
Application Programming Guide

Contents

1. Designing applications that use WebSphere MQ
1.1. Introduction to message queuing

1.1.1. Message queuing terminology
1.1.2. Main features of message queuing
1.1.3. WebSphere MQ for z/OS
1.1.4. WebSphere MQ for non-z/OS platforms

1.2. Overview of application design
1.2.1. Planning your design
1.2.2. Using WebSphere MQ objects
1.2.3. Designing your messages
1.2.4. WebSphere MQ techniques
1.2.5. Application programming

1.3. WebSphere MQ messages
1.3.1. Types of message

1.3.1.1. Reports and segmented messages
1.3.1.1.1. For reports generated by WebSphere MQ
1.3.1.1.2. For reports generated by applications
1.3.1.1.3. Retrieval of reports
1.3.1.1.4. Back-level queue managers

1.3.2. Format of message control information and message data
1.3.2.1. Application data conversion

1.3.3. Message priorities
1.3.4. Message properties

1.3.4.1. Message properties and message length
1.3.4.2. Property names

1.3.4.2.1. Property name restrictions
1.3.4.2.2. Message descriptor fields as properties

1.3.4.3. Property data types and values
1.3.5. Selecting messages from queues

1.3.5.1. Getting a specific message using MsgId and CorrelId
1.3.5.2. Selectors

1.3.5.2.1. Selection behavior
1.3.5.2.2. Selector syntax

1.3.5.2.2.1. Selection string rules and restrictions
1.3.5.2.2.2. UTF-8 and Unicode considerations

1.3.5.2.3. Selecting on the content of a message
1.3.6. Asynchronous consumption of messages
1.3.7. Message groups
1.3.8. Message persistence
1.3.9. Messages that fail to be delivered
1.3.10. Messages that are backed out
1.3.11. Reply-to queue and queue manager
1.3.12. Message context

1.4. WebSphere MQ objects
1.4.1. Queue managers
1.4.2. Queue-sharing groups
1.4.3. Queues

1.4.3.1. Local queues
1.4.3.2. Remote queues
1.4.3.3. Alias queues
1.4.3.4. Shared and Cluster queues
1.4.3.5. Dynamic and Model queues

1.4.4. Topic objects
1.4.5. Namelists
1.4.6. Process definitions
1.4.7. Authentication information objects
1.4.8. Channels
1.4.9. Storage classes
1.4.10. Listeners
1.4.11. Services
1.4.12. Rules for naming WebSphere MQ objects

1.5. Handling program errors
1.5.1. Locally determined errors
1.5.2. Using report messages for problem determination
1.5.3. Remotely determined errors

1.5.3.1. Using the dead-letter (undelivered message) queue
1.5.3.1.1. Dead-letter queue processing

2. Writing a WebSphere MQ application
2.1. Introducing the Message Queue Interface

2.1.1. What is in the MQI?
2.1.1.1. Calls
2.1.1.2. Sync point calls
2.1.1.3. Data conversion, data types, data definitions, and structures
2.1.1.4. WebSphere MQ stub programs and library files

2.1.1.4.1. WebSphere MQ for z/OS
2.1.1.4.2. WebSphere MQ for i5/OS
2.1.1.4.3. WebSphere MQ for Windows
2.1.1.4.4. WebSphere MQ for AIX
2.1.1.4.5. WebSphere MQ for HP-UX
2.1.1.4.6. WebSphere MQ for Linux
2.1.1.4.7. WebSphere MQ for Solaris

2.1.2. Parameters common to all the calls
2.1.3. Specifying buffers
2.1.4. Programming language considerations

2.1.4.1. Coding in C
2.1.4.2. Coding in COBOL
2.1.4.3. Coding in System/390 assembler language
2.1.4.4. Coding in RPG
2.1.4.5. Coding in PL/I
2.1.4.6. Coding in Visual Basic

2.1.5. z/OS batch considerations
2.1.6. UNIX signal handling

2.1.6.1. Unthreaded applications

Page 1 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

2.1.6.2. Threaded applications
2.1.6.3. Additional considerations

2.2. Connecting to and disconnecting from a queue manager
2.2.1. Connecting to a queue manager using the MQCONN call
2.2.2. Connecting to a queue manager using the MQCONNX call

2.2.2.1. Restrictions for trusted applications
2.2.2.2. Shared (thread independent) connections with MQCONNX
2.2.2.3. MQCONNX environment variable

2.2.3. Disconnecting programs from a queue manager using MQDISC
2.3. Opening and closing objects

2.3.1. Opening objects using the MQOPEN call
2.3.1.1. Name resolution
2.3.1.2. Using the options of the MQOPEN call

2.3.1.2.1. MQOPEN option for cluster queue
2.3.1.2.2. MQOPEN option for putting messages
2.3.1.2.3. MQOPEN option for browsing messages
2.3.1.2.4. MQOPEN options for removing messages
2.3.1.2.5. MQOPEN options for setting and inquiring about attributes
2.3.1.2.6. MQOPEN options relating to message context
2.3.1.2.7. MQOPEN option for alternate user authority
2.3.1.2.8. MQOPEN option for queue manager quiescing
2.3.1.2.9. MQOPEN option for resolving local queue names

2.3.2. Creating dynamic queues
2.3.3. Opening remote queues
2.3.4. Closing objects using the MQCLOSE call

2.4. Putting messages on a queue
2.4.1. Putting messages on a local queue using the MQPUT call
2.4.2. Putting messages on a remote queue
2.4.3. Setting properties of a message
2.4.4. Controlling context information
2.4.5. Putting one message on a queue using the MQPUT1 call
2.4.6. Distribution lists

2.4.6.1. Opening distribution lists
2.4.6.2. Putting messages to a distribution list

2.4.7. Some cases where the put calls fail
2.5. Getting messages from a queue

2.5.1. Getting messages from a queue using the MQGET call
2.5.1.1. Specifying connection handles
2.5.1.2. Describing messages using the MQMD structure and the MQGET call
2.5.1.3. Specifying MQGET options using the MQGMO structure
2.5.1.4. Inquiring properties of a message
2.5.1.5. Specifying the size of the buffer area

2.5.2. The order in which messages are retrieved from a queue
2.5.2.1. Priority
2.5.2.2. Logical and physical ordering

2.5.2.2.1. Grouping logical messages
2.5.2.2.2. Putting and getting a group that spans units of work

2.5.3. Getting a particular message
2.5.4. Improving performance of non-persistent messages

2.5.4.1. MQGET options and read ahead
2.5.4.2. Enabling and disabling read ahead

2.5.5. Type of index
2.5.6. Handling messages greater than 4 MB long

2.5.6.1. Message segmentation
2.5.6.1.1. Segmentation and reassembly by queue manager
2.5.6.1.2. Application segmentation
2.5.6.1.3. Application segmentation of logical messages

2.5.6.2. Reference messages
2.5.6.2.1. Using the MQRMH and MQMD structures

2.5.7. Waiting for messages
2.5.8. Signaling
2.5.9. Skipping backout
2.5.10. Application data conversion
2.5.11. Browsing messages on a queue

2.5.11.1. The browse cursor
2.5.11.2. Browsing messages when the message length is unknown
2.5.11.3. Removing a message that you have browsed
2.5.11.4. Browsing messages in logical order

2.5.11.4.1. Browsing messages in groups
2.5.11.4.2. Browsing and retrieving destructively

2.5.11.5. Avoiding repeated delivery of browsed messages
2.5.12. Some cases where the MQGET call fails

2.6. Writing publisher applications
2.6.1. Example 1: Publisher to a fixed topic
2.6.2. Example 2: Publisher to a variable topic

2.7. Writing subscriber applications
2.7.1. Example 1: MQ Publication consumer
2.7.2. Example 2: Managed MQ subscriber
2.7.3. Example 3: Unmanaged MQ subscriber

2.8. Writing data-conversion exits
2.8.1. Invoking the data-conversion exit

2.8.1.1. Data conversion on z/OS
2.8.2. Writing a data-conversion exit program

2.8.2.1. Skeleton source file
2.8.2.2. Convert characters call
2.8.2.3. Utility for creating conversion-exit code

2.8.2.3.1. Invoking the CSQUCVX utility on z/OS
2.8.2.3.2. z/OS data definition statements
2.8.2.3.3. Error messages in Windows systems, and UNIX systems

2.8.2.4. Valid syntax
2.8.2.4.1. Example of valid syntax for the input data set

2.8.3. Writing a data-conversion exit program for WebSphere MQ for i5/OS
2.8.4. Writing a data-conversion exit program for WebSphere MQ for z/OS
2.8.5. Writing a data-conversion exit for WebSphere MQ on UNIX systems

2.8.5.1. UNIX environment
2.8.5.1.1. Non-threaded environment
2.8.5.1.2. Threaded environment

2.8.5.2. Compiling data-conversion exits on UNIX and Linux

Page 2 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

2.8.5.2.1. On AIX
2.8.5.2.1.1. 32 bit applications

2.8.5.2.1.1.1. Non-threaded
2.8.5.2.1.1.2. Threaded

2.8.5.2.1.2. 64 bit applications
2.8.5.2.1.2.1. Non-threaded
2.8.5.2.1.2.2. Threaded

2.8.5.2.2. On HP-UX
2.8.5.2.2.1. PA-RISC platform

2.8.5.2.2.1.1. 32 bit applications
2.8.5.2.2.1.1.1. Non-threaded
2.8.5.2.2.1.1.2. Threaded

2.8.5.2.2.1.2. 64 bit applications
2.8.5.2.2.1.2.1. Non-threaded
2.8.5.2.2.1.2.2. Threaded

2.8.5.2.2.2. Itanium platform
2.8.5.2.2.2.1. 32 bit applications

2.8.5.2.2.2.1.1. Non-threaded
2.8.5.2.2.2.1.2. Threaded

2.8.5.2.2.2.2. 64 bit applications
2.8.5.2.2.2.2.1. Non-threaded
2.8.5.2.2.2.2.2. Threaded

2.8.5.2.3. On Linux
2.8.5.2.3.1. 31 bit applications (zSeries platform)

2.8.5.2.3.1.1. Non-threaded
2.8.5.2.3.1.2. Threaded

2.8.5.2.3.2. 32 bit applications
2.8.5.2.3.2.1. Non-threaded
2.8.5.2.3.2.2. Threaded

2.8.5.2.3.3. 64 bit applications
2.8.5.2.3.3.1. Non-threaded
2.8.5.2.3.3.2. Threaded

2.8.5.2.4. On Solaris
2.8.5.2.4.1. SPARC platform

2.8.5.2.4.1.1. 32 bit applications
2.8.5.2.4.1.2. 64 bit applications

2.8.5.2.4.2. x86-64 platform
2.8.5.2.4.2.1. 32 bit applications
2.8.5.2.4.2.2. 64 bit applications

2.8.6. Writing a data-conversion exit for WebSphere MQ for Windows
2.8.7. Exit files on 64-bit Windows

2.9. Inquiring about and setting object attributes
2.9.1. Inquiring about the attributes of an object
2.9.2. Some cases where the MQINQ call fails
2.9.3. Setting queue attributes

2.10. Committing and backing out units of work
2.10.1. Sync point considerations in WebSphere MQ applications
2.10.2. Sync points in WebSphere MQ for z/OS applications

2.10.2.1. Sync points in CICS Transaction Server for OS/390 and CICS for MVS/ESA applications
2.10.2.2. Sync points in IMS applications
2.10.2.3. Sync points in z/OS batch applications

2.10.2.3.1. Committing changes using the MQCMIT call
2.10.2.3.2. Backing out changes using the MQBACK call
2.10.2.3.3. Transaction management and recoverable resource manager services

2.10.2.3.3.1. RRS availability
2.10.2.3.3.2. DB2 stored procedures

2.10.3. Sync points in CICS for i5/OS applications
2.10.4. Sync points in WebSphere MQ for Windows, WebSphere MQ for i5/OS, and WebSphere MQ on UNIX systems

2.10.4.1. Local units of work
2.10.4.2. Global units of work

2.10.4.2.1. Internal sync point coordination
2.10.4.2.2. External sync point coordination

2.10.4.3. Interfaces to external sync point managers
2.10.5. Interfaces to the i5/OS external sync point manager

2.11. Starting WebSphere MQ applications using triggers
2.11.1. What is triggering?
2.11.2. Prerequisites for triggering
2.11.3. Conditions for a trigger event
2.11.4. Controlling trigger events

2.11.4.1. Example of the use of trigger type EVERY
2.11.4.2. Example of the use of trigger type FIRST
2.11.4.3. Example of the use of trigger type DEPTH
2.11.4.4. Special case of trigger type FIRST

2.11.5. Designing an application that uses triggered queues
2.11.5.1. Trigger messages and units of work
2.11.5.2. Getting messages from a triggered queue

2.11.6. Trigger monitors
2.11.6.1. Trigger monitors on z/OS
2.11.6.2. Trigger monitors on UNIX and Windows systems

2.11.6.2.1. For CICS:
2.11.6.3. WebSphere MQ for i5/OS trigger monitors

2.11.7. Properties of trigger messages
2.11.7.1. Persistence and priority of trigger messages
2.11.7.2. Queue manager restart and trigger messages
2.11.7.3. Trigger messages and changes to object attributes
2.11.7.4. Format of trigger messages

2.11.8. When triggering does not work
2.11.8.1. How CKTI detects errors
2.11.8.2. How CSQQTRMN detects errors
2.11.8.3. How RUNMQTRM detects errors

2.12. Using and writing API exits
2.12.1. Introducing API exits

2.12.1.1. Why use API exits
2.12.1.2. How you use API exits

2.12.1.2.1. How to configure WebSphere MQ for API exits
2.12.1.2.2. How to write an API exit
2.12.1.2.3. Using message handles

2.12.1.3. What happens when an API exit runs?

Page 3 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

2.12.2. Compiling API exits
2.12.2.1. On Solaris

2.12.2.1.1. SPARC platform
2.12.2.1.1.1. 32 bit applications
2.12.2.1.1.2. 64 bit applications

2.12.2.1.2. x86-64 platform
2.12.2.1.2.1. 32 bit applications
2.12.2.1.2.2. 64 bit applications

2.12.2.2. On AIX
2.12.2.2.1. 32 bit applications

2.12.2.2.1.1. Non-threaded
2.12.2.2.1.2. Threaded

2.12.2.2.2. 64 bit applications
2.12.2.2.2.1. Non-threaded
2.12.2.2.2.2. Threaded

2.12.2.3. On HP-UX
2.12.2.3.1. PA-RISC platform

2.12.2.3.1.1. 32 bit applications
2.12.2.3.1.1.1. Non-threaded
2.12.2.3.1.1.2. Threaded

2.12.2.3.1.2. 64 bit applications
2.12.2.3.1.2.1. Non-threaded
2.12.2.3.1.2.2. Threaded

2.12.2.3.2. Itanium platform
2.12.2.3.2.1. 32 bit applications

2.12.2.3.2.1.1. Non-threaded
2.12.2.3.2.1.2. Threaded

2.12.2.3.2.2. 64 bit applications
2.12.2.3.2.2.1. Non-threaded
2.12.2.3.2.2.2. Threaded

2.12.2.4. On Linux
2.12.2.4.1. 31 bit applications (zSeries platform)

2.12.2.4.1.1. Non-threaded
2.12.2.4.1.2. Threaded

2.12.2.4.2. 32 bit applications
2.12.2.4.2.1. Non-threaded
2.12.2.4.2.2. Threaded

2.12.2.4.3. 64 bit applications
2.12.2.4.3.1. Non-threaded
2.12.2.4.3.2. Threaded

2.12.2.5. On Windows systems
2.12.2.6. On i5/OS

2.12.3. Reference information
2.12.3.1. External control blocks

2.12.3.1.1. WebSphere MQ API exit parameter structure (MQAXP)
2.12.3.1.1.1. How queue managers process exit functions

2.12.3.1.2. WebSphere MQ API exit context structure (MQAXC)
2.12.3.2. The exit chain area and exit chain area header (MQACH)
2.12.3.3. External constants
2.12.3.4. C language typedefs
2.12.3.5. The exit entry point registration call (MQXEP)

2.12.3.5.1. MQXEP C language invocation
2.12.3.5.2. MQXEP C function prototype

2.12.3.6. Invoking exit functions
2.12.3.6.1. General rules for API exit routines

2.12.3.6.1.1. The execution environment
2.12.3.6.1.1.1. Setting up the exit execution environment
2.12.3.6.1.1.2. Cleaning up the exit execution environment

2.12.3.6.2. The API exit functions
2.12.3.6.2.1. Backout - MQ_BACK_EXIT

2.12.3.6.2.1.1. C language invocation
2.12.3.6.2.2. Callback - MQ_CALLBACK_EXIT

2.12.3.6.2.2.1. C language invocation
2.12.3.6.2.3. Begin - MQ_BEGIN_EXIT

2.12.3.6.2.3.1. C language invocation
2.12.3.6.2.4. Close - MQ_CLOSE_EXIT

2.12.3.6.2.4.1. C language invocation
2.12.3.6.2.5. Commit - MQ_CMIT_EXIT

2.12.3.6.2.5.1. C language invocation
2.12.3.6.2.6. Connect and connect extension - MQ_CONNX_EXIT

2.12.3.6.2.6.1. C language invocation
2.12.3.6.2.7. Control callback - MQ_CTL_EXIT

2.12.3.6.2.7.1. C language invocation
2.12.3.6.2.8. Disconnect - MQ_DISC_EXIT

2.12.3.6.2.8.1. C language invocation
2.12.3.6.2.9. Get - MQ_GET_EXIT

2.12.3.6.2.9.1. C language invocation
2.12.3.6.2.10. Initialization - MQ_INIT_EXIT

2.12.3.6.2.10.1. C language invocation
2.12.3.6.2.11. Inquire - MQ_INQ_EXIT

2.12.3.6.2.11.1. C language invocation
2.12.3.6.2.12. Open - MQ_OPEN_EXIT

2.12.3.6.2.12.1. C language invocation
2.12.3.6.2.13. Put - MQ_PUT_EXIT

2.12.3.6.2.13.1. C language invocation
2.12.3.6.2.14. Put1 - MQ_PUT1_EXIT

2.12.3.6.2.14.1. C language invocation
2.12.3.6.2.15. Set - MQ_SET_EXIT

2.12.3.6.2.15.1. C language invocation
2.12.3.6.2.16. Status - MQ_STAT_EXIT

2.12.3.6.2.16.1. C language invocation
2.12.3.6.2.17. Termination - MQ_TERM_EXIT

2.12.3.6.2.17.1. C language invocation
2.12.3.6.2.18. Register subscription - MQ_SUB_EXIT

2.12.3.6.2.18.1. C language invocation
2.12.3.6.2.19. Subscription request - MQ_SUBRQ_EXIT

2.12.3.6.2.19.1. C language invocation
2.12.3.7. General information on invoking exit functions

Page 4 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

2.12.3.7.1. What happens when exits fail
2.12.3.7.1.1. Example error handling for exit functions

2.12.3.7.2. What if the ExitResponse fields are incorrectly set
2.13. Using and writing applications on WebSphere MQ for z/OS

2.13.1. Environment-dependent WebSphere MQ for z/OS functions
2.13.2. Program debugging facilities
2.13.3. Sync point support
2.13.4. Recovery support
2.13.5. The WebSphere MQ for z/OS interface with the application environment

2.13.5.1. The batch adapter
2.13.5.2. RRS batch adapter

2.13.5.2.1. Migration
2.13.5.3. The CICS adapter

2.13.5.3.1. CICS adapter performance considerations
2.13.5.3.2. Adapter trace points
2.13.5.3.3. Abends

2.13.5.3.3.1. CICS AEY9 abends
2.13.5.3.4. Using the CICS Execution Diagnostic Facility

2.13.5.4. The IMS adapter
2.13.6. Writing z/OS UNIX System Services applications
2.13.7. The API-crossing exit for z/OS

2.13.7.1. Using the API-crossing exit
2.13.7.1.1. Defining the exit program
2.13.7.1.2. How the exit is invoked
2.13.7.1.3. Communicating with the exit program

2.13.7.2. Writing your own exit program
2.13.7.2.1. Usage notes

2.13.7.3. The sample API-crossing exit program, CSQCAPX
2.13.7.3.1. Design of the sample exit program

2.13.7.4. Preparing and using the API-crossing exit
2.13.8. WebSphere MQ Workflow
2.13.9. Application programming with shared queues

2.13.9.1. Serializing your applications
2.13.9.2. Applications that are not suitable for use with shared queues
2.13.9.3. Deciding whether to share non-application queues
2.13.9.4. Migrating your existing applications to use shared queues

2.14. Using and writing WebSphere MQ-CICS bridge applications for z/OS
2.14.1. Distributed program link applications

2.14.1.1. Using CICS DPL programs with the bridge
2.14.1.1.1. CICS DPL bridge message structure
2.14.1.1.2. Application programming for the CICS DPL bridge

2.14.1.2. Programming CICS DPL transactions in the distributed environment
2.14.1.3. Setting fields in the MQMD and MQCIH structures (DPL)

2.14.1.3.1. Setting the MQMD fields
2.14.1.3.2. Setting the MQCIH fields

2.14.1.4. Managing MsgId and CorrelId in a unit of work (DPL)
2.14.2. 3270 applications

2.14.2.1. Using CICS transactions with the bridge
2.14.2.1.1. Using CICS bridge vectors
2.14.2.1.2. CICS 3270 bridge message structure

2.14.2.1.2.1. Inbound messages
2.14.2.1.2.2. Outbound messages

2.14.2.1.3. Application programming for the CICS 3270 bridge
2.14.2.1.3.1. Example: Invoking CEMT I TASK from an application

2.14.2.1.3.1.1. Defining variables
2.14.2.1.4. Writing applications using CICS Basic Mapping Support

2.14.2.1.4.1. Interpreting outbound SEND MAP and RECEIVE MAP vectors
2.14.2.1.4.1.1. SEND MAP vectors
2.14.2.1.4.1.2. RECEIVE MAP vectors
2.14.2.1.4.1.3. Example of an ADSDL and an ADS

2.14.2.1.5. Transactions with start data
2.14.2.1.6. Transactions with EXEC CICS syncpoint

2.14.2.2. Programming CICS transactions in the distributed environment
2.14.2.3. From 3270 legacy to 3270 bridge - an example

2.14.2.3.1. Exact emulation - no optimization
2.14.2.3.2. Improved emulation, with optimization

2.14.2.4. Setting fields in the MQMD and MQCIH structures (3270)
2.14.2.4.1. Setting the MQMD fields
2.14.2.4.2. Setting the MQCIH fields

2.14.2.5. Managing MsgId and CorrelId in a unit of work (3270)
2.14.3. Information applicable to both DPL and 3270

2.14.3.1. Setting the open options and put message options for the bridge request queue
2.14.3.2. Error handling by the CICS bridge
2.14.3.3. Debugging CICS bridge applications
2.14.3.4. Application data structure terminology

2.15. IMS and IMS Bridge applications on WebSphere MQ for z/OS
2.15.1. Writing IMS applications using WebSphere MQ

2.15.1.1. Syncpoints in IMS applications
2.15.1.2. Restrictions
2.15.1.3. MQI calls in IMS applications

2.15.1.3.1. Server applications
2.15.1.3.2. Enquiry applications

2.15.2. Writing WebSphere MQ-IMS bridge applications
2.15.2.1. How the WebSphere MQ-IMS bridge deals with messages

2.15.2.1.1. Mapping WebSphere MQ messages to IMS transaction types
2.15.2.1.2. If the message cannot be put to the IMS queue
2.15.2.1.3. IMS bridge feedback codes
2.15.2.1.4. The MQMD fields in messages from the IMS bridge
2.15.2.1.5. The MQIIH fields in messages from the IMS bridge
2.15.2.1.6. Reply messages from IMS
2.15.2.1.7. Using alternate response PCBs in IMS transactions
2.15.2.1.8. Sending unsolicited messages from IMS
2.15.2.1.9. Message segmentation
2.15.2.1.10. Data conversion

2.15.2.1.10.1. Sending messages to the WebSphere MQ-IMS bridge
2.15.2.1.10.2. Receiving messages from the WebSphere MQ-IMS bridge

2.15.2.2. Writing your program
2.15.2.2.1. Writing WebSphere MQ applications to invoke IMS conversational transactions

Page 5 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

2.15.2.2.2. Triggering
2.15.2.2.3. Writing programs containing IMS commands

2.16. Object-oriented programming with WebSphere MQ
2.16.1. What is in the WebSphere MQ Object Model?

2.16.1.1. Classes
2.16.1.2. Object references
2.16.1.3. Return codes

2.16.2. Programming language considerations
2.16.2.1. Coding in ActiveX

3. Building a WebSphere MQ application
3.1. Building your application on AIX

3.1.1. Preparing C programs
3.1.1.1. Linking libraries

3.1.2. Preparing COBOL programs
3.1.2.1. Preparing COBOL programs using IBM COBOL Set for AIX
3.1.2.2. Preparing COBOL programs using Micro Focus COBOL

3.1.3. Preparing CICS programs
3.1.3.1. TXSeries CICS support

3.1.3.1.1. Preparing CICS COBOL programs using IBM COBOL Set for AIX
3.1.3.1.2. Preparing CICS COBOL programs using Micro Focus COBOL
3.1.3.1.3. Preparing CICS C programs

3.1.3.1.3.1. CICS C sample transaction
3.2. Building your application on HP-UX

3.2.1. Preparing C programs
3.2.1.1. PA-RISC platform
3.2.1.2. IA64 (IPF) platform
3.2.1.3. Linking libraries

3.2.2. Preparing COBOL programs
3.2.2.1. Using Micro Focus Server Express with WebSphere MQ on the IA64 (IPF) platform
3.2.2.2. Programs to run in the WebSphere MQ client environment

3.2.3. Preparing CICS programs
3.2.3.1. TXSeries CICS support

3.2.3.1.1. CICS C sample transaction
3.2.3.1.2. Preparing CICS COBOL programs using Micro Focus COBOL

3.2.4. Address Space models supported by WebSphere MQ for HP-UX on IA64 (IPF)
3.3. Building your application on Linux

3.3.1. Preparing C programs
3.3.1.1. Building 31-bit applications
3.3.1.2. Building 32-bit applications
3.3.1.3. Building 64-bit applications
3.3.1.4. Linking libraries

3.3.2. Preparing COBOL programs
3.3.2.1. Preparing COBOL programs using Micro Focus COBOL

3.4. Building your application on i5/OS
3.4.1. Preparing C programs
3.4.2. Preparing COBOL programs
3.4.3. Preparing CICS programs
3.4.4. Preparing RPG programs
3.4.5. SQL programming considerations
3.4.6. i5/OS programming considerations

3.4.6.1. QMQM activation group
3.5. Building your application on Solaris

3.5.1. Preparing C programs
3.5.1.1. Building applications on x86-64
3.5.1.2. Building applications on SPARC
3.5.1.3. Linking libraries

3.5.2. Preparing COBOL programs
3.5.3. Preparing CICS programs

3.5.3.1. TXSeries CICS support
3.5.3.1.1. Preparing CICS COBOL programs using Micro Focus COBOL
3.5.3.1.2. Preparing CICS C programs

3.5.3.1.2.1. CICS C sample transaction
3.6. Building your application on Windows systems

3.6.1. Building 64-bit applications
3.6.2. Preparing C programs

3.6.2.1. Preparing CICS and Transaction Server programs
3.6.3. Preparing COBOL programs

3.6.3.1. Preparing CICS and Transaction Server programs
3.6.4. Preparing Visual Basic programs
3.6.5. SSPI security exit

3.6.5.1. Introduction to security exits
3.6.5.1.1. What the security exit does
3.6.5.1.2. WebSphere MQ access control and Windows principals

3.7. Building your application on z/OS
3.7.1. Preparing your program to run

3.7.1.1. Building z/OS batch applications
3.7.1.2. Building z/OS batch applications using Language Environment
3.7.1.3. Building CICS applications
3.7.1.4. Building IMS (BMP or MPP) applications
3.7.1.5. Building z/OS UNIX System Services applications

3.7.2. Dynamically calling the WebSphere MQ stub
3.7.2.1. RRS Considerations

3.7.3. Debugging your programs
3.7.3.1. Debugging CICS programs

3.7.3.1.1. CICS trace
3.7.3.2. Debugging TSO programs

3.8. Using lightweight directory access protocol services with WebSphere MQ for Windows
3.8.1. What is a directory service?
3.8.2. What is LDAP?
3.8.3. Using LDAP with WebSphere MQ
3.8.4. LDAP sample program

3.8.4.1. Building the sample program
3.8.4.2. Configuring the directory
3.8.4.3. Configuring the IBM eNetwork LDAP server
3.8.4.4. Configuring the Netscape directory server
3.8.4.5. Running the sample program
3.8.4.6. Program design

4. Sample WebSphere MQ programs

Page 6 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

4.1. Sample programs (platforms except z/OS)
4.1.1. Features demonstrated in the sample programs

4.1.1.1. Samples for Linux and UNIX systems
4.1.1.2. Samples for WebSphere MQ for Windows
4.1.1.3. Visual Basic samples for WebSphere MQ for Windows
4.1.1.4. Samples for WebSphere MQ for i5/OS

4.1.2. Preparing and running the sample programs
4.1.2.1. i5/OS
4.1.2.2. UNIX systems
4.1.2.3. Windows systems
4.1.2.4. Running the sample programs

4.1.2.4.1. On all platforms except i5/OS
4.1.2.4.2. On i5/OS
4.1.2.4.3. Length of queue name
4.1.2.4.4. Inquire, Set, and Echo examples

4.1.3. The API exit sample program
4.1.3.1. Configuring for the sample exit

4.1.4. The Asynchronous Consume sample program
4.1.5. The Asynchronous Put sample program

4.1.5.1. Running the amqsapt sample
4.1.5.2. Design of the Asynchronous Put sample program

4.1.6. The Browse sample programs
4.1.6.1. UNIX systems and Windows systems
4.1.6.2. i5/OS
4.1.6.3. Design of the Browse sample program

4.1.7. The Browser sample program
4.1.8. The CICS transaction sample
4.1.9. The Connect sample program

4.1.9.1. Running the amqscnxc sample
4.1.10. The Data-Conversion sample program

4.1.10.1. Design of the data-conversion sample
4.1.11. Database coordination samples

4.1.11.1. Creating the databases and tables
4.1.11.2. Precompiling, compiling, and linking the samples

4.1.11.2.1. Precompiling in C
4.1.11.2.2. Precompiling in COBOL
4.1.11.2.3. Compiling and linking

4.1.11.3. Running the samples
4.1.11.3.1. C samples
4.1.11.3.2. COBOL samples

4.1.12. Dead-letter queue handler sample
4.1.13. The Distribution List sample program

4.1.13.1. Running the Distribution List sample, amqsptl0
4.1.13.2. Design of the Distribution List sample

4.1.14. The Echo sample programs
4.1.14.1. Design of the Echo sample programs

4.1.15. Encina sample program
4.1.15.1. Building the AMQSXAE0.C sample

4.1.16. The Get sample programs
4.1.16.1. Running the amqsget and amqsgetc samples
4.1.16.2. Running the amq0get sample
4.1.16.3. Running the AMQSGET4 and the AMQ0GET4 samples (i5/OS)
4.1.16.4. Design of the Get sample program

4.1.17. The High availability sample programs
4.1.18. The Inquire sample programs

4.1.18.1. Design of the Inquire sample program
4.1.19. The Inquire Properties of a Message Handle sample program
4.1.20. The publish/subscribe sample programs

4.1.20.1. Running MQPubSubApiSample
4.1.21. The Put sample programs

4.1.21.1. Running the amqsput and amqsputc samples
4.1.21.2. Running the amq0put sample
4.1.21.3. Running the AMQSPUT4 C sample (i5/OS)
4.1.21.4. Running the AMQ0PUT4 COBOL sample (i5/OS)
4.1.21.5. Design of the Put sample program

4.1.22. The Reference Message sample programs
4.1.22.1. Notes for i5/OS users
4.1.22.2. Running the Reference Message samples
4.1.22.3. Design of the Put Reference Message sample (amqsprma.c, AMQSPRM4)
4.1.22.4. Design of the Reference Message Exit sample (amqsxrma.c, AMQSXRM4)

4.1.22.4.1. Compiling the Reference Message Exit sample
4.1.22.5. Design of the Get Reference Message sample (amqsgrma.c, AMQSGRM4)

4.1.23. The Request sample programs
4.1.23.1. Running the amqsreq0.c, amqsreq, and amqsreqc samples
4.1.23.2. Running the amq0req0.cbl sample
4.1.23.3. Running the AMQSREQ4 sample
4.1.23.4. Running the AMQ0REQ4 sample
4.1.23.5. Running the Request sample using triggering

4.1.23.5.1. UNIX systems, and Windows systems
4.1.23.5.2. i5/OS

4.1.23.6. Design of the Request sample program
4.1.24. The Set sample programs

4.1.24.1. Design of the Set sample program
4.1.25. The SSL/TLS sample program

4.1.25.1. Running the SSL/TLS sample program
4.1.26. The Triggering sample programs

4.1.26.1. Running the amqstrg0.c, amqstrg, and amqstrgc samples
4.1.26.2. Running the AMQSTRG4 sample
4.1.26.3. Design of the triggering sample
4.1.26.4. Running the AMQSERV4 sample
4.1.26.5. Design of the trigger server
4.1.26.6. Ending the triggering sample programs on i5/OS

4.1.27. TUXEDO samples
4.1.27.1. Building the server environment

4.1.27.1.1. For AIX (32-bit)
4.1.27.1.2. For AIX (64-bit)
4.1.27.1.3. For Solaris (32-bit)
4.1.27.1.4. For Solaris (64-bit)

Page 7 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

4.1.27.1.5. For HP-UX (32-bit)
4.1.27.1.6. For HP-UX (64-bit)
4.1.27.1.7. For Windows (32-bit)
4.1.27.1.8. For Windows (64-bit)

4.1.27.2. Server sample program for TUXEDO
4.1.27.3. Put sample program for TUXEDO
4.1.27.4. Get sample for TUXEDO

4.1.28. Using the SSPI security exit on Windows systems
4.1.28.1. Object code
4.1.28.2. Source code

4.1.29. Running the samples using remote queues
4.2. Sample programs for WebSphere MQ for z/OS

4.2.1. Features demonstrated in the sample applications
4.2.1.1. Put samples
4.2.1.2. Get samples
4.2.1.3. Browse sample
4.2.1.4. Print Message sample
4.2.1.5. Queue Attributes sample
4.2.1.6. Mail Manager sample
4.2.1.7. Credit Check sample
4.2.1.8. The Message Handler sample
4.2.1.9. Distributed queuing exit samples
4.2.1.10. Data-conversion exit samples
4.2.1.11. Publish/Subscribe samples

4.2.2. Preparing and running sample applications for the batch environment
4.2.2.1. Names of the sample batch applications

4.2.3. Preparing sample applications for the TSO environment
4.2.3.1. Names of the sample TSO applications

4.2.4. Preparing the sample applications for the CICS environment
4.2.4.1. Names of the sample CICS applications

4.2.5. Preparing the sample application for the IMS environment
4.2.5.1. Names of the sample IMS application

4.2.6. The Put samples
4.2.6.1. Design of the Put sample
4.2.6.2. The Put samples for the batch environment

4.2.6.2.1. Usage notes
4.2.6.3. The Put samples for the CICS environment

4.2.6.3.1. Usage notes
4.2.7. The Get samples

4.2.7.1. Design of the Get sample
4.2.7.1.1. The Get samples for the batch environment
4.2.7.1.2. Usage notes

4.2.7.2. The Get samples for the CICS environment
4.2.7.2.1. Usage notes

4.2.8. The Browse sample
4.2.8.1. Design of the Browse sample
4.2.8.2. Language-dependent design considerations

4.2.9. The Print Message sample
4.2.9.1. Design of the sample

4.2.10. The Queue Attributes sample
4.2.10.1. Design of the sample

4.2.11. The Mail Manager sample
4.2.11.1. Preparing the sample

4.2.11.1.1. Preparing the sample for the TSO environment
4.2.11.2. Running the sample
4.2.11.3. Design of the sample

4.2.11.3.1. Menu program
4.2.11.3.2. Get-mail and display-message programs
4.2.11.3.3. Send-mail program
4.2.11.3.4. Nickname program

4.2.12. The Credit Check sample
4.2.12.1. Preparing and running the Credit Check sample

4.2.12.1.1. Entering information in the inquiry panels
4.2.12.2. Design of the sample

4.2.12.2.1. User interface program (CSQ4CVB1)
4.2.12.2.2. Credit application manager (CSQ4CVB2)

4.2.12.2.2.1. Startup logic
4.2.12.2.2.2. Getting a message
4.2.12.2.2.3. Processing the message retrieved
4.2.12.2.2.4. Sending an answer
4.2.12.2.2.5. Recovery of partially-completed inquiries

4.2.12.2.3. Checking-account program (CSQ4CVB3)
4.2.12.2.4. Distribution program (CSQ4CVB4)
4.2.12.2.5. Agency-query program (CSQ4CVB5/CSQ4CCB5)

4.2.12.3. Design considerations
4.2.12.3.1. Separate inquiry and reply queues in the CAM
4.2.12.3.2. How the sample handles errors
4.2.12.3.3. How the sample handles unexpected messages
4.2.12.3.4. How the sample uses sync points
4.2.12.3.5. How the sample uses message context information
4.2.12.3.6. Use of message and correlation identifiers in the CAM

4.2.12.4. The Credit Check sample with multiple queue managers
4.2.12.5. The IMS extension to the Credit Check sample

4.2.12.5.1. Design of the IMS checking-account program (CSQ4ICB3)
4.2.13. The Message Handler sample

4.2.13.1. Preparing and running the sample
4.2.13.2. Using the sample
4.2.13.3. Design of the sample

4.2.13.3.1. Object validation program
4.2.13.3.2. Message list program
4.2.13.3.3. Message content program

4.2.14. The Asynchronous Put sample
4.2.15. The Batch Asynchronous Consume sample
4.2.16. The CICS Asynchronous Consume and Publish/Subscribe sample
4.2.17. The Publish/Subscribe Sample
4.2.18. The Set and Inquire message property sample

5. C language examples
5.1. Connecting to a queue manager

Page 8 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

5.2. Disconnecting from a queue manager
5.3. Creating a dynamic queue
5.4. Opening an existing queue
5.5. Closing a queue
5.6. Putting a message using MQPUT
5.7. Putting a message using MQPUT1
5.8. Getting a message
5.9. Getting a message using the wait option
5.10. Getting a message using signaling
5.11. Inquiring about the attributes of an object
5.12. Setting the attributes of a queue
5.13. Retrieving status information with MQSTAT

6. COBOL examples
6.1. Connecting to a queue manager
6.2. Disconnecting from a queue manager
6.3. Creating a dynamic queue
6.4. Opening an existing queue
6.5. Closing a queue
6.6. Putting a message using MQPUT
6.7. Putting a message using MQPUT1
6.8. Getting a message
6.9. Getting a message using the wait option
6.10. Getting a message using signaling
6.11. Inquiring about the attributes of an object
6.12. Setting the attributes of a queue

7. System/390 assembler-language examples
7.1. Connecting to a queue manager
7.2. Disconnecting from a queue manager
7.3. Creating a dynamic queue
7.4. Opening an existing queue
7.5. Closing a queue
7.6. Putting a message using MQPUT
7.7. Putting a message using MQPUT1
7.8. Getting a message
7.9. Getting a message using the wait option
7.10. Getting a message using signaling
7.11. Inquiring about and setting the attributes of a queue

8. PL/I examples
8.1. Connecting to a queue manager
8.2. Disconnecting from a queue manager
8.3. Creating a dynamic queue
8.4. Opening an existing queue
8.5. Closing a queue
8.6. Putting a message using MQPUT
8.7. Putting a message using MQPUT1
8.8. Getting a message
8.9. Getting a message using the wait option
8.10. Getting a message using signaling
8.11. Inquiring about the attributes of an object
8.12. Setting the attributes of a queue

9. WebSphere MQ data definition files
9.1. C language include files
9.2. Visual Basic module files
9.3. COBOL copy files
9.4. System/390 assembler-language macros
9.5. PL/I include files

10. Coding standards on 64 bit platforms
10.1. Preferred data types
10.2. Standard data types

10.2.1. 32-bit UNIX applications
10.2.2. 64-bit UNIX applications
10.2.3. Windows 64–bit applications

10.2.3.1. Coding considerations on Windows
10.2.3.1.1. HANDLE hf;
10.2.3.1.2. size_t len fgets
10.2.3.1.3. printf
10.2.3.1.4. char *ptr
10.2.3.1.5. alignBytes
10.2.3.1.6. len
10.2.3.1.7. sscanf

Application Programming Guide

This collection of topics provides general information about designing and writing WebSphere® MQ applications. It also gives specific information and
examples for procedural programming languages. For object-oriented languages, see the language-specific sections of this information center.

Designing applications that use WebSphere MQ

Writing a WebSphere MQ application

Building a WebSphere MQ application

Sample WebSphere MQ programs

C language examples
The extracts in this appendix are mostly taken from the WebSphere MQ for z/OS® sample applications. They are applicable to all platforms, except
where noted.

COBOL examples
The examples in this appendix are taken from the WebSphere MQ for z/OS sample applications. They are applicable to all platforms, except where
noted.

System/390 assembler-language examples
The extracts in this appendix are mostly taken from the WebSphere MQ for z/OS sample applications.

Page 9 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

PL/I examples

WebSphere MQ data definition files

Coding standards on 64 bit platforms

Related information
Using Java
Using C++
Using .NET

This build: January 26, 2011 11:19:09

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg10120_

1. Designing applications that use WebSphere MQ

Introduction to message queuing
The WebSphere MQ products enable programs to communicate with one another across a network of unlike components (processors, operating
systems, subsystems, and communication protocols) using a consistent application programming interface.

Overview of application design
This information introduces the design of WebSphere MQ applications.

WebSphere MQ messages

WebSphere MQ objects

Handling program errors

Parent topic: Application Programming Guide

This build: January 26, 2011 11:19:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg10220_

1.1. Introduction to message queuing

The WebSphere® MQ products enable programs to communicate with one another across a network of unlike components (processors, operating systems,
subsystems, and communication protocols) using a consistent application programming interface.

Applications designed and written using this interface are known as message queuing applications, because they use the messaging and queuing style:

What is a message?
In message queuing, a message is a collection of data sent by one program and intended for another program.

Main features of message queuing

WebSphere MQ for z/OS

WebSphere MQ for non-z/OS platforms

Parent topic: Designing applications that use WebSphere MQ

This build: January 26, 2011 11:19:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg10230_

1.1.1. What is a message?

In message queuing, a message is a collection of data sent by one program and intended for another program.

WebSphere® MQ defines four types of message:

See Types of message for more information about these message types.

Parent topic: Introduction to message queuing

Messaging Programs communicate by sending each other data in messages rather than calling each other directly.

Queuing Messages are placed on queues in storage, allowing programs to run independently of each other, at different
speeds and times, in different locations, and without having a logical connection between them.

Datagram A simple message for which no reply is expected

Request A message for which a reply is expected

Reply A reply to a request message

Report A message that describes an event such as the occurrence of an error

Page 10 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

This build: January 26, 2011 11:19:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg10250_

1.1.2. Main features of message queuing

The main features of applications that use message queuing techniques are:

� There are no direct connections between programs.

� Communication between programs can be time-independent.

� Work can be carried out by small, self-contained programs.

� Communication can be driven by events.

� Applications can assign a priority to a message.

� Security.

� Data integrity.

� Recovery support.

No direct connections between programs

Message queuing is a technique for indirect program-to-program communication. It can be used within any application where programs communicate with
each other. Communication occurs by one program putting messages on a queue (owned by a queue manager) and another program getting the
messages from the queue.

Programs can get messages that were put on a queue by other programs. The other programs can be connected to the same queue manager as the
receiving program, or to another queue manager. This other queue manager might be on another system, a different computer system, or even within a
different business or enterprise.

There are no physical connections between programs that communicate using message queues. A program sends messages to a queue owned by a queue
manager, and another program retrieves messages from the queue (see Figure 1).

Figure 1. Message queuing compared with traditional communication

As with electronic mail, the individual messages that are part of a transaction travel through a network on a store-and-forward basis. If a link between
nodes fails, the message is kept until the link is restored, or the operator or program redirects the message.

The mechanism by which a message moves from queue to queue is hidden from the programs. Therefore the programs are simpler.

Time-independent communication

Programs requesting others to do work do not have to wait for the reply to a request. They can do other work, and process the reply either when it arrives
or at a later time. When writing a messaging application, you need not know (or be concerned) when a program sends a message, or when the target is
able to receive the message. The message is not lost; it is retained by the queue manager until the target is ready to process it. The message stays on the
queue until it is removed by a program.

Small programs

Message queuing allows you to exploit the advantages of using small, self-contained programs. Instead of a single, large program performing all the parts
of a job sequentially, you can spread the job over several smaller, independent programs. The requesting program sends messages to each of the
separate programs, asking them to perform their function; when each program is complete, the results are sent back as one or more messages.

Event-driven processing

Programs can be controlled according to the state of queues. For example, you can arrange for a program to start as soon as a message arrives on a
queue, or you can specify that the program does not start until there are, for example, 10 messages above a certain priority on the queue, or 10
messages of any priority on the queue.

Message priority

A program can assign a priority to a message when it puts the message on a queue. This determines the position in the queue at which the new message
is added.

Programs can get messages from a queue either in the order in which the messages appear in the queue, or by getting a specific message. (A program
might want to get a specific message if it is looking for the reply to a request that it sent earlier.)

Security

Authorization checks are carried out on each resource, using the tables that are set up and maintained by the WebSphere® MQ administrator.

� Use Security Server (formerly known as RACF®) or other external security managers on WebSphere MQ for z/OS®.

Page 11 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

� On WebSphere MQ on UNIX systems, Windows systems, and i5/OS®, a security manager called the Object Authority Manager (OAM) is provided as
an installable service. By default, the OAM is active.

Data integrity

Data integrity is provided by units of work. The synchronization of the start and end of units of work is fully supported as an option on each MQGET or
MQPUT, allowing the results of the unit of work to be committed or rolled back. Sync point support operates either internally or externally to WebSphere
MQ depending on the form of sync point coordination selected for the application.

Recovery support

For recovery to be possible, all persistent WebSphere MQ updates are logged. In the event that recovery is necessary, all persistent messages are
restored, all in-flight transactions are rolled back, and any sync point commit and backouts are handled in the normal way of the sync point manager in
control. For more information on persistent messages, see Message persistence.

Parent topic: Introduction to message queuing

This build: January 26, 2011 11:19:13

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg10330_

1.1.3. WebSphere MQ for z/OS

With WebSphere® MQ for z/OS® you can write applications that:

� Use message queuing within CICS® or IMS™.

� Send messages between batch, CICS, and IMS applications, selecting the most appropriate environment for each function.

� Send messages to applications that run on other WebSphere MQ platforms.

� Process several messages together as a single unit of work that can be committed or backed out.

� Send messages to, and interact with, IMS applications by means of the IMS bridge.

� Participate in units of work coordinated by RRS.

Each environment within z/OS has its own characteristics, advantages, and disadvantages. The advantage of WebSphere MQ for z/OS is that applications are
not tied to any one environment, but can be distributed to take advantage of the benefits of each environment. For example, you can develop end-user
interfaces using TSO or CICS, you can run processing-intensive modules in z/OS batch, and you can run database applications in IMS or CICS. In all cases,
the various parts of the application can communicate using messages and queues.

Designers of WebSphere MQ applications must be aware of the differences and limitations imposed by these environments. For example:

� WebSphere MQ provides facilities that allow intercommunication between queue managers (this is known as distributed queuing).

� Methods of committing and backing out changes differ between the batch and CICS environments.

� WebSphere MQ for z/OS provides support in the IMS environment for online message processing programs (MPPs), interactive fast path programs
(IFPs), and batch message processing programs (BMPs). If you are writing batch DL/I programs, follow the guidance given in this book for z/OS batch
programs.

� Although multiple instances of WebSphere MQ for z/OS can exist on a single z/OS system, a CICS region can connect to only one queue manager at a
time. However, more than one CICS region can be connected to the same queue manager. In the IMS and z/OS batch environments, programs can
connect to more than one queue manager.

� WebSphere MQ for z/OS allows local queues to be shared by a group of queue managers, giving improved throughput and availability. Such queues
are called shared queues, and the queue managers form a queue-sharing group, which can process messages on the same shared queues. Batch
applications can connect to one of several queue managers within a queue-sharing group by specifying the queue-sharing group name, instead of a
particular queue manager name. This is known as group batch attach, or more simply group attach. See the WebSphere MQ for z/OS Concepts and
Planning Guide for a full discussion of queue-sharing groups.

The differences between the supported environments, and their limitations, are discussed further in Using and writing applications on WebSphere MQ for
z/OS.

Parent topic: Introduction to message queuing

This build: January 26, 2011 11:19:13

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg10370_

1.1.4. WebSphere MQ for non-z/OS platforms

With WebSphere® MQ for non-z/OS platforms you can write applications that:

� Send messages to other applications running under the same operating systems. The applications can be on either the same or another system.

� Send messages to applications that run on other WebSphere MQ platforms.

� Use message queuing from within CICS® for i5/OS®, TXSeries for AIX®, TXSeries for HP-UX, TXSeries for Solaris, and TXSeries for Windows systems
applications.

� Use message queuing from within Encina for AIX, HP-UX, Solaris, and Windows systems.

� Use message queuing from within Tuxedo for AIX, AT&T, HP-UX, Solaris, and Windows systems.

� Use WebSphere MQ as a transaction manager, coordinating updates made by external resource managers within WebSphere MQ units of work. The
following external resource managers are supported and comply with the X/OPEN XA interface

� DB2®

� Informix®

� Oracle

� Sybase

� Process several messages together as a single unit of work that can be committed or backed out.

� Run from a full WebSphere MQ environment, or run from a WebSphere MQ client environment on the following platforms:

� i5/OS (Java client only)

� UNIX systems

� VM/ESA®

Page 12 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

� Windows 2000, Windows 2003, or Windows XP

Parent topic: Introduction to message queuing

This build: January 26, 2011 11:19:14

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg10380_

1.2. Overview of application design

This information introduces the design of WebSphere® MQ applications.

Planning your design
When you have decided how your applications can take advantage of the platforms and environments available to you, you need to decide how to use
the features offered by WebSphere MQ.

Using WebSphere MQ objects

Designing your messages
Ask yourself these questions to help you to design the messages.

WebSphere MQ techniques
For a simple WebSphere MQ application, you need to decide which WebSphere MQ objects to use in your application, and which types of message you
want to use. For a more advanced application, you might want to use some of the techniques introduced in the following sections.

Application programming

Parent topic: Designing applications that use WebSphere MQ

This build: January 26, 2011 11:19:14

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg10390_

1.2.1. Planning your design

When you have decided how your applications can take advantage of the platforms and environments available to you, you need to decide how to use the
features offered by WebSphere® MQ.

Some of the key aspects are:

What types of queue should you use?

Do you want to create a queue each time that you need one, or do you want to use queues that have already been set up? Do you want to delete a queue
when you have finished using it, or is it going to be used again? Do you want to use alias queues for application independence? To see what types of
queues are supported, refer to Queues.

Should you use shared queues and queue-sharing groups, and should you use queue-sharing group clusters (WebSphere MQ for z/OS®
only)?

You might want to take advantage of the increased availability, scalability, and workload balancing that are possible when you use shared queues with
queue-sharing groups. See Shared queues and queue-sharing groups for a discussion of this topic. You might also want to estimate the average and peak
message flows and consider using queue-sharing group clusters to spread the workload. See Shared queues and queue-sharing groups for a discussion of
this topic.

Should you use queue manager clusters?

You might want to take advantage of the simplified system administration, and increased availability, scalability, and workload balancing that are possible
when you use clusters. See WebSphere MQ Queue Manager Clusters for a full discussion of this topic.

What types of message should you use?

You might want to use datagrams for simple messages, but request messages (for which you expect replies) for other situations. You might want to assign
different priorities to some of your messages.

Should you use publish/subscribe or point-to-point messaging?

Using publish/subscribe messaging, a sending application sends the information that it wants to share in a WebSphere MQ message to a standard
destination managed by WebSphere MQ publish⁄subscribe, and lets WebSphere MQ handle the distribution of that information. The target application does
not have to know anything about the source of the information it receives, it just registers an interest in one or more topics and receives that information
when it is available. For more information about publish/subscribe messaging, see WebSphere MQ Publish/Subscribe User's Guide.
Using point-to-point messaging, a sending application sends a message to a specific queue, from where it knows a receiving application will retrieve it. A
receiving application gets messages from a specific queue and acts on their contents. An application will often function both as a sender and a receiver,
sending a query to another application and receiving a response.

How can you control your WebSphere MQ programs?

You might want to start some programs automatically or make programs wait until a particular message arrives on a queue (using the WebSphere MQ
triggering feature, see Starting WebSphere MQ applications using triggers). Alternatively, you might want to start up another instance of an application
when the messages on a queue are not getting processed fast enough (using the WebSphere MQ instrumentation events feature as described in
Monitoring WebSphere MQ).

Will your application run on a WebSphere MQ client?

The full MQI is supported in the client environment and this enables almost any WebSphere MQ application to be relinked to run on a WebSphere MQ
client. Link the application on the WebSphere MQ client to the MQIC library, rather than to the MQI library. Get(signal) on z/OS is not supported.

Note: An application running on a WebSphere MQ client can connect to more than one queue manager concurrently, or use a queue manager name with
an asterisk (*) on an MQCONN or MQCONNX call. Change the application if you want to link to the queue manager libraries instead of the client libraries,
as this function will not be available.

See WebSphere MQ Clients for more information.

How can you secure your data and maintain its integrity?

You can use the context information that is passed with a message to test that the message has been sent from an acceptable source. You can use the
syncpointing facilities provided by WebSphere MQ or your operating system to ensure that your data remains consistent with other resources (see

Page 13 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Committing and backing out units of work for further details). You can use the persistence feature of WebSphere MQ messages to assure the delivery of
important messages.

How should you handle exceptions and errors?

You need to consider how to process messages that cannot be delivered, and how to resolve error situations that are reported to you by the queue
manager. For some reports, you must set report options on MQPUT.

The remainder of this chapter introduces the features and techniques that WebSphere MQ provides to help you answer questions like these.

Parent topic: Overview of application design

This build: January 26, 2011 11:19:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg10400_

1.2.2. Using WebSphere MQ objects

The MQI uses the following types of object:

� Queue managers

� Queues

� Administrative topic objects

� Namelists

� Services

� Listeners

� Process definitions

� Channels

� Storage classes (WebSphere® MQ for z/OS® only)

� Authentication information objects

These objects, and queue-sharing groups (which are only supported on WebSphere MQ for z/OS and which are not strictly objects), are discussed in
WebSphere MQ objects.

With the exception of dynamic queues, these objects must be defined to the queue manager before you can work with them.

You define objects using:

� The PCF commands described in WebSphere MQ Programmable Command Formats and Administration Interface

� The MQSC commands described in WebSphere MQ Script (MQSC) Command Reference

� The WebSphere MQ for z/OS operations and control panels, described in the WebSphere MQ for z/OS System Administration Guide

� The WebSphere MQ Explorer (Windows, UNIX, and Linux for Intel systems only)

You can also display or alter the attributes of objects, or delete the objects.

Alternatively, for sequences of WebSphere MQ for z/OS commands that you use regularly, you can write administration programs that create messages
containing commands and that put these messages on the system-command input queue. The queue manager processes the messages on this queue in the
same way that it processes commands entered from the command line or from the operations and control panels. This technique is described in the
WebSphere MQ for z/OS System Administration Guide, and demonstrated in the Mail Manager sample application delivered with WebSphere MQ for z/OS.
For a description of this sample, see Sample programs for WebSphere MQ for z/OS.

For sequences of WebSphere MQ for i5/OS® commands that you use regularly you can write CL programs.

For sequences of WebSphere MQ commands on Windows systems and UNIX systems, you can use the MQSC facility to run a series of commands held in a
file. For information on how to do this, see the WebSphere MQ Script (MQSC) Command Reference.

Parent topic: Overview of application design

This build: January 26, 2011 11:19:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg10410_

1.2.3. Designing your messages

Ask yourself these questions to help you to design the messages.

You create a message when you use an MQI call to put the message on a queue. As input to the call, you supply some control information in a message

descriptor (MQMD) and the data that you want to send to another program. But at the design stage, you need to consider the following questions, because
they affect the way that you create your messages:

What type of message should I use?

Are you designing a simple application in which you can send a message, then take no further action? Or are you asking for a reply to a question? If you
are asking a question, you might include in the message descriptor the name of the queue on which you want to receive the reply.

Do you want your request and reply messages to be synchronous? This implies that you set a timeout period for the reply to answer your request, and if
you do not receive the reply within that period, it is treated as an error.

Or would you prefer to work asynchronously, so that your processes do not have to depend upon the occurrence of specific events, such as common
timing signals?

Another consideration is whether you have all your messages inside a unit of work.

Should I assign different priorities to some of the messages that I create?

You can assign a priority value to each message, and define the queue so that it maintains its messages in order of their priority. If you do this, when
another program retrieves a message from the queue, it always gets the message with the highest priority. If the queue does not maintain its messages in

Page 14 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

priority order, a program that retrieves messages from the queue will retrieve them in the order in which they were added to the queue.

Programs can also select a message using the identifier that the queue manager assigned when the message was put on the queue. Alternatively, you can
generate your own identifiers for each of your messages.

Will my messages be discarded when the queue manager restarts?

The queue manager preserves all persistent messages, recovering them when necessary from the WebSphere® MQ log files, when it is restarted.
Nonpersistent messages and temporary dynamic queues are not preserved. Any messages that you do not want discarded must be defined as persistent
when they are created. When writing an application for WebSphere MQ for Windows or WebSphere MQ on UNIX systems, make sure that you know how
your system has been set up in respect of log file allocation to reduce the risk of designing an application that will run to the log file limits.

Because messages on shared queues (only available on WebSphere MQ for z/OS®) are held in the Coupling Facility (CF), nonpersistent messages are
preserved across restarts of a queue manager as long as the CF remains available. If the CF fails, nonpersistent messages are lost.

Do I want to give information about myself to the recipient of my messages?

Usually, the queue manager sets the user ID, but suitably authorized applications can also set this field, so that you can include your own user ID and
other information that the receiving program can use for accounting or security purposes.

How many queues will receive my messages?

If a message might need to be put on several queues, you can use a distribution list (not on z/OS), or publish to a topic.

Parent topic: Overview of application design

This build: January 26, 2011 11:19:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg10420_

1.2.4. WebSphere MQ techniques

For a simple WebSphere® MQ application, you need to decide which WebSphere MQ objects to use in your application, and which types of message you
want to use. For a more advanced application, you might want to use some of the techniques introduced in the following sections.

Parent topic: Overview of application design

This build: January 26, 2011 11:19:16

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg10430_

1.2.5. Application programming

WebSphere® MQ supports the IBM® Message Queue Interface (MQI). The MQI includes a set of calls with which you can send and receive messages, and
manipulate WebSphere MQ objects.

Parent topic: Overview of application design

This build: January 26, 2011 11:19:16

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg10500_

1.3. WebSphere MQ messages

WebSphere® MQ messages are made up of two parts:

� Message properties

� Application data

Figure 1 represents a message and shows how it is logically divided into message properties and application data.

Figure 1. Representation of a message

The application data carried in a WebSphere MQ message is not changed by a queue manager unless data conversion is carried out on it. Also, WebSphere
MQ does not put any restrictions on the content of this data. The length of the data in each message cannot exceed the value of the MaxMsgLength attribute

of both the queue and queue manager.

On WebSphere MQ for AIX®, WebSphere MQ for i5/OS®, WebSphere MQ for HP-UX, WebSphere MQ for Linux, WebSphere MQ for Solaris, and WebSphere
MQ for Windows, the MaxMsgLength defaults to 100 MB (104 857 600 bytes).

Note: If you are intending to use WebSphere MQ messages greater than 15 MB on i5/OS, see Building your application on i5/OS.

On WebSphere MQ for z/OS®, the MaxMsgLength attribute of the queue manager is fixed at 100 MB and the MaxMsgLength attribute of the queue defaults to

4 MB (4 194 304 bytes) which you can change up to a maximum of 100 MB if required.

Make your messages slightly shorter than the value of the MaxMsgLength attribute in some circumstances. See The data in your message for more

information.

Page 15 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

You create a message when you use the MQPUT or MQPUT1 MQI calls. As input to these calls, you supply the control information (such as the priority of the
message and the name of a reply queue) and your data , and the call then puts the message on a queue. See the WebSphere MQ Application Programming
Reference for more information on these calls.

Types of message

Format of message control information and message data
The queue manager is only interested in the format of the control information within a message, whereas applications that handle the message are
interested in the format of both the control information and the data.

Message priorities

Message properties
Use message properties to allow an application to select messages to process, or to retrieve information about a message without accessing MQMD or
MQRFH2 headers. They also facilitate communication between Websphere MQ and JMS applications.

Selecting messages from queues
You can select messages from queues using the MsgId and CorrelId fields on an MQGET call, or by using a SelectionString on an MQOPEN or MQSUB
call.

Asynchronous consumption of WebSphere MQ messages
Asynchronous consumption uses a set of Message Queue Interface (MQI) extensions, the MQI calls MQCB and MQCTL, which allow an MQI application
to be written to consume messages from a set of queues. Messages are delivered to the application by invoking a ‘unit of code', identified by the
application passing either the message, or a token representing the message.

Message groups
Messages can occur within groups to allow ordering of messages.

Message persistence
Persistent messages are written to logs and queue data files.

Messages that fail to be delivered
When a queue manager cannot put a message on a queue, you have various options.

Messages that are backed out

Reply-to queue and queue manager

Message context
Message context information allows the application that retrieves the message to find out about the originator of the message.

Parent topic: Designing applications that use WebSphere MQ

This build: January 26, 2011 11:19:17

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg10560_

1.3.1. Types of message

There are four types of message defined by WebSphere® MQ:

� Datagram

� Request

� Reply

� Report

Applications can use the first three types of messages to pass information between themselves. The fourth type, report, is for applications and queue
managers to use to report information about events such as the occurrence of an error.

