME_LENGTH)

MQCA_BACKOUT_REQ_Q_NAME Excessive backout requeue name (MQ_Q_NAME_LENGTH)

MQCA_BASE_Q_NAME Name of queue that alias resolves to

(MQ_Q_NAME_LENGTH)

MQCA_CF_STRUC_NAME Coupling-facility structure name

(MQ_CF_STRUC_NAME_LENGTH)

z/OS

MQCA_CLUSTER_NAME Cluster name (MQ_CLUSTER_NAME_LENGTH)

MQCA_CLUSTER_NAMELIST Cluster namelist (MQ_NAMELIST_NAME_LENGTH)

MQCA_CREATION_DATE Queue creation date (MQ_CREATION_DATE_LENGTH)

MQCA_CREATION_TIME Queue creation time (MQ_CREATION_TIME_LENGTH)

MQCA_INITIATION_Q_NAME Initiation queue name (MQ_Q_NAME_LENGTH)

MQCA_PROCESS_NAME Name of process definition

(MQ_PROCESS_NAME_LENGTH)

MQCA_Q_DESC Queue description (MQ_Q_DESC_LENGTH)

MQCA_Q_NAME Queue name (MQ_Q_NAME_LENGTH)

MQCA_REMOTE_Q_MGR_NAME Name of remote queue manager

(MQ_Q_MGR_NAME_LENGTH)

MQCA_REMOTE_Q_NAME Name of remote queue as known on remote queue

manager (MQ_Q_NAME_LENGTH)

MQCA_STORAGE_CLASS Name of storage class (MQ_STORAGE_CLASS_LENGTH) z/OS

MQCA_TRIGGER_DATA Trigger data (MQ_TRIGGER_DATA_LENGTH)

MQCA_XMIT_Q_NAME Transmission queue name (MQ_Q_NAME_LENGTH)

MQIA_ACCOUNTING_Q Controls collection of accounting data for queue Not z/OS

MQIA_BACKOUT_THRESHOLD Backout threshold

MQIA_CLWL_Q_PRIORITY Priority of queue

MQIA_CLWL_Q_RANK Rank of queue

MQIA_CLWL_USEQ Use remote queues

MQIA_CURRENT_Q_DEPTH Number of messages on queue

MQIA_DEF_BIND Default binding

MQIA_DEF_INPUT_OPEN_OPTION Default open-for-input option

MQIA_DEF_PERSISTENCE Default message persistence

MQIA_DEF_PRIORITY Default message priority

MQIA_DEFINITION_TYPE Queue definition type

Page 482 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

MQIA_DIST_LISTS Distribution list support Not z/OS

MQIA_HARDEN_GET_BACKOUT Whether to harden backout count

MQIA_INDEX_TYPE Type of index maintained for queue z/OS

MQIA_INHIBIT_GET Whether get operations are allowed

MQIA_INHIBIT_PUT Whether put operations are allowed

MQIA_MAX_MSG_LENGTH Maximum message length

MQIA_MAX_Q_DEPTH Maximum number of messages allowed on queue

MQIA_MSG_DELIVERY_SEQUENCE Whether message priority is relevant

MQIA_NPM_CLASS Level of reliability for nonpersistent messages

MQIA_OPEN_INPUT_COUNT Number of MQOPEN calls that have the queue open for
input

MQIA_OPEN_OUTPUT_COUNT Number of MQOPEN calls that have the queue open for

output

MQIA_PROPERTY_CONTROL Property control attribute

MQIA_Q_DEPTH_HIGH_EVENT Control attribute for queue depth high events Not z/OS

MQIA_Q_DEPTH_HIGH_LIMIT High limit for queue depth Not z/OS

MQIA_Q_DEPTH_LOW_EVENT Control attribute for queue depth low events Not z/OS

MQIA_Q_DEPTH_LOW_LIMIT Low limit for queue depth Not z/OS

MQIA_Q_DEPTH_MAX_EVENT Control attribute for queue depth max events Not z/OS

MQIA_Q_SERVICE_INTERVAL Limit for queue service interval Not z/OS

MQIA_Q_SERVICE_INTERVAL_EVENT Control attribute for queue service interval events Not z/OS

MQIA_Q_TYPE Queue type

MQIA_QSG_DISP Queue-sharing group disposition z/OS

MQIA_RETENTION_INTERVAL Queue retention interval

MQIA_SCOPE Queue definition scope Not z/OS

MQIA_SHAREABILITY Whether queue can be shared for input

MQIA_STATISTICS_Q Controls collection of statistics data for queue Not z/OS

MQIA_TRIGGER_CONTROL Trigger control

MQIA_TRIGGER_DEPTH Trigger depth

MQIA_TRIGGER_MSG_PRIORITY Threshold message priority for triggers

MQIA_TRIGGER_TYPE Trigger type

MQIA_USAGE Usage

Table 2. MQINQ attribute selectors for namelists

Selector Description Note

MQCA_ALTERATION_DATE Date of most-recent alteration (MQ_DATE_LENGTH)

MQCA_ALTERATION_TIME Time of most-recent alteration (MQ_TIME_LENGTH)

MQCA_NAMELIST_DESC Namelist description (MQ_NAMELIST_DESC_LENGTH)

MQCA_NAMELIST_NAME Name of namelist object (MQ_NAMELIST_NAME_LENGTH)

MQIA_NAMELIST_TYPE Namelist type z/OS

MQCA_NAMES Names in the namelist (MQ_Q_NAME_LENGTH × Number

of names in the list)

MQIA_NAME_COUNT Number of names in the namelist

MQIA_QSG_DISP Queue-sharing group disposition z/OS

Table 3. MQINQ attribute selectors for process definitions

Selector Description Note

MQCA_ALTERATION_DATE Date of most-recent alteration (MQ_DATE_LENGTH)

MQCA_ALTERATION_TIME Time of most-recent alteration (MQ_TIME_LENGTH)

MQCA_APPL_ID Application identifier (MQ_PROCESS_APPL_ID_LENGTH)

MQCA_ENV_DATA Environment data (MQ_PROCESS_ENV_DATA_LENGTH)

MQCA_PROCESS_DESC Description of process definition

(MQ_PROCESS_DESC_LENGTH)

MQCA_PROCESS_NAME Name of process definition

(MQ_PROCESS_NAME_LENGTH)

MQCA_USER_DATA User data (MQ_PROCESS_USER_DATA_LENGTH)

MQIA_APPL_TYPE Application type

MQIA_QSG_DISP Queue-sharing group disposition z/OS

Table 4. MQINQ attribute selectors for the queue manager

Selector Description Note

MQCA_ALTERATION_DATE Date of most-recent alteration (MQ_DATE_LENGTH)

MQCA_ALTERATION_TIME Time of most-recent alteration (MQ_TIME_LENGTH)

MQCA_CHANNEL_AUTO_DEF_EXIT Automatic channel definition exit name

(MQ_EXIT_NAME_LENGTH)

MQCA_CHINIT_SERVICE_PARM Reserved for use by IBM®

MQCA_CLUSTER_WORKLOAD_DATA Data passed to cluster workload exit

(MQ_EXIT_DATA_LENGTH)

MQCA_CLUSTER_WORKLOAD_EXIT Name of cluster workload exit

Page 483 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

(MQ_EXIT_NAME_LENGTH)

MQCA_COMMAND_INPUT_Q_NAME System command input queue name
(MQ_Q_NAME_LENGTH)

MQCA_DEAD_LETTER_Q_NAME Name of dead-letter queue (MQ_Q_NAME_LENGTH)

MQCA_DEF_XMIT_Q_NAME Default transmission queue name

(MQ_Q_NAME_LENGTH)

MQCA_DNS_GROUP Name of the group for the TCP listener that handles

inbound transmissions for the queue-sharing group

to join when using Workload Manager Dynamic

Domain Name Services support
(MQ_DNS_GROUP_NAME_LENGTH)

z/OS

MQCA_IGQ_USER_ID Intra-group queuing user identifier

(MQ_USER_ID_LENGTH)

z/OS

MQCA_LU_GROUP_NAME Generic LU name for the LU 6.2 listener that handles

inbound transmissions for the queue-sharing group

to use (MQ_LU_NAME_LENGTH)

z/OS

MQCA_LU_NAME Name of the LU to use for outbound LU 6.2
transmissions. Set this to the same LU that the

listener uses for inbound transmissions

(MQ_LU_NAME_LENGTH)

z/OS

MQCA_LU62_ARM_SUFFIX Suffix of the SYS1.PARMLIB member APPCPMxx, that
nominates the LUADD for this channel initiator

(MQ_ARM_SUFFIX_LENGTH)

z/OS

MQCA_PARENT Name of a hierarchically connected queue manager

that is nominated as the parent of this queue

manager (MQ_Q_MGR_NAME_LENGTH)

MQCA_Q_MGR_DESC Queue manager description

(MQ_Q_MGR_DESC_LENGTH)

MQCA_Q_MGR_IDENTIFIER Queue-manager identifier
(MQ_Q_MGR_IDENTIFIER_LENGTH)

MQCA_Q_MGR_NAME Name of local queue manager

(MQ_Q_MGR_NAME_LENGTH)

MQCA_QSG_NAME Queue-sharing group name

(MQ_QSG_NAME_LENGTH)

z/OS

MQCA_REPOSITORY_NAME Name of cluster for which queue manager provides

repository services (MQ_CLUSTER_NAME_LENGTH)

MQCA_REPOSITORY_NAMELIST Name of namelist object containing names of

clusters for which queue manager provides

repository services (MQ_NAMELIST_NAME_LENGTH)

MQCA_TCP_NAME Name of the TCP/IP system that you are using

(MQ_TCP_NAME_LENGTH)

z/OS

MQIA_ACCOUNTING_CONN_OVERRIDE Override accounting settings Not z/OS

MQIA_ACCOUNTING_INTERVAL How often to write intermediate accounting records Not z/OS

MQIA_ACCOUNTING_MQI Controls collection of accounting information for MQI

data

Not z/OS

MQIA_ACCOUNTING_Q Controls collection of accounting information for
queues

Not z/OS

MQIA_ACTIVE_CHANNELS Maximum number of channels that can be active at

any one time

z/OS

MQIA_ADOPTNEWMCA_CHECK Elements checked to determine whether to adopt an

MCA when a new inbound channel is detected that

has the same name as an MCA that is already active

z/OS

MQIA_ADOPTNEWMCA_INTERVAL Amount of time, in seconds, that the new channel
waits for the orphaned channel to end

Not z/OS

MQIA_ADOPTNEWMCA_TYPE Whether to restart an orphaned instance of an MCA

of a given channel type automatically when a new

inbound channel request matching the
AdoptNewMCACheck parameters is detected

z/OS

MQIA_AUTHORITY_EVENT Control attribute for authority events Not z/OS

MQIA_BRIDGE_EVENT Control attribute for IMS™ bridge events z/OS

MQIA_CHANNEL_AUTO_DEF Control attribute for automatic channel definition Not z/OS

MQIA_CHANNEL_AUTO_DEF_EVENT Control attribute for automatic channel definition

events

Not z/OS

MQIA_CHANNEL_EVENT Control attribute for channel events

MQIA_CHINIT_ADAPTERS Number of adapter subtasks to use for processing

WebSphere MQ calls

z/OS

MQIA_CHINIT_DISPATCHERS Number of dispatchers to use for the channel

initiator

z/OS

MQIA_CHINIT_TRACE_AUTO_START Whether to start channel initiator trace automatically z/OS

MQIA_CHINIT_TRACE_TABLE_SIZE Size of the channel initiator's trace data space (in

MB)

z/OS

MQIA_CLUSTER_WORKLOAD_LENGTH Cluster workload length.

MQIA_CLWL_MRU_CHANNELS Number of most recently used channels for cluster

workload balancing

MQIA_CLWL_USEQ Use remote queues

MQIA_CODED_CHAR_SET_ID Coded character set identifier

Page 484 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

MQIA_COMMAND_EVENT Control attribute for command events

MQIA_COMMAND_LEVEL Command level supported by queue manager

MQIA_CONFIGURATION_EVENT Control attribute for configuration events Not z/OS

MQIA_DIST_LISTS Distribution list support Not z/OS

MQIA_DNS_WLM Whether the TCP listener that handles inbound
transmissions for the queue-sharing group registers

with Workload Manager for Dynamic Domain Name

Services

z/OS

MQIA_EXPIRY_INTERVAL Interval between scans for expired messages z/OS

MQIA_GROUP_UR Control attribute for whether GROUP units of

recovery are enabled for this queue manager. The

GROUP unit of recovery disposition is only available

if the queue manager is a member of a queue-
sharing group

z/OS

MQIA_IGQ_PUT_AUTHORITY Intra-group queuing put authority z/OS

MQIA_INHIBIT_EVENT Control attribute for inhibit events Not z/OS

MQIA_INTRA_GROUP_QUEUING Intra-group queuing support z/OS

MQIA_LISTENER_TIMER Time interval (in seconds) between WebSphere MQ

attempts to restart the listener if there has been an
APPC or TCP/IP failure

z/OS

MQIA_LOCAL_EVENT Control attribute for local events Not z/OS

MQIA_LOGGER_EVENT Control attribute for inhibit events Not z/OS

MQIA_LU62_CHANNELS Maximum number of channels that can be current,

or clients that can be connected, using the LU 6.2

transmission protocol

z/OS

MQIA_MSG_MARK_BROWSE_INTERVAL Time interval (in milliseconds) after which the queue
manager can automatically remove a mark from

browse messages

MQIA_MAX_CHANNELS Maximum number of channels that can be current

(including server-connection channels with
connected clients)

z/OS

MQIA_MAX_HANDLES Maximum number of handles

MQIA_MAX_MSG_LENGTH Maximum message length

MQIA_MAX_PRIORITY Maximum priority

MQIA_MAX_UNCOMMITTED_MSGS Maximum number of uncommitted messages within

a unit of work

MQIA_OUTBOUND_PORT_MAX With MQIA_OUTBOUND_PORT_MIN, defines range of

port numbers to use when binding outgoing channels

z/OS

MQIA_OUTBOUND_PORT_MIN With MQIA_OUTBOUND_PORT_MAX, defines range

of port numbers to use when binding outgoing
channels

z/OS

MQIA_PERFORMANCE_EVENT Control attribute for performance events Not z/OS

MQIA_PLATFORM Platform on which the queue manager resides

MQIA_PUBSUB_MAXMSG_RETRY_COUNT The number of retries when processing (under

syncpoint) a failed command message

MQIA_PUBSUB_MODE Whether the publish/subscribe engine and the
queued publish/subscribe interface are running,

therefore allowing applications to publish or

subscribe using the application programming

interface and the queues that are monitored by the

queued publish/subscribe interface

MQIA_PUBSUB_NP_MSG Whether to discard (or keep) an undelivered input

message

MQIA_PUBSUB_NP_RESP Controls the behavior of undelivered response
messages

MQIA_PUBSUB_SYNC_PT Whether only persistent (or all) messages should be

processed under syncpoint

MQIA_RECEIVE_TIMEOUT Approximately how long a TCP/IP channel waits to
receive data, including heartbeats, from its partner,

before returning to the inactive state. This is the

numeric value qualified by

MQIA_RECEIVE_TIMEOUT_TYPE.

z/OS

MQIA_RECEIVE_TIMEOUT_MIN Minimum time that a TCP/IP channel waits to receive

data, including heartbeats, from its partner, before

returning to the inactive state

z/OS

MQIA_RECEIVE_TIMEOUT_TYPE Approximately how long a TCP/IP channel waits to
receive data, including heartbeats, from its partner,

before returning to the inactive state. This is the

qualifier applied to MQIA_RECEIVE_TIMEOUT.

z/OS

MQIA_REMOTE_EVENT Control attribute for remote events Not z/OS

MQIA_SECURITY_CASE Case of security profiles z/OS

MQIA_SSL_EVENT Control attribute for channel events

MQIA_SSL_FIPS_REQUIRED Use only FIPS-certified algorithms for cryptography

MQIA_SSL_RESET_COUNT SSL key reset count

MQIA_START_STOP_EVENT Control attribute for start stop events Not z/OS

MQIA_STATISTICS_AUTO_CLUSSDR Controls collection of statistics monitoring Not z/OS

Page 485 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Parent topic: Parameters for MQINQ

This build: January 26, 2011 11:17:48

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17440_

2.17.2.5. IntAttrCount (MQLONG) – input

This is the number of elements in the IntAttrs array. Zero is a valid value.

If this is at least the number of MQIA_* selectors in the Selectors parameter, all integer attributes requested are returned.

Parent topic: Parameters for MQINQ

This build: January 26, 2011 11:17:57

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17450_

2.17.2.6. IntAttrs (MQLONGxIntAttrCount) – output

This is an array of IntAttrCount integer attribute values.

Integer attribute values are returned in the same order as the MQIA_* selectors in the Selectors parameter. If the array contains more

elements than the number of MQIA_* selectors, the excess elements are unchanged.

If Hobj represents a queue, but an attribute selector does not apply to that type of queue, the specific value MQIAV_NOT_APPLICABLE is

returned for the corresponding element in the IntAttrs array.

If the IntAttrCount or SelectorCount parameter is zero, IntAttrs is not referred to; in this case, the parameter address passed by

programs written in C or System/390® assembler might be null.

Parent topic: Parameters for MQINQ

This build: January 26, 2011 11:17:58

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17460_

2.17.2.7. CharAttrLength (MQLONG) – input

This is the length in bytes of the CharAttrs parameter.

This must be at least the sum of the lengths of the requested character attributes (see Selectors). Zero is a valid value.

Parent topic: Parameters for MQINQ

This build: January 26, 2011 11:17:58

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

information for cluster sender channels

MQIA_STATISTICS_CHANNEL Controls collection of statistics data for channels Not z/OS

MQIA_STATISTICS_INTERVAL How often to write statistics monitoring data Not z/OS

MQIA_STATISTICS_MQI Controls collection of statistics monitoring

information for queue manager

Not z/OS

MQIA_STATISTICS_Q Controls collection of statistics data for queues Not z/OS

MQIA_SYNCPOINT Syncpoint availability

MQIA_TCP_CHANNELS Maximum number of channels that can be current,
or clients that can be connected, using the TCP/IP

transmission protocol

z/OS

MQIA_TCP_KEEP_ALIVE Whether to use the TCP KEEPALIVE facility to check

that the other end of the connection is still available

z/OS

MQIA_TCP_STACK_TYPE Whether the channel initiator can use only the

TCP/IP address space specified in TCPNAME, or can

optionally bind to any selected TCP/IP address

z/OS

MQIA_TRACE_ROUTE_RECORDING Controls recording of trace-route information z/OS

MQIA_TREE_LIFE_TIME Lifetime of unused non-administrative topics

MQIA_TRIGGER_INTERVAL Trigger interval

Page 486 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This topic's URL:

fr17470_

2.17.2.8. CharAttrs (MQCHARxCharAttrLength) – output

This is the buffer in which the character attributes are returned, concatenated together. The length of the buffer is given by the
CharAttrLength parameter.

Character attributes are returned in the same order as the MQCA_* selectors in the Selectors parameter. The length of each attribute

string is fixed for each attribute (see Selectors), and the value in it is padded to the right with blanks if necessary. If the buffer is larger

than that needed to contain all the requested character attributes (including padding), the bytes beyond the last attribute value returned are
unchanged.

If Hobj represents a queue, but an attribute selector does not apply to that type of queue, a character string consisting entirely of asterisks

(*) is returned as the value of that attribute in CharAttrs.

If the CharAttrLength or SelectorCount parameter is zero, CharAttrs is not referred to; in this case, the parameter address passed by

programs written in C or System/390® assembler might be null.

Parent topic: Parameters for MQINQ

This build: January 26, 2011 11:17:58

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17480_

2.17.2.9. CompCode (MQLONG) – output

The completion code; it is one of the following:

MQCC_OK

Successful completion.

MQCC_WARNING

Warning (partial completion).

MQCC_FAILED

Call failed.

Parent topic: Parameters for MQINQ

This build: January 26, 2011 11:17:58

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17490_

2.17.2.10. Reason (MQLONG) – output

Reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_WARNING:

MQRC_CHAR_ATTRS_TOO_SHORT

(2008, X'7D8') Not enough space allowed for character attributes.

MQRC_INT_ATTR_COUNT_TOO_SMALL

(2022, X'7E6') Not enough space allowed for integer attributes.

MQRC_SELECTOR_NOT_FOR_TYPE

(2068, X'814') Selector not applicable to queue type.

If CompCode is MQCC_FAILED:

MQRC_ADAPTER_NOT_AVAILABLE

(2204, X'89C') Adapter not available.

MQRC_ADAPTER_SERV_LOAD_ERROR

(2130, X'852') Unable to load adapter service module.

MQRC_API_EXIT_ERROR

(2374, X'946') API exit failed.

MQRC_API_EXIT_LOAD_ERROR

Page 487 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

(2183, X'887') Unable to load API exit.

MQRC_ASID_MISMATCH

(2157, X'86D') Primary and home ASIDs differ.

MQRC_CALL_IN_PROGRESS

(2219, X'8AB') MQI call entered before previous call complete.

MQRC_CF_STRUC_FAILED

(2373, X'945') Coupling-facility structure failed.

MQRC_CF_STRUC_IN_USE

(2346, X'92A') Coupling-facility structure in use.

MQRC_CHAR_ATTR_LENGTH_ERROR

(2006, X'7D6') Length of character attributes not valid.

MQRC_CHAR_ATTRS_ERROR

(2007, X'7D7') Character attributes string not valid.

MQRC_CICS_WAIT_FAILED

(2140, X'85C') Wait request rejected by CICS®.

MQRC_CONNECTION_BROKEN

(2009, X'7D9') Connection to queue manager lost.

MQRC_CONNECTION_NOT_AUTHORIZED

(2217, X'8A9') Not authorized for connection.

MQRC_CONNECTION_STOPPING

(2203, X'89B') Connection shutting down.

MQRC_HCONN_ERROR

(2018, X'7E2') Connection handle not valid.

MQRC_HOBJ_ERROR

(2019, X'7E3') Object handle not valid.

MQRC_INT_ATTR_COUNT_ERROR

(2021, X'7E5') Count of integer attributes not valid.

MQRC_INT_ATTRS_ARRAY_ERROR

(2023, X'7E7') Integer attributes array not valid.

MQRC_NOT_OPEN_FOR_INQUIRE

(2038, X'7F6') Queue not open for inquire.

MQRC_OBJECT_CHANGED

(2041, X'7F9') Object definition changed since opened.

MQRC_OBJECT_DAMAGED

(2101, X'835') Object damaged.

MQRC_PAGESET_ERROR

(2193, X'891') Error accessing page-set data set.

MQRC_Q_DELETED

(2052, X'804') Queue has been deleted.

MQRC_Q_MGR_NAME_ERROR

(2058, X'80A') Queue manager name not valid or not known.

MQRC_Q_MGR_NOT_AVAILABLE

(2059, X'80B') Queue manager not available for connection.

MQRC_Q_MGR_STOPPING

(2162, X'872') Queue manager shutting down.

MQRC_RESOURCE_PROBLEM

(2102, X'836') Insufficient system resources available.

MQRC_SELECTOR_COUNT_ERROR

(2065, X'811') Count of selectors not valid.

MQRC_SELECTOR_ERROR

(2067, X'813') Attribute selector not valid.

MQRC_SELECTOR_LIMIT_EXCEEDED

(2066, X'812') Count of selectors too big.

MQRC_STORAGE_NOT_AVAILABLE

(2071, X'817') Insufficient storage available.

MQRC_SUPPRESSED_BY_EXIT

(2109, X'83D') Call suppressed by exit program.

MQRC_UNEXPECTED_ERROR

(2195, X'893') Unexpected error occurred.

For detailed information on these codes, see:

� WebSphere MQ for z/OS Messages and Codes for WebSphere® MQ for z/OS®

� WebSphere MQ Messages for all other WebSphere MQ platforms

Page 488 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Parent topic: Parameters for MQINQ

This build: January 26, 2011 11:17:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17500_

2.17.3. Usage notes for MQINQ

Consider the following points when you intend to use the MQINQ call.

1. The values returned are a snapshot of the selected attributes. There is no guarantee that the attributes will not change before the
application can act upon the returned values.

2. When you open a model queue, a dynamic local queue is created. This is true even if you open the model queue to inquire about its
attributes.

The attributes of the dynamic queue (with certain exceptions) are the same as those of the model queue at the time that the dynamic
queue is created. If you subsequently use the MQINQ call on this queue, the queue manager returns the attributes of the dynamic
queue, and not those of the model queue. See Table 1 for details of which attributes of the model queue are inherited by the dynamic
queue.

3. If the object being inquired is an alias queue, the attribute values returned by the MQINQ call are those of the alias queue, and not
those of the base queue or topic to which the alias resolves.

4. If the object being inquired is a cluster queue, the attributes that can be inquired depend on how the queue is opened:

� If the cluster queue is opened for inquire plus one or more of input, browse, or set, there must be a local instance of the cluster
queue for the open to succeed. In this case the attributes that can be inquired are those valid for local queues.

� If the cluster queue is opened for inquire alone, or inquire and output, only the attributes listed below can be inquired; the QType

attribute has the value MQQT_CLUSTER in this case:

� MQCA_Q_DESC

� MQCA_Q_NAME

� MQIA_DEF_BIND

� MQIA_DEF_PERSISTENCE

� MQIA_DEF_PRIORITY

� MQIA_INHIBIT_PUT

� MQIA_Q_TYPE

If the cluster queue is opened with no fixed binding (that is, MQOO_BIND_NOT_FIXED specified on the MQOPEN call, or
MQOO_BIND_AS_Q_DEF specified when the DefBind attribute has the value MQBND_BIND_NOT_FIXED), successive MQINQ

calls for the queue might inquire different instances of the cluster queue, although usually all the instances have the same
attribute values.

� An alias queue object can be defined for a cluster. Because TARGTYPE and TARGET are not cluster attributes, the process
performing an MQOPEN process on the alias queue is not aware of the object to which the alias resolves.

During the initial MQOPEN, the alias queue resolves to a queue manager and a queue in the cluster. Name resolution takes
place again at the remote queue manager and it is here that the TARGTPYE of the alias queue is resolved.

If the alias queue resolves to a topic alias, then publication of messages put to the alias queue takes place at this remote queue
manager.

For more information about cluster queues, refer to WebSphere MQ Queue Manager Clusters.

5. If you want to inquire a number of attributes, and subsequently set some of them using the MQSET call, you might want to position
the attributes to be set at the beginning of the selector arrays, so that the same arrays (with reduced counts) can be used for MQSET.

6. If more than one of the warning situations arise (see the CompCode parameter), the reason code returned is the first one in the

following list that applies:

a. MQRC_SELECTOR_NOT_FOR_TYPE

b. MQRC_INT_ATTR_COUNT_TOO_SMALL

c. MQRC_CHAR_ATTRS_TOO_SHORT

7. For more information about object attributes, see:

� Attributes for queues

� Attributes for namelists

� Attributes for process definitions

� Attributes for the queue manager

Parent topic: MQINQ – Inquire object attributes

This build: January 26, 2011 11:17:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17510_

2.17.4. Language invocations for MQINQ

The MQINQ call is supported in the programming languages shown below.

C invocation

Page 489 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

COBOL invocation

PL/I invocation

System/390 assembler invocation

Visual Basic invocation

Parent topic: MQINQ – Inquire object attributes

This build: January 26, 2011 11:17:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17520_

2.17.4.1. C invocation

MQINQ (Hconn, Hobj, SelectorCount, Selectors, IntAttrCount, IntAttrs,

 CharAttrLength, CharAttrs, &CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /* Connection handle */

MQHOBJ Hobj; /* Object handle */

MQLONG SelectorCount; /* Count of selectors */

MQLONG Selectors[n]; /* Array of attribute selectors */

MQLONG IntAttrCount; /* Count of integer attributes */

MQLONG IntAttrs[n]; /* Array of integer attributes */

MQLONG CharAttrLength; /* Length of character attributes buffer */

MQCHAR CharAttrs[n]; /* Character attributes */

MQLONG CompCode; /* Completion code */

MQLONG Reason; /* Reason code qualifying CompCode */

Parent topic: Language invocations for MQINQ

This build: January 26, 2011 11:17:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17530_

2.17.4.2. COBOL invocation

 CALL 'MQINQ' USING HCONN, HOBJ, SELECTORCOUNT, SELECTORS-TABLE,

 INTATTRCOUNT, INTATTRS-TABLE, CHARATTRLENGTH,

 CHARATTRS, COMPCODE, REASON.

Declare the parameters as follows:

** Connection handle

 01 HCONN PIC S9(9) BINARY.

** Object handle

 01 HOBJ PIC S9(9) BINARY.

** Count of selectors

 01 SELECTORCOUNT PIC S9(9) BINARY.

** Array of attribute selectors

 01 SELECTORS-TABLE.

 02 SELECTORS PIC S9(9) BINARY OCCURS n TIMES.

** Count of integer attributes

 01 INTATTRCOUNT PIC S9(9) BINARY.

** Array of integer attributes

 01 INTATTRS-TABLE.

 02 INTATTRS PIC S9(9) BINARY OCCURS n TIMES.

** Length of character attributes buffer

 01 CHARATTRLENGTH PIC S9(9) BINARY.

** Character attributes

 01 CHARATTRS PIC X(n).

** Completion code

 01 COMPCODE PIC S9(9) BINARY.

** Reason code qualifying COMPCODE

 01 REASON PIC S9(9) BINARY.

Parent topic: Language invocations for MQINQ

This build: January 26, 2011 11:17:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17540_

2.17.4.3. PL/I invocation

Page 490 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

call MQINQ (Hconn, Hobj, SelectorCount, Selectors, IntAttrCount,

 IntAttrs, CharAttrLength, CharAttrs, CompCode, Reason);

Declare the parameters as follows:

dcl Hconn fixed bin(31); /* Connection handle */

dcl Hobj fixed bin(31); /* Object handle */

dcl SelectorCount fixed bin(31); /* Count of selectors */

dcl Selectors(n) fixed bin(31); /* Array of attribute selectors */

dcl IntAttrCount fixed bin(31); /* Count of integer attributes */

dcl IntAttrs(n) fixed bin(31); /* Array of integer attributes */

dcl CharAttrLength fixed bin(31); /* Length of character attributes

 buffer */

dcl CharAttrs char(n); /* Character attributes */

dcl CompCode fixed bin(31); /* Completion code */

dcl Reason fixed bin(31); /* Reason code qualifying

 CompCode */

Parent topic: Language invocations for MQINQ

This build: January 26, 2011 11:17:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17550_

2.17.4.4. System/390® assembler invocation

 CALL MQINQ,(HCONN,HOBJ,SELECTORCOUNT,SELECTORS,INTATTRCOUNT, X

 INTATTRS,CHARATTRLENGTH,CHARATTRS,COMPCODE,REASON)

Declare the parameters as follows:

HCONN DS F Connection handle

HOBJ DS F Object handle

SELECTORCOUNT DS F Count of selectors

SELECTORS DS (n)F Array of attribute selectors

INTATTRCOUNT DS F Count of integer attributes

INTATTRS DS (n)F Array of integer attributes

CHARATTRLENGTH DS F Length of character attributes buffer

CHARATTRS DS CL(n) Character attributes

COMPCODE DS F Completion code

REASON DS F Reason code qualifying COMPCODE

Parent topic: Language invocations for MQINQ

This build: January 26, 2011 11:17:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17560_

2.17.4.5. Visual Basic invocation

MQINQ Hconn, Hobj, SelectorCount, Selectors, IntAttrCount, IntAttrs,

 CharAttrLength, CharAttrs, CompCode, Reason

Declare the parameters as follows:

Dim Hconn As Long 'Connection handle'

Dim Hobj As Long 'Object handle'

Dim SelectorCount As Long 'Count of selectors'

Dim Selectors As Long 'Array of attribute selectors'

Dim IntAttrCount As Long 'Count of integer attributes'

Dim IntAttrs As Long 'Array of integer attributes'

Dim CharAttrLength As Long 'Length of character attributes buffer'

Dim CharAttrs As String 'Character attributes'

Dim CompCode As Long 'Completion code'

Dim Reason As Long 'Reason code qualifying CompCode'

Parent topic: Language invocations for MQINQ

This build: January 26, 2011 11:17:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17570_

2.18. MQINQMP - Inquire message property

The MQINQMP call returns the value of a property of a message.

Syntax for MQINQMP

Page 491 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Parameters for MQINQMP

Language invocations for MQINQMP

Parent topic: Function calls

This build: January 26, 2011 11:19:43

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr25260_

2.18.1. Syntax for MQINQMP

MQINQMP (Hconn, Hmsg, InqPropOpts, Name, PropDesc, Type, ValueLength, Value, DataLength, CompCode, Reason)

Parent topic: MQINQMP - Inquire message property

This build: January 26, 2011 11:19:43

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr25270_

2.18.2. Parameters for MQINQMP

The MQINQMP call has the following parameters.

Hconn (MQHCONN) - input

Hmsg (MQHMSG) - input

InqPropOps (MQIMPO) - input

Name (MQCHARV) - input

PropDesc (MQPD) - output

Type (MQLONG) - input/output

ValueLength (MQLONG) - input

Value (MQBYTExValueLength) - output

DataLength (MQLONG) - output

CompCode (MQLONG) – output

Reason (MQLONG) – output

Parent topic: MQINQMP - Inquire message property

This build: January 26, 2011 11:19:44

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr25280_

2.18.2.1. Hconn (MQHCONN) - input

This handle represents the connection to the queue manager. The value of Hconn must match the connection handle that was used to create

the message handle specified in the Hmsg parameter.

If the message handle was created using MQHC_UNASSOCIATED_HCONN then a valid connection must be established on the thread
inquiring a property of the message handle otherwise the call fails with MQRC_CONNECTION_BROKEN.

Parent topic: Parameters for MQINQMP

This build: January 26, 2011 11:19:44

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr25290_

Page 492 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

2.18.2.2. Hmsg (MQHMSG) - input

This is the message handle to be inquired. The value was returned by a previous MQCRTMH call.

Parent topic: Parameters for MQINQMP

This build: January 26, 2011 11:19:44

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr25300_

2.18.2.3. InqPropOps (MQIMPO) - input

See the MQIMPO data type for details.

Parent topic: Parameters for MQINQMP

This build: January 26, 2011 11:19:44

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr25310_

2.18.2.4. Name (MQCHARV) - input

The name of the property to inquire.

If no property with this name can be found, the call fails with reason MQRC_PROPERTY_NOT_AVAILABLE.

You can use the wildcard character percent sign (%) at the end of the property name. The wildcard matches zero or more characters,
including the period (.) character. This allows an application to inquire the value of many properties. Call MQINQMP with option
MQIMPO_INQ_FIRST to get the first matching property and again with the option MQIMPO_INQ_NEXT to get the next matching property.

When no more matching properties are available, the call fails with MQRC_PROPERTY_NOT_AVAILABLE . If the ReturnedName field of the

InqPropOpts structure is initialized with an address or offset for the returned name of the property, this is filled in on return from MQINQMP
with the same of the property that has been matched. If the VSBufSize field of the ReturnedName in the InqPropOpts structure is less than

the length of the returned property name the completion code is set MQCC_FAILED with reason MQRC_PROPERTY_NAME_TOO_BIG.

Properties that have known synonyms are returned as follows:

1. Properties with the prefix "mqps." are returned as the WebSphere® MQ property name. For example, "MQTopicString" is the returned
name rather than "mqps.Top"

2. Properties with the prefix "jms." or "mcd." are returned as the JMS header field name, for example, "JMSExpiration" is the returned
name rather than "jms.Exp".

3. Properties with the prefix "usr." are returned without that prefix, for example, "Color" is returned rather than "usr.Color".

Properties with synonyms are only returned once.

In the C programming language, the following macro variables are defined for inquiring on all properties and all properties that begin "usr.",
respectively:

MQPROP_INQUIRE_ALL

Inquire on all properties of the message.

MQPROP_INQUIRE_ALL_USR

Inquire on all properties of the message that start "usr.". The returned name is returned without the "usr." prefix.

If MQIMP_INQ_NEXT is specified but Name has changed since the previous call or this is the first call, then MQIMPO_INQ_FIRST is implied.

See Property names and Property name restrictions for further information about the use of property names.

Parent topic: Parameters for MQINQMP

This build: January 26, 2011 11:19:44

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr25320_

2.18.2.5. PropDesc (MQPD) - output

This structure is used to define the attributes of a property, including what happens if the property is not supported, what message context
the property belongs to, and what messages the property should be copied into. See MQPD for details of this structure.

Parent topic: Parameters for MQINQMP

This build: January 26, 2011 11:19:44

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

Page 493 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This topic's URL:

fr25330_

2.18.2.6. Type (MQLONG) - input/output

On return from the MQINQMP call this parameter is set to the data type of Value. The data type can be any of the following:

MQTYPE_BOOLEAN

A boolean.

MQTYPE_BYTE_STRING

a byte string.

MQTYPE_INT8

An 8-bit signed integer.

MQTYPE_INT16

A 16-bit signed integer.

MQTYPE_INT32

A 32-bit signed integer.

MQTYPE_INT64

A 64-bit signed integer.

MQTYPE_FLOAT32

A 32-bit floating-point number.

MQTYPE_FLOAT64

A 64-bit floating-point number.

MQTYPE_STRING

A character string.

MQTYPE_NULL

The property exists but has a null value.

If the data type of the property value is not recognized then MQTYPE_STRING is returned and a string representation of the value is placed

into the Value area. A string representation of the data type can be found in the TypeString field of the InqPropOpts parameter. A warning
completion code is returned with reason MQRC_PROP_TYPE_NOT_SUPPORTED.

Additionally, if the option MQIMPO_CONVERT_TYPE is specified, conversion of the property value is requested. Use Type as an input to
specify the data type that you want the property to be returned as. See the description of the MQIMPO_CONVERT_TYPE option of the

MQIMPO structure for details of data type conversion.

If you do not request type conversion, you can use the following value on input:

MQTYPE_AS_SET

The value of the property is returned without converting its data type.

Parent topic: Parameters for MQINQMP

This build: January 26, 2011 11:19:44

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr25340_

2.18.2.7. ValueLength (MQLONG) - input

The length in bytes of the Value area. Specify zero for properties that you do not require the value returned for. These could be properties
which are designed by an application to have a null value or an empty string. Also specify zero if the MQIMPO_QUERY_LENGTH option has
been specified; in this case no value is returned.

Parent topic: Parameters for MQINQMP

This build: January 26, 2011 11:19:44

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr25350_

2.18.2.8. Value (MQBYTEx ValueLength) - output

This is the area to contain the inquired property value. The buffer should be aligned on a boundary appropriate for the value being returned.
Failure to do so may result in an error when the value is later accessed.

If ValueLength is less than the length of the property value, as much of the property value as possible is moved into Value and the call fails
with completion code MQCC_FAILED and reason MQRC_PROPERTY_VALUE_TOO_BIG.

The character set of the data in Value is given by the ReturnedCCSID field in the InqPropOpts parameter. The encoding of the data in Value
is given by the ReturnedEncoding field in the InqPropOpts parameter.

Page 494 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

In the C programming language, the parameter is declared as a pointer-to-void; the address of any type of data can be specified as the
parameter.

If the ValueLength parameter is zero, Value is not referred to and its value passed by programs written in C or System/390® assembler

can be null.

Parent topic: Parameters for MQINQMP

This build: January 26, 2011 11:19:44

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr25360_

2.18.2.9. DataLength (MQLONG) - output

This is the length in bytes of the actual property value as returned in the Value area.

If DataLength is less than the property value length, DataLength is still filled in on return from the MQINQMP call. This allows the application
to determine the size of the buffer required to accommodate the property value, and then reissue the call with a buffer of the appropriate
size.

The following values may also be returned.

If the Type parameter is set to MQTYPE_STRING or MQTYPE_BYTE_STRING:

MQVL_EMPTY_STRING

The property exists but contains no characters or bytes.

Parent topic: Parameters for MQINQMP

This build: January 26, 2011 11:19:44

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr25370_

2.18.2.10. CompCode (MQLONG) – output

The completion code; it is one of the following:

MQCC_OK

Successful completion.

MQCC_WARNING

Warning (partial completion).

MQCC_FAILED

Call failed.

Parent topic: Parameters for MQINQMP

This build: January 26, 2011 11:19:44

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr25380_

2.18.2.11. Reason (MQLONG) – output

The reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_WARNING:

MQRC_PROP_NAME_NOT_CONVERTED

(2492, X'09BC') Returned property name not converted.

MQRC_PROP_VALUE_NOT_CONVERTED

(2466, X'09A2') Property value not converted.

MQRC_PROP_TYPE_NOT_SUPPORTED

(2467, X'09A3') Property data type is not supported.

Page 495 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

MQRC_RFH_FORMAT_ERROR

(2421, X'0975') An MQRFH2 folder containing properties could not be parsed.

If CompCode is MQCC_FAILED:

MQRC_ADAPTER_NOT_AVAILABLE

(2204, X'089C') Adapter not available.

MQRC_ADAPTER_SERV_LOAD_ERROR

(2130, X'0852') Unable to load adapter service module.

MQRC_ASID_MISMATCH

(2157, X'086D') Primary and home ASIDs differ.

MQRC_BUFFER_ERROR

(2004, X'07D4') Value parameter not valid.

MQRC_BUFFER_LENGTH_ERROR

(2005, X'07D5') Value length parameter not valid.

MQRC_CALL_IN_PROGRESS

(2219, X'08AB') MQI call entered before previous call completed.

MQRC_CONNECTION_BROKEN

(2009, X'07D9') Connection to queue manager lost.

MQRC_DATA_LENGTH_ERROR

(2010, X'07DA') Data length parameter not valid.

MQRC_IMPO_ERROR

(2464, X'09A0') Inquire message property options structure not valid.

MQRC_HMSG_ERROR

(2460, X'099C') Message handle not valid.

MQRC_MSG_HANDLE_IN_USE

(2499, X'09C3') Message handle already in use.

MQRC_OPTIONS_ERROR

(2046, X'07F8') Options not valid or not consistent.

MQRC_PD_ERROR

(2482, X'09B2') Property descriptor structure not valid.

MQRC_PROP_CONV_NOT_SUPPORTED

(2470, X'09A6') Conversion from the actual to requested data type not supported.

MQRC_PROPERTY_NAME_ERROR

(2442, X'098A') Invalid property name.

MQRC_PROPERTY_NAME _TOO_BIG

(2465, X'09A1') Property name too big for returned name buffer.

MQRC_PROPERTY_NOT_AVAILABLE

(2471, X'09A7) Property not available.

MQRC_PROPERTY_VALUE_TOO_BIG

(2469, X'09A5') Property value too big for the Value area.

MQRC_PROP_NUMBER_FORMAT_ERROR

(2472, X'09A8') Number format error encountered in value data.

MQRC_PROPERTY_TYPE_ERROR

(2473, X'09A9') Invalid requested property type.

MQRC_SOURCE_CCSID_ERROR

(2111, X'083F') Property name coded character set identifier not valid.

MQRC_STORAGE_NOT_AVAILABLE

(2071, X'0871') Insufficient storage available.

MQRC_UNEXPECTED_ERROR

(2195, X'0893') Unexpected error occurred.

For detailed information on these codes, see:

� WebSphere MQ for z/OS Messages and Codes for WebSphere® MQ for z/OS®

� WebSphere MQ Messages for all other WebSphere MQ platforms

Parent topic: Parameters for MQINQMP

This build: January 26, 2011 11:19:45

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr25390_

2.18.3. Language invocations for MQINQMP

Page 496 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

C invocation

COBOL invocation

PL/I invocation

System/390 assembler invocation
Parameters used for the System/390® assembler invocation of MQINQMP.

Parent topic: MQINQMP - Inquire message property

This build: January 26, 2011 11:19:52

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr26150_

2.18.3.1. C invocation

MQINQMP (Hconn, Hmsg, &InqPropOpts, &Name, &PropDesc, &Type,

ValueLength, Value, &DataLength, &CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /* Connection handle */

MQHMSG Hmsg; /* Message handle */

MQDIMPO InqPropOpts; /* Options that control the action of MQINQMP */

MQCHARV Name; /* Property name */

MQPD PropDesc; /* Property descriptor */

MQLONG Type; /* Property data type */

MQLONG ValueLength; /* Length in bytes of the Value area */

MQBYTE Value[n]; /* Area to contain the property value */

MQLONG DataLength; /* Length of the property value */

MQLONG CompCode; /* Completion code */

MQLONG Reason; /* Reason code qualifying CompCode */

Parent topic: Language invocations for MQINQMP

This build: January 26, 2011 11:19:53

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr26160_

2.18.3.2. COBOL invocation

CALL ‘MQINQMP’ USING HCONN, HMSG, INQMSGOPTS, NAME, PROPDESC, TYPE,

VALUELENGTH, VALUE, DATALENGTH, COMPCODE, REASON.

Declare the parameters as follows:

** Connection handle

 01 HCONN PIC S9(9) BINARY.

** Message handle

 01 HMSG PIC S9(18) BINARY.

** Options that control the action of MQINQMP

 01 INQMSGOPTS.

 COPY CMQIMPOV.

** Property name

 01 NAME.

 COPY CMQCHRVV.

** Property descriptor

 01 PROPDESC.

 COPY CMQPDV.

** Property data type

 01 TYPE PIC S9(9) BINARY.

** Length in bytes of the VALUE area

 01 VALUELENGTH PIC S9(9) BINARY.

** Area to contain the property value

 01 VALUE PIC X(n).

** Length of the property value

 01 DATALENGTH PIC S9(9) BINARY.

** Completion code

 01 COMPCODE PIC S9(9) BINARY.

** Reason code qualifying COMPCODE

 01 REASON PIC S9(9) BINARY.

Parent topic: Language invocations for MQINQMP

This build: January 26, 2011 11:19:53

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

Page 497 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

fr26170_

2.18.3.3. PL/I invocation

call MQINQMP (Hconn, Hmsg, InqPropOpts, Name, PropDesc, Type,

ValueLength, Value, DataLength, CompCode, Reason);

Declare the parameters as follows:

dcl Hconn fixed bin(31); /* Connection handle */

dcl Hmsg fixed bin(63); /* Message handle */

dcl InqPropOpts like MQIMPO; /* Options that control the action of MQINQMP */

dcl Name like MQCHARV; /* Property name */

dcl PropDesc like MQPD; /* Property descriptor */

dcl Type fixed bin (31); /* Property data type */

dcl ValueLength fixed bin (31); /* Length in bytes of the Value area */

dcl Value char (n); /* Area to contain the property value */

dcl DataLength fixed bin (31); /* Length of the property value */

dcl CompCode fixed bin (31); /* Completion code */

dcl Reason fixed bin (31); /* Reason code qualifying CompCode */

Parent topic: Language invocations for MQINQMP

This build: January 26, 2011 11:19:53

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr26180_

2.18.3.4. System/390 assembler invocation

Parameters used for the System/390® assembler invocation of MQINQMP.

CALL MQINQMP,(HCONN,HMSG,INQMSGOPTS,NAME,PROPDESC,TYPE,

VALUELENGTH,VALUE,DATALENGTH,COMPCODE,REASON)

Declare the parameters as follows:

HCONN DS F Connection handle

HMSG DS D Message handle

INQMSGOPTS CMQIMPOA , Options that control the action of MQINQMP

NAME CMQCHRVA , Property name

PROPDESC CMQPDA , Property descriptor

TYPE DS F Property data type

VALUELENGTH DS F Length in bytes of the VALUE area

VALUE DS CL(n) Area to contain the property value

DATALENGTH DS F Length of the property value

COMPCODE DS F Completion code

REASON DS F Reason code qualifying COMPCODE

Parent topic: Language invocations for MQINQMP

This build: January 26, 2011 11:19:53

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr26200_

2.19. MQMHBUF - Convert message handle into buffer

The MQMHBUF converts a message handle into a buffer and is the inverse of the MQBUFMH call.

Syntax for MQMHBUF

Parameters for MQMHBUF
The MQMHBUF call has the following parameters.

Usage notes for MQMHBUF
MQMHBUF converts a message handle into a buffer.

Language invocations for MQMHBUF
The MQMHBUF call is supported in the programming languages shown below.

Parent topic: Function calls

This build: January 26, 2011 11:19:46

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr25550_

2.19.1. Syntax for MQMHBUF

Page 498 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

MQMHBUF (Hconn, Hmsg, MsgHBufOpts, Name, MsgDesc, BufferLength, Buffer, DataLength, CompCode, Reason)

Parent topic: MQMHBUF - Convert message handle into buffer

This build: January 26, 2011 11:19:46

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr25510

2.19.2. Parameters for MQMHBUF

The MQMHBUF call has the following parameters.

Hconn (MQHCONN) – input

Hmsg (MQHMSG) – input
This is the message handle for which a buffer is required.

MsgHBufOpts (MQMHBO) – input
The MQMHBO structure allows applications to specify options that control how buffers are produced from message handles.

Name (MQCHARV) - input
The name of the property or properties to put into the buffer.

MsgDesc (MQMD) – input/output

BufferLength (MQLONG) - input

Buffer (MQBYTExBufferLength) - output

DataLength (MQLONG) - output

CompCode (MQLONG) – output

Reason (MQLONG) – output

Parent topic: MQMHBUF - Convert message handle into buffer

This build: January 26, 2011 11:19:46

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr25520_

2.19.2.1. Hconn (MQHCONN) – input

This handle represents the connection to the queue manager. The value of Hconn must match the connection handle that was used to create

the message handle specified in the Hmsg parameter.

If the message handle was created using MQHC_UNASSOCIATED_HCONN, a valid connection must be established on the thread deleting the
message handle. If a valid connection is not established, the call fails with MQRC_CONNECTION_BROKEN.

Parent topic: Parameters for MQMHBUF

This build: January 26, 2011 11:19:46

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr25530_

2.19.2.2. Hmsg (MQHMSG) – input

This is the message handle for which a buffer is required.

The value was returned by a previous MQCRTMH call.

Parent topic: Parameters for MQMHBUF

This build: January 26, 2011 11:19:46

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr25540_

Page 499 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

2.19.2.3. MsgHBufOpts (MQMHBO) – input

The MQMHBO structure allows applications to specify options that control how buffers are produced from message handles.

See MQMHBO – Message handle to buffer options for details.

Parent topic: Parameters for MQMHBUF

This build: January 26, 2011 11:19:46

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr25550_

2.19.2.4. Name (MQCHARV) - input

The name of the property or properties to put into the buffer.

If no property matching the name can be found, the call fails with MQRC_PROPERTY_NOT_AVAILABLE.

Wildcards

You can use a wildcard to put more than one property into the buffer. To do this, use the wildcard character '%' at the end of the property
name. This wildcard matches zero or more characters, including the '.' character.

In the C programming language, the following macro variables are defined for inquiring on all properties and all properties that begin 'usr',

respectively:

MQPROP_INQUIRE_ALL

Put all properties of the message into the buffer

MQPROP_INQUIRE_ALL_USR

Put all properties of the message that start with the characters 'usr.' into the buffer.

See Property names and Property name restrictions for further information about the use of property names.

Parent topic: Parameters for MQMHBUF

This build: January 26, 2011 11:19:46

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr25560_

2.19.2.5. MsgDesc (MQMD) – input/output

The MsgDesc structure describes the contents of the buffer area.

On output, the Encoding, CodedCharSetId and Format fields are set to correctly describe the encoding, character set identifier, and format

of the data in the buffer area as written by the call.

Data in this structure is in the character set and encoding of the application.

Parent topic: Parameters for MQMHBUF

This build: January 26, 2011 11:19:47

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr25570_

2.19.2.6. BufferLength (MQLONG) - input

BufferLength is the length of the Buffer area, in bytes.

Parent topic: Parameters for MQMHBUF

This build: January 26, 2011 11:19:47

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr25580_

2.19.2.7. Buffer (MQBYTExBufferLength) - output

Buffer defines the area to contain the message properties. You should align the buffer on a 4-byte boundary.

Page 500 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

If BufferLength is less than the length required to store the properties in Buffer, MQMHBUF fails with MQRC_PROPERTY_VALUE_TOO_BIG.

The contents of the buffer can change even if the call fails.

Parent topic: Parameters for MQMHBUF

This build: January 26, 2011 11:19:47

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr25590_

2.19.2.8. DataLength (MQLONG) - output

DataLength is the length, in bytes, of the returned properties in the buffer. If the value is zero, no properties matched the value given in

Name and the call fails with reason code MQRC_PROPERTY_NOT_AVAILABLE.

If BufferLength is less than the length required to store the properties in the buffer, the MQMHBUF call fails with

MQRC_PROPERTY_VALUE_TOO_BIG, but a value is still entered into DataLength. This allows the application to determine the size of the

buffer required to accommodate the properties, and then reissue the call with the required BufferLength.

Parent topic: Parameters for MQMHBUF

This build: January 26, 2011 11:19:47

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr25600_

2.19.2.9. CompCode (MQLONG) – output

The completion code; it is one of the following:

MQCC_OK

Successful completion.

MQCC_FAILED

Call failed.

Parent topic: Parameters for MQMHBUF

This build: January 26, 2011 11:19:47

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr25610_

2.19.2.10. Reason (MQLONG) – output

The reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:

MQRC_ADAPTER_NOT_AVAILABLE

(2204, X'089C') Adapter not available.

MQRC_ADAPTER_SERV_LOAD_ERROR

(2130, X'852') Unable to load adapter service module.

MQRC_ASID_MISMATCH

(2157, X'86D') Primary and home ASIDs differ.

MQRC_MHBO_ERROR

(2501, X'095C') Message handle to buffer options structure not valid.

MQRC_BUFFER_ERROR

(2004, X'07D4') Buffer parameter not valid.

MQRC_BUFFER_LENGTH_ERROR

(2005, X'07D5') Buffer length parameter not valid.

MQRC_CALL_IN_PROGRESS

(2219, X'08AB') MQI call entered before previous call completed.

Page 501 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

MQRC_CONNECTION_BROKEN

(2009, X'07D9') Connection to queue manager lost.

MQRC_DATA_LENGTH_ERROR

(2010, X'07DA') Data length parameter not valid.

MQRC_HMSG_ERROR

(2460, X'099C') Message handle not valid.

MQRC_MD_ERROR

(2026, X'07EA') Message descriptor not valid.

MQRC_MSG_HANDLE_IN_USE

(2499, X'09C3') Message handle already in use.

MQRC_OPTIONS_ERROR

(2046, X'07FE') Options not valid or not consistent.

MQRC_PROPERTY_NAME_ERROR

(2442, X'098A') Property name is not valid.

MQRC_PROPERTY_NOT_AVAILABLE

(2471, X'09A7') Property not available.

MQRC_PROPERTY_VALUE_TOO_BIG

(2469, X'09A5') BufferLength value is too small to contain specified properties.

MQRC_UNEXPECTED_ERROR

(2195, X'893') Unexpected error occurred.

Parent topic: Parameters for MQMHBUF

This build: January 26, 2011 11:19:47

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr25620_

2.19.3. Usage notes for MQMHBUF

MQMHBUF converts a message handle into a buffer.

You can use it with an MQGET API exit to access certain properties, using the message property APIs, and then pass these in a buffer back
to an application designed to use MQRFH2 headers rather than message handles.

This call is the inverse of the MQBUFMH call, which you can use to parse message properties from a buffer into a message handle.

Parent topic: MQMHBUF - Convert message handle into buffer

This build: January 26, 2011 11:19:47

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr25625_

2.19.4. Language invocations for MQMHBUF

The MQMHBUF call is supported in the programming languages shown below.

C invocation

COBOL invocation

PL/I invocation

System/390 assembler invocation

Parent topic: MQMHBUF - Convert message handle into buffer

This build: January 26, 2011 11:19:47

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr25630_

2.19.4.1. C invocation

MQMHBUF (Hconn, Hmsg, &MsgHBufOpts, &Name, &MsgDesc, BufferLength, Buffer,

 &DataLength, &CompCode, &Reason);

Page 502 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Declare the parameters as follows:

MQHCONN Hconn; /* Connection handle */

MQHMSG Hmsg; /* Message handle */

MQMHBO MsgHBufOpts; /* Options that control the action of MQMHBUF */

MQCHARV Name; /* Property name */

MQMD MsgDesc; /* Message descriptor */

MQLONG BufferLength; /* Length in bytes of the Buffer area */

MQBYTE Buffer[n]; /* Area to contain the properties */

MQLONG DataLength; /* Length of the properties */

MQLONG CompCode; /* Completion code */

MQLONG Reason; /* Reason code qualifying CompCode */

Parent topic: Language invocations for MQMHBUF

This build: January 26, 2011 11:19:47

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr25640_

2.19.4.2. COBOL invocation

 CALL ‘MQMHBUF’ USING HCONN, HMSG, MSGHBUFOPTS, NAME, MSGDESC,

 BUFFERLENGTH, BUFFER, DATALENGTH, COMPCODE, REASON.

Declare the parameters as follows:

** Connection handle

 01 HCONN PIC S9(9) BINARY.

** Message handle

 01 HMSG PIC S9(18) BINARY.

** Options that control the action of MQMHBUF

 01 MSGHBUFOPTS.

 COPY CMQMHBOV.

** Property name

 01 NAME

 COPY CMQCHRVV.

** Message descriptor

 01 MSGDESC

 COPY CMQMDV.

** Length in bytes of the Buffer area */

 01 BUFFERLENGTH PIC S9(9) BINARY.

** Area to contain the properties

 01 BUFFER PIC X(n).

** Length of the properties

 01 DATALENGTH PIC S9(9) BINARY.

** Completion code

 01 COMPCODE PIC S9(9) BINARY.

** Reason code qualifying COMPCODE

 01 REASON PIC S9(9) BINARY.

Parent topic: Language invocations for MQMHBUF

This build: January 26, 2011 11:19:47

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr25650_

2.19.4.3. PL/I invocation

call MQMHBUF (Hconn, Hmsg, MsgHBufOpts, Name, MsgDesc, BufferLength, Buffer,

 DataLength, CompCode, Reason);

Declare the parameters as follows:

dcl Hconn fixed bin(31); /* Connection handle */

dcl Hmsg fixed bin(63); /* Message handle */

dcl MsgHBufOpts like MQMHBO; /* Options that control the action of MQMHBUF */

dcl Name like MQCHARV; /* Property name */

dcl MsgDesc like MQMD; /* Message descriptor */

dcl BufferLength fixed bin(31); /* Length in bytes of the Buffer area */

dcl Buffer char(n); /* Area to contain the properties */

dcl DataLength fixed bin(31); /* Length of the properties */

dcl CompCode fixed bin(31); /* Completion code */

dcl Reason fixed bin(31); /* Reason code qualifying CompCode */

Parent topic: Language invocations for MQMHBUF

This build: January 26, 2011 11:19:47

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr25660_

Page 503 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

2.19.4.4. System/390® assembler invocation

CALL MQMHBUF,(HCONN,HMSG,MSGHBUFOPTS,NAME,MSGDESC,BUFFERLENGTH,

 BUFFER,DATALENGTH,COMPCODE,REASON)

Declare the parameters as follows:

HCONN DS F Connection handle

HMSG DS D Message handle

MSGHBUFOPTS CMQMHBOA , Options that control the action of MQMHBUF

NAME CMQCHRVA , Property name

MSGDESC CMQMDA , Message descriptor

BUFFERLENGTH DS F Length in bytes of the BUFFER area

BUFFER DS CL(n) Area to contain the properties

DATALENGTH DS F Length of the properties

COMPCODE DS F Completion code

REASON DS F Reason code qualifying COMPCODE

Parent topic: Language invocations for MQMHBUF

This build: January 26, 2011 11:19:48

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr25680_

2.20. MQOPEN – Open object

The MQOPEN call establishes access to an object.

The following types of object are valid:

� Queue (including distribution lists)

� Namelist

� Process definition

� Queue manager

� Topic

Syntax for MQOPEN

Parameters for MQOPEN
The MQOPEN call has the following parameters.

Usage notes for MQOPEN

Language invocations for MQOPEN

The MQOPEN call is supported in the programming languages shown below.

Parent topic: Function calls

This build: January 26, 2011 11:17:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17580_

2.20.1. Syntax for MQOPEN

MQOPEN (Hconn, ObjDesc, Options, Hobj, CompCode, Reason)

Parent topic: MQOPEN – Open object

This build: January 26, 2011 11:17:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17590_

2.20.2. Parameters for MQOPEN

The MQOPEN call has the following parameters.

Hconn (MQHCONN) – input

ObjDesc (MQOD) – input/output

Page 504 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Options (MQLONG) – input

Hobj (MQHOBJ) – output

CompCode (MQLONG) – output

Reason (MQLONG) – output

Parent topic: MQOPEN – Open object

This build: January 26, 2011 11:17:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17600_

2.20.2.1. Hconn (MQHCONN) – input

This handle represents the connection to the queue manager. The value of Hconn was returned by a previous MQCONN or MQCONNX call.

On z/OS® for CICS® applications, and on i5/OS® for applications running in compatibility mode, the MQCONN call can be omitted, and the
following value specified for Hconn:

MQHC_DEF_HCONN

Default connection handle.

Parent topic: Parameters for MQOPEN

This build: January 26, 2011 11:18:00

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17610_

2.20.2.2. ObjDesc (MQOD) – input/output

This is a structure that identifies the object to be opened; see MQOD – Object descriptor for details.

If the ObjectName field in the ObjDesc parameter is the name of a model queue, a dynamic local queue is created with the attributes of the

model queue; this happens whatever options you specify on the Options parameter. Subsequent operations using the Hobj returned by the

MQOPEN call are performed on the new dynamic queue, and not on the model queue. This is true even for the MQINQ and MQSET calls. The
name of the model queue in the ObjDesc parameter is replaced with the name of the dynamic queue created. The type of the dynamic

queue is determined by the value of the DefinitionType attribute of the model queue (see Attributes for queues). For information about

the close options applicable to dynamic queues, see the description of the MQCLOSE call.

Parent topic: Parameters for MQOPEN

This build: January 26, 2011 11:18:00

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17620_

2.20.2.3. Options (MQLONG) – input

You must specify at least one of the following options:

� MQOO_BROWSE

� MQOO_INPUT_* (only one of these)

� MQOO_INQUIRE

� MQOO_OUTPUT

� MQOO_SET

See the following table for details of these options; other options can be specified as required. If more than one option is required, the
values can be:

� Added together (do not add the same constant more than once), or

� Combined using the bitwise OR operation (if the programming language supports bit operations).

Combinations that are not valid are noted; all other combinations are valid. Only options that are applicable to the type of object specified
by ObjDesc are allowed. The following table shows valid MQOPEN options for queries and topics.

Option Alias
(note

1)

Local
and

Model

Remote Nonlocal
Cluster

Distribution
list

Topic

MQOO_INPUT_AS_Q_DEF Yes Yes No No No No

MQOO_INPUT_SHARED Yes Yes No No No No

Page 505 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Access options: The following options control the type of operations that can be performed on the object:

MQOO_INPUT_AS_Q_DEF

Open queue to get messages using queue-defined default.

The queue is opened for use with subsequent MQGET calls. The type of access is either shared or exclusive, depending on the value of the
DefInputOpenOption queue attribute; see Attributes for queues for details.

This option is valid only for local, alias, and model queues; it is not valid for remote queues, distribution lists, and objects that are not
queues.

MQOO_INPUT_SHARED

Open queue to get messages with shared access.

The queue is opened for use with subsequent MQGET calls. The call can succeed if the queue is currently open by this or another
application with MQOO_INPUT_SHARED, but fails with reason code MQRC_OBJECT_IN_USE if the queue is currently open with
MQOO_INPUT_EXCLUSIVE.

This option is valid only for local, alias, and model queues; it is not valid for remote queues, distribution lists, and objects that are not
queues.

MQOO_INPUT_EXCLUSIVE

Open queue to get messages with exclusive access.

The queue is opened for use with subsequent MQGET calls. The call fails with reason code MQRC_OBJECT_IN_USE if the queue is currently
open by this or another application for input of any type (MQOO_INPUT_SHARED or MQOO_INPUT_EXCLUSIVE).

This option is valid only for local, alias, and model queues; it is not valid for remote queues, distribution lists, and objects that are not
queues.

MQOO_OUTPUT

Open queue to put messages, or a topic or topic string to publish messages.

The queue or topic is opened for use with subsequent MQPUT calls.

An MQOPEN call with this option can succeed even if the InhibitPut queue attribute is set to MQQA_PUT_INHIBITED (although

subsequent MQPUT calls fail while the attribute is set to this value).

This option is valid for all types of queue, including distribution lists, and topics.

The following notes apply to these options:

� Only one of these options can be specified.

� An MQOPEN call with one of these options can succeed even if the InhibitGet queue attribute is set to MQQA_GET_INHIBITED

(although subsequent MQGET calls fail while the attribute is set to this value).

� If the queue is defined as not being shareable (that is, the Shareability queue attribute has the value MQQA_NOT_SHAREABLE),

attempts to open the queue for shared access are treated as attempts to open the queue with exclusive access.

� If an alias queue is opened with one of these options, the test for exclusive use (or for whether another application has exclusive use)

is against the base queue to which the alias resolves.

� These options are not valid if ObjectQMgrName is the name of a queue manager alias; this is true even if the value of the

RemoteQMgrName attribute in the local definition of a remote queue used for queue-manager aliasing is the name of the local queue

MQOO_INPUT_EXCLUSIVE Yes Yes No No No No

MQOO_BROWSE Yes Yes No No No No

MQOO_OUTPUT Yes Yes Yes Yes Yes Yes

MQOO_INQUIRE Yes Yes Note 2 Yes No No

MQOO_SET Yes Yes Note 2 No No No

MQOO_BIND_ON_OPEN (note 3) Yes Yes Yes Yes Yes No

MQOO_BIND_NOT_FIXED (note 3) Yes Yes Yes Yes Yes No

MQOO_BIND_AS_Q_DEF (note 3) Yes Yes Yes Yes Yes No

MQOO_SAVE_ALL_CONTEXT Yes Yes No No No No

MQOO_PASS_IDENTITY_CONTEXT Yes Yes Yes Yes Yes Note 4

MQOO_PASS_ALL_CONTEXT Yes Yes Yes Yes Yes Yes

MQOO_SET_IDENTITY_CONTEXT Yes Yes Yes Yes Yes Note 4

MQOO_SET_ALL_CONTEXT Yes Yes Yes Yes Yes Yes

MQOO_ALTERNATE_USER_AUTHORITY Yes Yes Yes Yes Yes Yes

MQOO_FAIL_IF_QUIESCING Yes Yes Yes Yes Yes Yes

MQOO_RESOLVE_LOCAL_Q Yes Yes Yes Yes No No

Notes:

1. The validity of options for aliases depends on the validity of the option for the queue to which the alias resolves.

2. This option is valid only for the local definition of a remote queue.

3. This option can be specified for any queue type, but is ignored if the queue is not a cluster queue. However, the DefBind

queue attribute overrides the base queue even when the alias queue is not in a cluster.

4. These attributes can be used with a topic, but affect only the context set for the retained message, not the context fields

sent to any subscriber.

Page 506 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

manager.

MQOO_BROWSE

Open queue to browse messages.

The queue is opened for use with subsequent MQGET calls with one of the following options:

� MQGMO_BROWSE_FIRST

� MQGMO_BROWSE_NEXT

� MQGMO_BROWSE_MSG_UNDER_CURSOR

This is allowed even if the queue is currently open for MQOO_INPUT_EXCLUSIVE. An MQOPEN call with the MQOO_BROWSE option
establishes a browse cursor, and positions it logically before the first message on the queue; see MQGMO - Options field for further
information.

This option is valid only for local, alias, and model queues; it is not valid for remote queues, distribution lists, and objects that are not
queues. It is also not valid if ObjectQMgrName is the name of a queue manager alias; this is true even if the value of the RemoteQMgrName

attribute in the local definition of a remote queue used for queue-manager aliasing is the name of the local queue manager.

MQOO_CO_OP

Open as a cooperating member of the set of handles.

This option is valid only with the MQOO_BROWSE option. If it is specified without MQOO_BROWSE, MQOPEN returns with
MQRC_OPTIONS_ERROR.

The handle returned is considered to be a member of a cooperating set of handles for subsequent MQGET calls with one of the following
options:

� MQGMO_MARK_BROWSE_CO_OP

� MQGMO_UNMARKED_BROWSE_MSG

� MQGMO_UNMARK_BROWSE_CO_OP

This option is valid only for local, alias, and model queues; it is not valid for remote queues, distribution lists, and objects that are not
queues.

MQOO_INQUIRE

Open object to inquire attributes.

The queue, namelist, process definition, or queue manager is opened for use with subsequent MQINQ calls.

This option is valid for all types of object other than distribution lists. It is not valid if ObjectQMgrName is the name of a queue manager

alias; this is true even if the value of the RemoteQMgrName attribute in the local definition of a remote queue used for queue-manager

aliasing is the name of the local queue manager.

MQOO_SET

Open queue to set attributes.

The queue is opened for use with subsequent MQSET calls.

This option is valid for all types of queue other than distribution lists. It is not valid if ObjectQMgrName is the name of a local definition of a

remote queue; this is true even if the value of the RemoteQMgrName attribute in the local definition of a remote queue used for queue-

manager aliasing is the name of the local queue manager.

Binding options: The following options apply when the object being opened is a cluster queue; these options control the binding of the
queue handle to an instance of the cluster queue:

MQOO_BIND_ON_OPEN

The local queue manager binds the queue handle to an instance of the destination queue when the queue is opened. As a result, all
messages put using this handle are sent to the same instance of the destination queue, and by the same route.

This option is valid only for queues, and affects only cluster queues. If specified for a queue that is not a cluster queue, the option is
ignored.

MQOO_BIND_NOT_FIXED

This stops the local queue manager binding the queue handle to an instance of the destination queue. As a result, successive MQPUT calls
using this handle send the messages to different instances of the destination queue, or to the same instance but by different routes. It
also allows the instance selected to be changed later by the local queue manager, by a remote queue manager, or by a message channel
agent (MCA), according to network conditions.

Note: Client and server applications that need to exchange a series of messages to complete a transaction must not use
MQOO_BIND_NOT_FIXED (or MQOO_BIND_AS_Q_DEF when DefBind has the value MQBND_BIND_NOT_FIXED), because successive

messages in the series might be sent to different instances of the server application.

If MQOO_BROWSE or one of the MQOO_INPUT_* options is specified for a cluster queue, the queue manager is forced to select the local
instance of the cluster queue. As a result, the binding of the queue handle is fixed, even if MQOO_BIND_NOT_FIXED is specified.

If MQOO_INQUIRE is specified with MQOO_BIND_NOT_FIXED, successive MQINQ calls using that handle might inquire different instances
of the cluster queue, although typically all the instances have the same attribute values.

MQOO_BIND_NOT_FIXED is valid only for queues, and affects only cluster queues. If specified for a queue that is not a cluster queue, the

option is ignored.

MQOO_BIND_AS_Q_DEF

The local queue manager binds the queue handle in the way defined by the DefBind queue attribute. The value of this attribute is either

MQBND_BIND_ON_OPEN or MQBND_BIND_NOT_FIXED.

Page 507 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

MQOO_BIND_AS_Q_DEF is the default when MQOO_BIND_ON_OPEN or MQOO_BIND_NOT_FIXED is not specified.

MQOO_BIND_AS_Q_DEF aids program documentation. It is not intended that this option is used with either of the other two bind options,
but because its value is zero such use cannot be detected.

Context options: The following options control the processing of message context:

MQOO_SAVE_ALL_CONTEXT

Context information is associated with this queue handle. This information is set from the context of any message retrieved using this
handle. For more information about message context, see the WebSphere MQ Application Programming Guide.

This context information can be passed to a message that is then put on a queue using the MQPUT or MQPUT1 calls. See the
MQPMO_PASS_IDENTITY_CONTEXT and MQPMO_PASS_ALL_CONTEXT options described in MQPMO – Put-message options.

Until a message has been successfully retrieved, context cannot be passed to a message being put on a queue.

A message retrieved using one of the MQGMO_BROWSE_* browse options does not have its context information saved (although the

context fields in the MsgDesc parameter are set after a browse).

This option is valid only for local, alias, and model queues; it is not valid for remote queues, distribution lists, and objects that are not
queues. One of the MQOO_INPUT_* options must be specified.

MQOO_PASS_IDENTITY_CONTEXT

This allows the MQPMO_PASS_IDENTITY_CONTEXT option to be specified in the PutMsgOpts parameter when a message is put on a

queue; this gives the message the identity context information from an input queue that was opened with the
MQOO_SAVE_ALL_CONTEXT option. For more information about message context, see the WebSphere MQ Application Programming
Guide.

The MQOO_OUTPUT option must be specified.

This option is valid for all types of queue, including distribution lists.

MQOO_PASS_ALL_CONTEXT

This allows the MQPMO_PASS_ALL_CONTEXT option to be specified in the PutMsgOpts parameter when a message is put on a queue; this

gives the message the identity and origin context information from an input queue that was opened with the MQOO_SAVE_ALL_CONTEXT

option. For more information about message context, see the WebSphere MQ Application Programming Guide.

This option implies MQOO_PASS_IDENTITY_CONTEXT, which need not therefore be specified. The MQOO_OUTPUT option must be

specified.

This option is valid for all types of queue, including distribution lists.

MQOO_SET_IDENTITY_CONTEXT

This allows the MQPMO_SET_IDENTITY_CONTEXT option to be specified in the PutMsgOpts parameter when a message is put on a queue;

this gives the message the identity context information contained in the MsgDesc parameter specified on the MQPUT or MQPUT1 call. For

more information about message context, see the WebSphere MQ Application Programming Guide.

This option implies MQOO_PASS_IDENTITY_CONTEXT, which need not therefore be specified. The MQOO_OUTPUT option must be

specified.

This option is valid for all types of queue, including distribution lists.

MQOO_SET_ALL_CONTEXT

This allows the MQPMO_SET_ALL_CONTEXT option to be specified in the PutMsgOpts parameter when a message is put on a queue; this

gives the message the identity and origin context information contained in the MsgDesc parameter specified on the MQPUT or MQPUT1

call. For more information about message context, see the WebSphere MQ Application Programming Guide.

This option implies the following options, which need not therefore be specified:

� MQOO_PASS_IDENTITY_CONTEXT

� MQOO_PASS_ALL_CONTEXT

� MQOO_SET_IDENTITY_CONTEXT

The MQOO_OUTPUT option must be specified.

This option is valid for all types of queue, including distribution lists.

Other options: The following options control authorization checking, what happens when the queue manager is quiescing, and whether to
resolve the local queue name:

MQOO_ALTERNATE_USER_AUTHORITY

The AlternateUserId field in the ObjDesc parameter contains a user identifier to use to validate this MQOPEN call. The call can succeed

only if this AlternateUserId is authorized to open the object with the specified access options, regardless of whether the user identifier

under which the application is running is authorized to do so. This does not apply to any context options specified, however, which are
always checked against the user identifier under which the application is running.

This option is valid for all types of object.

MQOO_FAIL_IF_QUIESCING

The MQOPEN call fails if the queue manager is in quiescing state.

On z/OS®, for a CICS® or IMS™ application, this option also forces the MQOPEN call to fail if the connection is in quiescing state.

This option is valid for all types of object.

Page 508 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

For information about client channels see the WebSphere MQ Clients book.

MQOO_RESOLVE_LOCAL_Q

Fill the ResolvedQName in the MQOD structure with the name of the local queue that was opened. Similarly, the ResolvedQMgrName is
filled with the name of the local queue manager hosting the local queue. If the MQOD structure is less than Version 3,
MQOO_RESOLVE_LOCAL_Q is ignored with no error being returned.

The local queue is always returned when either a local, alias, or model queue is opened, but this is not the case when, for example, a
remote queue or a non-local cluster queue is opened without the MQOO_RESOLVE_LOCAL_Q option; the ResolvedQName and
ResolvedQMgrName are filled with the RemoteQName and RemoteQMgrName found in the remote queue definition, or similarly with the
chosen remote cluster queue.

If you specify MQOO_RESOLVE_LOCAL_Q when opening, for example, a remote queue, ResolvedQName is the transmission queue to
which messages are put. The ResolvedQMgrName is filled with the name of the local queue manager hosting the transmission queue.

If you are authorized for browse, input, or output on a queue, you have the required authority to specify this flag on the MQOPEN call. No

special authority is needed.

This option is valid only for queues and queue managers.

Read ahead options: The following options control whether non-persistent messages are sent to the client before an application requests
them. The following notes apply to the read ahead options:

� Only one of these options can be specified.

� These options are valid only for topics and local, alias, and model queues. They are not valid for remote queues, distribution lists, or
queue managers.

� These options are only applicable when one of MQOO_BROWSE, MQOO_INPUT_SHARED and MQOO_INPUT_EXCLUSIVE are also
specified although it is not an error to specify these options with MQOO_INQUIRE or MQOO_SET.

� If the application is not running as a WebSphere® MQ client, these options are ignored.

MQOO_NO_READ_AHEAD

Non-persistent messages are not sent the client before an application requests them.

MQOO_READ_AHEAD

Non-persistent messages are sent to the client before an application requests them.

MQOO_READ_AHEAD_AS_Q_DEF

Read ahead behavior is determined by the default read ahead attribute of the queue being opened. This is the default value.

Parent topic: Parameters for MQOPEN

This build: January 26, 2011 11:18:01

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17630_

2.20.2.4. Hobj (MQHOBJ) – output

This handle represents the access that has been established to the object. It must be specified on subsequent MQ calls that operate on the
object. It ceases to be valid when the MQCLOSE call is issued, or when the unit of processing that defines the scope of the handle

terminates.

The scope of the object handle returned is the same as that of the connection handle specified on the call. See MQCONN - Hconn parameter
for information about handle scope.

Parent topic: Parameters for MQOPEN

This build: January 26, 2011 11:18:01

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17640_

2.20.2.5. CompCode (MQLONG) – output

The completion code; it is one of the following:

MQCC_OK

Successful completion.

MQCC_WARNING

Warning (partial completion).

MQCC_FAILED

Call failed.

Parent topic: Parameters for MQOPEN

This build: January 26, 2011 11:18:01

Page 509 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17650_

2.20.2.6. Reason (MQLONG) – output

The reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_WARNING:

MQRC_MULTIPLE_REASONS

(2136, X'858') Multiple reason codes returned.

If CompCode is MQCC_FAILED:

MQRC_ADAPTER_NOT_AVAILABLE

(2204, X'89C') Adapter not available.

MQRC_ADAPTER_SERV_LOAD_ERROR

(2130, X'852') Unable to load adapter service module.

MQRC_ALIAS_BASE_Q_TYPE_ERROR

(2001, X'7D1') Alias base queue not a valid type.

MQRC_API_EXIT_ERROR

(2374, X'946') API exit failed.

MQRC_API_EXIT_LOAD_ERROR

(2183, X'887') Unable to load API exit.

MQRC_ASID_MISMATCH

(2157, X'86D') Primary and home ASIDs differ.

MQRC_CALL_IN_PROGRESS

(2219, X'8AB') MQI call entered before previous call complete.

MQRC_CF_NOT_AVAILABLE

(2345, X'929') Coupling facility not available.

MQRC_CF_STRUC_AUTH_FAILED

(2348, X'92C') Coupling-facility structure authorization check failed.

MQRC_CF_STRUC_ERROR

(2349, X'92D') Coupling-facility structure not valid.

MQRC_CF_STRUC_FAILED

(2373, X'945') Coupling-facility structure failed.

MQRC_CF_STRUC_IN_USE

(2346, X'92A') Coupling-facility structure in use.

MQRC_CF_STRUC_LIST_HDR_IN_USE

(2347, X'92B') Coupling-facility structure list-header in use.

MQRC_CICS_WAIT_FAILED

(2140, X'85C') Wait request rejected by CICS®.

MQRC_CLUSTER_EXIT_ERROR

(2266, X'8DA') Cluster workload exit failed.

MQRC_CLUSTER_PUT_INHIBITED

(2268, X'8DC') Put calls inhibited for all queues in cluster.

MQRC_CLUSTER_RESOLUTION_ERROR

(2189, X'88D') Cluster name resolution failed.

MQRC_CLUSTER_RESOURCE_ERROR

(2269, X'8DD') Cluster resource error.

MQRC_CONNECTION_BROKEN

(2009, X'7D9') Connection to queue manager lost.

MQRC_CONNECTION_NOT_AUTHORIZED

(2217, X'8A9') Not authorized for connection.

MQRC_CONNECTION_QUIESCING

(2202, X'89A') Connection quiescing.

MQRC_CONNECTION_STOPPING

(2203, X'89B') Connection shutting down.

Page 510 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

MQRC_DB2_NOT_AVAILABLE

(2342, X'926') DB2® subsystem not available.

MQRC_DEF_XMIT_Q_TYPE_ERROR

(2198, X'896') Default transmission queue not local.

MQRC_DEF_XMIT_Q_USAGE_ERROR

(2199, X'897') Default transmission queue usage error.

MQRC_DYNAMIC_Q_NAME_ERROR

(2011, X'7DB') Name of dynamic queue not valid.

MQRC_HANDLE_NOT_AVAILABLE

(2017, X'7E1') No more handles available.

MQRC_HCONN_ERROR

(2018, X'7E2') Connection handle not valid.

MQRC_HOBJ_ERROR

(2019, X'7E3') Object handle not valid.

MQRC_MULTIPLE_REASONS

(2136, X'858') Multiple reason codes returned.

MQRC_NAME_IN_USE

(2201, X'899') Name in use.

MQRC_NAME_NOT_VALID_FOR_TYPE

(2194, X'892') Object name not valid for object type.

MQRC_NOT_AUTHORIZED

(2035, X'7F3') Not authorized for access.

MQRC_OBJECT_ALREADY_EXISTS

(2100, X'834') Object already exists.

MQRC_OBJECT_DAMAGED

(2101, X'835') Object damaged.

MQRC_OBJECT_IN_USE

(2042, X'7FA') Object already open with conflicting options.

MQRC_OBJECT_LEVEL_INCOMPATIBLE

(2360, X'938') Object level not compatible.

MQRC_OBJECT_NAME_ERROR

(2152, X'868') Object name not valid.

MQRC_OBJECT_NOT_UNIQUE

(2343, X'927') Object not unique.