Each type of message is identified by an MQMT_* value. You can also define your own types of message. For the range of values you can use, see the
description of the MsgType field in the WebSphere MQ Application Programming Reference.

Reports and segmented messages

Parent topic: WebSphere MQ messages

This build: January 26, 2011 11:19:17

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg10580_

1.3.1.1. Reports and segmented messages

Not supported on WebSphere® MQ for z/OS®.

If a message is segmented (see Message segmentation for a description of this) and you ask for reports to be generated, you might receive more reports
than you would have done had the message not been segmented.

For reports generated by WebSphere MQ
If you segment your messages or allow the queue manager to do so, there is only one case in which you can expect to receive a single report for the
entire message. This is when you have requested only COD reports, and you have specified MQGMO_COMPLETE_MSG on the getting application.

Page 16 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

For reports generated by applications
If your application generates reports, always copy the WebSphere MQ headers that are present at the start of the original message data to the report
message data.

Retrieval of reports
If you ask for COA or COD reports, you can ask for them to be reassembled for you with MQGMO_COMPLETE_MSG.

Back-level queue managers

Parent topic: Types of message

This build: January 26, 2011 11:19:17

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg10650_

1.3.1.1.1. For reports generated by WebSphere® MQ

If you segment your messages or allow the queue manager to do so, there is only one case in which you can expect to receive a single report for the entire
message. This is when you have requested only COD reports, and you have specified MQGMO_COMPLETE_MSG on the getting application.

In other cases your application must be prepared to deal with several reports; usually one for each segment.

Note: If you segment your messages, and you need only the first 100 bytes of the original message data to be returned, change the setting of the report
options to ask for reports with no data for segments that have an offset of 100 or more. If you do not do this, and you leave the setting so that each
segment requests 100 bytes of data, and you retrieve the report messages with a single MQGET specifying MQGMO_COMPLETE_MSG, the reports assemble
into a large message containing 100 bytes of read data at each appropriate offset. If this happens, you need a large buffer or you need to specify
MQGMO_ACCEPT_TRUNCATED_MSG.

Parent topic: Reports and segmented messages

This build: January 26, 2011 11:19:17

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg10660_

1.3.1.1.2. For reports generated by applications

If your application generates reports, always copy the WebSphere® MQ headers that are present at the start of the original message data to the report
message data.

Then add none, 100 bytes, or all of the original message data (or whatever other amount you would usually include) to the report message data.

You can recognize the WebSphere MQ headers that must be copied by looking at the successive Format names, starting with the MQMD and continuing
through any headers present. The following Format names indicate these WebSphere MQ headers:

� MQMDE

� MQDLH

� MQXQH

� MQIIH

� MQH*

MQH* means any name that starts with the characters MQH.

The Format name occurs at specific positions for MQDLH and MQXQH, but for the other WebSphere MQ headers it occurs at the same position. The length of

the header is contained in a field that also occurs at the same position for MQMDE, MQIMS, and all MQH* headers.

If you are using a Version 1 MQMD, and you are reporting on a segment, or a message in a group, or a message for which segmentation is allowed, the
report data must start with an MQMDE. Set the OriginalLength field to the length of the original message data excluding the lengths of any WebSphere MQ

headers that you find.

Parent topic: Reports and segmented messages

This build: January 26, 2011 11:19:18

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg10670_

1.3.1.1.3. Retrieval of reports

If you ask for COA or COD reports, you can ask for them to be reassembled for you with MQGMO_COMPLETE_MSG.

An MQGET with MQGMO_COMPLETE_MSG is satisfied when enough report messages (of a single type, for example COA, and with the same GroupId) are

present on the queue to represent one complete original message. This is true even if the report messages themselves do not contain the complete original
data; the OriginalLength field in each report message gives the length of original data represented by that report message, even if the data itself is not

present.

You can use this technique even if there are several different report types present on the queue (for example, both COA and COD), because an MQGET with
MQGMO_COMPLETE_MSG reassembles report messages only if they have the same Feedback code. However, you cannot usually use this technique for

exception reports, because, in general, these have different Feedback codes.

You can use this technique to get a positive indication that the entire message has arrived. However, in most circumstances you need to cater for the
possibility that some segments arrive while others might generate an exception (or expiry, if you have allowed this). You cannot use
MQGMO_COMPLETE_MSG in this case, because, in general, you might get different Feedback codes for different segments and, as noted above, you might

get more than one report for a given segment. You can, however, use MQGMO_ALL_SEGMENTS_AVAILABLE.

Page 17 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

To allow for this you might need to retrieve reports as they arrive, and build up a picture in your application of what happened to the original message. You
can use the GroupId field in the report message to correlate reports with the GroupId of the original message, and the Feedback field to identify the type of

each report message. The way in which you do this depends on your application requirements.

One approach is as follows:

� Ask for COD reports and exception reports.

� After a specific time, check whether a complete set of COD reports has been received using MQGMO_COMPLETE_MSG. If so, your application knows
that the entire message has been processed.

� If not, and exception reports relating to this message are present, handle the problem as for unsegmented messages, but ensure that you clean up
orphan segments at some point.

� If there are segments for which there are no reports of any kind, the original segments (or the reports) might be waiting for a channel to be
reconnected, or the network might be overloaded at some point. If no exception reports at all have been received (or if you think that the ones you
have might be temporary only), you might decide to let your application wait a little longer.

As before, this is similar to the considerations you have when dealing with unsegmented messages, except that you must also consider the possibility
of cleaning up orphan segments.

If the original message is not critical (for example, if it is a query, or a message that can be repeated later), set an expiry time to ensure that orphan
segments are removed.
Parent topic: Reports and segmented messages

This build: January 26, 2011 11:19:18

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg10680_

1.3.1.1.4. Back-level queue managers

When a report is generated by a queue manager that supports segmentation, but is received on a queue manager that does not support segmentation, the
MQMDE structure (which identifies the Offset and OriginalLength represented by the report) is always included in the report data, in addition to zero, 100

bytes, or all of the original data in the message.

However, if a segment of a message passes through a queue manager that does not support segmentation, if a report is generated there, the MQMDE
structure in the original message is treated purely as data. It is not therefore included in the report data if zero bytes of the original data have been
requested. Without the MQMDE, the report message might not be useful.

Request at least 100 bytes of data in reports if there is a possibility that the message might travel through a back-level queue manager.

Parent topic: Reports and segmented messages

This build: January 26, 2011 11:19:18

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg10690_

1.3.2. Format of message control information and message data

The queue manager is only interested in the format of the control information within a message, whereas applications that handle the message are
interested in the format of both the control information and the data.

Application data conversion
Application data might need to be converted to the character set and the encoding required by another application where different platforms are
concerned.

Parent topic: WebSphere MQ messages

This build: January 26, 2011 11:19:18

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg10700_

1.3.2.1. Application data conversion

Application data might need to be converted to the character set and the encoding required by another application where different platforms are concerned.

It can be converted at the sending queue manager, or at the receiving queue manager. If the library of built-in formats does not meet your needs, you can
define your own. The type of conversion depends on the message format that is specified in the format field of the message descriptor, MQMD.

Note: Messages with MQFMT_NONE specified are not converted.

Parent topic: Format of message control information and message data

This build: January 26, 2011 11:19:18

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg10730_

1.3.3. Message priorities

You set the priority of a message (in the Priority field of the MQMD structure) when you put the message on a queue. You can set a numeric value for the

priority, or you can let the message take the default priority of the queue.

The MsgDeliverySequence attribute of the queue determines whether messages on the queue are stored in FIFO (first in, first out) sequence, or in FIFO

Page 18 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

within priority sequence. If this attribute is set to MQMDS_PRIORITY, messages are enqueued with the priority specified in the Priority field of their

message descriptors; but if it is set to MQMDS_FIFO, messages are enqueued with the default priority of the queue. Messages of equal priority are stored on
the queue in order of arrival.

The DefPriority attribute of a queue sets the default priority value for messages being put on that queue. This value is set when the queue is created, but

it can be changed afterwards. Alias queues, and local definitions of remote queues, can have different default priorities from the base queues to which they
resolve. If there is more than one queue definition in the resolution path (see Name resolution), the default priority is taken from the value (at the time of
the put operation) of the DefPriority attribute of the queue specified in the open command.

The value of the MaxPriority attribute of the queue manager is the maximum priority that you can assign to a message processed by that queue manager.

You cannot change the value of this attribute. In WebSphere® MQ, the attribute has the value 9; you can create messages having priorities between 0 (the
lowest) and 9 (the highest).

Parent topic: WebSphere MQ messages

This build: January 26, 2011 11:19:20

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg10790_

1.3.4. Message properties

Use message properties to allow an application to select messages to process, or to retrieve information about a message without accessing MQMD or
MQRFH2 headers. They also facilitate communication between Websphere MQ and JMS applications.

A message property is data associated with a message, consisting of a textual name and a value of a particular type. Message properties are used by
message selectors to filter publications to topics or to selectively get messages from queues. Message properties can be used to include business data or
state information without having to store it in the application data. Applications do not have to access data in the MQ Message Descriptor (MQMD) or
MQRFH2 headers because fields in these data structures can be accessed as message properties using Message Queue Interface (MQI) function calls.

The use of message properties in WebSphere MQ mimics the use of properties in JMS. This means that you can set properties in a JMS application and
retrieve them in a procedural WebSphere MQ application, or the other way round. To make a property available to a JMS application, assign it the prefix
"usr"; it is then available (without the prefix) as a JMS message user property. For example, the Websphere MQ property usr.myproperty (a character
string) is accessible to a JMS application using the JMS call message.getStringProperty('myproperty'). Note that a property with the prefix "usr" can

contain only a single U+002E (".") character. A property with no prefix and no U+002E (".") character is treated as if it had the prefix "usr". Conversely, a
user property set in a JMS application can be accessed in a WebSphere MQ application by adding the "usr." prefix to the property name inquired on in an
MQINQMP call.

Message properties and message length
Use the queue manager attribute MaxPropertiesLength to control the size of the properties that can flow with any message in a WebSphere® MQ
queue manager.

Property names
A property name is a character string. Certain restrictions apply to its length and the set of characters that can be used.

Property data types and values
A property can be a boolean, a byte string, a character string, or a floating-point or integer number. The property can store any valid value in the
range of the data type unless otherwise restricted by the context.

Parent topic: WebSphere MQ messages

Related information
Code page conversion

This build: January 26, 2011 11:22:09

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg20530_

1.3.4.1. Message properties and message length

Use the queue manager attribute MaxPropertiesLength to control the size of the properties that can flow with any message in a WebSphere® MQ queue
manager.

In general, when you use MQSETMP to set properties, the size of a property is the length of the property name in bytes, plus the length of the property
value in bytes as passed into the MQSETMP call. It is possible for the character set of the property name and the property value to change during
transmission of the message to its destination because these can be converted into Unicode; in this case the size of the property might change.

On an MQPUT or MQPUT1 call, properties of the message do not count towards the length of the message for the queue and the queue manager, but they do
count towards the length of the properties as perceived by the queue manager (whether they were set using the message property MQI calls or not).

If the size of the properties exceeds the maximum properties length, the message is rejected with MQRC_PROPERTIES_TOO_BIG. Because the size of the
properties is dependent on its representation, you should set the maximum properties length at a gross level.

It is possible for an application to successfully put a message with a buffer that is larger than the value of MaxMsgLength, if the buffer includes properties.
This is because, even when represented as MQRFH2 elements, message properties do not count towards the length of the message. The MQRFH2 header
fields add to the properties length only if one or more folders are contained and every folder in the header contains properties. If one or more folders are
contained in the MQRFH2 header and any folder does not contain properties, the MQRFH2 header fields count towards the message length instead.

On an MQGET call, properties of the message do not count towards the length of the message as far as the queue and the queue manager are concerned.
However, because the properties are counted separately it is possible that the buffer returned by an MQGET call is larger than the value of the
MaxMsgLength attribute.

Do not have your applications query the value of MaxMsgLength and then allocate a buffer of this size before calling MQGET; instead, allocate a buffer you
consider large enough. If the MQGET fails, allocate a buffer guided by the size of the DataLength parameter.

The DataLength parameter of the MQGET call now returns the length in bytes of the application data and any properties returned in the buffer you have
provided, if a message handle is not specified in the MQGMO structure.

Page 19 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

The Buffer parameter of the MQPUT call now contains the application message data to be sent and any properties represented in the message data.

When flowing to a queue manager that is earlier than Version 7.0 of the product, properties of the message, except those in the message descriptor, count
towards the length of the message. Therefore, you should either raise the value of the MaxMsgLength attribute of channels going to a system earlier than
Version 7.0 as necessary, to compensate for the fact that more data might be sent for each message. Alternatively, you can lower the queue or queue
manager MaxMsgLength, so that the overall level of data being sent around the system remains the same.

There is a length limit of 100 MB for message properties, excluding the message descriptor or extension for each message.

The size of a property in its internal representation is the length of the name, plus the size of its value, plus some control data for the property. There is also
some control data for the set of properties after one property is added to the message.

Parent topic: Message properties

This build: January 26, 2011 11:22:07

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg20100_

1.3.4.2. Property names

A property name is a character string. Certain restrictions apply to its length and the set of characters that can be used.

A property name is a case-sensitive character string, limited to +4095 characters unless otherwise restricted by the context. This limit is contained in the
MQ_MAX_PROPERTY_NAME_LENGTH constant.

If you exceed this maximum length when using a message property MQI call, the call fails with reason code MQRC_PROPERTY_NAME_LENGTH_ERR.

Because there is no maximum property name length in JMS, it is possible for a JMS application to set a valid JMS property name that is not a valid
WebSphere® MQ property name when stored in an MQRFH2 structure.

In this case, when parsed, only the first 4095 characters of the property name are used; the following characters are truncated. This could cause an
application using selectors to fail to match a selection string, or to match a string when not expecting to, since more than one property might truncate to the
same name. When a property name is truncated, WebSphereMQ issues an error log message.

All property names must follow the rules defined by the Java Language Specification for Java Identifiers, with the exception that Unicode character U+002E
(“.”) is permitted as part of the name - but not the start. The rules for Java Identifiers equate to those contained in the JMS specification for property names.

White space characters and comparison operators are prohibited. Embedded nulls are allowed in a property name but not recommended. If you use
embedded nulls, this prevents the use of the MQVS_NULL_TERMINATED constant when used with the MQCHARV structure to specify variable length strings.

Keep property names simple because applications can select messages based on the property names and the conversion between the character set of the
name and of the selector might cause the selection to fail unexpectedly.

WebSphere MQ property names use character U+002E (“.”) for logical grouping of properties. This divides up the namespace for properties. Properties with
the following prefixes, in any mixture of lower or upper case are reserved for use by the product:

� mcd

� jms

� usr

� mq

� sib

� wmq

� Root

� Body

� Properties

A good way to avoid name clashes is to ensure that all applications prefix their message properties with their Internet domain name. For example, if you are
developing an application using domain name “ourcompany.com” you could name all properties with the prefix “com.ourcompany”. This naming convention

also allows for easy selection of properties; for example, an application can inquire on all message properties starting “com.ourcompany.%”.

See Property name restrictions for further information about the use of property names.

Property name restrictions
When you name a property, you must observe certain rules.

Message descriptor fields as properties
Most message descriptor fields can be treated as properties. The property name is constructed by adding a prefix to the message descriptor field's
name.

Parent topic: Message properties

This build: January 26, 2011 11:22:07

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg20110_

1.3.4.2.1. Property name restrictions

When you name a property, you must observe certain rules.

The following restrictions apply to property names:

1. A property must not begin with the following strings:

Page 20 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

� "JMS" - these are reserved for use by WebSphere® MQ classes for JMS.

� "usr.JMS" - these are not valid.

The only exceptions to this are the following properties providing synonyms for JMS properties:

These synonyms allow an MQI application to access JMS properties in a similar fashion to a WebSphere MQ classes for JMS client application. Of these
properties, only JMSCorrelationID, JMSReplyTo, JMSType, JMSXGroupID, and JMSXGroupSeq can be set using the MQI.

Note that the JMS_IBM_* properties available from within WebSphere MQ classes for JMS are not available using the MQI. The fields that the
JMS_IBM_* properties reference can be accessed in other ways by MQI applications.

2. A property must not be called, in any mixture of lower or uppercase, “NULL”, “TRUE”, “FALSE”, “NOT”, “AND”, “OR”, “BETWEEN”, “LIKE”, “IN”, “IS” and
“ESCAPE”. These are the names of SQL keywords used in selection strings.

3. A property beginning “mq” (except “mq_usr”), “jms”, “mcd”, “usr”, or “sib” (in any mixture of lower or uppercase) can only contain a single “.”
character (U+002E).

4. Two “.” characters must contain other characters in between; you cannot have an empty point in the hierarchy. Similarly a property name cannot end
in a “.” character.

5. If an application sets the property “a.b” and then the property “a.b.c”, it is unclear whether in the hierarchy “b” contains a value or another logical
grouping. Such a hierarchy is “mixed content” and this is not supported. Setting a property that causes mixed content is not allowed.

These restrictions are enforced by the validation mechanism as follows:

� Property names are validated when setting a property using the MQSETMP call, if validation was requested when the message handle was created. If
an attempt to validate a property is undertaken and fails due to an error in the specification of the property name, the completion code is
MQCC_FAILED with reason:

� MQRC_PROPERTY_NAME_ERROR for reasons 1-4.

� MQRC_MIXED_CONTENT_NOT_ALLOWED for reason 5.

� The names of properties specified directly as MQRFH2 elements are not guaranteed to be validated by the MQPUT call.

Parent topic: Property names

This build: January 26, 2011 11:22:07

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg20140_

1.3.4.2.2. Message descriptor fields as properties

Most message descriptor fields can be treated as properties. The property name is constructed by adding a prefix to the message descriptor field's name.

If an MQI application wants to identify a message property contained in a message descriptor field, for example, in a selector string or using the message
property APIs, use the following syntax:

Specify <Field> with the same case as for the MQMD structure fields in the C language declaration. For example, the property name

Root.MQMD.AccountingToken accesses the AccountingToken field of the message descriptor.

The StrucId and Version fields of the message descriptor are not accessible using the above syntax.

Message descriptor fields are never represented in an MQRFH2 header as for other properties.

If the message data starts with an MQMDE that is honored by the queue manager, the MQMDE fields can be accessed using the Root.MQMD.<Field> notation

described above. In this case the MQMDE fields are treated as logically part of the MQMD from a properties perspective. See the section “MQMDE specified
on MQPUT and MQPUT1 calls” in Overview of MQMDE.

Parent topic: Property names

This build: January 26, 2011 11:22:07

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg20120_

1.3.4.3. Property data types and values

A property can be a boolean, a byte string, a character string, or a floating-point or integer number. The property can store any valid value in the range of
the data type unless otherwise restricted by the context.

Property Synonym for

JMSCorrelationID Root.MQMD.CorrelId or jms.Cid

JMSDeliveryMode Root.MQMD.Persistence or jms.Dlv

JMSDestination jms.Dst

JMSExpiration Root.MQMD.Expiry or jms.Exp

JMSMessageID Root.MQMD.MsgId

JMSPriority Root.MQMD.Priority or jms.Pri

JMSRedelivered Root.MQMD.BackoutCount

JMSReplyTo (a string encoded as a URI) Root.MQMD.ReplyToQ or Root.MQMD.ReplyToQMgr or jms.Rto

JMSTimestamp Root.MQMD.PutDate or Root.MQMD.PutTime or jms.Tms

JMSType mcd.Type or mcd.Set or mcd.Fmt

JMSXAppID Root.MQMD.PutApplName

JMSXDeliveryCount Root.MQMD.BackoutCount

JMSXGroupID Root.MQMD.GroupId or jms.Gid

JMSXGroupSeq Root.MQMD.MsgSeqNumber or jms.Seq

JMSXUserID Root.MQMD.UserIdentifier

Property name Message descriptor field

Root.MQMD.<Field> <Field>

Page 21 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

The data type of a property value must be one of the following values:

� MQBOOL

� MQBYTE[]

� MQCHAR[]

� MQFLOAT32

� MQFLOAT64

� MQINT8

� MQINT16

� MQINT32

� MQINT64

A property can exist but have no defined value; it is a null property. A null property is different from a byte or character string property (MQBYTE[] and
MQCHAR[] respectively) that has a defined but empty value, that is, one with a zero-length value.

Byte string is not a valid property data type in JMS or XMS. You are advised not to use byte string properties in the <usr> folder.

Parent topic: Message properties

This build: January 26, 2011 11:22:07

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg20150_

1.3.5. Selecting messages from queues

You can select messages from queues using the MsgId and CorrelId fields on an MQGET call, or by using a SelectionString on an MQOPEN or MQSUB call.

Getting a specific message using MsgId and CorrelId
To get a particular message from a queue, use the MsgId and CorrelId fields of the message descriptor. If you specify Version 2 of the MQMD, you can
also use the GroupId, MsgSeqNumber, and Offset fields.

Selectors
A message selector is a variable-length string used by an application to register its interest in only those messages whose properties satisfy the
Structured Query Language (SQL) query that the selection string represents.

Parent topic: WebSphere MQ messages

This build: January 26, 2011 11:22:09

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg20540_

1.3.5.1. Getting a specific message using MsgId and CorrelId

To get a particular message from a queue, use the MsgId and CorrelId fields of the message descriptor. If you specify Version 2 of the MQMD, you can also
use the GroupId, MsgSeqNumber, and Offset fields.

You can also get a particular message from a queue by using the MsgToken field. See Getting a particular message

The recommended way to choose MsgIds for your messages is to allow the queue manager to generate unique ones for you. Globally unique MsgIds
improve serviceability because you can track messages across queue managers and locate messages in recovery logs for example. However, a WebSphere®
MQ application can specify a particular value for the message identifier, and although it is strongly recommended that application-generated MsgIds are
unique identifiers, it is possible for an application to specify a non-unique MsgId.

You can use the correlation identifier in any way that you like. One intended use of this field is for applications to copy the message identifier of a request
message into the CorrelId field of a reply message. Where possible use the CorrelId in preference to the MsgId if you want to associate an application-
provided identity with a message. On the distributed platforms, an advantage will be gained because the queue manager is optimized for retrieving
messages by CorrelId rather than by MsgId.

The group identifier is usually generated by the queue manager when the first message of a group is put onto a queue. The MsgSeqNumber field identifies the

position of the message within the group and the Offset field identifies the segments within the message.

Where more than one message meets the combined selection criteria, the MsgDeliverySequence attribute of the queue determines whether messages are

selected in FIFO (first in, first out) or priority order. When messages have equal priority, they are selected in FIFO order. For more information, see The
order in which messages are retrieved from a queue.

For an example of an application that uses correlation identifiers, see The Credit Check sample.

Parent topic: Selecting messages from queues

Related concepts
Getting a particular message

This build: January 26, 2011 11:19:21

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg10820_

1.3.5.2. Selectors

A message selector is a variable-length string used by an application to register its interest in only those messages whose properties satisfy the Structured
Query Language (SQL) query that the selection string represents.

Page 22 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Selection using the MQSUB and MQOPEN function calls

You use the SelectionString, which is a structure of type MQCHARV, to make selections using the MQSUB and MQOPEN calls.

The SelectionString structure is used to pass a variable-length selection string to the queue manager.

The CCSID associated with the selector string is set via the VSCCSID field of the MQCHARV structure. The value used must be a CCSID that is supported for
selector strings. See Code page conversion for a list of supported code pages.

Specifying a CCSID for which there is no WebSphere® MQ supported Unicode conversion, results in an error of MQRC_SOURCE_CCSID_ERROR. This error is
returned at the time that the selector is presented to the queue manager, that is, on the MQSUB, MQOPEN, or MQPUT1 call.

The default value for the VSCCSID field is MQCCSI_APPL, which indicates that the CCSID of the selection string is equal to the queue manager CCSID, or the

client CCSID if connected through a client. The MQCCSI_APPL constant can however be overridden by an application redefining it before compiling.

If the MQCHARV selector represents a NULL string, no selection takes place for that message consumer and messages are delivered as if a selector had not
been used.

The maximum length of a selection string is limited only by what can be described by the MQCHARV field VSLength.

The SelectionString is returned on the output from an MQSUB call using the MQSO_RESUME subscribe option, if you have provided a buffer and there is a
positive buffer length in VSBufSize. If you do not provide a buffer, only the length of the selection string is returned in the VSLength field of the MQCHARV.
If the buffer provided is smaller than the space required to return the field, only VSBufSize bytes are returned in the provided buffer.

An application cannot alter a selection string without first closing either the handle to the queue (for MQOPEN), or subscription (for MQSUB). A new selection
string can then be specified on a subsequent MQOPEN or MQSUB call.

MQOPEN

Use MQCLOSE to close the opened handle, then specify a new selection string on a subsequent MQOPEN call.

MQSUB

Use MQCLOSE to close the returned subscription handle (hSub), then specify a new selection string on a subsequent MQSUB call.

Figure 1 shows the process of selection using the MQSUB call.

Figure 1. Selection using MQSUB call

A selector can be passed in on the call to MQSUB by using the SelectionString field in the MQSD structure. The effect of passing in a selector on the

MQSUB is that only those messages published to the topic being subscribed to, that match a supplied selection string, are made available on the destination
queue.

Figure 2 shows the process of selection using the MQOPEN call.

Figure 2. Selection using MQOPEN call

Page 23 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

A selector can be passed in on the call to MQOPEN by using the SelectionString field in the MQOD structure. The effect of passing in a selector on the

MQOPEN call is that only those messages on the opened queue, that match a selector, are delivered to the message consumer.

The main use for the selector on the MQOPEN call is for the point-to-point case where an application can elect to receive only those messages on a queue
that match a selector. The example above shows a simple scenario where two messages are put to a queue opened by MQOPEN but only one is received by
the application getting it, as it is the only one that matches a selector.

Note that subsequent MQGET calls result in MQRC_NO_MSG_AVAILABLE as no further messages exist on the queue that match the given selector.

Selection behavior
Overview of WebSphere MQ selection behavior.

Message selector syntax
A WebSphere MQ message selector is a string, whose syntax is based on a subset of the SQL92 conditional expression syntax.

Selecting on the content of a message
It is possible to subscribe based on a selection of message payload content (also known as content filtering), but the decision about which messages
should be delivered to such a subscription cannot be performed directly by WebSphere MQ; instead an extended message selection provider is
required to process the messages.

Parent topic: Selecting messages from queues

Related information
MQCHARV - Variable Length String
MQSETMP – Set message handle property
MQINQMP - Inquire message property
MQDLTMP - Delete message property

This build: January 26, 2011 11:22:08

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg20160_

1.3.5.2.1. Selection behavior

Overview of WebSphere® MQ selection behavior.

The fields in an MQMDE structure are considered to be the message properties for the corresponding message descriptor properties if the MQMD:

� Has format MQFMT_MD_EXTENSION

� Is immediately followed by a valid MQMDE structure

� Is version one or contains the default version two fields only

It is possible for a selection string to resolve to either TRUE or FALSE before any matching against message properties takes place. , For example, it might
be the case if the selection string is set to "TRUE <>FALSE". Such early evaluation is guaranteed to take place only when there are no message property

references in the selection string.

If a selection string resolves to TRUE before any message properties are considered, all messages published to the topic subscribed to by the consumer are
delivered. If a selection string resolves to FALSE before any message properties are considered, a reason code of MQRC_SELECTOR_ALWAYS_FALSE, and
completion code MQCC_FAILED are returned on the function call that presented the selector.

Even if a message contains no message properties (other than header properties) then it can still be eligible for selection. If a selection string references a
message property that does not exist, this property is assumed to have the value of NULL or ‘Unknown'.

Page 24 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

For example, a message might still satisfy a selection string like ‘Color IS NULL', where 'Color' does not exist as a message property in the message.

Selection can be performed only on the properties that are associated with a message, not the message itself , unless an extended message selection
provider is available. Selection can be performed on the message payload only if an extended message selection provider is available.

Each message property has a type associated with it. When you perform a selection, you must ensure that the values used in expressions to test message
properties are of the correct type. If a type mismatch occurs, the expression in question resolves to FALSE.

It is your responsibility to ensure that the selection string and message properties use compatible types.

Selection criteria continue to be applied on behalf of inactive durable subscribers, so that only messages that match the selection string that was originally
supplied are kept.

Selection strings are non-alterable when a durable subscription is resumed with alter (MQSO_ALTER). If a different selection string is presented when a
durable subscriber resumes activity, then MQRC_SELECTOR_NOT_ALTERABLE is returned to the application.

Applications receive a return code of MQRC_NO_MSG_AVAILABLE if there is no message on a queue that meets the selection criteria.

If an application has specified a selection string containing property values then only those messages that contain matching properties are eligible for
selection. As an example, if a subscriber specifies a selection string of “a = 3” and a message is published containing no properties, or properties where ‘a'
does not exist or is not equal to 3, then the subscriber will not receive that message to its destination queue.

Messaging performance

Selecting messages from a queue requires WebSphere MQ to sequentially inspect each message on the queue. Messages are inspected until a message is
found that matches the selection criteria or there are no more messages to examine. Therefore, messaging performance suffers if message selection is used
on deep queues.

To optimize message selection on deep queues when selection is based on JMSCorrelationID or JMSMessageID, use a selection string of the form
JMSCorrelationID = ... or JMSMessageID = ... and reference only one property.

This method offers a significant improvement in performance for selection on JMSCorrelationID and offers a marginal performance improvement for
JMSMessageID.

Parent topic: Selectors

This build: January 26, 2011 11:22:08

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg20170_

1.3.5.2.2. Message selector syntax

A WebSphere MQ message selector is a string, whose syntax is based on a subset of the SQL92 conditional expression syntax.

The order in which a message selector is evaluated is from left to right within a precedence level. You can use parentheses to change this order. Predefined
selector literals and operator names are written here in upper case; however, they are not case-sensitive.

WebSphere MQ verifies the syntactic correctness of a message selector at the time it is presented. If the syntax of the selection string is incorrect or a
property name is not valid, and an extended message selection provider is not available, MQRC_SELECTION_NOT_AVAILABLE is returned to the application.
If the syntax of the selection string is incorrect or a property name is not valid when a subscription is resumed , a MQRC_SELECTOR_SYNTAX_ERROR is

returned to the application. If property name validation was disabled when the property was set (by setting MQSMPO_NONE instead of MQSMPO_VALIDATE)
and an application subsequently puts a message with in invalid property name, this message will never be selected.

A selector can contain:

� Literals:

� String literals are enclosed in single quotes. A doubled single quote represents a single quote. Examples are 'literal' and 'literal''s'. Like Java
string literals, these use the Unicode character encoding. You cannot use double quotes to enclose a string literal. Any sequence of bytes can be
used between the quotes.

� A byte string is one or more pair of hex characters enclosed in double quotes and prefixed by 0x. Examples are "0x2F1C" or "0XD43A". The
length of a byte string must be at least one byte. When matching a selector byte string to a message property of type MQTYPE_BYTE_STRING no
special action taken on leading or trailing zero, they are simply treated as another character. Endianness is also not considered. The length of
both selector and property byte strings should therefore be equal and the sequence of bytes should be exactly the same.

Examples of byte string selection (assume myBytes = 0AFC23) are:

� “myBytes = “0x0AFC23”” = TRUE

� “myBytes = “0xAFC23”” = MQRC_SELECTOR_SYNTAX_ERROR (because number of bytes is not multiple of two)

� “myBytes = “0x0AFC2300”” = FALSE (because the trailing zero is significant in the comparison)

� “myBytes = “0x000AFC23”” = FALSE (because leading zero is significant in the comparison)

� “myBytes = “0x23FC0A”” = FALSE (because endianness is not considered)

� Hex numbers begin with a zero, followed by an upper or lowercase 'x'. The remainder of the literal contains one or more valid hex characters.
Examples are 0xA, 0xAF, 0X2020.

� A leading zero followed by one or more digits in the range 0-7 is always interpreted as being the start of an octal number. You cannot represent
a zero-prefixed decimal number like this, for example, '09' returns a syntax error because 9 is not a valid octal digit. Examples of octal numbers
are 0177, 0713.

� An exact numeric literal is a numeric value without a decimal point, such as 57, -957, and +62. An exact numeric literal can have a trailing upper
or lowercase 'L' character, this does not affect how the number is stored or interpreted. WebSphere MQ supports exact numerals in the range -
9,223,372,036,854,775,808 to 9,223,372,036,854,775,807.

� An approximate numeric literal is a numeric value in scientific notation, such as 7E3 or -57.9E2, or a numeric value with a decimal, such as 7., -
95.7, or +6.2. WebSphere MQ supports numbers in the range -1.797693134862315E+308 to 1.797693134862315E+308.

The significand should follow an optional sign character (+ or -). The significand should be either an integer or a fraction. A fractional part of the
significand need not have a leading digit.

An upper or lowercase 'E' indicates the start of an optional exponent. The exponent has a decimal radix and the number part of the exponent can
be prefixed by an optional sign character.

Approximate numeric literals can be terminated by an 'F' or 'D' (case insensitive). This syntax exists to support the cross-language method of
tagging single or double precision numbers. These characters are optional and do not affect how an approximate numeric literal is stored or
processed. These numbers are always stored and processed using double-precision.

� The boolean literals TRUE and FALSE.

Page 25 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Note: Non-finite IEEE-754 representations such as NaN, +Infinity, -Infinity are not supported in selection strings. It is therefore not possible to use
these values as operands in an expression. Negative zero is treated the same as positive zero for mathematical operations.

� Identifiers:

An identifier is a variable-length character sequence that must begin with a valid identifier start character, followed by zero or more valid identifier part
characters. The rules for identifier names are the same as those for message property names, see Property names and Property name restrictions for
more information.

Note: Selection can be performed on the message payload only if an extended message selection provider is available.

Identifiers are either header field references or property references. The type of a property value in a message selector must correspond to the type
used to set the property, although numeric promotion is performed where possible. If a type mismatch occurs then the result of the expression is
FALSE. If a property that does not exist in a message is referenced, its value is NULL.

Type conversions that apply to the get methods for properties do not apply when a property is used in a message selector expression. For example, if
you set a property as a string value and then use a selector to query it as a numeric value, the expression returns FALSE.

JMS field and property names that map to property names or MQMD field names are also valid identifiers in a selection string. WebSphere MQ maps
the recognized JMS field and property names to the message property values. See Message selectors for more information. As an example, the
selection string "JMSPriority >= "will select on the Pri property found in the jms folder of the current message.

� Overflow/underflow:

For both decimal and approximate numeric numbers, the following are undefined:

� Specifying a number that is out of the defined range

� Specifying an arithmetic expression which would cause overflow or underflow

No checks are performed for the above conditions.

� White space:

Defined as a space, form-feed, newline, carriage return, horizontal tab, or vertical tab. The following Unicode characters are recognized as white
space:

� \u0009 to \u000D

� \u0020

� \u001C

� \u001D

� \u001E

� \u001F

� \u1680

� \u180E

� \u2000 to \u200A

� \u2028

� \u2029

� \u202F

� \u205F

� \u3000

� Expressions:

� A selector is a conditional expression. A selector that evaluates to true matches; a selector that evaluates to false or unknown does not match.

� Arithmetic expressions are composed of themselves, arithmetic operations, identifiers (whose value is treated as a numeric literal), and numeric
literals.

� Conditional expressions are composed of themselves, comparison operations, and logical operations.

� Standard bracketing (), to set the order in which expressions are evaluated, is supported.

� Logical operators in precedence order: NOT, AND, OR.

� Comparison operators: =, >, >=, <, <=, <> (not equal).

� Two byte strings are equal only if the strings are of the same length and the sequence of bytes is equal.

� Only values of the same type can be compared. One exception is that it is valid to compare exact numeric values and approximate numeric
values, (the type conversion required is defined by the rules of Java numeric promotion). If there is an attempt to compare different types, the
selector is always false.

� String and boolean comparison is restricted to = and <>. Two strings are equal only if they contain the same sequence of characters.

� Arithmetic operators in precedence order:

� +, - unary.

� *, /, multiplication, and division.

� +, -, addition, and subtraction.

� Arithmetic operations on a NULL value are not supported. If they are attempted, the complete selector is always false.

� Arithmetic operations must use Java numeric promotion.

� arithmetic-expr1 [NOT] BETWEEN arithmetic-expr2 and arithmetic-expr3 comparison operator:

� Age BETWEEN 15 and 19 is equivalent to age >= 15 AND age <= 19.

� Age NOT BETWEEN 15 and 19 is equivalent to age < 15 OR age > 19.

� If any of the expressions of a BETWEEN operation are NULL, the value of the operation is false. If any of the expressions of a NOT BETWEEN
operation are NULL, the value of the operation is true.

� identifier [NOT] IN (string-literal1, string-literal2,...) comparison operator where identifier has a String or NULL value.

� Country IN ('UK', 'US', 'France') is true for 'UK' and false for 'Peru'. It is equivalent to the expression (Country = 'UK') OR (Country = 'US') OR
(Country = 'France').

� Country NOT IN ('UK', 'US', 'France') is false for 'UK' and true for 'Peru'. It is equivalent to the expression NOT ((Country = 'UK') OR (Country =
'US') OR (Country = 'France')).

� If the identifier of an IN or NOT IN operation is NULL, the value of the operation is unknown.

� identifier [NOT] LIKE pattern-value [ESCAPE escape-character] comparison operator, where identifier has a string value. pattern-value is a string
literal, where _ stands for any single character and % stands for any sequence of characters (including the empty sequence). All other characters
stand for themselves. The optional escape-character is a single character string literal, whose character is used to escape the special meaning of the _
and % in pattern-value.

� phone LIKE '12%3' is true for 123 and 12993 and false for 1234.

� word LIKE 'l_se' is true for lose and false for loose.

� underscored LIKE '_%' ESCAPE '\' is true for _foo and false for bar.

� phone NOT LIKE '12%3' is false for 123 and 12993 and true for 1234.

Page 26 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

� If the identifier of a LIKE or NOT LIKE operation is NULL, the value of the operation is unknown.

� identifier IS NULL comparison operator tests for a null header field value, or a missing property value.

� prop_name IS NULL.

� identifier IS NOT NULL comparison operator tests for the existence of a non-null header field value or a property value.

� prop_name IS NOT NULL.

� Null values

The evaluation of selector expressions that contain NULL values is defined by SQL 92 NULL semantics, in summary:

� SQL treats a NULL value as unknown.

� Comparison or arithmetic with an unknown value always yields an unknown value.

� The IS NULL and IS NOT NULL operators convert an unknown value into the respective TRUE and FALSE values.

The boolean operators use three-valued logic (T=TRUE, F=FALSE, U=UNKNOWN)

The following message selector selects messages with a message type of car, color of blue, and weight greater than 2500 lbs:

"JMSType = 'car' AND color = 'blue' AND weight > 2500"

Although SQL supports fixed decimal comparison and arithmetic, message selectors do not. This is why exact numeric literals are restricted to those without
a decimal. It is also why there are numerics with a decimal as an alternate representation for an approximate numeric value.

SQL comments are not supported.

Selection string rules and restrictions
Familiarize yourself with these rules about how selection strings are interpreted and character restrictions to avoid potential problems when using
selectors.

UTF-8 and Unicode considerations when using message selectors

Parent topic: Selectors

This build: January 26, 2011 11:22:09

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg20180_

1.3.5.2.2.1. Selection string rules and restrictions

Familiarize yourself with these rules about how selection strings are interpreted and character restrictions to avoid potential problems when using selectors.

� Equivalence is tested using a single equals character, for example, “a == b” is incorrect, whereas “a = b” is correct.

� An operator used by many programming languages to represent ‘not-equals’ is ‘!=’. This representation is not a valid synonym for ‘<>’, for example,
“a != b” is not valid, whereas “a <> b” is valid.

� Care must be taken to ensure that the correct type of quotes are used to contain selectors. Single quotes are recognized only if the ‘ (U+0039)
character is used, not, ` (U+0145), for example is not recognized. Similarly, double quotes are valid only when used to enclose byte-strings, they are
not valid for other strings.

� The symbols &, &&, | and || are not synonyms for logical conjunction/disjunction, for example. “a && b” should be specified as “a AND b”.

� The wildcard characters * and ? are not synonyms for % and _.

� Selectors containing compound expressions such as “20 < b < 30” are not valid. Where operators have the same precedence, the parser will evaluate
from left to right, so the example would become “(20 < b) < 30”, which does not make sense. Instead the expression must be written as (b > 20)

Table 1. Boolean operator outcome when logic is A AND B

Operator A Operator B Outcome (A AND B)

T F F

T U U

T T T

F T F

F U F

F F F

U T U

U U U

U F F

Table 2. Boolean operator outcome when logic is A OR B

Operator A Operator B Outcome (A OR B)

T F T

T U T

T T T

F T T

F U U

F F F

U T T

U U U

U F U

Table 3. Boolean operator outcome when logic is NOT A

Operator A Outcome (NOT A)

T F

F T

U U

Page 27 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

AND (b < 30).

� Byte strings must be enclosed in double quotes, if single quotes are used, the byte string will be taken to be a string literal. The number of characters
(not the number which the characters represent) following the “0x” must be a multiple of two.

� The keyword ‘IS’ is not a synonym for =. Thus the selection string “a IS 3” and “b IS ‘red’” are not valid. The ‘IS’ keyword exists only to support ‘IS
NULL’ and ‘IS NOT NULL’.

Parent topic: Message selector syntax

This build: January 26, 2011 11:22:09

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg20230_

1.3.5.2.2.2. UTF-8 and Unicode considerations when using message selectors

Non-quoted characters that make up the reserved keywords of a selection string must be entered in Basic Latin Unicode (ranging from character U+0000 to
U+0007F). It is not valid to use other code point representations of alphanumeric characters. For instance, the number 1 must be expressed as U+0031 in
Unicode, it is not valid to use the Fullwidth Digit equivalent U+FF11 or the Arabic equivalent U+0661.

Message property names can be specified using any valid sequence of Unicode characters. Message property names contained within selection strings that
are encoded in UTF-8 will be validated even if they contain multi-byte characters. Validation of multi-byte UTF-8 is strict and you must ensure that valid
UTF-8 sequences are used for message property names.

No extra processing is performed on property names or values when comparing for equality. This means for instance that no pre/de-composition takes place
and ligatures are not given any special meaning. For example, the pre-composed umlaut character U+00FC is not considered to be equivalent to U+0075 +
U+0308 and the character sequence ff is not considered to be equivalent to the Unicode U+FB00 (LATIN SMALL LIGATURE FF)

Property data enclosed in single-quote characters can be represented by any sequence of bytes and is not validated.

Parent topic: Message selector syntax

This build: January 26, 2011 11:22:09

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg20240_

1.3.5.2.3. Selecting on the content of a message

It is possible to subscribe based on a selection of message payload content (also known as content filtering), but the decision about which messages should
be delivered to such a subscription cannot be performed directly by WebSphere MQ; instead an extended message selection provider is required to process
the messages.

When an application publishes on a topic string, where one or more subscribers have a selection string selecting on the content of the message,
WebSphere® MQ will request that the extended message selection provider parse the publication and inform WebSphere MQ whether the publication
matches the selection criteria specified by each subscriber with a content filter.

If the extended message selection provider determines that the publication matches the subscriber's selection string, the message will continue to be
delivered to the subscriber.

If the extended message selection provider determines that the publication does not match, the message is not delivered to the subscriber. This might cause
the MQPUT or MQPUT1 call to fail with reason code MQRC_PUBLICATION_FAILURE. If the extended message selection provider is unable to parse the
publication, reason code MQRC_CONTENT_ERROR is returned and the MQPUT or MQPUT1 call fails.

If the extended message selection provider is unavailable or is unable to determine whether the subscriber should receive the publication, reason code
MQRC_SELECTION_NOT_AVAILABLE is returned and the MQPUT or MQPUT1 call fails.

When a subscription is being created with a content filter and the extended message selection provider is not available, the MQSUB call fails with reason
code MQRC_SELECTION_NOT_AVAILABLE. If a subscription with a content filter is being resumed and the extended message selection provider is not
available, the MQSUB call returns a warning of MQRC_SELECTION_NOT_AVAILABLE, but the subscription is allowed to be resumed.

Parent topic: Selectors

This build: January 26, 2011 11:22:09

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg20250_

1.3.6. Asynchronous consumption of WebSphere® MQ messages

Asynchronous consumption uses a set of Message Queue Interface (MQI) extensions, the MQI calls MQCB and MQCTL, which allow an MQI application to be
written to consume messages from a set of queues. Messages are delivered to the application by invoking a ‘unit of code', identified by the application
passing either the message, or a token representing the message.

In the most straightforward of application environments, the ‘unit of code' is defined by a function pointer, however in other environments the ‘unit of code'
can be defined by a program or module name.

In asynchronous consumption of messages, the following terms are used:

Message consumer

A programming construct that allows you to define a program, or function, to be invoked with a message when one which matches the applications
requirement becomes available.

Event handler

A programming construct that allows you to define a program or function to invoke when an asynchronous event, such as queue manager quiescing,
occurs.

Page 28 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Call back

A generic term used to refer to either a Message Consumer or an Event Handler routine.

Asynchronous consumption can simplify the design and implementation of new applications, especially those that process multiple input queues or
subscriptions. However, if you are using more than one input queue and you are processing messages in priority sequence, priority sequence is observed
independently within each queue: you might get low-priority messages from one queue ahead of high-priority messages from another. Message order across
multiple queues is not guaranteed. Also note that if you use API exits, you might need to change them to include the MQCB and MQCTL calls.

The following illustrations give an example of how you can use this function.

Figure 1 shows a multithreaded application consuming messages from two queues. The example shows all of the messages being delivered to a single
function.

Figure 1. Standard Message Driven application consuming from two queues

On z/OS®, the main control thread must issue an MQDISC call before ending. This allows any callback threads to end and release system resources.

Figure 2 This sample flow shows a single threaded application consuming messages from two queues. The example shows all of the messages being
delivered to a single function.

The difference from the asynchronous case is that control does not return to the issuer of MQCTL until all of the consumers have deactivated themselves;
that is one consumer has issued an MQCTL STOP request or the queue manager quiesces.

Figure 2. Single Threaded Message Driven application consuming from two queues

Parent topic: WebSphere MQ messages

This build: January 26, 2011 11:22:09

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg20500_

1.3.7. Message groups

Messages can occur within groups to allow ordering of messages.

Segmentation is not supported on WebSphere® MQ for z/OS®.

In addition to ordering of messages, (see Logical and physical ordering), message grouping allows segmentation of large messages (see Message
segmentation) within the same group, except on WebSphere MQ for z/OS.

You cannot use grouped or segmented messages when putting to a topic.

The hierarchy within a group is as follows:

Page 29 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Group

This is the highest level in the hierarchy and is identified by a GroupId. It consists of one or more messages that contain the same GroupId. These

messages can be stored anywhere on the queue.

Note: The term message is used here to denote one item on a queue, such as would be returned by a single MQGET that does not specify
MQGMO_COMPLETE_MSG.

Figure 1 shows a group of logical messages:

Figure 1. Group of logical messages

Logical message

Logical messages within a group are identified by the GroupId and MsgSeqNumber fields. The MsgSeqNumber starts at 1 for the first message within a

group, and if a message is not in a group, the value of the field is 1.

Use logical messages within a group to:

� Ensure ordering (if this is not guaranteed under the circumstances in which the message is transmitted).

� Allow applications to group similar messages (for example, those that must all be processed by the same server instance).

Each message within a group consists of one physical message, unless it is split into segments. Each message is logically a separate message, and only
the GroupId and MsgSeqNumber fields in the MQMD need bear any relationship to other messages in the group. Other fields in the MQMD are independent;

some might be identical for all messages in the group whereas others might be different. For example, messages in a group can have different format
names, CCSIDs, encodings, and so on.

Segment

Segments are used to handle messages that are too large for either the putting or getting application or the queue manager (including intervening queue
managers through which the message passes). For more information about this, see Message segmentation.

A segment of a message is identified by the GroupId, MsgSeqNumber, and Offset fields. The Offset field starts at zero for the first segment within a

message.

Each segment consists of one physical message that might belong to a group (Figure 2 shows an example of messages within a group). A segment is
logically part of a single message, so only the MsgId, Offset, and SegmentFlag fields in the MQMD should differ between separate segments of the same

message.

Figure 2 shows a group of logical messages, some of which are segmented:

Figure 2. Segmented messages

You cannot use segmented or grouped messages with Publish/Subscribe.

For a description of logical and physical messages, see Logical and physical ordering. For further information about segmenting messages, see Message
segmentation.

Parent topic: WebSphere MQ messages

This build: January 26, 2011 11:19:20

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg10800_

1.3.8. Message persistence

Persistent messages are written to logs and queue data files.

If a queue manager is restarted after a failure, it recovers these persistent messages as necessary from the logged data. Messages that are not persistent
are discarded if a queue manager stops, whether the stoppage is as a result of an operator command or because of the failure of some part of your system.
Nonpersistent messages for WebSphere® MQ for z/OS® stored in a coupling facility (CF) are an exception to this. They persist as long as the CF remains
available.

When you create a message, if you initialize the message descriptor (MQMD) using the defaults, the persistence for the message is taken from the
DefPersistence attribute of the queue specified in the MQOPEN command. Alternatively, you can set the persistence of the message using the Persistence

field of the MQMD structure to define the message as persistent or nonpersistent.

The performance of your application is affected when you use persistent messages; the extent of the effect depends on the performance characteristics of
the machine's I/O subsystem and how you use the sync point options on each platform:

� A persistent message, outside the current unit of work, is written to disk on every put and get operation. See Committing and backing out units of
work.

� In WebSphere MQ on UNIX systems, WebSphere MQ for z/OS, and WebSphere MQ for Windows, a persistent message within the current unit of work
is logged only when the unit of work is committed (and the unit of work could contain many queue operations).

Nonpersistent messages can be used for fast messaging. See the WebSphere MQ Application Programming Reference and WebSphere MQ
Intercommunication for further information about fast messages.

Parent topic: WebSphere MQ messages

This build: January 26, 2011 11:19:21

Page 30 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg10810_

1.3.9. Messages that fail to be delivered

When a queue manager cannot put a message on a queue, you have various options.

You can:

� Attempt to put the message on the queue again.

� Request that the message is returned to the sender.

� Put the message on the dead-letter queue.

See Handling program errors for more information.

Parent topic: WebSphere MQ messages

This build: January 26, 2011 11:19:21

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg10830_

1.3.10. Messages that are backed out

When processing messages from a queue under the control of a unit of work, the unit of work can consist of one or more messages. If a backout occurs, the
messages that were retrieved from the queue are reinstated on the queue, and they can be processed again in another unit of work. If the processing of a
particular message is causing the problem, the unit of work is backed out again. This can cause a processing loop. Messages that were put to a queue are
removed from the queue.

An application can detect messages that are caught up in such a loop by testing the BackoutCount field of MQMD. The application can either correct the

situation, or issue a warning to an operator.

In WebSphere® MQ for z/OS®, to ensure that the backout count for private queues survives restarts of the queue manager, set the HardenGetBackout

attribute to MQQA_BACKOUT_HARDENED; otherwise, if the queue manager has to restart, it does not maintain an accurate backout count for each message.
Setting the attribute this way adds the penalty of extra processing.

On WebSphere MQ for i5/OS®, WebSphere MQ for Windows, WebSphere MQ on UNIX systems, and shared queues on z/OS, the backout count always
survives restarts of the queue manager. Any change to the HardenGetBackout attribute is ignored.

For more information on committing and backing out messages, see Committing and backing out units of work.

Parent topic: WebSphere MQ messages

This build: January 26, 2011 11:19:21

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg10840_

1.3.11. Reply-to queue and queue manager

There are occasions when you might receive messages in response to a message you send:

� A reply message in response to a request message

� A report message about an unexpected event or expiry

� A report message about a COA (Confirmation Of Arrival) or a COD (Confirmation Of Delivery) event

� A report message about a PAN (Positive Action Notification) or a NAN (Negative Action Notification) event

Using the MQMD structure, specify the name of the queue to which you want reply and report messages sent, in the ReplyToQ field. Specify the name of the

queue manager that owns the reply-to queue in the ReplyToQMgr field.

If you leave the ReplyToQMgr field blank, the queue manager sets the contents of the following fields in the message descriptor on the queue:

ReplyToQ

If ReplyToQ is a local definition of a remote queue, the ReplyToQ field is set to the name of the remote queue; otherwise this field is not changed.

ReplyToQMgr

If ReplyToQ is a local definition of a remote queue, the ReplyToQMgr field is set to the name of the queue manager that owns the remote queue; otherwise

the ReplyToQMgr field is set to the name of the queue manager to which your application is connected.

Note: You can request that a queue manager makes more than one attempt to deliver a message, and you can request that the message is discarded if it
fails. If the message, after failing to be delivered, is not to be discarded, the remote queue manager puts the message on its dead-letter (undelivered
message) queue (see Using the dead-letter (undelivered message) queue).

Parent topic: WebSphere MQ messages

This build: January 26, 2011 11:19:22

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg10850_

1.3.12. Message context

Page 31 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Message context information allows the application that retrieves the message to find out about the originator of the message.

The retrieving application might want to:

� Check that the sending application has the correct level of authority

� Perform some accounting function so that it can charge the sending application for any work that it has to perform

� Keep an audit trail of all the messages that it has worked with

When you use the MQPUT or MQPUT1 call to put a message on a queue, you can specify that the queue manager is to add some default context information
to the message descriptor. Applications that have the appropriate level of authority can add extra context information. For more information on how to
specify context information, see Controlling context information.

The user context is used by the queue manager when generating the following types of report message:

� Confirm on delivery

� Expiry

When these report messages are generated, the user context is checked for put and pass context authority on the destination of the report. Where the user
context has insufficient authority, the report message is placed on the dead-letter queue if one has been defined. Where there is no dead-letter queue, the
report message is discarded.

All context information is stored in the context fields of the message descriptor. The type of information falls into identity, origin, and user context
information.

Parent topic: WebSphere MQ messages

This build: January 26, 2011 11:19:22

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg10860_

1.4. WebSphere MQ objects

The WebSphere® MQ objects are:

� Queue managers

� Queue-sharing groups (WebSphere MQ for z/OS® only), although these are not strictly objects.

� Queues

� Administrative topic objects

� Namelists

� Process definitions

� Authentication information objects

� Channels

� Storage classes (WebSphere MQ for z/OS only)

� Listeners

� Services (not WebSphere MQ for z/OS)

Queue managers define the properties (known as attributes) of these objects. The values of these attributes affect the way in which WebSphere MQ
processes these objects. From your applications, you use the Message Queue Interface (MQI) to control these objects. Objects are identified by an object
descriptor (MQOD) when addressed from a program.

When you use WebSphere MQ commands to define, alter, or delete objects, for example, the queue manager checks that you have the required level of
authority to perform these operations. Similarly, when an application uses the MQOPEN call to open an object, the queue manager checks that the
application has the required level of authority before it allows access to that object. The checks are made on the name of the object being opened.

This chapter introduces WebSphere MQ objects, under these headings:

� Queue managers

� Queue-sharing groups

� Queues

� Administrative topic objects

� Namelists

� Process definitions

� Authentication information objects

� Channels

� Storage classes

� Listeners

� Services

� Rules for naming WebSphere MQ objects

Queue managers
A queue manager supplies an application with WebSphere MQ services.

Queue-sharing groups

Queues
A WebSphere MQ queue is a named object on which applications can put messages, and from which applications can get messages.

Administrative topic objects
An administrative topic object is a WebSphere MQ object that allows you to assign specific, non-default attributes to topics.

Namelists
A namelist is a WebSphere MQ object that contains a list of cluster names, queue names or authentication information object names. In a cluster, it
can be used to identify a list of clusters for which the queue manager holds the repositories.

Process definitions

Page 32 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Authentication information objects
An authentication information object contains authentication information used in Secure Sockets Layer (SSL) encrypted transport of information.

Channels
A channel is a communication link used by distributed queue managers.

Storage classes

Listeners
Listeners are processes that accept network requests from other queue managers, or client applications, and start associated channels.

Services
Service objects are a way of defining programs to be executed when a queue manager starts or stops.

Rules for naming WebSphere MQ objects
A WebSphere MQ queue, process definition, namelist, and channel can all have the same name. However, a WebSphere MQ object cannot have the
same name as any other object of the same type. Names in WebSphere MQ are case sensitive.

Parent topic: Designing applications that use WebSphere MQ

This build: January 26, 2011 11:19:22

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg10890_

1.4.1. Queue managers

A queue manager supplies an application with WebSphere® MQ services.

A program must have a connection to a queue manager before it can use the services of that queue manager. A program can make this connection explicitly
(using the MQCONN or MQCONNX call), or the connection might be made implicitly (this depends on the platform and the environment in which the program
is running).

Queues belong to queue managers, but programs can send messages to queues that belong to any queue manager.

Parent topic: WebSphere MQ objects

This build: January 26, 2011 11:19:23

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg10900_

1.4.2. Queue-sharing groups

Supported only on WebSphere® MQ for z/OS®.

Queue-sharing groups are not strictly objects, but are mentioned here for convenience.

Queue managers that can access the same set of shared queues form a group called a queue-sharing group (QSG), and they communicate with each other
by means of a coupling facility (CF) that stores the shared queues. A shared queue is a type of local queue whose messages can be accessed by one or more
queue managers that are in a queue-sharing group. (This is not the same as a queue being shared by more than one application, using the same queue
manager.)

Queue-sharing groups have a name of up to four characters. The name must be unique in your network, and must be different from any queue manager
names.

See the WebSphere MQ for z/OS Concepts and Planning Guide for a full discussion of shared queues and queue-sharing groups.

Parent topic: WebSphere MQ objects

This build: January 26, 2011 11:19:23

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg10930_

1.4.3. Queues

A WebSphere® MQ queue is a named object on which applications can put messages, and from which applications can get messages.

Messages are stored on a queue, so that if the putting application is expecting a reply to its message, it is free to do other work while waiting for that reply.
Applications access a queue by using the Message Queue Interface (MQI), described in Introducing the Message Queue Interface.

Before a message can be put on a queue, the queue must have already been created. A queue is owned by a queue manager, and that queue manager can
own many queues. However, each queue must have a name that is unique within that queue manager.

A queue is maintained through a queue manager. In most cases, each queue is physically managed by its queue manager but this is not apparent to an
application program. WebSphere MQ for z/OS® shared queues can be managed by any queue manager in the queue-sharing group.

To create a queue you can use WebSphere MQ commands (MQSC), PCF commands, or platform-specific interfaces such as the WebSphere MQ for z/OS
operations and control panels.

You can create local queues for temporary jobs dynamically from your application. For example, you can create reply-to queues (which are not needed after
an application ends). For more information, see Dynamic and Model queues.

Before using a queue, you must open the queue, specifying what you want to do with it. For example, you can open a queue for:

Page 33 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

� Browsing messages only (not retrieving them)

� Retrieving messages (and either sharing the access with other programs, or with exclusive access)

� Putting messages on the queue

� Inquiring about the attributes of the queue

� Setting the attributes of the queue

For a complete list of the options that you can specify when you open a queue, see the description of the MQOPEN call in the WebSphere MQ Application
Programming Reference.

Attributes of queues

Some of the attributes of a queue are specified when the queue is defined, and cannot be changed afterwards (for example, the type of the queue). Other
attributes of queues can be grouped into those that can be changed:

� By the queue manager during the processing of the queue (for example, the current depth of a queue)

� Only by commands (for example, the text description of the queue)

� By applications, using the MQSET call (for example, whether put operations are allowed on the queue)

You can find the values of all the attributes using the MQINQ call.

The attributes that are common to more than one type of queue are:

QName

Name of the queue

QType

Type of the queue

QDesc

Text description of the queue

InhibitGet

Whether programs are allowed to get messages from the queue (although you can never get messages from remote queues)

InhibitPut

Whether programs are allowed to put messages on the queue

DefPriority

Default priority for messages put on the queue

DefPersistence

Default persistence for messages put on the queue

Scope (not supported on z/OS)

Controls whether an entry for this queue also exists in a name service

For a full description of these attributes, see the WebSphere MQ Application Programming Reference.

Types of queue

Remote queues
To a program, a queue is remote if it is owned by a different queue manager to the one to which the program is connected.

Alias queues
An alias queue is a WebSphere MQ object that you can use to access another queue or a topic.

Model queues
A model queue is a template of a queue definition that you use when creating a dynamic queue.

Dynamic and Model queues
This information provides an insight into dynamic queues, properties of temporary and permanent dynamic queues, uses of dynamic queues, some
considerations when using dynamic queues, and model queues.

Parent topic: WebSphere MQ objects

This build: January 26, 2011 11:19:23

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg10940_

1.4.3.1. Types of queue

The types of queue that WebSphere® MQ supports for applications to use are:

Local and remote queues

A queue is known to a program as local if it is owned by the queue manager to which the program is connected; the queue is known as remote if it is
owned by a different queue manager. The important difference between these two types of queue is that you can get messages only from local queues.
(You can put messages on both types of queue.)

The queue definition object, created when you define a local queue, holds the definition information of the queue as well as the physical messages put on
the queue. The queue definition object, created when you define a remote queue, only holds the information necessary for the local queue manager to
locate the queue to which you want your message to go. This object is known as the local definition of a remote queue. All the attributes of the remote
queue are held by the queue manager that owns it, because it is a local queue to that queue manager.

Shared queues

Shared queues are available only on WebSphere MQ for z/OS®.

A shared queue is a type of local queue whose messages can be accessed by one or more queue managers that are in a queue-sharing group. (This is not
the same as a queue being shared by more than one application, using the same queue manager.) Shared queues are held by a coupling facility (CF), and
are accessible by any queue manager in the queue-sharing group. Each shared queue in a queue-sharing group must have a name that is unique within

Page 34 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

that group. See the WebSphere MQ for z/OS Concepts and Planning Guide for a full discussion of shared queues and queue-sharing groups.

Alias queues

To your program, an alias queue appears to be a queue, but it is really a WebSphere MQ object that you can use to access another queue or a topic. This
means that more than one program can work with the same queue, accessing it using different names.

Model and dynamic queues

A model queue is a template of a queue definition used only when you want to create a dynamic local queue.