MQRC_OBJECT_Q_MGR_NAME_ERROR

(2153, X'869') Object queue-manager name not valid.

MQRC_OBJECT_RECORDS_ERROR

(2155, X'86B') Object records not valid.

MQRC_OBJECT_STRING_ERROR

(2441, X'0989') Objectstring field not valid

MQRC_OBJECT_TYPE_ERROR

(2043, X'7FB') Object type not valid.

MQRC_OD_ERROR

(2044, X'7FC') Object descriptor structure not valid.

MQRC_OPTION_NOT_VALID_FOR_TYPE

(2045, X'7FD') Option not valid for object type.

MQRC_OPTIONS_ERROR

(2046, X'7FE') Options not valid or not consistent.

MQRC_PAGESET_ERROR

(2193, X'891') Error accessing page-set data set.

MQRC_PAGESET_FULL

(2192, X'890') External storage medium is full.

MQRC_Q_DELETED

(2052, X'804') Queue has been deleted.

MQRC_Q_MGR_NAME_ERROR

(2058, X'80A') Queue manager name not valid or not known.

MQRC_Q_MGR_NOT_AVAILABLE

(2059, X'80B') Queue manager not available for connection.

MQRC_Q_MGR_QUIESCING

(2161, X'871') Queue manager quiescing.

MQRC_Q_MGR_STOPPING

(2162, X'872') Queue manager shutting down.

Page 511 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

MQRC_Q_TYPE_ERROR

(2057, X'809') Queue type not valid.

MQRC_RECS_PRESENT_ERROR

(2154, X'86A') Number of records present not valid.

MQRC_REMOTE_Q_NAME_ERROR

(2184, X'888') Remote queue name not valid.

MQRC_RESOURCE_PROBLEM

(2102, X'836') Insufficient system resources available.

MQRC_RESPONSE_RECORDS_ERROR

(2156, X'86C') Response records not valid.

MQRC_SECURITY_ERROR

(2063, X'80F') Security error occurred.

MQRC_SELECTOR_SYNTAX_ERROR

2459 (X'099B') An MQOPEN, MQPUT1 or MQSUB call was issued but a selection string was specified which contained a syntax error.

MQRC_STOPPED_BY_CLUSTER_EXIT

(2188, X'88C') Call rejected by cluster workload exit.

MQRC_STORAGE_MEDIUM_FULL

(2192, X'890') External storage medium is full.

MQRC_STORAGE_NOT_AVAILABLE

(2071, X'817') Insufficient storage available.

MQRC_SUPPRESSED_BY_EXIT

(2109, X'83D') Call suppressed by exit program.

MQRC_UNEXPECTED_ERROR

(2195, X'893') Unexpected error occurred.

MQRC_UNKNOWN_ALIAS_BASE_Q

(2082, X'822') Unknown alias base queue.

MQRC_UNKNOWN_DEF_XMIT_Q

(2197, X'895') Unknown default transmission queue.

MQRC_UNKNOWN_OBJECT_NAME

(2085, X'825') Unknown object name.

MQRC_UNKNOWN_OBJECT_Q_MGR

(2086, X'826') Unknown object queue manager.

MQRC_UNKNOWN_REMOTE_Q_MGR

(2087, X'827') Unknown remote queue manager.

MQRC_UNKNOWN_XMIT_Q

(2196, X'894') Unknown transmission queue.

MQRC_WRONG_CF_LEVEL

(2366, X'93E') Coupling-facility structure is wrong level.

MQRC_XMIT_Q_TYPE_ERROR

(2091, X'82B') Transmission queue not local.

MQRC_XMIT_Q_USAGE_ERROR

(2092, X'82C') Transmission queue with wrong usage.

For detailed information on these codes, see:

� WebSphere MQ for z/OS Messages and Codes for WebSphere® MQ for z/OS®

� WebSphere MQ Messages for all other WebSphere MQ platforms

Parent topic: Parameters for MQOPEN

This build: January 26, 2011 11:18:02

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17660_

2.20.3. Usage notes for MQOPEN

General notes

1. The object opened is one of the following:

� A queue to:

� Get or browse messages (using the MQGET call)

� Put messages (using the MQPUT call)

� Inquire about the attributes of the queue (using the MQINQ call)

� Set the attributes of the queue (using the MQSET call)

Page 512 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

If the queue named is a model queue, a dynamic local queue is created. See the ObjDesc parameter described in MQOPEN –

Open object.

A distribution list is a special type of queue object that contains a list of queues. It can be opened to put messages, but not to
get or browse messages, or to inquire or set attributes. See usage note 8 for further details.

A queue that has QSGDISP(GROUP) is a special type of queue definition that cannot be used with the MQOPEN or MQPUT1 calls.

� A namelist to inquire about the names of the queues in the list (using the MQINQ call).

� A process definition to inquire about the process attributes (using the MQINQ call).

� The queue manager to inquire about the attributes of the local queue manager (using the MQINQ call).

� A topic to publish a message (using the MQPUT call)

2. An application can open the same object more than once. A different object handle is returned for each open. Each handle that is
returned can be used for the functions for which the corresponding open was performed.

3. If the object being opened is a queue other than a cluster queue, all name resolution within the local queue manager takes place at
the time of the MQOPEN call. This can include:

� Resolution of the name of a local definition of a remote queue to the name of the remote queue manager, and the name by
which the queue is known at the remote queue manager

� Resolution of the remote queue-manager name to the name of a local transmission queue

� (z/OS® only) Resolution of the remote queue-manager name to the name of the shared transmission queue used by the IGQ
agent (applies only if the local and remote queue managers belong to the same queue-sharing group)

� Alias resolution to the name of a base queue or a topic object.

However, be aware that subsequent MQINQ or MQSET calls for the handle relate solely to the name that has been opened, and not to
the object resulting after name resolution has occurred. For example, if the object opened is an alias, the attributes returned by the
MQINQ call are the attributes of the alias, not the attributes of the base queue or a topic object to which the alias resolves.

If the object being opened is a cluster queue, name resolution can occur at the time of the MQOPEN call, or be deferred until later. The
point at which resolution occurs is controlled by the MQOO_BIND_* options specified on the MQOPEN call:

� MQOO_BIND_ON_OPEN

� MQOO_BIND_NOT_FIXED

� MQOO_BIND_AS_Q_DEF

Refer to WebSphere MQ Queue Manager Clusters for more information about name resolution for cluster queues.

4. An MQOPEN call with the MQOO_BROWSE option establishes a browse cursor, for use with MQGET calls that specify the object handle
and one of the browse options. This allows the queue to be scanned without altering its contents. A message that has been found by
browsing can subsequently be removed from the queue by using the MQGMO_MSG_UNDER_CURSOR option.

Multiple browse cursors can be active for a single application by issuing several MQOPEN requests for the same queue.

5. Applications started by a trigger monitor are passed the name of the queue that is associated with the application when the application

is started. This queue name can be specified in the ObjDesc parameter to open the queue. See MQTMC2 – Trigger message 2

(character format) for further details.

6. On i5/OS®, applications running in compatibility mode are connected automatically to the queue manager by the first MQOPEN call
issued by the application (if the application has not already connected to the queue manager by using the MQCONN call).

Applications not running in compatibility mode must issue the MQCONN or MQCONNX call to connect to the queue manager explicitly,
before using the MQOPEN call to open an object.

Read ahead options

The following notes apply to the use of read ahead options.

1. The read ahead options are applicable only when one, and only one, of the MQOO_BROWSE, MQOO_INPUT_SHARED and
MQOO_INPUT_EXCLUSIVE options are also specified. An error will not be thrown if a read ahead options are specified with the MQOO_

INQUIRE or MQOO_SET options.

2. Read ahead will not be enabled when requested if the options used on the first MQGET call are not supported for use with read ahead.

Also, read ahead is disabled when the client is connecting to a queue manager that does not support read ahead.

3. If the application is not running as a WebSphere® MQ client, read ahead options are ignored.

Cluster queues

The following notes apply to the use of cluster queues.

1. When a cluster queue is opened for the first time, and the local queue manager is not a full repository queue manager, the local queue
manager obtains information about the cluster queue from a full repository queue manager. When the network is busy, it can take
several seconds for the local queue manager to receive the needed information from the repository queue manager. As a result, the
application issuing the MQOPEN call might have to wait for up to 10 seconds before control returns from the MQOPEN call. If the local
queue manager does not receive the needed information about the cluster queue within this time, the call fails with reason code

MQRC_CLUSTER_RESOLUTION_ERROR.

2. When a cluster queue is opened and there are multiple instances of the queue in the cluster, the instance opened depends on the
options specified on the MQOPEN call:

� If the options specified include any of the following:

� MQOO_BROWSE

� MQOO_INPUT_AS_Q_DEF

� MQOO_INPUT_EXCLUSIVE

� MQOO_INPUT_SHARED

� MQOO_SET

the instance of the cluster queue opened must be the local instance. If there is no local instance of the queue, the MQOPEN call
fails.

� If the options specified include none of the above, but include one or both of the following:

� MQOO_INQUIRE

Page 513 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

� MQOO_OUTPUT

the instance opened is the local instance if there is one, and a remote instance otherwise (if using the CLWLUSEQ defaults). The
instance chosen by the queue manager can, however, be altered by a cluster workload exit (if there is one).

3. If there is a subscription for the queue, but it is not acknowledged by a full repository, the object is not present in the cluster and the
call fails with reason code MQRC_OBJECT_NAME.

For more information about cluster queues, refer to WebSphere MQ Queue Manager Clusters.

Distribution lists

The following notes apply to the use of distribution lists.

Distribution lists are supported in the following environments: AIX®, HP-UX, i5/OS, Solaris, Linux, Windows, plus WebSphere MQ clients
connected to these systems.

1. Fields in the MQOD structure must be set as follows when opening a distribution list:

� Version must be MQOD_VERSION_2 or greater.

� ObjectType must be MQOT_Q.

� ObjectName must be blank or the null string.

� ObjectQMgrName must be blank or the null string.

� RecsPresent must be greater than zero.

� One of ObjectRecOffset and ObjectRecPtr must be zero and the other nonzero.

� No more than one of ResponseRecOffset and ResponseRecPtr can be nonzero.

� There must be RecsPresent object records, addressed by either ObjectRecOffset or ObjectRecPtr. The object records must be

set to the names of the destination queues to be opened.

� If one of ResponseRecOffset and ResponseRecPtr is nonzero, there must be RecsPresent response records present. They are

set by the queue manager if the call completes with reason code MQRC_MULTIPLE_REASONS.

A version-2 MQOD can also be used to open a single queue that is not in a distribution list, by ensuring that RecsPresent is zero.

2. Only the following open options are valid in the Options parameter:

� MQOO_OUTPUT

� MQOO_PASS_*_CONTEXT

� MQOO_SET_*_CONTEXT

� MQOO_ALTERNATE_USER_AUTHORITY

� MQOO_FAIL_IF_QUIESCING

3. The destination queues in the distribution list can be local, alias, or remote queues, but they cannot be model queues. If a model
queue is specified, that queue fails to open, with reason code MQRC_Q_TYPE_ERROR. However, this does not prevent other queues in
the list being opened successfully.

4. The completion code and reason code parameters are set as follows:

� If the open operations for the queues in the distribution list all succeed or fail in the same way, the completion code and reason
code parameters are set to describe the common result. The MQRR response records (if provided by the application) are not set
in this case.

For example, if every open succeeds, the completion code and reason code are set to MQCC_OK and MQRC_NONE respectively;
if every open fails because none of the queues exists, the parameters are set to MQCC_FAILED and
MQRC_UNKNOWN_OBJECT_NAME.

� If the open operations for the queues in the distribution list do not all succeed or fail in the same way:

� The completion code parameter is set to MQCC_WARNING if at least one open succeeded, and to MQCC_FAILED if all
failed.

� The reason code parameter is set to MQRC_MULTIPLE_REASONS.

� The response records (if provided by the application) are set to the individual completion codes and reason codes for the

queues in the distribution list.

5. When a distribution list has been opened successfully, the handle Hobj returned by the call can be used on subsequent MQPUT calls to

put messages to queues in the distribution list, and on an MQCLOSE call to relinquish access to the distribution list. The only valid
close option for a distribution list is MQCO_NONE.

The MQPUT1 call can also be used to put a message to a distribution list; the MQOD structure defining the queues in the list is
specified as a parameter on that call.

6. Each successfully-opened destination in the distribution list counts as a separate handle when checking whether the application has

exceeded the permitted maximum number of handles (see the MaxHandles queue-manager attribute). This is true even when two or

more of the destinations in the distribution list resolve to the same physical queue. If the MQOPEN or MQPUT1 call for a distribution list
would cause the number of handles in use by the application to exceed MaxHandles, the call fails with reason code

MQRC_HANDLE_NOT_AVAILABLE.

7. Each destination that is opened successfully has the value of its OpenOutputCount attribute incremented by one. If two or more of the

destinations in the distribution list resolve to the same physical queue, that queue has its OpenOutputCount attribute incremented by

the number of destinations in the distribution list that resolve to that queue.

8. Any change to the queue definitions that would have caused a handle to become invalid had the queues been opened individually (for
example, a change in the resolution path), does not cause the distribution-list handle to become invalid. However, it does result in a
failure for that particular queue when the distribution-list handle is used on a subsequent MQPUT call.

9. A distribution list can contain only one destination.

Remote queues

The following notes apply to the use of remote queues.

A remote queue can be specified in one of two ways in the ObjDesc parameter of this call.

Page 514 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

� By specifying for ObjectName the name of a local definition of the remote queue. In this case, ObjectQMgrName refers to the local

queue manager, and can be specified as blanks or (in the C programming language) a null string.

The security validation performed by the local queue manager verifies that the user is authorized to open the local definition of the
remote queue.

� By specifying for ObjectName the name of the remote queue as known to the remote queue manager. In this case, ObjectQMgrName is

the name of the remote queue manager.

The security validation performed by the local queue manager verifies that the user is authorized to send messages to the

transmission queue resulting from the name resolution process.

In either case:

� No messages are sent by the local queue manager to the remote queue manager to check that the user is authorized to put messages
on the queue.

� When a message arrives at the remote queue manager, the remote queue manager might reject it because the user originating the
message is not authorized.

See the ObjectName and ObjectQMgrName fields described in MQOD – Object descriptor for more information.

Objects

Security

The following notes relate to the security aspects of using MQOPEN.

The queue manager performs security checks when an MQOPEN call is issued, to verify that the user identifier under which the application is
running has the appropriate level of authority before access is permitted. The authority check is made on the name of the object being
opened, and not on the name, or names, resulting after a name has been resolved.

If the object being opened is an alias queue which points at a topic object, the queue manager performs a security check on the alias queue
name, before performing a scecurity check for the topic as if the topic object had been used directly.

If the object being opened is a topic object, whether by means of ObjectName alone or by using the ObjectString (with or without a basing

ObjectName), the queue manager performs the security check by using the resultant topic string, taken from within the topic object

specified in ObjectName, and if required concatenating it with that provided in ObjectString, and then finding the closest topic object at or

above that point in the topic tree to perform the security check against. This may not be the same topic object that was specified in
ObjectName.

If the object being opened is a model queue, the queue manager performs a full security check against both the name of the model queue
and the name of the dynamic queue that is created. If the resulting dynamic queue is subsequently opened explicitly, a further resource
security check is performed against the name of the dynamic queue.

On z/OS, the queue manager performs security checks only if security is enabled. For more information on security checking, see the
WebSphere MQ for z/OS System Setup Guide.

Attributes

The following notes relate to attributes.

The attributes of an object can change while an application has the object open. In many cases, the application does not notice this, but for
certain attributes the queue manager marks the handle as no longer valid. These are:

� Any attribute that affects the name resolution of the object. This applies regardless of the open options used, and includes the

following:

� A change to the BaseQName attribute of an alias queue that is open.

� A change to the TargetType attribute of an alias queue that is open.

� A change to the RemoteQName or RemoteQMgrName queue attributes, for any handle that is open for this queue, or for a queue

that resolves through this definition as a queue-manager alias.

� Any change that causes a currently-open handle for a remote queue to resolve to a different transmission queue, or to fail to
resolve to one at all. For example, this can include:

� A change to the XmitQName attribute of the local definition of a remote queue, whether the definition is being used for a

queue, or for a queue-manager alias.

� (z/OS only) A change to the value of the IntraGroupQueuing queue-manager attribute, or a change in the definition of the

shared transmission queue (SYSTEM.QSG.TRANSMIT.QUEUE) used by the IGQ agent.

There is one exception to this: the creation of a new transmission queue. A handle that would have resolved to this queue had it
been present when the handle was opened, but instead resolved to the default transmission queue, is not made invalid.

� A change to the DefXmitQName queue-manager attribute. In this case all open handles that resolved to the previously-named

queue (that resolved to it only because it was the default transmission queue) are marked as invalid. Handles that resolved to
this queue for other reasons are not affected.

� The Shareability queue attribute, if there are two or more handles that are currently providing MQOO_INPUT_SHARED access for

this queue, or for a queue that resolves to this queue. If this is the case, all handles that are open for this queue, or for a queue that
resolves to this queue, are marked as invalid, regardless of the open options.

On z/OS, the handles described above are marked as invalid if one or more handles is currently providing MQOO_INPUT_SHARED or
MQOO_INPUT_EXCLUSIVE access to the queue.

� The Usage queue attribute, for all handles that are open for this queue, or for a queue that resolves to this queue, regardless of the

open options.

When a handle is marked as invalid, all subsequent calls (other than MQCLOSE) using this handle fail with reason code
MQRC_OBJECT_CHANGED. The application must issue an MQCLOSE call (using the original handle) and then reopen the queue. Any
uncommitted updates against the old handle from previous successful calls can still be committed or backed out, as required by the
application logic.

Page 515 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

If changing an attribute causes this to happen, use a special force version of the command.

Parent topic: MQOPEN – Open object

This build: January 26, 2011 11:18:03

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17670_

2.20.4. Language invocations for MQOPEN

The MQOPEN call is supported in the programming languages shown below.

C invocation

COBOL invocation

PL/I invocation

System/390 assembler invocation

Visual Basic invocation

Parent topic: MQOPEN – Open object

This build: January 26, 2011 11:18:05

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17680_

2.20.4.1. C invocation

MQOPEN (Hconn, &ObjDesc, Options, &Hobj, &CompCode,

 &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /* Connection handle */

MQOD ObjDesc; /* Object descriptor */

MQLONG Options; /* Options that control the action of MQOPEN */

MQHOBJ Hobj; /* Object handle */

MQLONG CompCode; /* Completion code */

MQLONG Reason; /* Reason code qualifying CompCode */

Parent topic: Language invocations for MQOPEN

This build: January 26, 2011 11:18:05

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17690_

2.20.4.2. COBOL invocation

 CALL 'MQOPEN' USING HCONN, OBJDESC, OPTIONS, HOBJ, COMPCODE,

 REASON.

Declare the parameters as follows:

** Connection handle

 01 HCONN PIC S9(9) BINARY.

** Object descriptor

 01 OBJDESC.

 COPY CMQODV.

** Options that control the action of MQOPEN

 01 OPTIONS PIC S9(9) BINARY.

** Object handle

 01 HOBJ PIC S9(9) BINARY.

** Completion code

 01 COMPCODE PIC S9(9) BINARY.

** Reason code qualifying COMPCODE

 01 REASON PIC S9(9) BINARY.

Parent topic: Language invocations for MQOPEN

This build: January 26, 2011 11:18:05

Notices | Trademarks | Downloads | Library | Support | Feedback

Page 516 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17700_

2.20.4.3. PL/I invocation

call MQOPEN (Hconn, ObjDesc, Options, Hobj, CompCode, Reason);

Declare the parameters as follows:

dcl Hconn fixed bin(31); /* Connection handle */

dcl ObjDesc like MQOD; /* Object descriptor */

dcl Options fixed bin(31); /* Options that control the action of

 MQOPEN */

dcl Hobj fixed bin(31); /* Object handle */

dcl CompCode fixed bin(31); /* Completion code */

dcl Reason fixed bin(31); /* Reason code qualifying CompCode */

Parent topic: Language invocations for MQOPEN

This build: January 26, 2011 11:18:06

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17710_

2.20.4.4. System/390® assembler invocation

 CALL MQOPEN,(HCONN,OBJDESC,OPTIONS,HOBJ,COMPCODE,REASON)

Declare the parameters as follows:

HCONN DS F Connection handle

OBJDESC CMQODA , Object descriptor

OPTIONS DS F Options that control the action of MQOPEN

HOBJ DS F Object handle

COMPCODE DS F Completion code

REASON DS F Reason code qualifying COMPCODE

Parent topic: Language invocations for MQOPEN

This build: January 26, 2011 11:18:06

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17720_

2.20.4.5. Visual Basic invocation

MQOPEN Hconn, ObjDesc, Options, Hobj, CompCode, Reason

Declare the parameters as follows:

Dim Hconn As Long 'Connection handle'

Dim ObjDesc As MQOD 'Object descriptor'

Dim Options As Long 'Options that control the action of MQOPEN'

Dim Hobj As Long 'Object handle'

Dim CompCode As Long 'Completion code'

Dim Reason As Long 'Reason code qualifying CompCode'

Parent topic: Language invocations for MQOPEN

This build: January 26, 2011 11:18:06

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17730_

2.21. MQPUT – Put message

The MQPUT call puts a message on a queue or distribution list, or to a topic. The queue, distribution list or topic must already be open.

Syntax for MQPUT

Parameters for MQPUT
The MQPUT call has the following parameters.

Usage notes for MQPUT

Language invocations for MQPUT

The MQPUT call is supported in the programming languages shown below.

Page 517 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Parent topic: Function calls

This build: January 26, 2011 11:18:06

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17740_

2.21.1. Syntax for MQPUT

MQPUT (Hconn, Hobj, MsgDesc, PutMsgOpts, BufferLength,

Buffer, CompCode, Reason)

Parent topic: MQPUT – Put message

This build: January 26, 2011 11:18:06

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17750_

2.21.2. Parameters for MQPUT

The MQPUT call has the following parameters.

Hconn (MQHCONN) – input

Hobj (MQHOBJ) – input

MsgDesc (MQMD) – input/output

PutMsgOpts (MQPMO) – input/output

BufferLength (MQLONG) – input

Buffer (MQBYTExBufferLength) – input

CompCode (MQLONG) – output

Reason (MQLONG) – output

Parent topic: MQPUT – Put message

This build: January 26, 2011 11:18:06

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17760_

2.21.2.1. Hconn (MQHCONN) – input

This handle represents the connection to the queue manager. The value of Hconn was returned by a previous MQCONN or MQCONNX call.

On z/OS® for CICS® applications, and on i5/OS® for applications running in compatibility mode, the MQCONN call can be omitted, and the
following value specified for Hconn:

MQHC_DEF_HCONN

Default connection handle.

Parent topic: Parameters for MQPUT

This build: January 26, 2011 11:18:06

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17770_

2.21.2.2. Hobj (MQHOBJ) – input

This handle represents the queue to which the message is added, or the topic to which the message is published. The value of Hobj was

returned by a previous MQOPEN call that specified the MQOO_OUTPUT option.

Parent topic: Parameters for MQPUT

Page 518 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This build: January 26, 2011 11:18:06

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17780_

2.21.2.3. MsgDesc (MQMD) – input/output

This structure describes the attributes of the message being sent, and receives information about the message after the put request is
complete. See MQMD – Message descriptor for details.

If the application provides a version-1 MQMD, the message data can be prefixed with an MQMDE structure to specify values for the fields
that exist in the version-2 MQMD but not the version-1. The Format field in the MQMD must be set to MQFMT_MD_EXTENSION to indicate

that an MQMDE is present. See MQMDE – Message descriptor extension for more details.

The application does not need to provide an MQMD structure provided that a valid message handle is supplied in the OriginalMsgHandle or
NewMsgHandle fields of the MQPMO structure. If nothing is provided in one of these fields, the descriptor of the message is taken from the
descriptor associated with the message handles.

If you use, or plan to use, API exits then we recommend that you explicitly supply an MQMD structure and do not use the message
descriptors associated with the message handles. This is because the API Exit associated with MQPUT or MQPUT1 call will be unable to
ascertain which MQMD values will be used by the queue manager to complete the MQPUT or MQPUT1 request.

Parent topic: Parameters for MQPUT

This build: January 26, 2011 11:18:06

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17790_

2.21.2.4. PutMsgOpts (MQPMO) – input/output

See MQPMO – Put-message options for details.

Parent topic: Parameters for MQPUT

This build: January 26, 2011 11:18:07

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17800_

2.21.2.5. BufferLength (MQLONG) – input

The length of the message in Buffer. Zero is valid, and indicates that the message contains no application data. The upper limit for

BufferLength depends on various factors:

� If the destination is a local queue or resolves to a local queue, the upper limit depends on whether:

� The local queue manager supports segmentation.

� The sending application specifies the flag that allows the queue manager to segment the message. This flag is

MQMF_SEGMENTATION_ALLOWED, and can be specified either in a version-2 MQMD, or in an MQMDE used with a version-1
MQMD.

If both of these conditions are satisfied, BufferLength cannot exceed 999 999 999 minus the value of the Offset field in MQMD. The

longest logical message that can be put is therefore 999 999 999 bytes (when Offset is zero). However, resource constraints imposed

by the operating system or environment in which the application is running might result in a lower limit.

If one or both of the above conditions is not satisfied, BufferLength cannot exceed the smaller of the queue’s MaxMsgLength attribute

and queue-manager’s MaxMsgLength attribute.

� If the destination is a remote queue or resolves to a remote queue, the conditions for local queues apply, but at each queue manager
through which the message must pass in order to reach the destination queue; in particular:

1. The local transmission queue used to store the message temporarily at the local queue manager

2. Intermediate transmission queues (if any) used to store the message at queue managers on the route between the local and
destination queue managers

3. The destination queue at the destination queue manager

The longest message that can be put is therefore governed by the most restrictive of these queues and queue managers.

When a message is on a transmission queue, additional information resides with the message data, and this reduces the amount of

application data that can be carried. In this situation, subtract MQ_MSG_HEADER_LENGTH bytes from the MaxMsgLength values of the

transmission queues when determining the limit for BufferLength.

Note: Only failure to comply with condition 1 can be diagnosed synchronously (with reason code MQRC_MSG_TOO_BIG_FOR_Q or
MQRC_MSG_TOO_BIG_FOR_Q_MGR) when the message is put. If conditions 2 or 3 are not satisfied, the message is redirected to a
dead-letter (undelivered-message) queue, either at an intermediate queue manager or at the destination queue manager. If this
happens, a report message is generated if one was requested by the sender.

Parent topic: Parameters for MQPUT

This build: January 26, 2011 11:18:07

Page 519 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17810_

2.21.2.6. Buffer (MQBYTExBufferLength) – input

This is a buffer containing the application data to be sent. The buffer must be aligned on a boundary appropriate to the nature of the data in
the message. 4-byte alignment is suitable for most messages (including messages containing MQ header structures), but some messages

might require more stringent alignment. For example, a message containing a 64-bit binary integer might require 8-byte alignment.

If Buffer contains character or numeric data, set the CodedCharSetId and Encoding fields in the MsgDesc parameter to the values

appropriate to the data; this enables the receiver of the message to convert the data (if necessary) to the character set and encoding used
by the receiver.

Note: All the other parameters on the MQPUT call must be in the character set and encoding of the local queue manager (given by the
CodedCharSetId queue-manager attribute and MQENC_NATIVE).

In the C programming language, the parameter is declared as a pointer-to-void; the address of any type of data can be specified as the
parameter.

If the BufferLength parameter is zero, Buffer is not referred to; in this case, the parameter address passed by programs written in C or

System/390® assembler can be null.

Parent topic: Parameters for MQPUT

This build: January 26, 2011 11:18:07

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17820_

2.21.2.7. CompCode (MQLONG) – output

The completion code; it is one of the following:

MQCC_OK

Successful completion.

MQCC_WARNING

Warning (partial completion).

MQCC_FAILED

Call failed.

Parent topic: Parameters for MQPUT

This build: January 26, 2011 11:18:07

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17830_

2.21.2.8. Reason (MQLONG) – output

The reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_WARNING:

MQRC_INCOMPLETE_GROUP

(2241, X'8C1') Message group not complete.

MQRC_INCOMPLETE_MSG

(2242, X'8C2') Logical message not complete.

MQRC_INCONSISTENT_PERSISTENCE

(2185, X'889') Inconsistent persistence specification.

MQRC_INCONSISTENT_UOW

(2245, X'8C5') Inconsistent unit-of-work specification.

MQRC_MULTIPLE_REASONS

(2136, X'858') Multiple reason codes returned.

MQRC_PRIORITY_EXCEEDS_MAXIMUM

Page 520 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

(2049, X'801') Message Priority exceeds maximum value supported.

MQRC_UNKNOWN_REPORT_OPTION

(2104, X'838') Report option(s) in message descriptor not recognized.

If CompCode is MQCC_FAILED:

MQRC_ADAPTER_NOT_AVAILABLE

(2204, X'89C') Adapter not available.

MQRC_ADAPTER_SERV_LOAD_ERROR

(2130, X'852') Unable to load adapter service module.

MQRC_ALIAS_TARGTYPE_CHANGED

(2480, X'09B0') Subscription target type has changed from queue to topic object.

MQRC_API_EXIT_ERROR

(2374, X'946') API exit failed.

MQRC_API_EXIT_LOAD_ERROR

(2183, X'887') Unable to load API exit.

MQRC_ASID_MISMATCH

(2157, X'86D') Primary and home ASIDs differ.

MQRC_BACKED_OUT

(2003, X'7D3') Unit of work backed out.

MQRC_BUFFER_ERROR

(2004, X'7D4') Buffer parameter not valid.

MQRC_BUFFER_LENGTH_ERROR

(2005, X'7D5') Buffer length parameter not valid.

MQRC_CALL_IN_PROGRESS

(2219, X'8AB') MQI call entered before previous call complete.

MQRC_CALL_INTERRUPTED

(2549, X'9F5') MQPUT or MQCMIT was interrupted and reconnection processing cannot reestablish a definite outcome.

MQRC_CF_STRUC_FAILED

(2373, X'945') Coupling-facility structure failed.

MQRC_CF_STRUC_IN_USE

(2346, X'92A') Coupling-facility structure in use.

MQRC_CFGR_ERROR

(2416, X'970') PCF group parameter structure MQCFGR in the message data is not valid.

MQRC_CFH_ERROR

(2235, X'8BB') PCF header structure not valid.

MQRC_CFIF_ERROR

(2414, X'96E') PCF integer filter parameter structure in the message data is not valid.

MQRC_CFIL_ERROR

(2236, X'8BC') PCF integer list parameter structure or PCIF*64 integer list parameter structure not valid.

MQRC_CFIN_ERROR

(2237, X'8BD') PCF integer parameter structure or PCIF*64 integer parameter structure not valid.

MQRC_CFSF_ERROR

(2415, X'96F') PCF string filter parameter structure in the message data is not valid.

MQRC_CFSL_ERROR

(2238, X'8BE') PCF string list parameter structure not valid.

MQRC_CFST_ERROR

(2239, X'8BF') PCF string parameter structure not valid.

MQRC_CICS_WAIT_FAILED

(2140, X'85C') Wait request rejected by CICS®.

MQRC_CLUSTER_EXIT_ERROR

(2266, X'8DA') Cluster workload exit failed.

MQRC_CLUSTER_RESOLUTION_ERROR

(2189, X'88D') Cluster name resolution failed.

MQRC_CLUSTER_RESOURCE_ERROR

(2269, X'8DD') Cluster resource error.

MQRC_COD_NOT_VALID_FOR_XCF_Q

(2106, X'83A') COD report option not valid for XCF queue.

MQRC_CONNECTION_BROKEN

(2009, X'7D9') Connection to queue manager lost.

MQRC_CONNECTION_NOT_AUTHORIZED

(2217, X'8A9') Not authorized for connection.

MQRC_CONNECTION_QUIESCING

Page 521 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

(2202, X'89A') Connection quiescing.

MQRC_CONNECTION_STOPPING

(2203, X'89B') Connection shutting down.

MQRC_CONTENT_ERROR

2554 (X'09FA') Message content could not be parsed to determine whether the message should be delivered to a subscriber with an
extended message selector.

MQRC_CONTEXT_HANDLE_ERROR

(2097, X'831') Queue handle referred to does not save context.

MQRC_CONTEXT_NOT_AVAILABLE

(2098, X'832') Context not available for queue handle referred to.

MQRC_DATA_LENGTH_ERROR

(2010, X'7DA') Data length parameter not valid.

MQRC_DH_ERROR

(2135, X'857') Distribution header structure not valid.

MQRC_DLH_ERROR

(2141, X'85D') Dead letter header structure not valid.

MQRC_EPH_ERROR

(2420, X'974') Embedded PCF structure not valid.

MQRC_EXPIRY_ERROR

(2013, X'7DD') Expiry time not valid.

MQRC_FEEDBACK_ERROR

(2014, X'7DE') Feedback code not valid.

MQRC_GLOBAL_UOW_CONFLICT

(2351, X'92F') Global units of work conflict.

MQRC_GROUP_ID_ERROR

(2258, X'8D2') Group identifier not valid.

MQRC_HANDLE_IN_USE_FOR_UOW

(2353, X'931') Handle in use for global unit of work.

MQRC_HCONN_ERROR

(2018, X'7E2') Connection handle not valid.

MQRC_HEADER_ERROR

(2142, X'85E') MQ header structure not valid.

MQRC_HOBJ_ERROR

(2019, X'7E3') Object handle not valid.

MQRC_IIH_ERROR

(2148, X'864') IMS™ information header structure not valid.

MQRC_INCOMPLETE_GROUP

(2241, X'8C1') Message group not complete.

MQRC_INCOMPLETE_MSG

(2242, X'8C2') Logical message not complete.

MQRC_INCONSISTENT_PERSISTENCE

(2185, X'889') Inconsistent persistence specification.

MQRC_INCONSISTENT_UOW

(2245, X'8C5') Inconsistent unit-of-work specification.

MQRC_LOCAL_UOW_CONFLICT

(2352, X'930') Global unit of work conflicts with local unit of work.

MQRC_MD_ERROR

(2026, X'7EA') Message descriptor not valid.

MQRC_MDE_ERROR

(2248, X'8C8') Message descriptor extension not valid.

MQRC_MISSING_REPLY_TO_Q

(2027, X'7EB') Missing reply-to queue or MQPMO_SUPPRESS_REPLYTO was used

MQRC_MISSING_WIH

(2332, X'91C') Message data does not begin with MQWIH.

MQRC_MSG_FLAGS_ERROR

(2249, X'8C9') Message flags not valid.

MQRC_MSG_SEQ_NUMBER_ERROR

(2250, X'8CA') Message sequence number not valid.

MQRC_MSG_TOO_BIG_FOR_Q

(2030, X'7EE') Message length greater than maximum for queue.

MQRC_MSG_TOO_BIG_FOR_Q_MGR

(2031, X'7EF') Message length greater than maximum for queue manager.

MQRC_MSG_TYPE_ERROR

Page 522 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

(2029, X'7ED') Message type in message descriptor not valid.

MQRC_MULTIPLE_REASONS

(2136, X'858') Multiple reason codes returned.

MQRC_NO_DESTINATIONS_AVAILABLE

(2270, X'8DE') No destination queues available.

MQRC_NOT_OPEN_FOR_OUTPUT

(2039, X'7F7') Queue not open for output.

MQRC_NOT_OPEN_FOR_PASS_ALL

(2093, X'82D') Queue not open for pass all context.

MQRC_NOT_OPEN_FOR_PASS_IDENT

(2094, X'82E') Queue not open for pass identity context.

MQRC_NOT_OPEN_FOR_SET_ALL

(2095, X'82F') Queue not open for set all context.

MQRC_NOT_OPEN_FOR_SET_IDENT

(2096, X'830') Queue not open for set identity context.

MQRC_OBJECT_CHANGED

(2041, X'7F9') Object definition changed since opened.

MQRC_OBJECT_DAMAGED

(2101, X'835') Object damaged.

MQRC_OFFSET_ERROR

(2251, X'8CB') Message segment offset not valid.

MQRC_OPEN_FAILED

(2137, X'859') Object not opened successfully.

MQRC_OPTIONS_ERROR

(2046, X'7FE') Options not valid or not consistent.

MQRC_ORIGINAL_LENGTH_ERROR

(2252, X'8CC') Original length not valid.

MQRC_PAGESET_ERROR

(2193, X'891') Error accessing page-set data set.

MQRC_PAGESET_FULL

(2192, X'890') External storage medium is full.

MQRC_PCF_ERROR

(2149, X'865') PCF structures not valid.

MQRC_PERSISTENCE_ERROR

(2047, X'7FF') Persistence not valid.

MQRC_PERSISTENT_NOT_ALLOWED

(2048, X'800') Queue does not support persistent messages.

MQRC_PMO_ERROR

(2173, X'87D') Put-message options structure not valid.

MQRC_PMO_RECORD_FLAGS_ERROR

(2158, X'86E') Put message record flags not valid.

MQRC_PRIORITY_ERROR

(2050, X'802') Message priority not valid.

MQRC_PUT_INHIBITED

(2051, X'803') Put calls inhibited for the queue, for the queue to which this queue resolves, or the topic.

MQRC_PUT_MSG_RECORDS_ERROR

(2159, X'86F') Put message records not valid.

MQRC_PUT_NOT_RETAINED

(2479, X'09AF') Publication could not be retained

MQRC_Q_DELETED

(2052, X'804') Queue has been deleted.

MQRC_Q_FULL

(2053, X'805') Queue already contains maximum number of messages.

MQRC_Q_MGR_NAME_ERROR

(2058, X'80A') Queue manager name not valid or not known.

MQRC_Q_MGR_NOT_AVAILABLE

(2059, X'80B') Queue manager not available for connection.

MQRC_Q_MGR_QUIESCING

(2161, X'871') Queue manager quiescing.

MQRC_Q_MGR_STOPPING

(2162, X'872') Queue manager shutting down.

MQRC_Q_SPACE_NOT_AVAILABLE

Page 523 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

(2056, X'808') No space available on disk for queue.

MQRC_RECONNECT_FAILED

(2548, X'9F4') After reconnecting, an error occurred reinstating the handles for a reconnectable connection.

MQRC_RECS_PRESENT_ERROR

(2154, X'86A') Number of records present not valid.

MQRC_REPORT_OPTIONS_ERROR

(2061, X'80D') Report options in message descriptor not valid.

MQRC_RESOURCE_PROBLEM

(2102, X'836') Insufficient system resources available.

MQRC_RESPONSE_RECORDS_ERROR

(2156, X'86C') Response records not valid.

MQRC_RFH_ERROR

(2334, X'91E') MQRFH or MQRFH2 structure not valid.

MQRC_RMH_ERROR

(2220, X'8AC') Reference message header structure not valid.

MQRC_SEGMENT_LENGTH_ZERO

(2253, X'8CD') Length of data in message segment is zero.

MQRC_SEGMENTS_NOT_SUPPORTED

(2365, X'93D') Segments not supported.

MQRC_SELECTION_NOT_AVAILABLE

2551 (X'09F7') The selection string does not follow the WebSphere MQ selector syntax and no extended message selection provider was

available.

MQRC_STOPPED_BY_CLUSTER_EXIT

(2188, X'88C') Call rejected by cluster workload exit.

MQRC_STORAGE_CLASS_ERROR

(2105, X'839') Storage class error.

MQRC_STORAGE_MEDIUM_FULL

(2192, X'890') External storage medium is full.

MQRC_STORAGE_NOT_AVAILABLE

(2071, X'817') Insufficient storage available.

MQRC_SUPPRESSED_BY_EXIT

(2109, X'83D') Call suppressed by exit program.

MQRC_SYNCPOINT_LIMIT_REACHED

(2024, X'7E8') No more messages can be handled within current unit of work.

MQRC_SYNCPOINT_NOT_AVAILABLE

(2072, X'818') Syncpoint support not available.

MQRC_TM_ERROR

(2265, X'8D9') Trigger message structure not valid.

MQRC_TMC_ERROR

(2191, X'88F') Character trigger message structure not valid.

MQRC_UNEXPECTED_ERROR

(2195, X'893') Unexpected error occurred.

MQRC_UOW_ENLISTMENT_ERROR

(2354, X'932') Enlistment in global unit of work failed.

MQRC_UOW_MIX_NOT_SUPPORTED

(2355, X'933') Mixture of unit-of-work calls not supported.

MQRC_UOW_NOT_AVAILABLE

(2255, X'8CF') Unit of work not available for the queue manager to use.

MQRC_WIH_ERROR

(2333, X'91D') MQWIH structure not valid.

MQRC_WRONG_MD_VERSION

(2257, X'8D1') Wrong version of MQMD supplied.

MQRC_XQH_ERROR

(2260, X'8D4') Transmission queue header structure not valid.

For detailed information on these codes, see:

� WebSphere MQ for z/OS Messages and Codes for WebSphere® MQ for z/OS®

� WebSphere MQ Messages for all other WebSphere MQ platforms

Parent topic: Parameters for MQPUT

This build: January 26, 2011 11:18:08

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

Page 524 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This topic's URL:

fr17840_

2.21.3. Usage notes for MQPUT

Topics

The following notes apply to the use of topics:

1. When using MQPUT to publish messages on a topic, where one or more subscribers to that topic cannot be given the publication due
to a problem with their subscriber queue (for example it is full), the Reason code returned to the MQPUT call and the delivery

behaviour is dependant on the setting of the PMSGDLV or NPMSGDLV attributes on the TOPIC. Note that delivery of a publication to
the dead letter queue when MQRO_DEAD_LETTER_Q is specified, or discarding the message when MQRO_DISCARD_MSG is specified,
is considered as a successful delivery of the message. If none of the publications were delivered, the MQPUT will return with
MQRC_PUBLICATION_FAILURE. This can happen in the following cases:

� A message is published to a TOPIC with PMSGDLV or NPMSGDLV (depending on the persistence of the message) set to ALL and
any subscription (durable or not) has a queue which cannot receive the publication.

� A message is published to a TOPIC with PMSGDLV or NPMSGDLV (depending on the persistence of the message) set to ALLDUR
and a durable subscription has a queue which cannot receive the publication.

The MQPUT can return with MQRC_NONE even though publications could not be delivered to some subscribers in the following cases:

� A message is published to a TOPIC with PMSGDLV or NPMSGDLV (depending on the persistence of the message) set to ALLAVAIL
and any subscription, durable or not, has a queue which cannot receive the publication.

� A message is published to a TOPIC with PMSGDLV or NPMSGDLV (depending on the persistence of the message) set to ALLDUR
and a non-durable subscription has a queue which cannot receive the publication.

2. If there are no subscribers to the topic being used, the message published is not sent to any queue and is discarded. It does not
matter whether the message is persistent or non-persistent, or whether it has unlimited expiry or has an expiry time, it is still
discarded if there are no subscribers. The exception to this is if the message is to be retained, in which case, although it is not sent to
any subscribers’ queues, it is stored against the topic to be delivered to any new subscriptions or to any subscribers that ask for

retained publications using MQSUBRQ.

MQPUT and MQPUT1

You can use both the MQPUT and MQPUT1 calls to put messages on a queue; which call to use depends on the circumstances

� Use the MQPUT call to place multiple messages on the same queue.

An MQOPEN call specifying the MQOO_OUTPUT option is issued first, followed by one or more MQPUT requests to add messages to the
queue; finally the queue is closed with an MQCLOSE call. This gives better performance than repeated use of the MQPUT1 call.

� Use the MQPUT1 call to put only one message on a queue.

This call encapsulates the MQOPEN, MQPUT, and MQCLOSE calls into a single call, thereby minimizing the number of calls that must be
issued.

�

Destination Queues

The following notes apply to the use of destination queues:

1. If an application puts a sequence of messages on the same queue without using message groups, the order of those messages is

preserved provided that the conditions detailed below are satisfied. Some conditions apply to both local and remote destination
queues; other conditions apply only to remote destination queues.

Conditions that apply to local and remote destination queues

� All the MQPUT calls are within the same unit of work, or none of them is within a unit of work.

Be aware that when messages are put onto a particular queue within a single unit of work, messages from other applications

might be interspersed with the sequence of messages on the queue.

� All the MQPUT calls are made using the same object handle Hobj.

In some environments, message sequence is also preserved when different object handles are used, provided that the calls are

made from the same application. The meaning of same application is determined by the environment:

� On z/OS®, the application is:

� For CICS®, the CICS task

� For IMS™, the task

� For z/OS batch, the task

� On i5/OS®, the application is the job.

� On Windows and UNIX systems, the application is the thread.

� The messages all have the same priority.

� The messages are not put to a cluster queue with MQOO_BIND_NOT_FIXED specified (or with MQOO_BIND_AS_Q_DEF in effect

when the DefBind queue attribute has the value MQBND_BIND_NOT_FIXED).

Additional conditions that apply to remote destination queues

� There is only one path from the sending queue manager to the destination queue manager.

If some messages in the sequence might go on a different path (for example, because of reconfiguration, traffic balancing, or
path selection based on message size), the order of the messages at the destination queue manager cannot be guaranteed.

� Messages are not placed temporarily on dead-letter queues at the sending, intermediate, or destination queue managers.

If one or more of the messages is put temporarily on a dead-letter queue (for example, because a transmission queue or the

destination queue is temporarily full), the messages can arrive on the destination queue out of sequence.

� The messages are either all persistent or all nonpersistent.

If a channel on the route between the sending and destination queue managers has its NonPersistentMsgSpeed attribute set to

MQNPMS_FAST, nonpersistent messages can jump ahead of persistent messages, resulting in the order of persistent messages
relative to nonpersistent messages not being preserved. However, the order of persistent messages relative to each other, and
of nonpersistent messages relative to each other, is preserved.

Page 525 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

If these conditions are not satisfied, you can use message groups to preserve message order, but this requires both the sending and
receiving applications to use the message-grouping support. For more information about message groups, see:

� MQMD - MsgFlags field

� MQPMO_LOGICAL_ORDER

� MQGMO_LOGICAL_ORDER

Distribution Lists

The following notes apply to the use of distribution lists.

Distribution lists are supported in the following environments: AIX®, HP-UX, i5/OS, Solaris, Linux, Windows, plus WebSphere® MQ clients
connected to these systems.

1. You can put messages to a distribution list using either a version-1 or a version-2 MQPMO. If you use a version-1 MQPMO (or a
version-2 MQPMO with RecsPresent equal to zero), the application can provide no put message records or response records. You

cannot identify the queues that encounter errors if the message is sent successfully to some queues in the distribution list and not
others.

If the application provides put message records or response records, set the Version field to MQPMO_VERSION_2.

You can also use a version-2 MQPMO to send messages to a single queue that is not in a distribution list, by ensuring that
RecsPresent is zero.

2. The completion code and reason code parameters are set as follows:

� If the puts to the queues in the distribution list all succeed or fail in the same way, the completion code and reason code
parameters are set to describe the common result. The MQRR response records (if provided by the application) are not set in
this case.

For example, if every put succeeds, the completion code and reason code are set to MQCC_OK and MQRC_NONE; if every put
fails because all the queues are inhibited for puts, the parameters are set to MQCC_FAILED and MQRC_PUT_INHIBITED.

� If the puts to the queues in the distribution list do not all succeed or fail in the same way:

� The completion code parameter is set to MQCC_WARNING if at least one put succeeded, and to MQCC_FAILED if all failed.

� The reason code parameter is set to MQRC_MULTIPLE_REASONS.

� The response records (if provided by the application) are set to the individual completion codes and reason codes for the
queues in the distribution list.

If the put to a destination fails because the open for that destination failed, the fields in the response record are set to
MQCC_FAILED and MQRC_OPEN_FAILED; that destination is included in InvalidDestCount.

3. If a destination in the distribution list resolves to a local queue, the message is placed on that queue in normal form (that is, not as a
distribution-list message). If more than one destination resolves to the same local queue, one message is placed on the queue for

each such destination.

If a destination in the distribution list resolves to a remote queue, a message is placed on the appropriate transmission queue. Where
several destinations resolve to the same transmission queue, a single distribution-list message containing those destinations can be
placed on the transmission queue, even if those destinations were not adjacent in the list of destinations provided by the application.
However, this can be done only if the transmission queue supports distribution-list messages (see DistLists).

If the transmission queue does not support distribution lists, one copy of the message in normal form is placed on the transmission
queue for each destination that uses that transmission queue.

If a distribution list with the application message data is too big for a transmission queue, the distribution list message is split into
smaller distribution-list messages, each containing fewer destinations. If the application message data only just fits on the queue,
distribution-list messages cannot be used at all, and the queue manager generates one copy of the message in normal form for each

destination that uses that transmission queue.

If different destinations have different message priority or message persistence (this can occur when the application specifies
MQPRI_PRIORITY_AS_Q_DEF or MQPER_PERSISTENCE_AS_Q_DEF), the messages are not held in the same distribution-list message.
Instead, the queue manager generates as many distribution-list messages as are necessary to accommodate the differing priority and
persistence values.

4. A put to a distribution list can result in:

� A single distribution-list message, or

� A number of smaller distribution-list messages, or

� A mixture of distribution list messages and normal messages, or

� Normal messages only.

Which of the above occurs depends on whether:

� The destinations in the list are local, remote, or a mixture.

� The destinations have the same message priority and message persistence.

� The transmission queues can hold distribution-list messages.

� The transmission queues’ maximum message lengths are large enough to accommodate the message in distribution-list form.

However, regardless of which of the above occurs, each physical message resulting (that is, each normal message or distribution-list
message resulting from the put) counts as only one message when:

� Checking whether the application has exceeded the permitted maximum number of messages in a unit of work (see the
MaxUncommittedMsgs queue-manager attribute).

� Checking whether the triggering conditions are satisfied.

� Incrementing queue depths and checking whether the queues’ maximum queue depth would be exceeded.

5. Any change to the queue definitions that would have caused a handle to become invalid had the queues been opened individually (for
example, a change in the resolution path), does not cause the distribution-list handle to become invalid. However, it does result in a
failure for that particular queue when the distribution-list handle is used on a subsequent MQPUT call.

Headers

If a message is put with one or more MQ header structures at the beginning of the application message data, the queue manager performs
certain checks on the header structures to verify that they are valid. If the queue manager detects an error, the call fails with an appropriate

reason code. The checks performed vary according to the particular structures that are present:

Page 526 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

� Checks are performed only if a version-2 or later MQMD is used on the MQPUT or MQPUT1 call. Checks are not performed if a version-
1 MQMD is used, even if an MQMDE is present at the start of the message data.

� Structures that are not supported by the local queue manager, and structures following the first MQDLH in the message, are not
validated.

� The MQDH and MQMDE structures are validated completely by the queue manager.

� Other structures are validated partially by the queue manager (not all fields are checked).

General checks performed by the queue manager include the following:

� The StrucId field must be valid.

� The Version field must be valid.

� The StrucLength field must specify a value that is large enough to include the structure plus any variable-length data that forms part

of the structure.

� The CodedCharSetId field must not be zero, or a negative value that is not valid (MQCCSI_DEFAULT, MQCCSI_EMBEDDED,

MQCCSI_Q_MGR, and MQCCSI_UNDEFINED are not valid in most MQ header structures).

� The BufferLength parameter of the call must specify a value that is large enough to include the structure (the structure must not

extend beyond the end of the message).

In addition to general checks on structures, the following conditions must be satisfied:

� The sum of the lengths of the structures in a PCF message must equal the length specified by the BufferLength parameter on the

MQPUT or MQPUT1 call. A PCF message is a message that has a format name of MQFMT_ADMIN, MQFMT_EVENT, or MQFMT_PCF.

� An MQ structure must not be truncated, except in the following situations where truncated structures are permitted:

� Messages that are report messages.

� PCF messages.

� Messages containing an MQDLH structure. (Structures following the first MQDLH can be truncated; structures preceding the
MQDLH cannot.)

� An MQ structure must not be split over two or more segments; the structure must be contained entirely within one segment.

Buffer

For the Visual Basic programming language, the following points apply:

� If the size of the Buffer parameter is less than the length specified by the BufferLength parameter, the call fails with reason code

MQRC_BUFFER_LENGTH_ERROR.

� The Buffer parameter is declared as being of type String. If the data to be placed on the queue is not of type String, use the

MQPUTAny call in place of MQPUT.

The MQPUTAny call has the same parameters as the MQPUT call, except that the Buffer parameter is declared as being of type Any,

allowing any type of data to be placed on the queue. However, this means that Buffer cannot be checked to ensure that it is at least

BufferLength bytes in size.

Parent topic: MQPUT – Put message

This build: January 26, 2011 11:18:09

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17850_

2.21.4. Language invocations for MQPUT

The MQPUT call is supported in the programming languages shown below.

C invocation

COBOL invocation

PL/I invocation

System/390 assembler invocation

Visual Basic invocation

Parent topic: MQPUT – Put message

This build: January 26, 2011 11:18:09

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17860_

2.21.4.1. C invocation

MQPUT (Hconn, Hobj, &MsgDesc, &PutMsgOpts, BufferLength, Buffer,

 &CompCode, &Reason);

Page 527 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Declare the parameters as follows:

MQHCONN Hconn; /* Connection handle */

MQHOBJ Hobj; /* Object handle */

MQMD MsgDesc; /* Message descriptor */

MQPMO PutMsgOpts; /* Options that control the action of MQPUT */

MQLONG BufferLength; /* Length of the message in Buffer */

MQBYTE Buffer[n]; /* Message data */

MQLONG CompCode; /* Completion code */

MQLONG Reason; /* Reason code qualifying CompCode */

Parent topic: Language invocations for MQPUT

This build: January 26, 2011 11:18:09

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17870_

2.21.4.2. COBOL invocation

 CALL 'MQPUT' USING HCONN, HOBJ, MSGDESC, PUTMSGOPTS, BUFFERLENGTH,

 BUFFER, COMPCODE, REASON.

Declare the parameters as follows:

** Connection handle

 01 HCONN PIC S9(9) BINARY.

** Object handle

 01 HOBJ PIC S9(9) BINARY.

** Message descriptor

 01 MSGDESC.

 COPY CMQMDV.

** Options that control the action of MQPUT

 01 PUTMSGOPTS.

 COPY CMQPMOV.

** Length of the message in BUFFER

 01 BUFFERLENGTH PIC S9(9) BINARY.

** Message data

 01 BUFFER PIC X(n).

** Completion code

 01 COMPCODE PIC S9(9) BINARY.

** Reason code qualifying COMPCODE

 01 REASON PIC S9(9) BINARY.

Parent topic: Language invocations for MQPUT

This build: January 26, 2011 11:18:09

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17880_

2.21.4.3. PL/I invocation

call MQPUT (Hconn, Hobj, MsgDesc, PutMsgOpts, BufferLength, Buffer,

 CompCode, Reason);

Declare the parameters as follows:

dcl Hconn fixed bin(31); /* Connection handle */

dcl Hobj fixed bin(31); /* Object handle */

dcl MsgDesc like MQMD; /* Message descriptor */

dcl PutMsgOpts like MQPMO; /* Options that control the action of

 MQPUT */

dcl BufferLength fixed bin(31); /* Length of the message in Buffer */

dcl Buffer char(n); /* Message data */

dcl CompCode fixed bin(31); /* Completion code */

dcl Reason fixed bin(31); /* Reason code qualifying CompCode */

Parent topic: Language invocations for MQPUT

This build: January 26, 2011 11:18:09

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17890_

2.21.4.4. System/390® assembler invocation

 CALL MQPUT,(HCONN,HOBJ,MSGDESC,PUTMSGOPTS,BUFFERLENGTH, X

 BUFFER,COMPCODE,REASON)

Declare the parameters as follows:

Page 528 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

HCONN DS F Connection handle

HOBJ DS F Object handle

MSGDESC CMQMDA , Message descriptor

PUTMSGOPTS CMQPMOA , Options that control the action of MQPUT

BUFFERLENGTH DS F Length of the message in BUFFER

BUFFER DS CL(n) Message data

COMPCODE DS F Completion code

REASON DS F Reason code qualifying COMPCODE

Parent topic: Language invocations for MQPUT

This build: January 26, 2011 11:18:09

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17900_

2.21.4.5. Visual Basic invocation

MQPUT Hconn, Hobj, MsgDesc, PutMsgOpts, BufferLength, Buffer, CompCode,

 Reason

Declare the parameters as follows:

Dim Hconn As Long 'Connection handle'

Dim Hobj As Long 'Object handle'

Dim MsgDesc As MQMD 'Message descriptor'

Dim PutMsgOpts As MQPMO 'Options that control the action of MQPUT'

Dim BufferLength As Long 'Length of the message in Buffer'

Dim Buffer As String 'Message data'

Dim CompCode As Long 'Completion code'

Dim Reason As Long 'Reason code qualifying CompCode'

Parent topic: Language invocations for MQPUT

This build: January 26, 2011 11:18:09

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17910_

2.22. MQPUT1 – Put one message

The MQPUT1 call puts one message on a queue, or distribution list, or to a topic.

The queue, distribution list, or topic does not need to be open.

Syntax for MQPUT1

Parameters for MQPUT1
The MQPUT1 call has the following parameters.

Usage notes for MQPUT1

Language invocations for MQPUT1

The MQPUT1 call is supported in the programming languages shown below.

Parent topic: Function calls

This build: January 26, 2011 11:18:09

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17920_

2.22.1. Syntax for MQPUT1

MQPUT1 (Hconn, ObjDesc, MsgDesc, PutMsgOpts, BufferLength,

Buffer, CompCode, Reason)

Parent topic: MQPUT1 – Put one message

This build: January 26, 2011 11:18:09

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17930_

Page 529 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

2.22.2. Parameters for MQPUT1

The MQPUT1 call has the following parameters.

Hconn (MQHCONN) – input

ObjDesc (MQOD) – input/output

MsgDesc (MQMD) – input/output

PutMsgOpts (MQPMO) – input/output

BufferLength (MQLONG) – input

Buffer (MQBYTExBufferLength) – input

CompCode (MQLONG) – output

Reason (MQLONG) – output

Parent topic: MQPUT1 – Put one message

This build: January 26, 2011 11:18:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17940_

2.22.2.1. Hconn (MQHCONN) – input

This handle represents the connection to the queue manager. The value of Hconn was returned by a previous MQCONN or MQCONNX call.

On z/OS® for CICS® applications, and on i5/OS® for applications running in compatibility mode, the MQCONN call can be omitted, and the

following value specified for Hconn:

MQHC_DEF_HCONN

Default connection handle.

Parent topic: Parameters for MQPUT1

This build: January 26, 2011 11:18:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17950_

2.22.2.2. ObjDesc (MQOD) – input/output

This is a structure that identifies the queue to which the message is added, or the topic to which the message is published. See MQOD –
Object descriptor for details.

If the structure is a queue, the user must be authorized to open the queue for output. The queue must not be a model queue.

Parent topic: Parameters for MQPUT1

This build: January 26, 2011 11:18:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17960_

2.22.2.3. MsgDesc (MQMD) – input/output

This structure describes the attributes of the message being sent, and receives feedback information after the put request is complete. See
MQMD – Message descriptor for details.

If the application provides a version-1 MQMD, the message data can be prefixed with an MQMDE structure to specify values for the fields
that exist in the version-2 MQMD but not the version-1. Set the Format field in the MQMD to MQFMT_MD_EXTENSION to indicate that an
MQMDE is present. See MQMDE – Message descriptor extension for more details.

The application does not need to provide an MQMD structure provided that a valid message handle is supplied in the MsgHandle field of the
MQGMO structure or in the OriginalMsgHandle or NewMsgHandle fields of the MQPMO structure. If nothing is provided in one of these fields,
the descriptor of the message is taken from the descriptor associated with the message handles.

Parent topic: Parameters for MQPUT1

Page 530 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This build: January 26, 2011 11:18:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17970_

2.22.2.4. PutMsgOpts (MQPMO) – input/output

See MQPMO – Put-message options for details.

Parent topic: Parameters for MQPUT1

This build: January 26, 2011 11:18:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17980_

2.22.2.5. BufferLength (MQLONG) – input

The length of the message in Buffer. Zero is valid, and indicates that the message contains no application data. The upper limit depends on

various factors; see the description of the BufferLength parameter of the MQPUT call for further details.

Parent topic: Parameters for MQPUT1

This build: January 26, 2011 11:18:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr17990_

2.22.2.6. Buffer (MQBYTExBufferLength) – input

This is a buffer containing the application message data to be sent. Align the buffer on a boundary appropriate to the nature of the data in

the message. 4-byte alignment is suitable for most messages (including messages containing MQ header structures), but some messages
might require more stringent alignment. For example, a message containing a 64-bit binary integer might require 8-byte alignment.

If Buffer contains character or numeric data, set the CodedCharSetId and Encoding fields in the MsgDesc parameter to the values

appropriate to the data; this enables the receiver of the message to convert the data (if necessary) to the character set and encoding used
by the receiver.

Note: All the other parameters on the MQPUT1 call must be in the character set and encoding of the local queue manager (given by the
CodedCharSetId queue-manager attribute and MQENC_NATIVE).

In the C programming language, the parameter is declared as a pointer-to-void; the address of any type of data can be specified as the
parameter.

If the BufferLength parameter is zero, Buffer is not referred to; in this case, the parameter address passed by programs written in C or

System/390® assembler can be null.

Parent topic: Parameters for MQPUT1

This build: January 26, 2011 11:18:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18000_

2.22.2.7. CompCode (MQLONG) – output

The completion code; it is one of the following:

MQCC_OK

Successful completion.

MQCC_WARNING

Warning (partial completion).

MQCC_FAILED

Call failed.

Parent topic: Parameters for MQPUT1

This build: January 26, 2011 11:18:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

Page 531 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This topic's URL:

fr18010_

2.22.2.8. Reason (MQLONG) – output

The reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_WARNING:

MQRC_MULTIPLE_REASONS

(2136, X'858') Multiple reason codes returned.

MQRC_INCOMPLETE_GROUP

(2241, X'8C1') Message group not complete.

MQRC_INCOMPLETE_MSG

(2242, X'8C2') Logical message not complete.

MQRC_PRIORITY_EXCEEDS_MAXIMUM

(2049, X'801') Message Priority exceeds maximum value supported.

MQRC_UNKNOWN_REPORT_OPTION

(2104, X'838') Report option(s) in message descriptor not recognized.

If CompCode is MQCC_FAILED:

MQRC_ADAPTER_NOT_AVAILABLE

(2204, X'89C') Adapter not available.

MQRC_ADAPTER_SERV_LOAD_ERROR

(2130, X'852') Unable to load adapter service module.

MQRC_ALIAS_BASE_Q_TYPE_ERROR

(2001, X'7D1') Alias base queue not a valid type.

MQRC_API_EXIT_ERROR

(2374, X'946') API exit failed.

MQRC_API_EXIT_LOAD_ERROR

(2183, X'887') Unable to load API exit.

MQRC_ASID_MISMATCH

(2157, X'86D') Primary and home ASIDs differ.

MQRC_BACKED_OUT

(2003, X'7D3') Unit of work backed out.

MQRC_BUFFER_ERROR

(2004, X'7D4') Buffer parameter not valid.

MQRC_BUFFER_LENGTH_ERROR

(2005, X'7D5') Buffer length parameter not valid.

MQRC_CALL_IN_PROGRESS

(2219, X'8AB') MQI call entered before previous call complete.

MQRC_CF_NOT_AVAILABLE

(2345, X'929') Coupling facility not available.

MQRC_CF_STRUC_AUTH_FAILED

(2348, X'92C') Coupling-facility structure authorization check failed.

MQRC_CF_STRUC_ERROR

(2349, X'92D') Coupling-facility structure not valid.

MQRC_CF_STRUC_FAILED

(2373, X'945') Coupling-facility structure failed.

MQRC_CF_STRUC_IN_USE

(2346, X'92A') Coupling-facility structure in use.

MQRC_CF_STRUC_LIST_HDR_IN_USE

(2347, X'92B') Coupling-facility structure list-header in use.

MQRC_CFGR_ERROR

(2416, X'970') PCF group parameter structure MQCFGR in the message data is not valid.

MQRC_CFH_ERROR

(2235, X'8BB') PCF header structure not valid.

MQRC_CFIF_ERROR

(2414, X'96E') PCF integer filter parameter structure in the message data is not valid.

MQRC_CFIL_ERROR

Page 532 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

(2236, X'8BC') PCF integer list parameter structure or PCIF*64 integer list parameter structure not valid.

MQRC_CFIN_ERROR

(2237, X'8BD') PCF integer parameter structure or PCIF*64 integer parameter structure not valid.

MQRC_CFSF_ERROR

(2415, X'96F') PCF string filter parameter structure in the message data is not valid.

MQRC_CFSL_ERROR

(2238, X'8BE') PCF string list parameter structure not valid.

MQRC_CFST_ERROR

(2239, X'8BF') PCF string parameter structure not valid.

MQRC_CICS_WAIT_FAILED

(2140, X'85C') Wait request rejected by CICS®.

MQRC_CLUSTER_EXIT_ERROR

(2266, X'8DA') Cluster workload exit failed.

MQRC_CLUSTER_RESOLUTION_ERROR

(2189, X'88D') Cluster name resolution failed.

MQRC_CLUSTER_RESOURCE_ERROR

(2269, X'8DD') Cluster resource error.

MQRC_COD_NOT_VALID_FOR_XCF_Q

(2106, X'83A') COD report option not valid for XCF queue.

MQRC_CONNECTION_BROKEN

(2009, X'7D9') Connection to queue manager lost.

MQRC_CONNECTION_NOT_AUTHORIZED

(2217, X'8A9') Not authorized for connection.

MQRC_CONNECTION_QUIESCING

(2202, X'89A') Connection quiescing.

MQRC_CONNECTION_STOPPING

(2203, X'89B') Connection shutting down.

MQRC_CONTENT_ERROR

2554 (X'09FA') Message content could not be parsed to determine whether the message should be delivered to a subscriber with an
extended message selector.

MQRC_CONTEXT_HANDLE_ERROR

(2097, X'831') Queue handle referred to does not save context.

MQRC_CONTEXT_NOT_AVAILABLE

(2098, X'832') Context not available for queue handle referred to.

MQRC_DATA_LENGTH_ERROR

(2010, X'7DA') Data length parameter not valid.

MQRC_DB2_NOT_AVAILABLE

(2342, X'926') DB2® subsystem not available.

MQRC_DEF_XMIT_Q_TYPE_ERROR

(2198, X'896') Default transmission queue not local.

MQRC_DEF_XMIT_Q_USAGE_ERROR

(2199, X'897') Default transmission queue usage error.

MQRC_DH_ERROR

(2135, X'857') Distribution header structure not valid.

MQRC_DLH_ERROR

(2141, X'85D') Dead letter header structure not valid.

MQRC_EPH_ERROR

(2420, X'974') Embedded PCF structure not valid.

MQRC_EXPIRY_ERROR

(2013, X'7DD') Expiry time not valid.

MQRC_FEEDBACK_ERROR

(2014, X'7DE') Feedback code not valid.

MQRC_GLOBAL_UOW_CONFLICT

(2351, X'92F') Global units of work conflict.

MQRC_GROUP_ID_ERROR

(2258, X'8D2') Group identifier not valid.

MQRC_HANDLE_IN_USE_FOR_UOW

(2353, X'931') Handle in use for global unit of work.

MQRC_HANDLE_NOT_AVAILABLE

(2017, X'7E1') No more handles available.

MQRC_HCONN_ERROR

(2018, X'7E2') Connection handle not valid.

MQRC_HEADER_ERROR

Page 533 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

(2142, X'85E') MQ header structure not valid.

MQRC_IIH_ERROR

(2148, X'864') IMS™ information header structure not valid.

MQRC_LOCAL_UOW_CONFLICT

(2352, X'930') Global unit of work conflicts with local unit of work.

MQRC_MD_ERROR

(2026, X'7EA') Message descriptor not valid.

MQRC_MDE_ERROR

(2248, X'8C8') Message descriptor extension not valid.

MQRC_MISSING_REPLY_TO_Q

(2027, X'7EB') Missing reply-to queue.

MQRC_MISSING_WIH

(2332, X'91C') Message data does not begin with MQWIH.

MQRC_MSG_FLAGS_ERROR

(2249, X'8C9') Message flags not valid.

MQRC_MSG_SEQ_NUMBER_ERROR

(2250, X'8CA') Message sequence number not valid.

MQRC_MSG_TOO_BIG_FOR_Q

(2030, X'7EE') Message length greater than maximum for queue.

MQRC_MSG_TOO_BIG_FOR_Q_MGR

(2031, X'7EF') Message length greater than maximum for queue manager.

MQRC_MSG_TYPE_ERROR

(2029, X'7ED') Message type in message descriptor not valid.

MQRC_MULTIPLE_REASONS

(2136, X'858') Multiple reason codes returned.

MQRC_NO_DESTINATIONS_AVAILABLE

(2270, X'8DE') No destination queues available.

MQRC_NOT_AUTHORIZED

(2035, X'7F3') Not authorized for access.

MQRC_OBJECT_DAMAGED

(2101, X'835') Object damaged.

MQRC_OBJECT_IN_USE

(2042, X'7FA') Object already open with conflicting options.

MQRC_OBJECT_LEVEL_INCOMPATIBLE

(2360, X'938') Object level not compatible.

MQRC_OBJECT_NAME_ERROR

(2152, X'868') Object name not valid.

MQRC_OBJECT_NOT_UNIQUE

(2343, X'927') Object not unique.

MQRC_OBJECT_Q_MGR_NAME_ERROR

(2153, X'869') Object queue-manager name not valid.

MQRC_OBJECT_RECORDS_ERROR

(2155, X'86B') Object records not valid.

MQRC_OBJECT_TYPE_ERROR

(2043, X'7FB') Object type not valid.

MQRC_OD_ERROR

(2044, X'7FC') Object descriptor structure not valid.

MQRC_OFFSET_ERROR

(2251, X'8CB') Message segment offset not valid.

MQRC_OPTIONS_ERROR

(2046, X'7FE') Options not valid or not consistent.

MQRC_ORIGINAL_LENGTH_ERROR

(2252, X'8CC') Original length not valid.

MQRC_PAGESET_ERROR

(2193, X'891') Error accessing page-set data set.

MQRC_PAGESET_FULL

(2192, X'890') External storage medium is full.

MQRC_PCF_ERROR

(2149, X'865') PCF structures not valid.

MQRC_PERSISTENCE_ERROR

(2047, X'7FF') Persistence not valid.

MQRC_PERSISTENT_NOT_ALLOWED

Page 534 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

(2048, X'800') Queue does not support persistent messages.

MQRC_PMO_ERROR

(2173, X'87D') Put-message options structure not valid.

MQRC_PMO_RECORD_FLAGS_ERROR

(2158, X'86E') Put message record flags not valid.

MQRC_PRIORITY_ERROR

(2050, X'802') Message priority not valid.

MQRC_PUT_INHIBITED

(2051, X'803') Put calls inhibited for the queue.

MQRC_PUT_MSG_RECORDS_ERROR

(2159, X'86F') Put message records not valid.

MQRC_Q_DELETED

(2052, X'804') Queue has been deleted.

MQRC_Q_FULL

(2053, X'805') Queue already contains maximum number of messages.

MQRC_Q_MGR_NAME_ERROR

(2058, X'80A') Queue manager name not valid or not known.

MQRC_Q_MGR_NOT_AVAILABLE

(2059, X'80B') Queue manager not available for connection.

MQRC_Q_MGR_QUIESCING

(2161, X'871') Queue manager quiescing.

MQRC_Q_MGR_STOPPING

(2162, X'872') Queue manager shutting down.

MQRC_Q_SPACE_NOT_AVAILABLE

(2056, X'808') No space available on disk for queue.

MQRC_Q_TYPE_ERROR

(2057, X'809') Queue type not valid.

MQRC_RECS_PRESENT_ERROR

(2154, X'86A') Number of records present not valid.

MQRC_REMOTE_Q_NAME_ERROR

(2184, X'888') Remote queue name not valid.

MQRC_REPORT_OPTIONS_ERROR

(2061, X'80D') Report options in message descriptor not valid.

MQRC_RESOURCE_PROBLEM

(2102, X'836') Insufficient system resources available.

MQRC_RESPONSE_RECORDS_ERROR

(2156, X'86C') Response records not valid.

MQRC_RFH_ERROR

(2334, X'91E') MQRFH or MQRFH2 structure not valid.

MQRC_RMH_ERROR

(2220, X'8AC') Reference message header structure not valid.

MQRC_SECURITY_ERROR

(2063, X'80F') Security error occurred.

MQRC_SEGMENT_LENGTH_ZERO

(2253, X'8CD') Length of data in message segment is zero.

MQRC_SELECTION_NOT_AVAILABLE

2551 (X'09F7') The selection string does not follow the WebSphere MQ selector syntax and no extended message selection provider was

available.

MQRC_STOPPED_BY_CLUSTER_EXIT

(2188, X'88C') Call rejected by cluster workload exit.

MQRC_STORAGE_CLASS_ERROR

(2105, X'839') Storage class error.

MQRC_STORAGE_MEDIUM_FULL

(2192, X'890') External storage medium is full.

MQRC_STORAGE_NOT_AVAILABLE

(2071, X'817') Insufficient storage available.

MQRC_SUPPRESSED_BY_EXIT

(2109, X'83D') Call suppressed by exit program.

MQRC_SYNCPOINT_LIMIT_REACHED

(2024, X'7E8') No more messages can be handled within current unit of work.

MQRC_SYNCPOINT_NOT_AVAILABLE

(2072, X'818') Syncpoint support not available.

MQRC_TM_ERROR

Page 535 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

(2265, X'8D9') Trigger message structure not valid.

MQRC_TMC_ERROR

(2191, X'88F') Character trigger message structure not valid.

MQRC_UNEXPECTED_ERROR

(2195, X'893') Unexpected error occurred.

MQRC_UNKNOWN_ALIAS_BASE_Q

(2082, X'822') Unknown alias base queue.

MQRC_UNKNOWN_DEF_XMIT_Q

(2197, X'895') Unknown default transmission queue.

MQRC_UNKNOWN_OBJECT_NAME

(2085, X'825') Unknown object name.

MQRC_UNKNOWN_OBJECT_Q_MGR

(2086, X'826') Unknown object queue manager.

MQRC_UNKNOWN_REMOTE_Q_MGR

(2087, X'827') Unknown remote queue manager.

MQRC_UNKNOWN_XMIT_Q

(2196, X'894') Unknown transmission queue.

MQRC_UOW_ENLISTMENT_ERROR

(2354, X'932') Enlistment in global unit of work failed.

MQRC_UOW_MIX_NOT_SUPPORTED

(2355, X'933') Mixture of unit-of-work calls not supported.

MQRC_UOW_NOT_AVAILABLE

(2255, X'8CF') Unit of work not available for the queue manager to use.

MQRC_WIH_ERROR

(2333, X'91D') MQWIH structure not valid.

MQRC_WRONG_CF_LEVEL

(2366, X'93E') Coupling-facility structure is wrong level.

MQRC_WRONG_MD_VERSION

(2257, X'8D1') Wrong version of MQMD supplied.

MQRC_XMIT_Q_TYPE_ERROR

(2091, X'82B') Transmission queue not local.

MQRC_XMIT_Q_USAGE_ERROR

(2092, X'82C') Transmission queue with wrong usage.

MQRC_XQH_ERROR

(2260, X'8D4') Transmission queue header structure not valid.

For detailed information on these codes, see:

� WebSphere MQ for z/OS Messages and Codes for WebSphere® MQ for z/OS®

� WebSphere MQ Messages for all other WebSphere MQ platforms

Parent topic: Parameters for MQPUT1

This build: January 26, 2011 11:18:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18020_

2.22.3. Usage notes for MQPUT1

1. Both the MQPUT and MQPUT1 calls can be used to put messages on a queue; which call to use depends on the circumstances:

� Use the MQPUT call to place multiple messages on the same queue.

An MQOPEN call specifying the MQOO_OUTPUT option is issued first, followed by one or more MQPUT requests to add messages
to the queue; finally the queue is closed with an MQCLOSE call. This gives better performance than repeated use of the MQPUT1
call.

� Use the MQPUT1 call to put only one message on a queue.

This call encapsulates the MQOPEN, MQPUT, and MQCLOSE calls into a single call, minimizing the number of calls that must be
issued.

2. If an application puts a sequence of messages on the same queue without using message groups, the order of those messages is
preserved provided that certain conditions are satisfied. However, in most environments the MQPUT1 call does not satisfy these

conditions, and so does not preserve message order. The MQPUT call must be used instead in these environments. See MQPUT usage
notes for details.

3. The MQPUT1 call can be used to put messages to distribution lists. For general information about this, see the usage notes for the
MQOPEN and MQPUT calls.

Distribution lists are supported in the following environments: AIX®, HP-UX, i5/OS®, Solaris, Linux, Windows, plus WebSphere® MQ
clients connected to these systems.

The following differences apply when using the MQPUT1 call:

a. If the application provides MQRR response records, they must be provided using the MQOD structure; they cannot be provided

Page 536 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

using the MQPMO structure.

b. The reason code MQRC_OPEN_FAILED is never returned by MQPUT1 in the response records; if a queue fails to open, the
response record for that queue contains the reason code resulting from the open operation.

If an open operation for a queue succeeds with a completion code of MQCC_WARNING, the completion code and reason code in
the response record for that queue are replaced by the completion and reason codes resulting from the put operation.

As with the MQOPEN and MQPUT calls, the queue manager sets the response records (if provided) only when the outcome of the
call is not the same for all queues in the distribution list; this is indicated by the call completing with reason code
MQRC_MULTIPLE_REASONS.

4. If the MQPUT1 call is used to put a message on a cluster queue, the call behaves as though MQOO_BIND_NOT_FIXED had been
specified on the MQOPEN call.

5. If a message is put with one or more MQ header structures at the beginning of the application message data, the queue manager

performs certain checks on the header structures to verify that they are valid. For more information about this, see the usage notes
for the MQPUT call.

6. If more than one of the warning situations arise (see the CompCode parameter), the reason code returned is the first one in the

following list that applies:

a. MQRC_MULTIPLE_REASONS

b. MQRC_INCOMPLETE_MSG

c. MQRC_INCOMPLETE_GROUP

d. MQRC_PRIORITY_EXCEEDS_MAXIMUM or MQRC_UNKNOWN_REPORT_OPTION

7. For the Visual Basic programming language, the following points apply:

� If the size of the Buffer parameter is less than the length specified by the BufferLength parameter, the call fails with reason

code MQRC_BUFFER_LENGTH_ERROR.

� The Buffer parameter is declared as being of type String. If the data to be placed on the queue is not of type String, use the

MQPUT1Any call in place of MQPUT1.

The MQPUT1Any call has the same parameters as the MQPUT1 call, except that the Buffer parameter is declared as being of

type Any, allowing any type of data to be placed on the queue. However, this means that Buffer cannot be checked to ensure

that it is at least BufferLength bytes in size.

8. When an MQPUT1 call is issued with MQPMO_SYNCPOINT, the default behavior changes, so that the put operation is completed
asynchronously. This might cause a change in the behavior of some applications that rely on certain fields in the MQOD and MQMD
structures being returned, but which now contain undefined values. An application can specify MQPMO_SYNC_RESPONSE to ensure

that the put operation is performed synchronously and that all of the appropriate field values are completed.

Parent topic: MQPUT1 – Put one message

This build: January 26, 2011 11:18:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18030_

2.22.4. Language invocations for MQPUT1

The MQPUT1 call is supported in the programming languages shown below.

C invocation

COBOL invocation

PL/I invocation

System/390 assembler invocation

Visual Basic invocation

Parent topic: MQPUT1 – Put one message

This build: January 26, 2011 11:18:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18040_

2.22.4.1. C invocation

MQPUT1 (Hconn, &ObjDesc, &MsgDesc, &PutMsgOpts,

 BufferLength, Buffer, &CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /* Connection handle */

MQOD ObjDesc; /* Object descriptor */

MQMD MsgDesc; /* Message descriptor */

MQPMO PutMsgOpts; /* Options that control the action of MQPUT1 */

MQLONG BufferLength; /* Length of the message in Buffer */

MQBYTE Buffer[n]; /* Message data */

Page 537 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

MQLONG CompCode; /* Completion code */

MQLONG Reason; /* Reason code qualifying CompCode */

Parent topic: Language invocations for MQPUT1

This build: January 26, 2011 11:18:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18050_

2.22.4.2. COBOL invocation

 CALL 'MQPUT1' USING HCONN, OBJDESC, MSGDESC, PUTMSGOPTS,

 BUFFERLENGTH, BUFFER, COMPCODE, REASON.

Declare the parameters as follows:

** Connection handle

 01 HCONN PIC S9(9) BINARY.

** Object descriptor

 01 OBJDESC.

 COPY CMQODV.

** Message descriptor

 01 MSGDESC.

 COPY CMQMDV.

** Options that control the action of MQPUT1

 01 PUTMSGOPTS.

 COPY CMQPMOV.