You can create a local queue dynamically from a WebSphere MQ program, naming the model queue that you want to use as the template for the queue
attributes. At that point you can change some attributes of the new queue. However, you cannot change the DefinitionType. If, for example, you require a
permanent queue, select a model queue with the definition type set to permanent. Some conversational applications can use dynamic queues to hold
replies to their queries because they probably do not need to maintain these queues after they have processed the replies.

Cluster queues

A cluster queue is a queue that is hosted by a cluster queue manager and made available to other queue managers in the cluster.

The cluster queue manager makes a local queue definition for the queue specifying the name of the cluster that the queue is to be available in. This
definition has the effect of advertising the queue to the other queue managers in the cluster. The other queue managers in the cluster can put messages
to a cluster queue without needing a corresponding remote-queue definition. A cluster queue can be advertised in more than one cluster. See What is a
message? and WebSphere MQ Queue Manager Clusters for further information.

Parent topic: Queues

This build: January 26, 2011 11:19:24

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg10950_

1.4.3.2. Remote queues

To a program, a queue is remote if it is owned by a different queue manager to the one to which the program is connected.

Where a communication link has been established, a program can send a message to a remote queue. A program can never get a message from a remote
queue.

When opening a remote queue, to identify the queue you must specify either:

� The name of the local definition that defines the remote queue.

To create a local definition of a remote queue use the DEFINE QREMOTE command; on WebSphere® MQ for i5/OS®, use the CRTMQMQ command.

From the viewpoint of an application, this is the same as opening a local queue. An application does not need to know if a queue is local or remote.

� The name of the remote queue manager and the name of the queue as it is known to that remote queue manager.

Local definitions of remote queues have three attributes in addition to the common attributes described in Attributes of queues . These are RemoteQName

(the name that the queue's owning queue manager knows it by), RemoteQMgrName (the name of the owning queue manager), and XmitQName (the name of

the local transmission queue that is used when forwarding messages to other queue managers). For a fuller description of these attributes, see the
WebSphere MQ Application Programming Reference.

If you use the MQINQ call against the local definition of a remote queue, the queue manager returns the attributes of the local definition only, that is the
remote queue name, the remote queue manager name, and the transmission queue name, not the attributes of the matching local queue in the remote
system.

See also Transmission queues .

Parent topic: Queues

This build: January 26, 2011 11:19:24

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg10980_

1.4.3.3. Alias queues

An alias queue is a WebSphere® MQ object that you can use to access another queue or a topic.

The queue resulting from the resolution of an alias name (known as the base queue) can be a local queue, the local definition of a remote queue, or a
shared queue (a type of local queue only available on WebSphere MQ for z/OS®). It can also be either a predefined queue or a dynamic queue, as
supported by the platform.

An alias name can also resolve to a topic. If an application currently puts messages onto a queue, it can be made to publish to a topic by making the queue
name an alias for the topic. No change to the application code is necessary.

Note: An alias cannot resolve to another alias.

An example of the use of alias queues is for a system administrator to give different access authorities to the base queue name (that is, the queue to which
the alias resolves) and to the alias queue name. This means that a program or user can be authorized to use the alias queue, but not the base queue.

Alternatively, authorization can be set to inhibit put operations for the alias name, but allow them for the base queue.

In some applications, the use of alias queues means that system administrators can easily change the definition of an alias queue object without having to
get the application changed.

WebSphere MQ makes authorization checks against the alias name when programs try to use that name. It does not check that the program is authorized to
access the name to which the alias resolves. A program can therefore be authorized to access an alias queue name, but not the resolved queue name.

In addition to the general queue attributes described in Queues, alias queues have a BaseQName attribute. This is the name of the base queue to which the

alias name resolves. For a fuller description of this attribute, see the WebSphere MQ Application Programming Reference.

The InhibitGet and InhibitPut attributes (see Queues) of alias queues belong to the alias name. For example, if the alias-queue name ALIAS1 resolves to

the base-queue name BASE, inhibitions on ALIAS1 affect ALIAS1 only and BASE is not inhibited. However, inhibitions on BASE also affect ALIAS1.

Page 35 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

The DefPriority and DefPersistence attributes also belong to the alias name. So, for example, you can assign different default priorities to different

aliases of the same base queue. Also, you can change these priorities without having to change the applications that use the aliases.

Parent topic: Queues

This build: January 26, 2011 11:19:24

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg10990_

1.4.3.4. Model queues

A model queue is a template of a queue definition that you use when creating a dynamic queue.

You specify the name of a model queue in the object descriptor (MQOD) of your MQOPEN call. Using the attributes of the model queue, the queue manager
dynamically creates a local queue for you.

You can specify a name (in full) for the dynamic queue, or the stem of a name (for example, ABC) and let the queue manager add a unique part to this, or
you can let the queue manager assign a complete unique name for you. If the queue manager assigns the name, it puts it in the MQOD structure.

You cannot issue an MQPUT1 call directly to a model queue , but you can issue an MQPUT1 to the dynamic queue that has been created by opening a model
queue.

The attributes of a model queue are a subset of those of a local queue. For a fuller description, see the WebSphere MQ Application Programming Reference.

Parent topic: Queues

This build: January 26, 2011 11:19:24

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg11000_

1.4.3.5. Dynamic and Model queues

This information provides an insight into dynamic queues, properties of temporary and permanent dynamic queues, uses of dynamic queues, some
considerations when using dynamic queues, and model queues.

When an application program issues an MQOPEN call to open a model queue, the queue manager dynamically creates an instance of a local queue with the
same attributes as the model queue. Depending on the value of the DefinitionType field of the model queue, the queue manager creates either a

temporary or permanent dynamic queue (See Creating dynamic queues).

Properties of temporary dynamic queues

Temporary dynamic queues have the following properties:

� They cannot be shared queues, accessible from queue managers in a queue-sharing group (only available on WebSphere® MQ for z/OS®).

� They hold nonpersistent messages only.

� They are unrecoverable.

� They are deleted when the queue manager is started.

� They are deleted when the application that issued the MQOPEN call that created the queue closes the queue or terminates.

� If there are any committed messages on the queue, they are deleted.

� If there are any uncommitted MQGET, MQPUT, or MQPUT1 calls outstanding against the queue at this time, the queue is marked as being
logically deleted, and is only physically deleted (after these calls have been committed) as part of close processing, or when the application
terminates.

� If the queue is in use at this time (by the creating, or another application), the queue is marked as being logically deleted, and is only
physically deleted when closed by the last application using the queue.

� Attempts to access a logically deleted queue (other than to close it) fail with reason code MQRC_Q_DELETED.

� MQCO_NONE, MQCO_DELETE and MQCO_DELETE_PURGE are all treated as MQCO_NONE when specified on an MQCLOSE call for the
corresponding MQOPEN call that created the queue.

Properties of permanent dynamic queues

Permanent dynamic queues have the following properties:

� They hold persistent or nonpersistent messages.

� They are recoverable in the event of system failures.

� They are deleted when an application (not necessarily the one that issued the MQOPEN call that created the queue) successfully closes the queue
using the MQCO_DELETE or MQCO_DELETE_PURGE option.

� A close request with the MQCO_DELETE option fails if there are any messages (committed or uncommitted) still on the queue. A close request
with the MQCO_DELETE_PURGE option succeeds even if there are committed messages on the queue (the messages being deleted as part of
the close), but fails if there are any uncommitted MQGET, MQPUT, or MQPUT1 calls outstanding against the queue.

� If the delete request is successful, but the queue happens to be in use (by the creating, or another application), the queue is marked as being
logically deleted and is only physically deleted when closed by the last application using the queue.

� They are not deleted if closed by an application that is not authorized to delete the queue, unless the closing application issued the MQOPEN call that
created the queue. Authorization checks are performed against the user identifier (or alternate user identifier if
MQOO_ALTERNATE_USER_AUTHORITY was specified) that was used to validate the corresponding MQOPEN call.

� They can be deleted in the same way as a normal queue.

Uses of dynamic queues

You can use dynamic queues for:

� Applications that do not require queues to be retained after the application has terminated.

� Applications that require replies to messages to be processed by another application. Such applications can dynamically create a reply-to queue by
opening a model queue. For example, a client application can:

1. Create a dynamic queue.

Page 36 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

2. Supply its name in the ReplyToQ field of the message descriptor structure of the request message.

3. Place the request on a queue being processed by a server.

The server can then place the reply message on the reply-to queue. Finally, the client could process the reply, and close the reply-to queue with the delete
option.

Considerations when using dynamic queues

Consider the following points when using dynamic queues:

� In a client-server model, each client must create and use its own dynamic reply-to queue. If a dynamic reply-to queue is shared between more than
one client, deleting the reply-to queue might be delayed because there is uncommitted activity outstanding against the queue, or because the queue
is in use by another client. Additionally, the queue might be marked as being logically deleted, and inaccessible for subsequent API requests (other
than MQCLOSE).

� If your application environment requires that dynamic queues must be shared between applications, ensure that the queue is only closed (with the
delete option) when all activity against the queue has been committed. This should be by the last user. This ensures that deletion of the queue is not
delayed, and minimizes the period that the queue is inaccessible because it has been marked as being logically deleted.

Model queues

A model queue is a template of a queue definition that you use when creating a dynamic queue.

You can create a local queue dynamically from a WebSphere MQ program, naming the model queue that you want to use as the template for the queue
attributes. At that point you can change some attributes of the new queue. However, you cannot change the DefinitionType. If, for example, you require a
permanent queue, select a model queue with the definition type set to permanent. Some conversational applications can use dynamic queues to hold replies
to their queries because they probably do not need to maintain these queues after they have processed the replies.

You specify the name of a model queue in the object descriptor (MQOD) of your MQOPEN call. Using the attributes of the model queue, the queue manager
dynamically creates a local queue for you.

You can specify a name (in full) for the dynamic queue, or the stem of a name (for example, ABC) and let the queue manager add a unique part to this, or
you can let the queue manager assign a complete unique name for you. If the queue manager assigns the name, it puts it in the MQOD structure.

You cannot issue an MQPUT1 call directly to a model queue , but you can issue an MQPUT1 to the dynamic queue that has been created by opening a model
queue.

The attributes of a model queue are a subset of those of a local queue. For a fuller description, see the WebSphere MQ Application Programming Reference.

Parent topic: Queues

This build: January 26, 2011 11:19:25

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg11010_

1.4.4. Administrative topic objects

An administrative topic object is a WebSphere® MQ object that allows you to assign specific, non-default attributes to topics.

A topic is defined by an application publishing or subscribing to a particular topic string. A topic string can specify a hierarchy of topics by separating them
with a forward slash character (/). This can be visualized by a topic tree. For example, if an application publishes to the topic strings /Sport/American

Football and /Sport/Soccer, a topic tree will be created that has a parent node Sport with two children, American Football, and Soccer.

Topics inherit their attributes from the first parent administrative node found in their topic tree. If there are no administrative topic nodes in a particular
topic tree, then all topics will inherit their attributes from the base topic object, SYSTEM.BASE.TOPIC.

You can create an administrative topic object at any node in a topic tree by specifying that node's topic string in the TOPICSTR attribute of the
administrative topic object. You can also define other attributes for the administrative topic node. For more information about these attributes, see the
WebSphere MQ Script (MQSC) Command Reference, or the WebSphere MQ Programmable Command Formats and Administration Interface. Each
administrative topic object will, by default, inherit its attributes from its closest parent administrative topic node.

Administrative topic objects can also be used to hide the full topic tree from application developers. If an administrative topic object named FOOTBALL.US is

created for the topic /Sport/American Football, an application can publish or subscribe to the object named FOOTBALL.US instead of the

string /Sport/American Football with the same result.

If you enter a #, +, /, or * character within a topic string on a topic object, the character is treated as a normal character within the string, and is
considered to be part of the topic string associated with an administrative topic object.

For more information about administrative topic objects, see the WebSphere MQ Publish/Subscribe User's Guide.

Parent topic: WebSphere MQ objects

This build: January 26, 2011 11:22:05

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg19560_

1.4.5. Namelists

A namelist is a WebSphere® MQ object that contains a list of cluster names, queue names or authentication information object names. In a cluster, it can be
used to identify a list of clusters for which the queue manager holds the repositories.

You can define and modify namelists only using the operations and control panels of WebSphere MQ for z/OS® or MQSC commands.

Programs can use the MQI to find out which queues are included in these namelists. The organization of the namelists is the responsibility of the application
designer and system administrator.

For a full description of the attributes of namelists, see the WebSphere MQ Application Programming Reference.

Page 37 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Parent topic: WebSphere MQ objects

This build: January 26, 2011 11:19:25

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg11110_

1.4.6. Process definitions

To allow an application to be started without the need for operator intervention (described in Starting WebSphere MQ applications using triggers), the
attributes of the application must be known to the queue manager. These attributes are defined in a process definition object.

The ProcessName attribute is fixed when the object is created; you can change the others using the WebSphere® MQ commands or the WebSphere MQ for

z/OS® operations and control panels. You can inquire about the values of all the attributes using the MQINQ call.

For a full description of the attributes of process definitions, see the WebSphere MQ Application Programming Reference.

Parent topic: WebSphere MQ objects

This build: January 26, 2011 11:19:25

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg11120_

1.4.7. Authentication information objects

An authentication information object contains authentication information used in Secure Sockets Layer (SSL) encrypted transport of information.

An authentication information object provides the definitions required to perform certificate revocation checking.

For a full description of the attributes of authentication information objects, see Parameter descriptions for DEFINE AUTHINFO and ALTER AUTHINFO. For
more information about SSL, see WebSphere MQ Security.

Parent topic: WebSphere MQ objects

This build: January 26, 2011 11:19:25

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg11130_

1.4.8. Channels

A channel is a communication link used by distributed queue managers.

There are two categories of channel in WebSphere® MQ:

� Message channels, which are unidirectional, and transfer messages from one queue manager to another.

� MQI channels, which are bidirectional, and transfer MQI calls from a WebSphere MQ client to a queue manager, and responses from a queue manager
to a WebSphere MQ client.

You need to consider these when designing your application, but programs are unaware of WebSphere MQ channel objects. For more information, see
WebSphere MQ Intercommunication and WebSphere MQ Clients.

Parent topic: WebSphere MQ objects

This build: January 26, 2011 11:19:25

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg11140_

1.4.9. Storage classes

Supported only on WebSphere® MQ for z/OS®.

A storage class maps one or more queues to a page set. This means that messages for that queue are stored (subject to buffering) on that page set.

For further information about storage classes, see the WebSphere MQ for z/OS Concepts and Planning Guide.

Parent topic: WebSphere MQ objects

This build: January 26, 2011 11:19:26

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg11150_

1.4.10. Listeners

Listeners are processes that accept network requests from other queue managers, or client applications, and start associated channels.

Listener processes can be started using the runmqlsr control command. Listeners are available on all platforms.

Page 38 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Listener objects are WebSphere® MQ objects that allow you to manage the starting and stopping of listener processes from within the scope of a queue
manager. Listener objects are not supported on WebSphere MQ for z/OS®. By defining attributes of a listener object you do the following:

� Configure the listener process.

� Specify whether the listener process automatically starts and stops when the queue manager starts and stops.

Parent topic: WebSphere MQ objects

This build: January 26, 2011 11:19:26

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg11160_

1.4.11. Services

Service objects are a way of defining programs to be executed when a queue manager starts or stops.

Not supported on WebSphere® MQ for z/OS®.

The programs can be split into the following types:

Servers

A server is a service object that has the parameter SERVTYPE specified as SERVER. A server service object is the definition of a program that will be
executed when a specified queue manager is started. Only one instance of a server process can be executed concurrently. While running, the status of a
server process can be monitored using the MQSC command, DISPLAY SVSTATUS. Typically server service objects are definitions of programs such as dead
letter handlers or trigger monitors, however the programs that can be run are not limited to those supplied with WebSphere MQ. Additionally, a server
service object can be defined to include a command that will be run when the specified queue manager is shutdown to end the program.

Commands

A command is a service object that has the parameter SERVTYPE specified as COMMAND. A command service object is the definition of a program that will
be executed when a specified queue manager is started or stopped. Multiple instances of a command process can be executed concurrently. Command
service objects differ from server service objects in that once the program is executed the queue manager will not monitor the program. Typically
command service objects are definitions of programs that are short lived and will perform a specific task such as starting one, or more, other tasks.

Parent topic: WebSphere MQ objects

This build: January 26, 2011 11:19:26

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg11170_

1.4.12. Rules for naming WebSphere MQ objects

A WebSphere® MQ queue, process definition, namelist, and channel can all have the same name. However, a WebSphere MQ object cannot have the same
name as any other object of the same type. Names in WebSphere MQ are case sensitive.

The character set to use for naming all WebSphere MQ objects is as follows:

� Uppercase A–Z

� Lowercase a–z (but there are restrictions on the use of lowercase letters for z/OS® console support)

On systems using EBCDIC Katakana you cannot use lowercase characters.

� Numerics 0–9

� Period (.)

� Forward slash (⁄)

� Underscore (_)

� Percent sign (%)

Note:

1. Leading or embedded blanks are not allowed.

2. Avoid using names with leading or trailing underscores, because they cannot be handled by the WebSphere MQ for z/OS operations and control panels.

3. Any name that is less than the full field length can be padded to the right with blanks. All short names that are returned by the queue manager are
always padded to the right with blanks.

4. Any structure to the names (for example, the use of the period or underscore) is not significant to the queue manager.

5. On i5/OS® systems, within CL, lowercase a-z, forward slash (⁄), and percent (%) are special characters. If you use any of these characters in a name,
enclose the name in quotation marks. Lowercase a-z characters are changed to uppercase if the name is not enclosed in quotation marks.

6. On Windows systems, the first character of a queue manager name cannot be a forward slash (/).

Parent topic: WebSphere MQ objects

This build: January 26, 2011 11:19:26

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg11180_

1.5. Handling program errors

Your application can encounter errors associated with its MQI calls either when it makes a call or when its message is delivered to its final destination:

� Whenever possible, the queue manager returns any errors as soon as an MQI call is made. These are locally determined errors.

� When sending messages to a remote queue, errors might not be apparent when the MQI call is made. In this case, the queue manager that identifies
the errors reports them by sending another message to the originating program. These are remotely determined errors.

This chapter gives advice on how to handle both types of error, under these headings:

Page 39 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

� Locally determined errors

� Using report messages for problem determination

� Remotely determined errors

Locally determined errors

Using report messages for problem determination
The remote queue manager cannot report errors such as failing to put a message on a queue when you make your MQI call, but it can send you a
report message to say how it has processed your message.

Remotely determined errors
When you send messages to a remote queue, even when the local queue manager has processed your MQI call without finding an error, other factors
can influence how your message is handled by a remote queue manager.

Parent topic: Designing applications that use WebSphere MQ

This build: January 26, 2011 11:19:26

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg11230_

1.5.1. Locally determined errors

The three most common causes of errors that the queue manager can report immediately are:

� Failure of an MQI call; for example, because a queue is full

� An interruption to the running of some part of the system on which your application depends; for example, the queue manager

� Messages containing data that cannot be processed successfully

If you are using the asynchronous put facility, errors are not reported immediately. Use the MQSTAT call to retrieve status information about previous
asynchronous put operations.

Parent topic: Handling program errors

Related information
Using asynchronous put
MQSTAT – Retrieve status information

This build: January 26, 2011 11:19:27

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg11240_

1.5.2. Using report messages for problem determination

The remote queue manager cannot report errors such as failing to put a message on a queue when you make your MQI call, but it can send you a report
message to say how it has processed your message.

Within your application you can create (MQPUT) report messages as well as select the option to receive them (in which case they are sent by either another
application or by a queue manager).

Parent topic: Handling program errors

This build: January 26, 2011 11:19:27

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg11280_

1.5.3. Remotely determined errors

When you send messages to a remote queue, even when the local queue manager has processed your MQI call without finding an error, other factors can
influence how your message is handled by a remote queue manager.

For example, the queue that you are targeting might be full, or might not even exist. If your message has to be handled by other intermediate queue
managers on the route to the target queue, any of these could find an error.

Using the dead-letter (undelivered message) queue
When a queue manager cannot deliver a message, it attempts to put the message on its dead-letter queue. This queue should be defined when the
queue manager is installed.

Parent topic: Handling program errors

This build: January 26, 2011 11:19:27

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg11310_

1.5.3.1. Using the dead-letter (undelivered message) queue

When a queue manager cannot deliver a message, it attempts to put the message on its dead-letter queue. This queue should be defined when the queue
manager is installed.

Page 40 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Your programs can use the dead-letter queue in the same way that the queue manager uses it. You can find the name of the dead-letter queue by opening
the queue manager object (using the MQOPEN call) and inquiring about the DeadLetterQName attribute (using the MQINQ call).

When the queue manager puts a message on this queue, it adds a header to the message, the format of which is described by the dead-letter header
(MQDLH) structure, in the WebSphere MQ Application Programming Reference. This header includes the name of the target queue and the reason that the
message was put on the dead-letter queue. It must be removed and the problem must be resolved before the message is put on the intended queue. Also,
the queue manager changes the Format field of the message descriptor (MQMD) to indicate that the message contains an MQDLH structure.

MQDLH structure

You are recommended to add an MQDLH structure to all messages that you put on the dead-letter queue; however, if you intend to use the dead-letter
handler provided by certain WebSphere® MQ products, you must add an MQDLH structure to your messages.

The addition of the header to a message might make the message too long for the dead-letter queue, so always make sure that your messages are shorter
than the maximum size allowed for the dead-letter queue, by at least the value of the MQ_MSG_HEADER_LENGTH constant. The maximum size of messages
allowed on a queue is determined by the value of the MaxMsgLength attribute of the queue. For the dead-letter queue, make sure that this attribute is set to

the maximum allowed by the queue manager. If your application cannot deliver a message, and the message is too long to be put on the dead-letter queue,
follow the advice given in the description of the MQDLH structure.

Ensure that the dead-letter queue is monitored, and that any messages arriving on it get processed. The dead-letter queue handler runs as a batch utility
and can be used to perform various actions on selected messages on the dead-letter queue. For further details, see WebSphere MQ System Administration
Guide for WebSphere MQ for AIX®, HP-UX, Linux, Solaris, and Windows systems; for WebSphere MQ for z/OS® see WebSphere MQ for z/OS System
Administration Guide; for i5/OS® see WebSphere MQ for i5/OS System Administration Guide.

If data conversion is necessary, the queue manager converts the header information when you use the MQGMO_CONVERT option on the MQGET call. If the
process putting the message is an MCA, the header is followed by all the text of the original message.

Messages put on the dead-letter queue might be truncated if they are too long for this queue. A possible indication of this situation is the messages on the
dead-letter queue being the same length as the value of the MaxMsgLength attribute of the queue.

Dead-letter queue processing

Parent topic: Remotely determined errors

This build: January 26, 2011 11:19:27

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg11350_

1.5.3.1.1. Dead-letter queue processing

The rest of this chapter contains general-use programming interface information.

Dead-letter queue processing depends on local system requirements, but consider the following when you draw up the specification:

� The message can be identified as having a dead-letter queue header because the value of the format field in the MQMD, is
MQFMT_DEAD_LETTER_HEADER.

� On WebSphere® MQ for z/OS® using CICS®, if an MCA puts this message to the dead-letter queue, the PutApplType field is MQAT_CICS, and the

PutApplName field is the ApplId of the CICS system followed by the transaction name of the MCA.

� The reason for the message to be routed to the dead-letter queue is contained in the Reason field of the dead-letter queue header.

� The dead-letter queue header contains details of the destination queue name and queue manager name.

� The dead-letter queue header contains fields that have to be reinstated in the message descriptor before the message is put to the destination queue.
These are:

1. Encoding

2. CodedCharSetId

3. Format

� The message descriptor is the same as PUT by the original application, except for the three fields shown above.

Your dead-letter queue application must do one or more of the following:

� Examine the Reason field. A message might have been put by an MCA for the following reasons:

� The message was longer than the maximum message size for the channel

The reason is MQRC_MSG_TOO_BIG_FOR_CHANNEL (or MQRC_MSG_TOO_BIG_FOR_Q_MGR if you are using CICS for distributed queuing on
WebSphere MQ for z/OS)

� The message could not be put to its destination queue

The reason is any MQRC_* reason code that can be returned by an MQPUT operation

� A user exit has requested this action

The reason code is that supplied by the user exit, or the default MQRC_SUPPRESSED_BY_EXIT

� Try to forward the message to its intended destination, where this is possible.

� Retain the message for a certain length of time before discarding when the reason for the diversion is determined, but not immediately correctable.

� Give instructions to administrators correct problems where these have been determined.

� Discard messages that are corrupted or otherwise not processible.

There are two ways to deal with the messages that you have recovered from the dead-letter queue:

1. If the message is for a local queue:

� Carry out any code translations required to extract the application data

� Carry out code conversions on that data if this is a local function

� Put the resulting message on the local queue with all the detail of the message descriptor restored

2. If the message is for a remote queue, put the message on the queue.

For information on how undelivered messages are handled in a distributed queuing environment, see WebSphere MQ Intercommunication.

Parent topic: Using the dead-letter (undelivered message) queue

Page 41 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

This build: January 26, 2011 11:19:27

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg11360_

2. Writing a WebSphere MQ application

Introducing the Message Queue Interface
This chapter introduces the features of the Message Queue Interface (MQI).

Connecting to and disconnecting from a queue manager
To use WebSphere MQ programming services, a program must have a connection to a queue manager.

Opening and closing objects

Putting messages on a queue

Getting messages from a queue

Writing publisher applications
Get started with writing publisher applications by studying two examples. The first is modelled as closely as possible on a point to point application
putting messages on a queue, and the second demonstrates creating topics dynamically - a more common pattern for publisher applications.

Writing subscriber applications
There are many more patterns of subscriber application than publisher. Three are illustrated: a WebSphere MQ application consuming messages from
a queue, an application that creates a subscription and requires no knowledge of queuing, and finally an example that uses both queuing and
subscriptions.

Writing data-conversion exits

Inquiring about and setting object attributes
Attributes are the properties that define the characteristics of a WebSphere MQ object.

Committing and backing out units of work
This chapter describes how to commit and back out any recoverable get and put operations that have occurred in a unit of work.

Starting WebSphere MQ applications using triggers

Using and writing API exits

Using and writing applications on WebSphere MQ for z/OS
WebSphere MQ for z/OS® applications can be made up from programs that run in many different environments. This means that they can take
advantage of the facilities available in more than one environment.

Using and writing WebSphere MQ-CICS bridge applications for z/OS

IMS and IMS Bridge applications on WebSphere MQ for z/OS
This chapter helps you to write IMS™ applications using WebSphere MQ.

Object-oriented programming with WebSphere MQ
WebSphere MQ provides two ways of programming WebSphere MQ applications that can be used with object-oriented programming languages.

Parent topic: Application Programming Guide

This build: January 26, 2011 11:19:28

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg11370_

2.1. Introducing the Message Queue Interface

This chapter introduces the features of the Message Queue Interface (MQI).

The remaining chapters in this part of the book describe how to use these features. Detailed descriptions of the calls, structures, data types, return codes,
and constants are given in the WebSphere MQ Application Programming Reference.

The MQI is introduced under these headings:

� What is in the MQI?

� Parameters common to all the calls

� Specifying buffers

� Programming language considerations

� z/OS batch considerations

� UNIX signal handling

What is in the MQI?

Parameters common to all the calls
There are two types of parameter common to all the calls: handles and return codes.

Specifying buffers
The queue manager refers to buffers only if they are required. If you do not require a buffer on a call or the buffer is zero in length, you can use a null
pointer to a buffer.

Page 42 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Programming language considerations

z/OS batch considerations
z/OS batch programs that call the MQI can be in either supervisor or problem state.

UNIX signal handling

Parent topic: Writing a WebSphere MQ application

This build: January 26, 2011 11:19:28

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg11380_

2.1.1. What is in the MQI?

The Message Queue Interface consists of the following:

� Calls through which programs can access the queue manager and its facilities

� Structures that programs use to pass data to, and get data from, the queue manager

� Elementary data types for passing data to, and getting data from, the queue manager

WebSphere® MQ for z/OS® also supplies:

� Two extra calls through which z/OS batch programs can commit and back out changes.

� Data definition files (sometimes known as copy files, macros, include files, and header files) that define the values of constants supplied with
WebSphere MQ for z/OS.

� Stub programs to link-edit to your applications.

� A suite of sample programs that demonstrate how to use the MQI on the z/OS platform. For further information about these samples, see Sample
programs for WebSphere MQ for z/OS.

WebSphere MQ for i5/OS® also supplies:

� Data definition files (sometimes known as copy files, macros, include files, and header files) that define the values of constants supplied with
WebSphere MQ for i5/OS.

� Three stub programs to link-edit to your ILE C, ILE COBOL, and ILE RPG applications.

� A suite of sample programs that demonstrate how to use the MQI on the i5/OS platform. For further information about these samples, see Sample
programs (platforms except z/OS).

WebSphere MQ for Windows and WebSphere MQ on UNIX systems also supply:

� Calls through which WebSphere MQ for Windows and WebSphere MQ on UNIX systems programs can commit and back out changes.

� Include files that define the values of constants supplied on these platforms.

� Library files to link your applications.

� A suite of sample programs that demonstrate how to use the MQI on these platforms.

� Sample source and executable code for bindings to external transaction managers.

Calls

Sync point calls

Data conversion
The MQXCNVC (convert characters) call converts message character data from one character set to another. Except on WebSphere MQ for z/OS, this
call is used only from a data-conversion exit.

WebSphere MQ stub programs and library files
The stub programs and library files provided are listed here, for each platform.

Parent topic: Introducing the Message Queue Interface

This build: January 26, 2011 11:19:28

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg11390_

2.1.1.1. Calls

The calls in the MQI can be grouped as follows:

MQCONN, MQCONNX, and MQDISC

Use these calls to connect a program to (with or without options), and disconnect a program from, a queue manager. If you write CICS® programs for
z/OS®, you do not need to use these calls. However, you are recommended to use them if you want to port your application to other platforms.

MQOPEN and MQCLOSE

Use these calls to open and close an object, such as a queue.

MQPUT and MQPUT1

Use these calls to put a message on a queue.

MQGET

Use this call to browse messages on a queue, or to remove messages from a queue.

MQSUB, MQSUBRQ

Use these calls to register a subscription to a topic, and to request publications matching the subscription.

MQINQ

Use this call to inquire about the attributes of an object.

Page 43 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

MQSET

Use this call to set some of the attributes of a queue. You cannot set the attributes of other types of object.

MQBEGIN, MQCMIT, and MQBACK

Use these calls when WebSphere® MQ is the coordinator of a unit of work. MQBEGIN starts the unit of work. MQCMIT and MQBACK end the unit of work,
either committing or rolling back the updates made during the unit of work. i5/OS® commitment controller is used to coordinate global units of work on
i5/OS. Native start commitment control, commit, and rollback commands are used.

MQCRTMH, MQBUFMH, MQMHBUF, MQDLTMH

Use these calls to create a message handle, to convert a message handle to a buffer or a buffer to a message handle, and to delete a message handle.

MQSETMP, MQINQMP, MQDLTMP

Use these calls to set a message property on a message handle, inquire on a message property, and delete a property from a message handle.

MQCB, MQCB_FUNCTION, MQCTL

Use these calls to register and control a callback function.

MQSTAT

Use this call to retrieve status information about previous asynchronous put operations.

The MQI calls are described fully in the WebSphere MQ Application Programming Reference

Parent topic: What is in the MQI?

This build: January 26, 2011 11:19:29

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg11400_

2.1.1.2. Sync point calls

Sync point calls are available as follows:

Parent topic: What is in the MQI?

This build: January 26, 2011 11:19:29

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg11410_

2.1.1.3. Data conversion

The MQXCNVC (convert characters) call converts message character data from one character set to another. Except on WebSphere® MQ for z/OS®, this call
is used only from a data-conversion exit.

See the WebSphere MQ Application Programming Reference for the syntax used with the MQXCNVC call, and Writing data-conversion exits for guidance on
writing and invoking data conversion exits.

Parent topic: What is in the MQI?

This build: January 26, 2011 11:19:29

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg11450_

2.1.1.4. WebSphere MQ stub programs and library files

The stub programs and library files provided are listed here, for each platform.

For more information about how to use stub programs and library files when you build an executable application, see Building a WebSphere MQ application.
For information about linking to C++ library files, see WebSphere MQ Using C++.

WebSphere MQ for z/OS
Before you can run a program written with WebSphere® MQ for z/OS®, you must link-edit it to the stub program supplied with WebSphere MQ for
z/OS for the environment in which you are running the application.

WebSphere MQ for i5/OS
In WebSphere MQ for i5/OS®, link your program to the MQI library files supplied for the environment in which you are running your application, in
addition to those provided by the operating system.

WebSphere MQ for Windows
On WebSphere MQ for Windows, you must link your program to the MQI library files supplied for the environment in which you are running your
application, in addition to those provided by the operating system:

WebSphere MQ for AIX
On WebSphere MQ for AIX®, you must link your program to the MQI library files supplied for the environment in which you are running your
application, in addition to those provided by the operating system.

WebSphere MQ for HP-UX
On WebSphere MQ for HP-UX, you must link your program to the MQI library files supplied for the environment in which you are running your
application, in addition to those provided by the operating system.

WebSphere MQ for Linux
On WebSphere MQ for Linux, you must link your program to the MQI library files supplied for the environment in which you are running your
application, in addition to those provided by the operating system.

Page 44 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

WebSphere MQ for Solaris
On WebSphere MQ for Solaris, you must link your program to the MQI library files supplied for the environment in which you are running your
application in addition to those provided by the operating system.

Parent topic: What is in the MQI?

This build: January 26, 2011 11:19:29

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg11490_

2.1.1.4.1. WebSphere MQ for z/OS

Before you can run a program written with WebSphere® MQ for z/OS®, you must link-edit it to the stub program supplied with WebSphere MQ for z/OS for
the environment in which you are running the application.

The stub program provides the first stage of the processing of your calls into requests that WebSphere MQ for z/OS can process.

WebSphere MQ for z/OS supplies the following stub programs:

Attention: If you use a stub program other than one listed for a specific environment, it might have unpredictable results.

Note: If you use the CSQBRSTB stub program, link-edit with ATRSCSS from SYS1.CSSLIB. (SYS1.CSSLIB is also known as the Callable Services Library).
For more information about RRS see Transaction management and recoverable resource manager services.

Alternatively, you can dynamically call the stub from within your program. This technique is described in Dynamically calling the WebSphere MQ stub.

In IMS, you might also need to use a special language interface module that is supplied by WebSphere MQ.

Do not run applications that are link-edited with CSQBSTUB and CSQQSTUB in the same IMS MPP region. This can cause problems such as DFS3607I or
CSQQ005E messages. The first MQCONN call in an address space determines which interface is used, therefore CSQQSTUB and CSQBSTUB transactions
must run in different IMS message regions.

Parent topic: WebSphere MQ stub programs and library files

This build: January 26, 2011 11:19:30

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg11500_

2.1.1.4.2. WebSphere MQ for i5/OS

In WebSphere® MQ for i5/OS®, link your program to the MQI library files supplied for the environment in which you are running your application, in
addition to those provided by the operating system.

For non-threaded applications:

In a threaded application:

On WebSphere MQ for i5/OS you can write your applications in C++. To see how to link your C++ applications, and for full details of all aspects of using
C++, see WebSphere MQ Using C++.

Parent topic: WebSphere MQ stub programs and library files

This build: January 26, 2011 11:19:30

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg11510_

2.1.1.4.3. WebSphere MQ for Windows

CSQBSTUB Stub program for z/OS batch programs

CSQBRRSI Stub program for z/OS batch programs using RRS by way of the MQI

CSQBRSTB Stub program for z/OS batch programs using RRS directly

CSQCSTUB Stub program for CICS® programs

CSQQSTUB Stub program for IMS™ programs

CSQXSTUB Stub program for distributed queuing non-CICS exits

CSQASTUB Stub program for data-conversion exits

AMQZSTUB Server service program provided for compatibility with releases before V5R1M0

AMQVSTUB Data conversion service program provided for compatibility with releases before V5R1M0

LIBMQM Server service program

IMQB23I4 C++ base service program

IMQS23I4 C++ server service program

LIBMQMZF Installable exits for C

LIBMQM_R Server service program

IMQB23I4_R C++ base service program

IMQS23I4_R C++ server service program

LIBMQMZF_R Installable exits for C

Page 45 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

On WebSphere® MQ for Windows, you must link your program to the MQI library files supplied for the environment in which you are running your
application, in addition to those provided by the operating system:

These files are shipped for compatibility with previous releases:

mqic32.lib

mqic32xa.lib

Parent topic: WebSphere MQ stub programs and library files

This build: January 26, 2011 11:19:31

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg11520_

2.1.1.4.4. WebSphere MQ for AIX

On WebSphere® MQ for AIX®, you must link your program to the MQI library files supplied for the environment in which you are running your application,
in addition to those provided by the operating system.

In a non-threaded application:

In a threaded application:

Parent topic: WebSphere MQ stub programs and library files

This build: January 26, 2011 11:19:32

Library file and location Purpose

install_location\Tools\Lib\mqm.lib Server for C (32-bit)

install_location\Tools\Lib\mqic.lib Client for C (32-bit)

install_location\Tools\Lib\mqmxa.lib Server XA interface for C (32-bit)

install_location\Tools\Lib\mqcxa.lib Client XA interface for C (32-bit)

install_location\Tools\Lib\mqicxa.lib Client MTS for C (32-bit)

install_location\Tools\Lib\mqmcics4.lib Server TXSeries CICS® support for C (32-bit)

install_location\Tools\Lib\mqccics4.lib Client TXSeries CICS support for C (32-bit)

install_location\Tools\Lib\mqmzf.lib Installable services exits for C (32-bit)

install_location\Tools\Lib\mqmcbb.lib Server for IBM® COBOL (32-bit)

install_location\Tools\Lib\mqmcb.lib Server for Micro Focus COBOL (32-bit)

install_location\Tools\Lib\mqiccbb.lib Client for IBM COBOL (32-bit)

install_location\Tools\Lib\mqiccb.lib Client for Micro Focus COBOL (32-bit)

install_location\Tools\Lib\imqs23vn.lib Server for C++ (32-bit)

install_location\Tools\Lib\imqc23vn.lib Client for C++ (32-bit)

install_location\Tools\Lib\imqb23vn.lib Base for C++ (32-bit)

install_location\Tools\Lib\imqx23vn.lib Client MTS for C++ (32-bit)

install_location\Tools\Lib64\mqm.lib Server for C (64-bit)

install_location\Tools\Lib64\mqic.lib Client for C (64-bit)

install_location\Tools\Lib64\mqmxa.lib Server XA interface for C (64-bit)

install_location\Tools\Lib64\mqcxa.lib Client XA interface for C (64-bit)

install_location\Tools\Lib64\mqicxa.lib Client MTS for C (64-bit)

install_location\Tools\Lib64\mqmcbb.lib Server for IBM COBOL (64-bit)

install_location\Tools\Lib64\mqmcb.lib Server for Micro Focus COBOL (64-bit)

install_location\Tools\Lib64\mqiccbb.lib Client for IBM COBOL (64-bit)

install_location\Tools\Lib64\mqiccb.lib Client for Micro Focus COBOL (64-bit)

install_location\Tools\Lib64\imqs23vn.lib Server for C++ (64-bit)

install_location\Tools\Lib64\imqc23vn.lib Client for C++ (64-bit)

install_location\Tools\Lib64\imqb23vn.lib Base for C++ (64-bit)

install_location\Tools\Lib64\imqx23vn.lib Client MTS for C++ (64-bit)

libmqm.a Server for C

libmqic.a Client for C

libmqmzf.a Installable service exits for C

libmqmxa.a Server XA interface for C

libmqmxa64.a Server alternative XA interface for C

libmqcxa.a Client XA interface for C

libmqcxa64.a Client alternative XA interface for C

libmqmcbrt.o WebSphere MQ run-time library for Micro Focus COBOL support

libmqmcb.a Server for COBOL

libmqicb.a Client for COBOL

libimqc23ia.a Client for C++

libimqs23ia.a Server for C++

libmqm_r.a Server for C

libmqic_r.a Client for C

libmqmzf_r.a Installable service exits for C

libmqmxa_r.a Server XA interface for C

libmqmxa64_r.a Server alternative XA interface for C

libmqcxa_r.a Client XA interface for C

libmqcxa64_r.a Client alternative XA interface for C

libimqc23ia_r.a Client for C++

libimqs23ia_r.a Server for C++

Page 46 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg11530_

2.1.1.4.5. WebSphere MQ for HP-UX

On WebSphere® MQ for HP-UX, you must link your program to the MQI library files supplied for the environment in which you are running your application,
in addition to those provided by the operating system.

Parent topic: WebSphere MQ stub programs and library files

This build: January 26, 2011 11:19:32

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg11540_

2.1.1.4.6. WebSphere MQ for Linux

On WebSphere® MQ for Linux, you must link your program to the MQI library files supplied for the environment in which you are running your application,
in addition to those provided by the operating system.

In a non-threaded application:

In a threaded application:

Parent topic: WebSphere MQ stub programs and library files

This build: January 26, 2011 11:19:32

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg11570_

2.1.1.4.7. WebSphere MQ for Solaris

On WebSphere® MQ for Solaris, you must link your program to the MQI library files supplied for the environment in which you are running your application
in addition to those provided by the operating system.

Parent topic: WebSphere MQ stub programs and library files

This build: January 26, 2011 11:19:32

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg11580_

2.1.2. Parameters common to all the calls

There are two types of parameter common to all the calls: handles and return codes.

libmqm.so Server for C

libmqic.so Client for C

libmqmzf.so Installable service exits for C

libmqmxa.so Server XA interface for C

libmqmxa64.so Server alternative XA interface for C

libmqcxa.so Client XA interface for C

libmqcxa64.so Client alternative XA interface for C

libimqc23gl.so Client for C++

libimqs23gl.so Server for C++

libmqm_r.so Server for C

libmqic_r.so Client for C

libmqmzf_r.so Installable service exits for C

libmqmxa_r.so Server XA interface for C

libmqmxa64_r.so Server alternative XA interface for C

libmqcxa_r.so Client XA interface for C

libmqcxa64_r.so Client alternative XA interface for C

libimqc23gl_r.so Client for C++

libimqs23gl_r.so Server for C++

libmqm.so Server for C

libmqmzse.so For C

libmqic.so Client for C

libmqmcs.so Common services for C

libmqmzf.so Installable service exits for C

libmqmxa.so Server XA interface for C

libmqmxa64.so Server alternative XA interface for C

libmqcxa.so Client XA interface for C

libmqcxa64.so Client alternative XA interface for C

libimqc23as.a Client for C++

libimqs23as.a Server for C++

Page 47 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Parent topic: Introducing the Message Queue Interface

This build: January 26, 2011 11:19:33

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg11590_

2.1.3. Specifying buffers

The queue manager refers to buffers only if they are required. If you do not require a buffer on a call or the buffer is zero in length, you can use a null
pointer to a buffer.

Always use datalength when specifying the size of the buffer that you require.

When you use a buffer to hold the output from a call (for example, to hold the message data for an MQGET call, or the values of attributes queried by the
MQINQ call), the queue manager attempts to return a reason code if the buffer you specify is not valid or is in read-only storage. However, it might not
always be able to return a reason code.

Parent topic: Introducing the Message Queue Interface

This build: January 26, 2011 11:19:33

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg11620_

2.1.4. Programming language considerations

WebSphere® MQ provides support for the following programming languages:

� C

� C++ (see WebSphere MQ Using C++ for information about coding WebSphere MQ programs in C++)

� Visual Basic (Windows systems only)

� COBOL

� Assembler language (WebSphere MQ for z/OS® only)

� RPG (WebSphere MQ for i5/OS® only)

� PL/I (WebSphere MQ for z/OS only)

The call interface, and how you can code the calls in each of these languages, is described in the WebSphere MQ Application Programming Reference.

WebSphere MQ provides data definition files to help you to write your applications. For a full description, see WebSphere MQ data definition files.

If you can choose which language to code your programs in, consider the maximum length of the messages that your programs will process. If your
programs will process only messages of a known maximum length, you can code them in any of the supported programming languages. But if you do not
know the maximum length of the messages that the programs will have to process, the language you choose will depend on whether you are writing a
CICS®, IMS™, or batch application:

IMS and batch

Code the programs in C, PL/I, or assembler language to use the facilities these languages offer for obtaining and releasing arbitrary amounts of memory.
Alternatively, you could code your programs in COBOL, but use assembler language, PL/I, or C subroutines to get and release storage.

CICS

Code the programs in any language supported by CICS. The EXEC CICS interface provides the calls for managing memory, if necessary.

Coding in C
Note the information in the following sections when coding WebSphere MQ programs in C.

Coding in COBOL
Note the information in the following sections when coding WebSphere MQ programs in COBOL.

Coding in System/390 assembler language
Note the information in the following sections when coding WebSphere MQ for z/OS programs in assembler language.

Coding in RPG

Coding in PL/I

Coding in Visual Basic

Parent topic: Introducing the Message Queue Interface

This build: January 26, 2011 11:19:33

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg11630_

2.1.4.1. Coding in C

Note the information in the following sections when coding WebSphere® MQ programs in C.

Parent topic: Programming language considerations

This build: January 26, 2011 11:19:36

Notices | Trademarks | Downloads | Library | Support | Feedback

Page 48 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg11640_

2.1.4.2. Coding in COBOL

Note the information in the following sections when coding WebSphere® MQ programs in COBOL.

Parent topic: Programming language considerations

This build: January 26, 2011 11:19:36

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg11730_

2.1.4.3. Coding in System/390® assembler language

Note the information in the following sections when coding WebSphere® MQ for z/OS® programs in assembler language.

Parent topic: Programming language considerations

This build: January 26, 2011 11:19:36

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg11750_

2.1.4.4. Coding in RPG

Supported only on WebSphere® MQ for i5/OS®.

In this book, the parameters of calls, the names of data types, the fields of structures, and the names of constants are described using their long names. In
RPG, these names are abbreviated to six or fewer uppercase characters. For example, the field MsgType becomes MDMT in RPG. For more information, see the

WebSphere MQ for i5/OS Application Programming Reference (ILE/RPG).

Parent topic: Programming language considerations

This build: January 26, 2011 11:19:37

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg11850_

2.1.4.5. Coding in PL/I

PL/I is supported on z/OS® only.

Note the information in the following sections when coding WebSphere® MQ for z/OS programs in PL/I.

Parent topic: Programming language considerations

This build: January 26, 2011 11:19:37

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg11860_

2.1.4.6. Coding in Visual Basic

Note: Outside the .NET environment, support for Visual Basic (VB) in WebSphere MQ has been stabilized at the V6.0 level. Most new function added to
WebSphere MQ 7.0 or later is not available to VB applications. If you are programming in VB.NET, use the WebSphere MQ .NET classes. For more
information, see WebSphere MQ Using .NET.

Visual Basic is supported only on Windows.

To avoid unintended translation of binary data passing between Visual Basic and WebSphere® MQ, use an MQBYTE definition instead of MQSTRING.
CMQB.BAS defines several new MQBYTE types that are equivalent to a C byte definition and uses these within WebSphere MQ structures. For example, for
the MQMD (message descriptor) structure, MsgId (message identifier) is defined as MQBYTE24.

Visual Basic does not have a pointer data type, so references to other WebSphere MQ data structures are by offset rather than pointer. Declare a compound
structure consisting of the two component structures, and specify the compound structure on the call. WebSphere MQ support for Visual Basic provides an
MQCONNXAny call to make this possible and allow client applications to specify the channel properties on a client connection. It accepts an untyped structure
(MQCNOCD) in place of the usual MQCNO structure.

The MQCNOCD structure is a compound structure consisting of an MQCNO followed by an MQCD. This structure is declared in the exits header file CMQXB.
Use the routine MQCNOCD_DEFAULTS to initialize an MQCNOCD structure. A sample making MQCONNX calls is provided (amqscnxb.vbp).

MQCONNXAny has the same parameters as MQCONNX, except that the ConnectOpts parameter is declared as being of Any data type rather than of MQCNO

data type. This allows the function to accept either the MQCNO or the MQCNOCD structure. This function is declared in the main header file CMQB.

Parent topic: Programming language considerations

This build: January 26, 2011 11:19:37

Notices | Trademarks | Downloads | Library | Support | Feedback

Page 49 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg11890_

2.1.5. z/OS batch considerations

z/OS® batch programs that call the MQI can be in either supervisor or problem state.

However, they must meet the following conditions:

� They must be in task mode, not service request block (SRB) mode.

� They must be in Primary address space control (ASC) mode (not Access Register ASC mode).

� They must not be in cross-memory mode. The primary address space number (ASN) must be equal to the secondary ASN and the home ASN.

� They must not be used as MPF exit programs.

� No z/OS locks can be held.

� There can be no function recovery routines (FRRs) on the FRR stack.

� Any program status word (PSW) key can be in force for the MQCONN or MQCONNX call (provided the key is compatible with using storage that is in
the TCB key), but subsequent calls that use the connection handle returned by MQCONN or MQCONNX:

� Must have the same PSW key that was used on the MQCONN or MQCONNX call

� Must have parameters accessible (for write, where appropriate) under the same PSW key

� Must be issued under the same task (TCB), but not in any subtask of the task

� They can be in either 24-bit or 31-bit addressing mode. However, if 24-bit addressing mode is in force, parameter addresses must be interpreted as
valid 31-bit addresses.

If any of these conditions is not met, a program check might occur. In some cases the call will fail and a reason code will be returned.
Parent topic: Introducing the Message Queue Interface

This build: January 26, 2011 11:19:37

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg11900_

2.1.6. UNIX signal handling

This section does not apply to WebSphere® MQ for z/OS® or WebSphere MQ for Windows.

In general, UNIX and i5/OS® systems have moved from a nonthreaded (process) environment to a multithreaded environment. In the nonthreaded
environment, some functions could be implemented only by using signals, though most applications did not need to be aware of signals and signal handling.
In the multithreaded environment, thread-based primitives support some of the functions that used to be implemented in the nonthreaded environments
using signals.

In many instances, signals and signal handling, although supported, do not fit well into the multithreaded environment and various restrictions exist. This
can be particularly problematic when you are integrating application code with different middleware libraries (running as part of the application) in a
multithreaded environment where each is trying to handle signals. The traditional approach of saving and restoring signal handlers (defined per process),
which worked when there was only one thread of execution within a process, does not work in a multithreaded environment. This is because many threads
of execution could be trying to save and restore a process-wide resource, with unpredictable results.

Unthreaded applications

Threaded applications
A thread is considered to be connected to WebSphere MQ from MQCONN (or MQCONNX) until MQDISC.

Additional considerations
Note these considerations when using UNIX signal handling.

Parent topic: Introducing the Message Queue Interface

This build: January 26, 2011 11:19:38

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg11910_

2.1.6.1. Unthreaded applications

(Not applicable on Solaris as all applications are considered threaded even if they use only a single thread.)

Each MQI function sets up its own signal handler for the signals:

SIGALRM

SIGBUS

SIGFPE

SIGSEGV

SIGILL

Users' handlers for these are replaced for the duration of the MQI function call. Other signals can be caught in the normal way by user-written handlers. If
you do not install a handler, the default actions (for example, ignore, core dump, or exit) are left in place.

After WebSphere® MQ handles a synchronous signal (SIGSEGV, SIGBUS, SIGFPE, SIGILL), it attempts to pass the signal to any registered signal handler
before making the MQI function call.

Parent topic: UNIX signal handling

This build: January 26, 2011 11:19:38

Notices | Trademarks | Downloads | Library | Support | Feedback

Page 50 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg11920_

2.1.6.2. Threaded applications

A thread is considered to be connected to WebSphere® MQ from MQCONN (or MQCONNX) until MQDISC.

Synchronous signals

Synchronous signals arise in a specific thread.

UNIX safely allows the setting up of a signal handler for such signals for the whole process. However, WebSphere MQ sets up its own handler for the
following signals, in the application process, while any thread is connected to WebSphere MQ:

SIGBUS

SIGFPE

SIGSEGV

SIGILL

If you are writing multithreaded applications, there is only one process-wide signal handler for each signal. When WebSphere MQ sets up its own
synchronous signal handlers it saves any previously registered handlers for each signal. After WebSphere MQ handles one of the signals listed, WebSphere
MQ attempts to call the signal handler that was in effect at the time of the first WebSphere MQ connection within the process. The previously registered
handlers are restored when all application threads have disconnected from WebSphere MQ.

Because signal handlers are saved and restored by WebSphere MQ, application threads must not establish signal handlers for these signals while there is
any possibility that another thread of the same process is also connected to WebSphere MQ.

Note: When an application, or a middleware library (running as part of an application), establishes a signal handler while a thread is connected to
WebSphere MQ, the application's signal handler must call the corresponding WebSphere MQ handler during the processing of that signal.

When establishing and restoring signal handlers, the general principle is that the last signal handler to be saved must be the first to be restored:

� When an application establishes a signal handler after connecting to WebSphere MQ, the previous signal handler must be restored before the
application disconnects from WebSphere MQ.

� When an application establishes a signal handler before connecting to WebSphere MQ, the application must disconnect from WebSphere MQ before
restoring its signal handler.

Note: Failure to observe the general principle that the last signal handler to be saved must be the first to be restored can result in unexpected signal
handling in the application and, potentially, the loss of signals by the application.

Asynchronous signals

WebSphere MQ does not use any asynchronous signals in threaded applications unless they are client applications.

Additional considerations for threaded client applications

WebSphere MQ handles the following signals during I/O to a server. These signals are defined by the communications stack. The application must not
establish a signal handler for these signals while a thread is connected to a queue manager:

SIGPIPE (for TCP/IP)

Parent topic: UNIX signal handling

This build: January 26, 2011 11:19:38

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg11930_

2.1.6.3. Additional considerations

Note these considerations when using UNIX signal handling.

Fastpath (trusted) applications

Fastpath applications run in the same process as WebSphere® MQ and so are running in the multithreaded environment.

In this environment WebSphere MQ handles the synchronous signals SIGSEGV, SIGBUS, SIGFPE, and SIGILL. All other signals must not be delivered to the
Fastpath application while it is connected to WebSphere MQ. Instead they must be blocked or handled by the application. If a Fastpath application intercepts
such an event, the queue manager must be stopped and restarted, or it may be left in an undefined state. For a full list of the restrictions for Fastpath
applications under MQCONNX see Connecting to a queue manager using the MQCONNX call.

MQI function calls within signal handlers

While you are in a signal handler, do not call an MQI function.

If you try to call an MQI function from a signal handler while another MQI function is active, MQRC_CALL_IN_PROGRESS is returned. If you try to call an MQI
function from a signal handler while no other MQI function is active, it is likely to fail sometime during the operation because of the operating system
restrictions where only selective calls can be issued from, or within, a handler.

In the case of C++ destructor methods, which might be called automatically during program exit, you might not be able to stop the MQI functions from
being called. Ignore any errors about MQRC_CALL_IN_PROGRESS. If a signal handler calls exit(), WebSphere MQ backs out uncommitted messages in sync
point as usual and closes any open queues.

Signals during MQI calls

MQI functions do not return the code EINTR or any equivalent to application programs.

If a signal occurs during an MQI call, and the handler calls return, the call continues to run as if the signal had not happened. In particular, MQGET cannot be
interrupted by a signal to return control immediately to the application. If you want to break out of an MQGET, set the queue to GET_DISABLED;
alternatively, use a loop around a call to MQGET with a finite time expiry (MQGMO_WAIT with gmo.WaitInterval set), and use your signal handler (in a
nonthreaded environment) or equivalent function in a threaded environment to set a flag which breaks the loop.

Page 51 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

In the AIX® environment, WebSphere MQ requires that system calls interrupted by signals are restarted. When establishing your own signal handler with
sigaction(2), set the SA_RESTART flag in the sa_flags field of the new action structure otherwise WebSphere MQ might be unable to complete any call
interrupted by a signal.

User exits and installable services

User exits and installable services that run as part of a WebSphere MQ process in a multithreaded environment have the same restrictions as for fastpath
applications. They should be considered as permanently connected to WebSphere MQ and so do not use signals or non-threadsafe operating system calls.

VMS exit handlers

Users can install exit handlers for an MQ application using the SYS$DCLEXH system service.

 The exit handler receives control when an image exits. An image exit will normally occur when you call the Exit ($EXIT) or Force Exit ($FORCEX) service.
The $FORCEX will interrupt the target process in user mode. Then all user-mode exit handlers (established by $DCLEXH) will begin to execute in reverse
order of establishment. For more details on exit handlers and $FORCEX, refer to the VMS Programming Concepts Manual and the VMS System Services

Manual.

If you call an MQI function from within an exit handler, the behavior of the function depends on the way the image was terminated. If the image was
terminated while another MQI function is active, an MQRC_CALL_IN_PROGRESS will be returned.

It is possible to call an MQI function from within an exit handler if no other MQI function is active and upcalls are disabled for the MQ application. If upcalls
are enabled for the MQ application, it will fail with the reason code MQRC_HCONN_ERROR.

The scope of an MQCONN or MQCONNX call is typically the thread that issued it. If upcalls are enabled, the exit handler will be run as a separate thread and
the connection handles cannot be shared.

Exit handlers are invoked within the interrupted context of the target process. It is up to the application to ensure that actions taken by a handler are safe
and reliable, for the asynchronously interrupted context they are called from.

Parent topic: UNIX signal handling

This build: January 26, 2011 11:19:38

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg11970_

2.2. Connecting to and disconnecting from a queue manager

To use WebSphere® MQ programming services, a program must have a connection to a queue manager.

The way that this connection is made depends on the platform and the environment in which the program is operating:

z/OS® batch, WebSphere MQ for i5/OS®, WebSphere MQ on UNIX systems, and WebSphere MQ for Windows

Programs that run in these environments can use the MQCONN MQI call to connect to, and the MQDISC call to disconnect from, a queue manager.
Alternatively, programs can use the MQCONNX call. This chapter describes how to use these calls.

z/OS batch programs can connect, consecutively or concurrently, to multiple queue managers on the same TCB.

IMS™

The IMS control region is connected to one or more queue managers when it starts. This connection is controlled by IMS commands. (For information on
how to control the IMS adapter of WebSphere MQ for z/OS, see the WebSphere MQ for z/OS System Administration Guide.) However, writers of message
queuing IMS programs must use the MQCONN MQI call to specify the queue manager to which they want to connect. They can use the MQDISC call to
disconnect from that queue manager. This chapter describes how writers of such programs should use these calls.

Before the IMS adapter processes a message for another user following a Get Unique call from the IOPCB, or one implied by a checkpoint call, the adapter
ensures that the application closes handles and disconnects from the queue manager.

IMS programs can connect, consecutively or concurrently, to multiple queue managers on the same TCB.

CICS® Transaction Server for z/OS and CICS for MVS/ESA

CICS programs do not need to do any work to connect to a queue manager because the CICS system itself is connected. This connection is usually made
automatically at initialization, but you can also use the CKQC transaction, which is supplied with WebSphere MQ for z/OS. CKQC is discussed in the
WebSphere MQ for z/OS System Administration Guide.

CICS tasks can connect only to the queue manager to which the CICS region, itself, is connected.

Note: CICS programs can also use the MQI connect and disconnect calls (MQCONN and MQDISC). You might want to do this so that you can port these
applications to non-CICS environments with a minimum of recoding. However, these calls always complete successfully in a CICS environment. This means
that the return code might not reflect the true state of the connection to the queue manager.

TXSeries for Windows and Open Systems

These programs do not need to do any work to connect to a queue manager because the CICS system itself is connected. Therefore, only one connection
at a time is supported. CICS applications must issue an MQCONN call to obtain a connection handle, and an MQDISC call before they exit.

This chapter introduces connecting to and disconnecting from a queue manager, under these headings:

� Connecting to a queue manager using the MQCONN call

� Connecting to a queue manager using the MQCONNX call

� Disconnecting programs from a queue manager using MQDISC

Connecting to a queue manager using the MQCONN call

Connecting to a queue manager using the MQCONNX call
The MQCONNX call is similar to the MQCONN call, but includes options to control the way that the call works.

Disconnecting programs from a queue manager using MQDISC

Parent topic: Writing a WebSphere MQ application

This build: January 26, 2011 11:19:39

Page 52 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg12020_

2.2.1. Connecting to a queue manager using the MQCONN call

In general, you can connect either to a specific queue manager, or to the default queue manager:

� For WebSphere® MQ for z/OS®, in the batch environment, the default queue manager is specified in the CSQBDEFV module.

� For WebSphere MQ for i5/OS®, and WebSphere MQ on UNIX systems, the default queue manager is specified in the mqs.ini file.

� For WebSphere MQ for Windows, the default queue manager is specified in the registry.

Alternatively, in the z/OS MVS™ batch, TSO, and RRS environments you can connect to any one queue manager within a queue-sharing group. The
MQCONN or MQCONNX request selects any one of the active members of the group.

The queue manager that you connect to must be local to the task. This means that it must belong to the same system as the WebSphere MQ application.

In the IMS™ environment, the queue manager must be connected to the IMS control region and to the dependent region that the program uses. The default
queue manager is specified in the CSQQDEFV module when WebSphere MQ for z/OS is installed.

With the TXSeries CICS® environment, and TXSeries for Windows and AIX®, the queue manager must be defined as an XA resource to CICS.

To connect to the default queue manager, call MQCONN, specifying a name consisting entirely of blanks or starting with a null (X'00') character.

Within WebSphere MQ on UNIX systems, an application must be authorized for it to successfully connect to a queue manager. For more information, see the
the WebSphere MQ System Administration Guide.

The output from MQCONN is:

� A connection handle (Hconn)

� A completion code

� A reason code

Use the connection handle on subsequent MQI calls.

If the reason code indicates that the application is already connected to that queue manager, the connection handle that is returned is the same as the one
that was returned when the application first connected. The application must not issue the MQDISC call in this situation because the calling application will
expect to remain connected.

The scope of the connection handle is the same as that of the object handle (see Opening objects using the MQOPEN call).

Descriptions of the parameters are given in the description of the MQCONN call in the WebSphere MQ Application Programming Reference.

The MQCONN call fails if the queue manager is in a quiescing state when you issue the call, or if the queue manager is shutting down.