** Length of the message in BUFFER

 01 BUFFERLENGTH PIC S9(9) BINARY.

** Message data

 01 BUFFER PIC X(n).

** Completion code

 01 COMPCODE PIC S9(9) BINARY.

** Reason code qualifying COMPCODE

 01 REASON PIC S9(9) BINARY.

Parent topic: Language invocations for MQPUT1

This build: January 26, 2011 11:18:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18060_

2.22.4.3. PL/I invocation

call MQPUT1 (Hconn, ObjDesc, MsgDesc, PutMsgOpts, BufferLength, Buffer,

 CompCode, Reason);

Declare the parameters as follows:

dcl Hconn fixed bin(31); /* Connection handle */

dcl ObjDesc like MQOD; /* Object descriptor */

dcl MsgDesc like MQMD; /* Message descriptor */

dcl PutMsgOpts like MQPMO; /* Options that control the action of

 MQPUT1 */

dcl BufferLength fixed bin(31); /* Length of the message in Buffer */

dcl Buffer char(n); /* Message data */

dcl CompCode fixed bin(31); /* Completion code */

dcl Reason fixed bin(31); /* Reason code qualifying CompCode */

Parent topic: Language invocations for MQPUT1

This build: January 26, 2011 11:18:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18070_

2.22.4.4. System/390® assembler invocation

 CALL MQPUT1,(HCONN,OBJDESC,MSGDESC,PUTMSGOPTS,BUFFERLENGTH, X

 BUFFER,COMPCODE,REASON)

Declare the parameters as follows:

HCONN DS F Connection handle

OBJDESC CMQODA , Object descriptor

MSGDESC CMQMDA , Message descriptor

PUTMSGOPTS CMQPMOA , Options that control the action of MQPUT1

BUFFERLENGTH DS F Length of the message in BUFFER

BUFFER DS CL(n) Message data

COMPCODE DS F Completion code

Page 538 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

REASON DS F Reason code qualifying COMPCODE

Parent topic: Language invocations for MQPUT1

This build: January 26, 2011 11:18:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18080_

2.22.4.5. Visual Basic invocation

MQPUT1 Hconn, ObjDesc, MsgDesc, PutMsgOpts, BufferLength, Buffer,

 CompCode, Reason

Declare the parameters as follows:

Dim Hconn As Long 'Connection handle'

Dim ObjDesc As MQOD 'Object descriptor'

Dim MsgDesc As MQMD 'Message descriptor'

Dim PutMsgOpts As MQPMO 'Options that control the action of MQPUT1'

Dim BufferLength As Long 'Length of the message in Buffer'

Dim Buffer As String 'Message data'

Dim CompCode As Long 'Completion code'

Dim Reason As Long 'Reason code qualifying CompCode'

Parent topic: Language invocations for MQPUT1

This build: January 26, 2011 11:18:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18090_

2.23. MQSET – Set object attributes

Use the MQSET call to change the attributes of an object represented by a handle. The object must be a queue.

Syntax for MQSET

Parameters for MQSET
The MQSET call has the following parameters.

Usage notes for MQSET

Language invocations for MQSET
The MQSET call is supported in the programming languages shown below.

Parent topic: Function calls

This build: January 26, 2011 11:18:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18100_

2.23.1. Syntax for MQSET

MQSET (Hconn, Hobj, SelectorCount, Selectors, IntAttrCount,

IntAttrs, CharAttrLength, CharAttrs, CompCode, Reason)

Parent topic: MQSET – Set object attributes

This build: January 26, 2011 11:18:13

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18110_

2.23.2. Parameters for MQSET

The MQSET call has the following parameters.

Hconn (MQHCONN) – input

Hobj (MQHOBJ) – input

Page 539 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

SelectorCount (MQLONG) – input

Selectors (MQLONGxSelectorCount) – input

IntAttrCount (MQLONG) – input

IntAttrs (MQLONGxIntAttrCount) – input

CharAttrLength (MQLONG) – input

CharAttrs (MQCHARxCharAttrLength) – input

CompCode (MQLONG) – output

Reason (MQLONG) – output

Parent topic: MQSET – Set object attributes

This build: January 26, 2011 11:18:13

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18120_

2.23.2.1. Hconn (MQHCONN) – input

This handle represents the connection to the queue manager. The value of Hconn was returned by a previous MQCONN or MQCONNX call.

On z/OS® for CICS® applications, and on i5/OS® for applications running in compatibility mode, the MQCONN call can be omitted, and the
following value specified for Hconn:

MQHC_DEF_HCONN

Default connection handle.

Parent topic: Parameters for MQSET

This build: January 26, 2011 11:18:13

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18130_

2.23.2.2. Hobj (MQHOBJ) – input

This handle represents the queue object whose attributes are to be set. The handle was returned by a previous MQOPEN call that specified
the MQOO_SET option.

Parent topic: Parameters for MQSET

This build: January 26, 2011 11:18:13

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18140_

2.23.2.3. SelectorCount (MQLONG) – input

This is the count of selectors that are supplied in the Selectors array. It is the number of attributes that are to be set. Zero is a valid value.

The maximum number allowed is 256.

Parent topic: Parameters for MQSET

This build: January 26, 2011 11:18:13

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18150_

2.23.2.4. Selectors (MQLONGxSelectorCount) – input

This is an array of SelectorCount attribute selectors; each selector identifies an attribute (integer or character) whose value is to be set.

Each selector must be valid for the type of queue that Hobj represents. Only certain MQIA_* and MQCA_* values are allowed; these values

are listed below.

Page 540 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Selectors can be specified in any order. Attribute values that correspond to integer attribute selectors (MQIA_* selectors) must be specified
in IntAttrs in the same order in which these selectors occur in Selectors. Attribute values that correspond to character attribute selectors

(MQCA_* selectors) must be specified in CharAttrs in the same order in which those selectors occur. MQIA_* selectors can be interleaved

with the MQCA_* selectors; only the relative order within each type is important.

You can specify the same selector more than once; if you do, the last value specified for a given selector is the one that takes effect.

Note:

1. The integer and character attribute selectors are allocated within two different ranges; the MQIA_* selectors reside within the range
MQIA_FIRST through MQIA_LAST, and the MQCA_* selectors within the range MQCA_FIRST through MQCA_LAST.

For each range, the constants MQIA_LAST_USED and MQCA_LAST_USED define the highest value that the queue manager accepts.

2. If all the MQIA_* selectors occur first, the same element numbers can be used to address corresponding elements in the Selectors

and IntAttrs arrays.

3. If the SelectorCount parameter is zero, Selectors is not referred to; in this case, the parameter address passed by programs written

in C or System/390® assembler might be null.

The attributes that can be set are listed in the following table. No other attributes can be set using this call. For the MQCA_* attribute
selectors, the constant that defines the length in bytes of the string that is required in CharAttrs is given in parentheses.

Parent topic: Parameters for MQSET

This build: January 26, 2011 11:18:13

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18160_

2.23.2.5. IntAttrCount (MQLONG) – input

This is the number of elements in the IntAttrs array, and must be at least the number of MQIA_* selectors in the Selectors parameter.

Zero is a valid value if there are none.

Parent topic: Parameters for MQSET

This build: January 26, 2011 11:18:13

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18170_

2.23.2.6. IntAttrs (MQLONGxIntAttrCount) – input

This is an array of IntAttrCount integer attribute values. These attribute values must be in the same order as the MQIA_* selectors in the

Selectors array.

If the IntAttrCount or SelectorCount parameter is zero, IntAttrs is not referred to; in this case, the parameter address passed by

programs written in C or System/390® assembler might be null.

Parent topic: Parameters for MQSET

This build: January 26, 2011 11:18:14

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18180_

2.23.2.7. CharAttrLength (MQLONG) – input

This is the length in bytes of the CharAttrs parameter, and must be at least the sum of the lengths of the character attributes specified in

Table 1. MQSET attribute selectors for queues

Selector Description Note

MQCA_TRIGGER_DATA Trigger data (MQ_TRIGGER_DATA_LENGTH).

MQIA_DIST_LISTS Distribution list support. 1

MQIA_INHIBIT_GET Whether get operations are allowed.

MQIA_INHIBIT_PUT Whether put operations are allowed.

MQIA_TRIGGER_CONTROL Trigger control.

MQIA_TRIGGER_DEPTH Trigger depth.

MQIA_TRIGGER_MSG_PRIORITY Threshold message priority for triggers.

MQIA_TRIGGER_TYPE Trigger type.

Note:

1. Supported only on AIX®, HP-UX, i5/OS®, Solaris, Linux, Windows, plus WebSphere® MQ clients connected to these

systems.

Page 541 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

the Selectors array. Zero is a valid value if there are no MQCA_* selectors in Selectors.

Parent topic: Parameters for MQSET

This build: January 26, 2011 11:18:14

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18190_

2.23.2.8. CharAttrs (MQCHARxCharAttrLength) – input

This is the buffer containing the character attribute values, concatenated together. The length of the buffer is given by the CharAttrLength

parameter.

The characters attributes must be specified in the same order as the MQCA_* selectors in the Selectors array. The length of each character

attribute is fixed (see Selectors). If the value to be set for an attribute contains fewer nonblank characters than the defined length of the

attribute, pad the value in CharAttrs to the right with blanks to make the attribute value match the defined length of the attribute.

If the CharAttrLength or SelectorCount parameter is zero, CharAttrs is not referred to; in this case, the parameter address passed by

programs written in C or System/390® assembler might be null.

Parent topic: Parameters for MQSET

This build: January 26, 2011 11:18:14

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18200_

2.23.2.9. CompCode (MQLONG) – output

The completion code; it is one of the following:

MQCC_OK

Successful completion.

MQCC_FAILED

Call failed.

Parent topic: Parameters for MQSET

This build: January 26, 2011 11:18:14

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18210_

2.23.2.10. Reason (MQLONG) – output

The reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:

MQRC_ADAPTER_NOT_AVAILABLE

(2204, X'89C') Adapter not available.

MQRC_ADAPTER_SERV_LOAD_ERROR

(2130, X'852') Unable to load adapter service module.

MQRC_API_EXIT_ERROR

(2374, X'946') API exit failed.

MQRC_API_EXIT_LOAD_ERROR

(2183, X'887') Unable to load API exit.

MQRC_ASID_MISMATCH

(2157, X'86D') Primary and home ASIDs differ.

MQRC_CALL_IN_PROGRESS

(2219, X'8AB') MQI call entered before previous call complete.

MQRC_CF_STRUC_FAILED

(2373, X'945') Coupling-facility structure failed.

Page 542 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

MQRC_CF_STRUC_IN_USE

(2346, X'92A') Coupling-facility structure in use.

MQRC_CF_STRUC_LIST_HDR_IN_USE

(2347, X'92B') Coupling-facility structure list-header in use.

MQRC_CHAR_ATTR_LENGTH_ERROR

(2006, X'7D6') Length of character attributes not valid.

MQRC_CHAR_ATTRS_ERROR

(2007, X'7D7') Character attributes string not valid.

MQRC_CICS_WAIT_FAILED

(2140, X'85C') Wait request rejected by CICS®.

MQRC_CONNECTION_BROKEN

(2009, X'7D9') Connection to queue manager lost.

MQRC_CONNECTION_NOT_AUTHORIZED

(2217, X'8A9') Not authorized for connection.

MQRC_CONNECTION_STOPPING

(2203, X'89B') Connection shutting down.

MQRC_DB2_NOT_AVAILABLE

(2342, X'926') DB2® subsystem not available.

MQRC_HCONN_ERROR

(2018, X'7E2') Connection handle not valid.

MQRC_HOBJ_ERROR

(2019, X'7E3') Object handle not valid.

MQRC_INHIBIT_VALUE_ERROR

(2020, X'7E4') Value for inhibit-get or inhibit-put queue attribute not valid.

MQRC_INT_ATTR_COUNT_ERROR

(2021, X'7E5') Count of integer attributes not valid.

MQRC_INT_ATTRS_ARRAY_ERROR

(2023, X'7E7') Integer attributes array not valid.

MQRC_NOT_OPEN_FOR_SET

(2040, X'7F8') Queue not open for set.

MQRC_OBJECT_CHANGED

(2041, X'7F9') Object definition changed since opened.

MQRC_OBJECT_DAMAGED

(2101, X'835') Object damaged.

MQRC_PAGESET_ERROR

(2193, X'891') Error accessing page-set data set.

MQRC_Q_DELETED

(2052, X'804') Queue has been deleted.

MQRC_Q_MGR_NAME_ERROR

(2058, X'80A') Queue manager name not valid or not known.

MQRC_Q_MGR_NOT_AVAILABLE

(2059, X'80B') Queue manager not available for connection.

MQRC_Q_MGR_STOPPING

(2162, X'872') Queue manager shutting down.

MQRC_RESOURCE_PROBLEM

(2102, X'836') Insufficient system resources available.

MQRC_SELECTOR_COUNT_ERROR

(2065, X'811') Count of selectors not valid.

MQRC_SELECTOR_ERROR

(2067, X'813') Attribute selector not valid.

MQRC_SELECTOR_LIMIT_EXCEEDED

(2066, X'812') Count of selectors too big.

MQRC_STORAGE_NOT_AVAILABLE

(2071, X'817') Insufficient storage available.

MQRC_SUPPRESSED_BY_EXIT

(2109, X'83D') Call suppressed by exit program.

MQRC_TRIGGER_CONTROL_ERROR

(2075, X'81B') Value for trigger-control attribute not valid.

MQRC_TRIGGER_DEPTH_ERROR

(2076, X'81C') Value for trigger-depth attribute not valid.

MQRC_TRIGGER_MSG_PRIORITY_ERR

(2077, X'81D') Value for trigger-message-priority attribute not valid.

Page 543 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

MQRC_TRIGGER_TYPE_ERROR

(2078, X'81E') Value for trigger-type attribute not valid.

MQRC_UNEXPECTED_ERROR

(2195, X'893') Unexpected error occurred.

For detailed information on these codes, see:

� WebSphere MQ for z/OS Messages and Codes for WebSphere® MQ for z/OS®

� WebSphere MQ Messages for all other WebSphere MQ platforms

Parent topic: Parameters for MQSET

This build: January 26, 2011 11:18:14

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18220_

2.23.3. Usage notes for MQSET

1. Using this call, the application can specify an array of integer attributes, or a collection of character attribute strings, or both. If no

errors occur, the attributes specified are all set simultaneously. If an error occurs (for example, if a selector is not valid, or an attempt
is made to set an attribute to a value that is not valid), the call fails and no attributes are set.

2. The values of attributes can be determined using the MQINQ call; see MQINQ – Inquire object attributes for details.

Note: Not all attributes whose values can be inquired using the MQINQ call can have their values changed using the MQSET call. For

example, no process-object or queue-manager attributes can be set with this call.

3. Attribute changes are preserved across restarts of the queue manager (other than alterations to temporary dynamic queues, which do
not survive restarts of the queue manager).

4. You cannot change the attributes of a model queue using the MQSET call. However, if you open a model queue using the MQOPEN call
with the MQOO_SET option, you can use the MQSET call to set the attributes of the dynamic local queue that is created by the
MQOPEN call.

5. If the object being set is a cluster queue, there must be a local instance of the cluster queue for the open to succeed.

For more information about object attributes, see:

� Attributes for queues

� Attributes for namelists

� Attributes for process definitions

� Attributes for the queue manager

Parent topic: MQSET – Set object attributes

This build: January 26, 2011 11:18:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18230_

2.23.4. Language invocations for MQSET

The MQSET call is supported in the programming languages shown below.

C invocation

COBOL invocation

PL/I invocation

System/390 assembler invocation

Visual Basic invocation

Parent topic: MQSET – Set object attributes

This build: January 26, 2011 11:18:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18240_

2.23.4.1. C invocation

MQSET (Hconn, Hobj, SelectorCount, Selectors, IntAttrCount, IntAttrs,

 CharAttrLength, CharAttrs, &CompCode, &Reason);

Page 544 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Declare the parameters as follows:

MQHCONN Hconn; /* Connection handle */

MQHOBJ Hobj; /* Object handle */

MQLONG SelectorCount; /* Count of selectors */

MQLONG Selectors[n]; /* Array of attribute selectors */

MQLONG IntAttrCount; /* Count of integer attributes */

MQLONG IntAttrs[n]; /* Array of integer attributes */

MQLONG CharAttrLength; /* Length of character attributes buffer */

MQCHAR CharAttrs[n]; /* Character attributes */

MQLONG CompCode; /* Completion code */

MQLONG Reason; /* Reason code qualifying CompCode */

Parent topic: Language invocations for MQSET

This build: January 26, 2011 11:18:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18250_

2.23.4.2. COBOL invocation

 CALL 'MQSET' USING HCONN, HOBJ, SELECTORCOUNT, SELECTORS-TABLE,

 INTATTRCOUNT, INTATTRS-TABLE, CHARATTRLENGTH,

 CHARATTRS, COMPCODE, REASON.

Declare the parameters as follows:

** Connection handle

 01 HCONN PIC S9(9) BINARY.

** Object handle

 01 HOBJ PIC S9(9) BINARY.

** Count of selectors

 01 SELECTORCOUNT PIC S9(9) BINARY.

** Array of attribute selectors

 01 SELECTORS-TABLE.

 02 SELECTORS PIC S9(9) BINARY OCCURS n TIMES.

** Count of integer attributes

 01 INTATTRCOUNT PIC S9(9) BINARY.

** Array of integer attributes

 01 INTATTRS-TABLE.

 02 INTATTRS PIC S9(9) BINARY OCCURS n TIMES.

** Length of character attributes buffer

 01 CHARATTRLENGTH PIC S9(9) BINARY.

** Character attributes

 01 CHARATTRS PIC X(n).

** Completion code

 01 COMPCODE PIC S9(9) BINARY.

** Reason code qualifying COMPCODE

 01 REASON PIC S9(9) BINARY.

Parent topic: Language invocations for MQSET

This build: January 26, 2011 11:18:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18260_

2.23.4.3. PL/I invocation

call MQSET (Hconn, Hobj, SelectorCount, Selectors, IntAttrCount,

 IntAttrs, CharAttrLength, CharAttrs, CompCode, Reason);

Declare the parameters as follows:

dcl Hconn fixed bin(31); /* Connection handle */

dcl Hobj fixed bin(31); /* Object handle */

dcl SelectorCount fixed bin(31); /* Count of selectors */

dcl Selectors(n) fixed bin(31); /* Array of attribute selectors */

dcl IntAttrCount fixed bin(31); /* Count of integer attributes */

dcl IntAttrs(n) fixed bin(31); /* Array of integer attributes */

dcl CharAttrLength fixed bin(31); /* Length of character attributes

 buffer */

dcl CharAttrs char(n); /* Character attributes */

dcl CompCode fixed bin(31); /* Completion code */

dcl Reason fixed bin(31); /* Reason code qualifying

 CompCode */

Parent topic: Language invocations for MQSET

This build: January 26, 2011 11:18:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

Page 545 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

fr18270_

2.23.4.4. System/390® assembler invocation

 CALL MQSET,(HCONN,HOBJ,SELECTORCOUNT,SELECTORS,INTATTRCOUNT, X

 INTATTRS,CHARATTRLENGTH,CHARATTRS,COMPCODE,REASON)

Declare the parameters as follows:

HCONN DS F Connection handle

HOBJ DS F Object handle

SELECTORCOUNT DS F Count of selectors

SELECTORS DS (n)F Array of attribute selectors

INTATTRCOUNT DS F Count of integer attributes

INTATTRS DS (n)F Array of integer attributes

CHARATTRLENGTH DS F Length of character attributes buffer

CHARATTRS DS CL(n) Character attributes

COMPCODE DS F Completion code

REASON DS F Reason code qualifying COMPCODE

Parent topic: Language invocations for MQSET

This build: January 26, 2011 11:18:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18280_

2.23.4.5. Visual Basic invocation

MQSET Hconn, Hobj, SelectorCount, Selectors, IntAttrCount, IntAttrs,

 CharAttrLength, CharAttrs, CompCode, Reason

Declare the parameters as follows:

Dim Hconn As Long 'Connection handle'

Dim Hobj As Long 'Object handle'

Dim SelectorCount As Long 'Count of selectors'

Dim Selectors As Long 'Array of attribute selectors'

Dim IntAttrCount As Long 'Count of integer attributes'

Dim IntAttrs As Long 'Array of integer attributes'

Dim CharAttrLength As Long 'Length of character attributes buffer'

Dim CharAttrs As String 'Character attributes'

Dim CompCode As Long 'Completion code'

Dim Reason As Long 'Reason code qualifying CompCode'

Parent topic: Language invocations for MQSET

This build: January 26, 2011 11:18:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18290_

2.24. MQSETMP – Set message property

Call that sets a property of a message handle.

The MQSETMP call sets or modifies a property of a message handle.

Syntax for MQSETMP
MQSETMP call syntax and list of parameters

Parameters for MQSETMP
List of valid parameters for the MQSETMP call.

Language invocations for MQSETMP
The MQSETMP call is supported in the programming languages shown below. List of languages supporting the MQSETMP call

Parent topic: Function calls

This build: January 26, 2011 11:20:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40770_

2.24.1. Syntax for MQSETMP

MQSETMP call syntax and list of parameters

MQSETMP (Hconn, Hmsg, SetPropOpts, Name, PropDesc, Type, ValueLength, Value, CompCode, Reason)

Page 546 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Parent topic: MQSETMP – Set message property

This build: January 26, 2011 11:20:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40780_

2.24.2. Parameters for MQSETMP

List of valid parameters for the MQSETMP call.

The MQSETMP call has the following parameters:

Hconn (MQHCONN) – input
This handle represents the connection to the queue manager.

Hmsg (MQHMSG) – input
This is the message handle to be modified. The value was returned by a previous MQCRTMH call.

SetPropsOpts (MQSMPO) – input
Control how message properties are set.

Name (MQCHARV) – input

This is the name of the property to set.

PropDesc (MQPD) – input/output

Type (MQLONG) – input

ValueLength (MQLONG) – input

The length in bytes of the property value in the Value parameter. Zero is valid only for null values or for strings or byte strings. Zero
indicates that the property exists but that the value contains no characters or bytes.

Value (MQBYTE x ValueLength) – input

The value of the property to be set. The buffer must be aligned on a boundary appropriate to the nature of the data in the value.

CompCode (MQLONG) – output

Reason (MQLONG) – output
The reason code qualifying CompCode.

Parent topic: MQSETMP – Set message property

This build: January 26, 2011 11:20:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40790_

2.24.2.1. Hconn (MQHCONN) – input

This handle represents the connection to the queue manager.

The value must match the connection handle that was used to create the message handle specified in the Hmsg parameter.

If the message handle was created using MQHC_UNASSOCIATED_HCONN, a valid connection must be established on the thread setting a
property of the message handle, otherwise the call fails with reason code MQRC_CONNECTION_BROKEN.

Parent topic: Parameters for MQSETMP

This build: January 26, 2011 11:20:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40630_

2.24.2.2. Hmsg (MQHMSG) – input

This is the message handle to be modified. The value was returned by a previous MQCRTMH call.

Parent topic: Parameters for MQSETMP

This build: January 26, 2011 11:20:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

Page 547 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

fr40810_

2.24.2.3. SetPropsOpts (MQSMPO) – input

Control how message properties are set.

This structure allows applications to specify options that control how message properties are set. The structure is an input parameter on the
MQSETMP call. See MQSMPO for further information.

Parent topic: Parameters for MQSETMP

This build: January 26, 2011 11:20:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40820_

2.24.2.4. Name (MQCHARV) – input

This is the name of the property to set.

See Property names and Property name restrictions for further information about the use of property names.

Parent topic: Parameters for MQSETMP

This build: January 26, 2011 11:20:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40830_

2.24.2.5. PropDesc (MQPD) – input/output

This structure is used to define the attributes of a property, including:

� what happens if the property is not supported

� what message context the property belongs to

� what messages the property is copied into as it flows

See MQPD for further information about this structure.

Parent topic: Parameters for MQSETMP

This build: January 26, 2011 11:20:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40840_

2.24.2.6. Type (MQLONG) – input

The data type of the property being set. It can be one of the following:

MQTYPE_BOOLEAN

A boolean. ValueLength must be 4.

MQTYPE_BYTE_STRING

A byte string. ValueLength must be zero or greater.

MQTYPE_INT8

An 8-bit signed integer. ValueLength must be 1.

MQTYPE_INT16

A 16-bit signed integer. ValueLength must be 2.

MQTYPE_INT32

A 32-bit signed integer.ValueLength must be 4.

MQTYPE_INT64

A 64-bit signed integer.ValueLength must be 8.

MQTYPE_FLOAT32

A 32-bit floating-point number. ValueLength must be 4.

Note: this type is not supported with applications using IBM® COBOL for z/OS®.

MQTYPE_FLOAT64

A 64-bit floating-point number. ValueLength must be 8.
Note: this type is not supported with applications using IBM COBOL for z/OS.

MQTYPE_STRING

A character string. ValueLength must be zero or greater, or the special value MQVL_NULL_TERMINATED.

Page 548 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

MQTYPE_NULL

The property exists but has a null value.ValueLength must be zero.

Parent topic: Parameters for MQSETMP

This build: January 26, 2011 11:20:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40850_

2.24.2.7. ValueLength (MQLONG) – input

The length in bytes of the property value in the Value parameter. Zero is valid only for null values or for strings or byte strings. Zero
indicates that the property exists but that the value contains no characters or bytes.

The value must be greater than or equal to zero or the following special value if the Type parameter has MQTYPE_STRING set:

MQVL_NULL_TERMINATED

The value is delimited by the first null encountered in the string. The null is not included as part of the string. This value is invalid if

MQTYPE_STRING is not also set.
Note: The null character used to terminate a string if MQVL_NULL_TERMINATED is set is a null from the character set of the Value.

Parent topic: Parameters for MQSETMP

This build: January 26, 2011 11:20:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40860_

2.24.2.8. Value (MQBYTE x ValueLength) – input

The value of the property to be set. The buffer must be aligned on a boundary appropriate to the nature of the data in the value.

In the C programming language, the parameter is declared as a pointer-to-void; the address of any type of data can be specified as the

parameter.

If ValueLength is zero, Value is not referred to. In this case, the parameter address passed by programs written in C or System/390®
assembler can be null.

Parent topic: Parameters for MQSETMP

This build: January 26, 2011 11:20:13

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40870_

2.24.2.9. CompCode (MQLONG) – output

The completion code; it is one of the following:

MQCC_OK

Successful completion.

MQCC_FAILED

Call failed.

Parent topic: Parameters for MQSETMP

This build: January 26, 2011 11:20:13

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40860_

2.24.2.10. Reason (MQLONG) – output

The reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE

(0, X'000') No reason to report.

Page 549 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

If CompCode is MQCC_WARNING:

MQRC_RFH_FORMAT_ERROR

(2421, X’0975’) An MQRFH2 folder containing properties could not be parsed.

If CompCode is MQCC_FAILED:

MQRC_ADAPTER_NOT_AVAILABLE

(2204, X'089C') Adapter not available.

MQRC_ADAPTER_SERV_LOAD_ERROR

(2130, X'852') Unable to load adapter service module.

MQRC_ASID_MISMATCH

(2157, X'86D') Primary and home ASIDs differ.

MQRC_BUFFER_ERROR

(2004, X’07D4’) Value parameter not valid.

MQRC_BUFFER_LENGTH_ERROR

(2005, X’07D5’) Value length parameter not valid.

MQRC_CALL_IN_PROGRESS

(2219, X'08AB') MQI call entered before previous call completed.

MQRC_HMSG_ERROR

(2460, X'099C') Message handle pointer not valid.

MQRC_MSG_HANDLE_IN_USE

(2499, X’09C3’) Message handle already in use.

MQRC_OPTIONS_ERROR

(2046, X'07FE') Options not valid or not consistent.

MQRC_PD_ERROR

(2482, X’09B2’) Property descriptor structure not valid.

MQRC_PROPERTY_NAME_ERROR

(2442, X’098A’) Invalid property name.

MQRC_PROPERTY_TYPE_ERROR

(2473, X’09A9’) Invalid property data type.

MQRC_PROP_NUMBER_FORMAT_ERROR

(2472, X’09A8’) Number format error encountered in value data.

MQRC_SMPO_ERROR

(2463, X'099F') Set message property options structure not valid.

MQRC_SOURCE_CCSID_ERROR

(2111, X’083F’) Property name coded character set identifier not valid.

MQRC_STORAGE_NOT_AVAILABLE

(2071, X'817') Insufficient storage available.

MQRC_UNEXPECTED_ERROR

(2195, X'893') Unexpected error occurred.

See Return codes for more details.

Parent topic: Parameters for MQSETMP

This build: January 26, 2011 11:20:13

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr40670_

2.24.3. Language invocations for MQSETMP

The MQSETMP call is supported in the programming languages shown below. List of languages supporting the MQSETMP call

C invocation
Parameters used for the C invocation of MQSETMP.

COBOL invocation

Parameters used for the COBOL invocation of MQSETMP.

PL/I invocation
Parameters used for the PL/I invocation of MQSETMP.

System/390 assembler invocation
Parameters used for the System/390® assembler invocation of MQSETMP.

Page 550 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Parent topic: MQSETMP – Set message property

This build: January 26, 2011 11:20:22

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr41580_

2.24.3.1. C invocation

Parameters used for the C invocation of MQSETMP.

MQSETMP (Hconn, Hmsg, &SetPropOpts, &Name, &PropDesc, Type,

ValueLength, &Value, &CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /* Connection handle */

MQHMSG Hmsg; /* Message handle */

MQSMPO SetPropOpts; /* Options that control the action of MQSETMP */

MQCHARV Name; /* Property name */

MQPD PropDesc; /* Property descriptor */

MQLONG Type; /* Property data type */

MQLONG ValueLength; /* Length of property value in Value */

MQBYTE Value[n]; /* Property value */

MQLONG CompCode; /* Completion code */

MQLONG Reason; /* Reason code qualifying CompCode */

Parent topic: Language invocations for MQSETMP

This build: January 26, 2011 11:20:22

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr41590_

2.24.3.2. COBOL invocation

Parameters used for the COBOL invocation of MQSETMP.

 CALL 'MQSETMP' USING HCONN, HMSG, SETMSGOPTS, NAME, PROPDESC, TYPE,

 VALUELENGTH, VALUE, COMPCODE, REASON.

Declare the parameters as follows:

** Connection handle

 01 HCONN PIC S9(9) BINARY.

** Message handle

 01 HMSG PIC S9(18) BINARY.

** Options that control the action of MQSETMP

 01 SETMSGOPTS.

 COPY CMQSMPOV.

** Property name

 01 NAME

 COPY CMQCHRVV.

** Property descriptor

 01 PROPDESC.

 COPY CMQPDV.

** Property data type

 01 TYPE PIC S9(9) BINARY.

** Length of property value in VALUE

 01 VALUELENGTH PIC S9(9) BINARY.

** Property value

 01 VALUE PIC X(n).

** Completion code

 01 COMPCODE PIC S9(9) BINARY.

** Reason code qualifying COMPCODE

 01 REASON PIC S9(9) BINARY.

Parent topic: Language invocations for MQSETMP

This build: January 26, 2011 11:20:22

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr41600_

2.24.3.3. PL/I invocation

Parameters used for the PL/I invocation of MQSETMP.

call MQSETMP (Hconn, Hmsg, SetPropOpts, Name, PropDesc, Type, ValueLength,

 Value, CompCode, Reason);

Declare the parameters as follows:

Page 551 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

dcl Hconn fixed bin(31); /* Connection handle */

dcl Hmsg fixed bin(63); /* Message handle */

dcl SetPropOpts like MQSMPO; /* Options that control the action of MQSETMP */

dcl Name like MQCHARV; /* Property name */

dcl PropDesc like MQPD; /* Property descriptor */

dcl Type fixed bin(31); /* Property data type */

dcl ValueLength fixed bin(31); /* Length of property value in Value */

dcl Value char(n); /* Property value */

dcl CompCode fixed bin(31); /* Completion code */

dcl Reason fixed bin(31); /* Reason code qualifying CompCode */

Parent topic: Language invocations for MQSETMP

This build: January 26, 2011 11:20:22

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr41610_

2.24.3.4. System/390 assembler invocation

Parameters used for the System/390® assembler invocation of MQSETMP.

 CALL MQSETMP,(HCONN,HMSG,SETMSGHOPTS,NAME,PROPDESC,TYPE,VALUELENGTH,

 VALUE,COMPCODE,REASON)

Declare the parameters as follows:

HCONN DS F Connection handle

HMSG DS D Message handle

SETMSGOPTS CMQSMPOA , Options that control the action of MQSETMP

NAME CMQCHRVA , Property name

PROPDESC CMQPDA , Property descriptor

TYPE DS F Property data type

VALUELENGTH DS F Length of property value in VALUE

VALUE DS CL(n) Property value

COMPCODE DS F Completion code

REASON DS F Reason code qualifying COMPCODE

Parent topic: Language invocations for MQSETMP

This build: January 26, 2011 11:20:23

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr41630_

2.25. MQSTAT – Retrieve status information

Use the MQSTAT call to retrieve status information. The type of status information returned is determined by the Type value specified on the

call.

Syntax for MQSTAT

Parameters for MQSTAT

Usage notes for MQSTAT

Language invocations for MQSTAT

Parent topic: Function calls

This build: January 26, 2011 11:19:40

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr122780_

2.25.1. Syntax for MQSTAT

MQSTAT (Hconn, Type, Stat, CompCode, Reason)

Parent topic: MQSTAT – Retrieve status information

This build: January 26, 2011 11:19:40

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr22790_

Page 552 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

2.25.2. Parameters for MQSTAT

The MQSTAT call has the following parameters.

Hconn (MQHCONN) – input

Type (MQLONG) – input

Stat (MQSTS) – input/output

CompCode (MQLONG) – output

Reason (MQLONG) – output

Parent topic: MQSTAT – Retrieve status information

This build: January 26, 2011 11:19:40

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr22800_

2.25.2.1. Hconn (MQHCONN) – input

This handle represents the connection to the queue manager. The value of Hconn was returned by a previous MQCONN or MQCONNX call.

On z/OS® for CICS® applications, and on i5/OS® for applications running in compatibility mode, the MQCONN call can be omitted, and the
following value specified for Hconn:

MQHC_DEF_HCONN

Default connection handle.

Parent topic: Parameters for MQSTAT

This build: January 26, 2011 11:19:40

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr22810_

2.25.2.2. Type (MQLONG) – input

Type of status information being requested. The valid values are :

MQSTAT_TYPE_ASYNC_ERROR

Return information about previous asynchronous put operations.

MQSTAT_TYPE_RECONNECTION

Return information about reconnection. If the connection is reconnecting or failed to reconnect, the information describes the failure which
caused the connection to begin reconnecting.

This value is only valid for client connections. For other types of connection, the call fails with reason code

MQRC_ENVIRONMENT_ERROR

MQSTAT_TYPE_RECONNECTION_ERROR

Return information about a previous failure related to reconnect. If the connection failed to reconnect, the information describes the
failure which caused reconnection to fail.

This value is only valid for client connections. For other types of connection, the call fails with reason code

MQRC_ENVIRONMENT_ERROR.

Parent topic: Parameters for MQSTAT

This build: January 26, 2011 11:19:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr22820_

Page 553 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

2.25.2.3. Stat (MQSTS) – input/output

Status information structure. See MQSTS – Status reporting structure for details.

Parent topic: Parameters for MQSTAT

This build: January 26, 2011 11:19:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr22820_

2.25.2.4. CompCode (MQLONG) – output

The completion code; it is one of the following:

MQCC_OK

Successful completion.

MQCC_FAILED

Call failed.

Parent topic: Parameters for MQSTAT

This build: January 26, 2011 11:19:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr22840_

2.25.2.5. Reason (MQLONG) – output

The reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:

MQRC_API_EXIT_ERROR

(2374, X'946') API exit failed

MQRC_API_EXIT_LOAD_ERROR

(2183, X'887') Unable to load API exit.

MQRC_CALL_IN_PROGRESS

(2219, X'8AB') MQI call entered before previous call complete.

MQRC_CONNECTION_BROKEN

(2009, X'7D9') Connection to queue manager lost.

MQRC_CONNECTION_STOPPING

(2203, X'89B') Connection shutting down.

MQRC_FUNCTION_NOT_SUPPORTED

(2298, X'8FA') The function requested is not available in the current environment.

MQRC_HCONN_ERROR

(2018, X'7E2') Connection handle not valid.

MQRC_Q_MGR_STOPPING

(2162,X'872' – Queue manager stopping

MQRC_RESOURCE_PROBLEM

(2102, X'836') Insufficient system resources available.

MQRC_STAT_TYPE_ERROR

(2430, X'97E' Error with MQSTAT type

MQRC_STORAGE_NOT_AVAILABLE

(2071, X'817') Insufficient storage available.

MQRC_STS_ERROR

(2424, X'978') Error with MQSTS structure

MQRC_UNEXPECTED_ERROR

(2195, X'893') Unexpected error occurred.

For detailed information on these codes, see:

� WebSphere MQ for z/OS Messages and Codes for WebSphere® MQ for z/OS®

Page 554 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

� WebSphere MQ Messages for all other WebSphere MQ platforms

Parent topic: Parameters for MQSTAT

This build: January 26, 2011 11:19:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr22850_

2.25.3. Usage notes for MQSTAT

The behavior of MQSTAT depends on the value of the MQSTAT Type parameter you provide.

MQSTAT_TYPE_ASYNC_ERROR

1. A call to MQSTAT specifying a type of MQSTAT_TYPE_ASYNC_ERROR returns information about previous asynchronous MQPUT and MQPUT1

operations. The MQSTS structure passed back on return from the MQSTAT call contains the first recorded asynchronous warning or

error information for that connection. If further errors or warnings follow the first, they do not normally alter these values. However,
if an error occurs with a completion code of MQCC_WARNING, a subsequent failure with a completion code of MQCC_FAILED is returned

instead.

2. If no errors have occurred since the connection was established or since the last call to MQSTAT then a CompCode of MQCC_OK and

Reason of MQRC_NONE are returned in the MQSTS structure.

3. Counts of the number of asynchronous calls that have been processed under the connection handle are returned via three counter

fields; PutSuccessCount, PutWarningCount and PutFailureCount. These counters are incremented by the queue manager each

time an asynchronous operation is processed successfully, has a warning or fails, respectively (note that for accounting purposes a
put to a distribution list counts once per destination queue rather than once per distribution list). A counter will not be incremented
beyond the maximum positive value AMQ_LONG_MAX.

4. A successful call to MQSTAT results in any previous error information or counts being reset.

MQSTAT_TYPE_RECONNECTION

Suppose you call MQSTAT with Type set to MQSTAT_TYPE_RECONNECTION inside an event handler during reconnection. Consider two

examples.

The client is attempting reconnection or failed to reconnect.

CompCode in the MQSTS structure is MQCC_FAILED and Reason might be either MQRC_CONNECTION_BROKEN or MQRC_Q_MGR_QUIESCING.

ObjectType is MQOT_Q_MGR, ObjectName is the name of the queue manager and ObjectQMgrName is blank.

The client completed reconnection successfully or was never disconnected.

CompCode in the MQSTS structure is MQCC_OK and the Reason is MQRC_NONE

Subsequent calls to MQSTAT will return the same results.

MQSTAT_TYPE_RECONNECTION_ERROR

Suppose you call MQSTAT with Type set to MQSTAT_TYPE_RECONNECTION_ERROR in response to receiving MQRC_RECONNECT_FAILED to an MQI

call. Consider two examples.

An authorization failure occurred when a queue was being reopened during reconnection to a different queue manager.

CompCode in the MQSTS structure is MQCC_FAILED and Reason is the reason that the reconnection failed, such as MQRC_NOT_AUTHORIZED.

ObjectType is the type of object that caused the problem, such as MQOT_QUEUE, ObjectName is the name of the queue and

ObjectQMgrName the name of the queue manager owning the queue.

A socket connection error occurred during reconnection.

CompCode in the MQSTS structure is MQCC_FAILED and Reason is the reason that the reconnection failed, such as

MQRC_HOST_NOT_AVAILABLE. ObjectType is MQOT_Q_MGR, ObjectName is the name of the queue manager and ObjectQMgrName is blank.

Subsequent calls to MQSTAT will return the same results.

Parent topic: MQSTAT – Retrieve status information

This build: January 26, 2011 11:19:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr22860_

2.25.4. Language invocations for MQSTAT

The MQSTAT call is supported in the programming languages shown below.

C invocation

COBOL invocation

PL/I invocation (z/OS only)

System/390 assembler invocation

Parent topic: MQSTAT – Retrieve status information

Page 555 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This build: January 26, 2011 11:19:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr22870_

2.25.4.1. C invocation

MQSTAT (Hconn, StatType, &Stat, &CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /* Connection Handle */

MQLONG StatType; /* Status type */

MQSTS Stat; /* Status information structure */

MQLONG CompCode; /* Completion code */

MQLONG Reason; /* Reason code qualifying CompCode */

Parent topic: Language invocations for MQSTAT

This build: January 26, 2011 11:19:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr22880_

2.25.4.2. COBOL invocation

CALL ‘MQSTAT’ USING HCONN, STATTYPE, STAT, COMPCODE, REASON.

Declare the parameters as follows:

** Connection handle

 01 HCONN PIC S9(9) BINARY.

** Status type

 01 STATTYPE PIC S9(9) BINARY.

** Status information

 01 STAT.

 COPY CMQSTSV.

** Completion code

 01 COMPCODE PIC S9(9) BINARY.

** Reason code qualifying COMPCODE

 01 REASON PIC S9(9) BINARY.

Parent topic: Language invocations for MQSTAT

This build: January 26, 2011 11:19:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr22890_

2.25.4.3. PL/I invocation (z/OS® only)

call MQSTAT (Hconn, StatType, Stat, Compcode, Reason);

Declare the parameters as follows:

dcl Hconn fixed bin(31); /* Connection handle */

dcl StatType fixed bin(31); /* Status type */

dcl Stat like MQSTS; /* Status information structure */

dcl CompCode fixed bin(31); /* Completion code */

dcl Reason fixed bin(31); /* Reason code qualifying CompCode */

Parent topic: Language invocations for MQSTAT

This build: January 26, 2011 11:19:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr22900_

2.25.4.4. System/390® assembler invocation

CALL MQSTAT,(HCONN,STATTYPE,STAT,COMPCODE,REASON)

Declare the parameters as follows:

HCONN DS F Connection handle

STATTYPE DS F Status type

STAT CMQSTSA, Status information structure

Page 556 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

COMPCODE DS F Completion code

REASON DS F Reason code qualifying COMPCODE

Parent topic: Language invocations for MQSTAT

This build: January 26, 2011 11:19:42

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr22910_

2.26. MQSUB - Register subscription

The MQSUB call registers the applications subscription to a particular topic.

Syntax for MQSUB

Parameters for MQSUB

Usage notes for MQSUB

Language invocations for MQSUB

Parent topic: Function calls

This build: January 26, 2011 11:19:42

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr25000_

2.26.1. Syntax for MQSUB

MQSUB (Hconn, SubDesc, Hobj, Hsub, CompCode, Reason)

Parent topic: MQSUB - Register subscription

This build: January 26, 2011 11:19:42

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr25010_

2.26.2. Parameters for MQSUB

The MQSUB call has the following parameters.

Hconn (MQHCONN) - input

SubDesc (MQSD) - input/output

Hobj (MQHOBJ) - input/output

Hsub (MQHOBJ) - output

CompCode (MQLONG) - output

Reason (MQLONG) – output
The reason code qualifying CompCode

Parent topic: MQSUB - Register subscription

This build: January 26, 2011 11:19:42

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr25020_

2.26.2.1. Hconn (MQHCONN) - input

This handle represents the connection to the queue manager. The value of Hconn was returned by a previous MQCONN or MQCONNX call.

On z/OS® for CICS® applications, and on i5/OS® for applications running in compatibility mode, the MQCONN call can be omitted, and the
following value specified for Hconn:

Page 557 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

MQHC_DEF_HCONN

Default connection handle.

Parent topic: Parameters for MQSUB

This build: January 26, 2011 11:19:42

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr25030_

2.26.2.2. SubDesc (MQSD) - input/output

This is a structure that identifies the object whose use is being registered by the application. See MQSD - Subscription descriptor for more
information.

Parent topic: Parameters for MQSUB

This build: January 26, 2011 11:19:42

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr25040_

2.26.2.3. Hobj (MQHOBJ) - input/output

This handle represents the access that has been established to obtain the messages sent to this subscription. These messages can either be

stored on a specific queue or the queue manager can manage their storage without using a specific queue.

To use a specific queue, you must associate it with the subscription when the subscription is created. You can do this in two ways:

� By using the DEFINE SUB MQSC command and providing that command with the name of a queue object.

� By providing this handle when calling MQSUB with the MQSO_CREATE

If this handle is provided as an input parameter on the call, it must be a valid object handle returned from a previous MQOPEN call of

a queue using at least one of the following options:

� MQOO_INPUT_*

� MQOO_BROWSE

� MQOO_OUTPUT (if the queue is a remote queue)

If this is not the case, the call fails with MQRC_HOBJ_ERROR. It cannot be an object handle to an alias queue that resolves to a topic
object. If this is the case, the call fails with MQRC_HOBJ_ERROR.

If the queue manager is to manage the storage of messages sent to this subscription, this should be set when you create the subscription,
by using the MQSO_MANAGED option. The queue manager will then return this handle as an output parameter on the call. The handle that

is returned is known as a managed handle. If MQHO_NONE is specified but MQSO_MANAGED is not specified, the call fails with
MQRC_HOBJ_ERROR.

When a managed handle is returned to you by the queue manager, you can use it on an MQGET or MQCB call with or without browse
options, on an MQINQ call, or on MQCLOSE. You cannot use it on MQPUT, MQSUB, MQSET; attempting to do so fails with

MQRC_NOT_OPEN_FOR_OUTPUT, MQRC_HOBJ_ERROR, or MQRC_NOT_OPEN_FOR_SET respectively.

If this subscription is being resumed using the MQSO_RESUME option in the MQSD structure, the handle can be returned to the application
in this parameter by setting MQSO_MANAGED to MQHO_NONE. You can do this whether the subscription is using a managed handle or not
and may be useful to provide subscriptions created using DEFINE SUB with the handle to the subscription queue defined on that command.
In the case where an administratively created subscription is being resumed, the queue opens with MQOO_INPUT_AS_Q_DEF and

MQOO_BROWSE. If you need to specify other options, the application must open the subscription queue explicitly and provide the object
handle on the call. If there is a problem opening the queue the call fails with MQRC_INVALID_DESTINATION. If the Hobj is provided, it must

be equivalent to the Hobj in the original MQSUB call. This means if an object handle returned from an MQOPEN call is being provided, the

handle must be to the same queue as previously used. If it is not the same queue, the call fails with MQRC_HOBJ_ERROR.

If this subscription is being altered using the MQSO_ALTER option in the MQSD structure, then a different Hobj can be provided. Any

publications that have been delivered to the queue and were previously identified through this parameter stay on that queue and it is the
responsibility of the application to retrieve those messages if the Hobj parameter now represents a different queue.

The table summarises the use of this parameter with various subscription options:

Options Hobj Description

MQSO_CREATE +

MQSO_MANAGED

Ignored on input Creates a subscription with storage of messages managed by the queue

manager

MQSO_CREATE A valid object

handle

Creates a subscription providing a specific queue as the destination for

messages.

MQSO_RESUME MQHO_NONE Resumes a previously created subscription whether it was managed or not, and

has the queue manager return the object handle for use by the application.

MQSO_RESUME A valid, matching,

object handle

Resumes a previously created subscription that uses a specific queue as the

destination for messages and use an object handle with specific open options.

MQSO_ALTER +

MQSO_MANAGED

MQHO_NONE Alters an existing subscription that was previously using a specific queue, so it

is now a managed subscription. The class of destination (managed or not)

cannot be changed.

MQSO_ALTER A valid object Alters an existing subscription, whether it was managed or not, so that it now

Page 558 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Whether it was provided or returned, Hobj must be specified on subsequent MQGET or MQCB calls that want to receive the publication

messages sent to this subscription.

The Hobj handle is no longer valid when the MQCLOSE call is issued on it, or when the unit of processing that defines the scope of the

handle terminates. The scope of the object handle returned is the same as that of the connection handle specified on the call. See Hconn
(MQHCONN) – output for information about handle scope. An MQCLOSE of the Hobj handle has no effect on the Hsub handle.

Parent topic: Parameters for MQSUB

This build: January 26, 2011 11:19:42

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr25050_

2.26.2.4. Hsub (MQHOBJ) - output

This handle represents the subscription that has been made. It can be used for two further operations:

� It can be used on a subsequent MQSUBRQ call to request publications be sent when the MQSO_PUBLICATIONS_ON_REQUEST option
has been used when making the subscription.

� It can be used on a subsequent MQCLOSE call to remove the subscription that has been made. The Hsub handle ceases to be valid

when the MQCLOSE call is issued, or when the unit of processing that defines the scope of the handle terminates. The scope of the
object handle returned is the same as that of the connection handle specified on the call. An MQCLOSE of the Hsub handle has no

effect on the Hobj handle.

This handle cannot be passed to an MQGET or MQCB call. You must use the Hobj parameter. You cannot use this handle on any MQ call

other than MQCLOSE or MQSUB. Passing this handle to any other MQ call results in MQRC_HOBJ_ERROR.

Parent topic: Parameters for MQSUB

This build: January 26, 2011 11:19:42

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr25060_

2.26.2.5. CompCode (MQLONG) - output

The completion code; it is one of the following:

MQCC_OK

Successful completion

MQCC_WARNING

Warning (partial completion)

MQCC_FAILED

Call failed

Parent topic: Parameters for MQSUB

This build: January 26, 2011 11:19:43

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr25070_

2.26.2.6. Reason (MQLONG) – output

The reason code qualifying CompCode

The reason code can be as follows:

If CompCode is MQCC_OK, the reason code is as follows:

MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_FAILED, the reason code is one of the following:

MQRC_CLUSTER_RESOLUTION_ERROR

(2189, X'88D') Cluster name resolution failed.

MQRC_DURABILITY_NOT_ALLOWED

handle uses a specific queue. When the MQSO_MANAGED option is not used, the

queue provided can be changed, but the class of destination (managed or not)

cannot be changed.

Page 559 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

2436 (X'0984') An MQSUB call using the MQSO_DURABLE option failed

MQRC_FUNCTION_NOT_SUPPORTED

2298 (X'08FA') The function requested is not available in the current environment.

MQRC_HOBJ_ERROR

2019 (X'07E3') Object handle Hobj not valid

MQRC_IDENTITY_MISMATCH

2434 (X'0982') Subscription name matches existing subscription

MQRC_OBJECT_STRING_ERROR

2441 (X'0989') Objectstring field not valid

MQRC_OPTIONS_ERROR

2046 (X'07FE') Options parameter or field contains options that are not valid, or a combination of options that is not valid.

MQRC_Q_MGR_QUIESCING

2161 (X'0871') Queue manager quiescing

MQRC_SD_ERROR

2424 (X'0978') Subscription descriptor (MQSD) not valid

MQRC_SELECTION_NOT_AVAILABLE

2551 (X'09F7') The selection string does not follow the WebSphere MQ selector syntax and no extended message selection provider was
available.

MQRC_SELECTION_STRING_ERROR

2519 (X'09D7') The selection string must be specified as described in the MQCHARV structure documentation.

MQRC_SELECTOR_SYNTAX_ERROR

2459 (X'099B') An MQOPEN, MQPUT1 or MQSUB call was issued but a selection string was specified which contained a syntax error.

MQRC_SUB_USER_DATA_ERROR

2431 (X'097F') SubUserData field not valid

MQRC_SUB_NAME_ERROR

2440 (X'0988') SubName field not valid

MQRC_SUB_ALREADY_EXISTS

2432 (X'0980') Subscription already exists

MQRC_SUB_USER_DATA_ERROR

2431 (X'097F') SubUserData field not valid

MQRC_TOPIC_STRING_ERROR

2425 (X'0979') Topic string is not valid

MQRC_UNKNOWN_OBJECT_NAME

2085 (X'0825') Object identified cannot be found

MQRC_RETAINED_MSG_Q_ERROR

2525 (X'09DD') Retained publications which exist for the subscribed topic string, cannot be retrieved.

MQRC_RETAINED_NOT_DELIVERED

2526 (X'09DE') The retained publications which exist for the subscribed topic string, cannot be delivered to the subscription destination
queue, and could not be delivered to the dead-letter queue.

Parent topic: Parameters for MQSUB

This build: January 26, 2011 11:19:43

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr25080_

2.26.3. Usage notes for MQSUB

1. The subscription is made to a topic, named either using the short name of a pre-defined topic object, the full name of the topic string,
or it is formed by the concatenation of two parts. See the description of ObjectName and ObjectString in MQSD - Subscription

descriptor.

2. The queue manager performs security checks when an MQSUB call is issued, to verify that the user identifier under which the

application is running has the appropriate level of authority before access is permitted. The appropriate topic object is located in the
topic hierarchy and an authority check is made on this topic object to ensure authority to subscribe is set. If the MQSO_MANAGED
option is not used, an authority check is made on the destination queue to ensure authority for output is set. If the MQSO_MANAGED
option is used, no authority check is made on the managed queue for output or inquire access.

3. The Hobj returned on the MQSUB call when the MQSO_MANAGED option is used, can be inquired in order to find out attributes such as
the Backout threshold and the Excessive backout requeue name. You can also inquire the name of the managed queue, but do not
attempt to directly open this queue.

4. Subscriptions can be grouped together allowing only a single publication to be delivered to the group of subscriptions even where
more than one of the group matched the publication. Subscriptions are grouped using the MQSO_GROUP_SUB option and in order to
group subscriptions together they must

� be using the same named queue (that is not using the MQSO_MANAGED option) on the same queue manager – represented by
the Hobj parameter on the MQSUB call

� share the same SubCorrelId

� be of the same SubLevel

Page 560 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

These attributes define the set of subscriptions considered to be in the group, and are also the attributes that cannot be altered if a
subscription is grouped. Alteration of SubLevel results in MQRC_SUBLEVEL_NOT_ALTERABLE, and alteration of any of the others

(which can be changed if a subscription is not grouped) results in MQRC_GROUPING_NOT_ALTERABLE.

5. Fields in the MQSD are filled in on return from an MQSUB call which uses the MQSO_RESUME option. The MQSD returned can be
passed directly into an MQSUB call which uses the MQSO_ALTER option with any changes you need to make to the subscription

applied to the MQSD. Some fields have special considerations as noted in the table.

Parent topic: MQSUB - Register subscription

This build: January 26, 2011 11:19:43

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr25090_

2.26.4. Language invocations for MQSUB

C invocation

COBOL invocation

PL/I invocation

System/390 assembler invocation

Parent topic: MQSUB - Register subscription

This build: January 26, 2011 11:19:43

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr25200_

2.26.4.1. C invocation

MQSD output from MQSUB

Field name in MQSD Special considerations

Access or creation options None of these options are set on return from the MQSUB call. If you subsequently reuse the

MQSD in an MQSUB call the option you require must be explicitly set.

Durability options,

Destination options,
Registration Options &

Wildcard options

These options will be set as appropriate

Publication options These options will be set as appropriate, with the exception of

MQSO_NEW_PUBLICATIONS_ONLY which is only applicable to MQSO_CREATE.

Other options These options are unchanged on return from an MQSUB call. They control how the API call is

issued and are not stored with the subscription. They must be set as required on any

subsequent MQSUB call reusing the MQSD.

ObjectName This input only field is unchanged on return from an MQSUB call.

ObjectString This input only field is unchanged on return from an MQSUB call. The Full topic name used is

returned in the ResObjectString field, if a buffer is provided.

AlternateUserId and

AlternateSecurityId

These input only fields are unchanged on return from an MQSUB call. They control how the

API call is issued and are not stored with the subscription. They must set as required on any

subsequent MQSUB call reusing the MQSD.

SubExpiry On return from an MQSUB call using the MQSO_RESUME option this field will be set to the
original expiry of the subscription and not the remaining expiry time. If you subsequently

reuse the MQSD in an MQSUB call using the MQSO_ALTER option you will reset the expiry of

the subscription to start counting down again.

SubName This field is an input field on an MQSUB call and is not changed on output.

SubUserData and

SelectionString
These variable length fields will be returned on output from an MQSUB call using the

MQSO_RESUME option, if a buffer is provided, and also a positive buffer length in VSBufSize.

If no buffer is provided only the length will be returned in the VSLength field of the

MQCHARV.If the buffer provided is smaller than the space required to return the field, only

VSBufSize bytes are returned in the provided buffer.

If you subsequently reuse the MQSD in an MQSUB call using the MQSO_ALTER option and a

buffer is not provided but a non-zero VSLength is provided, if that length matches the existing

length of the field, no alteration will made to the field.

SubCorrelId and

PubAccountingToken
If you do not use MQSO_SET_CORREL_ID, then the SubCorrelId will be generated by the

queue manager. If you do not use MQSO_SET_IDENTITY_CONTEXT, then the

PubAccountingToken will be generated by the queue manager.

These fields will be returned in the MQSD from an MQSUB call using the MQSO_RESUME

option. If they are generated by the queue manager, the generated value will be returned on

an MQSUB call using the MQSO_CREATE or MQSO_ALTER option.

PubPriority, SubLevel &

PubApplIdentityData

These fields will be returned in the MQSD.

ResObjectString This output only field will be returned in the MQSD if a buffer is provided.

Page 561 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

MQSUB (Hconn, &SubDesc, &Hobj, &Hsub, &CompCode, &Reason)

Declare the parameters as follows:

MQHCONN Hconn; /* Connection handle */

MQSD SubDesc; /* Subscription descriptor */

MQHOBJ Hobj; /* Object handle */

MQHOBJ Hsub; /* Subscription handle */

MQLONG CompCode; /* Completion code */

MQLONG Reason; /* Reason code qualifying CompCode */

Parent topic: Language invocations for MQSUB

This build: January 26, 2011 11:19:43

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr25210_

2.26.4.2. COBOL invocation

CALL ‘MQSUB’ USING HCONN, SUBDESC, HOBJ, HSUB, COMPCODE, REASON.

Declare the parameters as follows:

** Connection handle

 01 HCONN PIC S9(9) BINARY.

** Subscription descriptor

 01 SUBDESC.

 COPY CMQSDV.

** Object handle

 01 HOBJ PIC S9(9) BINARY.

** Subscription handle

 01 HSUB PIC S9(9) BINARY.

** Completion code

 01 COMPCODE PIC S9(9) BINARY.

** Reason code qualifying COMPCODE

 01 REASON PIC S9(9) BINARY.

Parent topic: Language invocations for MQSUB

This build: January 26, 2011 11:19:43

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr25220_

2.26.4.3. PL/I invocation

call MQSUB (Hconn, SubDesc, Hobj, Hsub, CompCode, Reason)

Declare the parameters as follows:

dcl Hconn fixed bin(31); /* Connection handle */

dcl SubDesc like MQSD; /* Subscription descriptor */

dcl Hobj fixed bin(31); /* Object handle */

dcl Hsub fixed bin(31); /* Subscription handle */

dcl CompCode fixed bin(31); /* Completion code */

dcl Reason fixed bin(31); /* Reason code qualifying CompCode */

Parent topic: Language invocations for MQSUB

This build: January 26, 2011 11:19:43

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr25230_

2.26.4.4. System/390® assembler invocation

CALL MQSUB,(HCONN,SUBDESC,HOBJ,HSUB,COMPCODE,REASON)

Declare the parameters as follows:

HCONN DS F Connection handle

SUBDESC CMQSDA , Subscription descriptor

HOBJ DS F Object handle

HSUB DS F Subscription handle

COMPCODE DS F Completion code

REASON DS F Reason code qualifying COMPCODE

Parent topic: Language invocations for MQSUB

This build: January 26, 2011 11:19:43

Page 562 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr25250_

2.27. MQSUBRQ - Subscription request

The MQSUBRQ call makes a request for a subscription, when the subscriber has been registered with MQSO_PUBLICATIONS_ON_REQUEST.

Syntax for MQSUBRQ

Parameters for MQSUBRQ

Usage notes for MQSUBRQ

Language invocations for MQSUBRQ

Parent topic: Function calls

This build: January 26, 2011 11:20:00

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr36100_

2.27.1. Syntax for MQSUBRQ

MQSUBRQ (Hconn, Hsub, Action, SubRqOpts, CompCode, Reason)

Parent topic: MQSUBRQ - Subscription request

This build: January 26, 2011 11:20:00

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr36110_

2.27.2. Parameters for MQSUBRQ

The MQSUBRQ call has the following parameters.

Hconn (MQHCONN) - input

Hsub (MQHOBJ) - input

Action (MQLONG) - input

SubRqOpts (MQSRO) - input/output

CompCode (MQLONG) - output

Reason (MQLONG) - output

Parent topic: MQSUBRQ - Subscription request

This build: January 26, 2011 11:20:00

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr25020_

2.27.2.1. Hconn (MQHCONN) - input

This handle represents the connection to the queue manager. The value of Hconn was returned by a previous MQCONN or MQCONNX call.

On z/OS® for CICS® applications, and on i5/OS® for applications running in compatibility mode, the MQCONN call can be omitted, and the
following value specified for Hconn:

MQHC_DEF_HCONN

Default connection handle.

Parent topic: Parameters for MQSUBRQ

This build: January 26, 2011 11:20:00

Page 563 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr36130_

2.27.2.2. Hsub (MQHOBJ) - input

This handle represents the subscription for which an update is to be requested. The value of Hsub was returned from a previous MQSUB call.

Parent topic: Parameters for MQSUBRQ

This build: January 26, 2011 11:20:00

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr36140_

2.27.2.3. Action (MQLONG) - input

This parameter controls the particular action that is being requested on the subscription. The following value must be specified:

MQSR_ACTION_PUBLICATION

This action requests an update publication be sent for the specified topic. It can only be used if the subscriber specified the option
MQSO_PUBLICATIONS_ON_REQUEST on the MQSUB call when it made the subscription. If the queue manager has a retained publication

for the topic, this is sent to the subscriber. If not, the call fails. If an application is sent a publication which was retained, this will be
indicated by the MQIsRetained message property of that publication.

Since the topic in the existing subscription represented by the Hsub parameter may contain wildcards, the subscriber might receive multiple
retained publications.

Parent topic: Parameters for MQSUBRQ

This build: January 26, 2011 11:20:00

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr36150_

2.27.2.4. SubRqOpts (MQSRO) - input/output

These options control the action of MQSUBRQ, see MQSRO - Subscription request options for details.

If no options are required, programs written in C or S/390® assembler can specify a null parameter address instead of specifying the
address of an MQSRO structure.

Parent topic: Parameters for MQSUBRQ

This build: January 26, 2011 11:20:00

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr36160_

2.27.2.5. CompCode (MQLONG) - output

The completion code; it is one of the following:

MQCC_OK

Successful completion

MQCC_WARNING

Warning (partial completion)

MQCC_FAILED

Call failed

Parent topic: Parameters for MQSUBRQ

This build: January 26, 2011 11:20:01

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr36170_

2.27.2.6. Reason (MQLONG) - output

Page 564 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

The reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:

MQRC_FUNCTION_NOT_SUPPORTED

2298 (X'08FA') The function requested is not available in the current environment.

MQRC_NO_RETAINED_MSG

2437 (X'0985') There are no retained publications currently stored for this topic.

MQRC_OPTIONS_ERROR

2046 (X'07FE') Options parameter or field contains options that are not valid, or a combination of options that is not valid.

MQRC_Q_MGR_QUIESCING

2161 (X'0871') Queue manager quiescing

MQRC_SRO_ERROR

2438 (X'0986') On the MQSUBRQ call, the Subscription Request Options MQSRO is not valid.

MQRC_RETAINED_MSG_Q_ERROR

2525 (X'09DD') Retained publications which exist for the subscribed topic string, cannot be retrieved.

MQRC_RETAINED_NOT_DELIVERED

2526 (X'09DE') The retained publications which exist for the subscribed topic string, cannot be delivered to the subscription destination
queue, and could not be delivered to the dead-letter queue.

Parent topic: Parameters for MQSUBRQ

This build: January 26, 2011 11:20:01

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr36180_

2.27.3. Usage notes for MQSUBRQ

The following usage notes apply to the use of the Action code MQSR_ACTION_PUBLICATION:

1. If this verb completes successfully, the retained publications matching the subscription specified have been sent to the subscription
and can be received by using MQGET or MQCB using the Hobj returned on the original MQSUB verb that created the subscription.

2. If the topic subscribed to by the original MQSUB verb that created the subscription contained a wildcard, more than one retained
publication may be sent. The number of publications sent as a result of this call is recorded in the NumPubs field in the SubRqOpts
structure.

3. If this verb completes with a reason code of MQRC_NO_RETAINED_MSG then there were no currently retained publications for the
topic specified.#

4. If this verb completes with a reason code of MQRC_RETAINED_MSG_Q_ERROR or MQRC_RETAINED_NOT_DELIVERED then there are
currently retained publications for the topic specified but an error has occurred that that meant they were unable to be delivered.

5. The application must have a current subscription to the topic before it can make this call. If the subscription was made in a previous
instance of the application and a valid handle to the subscription is not available, the application must first call MQSUB with the
MQSO_RESUME option to obtain a handle to it for use in this call.

6. The publications are sent to the destination that is registered for use with the current subscription of this application. If the
publications should be sent somewhere else, the subscription must first be altered using the MQSUB call with the MQSO_ALTER option.

Parent topic: MQSUBRQ - Subscription request

This build: January 26, 2011 11:20:01

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr36190_

2.27.4. Language invocations for MQSUBRQ

C invocation

COBOL invocation

PL/I invocation

System/390 assembler invocation

Parent topic: MQSUBRQ - Subscription request

This build: January 26, 2011 11:20:01

Page 565 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr36200_

2.27.4.1. C invocation

MQSUB (Hconn, Hsub, Action, &SubRqOpts, &CompCode, &Reason)

Declare the parameters as follows:

MQHCONN Hconn; /* Connection handle */

MQHOBJ Hsub; /* Subscription handle */

MQLONG Action; /* Action requested by MQSUBRQ */

MQSRO SubRqOpts; /* Options that control the action of MQSUBRQ */

MQLONG CompCode; /* Completion code */

MQLONG Reason; /* Reason code qualifying CompCode */

Parent topic: Language invocations for MQSUBRQ

This build: January 26, 2011 11:20:01

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr36210_

2.27.4.2. COBOL invocation

CALL ‘MQSUBRQ’ USING HCONN, HSUB, ACTION, SUBRQOPTS, COMPCODE, REASON.

Declare the parameters as follows:

** Connection handle

01 HCONN PIC S9(9) BINARY.

** Subscription handle

01 HSUB PIC S9(9) BINARY.

** Action requested by MQSUBRQ

01 ACTION PIC S9(9) BINARY.

** Options that control the action of MQSUBRQ

01 SUBRQOPTS.

COPY CMQSROV.

** Completion code

01 COMPCODE PIC S9(9) BINARY.

** Reason code qualifying COMPCODE

01 REASON PIC S9(9) BINARY.

Parent topic: Language invocations for MQSUBRQ

This build: January 26, 2011 11:20:01

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr36220_

2.27.4.3. PL/I invocation

call MQSUBRQ (Hconn, Hsub, Action, SubRqOpts, CompCode, Reason)

Declare the parameters as follows:

dcl Hconn fixed bin(31); /* Connection handle */

dcl Hsub fixed bin(31); /* Subscription handle */

dcl Action fixed bin(31); /* Action requested by MQSUBRQ */

dcl SubRqOpts like MQSRO; /* Options that control the action of MQSUBRQ */

dcl CompCode fixed bin(31); /* Completion code */

dcl Reason fixed bin(31); /* Reason code qualifying CompCode */

Parent topic: Language invocations for MQSUBRQ

This build: January 26, 2011 11:20:01

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr36230_

2.27.4.4. System/390® assembler invocation

CALL MQSUBRQ,(HCONN, HSUB, ACTION, SUBRQOPTS,COMPCODE,REASON)

Declare the parameters as follows:

HCONN DS F Connection handle

HSUB DS F Subscription handle

Page 566 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

ACTION DS F Action requested by MQSUBRQ

SUBRQOPTS CMQSROA , Options that control the action of MQSUBRQ

COMPCODE DS F Completion code

REASON DS F Reason code qualifying COMPCODE

Parent topic: Language invocations for MQSUBRQ

This build: January 26, 2011 11:20:01

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr36250_

3. Attributes of objects

This collection of topics lists only those WebSphere MQ objects that can be the subject of an MQINQ function call, and gives details of the
attributes that can be inquired on and the selectors to be used.

Attributes for the queue manager
Some queue-manager attributes are fixed for particular implementations; others can be changed by using the MQSC command ALTER

QMGR.

Attributes for queues
There are five types of queue definition. Some queue attributes apply to all types of queue; other queue attributes apply only to
certain types of queue.

Attributes for namelists
The following table summarizes the attributes that are specific to namelists. The attributes are described in alphabetic order.

Attributes for process definitions

The following table summarizes the attributes that are specific to process definitions. The attributes are described in alphabetic order.

Parent topic: Application Programming Reference

Related reference
MQINQ – Inquire object attributes

This build: January 26, 2011 11:18:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18300_

3.1. Attributes for the queue manager

Some queue-manager attributes are fixed for particular implementations; others can be changed by using the MQSC command ALTER QMGR.

The attributes can also be displayed by using the command DISPLAY QMGR. Most queue-manager attributes can be inquired by opening a

special MQOT_Q_MGR object, and using the MQINQ call with the handle returned.

The following table summarizes the attributes that are specific to the queue manager. The attributes are described in alphabetic order.

Note: The names of the attributes shown in this book are descriptive names used with the MQINQ call; the names are the same as for the
PCF commands. When MQSC commands are used to define, alter, or display attributes, alternative short names are used; see the
WebSphere MQ Script (MQSC) Command Reference for details.

Table 1. Attributes for the queue manager

Attribute Description

AccountingConnOverride Override accounting settings.

AccountingInterval How often to write intermediate accounting records.

AdoptNewMCACheck Elements checked to determine whether to adopt new MCA.

AdoptNewMCAType Whether to restart automatically an orphaned instance of an MCA of a given channel type.

AlterationDate Date when definition was last changed

AlterationTime Time when definition was last changed

AuthorityEvent Controls whether authorization (Not Authorized) events are generated

BridgeEvent Control attribute for bridge events.

ChannelAutoDef Controls whether automatic channel definition is permitted

ChannelAutoDefEvent Controls whether channel automatic-definition events are generated

ChannelAutoDefExit Name of user exit for automatic channel definition

ChannelEvent Control attribute for channel events.

ChannelInitiatorControl Control attribute for channel initiator

ChannelMonitoring Online monitoring data for channels

ChannelStatistics Controls collection of statistics data for channels.

ChinitAdapters Number of adapter subtasks for processing WebSphere® MQ calls.

ChinitDispatchers Number of dispatchers to use for the channel initiator.

Page 567 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

 Reserved for IBM® use.

ChinitTraceAutoStart Whether channel initiator trace should start automatically.

ChinitTraceTableSize Size of channel initiator's trace data space.

ClusterSenderMonitoringDefault Online monitoring data default for cluster sender channels

ClusterSenderStatistics Controls collection of statistics monitoring information for cluster sender channels.

ClusterWorkloadData User data for cluster workload exit

ClusterWorkloadExit Name of user exit for cluster workload management

ClusterWorkloadLength Maximum length of message data passed to cluster workload exit

CLWLMRUChannels Number of most recently used channels for cluster workload balancing

CLWLUseQ Cluster workload use remote queue.

CodedCharSetId Coded character set identifier

CommandEvent Control attribute for command events.

CommandInputQName attribute Command input queue name

CommandLevel Command level

CommandServerControl attribute Control attribute for command server.

Configuration Event attribute Control attribute for configuration events.

DeadLetterQName Name of dead-letter queue

DefXmitQName Default transmission queue name

DistLists Distribution list support

DNSGroup Name of group for TCP listener when using Workload Manager Dynamic Domain Name

Services support.

DNSWLM Whether TCP listener registers with Workload Manager for Dynamic Domain Name

Services.

ExpiryInterval Interval between scans for expired messages

IGQPutAuthority Intra-group queuing put authority

IGQUserId Intra-group queuing user identifier

InhibitEvent Controls whether inhibit (Inhibit Get and Inhibit Put) events are generated

IPAddressVersion Version of the internet protocol address

IntraGroupQueuing Intra-group queuing support

ListenerTimer Time interval between attempts to restart listener after APPC or TCP/IP failure.

LocalEvent Controls whether local error events are generated

LoggerEvent Controls whether logger events are generated

LUGroupName Generic LU name for LU 6.2 listener that handles inbound transmissions for queue-sharing

group.

LUName Name of LU to use for outbound LU 6.2 transmissions.

LU62ARMSuffix Suffix of SYS1.PARMLIB member APPCPMxx, that nominates LUADD for this channel

initiator.

LU62Channels Maximum number of current channels or connected clients that use LU 6.2.

MaxActiveChannels Maximum number of channels that can be active at any time.

MaxChannels Maximum number of current channels.

MaxHandles Maximum number of handles

MaxMsgLength Maximum message length in bytes

MaxPriority attribute Maximum priority

MaxPropertiesLength Maximum length of property data in bytes

MaxUncommittedMsgs Maximum number of uncommitted messages within a unit of work

MQIAccounting Controls collection of accounting information for MQI data.

MQIStatistics Controls collection of statistics monitoring information for queue manager.

MsgMarkBrowseInterval Interval after which the queue manager can remove the mark from browsed messages.

OutboundPortMin With OutboundPortMin, defines range of port numbers to use when binding outgoing

channels.

OutboundPortMin With OutboundPortMax, defines range of port numbers to use when binding outgoing

channels.

PerformanceEvent Controls whether performance-related events are generated

Platform Platform on which the queue manager is running

PubSubNPInputMsg Whether to discard (or keep) an undelivered input message

PubSubNPResponse Controls the behavior of undelivered

PubSubMaxMsgRetryCount The number of retries when processing (under syncpoint) a failed command message

PubSubSyncPoint Whether only persistent (or all) messages should be processed under syncpoint

PubSubMode Whether the queued publish/subscribe interface is running

QMgrDesc Queue manager description

QMgrIdentifier Unique internally-generated identifier of queue manager

QMgrName Queue manager name

QSGName Name of queue-sharing group

QueueAccounting Controls collection of accounting information for queues.

QueueMonitoring Online monitoring data for queues

QueueStatistics Controls collection of statistics data for queues.

ReceiveTimeout How long TCP/IP channel waits for data before returning to inactive state.

Page 568 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

AccountingConnOverride (MQLONG)

AccountingInterval (MQLONG)

AdoptNewMCACheck (MQLONG)

AdoptNewMCAType (MQLONG)

AlterationDate (MQCHAR12)

AlterationTime (MQCHAR8)

AuthorityEvent (MQLONG)

BridgeEvent (MQLONG)
This specifies whether IMS bridge events are generated.

ChannelAutoDef (MQLONG)

ChannelAutoDefEvent (MQLONG)

ChannelAutoDefExit (MQCHARn)

ChannelEvent (MQLONG)
This specifies whether channel events are generated.

ChannelInitiatorControl (MQLONG)
This specifies whether the channel initiator is to be started when the queue manager starts.

ChannelMonitoring (MQLONG)

This specifies online monitoring data for channels.

ChannelStatistics (MQLONG)

ChinitAdapters (MQLONG)

ChinitDispatchers (MQLONG)

ChinitTraceAutoStart (MQLONG)

ChinitTraceTableSize (MQLONG)

ClusterSenderMonitoringDefault (MQLONG)

ReceiveTimeoutMin Qualifier for ReceiveTimeout.

ReceiveTimeoutType Minimum time that TCP/IP channel waits for data before returning to inactive state.

RemoteEvent Controls whether remote error events are generated

RepositoryName Name of cluster for which this queue manager provides repository services

RepositoryNamelist Name of namelist object containing names of clusters for which this queue manager

provides repository services

ScyCase Case of security profiles

SharedQMgrName Shared queue queue-manager name

SSLCRLNamelist
1

Name of namelist object containing names of authentication information objects.

SSLCryptoHardware
1

Cryptographic hardware configuration string.

SSLEvent Control attribute for SSL events.

SSLFIPSRequired Use only FIPS-certified algorithms for cryptography.

SSLKeyRepository
1

Location of SSL key repository.

SSLKeyResetCount SSL key reset count.

SSLTasks
1

Number of server subtasks for processing SSL calls.

StatisticsInterval How often to write statistics monitoring data.

StartStopEvent Controls whether start and stop events are generated

SyncPoint Syncpoint availability

TCPChannels Maximum number of current channels or connected clients that use TCP/IP.

TCPKeepAlive Whether to use TCP KEEPALIVE to check other end of connection.

TCPName Name of TCP/IP system that you are using.

TCPStackType How channel initiator can use TCP/IP addresses.

TraceRouteRecording attribute Controls recording of trace-route information.

TriggerInterval Trigger-message interval

Notes:

1. This attribute cannot be inquired using the MQINQ call, and is not described in this book. See WebSphere MQ
Programmable Command Formats and Administration Interface for details of this attribute.

Page 569 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This specifies the value to be substituted for the ChannelMonitoring attribute of automatically-defined cluster sender channels.

ClusterSenderStatistics (MQLONG)

ClusterWorkloadData (MQCHAR32)

ClusterWorkloadExit (MQCHARn)

ClusterWorkloadLength (MQLONG)

CLWLMRUChannels (MQLONG)

CLWLUseQ (MQLONG)

CodedCharSetId (MQLONG)

CommandEvent (MQLONG)

CommandInputQName (MQCHAR48)

CommandLevel (MQLONG)

CommandServerControl (MQLONG)
Specifies whether the command server is to be started when the queue manager starts.

ConfigurationEvent (MQLONG)

DeadLetterQName (MQCHAR48)

DefXmitQName (MQCHAR48)

DistLists (MQLONG)

DNSGroup (MQCHAR18)

DNSWLM (MQLONG)

ExpiryInterval (MQLONG)

IGQPutAuthority (MQLONG)

IGQUserId (MQLONG)

InhibitEvent (MQLONG)

IntraGroupQueuing (MQLONG)

IPAddressVersion (MQLONG)

ListenerTimer (MQLONG)

LocalEvent (MQLONG)

LoggerEvent (MQLONG)

LUGroupName (MQCHAR8)

LUName (MQCHAR8)

LU62ARMSuffix (MQCHAR2)

LU62Channels (MQLONG)

MaxActiveChannels (MQLONG)

MaxChannels (MQLONG)

MaxHandles (MQLONG)

MaxMsgLength (MQLONG)

MaxPriority (MQLONG)

MaxPropertiesLength (MQLONG)
This is used to control the size of the properties that can flow with a message. This includes both the property name in bytes and the
size of the property value also in bytes.

MaxUncommittedMsgs (MQLONG)

Page 570 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

MQIAccounting (MQLONG)

MQIStatistics (MQLONG)

MsgMarkBrowseInterval (MQLONG)
Time interval in milliseconds after which the queue manager can automatically remove the mark from browse messages.

OutboundPortMax (MQLONG)

OutboundPortMin (MQLONG)

PerformanceEvent (MQLONG)

Platform (MQLONG)

This indicates the operating system on which the queue manager is running:

PropertyControl (MQLONG)
Specifies how message properties are handled for messages that are retrieved from queues using the MQGET call with the

MQGMO_PROPERTIES_AS_Q_DEF option.

PubSubNPInputMsg (MQLONG)
Whether to discard or keep an undelivered input message.

PubSubNPResponse (MQLONG)
Controls the behavior of undelivered response messages.

PubSubMaxMsgRetryCount (MQLONG)
The number of retries when processing a failed command message under syncpoint.

PubSubSyncPoint (MQLONG)
Whether only persistent messages or all messages are processed under syncpoint.

PubSubMode (MQLONG)

Whether the publish/subscribe engine and the queued publish/subscribe interface are running, therefore allowing applications to
publish/subscribe by using the application programming interface and the queues that are being monitored by the queued
publish/subscribe interface.

QMgrDesc (MQCHAR64)

QMgrIdentifier (MQCHAR48)

QMgrName (MQCHAR48)

QSGName (MQCHAR4)

QueueAccounting (MQLONG)

QueueMonitoring (MQLONG)
This specifies the default setting for online monitoring of queues.

QueueStatistics (MQLONG)

ReceiveTimeout (MQLONG)

ReceiveTimeoutMin (MQLONG)

ReceiveTimeoutType (MQLONG)

RemoteEvent (MQLONG)

RepositoryName (MQCHAR48)

RepositoryNamelist (MQCHAR48)

ScyCase(MQCHAR8)

SharedQMgrName (MQLONG)

SSLEvent (MQLONG)
This specifies whether SSL events are generated.

SSLFIPSRequired (MQLONG)

SSLKeyResetCount (MQLONG)

StartStopEvent (MQLONG)

StatisticsInterval (MQLONG)

Page 571 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

SyncPoint (MQLONG)

TCPChannels (MQLONG)

TCPKeepAlive (MQLONG)

TCPName (MQCHAR8)

TCPStackType (MQLONG)

TraceRouteRecording (MQLONG)

TriggerInterval (MQLONG)

TriggerInterval (MQLONG)

Parent topic: Attributes of objects

This build: January 26, 2011 11:18:39

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19130_

3.1.1. AccountingConnOverride (MQLONG)

This allows applications to override the setting of the ACCTMQI and ACCTQDATA values in the Qmgr attribute.

The value is one of the following:

MQMON_DISABLED

Applications cannot override the setting of the ACCTMQI and ACCTQ Qmgr attributes using the Options field in the MQCNO structure on
the MQCONNX call. This is the default value.

MQMON_ENABLED

Applications can override the ACCTQ and ACCTMQI Qmgr attributes using the Options field in the MQCNO structure.

Changes to this value are only effective for connections to the queue manager after the change to the attribute.

This attribute is supported only on i5/OS®, Unix systems, and Windows.

To determine the value of this attribute, use the MQIA_ACCOUNTING_CONN_OVERRIDE selector with the MQINQ call.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:39

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19150_

3.1.2. AccountingInterval (MQLONG)

This specifies how long before intermediate accounting records are written (in seconds).

The value is an integer in the range 0 to 604800, with a default value of 1800 (30 minutes). Specify 0 to turn off intermediate records.

This attribute is supported only on i5/OS®, Unix systems, and Windows.

To determine the value of this attribute, use the MQIA_ACCOUNTING_INTERVAL selector with the MQINQ call.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:39

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19160_

3.1.3. AdoptNewMCACheck (MQLONG)

This defines the elements to check to determine whether to adopt an MCA when a new inbound channel is detected that has the same name
as an MCA that is already active

The value is one of the following:

MQADOPT_CHECK_Q_MGR_NAME

Page 572 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Check the queue manager name.

MQADOPT_CHECK_NET_ADDR

Check the network address.

MQADOPT_CHECK_ALL

Check the queue manager name and network address. If possible, perform this check to protect your channels from being shut down,
inadvertently or maliciously. This is the default value.

MQADOPT_CHECK_NONE

Do not check any elements.

Changes to this attribute take effect the next time that a channel attempts to adopt a channel.

This attribute is supported only on z/OS®.

To determine the value of this attribute, use the MQIA_ADOPTNEWMCA_CHECK selector with the MQINQ call.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:39

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19170_

3.1.4. AdoptNewMCAType (MQLONG)

This specifies whether to restart automatically an orphaned instance of an MCA of a given channel type when a new inbound channel

request matching the AdoptNewMCACheck attribute is detected

The value is one of the following:

MQADOPT_TYPE_NO

Adopting orphaned channel instances is not required. This is the default value.