Scope of MQCONN or MQCONNX

Within WebSphere MQ for i5/OS, WebSphere MQ on UNIX systems, and WebSphere MQ for Windows, the scope of an MQCONN or MQCONNX call is typically
the thread that issued it.

That is, the connection handle returned from the call is valid only within the thread that issued the call. Only one call can be made at any one time using the
handle. If it is used from a different thread, it is rejected as invalid. If you have multiple threads in your application and each wants to use WebSphere MQ

calls, each one must issue MQCONN or MQCONNX. Alternatively, consider Shared (thread independent) connections with MQCONNX.1

On WebSphere MQ for i5/OS, WebSphere MQ on UNIX systems, and WebSphere MQ for Windows, each thread in an application can connect to different
queue managers; on other systems, all concurrent connections within a process must be to the same queue manager.

If your application is running as a client, it can connect to more than one queue manager within a thread.

Parent topic: Connecting to and disconnecting from a queue manager
1 When using multithreaded applications with WebSphere MQ on UNIX systems you need to ensure that the applications have a sufficient stack size for the
threads. Consider using a stack size of 256KB, or larger, when multithreaded applications are making MQI calls, either by themselves or, with other signal
handlers (for example, CICS).

This build: January 26, 2011 11:19:39

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg12030_

2.2.2. Connecting to a queue manager using the MQCONNX call

The MQCONNX call is similar to the MQCONN call, but includes options to control the way that the call works.

As input to MQCONNX, you can supply a queue manager name, or a queue-sharing group name on z/OS® shared queue systems. The output from
MQCONNX is:

� A connection handle (Hconn)

� A completion code

� A reason code

You use the connection handle on subsequent MQI calls.

A description of all the parameters of MQCONNX is given in the WebSphere MQ Application Programming Reference. The Options field allows you to set

STANDARD_BINDING, FASTPATH_BINDING, SHARED_BINDING, or ISOLATED_BINDING for any version of MQCNO. You can also make shared (thread
independent) connections using a MQCONNX call. See Shared (thread independent) connections with MQCONNX for more information about these.

MQCNO_STANDARD_BINDING

By default, MQCONNX (like MQCONN) implies two logical threads where the WebSphere® MQ application and the local queue manager agent run in

Page 53 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

separate processes. The WebSphere MQ application requests the WebSphere MQ operation and the local queue manager agent services the request. This
is defined by the MQCNO_STANDARD_BINDING option on the MQCONNX call.

If you specify MQCNO_STANDARD_BINDING, the MQCONNX call uses either MQCNO_SHARED_BINDING or MQCNO_ISOLATED_BINDING, depending on
the value of the DefaultBindType attribute of the queue manager, which is defined in qm.ini or the Windows registry.

This is the default value.

MQCNO_FASTPATH_BINDING

Trusted applications imply that the WebSphere MQ application and the local queue manager agent become the same process. Because the agent process
no longer needs to use an interface to access the queue manager, these applications become an extension of the queue manager. This is defined by the
MQCNO_FASTPATH_BINDING option on the MQCONNX call.

You need to link trusted applications to the threaded WebSphere MQ libraries. For instructions on how to set up a WebSphere MQ application to run as
trusted, see the WebSphere MQ Application Programming Reference.

This option gives the highest performance.

Note: This option compromises the integrity of the queue manager: there is no protection from overwriting its storage. This also applies if
the application contains errors that can be exposed to messages and other data in the queue manager too. Consider these issues before
using this option.

MQCNO_SHARED_BINDING

Specify this option to make the application and the local queue manager agent run in separate processes. This maintains the integrity of the queue
manager, that is, it protects the queue manager from errant programs. However, the application and the local-queue-manager agent share some
resources.

This option is intermediate between MQCNO_FASTPATH_BINDING and MQCNO_ISOLATED_BINDING, both in terms of protecting the integrity of the
queue manager, and in terms of the performance of MQI calls.

MQCNO_SHARED_BINDING is ignored if the queue manager does not support this type of binding. Processing continues as though the option had not been
specified.

MQCNO_ISOLATED_BINDING

Specify this option to make the application and the local queue manager agent run in separate processes, as for MQCNO_SHARED_BINDING. In this case,
however, the application process and the local-queue-manager agent are isolated from each other in that they do not share resources.

This is the safest option for protecting the integrity of the queue manager, but it gives the slowest performance of MQI calls.

MQCNO_ISOLATED_BINDING is ignored if the queue manager does not support this type of binding. Processing continues as though the option had not
been specified.

On z/OS these options are tolerated, but only a standard bound connection is performed. MQCNO Version 3, for z/OS, allows four alternative options:

MQCNO_SERIALIZE_CONN_TAG_QSG

This allows an application to request that only one instance of an application runs at any one time in a queue-sharing group. This is achieved by registering
the use of a connection tag, whose value is specified or derived by the application. The tag is a 128 byte character string specified in the Version 3
MQCNO.

MQCNO_RESTRICT_CONN_TAG_QSG

This is used where an application consists of more than one process (or a TCB), each of which can connect to a queue manager. Connection is permitted
only if there is no current use of the tag, or the requesting application is within the same processing scope. This is MVS™ address space within the same
queue-sharing group as the tag owner.

MQCNO_SERIALIZE_CONN_TAG_Q_MGR

This is similar to MQCNO_SERIALIZE_CONN_TAG_QSG, but only the local queue manager is interrogated to see if the requested tag is already in use.

MQCNO_RESTRICT_CONN_TAG_Q_MGR

This is similar to MQCNO_RESTRICT_CONN_TAG_QSG, but only the local queue manager is interrogated to see if the requested tag is already in use.

Restrictions for trusted applications

Shared (thread independent) connections with MQCONNX

MQCONNX environment variable

Parent topic: Connecting to and disconnecting from a queue manager

This build: January 26, 2011 11:19:39

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg12050_

2.2.2.1. Restrictions for trusted applications

The following restrictions apply to trusted applications:

� You must explicitly disconnect trusted applications from the queue manager.

� You must stop trusted applications before ending the queue manager with the endmqm command.

� You must not use asynchronous signals and timer interrupts (such as sigkill) with MQCNO_FASTPATH_BINDING.

� On all platforms, a thread within a trusted application cannot connect to a queue manager while another thread in the same process is connected to a
different queue manager.

� On WebSphere® MQ on UNIX systems you must use mqm as the effective userID and groupID for all MQI calls. You can change these IDs before
making a non-MQI call requiring authentication (for example, opening a file), but you must change it back to mqm before making the next MQI call.

� On WebSphere MQ for i5/OS®:

Page 54 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

1. Trusted applications must run under the QMQM user profile. It is not sufficient that the user profile be a member of the QMQM group or that the
program adopt QMQM authority. It might not be possible for the QMQM user profile to be used to sign on to interactive jobs, or to be specified in
the job description for jobs running trusted applications. In this case one approach is to use the i5/OS profile swapping API functions, QSYGETPH,
QWTSETP, and QSYRLSPH to temporarily change the current user of the job to QMQM while the MQ programs run. Details of these functions,
together with an example of their use, is provided in the Security APIs section of the i5/OS System API Reference.

2. Do not cancel trusted applications using System-Request Option 2, or by ending the jobs in which they are running using ENDJOB.

� On WebSphere MQ for HP-UX, multithreaded fast-path applications are likely to need to set a larger stack size than the default. Use a size of 256 KB.

� On WebSphere MQ for Windows trusted 64-bit applications are not supported. If you try to run a trusted 64-bit application, it will be downgraded to a
standard bound connection.

� On WebSphere MQ on UNIX systems trusted 32-bit applications are not supported. If you try to run a trusted 32-bit application, it will be downgraded
to a standard bound connection.

Parent topic: Connecting to a queue manager using the MQCONNX call

This build: January 26, 2011 11:19:40

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg12060_

2.2.2.2. Shared (thread independent) connections with MQCONNX

Not supported on WebSphere® MQ for z/OS®.

On WebSphere MQ platforms other than WebSphere MQ for z/OS, a connection made with MQCONN is available only to the thread that made the connection.

Options on the MQCONNX call allow you to create a connection that can be shared by all the threads in a process. If your application is running in a
transactional environment that requires MQI calls to be issued on the same thread, you must use the following default option:

MQCNO_HANDLE_SHARE_NONE

Creates a non-shared connection.

In most other environments, you can use one of the following thread-independent, shared connection options:

MQCNO_HANDLE_SHARE_BLOCK

Creates a shared connection. On a MQCNO_HANDLE_SHARE_BLOCK connection, if the connection is currently in use by an MQI call on another thread, the MQI

call waits until the current MQI call has completed.

MQCNO_HANDLE_SHARE_NO_BLOCK

Creates a shared connection. On a MQCNO_HANDLE_SHARE_NO_BLOCK connection, if the connection is currently in use by an MQI call on another thread, the

MQI call fails immediately with a reason of MQRC_CALL_IN_PROGRESS.

Except for the MTS (Microsoft Transaction Server) environment the default value is MQCNO_HANDLE_SHARE_NONE. In the MTS environment the default value is

MQCNO_HANDLE_SHARE_BLOCK.

A connection handle is returned from the MQCONNX call. The handle can be used by subsequent MQI calls from any thread in the process, associating those

calls with the handle returned from the MQCONNX. MQI calls using a single shared handle are serialized across threads.

For example, the following sequence of activity is possible with a shared handle:

1. Thread 1 issues MQCONNX and gets a shared handle h1

2. Thread 1 opens a queue and issues a get request using h1

3. Thread 2 issues a put request using h1

4. Thread 3 issues a put request using h1

5. Thread 2 issues MQDISC using h1

While the handle is in use by any thread, access to the connection is unavailable to other threads. In circumstances where it is acceptable that a thread
waits for any previous call from another thread to complete, use MQCONNX with the option MQCNO_HANDLE_SHARE_BLOCK.

However blocking can cause difficulties. Suppose that in step 2 above, thread 1 issues a get request that waits for messages that might not have yet arrived
(a get with wait). In this case, threads 2 and 3 are also left waiting (blocked) for as long as the get request on thread 1 takes. If you prefer that an MQI call
returns with an error if another MQI call is already running on the handle, use MQCONNX with the option MQCNO_HANDLE_SHARE_NO_BLOCK.

Parent topic: Connecting to a queue manager using the MQCONNX call

This build: January 26, 2011 11:19:40

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg12070_

2.2.2.3. MQCONNX environment variable

On WebSphere® MQ for i5/OS®, WebSphere MQ for Windows, and WebSphere MQ on UNIX systems, you can use the environment variable,
MQ_CONNECT_TYPE in combination with the type of binding specified in the Options field of the MQCNO structure used on an MQCONNX call . This

environment variable allows you to execute the application with the STANDARD_BINDING if any problems occur with the FASTPATH_BINDING. You specify
the environment variable with the value FASTPATH or STANDARD to select the type of binding required. However, the FASTPATH binding is used only if the
connect option is appropriately specified as shown in Table 1:

Table 1. The MQ_CONNECT_TYPE environment variable

MQCONNX call option MQ_CONNECT_TYPE environment

variable

Result

STANDARD UNDEFINED STANDARD

FASTPATH UNDEFINED FASTPATH

STANDARD STANDARD STANDARD

FASTPATH STANDARD STANDARD

Page 55 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

So, to run a trusted application, either:

1. Specify the MQCNO_FASTPATH_BINDING option on the MQCONNX call and the FASTPATH environment variable, or

2. Specify the MQCNO_FASTPATH_BINDING option on the MQCONNX call and leave the environment variable undefined.

If neither MQCNO_STANDARD_BINDING nor MQCNO_FASTPATH_BINDING is specified, you can use MQCNO_NONE, which defaults to
MQCNO_STANDARD_BINDING.

Parent topic: Connecting to a queue manager using the MQCONNX call

This build: January 26, 2011 11:19:40

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg12090_

2.2.3. Disconnecting programs from a queue manager using MQDISC

When a program that has connected to a queue manager using the MQCONN or MQCONNX call has finished all interaction with the queue manager, it breaks
the connection using the MQDISC call, except:

� On CICS® Transaction Server for z/OS® applications, where the call is optional unless MQCONNX was used and you want to drop the connection tag
before the application ends.

� On WebSphere® MQ for i5/OS® where, when you sign off from the operating system, an implicit MQDISC call is made.

As input to the MQDISC call, you must supply the connection handle (Hconn) that was returned by MQCONN or MQCONNX when you connected to the queue
manager.

Except on CICS on z/OS, after MQDISC is called the connection handle (Hconn) is no longer valid, and you cannot issue any further MQI calls until you call
MQCONN or MQCONNX again. MQDISC does an implicit MQCLOSE for any objects that are still open using this handle.

If you use MQCONNX to connect on WebSphere MQ for z/OS, MQDISC also ends the scope of the connection tag established by the MQCONNX. However, in
a CICS, IMS™, or RRS application, if there is an active unit of recovery associated with a connection tag, the MQDISC is rejected with a reason code of
MQRC_CONN_TAG_NOT_RELEASED.

Descriptions of the parameters are given in the description of the MQDISC call in the WebSphere MQ Application Programming Reference.

Parent topic: Connecting to and disconnecting from a queue manager

This build: January 26, 2011 11:19:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg12100_

2.3. Opening and closing objects

To perform any of the following operations, you must first open the relevant WebSphere® MQ object:

� Put messages on a queue

� Get (browse or retrieve) messages from a queue

� Set the attributes of an object

� Inquire about the attributes of any object

Use the MQOPEN call to open the object, using the options of the call to specify what you want to do with the object. The only exception is if you want to put
a single message on a queue, then close the queue immediately. In this case, you can bypass the opening stage by using the MQPUT1 call (see Putting one
message on a queue using the MQPUT1 call).

Before you open an object using the MQOPEN call, you must connect your program to a queue manager. This is explained in detail, for all environments, in
Connecting to and disconnecting from a queue manager.

There are four types of WebSphere MQ object that you can open:

� Queue

� Namelist

� Process definition

� Queue manager

You open all these objects in a similar way using the MQOPEN call. For more information about WebSphere MQ objects, see WebSphere MQ objects.

You can open the same object more than once, and each time you get a new object handle. You might want to browse messages on a queue using one
handle, and remove messages from the same queue using another handle. This saves using up resources to close and reopen the same object. You can also
open a queue for browsing and removing messages at the same time.

Moreover, you can open multiple objects with a single MQOPEN and close them using MQCLOSE. See Distribution lists for information about how to do this.

When you attempt to open an object, the queue manager checks that you are authorized to open that object for the options that you specify in the MQOPEN
call.

Objects are closed automatically when a program disconnects from the queue manager. In the IMS™ environment, disconnection is forced when a program
starts processing for a new user following a GU (get unique) IMS call. On the i5/OS® platform, objects are closed automatically when a job ends.

It is good programming practice to close objects you have opened. Use the MQCLOSE call to do this.

This chapter introduces opening and closing WebSphere MQ objects, under these headings:

� Opening objects using the MQOPEN call

� Creating dynamic queues

STANDARD FASTPATH STANDARD

FASTPATH FASTPATH FASTPATH

Page 56 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

� Opening remote queues

� Closing objects using the MQCLOSE call

Opening objects using the MQOPEN call

Creating dynamic queues
Use a dynamic queue when you do not need the queue after your application ends.

Opening remote queues
A remote queue is a queue that is owned by a queue manager other than the one to which the application is connected.

Closing objects using the MQCLOSE call
To close an object, use the MQCLOSE call.

Parent topic: Writing a WebSphere MQ application

This build: January 26, 2011 11:19:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg12130_

2.3.1. Opening objects using the MQOPEN call

As input to the MQOPEN call, you must supply:

� A connection handle. For CICS® applications on z/OS®, you can specify the constant MQHC_DEF_HCONN (which has the value zero), or use the
connection handle returned by the MQCONN or MQCONNX call. For other programs, always use the connection handle returned by the MQCONN or
MQCONNX call.

� A description of the object that you want to open, using the object descriptor structure (MQOD).

� One or more options that control the action of the call.

The output from MQOPEN is:

� An object handle that represents your access to the object. Use this on input to any subsequent MQI calls.

� A modified object-descriptor structure, if you are creating a dynamic queue (and it is supported on your platform).

� A completion code.

� A reason code.

Scope of an object handle

The scope of an object handle (Hobj) is the same as the scope of a connection handle (Hconn).

This is covered in Scope of MQCONN or MQCONNX and Shared (thread independent) connections with MQCONNX. However, there are additional
considerations in some environments:

CICS

In a CICS program, you can use the handle only within the same CICS task from which you made the MQOPEN call.

IMS™ and z/OS batch

In the IMS and batch environments, you can use the handle within the same task, but not within any subtasks.

Descriptions of the parameters of the MQOPEN call are given in the WebSphere MQ Application Programming Reference.

The following sections describe the information that you must supply as input to MQOPEN.

Identifying objects (the MQOD structure)

Use the MQOD structure to identify the object that you want to open. This structure is an input parameter for the MQOPEN call. (The structure is modified by
the queue manager when you use the MQOPEN call to create a dynamic queue.)

For full details of the MQOD structure, see MQOD - Object descriptor.

For information about using the MQOD structure for distribution lists, see Using the MQOD structure under Distribution lists.

Name resolution
How the MQOPEN call resolves queue and queue manager names.

Using the options of the MQOPEN call

Parent topic: Opening and closing objects

This build: January 26, 2011 11:19:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg12140_

2.3.1.1. Name resolution

How the MQOPEN call resolves queue and queue manager names.

Page 57 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Note: A Queue manager alias is a remote queue definition without an RNAME field.

When you open a WebSphere® MQ queue, the MQOPEN call performs a name resolution function on the queue name that you specify. This determines on
which queue the queue manager performs subsequent operations. This means that when you specify the name of an alias queue or a remote queue in your
object descriptor (MQOD), the call resolves the name either to a local queue or to a transmission queue. If a queue is opened for any type of input, browse,
or set, it resolves to a local queue if there is one, and fails if there is not one. It resolves to a nonlocal queue only if it is opened for output only, inquire only,
or output and inquire only. See Table 1 for an overview of the name resolution process. The name that you supply in ObjectQMgrName is resolved before that

in ObjectName.

Table 1 also shows how you can use a local definition of a remote queue to define an alias for the name of a queue manager. This allows you to select which
transmission queue is used when you put messages on a remote queue, so you could, for example, use a single transmission queue for messages destined
for many remote queue managers.

To use the following table, first read down the two left-hand columns, under the heading Input to MQOD, and select the appropriate case. Then read across
the corresponding row, following any instructions. Following the instructions in the Resolved names columns, you can either return to the Input to MQOD
columns and insert values as directed, or you can exit the table with the results supplied. For example, you might be required to input ObjectName.

Note:

Table 1. Resolving queue names when using MQOPEN

Input to MQOD Resolved names

ObjectQMgrName ObjectName ObjectQMgrName ObjectName Transmission queue

Blank or local queue manager Local queue with
no CLUSTER
attribute

Local queue manager Input ObjectName Not applicable (local queue
used)

Blank queue manager Local queue with
CLUSTER attribute

Workload management
selected cluster queue
manager or specific cluster
queue manager selected on
PUT

Input ObjectName SYSTEM.CLUSTER.
TRANSMIT.QUEUE and local
queue used

SYSTEM.QSG.
TRANSMIT.QUEUE (see note)

Local queue manager Local queue with
CLUSTER attribute

Local queue manager Input ObjectName Not applicable (local queue
used)

Blank or local queue manager Model queue Local queue manager Generated name Not applicable (local queue
used)

Blank or local queue manager
Alias queue

Perform name resolution
again with ObjectQMgrName
unchanged, and input
ObjectName set to the
BaseQName in the alias
queue definition object. Must
not resolve to an alias queue.

Local queue manager Alias queue with
CLUSTER attribute

The alias must not resolve to
a cluster queue that is not
locally defined, or a cluster
queue that has the same
ObjectName as the alias.

Blank queue manager Alias queue with
CLUSTER attribute

The alias can resolve to a
cluster queue with same
ObjectName as the alias.

Blank or local queue manager
Local definition of
a remote queue

Perform name resolution
again with ObjectQMgrName
set to RemoteQMgrName, and
ObjectName set to
RemoteQName. Must not
resolve remote queues

 Name of XmitQName
attribute, if non-blank;
otherwise RemoteQMgrName
in the remote queue definition
object.

SYSTEM.QSG.
TRANSMIT.QUEUE (see note)

Blank queue manager No matching local
object; cluster
queue found

Workload management
selected cluster queue
manager or specific cluster
queue manager selected on
PUT

Input ObjectName SYSTEM.CLUSTER.
TRANSMIT.QUEUE

SYSTEM.QSG.
TRANSMIT.QUEUE (see note)

Blank or local queue manager No matching local
object; cluster
queue not found

 Error, queue not
found

Not applicable

Name of queue manager in
same queue sharing group as
local queue manager

Local shared
queue

Local queue manager Input ObjectName Not applicable

Name of a local transmission
queue

(Not resolved) Input ObjectQMgrName Input ObjectName Input ObjectQMgrName

SYSTEM.QSG.
TRANSMIT.QUEUE (see note)

Queue manager alias
definition (RemoteQMgrName
may be the local queue
manager)

(Not resolved,
remote queue)

Perform name resolution
again with ObjectQMgrName
set to RemoteQMgrName.
Must not resolve to remote
queues

Input ObjectName Name of XmitQName
attribute, if non-blank;
otherwise RemoteQMgrName
in the remote queue definition
object.

SYSTEM.QSG.
TRANSMIT.QUEUE (see note)

Queue manager is not the
name of any local object;
cluster queue managers or
queue manager alias found

(Not resolved) ObjectQMgrName or specific
cluster queue manager
selected on PUT

Input ObjectName SYSTEM.CLUSTER.
TRANSMIT.QUEUE

SYSTEM.QSG.
TRANSMIT.QUEUE (see note)

Queue manager is not the
name of any local object; no
cluster objects found

(Not resolved) Input ObjectQMgrName Input ObjectName DefXmitQName attribute of
the queue manager where
DefXmitQName is supported.

SYSTEM.QSG.
TRANSMIT.QUEUE (see note)

Note: The SYSTEM.QSG.TRANSMIT.QUEUE is used if local and remote queue managers are in the same queue-sharing group; intra-group
queuing is enabled.

Page 58 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

1. BaseQName is the name of the base queue from the definition of the alias queue.

2. RemoteQName is the name of the remote queue from the local definition of the remote queue.

3. RemoteQMgrName is the name of the remote queue manager from the local definition of the remote queue.

4. XmitQName is the name of the transmission queue from the local definition of the remote queue.

5. When using WebSphere MQ for z/OS® queue managers that are part of a queue-sharing group (QSG), the name of the QSG can be used instead of
the local queue manager name in Table 1.

6. In the ObjectName column of the table, CLUSTER refers to both the CLUSTER and CLUSNL attributes of the queue.

Opening an alias queue also opens the base queue to which the alias resolves, and opening a remote queue also opens the transmission queue. Therefore
you cannot delete either the queue that you specify or the queue to which it resolves while the other one is open.

The resolved queue name and the resolved queue manager name are stored in the ResolvedQName and ResolvedQMgrName fields in the MQOD.

For more information about name resolution in a distributed queuing environment see WebSphere MQ Intercommunication.

Parent topic: Opening objects using the MQOPEN call

This build: January 26, 2011 11:19:42

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg12170_

2.3.1.2. Using the options of the MQOPEN call

In the Options parameter of the MQOPEN call, you must choose one or more options to control the access that you are given to the object that you are

opening. With these options you can:

� Open a queue and specify that all messages put to that queue must be directed to the same instance of it

� Open a queue to allow you to put messages on it

� Open a queue to allow you to browse messages on it

� Open a queue to allow you to remove messages from it

� Open an object to allow you to inquire about and set its attributes (but you can set the attributes of queues only)

� Open a topic or topic string to publish messages to it

� Associate context information with a message

� Nominate an alternate user identifier to be used for security checks

� Control the call if the queue manager is in a quiescing state

MQOPEN option for cluster queue
To route all messages put to a queue using MQPUT to the same queue manager by the same route, use the MQOO_BIND_ON_OPEN option on the MQOPEN

call.

MQOPEN option for putting messages
To open a queue or topic to put messages on it, use the MQOO_OUTPUT option.

MQOPEN option for browsing messages
To open a queue so that you can browse the messages on it, use the MQOPEN call with the MQOO_BROWSE option.

MQOPEN options for removing messages
Three options control the opening of a queue to remove messages from it.

MQOPEN options for setting and inquiring about attributes
To open a queue so that you can set its attributes, use the MQOO_SET option.

MQOPEN options relating to message context
If you want to be able to associate context information with a message when you put it on a queue, you must use one of the message context options
when you open the queue.

MQOPEN option for alternate user authority
When you attempt to open an object using the MQOPEN call, the queue manager checks that you have the authority to open that object. If you are not
authorized, the call fails.

MQOPEN option for queue manager quiescing
In the CICS® environment on z/OS®, if you use the MQOPEN call when the queue manager is in a quiescing state, the call always fails.

MQOPEN option for resolving local queue names
When you open a local, alias or model queue, the local queue is returned.

Parent topic: Opening objects using the MQOPEN call

This build: January 26, 2011 11:19:42

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg12180_

2.3.1.2.1. MQOPEN option for cluster queue

To route all messages put to a queue using MQPUT to the same queue manager by the same route, use the MQOO_BIND_ON_OPEN option on the MQOPEN call.

To specify that a destination is to be selected at MQPUT time, that is, on a message-by-message basis, use the MQOO_BIND_NOT_FIXED option on the MQOPEN

call. If you specify neither of these options the default, MQOO_BIND_AS_Q_DEF, is used. In this case the binding used for the queue handle is taken from the

DefBind queue attribute, which can take the value MQBND_BIND_ON_OPEN or MQBND_BIND_NOT_FIXED.

Page 59 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

If you specify the name of a queue manager in the MQOD, the queue at that queue manager is selected. If the queue manager name is blank, any instance

can be selected. See MQOPEN and clusters for more information.

If you open a cluster queue using a QALIAS definition, some queue attributes are defined by the alias queue, and not the base queue. Cluster attributes are

among the attributes of the base queue definition that are overridden by the alias queue. For example, in the following snippet, the cluster queue is opened
with MQOO_BIND_NOT FIXED and not MQOO_BIND_ON_OPEN. The cluster queue definition is advertised throughout the cluster, the alias queue definition is local

to the queue manager.

DEFINE QLOCAL(CLQ1) CLUSTER(MYCLUSTER) DEFBIND(OPEN) REPLACE

DEFINE QALIAS(ACLQ1) TARGQ(CLQ1) DEFBIND(NOTFIXED) REPLACE

Parent topic: Using the options of the MQOPEN call

This build: January 26, 2011 11:19:42

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg12190_

2.3.1.2.2. MQOPEN option for putting messages

To open a queue or topic to put messages on it, use the MQOO_OUTPUT option.

Parent topic: Using the options of the MQOPEN call

This build: January 26, 2011 11:19:42

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg12200_

2.3.1.2.3. MQOPEN option for browsing messages

To open a queue so that you can browse the messages on it, use the MQOPEN call with the MQOO_BROWSE option.

This creates a browse cursor that the queue manager uses to identify the next message on the queue. For more information, see Browsing messages on a
queue.

Note:

1. You cannot browse messages on a remote queue; do not open a remote queue using the MQOO_BROWSE option.

2. You cannot specify this option when opening a distribution list. For further information about distribution lists, see Distribution lists.

3. Use the MQOO_CO_OP in conjunction with MQOO_BROWSE if you are using cooperative browsing; see Options (MQLONG)

Parent topic: Using the options of the MQOPEN call

This build: January 26, 2011 11:19:42

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg12210_

2.3.1.2.4. MQOPEN options for removing messages

Three options control the opening of a queue to remove messages from it.

You can use only one of them in any MQOPEN call. These options define whether your program has exclusive or shared access to the queue. Exclusive
access means that, until you close the queue, only you can remove messages from it. If another program attempts to open the queue to remove messages,
its MQOPEN call fails. Shared access means that more than one program can remove messages from the queue.

The most advisable approach is to accept the type of access that was intended for the queue when the queue was defined. The queue definition involved the
setting of the Shareability and the DefInputOpenOption attributes. To accept this access, use the MQOO_INPUT_AS_Q_DEF option. Refer to Table 1 to

see how the setting of these attributes affects the type of access that you will be given when you use this option.

Alternatively:

� If you know that your application can work successfully even if other programs can remove messages from the queue at the same time, use the
MQOO_INPUT_SHARED option. Table 1 shows how, in some cases you will be given exclusive access to the queue, even with this option.

� If you know that your application can work successfully only if other programs are prevented from removing messages from the queue at the same
time, use the MQOO_INPUT_EXCLUSIVE option.

Note:

1. You cannot remove messages from a remote queue. Therefore you cannot open a remote queue using any of the MQOO_INPUT_* options.

2. You cannot specify this option when opening a distribution list. For further information, see Distribution lists.

Parent topic: Using the options of the MQOPEN call

This build: January 26, 2011 11:19:42

Table 1. How queue attributes and options of the MQOPEN call affect access to queues

Queue attributes Type of access with MQOPEN options

Shareability DefInputOpenOption AS_Q_DEF SHARED EXCLUSIVE

SHAREABLE SHARED shared shared exclusive

SHAREABLE EXCLUSIVE exclusive shared exclusive

NOT_SHAREABLE* SHARED* exclusive exclusive exclusive

NOT_SHAREABLE EXCLUSIVE exclusive exclusive exclusive

Note: * Although you can define a queue to have this combination of attributes, the default input open option is overridden by the shareability
attribute.

Page 60 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg12220_

2.3.1.2.5. MQOPEN options for setting and inquiring about attributes

To open a queue so that you can set its attributes, use the MQOO_SET option.

You cannot set the attributes of any other type of object (see Inquiring about and setting object attributes).

To open an object so that you can inquire about its attributes, use the MQOO_INQUIRE option.

Note: You cannot specify this option when opening a distribution list.

Parent topic: Using the options of the MQOPEN call

This build: January 26, 2011 11:19:42

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg12230_

2.3.1.2.6. MQOPEN options relating to message context

If you want to be able to associate context information with a message when you put it on a queue, you must use one of the message context options when
you open the queue.

The options allow you to differentiate between context information that relates to the user who originated the message, and that which relates to the
application that originated the message. Also, you can opt to set the context information when you put the message on the queue, or you can opt to have
the context taken automatically from another queue handle.

For more information about the subject of message context, see Message context.

Parent topic: Using the options of the MQOPEN call

This build: January 26, 2011 11:19:42

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg12240_

2.3.1.2.7. MQOPEN option for alternate user authority

When you attempt to open an object using the MQOPEN call, the queue manager checks that you have the authority to open that object. If you are not
authorized, the call fails.

However, server programs might want the queue manager to check the authorization of the user on whose behalf they are working, rather than the server’s
own authorization. To do this, they must use the MQOO_ALTERNATE_USER_AUTHORITY option of the MQOPEN call, and specify the alternate user ID in the
AlternateUserId field of the MQOD structure. Typically, the server would get the user ID from the context information in the message it is processing.

Parent topic: Using the options of the MQOPEN call

This build: January 26, 2011 11:19:42

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg12250_

2.3.1.2.8. MQOPEN option for queue manager quiescing

In the CICS® environment on z/OS®, if you use the MQOPEN call when the queue manager is in a quiescing state, the call always fails.

In other z/OS environments, i5/OS®, Windows systems and in UNIX systems environments, the call fails when the queue manager is quiescing only if you
use the MQOO_FAIL_IF_QUIESCING option of the MQOPEN call.

Parent topic: Using the options of the MQOPEN call

This build: January 26, 2011 11:19:43

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg12260_

2.3.1.2.9. MQOPEN option for resolving local queue names

When you open a local, alias or model queue, the local queue is returned.

However, when you open a remote queue or cluster queue, the ResolvedQName and ResolvedQMgrName fields of the MQOD structure are filled with the

names of the remote queue and remote queue manger found in the remote queue definition, or with the chosen remote cluster queue.

Use the MQOO_RESOLVE_LOCAL_Q option of the MQOPEN call to fill the ResolvedQName in the MQOD structure with the name of the local queue that was

opened. The ResolvedQMgrName is similarly filled with the name of the local queue manager hosting the local queue. This field is available only with Version

3 of the MQOD structure; if the structure is less than Version 3, MQOO_RESOLVE_LOCAL_Q is ignored without an error being returned.

If you specify MQOO_RESOLVE_LOCAL_Q when opening, for example, a remote queue, ResolvedQName is the name of the transmission queue to which

messages will be put. ResolvedQMgrNameis the name of the local queue manager hosting the transmission queue.

Page 61 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Parent topic: Using the options of the MQOPEN call

This build: January 26, 2011 11:19:43

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg12270_

2.3.2. Creating dynamic queues

Use a dynamic queue when you do not need the queue after your application ends.

For example, you could use a dynamic queue for your reply-to queue. You specify the name of the reply-to queue in the ReplyToQ field of the MQMD

structure when you put a message on a queue (see Defining messages using the MQMD structure).

To create a dynamic queue, you use a template known as a model queue, together with the MQOPEN call. You create a model queue using the WebSphere®
MQ commands or the operations and control panels. The dynamic queue that you create takes the attributes of the model queue.

When you call MQOPEN, specify the name of the model queue in the ObjectName field of the MQOD structure. When the call completes, the ObjectName field

is set to the name of the dynamic queue that is created. Also, the ObjectQMgrName field is set to the name of the local queue manager.

You can specify the name of the dynamic queue that you create in three ways:

� Give the full name that you want in the DynamicQName field of the MQOD structure.

� Specify a prefix (fewer than 33 characters) for the name, and allow the queue manager to generate the rest of the name. This means that the queue
manager generates a unique name, but you still have some control (for example, you might want each user to use a certain prefix, or you might want
to give a special security classification to queues with a certain prefix in their name). To use this method, specify an asterisk (*) for the last non-blank
character of the DynamicQName field. Do not specify a single asterisk (*) for the dynamic queue name.

� Allow the queue manager to generate the full name. To use this method, specify an asterisk (*) in the first character position of the DynamicQName

field.

For more information about these methods, see the description of the DynamicQName field in the WebSphere MQ Application Programming Reference.

There is more information on dynamic queues in Dynamic and Model queues.

Parent topic: Opening and closing objects

This build: January 26, 2011 11:19:43

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg12280_

2.3.3. Opening remote queues

A remote queue is a queue that is owned by a queue manager other than the one to which the application is connected.

To open a remote queue, use the MQOPEN call as for a local queue. You can specify the name of the queue as follows:

1. In the ObjectName field of the MQOD structure, specify the name of the remote queue as known to the local queue manager.

Note: Leave the ObjectQMgrName field blank in this case.

2. In the ObjectName field of the MQOD structure, specify the name of the remote queue, as known to the remote queue manager. In the

ObjectQMgrName field, specify either:

� The name of the transmission queue that has the same name as the remote queue manager. The name and case (uppercase, lowercase or a
mixture) must match exactly.

� The name of a queue manager alias object that resolves to the destination queue manager or the transmission queue.

This tells the queue manager the destination of the message as well as the transmission queue that it needs to be put on to get there.

3. If DefXmitQname is supported, in the ObjectName field of the MQOD structure, specify the name of the remote queue as known by the remote queue

manager.

Note: Set the ObjectQMgrName field to the name of the remote queue manager (it cannot be left blank in this case).

Only local names are validated when you call MQOPEN; the last check is for the existence of the transmission queue to be used.

These methods are summarized in Table 1.

Parent topic: Opening and closing objects

This build: January 26, 2011 11:19:43

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg12290_

2.3.4. Closing objects using the MQCLOSE call

To close an object, use the MQCLOSE call.

If the object is a queue, note the following:

� You do not need to empty a temporary dynamic queue before you close it.

When you close a temporary dynamic queue, the queue is deleted, along with any messages that might still be on it. This is true even if there are
uncommitted MQGET, MQPUT, or MQPUT1 calls outstanding against the queue.

� On WebSphere® MQ for z/OS®, if you have any MQGET requests with an MQGMO_SET_SIGNAL option outstanding for that queue, they are canceled.

� If you opened the queue using the MQOO_BROWSE option, your browse cursor is destroyed.

Closure is unrelated to sync point, so you can close queues before or after sync point.

As input to the MQCLOSE call, you must supply:

Page 62 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

� A connection handle. Use the same connection handle used to open it, or alternatively, for CICS® applications on z/OS, you can specify the constant
MQHC_DEF_HCONN (which has the value zero).

� The handle of the object that you want to close. Get this from the output of the MQOPEN call.

� MQCO_NONE in the Options field (unless you are closing a permanent dynamic queue).

� The control option to determine whether the queue manager should delete the queue even if there are still messages on it (when closing a permanent
dynamic queue).

The output from MQCLOSE is:

� A completion code

� A reason code

� The object handle, reset to the value MQHO_UNUSABLE_HOBJ

Descriptions of the parameters of the MQCLOSE call are given in the WebSphere MQ Application Programming Reference.

Parent topic: Opening and closing objects

This build: January 26, 2011 11:19:43

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg12300_

2.4. Putting messages on a queue

Use the MQPUT call to put messages on the queue. You can use MQPUT repeatedly to put many messages on the same queue, following the initial MQOPEN
call. Call MQCLOSE when you have finished putting all your messages on the queue.

If you want to put a single message on a queue and close the queue immediately afterwards, you can use the MQPUT1 call. MQPUT1 performs the same
functions as the following sequence of calls:

� MQOPEN

� MQPUT

� MQCLOSE

Generally however, if you have more than one message to put on the queue, it is more efficient to use the MQPUT call. This depends on the size of the
message and the platform that you are working on.

This chapter introduces putting messages to a queue, under these headings:

� Putting messages on a local queue using the MQPUT call

� Putting messages on a remote queue

� Controlling context information

� Putting one message on a queue using the MQPUT1 call

� Distribution lists

� Some cases where the put calls fail

Putting messages on a local queue using the MQPUT call
Use this information to learn about putting messages on a local queue using the MQPUT call.

Putting messages on a remote queue

Setting properties of a message
Call MQSETMP for each property you want to set. When you put the message set the message handle and action fields of the MQPMO structure.

Controlling context information
Use this information to learn how to control context information using the options field in the MQPMO structure.

Putting one message on a queue using the MQPUT1 call
Use the MQPUT1 call when you want to close the queue immediately after you have put a single message on it. For example, a server application is
likely to use the MQPUT1 call when it is sending a reply to each of the different queues.

Distribution lists

Some cases where the put calls fail
If certain attributes of a queue are changed using the FORCE option on a command during the interval between you issuing an MQOPEN and an MQPUT
call, the MQPUT call fails and returns the MQRC_OBJECT_CHANGED reason code.

Parent topic: Writing a WebSphere MQ application

This build: January 26, 2011 11:19:43

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg12310_

2.4.1. Putting messages on a local queue using the MQPUT call

Use this information to learn about putting messages on a local queue using the MQPUT call.

As input to the MQPUT call, you must supply:

� A connection handle (Hconn).

� A queue handle (Hobj).

� A description of the message that you want to put on the queue. This is in the form of a message descriptor structure (MQMD).

� Control information, in the form of a put-message options structure (MQPMO).

� The length of the data contained within the message (MQLONG).

Page 63 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

� The message data itself.

The output from the MQPUT call is

� A reason code (MQLONG)

� A completion code (MQLONG)

If the call completes successfully, it also returns your options structure and your message descriptor structure. The call modifies your options structure to
show the name of the queue and the queue manager to which the message was sent. If you request that the queue manager generates a unique value for
the identifier of the message you are putting (by specifying binary zero in the MsgId field of the MQMD structure), the call inserts the value in the MsgId field

before returning this structure to you. Reset this value before you issue another MQPUT.

There is a description of the MQPUT call in the WebSphere MQ Application Programming Reference.

For more description on the information needed as input to the MQPUT call, see the following links:

� Specifying handles

� Defining messages using the MQMD structure

� Specifying options using the MQPMO structure

� The data in your message

� Putting messages: Using message handles

Specifying handles

For the connection handle (Hconn) in CICS® on z/OS® applications, you can specify the constant MQHC_DEF_HCONN (which has the value zero), or you can

use the connection handle returned by the MQCONN or MQCONNX call. For other applications, always use the connection handle returned by the MQCONN or
MQCONNX call.

Whatever environment you are working in, use the same queue handle (Hobj) that is returned by the MQOPEN call.

Defining messages using the MQMD structure

The message descriptor structure (MQMD) is an input/output parameter for the MQPUT and MQPUT1 calls. Use it to define the message you are putting on a
queue.

If MQPRI_PRIORITY_AS_Q_DEF or MQPER_PERSISTENCE_AS_Q_DEF is specified for the message and the queue is a cluster queue, the values used are
those of the queue to which the MQPUT resolves. If that queue is disabled for MQPUT, the call will fail. See WebSphere MQ Queue Manager Clusters for more
information.

Note: Use MQPMO_NEW_MSG_ID and MQPMO_NEW_CORREL_ID before putting a new message to ensure that the MsgId and CorrelId are unique. The

values in these fields are returned on a successful MQPUT.

There is an introduction to the message properties that MQMD describes in WebSphere MQ messages, and there is a description of the structure itself in the
WebSphere MQ Application Programming Reference.

Specifying options using the MQPMO structure

Use the MQPMO (Put Message Option) structure to pass options to the MQPUT and MQPUT1 calls.

The following sections give you help on filling in the fields of this structure. There is a description of the structure in the WebSphere MQ Application
Programming Reference.

The structure includes the following fields:

� StrucId

� Version

� Options

� Context

� ResolvedQName

� ResolvedQMgrName

� RecsPresent

� PutMsgRecsFields

� ResponseRecOffset and ResponseRecPtr

� OriginalMsgHandle

� NewMsgHandle

� Action

� PubLevel

These fields are described below.

StrucId

This identifies the structure as a put-message options structure. This is a 4-character field. Always specify MQPMO_STRUC_ID.

Version

This describes the version number of the structure. The default is MQPMO_VERSION_1. If you enter MQPMO_VERSION_2, you can use distribution lists
(see Distribution lists). If you enter MQPMO_VERSION_3, you can use message handles and message properties. If you enter
MQPMO_CURRENT_VERSION, your application is set always to use the most recent level.

Options

This controls the following:

� Whether the put operation is included in a unit of work

Page 64 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

� How much context information is associated with a message

� Where the context information is taken from

� Whether the call fails if the queue manager is in a quiescing state

� Whether grouping or segmentation is allowed

� Generation of a new message identifier and correlation identifier

� The order in which messages and segments are put on a queue

� Whether to resolve local queue names

If you leave the Options field set to the default value (MQPMO_NONE), the message you put has default context information associated with it.

Also, the way that the call operates with sync points is determined by the platform. The sync point control default is yes in z/OS; for other platforms, it is
no.

Context

This states the name of the queue handle that you want context information to be copied from (if requested in the Options field).

For an introduction to message context, see Message context. For information about using the MQPMO structure to control the context information in a
message, see Controlling context information.

ResolvedQName

This contains the name (after resolution of any alias name) of the queue that was opened to receive the message. This is an output field.

ResolvedQMgrName

This contains the name (after resolution of any alias name) of the queue manager that owns the queue in ResolvedQName. This is an output field.

The MQPMO can also accommodate fields required for distribution lists (see Distribution lists). If you want to use this facility, Version 2 of the MQPMO
structure is used. This includes the following fields:

RecsPresent

This field contains the number of queues in the distribution list; that is, the number of Put Message Records (MQPMR) and corresponding Response
Records (MQRR) present.

The value that you enter can be the same as the number of Object Records provided at MQOPEN. However, if the value is less than the number of Object
Records provided on the MQOPEN call, or if you provide no Put Message Records, the values of the queues that are not defined are taken from the default
values provided by the message descriptor. Also, if the value is greater than the number of Object Records provided, the excess Put Message Records are
ignored.

You are recommended to do one of the following:

� If you want to receive a report or reply from each destination, enter the same value as appears in the MQOR structure and use MQPMRs containing
MsgId fields. Either initialize these MsgId fields to zeros or specify MQPMO_NEW_MSG_ID.

When you have put the message to the queue, MsgId values that the queue manager has created become available in the MQPMRs; you can use

these to identify which destination is associated with each report or reply.

� If you do not want to receive reports or replies, choose one of the following:

1. If you want to identify destinations that fail immediately, you might still want to enter the same value in the RecsPresent field as appears in

the MQOR structure and provide MQRRs to identify these destinations. Do not specify any MQPMRs.

2. If you do not want to identify failed destinations, enter zero in the RecsPresent field and do not provide MQPMRs nor MQRRs.

Note: If you are using MQPUT1, the number of Response Record Pointers and Response Record Offsets must be zero.

For a full description of Put Message Records (MQPMR) and Response Records (MQRR), see the WebSphere MQ Application Programming Reference.

PutMsgRecFields

This indicates which fields are present in each Put Message Record (MQPMR). For a list of these fields, see Using the MQPMR structure.

PutMsgRecOffset and PutMsgRecPtr

Pointers (typically in C) and offsets (typically in COBOL) are used to address the Put Message Records (see Using the MQPMR structure for an overview of
the MQPMR structure).

Use the PutMsgRecPtr field to specify a pointer to the first Put Message Record, or the PutMsgRecOffset field to specify the offset of the first Put Message

Record. This is the offset from the start of the MQPMO. Depending on the PutMsgRecFields field, enter a nonnull value for either PutMsgRecOffset or

PutMsgRecPtr.

ResponseRecOffset and ResponseRecPtr

You also use pointers and offsets to address the Response Records (see Using the MQRR structure for further information about Response Records).

Use the ResponseRecPtr field to specify a pointer to the first Response Record, or the ResponseRecOffset field to specify the offset of the first Response

Record. This is the offset from the start of the MQPMO structure. Enter a nonnull value for either ResponseRecOffset or ResponseRecPtr.

Note: If you are using MQPUT1 to put messages to a distribution list, ResponseRecPtr must be null or zero and ResponseRecOffset must be zero.

Version 3 of the MQPMO structure additionally includes the following fields:

OriginalMsgHandle

The use you can make of this field depends on the value of the Action field. If you are putting a new message with associated message properties, set this
field to the message handle you previously created and set properties on. If you are forwarding, replying to, or generating a report in response to a
previously retrieved message, this field contains the message handle of that message.

NewMsgHandle

If you specify a NewMsgHandle, any properties associated with the handle override properties associated with the OriginalMsgHandle. For more
information, see Action.

Action

Use this field to specify the type of put being performed. Possible values and their meanings are as follows:

MQACTP_NEW

This is a new message unrelated to any other.

MQACTP_FORWARD

This message was retrieved previously and is now being forwarded.

MQACTP_REPLY

Page 65 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

This message is a reply to a previously retrieved message.

MQACTP_REPORT

This message is a report generated as a result of a previously retrieved message.
For more information, see Action.

PubLevel

If this message is a publication, you can set this field to determine which subscriptions receive it. Only subscriptions with a SubLevel less than or equal to
this value will receive this publication. The default value is 9 which is the highest level and means that subscriptions with any SubLevel can receive this
publication.

The data in your message

Give the address of the buffer that contains your data in the Buffer parameter of the MQPUT call. You can include anything in the data in your messages.

The amount of data in the messages, however, affects the performance of the application that is processing them.

The maximum size of the data is determined by:

� The MaxMsgLength attribute of the queue manager

� The MaxMsgLength attribute of the queue on which you are putting the message

� The size of any message header added by WebSphere® MQ (including the dead-letter header, MQDLH and the distribution list header, MQDH)

The MaxMsgLength attribute of the queue manager holds the size of message that the queue manager can process. This has a default of 100 MB for all

WebSphere MQ products at V6 or higher.

To determine the value of this attribute, use the MQINQ call on the queue manager object. For large messages, you can change this value.

The MaxMsgLength attribute of a queue determines the maximum size of message that you can put on the queue. If you attempt to put a message with a

size larger than the value of this attribute, your MQPUT call fails. If you are putting a message on a remote queue, the maximum size of message that you
can successfully put is determined by the MaxMsgLength attribute of the remote queue, of any intermediate transmission queues that the message is put on

along the route to its destination, and of the channels used.

For an MQPUT operation, the size of the message must be smaller than or equal to the MaxMsgLength attribute of both the queue and the queue manager.

The values of these attributes are independent, but you are recommended to set the MaxMsgLength of the queue to a value less than or equal to that of the

queue manager.

WebSphere MQ adds header information to messages in the following circumstances:

� When you put a message on a remote queue, WebSphere MQ adds a transmission header structure (MQXQH) to the message. This structure includes
the name of the destination queue and its owning queue manager.

� If WebSphere MQ cannot deliver a message to a remote queue, it attempts to put the message on the dead-letter (undelivered-message) queue. It
adds an MQDLH structure to the message. This structure includes the name of the destination queue and the reason that the message was put on the
dead-letter queue.

� If you want to send a message to multiple destination queues, WebSphere MQ adds an MQDH header to the message. This describes the data that is
present in a message, belonging to a distribution list, on a transmission queue. Consider this when choosing an optimum value for the maximum
message length.

� If the message is a segment or a message in a group, WebSphere MQ might add an MQMDE.

These structures are described in the WebSphere MQ Application Programming Reference.

If your messages are of the maximum size allowed for these queues, the addition of these headers means that the put operations fail because the messages
are now too big. To reduce the possibility of the put operations failing:

� Make the size of your messages smaller than the MaxMsgLength attribute of the transmission and dead-letter queues. Allow at least the value of the

MQ_MSG_HEADER_LENGTH constant (more for large distribution lists).

� Make sure that the MaxMsgLength attribute of the dead-letter queue is set to the same as the MaxMsgLength of the queue manager that owns the

dead-letter queue.

The attributes for the queue manager and the message queuing constants are described in the WebSphere MQ Application Programming Reference.

For information on how undelivered messages are handled in a distributed queuing environment, see WebSphere MQ Intercommunication.

Putting messages: Using message handles

Two message handles are available in the MQPMO structure, OriginalMsgHandle and NewMsgHandle. The relationship between these message handles is
defined by the value of the MQPMO Action field.

For full details see Action (MQLONG)the description of the Action field in the WebSphere MQ Application Programming Reference. A message handle is not
necessarily required in order to put a message. Its purpose is to associate properties with a message, so it is required only if you are using message
properties.

Parent topic: Putting messages on a queue

This build: January 26, 2011 11:19:44

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg12320_

2.4.2. Putting messages on a remote queue

When you want to put a message on a remote queue (that is, a queue owned by a queue manager other than the one to which your application is
connected) rather than a local queue, the only extra consideration is how you specify the name of the queue when you open it. This is described in Opening
remote queues. There is no change to how you use the MQPUT or MQPUT1 call for a local queue.

Page 66 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

For more information on using remote and transmission queues, see WebSphere MQ Intercommunication.

Parent topic: Putting messages on a queue

This build: January 26, 2011 11:19:44

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg12370_

2.4.3. Setting properties of a message

Call MQSETMP for each property you want to set. When you put the message set the message handle and action fields of the MQPMO structure.

To associate properties with a message, the message must have a message handle. Create a message handle using the MQCRTMH function call. Call
MQSETMP specifying this message handle for each property you want to set. A sample program, amqsstma.c, is provided to illustrate the use of MQSETMP.

If this is a new message, when you put it to a queue, using MQPUT or MQPUT1, set the OriginalMsgHandle field in the MQPMO to the value of this message
handle, and set the MQPMO Action field to MQACTP_NEW (this is the default value).

If this is a message you have previously retrieved, and you are now forwarding or replying to it or sending a report in response to it, put the original
message handle in the OriginalMsgHandle field of the MQPMO and the new message handle in the NewMsgHandle field. Set the Action field to
MQACTP_FORWARD, MQACTP_REPLY, or MQACTP_REPORT, as appropriate.

If you have properties in an MQRFH2 header from a message you have previously retrieved, you can convert them to message handle properties using the
MQBUFMH call.

If you are putting your message to a queue on a queue manager at a level earlier than WebSphere MQ Version 7.0, which cannot process message
properties, you can set the PropertyControl parameter in the channel definition to specify how the properties are to be treated.

Parent topic: Putting messages on a queue

Related information
MQSETMP – Set message handle property
MQCRTMH – Create message handle
MQPUT – Put message
MQPUT1 – Put one message
MQPMO – Put-message options
PropertyControl

This build: January 26, 2011 11:22:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg20710_

2.4.4. Controlling context information

Use this information to learn how to control context information using the options field in the MQPMO structure.

To control context information, use the Options field in the MQPMO structure.

If you do not, the queue manager overwrites context information that might already be in the message descriptor with the identity and context information
that it has generated for your message. This is the same as specifying the MQPMO_DEFAULT_CONTEXT option. You might want this default context
information when you create a new message (for example, when processing user input from an inquiry screen).

If you want no context information associated with your message, use the MQPMO_NO_CONTEXT option. When putting a message with no context, any
authority checks made by WebSphere® MQ are made using a blank user ID. A blank user ID cannot be assigned explicit authority to WebSphere MQ
resources but is treated as a member of the special group 'nobody'. For more details on the special group 'nobody', see Installable services interface
reference information.

If you want no context information associated with your message, use the MQPMO_NO_CONTEXT option.

The following sections of this topic explain the use of identity context, user context, and all context.

� Passing identity context

� Passing user context

� Passing all context

� Setting identity context

� Setting user context

� Setting all context

Passing identity context

In general, programs should pass identity context information from message to message around an application until the data reaches its final destination.

Programs should change the origin context information each time that they change the data. However, applications that want to change or set any context
information must have the appropriate level of authority. The queue manager checks this authority when the applications open the queues; they must have
authority to use the appropriate context options for the MQOPEN call.

If your application gets a message, processes the data from the message, then puts the changed data into another message (possibly for processing by
another application), the application must pass the identity context information from the original message to the new message. You can allow the queue
manager to create the origin context information.

To save the context information from the original message, use the MQOO_SAVE_ALL_CONTEXT option when you open the queue for getting the message.
This is in addition to any other options you use with the MQOPEN call. Note, however, that you cannot save context information if you only browse the
message.

Page 67 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

When you create the second message:

� Open the queue using the MQOO_PASS_IDENTITY_CONTEXT option (in addition to the MQOO_OUTPUT option).

� In the Context field of the put-message options structure, give the handle of the queue from which you saved the context information.

� In the Options field of the put-message options structure, specify the MQPMO_PASS_IDENTITY_CONTEXT option.

Passing user context

You cannot choose to pass only user context. To pass user context when putting a message, specify MQPMO_PASS_ALL_CONTEXT. Any properties in the
user context are passed in the same way as the origin context.

When an MQPUT or MQPUT1 takes place and the context is being passed, all properties in the user context are passed from the retrieved message to the put
message. Any user context properties that the putting application has altered are put with their original values. Any user context properties that the putting
application has deleted are restored in the put message. Any user context properties that the putting application has added to the message are retained.

Passing all context

If your application gets a message, and puts the message data (unchanged) into another message, the application must pass all (identity, origin, and user)
context information from the original message to the new message. An example of an application that might do this is a message mover, which moves
messages from one queue to another.

Follow the same procedure as for passing identity context, except that you use the MQOPEN option MQOO_PASS_ALL_CONTEXT and the put-message option
MQPMO_PASS_ALL_CONTEXT.

Setting identity context

If you want to set the identity context information for a message:

� Open the queue using the MQOO_SET_IDENTITY_CONTEXT option.

� Put the message on the queue, specifying the MQPMO_SET_IDENTITY_CONTEXT option. In the message descriptor, specify whatever identity context
information you require.

Note: When you set some (but not all) of the identity context fields using the MQOO_SET_IDENTITY_CONTEXT and MQPMO_SET_IDENTITY_CONTEXT
options, it is important to realize that the queue manager does not set any of the other fields.

Setting user context

To set a property in the user context, set the Context field of the message property descriptor (MQPD) to MQPD_USER_CONTEXT when you make the
MQSETMP call.

You do not need any special authority to set a property in the user context. User context has no MQOO_SET_* or MQPMO_SET_* context options.

Setting all context

If you want to set both the identity and the origin context information for a message:

1. Open the queue using the MQOO_SET_ALL_CONTEXT option.

2. Put the message on the queue, specifying the MQPMO_SET_ALL_CONTEXT option. In the message descriptor, specify whatever identity and origin
context information you require.

Appropriate authority is needed for each type of context setting.

Parent topic: Putting messages on a queue

This build: January 26, 2011 11:19:44

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg12380_

2.4.5. Putting one message on a queue using the MQPUT1 call

Use the MQPUT1 call when you want to close the queue immediately after you have put a single message on it. For example, a server application is likely to
use the MQPUT1 call when it is sending a reply to each of the different queues.

MQPUT1 is functionally equivalent to calling MQOPEN followed by MQPUT, followed by MQCLOSE. The only difference in the syntax for the MQPUT and
MQPUT1 calls is that for MQPUT you specify an object handle, whereas for MQPUT1 you specify an object descriptor structure (MQOD) as defined in MQOPEN
(see Identifying objects (the MQOD structure)). This is because you need to give information to the MQPUT1 call about the queue that it has to open,
whereas when you call MQPUT, the queue must already be open.

As input to the MQPUT1 call, you must supply:

� A connection handle.

� A description of the object that you want to open. This is in the form of an object descriptor structure (MQOD).

� A description of the message that you want to put on the queue. This is in the form of a message descriptor structure (MQMD).

� Control information in the form of a put-message options structure (MQPMO).

� The length of the data contained within the message (MQLONG).

� The address of the message data.

The output from MQPUT1 is:

� A completion code

� A reason code

If the call completes successfully, it also returns your options structure and your message descriptor structure. The call modifies your options structure to
show the name of the queue and the queue manager to which the message was sent. If you request that the queue manager generate a unique value for
the identifier of the message that you are putting (by specifying binary zero in the MsgId field of the MQMD structure), the call inserts the value in the MsgId

field before returning this structure to you.

Note: You cannot use MQPUT1 with a model queue name; however, once a model queue has been opened, you can issue an MQPUT1 to the dynamic queue.

The six input parameters for MQPUT1 are:

Hconn

Page 68 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

This is a connection handle. For CICS® applications, you can specify the constant MQHC_DEF_HCONN (which has the value zero), or use the connection
handle returned by the MQCONN or MQCONNX call. For other programs, always use the connection handle returned by the MQCONN or MQCONNX call.

ObjDesc

This is an object descriptor structure (MQOD).

In the ObjectName and ObjectQMgrName fields, give the name of the queue on which you want to put a message, and the name of the queue manager that

owns this queue.

The DynamicQName field is ignored for the MQPUT1 call because it cannot use model queues.

Use the AlternateUserId field if you want to nominate an alternate user identifier that is to be used to test authority to open the queue.

MsgDesc

This is a message descriptor structure (MQMD). As with the MQPUT call, use this structure to define the message that you are putting on the queue.

PutMsgOpts

This is a put-message options structure (MQPMO). Use it as you would for the MQPUT call (see Specifying options using the MQPMO structure).

When the Options field is set to zero, the queue manager uses your own user ID when it performs tests for authority to access the queue. Also, the queue

manager ignores any alternate user identifier given in the AlternateUserId field of the MQOD structure.

BufferLength

This is the length of your message.

Buffer

This is the buffer area that contains the text of your message.

When you use clusters, MQPUT1 operates as though MQOO_BIND_NOT_FIXED is in effect. Applications must use the resolved fields in the MQPMO structure
rather than the MQOD structure to determine where the message was sent. See WebSphere MQ Queue Manager Clusters for more information.

There is a description of the MQPUT1 call in the WebSphere MQ Application Programming Reference.

Parent topic: Putting messages on a queue

This build: January 26, 2011 11:19:45

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg12430_

2.4.6. Distribution lists

Not supported on WebSphere® MQ for z/OS®.

Distribution lists allow you to put a message to multiple destinations in a single MQPUT or MQPUT1 call. Multiple queues can be opened using a single
MQOPEN and a message can then be put to each of those queues using a single MQPUT. Some generic information from the MQI structures used for this
process can be superseded by specific information relating to the individual destinations included in the distribution list.

When an MQOPEN call is issued, generic information is taken from the Object Descriptor (MQOD). If you specify MQOD_VERSION_2 in the Version field and

a value greater than zero in the RecsPresent field, the Hobj can be defined as a handle of a list (of one or more queues) rather than of a queue. In this

case, specific information is given through the object records (MQORs), which give details of destination (that is, ObjectName and ObjectQMgrName).

The object handle (Hobj) is passed to the MQPUT call, allowing you to put to a list rather than to a single queue.

When a message is put on the queues (MQPUT), generic information is taken from the Put Message Option structure (MQPMO) and the Message Descriptor
(MQMD). Specific information is given in the form of Put Message Records (MQPMRs).

Response Records (MQRR) can receive a completion code and reason code specific to each destination queue.

Figure 1 shows how distribution lists work.

Figure 1. How distribution lists work. This diagram shows that one message is transmitted through the channel and can be put on more than one remote

queue.

Opening distribution lists

Page 69 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Use the MQOPEN call to open a distribution list, and use the options of the call to specify what you want to do with the list.

Putting messages to a distribution list
To put messages to a distribution list, you can use MQPUT or MQPUT1.

Parent topic: Putting messages on a queue

This build: January 26, 2011 11:19:45

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg12440_

2.4.6.1. Opening distribution lists

Use the MQOPEN call to open a distribution list, and use the options of the call to specify what you want to do with the list.

As input to MQOPEN, you must supply:

� A connection handle (see Putting messages on a queue for a description)

� Generic information in the Object Descriptor structure (MQOD)

� The name of each queue that you want to open, using the Object Record structure (MQOR)

The output from MQOPEN is:

� An object handle that represents your access to the distribution list

� A generic completion code

� A generic reason code

� Response Records (optional), containing a completion code and reason for each destination

Using the MQOD structure

Use the MQOD structure to identify the queues that you want to open.

To define a distribution list, you must specify MQOD_VERSION_2 in the Version field, a value greater than zero in the RecsPresent field, and MQOT_Q in

the ObjectType field. See MQOD - Object descriptor for a description of all the fields of the MQOD structure.

Using the MQOR structure

Provide an MQOR structure for each destination.

The structure contains the destination queue and queue manager names. The ObjectName and ObjectQMgrName fields in the MQOD are not used for

distribution lists. There must be one or more object records. If the ObjectQMgrName is left blank, the local queue manager is used. See the WebSphere MQ

Application Programming Reference for further information about these fields.