MQADOPT_TYPE_ALL

Adopt all channel types.

This attribute is supported on z/OS® only.

To determine the value of this attribute, use the MQIA_ADOPTNEWMCA_TYPE selector with the MQINQ call.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:40

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19180_

3.1.5. AlterationDate (MQCHAR12)

This is the date when the definition was last changed. The format of the date is YYYY-MM-DD, padded with two trailing blanks to make the

length 12 bytes.

To determine the value of this attribute, use the MQCA_ALTERATION_DATE selector with the MQINQ call. The length of this attribute is
given by MQ_DATE_LENGTH.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:40

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19190_

3.1.6. AlterationTime (MQCHAR8)

This is the time when the definition was last changed. The format of the time is HH.MM.SS.

To determine the value of this attribute, use the MQCA_ALTERATION_TIME selector with the MQINQ call. The length of this attribute is given

by MQ_TIME_LENGTH.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:40

Notices | Trademarks | Downloads | Library | Support | Feedback

Page 573 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19200_

3.1.7. AuthorityEvent (MQLONG)

This controls whether authorization (Not Authorized) events are generated. The value is one of the following:

MQEVR_DISABLED

Event reporting disabled.

MQEVR_ENABLED

Event reporting enabled.

For more information about events, see Monitoring WebSphere MQ.

To determine the value of this attribute, use the MQIA_AUTHORITY_EVENT selector with the MQINQ call.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:40

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19210_

3.1.8. BridgeEvent (MQLONG)

This specifies whether IMS™ bridge events are generated.

The value is one of the following:

MQEVR_ENABLED

Generate IMS bridge events, as follows:

MQRC_BRIDGE_STARTED

MQRC_BRIDGE_STOPPED

MQEVR_DISABLED

Do not generate IMS bridge events; this is the default value.

This attribute is supported on z/OS® only.

To determine the value of this attribute, use the MQIA_BRIDGE_EVENT selector with the MQINQ call.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:40

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19220_

3.1.9. ChannelAutoDef (MQLONG)

This attribute controls the automatic definition of channels of type MQCHT_RECEIVER and MQCHT_SVRCONN. Automatic definition of

MQCHT_CLUSSDR channels is always enabled. The value is one of the following:

MQCHAD_DISABLED

Channel auto-definition disabled.

MQCHAD_ENABLED

Channel auto-definition enabled.

This attribute is supported only on AIX®, HP-UX, i5/OS®, Linux, Solaris, and Windows.

To determine the value of this attribute, use the MQIA_CHANNEL_AUTO_DEF selector with the MQINQ call.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:40

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19230_

3.1.10. ChannelAutoDefEvent (MQLONG)

Page 574 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This controls whether channel automatic-definition events are generated. It applies to channels of type MQCHT_RECEIVER,
MQCHT_SVRCONN, and MQCHT_CLUSSDR. The value is one of the following:

MQEVR_DISABLED

Event reporting disabled.

MQEVR_ENABLED

Event reporting enabled.

For more information about events, see Monitoring WebSphere MQ.

This attribute is supported only on AIX®, HP-UX, i5/OS®, Linux, Solaris, and Windows.

To determine the value of this attribute, use the MQIA_CHANNEL_AUTO_DEF_EVENT selector with the MQINQ call.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:40

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19240_

3.1.11. ChannelAutoDefExit (MQCHARn)

This is the name of the user exit for automatic channel definition. If this name is nonblank, and ChannelAutoDef has the value

MQCHAD_ENABLED, the exit is called each time that the queue manager is about to create a channel definition. This applies to channels of
type MQCHT_RECEIVER, MQCHT_SVRCONN, and MQCHT_CLUSSDR. The exit can then do one of the following:

� Create the channel definition without change.

� Modify the attributes of the channel definition that is created.

� Suppress creation of the channel entirely.

Note: Both the length and the value of this attribute are environment specific. See the introduction to the MQCD structure in WebSphere
MQ Intercommunication for details of the value of this attribute in various environments.

This attribute is supported only on AIX®, HP-UX, i5/OS®, Linux, Solaris, Windows, and z/OS®. On z/OS, it applies only to cluster-sender
and cluster-receiver channels.

To determine the value of this attribute, use the MQCA_CHANNEL_AUTO_DEF_EXIT selector with the MQINQ call. The length of this attribute

is given by MQ_EXIT_NAME_LENGTH.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19250_

3.1.12. ChannelEvent (MQLONG)

This specifies whether channel events are generated.

The value is one of the following:

MQEVR_EXCEPTION

Only generate the following channel events:

� MQRC_CHANNEL_ACTIVATED

� MQRC_CHANNEL_CONV_ERROR

� MQRC_CHANNEL_NOT_ACTIVATED

� MQRC_CHANNEL_STOPPED with the following ReasonQualifiers:

MQRQ_CHANNEL_STOPPED_ERROR

MQRQ_CHANNEL_STOPPED_RETRY

MQRQ_CHANNEL_STOPPED_DISABLED

MQRC_CHANNEL_STOPPED_BY_USER

MQEVR_ENABLED

Generate all channel events. That is, in addition to those generated by EXCEPTION, generate the following channel events:

� MQRC_CHANNEL_STARTED

� MQRC_CHANNEL_STOPPED with the following ReasonQualifier:

MQRQ_CHANNEL_STOPPED_OK

MQEVR_DISABLED

Do not generate channel events; this is the default value.

Page 575 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

To determine the value of this attribute, use the MQIA_CHANNEL_EVENT selector with the MQINQ call.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19260_

3.1.13. ChannelInitiatorControl (MQLONG)

This specifies whether the channel initiator is to be started when the queue manager starts.

The value is one of the following:

MQSVC_CONTROL_MANUAL

The channel initiator is not to be started automatically.

MQSVC_CONTROL_Q_MGR

The channel initiator is to be started automatically when the queue manager starts.

To determine the value of this attribute, use the MQIA_CHINIT_CONTROL selector with the MQINQ call.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19270_

3.1.14. ChannelMonitoring (MQLONG)

This specifies online monitoring data for channels.

The value is one of the following:

MQMON_NONE

Disable data collection for channel monitoring for all channels regardless of the setting of the STATCHL channel attribute. This is the

default value.

MQMON_OFF

Turn monitoring data collection off for channels that specify QMGR in the STATCHL channel attribute.

MQMON_LOW

Turn monitoring data collection on with a low ratio of data collection for channels specifying QMGR in the STATCHL channel attribute.

MQMON_MEDIUM

Turn monitoring data collection on with a moderate ratio of data collection for channels specifying QMGR in the STATCHL channel

attribute.

MQMON_HIGH

Turn monitoring data collection on with a high ratio of data collection for channels specifying QMGR in the STATCHL channel attribute.

To determine the value of this attribute, use the MQIA_MONITORING_CHANNEL selector with the MQINQ call.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19280_

3.1.15. ChannelStatistics (MQLONG)

This controls the collection of statistics data for channels.

The value is one of the following:

MQMON_NONE

Disable data collection for channel statistics for all channels regardless of the setting of the STATCHL channel attribute. This is the default
value.

MQMON_OFF

Turn statistics data collection off for channels that specify QMGR in the STATCHL channel attribute.

MQMON_LOW

Turn statistics data collection on with a low ratio of data collection for channels specifying QMGR in the STATCHL channel attribute.

Page 576 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

MQMON_MEDIUM

Turn statistics data collection on with a moderate ratio of data collection for channels specifying QMGR in the STATCHL channel attribute.

MQMON_HIGH

Turn statistics data collection on with a high ratio of data collection for channels specifying QMGR in the STATCHL channel attribute.

For most systems you are recommended to use MEDIUM. However, for a channel that processes a high volume of messages each second,
you might want to reduce the sampling level by selecting LOW. Also, for a channel that processes only a few messages, and for which the
most current information is important, you might want to select HIGH.

This attribute is supported only on i5/OS®, UNIX systems, and Windows.

To determine the value of this attribute, use the MQIA_STATISTICS_CHANNEL selector with the MQINQ call.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19290_

3.1.16. ChinitAdapters (MQLONG)

This is the number of adapter subtasks to use to process WebSphere® MQ calls. The value must be between 0 and 9999, with a default
value of 8.

The ratio of adapters to dispatchers (the ChinitDispatchers attribute) should be about 8 to 5. However, if you have only a small number of
channels, you do not have to decrease the value of this parameter from the default value. You are recommended to use the following
values: for a test system, 8 (default); for a production system, 20. Ideally, you should have 20 adapters, which gives greater parallelism of
WebSphere MQ calls. This is particularly important for persistent messages. Fewer adapters might be better for nonpersistent messages.

This attribute is supported on z/OS® only.

To determine the value of this attribute, use the MQIA_CHINIT_ADAPTERS selector with the MQINQ call.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19300_

3.1.17. ChinitDispatchers (MQLONG)

This is the number of dispatchers to use for the channel initiator. The value must be between 0 and 9999, with a default value of 5.

As a guideline, allow one dispatcher for 50 current channels. However, if you have only a small number of channels, you do not have to
decrease the value of this attribute from the default value. If you are using TCP/IP, the greatest number of dispatchers that are used for

TCP/IP channels is 100, even if you specify a larger value here. You are recommended to use the following settings: test systems, 5 (the
default); production systems, 20 (you need 20 dispatchers to handle up to 1000 active channels).

This attribute is supported on z/OS® only.

To determine the value of this attribute, use the MQIA_CHINIT_DISPATCHERS selector with the MQINQ call.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19310_

3.1.18. ChinitTraceAutoStart (MQLONG)

This specifies whether to start channel initiator trace automatically.

The value is one of the following:

MQTRAXSTR_YES

Start channel initiator trace automatically. This is the default value.

MQTRAXSTR_NO

Do not start channel initiator trace automatically.

This attribute is supported on z/OS® only.

Page 577 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

To determine the value of this attribute, use the MQIA_CHINIT_TRACE_AUTO_START selector with the MQINQ call.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:42

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19320_

3.1.19. ChinitTraceTableSize (MQLONG)

This is the size of the channel initiator's trace data space (in MB). The value must be between zero and 2048, with a default value of 2.

Note: Whenever you use large z/OS® data spaces, ensure that you have sufficient auxiliary storage on your system to support any related
z/OS paging activity. You might also need to increase the size of your SYS1.DUMP data sets.

This attribute is supported on z/OS only.

To determine the value of this attribute, use the MQIA_CHINIT_TRACE_TABLE_SIZE selector with the MQINQ call.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:42

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19330_

3.1.20. ClusterSenderMonitoringDefault (MQLONG)

This specifies the value to be substituted for the ChannelMonitoring attribute of automatically-defined cluster sender channels.

The value is one of the following:

MQMON_Q_MGR

Collection of online monitoring data is inherited from the setting of the queue manager ChannelMonitoring attribute. This is the default

value.

MQMON_OFF

Monitoring for the channel is switched off

MQMON_LOW

Unless ChannelMonitoring is MQMON_NONE, monitoring is switched on with a low rate of data collection with a minimal impact on

system performance. The data collected is not likely to be the most current.

MQMON_MEDIUM

Unless ChannelMonitoring is MQMON_NONE, monitoring is switched on with a moderate rate of data collection with limited impact on

system performance.

MQMON_HIGH

Unless ChannelMonitoring is MQMON_NONE, monitoring is switched on with a high rate of data collection with a likely impact on system

performance. The data collected is the most current available.

To determine the value of this attribute, use the MQIA_MONITORING_AUTO_CLUSSDR selector with the MQINQ call.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:42

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19340_

3.1.21. ClusterSenderStatistics (MQLONG)

Because cluster sender channels can be automatically defined from the definition of CLUSRCVR in the repository, you cannot alter the
setting of the STATCHL attribute for these auto-defined cluster sender channels using ALTER channel. For these channels the decision of

whether to collect online monitoring data is based on the setting of this queue manager attribute.

The value is one of the following:

MQMON_Q_MGR

Statistics data collection for auto-defined cluster sender channels is based on the value of the queue manager attribute STATCHL. This is
the default value.

MQMON_OFF

Switch off statistics data collection for auto-defined cluster sender channels.

MQMON_LOW

Page 578 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Switch on statistics data collection for auto-defined cluster sender channels with a low ratio of data collection.

MQMON_MEDIUM

Switch on statistics data collection for auto-defined cluster sender channels with a moderate ratio of data collection.

MQMON_HIGH

Switch on statistics data collection for auto-defined cluster sender channels with a high ratio of data collection.

For most systems we recommend MEDIUM. However, for an auto-defined cluster sender channel that processes a high volume of messages
each second, you might want to reduce the sampling level by selecting LOW. Also, for a channel that processes only a few messages, and

for which the most current information is important, you might want to select HIGH.

To determine the value of this attribute, use the MQIA_STATISTICS_AUTO_CLUSSDR selector with the MQINQ call.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:42

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19350_

3.1.22. ClusterWorkloadData (MQCHAR32)

This is a user-defined 32-byte character string that is passed to the cluster workload exit when it is called. If there is no data to pass to the
exit, the string is blank.

This attribute is supported only on AIX®, HP-UX, i5/OS®, Linux, Solaris, Windows and z/OS®.

To determine the value of this attribute, use the MQCA_CLUSTER_WORKLOAD_DATA selector with the MQINQ call.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:42

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19360_

3.1.23. ClusterWorkloadExit (MQCHARn)

This is the name of the user exit for cluster workload management. If this name is not blank, the exit is called each time that a message is
put to a cluster queue or moved from one cluster-sender queue to another. The exit can then either accept the queue instance selected by
the queue manager as the destination for the message, or select another queue instance.

Note: Both the length and the value of this attribute are environment specific. See WebSphere MQ Intercommunication for details of the
value of this attribute in various environments.

This attribute is supported only on AIX®, HP-UX, i5/OS®, Linux, Solaris, Windows and z/OS®.

To determine the value of this attribute, use the MQCA_CLUSTER_WORKLOAD_EXIT selector with the MQINQ call. The length of this
attribute is given by MQ_EXIT_NAME_LENGTH.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:42

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19370_

3.1.24. ClusterWorkloadLength (MQLONG)

This is the maximum length of message data that is passed to the cluster workload exit. The actual length of data passed to the exit is the
minimum of the following:

� The length of the message.

� The queue-manager’s MaxMsgLength attribute.

� The ClusterWorkloadLength attribute.

This attribute is supported only on AIX®, HP-UX, i5/OS®, Linux, Solaris, Windows and z/OS®.

To determine the value of this attribute, use the MQIA_CLUSTER_WORKLOAD_LENGTH selector with the MQINQ call.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:43

Notices | Trademarks | Downloads | Library | Support | Feedback

Page 579 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19380_

3.1.25. CLWLMRUChannels (MQLONG)

This specifies the maximum number of most-recently-used cluster channels, to be considered for use by the cluster workload choice
algorithm. This is a value between 1 and 999999999. For more information on using this attribute, see WebSphere MQ Queue Manager
Clusters.

To determine the value of this attribute, use the MQIA_CLWL_MRU_CHANNELS selector with the MQINQ call.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:43

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19390_

3.1.26. CLWLUseQ (MQLONG)

This specifies whether to use remote queues for the cluster workload.

The value is one of the following:

MQCLWL_USEQ_ANY

Use both local and remote queues.

MQCLWL_USEQ_LOCAL

Do not use remote queues. This is the default value.

To determine the value of this attribute, use the MQIA_CLWL_USEQ selector with the MQINQ call.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:43

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19400_

3.1.27. CodedCharSetId (MQLONG)

This defines the character set used by the queue manager for all character string fields defined in the MQI, including the names of objects,
queue creation date and time, and so on. The character set must be one that has single-byte characters for the characters that are valid in
object names. It does not apply to application data carried in the message. The value depends on the environment:

� On z/OS®, the value is set from the system parameters when the queue manager is started; the default value is 500. Refer to the

WebSphere MQ for z/OS System Setup Guide for further information.

� On Windows, the value is the primary CODEPAGE of the user creating the queue manager.

� On i5/OS®, the value is that which is set in the environment when the queue manager is first created.

� On UNIX systems, the value is the default CODESET for the locale of the user creating the queue manager.

To determine the value of this attribute, use the MQIA_CODED_CHAR_SET_ID selector with the MQINQ call.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:43

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19410_

3.1.28. CommandEvent (MQLONG)

This specifies whether command events are generated, as follows:

MQEVR_DISABLED

Do not generate command events. This is the default.

MQEVR_ENABLED

Generate command events.

MQEVR_NO_DISPLAY

Command events are generated for all successful commands other than MQINQ.

This attribute is supported only on z/OS®.

Page 580 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

To determine the value of this attribute, use the MQIA_COMMAND_EVENT selector with the MQINQ call.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:43

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19420_

3.1.29. CommandInputQName (MQCHAR48)

This is the name of the command input queue defined on the local queue manager. This is a queue to which users can send commands, if

authorized to do so. The name of the queue depends on the environment:

� On z/OS®, the name of the queue is SYSTEM.COMMAND.INPUT; MQSC and PCF commands can be sent to it. Refer to WebSphere MQ

Script (MQSC) Command Reference for details of MQSC commands and WebSphere MQ Programmable Command Formats and
Administration Interface for details of PCF commands.

� In all other environments, the name of the queue is SYSTEM.ADMIN.COMMAND.QUEUE, and only PCF commands can be sent to it.
However, an MQSC command can be sent to this queue if the MQSC command is enclosed within a PCF command of type
MQCMD_ESCAPE. Refer to WebSphere MQ Programmable Command Formats and Administration Interface for details of the Escape
command.

To determine the value of this attribute, use the MQCA_COMMAND_INPUT_Q_NAME selector with the MQINQ call. The length of this
attribute is given by MQ_Q_NAME_LENGTH.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:43

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19430_

3.1.30. CommandLevel (MQLONG)

This indicates the level of system control commands supported by the queue manager. The value is one of the following:

MQCMDL_LEVEL_1

Level 1 of system control commands.

This value is returned by the following:

� MQSeries® for AIX® Version 2 Release 2

� MQSeries for

� Version 1 Release 1.1

� Version 1 Release 1.2

� Version 1 Release 1.3

� MQSeries for OS/400®

� Version 2 Release 3

� Version 3 Release 1

� Version 3 Release 6

� MQSeries for Windows Version 2 Release 0

MQCMDL_LEVEL_101

MQSeries for Windows Version 2 Release 0.1.

MQCMDL_LEVEL_110

MQSeries for Windows Version 2 Release 1.

MQCMDL_LEVEL_114

MQSeries for Version 1 Release 1.4.

MQCMDL_LEVEL_120

MQSeries for Version 1 Release 2.0.

MQCMDL_LEVEL_200

MQSeries for Windows NT Version 2 Release 0.

MQCMDL_LEVEL_210

MQSeries for OS/390® Version 2 Release 1.0.

MQCMDL_LEVEL_220

Level 220 of system control commands.

This value is returned by the following:

� MQSeries for AT&T GIS UNIX Version 2 Release 2

� MQSeries for SINIX and DC/OSx Version 2 Release 2

Page 581 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

� MQSeries for SunOS Version 2 Release 2

� MQSeries for Tandem NonStop Kernel Version 2 Release 2

MQCMDL_LEVEL_221

Level 221 of system control commands.

This value is returned by the following:

� MQSeries for AIX Version 2 Release 2.1

� MQSeries for Digital OpenVMS Version 2 Release 2.1

MQCMDL_LEVEL_320

Level 320 of system control commands.

This value is returned by the following:

� MQSeries for OS/400

� Version 3 Release 2

� Version 3 Release 7

MQCMDL_LEVEL_420

Level 420 of system control commands.

This value is returned by the following:

� MQSeries for i5/OS®

� Version 4 Release 2.0

� Version 4 Release 2.1

MQCMDL_LEVEL_500

Level 500 of system control commands.

This value is returned by the following:

� MQSeries for AIX Version 5 Release 0

� MQSeries for HP-UX Version 5 Release 0

� MQSeries for Solaris Version 5 Release 0

� MQSeries for Windows NT Version 5 Release 0

MQCMDL_LEVEL_510

Level 510 of system control commands.

This value is returned by the following:

� MQSeries for AIX Version 5 Release 1

� MQSeries for AS/400® Version 5 Release 1

� MQSeries for HP-UX Version 5 Release 1

� MQSeries for Compaq OpenVMS Alpha Version 5 Release 1

� WebSphere® MQ for HP NonStop Server v5.3

� MQSeries for Compaq Tru64 UNIX Version 5 Release 1

� MQSeries for Solaris Version 5 Release 1

� MQSeries for Windows NT Version 5 Release 1

MQCMDL_LEVEL_520

Level 520 of system control commands.

This value is returned by the following:

� MQSeries for AIX Version 5 Release 2

� MQSeries for AS/400 Version 5 Release 2

� MQSeries for HP-UX Version 5 Release 2

� MQSeries for Linux Version 5 Release 2

� MQSeries for OS/390 Version 5 Release 2

� MQSeries for Sun Solaris Version 5 Release 2

� MQSeries for Windows NT Version 5 Release 2

MQCMDL_LEVEL_530

Level 530 of system control commands.

This value is returned by the following:

� Websphere MQ for AIX Version 5 Release 3

� Websphere MQ for HP-UX Version 5 Release 3

� Websphere MQ for i/Series Version 5 Release 3

� WebSphere MQ for Linux for Intel Version 5 Release 3

� WebSphere MQ for Linux for zSeries® Version 5 Release 3

� Websphere MQ for Solaris Version 5 Release 3

� Websphere MQ for Windows Version 5 Release 3

� Websphere MQ for z/OS® Version 5 Release 3

MQCMDL_LEVEL_600

Page 582 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Level 600 of system control commands.

This value is returned by the following:

� Websphere MQ for AIX V6.0

� Websphere MQ for HP-UX V6.0

� Websphere MQ for i/Series V6.0

� WebSphere MQ for Linux V6.0

� Websphere MQ for Solaris V6.0

� Websphere MQ for Windows V6.0

� Websphere MQ for z/OS V6.0

MQCMDL_LEVEL_700

Level 700 of system control commands.

This value is returned by the following:

� Websphere MQ for AIX V7.0

� Websphere MQ for HP-UX V7.0

� Websphere MQ for i5/OS V7.0

� WebSphere MQ for Linux V7.0

� Websphere MQ for Solaris V7.0

� Websphere MQ for Windows V7.0

� Websphere MQ for z/OS V7.0

MQCMDL_LEVEL_701

Level 701 of system control commands.

This value is returned by the following:

� Websphere MQ for AIX V7.0.1

� Websphere MQ for HP-UX V7.0.1

� Websphere MQ for i5/OS V7.0.1

� WebSphere MQ for Linux V7.0.1

� Websphere MQ for Solaris V7.0.1

� Websphere MQ for Windows V7.0.1

� Websphere MQ for z/OS V7.0.1

The set of system control commands that corresponds to a particular value of the CommandLevel attribute varies according to the value of

the Platform attribute; both must be used to decide which system control commands are supported.

To determine the value of this attribute, use the MQIA_COMMAND_LEVEL selector with the MQINQ call.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:44

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19440_

3.1.31. CommandServerControl (MQLONG)

Specifies whether the command server is to be started when the queue manager starts.

The value can be:

MQSVC_CONTROL_MANUAL

The command server is not to be started automatically.

MQSVC_CONTROL_Q_MGR

The command server is to be started automatically when the queue manager starts.

This attribute is not supported on z/OS®.

To determine the value of this attribute, use the MQIA_CMD_SERVER_CONTROL selector with the MQINQ call.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:45

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19450_

3.1.32. ConfigurationEvent (MQLONG)

Page 583 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Controls whether configuration events are generated. This parameter applies to z/OS® only.

To determine the value of this attribute, use the MQIA_CONFIGURATION_EVENT selector with the MQINQ call.

The value can be:

MQEVR_DISABLED

Event reporting disabled.

MQEVR_ENABLED

Event reporting enabled.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:45

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19460_

3.1.33. DeadLetterQName (MQCHAR48)

This is the name of a queue defined on the local queue manager as the dead-letter (undelivered-message) queue. Messages are sent to this

queue if they cannot be routed to their correct destination.

For example, messages are put on this queue when:

� A message arrives at a queue manager, destined for a queue that is not yet defined on that queue manager

� A message arrives at a queue manager, but the queue for which it is destined cannot receive it because, possibly:

� The queue is full

� Put requests are inhibited

� The sending node does not have authority to put messages on the queue

Applications can also put messages on the dead-letter queue.

Report messages are treated in the same way as ordinary messages; if the report message cannot be delivered to its destination queue

(usually the queue specified by the ReplyToQ field in the message descriptor of the original message), the report message is placed on the

dead-letter (undelivered-message) queue.

Note: Messages that have passed their expiry time (see MQMD - Expiry field) are not transferred to this queue when they are discarded.

However, an expiration report message (MQRO_EXPIRATION) is still generated and sent to the ReplyToQ queue, if requested by the sending

application.

Messages are not put on the dead-letter (undelivered-message) queue when the application that issued the put request has been notified
synchronously of the problem by means of the reason code returned by the MQPUT or MQPUT1 call (for example, a message put on a local
queue for which put requests are inhibited).

Messages on the dead-letter (undelivered-message) queue sometimes have their application message data prefixed with an MQDLH
structure. This structure contains extra information that indicates why the message was placed on the dead-letter (undelivered-message)
queue. See MQDLH – Dead-letter header for more details of this structure.

This queue must be a local queue, with a Usage attribute of MQUS_NORMAL.

If a queue manager does not support a dead-letter (undelivered-message) queue, or one has not been defined, the name is all blanks. All
WebSphere® MQ queue managers support a dead-letter (undelivered-message) queue, but by default it is not defined.

If the dead-letter (undelivered-message) queue is not defined, full, or unusable for some other reason, a message which would have been

transferred to it by a message channel agent is retained instead on the transmission queue.

To determine the value of this attribute, use the MQCA_DEAD_LETTER_Q_NAME selector with the MQINQ call. The length of this attribute is
given by MQ_Q_NAME_LENGTH.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:45

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19470_

3.1.34. DefXmitQName (MQCHAR48)

This is the name of the transmission queue that is used for the transmission of messages to remote queue managers, if there is no other

indication of which transmission queue to use.

If there is no default transmission queue, the name is entirely blank. The initial value of this attribute is blank.

To determine the value of this attribute, use the MQCA_DEF_XMIT_Q_NAME selector with the MQINQ call. The length of this attribute is
given by MQ_Q_NAME_LENGTH.

Page 584 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:45

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19480_

3.1.35. DistLists (MQLONG)

This indicates whether the local queue manager supports distribution lists on the MQPUT and MQPUT1 calls. The value is one of the
following:

MQDL_SUPPORTED

Distribution lists supported.

MQDL_NOT_SUPPORTED

Distribution lists not supported.

To determine the value of this attribute, use the MQIA_DIST_LISTS selector with the MQINQ call.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:45

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19490_

3.1.36. DNSGroup (MQCHAR18)

This is the name of the group for the TCP listener that handles inbound transmissions for the queue-sharing group to join when using
Workload Manager Dynamic Domain Name Services support. The maximum length is 18 characters. If you leave this name blank, the
queue-sharing group name is used.

This attribute is supported on z/OS® only.

To determine the value of this attribute, use the MQCA_DNS_GROUP selector with the MQINQ call. The length of this attribute is given by
MQ_DNS_GROUP_NAME_LENGTH.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:45

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19500_

3.1.37. DNSWLM (MQLONG)

This specifies whether the TCP listener that handles inbound transmissions for the queue-sharing group registers with Workload Manager for

Dynamic Domain Name Services

The value is one of the following:

MQDNSWLM_YES

The listener registers with Workload Manager.

MQDNSWLM_NO

The listener does not register with Workload Manager. This is the default value.

This attribute is supported on z/OS® only.

To determine the value of this attribute, use the MQIA_DNS_WLM selector with the MQINQ call.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:45

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19510_

3.1.38. ExpiryInterval (MQLONG)

This indicates the frequency with which the queue manager scans the queues looking for expired messages. It is either a time interval in
seconds in the range 1 through 99 999 999, or the following special value:

Page 585 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

MQEXPI_OFF

The queue manager does not scan the queues looking for expired messages.

To determine the value of this attribute, use the MQIA_EXPIRY_INTERVAL selector with the MQINQ call.

This attribute is supported only on z/OS®.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:45

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19520_

3.1.39. IGQPutAuthority (MQLONG)

This attribute applies only if the local queue manager is a member of a queue-sharing group. It indicates the type of authority checking that
is performed when the local intra-group queuing agent (IGQ agent) removes a message from the shared transmission queue and places the

message on a local queue. The value is one of the following:

MQIGQPA_DEFAULT

The user identifier checked for authorization is the value of the UserIdentifier field in the separate MQMD that is associated with the

message when the message is on the shared transmission queue. This is the user identifier of the program that placed the message on
the shared transmission queue, and is usually the same as the user identifier under which the remote queue manager is running.

If the RESLEVEL profile indicates that more than one user identifier is to be checked, the user identifier of the local IGQ agent (IGQUserId)

is also checked.

MQIGQPA_CONTEXT

The user identifier checked for authorization is the value of the UserIdentifier field in the separate MQMD that is associated with the

message when the message is on the shared transmission queue. This is the user identifier of the program that placed the message on
the shared transmission queue, and is usually the same as the user identifier under which the remote queue manager is running.

If the RESLEVEL profile indicates that more than one user identifier is to be checked, the user identifier of the local IGQ agent (IGQUserId)

and the value of the UserIdentifier field in the embedded MQMD are also checked. The latter user identifier is usually the user identifier

of the application that originated the message.

MQIGQPA_ONLY_IGQ

The user identifier checked for authorization is the user identifier of the local IGQ agent (IGQUserId).

If the RESLEVEL profile indicates that more than one user identifier is to be checked, this user identifier is used for all checks.

MQIGQPA_ALTERNATE_OR_IGQ

The user identifier checked for authorization is the user identifier of the local IGQ agent (IGQUserId).

If the RESLEVEL profile indicates that more than one user identifier is to be checked, the value of the UserIdentifier field in the

embedded MQMD is also checked. This user identifier is usually the user identifier of the application that originated the message.

To determine the value of this attribute, use the MQIA_IGQ_PUT_AUTHORITY selector with the MQINQ call.

This attribute is supported only on z/OS®.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:46

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19530_

3.1.40. IGQUserId (MQLONG)

This attribute is applicable only if the local queue manager is a member of a queue-sharing group. It specifies the user identifier that is
associated with the local intra-group queuing agent (IGQ agent). This identifier is one of the user identifiers that can be checked for
authorization when the IGQ agent puts messages on local queues. The actual user identifiers checked depend on the setting of the

IGQPutAuthority attribute, and on external security options.

If IGQUserId is blank, no user identifier is associated with the IGQ agent and the corresponding authorization check is not performed

(although other user identifiers might still be checked for authorization).

To determine the value of this attribute, use the MQCA_IGQ_USER_ID selector with the MQINQ call. The length of this attribute is given by
MQ_USER_ID_LENGTH.

This attribute is supported only on z/OS®.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:46

Page 586 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19540_

3.1.41. InhibitEvent (MQLONG)

This controls whether inhibit (Inhibit Get and Inhibit Put) events are generated. The value is one of the following:

MQEVR_DISABLED

Event reporting disabled.

MQEVR_ENABLED

Event reporting enabled.

For more information about events, see Monitoring WebSphere MQ.

To determine the value of this attribute, use the MQIA_INHIBIT_EVENT selector with the MQINQ call.

On z/OS®, you cannot use the MQINQ call to determine the value of this attribute.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:46

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19550_

3.1.42. IntraGroupQueuing (MQLONG)

This attribute applies only if the local queue manager is a member of a queue-sharing group. It indicates whether intra-group queuing is
enabled for the queue-sharing group. The value is one of the following:

MQIGQ_DISABLED

All messages destined for other queue managers in the queue-sharing group are transmitted using conventional channels..

MQIGQ_ENABLED

Messages destined for other queue managers in the queue-sharing group are transmitted using the shared transmission queue if the
following condition is satisfied:

� The length of the message data plus transmission header does not exceed 63 KB (64 512 bytes).

It is recommended that somewhat more space than the size of MQXQH be allocated for the transmission header; the constant
MQ_MSG_HEADER_LENGTH is provided for this purpose.

If this condition is not satisfied, the message is transmitted using conventional channels.

Note: When intra-group queuing is enabled, the order of messages transmitted using the shared transmission queue is not preserved
relative to those transmitted using conventional channels.

To determine the value of this attribute, use the MQIA_INTRA_GROUP_QUEUING selector with the MQINQ call.

This attribute is supported only on z/OS®.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:46

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19560_

3.1.43. IPAddressVersion (MQLONG)

Specifies which IP address version, either IPv4 or IPv6, is used.

This attribute is only relevant for systems that run both IPv4 and IPv6 and only affects channels defined as having a TransportType of

MQXPY_TCP when one of the following conditions is true:

� The channel's ConnectionName is a host name that resolves to both an IPv4 and IPv6 address and its LocalAddress parameter is

not specified.

� The channel's ConnectionName and LocalAddress are both host names that resolve to both IPv4 and IPv6 addresses.

The value can be:

MQIPADDR_IPV4

IPv4 is used.

MQIPADDR_IPV6

Page 587 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

IPv6 is used.

To determine the value of this attribute, use the MQIA_IP_ADDRESS_VERSION selector with the MQINQ call.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:46

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19570_

3.1.44. ListenerTimer (MQLONG)

This is the time interval (in seconds) between WebSphere® MQ attempts to restart the listener if there has been an APPC or TCP/IP failure.
The value must be between 5 and 9999, with a default value of 60.

This attribute is supported on z/OS® only.

To determine the value of this attribute, use the MQIA_LISTENER_TIMER selector with the MQINQ call.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:47

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19580_

3.1.45. LocalEvent (MQLONG)

This controls whether local error events are generated. The value is one of the following:

MQEVR_DISABLED

Event reporting disabled.

MQEVR_ENABLED

Event reporting enabled.

For more information about events, see Monitoring WebSphere MQ.

To determine the value of this attribute, use the MQIA_LOCAL_EVENT selector with the MQINQ call.

On z/OS®, you cannot use the MQINQ call to determine the value of this attribute.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:47

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19590_

3.1.46. LoggerEvent (MQLONG)

This controls whether recovery log events are generated. The value is one of the following:

MQEVR_DISABLED

Event reporting disabled.

MQEVR_ENABLED

Event reporting enabled.

For more information about events, see Monitoring WebSphere MQ.

To determine the value of this attribute, use the MQIA_LOGGER_EVENT selector with the MQINQ call.

This attribute is supported only on AIX®, HP-UX, i5/OS®, Linux, Solaris, and Windows.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:47

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19600_

Page 588 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

3.1.47. LUGroupName (MQCHAR8)

This is the generic LU name for the LU 6.2 listener that handles inbound transmissions for the queue-sharing group. If you leave this name
blank, you cannot use this listener.

This attribute is supported on z/OS® only.

To determine the value of this attribute, use the MQCA_LU_GROUP_NAME selector with the MQINQ call. The length of this attribute is given

by MQ_LU_NAME_LENGTH.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:47

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19610_

3.1.48. LUName (MQCHAR8)

This is the name of the LU to use for outbound LU 6.2 transmissions. Set this to the same LU that the listener uses for inbound
transmissions. If you leave this name blank, the APPC/MVS default LU is used; this is variable, so always set LUName if you are using LU6.2.

This attribute is supported on z/OS® only.

To determine the value of this attribute, use the MQCA_LU_NAME selector with the MQINQ call. The length of this attribute is given by
MQ_LU_NAME_LENGTH.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:47

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19620_

3.1.49. LU62ARMSuffix (MQCHAR2)

This is the suffix of the SYS1.PARMLIB member APPCPMxx, that nominates the LUADD for this channel initiator. The z/OS® command SET
APPC=xx is issued when ARM restarts the channel initiator. If you leave this name is blank, no SET APPC=xx is issued.

This attribute is supported on z/OS only.

To determine the value of this attribute, use the MQCA_LU62_ARM_SUFFIX selector with the MQINQ call. The length of this attribute is given
by MQ_ARM_SUFFIX_LENGTH.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:47

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19630_

3.1.50. LU62Channels (MQLONG)

This is the maximum number of channels that can be current, or clients that can be connected, that use the LU 6.2 transmission protocol.
The value must be between 0 and 9999, with a default value of 200. If you set this to zero, the LU 6.2 transmission protocol is not used.

This attribute is supported on z/OS® only.

To determine the value of this attribute, use the MQIA_LU62_CHANNELS selector with the MQINQ call.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:48

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19640_

3.1.51. MaxActiveChannels (MQLONG)

This is the maximum number of channels that can be active at any time. The default is the value specified for the MaxChannels attribute.

For z/OS, the value must be between 1 and 9 999. For all other platforms, the value must be between 1 and 65 535.

Page 589 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

To determine the value of this attribute, use the MQIA_ACTIVE_CHANNELS selector with the MQINQ call.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:48

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19650_

3.1.52. MaxChannels (MQLONG)

This is the maximum number of channels that can be current (including server-connection channels with connected clients). For z/OS, the

value must be between 1 and 9 999, with a default value of 200. For all other platforms, the value must be between 1 and 65 535, with a
default value of 100. It is possible that a system which is busy serving connections from the network could need a higher number than the
default setting. You should determine the value that is correct for your environment, ideally by observing the behavior of your system
during testing.

To determine the value of this attribute, use the MQIA_MAX_CHANNELS selector with the MQINQ call.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:52

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19660_

3.1.53. MaxHandles (MQLONG)

This is the maximum number of open handles that any one task can use concurrently. Each successful MQOPEN call for a single queue (or
for an object that is not a queue) uses one handle. That handle becomes available for reuse when the object is closed. However, when a
distribution list is opened, each queue in the distribution list is allocated a separate handle, and so that MQOPEN call uses as many handles
as there are queues in the distribution list. This must be taken into account when deciding on a suitable value for MaxHandles.

The MQPUT1 call performs an MQOPEN call as part of its processing; as a result, MQPUT1 uses as many handles as MQOPEN would, but the
handles are used only for the duration of the MQPUT1 call itself.

On z/OS®, task means a CICS® task, an MVS™ task, or an IMS™ dependent region.

The value is in the range 1 through 999 999 999. The default value is determined by the environment:

� On z/OS, the default value is 100.

� In all other environments, the default value is 256.

To determine the value of this attribute, use the MQIA_MAX_HANDLES selector with the MQINQ call.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:52

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19670_

3.1.54. MaxMsgLength (MQLONG)

This is the length of the longest physical message that the queue manager can handle. However, because the MaxMsgLength queue-

manager attribute can be set independently of the MaxMsgLength queue attribute, the longest physical message that can be placed on a

queue is the lesser of those two values.

If the queue manager supports segmentation, an application can put a logical message that is longer than the lesser of the two
MaxMsgLength attributes, but only if the application specifies the MQMF_SEGMENTATION_ALLOWED flag in MQMD. If that flag is specified,

the upper limit for the length of a logical message is 999 999 999 bytes, but usually resource constraints imposed by the operating system,
or by the environment in which the application is running, result in a lower limit.

The lower limit for the MaxMsgLength attribute is 32 KB (32 768 bytes). The upper limit is 100 MB (104 857 600 bytes).

To determine the value of this attribute, use the MQIA_MAX_MSG_LENGTH selector with the MQINQ call.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:53

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19680_

Page 590 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

3.1.55. MaxPriority (MQLONG)

This is the maximum message priority supported by the queue manager. Priorities range from zero (lowest) to MaxPriority (highest).

To determine the value of this attribute, use the MQIA_MAX_PRIORITY selector with the MQINQ call.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:53

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19690_

3.1.56. MaxPropertiesLength (MQLONG)

This is used to control the size of the properties that can flow with a message. This includes both the property name in bytes and the size of
the property value also in bytes.

To determine the value of this attribute, use the MQIA_MAX_PROPERTIES_LENGTH selector with the MQINQ call.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:19:53

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr26210_

3.1.57. MaxUncommittedMsgs (MQLONG)

This is the maximum number of uncommitted messages that can exist within a unit of work. The number of uncommitted messages is the
sum of the following since the start of the current unit of work:

� Messages put by the application with the MQPMO_SYNCPOINT option

� Messages retrieved by the application with the MQGMO_SYNCPOINT option

� Trigger messages and COA report messages generated by the queue manager for messages put with the MQPMO_SYNCPOINT option

� COD report messages generated by the queue manager for messages retrieved with the MQGMO_SYNCPOINT option

The following are not counted as uncommitted messages:

� Messages put or retrieved by the application outside a unit of work

� Trigger messages or COA/COD report messages generated by the queue manager as a result of messages put or retrieved outside a
unit of work

� Expiration report messages generated by the queue manager (even if the call causing the expiration report message specified
MQGMO_SYNCPOINT)

� Event messages generated by the queue manager (even if the call causing the event message specified MQPMO_SYNCPOINT or
MQGMO_SYNCPOINT)

Note:

1. Exception report messages are generated by the Message Channel Agent (MCA), or by the application, and are treated in the same
way as ordinary messages put or retrieved by the application.

2. When a message or segment is put with the MQPMO_SYNCPOINT option, the number of uncommitted messages is incremented by one
regardless of how many physical messages actually result from the put. (More than one physical message might result if the queue
manager needs to subdivide the message or segment.)

3. When a distribution list is put with the MQPMO_SYNCPOINT option, the number of uncommitted messages is incremented by one for
each physical message that is generated. This can be as small as one, or as great as the number of destinations in the distribution list.

The lower limit for this attribute is 1; the upper limit is 999 999 999.

To determine the value of this attribute, use the MQIA_MAX_UNCOMMITTED_MSGS selector with the MQINQ call.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:53

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19700_

3.1.58. MQIAccounting (MQLONG)

This controls the collection of accounting information for MQI data.

The value is one of the following:

Page 591 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

MQMON_ON

Collect API accounting data.

MQMON_OFF

Do not collect API accounting data. This is the default value.

If you set the queue manager attribute ACCTCONO to ENABLED, this value might be overridden for individual connections using the Options
field in the MQCNO structure. Changes to this value are only effective for connections to the queue manager that occur after the change to
the attribute.

This attribute is supported only on i5/OS®, UNIX systems, and Windows.

To determine the value of this attribute, use the MQIA_ACCOUNTING_MQI selector with the MQINQ call.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:53

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19710_

3.1.59. MQIStatistics (MQLONG)

This controls the collection of statistics monitoring information for the queue manager.

The value is one of the following:

MQMON_ON

Collect MQI statistics.

MQMON_OFF

Do not collect MQI statistics. This is the default value.

This attribute is supported only on i5/OS®, UNIX systems, and Windows.

To determine the value of this attribute, use the MQIA_STATISTICS_MQI selector with the MQINQ call.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:53

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19720_

3.1.60. MsgMarkBrowseInterval (MQLONG)

Time interval in milliseconds after which the queue manager can automatically remove the mark from browse messages.

This is a time interval (in milliseconds) after which the queue manager can automatically remove the mark from browse messages.

This attribute describes the time interval for which messages that have been marked as browsed by a call to MQGET, using the get

message option MQGMO_MARK_BROWSE_CO_OP, are expected to remain marked as browsed.

The queue manager might automatically unmark browsed messages that have been marked as browsed for the cooperating set of handles
when they have been marked for more than this approximate interval.

This does not affect the state of any message marked as browse, that was obtained by a call to MQGET, using the get message option
MQGMO_MARK_BROWSE_HANDLE.

The value is not less than -1 and not greater than 999 999 999. The default value is 5000. A MsgMarkBrowseInterval of -1 represents an

unlimited time interval. A MsgMarkBrowseInterval of 0 causes the queue manager to unmark the message immediately.

To determine the value of this attribute, use the MQIA_MSG_MARK_BROWSE_INTERVAL selector with the MQINQ call.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:20:39

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr43070_

3.1.61. OutboundPortMax (MQLONG)

This is the highest port number in the range, defined by OutboundPortMin and OutboundPortMax, of port numbers to be used to bind
outgoing channels . The value is an integer between 0 and 65535, and must be equal to or greater than the OutboundPortMin value. The
default value is 0.

Page 592 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This attribute is supported on z/OS® only.

To determine the value of this attribute, use the MQIA_OUTBOUND_PORT_MAX selector with the MQINQ call.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:53

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19730_

3.1.62. OutboundPortMin (MQLONG)

This is the lowest port number in the range, defined by OutboundPortMin and OutboundPortMax, of port numbers to be used to bind
outgoing channels . The value is an integer between 0 and 65535, and must be equal to or less than the OutboundPortMax value. The
default value is 0.

This attribute is supported on z/OS® only.

To determine the value of this attribute, use the MQIA_OUTBOUND_PORT_MIN selector with the MQINQ call.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:53

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19740_

3.1.63. PerformanceEvent (MQLONG)

This controls whether performance-related events are generated. The value is one of the following:

MQEVR_DISABLED

Event reporting disabled.

MQEVR_ENABLED

Event reporting enabled.

For more information about events, see Monitoring WebSphere MQ.

To determine the value of this attribute, use the MQIA_PERFORMANCE_EVENT selector with the MQINQ call.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:53

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19750_

3.1.64. Platform (MQLONG)

This indicates the operating system on which the queue manager is running:

MQPL_AIX

AIX® (same value as MQPL_UNIX).

MQPL_MVS

z/OS® (same value as MQPL_ZOS).

MQPL_NSK

Compaq NonStop Kernel.

MQPL_OS390

z/OS (same value as MQPL_ZOS).

MQPL_OS400

i5/OS®.

MQPL_UNIX

UNIX systems.

MQPL_VMS

HP OpenVMS.

MQPL_WINDOWS_NT

Windows systems.

Page 593 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

MQPL_ZOS

z/OS.

To determine the value of this attribute, use the MQIA_PLATFORM selector with the MQINQ call.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:54

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19760_

3.1.65. PropertyControl (MQLONG)

Specifies how message properties are handled for messages that are retrieved from queues using the MQGET call with the

MQGMO_PROPERTIES_AS_Q_DEF option.

The value is one of the following:

MQPROP_ALL

All properties of the message are included with the message when it is delivered to the application. The properties, except those in the
message descriptor (or extension), are placed in one or more MQRFH2 headers in the message data. If a message handle is supplied

then the behavior is to return the properties in the message handle.

MQPROP_COMPATIBILITY

If the message contains a property with a prefix of mcd., jms., usr. or mqext., all message properties are delivered to the application in
an MQRFH2 header. Otherwise all properties of the message, except those contained in the message descriptor (or extension), are
discarded and are no longer accessible to the application. This is the default value; it allows applications which expect JMS related
properties to be in an MQRFH2 header in the message data to continue to work unmodified. If a message handle is supplied then the

behavior is to return the properties in the message handle. .

MQPROP_FORCE_MQRFH2

Properties are always returned in the message data in an MQRFH2 header regardless of whether the application specifies a message
handle. A valid message handle supplied in the MsgHandle field of the MQGMO structure on the MQGET call is ignored. Properties of the
message are not accessible via the message handle.

MQPROP_NONE

All properties of the message, except those in the message descriptor (or extension), are removed from the message before the message
is delivered to the application. If a message handle is supplied then the behavior is to return the properties in the message handle.

This parameter is applicable to Local, Alias and Model queues. To determine its value, use the MQIA_PROPERTY_CONTROL selector with the
MQINQ call.

Parent topic: Attributes for the queue manager
Parent topic: Attributes for queues

This build: January 26, 2011 11:20:43

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr43640_

3.1.66. PubSubNPInputMsg (MQLONG)

Whether to discard or keep an undelivered input message.

The value is one of the following:

MQUNDELIVERED_DISCARD

Non-persistent input messages may be discarded if they cannot be processed.

This is the default value.

MQUNDELIVERED_KEEP

Non-persistent input messages will not be discarded if they cannot be processed. In this situation the queued publish/subscribe interface
will continue to retry the process at appropriate intervals and does not continue processing subsequent messages.

To determine the value of this attribute, use the MQIA_PUBSUB_NP_MSG selector with the MQINQ call.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:20:40

Notices | Trademarks | Downloads | Library | Support | Feedback

Local Model Alias Remote Cluster

X X X

Page 594 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr43320_

3.1.67. PubSubNPResponse (MQLONG)

Controls the behavior of undelivered response messages.

The value is one of the following:

MQUNDELIVERED_NORMAL

Non-persistent responses which cannot be placed on the reply queue are put on the dead letter queue, if they cannot be placed on the
DLQ then they are discarded.

MQUNDELIVERED_SAFE

Non-persistent responses which cannot be placed on the reply queue are put on the dead letter queue. If the response cannot be set and
cannot be placed on the DLQ then the queued publish/subscribe interface will roll back the current operation and then retry at appropriate

intervals and does not continue processing subsequent messages.

MQUNDELIVERED_DISCARD

Non-persistent responses are not placed on the reply queue are discarded.

This is the default value for new queue managers.

MQUNDELIVERED_KEEP

Non-persistent responses are not placed on the dead letter queue or discarded. Instead, the queued publish/subscribe interface will back
out the current operation and then retry it at appropriate intervals.

To determine the value of this attribute, use the MQIA_PUBSUB_NP_RESP selector with the MQINQ call.

Default value for migrated queue managers.
If the queue manager has been migrated from WebSphere MQ V6.0, the initial value of this attribute depends on the values of
DiscardNonPersistentResponse and DLQNonPersistentResponse before migration, as shown in the following table.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:20:40

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr43330_

3.1.68. PubSubMaxMsgRetryCount (MQLONG)

The number of retries when processing a failed command message under syncpoint.

The value is one of the following:

0 - 999 999 999

The default value is 5.

To determine the value of this attribute, use the MQIA_PUBSUB_MAXMSG_RETRY_COUNT selector with the MQINQ call.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:20:40

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19510_

3.1.69. PubSubSyncPoint (MQLONG)

Whether only persistent messages or all messages are processed under syncpoint.

The value is one of the following:

MQSYNCPOINT_IFPER

This makes the queued publish/subscribe interface receive non-persistent messages outside syncpoint. If the daemon receives a

 DLQNonPersistentResponse

Yes No Not set

DiscardNonPersistentResponse Yes MQUNDELIVERED_NORMAL MQUNDELIVERED_DISCARD MQUNDELIVERED_NORMAL

No MQUNDELIVERED_SAFE MQUNDELIVERED_KEEP MQUNDELIVERED_SAFE

Not

set

If SyncPointPersistent =

No,

MQUNDELIVERED_SAFE

else
MQUNDELIVERED_NORMAL

If SyncPointPersistent = No,

MQUNDELIVERED_KEEP

else

MQUNDELIVERED_DISCARD

If SyncPointPersistent =

No,

MQUNDELIVERED_SAFE

else
MQUNDELIVERED_NORMAL

Page 595 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

publication outside syncpoint, the daemon forwards the publication to subscribers known to it outside syncpoint.

This is the default value.

MQSYNCPOINT_YES

This makes the queued publish/subscribe interface receive all messages under syncpoint.

To determine the value of this attribute, use the MQIA_PUBSUB_SYNC_PT selector with the MQINQ call.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:20:40

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr43340_

3.1.70. PubSubMode (MQLONG)

Whether the publish/subscribe engine and the queued publish/subscribe interface are running, therefore allowing applications to
publish/subscribe by using the application programming interface and the queues that are being monitored by the queued publish/subscribe
interface.

The value is one of the following:

MQPSM_COMPAT

The publish/subscribe engine is running. It is therefore possible to publish/subscribe by using the application programming interface. The

queued publish/subscribe interface is not running, therefore any message that is put to the queues that are monitored by the queued
publish/subscribe interface will not be acted on. This setting is used for compatibility with WebSphere Message Broker V6 or earlier
versions using this queue manager, because it needs to read the same queues from which the queued publish/subscribe interface
normally reads.

MQPSM_DISABLED

The publish/subscribe engine and the queued publish/subscribe interface are not running. It is therefore not possible to publish/subscribe
by using the application programming interface. Any publish/subscribe messages that are put to the queues that are monitored by the
queued publish/subscribe interface will not be acted on.

MQPSM_ENABLED

The publish/subscribe engine and the queued publish/subscribe interface are running. It is therefore possible to publish/subscribe by using
the application programming interface and the queues that are being monitored by the queued publish/subscribe interface. This is the

queue manager's initial default value.

To determine the value of this attribute, use the MQIA_PUBSUB_MODE selector with the MQINQ call.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:19:42

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr22930_

3.1.71. QMgrDesc (MQCHAR64)

Use this field for a commentary describing the queue manager. The content of the field is of no significance to the queue manager, but the
queue manager might require that the field contain only characters that can be displayed. It cannot contain any null characters; if
necessary, it is padded to the right with blanks. In a DBCS installation, this field can contain DBCS characters (subject to a maximum field

length of 64 bytes).

Note: If this field contains characters that are not in the queue manager’s character set (as defined by the CodedCharSetId queue manager

attribute), those characters might be translated incorrectly if this field is sent to another queue manager.

� On z/OS®, the default value is the product name and version number.

� In all other environments, the default value is blanks.

To determine the value of this attribute, use the MQCA_Q_MGR_DESC selector with the MQINQ call. The length of this attribute is given by
MQ_Q_MGR_DESC_LENGTH.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:54

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19770_

3.1.72. QMgrIdentifier (MQCHAR48)

This is an internally-generated unique name for the queue manager.

Page 596 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

To determine the value of this attribute, use the MQCA_Q_MGR_IDENTIFIER selector with the MQINQ call. The length of this attribute is
given by MQ_Q_MGR_IDENTIFIER_LENGTH.

This attribute is supported in the following environments: AIX®, HP-UX, z/OS®, i5/OS®, Solaris, Linux, Windows, plus WebSphere® MQ
clients connected to these systems.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:54

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19780_

3.1.73. QMgrName (MQCHAR48)

This is the name of the local queue manager, that is, the name of the queue manager to which the application is connected.

The first 12 characters of the name are used to construct a unique message identifier (see MQMD - MsgId field). Queue managers that can

intercommunicate must therefore have names that differ in the first 12 characters, in order for message identifiers to be unique in the
queue-manager network.

On z/OS®, the name is the same as the subsystem name, which is limited to 4 nonblank characters.

To determine the value of this attribute, use the MQCA_Q_MGR_NAME selector with the MQINQ call. The length of this attribute is given by

MQ_Q_MGR_NAME_LENGTH.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:54

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19790_

3.1.74. QSGName (MQCHAR4)

This is the name of the queue-sharing group to which the local queue manager belongs. If the local queue manager does not belong to a
queue-sharing group, the name is blank.

To determine the value of this attribute, use the MQCA_QSG_NAME selector with the MQINQ call. The length of this attribute is given by

MQ_QSG_NAME_LENGTH.

This attribute is supported only on z/OS®.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:54

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19800_

3.1.75. QueueAccounting (MQLONG)

This controls the collection of accounting information for queues.

The value is one of the following:

MQMON_NONE

Do not collect accounting data for queues, regardless of the setting of the queue accounting attribute ACCTQ. This is the default value.

MQMON_OFF

Do not collect accounting data for queues that specify QMGR in the ACCTQ queue attribute.

MQMON_ON

Collect accounting data for queues that specify QMGR in the ACCTQ queue attribute.

Changes to this value are only effective for connections to the queue manager that occur after the change to the attribute.

To determine the value of this attribute, use the MQIA_ACCOUNTING_Q selector with the MQINQ call.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:54

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

Page 597 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This topic's URL:

fr19810_

3.1.76. QueueMonitoring (MQLONG)

This specifies the default setting for online monitoring of queues.

If the QueueMonitoring queue attribute is set to MQMON_Q_MGR, this attribute specifies the value which is assumed by the channel. The

value can be:

MQMON_OFF

Online monitoring data collection is turned off. This is the queue manager's initial default value.

MQMON_NONE

Online monitoring data collection is turned off for queues regardless of the setting of their QueueMonitoring attribute.

MQMON_LOW

Online monitoring data collection is turned on, with a low ratio of data collection.

MQMON_MEDIUM

Online monitoring data collection is turned on, with a moderate ratio of data collection.

MQMON_HIGH

Online monitoring data collection is turned on, with a high ratio of data collection.

To determine the value of this attribute, use the MQIA_MONITORING_Q selector with the MQINQ call.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:55

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19820_

3.1.77. QueueStatistics (MQLONG)

This controls the collection of statistics data for queues.

The value is one of the following:

MQMON_NONE

Do not collect queue statistics for queues, regardless of the setting of the QueueStatistics queue attribute. This is the default value.

MQMON_OFF

Do not collect statistics data for queues that specify Queue Manager in the QueueStatistics queue attribute.

MQMON_ON

Collect statistics data for queues that specify Queue Manager in the QueueStatistics queue attribute.

To determine the value of this attribute, use the MQIA_STATISTICS_Q selector with the MQINQ call.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:55

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19830_

3.1.78. ReceiveTimeout (MQLONG)

This specifies how long a TCP/IP channel waits to receive data, including heartbeats, from its partner before returning to the inactive state.
It applies only to message channels, not to MQI channels.

Use this value as follows:

� To specify that this number is a multiplier, to apply to the negotiated HBINT value, to determine how long a channel waits, set
ReceiveTimeoutType to MQRCVTIME_MULTIPLY. Specify a value of 0 or a value in the range 2 to 99.

� To specify that this number is a value, in seconds, to add to the negotiated HBINT value to determine how long a channel waits, set
ReceiveTimeoutType to MQRCVTIME_ADD. Specify a value in the range 1 to 999999.

� To specify that this number is a value, in seconds, for the channel to wait, set ReceiveTimeoutType to MQRCVTIME_EQUAL. Specify a

value in the range 0 to 999999.

The default value is 0.

To stop a channel timing out its wait to receive data from its partner, set ReceiveTimeoutType to MQRCVTIME_MULTIPLY or

MQRCVTIME_EQUAL, and ReceiveTimeout to 0.

This attribute is supported on z/OS® only.

To determine the value of this attribute, use the MQIA_RECEIVE_TIMEOUT selector with the MQINQ call.

Page 598 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:55

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19840_

3.1.79. ReceiveTimeoutMin (MQLONG)

This is the minimum time, in seconds, that a TCP/IP channel waits to receive data, including heartbeats, from its partner, before returning to
the inactive state. It applies only to message channels, not to MQI channels. The value must be between zero and 999999, with a default of
0.

If you use ReceiveTimeoutType to specify that the TCP/IP channel wait time is to be calculated relative to the negotiated value of HBINT,
and the resultant value is less than the value of this parameter, this value is used instead.

This attribute is supported on z/OS® only.

To determine the value of this attribute, use the MQIA_RECEIVE_TIMEOUT_MIN selector with the MQINQ call.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:55

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19850_

3.1.80. ReceiveTimeoutType (MQLONG)

This is the qualifier, applied to ReceiveTimeout to define how long a TCP/IP channel waits to receive data, including heartbeats, from its
partner, before returning to the inactive state. It applies only to message channels, not to MQI channels.

The value is one of the following:

MQRCVTIME_MULTIPLY

ReceiveTimeout is a multiplier to apply to the negotiated HBINT value to determine how long a channel waits. This is the default value.

MQRCVTIME_ADD

ReceiveTimeout is a value, in seconds, to add to the negotiated HBINT value to determine how long a channel waits.

MQRCVTIME_EQUAL

ReceiveTimeout is a value, in seconds, that the channel waits.

To stop a channel timing out its wait to receive data from its partner, set ReceiveTimeoutType to MQRCVTIME_MULTIPLY or
MQRCVTIME_EQUAL, and ReceiveTimeout to 0.

This attribute is supported on z/OS® only.

To determine the value of this attribute, use the MQIA_RECEIVE_TIMEOUT_TYPE selector with the MQINQ call.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:55

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19860_

3.1.81. RemoteEvent (MQLONG)

This controls whether remote error events are generated. The value is one of the following:

MQEVR_DISABLED

Event reporting disabled.

MQEVR_ENABLED

Event reporting enabled.

For more information about events, see Monitoring WebSphere MQ.

To determine the value of this attribute, use the MQIA_REMOTE_EVENT selector with the MQINQ call.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:55

Notices | Trademarks | Downloads | Library | Support | Feedback

Page 599 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19870_

3.1.82. RepositoryName (MQCHAR48)

This is the name of a cluster for which this queue manager provides a repository-manager service. If the queue manager provides this

service for more than one cluster, RepositoryNamelist specifies the name of a namelist object that identifies the clusters, and

RepositoryName is blank. At least one of RepositoryName and RepositoryNamelist must be blank.

This attribute is supported only on AIX®, HP-UX, i5/OS®, Linux, Solaris, Windows, and z/OS®.

To determine the value of this attribute, use the MQCA_REPOSITORY_NAME selector with the MQINQ call. The length of this attribute is
given by MQ_Q_MGR_NAME_LENGTH.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:55

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19880_

3.1.83. RepositoryNamelist (MQCHAR48)

This is the name of a namelist object that contains the names of clusters for which this queue manager provides a repository-manager
service. If the queue manager provides this service for only one cluster, the namelist object contains only one name. Alternatively,

RepositoryName can be used to specify the name of the cluster, in which case RepositoryNamelist is blank. At least one of

RepositoryName and RepositoryNamelist must be blank.

This attribute is supported only on AIX®, HP-UX, i5/OS®, Linux, Solaris, Windows, and z/OS®.

To determine the value of this attribute, use the MQCA_REPOSITORY_NAMELIST selector with the MQINQ call. The length of this attribute is
given by MQ_NAMELIST_NAME_LENGTH.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:55

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19890_

3.1.84. ScyCase(MQCHAR8)

Specifies whether the queue manager supports security profile names in mixed case, or in uppercase only.

The value is one of the following:

MQSCYC_UPPER

Security profile names must be in uppercase.

MQSCYC_MIXED

Security profile names can be in uppercase or in mixed case.

Changes to this attribute take effect when a Refresh Security command is run with SecurityType(MQSECTYPE_CLASSES) specified.

This attribute is supported only on z/OS®.

To determine the value of this attribute, use the MQIA_SECURITY_CASE selector with the MQINQ call.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:56

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19895_

3.1.85. SharedQMgrName (MQLONG)

This specifies whether the ObjectQmgrName should be used or treated as the local queue manager on an MQOPEN call, for a shared queue,

when the ObjectQmgrName is that of another queue manager in the queue-sharing group.

The value can be:

MQSQQM_USE

Page 600 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

ObjectQmgrName is used and the appropriate transmission queue is opened.

MQSQQM_IGNORE

If the target queue is shared, and the ObjectQmgrName is that of a queue manager in the same queue-sharing group, the open is

performed locally.

This attribute is valid only on z/OS®.

To determine the value of this attribute, use the MQIA_SHARED_Q_Q_MGR_NAME selector with the MQINQ call.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:56

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19900_

3.1.86. SSLEvent (MQLONG)

This specifies whether SSL events are generated.

The value is one of the following:

MQEVR_ENABLED

Generate SSL events, as follows:

MQRC_CHANNEL_SSL_ERROR

MQEVR_DISABLED

Do not generate SSL events; this is the default value.

To determine the value of this attribute, use the MQIA_SSL_EVENT selector with the MQINQ call.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:56

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19910_

3.1.87. SSLFIPSRequired (MQLONG)

This lets you specify that only FIPS-certified algorithms are to be used if the cryptography is executed in WebSphere® MQ-provided
software. If cryptographic hardware is configured, the cryptography modules used are those provided by the hardware product; these may
or may not be FIPS-certified to a particular level depending on the hardware product in use.

The value is one of the following:

MQSSL_FIPS_NO

Use any CipherSpec supported on the platform in use. This is the default value.

MQSSL_FIPS_YES

Use only FIPS-certified cryptographic algorithms in the CipherSpecs allowed on all SSL connections from and to this queue manager.

This parameter is valid only on UNIX platforms and Windows.

To determine the value of this attribute, use the MQIA_SSL_FIPS_REQUIRED selector with the MQINQ call.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:56

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19920_

3.1.88. SSLKeyResetCount (MQLONG)

This specifies when SSL channel message channel agents (MCAs) that initiate communication reset the secret key used for encryption on the
channel. The value represents the total number of unencrypted bytes that are sent and received on the channel before the secret key is
renegotiated. The number of bytes includes control information sent by the MCA.

The value is a number between 0 and 999 999 999, with a default value of 0. If you specify an SSL/TLS secret key reset count between 1
byte and 32Kb, SSL/TLS channels will use a secret key reset count of 32Kb. This is to avoid the processing cost of excessive key resets
which would occur for small SSL/TLS secret key reset values.

The secret key is renegotiated when the total number of unencrypted bytes sent and received by the initiating channel MCA exceeds the

Page 601 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

specified value, or if channel heartbeats are enabled before data is sent or received following a channel heartbeat, whichever occurs first.

The count of bytes sent and received for renegotiation includes control information sent and received by the channel MCA and is reset
whenever a renegotiation occurs.

Use a value of 0 to indicate that secret keys are never renegotiated.

To determine the value of this attribute, use the MQIA_SSL_RESET_COUNT selector with the MQINQ call.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:56

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19930_

3.1.89. StartStopEvent (MQLONG)

This controls whether start and stop events are generated. The value is one of the following:

MQEVR_DISABLED

Event reporting disabled.

MQEVR_ENABLED

Event reporting enabled.

For more information about events, see Monitoring WebSphere MQ.

To determine the value of this attribute, use the MQIA_START_STOP_EVENT selector with the MQINQ call.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:56

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19940_

3.1.90. StatisticsInterval (MQLONG)

This specifies how often (in seconds) to write statistics monitoring data to the monitoring queue.

The value is an integer in the range 0 to 604800, with a default value of 1800 (30 minutes).

To determine the value of this attribute, use the MQIA_STATISTICS_INTERVAL selector with the MQINQ call.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:56

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19950_

3.1.91. SyncPoint (MQLONG)

This indicates whether the local queue manager supports units of work and syncpointing with the MQGET, MQPUT, and MQPUT1 calls.

MQSP_AVAILABLE

Units of work and syncpointing available.

MQSP_NOT_AVAILABLE

Units of work and syncpointing not available.

� On z/OS® this value is never returned.

To determine the value of this attribute, use the MQIA_SYNCPOINT selector with the MQINQ call.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:57

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19960_

Page 602 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

3.1.92. TCPChannels (MQLONG)

This is the maximum number of channels that can be current, or clients that can be connected, that use the TCP/IP transmission protocol.
The value must be between 0 and 9999, with a default value of 200. If you specify 0, TCP/IP is not used.

This attribute is supported on z/OS® only.

To determine the value of this attribute, use the MQIA_TCP_CHANNELS selector with the MQINQ call.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:57

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19970_

3.1.93. TCPKeepAlive (MQLONG)

This specifies whether to use TCP KEEPALIVE to check that the other end of the connection is still available. If it is not available, the channel
is closed.

The value is one of the following:

MQTCPKEEP_YES

Use TCP KEEPALIVE as specified in the TCP profile configuration data set. If you specify the channel attribute KeepAliveInterval (KAINT),
the value to which it is set is used.

MQTCPKEEP_NO

Do not use TCP KEEPALIVE. This is the default value.

This attribute is supported on z/OS® only.

To determine the value of this attribute, use the MQIA_TCP_KEEP_ALIVE selector with the MQINQ call.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:57

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19980_

3.1.94. TCPName (MQCHAR8)

This is the name of either the only or default TCP/IP system that you are using, depending on the value of TCPStackType. The default value

is TCPIP.

This attribute is supported on z/OS® only.

To determine the value of this attribute, use the MQCA_TCP_NAME selector with the MQINQ call. The length of this attribute is given by

MQ_TCP_NAME_LENGTH.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:57

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19990_

3.1.95. TCPStackType (MQLONG)

This specifies whether the channel initiator can use only the TCP/IP address space specified in TCPName, or can optionally bind to any
selected TCP/IP address

The value is one of the following:

MQTCPSTACK_SINGLE

The channel initiator can use only the TCP/IP address spaces named in TCPName. This is the default value.

MQTCPSTACK_MULTIPLE

The channel initiator can use any TCP/IP address space available to it. It defaults to the one specified in TCPName if no other is specified
for a channel or listener.

This attribute is supported on z/OS® only.

To determine the value of this attribute, use the MQIA_TCP_STACK_TYPE selector with the MQINQ call.

Page 603 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:57

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20000_

3.1.96. TraceRouteRecording (MQLONG)

This controls the recording of trace- route information.

The value is one of the following:

MQRECORDING_DISABLED

No appending to trace- route messages allowed.

MQRECORDING_Q

Put trace- route messages to fixed named queue.

MQRECORDING_MSG

Put trace- route messages to a queue determined using the message itself. This is the default value

To determine the value of this attribute, use the MQIA_TRACE_ROUTE_RECORDING selector with the MQINQ call.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:57

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20010_

3.1.97. TriggerInterval (MQLONG)

This is a time interval (in milliseconds) used to restrict the number of trigger messages. This is relevant only when the TriggerType is

MQTT_FIRST. In this case trigger messages are usually generated only when a suitable message arrives on the queue, and the queue was
previously empty. Under certain circumstances, however, an additional trigger message can be generated with MQTT_FIRST triggering even
if the queue was not empty. These additional trigger messages are not generated more often than every TriggerInterval milliseconds.

For more information on triggering, see the WebSphere MQ Application Programming Guide.

The value is not less than 0 and not greater than 999 999 999. The default value is 999 999 999.

To determine the value of this attribute, use the MQIA_TRIGGER_INTERVAL selector with the MQINQ call.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:20:47

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr44710_

3.1.98. TriggerInterval (MQLONG)

This is a time interval (in milliseconds) used to restrict the number of trigger messages. This is relevant only when the TriggerType is

MQTT_FIRST. In this case trigger messages are usually generated only when a suitable message arrives on the queue, and the queue was
previously empty. Under certain circumstances, however, an additional trigger message can be generated with MQTT_FIRST triggering even
if the queue was not empty. These additional trigger messages are not generated more often than every TriggerInterval milliseconds.

For more information on triggering, see the WebSphere MQ Application Programming Guide.

The value is not less than 0 and not greater than 999 999 999. The default value is 999 999 999.

To determine the value of this attribute, use the MQIA_TRIGGER_INTERVAL selector with the MQINQ call.

Parent topic: Attributes for the queue manager

This build: January 26, 2011 11:18:57

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20020_

3.2. Attributes for queues

Page 604 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

There are five types of queue definition. Some queue attributes apply to all types of queue; other queue attributes apply only to certain
types of queue.

Types of queue: The queue manager supports the following types of queue definition:

Local queue

This is a physical queue that stores messages and can be one of the following:

Local queue manager queue

The queue exists on the local queue manager (private in z/OS® parlance).

Shared queue (z/OS only)

This is a physical queue that stores messages. The queue exists in a shared repository that is accessible to all the queue managers that
belong to the queue-sharing group that owns the shared repository.

Applications connected to any queue manager in the queue-sharing group can place messages on and remove messages from queues of
this type. Such queues are effectively the same as local queues. The value of the QType queue attribute is MQQT_LOCAL.

Applications connected to the local queue manager can place messages on and remove messages from queues of this type. The value of
the QType queue attribute is MQQT_LOCAL.

Cluster queue

This is a physical queue that stores messages. The queue exists either on the local queue manager, or on one or more of the queue
managers that belong to the same cluster as the local queue manager.

Applications connected to the local queue manager can place messages on queues of this type, regardless of the location of the queue. If
an instance of the queue exists on the local queue manager, the queue behaves in the same way as a local queue, and applications
connected to the local queue manager can remove messages from the queue. The value of the QType queue attribute is MQQT_CLUSTER.

Remote queue

This is not a physical queue; it is the local definition of a queue that exists on a remote queue manager. The local definition of the remote

queue contains information that tells the local queue manager how to route messages to the remote queue manager.

Applications connected to the local queue manager can place messages on queues of this type; the messages are placed on the local
transmission queue used to route messages to the remote queue manager. Applications cannot remove messages from remote queues.

The value of the QType queue attribute is MQQT_REMOTE.

You can also use a remote queue definition for:

� Reply-queue aliasing

In this case the name of the definition is the name of a reply-to queue. For more information, see WebSphere MQ
Intercommunication.

� Queue-manager aliasing

In this case the name of the definition is an alias for a queue manager, and not the name of a queue. For more information, see
WebSphere MQ Intercommunication.

Alias queue

This is not a physical queue; it is an alternative name for a local queue, a shared queue, a cluster queue, or a remote queue. The name of
the queue to which the alias resolves is part of the definition of the alias queue.

Applications connected to the local queue manager can place messages on queues of this type; the messages are placed on the queue to
which the alias resolves. Applications can remove messages from queues of this type if the alias resolves to a local queue, a shared
queue, or a cluster queue that has a local instance. The value of the QType queue attribute is MQQT_ALIAS.

Model queue

This is not a physical queue; it is a set of queue attributes from which a local queue can be created.

Messages cannot be stored on queues of this type.

Queue attributes: Some queue attributes apply to all types of queue; other queue attributes apply only to certain types of queue. The

types of queue to which an attribute applies are shown in Table 1 and subsequent tables.

Table 1 summarizes the attributes that are specific to queues. The attributes are described in alphabetic order.

Note: The names of the attributes shown in this book are descriptive names used with the MQINQ and MQSET calls; the names are the
same as for the PCF commands. When MQSC commands are used to define, alter, or display attributes, alternative short names are used;
see the WebSphere MQ Script (MQSC) Command Reference for details.

Table 1. Attributes for queues. The columns apply as follows:

� The column for local queues applies also to shared queues.

� The column for model queues indicates which attributes are inherited by the local queue created from the model queue.

� The column for cluster queues indicates the attributes that can be inquired when the cluster queue is opened for inquire
alone, or for inquire and output. If the cluster queue is opened for inquire plus one or more of input, browse, or set, the
column for local queues applies instead.

Attribute Description Local Model Alias Remote Cluster

AlterationDate Date when definition

was last changed

X X X

AlterationTime Time when definition

was last changed

X X X

BackoutRequeueQName Excessive backout

requeue queue name

X X

BackoutThreshold Backout threshold X X

BaseQName Queue name to which X

Page 605 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

alias resolves

CFStrucName Coupling-facility
structure name

X X

ClusterName Name of cluster to

which queue belongs

X X X X

ClusterNamelist Name of namelist
object containing

names of clusters to

which queue belongs

X X X

CLWLQueuePriority Cluster workload
queue priority

X X X X

CLWLQueueRank Cluster workload

queue rank

X X X X

CLWLUseQ Use remote queue X

CreationDate Date that the queue

was created

X

CreationTime Time that the queue

was created

X

CurrentQDepth Current queue depth X

DefaultPutResponse Default put response X X X X

DefBind Default binding X X X X

DefinitionType attribute Queue definition type X X

DefInputOpenOption Default input open

option

X X

DefPersistence Default message

persistence

X X X X X

DefPriority Default message

priority

X X X X X

DefReadAhead Default read ahead X X X

DistLists Distribution list

support

X X

HardenGetBackout Whether to maintain
an accurate backout

count

X X

IndexType Index type X X

InhibitGet Whether get

operations for the

queue are allowed

X X X

InhibitPut Whether put

operations for the
queue are allowed

X X X X X

InitiationQName Name of initiation

queue

X X

MaxMsgLength Maximum message

length in bytes

X X

MaxQDepth Maximum queue

depth

X X

MsgDeliverySequence attribute Message delivery

sequence

X X

NonPersistentMessage Class Reliability goal for non
persistent messages

X X

OpenInputCount Number of opens for

input

X

OpenOutputCount Number of opens for

output

X

PropertyControl Property control X X X

ProcessName Process name X X

QDepthHighEvent attribute Whether Queue Depth

High events are

generated

X X

QDepthHighLimit High limit for queue

depth

X X

QDepthLowEvent attribute Whether Queue Depth

Low events are
generated

X X

QDepthLowLimit attribute Low limit for queue

depth

X X

QDepthMaxEvent Whether Queue Full

events are generated

X X

QDesc Queue description X X X X X

QName Queue name X X X X

QServiceInterval Target for queue

service interval

X X

QServiceIntervalEvent attribute Whether Service
Interval High or

Service Interval OK

X X

Page 606 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

AlterationDate (MQCHAR12)

AlterationTime (MQCHAR8)

BackoutRequeueQName (MQCHAR48)
This is the excessive backout requeue queue name. Apart from allowing its value to be queried, the queue manager takes no action

based on the value of this attribute.

BackoutThreshold (MQLONG)
This is the backout threshold. Apart from allowing its value to be queried, the queue manager takes no action based on the value of

this attribute.

BaseQName (MQCHAR48)
This is the name of a queue that is defined to the local queue manager.

BaseType (MQCFIN)
The type of object to which the alias resolves.

CFStrucName (MQCHAR12)
This is the name of the coupling-facility structure where the messages on the queue are stored. The first character of the name is in
the range A through Z, and the remaining characters are in the range A through Z, 0 through 9, or blank.

ClusterName (MQCHAR48)
This is the name of the cluster to which the queue belongs.

ClusterNamelist (MQCHAR48)
This is the name of a namelist object that contains the names of clusters to which this queue belongs.

CLWLQueuePriority (MQLONG)

This is the cluster workload queue priority, a value between 0 and 9 representing the priority of the queue.

CLWLQueueRank (MQLONG)
This is the cluster workload queue rank, a value between 0 and 9 representing the rank of the queue.

CLWLUseQ (MQLONG)
This defines the behavior of an MQPUT when the target queue has both a local instance and at least one remote cluster instance. If the
put originates from a cluster channel, this attribute does not apply.

CreationDate (MQCHAR12)
This is the date when the queue was created.

CreationTime (MQCHAR8)
This is the time when the queue was created.

CurrentQDepth (MQLONG)
This is the number of messages currently on the queue.

events are generated

QSGDisp attribute Queue-sharing group
disposition

X X X

QueueAccounting Queue accounting

data collection

X X X X X

QueueMonitoring Online monitoring
data for queues

X X

QueueStatistics Queue statistics data

collection

X X X X X

QType Queue type X X X X

RemoteQMgrName Name of remote

queue manager

 X

RemoteQName Name of remote

queue

 X

RetentionInterval Retention interval X X

Scope Whether an entry for

the queue also exists

in a cell directory

X X X

Shareability Queue shareability X X

StorageClass Storage class for

queue

X X

TriggerControl Trigger control X X

TriggerData Trigger data X X

TriggerDepth Trigger depth X X

TriggerMsgPriority Threshold message
priority for triggers

X X

TriggerType Trigger type X X

Usage attribute Queue usage X X

XmitQName Transmission queue

name

 X

Page 607 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

DefaultPutResponse (MQLONG)
Specifies the type of response to be used for put operations to the queue when an application specifies
MQPMO_RESPONSE_AS_Q_DEF.

DefBind (MQLONG)
This is the default binding that is used when MQOO_BIND_AS_Q_DEF is specified on the MQOPEN call and the queue is a cluster
queue.

DefinitionType (MQLONG)
This indicates how the queue was defined.

DefInputOpenOption (MQLONG)

This is the default way in which to open the queue for input.

DefPersistence (MQLONG)
This is the default persistence of messages on the queue. It applies if MQPER_PERSISTENCE_AS_Q_DEF is specified in the message

descriptor when the message is put.

DefPriority (MQLONG)
This is the default priority for messages on the queue. This applies if MQPRI_PRIORITY_AS_Q_DEF is specified in the message

descriptor when the message is put on the queue.

DefReadAhead (MQLONG)
Specifies the default read ahead behavior for non-persistent messages delivered to the client.

DefPResp (MQLONG)
The default put response type (DEFPRESP) attribute defines the value used by applications when the PutResponseType within MQPMO
has been set to MQPMO_RESPONSE_AS_Q_DEF. This attribute is valid for all queue types.

DistLists (MQLONG)
This indicates whether distribution-list messages can be placed on the queue.

HardenGetBackout (MQLONG)
For each message, a count is kept of the number of times that the message is retrieved by an MQGET call within a unit of work, and
that unit of work subsequently backed out.

IndexType (MQLONG)
This specifies the type of index that the queue manager maintains for messages on the queue.

InhibitGet (MQLONG)

This controls whether get operations for this queue are allowed.

InhibitPut (MQLONG)
This controls whether put operations for this queue are allowed.

InitiationQName (MQCHAR48)
This is the name of a queue defined on the local queue manager; the queue must be of type MQQT_LOCAL.

MaxMsgLength (MQLONG)
This is an upper limit for the length of the longest physical message that can be placed on the queue.

MaxQDepth (MQLONG)
This is the defined upper limit for the number of physical messages that can exist on the queue at any one time.

MsgDeliverySequence (MQLONG)

NonPersistentMessageClass (MQLONG)
The reliability goal for nonpersistent messages.

OpenInputCount (MQLONG)
This is the number of handles that are currently valid for removing messages from the queue by means of the MQGET call.

OpenOutputCount (MQLONG)
This is the number of handles that are currently valid for adding messages to the queue by means of the MQPUT call.

ProcessName (MQCHAR48)

This is the name of a process object that is defined on the local queue manager. The process object identifies a program that can
service the queue.

PropertyControl (MQLONG)

Specifies how message properties are handled for messages that are retrieved from queues using the MQGET call with the
MQGMO_PROPERTIES_AS_Q_DEF option.

QDepthHighEvent (MQLONG)

This controls whether Queue Depth High events are generated.

QDepthHighLimit (MQLONG)
This is the threshold against which the queue depth is compared to generate a Queue Depth High event.

QDepthLowEvent (MQLONG)
This controls whether Queue Depth Low events are generated.

Page 608 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

QDepthLowLimit (MQLONG)
This is the threshold against which the queue depth is compared to generate a Queue Depth Low event.

QDepthMaxEvent (MQLONG)

This controls whether Queue Full events are generated. A Queue Full event indicates that a put to a queue has been rejected because
the queue is full, that is, the queue depth has already reached its maximum value.

QDesc (MQCHAR64)

Use this field for descriptive commentary.

QName (MQCHAR48)
This is the name of a queue defined on the local queue manager.

QServiceInterval (MQLONG)
This is the service interval used for comparison to generate Service Interval High and Service Interval OK events.

QServiceIntervalEvent (MQLONG)
This controls whether Service Interval High or Service Interval OK events are generated.

QSGDisp (MQLONG)
This specifies the disposition of the queue.

QueueAccounting (MQLONG)

QueueMonitoring (MQLONG)
Controls the collection of online monitoring data for queues.

QueueStatistics (MQCHAR12)

QType (MQLONG)

RemoteQMgrName (MQCHAR48)

RemoteQName (MQCHAR48)

RetentionInterval (MQLONG)
This is the period of time for which to retain the queue. After this time has elapsed, the queue is eligible for deletion.

Scope (MQLONG)
This controls whether an entry for this queue also exists in a cell directory.

Shareability (MQLONG)
This indicates whether the queue can be opened for input multiple times concurrently.

StorageClass (MQCHAR8)
This is a user-defined name that defines the physical storage used to hold the queue. In practice, a message is written to disk only if it
needs to be paged out of its memory buffer.

TriggerControl (MQLONG)

This controls whether trigger messages are written to an initiation queue to start an application to service the queue.

TriggerData (MQCHAR64)
This is free-format data that the queue manager inserts into the trigger message when a message arriving on this queue causes a

trigger message to be written to the initiation queue.

TriggerDepth (MQLONG)

TriggerMsgPriority (MQLONG)
This is the message priority below which messages do not contribute to the generation of trigger messages (that is, the queue
manager ignores these messages when deciding whether to generate a trigger message).

TriggerType (MQLONG)
This controls the conditions under which trigger messages are written as a result of messages arriving on this queue.

Usage (MQLONG)
This indicates what the queue is used for.

XmitQName (MQCHAR48)

This is the transmission queue name. If this attribute is nonblank when an open occurs, either for a remote queue or for a queue-
manager alias definition, it specifies the name of the local transmission queue to be used for forwarding the message.

Parent topic: Attributes of objects

This build: January 26, 2011 11:18:18

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18310_

Page 609 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

3.2.1. AlterationDate (MQCHAR12)

Date when definition was last changed.

This is the date when the definition was last changed. The format of the date is YYYY-MM-DD, padded with two trailing blanks to make the

length 12 bytes (for example, 1992-09-23��, where �� represents two blank characters).

The values of certain attributes (for example, CurrentQDepth) change as the queue manager operates. Changes to these attributes do not

affect AlterationDate.

To determine the value of this attribute, use the MQCA_ALTERATION_DATE selector with the MQINQ call. The length of this attribute is
given by MQ_DATE_LENGTH.

Parent topic: Attributes for queues

This build: January 26, 2011 11:18:21

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18330_

3.2.2. AlterationTime (MQCHAR8)

Time when definition was last changed.

This is the time when the definition was last changed. The format of the time is HH.MM.SS using the 24-hour clock, with a leading zero if the

hour is less than 10 (for example 09.10.20).

� On z/OS®, the time is Greenwich Mean Time (GMT), subject to the system clock being set accurately to GMT.

� In other environments, the time is local time.

The values of certain attributes (for example, CurrentQDepth) change as the queue manager operates. Changes to these attributes do not

affect AlterationTime.

To determine the value of this attribute, use the MQCA_ALTERATION_TIME selector with the MQINQ call. The length of this attribute is given
by MQ_TIME_LENGTH.

Parent topic: Attributes for queues

This build: January 26, 2011 11:18:21

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18340_

3.2.3. BackoutRequeueQName (MQCHAR48)

This is the excessive backout requeue queue name. Apart from allowing its value to be queried, the queue manager takes no action based
on the value of this attribute.

Applications running inside of WebSphere Application Server and those that use the WebSphere MQ Application Server Facilities will use
this attribute to determine where messages that have been backed out should go. For all other applications, the queue manager takes no
action based on the value of the attribute.

WebSphere® MQ classes for JMS uses this attribute to determine where to transfer a message that has already been backed out the
maximum number of times as specified by the BackoutThreshold attribute.

To determine the value of this attribute, use the MQCA_BACKOUT_REQ_Q_NAME selector with the MQINQ call. The length of this attribute is
given by MQ_Q_NAME_LENGTH.

Parent topic: Attributes for queues

This build: January 26, 2011 11:18:21

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18350_

Local Model Alias Remote Cluster

X X X

Local Model Alias Remote Cluster

X X X

Local Model Alias Remote Cluster

X X

Page 610 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

3.2.4. BackoutThreshold (MQLONG)

This is the backout threshold. Apart from allowing its value to be queried, the queue manager takes no action based on the value of this
attribute.

Applications running inside of WebSphere Application Server and those that use the WebSphere MQ Application Server Facilities will use
this attribute to determine if a message should be backed out. For all other applications, the queue manager takes no action based on the
value of the attribute.

WebSphere® MQ classes for JMS uses this attribute to determine how many times to allow a message to be backed out before transferring
the message to the queue specified by the BackoutRequeueQName attribute.

To determine the value of this attribute, use the MQIA_BACKOUT_THRESHOLD selector with the MQINQ call.

Parent topic: Attributes for queues

This build: January 26, 2011 11:18:21

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18360_

3.2.5. BaseQName (MQCHAR48)

This is the name of a queue that is defined to the local queue manager.

(For more information on queue names, see MQOD - ObjectName field.) The queue is one of the following types:

MQQT_LOCAL

Local queue.

MQQT_REMOTE

Local definition of a remote queue.

MQQT_CLUSTER

Cluster queue.

To determine the value of this attribute, use the MQCA_BASE_Q_NAME selector with the MQINQ call. The length of this attribute is given by
MQ_Q_NAME_LENGTH.

Parent topic: Attributes for queues

This build: January 26, 2011 11:18:21

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18370_

3.2.6. BaseType (MQCFIN)

The type of object to which the alias resolves.

The value is one of the following:

MQOT_Q

Base object type is a queue

MQOT_TOPIC

Base object type is a topic

Parent topic: Attributes for queues

This build: January 26, 2011 11:20:47

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr44720_

3.2.7. CFStrucName (MQCHAR12)

Local Model Alias Remote Cluster

X X

Local Model Alias Remote Cluster

 X

Local Model Alias Remote Cluster

 X

Page 611 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This is the name of the coupling-facility structure where the messages on the queue are stored. The first character of the name is in the
range A through Z, and the remaining characters are in the range A through Z, 0 through 9, or blank.

To get the full name of the structure in the coupling facility, suffix the value of the QSGName queue-manager attribute with the value of the

CFStrucName queue attribute.

This attribute applies only to shared queues; it is ignored if QSGDisp does not have the value MQQSGD_SHARED.

To determine the value of this attribute, use the MQCA_CF_STRUC_NAME selector with the MQINQ call. The length of this attribute is given
by MQ_CF_STRUC_NAME_LENGTH.

This attribute is supported only on z/OS®.

Parent topic: Attributes for queues

This build: January 26, 2011 11:18:22

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18380_

3.2.8. ClusterName (MQCHAR48)

This is the name of the cluster to which the queue belongs.

If the queue belongs to more than one cluster, ClusterNamelist specifies the name of a namelist object that identifies the clusters, and

ClusterName is blank. At least one of ClusterName and ClusterNamelist must be blank.

To determine the value of this attribute, use the MQCA_CLUSTER_NAME selector with the MQINQ call. The length of this attribute is given by

MQ_CLUSTER_NAME_LENGTH.

Parent topic: Attributes for queues

This build: January 26, 2011 11:18:22

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18390_

3.2.9. ClusterNamelist (MQCHAR48)

This is the name of a namelist object that contains the names of clusters to which this queue belongs.

If the queue belongs to only one cluster, the namelist object contains only one name. Alternatively, ClusterName can be used to specify the

name of the cluster, in which case ClusterNamelist is blank. At least one of ClusterName and ClusterNamelist must be blank.

To determine the value of this attribute, use the MQCA_CLUSTER_NAMELIST selector with the MQINQ call. The length of this attribute is
given by MQ_NAMELIST_NAME_LENGTH.

Parent topic: Attributes for queues

This build: January 26, 2011 11:18:22

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18400_

3.2.10. CLWLQueuePriority (MQLONG)

This is the cluster workload queue priority, a value between 0 and 9 representing the priority of the queue.

For more information, see WebSphere MQ Queue Manager Clusters.

To determine the value of this attribute, use the MQIA_CLWL_Q_PRIORITY selector with the MQINQ call.

Local Model Alias Remote Cluster

X X

Local Model Alias Remote Cluster

X X X X

Local Model Alias Remote Cluster

X X X

Local Model Alias Remote Cluster

X X X X

Page 612 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Parent topic: Attributes for queues

This build: January 26, 2011 11:18:22

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18410_

3.2.11. CLWLQueueRank (MQLONG)

This is the cluster workload queue rank, a value between 0 and 9 representing the rank of the queue.

For more information, see WebSphere MQ Queue Manager Clusters.

To determine the value of this attribute, use the MQIA_CLWL_Q_RANK selector with the MQINQ call.

Parent topic: Attributes for queues

This build: January 26, 2011 11:18:22

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18420_

3.2.12. CLWLUseQ (MQLONG)

This defines the behavior of an MQPUT when the target queue has both a local instance and at least one remote cluster instance. If the put
originates from a cluster channel, this attribute does not apply.

The value is one of the following:

MQCLWL_USEQ_ANY

Use remote and local queues.

MQCLWL_USEQ_LOCAL

Do not use remote queues.

MQCLWL_USEQ_AS_Q_MGR

Inherit definition from queue manager's MQIA_CLWL_USEQ.

For more information, see WebSphere MQ Queue Manager Clusters.

To determine the value of this attribute, use the MQCA_CLWL_USEQ selector with the MQINQ call. The length of this attribute is given by
MQ_CLWL_USEQ_LENGTH.

Parent topic: Attributes for queues

This build: January 26, 2011 11:18:22

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18430_

3.2.13. CreationDate (MQCHAR12)

This is the date when the queue was created.

The format of the date is YYYY-MM-DD, padded with two trailing blanks to make the length 12 bytes (for example, 1992-09-23��, where

�� represents 2 blank characters).

� On i5/OS®, the creation date of a queue can differ from that of the underlying operating system entity (file or userspace) that
represents the queue.

To determine the value of this attribute, use the MQCA_CREATION_DATE selector with the MQINQ call. The length of this attribute is given
by MQ_CREATION_DATE_LENGTH.

Parent topic: Attributes for queues

This build: January 26, 2011 11:18:23

Notices | Trademarks | Downloads | Library | Support | Feedback

Local Model Alias Remote Cluster

X X X X

Local Model Alias Remote Cluster

X

Local Model Alias Remote Cluster

X

Page 613 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18440_

3.2.14. CreationTime (MQCHAR8)

This is the time when the queue was created.

The format of the time is HH.MM.SS using the 24-hour clock, with a leading zero if the hour is less than 10 (for example 09.10.20).

� On z/OS®, the time is Greenwich Mean Time (GMT), subject to the system clock being set accurately to GMT.

� In other environments, the time is local time.

� On i5/OS®, the creation time of a queue can differ from that of the underlying operating system entity (file or userspace) that
represents the queue.

To determine the value of this attribute, use the MQCA_CREATION_TIME selector with the MQINQ call. The length of this attribute is given
by MQ_CREATION_TIME_LENGTH.

Parent topic: Attributes for queues

This build: January 26, 2011 11:18:23

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18450_

3.2.15. CurrentQDepth (MQLONG)

This is the number of messages currently on the queue.

It is incremented during an MQPUT call, and during backout of an MQGET call. It is decremented during a nonbrowse MQGET call, and during
backout of an MQPUT call. The effect of this is that the count includes messages that have been put on the queue within a unit of work, but

that have not yet been committed, even though they are not eligible to be retrieved by the MQGET call. Similarly, it excludes messages that
have been retrieved within a unit of work using the MQGET call, but that have yet to be committed.

The count also includes messages that have passed their expiry time but have not yet been discarded, although these messages are not
eligible to be retrieved. See MQMD - Expiry field for more information.

Unit-of-work processing and the segmentation of messages can both cause CurrentQDepth to exceed MaxQDepth. However, this does not

affect the retrievability of the messages; all messages on the queue can be retrieved using the MQGET call in the normal way.

The value of this attribute fluctuates as the queue manager operates.

To determine the value of this attribute, use the MQIA_CURRENT_Q_DEPTH selector with the MQINQ call.

Parent topic: Attributes for queues

This build: January 26, 2011 11:18:23

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18460_

3.2.16. DefaultPutResponse (MQLONG)

Specifies the type of response to be used for put operations to the queue when an application specifies MQPMO_RESPONSE_AS_Q_DEF.

The value is one of the following:

MQPRT_SYNC_RESPONSE

The put operation is issued synchronously, returning a response.

MQPRT_ASYNC_RESPONSE

The put operation is issued asynchronously, returning a subset of MQMD fields.

Parent topic: Attributes for queues

This build: January 26, 2011 11:20:43

Local Model Alias Remote Cluster

X

Local Model Alias Remote Cluster

X

Local Model Alias Remote Cluster

X X X X

Page 614 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr43660_

3.2.17. DefBind (MQLONG)

This is the default binding that is used when MQOO_BIND_AS_Q_DEF is specified on the MQOPEN call and the queue is a cluster queue.

The value is one of the following:

MQBND_BIND_ON_OPEN

Binding fixed by MQOPEN call.

MQBND_BIND_NOT_FIXED

Binding not fixed.

To determine the value of this attribute, use the MQIA_DEF_BIND selector with the MQINQ call.

Parent topic: Attributes for queues

This build: January 26, 2011 11:18:23

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18470_

3.2.18. DefinitionType (MQLONG)

This indicates how the queue was defined.

The value is one of the following:

MQQDT_PREDEFINED

The queue is a permanent queue created by the system administrator; only the system administrator can delete it.

Predefined queues are created using the DEFINE MQSC command, and can be deleted only by using the DELETE MQSC command.

Predefined queues cannot be created from model queues.

Commands can be issued either by an operator, or by an authorized user sending a command message to the command input queue (see
CommandInputQName attribute for more information).

MQQDT_PERMANENT_DYNAMIC

The queue is a permanent queue that was created by an application issuing an MQOPEN call with the name of a model queue specified in
the object descriptor MQOD. The model queue definition had the value MQQDT_PERMANENT_DYNAMIC for the DefinitionType attribute.

This type of queue can be deleted using the MQCLOSE call. See MQCLOSE – Close object for more details.

The value of the QSGDisp attribute for a permanent dynamic queue is MQQSGD_Q_MGR.

MQQDT_TEMPORARY_DYNAMIC

The queue is a temporary queue that was created by an application issuing an MQOPEN call with the name of a model queue specified in

the object descriptor MQOD. The model queue definition had the value MQQDT_TEMPORARY_DYNAMIC for the DefinitionType attribute.

This type of queue is deleted automatically by the MQCLOSE call when it is closed by the application that created it.

The value of the QSGDisp attribute for a temporary dynamic queue is MQQSGD_Q_MGR.

MQQDT_SHARED_DYNAMIC

The queue is a shared permanent queue that was created by an application issuing an MQOPEN call with the name of a model queue
specified in the object descriptor MQOD. The model queue definition had the value MQQDT_SHARED_DYNAMIC for the DefinitionType

attribute.

This type of queue can be deleted using the MQCLOSE call. See MQCLOSE – Close object for more details.

The value of the QSGDisp attribute for a shared dynamic queue is MQQSGD_SHARED.

This attribute in a model queue definition does not indicate how the model queue was defined, because model queues are always
predefined. Instead, the value of this attribute in the model queue is used to determine the DefinitionType of each of the dynamic queues

created from the model queue definition using the MQOPEN call.

To determine the value of this attribute, use the MQIA_DEFINITION_TYPE selector with the MQINQ call.

Local Model Alias Remote Cluster

X X X X

Local Model Alias Remote Cluster

X X

Page 615 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Parent topic: Attributes for queues

This build: January 26, 2011 11:18:23

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18480_

3.2.19. DefInputOpenOption (MQLONG)

This is the default way in which to open the queue for input.

It applies if the MQOO_INPUT_AS_Q_DEF option is specified on the MQOPEN call when the queue is opened. The value is one of the
following:

MQOO_INPUT_EXCLUSIVE

Open queue to get messages with exclusive access.

The queue is opened for use with subsequent MQGET calls. The call fails with reason code MQRC_OBJECT_IN_USE if the queue is currently
open by this or another application for input of any type (MQOO_INPUT_SHARED or MQOO_INPUT_EXCLUSIVE).

MQOO_INPUT_SHARED

Open queue to get messages with shared access.

The queue is opened for use with subsequent MQGET calls. The call can succeed if the queue is currently open by this or another
application with MQOO_INPUT_SHARED, but fails with reason code MQRC_OBJECT_IN_USE if the queue is currently open with
MQOO_INPUT_EXCLUSIVE.

To determine the value of this attribute, use the MQIA_DEF_INPUT_OPEN_OPTION selector with the MQINQ call.

Parent topic: Attributes for queues

This build: January 26, 2011 11:18:23

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18490_

3.2.20. DefPersistence (MQLONG)

This is the default persistence of messages on the queue. It applies if MQPER_PERSISTENCE_AS_Q_DEF is specified in the message
descriptor when the message is put.

If there is more than one definition in the queue-name resolution path, the default persistence is taken from the value of this attribute in the
first definition in the path at the time of the MQPUT or MQPUT1 call. This could be:

� An alias queue

� A local queue

� A local definition of a remote queue

� A queue-manager alias

� A transmission queue (for example, the DefXmitQName queue)

The value is one of the following:

MQPER_PERSISTENT

The message survives system failures and queue manager restarts. Persistent messages cannot be placed on:

� Temporary dynamic queues

� Shared queues that map to a CFSTRUCT object at CFLEVEL(2) or below, or where the CFSTRUCT object is defined as RECOVER(NO).

Persistent messages can be placed on permanent dynamic queues, and predefined queues.

MQPER_NOT_PERSISTENT

The message does not normally survive system failures or queue manager restarts. This applies even if an intact copy of the message is
found on auxiliary storage during a queue manager restart.

In the case of shared queues, nonpersistent messages do survive restarts of queue managers in the queue-sharing group, but do not
survive failures of the coupling facility used to store messages on the shared queues.

Both persistent and nonpersistent messages can exist on the same queue.

To determine the value of this attribute, use the MQIA_DEF_PERSISTENCE selector with the MQINQ call.

Parent topic: Attributes for queues

Local Model Alias Remote Cluster

X X

Local Model Alias Remote Cluster

X X X X X

Page 616 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This build: January 26, 2011 11:18:23

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18500_

3.2.21. DefPriority (MQLONG)

This is the default priority for messages on the queue. This applies if MQPRI_PRIORITY_AS_Q_DEF is specified in the message descriptor
when the message is put on the queue.

If there is more than one definition in the queue-name resolution path, the default priority for the message is taken from the value of this
attribute in the first definition in the path at the time of the put operation. This could be:

� An alias queue

� A local queue

� A local definition of a remote queue

� A queue-manager alias

� A transmission queue (for example, the DefXmitQName queue)

The way in which a message is placed on a queue depends on the value of the queue’s MsgDeliverySequence attribute:

� If the MsgDeliverySequence attribute is MQMDS_PRIORITY, the logical position at which a message is placed on the queue depends

on the value of the Priority field in the message descriptor.

� If the MsgDeliverySequence attribute is MQMDS_FIFO, messages are placed on the queue as though they had a priority equal to the

DefPriority of the resolved queue, regardless of the value of the Priority field in the message descriptor. However, the Priority

field retains the value specified by the application that put the message. See MsgDeliverySequence attribute for more information.

Priorities are in the range zero (lowest) through MaxPriority (highest); see MaxPriority attribute.

To determine the value of this attribute, use the MQIA_DEF_PRIORITY selector with the MQINQ call.

Parent topic: Attributes for queues

This build: January 26, 2011 11:18:24

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18510_

3.2.22. DefReadAhead (MQLONG)

Specifies the default read ahead behavior for non-persistent messages delivered to the client.

DefReadAhead can be set to one of the following values::

MQREADA_NO

Non-persistent messages are not sent ahead to the client before an applications requests them. A maximum of one non-persistent
message can be lost if the client ends abnormally.

MQREADA_YES

Non-persistent messages are sent ahead to the client before an application requests them. Non-persistent messages can be lost if the
client ends abnormally or if the client does not consume all the messages it is sent.

MQREADA_DISABLED

Read ahead of non-persistent messages in not enabled for this queue. Messages are not sent ahead to the client regardless of whether
read ahead is requested by the client application.

To determine the value of this attribute, use the MQIA_DEF_READ_AHEAD selector with the MQINQ call.

Parent topic: Attributes for queues

This build: January 26, 2011 11:20:43

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr43650_

3.2.23. DefPResp (MQLONG)

Local Model Alias Remote Cluster

X X X X X

Local Model Alias Remote Cluster

X X X

Page 617 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

The default put response type (DEFPRESP) attribute defines the value used by applications when the PutResponseType within MQPMO has
been set to MQPMO_RESPONSE_AS_Q_DEF. This attribute is valid for all queue types.

The value is one of the following:

SYNC

The put operation is issued synchronously returning a response.

ASYNC

The put operation is issued asynchronously, returning a subset of MQMD fields.

To determine the value of this attribute, use the MQIA_DEF_PUT_RESPONSE_TYPE selector with the MQINQ call.

Parent topic: Attributes for queues

This build: January 26, 2011 11:19:42

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr22920_

3.2.24. DistLists (MQLONG)

This indicates whether distribution-list messages can be placed on the queue.

A message channel agent (MCA) sets the attribute to inform the local queue manager whether the queue manager at the other end of the

channel supports distribution lists. This latter queue manager (called the partnering queue manager) is the one that next receives the
message, after it has been removed from the local transmission queue by a sending MCA.

The sending MCA sets the attribute whenever it establishes a connection to the receiving MCA on the partnering queue manager. In this
way, the sending MCA can cause the local queue manager to place on the transmission queue only messages that the partnering queue

manager can process correctly.

This attribute is primarily for use with transmission queues, but the processing described is performed regardless of the usage defined for
the queue (see Usage attribute).

The value is one of the following:

MQDL_SUPPORTED

Distribution-list messages can be stored on the queue, and transmitted to the partnering queue manager in that form. This reduces the

amount of processing required to send the message to multiple destinations.

MQDL_NOT_SUPPORTED

Distribution-list messages cannot be stored on the queue, because the partnering queue manager does not support distribution lists. If an
application puts a distribution-list message, and that message is to be placed on this queue, the queue manager splits the distribution-list
message and places the individual messages on the queue instead. This increases the amount of processing required to send the message
to multiple destinations, but ensures that the messages are processed correctly by the partnering queue manager.

To determine the value of this attribute, use the MQIA_DIST_LISTS selector with the MQINQ call. To change the value of this attribute, use
the MQSET call.

This attribute is not supported on z/OS®.

Parent topic: Attributes for queues

This build: January 26, 2011 11:18:24

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18520_

3.2.25. HardenGetBackout (MQLONG)

For each message, a count is kept of the number of times that the message is retrieved by an MQGET call within a unit of work, and that
unit of work subsequently backed out.

This count is available in the BackoutCount field in the message descriptor after the MQGET call has completed.

The message backout count survives restarts of the queue manager. However, to ensure that the count is accurate, information has to be
hardened (recorded on disk or other permanent storage device) each time that an MQGET call retrieves a message within a unit of work for

Local Model Alias Remote Cluster

Yes Yes Yes Yes Yes

Local Model Alias Remote Cluster

X X

Local Model Alias Remote Cluster

X X

Page 618 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

this queue. If this is not done, the queue manager fails, and the MQGET call backs out, the count might or might not be incremented.

Hardening information for each MQGET call within a unit of work, however, imposes additional processing cost, so set the
HardenGetBackout attribute to MQQA_BACKOUT_HARDENED only if it is essential that the count is accurate.

On i5/OS®, UNIX systems, and Windows, the message backout count is always hardened, regardless of the setting of this attribute.

The following values are possible:

MQQA_BACKOUT_HARDENED

Hardening is used to ensure that the backout count for messages on this queue is accurate.

MQQA_BACKOUT_NOT_HARDENED

Hardening is not used to ensure that the backout count for messages on this queue is accurate. The count might therefore be lower than it
should be.

To determine the value of this attribute, use the MQIA_HARDEN_GET_BACKOUT selector with the MQINQ call.

Parent topic: Attributes for queues

This build: January 26, 2011 11:18:24

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18530_

3.2.26. IndexType (MQLONG)

This specifies the type of index that the queue manager maintains for messages on the queue.

The type of index required depends on how the application retrieves messages, and whether the queue is a shared queue or a nonshared
queue (see QSGDisp attribute). The following values are possible for IndexType:

MQIT_NONE

No index is maintained by the queue manager for this queue. Use this value for queues that are usually processed sequentially, that is,
without using any selection criteria on the MQGET call.

MQIT_MSG_ID

The queue manager maintains an index that uses the message identifiers of the messages on the queue. Use this value queues where the

application usually retrieves messages using the message identifier as the selection criterion on the MQGET call.

MQIT_CORREL_ID

The queue manager maintains an index that uses the correlation identifiers of the messages on the queue. Use this value for queues
where the application usually retrieves messages using the correlation identifier as the selection criterion on the MQGET call.

MQIT_MSG_TOKEN

The queue manager maintains an index that uses the message tokens of the messages on the queue for use with the workload manager

(WLM) functions of z/OS®.

You must specify this option for WLM-managed queues; do not specify it for any other type of queue. Also, do not use this value for a

queue where an application is not using the z/OS workload manager functions, but is retrieving messages using the message token as a
selection criterion on the MQGET call.

MQIT_GROUP_ID

The queue manager maintains an index that uses the group identifiers of the messages on the queue. This value must be used for queues
where the application retrieves messages using the MQGMO_LOGICAL_ORDER option on the MQGET call.

A queue with this index type cannot be a transmission queue. A shared queue with this index type must be defined to map to a CFSTRUCT
object at CFLEVEL(3) or CFLEVEL(4).

Note:

1. The physical order of messages on a queue with index type MQIT_GROUP_ID is not defined, as the queue is optimized for efficient
retrieval of messages using the MQGMO_LOGICAL_ORDER option on the MQGET call. This means that the physical order of the
messages is not usually the order in which the messages arrived on the queue.

2. If an MQIT_GROUP_ID queue has a MsgDeliverySequence of MQMDS_PRIORITY, the queue manager uses message priorities zero

and one to optimize the retrieval of messages in logical order. As a result, the first message in a group must not have a priority of
zero or one; if it does, the message is processed as though it had a priority of two. The Priority field in the MQMD structure is not

changed.

For more information about message groups, see the description of the group and segment options in MQGMO - Options field.

The index type that should be used in various cases is shown in Table 1 and Table 2.

Local Model Alias Remote Cluster

X X

Table 1. Recommended or required values of queue index type when MQGMO_LOGICAL_ORDER not specified

Selection criteria on MQGET call Index type for nonshared queue Index type for shared queue

None Any Any

Selection using one identifier:

Message identifier MQIT_MSG_ID recommended MQIT_NONE or MQIT_MSG_ID

Page 619 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

To determine the value of this attribute, use the MQIA_INDEX_TYPE selector with the MQINQ call.

This attribute is supported only on z/OS.

Parent topic: Attributes for queues

This build: January 26, 2011 11:18:25

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18540_

3.2.27. InhibitGet (MQLONG)

This controls whether get operations for this queue are allowed.

If the queue is an alias queue, get operations must be allowed for both the alias and the base queue at the time of the get operation, for the

MQGET call to succeed. The value is one of the following:

MQQA_GET_INHIBITED

Get operations are inhibited.

MQGET calls fail with reason code MQRC_GET_INHIBITED. This includes MQGET calls that specify MQGMO_BROWSE_FIRST or
MQGMO_BROWSE_NEXT.

Note: If an MQGET call operating within a unit of work completes successfully, changing the value of the InhibitGet attribute

subsequently to MQQA_GET_INHIBITED does not prevent the unit of work being committed.

MQQA_GET_ALLOWED

required; MQIT_MSG_ID recommended

Correlation identifier MQIT_CORREL_ID recommended MQIT_CORREL_ID required

Group identifier MQIT_GROUP_ID recommended MQIT_GROUP_ID required

Selection using two identifiers:

Message identifier plus correlation
identifier

MQIT_MSG_ID or MQIT_CORREL_ID
recommended

MQIT_MSG_ID or MQIT_CORREL_ID
required

Message identifier plus group identifier MQIT_MSG_ID or MQIT_GROUP_ID

recommended

Not supported

Correlation identifier plus group
identifier

MQIT_CORREL_ID or MQIT_GROUP_ID
recommended

Not supported

Selection using three identifiers:

Message identifier plus correlation

identifier plus group identifier

MQIT_MSG_ID or MQIT_CORREL_ID or

MQIT_GROUP_ID recommended

Not supported

Selection using group-related criteria:

Group identifier plus message sequence

number

MQIT_GROUP_ID required MQIT_GROUP_ID required

Message sequence number (must be 1) MQIT_GROUP_ID required MQIT_GROUP_ID required

Selection using message token:

Message token for application use Do not use MQIT_MSG_TOKEN

Message token for WLM use MQIT_MSG_TOKEN required Not supported

Table 2. Recommended or required values of queue index type when MQGMO_LOGICAL_ORDER specified

Selection criteria on MQGET call Index type for nonshared queue Index type for shared queue

None MQIT_GROUP_ID required MQIT_GROUP_ID required

Selection using one identifier:

Message identifier MQIT_GROUP_ID required Not supported

Correlation identifier MQIT_GROUP_ID required Not supported

Group identifier MQIT_GROUP_ID required MQIT_GROUP_ID required

Selection using two identifiers:

Message identifier plus correlation

identifier

MQIT_GROUP_ID required Not supported

Message identifier plus group identifier MQIT_GROUP_ID required Not supported

Correlation identifier plus group

identifier

MQIT_GROUP_ID required Not supported

Selection using three identifiers:

Message identifier plus correlation

identifier plus group identifier

MQIT_GROUP_ID required Not supported

Local Model Alias Remote Cluster

X X X

Page 620 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Get operations are allowed.

To determine the value of this attribute, use the MQIA_INHIBIT_GET selector with the MQINQ call. To change the value of this attribute, use
the MQSET call.

Parent topic: Attributes for queues

This build: January 26, 2011 11:18:25

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18550_

3.2.28. InhibitPut (MQLONG)

This controls whether put operations for this queue are allowed.

If there is more than one definition in the queue-name resolution path, put operations must be allowed for every definition in the path
(including any queue-manager alias definitions) at the time of the put operation, for the MQPUT or MQPUT1 call to succeed. The value is one
of the following:

MQQA_PUT_INHIBITED

Put operations are inhibited.

MQPUT and MQPUT1 calls fail with reason code MQRC_PUT_INHIBITED.

Note: If an MQPUT call operating within a unit of work completes successfully, changing the value of the InhibitPut attribute

subsequently to MQQA_PUT_INHIBITED does not prevent the unit of work being committed.

MQQA_PUT_ALLOWED

Put operations are allowed.

To determine the value of this attribute, use the MQIA_INHIBIT_PUT selector with the MQINQ call. To change the value of this attribute, use
the MQSET call.

Parent topic: Attributes for queues

This build: January 26, 2011 11:18:25

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18560_

3.2.29. InitiationQName (MQCHAR48)

This is the name of a queue defined on the local queue manager; the queue must be of type MQQT_LOCAL.

The queue manager sends a trigger message to the initiation queue when application start-up is required as a result of a message arriving
on the queue to which this attribute belongs. The initiation queue must be monitored by a trigger monitor application that starts the

appropriate application after receipt of the trigger message.

To determine the value of this attribute, use the MQCA_INITIATION_Q_NAME selector with the MQINQ call. The length of this attribute is
given by MQ_Q_NAME_LENGTH.

Parent topic: Attributes for queues

This build: January 26, 2011 11:18:25

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18570_

3.2.30. MaxMsgLength (MQLONG)

This is an upper limit for the length of the longest physical message that can be placed on the queue.

However, because the MaxMsgLength queue attribute can be set independently of the MaxMsgLength queue-manager attribute, the actual

upper limit for the length of the longest physical message that can be placed on the queue is the lesser of those two values.

Local Model Alias Remote Cluster

X X X X X

Local Model Alias Remote Cluster

X X

Local Model Alias Remote Cluster

X X

Page 621 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

If the queue manager supports segmentation, it is possible for an application to put a logical message that is longer than the lesser of the
two MaxMsgLength attributes, but only if the application specifies the MQMF_SEGMENTATION_ALLOWED flag in MQMD. If that flag is

specified, the upper limit for the length of a logical message is 999 999 999 bytes, but usually resource constraints imposed by the
operating system, or by the environment in which the application is running, result in a lower limit.

An attempt to place on the queue a message that is too long fails with one of the following reason codes:

� MQRC_MSG_TOO_BIG_FOR_Q if the message is too big for the queue

� MQRC_MSG_TOO_BIG_FOR_Q_MGR if the message is too big for the queue manager, but not too big for the queue

The lower limit for the MaxMsgLength attribute is zero; the upper limit is 100 MB (104 857 600 bytes).

For more information, see MQPUT - BufferLength parameter.

To determine the value of this attribute, use the MQIA_MAX_MSG_LENGTH selector with the MQINQ call.

Parent topic: Attributes for queues

This build: January 26, 2011 11:18:25

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18580_

3.2.31. MaxQDepth (MQLONG)

This is the defined upper limit for the number of physical messages that can exist on the queue at any one time.

An attempt to put a message on a queue that already contains MaxQDepth messages fails with reason code MQRC_Q_FULL.

Unit-of-work processing and the segmentation of messages can both cause the actual number of physical messages on the queue to exceed
MaxQDepth. However, this does not affect the retrievability of the messages; all messages on the queue can be retrieved using the MQGET

call.

The value of this attribute is zero or greater. The upper limit is determined by the environment:

� On AIX®, HP-UX, z/OS®, Solaris, Linux, and Windows, the value cannot exceed 999 999 999.

� On i5/OS®, the value cannot exceed 640 000.

Note: The storage space available to the queue might be exhausted even if there are fewer than MaxQDepth messages on the queue.

To determine the value of this attribute, use the MQIA_MAX_Q_DEPTH selector with the MQINQ call.

Parent topic: Attributes for queues

This build: January 26, 2011 11:18:26

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18590_

3.2.32. MsgDeliverySequence (MQLONG)

This determines the order in which the MQGET call returns messages to the application :

MQMDS_FIFO

Messages are returned in FIFO order (first in, first out).

An MQGET call returns the first message that satisfies the selection criteria specified on the call, regardless of the priority of the message.

MQMDS_PRIORITY

Messages are returned in priority order.

An MQGET call returns the highest-priority message that satisfies the selection criteria specified on the call. Within each priority level,
messages are returned in FIFO order (first in, first out).

� On z/OS®, if the queue has an IndexType of MQIT_GROUP_ID, the MsgDeliverySequence attribute specifies the order in which

message groups are returned to the application. The particular sequence in which the groups are returned is determined by the
position or priority of the first message in each group. The physical order of messages on the queue is not defined, as the queue is
optimized for efficient retrieval of messages using the MQGMO_LOGICAL_ORDER option on the MQGET call.

� On z/OS, if IndexType is MQIT_GROUP_ID and MsgDeliverySequence is MQMDS_PRIORITY, the queue manager uses message

priorities zero and one to optimize the retrieval of messages in logical order. As a result, the first message in a group must not have a
priority of zero or one; if it does, the message is processed as though it had a priority of two. The Priority field in the MQMD

Local Model Alias Remote Cluster

X X

Local Model Alias Remote Cluster

X X

Page 622 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

structure is not changed.

If the relevant attributes are changed while there are messages on the queue, the delivery sequence is as follows:

� The order in which messages are returned by the MQGET call is determined by the values of the MsgDeliverySequence and

DefPriority attributes in force for the queue at the time that the message arrives on the queue:

� If MsgDeliverySequence is MQMDS_FIFO when the message arrives, the message is placed on the queue as though its priority

were DefPriority. This does not affect the value of the Priority field in the message descriptor of the message; that field

retains the value it had when the message was first put.

� If MsgDeliverySequence is MQMDS_PRIORITY when the message arrives, the message is placed on the queue at the place

appropriate to the priority given by the Priority field in the message descriptor.

If the value of the MsgDeliverySequence attribute is changed while there are messages on the queue, the order of the messages on

the queue is not changed.

If the value of the DefPriority attribute is changed while there are messages on the queue, the messages are not necessarily

delivered in FIFO order, even though the MsgDeliverySequence attribute is set to MQMDS_FIFO; those that were placed on the queue

at the higher priority are delivered first.

To determine the value of this attribute, use the MQIA_MSG_DELIVERY_SEQUENCE selector with the MQINQ call.

Parent topic: Attributes for queues

This build: January 26, 2011 11:18:26

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18600_

3.2.33. NonPersistentMessageClass (MQLONG)

The reliability goal for nonpersistent messages.

This specifies the circumstances under which nonpersistent messages put on this queue are discarded:

MQNPM_CLASS_NORMAL

Nonpersistent messages are limited to the lifetime of the queue manager session; the messages are discarded in the event of a queue
manager restart. This is valid only for non-shared queues, and is the default value.

MQNPM_CLASS_HIGH

The queue manager attempts to retain nonpersistent messages for the lifetime of the queue. Nonpersistent messages might still be lost in
the event of a failure. This value is enforced for shared queues.

To determine the value of this attribute, use the MQIA_NPM_CLASS selector with the MQINQ call.

Parent topic: Attributes for queues

This build: January 26, 2011 11:18:26

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18610_

3.2.34. OpenInputCount (MQLONG)

This is the number of handles that are currently valid for removing messages from the queue by means of the MQGET call.

It is the total number of such handles known to the local queue manager. If the queue is a shared queue, the count does not include opens
for input that were performed for the queue at other queue managers in the queue-sharing group to which the local queue manager
belongs.

The count includes handles where an alias queue that resolves to this queue was opened for input. The count does not include handles
where the queue was opened for actions that did not include input (for example, a queue opened only for browse).

The value of this attribute fluctuates as the queue manager operates.

To determine the value of this attribute, use the MQIA_OPEN_INPUT_COUNT selector with the MQINQ call.

Parent topic: Attributes for queues

This build: January 26, 2011 11:18:26

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

Local Model Alias Remote Cluster

X X

Local Model Alias Remote Cluster

X

Page 623 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

fr18620_

3.2.35. OpenOutputCount (MQLONG)

This is the number of handles that are currently valid for adding messages to the queue by means of the MQPUT call.

It is the total number of such handles known to the local queue manager; it does not include opens for output that were performed for this
queue at remote queue managers. If the queue is a shared queue, the count does not include opens for output that were performed for the

queue at other queue managers in the queue-sharing group to which the local queue manager belongs.

The count includes handles where an alias queue that resolves to this queue was opened for output. The count does not include handles
where the queue was opened for actions that did not include output (for example, a queue opened only for inquire).

The value of this attribute fluctuates as the queue manager operates.

To determine the value of this attribute, use the MQIA_OPEN_OUTPUT_COUNT selector with the MQINQ call.

Parent topic: Attributes for queues

This build: January 26, 2011 11:18:26

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18630_

3.2.36. ProcessName (MQCHAR48)

This is the name of a process object that is defined on the local queue manager. The process object identifies a program that can service the
queue.

To determine the value of this attribute, use the MQCA_PROCESS_NAME selector with the MQINQ call. The length of this attribute is given
by MQ_PROCESS_NAME_LENGTH.

Parent topic: Attributes for queues

This build: January 26, 2011 11:18:26

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18640_

3.2.38. QDepthHighEvent (MQLONG)

This controls whether Queue Depth High events are generated.

A Queue Depth High event indicates that an application has put a message on a queue, and this has caused the number of messages on the

queue to become greater than or equal to the queue depth high threshold (see the QDepthHighLimit attribute).

Note: The value of this attribute can change dynamically.

The value is one of the following:

MQEVR_DISABLED

Event reporting disabled.

MQEVR_ENABLED

Event reporting enabled.

For more information about events, see Monitoring WebSphere MQ.

To determine the value of this attribute, use the MQIA_Q_DEPTH_HIGH_EVENT selector with the MQINQ call.

This attribute is supported on z/OS®, but the MQINQ call cannot be used to determine its value.

Parent topic: Attributes for queues

This build: January 26, 2011 11:18:27

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

Local Model Alias Remote Cluster

X

Local Model Alias Remote Cluster

X X

Local Model Alias Remote Cluster

X X

Page 624 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This topic's URL:

fr18650_

3.2.39. QDepthHighLimit (MQLONG)

This is the threshold against which the queue depth is compared to generate a Queue Depth High event.

This event indicates that an application has put a message on a queue, and that this has caused the number of messages on the queue to
become greater than or equal to the queue depth high threshold. See QDepthHighEvent attribute.

The value is expressed as a percentage of the maximum queue depth (MaxQDepth attribute), and is greater than or equal to 0 and less than

or equal to 100. The default value is 80.

To determine the value of this attribute, use the MQIA_Q_DEPTH_HIGH_LIMIT selector with the MQINQ call.

This attribute is supported on z/OS®, but the MQINQ call cannot be used to determine its value.

Parent topic: Attributes for queues

This build: January 26, 2011 11:18:27

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18660_

3.2.40. QDepthLowEvent (MQLONG)

This controls whether Queue Depth Low events are generated.

A Queue Depth Low event indicates that an application has retrieved a message from a queue, and that this has caused the number of
messages on the queue to become less than or equal to the queue depth low threshold (see QDepthLowLimit attribute).

Note: The value of this attribute can change dynamically.

The value is one of the following:

MQEVR_DISABLED

Event reporting disabled.

MQEVR_ENABLED

Event reporting enabled.

For more information about events, see the Monitoring WebSphere MQ book.

To determine the value of this attribute, use the MQIA_Q_DEPTH_LOW_EVENT selector with the MQINQ call.

This attribute is supported on z/OS®, but the MQINQ call cannot be used to determine its value.

Parent topic: Attributes for queues

This build: January 26, 2011 11:18:27

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18670_

3.2.41. QDepthLowLimit (MQLONG)

This is the threshold against which the queue depth is compared to generate a Queue Depth Low event.

This event indicates that an application has retrieved a message from a queue, and that this has caused the number of messages on the

queue to become less than or equal to the queue depth low threshold. See QDepthLowEvent attribute.

The value is expressed as a percentage of the maximum queue depth (MaxQDepth attribute), and is greater than or equal to 0 and less than

or equal to 100. The default value is 20.

To determine the value of this attribute, use the MQIA_Q_DEPTH_LOW_LIMIT selector with the MQINQ call.

This attribute is supported on z/OS®, but the MQINQ call cannot be used to determine its value.

Local Model Alias Remote Cluster

X X

Local Model Alias Remote Cluster

X X

Local Model Alias Remote Cluster

X X

Page 625 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Parent topic: Attributes for queues

This build: January 26, 2011 11:18:27

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18680_

3.2.42. QDepthMaxEvent (MQLONG)

This controls whether Queue Full events are generated. A Queue Full event indicates that a put to a queue has been rejected because the

queue is full, that is, the queue depth has already reached its maximum value.

Note: The value of this attribute can change dynamically.

The value is one of the following:

MQEVR_DISABLED

Event reporting disabled.

MQEVR_ENABLED

Event reporting enabled.

For more information about events, see Monitoring WebSphere MQ.

To determine the value of this attribute, use the MQIA_Q_DEPTH_MAX_EVENT selector with the MQINQ call.

This attribute is supported on z/OS®, but the MQINQ call cannot be used to determine its value.

Parent topic: Attributes for queues

This build: January 26, 2011 11:18:28

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18690_

3.2.43. QDesc (MQCHAR64)

Use this field for descriptive commentary.

The content of the field is of no significance to the queue manager, but the queue manager might require that the field contain only
characters that can be displayed. It cannot contain any null characters; if necessary, it is padded to the right with blanks. In a DBCS
installation, the field can contain DBCS characters (subject to a maximum field length of 64 bytes).

Note: If this field contains characters that are not in the queue manager’s character set (as defined by the CodedCharSetId queue manager

attribute), those characters might be translated incorrectly if this field is sent to another queue manager.

To determine the value of this attribute, use the MQCA_Q_DESC selector with the MQINQ call. The length of this attribute is given by
MQ_Q_DESC_LENGTH.

Parent topic: Attributes for queues

This build: January 26, 2011 11:18:28

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18700_

3.2.44. QName (MQCHAR48)

This is the name of a queue defined on the local queue manager.

For more information about queue names, see the WebSphere MQ Application Programming Guide. All queues defined on a queue manager

share the same queue namespace. Therefore, an MQQT_LOCAL queue and an MQQT_ALIAS queue cannot have the same name.

To determine the value of this attribute, use the MQCA_Q_NAME selector with the MQINQ call. The length of this attribute is given by
MQ_Q_NAME_LENGTH.

Parent topic: Attributes for queues

Local Model Alias Remote Cluster

X X

Local Model Alias Remote Cluster

X X X X X

Local Model Alias Remote Cluster

X X X X

Page 626 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This build: January 26, 2011 11:18:28

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18710_

3.2.45. QServiceInterval (MQLONG)

This is the service interval used for comparison to generate Service Interval High and Service Interval OK events.

See QServiceIntervalEvent attribute.

The value is in units of milliseconds, and is greater than or equal to zero, and less than or equal to 999 999 999.

To determine the value of this attribute, use the MQIA_Q_SERVICE_INTERVAL selector with the MQINQ call.

This attribute is supported on z/OS®, but the MQINQ call cannot be used to determine its value.

Parent topic: Attributes for queues

This build: January 26, 2011 11:18:28

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18720_

3.2.46. QServiceIntervalEvent (MQLONG)

This controls whether Service Interval High or Service Interval OK events are generated.

� A Service Interval High event is generated when a check indicates that no messages have been retrieved from the queue for at least
the time indicated by the QServiceInterval attribute.

� A Service Interval OK event is generated when a check indicates that messages have been retrieved from the queue within the time
indicated by the QServiceInterval attribute.

Note: The value of this attribute can change dynamically.

The value is one of the following:

MQQSIE_HIGH

Queue Service Interval High events enabled.

� Queue Service Interval High events are enabled and

� Queue Service Interval OK events are disabled.

MQQSIE_OK

Queue Service Interval OK events enabled.

� Queue Service Interval High events are disabled and

� Queue Service Interval OK events are enabled.

MQQSIE_NONE

No queue service interval events enabled.

� Queue Service Interval High events are disabled and

� Queue Service Interval OK events are also disabled.

For shared queues, the value of this attribute is ignored; the value MQQSIE_NONE is assumed.

For more information about events, see Monitoring WebSphere MQ.

To determine the value of this attribute, use the MQIA_Q_SERVICE_INTERVAL_EVENT selector with the MQINQ call.

On z/OS®, you cannot use the MQINQ call to determine the value of this attribute.

Parent topic: Attributes for queues

This build: January 26, 2011 11:18:28

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

Local Model Alias Remote Cluster

X X

Local Model Alias Remote Cluster

X X

Page 627 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This topic's URL:

fr18730_

3.2.47. QSGDisp (MQLONG)

This specifies the disposition of the queue.

The value is one of the following:

MQQSGD_Q_MGR

The object has queue-manager disposition. This means that the object definition is known only to the local queue manager; the definition
is not known to other queue managers in the queue-sharing group.

Each queue manager in the queue-sharing group can have an object with the same name and type as the current object, but these are

separate objects and there is no correlation between them. Their attributes are not constrained to be the same as each other.

MQQSGD_COPY

The object is a local copy of a master object definition that exists in the shared repository. Each queue manager in the queue-sharing
group can have its own copy of the object. Initially, all copies have the same attributes, but by using MQSC commands, you can alter each
copy so that its attributes differ from those of the other copies. The attributes of the copies are resynchronized when the master definition
in the shared repository is altered.

MQQSGD_SHARED

The object has shared disposition. This means that there exists in the shared repository a single instance of the object that is known to all
queue managers in the queue-sharing group. When a queue manager in the group accesses the object, it accesses the single shared
instance of the object.

To determine the value of this attribute, use the MQIA_QSG_DISP selector with the MQINQ call.

This attribute is supported only on z/OS®.

Parent topic: Attributes for queues

This build: January 26, 2011 11:18:29

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18740_

3.2.48. QueueAccounting (MQLONG)

This controls the collection of accounting data for the queue. For accounting data to be collected for this queue, accounting data for this
connection must also be enabled, using either the QMGR attribute ACCTQ or the Options field in the MQCNO structure on the MQCONNX call.

This attribute has one of the following values:

MQMON_Q_MGR

Accounting data for this queue is collected based on the setting of the QMGR attribute ACCTQ. This is the default setting.

MQMON_OFF

Do not collect accounting data for this queue.

MQMON_ON

Collect accounting data for this queue.

To determine the value of this attribute, use the MQIA_ACCOUNTING_Q selector with the MQINQ call.

Parent topic: Attributes for queues

This build: January 26, 2011 11:18:29

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18750_

3.2.49. QueueMonitoring (MQLONG)

Controls the collection of online monitoring data for queues.

The value is one of the following:

Local Model Alias Remote Cluster

X X X

Local Model Alias Remote Cluster

X X X X

Local Model Alias Remote Cluster

X X

Page 628 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

MQMON_Q_MGR

Collect monitoring data according to the setting of the QueueMonitoring queue manager attribute. This is the default value.

MQMON_OFF

Online monitoring data collection is turned off for this queue.

MQMON_LOW

If the value of the QueueMonitoring queue manager attribute is not MQMON_NONE, online monitoring data collection is turned on, with a

low rate of data collection for this queue.

MQMON_MEDIUM

If the value of the QueueMonitoring queue manager attribute is not MQMON_NONE, online monitoring data collection is turned on, with a

moderate rate of data collection for this queue.

MQMON_HIGH

If the value of the QueueMonitoring queue manager attribute is not MQMON_NONE, online monitoring data collection is turned on, with a

high rate of data collection for this queue.

To determine the value of this attribute, use the MQIA_MONITORING_Q selector with the MQINQ call.

Parent topic: Attributes for queues

This build: January 26, 2011 11:18:29

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18760_

3.2.50. QueueStatistics (MQCHAR12)

This controls the collection of statistics data for the queue.

This attribute has one of the following values:

MQMON_Q_MGR

Accounting data for this queue is collected based on the setting of the QMGR attribute STATQ. This is the default setting.

MQMON_OFF

Switch off statistics data collection for this queue.

MQMON_ON

Switch on statistics data collection for this queue.

Parent topic: Attributes for queues

This build: January 26, 2011 11:18:29

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18770_

3.2.51. QType (MQLONG)

This is the type of queue; it has one of the following values:

MQQT_ALIAS

Alias queue definition.

MQQT_CLUSTER

Cluster queue.

MQQT_LOCAL

Local queue.

MQQT_REMOTE

Local definition of a remote queue.

To determine the value of this attribute, use the MQIA_Q_TYPE selector with the MQINQ call.

Parent topic: Attributes for queues

This build: January 26, 2011 11:18:29

Notices | Trademarks | Downloads | Library | Support | Feedback

Local Model Alias Remote Cluster

X X X X

Local Model Alias Remote Cluster

X X X X

Page 629 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18780_

3.2.52. RemoteQMgrName (MQCHAR48)

This is the name of the remote queue manager on which the queue RemoteQName is defined. If the RemoteQName queue has a QSGDisp value

of MQQSGD_COPY or MQQSGD_SHARED, RemoteQMgrName can be the name of the queue-sharing group that owns RemoteQName.

If an application opens the local definition of a remote queue, RemoteQMgrName must not be blank and must not be the name of the local

queue manager. If XmitQName is blank, the local queue whose name is the same as RemoteQMgrName is used as the transmission queue. If

there is no queue with the name RemoteQMgrName, the queue identified by the DefXmitQName queue-manager attribute is used.

If this definition is used for a queue-manager alias, RemoteQMgrName is the name of the queue manager that is being aliased. It can be the

name of the local queue manager. Otherwise, if XmitQName is blank when the open occurs, there must be a local queue whose name is the

same as RemoteQMgrName; this queue is used as the transmission queue.

If this definition is used for a reply-to alias, this name is the name of the queue manager that is to be the ReplyToQMgr.

Note: No validation is performed on the value specified for this attribute when the queue definition is created or modified.

To determine the value of this attribute, use the MQCA_REMOTE_Q_MGR_NAME selector with the MQINQ call. The length of this attribute is
given by MQ_Q_MGR_NAME_LENGTH.

Parent topic: Attributes for queues

This build: January 26, 2011 11:18:29

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18790_

3.2.53. RemoteQName (MQCHAR48)

This is the name of the queue as it is known on the remote queue manager RemoteQMgrName.

If an application opens the local definition of a remote queue, when the open occurs RemoteQName must not be blank.

If this definition is used for a queue-manager alias definition, when the open occurs RemoteQName must be blank.

If the definition is used for a reply-to alias, this name is the name of the queue that is to be the ReplyToQ.

Note: No validation is performed on the value specified for this attribute when the queue definition is created or modified.

To determine the value of this attribute, use the MQCA_REMOTE_Q_NAME selector with the MQINQ call. The length of this attribute is given
by MQ_Q_NAME_LENGTH.

Parent topic: Attributes for queues

This build: January 26, 2011 11:18:29

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18800_

3.2.54. RetentionInterval (MQLONG)

This is the period of time for which to retain the queue. After this time has elapsed, the queue is eligible for deletion.

The time is measured in hours, counting from the date and time when the queue was created. The creation date and time of the queue are

recorded in the CreationDate and CreationTime attributes.

This information is provided to enable a housekeeping application or the operator to identify and delete queues that are no longer required.

Note: The queue manager never takes any action to delete queues based on this attribute, or to prevent the deletion of queues whose

retention interval has not expired; it is the user’s responsibility to take any required action.

Use a realistic retention interval to prevent the accumulation of permanent dynamic queues (see DefinitionType attribute). However, this
attribute can also be used with predefined queues.

Local Model Alias Remote Cluster

 X

Local Model Alias Remote Cluster

 X

Local Model Alias Remote Cluster

X X

Page 630 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

To determine the value of this attribute, use the MQIA_RETENTION_INTERVAL selector with the MQINQ call.

Parent topic: Attributes for queues

This build: January 26, 2011 11:18:30

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18810_

3.2.55. Scope (MQLONG)

This controls whether an entry for this queue also exists in a cell directory.

A cell directory is provided by an installable Name service. The value is one of the following:

MQSCO_Q_MGR

The queue definition has queue-manager scope: the definition of the queue does not extend beyond the queue manager that owns it. To

open the queue for output from some other queue manager, either the name of the owning queue manager must be specified, or the
other queue manager must have a local definition of the queue.

MQSCO_CELL

The queue definition has cell scope: the queue definition is also placed in a cell directory available to all the queue managers in the cell.
The queue can be opened for output from any of the queue managers in the cell by specifying the name of the queue; the name of the
queue manager that owns the queue need not be specified. However, the queue definition is not available to any queue manager in the

cell that also has a local definition of a queue with that name, as the local definition takes precedence.

A cell directory is provided by an installable Name service.

Model and dynamic queues cannot have cell scope.

This value is only valid if a name service supporting a cell directory has been configured.

To determine the value of this attribute, use the MQIA_SCOPE selector with the MQINQ call.

Support for this attribute is subject to the following restrictions:

� On i5/OS®, the attribute is supported, but only MQSCO_Q_MGR is valid.

� On z/OS®, the attribute is not supported.

Parent topic: Attributes for queues

This build: January 26, 2011 11:18:30

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18820_

3.2.56. Shareability (MQLONG)

This indicates whether the queue can be opened for input multiple times concurrently.

The value is one of the following:

MQQA_SHAREABLE

Queue is shareable.

Multiple opens with the MQOO_INPUT_SHARED option are allowed.

MQQA_NOT_SHAREABLE

Queue is not shareable.

An MQOPEN call with the MQOO_INPUT_SHARED option is treated as MQOO_INPUT_EXCLUSIVE.

To determine the value of this attribute, use the MQIA_SHAREABILITY selector with the MQINQ call.

Parent topic: Attributes for queues

This build: January 26, 2011 11:18:30

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18830_

Local Model Alias Remote Cluster

X X X

Local Model Alias Remote Cluster

X X

Page 631 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

3.2.57. StorageClass (MQCHAR8)

This is a user-defined name that defines the physical storage used to hold the queue. In practice, a message is written to disk only if it
needs to be paged out of its memory buffer.

To determine the value of this attribute, use the MQCA_STORAGE_CLASS selector with the MQINQ call. The length of this attribute is given
by MQ_STORAGE_CLASS_LENGTH.

This attribute is supported only on z/OS®.

Parent topic: Attributes for queues

This build: January 26, 2011 11:18:30

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18840_

3.2.58. TriggerControl (MQLONG)

This controls whether trigger messages are written to an initiation queue to start an application to service the queue.

This is one of the following:

MQTC_OFF

No trigger messages are to be written for this queue. The value of TriggerType is irrelevant in this case.

MQTC_ON

Trigger messages are to be written for this queue when the appropriate trigger events occur.

To determine the value of this attribute, use the MQIA_TRIGGER_CONTROL selector with the MQINQ call. To change the value of this
attribute, use the MQSET call.

Parent topic: Attributes for queues

This build: January 26, 2011 11:18:30

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18850_

3.2.59. TriggerData (MQCHAR64)

This is free-format data that the queue manager inserts into the trigger message when a message arriving on this queue causes a trigger
message to be written to the initiation queue.

The content of this data is of no significance to the queue manager. It is meaningful either to the trigger-monitor application that processes
the initiation queue, or to the application that the trigger monitor starts.

The character string must not contain any nulls. It is padded to the right with blanks if necessary.

To determine the value of this attribute, use the MQCA_TRIGGER_DATA selector with the MQINQ call. To change the value of this attribute,
use the MQSET call. The length of this attribute is given by MQ_TRIGGER_DATA_LENGTH.

Parent topic: Attributes for queues

This build: January 26, 2011 11:18:31

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18860_

3.2.60. TriggerDepth (MQLONG)

This is the number of messages of priority TriggerMsgPriority or greater that must be on the queue before a trigger message is written.

Local Model Alias Remote Cluster

X X

Local Model Alias Remote Cluster

X X

Local Model Alias Remote Cluster

X X

Local Model Alias Remote Cluster

X X

Page 632 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This applies when TriggerType is set to MQTT_DEPTH. The value of TriggerDepth is one or greater. This attribute is not used otherwise.

To determine the value of this attribute, use the MQIA_TRIGGER_DEPTH selector with the MQINQ call. To change the value of this attribute,
use the MQSET call.

Parent topic: Attributes for queues

This build: January 26, 2011 11:18:31

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18870_

3.2.61. TriggerMsgPriority (MQLONG)

This is the message priority below which messages do not contribute to the generation of trigger messages (that is, the queue manager

ignores these messages when deciding whether to generate a trigger message).

TriggerMsgPriority can be in the range zero (lowest) through MaxPriority (highest; see MaxPriority attribute); a value of zero causes all

messages to contribute to the generation of trigger messages.

To determine the value of this attribute, use the MQIA_TRIGGER_MSG_PRIORITY selector with the MQINQ call. To change the value of this
attribute, use the MQSET call.

Parent topic: Attributes for queues

This build: January 26, 2011 11:18:31

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18880_

3.2.62. TriggerType (MQLONG)

This controls the conditions under which trigger messages are written as a result of messages arriving on this queue.

The value is one of the following:

MQTT_NONE

No trigger messages are written as a result of messages on this queue. This has the same effect as setting TriggerControl to

MQTC_OFF.

MQTT_FIRST

A trigger message is written whenever the number of messages of priority TriggerMsgPriority or greater on the queue changes from 0

to 1.

MQTT_EVERY

A trigger message is written whenever a message of priority TriggerMsgPriority or greater arrives on the queue.

MQTT_DEPTH

A trigger message is written whenever the number of messages of priority TriggerMsgPriority or greater on the queue equals or

exceeds TriggerDepth. After the trigger message has been written, TriggerControl is set to MQTC_OFF to prevent further triggering

until it is explicitly turned on again.

To determine the value of this attribute, use the MQIA_TRIGGER_TYPE selector with the MQINQ call. To change the value of this attribute,
use the MQSET call.

Parent topic: Attributes for queues

This build: January 26, 2011 11:18:31

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18890_

3.2.63. Usage (MQLONG)

This indicates what the queue is used for.

Local Model Alias Remote Cluster

X X

Local Model Alias Remote Cluster

X X

Local Model Alias Remote Cluster

X X

Page 633 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

The value is one of the following:

MQUS_NORMAL

This is a queue that applications use when putting and getting messages; the queue is not a transmission queue.

MQUS_TRANSMISSION

This is a queue used to hold messages destined for remote queue managers. When an application sends a message to a remote queue,

the local queue manager stores the message temporarily on the appropriate transmission queue in a special format. A message channel
agent then reads the message from the transmission queue, and transports the message to the remote queue manager. For more
information about transmission queues, see the WebSphere MQ Application Programming Guide.

Only privileged applications can open a transmission queue for MQOO_OUTPUT to put messages on it directly. Usually, only utility
applications do this. Ensure that the message data format is correct (see MQXQH – Transmission-queue header) or errors might occur
during the transmission process. Context is not passed or set unless one of the MQPMO_*_CONTEXT context options is specified.

To determine the value of this attribute, use the MQIA_USAGE selector with the MQINQ call.

Parent topic: Attributes for queues

This build: January 26, 2011 11:18:31

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18900_

3.2.64. XmitQName (MQCHAR48)

This is the transmission queue name. If this attribute is nonblank when an open occurs, either for a remote queue or for a queue-manager
alias definition, it specifies the name of the local transmission queue to be used for forwarding the message.

If XmitQName is blank, the local queue whose name is the same as RemoteQMgrName is used as the transmission queue. If there is no queue

with the name RemoteQMgrName, the queue identified by the DefXmitQName queue-manager attribute is used.

This attribute is ignored if the definition is being used as a queue-manager alias and RemoteQMgrName is the name of the local queue

manager. It is also ignored if the definition is used as a reply-to queue alias definition.

To determine the value of this attribute, use the MQCA_XMIT_Q_NAME selector with the MQINQ call. The length of this attribute is given by

MQ_Q_NAME_LENGTH.

Parent topic: Attributes for queues

This build: January 26, 2011 11:18:31

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18910_

3.3. Attributes for namelists

The following table summarizes the attributes that are specific to namelists. The attributes are described in alphabetic order.

Namelists are supported on all WebSphere® MQ systems, plus WebSphere MQ clients connected to these systems.

Note: The names of the attributes shown in this book are descriptive names used with the MQINQ and MQSET calls; the names are the
same as for the PCF commands. When MQSC commands are used to define, alter, or display attributes, alternative short names are used;
see the WebSphere MQ Script (MQSC) Command Reference for details.

AlterationDate (MQCHAR12)

AlterationTime (MQCHAR8)

NameCount (MQLONG)

Local Model Alias Remote Cluster

 X

Table 1. Attributes for namelists

Attribute Description

AlterationDate Date when definition was last changed

AlterationTime Time when definition was last changed

NameCount Number of names in namelist

NamelistDesc Namelist description

NamelistName Namelist name

Names A list of NameCount names

NamelistType Namelist type

QSGDisp Queue-sharing group disposition

Page 634 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

NamelistDesc (MQCHAR64)

NamelistName (MQCHAR48)

NamelistType (MQLONG)

Names (MQCHAR48xNameCount)

QSGDisp (MQLONG)

Parent topic: Attributes of objects

This build: January 26, 2011 11:18:32

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18920_

3.3.1. AlterationDate (MQCHAR12)

This is the date when the definition was last changed. The format of the date is YYYY-MM-DD, padded with two trailing blanks to make the

length 12 bytes.

To determine the value of this attribute, use the MQCA_ALTERATION_DATE selector with the MQINQ call. The length of this attribute is
given by MQ_DATE_LENGTH.

Parent topic: Attributes for namelists

This build: January 26, 2011 11:18:32

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18940_

3.3.2. AlterationTime (MQCHAR8)

This is the time when the definition was last changed. The format of the time is HH.MM.SS.

To determine the value of this attribute, use the MQCA_ALTERATION_TIME selector with the MQINQ call. The length of this attribute is given
by MQ_TIME_LENGTH.

Parent topic: Attributes for namelists

This build: January 26, 2011 11:18:32

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18950_

3.3.3. NameCount (MQLONG)

This is the number of names in the namelist. It is greater than or equal to zero. The following value is defined:

MQNC_MAX_NAMELIST_NAME_COUNT

Maximum number of names in a namelist.

To determine the value of this attribute, use the MQIA_NAME_COUNT selector with the MQINQ call.

Parent topic: Attributes for namelists

This build: January 26, 2011 11:18:32

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18960_

3.3.4. NamelistDesc (MQCHAR64)

Use this field for descriptive commentary; its value is established by the definition process. The content of the field is of no significance to
the queue manager, but the queue manager might require that the field contain only characters that can be displayed. It cannot contain any
null characters; if necessary, it is padded to the right with blanks. In a DBCS installation, this field can contain DBCS characters (subject to
a maximum field length of 64 bytes).

Note: If this field contains characters that are not in the queue manager’s character set (as defined by the CodedCharSetId queue manager

attribute), those characters might be translated incorrectly if this field is sent to another queue manager.

Page 635 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

To determine the value of this attribute, use the MQCA_NAMELIST_DESC selector with the MQINQ call.

The length of this attribute is given by MQ_NAMELIST_DESC_LENGTH.

Parent topic: Attributes for namelists

This build: January 26, 2011 11:18:32

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18970_

3.3.5. NamelistName (MQCHAR48)

This is the name of a namelist that is defined on the local queue manager. For more information about namelist names, see the WebSphere
MQ Application Programming Guide.

Each namelist has a name that is different from the names of other namelists belonging to the queue manager, but might duplicate the
names of other queue manager objects of different types (for example, queues).

To determine the value of this attribute, use the MQCA_NAMELIST_NAME selector with the MQINQ call.

The length of this attribute is given by MQ_NAMELIST_NAME_LENGTH.

Parent topic: Attributes for namelists

This build: January 26, 2011 11:18:32

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18980_

3.3.6. NamelistType (MQLONG)

This specifies the nature of the names in the namelist, and indicates how the namelist is used. The value is one of the following:

MQNT_NONE

Namelist with no assigned type.

MQNT_Q

Namelist containing the names of queues.

MQNT_CLUSTER

Namelist containing the names of clusters.

MQNT_AUTH_INFO

Namelist containing the names of authentication-information objects.

To determine the value of this attribute, use the MQIA_NAMELIST_TYPE selector with the MQINQ call.

This attribute is supported only on z/OS®.

Parent topic: Attributes for namelists

This build: January 26, 2011 11:18:32

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr18990_

3.3.7. Names (MQCHAR48xNameCount)

This is a list of NameCount names, where each name is the name of an object that is defined to the local queue manager. For more

information about object names, see the WebSphere MQ Application Programming Guide.

To determine the value of this attribute, use the MQCA_NAMES selector with the MQINQ call.

The length of each name in the list is given by MQ_OBJECT_NAME_LENGTH.

Parent topic: Attributes for namelists

This build: January 26, 2011 11:18:32

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19000_

Page 636 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

3.3.8. QSGDisp (MQLONG)

This specifies the disposition of the namelist. The value is one of the following:

MQQSGD_Q_MGR

The object has queue-manager disposition: the object definition is known only to the local queue manager; the definition is not known to
other queue managers in the queue-sharing group.

Each queue manager in the queue-sharing group can have an object with the same name and type as the current object, but these are
separate objects and there is no correlation between them. Their attributes are not constrained to be the same as each other.

MQQSGD_COPY

The object is a local copy of a master object definition that exists in the shared repository. Each queue manager in the queue-sharing
group can have its own copy of the object. Initially, all copies have the same attributes, but you can alter each copy, using MQSC
commands, so that its attributes differ from those of the other copies. The attributes of the copies are resynchronized when the master
definition in the shared repository is altered.

To determine the value of this attribute, use the MQIA_QSG_DISP selector with the MQINQ call.

This attribute is supported only on z/OS®.

Parent topic: Attributes for namelists

This build: January 26, 2011 11:18:32

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19010_

3.4. Attributes for process definitions

The following table summarizes the attributes that are specific to process definitions. The attributes are described in alphabetic order.

Note: The names of the attributes shown in this book are descriptive names used with the MQINQ and MQSET calls; the names are the
same as for the PCF commands. When MQSC commands are used to define, alter, or display attributes, alternative short names are used;
see the WebSphere MQ Script (MQSC) Command Reference for details.

AlterationDate (MQCHAR12)

AlterationTime (MQCHAR8)

ApplId (MQCHAR256)

ApplType (MQLONG)

EnvData (MQCHAR128)

ProcessDesc (MQCHAR64)

ProcessName (MQCHAR48)

QSGDisp (MQLONG)

UserData (MQCHAR128)

Parent topic: Attributes of objects

This build: January 26, 2011 11:18:32

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19020_

3.4.1. AlterationDate (MQCHAR12)

Table 1. Attributes for process definitions

Attribute Description

AlterationDate Date when definition was last changed

AlterationTime Time when definition was last changed

ApplId Application identifier

ApplType Application type

EnvData Environment data

ProcessDesc Process description

ProcessName Process name

QSGDisp Queue-sharing group disposition

UserData User data

Page 637 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This is the date when the definition was last changed. The format of the date is YYYY-MM-DD, padded with two trailing blanks to make the

length 12 bytes.

To determine the value of this attribute, use the MQCA_ALTERATION_DATE selector with the MQINQ call. The length of this attribute is
given by MQ_DATE_LENGTH.

Parent topic: Attributes for process definitions

This build: January 26, 2011 11:18:32

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19040_

3.4.2. AlterationTime (MQCHAR8)

This is the time when the definition was last changed. The format of the time is HH.MM.SS.

To determine the value of this attribute, use the MQCA_ALTERATION_TIME selector with the MQINQ call. The length of this attribute is given
by MQ_TIME_LENGTH.

Parent topic: Attributes for process definitions

This build: January 26, 2011 11:18:32

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19050_

3.4.3. ApplId (MQCHAR256)

This is a character string that identifies the application to be started. This information is for use by a trigger-monitor application that
processes messages on the initiation queue; the information is sent to the initiation queue as part of the trigger message.

The meaning of ApplId is determined by the trigger-monitor application. The trigger monitor provided by WebSphere® MQ requires ApplId

to be the name of an executable program. The following notes apply to the environments indicated:

� On z/OS®, ApplId must be:

� A CICS® transaction identifier, for applications started using the CICS trigger-monitor transaction CKTI

� An IMS™ transaction identifier, for applications started using the IMS trigger monitor CSQQTRMN

� On Windows systems, the program name can be prefixed with a drive and directory path.

� On UNIX systems, the program name can be prefixed with a directory path.

The character string cannot contain any nulls. It is padded to the right with blanks if necessary.

To determine the value of this attribute, use the MQCA_APPL_ID selector with the MQINQ call. The length of this attribute is given by
MQ_PROCESS_APPL_ID_LENGTH.

Parent topic: Attributes for process definitions

This build: January 26, 2011 11:18:33

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19060_

3.4.4. ApplType (MQLONG)

This identifies the nature of the program to be started in response to the receipt of a trigger message. This information is for use by a
trigger-monitor application that processes messages on the initiation queue; the information is sent to the initiation queue as part of the
trigger message.

ApplType can have any value, but the following values are recommended for standard types; restrict user-defined application types to

values in the range MQAT_USER_FIRST through MQAT_USER_LAST:

MQAT_AIX

AIX® application (same value as MQAT_UNIX).

MQAT_BATCH

Batch application

MQAT_BROKER

Broker application

MQAT_CICS

CICS® transaction.

MQAT_CICS_BRIDGE

Page 638 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

CICS bridge application.

MQAT_CICS_VSE

CICS/VSE transaction.

MQAT_DOS

WebSphere® MQ client application on PC DOS.

MQAT_IMS

IMS™ application.

MQAT_IMS_BRIDGE

IMS bridge application.

MQAT_JAVA

Java application.

MQAT_MVS

MVS™ or TSO application (same value as MQAT_ZOS).

MQAT_NOTES_AGENT

Lotus Notes® Agent application.

MQAT_NSK

Compaq NonStop Kernel application.

MQAT_OS390

OS/390® application (same value as MQAT_ZOS).

MQAT_OS400

i5/OS® application.

MQAT_RRS_BATCH

RRS batch application.

MQAT_UNIX

UNIX application.

MQAT_UNKNOWN

Application of unknown type.

MQAT_USER

User application.

MQAT_VMS

Digital OpenVMS application.

MQAT_VOS

Stratus VOS application.

MQAT_WINDOWS

16-bit Windows application.

MQAT_WINDOWS_NT

32-bit Windows application.

MQAT_WLM

z/OS® workload manager application.

MQAT_XCF

XCF.

MQAT_ZOS

z/OS application.

MQAT_USER_FIRST

Lowest value for user-defined application type.

MQAT_USER_LAST

Highest value for user-defined application type.

To determine the value of this attribute, use the MQIA_APPL_TYPE selector with the MQINQ call.

Parent topic: Attributes for process definitions

This build: January 26, 2011 11:18:36

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19070_

3.4.5. EnvData (MQCHAR128)

This is a character string that contains environment-related information pertaining to the application to be started. This information is for
use by a trigger-monitor application that processes messages on the initiation queue; the information is sent to the initiation queue as part
of the trigger message.

The meaning of EnvData is determined by the trigger-monitor application. The trigger monitor provided by WebSphere® MQ appends

EnvData to the parameter list passed to the started application. The parameter list consists of the MQTMC2 structure, followed by one blank,

Page 639 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

followed by EnvData with trailing blanks removed. The following notes apply to the environments indicated:

� On z/OS®:

� EnvData is not used by the trigger-monitor applications provided by WebSphere MQ.

� If ApplType is MQAT_WLM, you can supply default values in EnvData for the ServiceName and ServiceStep fields in the work
information header (MQWIH).

� On UNIX systems, EnvData can be set to the & character to run the started application in the background.

The character string cannot contain any nulls. It is padded to the right with blanks if necessary.

To determine the value of this attribute, use the MQCA_ENV_DATA selector with the MQINQ call. The length of this attribute is given by
MQ_PROCESS_ENV_DATA_LENGTH.

Parent topic: Attributes for process definitions

This build: January 26, 2011 11:18:36

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19080_

3.4.6. ProcessDesc (MQCHAR64)

Use this field for descriptive commentary. The content of the field is of no significance to the queue manager, but the queue manager might
require that the field contain only characters that can be displayed. It cannot contain any null characters; if necessary, it is padded to the

right with blanks. In a DBCS installation, the field can contain DBCS characters (subject to a maximum field length of 64 bytes).

Note: If this field contains characters that are not in the queue manager’s character set (as defined by the CodedCharSetId queue manager

attribute), those characters might be translated incorrectly if this field is sent to another queue manager.

To determine the value of this attribute, use the MQCA_PROCESS_DESC selector with the MQINQ call.

The length of this attribute is given by MQ_PROCESS_DESC_LENGTH.

Parent topic: Attributes for process definitions

This build: January 26, 2011 11:18:36

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19090_

3.4.7. ProcessName (MQCHAR48)

This is the name of a process definition that is defined on the local queue manager.

Each process definition has a name that is different from the names of other process definitions belonging to the queue manager. But the
name of the process definition might be the same as the names of other queue manager objects of different types (for example, queues).

To determine the value of this attribute, use the MQCA_PROCESS_NAME selector with the MQINQ call.

The length of this attribute is given by MQ_PROCESS_NAME_LENGTH.

Parent topic: Attributes for process definitions

This build: January 26, 2011 11:18:36

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19100_

3.4.8. QSGDisp (MQLONG)

This specifies the disposition of the process definition. The value is one of the following:

MQQSGD_Q_MGR

The object has queue-manager disposition: the object definition is known only to the local queue manager; the definition is not known to
other queue managers in the queue-sharing group.

Each queue manager in the queue-sharing group can have an object with the same name and type as the current object, but these are
separate objects and there is no correlation between them. Their attributes are not constrained to be the same as each other.

MQQSGD_COPY

The object is a local copy of a master object definition that exists in the shared repository. Each queue manager in the queue-sharing

group can have its own copy of the object. Initially, all copies have the same attributes, but you can alter each copy, using MQSC
commands, so that its attributes differ from those of the other copies. The attributes of the copies are resynchronized when the master
definition in the shared repository is altered.

Page 640 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

To determine the value of this attribute, use the MQIA_QSG_DISP selector with the MQINQ call.

This attribute is supported only on z/OS®.

Parent topic: Attributes for process definitions

This build: January 26, 2011 11:18:37

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19110_

3.4.9. UserData (MQCHAR128)

This is a character string that contains user information pertaining to the application to be started. This information is for use by a trigger-
monitor application that processes messages on the initiation queue, or the application that is started by the trigger monitor. The
information is sent to the initiation queue as part of the trigger message.

The meaning of UserData is determined by the trigger-monitor application. The trigger monitor provided by WebSphere® MQ passes

UserData to the started application as part of the parameter list. The parameter list consists of the MQTMC2 structure (containing

UserData), followed by one blank, followed by EnvData with trailing blanks removed.

The character string cannot contain any nulls. It is padded to the right with blanks if necessary.

To determine the value of this attribute, use the MQCA_USER_DATA selector with the MQINQ call. The length of this attribute is given by
MQ_PROCESS_USER_DATA_LENGTH.

Parent topic: Attributes for process definitions

This build: January 26, 2011 11:18:37

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr19120_

4. Return codes

For each WebSphere MQ Message Queue Interface (MQI) and WebSphere MQ Administration Interface (MQAI) call, a completion code and
a reason code are returned by the queue manager or by an exit routine, to indicate the success or failure of the call.

Applications must not depend upon errors being checked for in a specific order, except where specifically noted. If more than one completion
code or reason code could arise from a call, the particular error reported depends on the implementation.

Applications checking for successful completion following a WebSphere MQ API call should always check the completion code. Do not assume
the completion code value, based on the value of the reason code.

Completion codes

Reason codes

Parent topic: Application Programming Reference

This build: January 26, 2011 11:18:57

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20130_

4.1. Completion codes

The completion code parameter (CompCode) allows the caller to see quickly whether the call completed successfully, completed partially, or

failed.

The following is a list of completion codes, with more detail than is given in the call descriptions:

MQCC_OK

The call completed fully; all output parameters have been set. The Reason parameter always has the value MQRC_NONE in this case.

MQCC_WARNING

The call completed partially. Some output parameters might have been set in addition to the CompCode and Reason output parameters.

The Reason parameter gives additional information about the partial completion.

MQCC_FAILED

The processing of the call did not complete. The state of the queue manager is unchanged, except where specifically noted. The CompCode

and Reason output parameters have been set; other parameters are unchanged, except where noted.

The reason might be a fault in the application program, or it might be the result of some situation external to the program, for example

Page 641 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

the user’s authority might have been revoked. The Reason parameter gives additional information about the error.

Parent topic: Return codes

This build: January 26, 2011 11:18:58

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20140_

4.2. Reason codes

The reason code parameter (Reason) qualifies the completion code parameter (CompCode).

If there is no special reason to report, MQRC_NONE is returned. A successful call returns MQCC_OK and MQRC_NONE.

If the completion code is either MQCC_WARNING or MQCC_FAILED, the queue manager always reports a qualifying reason; details are given

under each call description.

Where user exit routines set completion codes and reasons, they must adhere to these rules. In addition, any special reason values defined
by user exits must be less than zero, to ensure that they do not conflict with values defined by the queue manager. Exits can set reasons
already defined by the queue manager, where these are appropriate.

Reason codes also occur in:

� The Reason field of the MQDLH structure

� The Feedback field of the MQMD structure

For complete descriptions of reason codes see:

� WebSphere MQ for z/OS Messages and Codes for WebSphere® MQ for z/OS®

� WebSphere MQ Messages for all other WebSphere MQ platforms

Parent topic: Return codes

This build: January 26, 2011 11:18:58

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20150_

5. Rules for validating MQI options

This appendix lists the situations that produce an MQRC_OPTIONS_ERROR reason code from an MQCONNX, MQOPEN, MQPUT, MQPUT1,
MQGET, or MQCLOSE call.

MQOPEN call

MQPUT call

MQPUT1 call

MQGET call

MQCLOSE call

MQSUB call

Parent topic: Application Programming Reference

This build: January 26, 2011 11:18:58

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20170_

5.1. MQOPEN call

For the options of the MQOPEN call:

� At least one of the following must be specified:

� MQOO_BROWSE

� MQOO_INPUT_AS_Q_DEF

� MQOO_INPUT_EXCLUSIVE

� MQOO_INPUT_SHARED

� MQOO_INQUIRE

Page 642 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

� MQOO_OUTPUT

� MQOO_SET

� Only one of the following is allowed:

� MQOO_INPUT_AS_Q_DEF

� MQOO_INPUT_EXCLUSIVE

� MQOO_INPUT_SHARED

� Only one of the following is allowed:

� MQOO_READ_AHEAD

� MQOO_NO_READ_AHEAD

� MQOO_READ_AHEAD_AS_Q_DEF

� Only one of the following is allowed:

� MQOO_BIND_ON_OPEN

� MQOO_BIND_NOT_FIXED

� MQOO_BIND_AS_Q_DEF

Note: The options listed above are mutually exclusive. However, as the value of MQOO_BIND_AS_Q_DEF is zero, specifying it with
either of the other two bind options does not result in reason code MQRC_OPTIONS_ERROR. MQOO_BIND_AS_Q_DEF is provided to
aid program documentation.

� If MQOO_SAVE_ALL_CONTEXT is specified, one of the MQOO_INPUT_* options must also be specified.

� If one of the MQOO_SET_*_CONTEXT or MQOO_PASS_*_CONTEXT options is specified, MQOO_OUTPUT must also be specified.

� If MQOO_CO_OP is specified, MQOO_BROWSE must also be specified

Parent topic: Rules for validating MQI options

This build: January 26, 2011 11:18:58

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20180_

5.2. MQPUT call

For the put-message options:

� The combination of MQPMO_SYNCPOINT and MQPMO_NO_SYNCPOINT is not allowed.

� Only one of the following is allowed:

� MQPMO_DEFAULT_CONTEXT

� MQPMO_NO_CONTEXT

� MQPMO_PASS_ALL_CONTEXT

� MQPMO_PASS_IDENTITY_CONTEXT

� MQPMO_SET_ALL_CONTEXT

� MQPMO_SET_IDENTITY_CONTEXT

� Only one of the following is allowed:

� MQPMO_ASYNC_RESPONSE

� MQPMO_SYNC_RESPONSE

� MQPMO_RESPONSE_AS_Q_DEF

� MQPMO_RESPONSE_AS_TOPIC_DEF

� MQPMO_ALTERNATE_USER_AUTHORITY is not allowed (it is valid only on the MQPUT1 call).