You can specify the destination queues in two ways:

� By using the offset field ObjectRecOffset.

In this case, the application must declare its own structure containing an MQOD structure, followed by the array of MQOR records (with as many array
elements as are needed), and set ObjectRecOffset to the offset of the first element in the array from the start of the MQOD. Ensure that this offset is

correct.

Use of built-in facilities provided by the programming language is recommended, if these are available in all the environments in which the application
runs. The following code illustrates this technique for the COBOL programming language:

 01 MY-OPEN-DATA.

 02 MY-MQOD.

 COPY CMQODV.

 02 MY-MQOR-TABLE OCCURS 100 TIMES.

 COPY CMQORV.

 MOVE LENGTH OF MY-MQOD TO MQOD-OBJECTRECOFFSET.

Alternatively, use the constant MQOD_CURRENT_LENGTH if the programming language does not support the necessary built-in facilities in all the
environments concerned. The following code illustrates this technique:

 01 MY-MQ-CONSTANTS.

 COPY CMQV.

 01 MY-OPEN-DATA.

 02 MY-MQOD.

 COPY CMQODV.

 02 MY-MQOR-TABLE OCCURS 100 TIMES.

 COPY CMQORV.

 MOVE MQOD-CURRENT-LENGTH TO MQOD-OBJECTRECOFFSET.

However, this works correctly only if the MQOD structure and the array of MQOR records are contiguous; if the compiler inserts skip bytes between the
MQOD and the MQOR array, these must be added to the value stored in ObjectRecOffset.

Using ObjectRecOffset is recommended for programming languages that do not support the pointer data type, or that implement the pointer data

type in a way that is not portable to different environments (for example, the COBOL programming language).

� By using the pointer field ObjectRecPtr.

In this case, the application can declare the array of MQOR structures separately from the MQOD structure, and set ObjectRecPtr to the address of

the array. The following code illustrates this technique for the C programming language:

MQOD MyMqod;

MQOR MyMqor[100];

MyMqod.ObjectRecPtr = MyMqor;

Using ObjectRecPtr is recommended for programming languages that support the pointer data type in a way that is portable to different

environments (for example, the C programming language).

Whichever technique you choose, you must use one of ObjectRecOffset and ObjectRecPtr; the call fails with reason code

MQRC_OBJECT_RECORDS_ERROR if both are zero, or both are nonzero.

Page 70 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Using the MQRR structure

These structures are destination-specific; each Response Record contains a CompCode and Reason field for each queue of a distribution list. You must use this

structure to enable you to distinguish where any problems lie.

For example, if you receive a reason code of MQRC_MULTIPLE_REASONS and your distribution list contains five destination queues, you will not know which
queues the problems apply to if you do not use this structure. However, if you have a completion code and reason code for each destination, you can locate
the errors more easily.

See the WebSphere MQ Application Programming Reference for further information about the MQRR structure.

Figure 1 shows how you can open a distribution list in C.

Figure 1. Opening a distribution list in C. The MQOD uses pointers to the MQOR and MQRR structures.

Figure 2 shows how you can open a distribution list in COBOL.

Figure 2. Opening a distribution list in COBOL. The MQOD uses offsets in COBOL.

Using the MQOPEN options

You can specify the following options when opening a distribution list:

� MQOO_OUTPUT

� MQOO_FAIL_IF_QUIESCING (optional)

� MQOO_ALTERNATE_USER_AUTHORITY (optional)

� MQOO_*_CONTEXT (optional)

See Opening and closing objects for a description of these options.

Parent topic: Distribution lists

This build: January 26, 2011 11:19:45

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg12450_

2.4.6.2. Putting messages to a distribution list

To put messages to a distribution list, you can use MQPUT or MQPUT1.

As input, you must supply:

� A connection handle (see Putting messages on a queue for a description).

� An object handle. If a distribution list is opened using MQOPEN, the Hobj allows you only to put to the list.

� A message descriptor structure (MQMD). See the WebSphere MQ Application Programming Reference for a description of this structure.

� Control information in the form of a put-message option structure (MQPMO). See Specifying options using the MQPMO structure for information about
filling in the fields of the MQPMO structure.

� Control information in the form of Put Message Records (MQPMR).

� The length of the data contained within the message (MQLONG).

� The message data itself.

The output is:

� A completion code

� A reason code

� Response Records (optional)

Using the MQPMR structure

This structure is optional and gives destination-specific information for some fields that you might want to identify differently from those already identified in
the MQMD.

For a description of these fields, see the WebSphere MQ Application Programming Reference.

The content of each record depends on the information given in the PutMsgRecFields field of the MQPMO. For example, in the sample program AMQSPTL0.C

(see The Distribution List sample program for a description) showing the use of distribution lists, the sample chooses to provide values for MsgId and

CorrelId in the MQPMR. This section of the sample program looks like this:

 typedef struct

 {

 MQBYTE24 MsgId;

Page 71 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

 MQBYTE24 CorrelId;

 } PutMsgRec;…

 /**********************

 MQLONG PutMsgRecFields=MQPMRF_MSG_ID | MQPMRF_CORREL_ID;

This implies that MsgId and CorrelId are provided for each destination of a distribution list. The Put Message Records are provided as an array.

Figure 1 shows how you can put a message to a distribution list in C.

Figure 1. Putting a message to a distribution list in C. The MQPMO uses pointers to the MQPMR and MQRR structures.

Figure 2 shows how you can put a message to a distribution list in COBOL.

Figure 2. Putting a message to a distribution list in COBOL. The MQPMO uses offsets in COBOL.

Using MQPUT1

If you are using MQPUT1, consider the following points:

1. The values of the ResponseRecOffset and ResponseRecPtr fields must be null or zero.

2. The Response Records, if required, must be addressed from the MQOD.

Parent topic: Distribution lists

This build: January 26, 2011 11:19:45

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg12500_

2.4.7. Some cases where the put calls fail

If certain attributes of a queue are changed using the FORCE option on a command during the interval between you issuing an MQOPEN and an MQPUT call,
the MQPUT call fails and returns the MQRC_OBJECT_CHANGED reason code.

The queue manager marks the object handle as being no longer valid. This also happens if the changes are made while an MQPUT1 call is being processed,
or if the changes apply to any queue to which the queue name resolves. The attributes that affect the handle in this way are listed in the description of the
MQOPEN call in the WebSphere MQ Application Programming Reference. If your call returns the MQRC_OBJECT_CHANGED reason code, close the queue,
reopen it, then try to put a message again.

If put operations are inhibited for a queue on which you are attempting to put messages (or any queue to which the queue name resolves), the MQPUT or
MQPUT1 call fails and returns the MQRC_PUT_INHIBITED reason code. You might be able to put a message successfully if you attempt the call at a later
time, if the design of the application is such that other programs change the attributes of queues regularly.

Furthemore, if the queue that you are trying to put your message on is full, the MQPUT or MQPUT1 call fails and returns MQRC_Q_FULL.

If a dynamic queue (either temporary or permanent) has been deleted, MQPUT calls using a previously-acquired object handle fail and return the
MQRC_Q_DELETED reason code. In this situation, it is good practice to close the object handle as it is no longer of any use to you.

In the case of distribution lists, multiple completion codes and reason codes can occur in a single request. These cannot be handled using only the CompCode

and Reason output fields on MQOPEN and MQPUT.

When you use distribution lists to put messages to multiple destinations, the Response Records contain the specific CompCode and Reason for each

destination. If you receive a completion code of MQCC_FAILED, no message is put on any destination queue successfully. If the completion code is
MQCC_WARNING, the message is successfully put on one or more of the destination queues. If you receive a return code of MQRC_MULTIPLE_REASONS, the
reason codes are not all the same for every destination. Therefore, it is recommended to use the MQRR structure so that you can determine which queue or
queues caused an error and the reasons for each.

Parent topic: Putting messages on a queue

This build: January 26, 2011 11:19:46

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg12530_

2.5. Getting messages from a queue

You can get messages from a queue in two ways:

1. You can remove a message from the queue so that other programs can no longer see it.

2. You can copy a message, leaving the original message on the queue. This is known as browsing. You can remove the message once you have browsed
it.

In both cases, you use the MQGET call, but first your application must be connected to the queue manager, and you must use the MQOPEN call to open the
queue (for input, browse, or both). These operations are described in Connecting to and disconnecting from a queue manager and Opening and closing
objects.

When you have opened the queue, you can use the MQGET call repeatedly to browse or remove messages on the same queue. Call MQCLOSE when you
have finished getting all the messages that you want from the queue.

Page 72 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

This chapter introduces getting messages from a queue, under these headings:

� Getting messages from a queue using the MQGET call

� The order in which messages are retrieved from a queue

� Getting a particular message

� Type of index

� Handling messages greater than 4 MB long

� Waiting for messages

� Signaling

� Skipping backout

� Application data conversion

� Browsing messages on a queue

� Browsing messages in logical order

� Some cases where the MQGET call fails

Getting messages from a queue using the MQGET call
The MQGET call gets a message from an open local queue. It cannot get a message from a queue on another system.

The order in which messages are retrieved from a queue
You can control the order in which you retrieve messages from a queue. This section looks at the options.

Getting a particular message
There are a number of ways of getting a particular message from a queue. These are: selecting on the MsgId and CorrelId, selecting on the GroupId,
MsgSeqNumber and Offset, and selecting on the MsgToken. You can also use a selection string when you open the queue.

Improving performance of non-persistent messages
When a client requires a message from a server, it sends a request to the server. It sends a separate request for each of the messages it consumes.
To improve the performance of a client consuming non persistent messages by avoiding having to send these request messages, a client can be
configured to use read ahead. Read ahead allows messages to be sent to a client without an application having to request them.

Type of index

Handling messages greater than 4 MB long
Messages can be too large for the application, queue, or queue manager. Depending on the environment, WebSphere MQ provides a number of ways
of dealing with messages that are longer than 4 MB.

Waiting for messages

Signaling
Signaling is supported only on WebSphere MQ for z/OS.

Skipping backout
Supported only on WebSphere MQ for z/OS.

Application data conversion
When necessary, MCAs convert the message descriptor and header data into the required character set and encoding. Either end of the link (that is,
the local MCA or the remote MCA) can do the conversion.

Browsing messages on a queue

Some cases where the MQGET call fails
If certain attributes of a queue are changed using the FORCE option on a command between issuing an MQOPEN and an MQGET call, the MQGET call
fails and returns the MQRC_OBJECT_CHANGED reason code.

Parent topic: Writing a WebSphere MQ application

This build: January 26, 2011 11:19:46

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg12540_

2.5.1. Getting messages from a queue using the MQGET call

The MQGET call gets a message from an open local queue. It cannot get a message from a queue on another system.

As input to the MQGET call, you must supply:

� A connection handle.

� A queue handle.

� A description of the message that you want to get from the queue. This is in the form of a message descriptor (MQMD) structure.

� Control information in the form of a Get Message Options (MQGMO) structure.

� The size of the buffer that you have assigned to hold the message (MQLONG).

� The address of the storage in which to put the message.

The output from MQGET is:

� A reason code

� A completion code

� The message in the buffer area that you specified, if the call completes successfully

� Your options structure, modified to show the name of the queue from which the message was retrieved

� Your message descriptor structure, with the contents of the fields modified to describe the message that was retrieved

� The length of the message (MQLONG)

There is a description of the MQGET call in the WebSphere MQ Application Programming Reference.

Page 73 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

The following sections describe the information you must supply as input to the MQGET call.

Specifying connection handles
For CICS® on z/OS® applications, you can specify the constant MQHC_DEF_HCONN (which has the value zero), or use the connection handle returned
by the MQCONN or MQCONNX call. For other applications, always use the connection handle returned by the MQCONN or MQCONNX call.

Describing messages using the MQMD structure and the MQGET call
To identify the message that you want to get from a queue, use the message descriptor structure (MQMD).

Specifying MQGET options using the MQGMO structure
The MQGMO structure is an input/output variable for passing options to the MQGET call. The following sections help you to complete some of the fields
of this structure.

Inquiring properties of a message
You can either retrieve message properties using a message handle or MQRFH2 headers. Use the MQGMO Options field to indicate how you want
properties to be returned. Use MQINQMP to return properties associated with a message handle to your application.

Specifying the size of the buffer area

Parent topic: Getting messages from a queue

This build: January 26, 2011 11:19:46

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg12550_

2.5.1.1. Specifying connection handles

For CICS® on z/OS® applications, you can specify the constant MQHC_DEF_HCONN (which has the value zero), or use the connection handle returned by
the MQCONN or MQCONNX call. For other applications, always use the connection handle returned by the MQCONN or MQCONNX call.

Use the queue handle (Hobj) that is returned when you call MQOPEN.

Parent topic: Getting messages from a queue using the MQGET call

This build: January 26, 2011 11:19:46

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg12560_

2.5.1.2. Describing messages using the MQMD structure and the MQGET call

To identify the message that you want to get from a queue, use the message descriptor structure (MQMD).

This is an input/output parameter for the MQGET call. There is an introduction to the message properties that MQMD describes in WebSphere MQ messages,
and there is a description of the structure itself in the WebSphere MQ Application Programming Reference.

If you know which message you want to get from the queue, see Getting a particular message.

If you do not specify a particular message, MQGET retrieves the first message in the queue. The order in which messages are retrieved from a queue
describes how the priority of a message, the MsgDeliverySequence attribute of the queue, and the MQGMO_LOGICAL_ORDER option determine the order of

the messages in the queue.

Note: If you want to use MQGET more than once (for example, to step through the messages in the queue), you must set the MsgId and CorrelId fields of

this structure to null after each call. This clears these fields of the identifiers of the message that was retrieved.

However, if you want to group your messages, the GroupId must be the same for messages in the same group, so that the call looks for a message having

the same identifiers as the previous message in order to make up the whole group.

Parent topic: Getting messages from a queue using the MQGET call

This build: January 26, 2011 11:19:46

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg12570_

2.5.1.3. Specifying MQGET options using the MQGMO structure

The MQGMO structure is an input/output variable for passing options to the MQGET call. The following sections help you to complete some of the fields of
this structure.

There is a description of the MQGMO structure in the WebSphere MQ Application Programming Reference.

StrucId

StrucId is a 4-character field used to identify the structure as a get-message options structure. Always specify MQGMO_STRUC_ID.

Version

Version describes the version number of the structure. MQGMO_VERSION_1 is the default. If you want to use the Version 2 fields or retrieve messages in

logical order, specify MQGMO_VERSION_2. If you want to use the Version 3 fields or retrieve messages in logical order, specify MQGMO_VERSION_3.
MQGMO_CURRENT_VERSION sets your application to use the most recent level.

Options

Within your code, you can select the options in any order; each option is represented by a bit in the Options field.

The Options field controls:

Page 74 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

� Whether the MQGET call waits for a message to arrive on the queue before it completes (see Waiting for messages)

� Whether the get operation is included in a unit of work.

� Whether a nonpersistent message is retrieved outside sync point, allowing fast messaging

� On WebSphere® MQ for z/OS®, whether the message retrieved is marked as skipping backout (see Skipping backout)

� Whether the message is removed from the queue, or merely browsed

� Whether to select a message by using a browse cursor or by other selection criteria

� Whether the call succeeds even if the message is longer than your buffer

� On WebSphere MQ for z/OS, whether to allow the call to complete. This option also sets a signal to indicate that you want to be notified when a
message arrives

� Whether the call fails if the queue manager is in a quiescing state

� On WebSphere MQ for z/OS, whether the call fails if the connection is in a quiescing state

� Whether application message data conversion is required (see Application data conversion)

� The order in which messages and (with the exception of WebSphere MQ for z/OS) segments are retrieved from a queue

� Except on WebSphere MQ for z/OS, whether complete, logical messages only are retrievable

� Whether messages in a group can be retrieved only when all messages in the group are available

� Except on WebSphere MQ for z/OS, whether segments in a logical message can be retrieved only when all segments in the logical message are
available

If you leave the Options field set to the default value (MQGMO_NO_WAIT), the MQGET call operates this way:

� If there is no message matching your selection criteria on the queue, the call does not wait for a message to arrive, but completes immediately.
Also, in WebSphere MQ for z/OS, the call does not set a signal requesting notification when such a message arrives.

� The way that the call operates with sync points is determined by the platform:

� On WebSphere MQ for z/OS, the message retrieved is not marked as skipping backout.

� The selected message is removed from the queue (not browsed).

� No application message data conversion is required.

� The call fails if the message is longer than your buffer.

WaitInterval

The WaitInterval field specifies the maximum time (in milliseconds) that the MQGET call waits for a message to arrive on the queue when you use the

MQGMO_WAIT option. If no message arrives within the time specified in WaitInterval, the call completes and returns a reason code showing that there

was no message that matched your selection criteria on the queue.

On WebSphere MQ for z/OS, if you use the MQGMO_SET_SIGNAL option, the WaitInterval field specifies the time for which the signal is set.

For more information on these options, see Waiting for messages and Signaling.

Signal1

Signal1 is supported on WebSphere MQ for z/OS and WebSphere MQ for HP NonStop Server .

If you use the MQGMO_SET_SIGNAL option to request that your application is notified when a suitable message arrives, you specify the type of signal in
the Signal1 field. In WebSphere MQ on all other platforms, the Signal1 field is reserved and its value is not significant.

For more information, see Signaling.

Signal2

The Signal2 field is reserved on all platforms and its value is not significant.

For more information, see Signaling.

ResolvedQName

ResolvedQName is an output field in which the queue manager returns the name of the queue (after resolution of any alias) from which the message was

retrieved.

MatchOptions

MatchOptions controls the selection criteria for MQGET.

GroupStatus

GroupStatus indicates whether the message that you have retrieved is in a group.

SegmentStatus

SegmentStatus indicates whether the item that you have retrieved is a segment of a logical message.

Segmentation

Segmentation indicates whether segmentation is allowed for the message retrieved.

MsgToken

MsgToken uniquely identifies a message.

For more information, see WebSphere MQ Workflow.

ReturnedLength

ReturnedLength is an output field in which the queue manager returns the length of message data returned (in bytes).

MsgHandle

The handle to a message that is to be populated with the properties of the message being retrieved from the queue. The handle has previously been
created by an MQCRTMH call. Any properties already associated with the handle are cleared before retrieving a message.

Parent topic: Getting messages from a queue using the MQGET call

Platform Under sync point control

i5/OS® No

UNIX systems No

z/OS Yes

Windows systems No

Page 75 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

This build: January 26, 2011 11:19:47

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg12580_

2.5.1.4. Inquiring properties of a message

You can either retrieve message properties using a message handle or MQRFH2 headers. Use the MQGMO Options field to indicate how you want properties
to be returned. Use MQINQMP to return properties associated with a message handle to your application.

If you set MQGMO_PROPERTIES_IN_HANDLE and pass an MQHMSG structure in the MsgHandle in your MQGET call, the message properties are made
available using that message handle. If you set MQGMO_PROPERTIES_FORCE_MQRFH2, the message properties are returned in MQRFH2 headers.

If you set MQGMO_PROPERTIES_AS_Q_DEF, properties are represented as defined by the PropertyControl queue attribute. However, if a MsgHandle is
provided this option is ignored and the properties of the message are made available on the MsgHandle, unless the value of the PropertyControl queue
attribute is MQPROP_FORCE_MQRFH2.

When you have associated the message properties with the message handle, you can return each property to your application using MQINQMP. A sample
program, amqsiqma.c, is provided to illustrate the use of MQINQMP.

You should normally return properties using a message handle. If you already use properties in MQRFH2 headers in applications using earlier versions of
WebSphere MQ, you can continue to do so by using MQGMO_PROPERTIES_FORCE_MQRFH2 in the MQGET call or by setting MQPROP_FORCE_MQRFH2 as the
value of the PropertyControl queue attribute. You can also use the MQMHBUF call to convert properties from a message handle to MQRFH2 format.

If you set properties using a message handle, an application connected to an earlier version of Websphere MQ can retrieve them using MQRFH2 headers.

Websphere MQ Version 7.0 clients connected to queue managers at an earlier version can retrieve properties using message handles, even though those
properties were set using MQRFH2 headers.

For further information about how to return a topic string, see Publication Properties.

Parent topic: Getting messages from a queue using the MQGET call

This build: January 26, 2011 11:22:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg20720_

2.5.1.5. Specifying the size of the buffer area

In the BufferLength parameter of the MQGET call, specify the size of the buffer area to hold the message data that you retrieve. You decide how big this

should be in three ways:

1. You might already know what length of messages to expect from this program. If so, specify a buffer of this size.

However, you can use the MQGMO_ACCEPT_TRUNCATED_MSG option in the MQGMO structure if you want the MQGET call to complete even if the
message is too big for the buffer. In this case:

� The buffer is filled with as much of the message as it can hold

� The call returns a warning completion code

� The message is removed from the queue (discarding the remainder of the message), or the browse cursor is advanced (if you are browsing the
queue)

� The real length of the message is returned in DataLength

Without this option, the call still completes with a warning, but it does not remove the message from the queue (or advance the browse cursor).

2. Estimate a size for the buffer (or even specify a size of zero bytes) and do not use the MQGMO_ACCEPT_TRUNCATED_MSG option. If the MQGET call
fails (for example, because the buffer is too small), the length of the message is returned in the DataLength parameter of the call. (The buffer is still

filled with as much of the message as it can hold, but the processing of the call is not completed.) Store the MsgId of this message, then repeat the

MQGET call, specifying a buffer area of the correct size, and the MsgId that you noted from the first call.

If your program is serving a queue that is also being served by other programs, one of those other programs might remove the message that you
want before your program can issue another MQGET call. Your program could waste time searching for a message that no longer exists. To avoid this,
first browse the queue until you find the message that you want, specifying a BufferLength of zero and using the MQGMO_ACCEPT_TRUNCATED_MSG

option. This positions the browse cursor under the message that you want. You can then retrieve the message by calling MQGET again, specifying the
MQGMO_MSG_UNDER_CURSOR option. If another program removes the message between your browse and removal calls, your second MQGET fails
immediately (without searching the whole queue), because there is no message under your browse cursor.

3. The MaxMsgLength queue attribute determines the maximum length of messages accepted for that queue; the MaxMsgLength queue manager attribute

determines the maximum length of messages accepted for that queue manager. If you do not know what length of message to expect, you can inquire
about the MaxMsgLength attribute (using the MQINQ call), then specify a buffer of this size.

Try to make the buffer size as close as possible to the actual message size to avoid reduced performance.

For further information about the MaxMsgLength attribute, see Handling messages greater than 4 MB long.

Parent topic: Getting messages from a queue using the MQGET call

This build: January 26, 2011 11:19:47

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg12590_

2.5.2. The order in which messages are retrieved from a queue

You can control the order in which you retrieve messages from a queue. This section looks at the options.

Priority

Page 76 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Logical and physical ordering
Messages on queues can occur (within each priority level) in physical or logical order.

Parent topic: Getting messages from a queue

This build: January 26, 2011 11:19:47

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg12600_

2.5.2.1. Priority

A program can assign a priority to a message when it puts the message on a queue (see Message priorities). Messages of equal priority are stored in a
queue in order of arrival, not the order in which they are committed.

The queue manager maintains queues either in strict FIFO (first in, first out) sequence, or in FIFO within priority sequence. This depends on the setting of
the MsgDeliverySequence attribute of the queue. When a message arrives on a queue, it is inserted immediately following the last message that has the

same priority.

Programs can either get the first message from a queue, or they can get a particular message from a queue, ignoring the priority of those messages. For
example, a program might want to process the reply to a particular message that it sent earlier. For more information, see Getting a particular message.

If an application puts a sequence of messages on a queue, another application can retrieve those messages in the same order that they were put, provided:

� The messages all have the same priority

� The messages were all put within the same unit of work, or all put outside a unit of work

� The queue is local to the putting application

If these conditions are not met, and the applications depend on the messages being retrieved in a certain order, the applications must either include
sequencing information in the message data, or establish a means of acknowledging receipt of a message before the next one is sent.

On WebSphere® MQ for z/OS®, you can use the queue attribute, IndexType, to increase the speed of MQGET operations on the queue. For more

information, see Type of index.

Parent topic: The order in which messages are retrieved from a queue

This build: January 26, 2011 11:19:48

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg12610_

2.5.2.2. Logical and physical ordering

Messages on queues can occur (within each priority level) in physical or logical order.

Physical order is the order in which messages arrive on a queue. Logical order is when all of the messages and segments within a group are in their logical
sequence, adjacent to each other, in the position determined by the physical position of the first item belonging to the group.

For a description of groups, messages, and segments, see Message groups. These physical and logical orders can differ because:

� Groups can arrive at a destination at similar times from different applications, therefore losing any distinct physical order.

� Even within a single group, messages can get out of order because of rerouting or delay of some of the messages in the group.

For example, the logical order might look like Figure Figure 1:

Figure 1. Logical order on a queue

These messages would appear in the following logical order on a queue:

1. Message A (not in a group)

Page 77 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

2. Logical message 1 of group Y

3. Logical message 2 of group Y

4. Segment 1 of (last) logical message 3 of group Y

5. (Last) segment 2 of (last) logical message 3 of group Y

6. Logical message 1 of group Z

7. (Last) logical message 2 of group Z

8. Message B (not in a group)

The physical order, however, might be entirely different. As stated in topic Logical and physical ordering, the physical position of the first item within each
group determines the logical position of the whole group. For example, if groups Y and Z arrived at similar times, and message 2 of group Z overtook
message 1 of the same group, the physical order would look like Figure Figure 2:

Figure 2. Physical order on a queue

These messages appear in the following physical order on the queue:

1. Message A (not in a group)

2. Logical message 1 of group Y

3. Logical message 2 of group Z

4. Logical message 2 of group Y

5. Segment 1 of (last) logical message 3 of group Y

6. (Last) segment 2 of (last) logical message 3 of group Y

7. Logical message 1 of group Z

8. Message B (not in a group)

Note: On WebSphere® MQ for z/OS®, the physical order of messages on the queue is not guaranteed if the queue is indexed by GROUPID.

When getting messages, you can specify MQGMO_LOGICAL_ORDER to retrieve messages in logical rather than physical order.

If you issue an MQGET call with MQGMO_BROWSE_FIRST and MQGMO_LOGICAL_ORDER, subsequent MQGET calls with MQGMO_BROWSE_NEXT must also
specify MQGMO_LOGICAL_ORDER. Conversely, if the MQGET with MQGMO_BROWSE_FIRST does not specify MQGMO_LOGICAL_ORDER, neither must the
following MQGETs with MQGMO_BROWSE_NEXT.

The group and segment information that the queue manager retains for MQGET calls that browse messages on the queue is separate from the group and
segment information that the queue manager retains for MQGET calls that remove messages from the queue. When you specify MQGMO_BROWSE_FIRST,
the queue manager ignores the group and segment information for browsing, and scans the queue as though there were no current group and no current
logical message.

Note: Take special care if you use an MQGET call to browse beyond the end of a message group (or logical message not in a group) without specifying
MQGMO_LOGICAL_ORDER. For example, if the last message in the group precedes the first message in the group on the queue, using
MQGMO_BROWSE_NEXT to browse beyond the end of the group, specifying MQMO_MATCH_MSG_SEQ_NUMBER with MsgSeqNumber set to 1 (to find the first

message of the next group) returns again the first message in the group already browsed. This could happen immediately, or a number of MQGET calls later
(if there are intervening groups).

Avoid the possibility of an infinite loop by opening the queue twice for browse:

� Use the first handle to browse only the first message in each group.

� Use the second handle to browse only the messages within a specific group.

� Use the MQMO_* options to move the second browse cursor to the position of the first browse cursor, before browsing the messages in the group.

� Do not use the MQGMO_BROWSE_NEXT browse beyond the end of a group.

For further information about this, see the WebSphere MQ Application Programming Reference.

For most applications you will probably choose either logical or physical ordering when browsing. However, if you want to switch between these modes,
remember that when you first issue a browse with MQGMO_LOGICAL_ORDER, your position within the logical sequence is established.

If the first item within the group is not present at this time, the group that you are in is not considered to be part of the logical sequence.

Once the browse cursor is within a group, it can continue within the same group, even if the first message is removed. Initially though, you can never move

Page 78 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

into a group using MQGMO_LOGICAL_ORDER where the first item is not present.

Grouping logical messages

Putting and getting a group that spans units of work

Parent topic: The order in which messages are retrieved from a queue

This build: January 26, 2011 11:19:50

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg12620_

2.5.2.2.1. Grouping logical messages

There are two main reasons for using logical messages in a group:

� You might need to process the messages in a particular order

� You might need to process each message in a group in a related way.

In either case, retrieve the entire group with the same getting application instance.

For example, assume that the group consists of four logical messages. The putting application looks like this:

 PMO.Options = MQPMO_LOGICAL_ORDER | MQPMO_SYNCPOINT

 MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP

 MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP

 MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP

 MQPUT MD.MsgFlags = MQMF_LAST_MSG_IN_GROUP

 MQCMIT

The getting application specifies the MQGMO_ALL_MSGS_AVAILABLE option for the first message in the group. This ensures that processing does not start
until all the messages within the group have arrived. The MQGMO_ALL_MSGS_AVAILABLE option is ignored for subsequent messages within the group.

When the first logical message of the group is retrieved, you can use MQGMO_LOGICAL_ORDER to ensure that the remaining logical messages of the group
are retrieved in order.

So, the getting application looks like this:

 /* Wait for the first message in a group, or a message not in a group */

 GMO.Options = MQGMO_SYNCPOINT | MQGMO_WAIT

 | MQGMO_ALL_MSGS_AVAILABLE | MQGMO_LOGICAL_ORDER

 do while (GroupStatus == MQGS_MSG_IN_GROUP)

 MQGET

 /* Process each remaining message in the group */

 ...

 MQCMIT

For further examples of grouping messages, see Application segmentation of logical messages and Putting and getting a group that spans units of work.

Parent topic: Logical and physical ordering

This build: January 26, 2011 11:19:50

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg12630_

2.5.2.2.2. Putting and getting a group that spans units of work

In the previous case, messages or segments cannot start to leave the node (if its destination is remote) or start to be retrieved until the whole group has
been put and the unit of work is committed. This might not be what you want if it takes a long time to put the whole group, or if queue space is limited on
the node. To overcome this, put the group in several units of work.

If the group is put within multiple units of work, it is possible for some of the group to commit even when the putting application fails. The application must
therefore save status information, committed with each unit of work, which it can use after a restart to resume an incomplete group. The simplest place to
record this information is in a STATUS queue. If a complete group has been successfully put, the STATUS queue is empty.

If segmentation is involved, the logic is similar. In this case, the StatusInfo must include the Offset.

Here is an example of putting the group in several units of work:

 PMO.Options = MQPMO_LOGICAL_ORDER | MQPMO_SYNCPOINT

 /* First UOW */

 MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP

 MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP

 MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP

 StatusInfo = GroupId,MsgSeqNumber from MQMD

 MQPUT (StatusInfo to STATUS queue) PMO.Options = MQPMO_SYNCPOINT

 MQCMIT

 /* Next and subsequent UOWs */

 MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP

 MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP

 MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP

 MQGET (from STATUS queue) GMO.Options = MQGMO_SYNCPOINT

 StatusInfo = GroupId,MsgSeqNumber from MQMD

 MQPUT (StatusInfo to STATUS queue) PMO.Options = MQPMO_SYNCPOINT

 MQCMIT

Page 79 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

 /* Last UOW */

 MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP

 MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP

 MQPUT MD.MsgFlags = MQMF_LAST_MSG_IN_GROUP

 MQGET (from STATUS queue) GMO.Options = MQGMO_SYNCPOINT

 MQCMIT

If all the units of work have been committed, the entire group has been put successfully, and the STATUS queue is empty. If not, the group must be
resumed at the point indicated by the status information. MQPMO_LOGICAL_ORDER cannot be used for the first put, but can thereafter.

Restart processing looks like this:

 MQGET (StatusInfo from STATUS queue) GMO.Options = MQGMO_SYNCPOINT

 if (Reason == MQRC_NO_MSG_AVAILABLE)

 /* Proceed to normal processing */

 ...

 else

 /* Group was terminated prematurely */

 Set GroupId, MsgSeqNumber in MQMD to values from Status message

 PMO.Options = MQPMO_SYNCPOINT

 MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP

 /* Now normal processing is resumed.

 Assume this is not the last message */

 PMO.Options = MQPMO_LOGICAL_ORDER | MQPMO_SYNCPOINT

 MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP

 MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP

 StatusInfo = GroupId,MsgSeqNumber from MQMD

 MQPUT (StatusInfo to STATUS queue) PMO.Options = MQPMO_SYNCPOINT

 MQCMIT

From the getting application, you might want to start processing the messages in a group before the whole group has arrived. This improves response times
on the messages within the group, and also means that storage is not required for the entire group.

For recovery reasons, you must retrieve each message within a unit of work. However, in order to realize the above benefits, use several units of work for
each group of messages.

As with the corresponding putting application, this requires status information to be recorded somewhere automatically as each unit of work is committed.
Again, the simplest place to record this information is on a STATUS queue. If a complete group has been successfully processed, the STATUS queue is
empty.

Note: For intermediate units of work, you can avoid the MQGET calls from the STATUS queue by specifying that each MQPUT to the status queue is a
segment of a message (that is, by setting the MQMF_SEGMENT flag), instead of putting a complete new message for each unit of work. In the last unit of
work, a final segment is put to the status queue specifying MQMF_LAST_SEGMENT, and then the status information is cleared with an MQGET specifying
MQGMO_COMPLETE_MSG.

During restart processing, instead of using a single MQGET to get a possible status message, browse the status queue with MQGMO_LOGICAL_ORDER until
you reach the last segment (that is, until no further segments are returned). In the first unit of work after restart, also specify the offset explicitly when
putting the status segment.

In the following example, we consider only messages within a group, assuming that the application's buffer is always large enough to hold the entire
message, whether or not the message has been segmented. MQGMO_COMPLETE_MSG is therefore specified on each MQGET. The same principles apply if
segmentation is involved (in this case, the StatusInfo must include the Offset).

For simplicity, we assume that a maximum of 4 messages are retrieved within a single UOW:

 msgs = 0 /* Counts messages retrieved within UOW */

 /* Should be no status message at this point */

 /* Retrieve remaining messages in the group */

 do while (GroupStatus == MQGS_MSG_IN_GROUP)

 /* Process up to 4 messages in the group */

 GMO.Options = MQGMO_SYNCPOINT | MQGMO_WAIT

 | MQGMO_LOGICAL_ORDER

 do while ((GroupStatus == MQGS_MSG_IN_GROUP) && (msgs < 4))

 MQGET

 msgs = msgs + 1

 /* Process this message */

 ...

 /* end while

 /* Have retrieved last message or 4 messages */

 /* Update status message if not last in group */

 MQGET (from STATUS queue) GMO.Options = MQGMO_SYNCPOINT

 if (GroupStatus == MQGS_MSG_IN_GROUP)

 StatusInfo = GroupId,MsgSeqNumber from MQMD

 MQPUT (StatusInfo to STATUS queue) PMO.Options = MQPMO_SYNCPOINT

 MQCMIT

 msgs = 0

 /* end while

 if (msgs > 0)

 /* Come here if there was only 1 message in the group */

 MQCMIT

If all the units of work have been committed, the entire group has been retrieved successfully, and the STATUS queue is empty. If not, the group must be
resumed at the point indicated by the status information. MQGMO_LOGICAL_ORDER cannot be used for the first retrieve, but can thereafter.

Restart processing looks like this:

 MQGET (from STATUS queue) GMO.Options = MQGMO_SYNCPOINT

 if (Reason == MQRC_NO_MSG_AVAILABLE)

 /* Proceed to normal processing */

 ...

 else

 /* Group was terminated prematurely */

 /* The next message on the group must be retrieved by matching

 the sequence number and group id with those retrieved from the

 status information. */

 GMO.Options = MQGMO_COMPLETE_MSG | MQGMO_SYNCPOINT | MQGMO_WAIT

 MQGET GMO.MatchOptions = MQMO_MATCH_GROUP_ID | MQMO_MATCH_MSG_SEQ_NUMBER,

Page 80 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

 MQMD.GroupId = value from Status message,

 MQMD.MsgSeqNumber = value from Status message plus 1

 msgs = 1

 /* Process this message */

 ...

 /* Now normal processing is resumed */

 /* Retrieve remaining messages in the group */

 do while (GroupStatus == MQGS_MSG_IN_GROUP)

 /* Process up to 4 messages in the group */

 GMO.Options = MQGMO_COMPLETE_MSG | MQGMO_SYNCPOINT | MQGMO_WAIT

 | MQGMO_LOGICAL_ORDER

 do while ((GroupStatus == MQGS_MSG_IN_GROUP) && (msgs < 4))

 MQGET

 msgs = msgs + 1

 /* Process this message */

 ...

 /* Have retrieved last message or 4 messages */

 /* Update status message if not last in group */

 MQGET (from STATUS queue) GMO.Options = MQGMO_SYNCPOINT

 if (GroupStatus == MQGS_MSG_IN_GROUP)

 StatusInfo = GroupId,MsgSeqNumber from MQMD

 MQPUT (StatusInfo to STATUS queue) PMO.Options = MQPMO_SYNCPOINT

 MQCMIT

 msgs = 0

Parent topic: Logical and physical ordering

This build: January 26, 2011 11:19:50

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg12640_

2.5.3. Getting a particular message

There are a number of ways of getting a particular message from a queue. These are: selecting on the MsgId and CorrelId, selecting on the GroupId,
MsgSeqNumber and Offset, and selecting on the MsgToken. You can also use a selection string when you open the queue.

To get a particular message from a queue, use the MsgId and CorrelId fields of the MQMD structure. However, applications can explicitly set these fields, so

the values that you specify might not identify a unique message. Table 1 shows which message is retrieved for the possible settings of these fields. These
fields are ignored on input if you specify MQGMO_MSG_UNDER_CURSOR in the GetMsgOpts parameter of the MQGET call.

In each case, first means the first message that satisfies the selection criteria (unless MQGMO_BROWSE_NEXT is specified, when it means the next message
in the sequence satisfying the selection criteria).

On return, the MQGET call sets the MsgId and CorrelId fields to the message and correlation identifiers (respectively) of the message returned (if any).

If you set the Version field of the MQMD structure to 2, you can use the GroupId, MsgSeqNumber, and Offset fields. Table 2 shows which message is

retrieved for the possible settings of these fields.

The MQGET call usually retrieves the first message from a queue. If you specify a particular message when you use the MQGET call, the queue manager has
to search the queue until it finds that message. This can affect the performance of your application.

If you are using Version 2 or later of the MQGMO structure and do not specify the MQMO_MATCH_MSG_ID or MQMO_MATCH_CORREL_ID flags, you do not
need to reset the MsgId or CorrelId fields respectively between MQGETs.

On WebSphere® MQ for z/OS® the queue attribute IndexType can be used to increase the speed of MQGET operations on the queue. For more information,

see Type of index.

You can get a specific message from a queue by specifying its MsgToken and the MatchOption MQMO_MATCH_MSG_TOKEN in the MQGMO structure. The
MsgToken is returned by the MQPUT call that originally put that message on the queue, or by previous MQGET operations and remains constant unless the
queue manager is restarted.

Table 1. Using message and correlation identifiers

To retrieve … MsgId CorrelId

First message in the queue MQMI_NONE MQCI_NONE

First message that matches MsgId Nonzero MQCI_NONE

First message that matches CorrelId MQMI_NONE Nonzero

First message that matches both MsgId and CorrelId Nonzero Nonzero

Table 2. Using the group identifier

To retrieve … Match options

First message in the queue MQMO_NONE

First message that matches MsgId MQMO_MATCH_MSG_ID

First message that matches CorrelId MQMO_MATCH_CORREL_ID

First message that matches GroupId MQMO_MATCH_GROUP_ID

First message that matches MsgSeqNumber MQMO_MATCH_MSG_SEQ_NUMBER

First message that matches MsgToken MQMO_MATCH_MSG_TOKEN

First message that matches Offset MQMO_MATCH_OFFSET

Notes:

1. MQMO_MATCH_XXX implies that the XXX field in the MQMD structure is set to the value to be matched.

2. The MQMO flags can be used in combination. For example, MQMO_MATCH_GROUP_ID, MQMO_MATCH_MSG_SEQ_NUMBER, and
MQMO_MATCH_OFFSET can be used together to give the segment identified by the GroupId, MsgSeqNumber, and Offset fields.

3. If you specify MQGMO_LOGICAL_ORDER, the message that you are trying to retrieve is affected because the option depends on state
information controlled for the queue handle. For information about this, see Logical and physical ordering and the WebSphere MQ
Application Programming Reference.

Page 81 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

If you are interested in only a subset of messages on the queue, you can specify which messages you want to process by using a selection string with the
MQOPEN or MQSUB call. MQGET then retrieves the next message that satisfies that selection string. For more information about selection strings, see
Selectors.

Parent topic: Getting messages from a queue

This build: January 26, 2011 11:19:51

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg12650_

2.5.4. Improving performance of non-persistent messages

When a client requires a message from a server, it sends a request to the server. It sends a separate request for each of the messages it consumes. To
improve the performance of a client consuming non persistent messages by avoiding having to send these request messages, a client can be configured to
use read ahead. Read ahead allows messages to be sent to a client without an application having to request them.

When read ahead is enabled, messages are sent to an in memory buffer on the client called the read ahead buffer. The client will have a read ahead buffer
for each queue it has open with read ahead enabled. The messages in the read ahead buffer are not persisted. The client periodically updates the server with
information about the amount of data it has consumed.

Using read ahead can improve performance when consuming non persistent messages from a client application. This performance improvement is available
to both MQI and JMS applications. Client applications using MQGET or asynchronous consumption will benefit from the performance improvements when
consuming non-persistent messages.

Not all client application designs are suited to using read ahead as not all options are supported for use with read ahead and some options are required to be
consistent between MQGET calls when read ahead is enabled. If a client alters its selection criteria between MQGET calls, messages being stored in the read
ahead buffer will remain stranded in the client read ahead buffer.

If a backlog of stranded messages with the previous selection criteria are no longer required, a configurable purge interval can be set on the client to
automatically purge these messages from the client. The purge interval is one of a group of read ahead tuning options determined by the client. It is
possible to tune these options to meet your requirements.

If a client application is restarted, messages in the read ahead buffer can be lost. Conversely, a message that has been moved to a read ahead buffer could
subsequently be deleted from the underlying queue; this does not result in it being removed from the buffer, so an MQGET call using read ahead can return
a message that no longer exists.

Read ahead is only performed for client bindings. The attribute is ignored for all other bindings.

Read ahead has no impact on triggering. No trigger message is generated when a message is read ahead by the client. Read ahead does not generate
accounting and statistics information when it is enabled.

Using read ahead with publish subscribe messaging

When a subscribing application specifies a destination queue to which publications are sent, the DEFREADA value of the specified queue is used as the
default read ahead value.

When a subscribing application requests that WebSphere® MQ manages the destination to which publications are sent, a managed queue is created as a
dynamic queue based upon a predefined model queue. It is the DEFREADA value of the model queue that is used as the default read ahead value. The
default model queues SYSTEM.DURABLE.PUBLICATIONS.MODEL or SYSTEM.NONDURABLE.PUBLICATIONS.MODEL are used unless a model queue is defined
for this or a parent topic.

MQGET options and read ahead
Not all MQGET options are supported when read ahead is enabled and some options are required to be consistent between MQGET calls when read
ahead is enabled.

Enabling and disabling read ahead
By default read ahead is disabled. You can enable read ahead at queue or application level.

Parent topic: Getting messages from a queue

Related reference
MQGET options and read ahead

This build: January 26, 2011 11:22:06

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg20010_

2.5.4.1. MQGET options and read ahead

Not all MQGET options are supported when read ahead is enabled and some options are required to be consistent between MQGET calls when read ahead is
enabled.

The following table indicates which options are supported for use with read ahead and whether they can be altered between MQGET calls.

Table 1. MQGET options and read ahead

 Permitted when read ahead is

enabled and can be altered

between MQGET calls5

Permitted when read ahead is

enabled but cannot be altered

between MQGET calls1

MQGET Options that are not

permitted when read ahead is

enabled2

MQGET MQMD
values MsgId3

CorrelId3

Encoding
CodedCharSetId

MQGET MQGMO
Options

� MQGMO_NO_WAIT

� MQGMO_BROWSE_MESSAGE
_UNDER_CURSOR

� MQGMO_SYNCPOINT_IF
_PERSISTENT

� MQGMO_NO_SYNCPOINT

� MQGMO_SET_SIGNAL

� MQGMO_SYNCPOINT

� MQGMO_MARK_SKIP

Page 82 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Notes:

1. If these options are altered between MQGET calls an MQRC_OPTIONS_CHANGED reason code will be returned.

2. If these options are specified on the first MQGET call then read ahead will be disabled. If these options are specified on a subsequent MQGET call a
reason code MQRC_OPTIONS_ERROR will be returned.

3. If a client application alters MsgId and CorrelId values between MQGET calls, messages with the previous values might already have been sent to the
client and will remain in the client read ahead buffer until consumed (or automatically purged).

4. MQGMO_MSG_UNDER_CURSOR is not possible with read ahead. Read ahead is disabled when both MQOO_BROWSE and one of the
MQOO_INPUT_SHARED or MQOO_INPUT_EXCLUSIVE options are specified when opening the queue.

5. When read ahead is enabled, the first MQGET determines whether messages are to be browsed or got from a queue. If the client application
subsequently uses MQGET with changed options, such as attempting to browse following an initial get, or attempting to get following an initial browse,
an MQRC_OPTIONS_CHANGED reason code is returned.

If a client alters its selection criteria between MQGET calls, messages being stored in the read ahead buffer that match the initial selection criteria will not be
consumed by the client application, and remain stranded in the client read ahead buffer. In situations where the client read ahead buffer contains a large
number of stranded messages, the benefits associated with read ahead will be lost and a separate request to the server is required for each message
consumed. To determine whether read ahead is being used efficiently you can use the connection status parameter, READA.

Read ahead can be inhibited when requested by an application due to incompatible options specified on the first MQGET call. In this situation the connection
status will show read ahead as being inhibited.

If, because of these restrictions on MQGET, you decide that a client application design is not suited to read ahead, specify the MQOPEN option
MQOO_READ_AHEAD_NO. Alternatively set the default read ahead value of the queue being opened altered to either NO or DISABLED.

Parent topic: Improving performance of non-persistent messages

Related concepts
Improving performance of non-persistent messages

This build: January 26, 2011 11:22:06

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg20020_

2.5.4.2. Enabling and disabling read ahead

By default read ahead is disabled. You can enable read ahead at queue or application level.

About this task
To enable read ahead:

� To configure read ahead at the queue level set the queue attribute, DEFREADA to YES.

� To configure read ahead at the application level:

� to use read ahead wherever possible use the MQOO_READ_AHEAD option on the MQOPEN function call. It will not be possible for the client
application to use read ahead if the DEFREADA queue attribute has been set to DISABLED.

� to use read ahead only when read ahead is enabled on a queue, use the MQOO_READ_AHEAD_AS_Q_DEF option on the MQOPEN function call.

If a client application design is not suited to read ahead you can disable it:

� at the queue level by setting the queue attribute, DEFREADA to NO if you do not want read ahead to be used unless it is requested by a client
application, or DISABLED if you do not want read ahead to be used regardless of whether read ahead is required by a client application.

� at the application level by using the MQOO_NO_READ_AHEAD option on the MQOPEN function call.

Two MQCLOSE options allow you to configure what happens to any messages that are being stored in the read ahead buffer if the queue is closed.

� Use MQCO_IMMEDIATE to discard messages in the read ahead buffer.

� Use MQCO_QUIESCE to ensure that messages in the read ahead buffer are consumed by the application before the queue is closed. When MQCLOSE
with the MQCO_QUIESCE is issued and there are messages remaining on the read ahead buffer, MQRC_READ_AHEAD_MSGS will be returned with
MQCC_WARNING.

Parent topic: Improving performance of non-persistent messages

This build: January 26, 2011 11:22:06

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg20030_

2.5.5. Type of index

Supported only on WebSphere® MQ for z/OS®.

The queue attribute, IndexType, specifies the type of index that the queue manager maintains to increase the speed of MQGET operations on the queue.

You have five options:

� MQGMO_BROWSE_FIRST

� MQGMO_BROWSE_NEXT

� MQGMO_FAIL_IF_QUIESCING

� MQGMO_ACCEPT_TRUNCATED
_MSG

� MQGMO_CONVERT

_BACKOUT

� MQGMO_MSG_UNDER

_CURSOR4

� MQGMO_LOCK

� MQGMO_UNLOCK

� MQGMO_LOGICAL_ORDER

� MQGMO_COMPLETE_MSG

� MQGMO_ALL_MSGS_AVAILABLE

� MQGMO_ALL_SEGMENTS_
AVAILABLE

Page 83 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Note:

1. If you are indexing using the MSGID option or CORRELID option, set the relative MsgId or CorrelId parameters in the MQMD. It is not beneficial to set

both.

2. Browse uses the index mechanism to find a message if a queue matches all the following conditions:

� It has index type MSGID, CORRELID, or GROUPID

� It is browsed with the same type of id

� It has messages of only one priority

3. Avoid queues (indexed by MsgId or CorrelId) containing thousands of messages because this affects restart time. (This does not apply to

nonpersistent messages as they are deleted at restart.)

4. MSGTOKEN is used to define queues managed by the z/OS workload manager.

For a full description of the IndexType attribute, see IndexType (MQLONG). For conditions needed to change the IndexType attribute, see the WebSphere

MQ Script (MQSC) Command Reference.

Parent topic: Getting messages from a queue

This build: January 26, 2011 11:19:51

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg12660_

2.5.6. Handling messages greater than 4 MB long

Messages can be too large for the application, queue, or queue manager. Depending on the environment, WebSphere® MQ provides a number of ways of
dealing with messages that are longer than 4 MB.

You can increase the MaxMsgLength attribute up to 100 MB on all WebSphere MQ systems at V6 or later. Set this value to reflect the size of the messages

using the queue. On WebSphere MQ systems other than WebSphere MQ for z/OS®, you can also:

1. Use segmented messages. (Messages can be segmented by either the application or the queue manager.)

2. Use reference messages.

Each of these approaches is described in the remainder of this section.

Increasing the maximum message length

The MaxMsgLength queue manager attribute defines the maximum length of a message that can be handled by a queue manager. Similarly, the

MaxMsgLength queue attribute is the maximum length of a message that can be handled by a queue. The default maximum message length supported

depends on the environment in which you are working.

If you are handling large messages, you can alter these attributes independently. You can set the queue manager attribute value between 32768 bytes and
100 MB; you can set the queue attribute value between 0 and 100 MB.

After changing one or both of the MaxMsgLength attributes, restart your applications and channels to ensure that the changes take effect.

When these changes are made, the message length must be less than or equal to both the queue and the queue manager MaxMsgLength attributes.

However, existing messages might be longer than either attribute.

If the message is too big for the queue, MQRC_MSG_TOO_BIG_FOR_Q is returned. Similarly, if the message is too big for the queue manager,
MQRC_MSG_TOO_BIG_FOR_Q_MGR is returned.

This method of handling large messages is easy and convenient. However, consider the following factors before using it:

� Uniformity among queue managers is reduced. The maximum size of message data is determined by the MaxMsgLength for each queue (including

transmission queues) on which the message will be put. This value is often defaulted to the queue manager's MaxMsgLength, especially for

transmission queues. This makes it difficult to predict whether a message is too large when it is to travel to a remote queue manager.

� Usage of system resources is increased. For example, applications need larger buffers, and on some platforms, there might be increased usage of
shared storage. Queue storage should be affected only if actually required for larger messages.

� Channel batching is affected. A large message still counts as just one message towards the batch count but needs longer to transmit, thereby
increasing response times for other messages.

Message segmentation

Reference messages

Parent topic: Getting messages from a queue

This build: January 26, 2011 11:19:52

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg12670_

Value Description

NONE No index is maintained. Use this when retrieving messages sequentially (see Priority).

GROUPID An index of group identifiers is maintained. You must use this index type if you want logical ordering of message
groups (see Logical and physical ordering).

MSGID An index of message identifiers is maintained. Use this when retrieving messages using the MsgId field as a

selection criterion on the MQGET call (see Getting a particular message).

MSGTOKEN An index of message tokens is maintained.

CORRELID An index of correlation identifiers is maintained. Use this when retrieving messages using the CorrelId field as a

selection criterion on the MQGET call (see Getting a particular message).

Page 84 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

2.5.6.1. Message segmentation

Not supported in WebSphere® MQ for z/OS®.

Increasing the maximum message length as discussed in topic Increasing the maximum message length has some negative implications. Also, it can still
result in the message being too large for the queue or queue manager. In these cases, you can segment a message. For information about segments, see
Message groups.

The next sections look at common uses for segmenting messages. For putting and destructively getting, it is assumed that the MQPUT or MQGET calls
always operate within a unit of work. We strongly recommend that you always use this technique, to reduce the possibility of incomplete groups being
present in the network. Single-phase commit by the queue manager is assumed, but of course other coordination techniques are equally valid.

Also, in the getting applications, it is assumed that if multiple servers are processing the same queue, each server executes similar code, so that one server
never fails to find a message or segment that it expects to be there (because it had specified MQGMO_ALL_MSGS_AVAILABLE or
MQGMO_ALL_SEGMENTS_AVAILABLE earlier).

Putting and getting a segmented message that spans units of work

You can put and get a segmented message that spans a unit of work in a similar way to Putting and getting a group that spans units of work.

You cannot, however, put or get segmented messages in a global unit of work.

Segmentation and reassembly by queue manager
This is the simplest scenario, in which one application puts a message to be retrieved by another. The message might be large: not too large for either
the putting or the getting application to handle in a single buffer, but too large for the queue manager or a queue on which the message is to be put.

Application segmentation

Application segmentation of logical messages
The messages must be maintained in logical order in a group, and some or all of them might be so large that they require application segmentation.

Parent topic: Handling messages greater than 4 MB long

This build: January 26, 2011 11:19:52

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg12690_

2.5.6.1.1. Segmentation and reassembly by queue manager

This is the simplest scenario, in which one application puts a message to be retrieved by another. The message might be large: not too large for either the
putting or the getting application to handle in a single buffer, but too large for the queue manager or a queue on which the message is to be put.

The only changes necessary for these applications are for the putting application to authorize the queue manager to perform segmentation if necessary:

 PMO.Options = (existing options)

 MD.MsgFlags = MQMF_SEGMENTATION_ALLOWED

 memcpy(MD.GroupId, MQGI_NONE, MQ_GROUP_ID_LENGTH)

 MQPUT

and for the getting application to ask the queue manager to reassemble the message if it has been segmented:

 GMO.Options = MQGMO_COMPLETE_MSG | (existing options)

 MQGET

In this simplest scenario, the application must reset the GroupId field to MQGI_NONE before the MQPUT call, so that the queue manager can generate a
unique group identifier for each message. If this is not done, unrelated messages can have the same group identifier, which might subsequently lead to
incorrect processing.

The application buffer must be large enough to contain the reassembled message (unless you include the MQGMO_ACCEPT_TRUNCATED_MSG option).

If the MAXMSGLEN attribute of a queue is to be modified to accommodate message segmentation, then consider:

� The minimum message segment supported on a local queue is 16 bytes.

� For a transmission queue, MAXMSGLEN must also include the space required for headers. Consider using a value at least 4000 bytes larger than the
maximum expected length of user data in any message segment that could be put on a transmission queue.

If data conversion is necessary, the getting application might have to do it by specifying MQGMO_CONVERT. This should be straightforward because the data
conversion exit is presented with the complete message. Do not attempt to convert data in a sender channel if the message is segmented, and the format of
the data is such that the data-conversion exit cannot carry out the conversion on incomplete data.

Parent topic: Message segmentation

This build: January 26, 2011 11:19:52

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg12700_

2.5.6.1.2. Application segmentation

Application segmentation is used for two main reasons:

1. Queue-manager segmentation alone is not adequate because the message is too large to be handled in a single buffer by the applications.

2. Data conversion must be performed by sender channels, and the format is such that the putting application needs to stipulate where the segment
boundaries are to be in order for conversion of an individual segment to be possible.

However, if data conversion is not an issue, or if the getting application always uses MQGMO_COMPLETE_MSG, queue-manager segmentation can also be

Page 85 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

allowed by specifying MQMF_SEGMENTATION_ALLOWED. In our example, the application segments the message into four segments:

 PMO.Options = MQPMO_LOGICAL_ORDER | MQPMO_SYNCPOINT

 MQPUT MD.MsgFlags = MQMF_SEGMENT

 MQPUT MD.MsgFlags = MQMF_SEGMENT

 MQPUT MD.MsgFlags = MQMF_SEGMENT

 MQPUT MD.MsgFlags = MQMF_LAST_SEGMENT

 MQCMIT

If you do not use MQPMO_LOGICAL_ORDER, the application must set the Offset and the length of each segment. In this case, logical state is not

maintained automatically.

The getting application cannot guarantee to have a buffer large enough to hold any reassembled message. It must therefore be prepared to process
segments individually.

For messages that are segmented, this application does not want to start processing one segment until all the segments that constitute the logical message
are present. MQGMO_ALL_SEGMENTS_AVAILABLE is therefore specified for the first segment. If you specify MQGMO_LOGICAL_ORDER and there is a current
logical message, MQGMO_ALL_SEGMENTS_AVAILABLE is ignored.

Once the first segment of a logical message has been retrieved, use MQGMO_LOGICAL_ORDER to ensure that the remaining segments of the logical
message are retrieved in order.

No consideration is given to messages within different groups. If such messages occur, they are processed in the order in which the first segment of each
message appears on the queue.

 GMO.Options = MQGMO_SYNCPOINT | MQGMO_LOGICAL_ORDER

 | MQGMO_ALL_SEGMENTS_AVAILABLE | MQGMO_WAIT

 do while (SegmentStatus == MQSS_SEGMENT)

 MQGET

 /* Process each remaining segment of the logical message */

 ...

 MQCMIT

Parent topic: Message segmentation

This build: January 26, 2011 11:19:52

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg12710_

2.5.6.1.3. Application segmentation of logical messages

The messages must be maintained in logical order in a group, and some or all of them might be so large that they require application segmentation.

In our example, a group of four logical messages is to be put. All but the third message are large, and require segmentation, which is performed by the
putting application:

 PMO.Options = MQPMO_LOGICAL_ORDER | MQPMO_SYNCPOINT

 MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP | MQMF_SEGMENT

 MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP | MQMF_SEGMENT

 MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP | MQMF_LAST_SEGMENT

 MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP | MQMF_SEGMENT

 MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP | MQMF_LAST_SEGMENT

 MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP

 MQPUT MD.MsgFlags = MQMF_LAST_MSG_IN_GROUP | MQMF_SEGMENT

 MQPUT MD.MsgFlags = MQMF_LAST_MSG_IN_GROUP | MQMF_SEGMENT

 MQPUT MD.MsgFlags = MQMF_LAST_MSG_IN_GROUP | MQMF_LAST_SEGMENT

 MQCMIT

In the getting application, MQGMO_ALL_MSGS_AVAILABLE is specified on the first MQGET. This means that no messages or segments of a group are
retrieved until the entire group is available. When the first physical message of a group has been retrieved, MQGMO_LOGICAL_ORDER is used to ensure that
the segments and messages of the group are retrieved in order:

 GMO.Options = MQGMO_SYNCPOINT | MQGMO_LOGICAL_ORDER

 | MQGMO_ALL_MSGS_AVAILABLE | MQGMO_WAIT

 do while ((GroupStatus != MQGS_LAST_MSG_IN_GROUP) ||

 (SegmentStatus != MQGS_LAST_SEGMENT))

 MQGET

 /* Process a segment or complete logical message. Use the GroupStatus

 and SegmentStatus information to see what has been returned */

 ...

 MQCMIT

Note: If you specify MQGMO_LOGICAL_ORDER and there is a current group, MQGMO_ALL_MSGS_AVAILABLE is ignored.

Parent topic: Message segmentation

This build: January 26, 2011 11:19:52

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg12720_

2.5.6.2. Reference messages

Not supported in WebSphere® MQ for z/OS®.

This method allows a large object to be transferred from one node to another without storing the object on WebSphere MQ queues at either the source or
the destination nodes. This is of particular benefit when the data already exists in another form, for example, for mail applications.

Page 86 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

To do this, you specify a message exit at both ends of a channel. For information on how to do this, see WebSphere MQ Intercommunication.

WebSphere MQ defines the format of a reference message header (MQRMH). See the WebSphere MQ Application Programming Reference for a description of
this. This is recognized by means of a defined format name and might be followed by actual data.

To initiate transfer of a large object, an application can put a message consisting of a reference message header with no data following it. As this message
leaves the node, the message exit retrieves the object in an appropriate way and appends it to the reference message. It then returns the message (now
larger than before) to the sending Message Channel Agent for transmission to the receiving MCA.

Another message exit is configured at the receiving MCA. When this message exit receives one of these messages, it creates the object using the object data
that was appended and passes on the reference message without it. The reference message can now be received by an application and this application
knows that the object (or at least the portion of it represented by this reference message) has been created at this node.

The maximum amount of object data that a sending message exit can append to the reference message is limited by the negotiated maximum message
length for the channel. The exit can return only a single message to the MCA for each message that it is passed, so the putting application can put several
messages to cause one object to be transferred. Each message must identify the logical length and offset of the object that is to be appended to it. However,
in cases where it is not possible to know the total size of the object or the maximum size allowed by the channel, design the sending message exit so that
the putting application just puts a single message, and the exit itself puts the next message on the transmission queue when it has appended as much data
as it can to the message it has been passed.

Before using this method of dealing with large messages, consider the following:

� The MCA and the message exit run under a WebSphere MQ user ID. The message exit (and therefore, the user ID) needs to access the object to either
retrieve it at the sending end or create it at the receiving end; this might only be feasible in cases where the object is universally accessible. This
raises a security issue.

� If the reference message with bulk data appended to it must travel through several queue managers before reaching its destination, the bulk data is
present on WebSphere MQ queues at the intervening nodes. However, no special support or exits need to be provided in these cases.