Parent topic: Rules for validating MQI options

This build: January 26, 2011 11:18:58

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20190_

5.3. MQPUT1 call

For the put-message options, the rules are the same as for the MQPUT call, except for the following:

� MQPMO_ALTERNATE_USER_AUTHORITY is allowed.

� MQPMO_LOGICAL_ORDER is not allowed.

Parent topic: Rules for validating MQI options

This build: January 26, 2011 11:18:58

Notices | Trademarks | Downloads | Library | Support | Feedback

Page 643 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20200_

5.4. MQGET call

For the get-message options:

� Only one of the following is allowed:

� MQGMO_NO_SYNCPOINT

� MQGMO_SYNCPOINT

� MQGMO_SYNCPOINT_IF_PERSISTENT

� Only one of the following is allowed:

� MQGMO_BROWSE_FIRST

� MQGMO_BROWSE_MSG_UNDER_CURSOR

� MQGMO_BROWSE_NEXT

� MQGMO_MSG_UNDER_CURSOR

� MQGMO_SYNCPOINT is not allowed with any of the following:

� MQGMO_BROWSE_FIRST

� MQGMO_BROWSE_MSG_UNDER_CURSOR

� MQGMO_BROWSE_NEXT

� MQGMO_LOCK

� MQGMO_UNLOCK

� MQGMO_SYNCPOINT_IF_PERSISTENT is not allowed with any of the following:

� MQGMO_BROWSE_FIRST

� MQGMO_BROWSE_MSG_UNDER_CURSOR

� MQGMO_BROWSE_NEXT

� MQGMO_COMPLETE_MSG

� MQGMO_UNLOCK

� MQGMO_MARK_SKIP_BACKOUT requires MQGMO_SYNCPOINT to be specified.

� The combination of MQGMO_WAIT and MQGMO_SET_SIGNAL is not allowed.

� If MQGMO_LOCK is specified, one of the following must also be specified:

� MQGMO_BROWSE_FIRST

� MQGMO_BROWSE_MSG_UNDER_CURSOR

� MQGMO_BROWSE_NEXT

� If MQGMO_UNLOCK is specified, only the following are allowed:

� MQGMO_NO_SYNCPOINT

� MQGMO_NO_WAIT

Parent topic: Rules for validating MQI options

This build: January 26, 2011 11:18:58

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20210_

5.5. MQCLOSE call

For the options of the MQCLOSE call:

� The combination of MQCO_DELETE and MQCO_DELETE_PURGE is not allowed.

� Only one of the following is allowed:

� MQCO_KEEP_SUB

� MQCO_REMOVE_SUB

Parent topic: Rules for validating MQI options

This build: January 26, 2011 11:18:58

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20220_

5.6. MQSUB call

For the options of the MQSUB call:

� At least one of the following must be specified:

Page 644 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

� MQSO_ALTER

� MQSO_RESUME

� MQSO_CREATE

� Only one of the following is allowed:

� MQSO_DURABLE

� MQSO_NON_DURABLE

Note: The options listed above are mutually exclusive. However, as the value of MQSO_NON_DURABLE is is zero, specifying it with
MQSO_DURABLE does not result in reason code MQRC_OPTIONS_ERROR. MQSO_NON_DURABLE is provided to aid program
documentation.

� The combination of MQSO_GROUP_SUB and MQSO_MANAGED is not allowed.

� MQSO_GROUP_SUB requires MQSO_SET_CORREL_ID to be specified.

� Only one of the following is allowed: MQSO_ANY_USERID MQSO_FIXED_USERID

� MQSO_NEW_PUBLICATIONS_ONLY is only allowed in combination with MQSO_CREATE.

� The combination of MQSO_PUBLICATIONS_ON_REQUEST and SubLevel greater than 1 is not allowed.

� Only one of the following is allowed:

� MQSO_WILDCARD_CHAR

� MQSO_WILDCARD_TOPIC

Parent topic: Rules for validating MQI options

This build: January 26, 2011 11:18:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20225_

6. Machine encodings

This appendix describes the structure of the Encoding field in the message descriptor (see MQMD – Message descriptor).

The Encoding field is a 32-bit integer that is divided into four separate subfields; these subfields identify:

� The encoding used for binary integers

� The encoding used for packed-decimal integers

� The encoding used for floating-point numbers

� Reserved bits

Each subfield is identified by a bit mask that has 1-bits in the positions corresponding to the subfield, and 0-bits elsewhere. The bits are
numbered such that bit 0 is the most significant bit, and bit 31 the least significant bit. The following masks are defined:

MQENC_INTEGER_MASK

Mask for binary-integer encoding.

This subfield occupies bit positions 28 through 31 within the Encoding field.

MQENC_DECIMAL_MASK

Mask for packed-decimal-integer encoding.

This subfield occupies bit positions 24 through 27 within the Encoding field.

MQENC_FLOAT_MASK

Mask for floating-point encoding.

This subfield occupies bit positions 20 through 23 within the Encoding field.

MQENC_RESERVED_MASK

Mask for reserved bits.

This subfield occupies bit positions 0 through 19 within the Encoding field.

Binary-integer encoding

Packed-decimal-integer encoding

Floating-point encoding

Constructing encodings

Analyzing encodings

Summary of machine architecture encodings

Parent topic: Application Programming Reference

Page 645 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This build: January 26, 2011 11:18:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20230_

6.1. Binary-integer encoding

The following values are valid for the binary-integer encoding:

MQENC_INTEGER_UNDEFINED

Binary integers are represented using an encoding that is undefined.

MQENC_INTEGER_NORMAL

Binary integers are represented in the conventional way:

� The least significant byte in the number has the highest address of any of the bytes in the number; the most significant byte has the
lowest address

� The least significant bit in each byte is adjacent to the byte with the next higher address; the most significant bit in each byte is
adjacent to the byte with the next lower address

MQENC_INTEGER_REVERSED

Binary integers are represented in the same way as MQENC_INTEGER_NORMAL, but with the bytes arranged in reverse order. The bits
within each byte are arranged in the same way as MQENC_INTEGER_NORMAL.

Parent topic: Machine encodings

This build: January 26, 2011 11:18:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20240_

6.2. Packed-decimal-integer encoding

The following values are valid for the packed-decimal-integer encoding:

MQENC_DECIMAL_UNDEFINED

Packed-decimal integers are represented using an encoding that is undefined.

MQENC_DECIMAL_NORMAL

Packed-decimal integers are represented in the conventional way:

� Each decimal digit in the printable form of the number is represented in packed decimal by a single hexadecimal digit in the range
X'0' through X'9'. Each hexadecimal digit occupies four bits, and so each byte in the packed decimal number represents two decimal
digits in the printable form of the number.

� The least significant byte in the packed-decimal number is the byte that contains the least significant decimal digit. Within that byte,
the most significant four bits contain the least significant decimal digit, and the least significant four bits contain the sign. The sign is
either X'C' (positive), X'D' (negative), or X'F' (unsigned).

� The least significant byte in the number has the highest address of any of the bytes in the number; the most significant byte has the
lowest address.

� The least significant bit in each byte is adjacent to the byte with the next higher address; the most significant bit in each byte is
adjacent to the byte with the next lower address.

MQENC_DECIMAL_REVERSED

Packed-decimal integers are represented in the same way as MQENC_DECIMAL_NORMAL, but with the bytes arranged in reverse order.
The bits within each byte are arranged in the same way as MQENC_DECIMAL_NORMAL.

Parent topic: Machine encodings

This build: January 26, 2011 11:18:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20250_

6.3. Floating-point encoding

The following values are valid for the floating-point encoding:

MQENC_FLOAT_UNDEFINED

Floating-point numbers are represented using an encoding that is undefined.

MQENC_FLOAT_IEEE_NORMAL

Floating-point numbers are represented using the standard IEEE1 floating-point format, with the bytes arranged as follows:

� The least significant byte in the mantissa has the highest address of any of the bytes in the number; the byte containing the
exponent has the lowest address

� The least significant bit in each byte is adjacent to the byte with the next higher address; the most significant bit in each byte is

Page 646 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

adjacent to the byte with the next lower address

Details of the IEEE float encoding can be found in IEEE Standard 754.

MQENC_FLOAT_IEEE_REVERSED

Floating-point numbers are represented in the same way as MQENC_FLOAT_IEEE_NORMAL, but with the bytes arranged in reverse order.
The bits within each byte are arranged in the same way as MQENC_FLOAT_IEEE_NORMAL.

MQENC_FLOAT_S390

Floating-point numbers are represented using the standard System/390® floating-point format; this is also used by System/370.

Parent topic: Machine encodings
1 The Institute of Electrical and Electronics Engineers

This build: January 26, 2011 11:18:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20260_

6.4. Constructing encodings

To construct a value for the Encoding field in MQMD, the relevant constants that describe the required encodings can be:

� Added together, or

� Combined using the bitwise OR operation (if the programming language supports bit operations)

Whichever method is used, combine only one of the MQENC_INTEGER_* encodings with one of the MQENC_DECIMAL_* encodings and one
of the MQENC_FLOAT_* encodings.

Parent topic: Machine encodings

This build: January 26, 2011 11:18:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20270_

6.5. Analyzing encodings

The Encoding field contains subfields; because of this, applications that need to examine the integer, packed decimal, or float encoding

must use one of the techniques described below.

Using bit operations

Using arithmetic

Parent topic: Machine encodings

This build: January 26, 2011 11:18:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20280_

6.5.1. Using bit operations

If the programming language supports bit operations, perform the following steps:

1. Select one of the following values, according to the type of encoding required:

� MQENC_INTEGER_MASK for the binary integer encoding

� MQENC_DECIMAL_MASK for the packed decimal integer encoding

� MQENC_FLOAT_MASK for the floating point encoding

Call the value A.

2. Combine the Encoding field with A using the bitwise AND operation; call the result B.

3. B is the encoding required, and can be tested for equality with each of the values that is valid for that type of encoding.

Parent topic: Analyzing encodings

This build: January 26, 2011 11:18:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20290_

Page 647 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

6.5.2. Using arithmetic

If the programming language does not support bit operations, perform the following steps using integer arithmetic:

1. Select one of the following values, according to the type of encoding required:

� 1 for the binary integer encoding

� 16 for the packed decimal integer encoding

� 256 for the floating point encoding

Call the value A.

2. Divide the value of the Encoding field by A; call the result B.

3. Divide B by 16; call the result C.

4. Multiply C by 16 and subtract from B; call the result D.

5. Multiply D by A; call the result E.

6. E is the encoding required, and can be tested for equality with each of the values that is valid for that type of encoding.

Parent topic: Analyzing encodings

This build: January 26, 2011 11:18:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20300_

6.6. Summary of machine architecture encodings

Encodings for machine architectures are shown in Table 1.

Parent topic: Machine encodings

This build: January 26, 2011 11:19:00

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20310_

7. Report options and message flags

This appendix describes the Report and MsgFlags fields that are part of the message descriptor MQMD specified on the MQGET, MQPUT,

and MQPUT1 calls (see MQMD – Message descriptor). The appendix describes:

� The structure of the report field and how the queue manager processes it

� How an application analyzes the report field

� The structure of the message-flags field

Structure of the report field

Analyzing the report field

Structure of the message-flags field

Parent topic: Application Programming Reference

This build: January 26, 2011 11:19:00

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20320_

7.1. Structure of the report field

The Report field is a 32-bit integer that is divided into three separate subfields. These subfields identify:

� Report options that are rejected if the local queue manager does not recognize them

� Report options that are always accepted, even if the local queue manager does not recognize them

Table 1. Summary of encodings for machine architectures

Machine architecture Binary integer
encoding

Packed-decimal
integer encoding

Floating-point
encoding

i5/OS® normal normal IEEE normal

Intel® x86 reversed reversed IEEE reversed

PowerPC® normal normal IEEE normal

System/390® normal normal System/390

Page 648 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

� Report options that are accepted only if certain other conditions are satisfied

Each subfield is identified by a bit mask that has 1-bits in the positions corresponding to the subfield, and 0-bits elsewhere. The bits in a
subfield are not necessarily adjacent. The bits are numbered such that bit 0 is the most significant bit, and bit 31 the least significant bit.
The following masks are defined to identify the subfields:

MQRO_REJECT_UNSUP_MASK

This mask identifies the bit positions within the Report field where report options that are not supported by the local queue manager

cause the MQPUT or MQPUT1 call to fail with completion code MQCC_FAILED and reason code MQRC_REPORT_OPTIONS_ERROR.

This subfield occupies bit positions 3, and 11 through 13.

MQRO_ACCEPT_UNSUP_MASK

This mask identifies the bit positions within the Report field where report options that are not supported by the local queue manager are

nevertheless accepted on the MQPUT or MQPUT1 calls. Completion code MQCC_WARNING with reason code

MQRC_UNKNOWN_REPORT_OPTION are returned in this case.

This subfield occupies bit positions 0 through 2, 4 through 10, and 24 through 31.

The following report options are included in this subfield:

� MQRO_ACTIVITY

� MQRO_COPY_MSG_ID_TO_CORREL_ID

� MQRO_DEAD_LETTER_Q

� MQRO_DISCARD_MSG

� MQRO_EXCEPTION

� MQRO_EXCEPTION_WITH_DATA

� MQRO_EXCEPTION_WITH_FULL_DATA

� MQRO_EXPIRATION

� MQRO_EXPIRATION_WITH_DATA

� MQRO_EXPIRATION_WITH_FULL_DATA

� MQRO_NAN

� MQRO_NEW_MSG_ID

� MQRO_NONE

� MQRO_PAN

� MQRO_PASS_CORREL_ID

� MQRO_PASS_MSG_ID

MQRO_ACCEPT_UNSUP_IF_XMIT_MASK

This mask identifies the bit positions within the Report field where report options that are not supported by the local queue manager are

nevertheless accepted on the MQPUT or MQPUT1 calls provided that both of the following conditions are satisfied:

� The message is destined for a remote queue manager.

� The application is not putting the message directly on a local transmission queue (that is, the queue identified by the

ObjectQMgrName and ObjectName fields in the object descriptor specified on the MQOPEN or MQPUT1 call is not a local transmission

queue).

Completion code MQCC_WARNING with reason code MQRC_UNKNOWN_REPORT_OPTION are returned if these conditions are satisfied,
and MQCC_FAILED with reason code MQRC_REPORT_OPTIONS_ERROR if not.

This subfield occupies bit positions 14 through 23.

The following report options are included in this subfield:

� MQRO_COA

� MQRO_COA_WITH_DATA

� MQRO_COA_WITH_FULL_DATA

� MQRO_COD

� MQRO_COD_WITH_DATA

� MQRO_COD_WITH_FULL_DATA

If any options are specified in the Report field that the queue manager does not recognize, the queue manager checks each subfield in turn

by using the bitwise AND operation to combine the Report field with the mask for that subfield. If the result of that operation is not zero,

the completion code and reason codes described above are returned.

If MQCC_WARNING is returned, it is not defined which reason code is returned if other warning conditions exist.

The ability to specify and have accepted report options that are not recognized by the local queue manager is useful when sending a
message with a report option that is recognized and processed by a remote queue manager.

Parent topic: Report options and message flags

This build: January 26, 2011 11:19:00

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20330_

Page 649 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

7.2. Analyzing the report field

The Report field contains subfields; because of this, applications that need to check whether the sender of the message requested a

particular report must use one of the techniques described below.

Using bit operations

Using arithmetic

Parent topic: Report options and message flags

This build: January 26, 2011 11:19:00

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20340_

7.2.1. Using bit operations

If the programming language supports bit operations, perform the following steps:

1. Select one of the following values, according to the type of report to be checked:

� MQRO_COA_WITH_FULL_DATA for COA report

� MQRO_COD_WITH_FULL_DATA for COD report

� MQRO_EXCEPTION_WITH_FULL_DATA for exception report

� MQRO_EXPIRATION_WITH_FULL_DATA for expiration report

Call the value A.

On z/OS®, use the MQRO_*_WITH_DATA values instead of the MQRO_*_WITH_FULL_DATA values.

2. Combine the Report field with A using the bitwise AND operation; call the result B.

3. Test B for equality with each value that is possible for that type of report.

For example, if A is MQRO_EXCEPTION_WITH_FULL_DATA, test B for equality with each of the following to determine what was

specified by the sender of the message:

� MQRO_NONE

� MQRO_EXCEPTION

� MQRO_EXCEPTION_WITH_DATA

� MQRO_EXCEPTION_WITH_FULL_DATA

The tests can be performed in whatever order is most convenient for the application logic.

Use a similar method to test for the MQRO_PASS_MSG_ID or MQRO_PASS_CORREL_ID options; select as the value A whichever of these

two constants is appropriate, and then proceed as described above.

Parent topic: Analyzing the report field

This build: January 26, 2011 11:19:00

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20350_

7.2.2. Using arithmetic

If the programming language does not support bit operations, perform the following steps using integer arithmetic:

1. Select one of the following values, according to the type of report to be checked:

� MQRO_COA for COA report

� MQRO_COD for COD report

� MQRO_EXCEPTION for exception report

� MQRO_EXPIRATION for expiration report

Call the value A.

2. Divide the Report field by A; call the result B.

3. Divide B by 8; call the result C.

4. Multiply C by 8 and subtract from B; call the result D.

5. Multiply D by A; call the result E.

6. Test E for equality with each value that is possible for that type of report.

For example, if A is MQRO_EXCEPTION, test E for equality with each of the following to determine what was specified by the sender of

the message:

� MQRO_NONE

� MQRO_EXCEPTION

� MQRO_EXCEPTION_WITH_DATA

� MQRO_EXCEPTION_WITH_FULL_DATA

Page 650 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

The tests can be performed in whatever order is most convenient for the application logic.

The following pseudocode illustrates this technique for exception report messages:

A = MQRO_EXCEPTION

B = Report/A

C = B/8

D = B - C*8

E = D*A

Use a similar method to test for the MQRO_PASS_MSG_ID or MQRO_PASS_CORREL_ID options; select as the value A whichever of these

two constants is appropriate, and then proceed as described above, but replacing the value 8 in the steps above by the value 2.

Parent topic: Analyzing the report field

This build: January 26, 2011 11:19:00

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20360_

7.3. Structure of the message-flags field

The MsgFlags field is a 32-bit integer that is divided into three separate subfields. These subfields identify:

� Message flags that are rejected if the local queue manager does not recognize them

� Message flags that are always accepted, even if the local queue manager does not recognize them

� Message flags that are accepted only if certain other conditions are satisfied

Note: All subfields in MsgFlags are reserved for use by the queue manager.

Each subfield is identified by a bit mask that has 1-bits in the positions corresponding to the subfield, and 0-bits elsewhere. The bits are
numbered such that bit 0 is the most significant bit, and bit 31 the least significant bit. The following masks are defined to identify the
subfields:

MQMF_REJECT_UNSUP_MASK

This mask identifies the bit positions within the MsgFlags field where message flags that are not supported by the local queue manager

cause the MQPUT or MQPUT1 call to fail with completion code MQCC_FAILED and reason code MQRC_MSG_FLAGS_ERROR.

This subfield occupies bit positions 20 through 31.

The following message flags are included in this subfield:

� MQMF_LAST_MSG_IN_GROUP

� MQMF_LAST_SEGMENT

� MQMF_MSG_IN_GROUP

� MQMF_SEGMENT

� MQMF_SEGMENTATION_ALLOWED

� MQMF_SEGMENTATION_INHIBITED

MQMF_ACCEPT_UNSUP_MASK

This mask identifies the bit positions within the MsgFlags field where message flags that are not supported by the local queue manager

are nevertheless accepted on the MQPUT or MQPUT1 calls. The completion code is MQCC_OK.

This subfield occupies bit positions 0 through 11.

MQMF_ACCEPT_UNSUP_IF_XMIT_MASK

This mask identifies the bit positions within the MsgFlags field where message flags that are not supported by the local queue manager

are nevertheless accepted on the MQPUT or MQPUT1 calls provided that both of the following conditions are satisfied:

� The message is destined for a remote queue manager.

� The application is not putting the message directly on a local transmission queue (that is, the queue identified by the
ObjectQMgrName and ObjectName fields in the object descriptor specified on the MQOPEN or MQPUT1 call is not a local transmission

queue).

Completion code MQCC_OK is returned if these conditions are satisfied, and MQCC_FAILED with reason code MQRC_MSG_FLAGS_ERROR if
not.

This subfield occupies bit positions 12 through 19.

If there are flags specified in the MsgFlags field that the queue manager does not recognize, the queue manager checks each subfield in

turn by using the bitwise AND operation to combine the MsgFlags field with the mask for that subfield. If the result of that operation is not

zero, the completion code and reason codes described above are returned.

Parent topic: Report options and message flags

This build: January 26, 2011 11:19:00

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20370_

Page 651 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

8. Data conversion

This collection of topics describes the interface to the data-conversion exit, and the processing performed by the queue manager when data
conversion is required.

For more information about data conversion, see the document Data Conversion under WebSphere MQ at

http://www.ibm.com/support/docview.wss?uid=swg27005729.

The data-conversion exit is invoked as part of the processing of the MQGET call in order to convert the application message data to the
representation required by the receiving application. Conversion of the application message data is optional; it requires the
MQGMO_CONVERT option to be specified on the MQGET call.

The following subjects are described:

� The processing performed by the queue manager in response to the MQGMO_CONVERT option; see Conversion processing.

� Processing conventions used by the queue manager when processing a built-in format; these conventions are recommended for user-
written exits too. See Processing conventions.

� Special considerations for converting report messages; see Conversion of report messages.

� The parameters passed to the data-conversion exit; see MQ_DATA_CONV_EXIT – Data conversion exit.

� A call that can be used from the exit to convert character data between different representations; see MQXCNVC – Convert characters.

� The data-structure parameter that is specific to the exit; see MQDXP – Data-conversion exit parameter.

Conversion processing

Processing conventions

When converting a built-in format, the queue manager follows the processing conventions described below.

Conversion of report messages
In general a report message can contain varying amounts of application message data, according to the report options specified by the

sender of the original message. However, an activity report can contain data but without the report option mentioning *_WITH_DATA
in the constant.

MQDXP – Data-conversion exit parameter

The following table summarizes the fields in the structure.

MQXCNVC – Convert characters
The MQXCNVC call converts characters from one character set to another using the C programming language.

MQ_DATA_CONV_EXIT – Data conversion exit
This call definition describes the parameters that are passed to the data-conversion exit.

Parent topic: Application Programming Reference

This build: January 26, 2011 11:19:01

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20380_

8.1. Conversion processing

The queue manager performs the following actions if the MQGMO_CONVERT option is specified on the MQGET call, and there is a message
to be returned to the application:

1. If one or more of the following is true, no conversion is necessary:

� The message data is already in the character set and encoding required by the application issuing the MQGET call. The
application must set the CodedCharSetId and Encoding fields in the MsgDesc parameter of the MQGET call to the values

required, before issuing the call.

� The length of the message data is zero.

� The length of the Buffer parameter of the MQGET call is zero.

In these cases the message is returned without conversion to the application issuing the MQGET call; the CodedCharSetId and

Encoding values in the MsgDesc parameter are set to the values in the control information in the message, and the call completes with

one of the following combinations of completion code and reason code:

The following steps are performed only if the character set or encoding of the message data differs from the corresponding value in
the MsgDesc parameter, and there is data to be converted:

2. If the Format field in the control information in the message has the value MQFMT_NONE, the message is returned unconverted, with

completion code MQCC_WARNING and reason code MQRC_FORMAT_ERROR.

In all other cases conversion processing continues.

3. The message is removed from the queue and placed in a temporary buffer that is the same size as the Buffer parameter. For browse

operations, the message is copied into the temporary buffer, instead of being removed from the queue.

4. If the message has to be truncated to fit in the buffer, the following is done:

� If the MQGMO_ACCEPT_TRUNCATED_MSG option was not specified, the message is returned unconverted, with completion code

Completion code Reason code

MQCC_OK MQRC_NONE

MQCC_WARNING MQRC_TRUNCATED_MSG_ACCEPTED

MQCC_WARNING MQRC_TRUNCATED_MSG_FAILED

Page 652 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

MQCC_WARNING and reason code MQRC_TRUNCATED_MSG_FAILED.

� If the MQGMO_ACCEPT_TRUNCATED_MSG option was specified, the completion code is set to MQCC_WARNING, the reason code
is set to MQRC_TRUNCATED_MSG_ACCEPTED, and conversion processing continues.

5. If the message can be accommodated in the buffer without truncation, or the MQGMO_ACCEPT_TRUNCATED_MSG option was
specified, the following is done:

� If the format is a built-in format, the buffer is passed to the queue-manager’s data-conversion service.

� If the format is not a built-in format, the buffer is passed to a user-written exit with the same name as the format. If the exit
cannot be found, the message is returned unconverted, with completion code MQCC_WARNING and reason code
MQRC_FORMAT_ERROR.

If no error occurs, the output from the data-conversion service or from the user-written exit is the converted message, plus the
completion code and reason code to be returned to the application issuing the MQGET call.

6. If the conversion is successful, the queue manager returns the converted message to the application. In this case, the completion
code and reason code returned by the MQGET call are one of the following combinations:

However, if the conversion is performed by a user-written exit, other reason codes can be returned, even when the conversion is
successful.

If the conversion fails, the queue manager returns the unconverted message to the application, with the CodedCharSetId and

Encoding fields in the MsgDesc parameter set to the values in the control information in the message, and with completion code

MQCC_WARNING. See below for possible reason codes.

Parent topic: Data conversion

This build: January 26, 2011 11:19:01

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20390_

8.2. Processing conventions

When converting a built-in format, the queue manager follows the processing conventions described below.

User-written exits should also follow these conventions, although this is not enforced by the queue manager. The built-in formats converted
by the queue manager are:

� MQFMT_ADMIN

� MQFMT_CICS (z/OS® only)

� MQFMT_COMMAND_1

� MQFMT_COMMAND_2

� MQFMT_DEAD_LETTER_HEADER

� MQFMT_DIST_HEADER

� MQFMT_EVENT version 1

� MQFMT_EVENT version 2 (z/OS only)

� MQFMT_IMS

� MQFMT_IMS_VAR_STRING

� MQFMT_MD_EXTENSION

� MQFMT_PCF

� MQFMT_REF_MSG_HEADER

� MQFMT_RF_HEADER

� MQFMT_RF_HEADER_2

� MQFMT_STRING

� MQFMT_TRIGGER

� MQFMT_WORK_INFO_HEADER (z/OS only)

� MQFMT_XMIT_Q_HEADER

1. If the message expands during conversion, and exceeds the size of the Buffer parameter, the following is done:

� If the MQGMO_ACCEPT_TRUNCATED_MSG option was not specified, the message is returned unconverted, with completion code
MQCC_WARNING and reason code MQRC_CONVERTED_MSG_TOO_BIG.

� If the MQGMO_ACCEPT_TRUNCATED_MSG option was specified, the message is truncated, the completion code is set to
MQCC_WARNING, the reason code is set to MQRC_TRUNCATED_MSG_ACCEPTED, and conversion processing continues.

2. If truncation occurs (either before or during conversion), the number of valid bytes returned in the Buffer parameter can be less than

the length of the buffer.

This can occur, for example, if a 4-byte integer or a DBCS character straddles the end of the buffer. The incomplete element of
information is not converted, and those bytes in the returned message do not contain valid information. This can also occur if a

message that was truncated before conversion shrinks during conversion.

If the number of valid bytes returned is less than the length of the buffer, the unused bytes at the end of the buffer are set to nulls.

3. If an array or string straddles the end of the buffer, as much of the data as possible is converted; only the particular array element or
DBCS character which is incomplete is not converted; preceding array elements or characters are converted.

4. If truncation occurs (either before or during conversion), the length returned for the DataLength parameter is the length of the

Completion code Reason code

MQCC_OK MQRC_NONE

MQCC_WARNING MQRC_TRUNCATED_MSG_ACCEPTED

Page 653 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

unconverted message before truncation.

5. When strings are converted between single-byte character sets (SBCS), double-byte character sets (DBCS), or multi-byte character
sets (MBCS), the strings can expand or contract.

� In the PCF formats MQFMT_ADMIN, MQFMT_EVENT, and MQFMT_PCF, the strings in the MQCFST and MQCFSL structures expand
or contract as necessary to accommodate the string after conversion.

For the string-list structure MQCFSL, the strings in the list might expand or contract by different amounts. If this happens, the
queue manager pads the shorter strings with blanks to make them the same length as the longest string after conversion.

� In the format MQFMT_REF_MSG_HEADER, the strings addressed by the SrcEnvOffset, SrcNameOffset, DestEnvOffset, and

DestNameOffset fields expand or contract as necessary to accommodate the strings after conversion.

� In the format MQFMT_RF_HEADER, the NameValueString field expands or contracts as necessary to accommodate the

name/value pairs after conversion.

� In structures with fixed field sizes, the queue manager allows strings to expand or contract within their fixed fields, provided that
no significant information is lost. In this regard, trailing blanks and characters following the first null character in the field are

treated as insignificant.

� If the string expands, but only insignificant characters need to be discarded to accommodate the converted string in the

field, the conversion succeeds and the call completes with MQCC_OK and reason code MQRC_NONE (assuming no other
errors).

� If the string expands, but the converted string requires significant characters to be discarded in order to fit in the field, the
message is returned unconverted and the call completes with MQCC_WARNING and reason code
MQRC_CONVERTED_STRING_TOO_BIG.

Note: Reason code MQRC_CONVERTED_STRING_TOO_BIG results in this case whether or not the
MQGMO_ACCEPT_TRUNCATED_MSG option was specified.

� If the string contracts, the queue manager pads the string with blanks to the length of the field.

6. For messages consisting of one or more MQ header structures followed by user data, one or more of the header structures might be
converted, while the remainder of the message is not. However, (with two exceptions) the CodedCharSetId and Encoding fields in

each header structure always correctly indicate the character set and encoding of the data that follows the header structure.

The two exceptions are the MQCIH and MQIIH structures, where the values in the CodedCharSetId and Encoding fields in those

structures are not significant. For those structures, the data following the structure is in the same character set and encoding as the
MQCIH or MQIIH structure itself.

7. If the CodedCharSetId or Encoding fields in the control information of the message being retrieved, or in the MsgDesc parameter,

specify values that are undefined or not supported, the queue manager might ignore the error if the undefined or unsupported value
does not need to be used in converting the message.

For example, if the Encoding field in the message specifies an unsupported float encoding, but the message contains only integer

data, or contains floating-point data that does not require conversion (because the source and target float encodings are identical),
the error might not be diagnosed.

If the error is diagnosed, the message is returned unconverted, with completion code MQCC_WARNING and one of the
MQRC_SOURCE_*_ERROR or MQRC_TARGET_*_ERROR reason codes (as appropriate); the CodedCharSetId and Encoding fields in

the MsgDesc parameter are set to the values in the control information in the message.

If the error is not diagnosed and the conversion completes successfully, the values returned in the CodedCharSetId and Encoding

fields in the MsgDesc parameter are those specified by the application issuing the MQGET call.

8. In all cases, if the message is returned to the application unconverted the completion code is set to MQCC_WARNING, and the

CodedCharSetId and Encoding fields in the MsgDesc parameter are set to the values appropriate to the unconverted data. This is done

for MQFMT_NONE also.

The Reason parameter is set to a code that indicates why the conversion could not be carried out, unless the message also had to be

truncated; reason codes related to truncation take precedence over reason codes related to conversion. (To determine if a truncated
message was converted, check the values returned in the CodedCharSetId and Encoding fields in the MsgDesc parameter.)

When an error is diagnosed, either a specific reason code is returned, or the general reason code MQRC_NOT_CONVERTED. The

reason code returned depends on the diagnostic capabilities of the underlying data-conversion service.

9. If completion code MQCC_WARNING is returned, and more than one reason code is relevant, the order of precedence is as follows:

a. The following reasons take precedence over all others; only one of the reasons in this group can arise:

� MQRC_SIGNAL_REQUEST_ACCEPTED

� MQRC_TRUNCATED_MSG_ACCEPTED

b. The order of precedence within the remaining reason codes is not defined.

10. On completion of the MQGET call:

� The following reason code indicates that the message was converted successfully:

� MQRC_NONE

� The following reason codes indicate that the message might have been converted successfully (check the CodedCharSetId and

Encoding fields in the MsgDesc parameter to find out):

� MQRC_MSG_MARKED_BROWSE_CO_OP

� MQRC_TRUNCATED_MSG_ACCEPTED

� All other reason codes indicate that the message was not converted.

The following processing is specific to the built-in formats; it does not apply to user-defined formats:

11. With the exception of the following formats:

� MQFMT_ADMIN

� MQFMT_COMMAND_1

� MQFMT_COMMAND_2

� MQFMT_EVENT

� MQFMT_IMS_VAR_STRING

� MQFMT_PCF

� MQFMT_STRING

none of the built-in formats can be converted from or to character sets that do not have SBCS characters for the characters that are

Page 654 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

valid in queue names. If an attempt is made to perform such a conversion, the message is returned unconverted, with completion
code MQCC_WARNING and reason code MQRC_SOURCE_CCSID_ERROR or MQRC_TARGET_CCSID_ERROR, as appropriate.

The Unicode character set UCS-2 is an example of a character set that does not have SBCS characters for the characters that are valid

in queue names.

12. If the message data for a built-in format is truncated, fields within the message that contain lengths of strings, or counts of elements
or structures, are not adjusted to reflect the length of the data actually returned to the application; the values returned for such fields

within the message data are the values applicable to the message before truncation.

When processing messages such as a truncated MQFMT_ADMIN message, ensure that the application does not attempt to access data

beyond the end of the data returned.

13. If the format name is MQFMT_DEAD_LETTER_HEADER, the message data begins with an MQDLH structure, possibly followed by zero
or more bytes of application message data. The format, character set, and encoding of the application message data are defined by

the Format, CodedCharSetId, and Encoding fields in the MQDLH structure at the start of the message. Because the MQDLH structure

and application message data can have different character sets and encodings, one, other, or both of the MQDLH structure and
application message data might require conversion.

The queue manager converts the MQDLH structure first, as necessary. If conversion is successful, or the MQDLH structure does not
require conversion, the queue manager checks the CodedCharSetId and Encoding fields in the MQDLH structure to see if conversion

of the application message data is required. If conversion is required, the queue manager invokes the user-written exit with the name
given by the Format field in the MQDLH structure, or performs the conversion itself (if Format is the name of a built-in format).

If the MQGET call returns a completion code of MQCC_WARNING, and the reason code is one of those indicating that conversion was
not successful, one of the following applies:

� The MQDLH structure could not be converted. In this case the application message data will not have been converted either.

� The MQDLH structure was converted, but the application message data was not.

The application can examine the values returned in the CodedCharSetId and Encoding fields in the MsgDesc parameter, and those in

the MQDLH structure, in order to determine which of the above applies.

14. If the format name is MQFMT_XMIT_Q_HEADER, the message data begins with an MQXQH structure, possibly followed by zero or
more bytes of additional data. This additional data is usually the application message data (which may be of zero length), but there

can also be one or more further MQ header structures present, at the start of the additional data.

The MQXQH structure must be in the character set and encoding of the queue manager. The format, character set, and encoding of
the data following the MQXQH structure are given by the Format, CodedCharSetId, and Encoding fields in the MQMD structure

contained within the MQXQH. For each subsequent MQ header structure present, the Format, CodedCharSetId, and Encoding fields in

the structure describe the data that follows that structure; that data is either another MQ header structure, or the application message

data.

If the MQGMO_CONVERT option is specified for an MQFMT_XMIT_Q_HEADER message, the application message data and certain of
the MQ header structures are converted, but the data in the MQXQH structure is not. On return from the MQGET call, therefore:

� The values of the Format, CodedCharSetId, and Encoding fields in the MsgDesc parameter describe the data in the MQXQH

structure, and not the application message data; the values are therefore not the same as those specified by the application that
issued the MQGET call.

The effect of this is that an application that repeatedly gets messages from a transmission queue with the MQGMO_CONVERT
option specified must reset the CodedCharSetId and Encoding fields in the MsgDesc parameter to the values required for the

application message data, before each MQGET call.

� The values of the Format, CodedCharSetId, and Encoding fields in the last MQ header structure present describe the application

message data. If there are no other MQ header structures present, the application message data is described by these fields in
the MQMD structure within the MQXQH structure. If conversion is successful, the values will be the same as those specified in
the MsgDesc parameter by the application that issued the MQGET call.

If the message is a distribution-list message, the MQXQH structure is followed by an MQDH structure (plus its arrays of MQOR and
MQPMR records), which in turn might be followed by zero or more further MQ header structures and zero or more bytes of application
message data. Like the MQXQH structure, the MQDH structure must be in the character set and encoding of the queue manager, and
it is not converted on the MQGET call, even if the MQGMO_CONVERT option is specified.

The processing of the MQXQH and MQDH structures described above is primarily intended for use by message channel agents when
they get messages from transmission queues.

Parent topic: Data conversion

This build: January 26, 2011 11:19:02

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20400_

8.3. Conversion of report messages

In general a report message can contain varying amounts of application message data, according to the report options specified by the
sender of the original message. However, an activity report can contain data but without the report option mentioning *_WITH_DATA in the
constant.

In particular, a report message can contain either:

1. No application message data

2. Some of the application message data from the original message

This occurs when the sender of the original message specifies MQRO_*_WITH_DATA and the message is longer than 100 bytes.

3. All the application message data from the original message

This occurs when the sender of the original message specifies MQRO_*_WITH_FULL_DATA, or specifies MQRO_*_WITH_DATA and the
message is 100 bytes or shorter.

When the queue manager or message channel agent generates a report message, it copies the format name from the original message into
the Format field in the control information in the report message. The format name in the report message might therefore imply a length of

data that is different from the length actually present in the report message (cases 1 and 2 above).

If the MQGMO_CONVERT option is specified when the report message is retrieved:

� For case 1 above, the data-conversion exit is not invoked (because the report message has no data).

� For case 3 above, the format name correctly implies the length of the message data.

Page 655 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

� But for case 2 above, the data-conversion exit is invoked to convert a message that is shorter than the length implied by the format
name.

In addition, the reason code passed to the exit is usually MQRC_NONE (that is, the reason code does not indicate that the message
has been truncated). This happens because the message data was truncated by the sender of the report message, and not by the
receiver’s queue manager in response to the MQGET call.

Because of these possibilities, the data-conversion exit must not use the format name to deduce the length of data passed to it; instead the
exit must check the length of data provided, and be prepared to convert less data than the length implied by the format name. If the data
can be converted successfully, completion code MQCC_OK and reason code MQRC_NONE must be returned by the exit. The length of the
message data to be converted is passed to the exit as the InBufferLength parameter.

Product-sensitive programming interface

Parent topic: Data conversion

This build: January 26, 2011 11:19:02

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20410_

8.4. MQDXP – Data-conversion exit parameter

The following table summarizes the fields in the structure.

Overview
Purpose: The MQDXP structure is a parameter that the queue manager passes to the data-conversion exit when the exit is invoked to
convert the message data as part of the processing of the MQGET call. See the description of the MQ_DATA_CONV_EXIT call for details

of the data conversion exit.

Fields
The MQDXP structure contains the following fields; the fields are described in alphabetic order:

C declaration

COBOL declaration (i5/OS only)

System/390 assembler declaration

Parent topic: Data conversion

This build: January 26, 2011 11:19:02

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20420_

8.4.1. Overview

Purpose: The MQDXP structure is a parameter that the queue manager passes to the data-conversion exit when the exit is invoked to
convert the message data as part of the processing of the MQGET call. See the description of the MQ_DATA_CONV_EXIT call for details of
the data conversion exit.

Character set and encoding: Character data in MQDXP is in the character set of the local queue manager; this is given by the
CodedCharSetId queue-manager attribute. Numeric data in MQDXP is in the native machine encoding; this is given by MQENC_NATIVE.

Usage: Only the DataLength, CompCode, Reason, and ExitResponse fields in MQDXP can be changed by the exit; changes to other fields

are ignored. However, the DataLength field cannot be changed if the message being converted is a segment that contains only part of a

logical message.

When control returns to the queue manager from the exit, the queue manager checks the values returned in MQDXP. If the values returned

are not valid, the queue manager continues processing as though the exit had returned MQXDR_CONVERSION_FAILED in ExitResponse;

Table 1. Fields in MQDXP

Field Description Topic

StrucId Structure identifier StrucId

Version Structure version number Version

AppOptions Application options AppOptions

Encoding Numeric encoding required by

application

Encoding

CodedCharSetId Character set required by

application

CodedCharSetId

DataLength Length in bytes of message data DataLength

CompCode Completion code CompCode

Reason Reason code qualifying CompCode Reason

ExitResponse Response from exit ExitResponse

Hconn Connection handle Hconn

Page 656 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

however, the queue manager ignores the values of the CompCode and Reason fields returned by the exit in this case, and uses instead the

values those fields had on input to the exit. The following values in MQDXP cause this processing to occur:

� ExitResponse field not MQXDR_OK and not MQXDR_CONVERSION_FAILED

� CompCode field not MQCC_OK and not MQCC_WARNING

� DataLength field less than zero, or DataLength field changed when the message being converted is a segment that contains only part

of a logical message.

Parent topic: MQDXP – Data-conversion exit parameter

This build: January 26, 2011 11:19:02

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20430_

8.4.2. Fields

The MQDXP structure contains the following fields; the fields are described in alphabetic order:

AppOptions (MQLONG)

CodedCharSetId (MQLONG)

CompCode (MQLONG)

DataLength (MQLONG)

Encoding (MQLONG)
Numeric encoding required by application.

ExitOptions (MQLONG)
Reserved.

ExitResponse (MQLONG)
Response from exit.

Hconn (MQHCONN)
Connection handle.

Reason (MQLONG)

StrucId (MQCHAR4)
Structure identifier.

Version (MQLONG)
Structure version number.

Parent topic: MQDXP – Data-conversion exit parameter

This build: January 26, 2011 11:19:02

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20440_

8.4.2.1. AppOptions (MQLONG)

This is a copy of the Options field of the MQGMO structure specified by the application issuing the MQGET call. The exit might need to

examine these to ascertain whether the MQGMO_ACCEPT_TRUNCATED_MSG option was specified.

This is an input field to the exit.

Parent topic: Fields

This build: January 26, 2011 11:19:02

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20450_

8.4.2.2. CodedCharSetId (MQLONG)

This is the coded character-set identifier of the character set required by the application issuing the MQGET call; see the CodedCharSetId

field in the MQMD structure for more details. If the application specifies the special value MQCCSI_Q_MGR on the MQGET call, the queue
manager changes this to the actual character-set identifier of the character set used by the queue manager, before invoking the exit.

Page 657 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

If the conversion is successful, the exit must copy this to the CodedCharSetId field in the message descriptor.

This is an input field to the exit.

Parent topic: Fields

This build: January 26, 2011 11:19:02

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20460_

8.4.2.3. CompCode (MQLONG)

When the exit is invoked, this contains the completion code that is returned to the application that issued the MQGET call, if the exit chooses
to do nothing. It is always MQCC_WARNING, because either the message was truncated, or the message requires conversion and this has
not yet been done.

On output from the exit, this field contains the completion code to be returned to the application in the CompCode parameter of the MQGET

call; only MQCC_OK and MQCC_WARNING are valid. See the description of the Reason field for recommendations on how the exit should set

this field on output.

This is an input/output field to the exit.

Parent topic: Fields

This build: January 26, 2011 11:19:02

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20470_

8.4.2.4. DataLength (MQLONG)

When the exit is invoked, this field contains the original length of the application message data. If the message was truncated to fit into the
buffer provided by the application, the size of the message provided to the exit will be smaller than the value of DataLength. The size of the

message actually provided to the exit is always given by the InBufferLength parameter of the exit, irrespective of any truncation that may

have occurred.

Truncation is indicated by the Reason field having the value MQRC_TRUNCATED_MSG_ACCEPTED on input to the exit.

Most conversions will not need to change this length, but an exit can do so if necessary; the value set by the exit is returned to the

application in the DataLength parameter of the MQGET call. However, this length cannot be changed if the message being converted is a

segment that contains only part of a logical message. This is because changing the length would cause the offsets of later segments in the
logical message to be incorrect.

Note that, if the exit wants to change the length of the data, be aware that the queue manager has already decided whether the message

data will fit into the application’s buffer, based on the length of the unconverted data. This decision determines whether the message is
removed from the queue (or the browse cursor moved, for a browse request), and is not affected by any change to the data length caused
by the conversion. For this reason it is recommended that conversion exits do not cause a change in the length of the application message
data.

If character conversion does imply a change of length, a string can be converted into another string with the same length in bytes,
truncating trailing blanks or padding with blanks as necessary.

The exit is not invoked if the message contains no application message data; hence DataLength is always greater then zero.

This is an input/output field to the exit.

Parent topic: Fields

This build: January 26, 2011 11:19:03

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20480_

8.4.2.5. Encoding (MQLONG)

Numeric encoding required by application.

This is the numeric encoding required by the application issuing the MQGET call; see the Encoding field in the MQMD structure for more

details.

If the conversion is successful, the exit should copy this to the Encoding field in the message descriptor.

This is an input field to the exit.

Page 658 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Parent topic: Fields

This build: January 26, 2011 11:19:03

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20490_

8.4.2.6. ExitOptions (MQLONG)

Reserved.

This is a reserved field; its value is 0.

Parent topic: Fields

This build: January 26, 2011 11:19:03

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20500_

8.4.2.7. ExitResponse (MQLONG)

Response from exit.

This is set by the exit to indicate the success or otherwise of the conversion. It must be one of the following:

MQXDR_OK

Conversion was successful.

If the exit specifies this value, the queue manager returns the following to the application that issued the MQGET call:

� The value of the CompCode field on output from the exit

� The value of the Reason field on output from the exit

� The value of the DataLength field on output from the exit

� The contents of the exit’s output buffer OutBuffer. The number of bytes returned is the lesser of the exit’s OutBufferLength

parameter, and the value of the DataLength field on output from the exit.

If the Encoding and CodedCharSetId fields in the exit’s message descriptor parameter are both unchanged, the queue manager

returns:

� The value of the Encoding and CodedCharSetId fields in the MQDXP structure on input to the exit.

If one or both of the Encoding and CodedCharSetId fields in the exit’s message descriptor parameter has been changed, the queue

manager returns:

� The value of the Encoding and CodedCharSetId fields in the exit’s message descriptor parameter on output from the exit

MQXDR_CONVERSION_FAILED

Conversion was unsuccessful.

If the exit specifies this value, the queue manager returns the following to the application that issued the MQGET call:

� The value of the CompCode field on output from the exit

� The value of the Reason field on output from the exit

� The value of the DataLength field on input to the exit

� The contents of the exit’s input buffer InBuffer. The number of bytes returned is given by the InBufferLength parameter

If the exit has altered InBuffer, the results are undefined.

ExitResponse is an output field from the exit.

Parent topic: Fields

This build: January 26, 2011 11:19:03

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20510_

8.4.2.8. Hconn (MQHCONN)

Connection handle.

This is a connection handle which can be used on the MQXCNVC call. This handle is not necessarily the same as the handle specified by the
application which issued the MQGET call.

Parent topic: Fields

This build: January 26, 2011 11:19:03

Notices | Trademarks | Downloads | Library | Support | Feedback

Page 659 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20520_

8.4.2.9. Reason (MQLONG)

Reason code qualifying CompCode.

When the exit is invoked, this contains the reason code that will be returned to the application that issued the MQGET call, if the exit
chooses to do nothing. Among possible values are MQRC_TRUNCATED_MSG_ACCEPTED, indicating that the message was truncated in order
fit into the buffer provided by the application, and MQRC_NOT_CONVERTED, indicating that the message requires conversion but that this

has not yet been done.

On output from the exit, this field contains the reason to be returned to the application in the Reason parameter of the MQGET call; the

following is recommended:

� If Reason had the value MQRC_TRUNCATED_MSG_ACCEPTED on input to the exit, the Reason and CompCode fields must not be

altered, irrespective of whether the conversion succeeds or fails.

(If the CompCode field is not MQCC_OK, the application which retrieves the message can identify a conversion failure by comparing the

returned Encoding and CodedCharSetId values in the message descriptor with the values requested; in contrast, the application

cannot distinguish a truncated message from a message that just fitted the buffer. For this reason,
MQRC_TRUNCATED_MSG_ACCEPTED should be returned in preference to any of the reasons that indicate conversion failure.)

� If Reason had any other value on input to the exit:

� If the conversion succeeds, CompCode should be set to MQCC_OK and Reason set to MQRC_NONE.

� If the conversion fails, or the message expands and has to be truncated to fit in the buffer, CompCode should be set to

MQCC_WARNING (or left unchanged), and Reason set to one of the values listed below, to indicate the nature of the failure.

Note that, if the message after conversion is too big for the buffer, it should be truncated only if the application that issued the
MQGET call specified the MQGMO_ACCEPT_TRUNCATED_MSG option:

� If it did specify that option, reason MQRC_TRUNCATED_MSG_ACCEPTED should be returned.

� If it did not specify that option, the message should be returned unconverted, with reason code
MQRC_CONVERTED_MSG_TOO_BIG.

The reason codes listed below are recommended for use by the exit to indicate the reason that conversion failed, but the exit can return
other values from the set of MQRC_* codes if deemed appropriate. In addition, the range of values MQRC_APPL_FIRST through
MQRC_APPL_LAST are allocated for use by the exit to indicate conditions that the exit wants to communicate to the application issuing

the MQGET call.

Note: If the message cannot be converted successfully, the exit must return MQXDR_CONVERSION_FAILED in the ExitResponse field, in

order to cause the queue manager to return the unconverted message. This is true regardless of the reason code returned in the Reason

field.

MQRC_APPL_FIRST

(900, X'384') Lowest value for application-defined reason code.

MQRC_APPL_LAST

(999, X'3E7') Highest value for application-defined reason code.

MQRC_CONVERTED_MSG_TOO_BIG

(2120, X'848') Converted data too big for buffer.

MQRC_NOT_CONVERTED

(2119, X'847') Message data not converted.

MQRC_SOURCE_CCSID_ERROR

(2111, X'83F') Source coded character set identifier not valid.

MQRC_SOURCE_DECIMAL_ENC_ERROR

(2113, X'841') Packed-decimal encoding in message not recognized.

MQRC_SOURCE_FLOAT_ENC_ERROR

(2114, X'842') Floating-point encoding in message not recognized.

MQRC_SOURCE_INTEGER_ENC_ERROR

(2112, X'840') Source integer encoding not recognized.

MQRC_TARGET_CCSID_ERROR

(2115, X'843') Target coded character set identifier not valid.

MQRC_TARGET_DECIMAL_ENC_ERROR

(2117, X'845') Packed-decimal encoding specified by receiver not recognized.

MQRC_TARGET_FLOAT_ENC_ERROR

(2118, X'846') Floating-point encoding specified by receiver not recognized.

MQRC_TARGET_INTEGER_ENC_ERROR

(2116, X'844') Target integer encoding not recognized.

MQRC_TRUNCATED_MSG_ACCEPTED

(2079, X'81F') Truncated message returned (processing completed).

This is an input/output field to the exit.

Parent topic: Fields

Page 660 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This build: January 26, 2011 11:19:03

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20530_

8.4.2.10. StrucId (MQCHAR4)

Structure identifier.

The value must be:

MQDXP_STRUC_ID

Identifier for data conversion exit parameter structure.

For the C programming language, the constant MQDXP_STRUC_ID_ARRAY is also defined; this has the same value as MQDXP_STRUC_ID,
but is an array of characters instead of a string.

This is an input field to the exit.

Parent topic: Fields

This build: January 26, 2011 11:19:03

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20540_

8.4.2.11. Version (MQLONG)

Structure version number.

The value must be:

MQDXP_VERSION_1

Version number for data-conversion exit parameter structure.

The following constant specifies the version number of the current version:

MQDXP_CURRENT_VERSION

Current version of data-conversion exit parameter structure.

Note: When a new version of this structure is introduced, the layout of the existing part is not changed. The exit should therefore check
that the Version field is equal to or greater than the lowest version which contains the fields that the exit needs to use.

This is an input field to the exit.

Parent topic: Fields

This build: January 26, 2011 11:19:03

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20550_

8.4.3. C declaration

typedef struct tagMQDXP MQDXP;

struct tagMQDXP {

 MQCHAR4 StrucId; /* Structure identifier */

 MQLONG Version; /* Structure version number */

 MQLONG ExitOptions; /* Reserved */

 MQLONG AppOptions; /* Application options */

 MQLONG Encoding; /* Numeric encoding required by

 application */

 MQLONG CodedCharSetId; /* Character set required by application */

 MQLONG DataLength; /* Length in bytes of message data */

 MQLONG CompCode; /* Completion code */

 MQLONG Reason; /* Reason code qualifying CompCode */

 MQLONG ExitResponse; /* Response from exit */

 MQHCONN Hconn; /* Connection handle */

};

Parent topic: MQDXP – Data-conversion exit parameter

This build: January 26, 2011 11:19:03

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

Page 661 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

fr20560_

8.4.4. COBOL declaration (i5/OS® only)

** MQDXP structure

 10 MQDXP.

** Structure identifier

 15 MQDXP-STRUCID PIC X(4).

** Structure version number

 15 MQDXP-VERSION PIC S9(9) BINARY.

** Reserved

 15 MQDXP-EXITOPTIONS PIC S9(9) BINARY.

** Application options

 15 MQDXP-APPOPTIONS PIC S9(9) BINARY.

** Numeric encoding required by application

 15 MQDXP-ENCODING PIC S9(9) BINARY.

** Character set required by application

 15 MQDXP-CODEDCHARSETID PIC S9(9) BINARY.

** Length in bytes of message data

 15 MQDXP-DATALENGTH PIC S9(9) BINARY.

** Completion code

 15 MQDXP-COMPCODE PIC S9(9) BINARY.

** Reason code qualifying COMPCODE

 15 MQDXP-REASON PIC S9(9) BINARY.

** Response from exit

 15 MQDXP-EXITRESPONSE PIC S9(9) BINARY.

** Connection handle

 15 MQDXP-HCONN PIC S9(9) BINARY.

Parent topic: MQDXP – Data-conversion exit parameter

This build: January 26, 2011 11:19:09

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20570_

8.4.5. System/390® assembler declaration

MQDXP DSECT

MQDXP_STRUCID DS CL4 Structure identifier

MQDXP_VERSION DS F Structure version number

MQDXP_EXITOPTIONS DS F Reserved

MQDXP_APPOPTIONS DS F Application options

MQDXP_ENCODING DS F Numeric encoding required by application

MQDXP_CODEDCHARSETID DS F Character set required by application

MQDXP_DATALENGTH DS F Length in bytes of message data

MQDXP_COMPCODE DS F Completion code

MQDXP_REASON DS F Reason code qualifying COMPCODE

MQDXP_EXITRESPONSE DS F Response from exit

MQDXP_HCONN DS F Connection handle

*

MQDXP_LENGTH EQU *-MQDXP

 ORG MQDXP

MQDXP_AREA DS CL(MQDXP_LENGTH)

Parent topic: MQDXP – Data-conversion exit parameter

This build: January 26, 2011 11:19:09

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20580_

8.5. MQXCNVC – Convert characters

The MQXCNVC call converts characters from one character set to another using the C programming language.

Note:

1. In all environments the call can be used from a batch application as well as from a data-conversion exit.

2. The MQXCNVC call is not available from a client environment.

This call is part of the WebSphere® MQ Data Conversion Interface (DCI), which is one of the WebSphere MQframework interfaces.

Syntax

Parameters
The MQXCNVC call has the following parameters.

C invocation

COBOL invocation (i5/OS only)

Page 662 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

System/390 assembler invocation

Parent topic: Data conversion

This build: January 26, 2011 11:19:09

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20590_

8.5.1. Syntax

MQXCNVC (Hconn, Options, SourceCCSID, SourceLength, SourceBuffer,

TargetCCSID, TargetLength, TargetBuffer, DataLength, CompCode, Reason)

Parent topic: MQXCNVC – Convert characters

This build: January 26, 2011 11:19:09

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20600_

8.5.2. Parameters

The MQXCNVC call has the following parameters.

Hconn (MQHCONN) – input
Connection handle.

Options (MQLONG) – input
Options that control the action of MQXCNVC.

SourceCCSID (MQLONG) – input

Coded character set identifier of string before conversion.

SourceLength (MQLONG) – input
Length of string before conversion.

SourceBuffer (MQCHAR×SourceLength) – input
String to be converted.

TargetCCSID (MQLONG) – input
Coded character set identifier of string after conversion.

TargetLength (MQLONG) – input

Length of output buffer.

TargetBuffer (MQCHAR×TargetLength) – output
String after conversion.

DataLength (MQLONG) – output
Length of output string.

CompCode (MQLONG) – output
Completion code.

Reason (MQLONG) – output

Parent topic: MQXCNVC – Convert characters

This build: January 26, 2011 11:19:09

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20610_

8.5.2.1. Hconn (MQHCONN) – input

Connection handle.

This handle represents the connection to the queue manager.

In a data-conversion exit, Hconn should normally be the handle passed to the data-conversion exit in the Hconn field of the MQDXP

structure; this handle is not necessarily the same as the handle specified by the application which issued the MQGET call.

Page 663 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

On i5/OS®, the following special value can be specified for Hconn:

MQHC_DEF_HCONN

Default connection handle.

Parent topic: Parameters

This build: January 26, 2011 11:19:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20620_

8.5.2.2. Options (MQLONG) – input

Options that control the action of MQXCNVC.

Zero or more of the options described below can be specified. If more than one is required, the values can be:

� Added together (do not add the same constant more than once), or

� Combined using the bitwise OR operation (if the programming language supports bit operations)

Default-conversion option: The following option controls the use of default character conversion:

MQDCC_DEFAULT_CONVERSION

Default conversion.

This option specifies that default character conversion can be used if one or both of the character sets specified on the call is not

supported. This allows the queue manager to use an installation-specified default character set that approximates the specified character
set, when converting the string.

Note: The result of using an approximate character set to convert the string is that some characters may be converted incorrectly. This
can be avoided by using in the string only characters which are common to both the specified character set and the default character set.

The default character sets are defined by a configuration option when the queue manager is installed or restarted.

If MQDCC_DEFAULT_CONVERSION is not specified, the queue manager uses only the specified character sets to convert the string, and
the call fails if one or both of the character sets is not supported.

This option is supported in the following environments: AIX®, HP-UX, i5/OS®, Solaris, Linux, Windows.

Padding option: The following option allows the queue manager to pad the converted string with blanks or discard insignificant trailing
characters, in order to make the converted string fit the target buffer:

MQDCC_FILL_TARGET_BUFFER

Fill target buffer.

This option requests that conversion take place in such a way that the target buffer is filled completely:

� If the string contracts when it is converted, trailing blanks are added in order to fill the target buffer.

� If the string expands when it is converted, trailing characters that are not significant are discarded to make the converted string fit
the target buffer. If this can be done successfully, the call completes with MQCC_OK and reason code MQRC_NONE.

If there are too few insignificant trailing characters, as much of the string as will fit is placed in the target buffer, and the call
completes with MQCC_WARNING and reason code MQRC_CONVERTED_MSG_TOO_BIG.

Insignificant characters are:

� Trailing blanks

� Characters following the first null character in the string (but excluding the first null character itself)

� If the string, TargetCCSID, and TargetLength are such that the target buffer cannot be set completely with valid characters, the call

fails with MQCC_FAILED and reason code MQRC_TARGET_LENGTH_ERROR. This can occur when TargetCCSID is a pure DBCS

character set (such as UCS-2), but TargetLength specifies a length that is an odd number of bytes.

� TargetLength can be less than or greater than SourceLength. On return from MQXCNVC, DataLength has the same value as

TargetLength.

If this option is not specified:

� The string is allowed to contract or expand within the target buffer as required. Insignificant trailing characters are neither added

nor discarded.

If the converted string fits in the target buffer, the call completes with MQCC_OK and reason code MQRC_NONE.

If the converted string is too big for the target buffer, as much of the string as will fit is placed in the target buffer, and the call

completes with MQCC_WARNING and reason code MQRC_CONVERTED_MSG_TOO_BIG. Note that fewer than TargetLength bytes

can be returned in this case.

� TargetLength can be less than or greater than SourceLength. On return from MQXCNVC, DataLength is less than or equal to

TargetLength.

This option is supported in the following environments: AIX, HP-UX, i5/OS, Solaris, Linux, Windows.

Encoding options: The options described below can be used to specify the integer encodings of the source and target strings. The relevant
encoding is used only when the corresponding character set identifier indicates that the representation of the character set in main storage
is dependent on the encoding used for binary integers. This affects only certain multibyte character sets (for example, UCS-2 character

sets).

Page 664 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

The encoding is ignored if the character set is a single-byte character set (SBCS), or a multibyte character set whose representation in main
storage is not dependent on the integer encoding.

Only one of the MQDCC_SOURCE_* values should be specified, combined with one of the MQDCC_TARGET_* values:

MQDCC_SOURCE_ENC_NATIVE

Source encoding is the default for the environment and programming language.

MQDCC_SOURCE_ENC_NORMAL

Source encoding is normal.

MQDCC_SOURCE_ENC_REVERSED

Source encoding is reversed.

MQDCC_SOURCE_ENC_UNDEFINED

Source encoding is undefined.

MQDCC_TARGET_ENC_NATIVE

Target encoding is the default for the environment and programming language.

MQDCC_TARGET_ENC_NORMAL

Target encoding is normal.

MQDCC_TARGET_ENC_REVERSED

Target encoding is reversed.

MQDCC_TARGET_ENC_UNDEFINED

Target encoding is undefined.

The encoding values defined above can be added directly to the Options field. However, if the source or target encoding is obtained from

the Encoding field in the MQMD or other structure, the following processing must be done:

1. The integer encoding must be extracted from the Encoding field by eliminating the float and packed-decimal encodings; see Analyzing

encodings for details of how to do this.

2. The integer encoding resulting from step 1 must be multiplied by the appropriate factor before being added to the Options field.

These factors are:

� MQDCC_SOURCE_ENC_FACTOR for the source encoding

� MQDCC_TARGET_ENC_FACTOR for the target encoding

The following illustrates how this might be coded in the C programming language:

Options = (MsgDesc.Encoding & MQENC_INTEGER_MASK)

 * MQDCC_SOURCE_ENC_FACTOR

 + (DataConvExitParms.Encoding & MQENC_INTEGER_MASK)

 * MQDCC_TARGET_ENC_FACTOR;

If not specified, the encoding options default to undefined (MQDCC_*_ENC_UNDEFINED). In most cases, this does not affect the successful
completion of the MQXCNVC call. However, if the corresponding character set is a multibyte character set whose representation is
dependent on the encoding (for example, a UCS-2 character set), the call fails with reason code MQRC_SOURCE_INTEGER_ENC_ERROR or
MQRC_TARGET_INTEGER_ENC_ERROR as appropriate.

The encoding options are supported in the following environments: AIX, HP-UX, z/OS®, i5/OS, Solaris, Linux, Windows.

Default option: If none of the options described above is specified, the following option can be used:

MQDCC_NONE

No options specified.

MQDCC_NONE is defined to aid program documentation. It is not intended that this option be used with any other, but as its value is zero,
such use cannot be detected.

Parent topic: Parameters

This build: January 26, 2011 11:19:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20630_

8.5.2.3. SourceCCSID (MQLONG) – input

Coded character set identifier of string before conversion.

This is the coded character set identifier of the input string in SourceBuffer.

Parent topic: Parameters

This build: January 26, 2011 11:19:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20640_

Page 665 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

8.5.2.4. SourceLength (MQLONG) – input

Length of string before conversion.

This is the length in bytes of the input string in SourceBuffer; it must be zero or greater.

Parent topic: Parameters

This build: January 26, 2011 11:19:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20650_

8.5.2.5. SourceBuffer (MQCHAR×SourceLength) – input

String to be converted.

This is the buffer containing the string to be converted from one character set to another.

Parent topic: Parameters

This build: January 26, 2011 11:19:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20660_

8.5.2.6. TargetCCSID (MQLONG) – input

Coded character set identifier of string after conversion.

This is the coded character set identifier of the character set to which SourceBuffer is to be converted.

Parent topic: Parameters

This build: January 26, 2011 11:19:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20670_

8.5.2.7. TargetLength (MQLONG) – input

Length of output buffer.

This is the length in bytes of the output buffer TargetBuffer; it must be zero or greater. It can be less than or greater than SourceLength.

Parent topic: Parameters

This build: January 26, 2011 11:19:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20680_

8.5.2.8. TargetBuffer (MQCHAR×TargetLength) – output

String after conversion.

This is the string after it has been converted to the character set defined by TargetCCSID. The converted string can be shorter or longer

than the unconverted string. The DataLength parameter indicates the number of valid bytes returned.

Parent topic: Parameters

This build: January 26, 2011 11:19:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20690_

8.5.2.9. DataLength (MQLONG) – output

Length of output string.

This is the length of the string returned in the output buffer TargetBuffer. The converted string can be shorter or longer than the

Page 666 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

unconverted string.

Parent topic: Parameters

This build: January 26, 2011 11:19:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20700_

8.5.2.10. CompCode (MQLONG) – output

Completion code.

It is one of the following:

MQCC_OK

Successful completion.

MQCC_WARNING

Warning (partial completion).

MQCC_FAILED

Call failed.

Parent topic: Parameters

This build: January 26, 2011 11:19:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20710_

8.5.2.11. Reason (MQLONG) – output

Reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_WARNING:

MQRC_CONVERTED_MSG_TOO_BIG

(2120, X'848') Converted data too big for buffer.

If CompCode is MQCC_FAILED:

MQRC_DATA_LENGTH_ERROR

(2010, X'7DA') Data length parameter not valid.

MQRC_DBCS_ERROR

(2150, X'866') DBCS string not valid.

MQRC_HCONN_ERROR

(2018, X'7E2') Connection handle not valid.

MQRC_OPTIONS_ERROR

(2046, X'7FE') Options not valid or not consistent.

MQRC_RESOURCE_PROBLEM

(2102, X'836') Insufficient system resources available.

MQRC_SOURCE_BUFFER_ERROR

(2145, X'861') Source buffer parameter not valid.

MQRC_SOURCE_CCSID_ERROR

(2111, X'83F') Source coded character set identifier not valid.

MQRC_SOURCE_INTEGER_ENC_ERROR

(2112, X'840') Source integer encoding not recognized.

MQRC_SOURCE_LENGTH_ERROR

(2143, X'85F') Source length parameter not valid.

MQRC_STORAGE_NOT_AVAILABLE

(2071, X'817') Insufficient storage available.

MQRC_TARGET_BUFFER_ERROR

(2146, X'862') Target buffer parameter not valid.

MQRC_TARGET_CCSID_ERROR

Page 667 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

(2115, X'843') Target coded character set identifier not valid.

MQRC_TARGET_INTEGER_ENC_ERROR

(2116, X'844') Target integer encoding not recognized.

MQRC_TARGET_LENGTH_ERROR

(2144, X'860') Target length parameter not valid.

MQRC_UNEXPECTED_ERROR

(2195, X'893') Unexpected error occurred.

For more information on these reason codes, see Return codes.

Parent topic: Parameters

This build: January 26, 2011 11:19:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20720_

8.5.3. C invocation

MQXCNVC (Hconn, Options, SourceCCSID, SourceLength, SourceBuffer,

 TargetCCSID, TargetLength, TargetBuffer, &DataLength,

 &CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /* Connection handle */

MQLONG Options; /* Options that control the action of

 MQXCNVC */

MQLONG SourceCCSID; /* Coded character set identifier of string

 before conversion */

MQLONG SourceLength; /* Length of string before conversion */

MQCHAR SourceBuffer[n]; /* String to be converted */

MQLONG TargetCCSID; /* Coded character set identifier of string

 after conversion */

MQLONG TargetLength; /* Length of output buffer */

MQCHAR TargetBuffer[n]; /* String after conversion */

MQLONG DataLength; /* Length of output string */

MQLONG CompCode; /* Completion code */

MQLONG Reason; /* Reason code qualifying CompCode */

Parent topic: MQXCNVC – Convert characters

This build: January 26, 2011 11:19:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20730_

8.5.4. COBOL invocation (i5/OS® only)

 CALL 'MQXCNVC' USING HCONN, OPTIONS, SOURCECCSID, SOURCELENGTH,

 SOURCEBUFFER, TARGETCCSID, TARGETLENGTH,

 TARGETBUFFER, DATALENGTH, COMPCODE, REASON.

Declare the parameters as follows:

** Connection handle

 01 HCONN PIC S9(9) BINARY.

** Options that control the action of MQXCNVC

 01 OPTIONS PIC S9(9) BINARY.

** Coded character set identifier of string before conversion

 01 SOURCECCSID PIC S9(9) BINARY.

** Length of string before conversion

 01 SOURCELENGTH PIC S9(9) BINARY.

** String to be converted

 01 SOURCEBUFFER PIC X(n).

** Coded character set identifier of string after conversion

 01 TARGETCCSID PIC S9(9) BINARY.

** Length of output buffer

 01 TARGETLENGTH PIC S9(9) BINARY.

** String after conversion

 01 TARGETBUFFER PIC X(n).

** Length of output string

 01 DATALENGTH PIC S9(9) BINARY.

** Completion code

 01 COMPCODE PIC S9(9) BINARY.

** Reason code qualifying COMPCODE

 01 REASON PIC S9(9) BINARY.

Parent topic: MQXCNVC – Convert characters

This build: January 26, 2011 11:19:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Page 668 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20740_

8.5.5. System/390® assembler invocation

 CALL MQXCNVC,(HCONN,OPTIONS,SOURCECCSID,SOURCELENGTH, X

 SOURCEBUFFER,TARGETCCSID,TARGETLENGTH,TARGETBUFFER, X

 DATALENGTH,COMPCODE,REASON)

Declare the parameters as follows:

HCONN DS F Connection handle

OPTIONS DS F Options that control the action of MQXCNVC

SOURCECCSID DS F Coded character set identifier of string before

* conversion

SOURCELENGTH DS F Length of string before conversion

SOURCEBUFFER DS CL(n) String to be converted

TARGETCCSID DS F Coded character set identifier of string after

* conversion

TARGETLENGTH DS F Length of output buffer

TARGETBUFFER DS CL(n) String after conversion

DATALENGTH DS F Length of output string

COMPCODE DS F Completion code

REASON DS F Reason code qualifying COMPCODE

Parent topic: MQXCNVC – Convert characters

This build: January 26, 2011 11:19:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20750_

8.6. MQ_DATA_CONV_EXIT – Data conversion exit

This call definition describes the parameters that are passed to the data-conversion exit.

No entry point called MQ_DATA_CONV_EXIT is actually provided by the queue manager (see usage note 11).

This definition is part of the MQSeries® Data Conversion Interface (DCI), which is one of the MQSeries framework interfaces.

Syntax

Parameters
The MQ_DATA_CONV_EXIT call has the following parameters.

Usage notes

C invocation

COBOL invocation (i5/OS only)

System/390 assembler invocation

Parent topic: Data conversion

This build: January 26, 2011 11:19:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20760_

8.6.1. Syntax

MQ_DATA_CONV_EXIT (DataConvExitParms, MsgDesc, InBufferLength,

InBuffer, OutBufferLength, OutBuffer)

Parent topic: MQ_DATA_CONV_EXIT – Data conversion exit

This build: January 26, 2011 11:19:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20770_

8.6.2. Parameters

Page 669 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

The MQ_DATA_CONV_EXIT call has the following parameters.

DataConvExitParms (MQDXP) – input/output
Data-conversion exit parameter block.

MsgDesc (MQMD) – input/output
Message descriptor.

InBufferLength (MQLONG) – input

InBuffer (MQBYTE×InBufferLength) – input

Buffer containing the unconverted message.

OutBufferLength (MQLONG) – input

OutBuffer (MQBYTE×OutBufferLength) – output
Buffer containing the converted message.

Parent topic: MQ_DATA_CONV_EXIT – Data conversion exit

This build: January 26, 2011 11:19:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20780_

8.6.2.1. DataConvExitParms (MQDXP) – input/output

Data-conversion exit parameter block.

This structure contains information relating to the invocation of the exit. The exit sets information in this structure to indicate the outcome
of the conversion. See MQDXP – Data-conversion exit parameter for details of the fields in this structure.

Parent topic: Parameters

This build: January 26, 2011 11:19:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20790_

8.6.2.2. MsgDesc (MQMD) – input/output

Message descriptor.

On input to the exit, this is the message descriptor associated with the message data passed to the exit in the InBuffer parameter.

Note: The MsgDesc parameter passed to the exit is always the most-recent version of MQMD supported by the queue manager which

invokes the exit. If the exit is intended to be portable between different environments, the exit should check the Version field in MsgDesc to

verify that the fields that the exit needs to access are present in the structure.

In the following environments, the exit is passed a version-2 MQMD: AIX®, HP-UX, i5/OS®, Solaris, Linux, Windows. In all other
environments that support the data conversion exit, the exit is passed a version-1 MQMD.

On output, the exit should change the Encoding and CodedCharSetId fields to the values requested by the application, if conversion was

successful; these changes will be reflected back to the application. Any other changes that the exit makes to the structure are ignored; they
are not reflected back to the application.

If the exit returns MQXDR_OK in the ExitResponse field of the MQDXP structure, but does not change the Encoding or CodedCharSetId

fields in the message descriptor, the queue manager returns for those fields the values that the corresponding fields in the MQDXP structure
had on input to the exit.

Parent topic: Parameters

This build: January 26, 2011 11:19:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20800_

8.6.2.3. InBufferLength (MQLONG) – input

Length in bytes of InBuffer.

This is the length of the input buffer InBuffer, and specifies the number of bytes to be processed by the exit. InBufferLength is the lesser

of the length of the message data before conversion, and the length of the buffer provided by the application on the MQGET call.

Page 670 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

The value is always greater than zero.

Parent topic: Parameters

This build: January 26, 2011 11:19:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20810_

8.6.2.4. InBuffer (MQBYTE×InBufferLength) – input

Buffer containing the unconverted message.

This contains the message data before conversion. If the exit is unable to convert the data, the queue manager returns the contents of this
buffer to the application after the exit has completed.

Note: The exit must not alter InBuffer; if this parameter is altered, the results are undefined.

In the C programming language, this parameter is defined as a pointer-to-void.

Parent topic: Parameters

This build: January 26, 2011 11:19:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20820_

8.6.2.5. OutBufferLength (MQLONG) – input

Length in bytes of OutBuffer.

This is the length of the output buffer OutBuffer, and is the same as the length of the buffer provided by the application on the MQGET call.

The value is always greater than zero.

Parent topic: Parameters

This build: January 26, 2011 11:19:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20830_

8.6.2.6. OutBuffer (MQBYTE×OutBufferLength) – output

Buffer containing the converted message.

On output from the exit, if the conversion was successful (as indicated by the value MQXDR_OK in the ExitResponse field of the

DataConvExitParms parameter), OutBuffer contains the message data to be delivered to the application, in the requested representation.

If the conversion was unsuccessful, any changes that the exit has made to this buffer are ignored.

In the C programming language, this parameter is defined as a pointer-to-void.

Parent topic: Parameters

This build: January 26, 2011 11:19:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20840_

8.6.3. Usage notes

1. A data-conversion exit is a user-written exit which receives control during the processing of an MQGET call. The function performed by
the data-conversion exit is defined by the provider of the exit; however, the exit must conform to the rules described here, and in the
associated parameter structure MQDXP.

The programming languages that can be used for a data-conversion exit are determined by the environment.

2. The exit is invoked only if all of the following are true:

� The MQGMO_CONVERT option is specified on the MQGET call

� The Format field in the message descriptor is not MQFMT_NONE

� The message is not already in the required representation; that is, one or both of the message's CodedCharSetId and Encoding

is different from the value specified by the application in the message descriptor supplied on the MQGET call

Page 671 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

� The queue manager has not already done the conversion successfully

� The length of the application's buffer is greater than zero

� The length of the message data is greater than zero

� The reason code so far during the MQGET operation is MQRC_NONE or MQRC_TRUNCATED_MSG_ACCEPTED

3. When an exit is being written, code the exit in a way that will allow it to convert messages that have been truncated. Truncated
messages can arise in the following ways:

� The receiving application provides a buffer that is smaller than the message, but specifies the
MQGMO_ACCEPT_TRUNCATED_MSG option on the MQGET call.

In this case, the Reason field in the DataConvExitParms parameter on input to the exit will have the value

MQRC_TRUNCATED_MSG_ACCEPTED.

� The sender of the message truncated it before sending it. This can happen with report messages, for example (see Conversion of
report messages for more details).

In this case, the Reason field in the DataConvExitParms parameter on input to the exit will have the value MQRC_NONE (if the

receiving application provided a buffer that was big enough for the message).

Thus the value of the Reason field on input to the exit cannot always be used to decide whether the message has been truncated.

The distinguishing characteristic of a truncated message is that the length provided to the exit in the InBufferLength parameter will

be less than the length implied by the format name contained in the Format field in the message descriptor. The exit must therefore

check the value of InBufferLength before attempting to convert any of the data; the exit must not assume that the full amount of

data implied by the format name has been provided.

If the exit has not been written to convert truncated messages, and InBufferLength is less than the value expected, the exit must

return MQXDR_CONVERSION_FAILED in the ExitResponse field of the DataConvExitParms parameter, with the CompCode and Reason

fields set to MQCC_WARNING and MQRC_FORMAT_ERROR respectively.

If the exit has been written to convert truncated messages, the exit must convert as much of the data as possible (see next usage
note), taking care not to attempt to examine or convert data beyond the end of InBuffer. If the conversion completes successfully,

the exit must leave the Reason field in the DataConvExitParms parameter unchanged. This has the effect of returning

MQRC_TRUNCATED_MSG_ACCEPTED if the message was truncated by the receiver's queue manager, and MQRC_NONE if the message

was truncated by the sender of the message.

It is also possible for a message to expand during conversion, to the point where it is bigger than OutBuffer. In this case the exit

must decide whether to truncate the message; the AppOptions field in the DataConvExitParms parameter will indicate whether the

receiving application specified the MQGMO_ACCEPT_TRUNCATED_MSG option.

4. Generally it is recommended that all of the data in the message provided to the exit in InBuffer is converted, or that none of it is. An

exception to this, however, occurs if the message is truncated, either before conversion or during conversion; in this case there may
be an incomplete item at the end of the buffer (for example: one byte of a double-byte character, or 3 bytes of a 4-byte integer). In

this situation the incomplete item must be omitted, and unused bytes in OutBuffer set to nulls. However, complete elements or

characters within an array or string must be converted.

5. When an exit is needed for the first time, the queue manager attempts to load an object that has the same name as the format (apart
from extensions). The object loaded must contain the exit that processes messages with that format name. Tthe exit name, and the
name of the object that contain the exit, must be identical, although not all environments require this.

6. A new copy of the exit is loaded when an application attempts to retrieve the first message that uses that Format since the application

connected to the queue manager. For CICS® or IMS™ applications, this means when the CICS or IMS subsystem connected to the
queue manager. A new copy may also be loaded at other times, if the queue manager has discarded a previously-loaded copy. For this
reason, an exit must not attempt to use static storage to communicate information from one invocation of the exit to the next – the

exit may be unloaded between the two invocations.

7. If there is a user-supplied exit with the same name as one of the built-in formats supported by the queue manager, the user-supplied
exit does not replace the built-in conversion routine. The only circumstances in which such an exit is invoked are:

� If the built-in conversion routine cannot handle conversions to or from either the CodedCharSetId or Encoding involved, or

� If the built-in conversion routine has failed to convert the data (for example, because there is a field or character which cannot
be converted).

8. The scope of the exit is environment-dependent. Format names must be chosen so as to minimize the risk of clashes with other

formats. It is recommended that they start with characters that identify the application defining the format name.

9. The data-conversion exit runs in an environment similar to that of the program which issued the MQGET call; environment includes

address space and user profile (where applicable). The program could be a message channel agent sending messages to a destination
queue manager that does not support message conversion. The exit cannot compromise the queue manager's integrity, since it does
not run in the queue manager's environment.

10. The only MQI call which can be used by the exit is MQXCNVC; attempting to use other MQI calls fails with reason code
MQRC_CALL_IN_PROGRESS, or other unpredictable errors.

11. No entry point called MQ_DATA_CONV_EXIT is actually provided by the queue manager. However, a typedef is provided for the name
MQ_DATA_CONV_EXIT in the C programming language, and this can be used to declare the user-written exit, to ensure that the
parameters are correct. The name of the exit must be the same as the format name (the name contained in the Format field in

MQMD), although this is not required in all environments.

The following example illustrates how the exit that processes the format MYFORMAT can be declared in the C programming language:

#include "cmqc.h"

#include "cmqxc.h"

MQ_DATA_CONV_EXIT MYFORMAT;

void MQENTRY MYFORMAT(

 PMQDXP pDataConvExitParms, /* Data-conversion exit parameter

 block */

 PMQMD pMsgDesc, /* Message descriptor */

 MQLONG InBufferLength, /* Length in bytes of InBuffer */

 PMQVOID pInBuffer, /* Buffer containing the unconverted

 message */

 MQLONG OutBufferLength, /* Length in bytes of OutBuffer */

 PMQVOID pOutBuffer) /* Buffer containing the converted

 message */

{

 /* C language statements to convert message */

}

Page 672 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

12. On z/OS®, if an API-crossing exit is also in force, it is called after the data-conversion exit.

Parent topic: MQ_DATA_CONV_EXIT – Data conversion exit

This build: January 26, 2011 11:19:13

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20850_

8.6.4. C invocation

exitname (&DataConvExitParms, &MsgDesc, InBufferLength,

 InBuffer, OutBufferLength, OutBuffer);

The parameters passed to the exit are declared as follows:

MQDXP DataConvExitParms; /* Data-conversion exit parameter block */

MQMD MsgDesc; /* Message descriptor */

MQLONG InBufferLength; /* Length in bytes of InBuffer */

MQBYTE InBuffer[n]; /* Buffer containing the unconverted

 message */

MQLONG OutBufferLength; /* Length in bytes of OutBuffer */

MQBYTE OutBuffer[n]; /* Buffer containing the converted

 message */

Parent topic: MQ_DATA_CONV_EXIT – Data conversion exit

This build: January 26, 2011 11:19:13

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20860_

8.6.5. COBOL invocation (i5/OS® only)

 CALL 'exitname' USING DATACONVEXITPARMS, MSGDESC, INBUFFERLENGTH,

 INBUFFER, OUTBUFFERLENGTH, OUTBUFFER.

The parameters passed to the exit are declared as follows:

** Data-conversion exit parameter block

 01 DATACONVEXITPARMS.

 COPY CMQDXPV.

** Message descriptor

 01 MSGDESC.

 COPY CMQMDV.

** Length in bytes of INBUFFER

 01 INBUFFERLENGTH PIC S9(9) BINARY.

** Buffer containing the unconverted message

 01 INBUFFER PIC X(n).

** Length in bytes of OUTBUFFER

 01 OUTBUFFERLENGTH PIC S9(9) BINARY.

** Buffer containing the converted message

 01 OUTBUFFER PIC X(n).

Parent topic: MQ_DATA_CONV_EXIT – Data conversion exit

This build: January 26, 2011 11:19:13

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20870_

8.6.6. System/390® assembler invocation

 CALL EXITNAME,(DATACONVEXITPARMS,MSGDESC,INBUFFERLENGTH, X

 INBUFFER,OUTBUFFERLENGTH,OUTBUFFER)

The parameters passed to the exit are declared as follows:

DATACONVEXITPARMS CMQDXPA , Data-conversion exit parameter block

MSGDESC CMQMDA , Message descriptor

INBUFFERLENGTH DS F Length in bytes of INBUFFER

INBUFFER DS CL(n) Buffer containing the unconverted

* message

OUTBUFFERLENGTH DS F Length in bytes of OUTBUFFER

OUTBUFFER DS CL(n) Buffer containing the converted

* message

End of product-sensitive programming interface

Parent topic: MQ_DATA_CONV_EXIT – Data conversion exit

Page 673 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This build: January 26, 2011 11:19:13

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20880_

9. Properties specified as MQRFH2 elements

Non-message descriptor properties can be specified as elements in MQRFH2 header folders. Overview of MQRFH2 elements being specified
as properties.

This retains compatibility with the previous versions of the WebSphere® MQ JMS and XMS clients. This section describes how to specify

properties in MQRFH2 headers.

To use MQRFH2 elements as properties, specify the elements as described in WebSphere MQ Using Java. This information supplements the
information described in MQRFH2 – Rules and formatting header 2.

Mapping property data types to MQRFH2 data types
Message property types map to the following supported MQRFH2 data types. Table of how message property types map to supported
MQRFH2 data types.

Supported MQRFH2 folders
Overview of the use of message descriptor fields as properties.

Generation of MQRFH2 headers

If a queue manager adds one or more properties to a message or an application adds properties to a message using the MQSETMP
call, then when a second application gets the message, WebSphere MQ converts the properties to their MQRFH2 representation and
includes them in an existing MQRFH2, or into a new MQRFH2 which it generates.

MQRFH2 folder restrictions
Overview of folder restrictions in MQRFH2 headers

MQRFH2 element name conflicts

Only one value can be attached to a message property, so, if an attempt to access a property leads to a conflict of values one is
chosen in preference over another. Overview of conflicts within MQRFH2 element names.

Mapping from property names to MQRFH2 folder and element names
When using any of the APIs defined that ultimately generate MQRFH2 headers, in order to specify message properties (for example,

MQ JMS), the property name is not necessarily the element name in the MQRFH2 folder. Overview of the differences between property
names and element names in the MQRFH2 header.

Mapping property descriptor fields into MQRFH2 headers

When a property is translated into an MQRFH2 element the following element attributes are used to specify the significant fields of the
property descriptor: This describes how MQPD fields are translated to MQRFH2 element attributes.

MQRFH2 headers that are not valid

At the time an MQPUT, MQPUT1, or MQGET call processes, a partial parsing of any MQRFH2 headers in the message can occur to
check what folders are included, and to determine if the folders contain properties. Overview of MQRFH2 headers that are not valid.

Parent topic: Application Programming Reference

This build: January 26, 2011 11:20:38

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr43000_

9.1. Mapping property data types to MQRFH2 data types

Message property types map to the following supported MQRFH2 data types. Table of how message property types map to supported
MQRFH2 data types.

Any element without a data type is assumed to be of type “string”.

An MQRFH2 data type of int, meaning an integer of unspecified size, is treated as if it were an i8.

A null value is indicated by the element attribute xsi:nil='true' as described inWebSphere MQ Using Java. Do not use the attribute

Message property type MQRFH2 data type

MQBYTE[] bin.hex

MQBOOL boolean

MQINT8 i1

MQINT16 i2

MQINT32 i4

MQINT64 i8

MQFLOAT32 r4

MQFLOAT64 r8

MQCHAR[] string

Page 674 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

xsi:nil=’false’ for non-null values.

For example, the following property has a null value:

 <NullProperty xsi:nil=’true’></NullProperty>

A byte or character string property can have an empty value. This is represented by an MQRFH2 element with a zero length element value.

For example, the following property has an empty value:

 <EmptyProperty></EmptyProperty>

Parent topic: Properties specified as MQRFH2 elements

This build: January 26, 2011 11:20:38

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr43010_

9.2. Supported MQRFH2 folders

Overview of the use of message descriptor fields as properties.

The folders <jms>, <mcd>, <mqext>, and <usr> are described in The MQRFH2 header . Note that the <usr> folder is used to transport any

JMS application-defined properties that are associated with a message. Groups are not allowed in the <usr> folder.

WebSphere® MQ supports the following additional folders:

� <mq>

This is used and reserved for MQ-defined properties that are used by WebSphere MQ.

� <mq_usr>

This can be used to transport any application-defined properties that are not exposed as JMS user-defined properties, as the
properties might not meet the requirements of a JMS property. Also, this folder can contain groups that the <usr>folder cannot.

� Any folder marked with the content='properties' attribute.

Such a folder is equivalent to the <mq_usr> folder in content.

� <mqps>

This is used for WebSphere MQ publish/subscribe properties.

WebSphere MQ also supports the following folders that are already in use by WAS/SIB:

� <sib>

This is used and reserved for WAS/SIB system message properties that are not exposed as JMS properties, or are mapped to
JMS_IBM_* properties, but are exposed to WAS/SIB applications; these include forward and reverse routing paths properties.

At least some cannot be exposed as JMS properties because they are byte arrays. If your application adds properties to this folder, the
value is either ignored or removed.

� <sib_usr>

This is used and reserved for WAS/SIB user message properties that cannot be exposed as JMS user properties because they are not
of supported types; they are exposed to WAS/SIB applications.

These are user properties, that you can get or set through the SIMessage interface, but the content of the byte array is mapped to the
required property value.

If your WebSphere MQ application writes an arbitrary bin.hex element to the folder, the application probably receives an

IOException, as it is not of the format expected to restore. If you add anything other than a bin.hex element you receive a

ClassCastException.

Do not attempt to make properties available to WAS/SIB by using this folder; instead use the <usr> folder for that purpose.

� <sib_context>

This is used for WAS/SIB system message properties that are not exposed to WAS/SIB user applications or as JMS properties. These
include security and transactional properties that are used for Web services and similar.

Your application must not add properties to this folder.

� <mqema>

This folder was used by WAS/SIB instead of the <mqext> folder.

Note that MQRFH2 folder names are case sensitive.

The following folders are reserved, in any mixture of lower or upper case characters:

� Any folder prefixed by mq or wmq; reserved for use by WebSphere MQ

� Any folder prefixed by sib; reserved for use by WAS/SIB.

� <Root> and <Body> folders; reserved but not used.

The following folders are not recognized as containing message properties:

� <psc>

Used by WebSphere Message Brokers to convey publish/subscribe command messages to the broker.

� <pscr>

Used by WebSphere Message Brokers to contain information from the broker, in response to publish/subscribe command messages.

� Any folder not defined by IBM®, that is not marked with the content='properties' attribute.

Do not specify content='properties' on the <psc> or <pscr> folders. If you do so, these folders are treated as properties and WebSphere

Message Brokers is likely to stop functioning as expected.

If your application is building messages with properties, in MQRFH2 headers to be recognized as an MQRFH2 header containing properties,
the header must be in the list of headers that can be chained at the head of the message.

Page 675 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

The MQRFH2 can be preceded by any number of “MQH” standard headers, or an MQCIH, an MQDLH, an MQIIH, an MQTM, an MQTMC2, or
an MQXQH. Note that, for example, a string or an MQCFH ends parsing because they can not be chained.

It is possible for a message to contain multiple MQRFH2 headers all carrying message properties. Folders with the same name can coexist in

different headers unless otherwise restricted, for example by WAS/SIB. The folders are treated as one logical folder, provided that they are
all in significant headers.

While folders from the significant headers cannot be merged with those in nonsignificant headers, folders with the same name within the
significant headers can be merged, removing any conflicting properties. Your applications must not depend on the layout of properties within
their message.

MQRFH2 groups are parsed for properties in user-defined folders, that is, not the <wmq>, <jms>, <mcd>, <usr>, <mqext>, <sib>, <sib_usr>,

<sib_context>, and <mqema> folders.

Groups in the IBM-defined folders, except for the <wmq_usr> folder, are not parsed for properties.

Mixed content is not allowed in an MQRFH2 folder;, a folder or group can contain either groups or properties, or a value, but not both.

A segment of a message, either the first or a subsequent segment, cannot contain WebSphere MQ-defined properties other than those in

the message descriptor; so putting a message containing such properties with either MQMF_SEGMENT or MQMF_SEGMENTATION_ALLOWED
set causes the put to fail with MQRC_SEGMENTATION_NOT_ALLOWED.

Note that WebSphere MQ-defined properties are, however, allowed in message groups.

Parent topic: Properties specified as MQRFH2 elements

This build: January 26, 2011 11:20:38

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr43020_

9.3. Generation of MQRFH2 headers

If a queue manager adds one or more properties to a message or an application adds properties to a message using the MQSETMP call, then
when a second application gets the message, WebSphere® MQ converts the properties to their MQRFH2 representation and includes them in
an existing MQRFH2, or into a new MQRFH2 which it generates.

If the message payload contains an MQRFH2 structure directly following the MQMD structure, an MQRFH, or an MQXQH, the MQRFH2
contains at least one message property, and the MQRFH2 has a NameValueCCSID value matching the CCSID of the new properties, then the

new properties will be merged into the existing MQRFH2. If the message payload does not contain an MQRFH2, or it does not fulfill these
criteria, then a new MQRFH2 will be generated and inserted in the payload (after the MQXQH or MQRFH if present) containing the MQRFH2
representation of the properties to be converted.

If the properties are merged into an existing MQRFH2, then the existing MQRFH2 will be searched for the folders which need to be merged.

If a folder does not exist it will added to the end of the existing folders. If the folder does exist then the folder will be searched: any
matching existing properties will be overwritten and any new ones will added at the end of the folder.

Parent topic: Properties specified as MQRFH2 elements

This build: January 26, 2011 11:20:43

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr43630_

9.4. MQRFH2 folder restrictions

Overview of folder restrictions in MQRFH2 headers

The MQRFH2 restrictions apply to the following folders:

� Element names in the <usr> folder must not begin with the prefix JMS; such property names are reserved for use by JMS and are not

valid for user-defined properties.

Such an element name does not cause parsing of the MQRFH2 to fail, but is not accessible to the WebSphere® MQ message property
APIs.

� Element names in the <usr> folder must not be, in any mixture of lower or uppercase, “NULL”, “TRUE”, “FALSE”, “NOT”, “AND”, “OR”,

“BETWEEN”, “LIKE”, “IN”, “IS” and “ESCAPE”. These names match SQL keywords and make parsing selectors harder, because a
property in the <usr> is the default folder used when no folder is specified for a given property in a selector.

Such an element name does not cause parsing of the MQRFH2 to fail, but is not accessible to the WebSphere MQ message property
APIs.

� Element names in any folder considered to contain message properties must not contain the “.” character (Unicode character
U+002E), because this is used in property names to indicate the hierarchy.

Such an element name does not cause parsing of the MQRFH2 to fail, but is not accessible to the WebSphere MQ message property
APIs.

In general, MQRFH2 headers that contain valid XML-style data can be parsed by WebSphere MQ without failure, although certain elements
of the MQRFH2 are not accessible through the WebSphere MQ message property APIs.

Parent topic: Properties specified as MQRFH2 elements

Page 676 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This build: January 26, 2011 11:20:38

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr43030_

9.5. MQRFH2 element name conflicts

Only one value can be attached to a message property, so, if an attempt to access a property leads to a conflict of values one is chosen in
preference over another. Overview of conflicts within MQRFH2 element names.

The WebSphere® MQ syntax for accessing MQRFH2 elements allows unique identification of an element, provided that a folder contains no

elements with the same name. If a folder does contain more than one element with the same name, the value of the property used is the
one closest to the head of the message.

This applies if two or more folders of the same name are contained in different significant MQRFH2 headers within the same message.

Given that a non-message descriptor property can be set either directly in the raw MQRFH2 header, or through MQSETMP – Set message
property, this could result in a conflict when the MQGET call is processed where both contain the same property.

Should this happen, the property associated with the message by an API call takes preference over one in the message data, that is, the
one in the raw MQRFH2 header. If a conflict results, it is considered to come logically before the message data.

Parent topic: Properties specified as MQRFH2 elements

This build: January 26, 2011 11:20:39

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr43040_

9.6. Mapping from property names to MQRFH2 folder and element names

When using any of the APIs defined that ultimately generate MQRFH2 headers, in order to specify message properties (for example, MQ
JMS), the property name is not necessarily the element name in the MQRFH2 folder. Overview of the differences between property names
and element names in the MQRFH2 header.

Therefore, a mapping has to take place from the property name to the MQRFH2 element, and in the reverse way, taking into account both

the folder name that contains the element as well as the element name. Some examples from WebSphere® MQ JMS are already
documented in WebSphere MQ Using Java.

Therefore, when a JMS application accesses the “JMSDestination” property this maps to the Dst element in the <jms> folder.

When specifying properties as MQRFH2 elements, WebSphere MQ defines its elements as follows:

For example, when a WebSphere MQ application attempts to access the Property1 property, this maps to the Property1 element in the

<usr> folder. The wmq.Property2 property maps to the Property2 property in the <wmq> folder.

As Root and Body are reserved folder names, you cannot use Root or Body as your folder prefix; for example, Root.Property1 does not

access a valid property.

If the property name contains more than one “.” character, the MQRFH2 element name used is the one following the final “.” character, and
MQRFH2 groups are used to form a hierarchy; nested MQRFH2 groups are allowed.

The JMS header and provider-specific properties that are contained in an MQRFH2 in the <mcd>, <jms>, and <mqext> folders are accessed by

a WebSphere MQ application using the short names defined in WebSphere MQ Using Java.

JMS user-defined properties are accessed from the <usr> folder. A WebSphere MQ application can use the <usr> folder for its application

properties if it is acceptable for the property to appear to JMS applications as one of its user-defined properties.

If it is not acceptable, choose another folder; the <wmq_usr> folder is provided as a standard location for such non-JMS properties.

Your applications can specify and use any MQRFH2 folder with a well-defined use, not documented in Properties specified as MQRFH2
elements as long as you note the following:

1. The folder might already be in use, or might be used in the future, by another application providing undefined access to properties

contained inside it; see Property names for the suggested naming convention for property names.

2. The properties are not accessible to previous versions of the Websphere MQ JMS or XMS client that can only access the <usr> folder

for user defined properties

3. The folder must be marked with the attribute content with the value set to properties, for example, content=’properties’.

Property name MQRFH2 folder name MQRFH2 element name

JMSDestination jms Dst

JMSType mcd Type, Set, Fmt

xxx (user defined, where xxx does not begin with JMS) usr xxx

Property name MQRFH2 folder name MQRFH2 group name MQRFH2 element name

<Property> <usr> n/a <Property>

<folder>.<Property> <folder> n/a <Property>

<folder>.<group>.<Property> <folder> <group> <Property>

Page 677 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

MQSETMP – Set message property automatically adds this attribute as required. This attribute must not be added to any of the IBM-
defined folders, for example, <jms> and <usr>. Doing so, causes the message to be rejected by the WebSphere MQ JMS client before

Version 7.0. with a MessageFormatException.

As the <usr> folder is the default location for properties of the <Property> syntax, this enables a WebSphere MQ application and a JMS

application to access the same user-defined property value using the same name.

Parent topic: Properties specified as MQRFH2 elements

This build: January 26, 2011 11:20:39

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr43050_

9.7. Mapping property descriptor fields into MQRFH2 headers

When a property is translated into an MQRFH2 element the following element attributes are used to specify the significant fields of the
property descriptor: This describes how MQPD fields are translated to MQRFH2 element attributes.

Support
The Support property descriptor field is split into three element attributes

� The sr element attribute specifies values in the MQPD_REJECT_UNSUP_MASK bit mask.

� The sa element attribute specifies values in the MQPD_ACCEPT_UNSUP_MASK bit mask.

� The sx element attribute specifies values in the MQPD_ACCEPT_UNSUP_IF_XMIT_MASK bit mask.

These element attributes are only valid in the <mq> folder and are ignored if set on elements in the other folders containing properties.

Context
Use the context element attribute to indicate the message context to which a property belongs. Use one value only. This element attribute
is valid on a property in any folder containing properties.

CopyOptions
Use the copy element attribute to indicate messages into which a property should be copied. More than one value is acceptable; separate
multiple values with a comma. For example copy=’reply’ and copy=’publish,report’ are both valid. This element attribute is valid on a
property in any folder containing properties.

Note: In the attribute definition, a single apostrophe or double quotes are valid use, for example copy=’reply’ or copy="report"

Restrictions to the <mq> MQRFH2 folder

When a message is put on to a queue, it is searched for an <mq> folder so that the message can be processed according to its MQ-defined

properties. To allow the efficient parsing of MQ-defined properties, the following restrictions apply to the folder:

Table 1.

Support value MQRFH2 element attribute MQRFH2 attribute
value

MQPD_SUPPORT_OPTIONAL sa optional

This is the default value.

MQPD_SUPPORT_REQUIRED sr required

MQPD_SUPPORT_REQUIRED_IF_LOCAL sx local

Table 2.

Context value MQRFH2 attribute value

MQPD_NO_CONTEXT none

This is the default value.

MQPD_USER _CONTEXT user

Table 3.

CopyOption value MQRFH2 attribute value

MQPD_COPY_FORWARD forward

MQPD_COPY_REPLY reply

MQPD_COPY_REPORT report

MQPD_COPY_PUBLISH publish

MQPD_COPY_ALL all

Do not specify this with any other value. When used with another
value, this takes precedence over any value except none.

MQPD_COPY_DEFAULT default

This is the default value. It is equivalent to specifying the three values

MQCOPY_FORWARD, MQCOPY_REPORT and MQCOPY_PUBLISH.

Do not specify this with any other value.

MQPD_COPY_NONE none

Do not specify this with any other value. When used with another
value, this takes precedence.

Page 678 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

� Only properties in the first significant <mq> folder in the message are acted upon by MQ; properties in any other <mq> folder in the
message are ignored.

� If the folder is in UTF-8, only single-byte UTF-8 characters are allowed in the folder. A multi-byte character in the folder, can cause

parsing to fail, and the message to be rejected.

� Do not include MQRFH2 groups in the <mq> folder. The presence of Unicode character U+003C in a property value will cause the

message to be rejected.

� Do not use escape strings in the folder. An escape string is treated as the actual value of the element.

� Only Unicode character U+0020 is treated as white space within the folder. All other characters are treated as significant and can
cause parsing of the folder to fail, and the message to be rejected.

If parsing of the <mq> folder fails, or if the folder does not observe these restrictions, the message is rejected with CompCode
MQCC_FAILED and Reason MQRC_RFH_RESTRICTED_FORMAT_ERR.

Parent topic: Properties specified as MQRFH2 elements

This build: January 26, 2011 11:20:40

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr43180_

9.8. MQRFH2 headers that are not valid

At the time an MQPUT, MQPUT1, or MQGET call processes, a partial parsing of any MQRFH2 headers in the message can occur to check what
folders are included, and to determine if the folders contain properties. Overview of MQRFH2 headers that are not valid.

If the partial parsing of the message cannot complete successfully because the structure is not valid, for example, the StrucLength field is

too small, then:

� The MQPUT or MQPUT1 call fails with reason code MQRC_RFH_ERROR, if it can be determined that the application includes some
WebSphere® MQ Version 7 option, so that existing applications do not fail.

� The MQGET call returns successfully, and the MQRFH2 containing the error is returned in the buffer you provided.

If the partial parsing fails because it cannot be detected whether a particular folder contains properties or not, for example, the folder begins
<<jms, so parsing fails before the folder name is determined, then:

� The MQPUT or MQPUT1 call fails with reason code MQRC_RFH_FORMAT_ERROR, if it can be determined that the application includes
some WebSphere MQ Version 7 option, so that existing applications do not fail.

� The MQGET call returns successfully, and the MQRFH2 containing the error is returned in the buffer you provided.

� While internally within the queue manager, the message is not rejected due to the badly formatted folder, but the folder is always
treated as if no properties were contained inside it.

A message can flow through the queue manager network with a folder containing such a syntax error, but never being parsed and detected,
while one or more folders in the message are:

� Valid

� Successfully parsed

� Used in the processing of the message

Therefore, detection is not guaranteed.

If one of your applications uses MQSETMP – Set message property, or MQINQMP to access a property, and in so doing this causes an
MQRFH2 folder to be fully parsed, detecting an error such that parsing cannot complete, this is indicated by an appropriate return code to
the API call. No properties in the folder are made available to the application.

If an attempt is made to fully parse an MQRFH2 folder and the parser finds unrecognized element attributes, or an unrecognized data type,

parsing continues and complete successfully with no warnings being issued; this does not constitute a parsing error.

Parent topic: Properties specified as MQRFH2 elements

This build: January 26, 2011 11:20:39

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr43060_

10. Code page conversion

Each national language section lists the following information:

� The native CCSIDs supported

� The code page conversions that are not supported

The following terms are used in the information:

-8

Indicates for HP-UX that the CCSID is for the HP-UX defined codeset roman8

AIX®

Indicates WebSphere® MQ for AIX

OVMS

Indicates WebSphere MQ for HP OpenVMS

Page 679 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

HP-UX

Indicates WebSphere MQ for HP-UX

Linux

Indicates WebSphere MQ for Linux for Intel and WebSphere MQ for Linux for zSeries®

NSS

Indicates WebSphere MQ for HP NonStop Server

OS/400®

Indicates WebSphere MQ for i5/OS®

Solaris

Indicates WebSphere MQ for Solaris

Tru64

Indicates MQSeries® for Compaq Tru64 UNIX

Windows

Indicates WebSphere MQ for Windows

z/OS®

Indicates WebSphere MQ for z/OS

The default for data conversion is for the conversion to be performed at the target (receiving) system.

If the source product supports the conversion a channel can be set up and data exchanged by setting the channel attribute
DataConversion to YES at the source.

Note:

1. Conversion for WebSphere MQ client information takes place in the server, so the server must support conversion from the client

CCSID to the server CCSID.

2. The conversion might include support added by CSD/PTF to the latest version of WebSphere MQ. Check the content of the latest

service level to see if you need to install a CSD/PTF to enable this conversion.

See Table 1 for a cross reference between some of the CCSID numbers and some industry codeset names.

Codeset names and CCSIDs
WebSphere MQ for z/OS provides more conversion than is listed in the language specific tables.

National languages

z/OS conversion support

i5/OS conversion support
A full list of CCSIDs, and conversions supported by i5/OS, can be found in the appropriate i5/OS publication relating to your operating
system.

Unicode conversion support
Some platforms support the conversion of user data to or from Unicode encoding. The two forms of Unicode encoding supported are
UCS-2 (CCSIDs 1200, 13488, and 17584) and UTF-8 (CCSID 1208).

Parent topic: Application Programming Reference

This build: January 26, 2011 11:19:14

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20890_

10.1. Codeset names and CCSIDs

WebSphere® MQ for z/OS® provides more conversion than is listed in the language specific tables.

Table 1. Codeset names and CCSIDs

Codeset names CCSIDs

ISO 8859-1 819

ISO 8859-2 912

ISO 8859-3 913

ISO 8859-5 915

ISO 8859-6 1089

ISO 8859-7 813

ISO 8859-8 916

ISO 8859-9 920

ISO 8859-13 921

ISO 8859-15 (euro) 923

big5 950

eucJP 954 5050 33722

Page 680 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

A complete list of conversions provided is shown in Table 1.

Parent topic: Code page conversion

This build: January 26, 2011 11:19:14

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20900_

10.2. National languages

The languages supported by WebSphere® MQ are:

� US English – see topic US English

� German – see topic German

� Danish and Norwegian – see topic Danish and Norwegian

� Finnish and Swedish – see topic Finnish and Swedish

� Italian – see topic Italian

� Spanish – see topic Spanish

� UK English / Gaelic – see topic UK English /Gaelic

� French – see topic French

� Multilingual – see topic Multilingual

� Portuguese – see topic Portuguese

� Icelandic – see topic Icelandic

� Eastern European languages – see topic Eastern European languages

� Cyrillic – see topic Cyrillic

� Estonian – see topic Estonian

� Latvian and Lithuanian – see topic Latvian and Lithuanian

� Ukranian – see topic Ukrainian

� Greek – see topic Greek

� Turkish – see topic Turkish

� Hebrew – see topic Hebrew

� Farsi – see topic Farsi

� Urdu – see topic Urdu

� Thai – see topic Thai

� Lao – see topic Lao

� Vietnamese – see topic Vietnamese

� Japanese Latin SBCS – see topic Japanese Latin SBCS

� Japanese Katakana SBCS – see topic Japanese Katakana SBCS

� Japanese Kanji/ Latin Mixed – see topic Japanese Kanji/ Latin Mixed

� Japanese Kanji/ Katakana Mixed – see topic Japanese Kanji/ Katakana Mixed

� Korean – see topic Korean

� Simplified Chinese – see topic Simplified Chinese

� Traditional Chinese – see topic Traditional Chinese

US English
Details of CCSIDs and CCSID conversion for US English.

German
Details of CCSIDs and CCSID conversion for German.

Danish and Norwegian

Details of CCSIDs and CCSID conversion for Danish and Norwegian.

Finnish and Swedish
Details of CCSIDs and CCSID conversion for Finnish and Swedish.

Italian
Details of CCSIDs and CCSID conversion for Italian.

Spanish

eucKR 970

eucTW 964

eucCN 1383

PCK 943

GBK 1386

koi8-r 878

Page 681 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Details of CCSIDs and CCSID conversion for Spanish.

UK English /Gaelic
Details of CCSIDs and CCSID conversion for UK English/Gaelic.

French
Details of CCSIDs and CCSID conversion for French.

Multilingual

Details of CCSIDs and CCSID conversion for Multilingual.

Portuguese
Details of CCSIDs and CCSID conversion for Portuguese.

Icelandic
Details of CCSIDs and CCSID conversion for Icelandic.

Eastern European languages
Details of CCSIDs and CCSID conversion for Eastern European Languages. The typical languages using these CCSIDs include Albanian,
Croatian, Czech, Hungarian, Polish, Romanian, Serbian, Slovak, and Slovenian.

Cyrillic
Details of CCSIDs and CCSID conversion for Cyrillic. The typical languages using these CCSIDs include Belarussion, Bulgarian,
Macedonian, Russian, and Serbian.

Estonian
Details of CCSIDs and CCSID conversion for Estonian.

Latvian and Lithuanian
Details of CCSIDs and CCSID conversion for Latvian and Lithuanian.

Ukrainian

Details of CCSIDs and CCSID conversion for Ukrainian

Greek
Details of CCSIDs and CCSID conversion for Greek

Turkish
Details of CCSIDs and CCSID conversion for Turkish

Hebrew
Details of CCSIDs and CCSID conversion for Hebrew.

Arabic
Details of CCSIDs and CCSID conversion for Arabic

Farsi

Details of CCSIDs and CCSID conversion for Farsi

Urdu
Details of CCSIDs and CCSID conversion for Urdu

Thai
Details of CCSIDs and CCSID conversion for Thai

Lao
Details of CCSIDs and CCSID conversion for Lao

Vietnamese
Details of CCSIDs and CCSID conversion for Vietnamese

Japanese Latin SBCS

Details of CCSIDs and CCSID conversion for Japanese Latin SBCS

Japanese Katakana SBCS
Details of CCSIDs and CCSID conversion for Japanese Katakana SBCS

Japanese Kanji/ Latin Mixed
Details of CCSIDs and CCSID conversion for Japanese Kanji/Latin Mixed.

Japanese Kanji/ Katakana Mixed
Details of CCSIDs and CCSID conversion for Japanese Kanji/Katakana Mixed.

Korean

Details of CCSIDs and CCSID conversion for Korean.

Simplified Chinese
Details of CCSIDs and CCSID conversion for Simplified Chinese.

Traditional Chinese
Details of CCSIDs and CCSID conversion for Traditional Chinese.

Page 682 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Parent topic: Code page conversion

This build: January 26, 2011 11:19:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20910_

10.2.1. US English

Details of CCSIDs and CCSID conversion for US English.

The following table shows the native CCSIDs for US English on supported platforms:

All non-client platforms support conversion between their native CCSIDs and the native CCSIDs of the other platforms, with the following
exceptions.

i5/OS

Code page:

37

Does not convert to code pages 923, 858

924

Does not convert to code pages 437, 858, 1051, 1140, 1252, 1275, 5348

1140

Does not convert to code pages 924, 1051, 1275

i5/OS

DEC-OVMS, SINIX, DC/OSx

NCR

Parent topic: National languages

This build: January 26, 2011 11:19:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20920_

10.2.1.1. i5/OS®

Code page:

37

Does not convert to code pages 923, 858, 5348

924

Does not convert to code pages 437, 819, 850, 858, 1051, 1140, 1252, 1275, 5348

1140

Does not convert to code pages 924, 1051, 1275, 5348

Parent topic: US English

This build: January 26, 2011 11:19:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20930_

10.2.1.2. DEC-OVMS, SINIX, DC/OSx

Platform Native CCSIDs

i5/OS®, z/OS® 37, 924, 1140

AIX® 819, 923, 5348

HP-UX 819, 923, 1051

Windows 437, 850, 1252, 5348, 858

OVMS, NSS, Solaris, Linux 819, 923

Tru64 819, 850, 923

Apple client 1275

Page 683 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Code page:

819

Does not convert to code pages 1252, 1275

Parent topic: US English

This build: January 26, 2011 11:19:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20940_

10.2.1.3. NCR

Code page:

819

Does not convert to code pages 1252, 1275

437

Does not convert to code pages 1252, 1275

850

Does not convert to code pages 1252, 1275

Parent topic: US English

This build: January 26, 2011 11:19:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20950_

10.2.2. German

Details of CCSIDs and CCSID conversion for German.

The following table shows the native CCSIDs for German on supported platforms:

All non-client platforms support conversion between their native CCSIDs and the native CCSIDs of the other platforms, with the following
exceptions.

i5/OS

Code page:

273

Does not convert to code pages 858, 923, 924, 1275

924

Does not convert to code pages 273, 437, 858, 1051, 1141, 1252, 1275, 5348

1141

Does not convert to code pages 924, 1051, 1275

Parent topic: National languages

This build: January 26, 2011 11:19:16

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr20960_

10.2.3. Danish and Norwegian

Details of CCSIDs and CCSID conversion for Danish and Norwegian.

The following table shows the native CCSIDs for Danish and Norwegian on supported platforms:

Platform Native CCSIDs

i5/OS®, z/OS® 273, 924, 1141

AIX® 819, 923, 5348

HP-UX 819, 923, 1051

Windows 437, 850, 858, 1252, 5348

OVMS, NSS, Solaris, Linux, Tru64 819, 923

Apple client 1275

Page 684 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

All non-client platforms support conversion between their native CCSIDs and the native CCSIDs of the other platforms, with the following
exceptions.

i5/OS

Code page:

277

Does not convert to code pages 858, 923, 924, 1275

924

Does not convert to code pages 277, 858, 865, 1051, 1142, 1252, 1275, 5348

1142

Does not convert to code pages 924, 865, 1051, 1275

AIX

Code page:

819

Does not convert to code page 865

HP-UX

Code page:

1051

Does not convert to code page 865

Windows

Code page:

865

Does not convert to code pages 1051, 1275

Parent topic: National languages

This build: January 26, 2011 11:19:16

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr21000_

10.2.4. Finnish and Swedish

Details of CCSIDs and CCSID conversion for Finnish and Swedish.

The following table shows the native CCSIDs for Finnish and Swedish on supported platforms:

All non-client platforms support conversion between their native CCSIDs and the native CCSIDs of the other platforms, with the following
exceptions.

i5/OS

Code page:

278

Does not convert to code pages 858, 923, 924, 1275

924

Platform Native CCSIDs

i5/OS®, z/OS® 277, 924, 1142

AIX® 819, 923, 5348

HP-UX 819, 923, 1051

Windows 850, 858, 865, 1252, 5348

OVMS, NSS, Solaris, Linux, Tru64 819, 923

Apple client 1275

Platform Native CCSIDs

i5/OS®, z/OS® 278, 924, 1143

AIX® 819, 923, 5348

HP-UX 819, 923, 1051

Windows 437, 850, 858, 865, 1252, 5348

OVMS, NSS, Solaris, Linux, Tru64 819, 923

Apple client 1275

Page 685 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Does not convert to code pages 278, 437, 858, 865, 1051, 1143, 1252, 1275, 5348

1143

Does not convert to code pages 865, 924, 1051, 1275

AIX

Code page:

819

Does not convert to code page 865

850

Does not convert to code page 865

HP-UX

Code page:

1051

Does not convert to code page 865

Windows

Code page:

865

Does not convert to code pages 1051, 1275

Parent topic: National languages

This build: January 26, 2011 11:19:16

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr21070_

10.2.5. Italian

Details of CCSIDs and CCSID conversion for Italian.

The following table shows the native CCSIDs for Italian on supported platforms:

All non-client platforms support conversion between their native CCSIDs and the native CCSIDs of the other platforms, with the following
exceptions.

i5/OS

Code page:

280

Does not convert to code pages 858, 923, 924, 1275

924

Does not convert to code pages 280, 437, 858, 1051, 1144, 1252, 1275, 5348

1144

Does not convert to code pages 924, 1051, 1275

Parent topic: National languages

This build: January 26, 2011 11:19:17

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr21140_

10.2.6. Spanish

Details of CCSIDs and CCSID conversion for Spanish.

The following table shows the native CCSIDs for Spanish on supported platforms:

Platform Native CCSIDs

i5/OS®, z/OS® 280, 924, 1144

AIX® 819, 923, 5348

HP-UX 819, 923, 1051

Windows 437, 850, 858, 1252, 5348

OVMS, NSS, Solaris, Linux, Tru64 819, 923

Apple client 1275

Page 686 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

All non-client platforms support conversion between their native CCSIDs and the native CCSIDs of the other platforms, with the following
exceptions.

i5/OS

Code page:

284

Does not convert to code pages 858, 923, 924, 1275

924

Does not convert to code pages 284, 437, 858, 1051, 1145, 1252, 1275, 5348

1145

Does not convert to code pages 924, 1051, 1275

Parent topic: National languages

This build: January 26, 2011 11:19:17

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr21180_

10.2.7. UK English /Gaelic

Details of CCSIDs and CCSID conversion for UK English/Gaelic.

The following table shows the native CCSIDs for UK English / Gaelic on supported platforms:

All non-client platforms support conversion between their native CCSIDs and the native CCSIDs of the other platforms, with the following
exceptions.

i5/OS

Code page:

285

Does not convert to code pages 858, 923, 924, 1275

924

Does not convert to code pages 285, 437, 858, 1051, 1146, 1252, 1275, 5348

1146

Does not convert to code pages 924, 1051, 1275

Parent topic: National languages

This build: January 26, 2011 11:19:17

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr21220_

10.2.8. French

Details of CCSIDs and CCSID conversion for French.

The following table shows the native CCSIDs for French on supported platforms:

Platform Native CCSIDs

i5/OS®, z/OS® 284, 924, 1145

AIX® 819, 923, 5348

HP-UX 819, 923, 1051

Windows 437, 850, 858, 1252, 5348

OVMS, NSS, Solaris, Linux, Tru64 819, 923

Apple client 1275

Platform Native CCSIDs

i5/OS®, z/OS® 285, 924, 1146

AIX® 819, 923, 5348

HP-UX 819, 923, 1051

Windows 437, 850, 858, 1252, 5348

OVMS, NSS, Solaris, Linux, Tru64 819, 923

Apple client 1275

Platform Native CCSIDs

Page 687 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

All non-client platforms support conversion between their native CCSIDs and the native CCSIDs of the other platforms, with the following
exceptions.

i5/OS

Code page:

297

Does not convert to code pages 858, 923, 924, 1275, 5348

924

Does not convert to code pages 297, 437, 858, 1051, 1147, 1252, 1275, 5348

1147

Does not convert to code pages 924, 1051, 1275

Parent topic: National languages

This build: January 26, 2011 11:19:18

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr21260_

10.2.9. Multilingual

Details of CCSIDs and CCSID conversion for Multilingual.

The following table shows the native CCSIDs for multilingual conversion on supported platforms:

All non-client platforms support conversion between their native CCSIDs and the native CCSIDs of the other platforms, with the following
exceptions.

i5/OS

Code page:

500

Does not convert to code pages 858, 923

924

Does not convert to code pages 437, 858, 1051, 1148, 1252, 1275, 5348

1148

Does not convert to code pages 924, 1051, 1275

Parent topic: National languages

This build: January 26, 2011 11:19:20

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr21300_

10.2.10. Portuguese

Details of CCSIDs and CCSID conversion for Portuguese.

The following table shows the native CCSIDs for Portuguese on supported platforms:

i5/OS®, z/OS® 297, 924, 1147

AIX® 819, 923, 5348

HP-UX 819, 923, 1051

Windows 437, 850, 858, 1252, 5348

OVMS, NSS, Solaris, Linux, Tru64 819, 923

Apple client 1275

Platform Native CCSIDs

i5/OS®, z/OS® 500, 924, 1148

AIX® 819, 923, 5348

HP-UX 819, 923, 1051

Windows 437, 850, 858, 1252, 5348

OVMS, NSS, SINIX, Solaris, Linux, Tru64 819, 923

Apple client 1275

Platform Native CCSIDs

i5/OS® 37, 500, 924, 1140

Page 688 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

All non-client platforms support conversion between their native CCSIDs and the native CCSIDs of the other platforms, with the following
exceptions.

i5/OS

Code page:

37

Does not convert to code pages 858, 923, 1275

500

Does not convert to code pages 858, 923, 1275

924

Does not convert to code pages 858, 860, 1051, 1140, 1252, 1275, 5348

1140

Does not convert to code pages 860, 924, 1051, 1275

HP-UX

Code page:

1051

Does not convert to code page 860

Windows

Code page:

860

Does not convert to code pages 1051, 1275

Parent topic: National languages

This build: January 26, 2011 11:19:20

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr21340_

10.2.11. Icelandic

Details of CCSIDs and CCSID conversion for Icelandic.

The following table shows the native CCSIDs for Icelandic on supported platforms:

All non-client platforms support conversion between their native CCSIDs and the native CCSIDs of the other platforms, with the following

exceptions.

i5/OS

Code page:

871

Does not convert to code pages 858, 923, 924, 1275, 5348

924

Does not convert to code pages 858, 861, 871, 1051, 1149, 1252, 1275, 5348

1149

Does not convert to code pages 924, 1051, 1275

HP-UX

z/OS® 500, 924, 1140

AIX® 819, 923, 5348

HP-UX 819, 923, 1051

Windows 850, 858, 860, 1252, 5348

OVMS, NSS, Solaris, Linux, Tru64 819, 923

Apple client 1275

Platform Native CCSIDs

i5/OS®, z/OS® 871, 924, 1149

AIX® 819, 923, 5348

HP-UX 819, 923, 1051

Windows 850, 858, 861, 1252, 5348

OVMS, NSS, Solaris, Linux, Tru64 819, 923

Apple client 1275

Page 689 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Code page:

1051

Does not convert to code page 861

Windows

Code page:

861

Does not convert to code pages 1051, 1275

Parent topic: National languages

This build: January 26, 2011 11:19:21

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr21400_

10.2.12. Eastern European languages

Details of CCSIDs and CCSID conversion for Eastern European Languages. The typical languages using these CCSIDs include Albanian,
Croatian, Czech, Hungarian, Polish, Romanian, Serbian, Slovak, and Slovenian.

The following table shows the native CCSIDs for Eastern European languages on supported platforms:

All non-client platforms support conversion between their native CCSIDs and the native CCSIDs of the other platforms, with the following
exceptions.

z/OS

Code page:

870

Does not convert to code pages 1284, 1285

1153

Does not convert to code pages 1250, 1284, 1285

i5/OS

Code page:

870

Does not convert to code pages 1284, 1285, 5346, 9044

1153

Does not convert to code pages 1282, 1284, 1285, 5346, 9044

HP-UX, Solaris, Linux

Code page:

912

Does not convert to code pages 1284, 1285

OVMS, NSS

Code page:

912

Does not convert to code pages 1153, 1284, 1285, 9044

Windows

Code page:

852

Does not convert to code pages 1284, 1285

1250

Platform Native CCSIDs

i5/OS®, z/OS® 870, 1153

Windows 852, 1250, 5346, 9044

AIX®, OVMS, HP-UX, NSS, Solaris, Linux, Tru64 912

Eastern European Apple client 1282

Romanian Apple client 1285

Croatian Apple client 1284

Page 690 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Does not convert to code pages 1284, 1285

9044

Does not convert to code pages 912, 1282, 1284, 1285

Parent topic: National languages

This build: January 26, 2011 11:19:21

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr21460_

10.2.13. Cyrillic

Details of CCSIDs and CCSID conversion for Cyrillic. The typical languages using these CCSIDs include Belarussion, Bulgarian, Macedonian,
Russian, and Serbian.

The following table shows the native CCSIDs for Cyrillic on supported platforms:

All non-client platforms support conversion between their native CCSIDs and the native CCSIDs of the other platforms, with the following
exceptions.

i5/OS

Code page:

880

Does not convert to code pages 855, 866, 878, 1131, 5347

1025

Does not convert to code pages 878, 5347

Windows

Code page:

855

Does not convert to code page 1131

866

Does not convert to code page 1131

1131

Does not convert to code pages 855, 866, 880, 1283

Parent topic: National languages

This build: January 26, 2011 11:19:22

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr21520_

10.2.14. Estonian

Details of CCSIDs and CCSID conversion for Estonian.

The following table shows the native CCSIDs for Estonian on supported platforms:

All platforms support conversion between their native CCSIDs and the native CCSIDs of other platforms, with the following exceptions.

z/OS

Code page:

Platform Native CCSIDs

z/OS® 1025

i5/OS® 880, 1025

Windows 855, 866, 1131, 1251, 5347

Solaris 878, 915

AIX®, OVMS, HP-UX, Linux, NSS, Tru64 915

Apple client 1283

Platform Native CCSIDs

i5/OS®, z/OS® 1122, 1157

Windows 902, 922, 1257, 5353, 9449

AIX®, HP-UX, Solaris, Linux 902, 922

OVMS, NSS, Tru64 922

Page 691 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

1122

Does not convert to code pages 902, 1157, 9449

1157

Does not convert to code pages 922, 1122, 1257, 9449

i5/OS

Code page:

1122

Does not convert to code pages 902, 5353, 9449

1157

Does not convert to code pages 922, 5353, 9449

HP-UX, Solaris, Linux

Code page:

902

Does not convert to code pages 922, 1122, 9449

922

Does not convert to code pages 902, 1157, 9449

Windows

Code page:

5353

Does not convert to code page 9449

9449

Does not convert to code pages 902, 922, 1122, 1157, 1257, 5353

902

Does not convert to code pages 922, 1122, 9449

OVMS, NSS, Tru64

Code page:

922

Does not convert to code pages 902, 1157, 9449

Parent topic: National languages

This build: January 26, 2011 11:19:22

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr21570_

10.2.15. Latvian and Lithuanian

Details of CCSIDs and CCSID conversion for Latvian and Lithuanian.

The following table shows the native CCSIDs for Latvian and Lithuanian on supported platforms:

All platforms support conversion between their native CCSIDs and the native CCSIDs of other platforms, with the following exceptions.

z/OS

Code page:

1112

Does not convert to code pages 901, 1156, 9449

1156

Does not convert to code pages 901, 1156, 9449

i5/OS

Code page:

Platform Native CCSIDs

i5/OS®, z/OS® 1112, 1156

Windows 901, 921, 1257, 5353, 9449

AIX®, HP-UX, Solaris, Linux 901, 921

OVMS, NSS, Tru64 921

Page 692 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

1112

Does not convert to code page 5353

1153

Does not convert to code pages 921, 5353, 9449

HP-UX, Solaris, Linux

Code page:

902

Does not convert to code pages 921, 1112, 1257, 9449

921

Does not convert to code pages 901, 1156, 9449

Windows

Code page:

901

Does not convert to code pages 921, 1112, 1257, 9449

5355

Does not convert to code page 9449

9449

Does not convert to code pages 901, 921, 1112, 1156, 1257

OVMS, NSS, Tru64

Code page:

921

Does not convert to code pages 901, 1156, 9449

Parent topic: National languages

This build: January 26, 2011 11:19:23

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr21600_

10.2.16. Ukrainian

Details of CCSIDs and CCSID conversion for Ukrainian

The following table shows the native CCSIDs for Ukranian on supported platforms:

i5/OS

Code page:

1123

Does not convert to code page 5347

HP-UX

Code page:

1124

Does not convert to code page 5347

Windows

Code page:

1125

Does not convert to code page 1123

All platforms support conversion between their native CCSIDs and the native CCSIDs of other platforms, with the following exceptions.

Parent topic: National languages

This build: January 26, 2011 11:19:23

Platform Native CCSIDs

i5/OS®, z/OS® 1123

Windows 1124, 1125, 1251, 5347

AIX®, OVMS, HP-UX, NSS, Solaris, Linux, Tru64 1124

Page 693 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr21630_

10.2.17. Greek

Details of CCSIDs and CCSID conversion for Greek

The following table shows the native CCSIDs for Greek on supported platforms:

i5/OS

Code page:

875

Does not convert to code page 5349

Windows

Code page:

1253

Does not convert to code page 737

5349

Does not convert to code page 737

All non-client platforms support conversion between their native CCSIDs, the native CCSIDs of the other platforms with the following
exceptions.

Parent topic: National languages

This build: January 26, 2011 11:19:23

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr21680_

10.2.18. Turkish

Details of CCSIDs and CCSID conversion for Turkish

The following table shows the native CCSIDs for Turkish on supported platforms:

i5/OS

Code page:

1026

Does not convert to code page 5350

All non-client platforms support conversion between their native CCSIDs and the native CCSIDs of the other platforms, with the following
exceptions.

Parent topic: National languages

Platform Native CCSIDs

i5/OS®, z/OS® 875

HP-UX 813 (see note)

Windows 869, 1253, 5349

AIX®, OVMS, NCR, NSS, Solaris, Linux, Tru64 813

Apple client 1280

DOS client 737

Note: Only the ISO codeset is supported on HP-UX. The HP-UX proprietary greek8 codeset has no registered CCSID and is not

supported.

Platform Native CCSIDs

i5/OS®, z/OS® 1026

HP-UX 920 (see note)

Windows 857, 1254, 5350

AIX®, OVMS, NSS, Solaris, Linux, Tru64 920

Apple client 1281

Note: Only the ISO codeset is supported on HP-UX. The HP-UX proprietary turkish8 codeset has no registered CCSID and is not

supported.

Page 694 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

This build: January 26, 2011 11:19:23

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr21730_

10.2.19. Hebrew

Details of CCSIDs and CCSID conversion for Hebrew.

The following table shows the native CCSIDs for Hebrew on supported platforms:

All platforms support conversion between their native CCSIDs and the native CCSIDs of other platforms, with the following exceptions.

z/OS

Code page:

424

Does not convert to code pages 867, 4899, 9048, 12712

803

Does not convert to code pages 867, 4899, 5351, 9048, 12712

4899

Does not convert to code pages 424, 803, 856, 862, 916, 1255

12712

Does not convert to code pages 424, 803, 856, 916, 1255

i5/OS

Code page:

424

Does not convert to code pages 803, 867, 4899, 5351, 9048, 12712

Code page 424 also converts to and from CCSID 4952, which is a variant of 856.

AIX

Code page:

916

Does not convert to code pages 867, 4899, 9048, 12712

9048

Does not convert to code pages 424, 803, 856, 862, 916, 1255

Windows

Code page:

1255

Does not convert to code pages 867, 4899, 9048, 12712

5351

Does not convert to code page 803

Parent topic: National languages

This build: January 26, 2011 11:19:24

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr21750_

10.2.20. Arabic

Platform Native CCSIDs

z/OS® 424, 803, 4899, 12712

i5/OS® 424

AIX® 916, 9048

HP-UX 916 (see note)

Windows 1255, 5351

OVMS, NSS, Solaris, Linux, Tru64 916

Note: Only the ISO codeset is supported on HP-UX. The HP-UX proprietary greek8 codeset has no registered CCSID and is not

supported.

Page 695 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Details of CCSIDs and CCSID conversion for Arabic

The following table shows the native CCSIDs for Arabic on supported platforms:

i5/OS

Code page:

420

Does not convert to code page 5352

HP-UX, Solaris, Linux, OVMS, NSS, Tru64

Code page:

1089

Does not convert to code page 720

Windows

Code page:

720

Does not convert to code pages 1089, 5352

5352

Does not convert to code page 720

All platforms support conversion between their native CCSIDs and the native CCSIDs of other platforms, with the following exceptions.

Parent topic: National languages

This build: January 26, 2011 11:19:24

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr21830_

10.2.21. Farsi

Details of CCSIDs and CCSID conversion for Farsi

The following table shows the native CCSIDs for Farsi on supported platforms:

All platforms support conversion between their native CCSIDs and the native CCSIDs of other platforms.

Parent topic: National languages

This build: January 26, 2011 11:19:25

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr21880_

10.2.22. Urdu

Details of CCSIDs and CCSID conversion for Urdu

The following table shows the native CCSIDs for Urdu on supported platforms:

Platform Native CCSIDs

i5/OS®, z/OS® 420

AIX® 1046, 1089

HP-UX 1089 (see note)

Windows 720, 864, 1256, 5352

OVMS, NSS, Solaris, Linux, Tru64 1089

Note: Only the ISO codeset is supported on HP-UX. The HP-UX proprietary arabic8 codeset has no registered CCSID and is not

supported.

Platform Native CCSIDs

i5/OS®, z/OS® 1097

AIX®, OVMS, HP-UX, NSS, Solaris, Linux, Tru64, Windows 1098 (see note)

Note: The native CCSID for these platforms has not been standardized and may change.

Platform Native CCSIDs

Page 696 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

i5/OS

Code page:

918

Does not convert to code page 1006

All platforms support conversion between their native CCSIDs and the native CCSIDs of other platforms, with the following exceptions.

Parent topic: National languages

This build: January 26, 2011 11:19:25

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr21900_

10.2.23. Thai

Details of CCSIDs and CCSID conversion for Thai

The following table shows the native CCSIDs for Thai on supported platforms:

All platforms support conversion between their native CCSIDs and the native CCSIDs of other platforms.

Parent topic: National languages

This build: January 26, 2011 11:19:25

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr21930_

10.2.24. Lao

Details of CCSIDs and CCSID conversion for Lao

The following table shows the native CCSIDs for Lao on supported platforms:

All platforms support conversion between their native CCSIDs and the native CCSIDs of other platforms.

Parent topic: National languages

This build: January 26, 2011 11:19:25

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr21950_

10.2.25. Vietnamese

Details of CCSIDs and CCSID conversion for Vietnamese

The following table shows the native CCSIDs for Vietnamese on supported platforms:

i5/OS

i5/OS®, z/OS® 918

Windows 868

AIX®, HP-UX, OVMS, NSS, Solaris, Linux, Tru64 1006

Platform Native CCSIDs

i5/OS®, z/OS® 838

AIX®, OVMS, HP-UX, NSS, Solaris, Linux, Tru64, Windows 874 (see note)

Note: The native CCSID for these platforms has not been standardized and may change.

Platform Native CCSIDs

i5/OS®, z/OS® 1132

AIX®, OVMS, HP-UX, NSS, Solaris, Linux, Tru64, Windows 1133

Platform Native CCSIDs

i5/OS®, z/OS® 1130

Windows 1258, 5354

AIX®, OVMS, HP-UX, NSS, Solaris, Linux, Tru64 1129

Page 697 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Code page:

1130

Does not convert to code pages 1129, 5354

All platforms support conversion between their native CCSIDs and the native CCSIDs of other platforms, with the following exceptions.

Parent topic: National languages

This build: January 26, 2011 11:19:25

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr21970_

10.2.26. Japanese Latin SBCS

Details of CCSIDs and CCSID conversion for Japanese Latin SBCS

The following table shows the native CCSIDs for Japanese Latin SBCS on supported platforms:

z/OS

Code page:

1027

Does not convert to code pages 932, 942, 943, 954, 5050, 33722

i5/OS

Code page:

1027

Does not convert to code page 932

AIX

Code page:

932

Does not convert to code page 1027

5050

Does not convert to code page 1027

33722

Does not convert to code page 1027

Linux

Code page:

943

Does not convert to code page 1027

5050

Does not convert to code page 1027

Solaris

Code page:

Platform Native CCSIDs

i5/OS®, z/OS® 1027

AIX® 932, 5050, 33722 (see Note 1)

Windows 932, 943 (see Notes 2 and 3)

OVMS, Linux, NSS, Solaris 943, 5050

HP-UX Not known

Tru64 943, 954, 5050, 33722

Note:

1. 5050 and 33722 are CCSIDs related to base code page 954 on AIX. The CCSID reported by the operating system is

33722.

2. Windows NT uses code page 932 but this is best represented by the CCSID of 943. However, not all platforms of

WebSphere® MQ support this CCSID.

On WebSphere MQ for Windows CCSID 932 is used to represent code page 932, but a change to

file ../conv/table/ccsid.tbl can be made which changes the CCSID used to 943.

3. WebSphere MQ does not support code pages based on the JIS X 0213 (JIS2004) standard.

Page 698 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

943

Does not convert to code page 1027

5050

Does not convert to code page 1027

NSS

Code page:

943

Does not convert to code page 1027

5050

Does not convert to code page 1027

Tru64

Code page:

943

Does not convert to code page 1027

954

Does not convert to code page 1027

5050

Does not convert to code page 1027

33722

Does not convert to code page 1027

All platforms support conversion between their native CCSIDs and the native CCSIDs of other platforms, with the following exceptions.

Parent topic: National languages

This build: January 26, 2011 11:19:26

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr22000_

10.2.27. Japanese Katakana SBCS

Details of CCSIDs and CCSID conversion for Japanese Katakana SBCS

The following table shows the native CCSIDs for Japanese Katakana SBCS on supported platforms:

z/OS

Code page:

290

Does not convert to code pages 932, 943, 954, 5050, 33722

i5/OS

Code page:

290

Platform Native CCSIDs

i5/OS®, z/OS® 290

HP-UX 897

AIX® 932, 5050, 33722 (see Note 1)

Windows 932, 943 (see Notes 2 and 3)

OVMS, Linux, NSS, Solaris 943, 5050

Tru64 943, 954, 5050, 33722

Note:

1. 5050 and 33722 are CCSIDs related to base code page 954 on AIX. The CCSID reported by the operating system is

33722.

2. Windows NT uses code page 932 but this is best represented by the CCSID of 943. However, not all platforms of

WebSphere® MQ support this CCSID.

On WebSphere MQ for Windows CCSID 932 is used to represent code page 932, but a change to

file ../conv/table/ccsid.tbl can be made which changes the CCSID used to 943.

3. WebSphere MQ does not support code pages based on the JIS X 0213 (JIS2004) standard.

4. In addition to the above conversions, the WebSphere MQ products on AIX, HP-UX, Solaris, Linux and Tru64 support

conversion from CCSID 897 to CCSIDs 37, 273, 277, 278, 280, 284, 285, 290, 297, 437, 500, 819, 850, 1027, and 1252.

Page 699 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Does not convert to code page 932

AIX

Code page:

932

Does not convert to code pages 290, 897

5050

Does not convert to code pages 290, 897

33722

Does not convert to code pages 290, 897

HP-UX

Code page:

897

Does not convert to code pages 932, 943, 954, 5050, 33722

Linux

Code page:

943

Does not convert to code pages 290, 897

5050

Does not convert to code pages 290, 897

Solaris

Code page:

943

Does not convert to code pages 290, 897

5050

Does not convert to code pages 290, 897

DEC-OVMS

Code page:

943

Does not convert to code pages 290, 897, 932, 954, 5050, 33722

954

Does not convert to code pages 290, 897, 943

OVMS, NSS

Code page:

943

Does not convert to code pages 290, 897

5050

Does not convert to code pages 290, 897

Tru64

Code page:

943

Does not convert to code pages 290, 897

954

Does not convert to code pages 290, 897

5050

Does not convert to code pages 290, 897

33722

Does not convert to code pages 290, 897

All platforms support conversion between their native CCSIDs and the native CCSIDs of other platforms, with the following exceptions.

Parent topic: National languages

This build: January 26, 2011 11:19:27

Notices | Trademarks | Downloads | Library | Support | Feedback

Page 700 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr22090_

10.2.28. Japanese Kanji/ Latin Mixed

Details of CCSIDs and CCSID conversion for Japanese Kanji/Latin Mixed.

The following table shows the native CCSIDs for Japanese Kanji/ Latin Mixed on supported platforms:

z/OS

Code page:

1399

Does not convert to code pages 954, 5035, 5050, 33722

5035

Does not convert to code pages 954, 1399, 5050, 33722

i5/OS

Code page:

1399

Does not convert to code page 5039

5035

Does not convert to code page 5039

HP-UX

Code page:

932

Does not convert to code pages 942, 943, 1399

954

Does not convert to code pages 942, 943, 1399

5039

Does not convert to code pages 942, 943, 1399

OVMS, NSS

Code page:

943

Does not convert to code page 1399

5050

Does not convert to code page 1399

Tru64

Code page:

943

Platform Native CCSIDs

i5/OS®, z/OS® 1399, 5035 (see Note 1)

AIX® 932, 5050, 33722 (see Note 2)

HP-UX 932, 954, 5039 (see Note 3)

Windows 932, 943 (see Notes 4 and 5)

OVMS, Linux, NSS, Solaris 943, 5050

Tru64 943, 954, 5050, 33722

Note:

1. 5035 is a CCSID related to code page 939

2. 5050 and 33722 are CCSIDs related to base code page 954 on AIX. The CCSID reported by the operating system is

33722.

3. Code sets japan15 and SJIS on HP-UX are represented by CCSID 932. These have a few DBCS characters having different

representations in SJIS so 932 may be converted incorrectly if the conversion is not performed on an HP-UX system.

WebSphere® MQ for HP-UX supports 5039, the correct CCSID for HP SJIS. A change to file /var/mqm/conv/ccsid.tbl

can be made to change the CCSID used from 932 to 5039.

4. Windows NT uses code page 932 but this is best represented by the CCSID of 943. However, not all platforms of
WebSphere MQ support this CCSID.

On WebSphere MQ for Windows CCSID 932 is used to represent code page 932, but a change to
file ../conv/table/ccsid.tbl can be made which changes the CCSID used to 943.

5. WebSphere MQ does not support code pages based on the JIS X 0213 (JIS2004) standard.

Page 701 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Does not convert to code page 1399

954

Does not convert to code page 1399

5050

Does not convert to code page 1399

33722

Does not convert to code page 1399

All platforms support conversion between their native CCSIDs and the native CCSIDs of other platforms, with the following exceptions.

Parent topic: National languages

This build: January 26, 2011 11:19:27

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr22190_

10.2.29. Japanese Kanji/ Katakana Mixed

Details of CCSIDs and CCSID conversion for Japanese Kanji/Katakana Mixed.

The following table shows the native CCSIDs for Japanese Kanji/ Katakana Mixed on supported platforms:

z/OS

Code page:

1390

Does not convert to code pages 954, 5026, 5050, 33722

Does not accept lower case characters.

5026

Does not convert to code pages 954, 1390, 5050, 33722

i5/OS

Code page:

5026

Does not convert to code pages 1390, 5039

HP-UX

Code page:

932

Does not convert to code pages 942, 943, 1390

954

Does not convert to code pages 942, 943, 1390

5039

Platform Native CCSIDs

z/OS® 1390, 5026 (see Note 1)

i5/OS® 5026 (see Note 1)

AIX® 932, 5050, 33722 (see Note 2)

HP-UX 932, 954, 5039 (see Note 3)

Windows 932, 943 (see Notes 4 and 5)

OVMS, Linux, NSS, Solaris 943, 5050

Tru64 943, 954, 5050, 33722

Note:

1. CCSID 1390 does not accept lower case characters. 5026 is a CCSID related to code page 930. CCSID 5026 is the CCSID

reported on i5/OS when the Japanese Katakana (DBCS) feature is selected.

2. 5050 and 33722 are CCSIDs related to base code page 954 on AIX. The CCSID reported by the operating system is

33722.

3. Code sets japan15 and SJIS on HP-UX are represented by CCSID 932. These have a few DBCS characters having different

representations in SJIS so 932 may be converted incorrectly if the conversion is not performed on an HP-UX system.

WebSphere® MQ for HP-UX supports 5039, the correct CCSID for HP SJIS. A change to file /var/mqm/conv/ccsid.tbl

can be made to change the CCSID used from 932 to 5039.

4. Windows NT uses code page 932 but this is best represented by the CCSID of 943. However, not all platforms of

WebSphere MQ support this CCSID.

On WebSphere MQ for Windows, CCSID 932 is used to represent code page 932, but a change to

file ../conv/table/ccsid.tbl can be made that changes the CCSID used to 943.

5. WebSphere MQ does not support code pages based on the JIS X 0213 (JIS2004) standard.

Page 702 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Does not convert to code pages 942, 943, 1390

OVMS, NSS

Code page:

943

Does not convert to code page 1390

5050

Does not convert to code page 1390

Tru64

Code page:

943

Does not convert to code page 1390

954

Does not convert to code page 1390

5050

Does not convert to code page 1390

33722

Does not convert to code page 1390

All platforms support conversion between their native CCSIDs and the native CCSIDs of other platforms, with the following exceptions.

Parent topic: National languages

This build: January 26, 2011 11:19:28

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr22260_

10.2.30. Korean

Details of CCSIDs and CCSID conversion for Korean.

The following table shows the native CCSIDs for Korean on supported platforms:

z/OS

Code page:

933

Does not convert to code page 970

1364

Does not convert to code page 970

HP-UX

Code page:

970

Does not convert to code pages 949, 1363, 1364

All platforms support conversion between their native CCSIDs and the native CCSIDs of other platforms, with the following exceptions.

Parent topic: National languages

This build: January 26, 2011 11:19:28

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr22330_

10.2.31. Simplified Chinese

Details of CCSIDs and CCSID conversion for Simplified Chinese.

Platform Native CCSIDs

z/OS®, i5/OS® 933, 1364

AIX®, OVMS, HP-UX, Linux, NSS, Solaris 970

Windows 949, 1363

Tru64 970, 1363

Page 703 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

The following table shows the native CCSIDs for Simplified Chinese on supported platforms:

All platforms support conversion between their native CCSIDs and the native CCSIDs of other platforms, with the following exceptions.

z/OS

Code page:

935

Does not convert to code page 1383

1388

Does not convert to code page 1383

HP-UX

Code page:

1381

Does not convert to code pages 1383, 1386, 1388

Parent topic: National languages

This build: January 26, 2011 11:19:28

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr22370_

10.2.32. Traditional Chinese

Details of CCSIDs and CCSID conversion for Traditional Chinese.

The following table shows the native CCSIDs for Traditional Chinese on supported platforms:

z/OS

Code page:

937

Does not convert to code page 964

1388

Does not convert to code page 1383

Platform Native CCSIDs

z/OS® 935, 1388

i5/OS® 935, 1388

AIX® 1383, 1386

HP-UX 1381 (see Note 1)

Windows 1381, 1386(see Note 2)

OVMS, Linux, NSS, Solaris, Tru64 1383

Note:

1. Code sets prc15 and hp15CN on HP-UX are represented by CCSID 1381.

2. Windows uses code page 936 but this is best represented by the CCSID of 1386. However, not all platforms of

WebSphere® MQ support this CCSID.

On WebSphere MQ for Windows CCSID 1381 is used to represent code page 936, but a change to

file ../conv/table/ccsid.tbl can be made which changes the CCSID used to 1386.

3. WebSphere MQ supports phase one of the Chinese GB18030 standard.

On z/OS, Linux, Windows, and Solaris, conversion support is provided between Unicode (UTF-8 and UCS-2) and CCSID
1388 (EBCDIC with GB18030 extensions), Unicode (UTF-8 and UCS-2) and CCSID 5488 (GB18030 phase one), and

between CCSID 1388 and CCSID 5488.

Note:

On i5/OS, support is provided by the operating system for conversion between Unicode (UTF-8 and UCS-2) and CCSID
1388 (EBCDIC with GB18030 extensions).

On HP-UX there is currently no support available on the HP11 operating system for GB18030. On HP11i, patch
PHCO_26456 provides conversion support between GB18030 (CCSID 5488) and Unicode. Support is not provided for the

conversion between GB18030 and 1388 (EBCDIC).

Platform Native CCSIDs

z/OS®, i5/OS® 937

HP-UX 938, 950, 964 (see Note)

Tru64, Windows 950

AIX®, OVMS, NSS, Solaris, Linux 950, 964

Note: Code set roc15 on HP-UX is represented by CCSID 938.

Page 704 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

HP-UX

Code page:

938

Does not convert to code page 948

950

Does not convert to code page 948

964

Does not convert to code page 948

OVMS, Linux, Solaris

Code page:

964

Does not convert to code page 938

All platforms support conversion between their native CCSIDs and the native CCSIDs of other platforms, with the following exceptions.

Parent topic: National languages

This build: January 26, 2011 11:19:29

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr22410_

10.3. z/OS® conversion support

Table 1. WebSphere® MQ for z/OS CCSID conversion support

CCSID Converts to and from CCSIDS

37 256, 273, 275, 277-278, 280, 284-285, 290, 297, 367, 420, 423-424, 437, 500, 720,

737, 775, 813, 819, 833, 836, 838, 850, 852, 855, 857-858, 860-866, 869-871, 874-
875, 880, 897, 903-905, 912, 914-916, 920-924, 1009, 1025-1027, 1040-1043, 1047,

1051, 1088, 1097, 1100, 1112, 1114-1115, 1122, 1124, 1126, 1130-1132, 1137, 1140-

1149, 1200, 1208, 1250-1255, 1257-1258, 1275, 1280-1281, 1283, 4386, 4909, 4929,

4932, 4934, 4946, 4948, 4951, 4953, 4960, 4970-4971, 5012, 5123, 5210-5211, 5346,

5348, 8229, 8482, 8612, 9025, 9030, 9044, 9049, 9056, 9061, 9066, 13121, 13488,
16804, 17248, 17584, 25473, 25479, 25480, 25617, 25619, 25664, 28709

256 37, 273, 277-278, 280, 284-285, 290, 297, 367, 420, 423-424, 437, 500, 737, 775,

819, 833, 836, 838, 850, 852, 857, 860-866, 869-871, 875, 880, 905, 1025-1027,

1112, 1122, 1200, 1208, 1251-1252, 1275, 4386, 4929, 4932, 4934, 4946, 4948, 4953,

4960, 4971, 5123, 8229, 8482, 8612, 9025, 9030, 9044, 9049, 9056, 9061, 13121,
13488, 16804, 17248, 17584, 28709

259 437, 808, 850-852, 855-858, 860-865, 867, 869, 872, 874, 899, 901-902, 915, 1098,

1161-1162, 1200, 1208, 1250-1258, 4946, 4948, 4951-4953, 4960, 4970, 5346, 5348,

9044, 9049, 9056, 9061, 9066, 13488, 17248, 17584

273 37, 256, 277-278, 280, 284-285, 290, 297, 367, 423, 437, 500, 737, 775, 813, 819,

833, 836, 838, 850, 852, 855-858, 860-865, 869-871, 874-875, 880, 897, 903, 912,

916, 920, 923-924, 1009, 1025-1027, 1040-1043, 1047, 1051, 1088, 1100, 1112,

1122, 1140-1149, 1200, 1208, 1250, 1252, 1275, 4386, 4909, 4929, 4932, 4934, 4946,
4948, 4951-4953, 4960, 4970-4971, 5012, 5123, 5346, 5348, 8229, 8482, 9025, 9030,

9044, 9049, 9056, 9061, 9066, 13121, 13488, 17248, 17584, 25473, 25479, 25617,

25619, 25664, 28709

274 500, 1047

275 37, 437, 500, 819, 850, 1047, 1200, 1208, 1252, 4946, 5348, 8229, 13488, 17584,

28709

277 37, 256, 273, 278, 280, 284-285, 290, 297, 367, 423, 437, 500, 737, 775, 813, 819,
833, 836, 838, 850, 852, 855, 857-858, 860-865, 869-871, 874-875, 880, 897, 903,

912, 916, 920, 923-924, 1009, 1025-1027, 1040-1043, 1047, 1051, 1088, 1100, 1112,

1122, 1140-1149, 1200, 1208, 1252, 1275, 4386, 4909, 4929, 4932, 4934, 4946, 4948,

4951, 4953, 4960, 4970-4971, 5012, 5123, 5348, 8229, 8482, 9025, 9030, 9044, 9049,

9056, 9061, 9066, 13121, 13488, 17248, 17584, 25473, 25479, 25617, 25619, 25664,

28709

278 37, 256, 273, 277, 280, 284-285, 290, 297, 367, 423, 437, 500, 737, 775, 813, 819,

833, 836, 838, 850, 852, 855, 857-858, 860-865, 869-871, 874-875, 880, 897, 903,

912, 916, 920, 923-924, 1009, 1025-1027, 1040-1043, 1047, 1051, 1088, 1100, 1112,

1122, 1140-1149, 1200, 1208, 1252, 1275, 4386, 4909, 4929, 4932, 4934, 4946, 4948,
4951, 4953, 4960, 4970-4971, 5012, 5123, 5348, 8229, 8482, 9025, 9030, 9044, 9049,

9056, 9061, 9066, 13121, 13488, 17248, 17584, 25473, 25479, 25617, 25619, 25664,

28709

280 37, 256, 273, 277-278, 284-285, 290, 297, 367, 423, 437, 500, 737, 775, 813, 819,
833, 836, 838, 850, 852, 855, 857-858, 860-865, 869-871, 874-875, 880, 897, 903,

912, 916, 920, 923-924, 1009, 1025-1027, 1040-1043, 1047, 1051, 1088, 1100, 1112,

1122, 1140-1149, 1200, 1208, 1252, 1275, 4386, 4909, 4929, 4932, 4934, 4946, 4948,

4951, 4953, 4960, 4970-4971, 5012, 5123, 5348, 8229, 8482, 9025, 9030, 9044, 9049,

9056, 9061, 9066, 13121, 13488, 17248, 17584, 25473, 25479, 25617, 25619, 25664,
28709

281 1047

Page 705 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

282 500, 1047, 1200, 1208, 13488, 17584

284 37, 256, 273, 277-278, 280, 285, 290, 297, 367, 423, 437, 500, 737, 775, 813, 819,
833, 836, 838, 850, 852, 855, 857-858, 860-865, 869-871, 874-875, 880, 897, 903,

912, 916, 920, 923-924, 1009, 1025-1027, 1040-1043, 1047, 1051, 1088, 1100, 1112,

1122, 1140-1149, 1200, 1208, 1252, 1275, 4386, 4909, 4929, 4932, 4934, 4946, 4948,

4951, 4953, 4960, 4970-4971, 5012, 5123, 5348, 8229, 8482, 9025, 9030, 9044, 9049,

9056, 9061, 9066, 13121, 13488, 17248, 17584, 25473, 25479, 25617, 25619, 25664,

28709

285 37, 256, 273, 277-278, 280, 284, 290, 297, 423, 437, 500, 737, 775, 813, 819, 833,

836, 838, 850, 852, 855, 857-858, 860-865, 869-871, 874-875, 880, 897, 903, 912,

916, 920, 923-924, 1025-1027, 1040-1043, 1047, 1051, 1088, 1100, 1112, 1122,

1140-1149, 1200, 1208, 1252, 1275, 4386, 4909, 4929, 4932, 4934, 4946, 4948, 4951,
4953, 4960, 4970-4971, 5012, 5123, 5348, 8229, 8482, 9025, 9030, 9044, 9049, 9056,

9061, 9066, 13121, 13488, 17248, 17584, 25473, 25479, 25617, 25619, 25664, 28709

290 37, 256, 273, 277-278, 280, 284-285, 297, 367, 437, 500, 737, 775, 819, 833, 836,

850, 852, 855, 857, 860-865, 870-871, 895-897, 1009, 1025-1027, 1040-1043, 1088,
1112, 1122, 1139, 1200, 1208, 1252, 4386, 4929, 4932, 4946, 4948, 4951, 4953,

4960, 4992, 5123, 8229, 8482, 9025, 9044, 9049, 9056, 13121, 13488, 17248, 17584,

25473, 25617, 25619, 25664, 28709

293 1200, 1208, 13488, 17584

297 37, 256, 273, 277-278, 280, 284-285, 290, 367, 423, 437, 500, 737, 775, 813, 819,

833, 836, 838, 850, 852, 855, 857-858, 860-865, 869-871, 874-875, 880, 897, 903,

912, 916, 920, 923-924, 1009, 1025-1027, 1040-1043, 1047, 1051, 1088, 1100, 1112,

1122, 1140-1149, 1200, 1208, 1252, 1275, 4386, 4909, 4929, 4932, 4934, 4946, 4948,
4951, 4953, 4960, 4970-4971, 5012, 5123, 5348, 8229, 8482, 9025, 9030, 9044, 9049,

9056, 9061, 9066, 13121, 13488, 17248, 17584, 25473, 25479, 25617, 25619, 25664,

28709

300 301, 941, 1200, 1208, 1351, 4396, 8492, 13488, 16684, 17584

301 300, 941, 1200, 1208, 1351, 4396, 8492, 13488, 16684, 17584

367 37, 256, 273, 277-278, 280, 284, 290, 297, 500, 819, 833, 836, 850, 871, 875, 1009,

1026-1027, 1041, 1088, 1115, 1126, 1200, 1208, 4386, 4929, 4932, 4946, 4971, 5123,

5211, 8229, 8482, 9025, 13121, 13488, 17584, 25617, 25664, 28709

420 37, 256, 424, 437, 500, 720, 737, 775, 819, 850, 852, 857, 860-865, 1008, 1046,

1089, 1098, 1112, 1122, 1127, 1200, 1208, 1252, 1256, 4946, 4948, 4953, 4960,

5104, 5142, 5352, 8229, 8612, 9044, 9049, 9056, 9238, 13488, 16804, 17248, 17584,

28709

423 37, 256, 273, 277-278, 280, 284-285, 297, 437, 500, 737, 775, 813, 819, 838, 850-

852, 857, 860-865, 869-871, 874-875, 880, 897, 903, 912, 916, 920, 1009, 1025-

1027, 1041-1043, 1112, 1122, 1200, 1208, 1252-1253, 1280, 4909, 4934, 4946, 4948,

4953, 4960, 4970-4971, 5012, 5123, 8229, 9030, 9044, 9049, 9056, 9061, 9066,
13488, 17248, 17584, 25473, 25479, 25617, 25619, 28709

424 37, 256, 420, 437, 500, 737, 775, 803, 819, 836, 850, 852, 856-857, 860-865, 916,

1112, 1122, 1200, 1208, 1252, 1255, 4932, 4946, 4948, 4952-4953, 4960, 5012, 5351,

8229, 8612, 9044, 9049, 9056, 13488, 16804, 17248, 17584, 28709

437 37, 256, 259, 273, 275, 277-278, 280, 284-285, 290, 297, 420, 423-424, 500, 737,

775, 813, 819, 833, 836, 838, 850, 852, 855, 857-858, 860-863, 865-866, 869-871,

874-875, 880, 897, 903, 905, 912, 914-916, 920-924, 1025-1027, 1040-1043, 1047,

1051, 1097, 1098, 1114-1115, 1126, 1140-1149, 1200, 1208, 1252, 1257, 1275, 1280-
1281, 1283, 4386, 4909, 4929, 4932, 4934, 4946, 4948, 4951, 4953, 4970-4971, 5012,

5123, 5210-5211, 5348, 8229, 8482, 8612, 9025, 9030, 9044, 9049, 9061, 9066,

13121, 13488, 16804, 17584, 25473, 25479, 25617, 25619, 28709

500 37, 256, 273-275, 277-278, 280, 282, 284-285, 290, 297, 367, 420, 423-424, 437,

737, 775, 813, 819, 833, 836, 838, 850-852, 855-858, 860-866, 869-871, 874-875,
880, 891, 895, 897, 903-905, 912, 914-916, 920-924, 1004, 1009-1021, 1023, 1025-

1027, 1040-1043, 1046-1047, 1051, 1088-1089, 1097, 1100-1107, 1112, 1114-1115,

1122, 1124-1126, 1129-1133, 1137, 1140-1149, 1200, 1208, 1250-1258, 1275, 1280-

1283, 4386, 4909, 4929, 4932, 4934, 4946, 4948, 4951-4953, 4960, 4970-4971, 5012,

5123, 5142, 5210-5211, 5346, 5348, 8229, 8482, 8612, 9025, 9030, 9044, 9049, 9056,
9061, 9066, 9238, 13121, 13488, 16804, 17248, 17584, 25473, 25479, 25480, 25617,

25619, 25664, 28709

720 37, 420, 864, 1200, 1208, 1256, 4960, 8229, 8612, 9056, 13488, 16804, 17248,

17584, 28709

737 37, 256, 273, 277-278, 280, 284-285, 290, 297, 420, 423-424, 437, 500, 813, 833,

836, 838, 850, 869-871, 875, 880, 905, 1025-1027, 1097, 1200, 1208, 1252-1253,

1280, 4386, 4909, 4929, 4932, 4934, 4946, 4971, 5123, 8229, 8482, 8612, 9025,

9030, 9061, 13121, 13488, 16804, 17584, 28709

775 37, 256, 273, 277-278, 280, 284-285, 290, 297, 420, 423-424, 437, 500, 833, 836,

838, 850, 870-871, 875, 880, 905, 1025-1027, 1097, 1112, 1122, 1200, 1208, 1252,

1257, 4386, 4929, 4932, 4934, 4946, 4971, 5123, 8229, 8482, 8612, 9025, 9030,

13121, 13488, 16804, 17584, 28709

803 424, 819, 850, 856, 862, 916, 1200, 1208, 1252, 1255, 4946, 4952, 5012, 13488,

17584

806 1200, 1208, 13488, 17584

808 259, 858-859, 872, 923-924, 1140, 1148, 1153-1154, 1200, 1208, 5347, 5348, 13488,

17584

813 37, 273, 277-278, 280, 284-285, 297, 423, 437, 500, 737, 819, 838, 850, 852, 857,

860-861, 863, 869-871, 874-875, 880, 897, 903, 912, 916, 920, 1025-1027, 1041-
1043, 1200, 1208, 1252-1253, 1280, 4909, 4934, 4946, 4948, 4953, 4970-4971, 5012,

5123, 5349, 8229, 9030, 9044, 9049, 9061, 9066, 13488, 17584, 25473, 25479,

25617, 25619, 28709

819 37, 256, 273, 275, 277-278, 280, 284-285, 290, 297, 367, 420, 423-424, 437, 500,
803, 813, 833, 836, 838, 850, 852, 855, 857-858, 860-861, 863-866, 869-871, 874-

875, 880, 897, 903, 905, 912, 914-916, 920-924, 1004, 1025-1027, 1041-1043, 1047,

Page 706 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

1051, 1088-1089, 1097, 1098, 1112, 1114, 1122-1123, 1126, 1130, 1132, 1137, 1140-

1149, 1200, 1208, 1250-1255, 1257-1258, 1275, 1280-1281, 1283, 4386, 4909, 4929,

4932, 4934, 4946, 4948, 4951, 4953, 4960, 4970-4971, 5012, 5123, 5210, 5346, 5348,
8229, 8482, 8612, 9025, 9030, 9044, 9049, 9056, 9061, 9066, 13121, 13488, 16804,

17248, 17584, 25473, 25479, 25617, 25619, 25664, 28709

833 37, 256, 273, 277-278, 280, 284-285, 290, 297, 367, 437, 500, 737, 775, 819, 836,

850, 852, 855, 857, 860-865, 870-871, 891, 1009, 1025-1027, 1040-1043, 1088, 1112,

1122, 1126, 1200, 1208, 1252, 4386, 4929, 4932, 4946, 4948, 4951, 4953, 4960,
5123, 8229, 8482, 9025, 9044, 9049, 9056, 13121, 13488, 17248, 17584, 25617,

25619, 25664, 28709

834 926, 951, 1200, 1208, 1362, 4930, 9026, 13488, 17584

835 927, 947, 1200, 1208, 4931, 9027, 13488, 17584, 21427

836 37, 256, 273, 277-278, 280, 284-285, 290, 297, 367, 424, 437, 500, 737, 775, 819,

833, 850, 852, 855, 857, 870-871, 875, 903, 1009, 1025-1027, 1040-1043, 1088,

1112, 1114-1115, 1122, 1200, 1208, 1252, 4386, 4929, 4932, 4946, 4948, 4951, 4953,
4971, 5123, 5210-5211, 8229, 8482, 9025, 9044, 9049, 13121, 13488, 17584, 25479,

25617, 25619, 25664, 28709

837 928, 1200, 1208, 1380, 1385, 4933, 13488, 17584

838 37, 256, 273, 277-278, 280, 284-285, 297, 423, 437, 500, 737, 775, 813, 819, 850,