� Designing your message exit is made difficult if rerouting or dead-letter queuing is allowed. In these cases, the portions of the object might arrive out
of order.

� When a reference message arrives at its destination, the receiving message exit creates the object. However, this is not synchronized with the MCA's
unit of work, so if the batch is backed out, another reference message containing this same portion of the object will arrive in a later batch, and the
message exit might attempt to re-create the same portion of the object. If the object is, for example, a series of database updates, this might be
unacceptable. If so, the message exit must keep a log of which updates have been applied; this might require the use of a WebSphere MQ queue.

� Depending on the characteristics of the object type, the message exits and applications might need to cooperate in maintaining use counts, so that the
object can be deleted when it is no longer needed. An instance identifier might also be required; a field is provided for this in the reference message
header (see the WebSphere MQ Application Programming Reference).

� If a reference message is put as a distribution list, the object must be retrievable for each resulting distribution list or individual destination at that
node. You might need to maintain use counts. Also consider the possibility that a given node might be the final node for some of the destinations in
the list, but an intermediate node for others.

� Bulk data is not usually converted. This is because conversion takes place before the message exit is invoked. For this reason, conversion must not be
requested on the originating sender channel. If the reference message passes through an intermediate node, the bulk data is converted when sent
from the intermediate node, if requested.

� Reference messages cannot be segmented.

Using the MQRMH and MQMD structures

Parent topic: Handling messages greater than 4 MB long

This build: January 26, 2011 11:19:52

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg12740_

2.5.6.2.1. Using the MQRMH and MQMD structures

See the WebSphere MQ Application Programming Reference for a description of the fields in the reference message header and the message descriptor.

In the MQMD structure, set the Format field to MQFMT_REF_MSG_HEADER. The MQHREF format, when requested on MQGET, is converted automatically by

WebSphere® MQ along with any bulk data that follows.

Here is an example of the use of the DataLogicalOffset and DataLogicalLength fields of the MQRMH:

A putting application might put a reference message with:

� No physical data

� DataLogicalLength = 0 (this message represents the entire object)

� DataLogicalOffset = 0.

Assuming that the object is 70 000 bytes long, the sending message exit sends the first 40 000 bytes along the channel in a reference message containing:

� 40 000 bytes of physical data following the MQRMH

� DataLogicalLength = 40000

� DataLogicalOffset = 0 (from the start of the object).

It then places another message on the transmission queue containing:

� No physical data

� DataLogicalLength = 0 (to the end of the object). You could specify a value of 30 000 here.

� DataLogicalOffset = 40000 (starting from this point).

When this message exit is seen by the sending message exit, the remaining 30,000 bytes of data is appended, and the fields are set to:

� 30,000 bytes of physical data following the MQRMH

� DataLogicalLength = 30000

� DataLogicalOffset = 40000 (starting from this point).

The MQRMHF_LAST flag is also set.

For a description of the sample programs provided for the use of reference messages, see Sample programs (platforms except z/OS).

Page 87 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Parent topic: Reference messages

This build: January 26, 2011 11:19:53

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg12750_

2.5.7. Waiting for messages

If you want a program to wait until a message arrives on a queue, specify the MQGMO_WAIT option in the Options field of the MQGMO structure. Use the

WaitInterval field of the MQGMO structure to specify the maximum time (in milliseconds) that you want an MQGET call to wait for a message to arrive on a

queue.

If the message does not arrive within this time, the MQGET call completes with the MQRC_NO_MSG_AVAILABLE reason code.

You can specify an unlimited wait interval using the constant MQWI_UNLIMITED in the WaitInterval field. However, events outside your control could cause

your program to wait for a long time, so use this constant with caution. IMS™ applications must not specify an unlimited wait interval because this would
prevent the IMS system terminating. (When IMS terminates, it requires all dependent regions to end.) Instead, IMS applications can specify a finite wait
interval; then, if the call completes without retrieving a message after that interval, issue another MQGET call with the wait option.

Note: If more than one program is waiting on the same shared queue to remove a message, only one program is activated by a message arriving. However,
if more than one program is waiting to browse a message, all the programs can be activated. For more information, see the description of the Options field

of the MQGMO structure in the WebSphere MQ Application Programming Reference.

If the state of the queue or the queue manager changes before the wait interval expires, the following actions occur:

� If the queue manager enters the quiescing state, and you used the MQGMO_FAIL_IF_QUIESCING option, the wait is canceled and the MQGET call
completes with the MQRC_Q_MGR_QUIESCING reason code. Without this option, the call remains waiting.

� On z/OS®, if the connection (for a CICS® or IMS application) enters the quiescing state, and you used the MQGMO_FAIL_IF_QUIESCING option, the
wait is canceled and the MQGET call completes with the MQRC_CONN_QUIESCING reason code. Without this option, the call remains waiting.

� If the queue manager is forced to stop, or is canceled, the MQGET call completes with either the MQRC_Q_MGR_STOPPING or the
MQRC_CONNECTION_BROKEN reason code.

� If the attributes of the queue (or a queue to which the queue name resolves) are changed so that get requests are now inhibited, the wait is canceled
and the MQGET call completes with the MQRC_GET_INHIBITED reason code.

� If the attributes of the queue (or a queue to which the queue name resolves) are changed in such a way that the FORCE option is required, the wait is
canceled and the MQGET call completes with the MQRC_OBJECT_CHANGED reason code.

If you want your application to wait on more than one queue, use the signal facility of WebSphere® MQ for z/OS (see Signaling). For more information
about the circumstances in which these actions occur, see the WebSphere MQ Application Programming Reference.

Parent topic: Getting messages from a queue

This build: January 26, 2011 11:19:53

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg12760_

2.5.8. Signaling

Signaling is supported only on WebSphere® MQ for z/OS®.

Signaling is an option on the MQGET call to allow the operating system to notify (or signal) a program when an expected message arrives on a queue. This is
similar to the get with wait function described in topic Waiting for messages because it allows your program to continue with other work while waiting for the
signal. However, if you use signaling, you can free the application thread and rely on the operating system to notify the program when a message arrives.

Parent topic: Getting messages from a queue

This build: January 26, 2011 11:19:53

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg12770_

2.5.9. Skipping backout

Supported only on WebSphere® MQ for z/OS®.

As part of a unit of work, an application program can issue one or more MQGET calls to get messages from a queue. If the application program detects an
error, it can back out the unit of work. This restores all the resources updated during that unit of work to the state that they were in before the unit of work
started, and reinstates the messages retrieved by the MQGET calls.

Once reinstated, these messages are available to subsequent MQGET calls issued by the application program. In many cases, this does not cause a problem
for the application program. However, in cases where the error leading to the backout cannot be circumvented, having the message reinstated on the queue
can cause the application program to enter an MQGET-error-backout loop.

To avoid this problem, specify the MQGMO_MARK_SKIP_BACKOUT option on the MQGET call. This marks the MQGET request as not being involved in
application-initiated backout; that is, it must not be backed out. Use of this option means that when a backout occurs, updates to other resources are
backed out as required, but the marked message is treated as if it had been retrieved under a new unit of work.

The application program must issue a WebSphere MQ call either to commit the new unit of work, or to back out the new unit of work. For example, the
program can perform exception handling, such as informing the originator that the message has been discarded, and commit the unit of work so removing
the message from the queue, If the new unit of work is backed out (for any reason) the message is reinstated on the queue.

Within a unit of work, there can be only one MQGET request marked as skipping backout; however, there can be several other messages that are not
marked as skipping backout. Once a message has been marked as skipping backout, any further MQGET calls within the unit of work that specify
MQGMO_MARK_SKIP_BACKOUT fail with reason code MQRC_SECOND_MARK_NOT_ALLOWED.

Note:

Page 88 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

1. The marked message skips backout only if the unit of work containing it is terminated by an application request to back it out. If the unit of work is
backed out for any other reason, the message is backed out onto the queue in the same way that it would be if it was not marked to skip backout.

2. Skip backout is not supported within DB2® stored procedures participating in units of work controlled by RRS. For example, an MQGET call with the
MQGMO_MARK_SKIP_BACKOUT option will fail with the reason code MQRC_OPTION_ENVIRONMENT_ERROR.

Figure 1 illustrates a typical sequence of steps that an application program might contain when an MQGET request is required to skip backout.

Figure 1. Skipping backout using MQGMO_MARK_SKIP_BACKOUT

The steps in Figure 1 are:

Step 1

Initial processing occurs within the transaction, including an MQOPEN call to open the queue (specifying one of the MQOO_INPUT_* options in order to get
messages from the queue in Step 2).

Step 2

MQGET is called, with MQGMO_SYNCPOINT and MQGMO_MARK_SKIP_BACKOUT. MQGMO_SYNCPOINT is required because MQGET must be within a unit of
work for MQGMO_MARK_SKIP_BACKOUT to be effective. In Figure 1 this unit of work is referred to as UOW1.

Step 3

Other resource updates are made as part of UOW1. These can include further MQGET calls (issued without MQGMO_MARK_SKIP_BACKOUT).

Step 4

All updates from Steps 2 and 3 complete as required. The application program commits the updates and UOW1 ends. The message retrieved in Step 2 is
removed from the queue.

Step 5

Some of the updates from Steps 2 and 3 do not complete as required. The application program requests that the updates made during these steps are
backed out.

Step 6

The updates made in Step 3 are backed out.

Step 7

The MQGET request made in Step 2 skips backout and becomes part of a new unit of work, UOW2.

Step 8

UOW2 performs exception handling in response to UOW1 being backed out. (For example, an MQPUT call to another queue, indicating that a problem
occurred that caused UOW1 to be backed out.)

Step 9

Step 8 completes as required, the application program commits the activity, and UOW2 ends. As the MQGET request is part of UOW2 (see Step 7), this
commit causes the message to be removed from the queue.

Step 10

Step 8 does not complete as required and the application program backs out UOW2. Because the get message request is part of UOW2 (see Step 7), it too
is backed out and reinstated on the queue. It is now available to further MQGET calls issued by this or another application program (in the same way as
any other message on the queue).

Parent topic: Getting messages from a queue

This build: January 26, 2011 11:19:53

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg12800_

2.5.10. Application data conversion

When necessary, MCAs convert the message descriptor and header data into the required character set and encoding. Either end of the link (that is, the
local MCA or the remote MCA) can do the conversion.

When an application puts messages on a queue, the local queue manager adds control information to the message descriptors to facilitate the control of the
messages when they are processed by queue managers and MCAs. Depending on the environment, the message header data fields are created in the
character set and encoding of the local system.

Page 89 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

When you move messages between systems, you sometimes need to convert the application data into the character set and encoding required by the
receiving system. This can be done either from within application programs on the receiving system or by the MCAs on the sending system. If data
conversion is supported on the receiving system, use application programs to convert the application data, rather than depending on the conversion having
already occurred at the sending system.

Application data is converted within an application program when you specify the MQGMO_CONVERT option in the Options field of the MQGMO structure

passed to an MQGET call, and all the following are true:

� The CodedCharSetId or Encoding fields set in the MQMD structure associated with the message on the queue differ from the CodedCharSetId or

Encoding fields set in the MQMD structure specified on the MQGET call.

� The Format field in the MQMD structure associated with the message is not MQFMT_NONE.

� The BufferLength specified on the MQGET call is not zero.

� The message data length is not zero.

� The queue manager supports conversion between the CodedCharSetId and Encoding fields specified in the MQMD structures associated with the

message and the MQGET call. See the WebSphere MQ Application Programming Reference for details of the coded character set identifiers and
machine encodings supported.

� The queue manager supports conversion of the message format. If the Format field of the MQMD structure associated with the message is one of the

built-in formats, the queue manager can convert the message. If the Format is not one of the built-in formats, you need to write a data-conversion

exit to convert the message.

If the sending MCA is to convert the data, specify the CONVERT(YES) keyword on the definition of each sender or server channel for which conversion is
required. If the data conversion fails, the message is sent to the DLQ at the sending queue manager and the Feedback field of the MQDLH structure

indicates the reason. If the message cannot be put on the DLQ, the channel closes and the unconverted message remains on the transmission queue. Data
conversion within applications rather than at sending MCAs avoids this situation.

As a general rule, data in the message that is described as character data by the built-in format or data-conversion exit is converted from the coded
character set used by the message to that requested, and numeric fields are converted to the encoding requested.

For further details of the conversion processing conventions used when converting the built-in formats, and for information about writing your own data-
conversion exits, see Writing data-conversion exits. See also the WebSphere MQ Application Programming Reference for information about the language
support tables and about the supported machine encodings.

Parent topic: Getting messages from a queue

This build: January 26, 2011 11:19:54

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg12810_

2.5.11. Browsing messages on a queue

To use the MQGET call to browse the messages on a queue:

1. Call MQOPEN to open the queue for browsing, specifying the MQOO_BROWSE option.

2. To browse the first message on the queue, call MQGET with the MQGMO_BROWSE_FIRST option. To find the message that you want, call MQGET
repeatedly with the MQGMO_BROWSE_NEXT option to step through many messages.

You must set the MsgId and CorrelId fields of the MQMD structure to null after each MQGET call in order to see all messages.

3. Call MQCLOSE to close the queue.

The browse cursor
When you open (MQOPEN) a queue for browsing, the call establishes a browse cursor for use with MQGET calls that use one of the browse options. You
can think of the browse cursor as a logical pointer that is positioned before the first message on the queue.

Browsing messages when the message length is unknown

Removing a message that you have browsed
You can remove from the queue a message that you have already browsed provided that you have opened the queue for removing messages as well
as for browsing. (You must specify one of the MQOO_INPUT_* options, as well as the MQOO_BROWSE option, on your MQOPEN call.)

Browsing messages in logical order

Avoiding repeated delivery of browsed messages
By using certain open options and get-message options, you can mark messages as having been browsed so that they are not retrieved again by the
current or other cooperating applications. Messages can be unmarked explicitly or automatically to make them available again for browsing.

Parent topic: Getting messages from a queue

This build: January 26, 2011 11:19:54

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg12830_

2.5.11.1. The browse cursor

When you open (MQOPEN) a queue for browsing, the call establishes a browse cursor for use with MQGET calls that use one of the browse options. You can
think of the browse cursor as a logical pointer that is positioned before the first message on the queue.

You can have more than one browse cursor active (from a single program) by issuing several MQOPEN requests for the same queue.

When you call MQGET for browsing, use one of the following options in your MQGMO structure:

MQGMO_BROWSE_FIRST

Gets a copy of the first message that satisfies the conditions specified in your MQMD structure.

MQGMO_BROWSE_NEXT

Gets a copy of the next message that satisfies the conditions specified in your MQMD structure.

Page 90 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

MQGMO_BROWSE_MSG_UNDER_CURSOR

Gets a copy of the message currently pointed to by the cursor, that is, the one that was last retrieved using either the MQGMO_BROWSE_FIRST or the
MQGMO_BROWSE_NEXT option.

In all cases, the message remains on the queue.

When you open a queue, the browse cursor is positioned logically just before the first message on the queue. This means that if you make your MQGET call
immediately after your MQOPEN call, you can use the MQGMO_BROWSE_NEXT option to browse the first message; you do not have to use the
MQGMO_BROWSE_FIRST option.

The order in which messages are copied from the queue is determined by the MsgDeliverySequence attribute of the queue. (For more information, see The

order in which messages are retrieved from a queue.)

Parent topic: Browsing messages on a queue

This build: January 26, 2011 11:19:54

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg12840_

2.5.11.2. Browsing messages when the message length is unknown

To browse a message when you do not know the size of the message, and you do not want to use the MsgId, CorrelId, or GroupId fields to locate the

message, you can use the MQGMO_BROWSE_MSG_UNDER_CURSOR option:

1. Issue an MQGET with:

� Either the MQGMO_BROWSE_FIRST or MQGMO_BROWSE_NEXT option

� The MQGMO_ACCEPT_TRUNCATED_MSG option

� Buffer length zero

Note: If another program is likely to get the same message, consider using the MQGMO_LOCK option as well. MQRC_TRUNCATED_MSG_ACCEPTED
should be returned.

2. Use the returned DataLength to allocate the storage needed.

3. Issue an MQGET with the MQGMO_BROWSE_MSG_UNDER_CURSOR.

The message pointed to is the last one that was retrieved; the browse cursor will not have moved. You can choose either to lock the message using the
MQGMO_LOCK option, or to unlock a locked message using MQGMO_UNLOCK option.

The call fails if no MQGET with either the MQGMO_BROWSE_FIRST or MQGMO_BROWSE_NEXT options has been issued successfully since the queue was
opened.

Parent topic: Browsing messages on a queue

This build: January 26, 2011 11:19:54

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg12900_

2.5.11.3. Removing a message that you have browsed

You can remove from the queue a message that you have already browsed provided that you have opened the queue for removing messages as well as for
browsing. (You must specify one of the MQOO_INPUT_* options, as well as the MQOO_BROWSE option, on your MQOPEN call.)

To remove the message, call MQGET again, but in the Options field of the MQGMO structure, specify MQGMO_MSG_UNDER_CURSOR. In this case, the

MQGET call ignores the MsgId, CorrelId, and GroupId fields of the MQMD structure.

In the time between your browsing and removal steps, another program might have removed messages from the queue, including the message under your
browse cursor. In this case, your MQGET call returns a reason code to say that the message is not available.

Parent topic: Browsing messages on a queue

This build: January 26, 2011 11:19:54

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg12910_

2.5.11.4. Browsing messages in logical order

Logical and physical ordering discusses the difference between the logical and physical order of messages on a queue. This distinction is particularly
important when browsing a queue, because, in general, messages are not being deleted and browse operations do not necessarily start at the beginning of
the queue.

If an application browses through the various messages of one group (using logical order), it is important that logical order should be followed to reach the
start of the next group, because the last message of one group might occur physically after the first message of the next group. The
MQGMO_LOGICAL_ORDER option ensures that logical order is followed when scanning a queue.

Use MQGMO_ALL_MSGS_AVAILABLE (or MQGMO_ALL_SEGMENTS_AVAILABLE) with care for browse operations. Consider the case of logical messages with
MQGMO_ALL_MSGS_AVAILABLE. The effect of this is that a logical message is available only if all the remaining messages in the group are also present. If
they are not, the message is passed over. This can mean that when the missing messages arrive subsequently, they are not noticed by a browse-next
operation.

For example, if the following logical messages are present,

 Logical message 1 (not last) of group 123

 Logical message 1 (not last) of group 456

 Logical message 2 (last) of group 456

Page 91 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

and a browse function is issued with MQGMO_ALL_MSGS_AVAILABLE, the first logical message of group 456 is returned, leaving the browse cursor on this
logical message. If the second (last) message of group 123 now arrives:

 Logical message 1 (not last) of group 123

 Logical message 2 (last) of group 123

 Logical message 1 (not last) of group 456 <=== browse cursor

 Logical message 2 (last) of group 456

and the same browse-next function is issued, it is not noticed that group 123 is now complete, because the first message of this group is before the browse
cursor.

In some cases (for example, if messages are retrieved destructively when the group is present in its entirety), you can use MQGMO_ALL_MSGS_AVAILABLE
together with MQGMO_BROWSE_FIRST. Otherwise, you must repeat the browse scan to take note of newly-arrived messages that have been missed; just
issuing MQGMO_WAIT together with MQGMO_BROWSE_NEXT and MQGMO_ALL_MSGS_AVAILABLE does not take account of them. (This also happens to
higher-priority messages that might arrive after scanning the messages is complete.)

The next sections look at browsing examples that deal with unsegmented messages; segmented messages follow similar principles.

Browsing messages in groups

Browsing and retrieving destructively
In this example, the application browses each of the logical messages within a group, before deciding whether to retrieve that group destructively.

Parent topic: Browsing messages on a queue

This build: January 26, 2011 11:19:54

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg12920_

2.5.11.4.1. Browsing messages in groups

In this example, the application browses through each message on the queue, in logical order.

Messages on the queue might be grouped. For grouped messages, the application does not want to start processing any group until all the messages within
it have arrived. MQGMO_ALL_MSGS_AVAILABLE is therefore specified for the first message in the group; for subsequent messages in the group, this option
is unnecessary.

MQGMO_WAIT is used in this example. However, although the wait can be satisfied if a new group arrives, for the reasons in Browsing messages in logical
order, it is not satisfied if the browse cursor has already passed the first logical message in a group, and the remaining messages now arrive. Nevertheless,
waiting for a suitable interval ensures that the application does not constantly loop while waiting for new messages or segments.

MQGMO_LOGICAL_ORDER is used throughout, to ensure that the scan is in logical order. This contrasts with the destructive MQGET example, where because
each group is being removed, MQGMO_LOGICAL_ORDER is not used when looking for the first (or only) message in a group.

It is assumed that the application's buffer is always large enough to hold the entire message, whether or not the message has been segmented.
MQGMO_COMPLETE_MSG is therefore specified on each MQGET.

The following gives an example of browsing logical messages in a group:

/* Browse the first message in a group, or a message not in a group */

GMO.Options = MQGMO_BROWSE_NEXT | MQGMO_COMPLETE_MSG | MQGMO_LOGICAL_ORDER

 | MQGMO_ALL_MSGS_AVAILABLE | MQGMO_WAIT

MQGET GMO.MatchOptions = MQMO_MATCH_MSG_SEQ_NUMBER, MD.MsgSeqNumber = 1

/* Examine first or only message */

 ...

GMO.Options = MQGMO_BROWSE_NEXT | MQGMO_COMPLETE_MSG | MQGMO_LOGICAL_ORDER

do while (GroupStatus == MQGS_MSG_IN_GROUP)

 MQGET

 /* Examine each remaining message in the group */

 ...

The above group is repeated until MQRC_NO_MSG_AVAILABLE is returned.

Parent topic: Browsing messages in logical order

This build: January 26, 2011 11:19:54

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg12930_

2.5.11.4.2. Browsing and retrieving destructively

In this example, the application browses each of the logical messages within a group, before deciding whether to retrieve that group destructively.

The first part of this example is similar to the previous one. However, in this case, having browsed an entire group, we decide to go back and retrieve it
destructively.

As each group is removed in this example, MQGMO_LOGICAL_ORDER is not used when looking for the first or only message in a group.

The following gives an example of browsing and then retrieving destructively:

GMO.Options = MQGMO_BROWSE_NEXT | MQGMO_COMPLETE_MSG | MQGMO_LOGICAL_ORDER

 | MQGMO_ALL_MESSAGES_AVAILABE | MQGMO_WAIT

do while (GroupStatus == MQGS_MSG_IN_GROUP)

 MQGET

 /* Examine each remaining message in the group (or as many as

 necessary to decide whether to get it destructively) */

 ...

if (we want to retrieve the group destructively)

 if (GroupStatus == ' ')

Page 92 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

 /* We retrieved an ungrouped message */

 GMO.Options = MQGMO_MSG_UNDER_CURSOR | MQGMO_SYNCPOINT

 MQGET GMO.MatchOptions = 0

 /* Process the message */

 ...

 else

 /* We retrieved one or more messages in a group. The browse cursor */

 /* will not normally be still on the first in the group, so we have */

 /* to match on the GroupId and MsgSeqNumber = 1. */

 /* Another way, which works for both grouped and ungrouped messages,*/

 /* would be to remember the MsgId of the first message when it was */

 /* browsed, and match on that. */

 GMO.Options = MQGMO_COMPLETE_MSG | MQGMO_SYNCPOINT

 MQGET GMO.MatchOptions = MQMO_MATCH_GROUP_ID

 | MQMO_MATCH_MSG_SEQ_NUMBER,

 (MQMD.GroupId = value already in the MD)

 MQMD.MsgSeqNumber = 1

 /* Process first or only message */

 ...

 GMO.Options = MQGMO_COMPLETE_MSG | MQGMO_SYNCPOINT

 | MQGMO_LOGICAL_ORDER

 do while (GroupStatus == MQGS_MSG_IN_GROUP)

 MQGET

 /* Process each remaining message in the group */

 ...

Parent topic: Browsing messages in logical order

This build: January 26, 2011 11:19:54

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg12940_

2.5.11.5. Avoiding repeated delivery of browsed messages

By using certain open options and get-message options, you can mark messages as having been browsed so that they are not retrieved again by the current
or other cooperating applications. Messages can be unmarked explicitly or automatically to make them available again for browsing.

If you browse messages on a queue, you might retrieve them in a different order to the order in which you would retrieve them if you got them
destructively. In particular, you can browse the same message multiple times, which is not possible if it is removed from the queue. To avoid this you can
mark messages as they are browsed, and avoid retrieving marked messages. This is sometimes referred to as browse with mark. To mark browsed
messages, use the get message option MQGMO_MARK_BROWSE_HANDLE, and to retrieve only messages that are not marked, use
MQGMO_UNMARKED_BROWSE_MSG. If you use the combination of options MQGMO_BROWSE_FIRST, MQGMO_UNMARKED_BROWSE_MSG, and
MQGMO_MARK_BROWSE_HANDLE, and issue repeated MQGETs, you will retrieve each message on the queue in turn. This prevents repeated delivery of
messages even though MQGMO_BROWSE_FIRST is used to ensure that messages are not skipped. This combination of options can be represented by the
single constant MQGMO_BROWSE_HANDLE. When there are no messages on the queue that have not been browsed, MQRC_NO_MSG_AVAILABLE is
returned.

If multiple applications are browsing the same queue, they can open the queue with the options MQOO_CO_OP and MQOO_BROWSE. The object handle
returned by each MQOPEN is considered to be part of a cooperating group. Any message returned by an MQGET call specifying the option
MQGMO_MARK_BROWSE_CO_OP is considered to be marked for this cooperating set of handles.

If a message has been marked for some time, it can be automatically unmarked by the queue manager and made available for browsing again. The queue
manager attribute MsgMarkBrowseInterval gives the time in milliseconds for which a message is to remain marked for the cooperating set of handles. A
MsgMarkBrowseInterval of -1 means that messages are never automatically unmarked.

When the single process or set of cooperative processes marking messages stop, any marked messages become unmarked.

Examples of cooperative browsing

You might run multiple copies of a dispatcher application to browse messages on a queue and initiate a consumer based on the content of each message. In
each dispatcher, open the queue with MQOO_CO_OP. This indicates that the dispatchers are cooperating and will be aware of each other's marked
messages. Each dispatcher then makes repeated MQGET calls, specifying the options MQGMO_BROWSE_FIRST, MQGMO_UNMARKED_BROWSE_MSG , and
MQGMO_MARK_BROWSE_CO_OP (you can use the single constant MQGMO_BROWSE_CO_OP to represent this combination of options). Each dispatcher
application then retrieves only those messages that have not already been marked by other cooperating dispatchers. The dispatcher initializes a consumer
and passes the MsgToken returned by the MQGET to the consumer, which destructively gets the message from the queue. If the consumer backs out the
MQGET of the message, then the message is available for one of the browsers to re-dispatch, because it is no longer marked. If the consumer does not do
an MQGET on the message, then after the MsgMarkBrowseInterval has passed, the queue manager unmarks the message for the cooperating set of handles,
and it can be re-dispatched.

Rather than multiple copies of the same dispatcher application, you might have a number of different dispatcher applications browsing the queue, each
suitable for processing a subset of the messages on the queue. In each dispatcher, open the queue with MQOO_CO_OP. This indicates that the dispatchers
are cooperating and will be aware of each other's marked messages.

� If the order of message processing for a single dispatcher is important, each dispatcher makes repeated MQGET calls, specifying the options
MQGMO_BROWSE_FIRST, MQGMO_UNMARKED_BROWSE_MSG , and MQGMO_MARK_BROWSE_HANDLE (or MQGMO_BROWSE_HANDLE). If the
browsed message is suitable for this dispatcher to process, it then makes an MQGET call specifying MQMO_MATCH_MSG_TOKEN,
MQGMO_MARK_BROWSE_CO_OP, and the MsgToken returned by the previous MQGET call. If the call succeeds, the dispatcher initializes the consumer,
passing the MsgToken to it.

� If the order of message processing is not important and the dispatcher is expected to process most of the messages it encounters, use the options
MQGMO_BROWSE_FIRST, MQGMO_UNMARKED_BROWSE_MSG , and MQGMO_MARK_BROWSE_CO_OP (or MQGMO_BROWSE_CO_OP). If the
dispatcher browses a message it cannot process, it unmarks the message by calling MQGET with the option MQMO_MATCH_MSG_TOKEN,
MQGMO_UNMARK_BROWSE_CO_OP, and the MsgToken returned previously.

Parent topic: Browsing messages on a queue

This build: January 26, 2011 11:22:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg20560_

Page 93 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

2.5.12. Some cases where the MQGET call fails

If certain attributes of a queue are changed using the FORCE option on a command between issuing an MQOPEN and an MQGET call, the MQGET call fails
and returns the MQRC_OBJECT_CHANGED reason code.

The queue manager marks the object handle as being no longer valid. This also happens if the changes apply to any queue to which the queue name
resolves. The attributes that affect the handle in this way are listed in the description of the MQOPEN call in the WebSphere MQ Application Programming
Reference. If your call returns the MQRC_OBJECT_CHANGED reason code, close the queue, reopen it, then try to get a message again.

If get operations are inhibited for a queue from which you are attempting to get messages (or any queue to which the queue name resolves), the MQGET
call fails and returns the MQRC_GET_INHIBITED reason code. This happens even if you are using the MQGET call for browsing. You might be able to get a
message successfully if you attempt the MQGET call at a later time, if the design of the application is such that other programs change the attributes of
queues regularly.

If a dynamic queue (either temporary or permanent) has been deleted, MQGET calls using a previously-acquired object handle fail and return the
MQRC_Q_DELETED reason code.

Parent topic: Getting messages from a queue

This build: January 26, 2011 11:19:54

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg12950_

2.6. Writing publisher applications

Get started with writing publisher applications by studying two examples. The first is modelled as closely as possible on a point to point application putting
messages on a queue, and the second demonstrates creating topics dynamically - a more common pattern for publisher applications.

Writing a simple WebSphere MQ publisher application is just like writing a WebSphere MQ point to point application that puts messages to a queue (Table 1).
The difference is you MQPUT messages to a topic, not to a queue.

To make that concrete, there are two examples of applications to publish stock prices. In the first example (Example 1: Publisher to a fixed topic), that is
modelled very closely on putting messages to a queue, the administrator creates a topic definition in a similar way to creating a queue. The programmer
codes MQPUT to write messages to the topic instead of writing them to a queue. In the second example (Example 2: Publisher to a variable topic), the
pattern of interaction of the program with WebSphere MQ is similar. The difference is the programmer provides the topic to which the message is written,
rather than the administrator. In practice this usually means the topic string is content defined, or provided "out of band", that is, provided by human input,
or by another source of information.

Example 1: Publisher to a fixed topic
A WebSphere MQ program to illustrate publishing to an administratively defined topic.

Example 2: Publisher to a variable topic
A Websphere MQ program to illustrate publishing to a programmatically defined topic.

Parent topic: Writing a WebSphere MQ application

Related concepts
Writing subscriber applications

This build: January 26, 2011 11:22:13

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ps10431_

2.6.1. Example 1: Publisher to a fixed topic

A WebSphere MQ program to illustrate publishing to an administratively defined topic.

Note: The compact coding style is intended for readability not production use.

Figure 1. Simple WebSphere MQ publisher to a fixed topic.

See the output in Figure 2

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <cmqc.h>

int main(int argc, char **argv)

{

 char topicNameDefault[] = "IBMSTOCKPRICE";

 char publicationDefault[] = "129";

 MQCHAR48 qmName = "";

 MQHCONN Hconn = MQHC_UNUSABLE_HCONN; /* connection handle */

 MQHOBJ Hobj = MQHO_NONE; /* object handle sub queue */

 MQLONG CompCode = MQCC_OK; /* completion code */

Table 1. Point to point vs. publish/subscribe WebSphere MQ program pattern.

Step Point to point MQ Call Publish MQ Call

Connect to a queue manager MQCONN MQCONN

Open queue MQOPEN

Open topic MQOPEN

Put message(s) MQPUT MQPUT

Close topic MQCLOSE

Close queue MQCLOSE

Disconnect from queue manager MQDISC MQDISC

Page 94 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

 MQLONG Reason = MQRC_NONE; /* reason code */

 MQOD td = {MQOD_DEFAULT}; /* Object descriptor */

 MQMD md = {MQMD_DEFAULT}; /* Message Descriptor */

 MQPMO pmo = {MQPMO_DEFAULT}; /* put message options */

 MQCHAR resTopicStr[151]; /* Returned vale of topic string */

 char * topicName = topicNameDefault;

 char * publication = publicationDefault;

 memset (resTopicStr, 0 , sizeof(resTopicStr));

 switch(argc){ /* replace defaults with args if provided */

 default:

 publication = argv[2];

 case(2):

 topicName = argv[1];

 case(1):

 printf("Optional parameters: TopicObject Publication\n");

 }

 do {

 MQCONN(qmName, &Hconn, &CompCode, &Reason);

 if (CompCode != MQCC_OK) break;

 td.ObjectType = MQOT_TOPIC; /* Object is a topic */

 td.Version = MQOD_VERSION_4; /* Descriptor needs to be V4 */

 strncpy(td.ObjectName, topicName, MQ_TOPIC_NAME_LENGTH);

 td.ResObjectString.VSPtr = resTopicStr;

 td.ResObjectString.VSBufSize = sizeof(resTopicStr)-1;

 MQOPEN(Hconn, &td, MQOO_OUTPUT | MQOO_FAIL_IF_QUIESCING, &Hobj, &CompCode, &Reason);

 if (CompCode != MQCC_OK) break;

 pmo.Options = MQPMO_FAIL_IF_QUIESCING | MQPMO_RETAIN;

 MQPUT(Hconn, Hobj, &md, &pmo, (MQLONG)strlen(publication)+1, publication, &CompCode, &Reason);

 if (CompCode != MQCC_OK) break;

 MQCLOSE(Hconn, &Hobj, MQCO_NONE, &CompCode, &Reason);

 if (CompCode != MQCC_OK) break;

 MQDISC(&Hconn, &CompCode, &Reason);

 } while (0);

 if (CompCode == MQCC_OK)

 printf("Published \"%s\" using topic \"%s\" to topic string \"%s\"\n",

 publication, td.ObjectName, resTopicStr);

 printf("Completion code %d and Return code %d\n", CompCode, Reason);

}

Figure 2. Sample output from first publisher example

X:\Publish1\Debug>PublishStock

Optional parameters: TopicObject Publication

Published "129" using topic "IBMSTOCKPRICE" to topic string "NYSE/IBM/PRICE"

Completion code 0 and Return code 0

X:\Publish1\Debug>PublishStock IBMSTOCKPRICE 155

Optional parameters: TopicObject Publication

Published "155" using topic "IBMSTOCKPRICE" to topic string "NYSE/IBM/PRICE"

Completion code 0 and Return code 0

The lines of code selected below illustrate aspects of writing a publisher application for WebSphere MQ.

char topicNameDefault[] = "IBMSTOCKPRICE";

A default topic name is defined in the program. You can override it by providing the name of a different topic object as the first argument to the program.

MQCHAR resTopicStr[151];

resTopicStr is pointed at by td.ResObjectString.VSPtr and is used by MQOPEN to return the resolved topic string. Make the length of resTopicStr one

larger than the length passed in td.ResObjectString.VSBufSize to give space for null termination.

memset (resTopicStr, 0, sizeof(resTopicStr));

Initialize resTopicStr to nulls to ensure the resolved topic string returned in an MQCHARV is null terminated.

td.ObjectType = MQOT_TOPIC

There is a new type of object for publish/subscribe: the topic object.

td.Version = MQOD_VERSION_4;

To use the new type of object, you must use at least version 4 of the object descriptor.

strncpy(td.ObjectName, topicName, MQ_OBJECT_NAME_LENGTH);

The topicName is the name of a topic object, sometimes called an administrative topic object. In the example the topic object needs to be created

beforehand, using WebSphere MQ Explorer or this MQSC command,

DEFINE TOPIC(IBMSTOCKPRICE) TOPICSTR(NYSE/IBM/PRICE) REPLACE;

td.ResObjectString.VSPtr = resTopicStr;

The resolved topic string is echoed in the final printf in the program. Set up the MQCHARV ResObjectString structure for WebSphere MQ to return the

resolved string back to the program.

MQOPEN(Hconn, &td, MQOO_OUTPUT | MQOO_FAIL_IF_QUIESCING, &Hobj, &CompCode, &Reason);

Open the topic for output; just like opening a queue for output.

pmo.Options = MQPMO_FAIL_IF_QUIESCING | MQPMO_RETAIN;

You want new subscribers to be able receive the publication, and by specifying MQPMO_RETAIN in the publisher, when we start a subscriber it receives the

latest publication, published before the subscriber started, as its first matching publication. The alternative is to provide subscribers with publications
published only after the subscriber started. In addition a subscriber has the option to decline to receive a retained publication by specifying
MQSO_NEW_PUBLICATIONS_ONLY in its subscription.

MQPUT(Hconn, Hobj, &md, &pmo, (MQLONG)strlen(publication)+1, publication, &CompCode, &Reason);

Add 1 to the length of the string passed to MQPUT to pass the null termination character to WebSphere MQ as part of the message buffer.

What does the first example demonstrate? The example imitates as closely as possible the tried and tested traditional pattern for writing point to point
WebSphere MQ programs. An important feature of the WebSphere MQ programming pattern is that the programmer is not concerned where messages are
sent. The programmer's task is to connect to a queue manager, and pass to it the messages that are to be distributed to recipients. In the point-to-point
paradigm, the programmer opens a queue (probably an alias queue) that the administrator has configured. The alias routes messages to a target queue,
either on the local queue manager, or to a remote queue manager. While the messages are waiting to be delivered, they are stored on queues somewhere
between the source and the destination.

In the publish/subscribe pattern, instead of opening a queue, the programmer opens a topic. In our example, the topic is associated with a topic string by an
administrator. The queue manager forwards the publication, using queues, to local or remote subscribers that have subscriptions that match the
publication's topic string. In the case of retained publications the queue manager keeps the latest copy of the publication, even if it has no subscribers at

Page 95 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

present. The retained publication is available to forward to future subscribers. The publisher application plays no part in selecting or routing the publication
to a destination; its task is to create and put publications to the topics defined by the administrator.

This fixed topic example is atypical of many publish/subscribe applications: it is static. It requires an administrator to define the topic strings and change the
topics that are published on. Commonly publish/subscribe applications need to have knowledge of some or all of the topic tree. Perhaps topics change
frequently, or perhaps although the topics do not change much, the number of topic combinations is very large and it is too onerous for an administrator to
define a topic node for every topic string that might need to be published on. Perhaps topic strings are not known in advance of publication; a publisher
application might use information from the publication content to specify a topic string, or it might have out of band information about topic strings to
publish on, such as input from a browser. To cater for more dynamic styles of publishing, the next example shows how to create topics dynamically, as part
of the publisher application.

Topics couple publishers and subscribers together. Designing the rules, or architecture, for naming topics, and organizing them in topic trees is a very
important step in developing a publish/subscribe solution. Look carefully at the extent to which organization of the topic tree binds of publisher and
subscriber programs together, and binds them to the content of the topic tree. Ask yourself the question whether changes in the topic tree will impact
publisher and subscriber applications, and how you can minimize the impact. Built into the architecture of the WebSphere MQ publish/subscribe model is the
notion of an administrative topic object that provides the root part, or root subtree, of a topic. The topic object gives you the option of defining the root part
of the topic tree administratively that simplifies application programming and operations, and consequently improves maintainability. For example, if you are
deploying multiple publish/subscribe applications that have isolated topic trees, then by administratively defining the root part of the topic tree, you can
guarantee the isolation of topic trees, even if there is no consistency in the topic naming conventions adopted by the different applications.

In practice, publisher applications cover a spectrum from solely using fixed topics, as in this example, and variable topics, as in the next. Example 2:
Publisher to a variable topic also demonstrates combining the use of topics and topic strings.

Parent topic: Writing publisher applications

Related concepts
Example 2: Publisher to a variable topic
Writing subscriber applications

This build: January 26, 2011 11:22:14

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ps10433_

2.6.2. Example 2: Publisher to a variable topic

A Websphere MQ program to illustrate publishing to a programmatically defined topic.

Note: The compact coding style is intended for readability not production use.

Figure 1. Simple WebSphere MQ publisher to a variable topic.

See the output in Figure 2.

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <cmqc.h>

int main(int argc, char **argv)

{

 char topicNameDefault[] = "STOCKS";

 char topicStringDefault[] = "IBM/PRICE";

 char publicationDefault[] = "130";

 MQCHAR48 qmName = "";

 MQHCONN Hconn = MQHC_UNUSABLE_HCONN; /* connection handle */

 MQHOBJ Hobj = MQHO_NONE; /* object handle sub queue */

 MQLONG CompCode = MQCC_OK; /* completion code */

 MQLONG Reason = MQRC_NONE; /* reason code */

 MQOD td = {MQOD_DEFAULT}; /* Object descriptor */

 MQMD md = {MQMD_DEFAULT}; /* Message Descriptor */

 MQPMO pmo = {MQPMO_DEFAULT}; /* put message options */

 MQCHAR resTopicStr[151]; /* Returned value of topic string */

 char * topicName = topicNameDefault;

 char * topicString = topicStringDefault;

 char * publication = publicationDefault;

 memset (resTopicStr, 0 , sizeof(resTopicStr));

 switch(argc){ /* Replace defaults with args if provided */

 default:

 publication = argv[3];

 case(3):

 topicString = argv[2];

 case(2):

 if (strcmp(argv[1],"/")) /* "/" invalid = No topic object */

 topicName = argv[1];

 else

 *topicName = '\0';

 case(1):

 printf("Provide parameters: TopicObject TopicString Publication\n");

 }

 printf("Publish \"%s\" to topic \"%-.48s\" and topic string \"%s\"\n", publication, topicName, topicString);

 do {

 MQCONN(qmName, &Hconn, &CompCode, &Reason);

 if (CompCode != MQCC_OK) break;

 td.ObjectType = MQOT_TOPIC; /* Object is a topic */

 td.Version = MQOD_VERSION_4; /* Descriptor needs to be V4 */

 strncpy(td.ObjectName, topicName, MQ_TOPIC_NAME_LENGTH);

 td.ObjectString.VSPtr = topicString;

 td.ObjectString.VSLength = (MQLONG)strlen(topicString);

 td.ResObjectString.VSPtr = resTopicStr;

 td.ResObjectString.VSBufSize = sizeof(resTopicStr)-1;

 MQOPEN(Hconn, &td, MQOO_OUTPUT | MQOO_FAIL_IF_QUIESCING, &Hobj, &CompCode, &Reason);

 if (CompCode != MQCC_OK) break;

 pmo.Options = MQPMO_FAIL_IF_QUIESCING | MQPMO_RETAIN;

 MQPUT(Hconn, Hobj, &md, &pmo, (MQLONG)strlen(publication)+1, publication, &CompCode, &Reason);

 if (CompCode != MQCC_OK) break;

Page 96 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

 MQCLOSE(Hconn, &Hobj, MQCO_NONE, &CompCode, &Reason);

 if (CompCode != MQCC_OK) break;

 MQDISC(&Hconn, &CompCode, &Reason);

 } while (0);

 if (CompCode == MQCC_OK)

 printf("Published \"%s\" to topic string \"%s\"\n", publication, resTopicStr);

 printf("Completion code %d and Return code %d\n", CompCode, Reason);

}

Figure 2. Sample output from second publisher example

X:\Publish2\Debug>PublishStock

Provide parameters: TopicObject TopicString Publication

Publish "130" to topic "STOCKS" and topic string "IBM/PRICE"

Published "130" to topic string "NYSE/IBM/PRICE"

Completion code 0 and Return code 0

X:\Publish2\Debug>PublishStock / NYSE/IBM/PRICE 131

Provide parameters: TopicObject TopicString Publication

Publish "131" to topic "" and topic string "NYSE/IBM/PRICE"

Published "131" to topic string "NYSE/IBM/PRICE"

Completion code 0 and Return code 0

There are a few points to note about this example.

char topicNameDefault[] = "STOCKS";

The default topic name STOCKS defines part of the topic string. You can override this topic name by providing it as the first argument to the program, or

eliminate the use of the topic name by supplying / as the first parameter.

char topicString[101] = "IBM/PRICE";

IBM/PRICE is the default topic string. You can override this topic string by providing it as the second argument to the program.

The queue manager combines the topic string provided by the STOCKS topic object, "NYSE", with the topic string provided by the program "IBM/PRICE"

and inserts a "/"between the two yielding topic strings as the resolved topic string "NYSE/IBM/PRICE". The resulting topic string is the same as the one

defined in the IBMSTOCKPRICE topic object, and has precisely the same effect.

The administrative topic object associated with the resolved topic string is not necessarily the same topic object as passed to MQOPEN by the publisher.

WebSphere MQ uses the tree implicit in the resolved topic string to work out which administrative topic object defines the attributes associated with the
publication.
Suppose there are two topic objects A and B, and A defines topic "a", and B defines topic "a/b" (Figure 3). If the publisher program refers to topic object A

and provides topic string "b", resolving the topic to the topic string "a/b", then the publication inherits its properties from topic object B because the topic

matches the topic string "a/b" defined for B.

if (strcmp(argv[1],"/"))

argv[1] is the optionally provided topicName. "/" is invalid as a topic name; here it signifies that there is no topic name, and the topic string is provided

entirely by the program. The output in Figure 2 shows the whole topic string being supplied dynamically by the program.

strncpy(td.ObjectName, topicName, MQ_OBJECT_NAME_LENGTH);

For the default case, the optional topicName needs to be created beforehand, using WebSphere MQ Explorer or this MQSC command:

DEFINE TOPIC(STOCKS) TOPICSTR(NYSE) REPLACE;

td.ObjectString.VSPtr = topicString;

The topic string is a MQCHARV field in the topic descriptor

Figure 3. Topic object associations

What does the second example demonstrate? Although the code is very similar to the first example - effectively there are only two lines difference - the
result is a significantly different program to the first. The programmer controls the destinations to which publications are sent. In conjunction with minimal
administrator input used to design subscriber applications, no topics or queues need to be predefined to route publications from publishers to subscribers.

In the point-to-point messaging paradigm, queues have to be defined before messages are able to flow. For publish/subscribe, they do not, although
WebSphere MQ implements publish/subscribe using its underlying queuing system; the benefits of guaranteed delivery, transactionality and loose coupling
associated with messaging and queueing are inherited by publish/subscribe applications.

A designer has to decide whether publisher, and subscriber, programs are to be aware of the underlying topic tree or not, and also whether subscriber
programs are aware of queueing or not. Study the subscriber example applications next. They are designed to be used with the publisher examples, typically
publishing and subscribing to NYSE/IBM/PRICE.

Parent topic: Writing publisher applications

Related concepts
Example 1: Publisher to a fixed topic
Writing subscriber applications

This build: January 26, 2011 11:22:14

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ps10434_

2.7. Writing subscriber applications

There are many more patterns of subscriber application than publisher. Three are illustrated: a WebSphere MQ application consuming messages from a
queue, an application that creates a subscription and requires no knowledge of queuing, and finally an example that uses both queuing and subscriptions.

In Table 1 the three styles of consumer or subscriber are listed, together with the sequences of WebSphere MQ function calls that characterize them.

1. The first style, MQ Publication Consumer, is identical to a point to point MQ program that only does MQGET. The application has no knowledge that it is

Page 97 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

consuming publications - it is simply reading messages from a queue. The subscription that causes publications to get routed to the queue is created
administratively using WebSphere MQ Explorer or a command.

2. The second style is the preferred pattern for most subscriber applications. The subscriber application creates the subscription, and then gets
publications. The queue management is all performed by the queue manager.

3. In the third style, the subscriber application elects to open and close the underlying queue that is used for publications as well as issue subscriptions to
fill the queue with publications.

One way to understand these styles is to study the example C programs listed in Table 1 for each of the styles. The examples are designed to be run in

conjunction with the publisher example found in Writing publisher applications.

Using MQCLOSE is always optional, either to release resources, pass MQCLOSE options, or just for symmetry with MQOPEN. Since you are unlikely to need
to specify the MQCLOSE options when the subscription queue is closed in the Managed MQ subscriber case, and the symmetry argument is not relevant, the
subscription queue is not explicitly closed in the Managed MQ subscriber example below.

Another way to understand publish/subscribe application patterns is too look at the interactions between the different entities involved. Lifeline, or UML
sequence diagrams are a good way to study interactions. Three lifeline examples are described in Publish/subscribe lifecycles.

Example 1: MQ Publication consumer
The MQ Publication consumer is a WebSphere MQ message consumer that does not subscribe to topics itself.

Example 2: Managed MQ subscriber
The managed MQ subscriber is the preferred pattern for most subscriber applications. The example requires no administrative definition of queues,
topics or subscriptions.

Example 3: Unmanaged MQ subscriber
The unmanaged subscriber is an important class of subscriber application. With it, you combine the benefits of publish/subscribe with control of
queuing and consumption of publications. The example demonstrates different ways of combining subscriptions and queues.

Parent topic: Writing a WebSphere MQ application

This build: January 26, 2011 11:22:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ps10435_

2.7.1. Example 1: MQ Publication consumer

The MQ Publication consumer is a WebSphere MQ message consumer that does not subscribe to topics itself.

To create the subscription and publication queue for this example run the following commands, or define the objects using WebSphere MQ Explorer.

DEFINE QLOCAL(STOCKTICKER) REPLACE;

DEFINE SUB(IBMSTOCKPRICESUB) DEST(STOCKTICKER) TOPICOBJ(IBMSTOCKPRICE) REPLACE;

The IBMSTOCKPRICESUB subscription references the IBMSTOCK topic object created for the publisher example and the local queue STOCKTICKER. The topic

object IBMSTOCK defines the topic string that is used in the subscription, NYSE/IBM/PRICE. Note that the topic object and the queue used to receive

publications need to be defined before the subscription is created.

There are a number of valuable facets to the MQ publication consumer pattern:

1. Multiprocessing: sharing out of the work of reading publications. The publications all go onto the single queue associated with the subscription topic.
Multiple consumers can open the queue using MQOO_INPUT_SHARED.

2. Centrally managed subscriptions. Applications do not construct their own subscription topics or subscriptions; the administrator is responsible for
where publications are sent.

3. Subscription concentration: multiple different subscriptions can be sent to a single queue.

4. Subscription durability: the queue receives all publications whether or not consumers are active.

5. Migration and coexistence: the consumer code works equally well for a point-to-point and a publish/subscribe scenario.

The subscription creates a relationship between the topic string NYSE/IBM/PRICE and the queue STOCKTICKER. Publications, including any currently retained

publication, are forwarded to STOCKTICKER from the moment the subscription is created.

An administratively created subscription can be managed or unmanaged. A managed subscription takes effect as soon as it has been created, just like an
unmanaged subscription. Not all the pattern facets are available to a managed subscription. See Example 3: Unmanaged MQ subscriber

Note: The compact coding style is intended for readability not production use.

Figure 1. MQ publication consumer.

The results are shown in Figure 2.

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

Table 1. Point to point vs. subscribe WebSphere MQ program patterns.

Step MQ message

consumer

Example 1: MQ

Publication

consumer

Example 2: Managed

MQ subscriber

Example 3:

Unmanaged MQ

subscriber

Connect to a queue

manager

MQCONN MQCONN MQCONN MQCONN

Open queue MQOPEN MQOPEN MQOPEN

Subscribe MQSUB MQSUB

Put message(s) MQGET MQGET MQGET MQGET

Close queue MQCLOSE MQCLOSE (MQCLOSE) MQCLOSE

Close subscription MQCLOSE MQCLOSE

Disconnect from queue

manager

MQDISC MQDISC MQDISC MQDISC

Page 98 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

#include <cmqc.h>

int main(int argc, char **argv)

{

 MQCHAR publicationBuffer[101];

 MQCHAR48 subscriptionQueueDefault = "STOCKTICKER";

 MQCHAR48 qmName = ""; /* Use default queue manager */

 MQHCONN Hconn = MQHC_UNUSABLE_HCONN; /* connection handle */

 MQHOBJ Hobj = MQHO_NONE; /* object handle sub queue */

 MQLONG CompCode = MQCC_OK; /* completion code */

 MQLONG Reason = MQRC_NONE; /* reason code */

 MQLONG messlen = 0;

 MQOD od = {MQOD_DEFAULT}; /* Unmanaged subscription queue */

 MQMD md = {MQMD_DEFAULT}; /* Message Descriptor */

 MQGMO gmo = {MQGMO_DEFAULT}; /* Get message options */

 char * publication=publicationBuffer;

 char * subscriptionQueue = subscriptionQueueDefault;

 switch(argc){ /* Replace defaults with args if provided */

 default:

 subscriptionQueue = argv[1]

 case(1):

 printf("Optional parameter: subscriptionQueue\n");

 }

 do {

 MQCONN(qmName, &Hconn, &CompCode, &Reason);

 if (CompCode != MQCC_OK) break;

 strncpy(od.ObjectName, subscriptionQueue, MQ_Q_NAME_LENGTH);

 MQOPEN(Hconn, &od, MQOO_INPUT_AS_Q_DEF | MQOO_FAIL_IF_QUIESCING , &Hobj, &CompCode, &Reason);

 if (CompCode != MQCC_OK) break;

 gmo.Options = MQGMO_WAIT | MQGMO_NO_SYNCPOINT | MQGMO_CONVERT;

 gmo.WaitInterval = 10000;

 printf("Waiting %d seconds for publications from %s\n", gmo.WaitInterval/1000, subscriptionQueue);

 do {

 memcpy(md.MsgId, MQMI_NONE, sizeof(md.MsgId));

 memcpy(md.CorrelId, MQCI_NONE, sizeof(md.CorrelId));

 md.Encoding = MQENC_NATIVE;

 md.CodedCharSetId = MQCCSI_Q_MGR;

 memset(publication, 0, sizeof(publicationBuffer));

 MQGET(Hconn, Hobj, &md, &gmo, sizeof(publicationBuffer)-1, publication, &messlen,

 &CompCode, &Reason);

 if (Reason == MQRC_NONE)

 printf("Received publication \"%s\"\n", publication);

 }

 while (CompCode == MQCC_OK);

 if (CompCode != MQCC_OK && Reason != MQRC_NO_MSG_AVAILABLE) break;

 MQCLOSE(Hconn, &Hobj, MQCO_NONE, &CompCode, &Reason);

 if (CompCode != MQCC_OK) break;

 MQDISC(&Hconn, &CompCode, &Reason);

 } while (0);

 printf("Completion code %d and Return code %d\n", CompCode, Reason);

}

Figure 2. Output from MQ publication consumer

X:\Subscribe1\Debug>Subscribe1

Optional parameter: subscriptionQueue

Waiting 10 seconds for publications from STOCKTICKER

Received publication "129"

Completion code 0 and Return code 0

There are a couple of standard WebSphere MQ C language programming tips to be aware of:

memset(publication, 0, sizeof(publicationBuffer));

Ensure the message has a trailing null for easy formatting using printf. The publisher example includes the trailing null in the message buffer passed to

MQPUT by adding 1 to strlen(publication). Setting MQCHAR buffers to null is good programming style for WebSphere MQ C programs that use the buffers

to store strings, ensuring a null follows an array of characters that does not completely fill the buffer.

MQGET(Hconn, Hobj, &md, &gmo, sizeof(publicationBuffer)-1, publication, &messlen, &CompCode, &Reason);

Reserve one null at the end of the message buffer to ensure the returned message has trailing null in case "if (messlen == strlen(publication));" is

true. This tip complements the preceding one, and ensures that there is at least one null in publicationBuffer that is not overwritten by the contents of

publication.

Parent topic: Writing subscriber applications

Related concepts
Example 2: Managed MQ subscriber
Example 3: Unmanaged MQ subscriber
Writing publisher applications

This build: January 26, 2011 11:22:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ps10436_

2.7.2. Example 2: Managed MQ subscriber

The managed MQ subscriber is the preferred pattern for most subscriber applications. The example requires no administrative definition of queues, topics or
subscriptions.

This simplest kind of managed subscriber typically makes use of a non-durable subscription. The example focuses on a non-durable subscription. The
subscription only lasts only as long as the lifetime of the subscription handle from MQSUB. Any publications that match the topic string during the lifetime of

the subscription are sent to the subscription queue (and possibly a retained publication if the flag MQSO_NEW_PUBLICATIONS_ONLY is not set or defaulted, an

earlier publication matching the topic string was retained, and the publication was persistent or the queue manager has not terminated, since the publication
was created).

Page 99 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

You can also use a durable subscription with this pattern. Typically if a managed durable subscription is used it is done for reliability reasons, rather than to
establish a subscription that, without any errors occurring, would outlive the subscriber. See the discussion of different lifecycles associated with managed,
unmanaged, durable and non-durable subscriptions in the related topics section.

Durable subscriptions are often associated with persistent publications, and non-durable subscriptions with non-persistent publications, but there is no
necessary relationship between subscription durability and publication persistence. All four combinations of persistence and durability are possible.

For the managed non-durable case we are considering, the queue manager creates a subscription queue that is purged and deleted when the queue is
closed. The publications are removed from the queue when the non-durable subscription is closed.

The valuable facets of the managed non-durable pattern exemplified by this code are listed below.

1. On demand subscription: the subscription topic string is dynamic. It is provided by the application when it runs.

2. Self managing queue: the subscription queue is self defining and managing.

3. Self managing subscription lifecycle: non-durable subscriptions only exist for the duration of the subscriber application.

� If you define a durable managed subscription, then it results in a permanent subscription queue and publications continue to be stored on it with
no subscriber programs being active. The queue manager deletes the queue (and clears any unretrieved publications from it) only after the
application or administrator has chosen to delete the subscription. The subscription can be deleted using an administrative command, or by
closing the subscription with the MQCO_REMOVE_SUB option.

� Consider setting SubExpiry for durable subscriptions so that publications cease to be sent to the queue and the subscriber can consume any

remaining publications before removing the subscription and causing the queue manager to delete the queue and any remaining publications on
it.

4. Flexible topic string deployment: Subscription topic management is simplified by defining the root part of the subscription using an administratively
defined topic. The root part of the topic tree is then hidden from the application. By hiding the root part an application can be deployed without the
application inadvertently creating a topic tree that overlaps with another topic tree created by another instance, or another application.

5. Administered topics: by using a topic string in which the first part matches an administratively defined topic object, publications are managed
according to the attributes of the topic object.

� For example, if the first part of the topic string matches the topic string associated with a clustered topic object, then the subscription can
receive publications from other members of the cluster

� The selective matching of administratively defined topic objects and programmatically defined subscriptions enables you to combine the benefits
of both. The administrator provides attributes for topics, and the programmer dynamically defines "sub-topics" without being concerned about
the management of topics.

� It is the resultant topic string which is used to match the topic object that provides the attributes associated with the topic, and not necessarily
the topic object named in sd.Objectname, thought they usually turn out to be one and the same. See the discussion in Example 2: Publisher to a

variable topic.

By making the subscription durable in the example, publications continue to be sent to the subscription queue after the subscriber has closed the
subscription with the MQCO_KEEP_SUB option. The queue continues to receive publications when the subscriber is not active. You can override this behavior

by creating the subscription with the MQSO_PUBLICATIONS_ON_REQUEST option and using MQSUBRQ to request the retained publication.

The subscription can be resumed later by opening the subscription with the MQCO_RESUME option.

You can use the queue handle, Hobj, returned by MQSUB in a number of ways. The queue handle is used in the example to inquire on the name of the

subscription queue. Managed queues are opened using the default model queues SYSTEM.NDURABLE.MODEL.QUEUE or SYSTEM.DURABLE.MODEL.QUEUE. You can

override the defaults by providing your own durable and non-durable model queues on a topic by topic basis as properties of the topic object associated with
the subscription.

Regardless of the attributes inherited from the model queues, you cannot reuse a managed queue handle to create an additional subscription. Nor can you
obtain another handle for the managed queue by opening the managed queue a second time using the returned queue name. The queue behaves as if it has
been opened for exclusive input.

Unmanaged queues are more flexible than managed queues. You can, for example share unmanaged queues, or define multiple subscriptions on the one
queue. The next example,Example 3: Unmanaged MQ subscriber, demonstrates how to combine subscriptions with an unmanaged subscription queue.

Note: The compact coding style is intended for readability not production use.

Figure 1. Managed MQ subscriber - part 1: declarations and parameter handling.

The results are shown in Figure 3.

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <cmqc.h>

void inquireQname(MQHCONN HConn, MQHOBJ Hobj, MQCHAR48 qName);

int main(int argc, char **argv)

{

 MQCHAR48 topicNameDefault = "STOCKS";

 char topicStringDefault[] = "IBM/PRICE";

 MQCHAR48 qmName = ""; /* Use default queue manager */

 MQCHAR48 qName = ""; /* Allocate to query queue name */

 char publicationBuffer[101]; /* Allocate to receive messages */

 char resTopicStrBuffer[151]; /* Allocate to resolve topic string */

 MQHCONN Hconn = MQHC_UNUSABLE_HCONN; /* connection handle */

 MQHOBJ Hobj = MQHO_NONE; /* publication queue handle */

 MQHOBJ Hsub = MQSO_NONE; /* subscription handle */

 MQLONG CompCode = MQCC_OK; /* completion code */

 MQLONG Reason = MQRC_NONE; /* reason code */

 MQLONG messlen = 0;

 MQSD sd = {MQSD_DEFAULT}; /* Subscription Descriptor */

 MQMD md = {MQMD_DEFAULT}; /* Message Descriptor */

 MQGMO gmo = {MQGMO_DEFAULT}; /* get message options */

 char * topicName = topicNameDefault;

 char * topicString = topicStringDefault;

 char * publication = publicationBuffer;

 char * resTopicStr = resTopicStrBuffer;

 memset(resTopicStr, 0, sizeof(resTopicStrBuffer));

 switch(argc){ /* Replace defaults with args if provided */

 default:

 topicString = argv[2];

Page 100 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

 case(2):

 if (strcmp(argv[1],"/")) /* "/" invalid = No topic object */

 topicName = argv[1];

 else

 *topicName = '\0';

 case(1):

 printf("Optional parameters: topicName, topicString\nValues \"%s\" \"%s\"\n",

 topicName, topicString);

 }

There are some additional comments to make about the declarations in this example.

MQHOBJ Hobj = MQHO_NONE;

You cannot explicitly open a non-durable managed subscription queue to receive publications, but you do need to allocate storage for the object handle the
queue manager returns when it opens the queue for you. It is important to initialize the handle to MQHO_OBJECT. This indicates to the queue manager that

it needs to return a queue handle to the subscription queue.

MQSD sd = {MQSD_DEFAULT};

The new subscription descriptor, used in MQSUB.

MQCHAR48 qName;

Although the example doesn't require knowledge of the subscription queue, we do inquire the name of the subscription queue - the MQINQ binding is a little

awkward in the C language, so you may find this part of the example useful to study.

Figure 2. Managed MQ subscriber - part 2: code body.

 do {

 MQCONN(qmName, &Hconn, &CompCode, &Reason);

 if (CompCode != MQCC_OK) break;

 strncpy(sd.ObjectName, topicName, MQ_TOPIC_NAME_LENGTH);

 sd.ObjectString.VSPtr = topicString;

 sd.ObjectString.VSLength = MQVS_NULL_TERMINATED;

 sd.Options = MQSO_CREATE | MQSO_MANAGED | MQSO_NON_DURABLE | MQSO_FAIL_IF_QUIESCING ;

 sd.ResObjectString.VSPtr = resTopicStr;

 sd.ResObjectString.VSBufSize = sizeof(resTopicStrBuffer)-1;

 MQSUB(Hconn, &sd, &Hobj, &Hsub, &CompCode, &Reason);

 if (CompCode != MQCC_OK) break;

 gmo.Options = MQGMO_WAIT | MQGMO_NO_SYNCPOINT | MQGMO_CONVERT;

 gmo.WaitInterval = 10000;

 inquireQname(Hconn, Hobj, qName);

 printf("Waiting %d seconds for publications matching \"%s\" from \"%-0.48s\"\n",

 gmo.WaitInterval/1000, resTopicStr, qName);

 do {

 memcpy(md.MsgId, MQMI_NONE, sizeof(md.MsgId));

 memcpy(md.CorrelId, MQCI_NONE, sizeof(md.CorrelId));

 md.Encoding = MQENC_NATIVE;

 md.CodedCharSetId = MQCCSI_Q_MGR;

 memset(publicationBuffer, 0, sizeof(publicationBuffer));

 MQGET(Hconn, Hobj, &md, &gmo, sizeof(publicationBuffer-1),

 publication, &messlen, &CompCode, &Reason);

 if (Reason == MQRC_NONE)

 printf("Received publication \"%s\"\n", publication);

 }

 while (CompCode == MQCC_OK);

 if (CompCode != MQCC_OK && Reason != MQRC_NO_MSG_AVAILABLE) break;

 MQCLOSE(Hconn, &Hsub, MQCO_REMOVE_SUB, &CompCode, &Reason);

 if (CompCode != MQCC_OK) break;

 MQDISC(&Hconn, &CompCode, &Reason);

 } while (0);

 printf("Completion code %d and Return code %d\n", CompCode, Reason);

 return;

}

void inquireQname(MQHCONN Hconn, MQHOBJ Hobj, MQCHAR48 qName) {

#define _selectors 1

#define _intAttrs 1

 MQLONG select[_selectors] = {MQCA_Q_NAME}; /* Array of attribute selectors */

 MQLONG intAttrs[_intAttrs]; /* Array of integer attributes */

 MQLONG CompCode, Reason;

 MQINQ(Hconn, Hobj, _selectors, select, _intAttrs, intAttrs, MQ_Q_NAME_LENGTH, qName,

 &CompCode, &Reason);

 if (CompCode != MQCC_OK) {

 printf("MQINQ failed with Condition code %d and Reason %d\n", CompCode, Reason);

 strcpy(qName, "unknown queue");

 }

 return;

}

Figure 3. Output from managed MQ subscriber

W:\Subscribe2\Debug>solution2

Optional parameters: topicName, topicString

Values "STOCKS" "IBM/PRICE"

Waiting 10 seconds for publications matching "NYSE/IBM/PRICE" from "SYSTEM.MANAGED.NDURABLE.48A0AC7403300020 "

Received publication "150"

Completion code 0 and Return code 0

W:\Subscribe2\Debug>solution2 / NYSE/IBM/PRICE

Optional parameters: topicName, topicString

Values "" "NYSE/IBM/PRICE"

Waiting 10 seconds for publications matching "NYSE/IBM/PRICE" from "SYSTEM.MANAGED.NDURABLE.48A0AC7403310020 "

Received publication "150"

Completion code 0 and Return code 0

There are some additional comments to make about the code in this example.

strncpy(sd.ObjectName, topicName, MQ_Q_NAME_LENGTH);

If topicName is null or blank (default value), the topic name is not used to compute the resolved topic string.

sd.ObjectString.VSPtr = topicString;

Rather than solely use a predefined topic object, in this example the programmer provides a topic object and a topic string, that are combined by MQSUB.

Notice the topic string is a MQCHARV structure.

Page 101 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

sd.ObjectString.VSLength = MQVS_NULL_TERMINATED;

An alternative to setting the length of a MQCHARV field.

sd.Options = MQSO_CREATE | MQSO_MANAGED | MQSO_NON_DURABLE | MQSO_FAIL_IF_QUIESCING;

After defining the topic string, the sd.Options flags need the most careful attention. There are many options, we shall specify only the most commonly

used ones in this example, the others are left to default.

1. As the subscription is non-durable, in other words, it has a lifetime of the open subscription in the application, set the MQSO_CREATE flag. You can also

set the (default) MQSO_NON_DURABLE flag for readability.

2. Complementing MQSO_CREATE is MQSO_RESUME. Both flags may be set together; the queue manager either creates a new subscription or resumes an

existing subscription, whichever is appropriate. However, if you do specify MQSO_RESUME you must also initialize the MQCHARV structure for

sd.SubName, even if there is no subscription to resume. Failure to initialize SubName results in a return code of 2440: MQRC_SUB_NAME_ERROR from

MQSUB.

Note: MQSO_RESUME is always ignored for a non-durable managed subscription: but specifying it without initializing the MQCHARV structure for

sd.SubName does cause the error.

3. In addition there is a third flag affecting how the subscription is opened, MQSO_ALTER. Given the right permissions, the properties of a resumed

subscription are changed to match other attributes specified in MQSUB.

Note: At least one of the MQSO_CREATE, MQSO_RESUME and MQSO_ALTER flags must be specified. See the discussion in MQSD Options Application

programming reference . There are examples of using all three flags in Example 3: Unmanaged MQ subscriber.

4. Set MQSO_MANAGED for the queue manager to manage the subscription for you automatically.

sd.ObjectString.VSLength = MQVS_NULL_TERMINATED;

Optionally, omit setting the length of MQCHARV for null terminated strings and use the null terminator flag instead.

sd.ResObjectString.VSPtr = resTopicStr;

The resulting topic string is echoed in first printf in the program. Set up MQCHARV ResObjectString for WebSphere MQ to return the resolved string back

to our program.

Note: We initialized resTopicStringBuffer to nulls in memset(resTopicStr, 0, sizeof(resTopicStrBuffer)). Returned topic strings do not end with a

trailing null.

sd.ResObjectString.VSBufSize = sizeof(resTopicStrBuffer)-1;

Set the buffer size of the sd.ResObjectString to one less than its actual size. This prevents overwriting the null terminator we provided, in case the

resolved topic string fills the entire buffer.

Note: No error is returned if the topic string is longer than sizeof(resTopicStrBuffer)-1. Even if VSLength > VSBufSiz the length returned in

sd.ResObjectString.VSLength is the length of the complete string and not necessarily the length of the returned string. Test

sd.ResObjectString.VSLength < sd.ResObjectString.VSBufSiz to confirm the topic string is complete.

MQSUB(Hconn, &sd, &Hobj, &Hsub, &CompCode, &Reason);

The MQSUB function creates a subscription. If it is non-durable you are probably not interested in its name, though you can inspect its status in WebSphere

MQ Explorer. You can provide the sd.SubName parameter as input, so you know what name to look for; you obviously have to avoid name clashes with

other subscriptions.

MQCLOSE(Hconn, &Hsub, MQCO_REMOVE_SUB, &CompCode, &Reason);

Closing both the subscription and the subscription queue is optional. In the example the subscription is closed, but not the queue. The MQCLOSE

MQCO_REMOVE_SUB option is the default in this case anyway as the subscription is non-durable. Using MQCO_KEEP_SUB is an error.

Note: the subscription queue is not closed by MQSUB, and its handle, Hobj, remains valid until the queue is closed by MQCLOSE or MQDISC. If the application

terminates prematurely, the queue and subscription are cleaned up by the queue manager sometime after application termination.

Parent topic: Writing subscriber applications

Related concepts
Example 1: MQ Publication consumer
Example 3: Unmanaged MQ subscriber
Writing publisher applications

This build: January 26, 2011 11:22:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ps10437_

2.7.3. Example 3: Unmanaged MQ subscriber

The unmanaged subscriber is an important class of subscriber application. With it, you combine the benefits of publish/subscribe with control of queuing and
consumption of publications. The example demonstrates different ways of combining subscriptions and queues.

The unmanaged pattern is more commonly associated with durable subscriptions than non-durable. Typically the lifecycle of a subscription created by an
unmanaged subscriber is independent of the lifecycle of the subscribing application itself. By making the subscription durable the subscription receives
publications even when no subscribing application is active.

You can create durable managed subscriptions to achieve the same result, but some applications require more flexibility and control over queues and
messages than is possible with a managed subscription. For a durable managed subscription, the queue manager creates a permanent queue for the
publications that match the subscription topic. It deletes the queue and associated publications when the subscription is deleted.

Typically durable managed subscriptions are used if the lifecycle of the application and the subscription is essentially the same, but hard to guarantee. By
making the subscription durable, and having the publisher create persistent publications, there are no lost messages should the queue manager or
subscriber terminate prematurely and need to be recovered.

The queue manager implicitly opens the durable managed subscription queue for a subscriber in such a way that shared processing of the queue is not
possible. In addition, you cannot create more than one subscription for each managed queue and you may find the queues harder to manage because you
have less control over the names of the queues. For these reasons, consider whether the unmanaged MQ subscriber is a better fit for applications requiring
durable subscriptions than the managed MQ subscriber.

The code inFigure 3 demonstrates an unmanaged durable subscription pattern. For illustration the code also creates unmanaged, non-durable subscriptions.
The pattern facets exemplified by this code are,

1. On demand subscriptions: the subscription topic strings are dynamic. They are provided by the application when it runs.

2. Simplified subscription topic management: subscription topic management is simplified by defining the root part of the subscription topic string using
an administratively defined topic. This hides the root part of the topic tree from the application. By hiding the root part a subscriber can be deployed to

Page 102 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

different topic trees.

3. Flexible subscription management: you can define a subscription either administratively, or create it on-demand in a subscriber program. There is no
difference between administratively and programmatically created subscriptions, except an attribute that shows how the subscription was created.
There is a third type of subscription that is created automatically by the queue manager for distribution of subscriptions. All subscriptions are displayed
in the WebSphere MQ Explorer.

4. Flexible association of subscriptions with queues: a predefined local queue is associated with a subscription by the MQSUB function. There are different

ways to use MQSUB to associate subscriptions with queues:

a. Associate a subscription with a queue having no existing subscriptions, MQSO_CREATE + (Hobj from MQOPEN).

b. Associate a new subscription with a queue having existing subscriptions, MQSO_CREATE + (Hobj from MQOPEN).

c. Move a existing subscription to a different queue, MQSO_ALTER + (Hobj from MQOPEN).

d. Resume an existing subscription associated with an existing queue, MQSO_RESUME + (Hobj = MQHO_NONE), or MQSO_RESUME + (Hobj = from

MQOPEN of queue with existing subscription).

� By combining MQSO_CREATE | MQSO_RESUME | MQSO_ALTER in different combinations, you can cater for different input states of the subscription

and the queue without having to code multiple versions of MQSUB with different sd.Options values.

� Alternatively, by coding a specific choice of MQSO_CREATE | MQSO_RESUME | MQSO_ALTER the queue manager returns an error (Table 1) if the

states of the subscription and queue provided as input to MQSUB are inconsistent with the value of sd.Options. Figure 9 shows the results of

issuing MQSUB for Subscription X with different individual settings of the sd.Options flag, and passing it three different object handles.

Explore different inputs to the example program in Figure 2 to become familiar with these different kinds of error. One common error, RC = 2440, that

is not included in the cases listed in the table, is a subscription name error. it is commonly caused by passing a null or invalid subscription name with
MQSO_RESUME or MQSO_ALTER.

5. Multiprocessing: you can share out of the work of reading publications to multiple consumers. The publications all go onto the single queue associated
with the subscription topic. Consumers have a choice of opening the queue directly using MQOPEN or resuming the subscription using MQSUB.

6. Subscription concentration: multiple subscriptions can be created on the same queue. Be cautious with this capability as it can lead to "overlapping"
subscriptions, and receiving the same publication multiple times. The MQSO_GROUP_SUB option eliminates duplicate publications caused by overlapping

subscriptions.

7. Subscriber and consumer separation: As well as the three consumer models illustrated in the examples, another model is to separate the consumer
from the subscriber. It is a variation of the unmanaged MQ Subscriber, but rather than issue the MQOPEN and MQSUB in the same program, one program

subscribes to publications, and another program consumes them. For example, the subscriber might be part of a publish/subscribe cluster and the
consumer attached to a queue manager outside the queue manager cluster. The consumer receives publications through standard distributed queuing
by defining the subscription queue as a remote queue definition.

Understanding the behavior of MQSO_CREATE | MQSO_RESUME | MQSO_ALTER is important, especially if you plan to simplify your code by using combinations

of these options. Study the tableTable 1 that shows the results of passing different queue handles to MQSUB, and the results of running the example
program shown in Figure 4 to Figure 9.

The scenario used to construct the table has one subscription X and two queues, A and B. The subscription name parameter sd.SubName is set to X, the

name of a subscription attached to queue A. Queue B has no subscription attached to it.

Examine the top left cell. MQSUB is passed subscription X and the queue handle to queue A .

1. MQSO_CREATE fails because the queue handle corresponds to the queue A which already has a subscription to X. Contrast this behavior to the cell to the

right: there, the call succeeds because queue B does not have a subscription to X attached to it.

2. MQSO_RESUME succeeds because the queue handle corresponds to the queue A which already has a subscription to X. In contrast, the call fails in the cell

to the right.

3. MQSO_ALTER behaves in a similar way to MQSO_RESUME with respect to opening the subscription and queue. However if the attributes contained within

the subscription descriptor passed to MQSUB differ from the attributes of the subscription, MQSO_RESUME fails, whereas MQSO_ALTER succeeds as long as

the program instance has permission to alter the attributes. Note that you can never change the topic string in a subscription; but rather than return
an error, MQSUB ignores the topic name and topic string values in the subscription descriptor and uses the values in the existing subscription.

Next, look at the cell below. MQSUB is passed subscription X and the queue handle to queue B.

1. MQSO_CREATE succeeds and creates subscription X on queue B because this is a new subscription on queue B.

2. MQSO_RESUME fails. MQSUB looks for subscription X on queue B and does not find it, but rather than returning RC = 2428 - subscription X does not exist,

it returns RC = 2019 - Subscription queue does not match queue object handle. The behavior of the third option MQSO_ALTER suggests the reason for

this unexpected error. MQSUB expects the queue handle to point to a queue with a subscription. It checks this first before checking whether the

subscription named in sd.SubName exists.

3. MQSO_ALTER succeeds, and moves the subscription from queue A to queue B.

4. A case that is not shown in the table is if the subscription name of the subscription on queue A does not match the subscription name in sd.SubName.

That call fails with a RC = 2428 - subscription X does not exist on Queue A.

Table 1. Errors from MQSUB with different queue handles and subscription combinations

Queue A

Subscription X

Queue B

No subscription

Queue A

No subscription

Queue B

No subscription

Hobj for Queue

A passed to

MQSUB

MQSO_CREATE

RC = 2432 - Subscription X already exists on Queue A

MQSO_RESUME

Resumes subscription X on Queue A

MQSO_ALTER

Resumes subscription X on Queue A and makes
permitted alterations

MQSO_CREATE

Creates subscription X on Queue A

MQSO_RESUME

RC = 2428 - Subscription X does not exist on Queue A

MQSO_ALTER

RC = 2428 - Subscription X does not exist on Queue A

Hobj for Queue

B passed to

MQSUB

MQSO_CREATE

Creates new subscription X on Queue B

MQSO_RESUME

RC = 2019 - Subscription queue does not match
queue object handle

MQSO_ALTER

Move subscription X from Queue A to Queue B

MQSO_CREATE

Creates new subscription X on Queue B

MQSO_RESUME

RC = 2428 - subscription X does not exist on Queue B

MQSO_ALTER

RC = 2428 - subscription X does not exist on Queue B

MQHO_NONE

passed to

MQSUB

MQSO_CREATE

RC = 2019 - Bad object handle: set MQSO_MANAGED

MQSO_CREATE

RC = 2019 - Bad object handle: set MQSO_MANAGED flag

Page 103 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Note: The compact coding style is intended for readability not production use.

Figure 1. Unmanaged MQ subscriber - part 1: declarations.

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <cmqc.h>

void inquireQname(MQHCONN HConn, MQHOBJ Hobj, MQCHAR48 qName);

int main(int argc, char **argv)

{

 MQCHAR48 topicNameDefault = "STOCKS";

 char topicStringDefault[] = "IBM/PRICE";

 char subscriptionNameDefault[] = "IBMSTOCKPRICESUB";

 char subscriptionQueueDefault[] = "STOCKTICKER";

 char publicationBuffer[101]; /* Allocate to receive messages */

 char resTopicStrBuffer[151]; /* Allocate to resolve topic string */

 MQCHAR48 qmName = ""; /* Default queue manager */

 MQCHAR48 qName = ""; /* Allocate storage for MQINQ */

 MQHCONN Hconn = MQHC_UNUSABLE_HCONN; /* connection handle */

 MQHOBJ Hobj = MQHO_NONE; /* subscription queue handle */

 MQHOBJ Hsub = MQSO_NONE; /* subscription handle */

 MQLONG CompCode = MQCC_OK; /* completion code */

 MQLONG Reason = MQRC_NONE; /* reason code */

 MQLONG messlen = 0;

 MQOD od = {MQOD_DEFAULT}; /* Unmanaged subscription queue */

 MQSD sd = {MQSD_DEFAULT}; /* Subscription Descriptor */

 MQMD md = {MQMD_DEFAULT}; /* Message Descriptor */

 MQGMO gmo = {MQGMO_DEFAULT}; /* get message options */

 MQLONG sdOptions = MQSO_CREATE | MQSO_RESUME | MQSO_DURABLE | MQSO_FAIL_IF_QUIESCING;

 char * topicName = topicNameDefault;

 char * topicString = topicStringDefault;

 char * subscriptionName = subscriptionNameDefault;

 char * subscriptionQueue = subscriptionQueueDefault;

 char * publication = publicationBuffer;

 char * resTopicStr = resTopicStrBuffer;

 memset(resTopicStrBuffer, 0, sizeof(resTopicStrBuffer));

Figure 2. Unmanaged MQ subscriber - part 2: parameter handling.

 switch(argc){ /* Replace defaults with args if provided */

default:

 switch((argv[5][0])) {

case('A'): sdOptions = MQSO_ALTER | MQSO_DURABLE | MQSO_FAIL_IF_QUIESCING;

 break;

case('C'): sdOptions = MQSO_CREATE | MQSO_DURABLE | MQSO_FAIL_IF_QUIESCING;

 break;

case('R'): sdOptions = MQSO_RESUME | MQSO_DURABLE | MQSO_FAIL_IF_QUIESCING;

 break;

default: ;

 }

case(5):

 if (strcmp(argv[4],"/")) /* "/" invalid = No subscription */

 subscriptionQueue = argv[4];

 else {

 *subscriptionQueue = '\0';

 if (argc > 5) {

 if (argv[5][0] == 'C') {

 sdOptions = sdOptions + MQSO_MANAGED;

 }

 }

 else

 sdOptions = sdOptions + MQSO_MANAGED;

 }

case(4):

 if (strcmp(argv[3],"/")) /* "/" invalid = No subscription */

 subscriptionName = argv[3];

 else {

 *subscriptionName = '\0';

 sdOptions = sdOptions - MQSO_DURABLE;

 }

case(3):

 if (strcmp(argv[2],"/")) /* "/" invalid = No topic string */

 topicString = argv[2];

 else

 *topicString = '\0';

case(2):

 if (strcmp(argv[1],"/")) /* "/" invalid = No topic object */

 topicName = argv[1];

 else

 *topicName = '\0';

case(1):

 sd.Options = sdOptions;

 printf("Optional parameters: "

 printf("topicName, topicString, subscriptionName, subscriptionQueue, A(lter)|C(reate)|R(esume)\n");

 printf("Values \"%-.48s\" \"%s\" \"%s\" \"%-.48s\" sd.Options=%d\n",

 topicName, topicString, subscriptionName, subscriptionQueue, sd.Options);

 }

There are some additional comments to make about the parameter handling in this example.

flag to create a managed subscription and create a
managed queue

MQSO_RESUME

Resumes subscription X on Queue A and returns Hobj
to Queue A

MQSO_ALTER

Resumes subscription X on Queue A, returns Hobj to
Queue A and makes permitted alterations

to create a managed subscription and create a managed
queue

MQSO_RESUME

RC = 2428 - No subscription X

MQSO_ALTER

RC = 2019 - Bad object handle: No queue A or B

Page 104 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

switch((argv[5][0]))

You have the choice of entering Alter | Create | Resume in parameter 5, to test the effect of overriding part of the MQSUB option setting used by default

in the example. The default setting used by the example is MQSO_CREATE | MQSO_RESUME | MQSO_DURABLE.

Note: Setting MQSO_ALTER or MQSO_RESUME without setting MQSO_DURABLE is an error, and sd.SubName must be set and refer to a subscription that can be

resumed or altered.

*subscriptionQueue = '\0';

sdOptions = sdOptions + MQSO_MANAGED;

If the default subscription queue, STOCKTICKER is replaced by a null string then as long as MQSO_CREATE is set, the example sets the MQSO_MANAGED flag

and creates a dynamic subscription queue. If Alter or Resume are set in the fifth parameter the behavior of the example will depend on the value of

subscriptionName.

*subscriptionName = '\0';

sdOptions = sdOptions - MQSO_DURABLE;

If the default subscription, IBMSTOCKPRICESUB, is replaced by a null string then the example removes the MQSO_DURABLE flag. If you run the example

providing the default values for the other parameters an additional temporary subscription destined to STOCKTICKER is created and receives duplicate

publications. Next time you run the example, without any parameters, you receive just one publication again.

Figure 3. Unmanaged MQ subscriber - part 3: code body.

 do {

 MQCONN(qmName, &Hconn, &CompCode, &Reason);

 if (CompCode != MQCC_OK) break;

 if (strlen(subscriptionQueue)) {

 strncpy(od.ObjectName, subscriptionQueue, MQ_Q_NAME_LENGTH);

 MQOPEN(Hconn, &od, MQOO_INPUT_AS_Q_DEF | MQOO_FAIL_IF_QUIESCING | MQOO_INQUIRE,

 &Hobj, &CompCode, &Reason);

 if (CompCode != MQCC_OK) break;

 }

 strncpy(sd.ObjectName, topicName, MQ_TOPIC_NAME_LENGTH);

 sd.ObjectString.VSPtr = topicString;

 sd.ObjectString.VSLength = MQVS_NULL_TERMINATED;

 sd.SubName.VSPtr = subscriptionName;

 sd.SubName.VSLength = MQVS_NULL_TERMINATED;

 sd.ResObjectString.VSPtr = resTopicStr;

 sd.ResObjectString.VSBufSize = sizeof(resTopicStrBuffer)-1;

 MQSUB(Hconn, &sd, &Hobj, &Hsub, &CompCode, &Reason);

 if (CompCode != MQCC_OK) break;

 gmo.Options = MQGMO_WAIT | MQGMO_NO_SYNCPOINT | MQGMO_CONVERT;

 gmo.WaitInterval = 10000;

 inquireQname(Hconn, Hobj, qName);

 printf("Waiting %d seconds for publications matching \"%s\" from %-0.48s\n",

 gmo.WaitInterval/1000, resTopicStr, qName);

 do {

 memcpy(md.MsgId, MQMI_NONE, sizeof(md.MsgId));

 memcpy(md.CorrelId, MQCI_NONE, sizeof(md.CorrelId));

 md.Encoding = MQENC_NATIVE;

 md.CodedCharSetId = MQCCSI_Q_MGR;

 MQGET(Hconn, Hobj, &md, &gmo, sizeof(publication), publication, &messlen, &CompCode, &Reason);

 if (Reason == MQRC_NONE)

 printf("Received publication \"%s\"\n", publication);

 }

 while (CompCode == MQCC_OK);

 if (CompCode != MQCC_OK && Reason != MQRC_NO_MSG_AVAILABLE) break;

 MQCLOSE(Hconn, &Hsub, MQCO_NONE, &CompCode, &Reason);

 if (CompCode != MQCC_OK) break;

 MQCLOSE(Hconn, &Hobj, MQCO_NONE, &CompCode, &Reason);

 if (CompCode != MQCC_OK) break;

 MQDISC(&Hconn, &CompCode, &Reason);

 } while (0);

 printf("Completion code %d and Return code %d\n", CompCode, Reason);

}

void inquireQname(MQHCONN Hconn, MQHOBJ Hobj, MQCHAR48 qName) {

#define _selectors 1

#define _intAttrs 1

 MQLONG select[_selectors] = {MQCA_Q_NAME}; /* Array of attribute selectors */

 MQLONG intAttrs[_intAttrs]; /* Array of integer attributes */

 MQLONG CompCode, Reason;

 MQINQ(Hconn, Hobj, _selectors, select, _intAttrs, intAttrs, MQ_Q_NAME_LENGTH, qName, &CompCode, &Reason);

 if (CompCode != MQCC_OK) {

 printf("MQINQ failed with Condition code %d and Reason %d\n", CompCode, Reason);

 strncpy(qName, "unknown queue", MQ_Q_NAME_LENGTH);

 }

 return;

}

There are some additional comments to make on the code in this example,

if (strlen(subscriptionQueue))

If there is no subscription queue name then the example uses MQHO_NONE as the value of Hobj.

MQOPEN(...);

The subscription queue is opened and the queue handle saved in Hobj.

MQSUB(Hconn, &sd, &Hobj, &Hsub, &CompCode, &Reason);

The subscription is opened using the Hobj passed from MQOPEN (or MQHO_NONE if there is no subscription queue name). An unmanaged queue can be

resumed without explicitly opening it with an MQOPEN.

MQCLOSE(Hconn, &Hsub, MQCO_NONE, &CompCode, &Reason);

The subscription is closed using the subscription handle. Depending on whether the subscription is durable or not, the subscription is closed with an
implicit MQCO_KEEP_SUB or MQCO_REMOVE_SUB. You can close a durable subscription with MQCO_REMOVE_SUB, but you cannot close a non-durable subscription

with MQCO_KEEP_SUB. The action of MQCO_REMOVE_SUB is to remove the subscription which stops any further publications being sent to the subscription

queue.

MQCLOSE(Hconn, &Hobj, MQCO_NONE, &CompCode, &Reason);

No special action is taken if the subscription is unmanaged. If the queue is managed and the subscription closed with either an explicit or implicit
MQCO_REMOVE_SUB, then all publications are purged from the queue and queue deleted at this point.

Page 105 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Results from the example illustrate aspects of publish/subscribe.

1. In Figure 4 the example starts by publishing 130 on the NYSE/IBM/PRICE topic.

Figure 4. Publish 130 to NYSE/IBM/PRICE

W:\Subscribe3\Debug>..\..\Publish2\Debug\publishstock

Provide parameters: TopicObject TopicString Publication

Publish "130" to topic "STOCKS" and topic string "IBM/PRICE"

Published "130" to topic string "NYSE/IBM/PRICE"

Completion code 0 and Return code 0

2. In Figure 5 execution of the example using default parameters receives the retained publication 130.

The provided topic object and topic string are ignored, as shown in Figure 9. The topic object and topic string are always taken from the subscription
object, when one is provided, and the topic string is immutable. The actual behavior of the example depends on the choice or combination of
MQSO_CREATE, MQSO_RESUME, and MQSO_ALTER. In this example MQSO_RESUME is the option selected.

Figure 5. Receive the retained publication

W:\Subscribe3\Debug>solution3

Optional parameters: topicName, topicString, subscriptionName, subscriptionQueue, A(lter)|C(reate)|R(esume)

Values "STOCKS" "IBM/PRICE" "IBMSTOCKPRICESUB" "STOCKTICKER" sd.Options=8206

Waiting 10 seconds for publications matching "NYSE/IBM/PRICE" from STOCKTICKER

Received publication "130"

Completion code 0 and Return code 0

3. In (Figure 6) no publications are received, because the durable subscription has already received the retained publication. In this example, the
subscription is resumed by providing only the subscription name without the queue name. If the queue name was provided, the queue would be
opened first and the handle passed to MQSUB.

Note: The 2038 error from MQINQ is due to the implicit MQOPEN of STOCKTICKER by MQSUB not including the MQOO_INQUIRE option. Avoid the 2038

return code from MQINQ by opening the queue explicitly.

Figure 6. Resume subscription

W:\Subscribe3\Debug>solution3 STOCKS IBM/PRICE IBMSTOCKPRICESUB / Resume

Optional parameters: topicName, topicString, subscriptionName, subscriptionQueue, A(lter)|C(reate)|R(esume)

Values "STOCKS" "IBM/PRICE" "IBMSTOCKPRICESUB" "" sd.Options=8204

MQINQ failed with Condition code 2 and Reason 2038

Waiting 10 seconds for publications matching "NYSE/IBM/PRICE" from unknown queue

Completion code 0 and Return code 0

4. In Figure 7, the example creates a non-durable unmanaged subscription using STOCKTICKER as the destination. Because this is a new subscription, it
receives the retained publication.

Figure 7. Receive retained publication with new unmanaged non durable subscription

W:\Subscribe3\Debug>solution3 STOCKS IBM/PRICE / STOCKTICKER Create

Optional parameters: topicName, topicString, subscriptionName, subscriptionQueue, A(lter)|C(reate)|R(esume)

Values "STOCKS" "IBM/PRICE" "" "STOCKTICKER" sd.Options=8194

Waiting 10 seconds for publications matching "NYSE/IBM/PRICE" from STOCKTICKER

Received publication "130"

Completion code 0 and Return code 0

5. To demonstrate overlapping subscriptions, another publication is sent, changing the retained publication. Next, a new non-durable, unmanaged
subscription is created by not providing a subscription name (Figure 8). The retained publication is received twice, once for the new subscription, and
once for the durable IBMSTOCKPRICESUB subscription that is still active on the STOCKTICKER queue.

The example is an illustration it is the queue that has subscriptions, and not the application. Despite not referring to the IBMSTOCKPRICESUB

subscription in this invocation of the application, the application receives the publication twice: once from the durable subscription that was created
administratively, and once from the non-durable subscription created by the application itself.

Figure 8. Overlapping subscriptions

W:\Subscribe3\Debug>..\..\Publish2\Debug\publishstock

Provide parameters: TopicObject TopicString Publication

Publish "130" to topic "STOCKS" and topic string "IBM/PRICE"

Published "130" to topic string "NYSE/IBM/PRICE"

Completion code 0 and Return code 0

W:\Subscribe3\Debug>solution3 STOCKS IBM/PRICE / STOCKTICKER Create

Optional parameters: topicName, topicString, subscriptionName, subscriptionQueue, A(lter)|C(reate)|R(esume)

Values "STOCKS" "IBM/PRICE" "" "STOCKTICKER" sd.Options=8194

Waiting 10 seconds for publications matching "NYSE/IBM/PRICE" from STOCKTICKER

Received publication "130"

Received publication "130"

Completion code 0 and Return code 0

6. In Figure 9 the example demonstrates that providing a new topic string and an existing subscription does not result in a changed subscription.

a. In the first case, Resume resumes the existing subscription, as you might expect, and ignores the changed topic string.

b. In the second case, Alter causes an error, RC = 2510, Topic not alterable.

c. In the third example, Create causes an error RC = 2432, Sub already exists.

Figure 9. Subscription topics cannot be changed

W:\Subscribe3\Debug>solution3 "" NASDAC/IBM/PRICE IBMSTOCKPRICESUB STOCKTICKER Resume

Optional parameters: topicName, topicString, subscriptionName, subscriptionQueue, A(lter)|C(reate)|R(esume)

Values "" "NASDAC/IBM/PRICE" "IBMSTOCKPRICESUB" "STOCKTICKER" sd.Options=8204

Waiting 10 seconds for publications matching "NYSE/IBM/PRICE" from STOCKTICKER

Received publication "130"

Completion code 0 and Return code 0

W:\Subscribe3\Debug>solution3 "" NASDAC/IBM/PRICE IBMSTOCKPRICESUB STOCKTICKER Alter

Optional parameters: topicName, topicString, subscriptionName, subscriptionQueue, A(lter)|C(reate)|R(esume)

Values "" "NASDAC/IBM/PRICE" "IBMSTOCKPRICESUB" "STOCKTICKER" sd.Options=8201

Completion code 2 and Return code 2510

W:\Subscribe3\Debug>solution3 "" NASDAC/IBM/PRICE IBMSTOCKPRICESUB STOCKTICKER Create

Optional parameters: topicName, topicString, subscriptionName, subscriptionQueue, A(lter)|C(reate)|R(esume)

Values "" "NASDAC/IBM/PRICE" "IBMSTOCKPRICESUB" "STOCKTICKER" sd.Options=8202

Completion code 2 and Return code 2432

Parent topic: Writing subscriber applications

Page 106 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Related concepts
Example 1: MQ Publication consumer
Example 2: Managed MQ subscriber
Writing publisher applications

This build: January 26, 2011 11:22:14

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

ps10432_

2.8. Writing data-conversion exits

Not supported in MQSeries® for VSE/ESA.

When you do an MQPUT, your application creates the message descriptor (MQMD) of the message. Because WebSphere® MQ needs to be able to
understand the contents of the MQMD regardless of the platform it is created on, it is converted automatically by the system.

Application data, however, is not converted automatically. If character data is being exchanged between platforms where the CodedCharSetId and Encoding

fields differ, for example, between ASCII and EBCDIC, the application must arrange for conversion of the message. Application data conversion can be
performed by the queue manager itself or by a user exit program, referred to as a data-conversion exit. The queue manager can perform data conversion
itself, using one of its built-in conversion routines, if the application data is in one of the built-in formats (such as MQFMT_STRING). This chapter discusses
the data-conversion exit facility that WebSphere MQ provides for when the application data is not in a built-in format.

Control can be passed to the data-conversion exit during an MQGET call. This avoids converting across different platforms before reaching the final
destination. However, if the final destination is a platform that does not support data conversion on the MQGET, you must specify CONVERT(YES) on the
sender channel that sends the data to its final destination. This ensures that WebSphere MQ converts the data during transmission. In this case, your data-
conversion exit must reside on the system where the sender channel is defined.

The MQGET call is issued directly by the application. Set the CodedCharSetId and Encoding fields in the MQMD to the character set and encoding required.

If your application uses the same character set and encoding as the queue manager, set CodedCharSetId to MQCCSI_Q_MGR, and Encoding to

MQENC_NATIVE. After the MQGET call completes, these fields have the values appropriate to the message data returned. These might differ from the values
required if the conversion was not successful. Your application should reset these fields to the values required before each MQGET call.

The conditions required for the data-conversion exit to be called are defined for the MQGET call in the WebSphere MQ Application Programming Reference.

For a description of the parameters that are passed to the data-conversion exit, and detailed usage notes, see the WebSphere MQ Application Programming
Reference for the MQ_DATA_CONV_EXIT call and the MQDXP structure.

Programs that convert application data between different machine encodings and CCSIDs must conform to the WebSphere MQ data conversion interface
(DCI).

This chapter introduces data-conversion exits, under these headings:

� Invoking the data-conversion exit

� Writing a data-conversion exit program

� Writing a data-conversion exit program for WebSphere MQ for i5/OS

� Writing a data-conversion exit program for WebSphere MQ for z/OS

� Writing a data-conversion exit for WebSphere MQ on UNIX systems

� Writing a data-conversion exit for WebSphere MQ for Windows

Invoking the data-conversion exit
A data-conversion exit is a user-written exit that receives control during the processing of an MQGET call.

Writing a data-conversion exit program
For z/OS, you must write data-conversion exits in assembler language. For other platforms, it is recommended that you use the C programming
language.

Writing a data-conversion exit program for WebSphere MQ for i5/OS

Writing a data-conversion exit program for WebSphere MQ for z/OS

Writing a data-conversion exit for WebSphere MQ on UNIX systems

Writing a data-conversion exit for WebSphere MQ for Windows

Exit and switch load files on Windows operating systems
The WebSphere MQ for Windows Version 7.0 queue manager processes are 32-bit. As a result, when using 64-bit applications, some types of exit and
XA switch load files also need to have a 32-bit version available for use by the queue manager. If the 32-bit version of the exit or XA switch load file is
required and is not available, then the relevant API call or command fails.

Parent topic: Writing a WebSphere MQ application

This build: January 26, 2011 11:19:55

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg12960_

2.8.1. Invoking the data-conversion exit

A data-conversion exit is a user-written exit that receives control during the processing of an MQGET call.

The exit is invoked if the following are true:

� The MQGMO_CONVERT option is specified on the MQGET call.

� Some or all of the message data is not in the requested character set or encoding.

Page 107 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

� The Format field in the MQMD structure associated with the message is not MQFMT_NONE.

� The BufferLength specified on the MQGET call is not zero.

� The message data length is not zero.

� The message contains data that has a user-defined format. The user-defined format can occupy the entire message, or be preceded by one or more
built-in formats. For example, the user-defined format might be preceded by an MQFMT_DEAD_LETTER_HEADER format. The exit is invoked to convert
only the user-defined format; the queue manager converts any built-in formats that precede the user-defined format.

A user-written exit can also be invoked to convert a built-in format, but this happens only if the built-in conversion routines cannot convert the built-in
format successfully.

There are some other conditions, described fully in the usage notes of the MQ_DATA_CONV_EXIT call in the WebSphere MQ Application Programming
Reference.

See the WebSphere MQ Application Programming Reference for details of the MQGET call. Data-conversion exits cannot use MQI calls, other than MQXCNVC.

A new copy of the exit is loaded when an application attempts to retrieve the first message that uses that Format since the application connected to the

queue manager. A new copy might also be loaded at other times if the queue manager has discarded a previously-loaded copy.

The data-conversion exit runs in an environment similar to that of the program that issued the MQGET call. As well as user applications, the program can be
an MCA (message channel agent) sending messages to a destination queue manager that does not support message conversion. The environment includes
address space and user profile, where applicable. The exit cannot compromise the queue manager’s integrity, because it does not run in the queue
manager’s environment.

In a client-server environment, the exit is loaded at the server, and conversion takes place there.

Data conversion on z/OS

Parent topic: Writing data-conversion exits

This build: January 26, 2011 11:19:55

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg12970_

2.8.1.1. Data conversion on z/OS

On z/OS®, be aware of the following:

� Exit programs can be written in assembler language only.

� Exit programs must be reentrant, and capable of running anywhere in storage.

� Exit programs must restore the environment on exit to that at entry, and must free any storage obtained.

� Exit programs must not WAIT, or issue ESTAEs or SPIEs.

� Exit programs are usually invoked as if by z/OS LINK in:

� Non-authorized problem program state

� Primary address space control mode

� Non cross-memory mode

� Non access-register mode

� 31 bit addressing mode

� TCB-PRB mode

� When used by a CICS® application, the exit is invoked by EXEC CICS LINK, and must conform to the CICS programming conventions. The parameters
are passed by pointers (addresses) in the CICS communication area (COMMAREA).

Although not recommended, user exit programs can also use CICS API calls, with the following caution:

� Do not issue syncpoints, as the results could influence units of work declared by the MCA.

� Do not update any resources controlled by a resource manager other than WebSphere® MQ for z/OS, including those controlled by CICS
Transaction Server.

� For distributed queuing without CICS, the exit is loaded from the data set referenced by the CSQXLIB DD statement.

� For distributed queuing using CICS, data-conversion exits are not supported.

Parent topic: Invoking the data-conversion exit

This build: January 26, 2011 11:19:55

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg12980_

2.8.2. Writing a data-conversion exit program

For z/OS®, you must write data-conversion exits in assembler language. For other platforms, it is recommended that you use the C programming language.

To help you to create a data-conversion exit program, the following are supplied:

� A skeleton source file

� A convert characters call

� A utility that creates a fragment of code that performs data conversion on data type structures This utility takes C input only. On z/OS, it produces
assembler code.

These are described in subsequent sections.

For the procedure for writing the programs see:

� Writing a data-conversion exit program for WebSphere MQ for i5/OS

� Writing a data-conversion exit program for WebSphere MQ for z/OS

Page 108 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

� Writing a data-conversion exit for WebSphere MQ on UNIX systems

� Writing a data-conversion exit for WebSphere MQ for Windows

Skeleton source file
These can be used as your starting point when writing a data-conversion exit program.

Convert characters call
Use the MQXCNVC (convert characters) call from within a data-conversion exit program to convert character message data from one character set to
another. For certain multibyte character sets (for example, UCS2 character sets), the appropriate options must be used.

Utility for creating conversion-exit code

Valid syntax
Your input file for the utility must conform to the C language syntax.

Parent topic: Writing data-conversion exits

This build: January 26, 2011 11:19:55

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg12990_

2.8.2.1. Skeleton source file

These can be used as your starting point when writing a data-conversion exit program.

The files supplied are listed in Table 1.

Parent topic: Writing a data-conversion exit program

This build: January 26, 2011 11:19:56

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13000_

2.8.2.2. Convert characters call

Use the MQXCNVC (convert characters) call from within a data-conversion exit program to convert character message data from one character set to
another. For certain multibyte character sets (for example, UCS2 character sets), the appropriate options must be used.

No other MQI calls can be made from within the exit; an attempt to make such a call fails with reason code MQRC_CALL_IN_PROGRESS.

See the WebSphere MQ Application Programming Reference for further information on the MQXCNVC call and appropriate options.

Parent topic: Writing a data-conversion exit program

This build: January 26, 2011 11:19:56

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13010_

2.8.2.3. Utility for creating conversion-exit code

The commands for creating conversion-exit code are:

i5/OS®

CVTMQMDTA (Convert WebSphere® MQ Data Type)

Windows systems and UNIX systems

crtmqcvx (Create WebSphere MQ conversion-exit)

Table 1. Skeleton source files

Platform File

AIX amqsvfc0.c

i5/OS QMQMSAMP/QCSRC(AMQSVFC4)

HP-UX amqsvfc0.c

Linux amqsvfc0.c

z/OS CSQ4BAX8 (1)
CSQ4BAX9 (2)
CSQ4CAX9 (3)

Solaris amqsvfc0.c

Windows systems amqsvfc0.c

Notes:

1. Illustrates the MQXCVNC call.

2. A wrapper for the code fragments generated by the utility for use in all environments except CICS®.

3. A wrapper for the code fragments generated by the utility for use in the CICS environment.

Page 109 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

z/OS®

CSQUCVX

The command for your platform produces a fragment of code that performs data conversion on data type structures, for use in your data-conversion exit
program. The command takes a file containing one or more C language structure definitions. On z/OS, it then generates a data set containing assembler
code fragments and conversion functions. On other platforms, it generates a file with a C function to convert each structure definition. On z/OS, the utility
requires access to the LE/370 run-time library SCEERUN.

Invoking the CSQUCVX utility on z/OS

z/OS data definition statements

Error messages in Windows systems, and UNIX systems
The crtmqcvx command returns messages in the range AMQ7953 through AMQ7970.

Parent topic: Writing a data-conversion exit program

This build: January 26, 2011 11:19:56

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13020_

2.8.2.3.1. Invoking the CSQUCVX utility on z/OS®

Figure 1 shows an example of the JCL used to invoke the CSQUCVX utility.

Figure 1. Sample JCL used to invoke the CSQUCVX utility

//CVX EXEC PGM=CSQUCVX

//STEPLIB DD DISP=SHR,DSN=thlqual.SCSQANLE

// DD DISP=SHR,DSN=thlqual.SCSQLOAD

// DD DISP=SHR,DSN=le370qual.SCEERUN

//SYSPRINT DD SYSOUT=*

//CSQUINP DD DISP=SHR,DSN=MY.MQSERIES.FORMATS(MSG1)

//CSQUOUT DD DISP=OLD,DSN=MY.MQSERIES.EXITS(MSG1)

Parent topic: Utility for creating conversion-exit code

This build: January 26, 2011 11:19:56

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13030_

2.8.2.3.2. z/OS® data definition statements

The CSQUCVX utility requires DD statements with the following DDnames:

Parent topic: Utility for creating conversion-exit code

This build: January 26, 2011 11:19:56

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13040_

2.8.2.3.3. Error messages in Windows systems, and UNIX systems

The crtmqcvx command returns messages in the range AMQ7953 through AMQ7970.

These are listed in WebSphere MQ Messages.

There are two main types of error:

� Major errors, such as syntax errors, when processing cannot continue.

A message is displayed on the screen giving the line number of the error in the input file. The output file might have been partially created.

� Other errors when a message is displayed stating that a problem has been found but that parsing of the structure can continue.

The output file has been created and contains error information on the problems that have occurred. This error information is prefixed by #error so

that the code produced is not accepted by any compiler without intervention to rectify the problems.

Parent topic: Utility for creating conversion-exit code

This build: January 26, 2011 11:19:56

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13050_

2.8.2.4. Valid syntax

Your input file for the utility must conform to the C language syntax.

SYSPRINT This specifies a data set or print spool class for reports and error messages.

CSQUINP This specifies the sequential data set containing the definitions of the data structures to be converted.

CSQUOUT This specifies the sequential data set where the conversion code fragments are to be written. The logical record
length (LRECL) must be 80 and the record format (RECFM) must be FB.

Page 110 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

If you are unfamiliar with C, refer to Example of valid syntax for the input data set.

In addition, be aware of the following rules:

� typedef is recognized only before the struct keyword.

� A structure tag is required on your structure declarations.

� You can use empty square brackets [] to denote a variable length array or string at the end of a message.

� Multidimensional arrays and arrays of strings are not supported.

� The following additional data types are recognized:

� MQBOOL

� MQBYTE

� MQCHAR

� MQFLOAT32

� MQFLOAT64

� MQSHORT

� MQLONG

� MQINT8

� MQUINT8

� MQINT16

� MQUINT16

� MQINT32

� MQUINT32

� MQINT64

� MQUINT64

MQCHAR fields are code page converted, but MQBYTE, MQINT8 and MQUINT8 are left untouched. If the encoding is different, MQSHORT, MQLONG,
MQINT16, MQUINT16, MQINT32, MQUINT32, MQINT64, MQUINT64, MQFLOAT32, MQFLOAT64 and MQBOOL are converted accordingly.

� Do not use the following:

� double

� pointers

� bit-fields

This is because the utility for creating conversion-exit code does not provide the facility to convert these data types. To overcome this, you can write
your own routines and call them from the exit.

Other points to note:

� Do not use sequence numbers in the input data set.

� If there are fields for which you want to provide your own conversion routines, declare them as MQBYTE, and then replace the generated CMQXCFBA
macros with your own conversion code.

Example of valid syntax for the input data set

Parent topic: Writing a data-conversion exit program

This build: January 26, 2011 11:19:57

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13060_

2.8.2.4.1. Example of valid syntax for the input data set

 struct TEST { MQLONG SERIAL_NUMBER;

 MQCHAR ID[5];

 MQINT16 VERSION;

 MQBYTE CODE[4];

 MQLONG DIMENSIONS[3];

 MQCHAR NAME[24];

 } ;

This corresponds to the following declarations in other programming languages:

Parent topic: Valid syntax

This build: January 26, 2011 11:19:57

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13070_

2.8.3. Writing a data-conversion exit program for WebSphere MQ for i5/OS

Follow these steps:

1. Name your message format. The name must fit in the Format field of the MQMD. The Format name must not have leading embedded blanks, and

trailing blanks are ignored. The object’s name must have no more than eight non-blank characters, because the Format is only eight characters long.

Remember to use this name each time that you send a message (our example uses the name Format).

2. Create a structure to represent your message. See Valid syntax for an example.

3. Run this structure through the CVTMQMDTA command to create a code fragment for your data-conversion exit.

The functions generated by the CVTMQMDTA command use macros that are shipped in the file QMQM/H(AMQSVMHA). These macros are written
assuming that all structures are packed; amended them if this is not the case.

4. Take a copy of the supplied skeleton source file, QMQMSAMP/QCSRC(AMQSVFC4) and rename it. (Our example uses the name EXIT_MOD.)

Page 111 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

5. Find the following comment boxes in the source file and insert code as described:

a. Toward the bottom of the source file, a comment box starts with:

 /* Insert the functions produced by the data-conversion exit */

Here, insert the code fragment generated in step 3.

b. Near the middle of the source file, a comment box starts with:

 /* Insert calls to the code fragments to convert the format’s */

This is followed by a commented-out call to the function ConverttagSTRUCT.

Change the name of the function to the name of the function that you added in step 5.a above. Remove the comment characters to activate the
function. If there are several functions, create calls for each of them.

c. Near the top of the source file, a comment box starts with:

 /* Insert the function prototypes for the functions produced by */

Here, insert the function prototype statements for the functions added in step 5.a above.

If the message contains character data, the generated code calls MQXCNVC; this can be resolved by binding the service program QMQM/LIBMQM.

6. Compile the source module, EXIT_MOD, as follows:

 CRTCMOD MODULE(library/EXIT_MOD) +

 SRCFILE(QCSRC) +

 TERASPACE(*YES *TSIFC)

7. Create/link the program.

For nonthreaded applications, use the following:

 CRTPGM PGM(library/Format) +

 MODULE(library/EXIT_MOD) +

 BNDSRVPGM(QMQM/LIBMQM) +

 ACTGRP(QMQM) +

 USRPRF(*USER)

In addition to creating the data-conversion exit for the basic environment, another is required in the threaded environment. This loadable object must
be followed by _R. Use the LIBMQM_R library to resolve calls to the MQXCNVC. Both loadable objects are required for a threaded environment.

 CRTPGM PGM(library/Format_R) +

 MODULE(library/EXIT_MOD) +

 BNDSRVPGM(QMQM/LIBMQM_R) +

 ACTGRP(QMQM) +

 USRPRF(*USER)

8. Place the output in the library list for the WebSphere® MQ job. It is recommended that, for production, data-conversion exit programs be stored in
QSYS.

Note:

1. If CVTMQMDTA uses packed structures, all WebSphere MQ applications must use the _Packed qualifier.

2. Data-conversion exit programs must be reentrant.

3. MQXCNVC is the only MQI call that can be issued from a data-conversion exit.

4. Compile the exit program with the user profile compiler option set to *USER, so that the exit runs with the authority of the user.

5. Teraspace memory enablement is required for all user exits with WebSphere MQ for i5/OS®; specify TERASPACE(*YES *TSIFC) in the CRTCMOD and
CRTBNDC commands.

Parent topic: Writing data-conversion exits

This build: January 26, 2011 11:19:57

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13110_

2.8.4. Writing a data-conversion exit program for WebSphere MQ for z/OS®

Follow these steps:

1. Take the supplied source skeleton CSQ4BAX9 (for non-CICS environments) or CSQ4CAX9 (for CICS®) as your starting point.

2. Run the CSQUCVX utility.

3. Follow the instructions in the prolog of CSQ4BAX9 or CSQ4CAX9 to incorporate the routines generated by the CSQUCVX utility, in the order that the
structures occur in the message that you want to convert.

4. The utility assumes that the data structures are not packed, that the implied alignment of the data is honored, and that the structures start on a
fullword boundary, with bytes being skipped as required (as between ID and VERSION in the Example of valid syntax for the input data set). If the
structures are packed, omit the CMQXCALA macros that are generated. You are therefore strongly recommended to declare your structures in such a
way that all fields are named and no bytes are skipped; in the Example of valid syntax for the input data set, add a field "MQBYTE DUMMY;" between
ID and VERSION.

5. The supplied exit returns an error if the input buffer is shorter than the message format to be converted. Although the exit converts as many complete
fields as possible, the error causes an unconverted message to be returned to the application. If you want to allow short input buffers to be converted
as far as possible, including partial fields, change the TRUNC= value on the CSQXCDFA macro to YES: no error is returned, so the application receives
a converted message. The application must handle the truncation.

6. Add any other special processing code that you need.

7. Rename the program to your data format name.

8. Compile and link-edit your program like a batch application program (unless it is for use with CICS applications). The macros in the code generated by
the utility are in the library, thlqual.SCSQMACS.

If the message contains character data, the generated code calls MQXCNVC. If your exit uses this call, link-edit it with the exit stub program
CSQASTUB. The stub is language-independent and environment-independent. Alternatively, you can load the stub dynamically using the dynamic call
name CSQXCNVC. See Dynamically calling the WebSphere MQ stub for more information.

Place the link-edited module in your application load library, and in a data set that is referenced by the CSQXLIB DD statement of your task procedure
started by your channel initiator.

9. If the exit is for use by CICS applications, compile and link-edit it like a CICS application program, including CSQASTUB if required. Place it in your
CICS application program library. Define the program to CICS in the usual way, specifying EXECKEY(CICS) in the definition.

Note: Although the LE/370 run-time libraries are needed for running the CSQUCVX utility (see step 2), they are not needed for link-editing or running the
data-conversion exit itself (see steps 8 and 9).

See Writing WebSphere MQ-IMS bridge applications for information about data conversion within the WebSphere MQ-IMS bridge.

Page 112 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Parent topic: Writing data-conversion exits

This build: January 26, 2011 11:19:57

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13120_

2.8.5. Writing a data-conversion exit for WebSphere MQ on UNIX systems

Follow these steps:

1. Name your message format. The name must fit in the Format field of the MQMD, and be in uppercase, for example, MYFORMAT. The Format name

must not have leading blanks. Trailing blanks are ignored. The object’s name must have no more than eight non-blank characters, because the Format

is only eight characters long. Remember to use this name each time that you send a message.

2. Create a structure to represent your message. See Valid syntax for an example.

3. Run this structure through the crtmqcvx command to create a code fragment for your data-conversion exit.

The functions generated by the crtmqcvx command use macros that assume that all structures are packed; amend them if this is not the case.

4. Copy the supplied skeleton source file, renaming it to the name of your message format that you set in step 1. The skeleton source file, and the copy,
are read-only.

The skeleton source file is called amqsvfc0.c.

5. On WebSphere® MQ for AIX®, a skeleton export file called amqsvfc.exp is also supplied. Copy this file, renaming it to MYFORMAT.EXP.

6. The skeleton includes a sample header file, amqsvmha.h, in the directory /usr/mqm/inc (on AIX) or /opt/mqm/inc (on other UNIX systems). Make sure
that your include path points to this directory to pick up this file.

The amqsvmha.h file contains macros that are used by the code generated by the crtmqcvx command. If the structure to be converted contains

character data, these macros call MQXCNVC.

7. Find the following comment boxes in the source file and insert code as described:

a. Toward the bottom of the source file, a comment box starts with:

 /* Insert the functions produced by the data-conversion exit */

Here, insert the code fragment generated in step 3.

b. Near the middle of the source file, a comment box starts with:

 /* Insert calls to the code fragments to convert the format’s */

This is followed by a commented-out call to the function ConverttagSTRUCT.

Change the name of the function to the name of the function that you added in step 7.a. Remove the comment characters to activate the
function. If there are several functions, create calls for each of them.

c. Near the top of the source file, a comment box starts with:

 /* Insert the function prototypes for the functions produced by */

Here, insert the function prototype statements for the functions added in step 3 above.

8. Resolve this call by linking the routine with the library libmqm. For threaded programs, the routine must be linked with the library libmqm_r (AIX and
HP-UX only).

9. Compile your exit as a shared library, using MQStart as the entry point. To do this, see Compiling data-conversion exits on UNIX and Linux.

10. Place the output in the default system directory, /var/mqm/exits, to ensure that it can be loaded when required. The path used to look for the data-
conversion exits is given in the qm.ini file. This path can be set for each queue manager and the exit is only looked for in that path or paths.

Note:

1. If crtmqcvx uses packed structures, all WebSphere MQ applications must be compiled in this way.

2. Data-conversion exit programs must be reentrant.

3. MQXCNVC is the only MQI call that can be issued from a data-conversion exit.

UNIX environment

Compiling data-conversion exits on UNIX and Linux
The following sections give examples of how to compile a data conversion exit on UNIX platforms and Linux.

Parent topic: Writing data-conversion exits

This build: January 26, 2011 11:19:58

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13130_

2.8.5.1. UNIX environment

You need to take into consideration if you are building 32–bit or 64–bit applications and whether you are in a threaded or non threaded environment.

Non-threaded environment
The loadable object must have its name in upper case, for example MYFORMAT. Use the libmqm library to resolve the calls to MQXCNVC.

Threaded environment
In addition to creating the data-conversion exit for the basic environment, another is required in the threaded environment.

Parent topic: Writing a data-conversion exit for WebSphere MQ on UNIX systems

This build: January 26, 2011 11:19:58

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13140_

Page 113 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

2.8.5.1.1. Non-threaded environment

The loadable object must have its name in upper case, for example MYFORMAT. Use the libmqm library to resolve the calls to MQXCNVC.

Parent topic: UNIX environment

This build: January 26, 2011 11:19:58

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13150_

2.8.5.1.2. Threaded environment

In addition to creating the data-conversion exit for the basic environment, another is required in the threaded environment.

This loadable object must be followed by _r (on AIX®, HP-UX, and Linux) to indicate that it is a threaded version. Use the libmqm_r library to resolve the
calls to MQXCNVC. Note that both loadable objects (non-threaded and threaded) are required for a threading environment.

If you are running MQI clients, all data conversion is performed by the proxy running on the machine to which the client is attached. This means that any
data conversion exits are run on the server, in the environment of the proxy, and not as part of the client application.

For most platforms, the proxy⁄responder program is a threaded program. Consequently, the data conversion exit must be compiled with appropriate options
to run in this threaded environment. Whether or not the client application is threaded is irrelevant.

On the WebSphere® MQ for UNIX systems, the proxy is threaded.

Note: If the data-conversion exits are in a mixed non-threaded and threaded environment, the calling environment is detected and the appropriate object
loaded. The shared object should be placed in /var/mqm/exits, or var/mqm/exits64 to ensure it can be loaded when required.

Parent topic: UNIX environment

This build: January 26, 2011 11:19:58

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13160_

2.8.5.2. Compiling data-conversion exits on UNIX and Linux

The following sections give examples of how to compile a data conversion exit on UNIX platforms and Linux.

On all platforms, the entry point to the module is MQStart.