852, 857, 860-865, 869-871, 874-875, 880, 897, 903, 912, 916, 920, 1025-1027,

1041-1043, 1112, 1122, 1200, 1208, 1252, 4909, 4934, 4946, 4948, 4953, 4960,

4970-4971, 5012, 5123, 8229, 9030, 9044, 9049, 9056, 9061, 9066, 13488, 17248,

17584, 25473, 25479, 25617, 25619, 28709

848 924, 1148, 1158, 1200, 1208, 5347, 13488, 17584

849 924, 1148, 1154, 1200, 1208, 5347, 13488, 17584

850 37, 256, 259, 273, 275, 277-278, 280, 284-285, 290, 297, 367, 420, 423-424, 437,
500, 737, 775, 803, 813, 819, 833, 836, 838, 852, 855-858, 860-866, 869-871, 874-

875, 880, 897, 903, 905, 912, 914-916, 920-924, 1004, 1025-1027, 1040-1043, 1047,

1051, 1088-1089, 1097, 1098, 1100, 1112, 1114, 1122, 1126, 1130, 1132, 1140-1149,

1200, 1208, 1250-1257, 1275, 1280-1281, 1283, 4386, 4909, 4929, 4932, 4934, 4946,

4948, 4951-4953, 4960, 4970-4971, 5012, 5123, 5210, 5346, 5348, 8229, 8482, 8612,
9025, 9030, 9044, 9049, 9056, 9061, 9066, 13121, 13488, 16804, 17248, 17584,

25473, 25479, 25617, 25619, 25664, 28709

851 259, 423, 500, 875, 1200, 1208, 4971, 13488, 17584

852 37, 256, 259, 273, 277-278, 280, 284-285, 290, 297, 420, 423-424, 437, 500, 813,

819, 833, 836, 838, 850, 855, 857, 860-861, 863, 869-871, 874-875, 880, 897, 903,

905, 912, 916, 920, 1025-1027, 1040-1043, 1047, 1088, 1097, 1200, 1208, 1250,

1252, 1282, 4386, 4909, 4929, 4932, 4934, 4946, 4948, 4951, 4953, 4970-4971, 5012,

5123, 5346, 8229, 8482, 8612, 9025, 9030, 9044, 9049, 9061, 9066, 13121, 13488,
16804, 17584, 25473, 25479, 25617, 25619, 25664, 28709

855 37, 259, 273, 277-278, 280, 284-285, 290, 297, 437, 500, 819, 833, 836, 850, 852,

857, 866, 870-871, 878, 880, 912, 915, 1025-1027, 1040-1043, 1088, 1200, 1208,

1250-1252, 1283, 4386, 4929, 4932, 4946, 4948, 4951, 4953, 5123, 5346, 5347, 8229,
8482, 9025, 9044, 9049, 13121, 13488, 17584, 25617, 25619, 25664, 28709

856 259, 273, 424, 500, 803, 850, 862, 916, 1200, 1208, 1255, 4946, 4952, 5012, 5351,

13488, 17584

857 37, 256, 259, 273, 277-278, 280, 284-285, 290, 297, 420, 423-424, 437, 500, 813,

819, 833, 836, 838, 850, 852, 855, 860-861, 863, 869-871, 874-875, 880, 897, 903,

905, 912, 916, 920, 1025-1027, 1040-1043, 1088, 1097, 1200, 1208, 1252, 1254,

1281, 4386, 4909, 4929, 4932, 4934, 4946, 4948, 4951, 4953, 4970-4971, 5012, 5123,

5350, 8229, 8482, 8612, 9025, 9030, 9044, 9049, 9061, 9066, 13121, 13488, 16804,

17584, 25473, 25479, 25617, 25619, 25664, 28709

858 37, 259, 273, 277-278, 280, 284-285, 297, 437, 500, 808, 819, 850, 860-861, 865,

871-872, 901-902, 923-924, 1047, 1051, 1140-1149, 1153-1157, 1160-1162, 1164,

1200, 1208, 1252, 1275, 4946, 5348, 8229, 13488, 17584, 28709

859 808, 872, 901-902, 1153-1157, 1160-1162, 1164, 1200, 1208, 13488, 17584

860 37, 256, 259, 273, 277-278, 280, 284-285, 290, 297, 420, 423-424, 437, 500, 813,

819, 833, 838, 850, 852, 857-858, 861, 863, 865, 869-871, 874-875, 880, 897, 903,

905, 912, 916, 920, 923-924, 1025-1027, 1041-1043, 1097, 1140, 1145-1146, 1148,
1200, 1208, 1252, 4386, 4909, 4929, 4934, 4946, 4948, 4953, 4970-4971, 5012, 5123,

5348, 8229, 8482, 8612, 9025, 9030, 9044, 9049, 9061, 9066, 13121, 13488, 16804,

17584, 25473, 25479, 25617, 25619, 28709

861 37, 256, 259, 273, 277-278, 280, 284-285, 290, 297, 420, 423-424, 437, 500, 813,
819, 833, 838, 850, 852, 857-858, 860, 863, 869-871, 874-875, 880, 897, 903, 905,

912, 916, 920, 923-924, 1025-1027, 1041-1043, 1097, 1148, 1149, 1200, 1208, 1252,

4386, 4909, 4929, 4934, 4946, 4948, 4953, 4970-4971, 5012, 5123, 5348, 8229, 8482,

8612, 9025, 9030, 9044, 9049, 9061, 9066, 13121, 13488, 16804, 17584, 25473,

25479, 25617, 25619, 28709

862 37, 256, 259, 273, 277-278, 280, 284-285, 290, 297, 420, 423-424, 437, 500, 803,

833, 838, 850, 856, 870-871, 875, 880, 905, 916, 1025-1027, 1097, 1200, 1208, 1252,

1255, 4386, 4929, 4934, 4946, 4952, 4971, 5012, 5123, 5351, 8229, 8482, 8612,

9025, 9030, 12712, 13121, 13488, 16804, 17584, 28709

863 37, 256, 259, 273, 277-278, 280, 284-285, 290, 297, 420, 423-424, 437, 500, 813,

819, 833, 838, 850, 852, 857, 860-861, 865, 869-871, 874-875, 880, 897, 903, 905,

912, 916, 920, 1025-1027, 1041-1043, 1051, 1097, 1140-1149, 1200, 1208, 1252,

1275, 4386, 4909, 4929, 4934, 4946, 4948, 4953, 4970-4971, 5012, 5123, 5348, 8229,

8482, 8612, 9025, 9030, 9044, 9049, 9061, 9066, 13121, 13488, 16804, 17584,
25473, 25479, 25617, 25619, 28709

864 37, 256, 259, 273, 277-278, 280, 284-285, 290, 297, 420, 423-424, 500, 720, 819,

833, 838, 850, 870-871, 875, 880, 905, 918, 1008, 1025-1027, 1046, 1089, 1097,

1127, 1200, 1208, 1252, 1256, 4386, 4929, 4934, 4946, 4960, 4971, 5104, 5123,
5142, 5352, 8229, 8482, 8612, 9025, 9030, 9056, 9238, 13121, 13488, 16804, 17248,

17584, 28709

Page 707 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

865 37, 256, 259, 273, 277-278, 280, 284-285, 290, 297, 420, 423-424, 437, 500, 819,

833, 838, 850, 858, 860, 863, 870-871, 875, 880, 905, 923-924, 1025-1027, 1097,

1142-1143, 1148, 1200, 1208, 1252, 4386, 4929, 4934, 4946, 4971, 5123, 5348, 8229,
8482, 8612, 9025, 9030, 13121, 13488, 16804, 17584, 28709

866 37, 256, 437, 500, 819, 850, 855, 870, 878, 880, 915, 1025, 1200, 1208, 1251-1252,

1283, 4946, 4951, 5347, 8229, 13488, 17584, 28709

867 259, 1153-1155, 1160, 1200, 1208, 4899, 5351, 9048, 12712, 13488, 17584

868 918, 1006, 1200, 1208, 13488, 17584

869 37, 256, 259, 273, 277-278, 280, 284-285, 297, 423, 437, 500, 737, 813, 819, 838,

850, 852, 857, 860-861, 863, 870-871, 874-875, 880, 897, 903, 912, 916, 920, 1025-
1027, 1041-1043, 1200, 1208, 1252-1254, 1280, 4909, 4934, 4946, 4948, 4953, 4970-

4971, 5012, 5123, 5349, 8229, 9030, 9044, 9049, 9061, 9066, 13488, 17584, 25473,

25479, 25617, 25619, 28709

870 37, 256, 273, 277-278, 280, 284-285, 290, 297, 423, 437, 500, 737, 775, 813, 819,
833, 836, 838, 850, 852, 855, 857, 860-866, 869, 871, 874-875, 880, 897, 903, 912,

915-916, 920, 1009, 1025-1027, 1040-1043, 1047, 1088, 1112, 1122, 1200, 1208,

1250, 1252, 1282, 4386, 4909, 4929, 4932, 4934, 4946, 4948, 4951, 4953, 4960,

4970-4971, 5012, 5123, 5346, 8229, 8482, 9025, 9030, 9044, 9049, 9056, 9061, 9066,

13121, 13488, 17248, 17584, 25473, 25479, 25617, 25619, 25664, 28709

871 37, 256, 273, 277-278, 280, 284-285, 290, 297, 367, 423, 437, 500, 737, 775, 813,

819, 833, 836, 838, 850, 852, 855, 857-858, 860-865, 869, 870, 874-875, 880, 897,

903, 912, 916, 920, 923-924, 1009, 1025-1027, 1040-1043, 1047, 1051, 1088, 1112,

1122, 1140-1149, 1200, 1208, 1252, 1275, 4386, 4909, 4929, 4932, 4934, 4946, 4948,
4951, 4953, 4960, 4970-4971, 5012, 5123, 5348, 8229, 8482, 9025, 9030, 9044, 9049,

9056, 9061, 9066, 13121, 13488, 17248, 17584, 25473, 25479, 25617, 25619, 25664,

28709

872 259, 808, 858-859, 923-924, 1140-1149, 1153-1155, 1200, 1208, 5347, 5348, 13488,
17584

874 37, 259, 273, 277-278, 280, 284-285, 297, 423, 437, 500, 813, 819, 838, 850, 852,

857, 860-861, 863, 869-871, 875, 880, 897, 903, 912, 916, 920, 1025-1027, 1041-

1043, 1200, 1208, 1252, 4909, 4934, 4946, 4948, 4953, 4970-4971, 5012, 5123, 8229,

9030, 9044, 9049, 9061, 9066, 13488, 17584, 25473, 25479, 25617, 25619, 28709

875 37, 256, 273, 277-278, 280, 284-285, 297, 367, 423, 437, 500, 737, 775, 813, 819,

836, 838, 850-852, 857, 860-865, 869-871, 874, 880, 897, 903, 912, 916, 920, 1009,

1025-1027, 1041-1043, 1047, 1088, 1112, 1122, 1200, 1208, 1252-1253, 1280, 4909,

4932, 4934, 4946, 4948, 4953, 4960, 4970-4971, 5012, 5123, 5349, 8229, 9030, 9044,
9049, 9056, 9061, 9066, 13488, 17248, 17584, 25473, 25479, 25617, 25619, 25664,

28709

878 855, 866, 880, 915, 1025, 1131, 1200, 1208, 1251, 1283, 4951, 5347, 13488, 17584

880 37, 256, 273, 277-278, 280, 284-285, 297, 423, 437, 500, 737, 775, 813, 819, 838,

850, 852, 855, 857, 860-866, 869-871, 874-875, 878, 897, 903, 912, 915-916, 920,

1009, 1025-1027, 1041-1043, 1112, 1122, 1200, 1208, 1251-1252, 1283, 4909, 4934,

4946, 4948, 4951, 4953, 4960, 4970-4971, 5012, 5123, 5347, 8229, 9030, 9044, 9049,

9056, 9061, 9066, 13488, 17248, 17584, 25473, 25479, 25617, 25619, 28709

891 500, 833, 1088, 1200, 1208, 4929, 9025, 13121, 13488, 17584, 25664

895 290, 500, 1027, 1041, 1200, 1208, 4386, 5123, 8482, 13488, 17584, 25617

896 290, 1027, 1041, 1200, 1208, 4386, 4992, 5123, 8482, 13488, 17584, 25617

897 37, 273, 277-278, 280, 284-285, 290, 297, 423, 437, 500, 813, 819, 838, 850, 852,

857, 860-861, 863, 869-871, 874-875, 880, 903, 912, 916, 920, 1025-1027, 1041-

1043, 1200, 1208, 1252, 4386, 4909, 4934, 4946, 4948, 4953, 4970-4971, 5012, 5123,

8229, 8482, 9030, 9044, 9049, 9061, 9066, 13488, 17584, 25473, 25479, 25617,
25619, 28709

899 259

901 259, 858-859, 902, 923-924, 1140, 1148, 1156-1157, 1200, 1208, 5348, 5353, 13488,
17584

902 259, 858-859, 901, 923-924, 1140, 1148, 1156-1157, 1200, 1208, 5348, 5353, 13488,

17584

903 37, 273, 277-278, 280, 284-285, 297, 423, 437, 500, 813, 819, 836, 838, 850, 852,

857, 860-861, 863, 869-871, 874-875, 880, 897, 912, 916, 920, 1025-1027, 1041-

1043, 1115, 1200, 1208, 1252, 4909, 4932, 4934, 4946, 4948, 4953, 4970-4971, 5012,

5123, 5211, 8229, 9030, 9044, 9049, 9061, 9066, 13488, 17584, 25473, 25479,

25617, 25619, 28709

904 37, 500, 1114, 1200, 1208, 5210, 8229, 13488, 17584, 25480, 28709

905 37, 256, 437, 500, 737, 775, 819, 850, 852, 857, 860-865, 920, 1026, 1112, 1122,

1200, 1208, 1252, 1254, 1281, 4946, 4948, 4953, 4960, 8229, 9044, 9049, 9056,
13488, 17248, 17584, 28709

912 37, 273, 277-278, 280, 284-285, 297, 423, 437, 500, 813, 819, 838, 850, 852, 855,

857, 860-861, 863, 869-871, 874-875, 880, 897, 903, 916, 920, 1025-1027, 1041-

1043, 1047, 1200, 1208, 1250, 1252, 1282, 4909, 4934, 4946, 4948, 4951, 4953,

4970-4971, 5012, 5123, 5346, 8229, 9030, 9044, 9049, 9061, 9066, 13488, 17584,
25473, 25479, 25617, 25619, 28709

914 37, 437, 500, 819, 850, 1200, 1208, 1252, 1257, 4946, 8229, 13488, 17584, 28709

915 37, 259, 437, 500, 819, 850, 855, 866, 870, 878, 880, 1025, 1131, 1200, 1208, 1251-
1252, 1283, 4946, 4951, 5347, 8229, 13488, 17584, 28709

916 37, 273, 277-278, 280, 284-285, 297, 423-424, 437, 500, 803, 813, 819, 838, 850,

852, 856-857, 860-863, 869-871, 874-875, 880, 897, 903, 912, 920, 1025-1027, 1041-

1043, 1200, 1208, 1252, 1255, 4909, 4934, 4946, 4948, 4952-4953, 4970-4971, 5012,
5123, 5351, 8229, 9030, 9044, 9049, 9061, 9066, 13488, 17584, 25473, 25479,

25617, 25619, 28709

918 864, 868, 1006, 1200, 1208, 4960, 9056, 13488, 17248, 17584

Page 708 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

920 37, 273, 277-278, 280, 284-285, 297, 423, 437, 500, 813, 819, 838, 850, 852, 857,

860-861, 863, 869-871, 874-875, 880, 897, 903, 905, 912, 916, 1025-1026, 1200,

1208, 1252, 1254, 1281, 4909, 4934, 4946, 4948, 4953, 4970-4971, 5012, 5350, 8229,
9030, 9044, 9049, 9061, 9066, 13488, 17584, 25473, 25479, 28709

921 37, 437, 500, 819, 850, 922, 1112, 1122, 1200, 1208, 1252, 1257, 4946, 5353, 8229,

13488, 17584, 28709

922 37, 437, 500, 819, 850, 921, 1112, 1122, 1200, 1208, 1252, 1257, 4946, 5353, 8229,
13488, 17584, 28709

923 37, 273, 277-278, 280, 284-285, 297, 437, 500, 808, 819, 850, 858, 860-861, 865,

871-872, 901-902, 924, 1047, 1051, 1140-1149, 1153-1158, 1160-1162, 1164, 1200,

1208, 1252, 1275, 4946, 5348, 8229, 13488, 17584, 28709

924 37, 273, 277-278, 280, 284-285, 297, 437, 500, 808, 819, 848-850, 858, 860-861,

865, 871-872, 901-902, 923, 1047, 1051, 1140-1149, 1153-1157, 1160-1164, 1200,

1208, 1252, 1275, 4946, 5348, 8229, 13488, 17584, 28709

926 834, 951, 9026

927 835, 947, 1200, 1208, 4931, 9027, 13488, 17584, 21427

928 837, 1200, 1208, 1380, 13488, 17584

930 931-932, 939, 942-943, 1200, 1208, 1390, 1399, 5026, 5028, 5035, 5038-5039, 9122,

9124, 9131, 9135, 13218-13219, 13231, 13488, 17314, 17584, 25508, 25518, 29614,

33698-33700, 37796

931 930, 932, 939, 942-943, 1390, 1399, 5026, 5028, 5035, 5038-5039, 9122, 9124, 9131,

9135, 13218-13219, 13231, 17314, 25508, 25518, 29614, 33698-33700, 37796

932 930-931, 939, 942-943, 1200, 1208, 1390, 1399, 5026, 5028, 5035, 5038-5039, 9122,

9124, 9131, 9135, 13218-13219, 13231, 13488, 17314, 17584, 25508, 25518, 29614,

33698-33700, 37796

933 934, 944, 949, 1200, 1208, 1363-1364, 5029, 5045, 5460, 9125, 9555, 13221, 13488,

13651, 17317, 17584, 25510, 25520, 25525, 29616, 29621, 33717, 37813

934 933, 949, 5029, 5045, 5460, 9125, 13221, 17317, 25510, 25525, 29621, 33717, 37813

935 936, 946, 1200, 1208, 1381, 1386, 1388, 5031, 5477, 5482, 5484, 9127, 13223,

13488, 17584, 25512

936 935, 946, 1381, 5031, 5477, 5484, 9127, 13223, 25512

937 938, 948, 950, 1200, 1208, 1370, 5033, 5046, 9142, 13488, 17584, 25514, 25524,

29620

938 937, 950, 1370, 5033, 5046, 9142, 25514

939 930-932, 942-943, 1200, 1208, 1390, 1399, 5026, 5028, 5035, 5038-5039, 9122,

9124, 9131, 9135, 13218-13219, 13231, 13488, 17314, 17584, 25508, 25518, 29614,

33698-33700, 37796

941 300-301, 1200, 1208, 1351, 4396, 8492, 13488, 16684, 17584

942 930-932, 939, 943, 1200, 1208, 1390, 1399, 5026, 5028, 5035, 5038-5039, 9122,

9124, 9131, 9135, 13218-13219, 13231, 13488, 17314, 17584, 25508, 25518, 29614,

33698-33700, 37796

943 930-932, 939, 942, 1200, 1208, 1390, 1399, 5026, 5028, 5035, 5038-5039, 9122,

9124, 9131, 9135, 13218-13219, 13231, 13488, 17314, 17584, 25508, 25518, 29614,

33698-33700, 37796

944 933, 949, 1200, 1208, 5029, 5045, 5460, 9125, 13221, 13488, 17317, 17584, 25520,
25525, 29616, 29621, 33717, 37813

946 935-936, 1200, 1208, 5031, 5484, 9127, 13223, 13488, 17584, 25512

947 835, 927, 1200, 1208, 4931, 9027, 13488, 17584, 21427

948 937, 950, 1200, 1208, 1370, 5033, 5046, 9142, 13488, 17584, 25524, 29620

949 933-934, 944, 1200, 1208, 1363-1364, 5029, 5045, 5460, 9125, 9555, 13221, 13488,

13651, 17317, 17584, 25510, 25520, 25525, 29616, 29621, 33717, 37813

950 937-938, 948, 1200, 1208, 1370, 5033, 5046, 9142, 13488, 17584, 25514, 25524,

29620

951 834, 926, 1200, 1208, 1362, 4930, 9026, 13488, 17584

1004 500, 819, 850, 1200, 1208, 4946, 13488, 17584

1006 868, 918, 1200, 1208, 13488, 17584

1008 420, 864, 1200, 1208, 4960, 5104, 8612, 9056, 13488, 16804, 17248, 17584

1009 37, 273, 277-278, 280, 284, 290, 297, 367, 423, 500, 833, 836, 870-871, 875, 880,

1025-1026, 1200, 1208, 4386, 4929, 4932, 4971, 8229, 8482, 9025, 13121, 13488,

17584, 28709

1010 500, 1200, 1208, 13488, 17584

1011 500, 1200, 1208, 13488, 17584

1012 500, 1200, 1208, 13488, 17584

1013 500, 1140, 1200, 1208, 13488, 17584

1014 500, 1200, 1208, 13488, 17584

1015 500, 1200, 1208, 13488, 17584

1016 500, 1200, 1208, 13488, 17584

1017 500, 1200, 1208, 13488, 17584

1018 500, 1200, 1208, 13488, 17584

1019 500, 1200, 1208, 13488, 17584

1020 500

1021 500

1023 500

Page 709 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

1025 37, 256, 273, 277-278, 280, 284-285, 290, 297, 423, 437, 500, 737, 775, 813, 819,

833, 836, 838, 850, 852, 855, 857, 860-866, 869-871, 874-875, 878, 880, 897, 903,

912, 915-916, 920, 1009, 1026-1027, 1040-1043, 1051, 1088, 1112, 1122, 1131,
1200, 1208, 1251-1252, 1283, 4386, 4909, 4929, 4932, 4934, 4946, 4948, 4951, 4953,

4960, 4970-4971, 5012, 5123, 5347, 8229, 8482, 9025, 9030, 9044, 9049, 9056, 9061,

9066, 13121, 13488, 17248, 17584, 25473, 25479, 25617, 25619, 25664, 28709

1026 37, 256, 273, 277-278, 280, 284-285, 290, 297, 367, 423, 437, 500, 737, 775, 813,

819, 833, 836, 838, 850, 852, 855, 857, 860-865, 869-871, 874-875, 880, 897, 903,
905, 912, 916, 920, 1009, 1025, 1027, 1040-1043, 1047, 1088, 1112, 1122, 1200,

1208, 1252, 1254, 1281, 4386, 4909, 4929, 4932, 4934, 4946, 4948, 4951, 4953,

4960, 4970-4971, 5012, 5123, 5350, 8229, 8482, 9025, 9030, 9044, 9049, 9056, 9061,

9066, 13121, 13488, 17248, 17584, 25473, 25479, 25617, 25619, 25664, 28709

1027 37, 256, 273, 277-278, 280, 284-285, 290, 297, 367, 423, 437, 500, 737, 775, 813,

819, 833, 836, 838, 850, 852, 855, 857, 860-865, 869-871, 874-875, 880, 895-897,

903, 912, 916, 1025-1026, 1040-1043, 1047, 1088, 1112, 1122, 1139, 1200, 1208,

1252, 4386, 4909, 4929, 4932, 4934, 4946, 4948, 4951, 4953, 4960, 4970-4971, 4992,

5012, 5123, 8229, 8482, 9025, 9030, 9044, 9049, 9056, 9061, 9066, 13121, 13488,
17248, 17584, 25473, 25479, 25617, 25619, 25664, 28709

1040 37, 273, 277-278, 280, 284-285, 290, 297, 437, 500, 833, 836, 850, 852, 855, 857,

870-871, 1025-1027, 1041-1043, 1088, 1200, 1208, 4386, 4929, 4932, 4946, 4948,

4951, 4953, 5123, 8229, 8482, 9025, 9044, 9049, 13121, 13488, 17584, 25617,
25619, 25664, 28709

1041 37, 273, 277-278, 280, 284-285, 290, 297, 367, 423, 437, 500, 813, 819, 833, 836,

838, 850, 852, 855, 857, 860-861, 863, 869-871, 874-875, 880, 895-897, 903, 912,

916, 1025-1027, 1040, 1042-1043, 1088, 1200, 1208, 1252, 4386, 4909, 4929, 4932,
4934, 4946, 4948, 4951, 4953, 4970-4971, 4992, 5012, 5123, 8229, 8482, 9025, 9030,

9044, 9049, 9061, 9066, 13121, 13488, 17584, 25473, 25479, 25617, 25619, 25664,

28709

1042 37, 273, 277-278, 280, 284-285, 290, 297, 423, 437, 500, 813, 819, 833, 836, 838,
850, 852, 855, 857, 860-861, 863, 869-871, 874-875, 880, 897, 903, 912, 916, 1025-

1027, 1040, 1041, 1043, 1088, 1200, 1208, 4386, 4909, 4929, 4932, 4934, 4946,

4948, 4951, 4953, 4970-4971, 5012, 5123, 8229, 8482, 9025, 9030, 9044, 9049, 9061,

9066, 13121, 13488, 17584, 25473, 25479, 25617, 25619, 25664, 28709

1043 37, 273, 277-278, 280, 284-285, 290, 297, 423, 437, 500, 813, 819, 833, 836, 838,
850, 852, 855, 857, 860-861, 863, 869-871, 874-875, 880, 897, 903, 912, 916, 1025-

1027, 1040, 1041, 1042, 1088, 1114, 1200, 1208, 4386, 4909, 4929, 4932, 4934,

4946, 4948, 4951, 4953, 4970-4971, 5012, 5123, 5210, 8229, 8482, 9025, 9030, 9044,

9049, 9061, 9066, 13121, 13488, 17584, 25473, 25479, 25617, 25619, 25664, 28709

1046 420, 500, 864, 1089, 1127, 1200, 1208, 1256, 4960, 5142, 5352, 8612, 9056, 9238,

13488, 16804, 17248, 17584

1047 37, 273-275, 277-278, 280, 281, 282, 284-285, 297, 437, 500, 819, 850, 852, 858,

870-871, 875, 912, 923-924, 1026-1027, 1140-1149, 1200, 1208, 1252, 1254, 4946,
4948, 4971, 5123, 8229, 9044, 13488, 17584, 28709

1051 37, 273, 277-278, 280, 284-285, 297, 437, 500, 819, 850, 858, 863, 871, 923-924,

1025, 1097, 1140-1149, 1200, 1208, 1252, 1275, 4946, 5348, 8229, 13488, 17584,

28709

1088 37, 273, 277-278, 280, 284-285, 290, 297, 367, 500, 819, 833, 836, 850, 852, 855,

857, 870-871, 875, 891, 1025-1027, 1040-1043, 1126, 1200, 1208, 4386, 4929, 4932,

4946, 4948, 4951, 4953, 4971, 5123, 8229, 8482, 9025, 9044, 9049, 13121, 13488,

17584, 25617, 25619, 25664, 28709

1089 420, 500, 819, 850, 864, 1046, 1127, 1200, 1208, 1256, 4946, 4960, 5142, 5352,

8612, 9056, 9238, 13488, 16804, 17248, 17584

1097 37, 437, 500, 737, 775, 819, 850, 852, 857, 860-865, 1051, 1098, 1112, 1122, 1200,

1208, 1252, 4946, 4948, 4953, 4960, 8229, 9044, 9049, 9056, 13488, 17248, 17584,
28709

1098 259, 420, 437, 819, 850, 1097, 1200, 1208, 1252, 4946, 8612, 13488, 16804, 17584

1100 37, 273, 277-278, 280, 284-285, 297, 500, 850, 4946, 8229, 28709

1101 500

1102 500

1103 500

1104 500

1105 500

1106 500

1107 500

1112 37, 256, 273, 277-278, 280, 284-285, 290, 297, 420, 423-424, 500, 775, 819, 833,

836, 838, 850, 870-871, 875, 880, 905, 921-922, 1025-1027, 1097, 1122, 1200, 1208,

1252, 1257, 4386, 4929, 4932, 4934, 4946, 4971, 5123, 5353, 8229, 8482, 8612,

9025, 9030, 13121, 13488, 16804, 17584, 28709

1114 37, 437, 500, 819, 836, 850, 904, 1043, 1115, 1200, 1208, 4932, 4946, 5210-5211,
8229, 13488, 17584, 25480, 25619, 28709

1115 37, 367, 437, 500, 836, 903, 1114, 1200, 1208, 4932, 5210-5211, 8229, 13488,

17584, 25479, 28709

1122 37, 256, 273, 277-278, 280, 284-285, 290, 297, 420, 423-424, 500, 775, 819, 833,

836, 838, 850, 870-871, 875, 880, 905, 921-922, 1025-1027, 1097, 1112, 1200, 1208,

1252, 1257, 4386, 4929, 4932, 4934, 4946, 4971, 5123, 5353, 8229, 8482, 8612,

9025, 9030, 13121, 13488, 16804, 17584, 28709

1123 819, 1124-1125, 1148, 1200, 1208, 1251-1252, 1283, 5347, 13488, 17584

1124 37, 500, 1123, 1125, 1200, 1208, 1251, 1283, 5347, 8229, 13488, 17584, 28709

1125 500, 1123, 1124, 1200, 1208, 1251, 1283, 5347, 13488, 17584

1126 37, 367, 437, 500, 819, 833, 850, 1088, 1200, 1208, 1252, 4929, 4946, 8229, 9025,

Page 710 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

13121, 13488, 17584, 25664, 28709

1127 420, 864, 1046, 1089, 1256, 4960, 5142, 8612, 9056, 9238, 16804, 17248

1129 500, 1130, 1200, 1208, 1258, 5354, 13488, 17584

1130 37, 500, 819, 850, 1129, 1200, 1208, 1252, 1258, 4946, 5354, 8229, 13488, 17584,

28709

1131 37, 500, 878, 915, 1025, 1200, 1208, 1251, 1283, 5347, 8229, 13488, 17584, 28709

1132 37, 500, 819, 850, 1133, 1200, 1208, 1252, 4946, 8229, 13488, 17584, 28709

1133 500, 1132, 1200, 1208, 13488, 17584

1137 37, 500, 819, 1200, 1208, 8229, 13488, 17584, 28709

1139 290, 1027, 4386, 5123, 8482

1140 37, 273, 277-278, 280, 284-285, 297, 437, 500, 808, 819, 850, 858, 860, 863, 871-

872, 901-902, 923-924, 1013, 1047, 1051, 1141-1149, 1153-1157, 1160-1162, 1164,

1200, 1208, 1252, 1275, 4946, 5348, 8229, 13488, 17584, 28709

1141 37, 273, 277-278, 280, 284-285, 297, 437, 500, 819, 850, 858, 863, 871-872, 923-
924, 1047, 1051, 1140, 1142-1149, 1153-1157, 1160-1162, 1200, 1208, 1252, 1275,

4946, 5348, 8229, 13488, 17584, 28709

1142 37, 273, 277-278, 280, 284-285, 297, 437, 500, 819, 850, 858, 863, 865, 871-872,

923-924, 1047, 1051, 1140-1141, 1143-1149, 1153-1157, 1160-1162, 1200, 1208,
1252, 1275, 4946, 5348, 8229, 13488, 17584, 28709

1143 37, 273, 277-278, 280, 284-285, 297, 437, 500, 819, 850, 858, 863, 865, 871-872,

923-924, 1047, 1051, 1140-1142, 1144-1149, 1153-1157, 1160-1162, 1200, 1208,

1252, 1275, 4946, 5348, 8229, 13488, 17584, 28709

1144 37, 273, 277-278, 280, 284-285, 297, 437, 500, 819, 850, 858, 863, 871-872, 923-

924, 1047, 1051, 1140-1143, 1145-1149, 1153-1157, 1160-1162, 1200, 1208, 1252,

1275, 4946, 5348, 8229, 13488, 17584, 28709

1145 37, 273, 277-278, 280, 284-285, 297, 437, 500, 819, 850, 858, 860, 863, 871-872,
923-924, 1047, 1051, 1140-1144, 1146-1149, 1153-1157, 1160-1162, 1200, 1208,

1252, 1275, 4946, 5348, 8229, 13488, 17584, 28709

1146 37, 273, 277-278, 280, 284-285, 297, 437, 500, 819, 850, 858, 860, 863, 871-872,

923-924, 1047, 1051, 1140-1145, 1147-1149, 1153-1157, 1160-1162, 1200, 1208,
1252, 1275, 4946, 5348, 8229, 13488, 17584, 28709

1147 37, 273, 277-278, 280, 284-285, 297, 437, 500, 819, 850, 858, 863, 871-872, 923-

924, 1047, 1051, 1140-1146, 1148-1149, 1153-1157, 1160-1162, 1200, 1208, 1252,

1275, 4946, 5348, 8229, 13488, 17584, 28709

1148 37, 273, 277-278, 280, 284-285, 297, 437, 500, 808, 819, 848-850, 858, 860-861,

863, 865, 871-872, 901-902, 923-924, 1047, 1051, 1123, 1140-1147, 1149, 1153-

1164, 1200, 1208, 1252, 1275, 4899, 4946, 5348, 5349, 8229, 12712, 13488, 17584,

28709

1149 37, 273, 277-278, 280, 284-285, 297, 437, 500, 819, 850, 858, 861, 863, 871-872,

923-924, 1047, 1051, 1140-1148, 1153-1157, 1160-1162, 1200, 1208, 1252, 1275,

4946, 5348, 8229, 13488, 17584, 28709

1153 808, 858-859, 867, 872, 923-924, 1140-1149, 1154-1157, 1160-1162, 1200, 1208,
5348, 9044, 13488, 17584

1154 808, 849, 858-859, 867, 872, 923-924, 1140-1149, 1153, 1155-1157, 1160-1162,

1200, 1208, 5347, 5348, 13488, 17584

1155 858-859, 867, 872, 923-924, 1140-1149, 1153-1154, 1156-1157, 1160-1162, 1200,

1208, 5348, 5350, 9049, 13488, 17584

1156 858-859, 901-902, 923-924, 1140-1149, 1153-1155, 1157, 1160, 1200, 1208, 5348,

5353, 12712, 13488, 17584

1157 858-859, 901-902, 923-924, 1140-1149, 1153-1156, 1160, 1200, 1208, 5348, 5353,

12712, 13488, 17584

1158 848, 923, 1148, 1200, 1208, 5347, 5348, 13488, 17584

1159 1148, 1200, 1208, 13488, 17584

1160 858-859, 867, 923-924, 1140-1149, 1153-1157, 1161-1162, 1200, 1208, 5348, 13488,

17584

1161 259, 858-859, 923-924, 1140-1149, 1153-1155, 1160, 5348, 17584

1162 259, 858-859, 923-924, 1140-1149, 1153-1155, 1160, 5348, 17584

1163 924, 1148, 1164, 5354, 17584

1164 858-859, 923-924, 1140, 1148, 1163, 1200, 1208, 5348, 5354, 13488, 17584

1200 37, 256, 259, 273, 275, 277-278, 280, 282, 284-285, 290, 293, 297, 300-301, 367,

420, 423-424, 437, 500, 720, 737, 775, 803, 806, 808, 813, 819, 833-838, 848-852,
855-872, 874-875, 878, 880, 891, 895-897, 901-905, 912, 914-916, 918, 920-924,

927-928, 930, 932-933, 935, 937, 939, 941-944, 946-951, 1004, 1006, 1008-1019,

1025-1027, 1040-1043, 1046-1047, 1051, 1088-1089, 1097-1098, 1112, 1114-1115,

1122-1126, 1129-1133, 1137, 1140-1149, 1153-1160, 1164, 1208, 1250-1258, 1275-

1277, 1280-1285, 1351, 1362-1364, 1370-1371, 1380-1381, 1385-1386, 1388, 1390,
1399, 4899, 4909, 4930, 4933, 4948, 4951-4952, 4960, 4971, 5012, 5039, 5104, 5123,

5142, 5210, 5346-5354, 8482, 8612, 9027, 9030, 9044, 9048-9049, 9056, 9061, 9066,

9238, 12712, 13121, 13218, 13488, 16684, 16804, 17248, 17584, 21427, 28709

1208 37, 256, 259, 273, 275, 277-278, 280, 282, 284-285, 290, 293, 297, 300-301, 367,
420, 423-424, 437, 500, 720, 737, 775, 803, 806, 808, 813, 819, 833-838, 848-852,

855-872, 874-875, 878, 880, 891, 895-897, 901-905, 912, 914-916, 918, 920-924,

927-928, 930, 932-933, 935, 937, 939, 941-944, 946-951, 1004, 1006, 1008-1019,

1025-1027, 1040-1043, 1046-1047, 1051, 1088-1089, 1097-1098, 1112, 1114-1115,

1122-1126, 1129-1133, 1137, 1140-1149, 1153-1160, 1164, 1200, 1250-1258, 1275-
1277, 1280-1285, 1351, 1362-1364, 1370-1371, 1380-1381, 1385-1386, 1388, 1390,

1399, 4899, 4909, 4930, 4933, 4948, 4951-4952, 4960, 4971, 5012, 5026, 5035, 5039,

5104, 5123, 5142, 5210, 5346-5354, 8482, 8612, 9027, 9030, 9044, 9048-9049, 9056,

Page 711 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

9061, 9066, 9238, 12712, 13121, 13218, 13488, 16684, 16804, 17248, 17584, 21427,

28709

1250 37, 259, 273, 500, 819, 850, 852, 855, 870, 912, 1200, 1208, 1252, 1282, 4946, 4948,

4951, 5346, 8229, 9044, 13488, 17584, 28709

1251 37, 256, 259, 500, 819, 850, 855, 866, 878, 880, 915, 1025, 1123-1125, 1131, 1200,

1208, 1252, 1283, 4946, 4951, 5347, 8229, 13488, 17584, 28709

1252 37, 256, 259, 273, 275, 277-278, 280, 284-285, 290, 297, 420, 423-424, 437, 500,

737, 775, 803, 813, 819, 833, 836, 838, 850, 852, 855, 857-858, 860-866, 869-871,

874-875, 880, 897, 903, 905, 912, 914-916, 920-924, 1025-1027, 1041, 1047, 1051,

1097-1098, 1112, 1122-1123, 1126, 1130, 1132, 1140-1149, 1200, 1208, 1250-1251,

1254-1255, 1257, 1275, 1280-1281, 1283, 4386, 4909, 4929, 4932, 4934, 4946, 4948,
4951, 4953, 4960, 4970-4971, 5012, 5123, 5346, 5348, 8229, 8482, 8612, 9025, 9030,

9044, 9049, 9056, 9061, 9066, 13121, 13488, 16804, 17248, 17584, 25473, 25479,

25617, 28709

1253 37, 259, 423, 500, 737, 813, 819, 850, 869, 875, 1200, 1208, 1280, 4909, 4946, 4971,
5349, 8229, 9061, 13488, 17584, 28709

1254 37, 259, 500, 819, 850, 857, 869, 905, 920, 1026, 1047, 1200, 1208, 1252, 1281,

4946, 4953, 5350, 8229, 9049, 9061, 13488, 17584, 28709

1255 37, 259, 424, 500, 803, 819, 850, 856, 862, 916, 1200, 1208, 1252, 1281, 4946, 4952,

5012, 5351, 8229, 13488, 17584, 28709

1256 259, 420, 500, 720, 850, 864, 1046, 1089, 1127, 1200, 1208, 4946, 4960, 5142, 5352,

8612, 9056, 9238, 13488, 16804, 17248, 17584

1257 37, 259, 437, 500, 775, 819, 850, 914, 921-922, 1112, 1122, 1200, 1208, 1252, 4946,

5353, 8229, 13488, 17584, 28709

1258 37, 259, 500, 819, 1129-1130, 1200, 1208, 5354, 8229, 13488, 17584, 28709

1275 37, 256, 273, 277-278, 280, 284-285, 297, 437, 500, 819, 850, 858, 863, 871, 923-

924, 1051, 1140-1149, 1200, 1208, 1252, 4946, 5348, 8229, 13488, 17584, 28709

1276 1200, 1208, 13488, 17584

1277 1200, 1208, 13488, 17584

1280 37, 423, 437, 500, 737, 813, 819, 850, 869, 875, 1200, 1208, 1252-1253, 4909, 4946,

4971, 5349, 8229, 9061, 13488, 17584, 28709

1281 37, 437, 500, 819, 850, 857, 905, 920, 1026, 1200, 1208, 1252, 1254-1255, 4946,

4953, 5350, 8229, 9049, 13488, 17584, 28709

1282 500, 852, 870, 912, 1200, 1208, 1250, 4948, 5346, 9044, 13488, 17584

1283 37, 437, 500, 819, 850, 855, 866, 878, 880, 915, 1025, 1123-1125, 1131, 1200, 1208,

1251-1252, 4946, 4951, 5347, 8229, 13488, 17584, 28709

1284 1200, 1208, 13488, 17584

1285 1200, 1208, 13488, 17584

1351 300-301, 941, 1200, 1208, 4396, 8492, 13488, 16684, 17584

1362 834, 951, 1200, 1208, 4930, 9026, 13488, 17584

1363 933, 949, 1200, 1208, 1364, 5029, 5045, 5460, 9125, 9555, 13221, 13488, 13651,

17317, 17584, 25525, 29621, 33717, 37813

1364 933, 949, 1200, 1208, 1363, 5029, 5045, 5460, 9125, 9555, 13221, 13488, 13651,

17317, 17584, 25525, 29621, 33717, 37813

1370 937-938, 948, 950, 1200, 1208, 1371, 5033, 5046, 9142, 13488, 17584, 25514, 25524,

29620

1371 1200, 1208, 1370, 13488, 17584

1380 837, 928, 1200, 1208, 1385, 4933, 13488, 17584

1381 935-936, 1200, 1208, 1386, 1388, 5031, 5477, 5482, 5484, 9127, 13223, 13488,

17584, 25512

1385 837, 1200, 1208, 1380, 4933, 13488, 17584

1386 935, 1200, 1208, 1381, 1388, 5031, 5477, 5482, 5484, 9127, 13223, 13488, 17584

1388 935, 1200, 1208, 1381, 1386, 5031, 5477, 5482, 5484, 5488, 9127, 13223, 13488,
17584

1390 930-932, 939, 942-943, 1200, 1208, 1399, 5026, 5028, 5035, 5038-5039, 5055, 9122,

9124, 9131, 9135, 13218-13219, 13231, 13488, 17314, 17584, 25508, 25518, 29614,

33698-33700, 37796

1399 930-932, 939, 942-943, 1200, 1208, 1390, 5026, 5028, 5035, 5038-5039, 5050, 9122,

9124, 9131, 9135, 13218-13219, 13231, 13488, 17314, 17584, 25508, 25518, 29614,

33698-33700, 37796

4386 37, 256, 273, 277-278, 280, 284-285, 290, 297, 367, 437, 500, 737, 775, 819, 833,

836, 850, 852, 855, 857, 860-865, 870-871, 895-897, 1009, 1025-1027, 1040-1043,

1088, 1112, 1122, 1139, 1252, 4929, 4932, 4946, 4948, 4951, 4953, 4960, 4992,

5123, 8229, 8482, 9025, 9044, 9049, 9056, 13121, 17248, 25473, 25617, 25619,

25664, 28709

4396 300-301, 941, 1351, 8492, 16684

4899 867, 1148, 1200, 1208, 5351, 9048, 12712, 13488, 17584

4909 37, 273, 277-278, 280, 284-285, 297, 423, 437, 500, 737, 813, 819, 838, 850, 852,

857, 860-861, 863, 869-871, 874-875, 880, 897, 903, 912, 916, 920, 1025-1027,

1041-1043, 1200, 1208, 1252-1253, 1280, 4934, 4946, 4948, 4953, 4970-4971, 5012,

5123, 5349, 8229, 9030, 9044, 9049, 9061, 9066, 13488, 17584, 25473, 25479,

25617, 25619, 28709

4929 37, 256, 273, 277-278, 280, 284-285, 290, 297, 367, 437, 500, 737, 775, 819, 833,

836, 850, 852, 855, 857, 860-865, 870-871, 891, 1009, 1025-1027, 1040-1043, 1088,

1112, 1122, 1126, 1252, 4386, 4932, 4946, 4948, 4951, 4953, 4960, 5123, 8229,

8482, 9025, 9044, 9049, 9056, 13121, 17248, 25617, 25619, 25664, 28709

4930 834, 951, 1200, 1208, 1362, 9026, 13488, 17584

Page 712 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

4931 835, 927, 947, 9027, 21427

4932 37, 256, 273, 277-278, 280, 284-285, 290, 297, 367, 424, 437, 500, 737, 775, 819,
833, 836, 850, 852, 855, 857, 870-871, 875, 903, 1009, 1025-1027, 1040-1043, 1088,

1112, 1114-1115, 1122, 1252, 4386, 4929, 4946, 4948, 4951, 4953, 4971, 5123,

5210-5211, 8229, 8482, 9025, 9044, 9049, 13121, 25479, 25617, 25619, 25664,

28709

4933 837, 1200, 1208, 1380, 1385, 13488, 17584

4934 37, 256, 273, 277-278, 280, 284-285, 297, 423, 437, 500, 737, 775, 813, 819, 838,

850, 852, 857, 860-865, 869-871, 874-875, 880, 897, 903, 912, 916, 920, 1025-1027,

1041-1043, 1112, 1122, 1252, 4909, 4946, 4948, 4953, 4960, 4970-4971, 5012, 5123,

8229, 9030, 9044, 9049, 9056, 9061, 9066, 17248, 25473, 25479, 25617, 25619,
28709

4946 37, 256, 259, 273, 275, 277-278, 280, 284-285, 290, 297, 367, 420, 423-424, 437,

500, 737, 775, 803, 813, 819, 833, 836, 838, 850, 852, 855-858, 860-866, 869-871,

874-875, 880, 897, 903, 905, 912, 914-916, 920-924, 1004, 1025-1027, 1040-1043,
1047, 1051, 1088-1089, 1097-1098, 1100, 1112, 1114, 1122, 1126, 1130, 1132, 1140-

1149, 1250-1257, 1275, 1280-1281, 1283, 4386, 4909, 4929, 4932, 4934, 4948, 4951-

4953, 4960, 4970-4971, 5012, 5123, 5210, 5346, 5348, 8229, 8482, 8612, 9025, 9030,

9044, 9049, 9056, 9061, 9066, 13121, 16804, 17248, 25473, 25479, 25617, 25619,

25664, 28709

4948 37, 256, 259, 273, 277-278, 280, 284-285, 290, 297, 420, 423-424, 437, 500, 813,

819, 833, 836, 838, 850, 852, 855, 857, 860-861, 863, 869-871, 874-875, 880, 897,

903, 905, 912, 916, 920, 1025-1027, 1040-1043, 1047, 1088, 1097, 1200, 1208, 1250,

1252, 1282, 4386, 4909, 4929, 4932, 4934, 4946, 4951, 4953, 4970-4971, 5012, 5123,
5346, 8229, 8482, 8612, 9025, 9030, 9044, 9049, 9061, 9066, 13121, 13488, 16804,

17584, 25473, 25479, 25617, 25619, 25664, 28709

4951 37, 259, 273, 277-278, 280, 284-285, 290, 297, 437, 500, 819, 833, 836, 850, 852,

855, 857, 866, 870-871, 878, 880, 912, 915, 1025-1027, 1040-1043, 1088, 1200,
1208, 1250-1252, 1283, 4386, 4929, 4932, 4946, 4948, 4953, 5123, 5346, 5347, 8229,

8482, 9025, 9044, 9049, 13121, 13488, 17584, 25617, 25619, 25664, 28709

4952 259, 273, 424, 500, 803, 850, 856, 862, 916, 1200, 1208, 1255, 4946, 5012, 5351,

13488, 17584

4953 37, 256, 259, 273, 277-278, 280, 284-285, 290, 297, 420, 423-424, 437, 500, 813,

819, 833, 836, 838, 850, 852, 855, 857, 860-861, 863, 869-871, 874-875, 880, 897,

903, 905, 912, 916, 920, 1025-1027, 1040-1043, 1088, 1097, 1252, 1254, 1281, 4386,

4909, 4929, 4932, 4934, 4946, 4948, 4951, 4970-4971, 5012, 5123, 5350, 8229, 8482,

8612, 9025, 9030, 9044, 9049, 9061, 9066, 13121, 16804, 25473, 25479, 25617,
25619, 25664, 28709

4960 37, 256, 259, 273, 277-278, 280, 284-285, 290, 297, 420, 423-424, 500, 720, 819,

833, 838, 850, 864, 870-871, 875, 880, 905, 918, 1008, 1025-1027, 1046, 1089, 1097,

1127, 1200, 1208, 1252, 1256, 4386, 4929, 4934, 4946, 4971, 5104, 5123, 5142,
5352, 8229, 8482, 8612, 9025, 9030, 9056, 9238, 13121, 13488, 16804, 17248,

17584, 28709

4970 37, 259, 273, 277-278, 280, 284-285, 297, 423, 437, 500, 813, 819, 838, 850, 852,

857, 860-861, 863, 869-871, 874-875, 880, 897, 903, 912, 916, 920, 1025-1027,
1041-1043, 1252, 4909, 4934, 4946, 4948, 4953, 4971, 5012, 5123, 8229, 9030, 9044,

9049, 9061, 9066, 25473, 25479, 25617, 25619, 28709

4971 37, 256, 273, 277-278, 280, 284-285, 297, 367, 423, 437, 500, 737, 775, 813, 819,

836, 838, 850-852, 857, 860-865, 869-871, 874-875, 880, 897, 903, 912, 916, 920,
1009, 1025-1027, 1041-1043, 1047, 1088, 1112, 1122, 1200, 1208, 1252-1253, 1280,

4909, 4932, 4934, 4946, 4948, 4953, 4960, 4970, 5012, 5123, 5349, 8229, 9030,

9044, 9049, 9056, 9061, 9066, 13488, 17248, 17584, 25473, 25479, 25617, 25619,

25664, 28709

4992 290, 896, 1027, 1041, 4386, 5123, 8482, 25617

5012 37, 273, 277-278, 280, 284-285, 297, 423-424, 437, 500, 803, 813, 819, 838, 850,

852, 856-857, 860-863, 869-871, 874-875, 880, 897, 903, 912, 916, 920, 1025-1027,

1041-1043, 1200, 1208, 1252, 1255, 4909, 4934, 4946, 4948, 4952-4953, 4970-4971,

5123, 5351, 8229, 9030, 9044, 9049, 9061, 9066, 13488, 17584, 25473, 25479,
25617, 25619, 28709

5026 930-932, 939, 942-943, 1390, 1399, 5028, 5035, 5038-5039, 9122, 9124, 9131, 9135,

1208, 13218-13219, 13231, 17314, 25508, 25518, 29614, 33698-33700, 37796

5028 930-932, 939, 942-943, 1390, 1399, 5026, 5035, 5038-5039, 9122, 9124, 9131, 9135,

13218-13219, 13231, 17314, 25508, 25518, 29614, 33698-33700, 37796

5029 933-934, 944, 949, 1363-1364, 5045, 5460, 9125, 9555, 13221, 13651, 17317, 25510,

25520, 25525, 29616, 29621, 33717, 37813

5031 935-936, 946, 1381, 1386, 1388, 5477, 5482, 5484, 9127, 13223, 25512

5033 937-938, 948, 950, 1370, 5046, 9142, 25514, 25524, 29620

5035 930-932, 939, 942-943, 1390, 1399, 5026, 5028, 5038-5039, 9122, 9124, 9131, 9135,

1208, 13218-13219, 13231, 17314, 25508, 25518, 29614, 33698-33700, 37796

5038 930-932, 939, 942-943, 1390, 1399, 5026, 5028, 5035, 5039, 9122, 9124, 9131, 9135,

13218-13219, 13231, 17314, 25508, 25518, 29614, 33698-33700, 37796

5039 930-932, 939, 942-943, 1200, 1208, 1390, 1399, 5026, 5028, 5035, 5038, 9122, 9124,

9131, 9135, 13218-13219, 13231, 13488, 17314, 17584, 25508, 25518, 29614, 33698-

33700, 37796

5045 933-934, 944, 949, 1363-1364, 5029, 5460, 9125, 9555, 13221, 13651, 17317, 25510,
25520, 25525, 29616, 29621, 33717, 37813

5046 937-938, 948, 950, 1370, 5033, 9142, 25514, 25524, 29620

5104 420, 864, 1008, 1200, 1208, 4960, 8612, 9056, 13488, 16804, 17248, 17584

5123 37, 256, 273, 277-278, 280, 284-285, 290, 297, 367, 423, 437, 500, 737, 775, 813,

819, 833, 836, 838, 850, 852, 855, 857, 860-865, 869-871, 874-875, 880, 895-897,

903, 912, 916, 1025-1027, 1040-1043, 1047, 1088, 1112, 1122, 1139, 1200, 1208,

Page 713 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

1252, 4386, 4909, 4929, 4932, 4934, 4946, 4948, 4951, 4953, 4960, 4970-4971, 4992,

5012, 8229, 8482, 9025, 9030, 9044, 9049, 9056, 9061, 9066, 13121, 13488, 17248,

17584, 25473, 25479, 25617, 25619, 25664, 28709

5142 420, 500, 864, 1046, 1089, 1127, 1200, 1208, 1256, 4960, 5352, 8612, 9056, 9238,

13488, 16804, 17248, 17584

5210 37, 437, 500, 819, 836, 850, 904, 1043, 1114-1115, 1200, 1208, 4932, 4946, 5211,

8229, 13488, 17584, 25480, 25619, 28709

5211 37, 367, 437, 500, 836, 903, 1114-1115, 4932, 5210, 8229, 25479, 28709

5346 37, 259, 273, 500, 819, 850, 852, 855, 870, 912, 1200, 1208, 1250, 1252, 1282, 4946,

4948, 4951, 8229, 9044, 13488, 17584, 28709

5347 808, 848-849, 855, 866, 872, 878, 880, 915, 1025, 1123-1125, 1131, 1154, 1158,

1200, 1208, 1251, 1283, 4951, 13488, 17584

5348 37, 259, 273, 275, 277-278, 280, 284-285, 297, 437, 500, 808, 819, 850, 858, 860-
861, 863, 865, 871-872, 901-902, 923-924, 1051, 1140-1149, 1153-1158, 1160-1162,

1164, 1200, 1208, 1252, 1275, 4946, 8229, 13488, 17584, 28709

5349 813, 869, 875, 1148, 1200, 1208, 1253, 1280, 4909, 4971, 9061, 13488, 17584

5350 857, 920, 1026, 1155, 1200, 1208, 1254, 1281, 4953, 9049, 13488, 17584

5351 424, 856, 862, 867, 916, 1200, 1208, 1255, 4899, 4952, 5012, 9048, 12712, 13488,

17584

5352 420, 864, 1046, 1089, 1200, 1208, 1256, 4960, 5142, 8612, 9056, 9238, 13488,

16804, 17248, 17584

5353 901-902, 921-922, 1112, 1122, 1156-1157, 1200, 1208, 1257, 13488, 17584

5354 1129-1130, 1163, 1164, 1200, 1208, 1258, 13488, 17584

5460 933-934, 944, 949, 1363-1364, 5029, 5045, 9125, 9555, 13221, 13651, 17317, 25510,

25520, 25525, 29616, 29621, 33717, 37813

5477 935-936, 1381, 1386, 1388, 5031, 5482, 5484, 9127, 13223, 25512

5482 935, 1381, 1386, 1388, 5031, 5477, 5484, 9127, 13223

5484 935-936, 946, 1381, 1386, 1388, 5031, 5477, 5482, 9127, 13223, 25512

5488 1388

8229 37, 256, 273, 275, 277-278, 280, 284-285, 290, 297, 367, 420, 423-424, 437, 500,

720, 737, 775, 813, 819, 833, 836, 838, 850, 852, 855, 857-858, 860-866, 869-871,

874-875, 880, 897, 903-905, 912, 914-916, 920-924, 1009, 1025-1027, 1040-1043,
1047, 1051, 1088, 1097, 1100, 1112, 1114-1115, 1122, 1124, 1126, 1130-1132, 1137,

1140-1149, 1250-1255, 1257-1258, 1275, 1280-1281, 1283, 4386, 4909, 4929, 4932,

4934, 4946, 4948, 4951, 4953, 4960, 4970-4971, 5012, 5123, 5210-5211, 5346, 5348,

8482, 8612, 9025, 9030, 9044, 9049, 9056, 9061, 9066, 13121, 16804, 17248, 25473,

25479, 25480, 25617, 25619, 25664, 28709

8482 37, 256, 273, 277-278, 280, 284-285, 290, 297, 367, 437, 500, 737, 775, 819, 833,

836, 850, 852, 855, 857, 860-865, 870-871, 895-897, 1009, 1025-1027, 1040-1043,

1088, 1112, 1122, 1139, 1200, 1208, 1252, 4386, 4929, 4932, 4946, 4948, 4951,

4953, 4960, 4992, 5123, 8229, 9025, 9044, 9049, 9056, 13121, 13488, 17248, 17584,

25473, 25617, 25619, 25664, 28709

8492 300-301, 941, 1351, 4396, 16684

8612 37, 256, 420, 424, 437, 500, 720, 737, 775, 819, 850, 852, 857, 860-865, 1008, 1046,

1089, 1098, 1112, 1122, 1127, 1200, 1208, 1252, 1256, 4946, 4948, 4953, 4960,
5104, 5142, 5352, 8229, 9044, 9049, 9056, 9238, 13488, 16804, 17248, 17584, 28709

9025 37, 256, 273, 277-278, 280, 284-285, 290, 297, 367, 437, 500, 737, 775, 819, 833,

836, 850, 852, 855, 857, 860-865, 870-871, 891, 1009, 1025-1027, 1040-1043, 1088,

1112, 1122, 1126, 1252, 4386, 4929, 4932, 4946, 4948, 4951, 4953, 4960, 5123,
8229, 8482, 9044, 9049, 9056, 13121, 17248, 25617, 25619, 25664, 28709

9026 834, 926, 951, 1362, 4930

9027 835, 927, 947, 1200, 1208, 4931, 13488, 17584, 21427

9030 37, 256, 273, 277-278, 280, 284-285, 297, 423, 437, 500, 737, 775, 813, 819, 838,

850, 852, 857, 860-865, 869-871, 874-875, 880, 897, 903, 912, 916, 920, 1025-1027,

1041-1043, 1112, 1122, 1200, 1208, 1252, 4909, 4934, 4946, 4948, 4953, 4960,

4970-4971, 5012, 5123, 8229, 9044, 9049, 9056, 9061, 9066, 13488, 17248, 17584,
25473, 25479, 25617, 25619, 28709

9044 37, 256, 259, 273, 277-278, 280, 284-285, 290, 297, 420, 423-424, 437, 500, 813,

819, 833, 836, 838, 850, 852, 855, 857, 860-861, 863, 869-871, 874-875, 880, 897,

903, 905, 912, 916, 920, 1025-1027, 1040-1043, 1047, 1088, 1097, 1153, 1200, 1208,

1250, 1252, 1282, 4386, 4909, 4929, 4932, 4934, 4946, 4948, 4951, 4953, 4970-4971,
5012, 5123, 5346, 8229, 8482, 8612, 9025, 9030, 9049, 9061, 9066, 13121, 13488,

16804, 17584, 25473, 25479, 25617, 25619, 25664, 28709

9048 867, 1200, 1208, 4899, 5351, 12712, 13488, 17584

9049 37, 256, 259, 273, 277-278, 280, 284-285, 290, 297, 420, 423-424, 437, 500, 813,

819, 833, 836, 838, 850, 852, 855, 857, 860-861, 863, 869-871, 874-875, 880, 897,

903, 905, 912, 916, 920, 1025-1027, 1040-1043, 1088, 1097, 1155, 1200, 1208, 1252,

1254, 1281, 4386, 4909, 4929, 4932, 4934, 4946, 4948, 4951, 4953, 4970-4971, 5012,

5123, 5350, 8229, 8482, 8612, 9025, 9030, 9044, 9061, 9066, 13121, 13488, 16804,
17584, 25473, 25479, 25617, 25619, 25664, 28709

9056 37, 256, 259, 273, 277-278, 280, 284-285, 290, 297, 420, 423-424, 500, 720, 819,

833, 838, 850, 864, 870-871, 875, 880, 905, 918, 1008, 1025-1027, 1046, 1089, 1097,

1127, 1200, 1208, 1252, 1256, 4386, 4929, 4934, 4946, 4960, 4971, 5104, 5123,
5142, 5352, 8229, 8482, 8612, 9025, 9030, 9238, 13121, 13488, 16804, 17248,

17584, 28709

9061 37, 256, 259, 273, 277-278, 280, 284-285, 297, 423, 437, 500, 737, 813, 819, 838,

850, 852, 857, 860-861, 863, 869-871, 874-875, 880, 897, 903, 912, 916, 920, 1025-
1027, 1041-1043, 1200, 1208, 1252-1254, 1280, 4909, 4934, 4946, 4948, 4953, 4970-

4971, 5012, 5123, 5349, 8229, 9030, 9044, 9049, 9066, 13488, 17584, 25473, 25479,

Page 714 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

25617, 25619, 28709

9066 37, 259, 273, 277-278, 280, 284-285, 297, 423, 437, 500, 813, 819, 838, 850, 852,
857, 860-861, 863, 869-871, 874-875, 880, 897, 903, 912, 916, 920, 1025-1027,

1041-1043, 1200, 1208, 1252, 4909, 4934, 4946, 4948, 4953, 4970-4971, 5012, 5123,

8229, 9030, 9044, 9049, 9061, 13488, 17584, 25473, 25479, 25617, 25619, 28709

9122 930-932, 939, 942-943, 1390, 1399, 5026, 5028, 5035, 5038-5039, 9124, 9131, 9135,

13218-13219, 13231, 17314, 25508, 25518, 29614, 33698-33700, 37796

9124 930-932, 939, 942-943, 1390, 1399, 5026, 5028, 5035, 5038-5039, 9122, 9131, 9135,

13218-13219, 13231, 17314, 25508, 25518, 29614, 33698-33700, 37796

9125 933-934, 944, 949, 1363-1364, 5029, 5045, 5460, 9555, 13221, 13651, 17317, 25510,
25520, 25525, 29616, 29621, 33717, 37813

9127 935-936, 946, 1381, 1386, 1388, 5031, 5477, 5482, 5484, 13223, 25512

9131 930-932, 939, 942-943, 1390, 1399, 5026, 5028, 5035, 5038-5039, 9122, 9124, 9135,
13218-13219, 13231, 17314, 25508, 25518, 29614, 33698-33700, 37796

9135 930-932, 939, 942-943, 1390, 1399, 5026, 5028, 5035, 5038-5039, 9122, 9124, 9131,

13218-13219, 13231, 17314, 25508, 25518, 29614, 33698-33700, 37796

9142 937-938, 948, 950, 1370, 5033, 5046, 25514, 25524, 29620

9238 420, 500, 864, 1046, 1089, 1127, 1200, 1208, 1256, 4960, 5142, 5352, 8612, 9056,

13488, 16804, 17248, 17584

9555 933, 949, 1363-1364, 5029, 5045, 5460, 9125, 13221, 13651, 17317, 25525, 29621,

33717, 37813

12712 862, 867, 1148, 1156-1157, 1200, 1208, 4899, 5351, 9048, 13488, 17584

13121 37, 256, 273, 277-278, 280, 284-285, 290, 297, 367, 437, 500, 737, 775, 819, 833,
836, 850, 852, 855, 857, 860-865, 870-871, 891, 1009, 1025-1027, 1040-1043, 1088,

1112, 1122, 1126, 1200, 1208, 1252, 4386, 4929, 4932, 4946, 4948, 4951, 4953,

4960, 5123, 8229, 8482, 9025, 9044, 9049, 9056, 13488, 17248, 17584, 25617,

25619, 25664, 28709

13218 930-932, 939, 942-943, 1200, 1208, 1390, 1399, 5026, 5028, 5035, 5038-5039, 9122,

9124, 9131, 9135, 13219, 13231, 13488, 17314, 17584, 25508, 25518, 29614, 33698-

33700, 37796

13219 930-932, 939, 942-943, 1390, 1399, 5026, 5028, 5035, 5038-5039, 9122, 9124, 9131,
9135, 13218, 13231, 17314, 25508, 25518, 29614, 33698-33700, 37796

13221 933-934, 944, 949, 1363-1364, 5029, 5045, 5460, 9125, 9555, 13651, 17317, 25510,

25520, 25525, 29616, 29621, 33717, 37813

13223 935-936, 946, 1381, 1386, 1388, 5031, 5477, 5482, 5484, 9127, 25512

13231 930-932, 939, 942-943, 1390, 1399, 5026, 5028, 5035, 5038-5039, 9122, 9124, 9131,

9135, 13218-13219, 17314, 25508, 25518, 29614, 33698-33700, 37796

13488 37, 256, 259, 273, 275, 277-278, 280, 282, 284-285, 290, 293, 297, 300-301, 367,

420, 423-424, 437, 500, 720, 737, 775, 803, 806, 808, 813, 819, 833-838, 848-852,

855-872, 874-875, 878, 880, 891, 895-897, 901-905, 912, 914-916, 918, 920-924,

927-928, 930, 932-933, 935, 937, 939, 941-944, 946-951, 1004, 1006, 1008-1019,

1025-1027, 1040-1043, 1046-1047, 1051, 1088-1089, 1097-1098, 1112, 1114-1115,

1122-1126, 1129-1133, 1137, 1140-1149, 1153-1160, 1164, 1200, 1208, 1250-1258,
1275-1277, 1280-1285, 1351, 1362-1364, 1370-1371, 1380-1381, 1385-1386, 1388,

1390, 1399, 4899, 4909, 4930, 4933, 4948, 4951-4952, 4960, 4971, 5012, 5039, 5104,

5123, 5142, 5210, 5346-5354, 8482, 8612, 9027, 9030, 9044, 9048-9049, 9056, 9061,

9066, 9238, 12712, 13121, 13218, 16684, 16804, 17248, 17584, 21427, 28709

13651 933, 949, 1363-1364, 5029, 5045, 5460, 9125, 9555, 13221, 17317, 25525, 29621,

33717, 37813

16684 300-301, 941, 1200, 1208, 1351, 4396, 8492, 13488, 17584

16804 37, 256, 420, 424, 437, 500, 720, 737, 775, 819, 850, 852, 857, 860-865, 1008, 1046,

1089, 1098, 1112, 1122, 1127, 1200, 1208, 1252, 1256, 4946, 4948, 4953, 4960,

5104, 5142, 5352, 8229, 8612, 9044, 9049, 9056, 9238, 13488, 17248, 17584, 28709

17248 37, 256, 259, 273, 277-278, 280, 284-285, 290, 297, 420, 423-424, 500, 720, 819,
833, 838, 850, 864, 870-871, 875, 880, 905, 918, 1008, 1025-1027, 1046, 1089, 1097,

1127, 1200, 1208, 1252, 1256, 4386, 4929, 4934, 4946, 4960, 4971, 5104, 5123,

5142, 5352, 8229, 8482, 8612, 9025, 9030, 9056, 9238, 13121, 13488, 16804, 17584,

28709

17314 930-932, 939, 942-943, 1390, 1399, 5026, 5028, 5035, 5038-5039, 9122, 9124, 9131,

9135, 13218-13219, 13231, 25508, 25518, 29614, 33698-33700, 37796

17317 933-934, 944, 949, 1363-1364, 5029, 5045, 5460, 9125, 9555, 13221, 13651, 25510,

25520, 25525, 29616, 29621, 33717, 37813

17584 37, 256, 259, 273, 275, 277-278, 280, 282, 284-285, 290, 293, 297, 300-301, 367,

420, 423-424, 437, 500, 720, 737, 775, 803, 806, 808, 813, 819, 833-838, 848-852,

855-872, 874-875, 878, 880, 891, 895-897, 901-905, 912, 914-916, 918, 920-924,

927-928, 930, 932-933, 935, 937, 939, 941-944, 946-951, 1004, 1006, 1008-1019,

1025-1027, 1040-1043, 1046-1047, 1051, 1088-1089, 1097-1098, 1112, 1114-1115,
1122-1126, 1129-1133, 1137, 1140-1149, 1153-1160, 1164, 1200, 1208, 1250-1258,

1275-1277, 1280-1285, 1351, 1362-1364, 1370-1371, 1380-1381, 1385-1386, 1388,

1390, 1399, 4899, 4909, 4930, 4933, 4948, 4951-4952, 4960, 4971, 5012, 5039, 5104,

5123, 5142, 5210, 5346-5354, 8482, 8612, 9027, 9030, 9044, 9048-9049, 9056, 9061,

9066, 9238, 12712, 13121, 13218, 13488, 16684, 16804, 17248, 21427, 28709

21427 835, 927, 947, 1200, 1208, 4931, 9027, 13488, 17584

25473 37, 273, 277-278, 280, 284-285, 290, 297, 423, 437, 500, 813, 819, 838, 850, 852,

857, 860-861, 863, 869-871, 874-875, 880, 897, 903, 912, 916, 920, 1025-1027,
1041-1043, 1252, 4386, 4909, 4934, 4946, 4948, 4953, 4970-4971, 5012, 5123, 8229,

8482, 9030, 9044, 9049, 9061, 9066, 25479, 25617, 25619, 28709

25479 37, 273, 277-278, 280, 284-285, 297, 423, 437, 500, 813, 819, 836, 838, 850, 852,

857, 860-861, 863, 869-871, 874-875, 880, 897, 903, 912, 916, 920, 1025-1027,
1041-1043, 1115, 1252, 4909, 4932, 4934, 4946, 4948, 4953, 4970-4971, 5012, 5123,

Page 715 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Parent topic: Code page conversion

This build: January 26, 2011 11:19:32

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr22450_

10.4. i5/OS conversion support

A full list of CCSIDs, and conversions supported by i5/OS®, can be found in the appropriate i5/OS publication relating to your operating
system.

Parent topic: Code page conversion

This build: January 26, 2011 11:19:32

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr22460_

5211, 8229, 9030, 9044, 9049, 9061, 9066, 25473, 25617, 25619, 28709

25480 37, 500, 904, 1114, 5210, 8229, 28709

25508 930-932, 939, 942-943, 1390, 1399, 5026, 5028, 5035, 5038-5039, 9122, 9124, 9131,

9135, 13218-13219, 13231, 17314, 25518, 29614, 33698-33700, 37796

25510 933-934, 949, 5029, 5045, 5460, 9125, 13221, 17317, 25525, 29621, 33717, 37813

25512 935-936, 946, 1381, 5031, 5477, 5484, 9127, 13223

25514 937-938, 950, 1370, 5033, 5046, 9142

25518 930-932, 939, 942-943, 1390, 1399, 5026, 5028, 5035, 5038-5039, 9122, 9124, 9131,
9135, 13218-13219, 13231, 17314, 25508, 29614, 33698-33700, 37796

25520 933, 944, 949, 5029, 5045, 5460, 9125, 13221, 17317, 25525, 29616, 29621, 33717,

37813

25524 937, 948, 950, 1370, 5033, 5046, 9142, 29620

25525 933-934, 944, 949, 1363-1364, 5029, 5045, 5460, 9125, 9555, 13221, 13651, 17317,

25510, 25520, 29616, 29621, 33717, 37813

25617 37, 273, 277-278, 280, 284-285, 290, 297, 367, 423, 437, 500, 813, 819, 833, 836,

838, 850, 852, 855, 857, 860-861, 863, 869-871, 874-875, 880, 895-897, 903, 912,

916, 1025-1027, 1040-1043, 1088, 1252, 4386, 4909, 4929, 4932, 4934, 4946, 4948,

4951, 4953, 4970-4971, 4992, 5012, 5123, 8229, 8482, 9025, 9030, 9044, 9049, 9061,

9066, 13121, 25473, 25479, 25619, 25664, 28709

25619 37, 273, 277-278, 280, 284-285, 290, 297, 423, 437, 500, 813, 819, 833, 836, 838,

850, 852, 855, 857, 860-861, 863, 869-871, 874-875, 880, 897, 903, 912, 916, 1025-

1027, 1040-1043, 1088, 1114, 4386, 4909, 4929, 4932, 4934, 4946, 4948, 4951, 4953,

4970-4971, 5012, 5123, 5210, 8229, 8482, 9025, 9030, 9044, 9049, 9061, 9066,

13121, 25473, 25479, 25617, 25664, 28709

25664 37, 273, 277-278, 280, 284-285, 290, 297, 367, 500, 819, 833, 836, 850, 852, 855,

857, 870-871, 875, 891, 1025-1027, 1040-1043, 1088, 1126, 4386, 4929, 4932, 4946,

4948, 4951, 4953, 4971, 5123, 8229, 8482, 9025, 9044, 9049, 13121, 25617, 25619,

28709

28709 37, 256, 273, 275, 277-278, 280, 284-285, 290, 297, 367, 420, 423-424, 437, 500,

720, 737, 775, 813, 819, 833, 836, 838, 850, 852, 855, 857-858, 860-866, 869-871,

874-875, 880, 897, 903-905, 912, 914-916, 920-924, 1009, 1025-1027, 1040-1043,

1047, 1051, 1088, 1097, 1100, 1112, 1114-1115, 1122, 1124, 1126, 1130-1132, 1137,
1140-1149, 1200, 1208, 1250-1255, 1257-1258, 1275, 1280-1281, 1283, 4386, 4909,

4929, 4932, 4934, 4946, 4948, 4951, 4953, 4960, 4970-4971, 5012, 5123, 5210-5211,

5346, 5348, 8229, 8482, 8612, 9025, 9030, 9044, 9049, 9056, 9061, 9066, 13121,

13488, 16804, 17248, 17584, 25473, 25479, 25480, 25617, 25619, 25664

29614 930-932, 939, 942-943, 1390, 1399, 5026, 5028, 5035, 5038-5039, 9122, 9124, 9131,

9135, 13218-13219, 13231, 17314, 25508, 25518, 33698-33700, 37796

29616 933, 944, 949, 5029, 5045, 5460, 9125, 13221, 17317, 25520, 25525, 29621, 33717,

37813

29620 937, 948, 950, 1370, 5033, 5046, 9142, 25524

29621 933-934, 944, 949, 1363-1364, 5029, 5045, 5460, 9125, 9555, 13221, 13651, 17317,

25510, 25520, 25525, 29616, 33717, 37813

33698 930-932, 939, 942-943, 1390, 1399, 5026, 5028, 5035, 5038-5039, 9122, 9124, 9131,

9135, 13218-13219, 13231, 17314, 25508, 25518, 29614, 33699-33700, 37796

33699 930-932, 939, 942-943, 1390, 1399, 5026, 5028, 5035, 5038-5039, 9122, 9124, 9131,

9135, 13218-13219, 13231, 17314, 25508, 25518, 29614, 33698, 33700, 37796

33700 930-932, 939, 942-943, 1390, 1399, 5026, 5028, 5035, 5038-5039, 9122, 9124, 9131,

9135, 13218-13219, 13231, 17314, 25508, 25518, 29614, 33698-33699, 37796

33717 933-934, 944, 949, 1363-1364, 5029, 5045, 5460, 9125, 9555, 13221, 13651, 17317,
25510, 25520, 25525, 29616, 29621, 37813

37796 930-932, 939, 942-943, 1390, 1399, 5026, 5028, 5035, 5038-5039, 9122, 9124, 9131,

9135, 13218-13219, 13231, 17314, 25508, 25518, 29614, 33698-33700

37813 933-934, 944, 949, 1363-1364, 5029, 5045, 5460, 9125, 9555, 13221, 13651, 17317,

25510, 25520, 25525, 29616, 29621, 33717

Page 716 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

10.5. Unicode conversion support

Some platforms support the conversion of user data to or from Unicode encoding. The two forms of Unicode encoding supported are UCS-2
(CCSIDs 1200, 13488, and 17584) and UTF-8 (CCSID 1208).

The term UCS-2 is often used interchangeably but incorrectly with UTF-16. UCS-2 is a fixed-width encoding where each character occupies 2

bytes. UTF-16 is variable-width encoding that is a superset of UCS-2. In addition to the 2–byte UCS-2 characters, UTF-16 contains
characters, known as surrogate pairs, that are 4 bytes in length. WebSphere MQ does not support surrogate pairs. The support for UTF-16
and UTF-8 in WebSphere MQ is therefore limited to those Unicode characters that can be encoded in UCS-2.

Note: WebSphere® MQ does not support UCS-2 queue manager CCSIDs so message header data cannot be encoded in UCS-2.

WebSphere MQ AIX support for Unicode

On WebSphere MQ for AIX® conversion to and from Unicode CCSIDs is supported for the CCSIDs in the following table.

WebSphere MQ HP-UX support for Unicode
On WebSphere MQ for HP-UX conversion to and from Unicode CCSIDs is supported for the CCSIDs listed in the following table.

WebSphere MQ for Windows, Solaris, and Linux support for Unicode

i5/OS support for Unicode
For details on UNICODE support refer to the appropriate i5/OS® publication relating to your operating system.

WebSphere MQ for z/OS support for Unicode

Parent topic: Code page conversion

This build: January 26, 2011 11:19:33

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr22470_

10.5.1. WebSphere MQ AIX support for Unicode

On WebSphere® MQ for AIX® conversion to and from Unicode CCSIDs is supported for the CCSIDs in the following table.

Parent topic: Unicode conversion support

This build: January 26, 2011 11:19:33

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr22480_

10.5.2. WebSphere MQ HP-UX support for Unicode

On WebSphere® MQ for HP-UX conversion to and from Unicode CCSIDs is supported for the CCSIDs listed in the following table.

037 273 278 280 284 285

297 423 437 500 813 819

850 852 856 857 858 860

861 865 867 869 875 878

880 901 902 912 915 916

920 923 924 932 933 935

937 938 939 942 943 948

949 950 954 964 970 1026

1046 1089 1129 1130 1131 1132

1133 1140 1141 1142 1143 1144

1145 1146 1147 1148 1149 1200

1153 1156 1157 1208 1250 1251

1253 1254 1258 1280 1281 1282

1283 1284 1285 1363 1364 1381

1383 1386 1388 4899 5026 5035

5050 5346 5347 5348 5349 5350

5351 5352 5353 5354 5488 9044

9048 9449 12712 13488 17584 33722

437 737 813 819 850 852

855 857 861 864 865 866

869 874 912 915 916 920

932 938 950 954 964 970

1051 1089 1140 1141 1142 1143

1144 1145 1146 1147 1148 1149

1200 1208 1250 1251 1252 1253

Page 717 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

Parent topic: Unicode conversion support

This build: January 26, 2011 11:19:36

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr22490_

10.5.3. WebSphere MQ for Windows, Solaris, and Linux support for Unicode

On WebSphere® MQ for Windows, WebSphere MQ for Solaris, and WebSphere MQ for Linux conversion to, and from, Unicode CCSIDs is
supported for the CCSIDs in the following table.

Parent topic: Unicode conversion support

This build: January 26, 2011 11:19:37

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr22500_

10.5.4. i5/OS support for Unicode

For details on UNICODE support refer to the appropriate i5/OS® publication relating to your operating system.

Parent topic: Unicode conversion support

This build: January 26, 2011 11:19:37

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr22510_

1254 1255 1256 1257 1258 1381

5050 5488 13488 33722

037 277 278 280 284 285

290 297 300 301 420 424

437 500 813 819 833 835

836 837 838 850 852 855

856 857 858 860 861 862

863 864 865 866 867 868

869 870 871 874 875 878

880 891 897 901 902 903

904 912 913 (5) 915 916 918

920 921 922 923 924 927

928 930 931 (1) 932 (2) 933 935

937 938 (3) 939 941 942 943

947 948 949 950 951 954 (4)

964 970 1006 1025 1026 1027

1040 1041 1042 1043 1046 1047

1051 1088 1089 1097 1098 1112

1114 1115 1122 1123 1124 1129

1130 1132 1133 1140 1141 1142

1143 1144 1145 1146 1147 1148

1149 1153 1156 1157 1200 1208

1250 1251 1252 1253 1254 1255

1256 1257 1258 1275 1280 1281

1282 1283 1363 1364 1380 1381

1383 1386 1388 4899 5050 5346

5347 5348 5349 5350 5351 5352

5353 5354 5488 (5) 9044 9048 9449

12712 13488 17584 33722 (4)

Notes:

1. 931 uses 939 for conversion.

2. 932 uses 942 for conversion.

3. 938 uses 948 for conversion.

4. 954 and 33722 use 5050 for conversion.

5. On Windows, Linux, OVMS V5.3, and Solaris only.

Page 718 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

10.5.5. WebSphere MQ for z/OS support for Unicode

On WebSphere® MQ for z/OS® conversion to and from the Unicode CCSIDs is supported for the following CCSIDs:

Parent topic: Unicode conversion support

This build: January 26, 2011 11:19:39

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fr22520_

37 256 259 273 275 277

278 280 282 284 285 290

293 297 300 301 367 420

423 424 437 500 720 737

775 803 806 808 813 819

833 834 835 836 837 838

848 849 850 851 852 855

856 857 858 859 860 861

862 863 864 865 866 867

868 869 870 871 872 874

875 878 880 891 895 896

897 901 902 903 904 905

912 914 915 916 918 920

921 922 923 924 927 928

930 932 933 935 937 939

941 942 943 944 946 947

948 949 950 951 1004 1006

1008 1009 1010 1011 1012 1013

1014 1015 1016 1017 1018 1019

1025 1026 1027 1040 1041 1042

1043 1046 1047 1051 1088 1089

1097 1098 1112 1114 1115 1122

1123 1124 1125 1126 1129 1130

1131 1132 1133 1137 1140 1141

1142 1143 1144 1145 1146 1147

1148 1149 1153 1154 1155 1156

1157 1158 1159 1160 1161 1162

1164 1200 1208 1250 1251 1252

1253 1254 1255 1256 1257 1258

1275 1276 1277 1280 1281 1282

1283 1284 1285 1351 1362 1363

1364 1370 1371 1380 1381 1385

1386 1388 1390 1399 4899 4909

4930 4933 4948 4951 4952 4960

4971 5012 5039 5104 5123 5142

5210 5346 5347 5348 5349 5350

5351 5352 5353 5354 5488 8482

8612 9027 9030 9044 9048 9049

9056 9061 9066 9238 9449 12712

13121 13218 13488 16684 16804 17248

17584 21427 28709

Page 719 of 719Application Programming Reference

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzak.doc/fr10120...