On AIX

On HP-UX

On Linux

On Solaris

Parent topic: Writing a data-conversion exit for WebSphere MQ on UNIX systems

This build: January 26, 2011 11:19:58

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13170_

2.8.5.2.1. On AIX®

32 bit applications

64 bit applications

Parent topic: Compiling data-conversion exits on UNIX and Linux

This build: January 26, 2011 11:19:58

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13180_

2.8.5.2.1.1. 32 bit applications

Non-threaded

Threaded

Parent topic: On AIX

This build: January 26, 2011 11:19:58

Page 114 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13190_

2.8.5.2.1.1.1. Non-threaded

Compile the exit source code by issuing the following command:

 cc -e MQStart -bE:MYFORMAT.exp -bM:SRE -o /var/mqm/exits/MYFORMAT \

 MYFORMAT.c -I/usr/mqm/inc -L/usr/mqm/lib -lmqmzf

Parent topic: 32 bit applications

This build: January 26, 2011 11:19:58

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13200_

2.8.5.2.1.1.2. Threaded

Compile the exit source code by issuing the following command:

xlc_r -e MQStart -bE:MYFORMAT.exp -bM:SRE -o /var/mqm/exits/MYFORMAT_r \

 MYFORMAT.c -I/usr/mqm/inc -L/usr/mqm/lib -lmqmzf_r

Parent topic: 32 bit applications

This build: January 26, 2011 11:19:58

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13210_

2.8.5.2.1.2. 64 bit applications

Non-threaded

Threaded

Parent topic: On AIX

This build: January 26, 2011 11:19:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13220_

2.8.5.2.1.2.1. Non-threaded

Compile the exit source code by issuing the following command:

 cc -q64 -e MQStart -bE:MYFORMAT.exp -bM:SRE -o /var/mqm/exits64/MYFORMAT \

 MYFORMAT.c -I/usr/mqm/inc -L/usr/mqm/lib64 -lmqmzf

Parent topic: 64 bit applications

This build: January 26, 2011 11:19:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13230_

2.8.5.2.1.2.2. Threaded

Compile the API exit source code by issuing the following command:

 xlc_r -q64 -e MQStart -bE:MYFORMAT.exp -bM:SRE -o /var/mqm/exits64/MYFORMAT_r \

 MYFORMAT.c -I/usr/mqm/inc -L/usr/mqm/lib64 -lmqmzf_r

Parent topic: 64 bit applications

This build: January 26, 2011 11:19:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13240_

2.8.5.2.2. On HP-UX

PA-RISC platform

Itanium platform

Parent topic: Compiling data-conversion exits on UNIX and Linux

Page 115 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

This build: January 26, 2011 11:19:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13250_

2.8.5.2.2.1. PA-RISC platform

32 bit applications

64 bit applications

Parent topic: On HP-UX

This build: January 26, 2011 11:19:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13260_

2.8.5.2.2.1.1. 32 bit applications

Non-threaded

Threaded

Parent topic: PA-RISC platform

This build: January 26, 2011 11:19:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13270_

2.8.5.2.2.1.1.1. Non-threaded

1. Compile the exit source code

c89 +e +z -c -D_HPUX_SOURCE -o MYFORMAT.o MYFORMAT.c -I/opt/mqm/inc

2. Link the exit object

ld +b: -b MYFORMAT.o +ee MQStart -o \

 /var/mqm/exits/MYFORMAT -L/opt/mqm/lib -L/usr/lib -lmqmzf

rm MYFORMAT.o

Parent topic: 32 bit applications

This build: January 26, 2011 11:19:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13280_

2.8.5.2.2.1.1.2. Threaded

1. Compile the exit source code

c89 +e +z -c -D_HPUX_SOURCE -o MYFORMAT.o MYFORMAT.c -I/opt/mqm/inc

2. Link the exit object

ld +b: -b MYFORMAT.o +ee MQStart -o \

 /var/mqm/exits/MYFORMAT_r -L/opt/mqm/lib -L/usr/lib -lmqmzf_r -lpthread

rm MYFORMAT.o

Parent topic: 32 bit applications

This build: January 26, 2011 11:19:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13290_

2.8.5.2.2.1.2. 64 bit applications

Non-threaded

Threaded

Parent topic: PA-RISC platform

This build: January 26, 2011 11:19:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Page 116 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13300_

2.8.5.2.2.1.2.1. Non-threaded

1. Compile the exit source code

 c89 +DD64 +e +z -c -D_HPUX_SOURCE -o MYFORMAT.o MYFORMAT.c -I/opt/mqm/inc

2. Link the exit object

ld -b +noenvvar MYFORMAT.o +ee MQStart \

 -o /var/mqm/exits64/MYFORMAT -L/opt/mqm/lib64 \

 -L/usr/lib/pa20_64 -lmqmzf

rm MYFORMAT.o

Parent topic: 64 bit applications

This build: January 26, 2011 11:19:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13310_

2.8.5.2.2.1.2.2. Threaded

1. Compile the exit source code

c89 +DD64 +e +z -c -D_HPUX_SOURCE -o MYFORMAT.o MYFORMAT.c -I/opt/mqm/inc

2. Link the exit object

ld -b +noenvvar MYFORMAT.o +ee MQStart \

 -o /var/mqm/exits64/MYFORMAT_r -L/opt/mqm/lib64 \

 -L/usr/lib/pa20_64 -lmqmzf_r -lpthread

rm MYFORMAT.o

Parent topic: 64 bit applications

This build: January 26, 2011 11:19:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13320_

2.8.5.2.2.2. Itanium platform

32 bit applications

64 bit applications

Parent topic: On HP-UX

This build: January 26, 2011 11:19:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13330_

2.8.5.2.2.2.1. 32 bit applications

Non-threaded

Threaded

Parent topic: Itanium platform

This build: January 26, 2011 11:19:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13340_

2.8.5.2.2.2.1.1. Non-threaded

1. Compile the exit source code

c89 +e +z -c -D_HPUX_SOURCE -o MYFORMAT.o MYFORMAT.c -I/opt/mqm/inc

2. Link the exit object

ld +b: -b MYFORMAT.o +ee MQStart -o \

 /var/mqm/exits/MYFORMAT -L/opt/mqm/lib -L/usr/lib/hpux32 -lmqmzf

rm MYFORMAT.o

Parent topic: 32 bit applications

This build: January 26, 2011 11:19:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Page 117 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13350_

2.8.5.2.2.2.1.2. Threaded

1. Compile the exit source code

c89 +e +z -c -D_HPUX_SOURCE -o MYFORMAT.o MYFORMAT.c -I/opt/mqm/inc

2. Link the exit object

ld +b: -b MYFORMAT.o +ee MQStart -o \

 /var/mqm/exits/MYFORMAT_r -L/opt/mqm/lib -L/usr/lib/hpux32 \

 -lmqmzf_r -lpthread

rm MYFORMAT.o

Parent topic: 32 bit applications

This build: January 26, 2011 11:19:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13360_

2.8.5.2.2.2.2. 64 bit applications

Non-threaded

Threaded

Parent topic: Itanium platform

This build: January 26, 2011 11:20:00

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13370_

2.8.5.2.2.2.2.1. Non-threaded

1. Compile the exit source code

 c89 +DD64 +e +z -c -D_HPUX_SOURCE -o MYFORMAT.o MYFORMAT.c -I/opt/mqm/inc

2. Link the exit object

ld -b +noenvvar MYFORMAT.o +ee MQStart \

 -o /var/mqm/exits64/MYFORMAT -L/opt/mqm/lib64 \

 -L/usr/lib/hpux64 -lmqmzf

rm MYFORMAT.o

Parent topic: 64 bit applications

This build: January 26, 2011 11:20:00

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13380_

2.8.5.2.2.2.2.2. Threaded

1. Compile the exit source code

c89 +DD64 +e +z -c -D_HPUX_SOURCE -o MYFORMAT.o MYFORMAT.c -I/opt/mqm/inc

2. Link the exit object

ld -b +noenvvar MYFORMAT.o +ee MQStart \

 -o /var/mqm/exits64/MYFORMAT_r -L/opt/mqm/lib64 \

 -L/usr/lib/hpux64 -lmqmzf_r -lpthread

rm MYFORMAT.o

Parent topic: 64 bit applications

This build: January 26, 2011 11:20:00

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13390_

2.8.5.2.3. On Linux

31 bit applications (zSeries platform)

32 bit applications

64 bit applications

Page 118 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Parent topic: Compiling data-conversion exits on UNIX and Linux

This build: January 26, 2011 11:20:00

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13400_

2.8.5.2.3.1. 31 bit applications (zSeries® platform)

Non-threaded

Threaded

Parent topic: On Linux

This build: January 26, 2011 11:20:00

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13410_

2.8.5.2.3.1.1. Non-threaded

Compile the exit source code by issuing the following command:

 gcc -m31 -shared -fPIC -o /var/mqm/exits/MYFORMAT MYFORMAT.c \

 -I/opt/mqm/inc -L/opt/mqm/lib -Wl,-rpath=/opt/mqm/lib \

 -Wl,-rpath=/usr/lib -lmqmzf

Parent topic: 31 bit applications (zSeries platform)

This build: January 26, 2011 11:20:00

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13420_

2.8.5.2.3.1.2. Threaded

Compile the exit source code by issuing the following command:

gcc -m31 -shared -fPIC -o /var/mqm/exits/MYFORMAT_r MYFORMAT.c

 -I/opt/mqm/inc -L/opt/mqm/lib -Wl,-rpath=/opt/mqm/lib

 -Wl,-rpath=/usr/lib -lmqmzf_r

Parent topic: 31 bit applications (zSeries platform)

This build: January 26, 2011 11:20:00

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13430_

2.8.5.2.3.2. 32 bit applications

Non-threaded

Threaded

Parent topic: On Linux

This build: January 26, 2011 11:20:00

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13440_

2.8.5.2.3.2.1. Non-threaded

Compile the exit source code by issuing the following command:

 gcc -m32 -shared -fPIC -o /var/mqm/exits/MYFORMAT MYFORMAT.c

 -I/opt/mqm/inc -L/opt/mqm/lib -Wl,-rpath=/opt/mqm/lib

 -Wl,-rpath=/usr/lib -lmqmzf

Parent topic: 32 bit applications

This build: January 26, 2011 11:20:00

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13450_

2.8.5.2.3.2.2. Threaded

Page 119 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Compile the API exit source code by issuing the following command:

gcc -m32 -shared -fPIC -o /var/mqm/exits/MYFORMAT_r MYFORMAT.c

 -I/opt/mqm/inc -L/opt/mqm/lib -Wl,-rpath=/opt/mqm/lib

 -Wl,-rpath=/usr/lib -lmqmzf_r

Parent topic: 32 bit applications

This build: January 26, 2011 11:20:00

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13460_

2.8.5.2.3.3. 64 bit applications

Non-threaded

Threaded

Parent topic: On Linux

This build: January 26, 2011 11:20:00

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13470_

2.8.5.2.3.3.1. Non-threaded

Compile the exit source code by issuing the following command:

 gcc -m64 -shared -fPIC -o /var/mqm/exits64/MYFORMAT MYFORMAT.c

 -I/opt/mqm/inc -L/opt/mqm/lib64 -Wl,-rpath=/opt/mqm/lib64

 -Wl,-rpath=/usr/lib64 -lmqmzf

Parent topic: 64 bit applications

This build: January 26, 2011 11:20:00

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13480_

2.8.5.2.3.3.2. Threaded

Compile the exit source code by issuing the following command:

 gcc -m64 -shared -fPIC -o /var/mqm/exits64/MYFORMAT_r MYFORMAT.c

 -I/opt/mqm/inc -L/opt/mqm/lib64 -Wl,-rpath=/opt/mqm/lib64

 -Wl,-rpath=/usr/lib64 -lmqmzf_r

Parent topic: 64 bit applications

This build: January 26, 2011 11:20:00

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13490_

2.8.5.2.4. On Solaris

SPARC platform

x86-64 platform

Parent topic: Compiling data-conversion exits on UNIX and Linux

This build: January 26, 2011 11:20:00

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13500_

2.8.5.2.4.1. SPARC platform

32 bit applications

64 bit applications

Parent topic: On Solaris

This build: January 26, 2011 11:20:00

Notices | Trademarks | Downloads | Library | Support | Feedback

Page 120 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13510_

2.8.5.2.4.1.1. 32 bit applications

Compile the exit source code by issuing the following command:

cc -xarch=v8plus -KPIC -mt -G -o /var/mqm/exits/MYFORMAT \

 MYFORMAT.c -I/opt/mqm/inc -L/opt/mqm/lib -R/opt/mqm/lib \

 -R/usr/lib/32 -lmqm -lmqmcs -lmqmzse -lsocket -lnsl -ldl

Parent topic: SPARC platform

This build: January 26, 2011 11:20:00

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13520_

2.8.5.2.4.1.2. 64 bit applications

Compile the API exit source code by issuing the following command:

cc -xarch=v9 -KPIC -mt -G -o /var/mqm/exits64/MYFORMAT \

 MYFORMAT.c -I/opt/mqm/inc -L/opt/mqm/lib64 -R/opt/mqm/lib64 \

 -R/usr/lib/64 -lmqm -lmqmcs -lmqmzse -lsocket -lnsl -ldl

Parent topic: SPARC platform

This build: January 26, 2011 11:20:00

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13530_

2.8.5.2.4.2. x86-64 platform

32 bit applications

64 bit applications

Parent topic: On Solaris

This build: January 26, 2011 11:20:00

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13540_

2.8.5.2.4.2.1. 32 bit applications

Compile the API exit source code by issuing the following command:

cc -xarch=386 -KPIC -mt -G -o /var/mqm/exits/MYFORMAT \

 MYFORMAT.c -I/opt/mqm/inc -L/opt/mqm/lib -R/opt/mqm/lib \

 -R/usr/lib/32 -lmqm -lmqmcs -lmqmzse -lmqmzf -lsocket \

 -lnsl -ldl

Parent topic: x86-64 platform

This build: January 26, 2011 11:20:01

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13550_

2.8.5.2.4.2.2. 64 bit applications

Compile the exit source code by issuing the following command:

cc -xarch=amd64 -KPIC -mt -G -o /var/mqm/exits64/MYFORMAT \

 MYFORMAT.c -I/opt/mqm/inc -L/opt/mqm/lib64 -R/opt/mqm/lib64 \

 -R/usr/lib/64 -lmqm -lmqmcs -lmqmzse -lmqmzf -lsocket \

 -lnsl -ldl

Parent topic: x86-64 platform

This build: January 26, 2011 11:20:01

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13560_

2.8.6. Writing a data-conversion exit for WebSphere MQ for Windows

Follow these steps:

1. Name your message format. The name must fit in the Format field of the MQMD. The Format name must not have leading blanks. Trailing blanks are

ignored. The object’s name must have no more than eight non-blank characters, because the Format is only eight characters long.

Page 121 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

A .DEF file called amqsvfcn.def is also supplied in the samples directory, <drive:\directory>\Program Files\IBM\WebSphere MQ\Tools\C\Samples.

Take a copy of this file and rename it, for example, to MYFORMAT.DEF. Make sure that the name of the DLL being created and the name specified in
MYFORMAT.DEF are the same. Overwrite the name FORMAT1 in MYFORMAT.DEF with the new format name.

Remember to use this name each time that you send a message.

2. Create a structure to represent your message. See Valid syntax for an example.

3. Run this structure through the crtmqcvx command to create a code fragment for your data-conversion exit.

The functions generated by the CRTMQCVX command use macros that are written assuming that all structures are packed; amend them if this is not
the case.

4. Copy the supplied skeleton source file, amqsvfc0.c, renaming it to the name of your message format that you set in step 1.

amqsvfc0.c is in <drive:\directory>\Tools\C\Samples where <drive:\directory> is the directory specified on installation. (The default installation

directory is C:\Program Files\IBM\WebSphere MQ.)

The skeleton includes a sample header file amqsvmha.h in the same directory. Make sure that your include path points to this directory to pick up this
file.

The amqsvmha.h file contains macros that are used by the code generated by the CRTMQCVX command. If the structure to be converted contains
character data, these macros call MQXCNVC.

5. Find the following comment boxes in the source file and insert code as described:

a. Toward the bottom of the source file, a comment box starts with:

 /* Insert the functions produced by the data-conversion exit */

Here, insert the code fragment generated in step 3.

b. Near the middle of the source file, a comment box starts with:

 /* Insert calls to the code fragments to convert the format’s */

This is followed by a commented-out call to the function ConverttagSTRUCT.

Change the name of the function to the name of the function that you added in step 5.a above. Remove the comment characters to activate the
function. If there are several functions, create calls for each of them.

c. Near the top of the source file, a comment box starts with:

 /* Insert the function prototypes for the functions produced by */

Here, insert the function prototype statements for the functions added in step 3 above.

6. Resolve this call by linking the routine with the library MQMVX.LIB, in the directory <drive:\directory>\Program Files\IBM\WebSphere

MQ\Tools\Lib. The 64-bit version of this library is in the directory: <drive:\directory>\Program Files\IBM\WebSphere MQ\Tools\Lib64

7. For 32-bit user exits create the following command file:

 cl -I <drive:\dir>\Program Files\IBM\WebSphere MQ\Tools\C\Include -Tp \

 MYFORMAT.C -LD -DEFAULTLIB \

 <drive:\dir>\Program Files\IBM\WebSphere MQ\Tools\Lib\mqm.lib \

 <drive:\dir>\Program Files\IBM\WebSphere MQ\Tools\Lib\mqmvx.lib \

 MYFORMAT.DEF

For 64-bit user exits, create the following command file:

 cl -I <drive:\dir>\Program Files (x86)\IBM\WebSphere MQ\Tools\C\Include -Tp \

 MYFORMAT.C -LD -DEFAULTLIB \

 <drive:\dir>\Program Files (x86)\IBM\WebSphere MQ\Tools\Lib64\mqm.lib \

 <drive:\dir>\Program Files (x86)\IBM\WebSphere MQ\Tools\Lib64\mqmvx.lib \

 MYFORMAT.DEF

where <drive:\dir> is specified at installation,

Issue the command file to compile your exit as a DLL file.

8. Place the output in the User_Exits subdirectory below the WebSphere® MQ data directory:

32-bit systems

Exits

64-bit systems

Exits64
Unless you have modified the ExitsDefaultPath, the default directory for installing your exits is:

C:\Program Files\IBM\WebSphere MQ\User_Exits

The path used to look for the data-conversion exits is given in the registry. The registry folder is:

HKEY_LOCAL_MACHINE\SOFTWARE\IBM\MQSeries\CurrentVersion\Configuration\ClientExitPath\

and the registry key is: ExitsDefaultPath. This path can be set for each queue manager and the exit is only looked for in that path or paths.

Note:

1. If CRTMQCVX uses packed structures, all WebSphere MQ applications must be compiled in this way.

2. Data-conversion exit programs must be reentrant.

3. MQXCNVC is the only MQI call that can be issued from a data-conversion exit.

Parent topic: Writing data-conversion exits

This build: January 26, 2011 11:20:01

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13570_

2.8.7. Exit and switch load files on Windows operating systems

The WebSphere® MQ for Windows Version 7.0 queue manager processes are 32-bit. As a result, when using 64-bit applications, some types of exit and XA
switch load files also need to have a 32-bit version available for use by the queue manager. If the 32-bit version of the exit or XA switch load file is required
and is not available, then the relevant API call or command fails.

Two attributes are supported in the qm.ini file for ExitPath. These are ExitsDefaultPath=install_location\exits and

ExitsDefaultPath64=install_location\exits64. Using these ensures that the appropriate library can be found. If an exit is used in a WebSphere MQ

cluster, this also ensures that the appropriate library on a remote system can be found.

The following table lists the different types of Exit and Switch load files and notes whether 32-bit or 64-bit versions, or both, are required, according to
whether 32-bit or 64-bit applications are being used:

File types 32-bit applications 64-bit applications

API-crossing exit 32-bit 32-bit and 64-bit

Page 122 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Parent topic: Writing data-conversion exits

This build: January 26, 2011 11:20:02

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13571_

2.9. Inquiring about and setting object attributes

Attributes are the properties that define the characteristics of a WebSphere® MQ object.

They affect the way that a queue manager processes an object. The attributes of each type of WebSphere MQ object are described in detail in the
WebSphere MQ Application Programming Reference.

Some attributes are set when the object is defined, and can be changed only by using the WebSphere MQ commands; an example of such an attribute is the
default priority for messages put on a queue. Other attributes are affected by the operation of the queue manager and can change over time; an example is
the current depth of a queue.

You can inquire about the current values of most attributes using the MQINQ call. The MQI also provides an MQSET call with which you can change some
queue attributes. You cannot use the MQI calls to change the attributes of any other type of object; instead you must use:

For WebSphere MQ for z/OS®

The ALTER operator commands (or the DEFINE commands with the REPLACE option), which are described in the WebSphere MQ Script (MQSC) Command
Reference.

For WebSphere MQ for i5/OS®

The CHGMQMx CL commands, which are described in the WebSphere MQ for i5/OS System Administration Guide, or you can use the MQSC facility.

For WebSphere MQ for all other platforms

The MQSC facility, described in the WebSphere MQ Script (MQSC) Command Reference.

Note: The names of the attributes of objects are shown in this book in the form that you use them with the MQINQ and MQSET calls. When you use
WebSphere MQ commands to define, alter, or display the attributes, you must identify the attributes using the keywords shown in the descriptions of the
commands in the above books.

Both the MQINQ and the MQSET calls use arrays of selectors to identify those attributes that you want to inquire about or set. There is a selector for each
attribute that you can work with. The selector name has a prefix, determined by the nature of the attribute:

Before you use the MQINQ or MQSET calls your application must be connected to the queue manager, and you must use the MQOPEN call to open the object
for setting or inquiring about attributes. These operations are described in Connecting to and disconnecting from a queue manager and Opening and closing
objects.

Inquiring about the attributes of an object
Use the MQINQ call to inquire about the attributes of any type of WebSphere MQ object.

Some cases where the MQINQ call fails
If you open an alias to inquire about its attributes, you are returned the attributes of the alias queue (the WebSphere MQ object used to access
another queue), not those of the base queue.

Setting queue attributes

Parent topic: Writing a WebSphere MQ application

This build: January 26, 2011 11:20:02

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13580_

2.9.1. Inquiring about the attributes of an object

Use the MQINQ call to inquire about the attributes of any type of WebSphere® MQ object.

As input to this call, you must supply:

� A connection handle.

� An object handle.

� The number of selectors.

� An array of attribute selectors, each selector having the form MQCA_* or MQIA_*. Each selector represents an attribute whose value you want to

Data conversion exit 32-bit 64-bit

Server Channel exits (all types) 32-bit 32-bit

Client Channel exits (all types) 32-bit 64-bit

Installable service exit 32-bit 32-bit

Service trace module 32-bit 32-bit and 64-bit

Cluster WLM exit 32-bit 32-bit

Pub/Sub routing exit 32-bit 32-bit

Database switch load files 32-bit 32-bit and 64-bit

External Transaction Manager AX libraries 32-bit 64-bit

MQCA_ These selectors refer to attributes that contain character data (for example, the name of a queue).

MQIA_ These selectors refer to attributes that contain either numeric values (such as CurrentQueueDepth, the number of

messages on a queue) or a constant value (such as SyncPoint, whether the queue manager supports syncpoints).

Page 123 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

inquire about, and each selector must be valid for the type of object that the object handle represents. You can specify selectors in any order.

� The number of integer attributes that you are inquiring about. Specify zero if you are not inquiring about integer attributes.

� The length of the character attributes buffer in CharAttrLength. This must be at least the sum of the lengths required to hold each character attribute

string. Specify zero if you are not inquiring about character attributes.

The output from MQINQ is:

� A set of integer attribute values copied into the array. The number of values is determined by IntAttrCount. If either IntAttrCount or

SelectorCount is zero, this parameter is not used.

� The buffer in which character attributes are returned. The length of the buffer is given by the CharAttrLength parameter. If either CharAttrLength or

SelectorCount is zero, this parameter is not used.

� A completion code. If the completion code gives a warning, this means that the call completed only partially. In this case, examine the reason code.

� A reason code. There are three partial-completion situations:

� The selector does not apply to the queue type

� There is not enough space allowed for integer attributes

� There is not enough space allowed for character attributes

If more than one of these situations arise, the first one that applies is returned.

If you open a queue for output or inquire and it resolves to a non-local cluster queue you can only inquire the queue name, queue type, and common
attributes. The values of the common attributes are those of the chosen queue if MQOO_BIND_ON_OPEN was used. The values are those of an arbitrary one
of the possible cluster queues if either MQOO_BIND_NOT_FIXED was used or MQOO_BIND_AS_Q_DEF was used and the DefBind queue attribute was

MQBND_BIND_NOT_FIXED. See WebSphere MQ Queue Manager Clusters for more information.

Note: The values returned by the call are a snapshot of the selected attributes. The attributes can change before your program acts on the returned values.

There is a description of the MQINQ call in the WebSphere MQ Application Programming Reference.

Parent topic: Inquiring about and setting object attributes

This build: January 26, 2011 11:20:02

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13590_

2.9.2. Some cases where the MQINQ call fails

If you open an alias to inquire about its attributes, you are returned the attributes of the alias queue (the WebSphere® MQ object used to access another
queue), not those of the base queue.

However, the definition of the base queue to which the alias resolves is also opened by the queue manager, and if another program changes the usage of
the base queue in the interval between your MQOPEN and MQINQ calls, your MQINQ call fails and returns the MQRC_OBJECT_CHANGED reason code. The
call also fails if the attributes of the alias queue object are changed.

Similarly, when you open a remote queue to inquire about its attributes, you are returned the attributes of the local definition of the remote queue only.

If you specify one or more selectors that are not valid for the type of queue about whose attributes you are inquiring, the MQINQ call completes with a
warning and sets the output as follows:

� For integer attributes, the corresponding elements of IntAttrs are set to MQIAV_NOT_APPLICABLE.

� For character attributes, the corresponding portions of the CharAttrs string are set to asterisks.

If you specify one or more selectors that are not valid for the type of object about whose attributes you are inquiring, the MQINQ call fails and returns the
MQRC_SELECTOR_ERROR reason code.

You cannot call MQINQ to look at a model queue; use either the MQSC facility or the commands available on your platform.

Parent topic: Inquiring about and setting object attributes

This build: January 26, 2011 11:20:02

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13600_

2.9.3. Setting queue attributes

You can set only the following queue attributes using the MQSET call:

� InhibitGet (but not for remote queues)

� DistList (not on z/OS®)

� InhibitPut

� TriggerControl

� TriggerType

� TriggerDepth

� TriggerMsgPriority

� TriggerData

The MQSET call has the same parameters as the MQINQ call. However for MQSET, all parameters except the completion code and reason code are input
parameters. There are no partial-completion situations.

Note: You cannot use the MQI to set the attributes of WebSphere® MQ objects other than locally-defined queues.

There is a description of the MQSET call in the WebSphere MQ Application Programming Reference.

Parent topic: Inquiring about and setting object attributes

Page 124 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

This build: January 26, 2011 11:20:03

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13610_

2.10. Committing and backing out units of work

This chapter describes how to commit and back out any recoverable get and put operations that have occurred in a unit of work.

The following terms, described below, are used in this topic:

� Commit

� Back out

� Syncpoint coordination

� Syncpoint

� Unit of work

� Single-phase commit

� Two-phase commit

If you are familiar with these transaction processing terms, you can skip to Syncpoint considerations in WebSphere MQ applications.

Commit and back out

When a program puts a message on a queue within a unit of work, that message is made visible to other programs only when the program commits the
unit of work. To commit a unit of work, all updates must be successful to preserve data integrity. If the program detects an error and decides that the put
operation should not be made permanent, it can back out the unit of work. When a program performs a backout, WebSphere® MQ restores the queue by
removing the messages that were put on the queue by that unit of work. The way in which the program performs the commit and back out operations
depends on the environment in which the program is running.

Similarly, when a program gets a message from a queue within a unit of work, that message remains on the queue until the program commits the unit of
work, but the message is not available to be retrieved by other programs. The message is permanently deleted from the queue when the program
commits the unit of work. If the program backs out the unit of work, WebSphere MQ restores the queue by making the messages available to be retrieved
by other programs.

Syncpoint coordination, syncpoint, unit of work

Syncpoint coordination is the process by which units of work are either committed or backed out with data integrity.

The decision to commit or back out the changes is taken, in the simplest case, at the end of a transaction. However, it can be more useful for an
application to synchronize data changes at other logical points within a transaction. These logical points are called syncpoints (or synchronization points)
and the period of processing a set of updates between two syncpoints is called a unit of work. Several MQGET calls and MQPUT calls can be part of a single
unit of work. The maximum number of messages within a unit of work can be controlled by the DEFINE MAXSMSGS command on z/OS®, or by the
MAXUMSGS attribute of the ALTER QMGR command on other platforms. See the WebSphere MQ Script (MQSC) Command Reference for details of these
commands.

Single-phase commit

A single-phase commit process is one in which a program can commit updates to a queue without coordinating its changes with other resource managers.

Two-phase commit

A two-phase commit process is one in which updates that a program has made to WebSphere MQ queues can be coordinated with updates to other
resources (for example, databases under the control of DB2®). Under such a process, updates to all resources are committed or backed out together.

To help handle units of work, WebSphere MQ provides the BackoutCount attribute. This is incremented each time that a message within a unit of work is

backed out. If the message repeatedly causes the unit of work to abnormally end, the value of the BackoutCount finally exceeds that of the

BackoutThreshold. This value is set when the queue is defined. In this situation, the application can remove the message from the unit of work and put it

onto another queue, as defined in BackoutRequeueQName. When the message is moved, the unit of work can commit.

This chapter introduces committing and backing out units of work, under these headings:

� Syncpoint considerations in WebSphere MQ applications

� Syncpoints in WebSphere MQ for z/OS applications

� Syncpoints in CICS for i5/OS applications

� Syncpoints in WebSphere MQ for Windows, WebSphere MQ for i5/OS, and WebSphere MQ on UNIX systems

� Interfaces to the i5/OS external syncpoint manager

Syncpoint considerations in WebSphere MQ applications

Syncpoints in WebSphere MQ for z/OS applications
This section explains how to use syncpoints in transaction manager (CICS and IMS) and batch applications.

Syncpoints in CICS for i5/OS applications
WebSphere MQ for i5/OS participates in CICS for i5/OS units of work. You can use the MQI within a CICS for i5/OS application to put and get
messages inside the current unit of work.

Syncpoints in WebSphere MQ for Windows, WebSphere MQ for i5/OS, and WebSphere MQ on UNIX systems
Syncpoint support operates on two types of units of work: local and global.

Interfaces to the i5/OS external syncpoint manager
WebSphere MQ for i5/OS can use native i5/OS commitment control as an external syncpoint coordinator.

Parent topic: Writing a WebSphere MQ application

This build: January 26, 2011 11:20:03

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13620_

2.10.1. Syncpoint considerations in WebSphere MQ applications

Page 125 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Two-phase commit is supported under:

� WebSphere® MQ for AIX®

� WebSphere MQ for i5/OS®

� WebSphere MQ for HP-UX

� WebSphere MQ for Linux

� WebSphere MQ for Solaris

� WebSphere MQ for Windows

� CICS® for MVS/ESA 4.1

� CICS Transaction Server for z/OS®

� TXSeries

� IMS/ESA®

� z/OS batch with RRS

� Other external coordinators using the X/Open XA interface

Single-phase commit is supported under:

� WebSphere MQ for i5/OS

� WebSphere MQ on UNIX systems

� WebSphere MQ for Windows

� z/OS batch

Note: For further details on external interfaces see Interfaces to external syncpoint managers, and the XA documentation CAE Specification Distributed
Transaction Processing: The XA Specification, published by The Open Group. Transaction managers (such as CICS, IMS™, Encina, and Tuxedo) can
participate in two-phase commit, coordinated with other recoverable resources. This means that the queuing functions provided by WebSphere MQ can be
brought within the scope of a unit of work, managed by the transaction manager.

Samples shipped with WebSphere MQ show WebSphere MQ coordinating XA-compliant databases. For further information about these samples, see Sample
programs (platforms except z/OS).

In your WebSphere MQ application, you can specify on every put and get call whether you want the call to be under syncpoint control. To make a put
operation operate under syncpoint control, use the MQPMO_SYNCPOINT value in the Options field of the MQPMO structure when you call MQPUT. For a get

operation, use the MQGMO_SYNCPOINT value in the Options field of the MQGMO structure. If you do not explicitly choose an option, the default action

depends on the platform. The syncpoint control default on z/OS is yes; for all other platforms, it is no.

When an MQPUT1 call is issued with MQPMO_SYNCPOINT, the default behavior changes, so that the put operation is completed asynchronously. This might
cause a change in the behavior of some applications that rely on certain fields in the MQOD and MQMD structures being returned, but which now contain
undefined values. An application can specify MQPMO_SYNC_RESPONSE to ensure that the put operation is performed synchronously and that all of the
appropriate field values are completed.

When your application receives an MQRC_BACKED_OUT reason code in response to an MQPUT or MQGET under syncpoint, the application should normally
back out the current transaction using MQBACK and then, if appropriate, retry the entire transaction. If the application receives MQRC_BACKED_OUT in
response to an MQCMIT or MQDISC call, it does not need to call MQBACK.

Every time an MQGET call is backed out, the BackoutCount field of the MQMD structure of the affected message is incremented. A high BackoutCount
indicates a message that has been repeatedly backed out. This might indicate a problem with this message, which you should investigate. See BackoutCount
for details of BackoutCount.

Except on z/OS batch with RRS, if a program issues the MQDISC call while there are uncommitted requests, an implicit syncpoint occurs. If the program
ends abnormally, an implicit backout occurs. On z/OS, an implicit syncpoint occurs if the program ends normally without first calling MQDISC. The program
is deemed to have ended normally if the TCB connected to MQ ends normally. When running under Unix System Services and LE, default condition handling
is invoked for abends or signals. The LE condition handlers process the error condition and the TCB ends normally. Under these conditions MQ commits the
unit of work. For more information on LE condition handling, see Language Environment Condition Handling Introduction and Customizing Language
Environment run-time options.

For WebSphere MQ for z/OS programs, you can use the MQGMO_MARK_SKIP_BACKOUT option to specify that a message must not be backed out if backout
occurs (in order to avoid an MQGET-error-backout loop). For information about using this option, see Skipping backout.

Changes to queue attributes (either by the MQSET call or by commands) are not affected by the committing or backing out of units of work.

Parent topic: Committing and backing out units of work

This build: January 26, 2011 11:20:05

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13630_

2.10.2. Syncpoints in WebSphere MQ for z/OS® applications

This section explains how to use syncpoints in transaction manager (CICS® and IMS™) and batch applications.

Syncpoints in CICS Transaction Server for z/OS and CICS for MVS/ESA applications
In a CICS application you establish a syncpoint by using the EXEC CICS SYNCPOINT command.

Syncpoints in IMS applications
In an IMS application, establish a syncpoint by using IMS calls such as GU (get unique) to the IOPCB and CHKP (checkpoint).

Syncpoints in z/OS batch applications
For batch applications, you can use the WebSphere® MQ syncpoint management calls: MQCMIT and MQBACK. For backward compatibility, CSQBCMT
and CSQBBAK are available as synonyms.

Parent topic: Committing and backing out units of work

This build: January 26, 2011 11:20:05

Notices | Trademarks | Downloads | Library | Support | Feedback

Page 126 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13640_

2.10.2.1. Syncpoints in CICS Transaction Server for z/OS® and CICS for MVS/ESA applications

In a CICS® application you establish a syncpoint by using the EXEC CICS SYNCPOINT command.

To back out all changes to the previous syncpoint, you can use the EXEC CICS SYNCPOINT ROLLBACK command. For more information, see the CICS
Application Programming Reference.

If other recoverable resources are involved in the unit of work, the queue manager (in conjunction with the CICS syncpoint manager) participates in a two-
phase commit protocol; otherwise, the queue manager performs a single-phase commit process.

If a CICS application issues the MQDISC call, no implicit syncpoint is taken. If the application closes down normally, any open queues are closed and an
implicit commit occurs. If the application closes down abnormally, any open queues are closed and an implicit backout occurs.

Parent topic: Syncpoints in WebSphere MQ for z/OS applications

This build: January 26, 2011 11:20:05

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13650_

2.10.2.2. Syncpoints in IMS applications

In an IMS™ application, establish a syncpoint by using IMS calls such as GU (get unique) to the IOPCB and CHKP (checkpoint).

 To back out all changes since the previous checkpoint, you can use the IMS ROLB (rollback) call. For more information, see the IMS documentation.

The queue manager (in conjunction with the IMS syncpoint manager) participates in a two-phase commit protocol if other recoverable resources are also
involved in the unit of work.

All open handles are closed by the IMS adapter at a syncpoint (except in a batch or non-message driven BMP environment). This is because a different user
could initiate the next unit of work and WebSphere® MQ security checking is performed when the MQCONN, MQCONNX, and MQOPEN calls are made, not
when the MQPUT or MQGET calls are made.

However, in a Wait-for-Input (WFI) or pseudo Wait-for-Input (PWFI) environment IMS does not notify WebSphere MQ to close the handles until either the
next message arrives or a QC status code is returned to the application. If the application is waiting in the IMS region and any of these handles belong to
triggered queues, triggering will not occur because the queues are open. For this reason applications running in a WFI or PWFI environment should explicitly
MQCLOSE the queue handles before doing the GU to the IOPCB for the next message.

If an IMS application (either a BMP or an MPP) issues the MQDISC call, open queues are closed but no implicit syncpoint is taken. If the application closes
down normally, any open queues are closed and an implicit commit occurs. If the application closes down abnormally, any open queues are closed and an
implicit backout occurs.

Parent topic: Syncpoints in WebSphere MQ for z/OS applications

This build: January 26, 2011 11:20:06

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13660_

2.10.2.3. Syncpoints in z/OS batch applications

For batch applications, you can use the WebSphere® MQ syncpoint management calls: MQCMIT and MQBACK. For backward compatibility, CSQBCMT and
CSQBBAK are available as synonyms.

Note: If you need to commit or back out updates to resources managed by different resource managers, such as WebSphere MQ and DB2®, within a single
unit of work you can use RRS. For further information see Transaction management and recoverable resource manager services.

Committing changes using the MQCMIT call

Backing out changes using the MQBACK call

Transaction management and recoverable resource manager services
Transaction management and recoverable resource manager services (RRS) is a z/OS facility to provide two-phase syncpoint support across
participating resource managers.

Parent topic: Syncpoints in WebSphere MQ for z/OS applications

This build: January 26, 2011 11:20:06

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13670_

2.10.2.3.1. Committing changes using the MQCMIT call

As input, you must supply the connection handle (Hconn) that is returned by the MQCONN or MQCONNX call.

The output from MQCMIT is a completion code and a reason code. The call completes with a warning if the syncpoint was completed but the queue manager
backed out the put and get operations since the previous syncpoint.

Successful completion of the MQCMIT call indicates to the queue manager that the application has reached a syncpoint and that all put and get operations
made since the previous syncpoint have been made permanent.

Page 127 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Not all failure responses mean that the MQCMIT did not complete. For example, the application can receive MQRC_CONNECTION_BROKEN.

There is a description of the MQCMIT call in the WebSphere MQ Application Programming Reference.

Parent topic: Syncpoints in z/OS batch applications

This build: January 26, 2011 11:20:06

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13680_

2.10.2.3.2. Backing out changes using the MQBACK call

As input, you must supply a connection handle (Hconn). Use the handle that is returned by the MQCONN or MQCONNX call.

The output from MQBACK is a completion code and a reason code.

The output indicates to the queue manager that the application has reached a syncpoint and that all gets and puts that have been made since the last
syncpoint have been backed out.

There is a description of the MQBACK call in the WebSphere MQ Application Programming Reference.

Parent topic: Syncpoints in z/OS batch applications

This build: January 26, 2011 11:20:06

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13690_

2.10.2.3.3. Transaction management and recoverable resource manager services

Transaction management and recoverable resource manager services (RRS) is a z/OS® facility to provide two-phase syncpoint support across participating
resource managers.

An application can update recoverable resources managed by various z/OS resource managers such as WebSphere® MQ and DB2®, and then commit or
back out these updates as a single unit of work. RRS provides the necessary unit-of-work status logging during normal execution, coordinates the syncpoint
processing, and provides appropriate unit-of-work status information during subsystem restart.

WebSphere MQ for z/OS RRS participant support enables WebSphere MQ applications in the batch, TSO, and DB2 stored procedure environments to update
both WebSphere MQ and non-WebSphere MQ resources (for example, DB2) within a single logical unit of work. For information about RRS participant
support, see MVS™ Programming: Resource Recovery.

Your WebSphere MQ application can use either MQCMIT and MQBACK or the equivalent RRS calls, SRRCMIT and SRRBACK. See RRS batch adapter for more
information.

RRS availability
If RRS is not active on your z/OS system, any WebSphere MQ call issued from a program linked with either RRS stub (CSQBRSTB or CSQBRRSI)
returns MQRC_ENVIRONMENT_ERROR.

DB2 stored procedures

Parent topic: Syncpoints in z/OS batch applications

This build: January 26, 2011 11:20:06

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13700_

2.10.2.3.3.1. RRS availability

If RRS is not active on your z/OS® system, any WebSphere® MQ call issued from a program linked with either RRS stub (CSQBRSTB or CSQBRRSI) returns
MQRC_ENVIRONMENT_ERROR.

Parent topic: Transaction management and recoverable resource manager services

This build: January 26, 2011 11:20:06

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13710_

2.10.2.3.3.2. DB2 stored procedures

If you use DB2® stored procedures with RRS, be aware of the following:

� DB2 stored procedures that use RRS must be managed by workload manager (WLM-managed).

� If a DB2-managed stored procedure contains WebSphere® MQ calls, and it is linked with either RRS stub (CSQBRSTB or CSQBRRSI), the MQCONN or
MQCONNX call returns MQRC_ENVIRONMENT_ERROR.

� If a WLM-managed stored procedure contains WebSphere MQ calls, and is linked with a non-RRS stub, the MQCONN or MQCONNX call returns
MQRC_ENVIRONMENT_ERROR, unless it is the first WebSphere MQ call executed since the stored procedure address space started.

� If your DB2 stored procedure contains WebSphere MQ calls and is linked with a non-RRS stub, WebSphere MQ resources updated in that stored
procedure are not committed until the stored procedure address space ends, or until a subsequent stored procedure does an MQCMIT (using a

Page 128 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

WebSphere MQ Batch/TSO stub).

� Multiple copies of the same stored procedure can execute concurrently in the same address space. Ensure that your program is coded in a reentrant
manner if you want DB2 to use a single copy of your stored procedure. Otherwise you might receive MQRC_HCONN_ERROR on any WebSphere MQ call
in your program.

� Do not code MQCMIT or MQBACK in a WLM-managed DB2 stored procedure.

� Design all programs to run in Language Environment® (LE).

Parent topic: Transaction management and recoverable resource manager services

This build: January 26, 2011 11:20:07

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13720_

2.10.3. Syncpoints in CICS for i5/OS applications

WebSphere® MQ for i5/OS® participates in CICS® for i5/OS units of work. You can use the MQI within a CICS for i5/OS application to put and get
messages inside the current unit of work.

You can use the EXEC CICS SYNCPOINT command to establish a syncpoint that includes the WebSphere MQ for i5/OS operations. To back out all changes up
to the previous syncpoint, you can use the EXEC CICS SYNCPOINT ROLLBACK command.

If you use MQPUT, MQPUT1, or MQGET with the MQPMO_SYNCPOINT, or MQGMO_SYNCPOINT, option set in a CICS for i5/OS application, you cannot log off
CICS for i5/OS until WebSphere MQ for i5/OS has removed its registration as an API commitment resource. Commit or back out any pending put or get
operations before you disconnect from the queue manager. This allows you to log off CICS for i5/OS.

Parent topic: Committing and backing out units of work

This build: January 26, 2011 11:20:07

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13730_

2.10.4. Syncpoints in WebSphere MQ for Windows, WebSphere MQ for i5/OS, and WebSphere
MQ on UNIX systems

Syncpoint support operates on two types of units of work: local and global.

A local unit of work is one in which the only resources updated are those of the WebSphere® MQ queue manager. Here syncpoint coordination is provided by
the queue manager itself using a single-phase commit procedure.

A global unit of work is one in which resources belonging to other resource managers, such as databases, are also updated. WebSphere MQ can coordinate
such units of work itself. They can also be coordinated by an external commitment controller such as another transaction manager or the i5/OS®
commitment controller.

For full integrity, use a two-phase commit procedure. Two-phase commit can be provided by XA-compliant transaction managers and databases such as
IBM's TXSeries and UDB and also by the i5/OS commitment controller. WebSphere MQ products (except WebSphere MQ for i5/OS and WebSphere MQ for
z/OS®) can coordinate global units of work using a two-phase commit process. WebSphere MQ for i5/OS can act as a resource manager for global units of
work within a WebSphere Application Server environment, but cannot act as a transaction manager.

Local units of work
Units of work that involve only the queue manager are called local units of work. Syncpoint coordination is provided by the queue manager itself
(internal coordination) using a single-phase commit process.

Global units of work
Use global units of work when you also need to include updates to resources belonging to other resource managers. Here the coordination can be
internal or external to the queue manager:

Interfaces to external syncpoint managers
WebSphere MQ on UNIX systems, WebSphere MQ for i5/OS, and WebSphere MQ for Windows support coordination of transactions by external
syncpoint managers that use the X/Open XA interface.

Parent topic: Committing and backing out units of work

This build: January 26, 2011 11:20:07

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13740_

2.10.4.1. Local units of work

Units of work that involve only the queue manager are called local units of work. Syncpoint coordination is provided by the queue manager itself (internal
coordination) using a single-phase commit process.

To start a local unit of work, the application issues MQGET, MQPUT, or MQPUT1 requests specifying the appropriate syncpoint option. The unit of work is
committed using MQCMIT or rolled back using MQBACK. However, the unit of work also ends when the connection between the application and the queue
manager is broken, intentionally or unintentionally.

If an application disconnects (MQDISC) from a queue manager while a global unit of work coordinated by WebSphere® MQ is still active, an attempt is made
to commit the unit of work. If, however, the application terminates without disconnecting, the unit of work is rolled back as the application is deemed to
have terminated abnormally.

Parent topic: Syncpoints in WebSphere MQ for Windows, WebSphere MQ for i5/OS, and WebSphere MQ on UNIX systems

This build: January 26, 2011 11:20:08

Page 129 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13750_

2.10.4.2. Global units of work

Use global units of work when you also need to include updates to resources belonging to other resource managers. Here the coordination can be internal or
external to the queue manager:

Internal syncpoint coordination

External syncpoint coordination
This occurs when a syncpoint coordinator other than WebSphere® MQ has been selected; for example, CICS®, Encina, or Tuxedo.

Parent topic: Syncpoints in WebSphere MQ for Windows, WebSphere MQ for i5/OS, and WebSphere MQ on UNIX systems

This build: January 26, 2011 11:20:08

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13760_

2.10.4.2.1. Internal syncpoint coordination

Queue manager coordination of global units of work is not supported by WebSphere® MQ for i5/OS® or WebSphere MQ for z/OS®. It is not
supported in a WebSphere MQ client environment.

Here, WebSphere MQ does the coordination. To start a global unit of work, the application issues the MQBEGIN call.

As input to the MQBEGIN call, you must supply the connection handle (Hconn) that is returned by the MQCONN or MQCONNX call. This handle represents the

connection to the WebSphere MQ queue manager.

The application issues MQGET, MQPUT, or MQPUT1 requests specifying the appropriate syncpoint option. This means that you can use MQBEGIN to initiate a
global unit of work that updates local resources, resources belonging to other resource managers, or both. Updates made to resources belonging to other
resource managers are made using the API of that resource manager. However, you cannot use the MQI to update queues that belong to other queue
managers. Issue MQCMIT or MQBACK before starting further units of work (local or global).

The global unit of work is committed using MQCMIT; this initiates a two-phase commit of all the resource managers involved in the unit of work. A two-
phase commit process is used whereby resource managers (for example, XA-compliant database managers such as DB2®, Oracle, and Sybase) are firstly all
asked to prepare to commit. Only if all are prepared are they asked to commit. If any resource manager signals that it cannot commit, each is asked to back
out instead. Alternatively, you can use MQBACK to roll back the updates of all the resource managers.

If an application disconnects (MQDISC) while a global unit of work is still active, the unit of work is committed. If, however, the application terminates
without disconnecting, the unit of work is rolled back as the application is deemed to have terminated abnormally.

The output from MQBEGIN is a completion code and a reason code.

When you use MQBEGIN to start a global unit of work, all the external resource managers that have been configured with the queue manager are included.
However, the call starts a unit of work but completes with a warning if:

� There are no participating resource managers (that is, no resource managers have been configured with the queue manager)

or

� One or more resource managers are not available.

In these cases, the unit of work must include updates to only those resource managers that were available when the unit of work was started.

If one of the resource managers cannot commit its updates, all the resource managers are instructed to roll back their updates, and MQCMIT completes with
a warning. In unusual circumstances (typically, operator intervention), an MQCMIT call might fail if some resource managers commit their updates but
others roll them back; the work is deemed to have completed with a mixed outcome. Such occurrences are diagnosed in the error log of the queue manager
so that remedial action may be taken.

An MQCMIT of a global unit of work succeeds if all the resource managers involved commit their updates.

For a description of the MQBEGIN call, see the WebSphere MQ Application Programming Reference.

Parent topic: Global units of work

This build: January 26, 2011 11:20:08

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13770_

2.10.4.2.2. External syncpoint coordination

This occurs when a syncpoint coordinator other than WebSphere® MQ has been selected; for example, CICS®, Encina, or Tuxedo.

In this situation, WebSphere MQ on UNIX systems and WebSphere MQ for Windows register their interest in the outcome of the unit of work with the
syncpoint coordinator so that they can commit or roll back any uncommitted get or put operations as required. The external syncpoint coordinator
determines whether one- or two-phase commitment protocols are provided.

When you use an external coordinator, MQCMIT, MQBACK, and MQBEGIN cannot be issued. Calls to these functions fail with the reason code
MQRC_ENVIRONMENT_ERROR.

The way in which an externally-coordinated unit of work is started depends on the programming interface provided by the syncpoint coordinator. An explicit
call might be required. If an explicit call is required, and you issue an MQPUT call specifying the MQPMO_SYNCPOINT option when a unit of work is not
started, the completion code MQRC_SYNCPOINT_NOT_AVAILABLE is returned.

Page 130 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

The scope of the unit of work is determined by the syncpoint coordinator. The state of the connection between the application and the queue manager
affects the success or failure of MQI calls that an application issues, not the state of the unit of work. An application can, for example, disconnect and
reconnect to a queue manager during an active unit of work and perform further MQGET and MQPUT operations inside the same unit of work. This is known
as a pending disconnect.

You can use WebSphere MQ API calls in CICS programs, whether or not you choose to use the XA abilities of CICS. If you do not use XA, then the puts and
gets of messages to and from queues will not be managed within CICS atomic units of work. One reason for choosing this method is that the overall
consistency of the unit of work is not very important to you.

If the integrity of your units of work is important to you, then you must use XA. When you use XA, CICS uses a two-phase commit protocol to ensure all
resources within the unit of work are updated together.

For more information about setting up setting up transactional support, see the WebSphere MQ System Administration Guide, and also TXSeries CICS
documentation, for example, TXSeries for Multiplatforms CICS Administration Guide for Open Systems.

Parent topic: Global units of work

This build: January 26, 2011 11:20:08

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13780_

2.10.4.3. Interfaces to external syncpoint managers

WebSphere® MQ on UNIX systems, WebSphere MQ for i5/OS®, and WebSphere MQ for Windows support coordination of transactions by external syncpoint
managers that use the X/Open XA interface.

Some XA transaction managers (TXSeries) require that each XA resource manager supplies its name. This is the string called name in the XA switch

structure. The resource manager for WebSphere MQ on UNIX and Windows systems is named MQSeries_XA_RMI. The name on i5/OS is MQSeries® XA RMI.
For further details on XA interfaces refer to the XA documentation CAE Specification Distributed Transaction Processing: The XA Specification, published by
The Open Group.

In an XA configuration, WebSphere MQ on UNIX systems and WebSphere MQ for Windows fulfill the role of an XA Resource Manager. An XA syncpoint
coordinator can manage a set of XA Resource Managers, and synchronize the commit or backout of transactions in both Resource Managers. This is how it
works for a statically-registered resource manager:

1. An application notifies the syncpoint coordinator that it wants to start a transaction.

2. The syncpoint coordinator issues a call to any resource managers that it knows of, to notify them of the current transaction.

3. The application issues calls to update the resources managed by the resource managers associated with the current transaction.

4. The application requests that the syncpoint coordinator either commit or roll back the transaction.

5. The syncpoint coordinator issues calls to each resource manager using two-phase commit protocols to complete the transaction as requested.

The XA specification requires each Resource Manager to provide a structure called an XA Switch. This structure declares the capabilities of the Resource
Manager, and the functions that are to be called by the syncpoint coordinator.

There are two versions of this structure:

For a list of the libraries containing this structure see the WebSphere MQ System Administration Guide.

The method that must be used to link them to an XA syncpoint coordinator is defined by the coordinator; consult the documentation provided by that
coordinator to determine how to enable WebSphere MQ to cooperate with your XA syncpoint coordinator.

The xa_info structure that is passed on any xa_open call by the syncpoint coordinator can be the name of the queue manager that is to be administered.
This takes the same form as the queue manager name passed to MQCONN or MQCONNX, and can be blank if the default queue manager is to be used.
However, you can use the two extra parameters TPM and AXLIB

TPM allows you to specify to WebSphere MQ the transaction manager name, for example, CICS®. AXLIB allows you to specify the actual library name in the
transaction manager where the XA AX entry points are located.

If you use either of these parameters or a non default queue manager you must specify the queue manager name using the QMNAME parameter. For further
information see WebSphere MQ Clients.

Restrictions

1. Global units of work are not allowed with a shared Hconn (as described in Shared (thread independent) connections with MQCONNX.

2. WebSphere MQ for i5/OS does not support dynamic registration of XA resource managers.

The only transaction manager supported is WebSphere Application Server.

3. On Windows systems, all functions declared in the XA switch are declared as _cdecl functions.

4. An external syncpoint coordinator can administer only one queue manager at a time. This is because the coordinator has an effective connection to
each queue manager, and is therefore subject to the rule that only one connection is allowed at a time.

5. All applications that are run using the syncpoint coordinator can connect only to the queue manager that is administered by the coordinator because
they are already effectively connected to that queue manager. They must issue MQCONN or MQCONNX to obtain a connection handle and must issue
MQDISC before they exit. Alternatively, they can use the exit UE014015 for TXSeries CICS.

Parent topic: Syncpoints in WebSphere MQ for Windows, WebSphere MQ for i5/OS, and WebSphere MQ on UNIX systems

This build: January 26, 2011 11:20:09

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13790_

2.10.5. Interfaces to the i5/OS external syncpoint manager

WebSphere® MQ for i5/OS® can use native i5/OS commitment control as an external syncpoint coordinator.

MQRMIXASwitch Static XA resource management

MQRMIXASwitchDynamic Dynamic XA resource management

Page 131 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Thread-independent (shared) connections are not allowed with commitment control. See the i5/OS Programming: Backup and Recovery Guide, SC21-8079
for more information about the commitment control capabilities of i5/OS.

To start the i5/OS commitment control facilities, use the STRCMTCTL system command. To end commitment control, use the ENDCMTCTL system command.

Note: The default value of Commitment definition scope is *ACTGRP. This must be defined as *JOB for WebSphere MQ for i5/OS. For example:

STRCMTCTL LCKLVL(*ALL) CMTSCOPE(*JOB)

WebSphere MQ for i5/OS can also perform local units of work containing only updates to WebSphere MQ resources. The choice between local units of work
and participation in global units of work coordinated byi5/OS is made in each application when the application calls MQPUT, MQPUT1, or MQGET, specifying
MQPMO_SYNCPOINT or MQGMO_SYNCPOINT, or MQBEGIN. If commitment control is not active when the first such call is issued, WebSphere MQ starts a
local unit of work and all further units of work for this connection to WebSphere MQ will also use local units of work, regardless of whether commitment
control is subsequently started. To commit or back out a local unit of work, use MQCMIT or MQBACK respectively in the same way as other WebSphere MQ
products. Thei5/OS commit and rollback calls such as the CL command COMMIT have no effect on WebSphere MQ local units of work.

If you want to use WebSphere MQ for i5/OS with native i5/OS commitment control as an external syncpoint coordinator, ensure that any job with
commitment control is active and that you are using WebSphere MQ in a single-threaded job. If you call MQPUT, MQPUT1, or MQGET, specifying
MQPMO_SYNCPOINT or MQGMO_SYNCPOINT, in a multithreaded job in which commitment control has been started, the call fails with a reason code of
MQRC_SYNCPOINT_NOT_AVAILABLE.

It is possible to use local units of work and the MQCMIT and MQBACK calls in a multithreaded job.

If you call MQPUT, MQPUT1, or MQGET, specifying MQPMO_SYNCPOINT or MQGMO_SYNCPOINT, after starting commitment control, WebSphere MQ for
i5/OS adds itself as an API commitment resource to the commitment definition. This is typically the first such call in a job. While there are any API
commitment resources registered under a particular commitment definition, you cannot end commitment control for that definition.

WebSphere MQ for i5/OS removes its registration as an API commitment resource when you disconnect from the queue manager, provided that there are no
pending MQI operations in the current unit of work.

If you disconnect from the queue manager while there are pending MQPUT, MQPUT1, or MQGET operations in the current unit of work, WebSphere MQ for
i5/OS remains registered as an API commitment resource so that it is notified of the next commit or rollback. When the next syncpoint is reached,
WebSphere MQ for i5/OS commits or rolls back the changes as required. An application can disconnect and reconnect to a queue manager during an active
unit of work and perform further MQGET and MQPUT operations inside the same unit of work (this is a pending disconnect).

If you attempt to issue an ENDCMTCTL system command for that commitment definition, message CPF8355 is issued, indicating that pending changes were

active. This message also appears in the job log when the job ends. To avoid this, commit or roll back all pending WebSphere MQ for i5/OS operations, and
disconnect from the queue manager. Thus, using COMMIT or ROLLBACK commands before ENDCMTCTL should enable end-commitment control to complete
successfully.

When you use i5/OS commitment control as an external syncpoint coordinator, you cannot issue MQCMIT, MQBACK, and MQBEGIN calls. Calls to these
functions fail with the reason code MQRC_ENVIRONMENT_ERROR.

To commit or roll back (that is, to back out) your unit of work, use one of the programming languages that supports the commitment control. For example:

� CL commands: COMMIT and ROLLBACK

� ILE C Programming Functions: _Rcommit and _Rrollback

� ILE RPG: COMMIT and ROLBK

� COBOL/400®: COMMIT and ROLLBACK

When you use i5/OS commitment control as an external syncpoint coordinator with WebSphere MQ for i5/OS, i5/OS performs a two-phase commit protocol
in which WebSphere MQ participates. Because each unit of work is committed in two phases, the queue manager might become unavailable for the second
phase after having voted to commit in the first phase. This can happen, for example, if the queue manager's internal jobs are ended. In this situation, the
job log performing the commit contains message CPF835F indicating that a commit or rollback operation failed. The messages preceding this indicate the
cause of the problem, whether it occurred during a commit or rollback operation, and also the logical unit of work ID (LUWID) for the failed unit of work.

If the problem was caused by the failure of the WebSphere MQ API commitment resource during the commit or rollback of a prepared unit of work, you can
use the WRKMQMTRN command to complete the operation and restore the integrity of the transaction. The command requires that you know the LUWID of
the unit of work to commit and back out.

Parent topic: Committing and backing out units of work

This build: January 26, 2011 11:20:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13800_

2.11. Starting WebSphere MQ applications using triggers

Some WebSphere® MQ applications that serve queues run continuously, so they are always available to retrieve messages that arrive on the queues.
However,you might not want this when the number of messages arriving on the queues is unpredictable. In this case, applications could be consuming
system resources even when there are no messages to retrieve.

WebSphere MQ provides a facility that enables an application to be started automatically when there are messages available to retrieve. This facility is
known as triggering.

For information about triggering channels see WebSphere MQ Intercommunication.

This chapter introduces triggering, under these headings:

� What is triggering?

� Prerequisites for triggering

� Conditions for a trigger event

� Controlling trigger events

� Designing an application that uses triggered queues

� Trigger monitors

� Properties of trigger messages

� When triggering does not work

What is triggering?

Page 132 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

The queue manager defines certain conditions as constituting trigger events.

Prerequisites for triggering

Conditions for a trigger event

Controlling trigger events
You control trigger events using some of the attributes that define your application queue.

Designing an application that uses triggered queues

Trigger monitors
To a queue manager, a trigger monitor is like any other application that serves a queue. However, a trigger monitor serves initiation queues.

Properties of trigger messages

When triggering does not work
A program is not triggered if the trigger monitor cannot start the program or the queue manager cannot deliver the trigger message.

Parent topic: Writing a WebSphere MQ application

This build: January 26, 2011 11:20:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13830_

2.11.1. What is triggering?

The queue manager defines certain conditions as constituting trigger events.

If triggering is enabled for a queue and a trigger event occurs, the queue manager sends a trigger message to a queue called an initiation queue. The
presence of the trigger message on the initiation queue indicates that a trigger event has occurred.

Trigger messages generated by the queue manager are not persistent. This has the effect of reducing logging (thereby improving performance), and
minimizing duplicates during restart, so improving restart time.

The program that processes the initiation queue is called a trigger-monitor application, and its function is to read the trigger message and take appropriate
action, based on the information contained in the trigger message. Usually this action is to start some other application to process the queue that generated
the trigger message. From the point of view of the queue manager, there is nothing special about the trigger-monitor application; it is simply another
application that reads messages from a queue (the initiation queue).

If triggering is enabled for a queue, you can create a process-definition object associated with it. This object contains information about the application that
processes the message that caused the trigger event. If the process definition object is created, the queue manager extracts this information and places it in
the trigger message, for use by the trigger-monitor application. The name of the process definition associated with a queue is given by the ProcessName

local-queue attribute. Each queue can specify a different process definition, or several queues can share the same process definition.

If you want to trigger the start of a channel, you do not need to define a process definition object. The transmission queue definition is used instead.

Triggering is supported by WebSphere® MQ clients running in the following environments:

� UNIX systems

� Windows systems

An application running in a client environment is the same as one running in a full WebSphere MQ environment, except that you link it with the client
libraries. However the trigger monitor and the application to be started must both be in the same environment.

Triggering involves:

Application queue

An application queue is a local queue that, when it has triggering set on and when the conditions are met, requires that trigger messages are written.

Process definition

An application queue can have a process definition object associated with it that holds details of the application that will get messages from the application
queue. (See the WebSphere MQ Application Programming Reference for a list of attributes.)

Remember that if you want a trigger to start a channel, you do not need to define a process definition object.

Transmission queue

You need a transmission queue if you want a trigger to start a channel.

For a transmission queue on AIX®, HP-UX, i5/OS®, Solaris, z/OS®, or Windows systems, the TriggerData attribute of the transmission queue can

specify the name of the channel to be started. This can replace the process definition for triggering channels, but is used only when a process definition is
not created.

Trigger event

A trigger event is an event that causes a trigger message to be generated by the queue manager. This is usually a message arriving on an application
queue, but it can also occur at other times (see Conditions for a trigger event). WebSphere MQ has a range of options to allow you to control the
conditions that cause a trigger event (see Controlling trigger events).

Trigger message

The queue manager creates a trigger message when it recognizes a trigger event (see Conditions for a trigger event). It copies into the trigger message
information about the application to be started. This information comes from the application queue and the process definition object associated with the
application queue. Trigger messages have a fixed format (see Format of trigger messages).

Initiation queue

An initiation queue is a local queue on which the queue manager puts trigger messages. A queue manager can own more than one initiation queue, and
each one is associated with one or more application queues. A shared queue, a local queue accessible by queue managers in a queue-sharing group, can
be an initiation queue on WebSphere MQ for z/OS.

Trigger monitor

A trigger monitor is a continuously-running program that serves one or more initiation queues. When a trigger message arrives on an initiation queue, the
trigger monitor retrieves the message. The trigger monitor uses the information in the trigger message. It issues a command to start the application that
is to retrieve the messages arriving on the application queue, passing it information contained in the trigger message header, which includes the name of

Page 133 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

the application queue.

On all platforms, a special trigger monitor known as the channel initiator is responsible for starting channels. On z/OS, the channel initiator is usually
started manually, or it can be done automatically when a queue manager starts by changing CSQINP2 in the queue manager startup JCL. On other
platforms, it is automatically started when the queue manager starts or it can be started manually with the runmqchi command.

(For more information, see Trigger monitors.)

To understand how triggering works, consider Figure 1, which is an example of trigger type FIRST (MQTT_FIRST).

Figure 1. Flow of application and trigger messages

In Figure 1, the sequence of events is:

1. Application A, which can be either local or remote to the queue manager, puts a message on the application queue. No application has this queue open
for input. However, this fact is relevant only to trigger type FIRST and DEPTH.

2. The queue manager checks to see if the conditions are met under which it has to generate a trigger event. They are, and a trigger event is generated.
Information held within the associated process definition object is used when creating the trigger message.

3. The queue manager creates a trigger message and puts it on the initiation queue associated with this application queue, but only if an application
(trigger monitor) has the initiation queue open for input.

4. The trigger monitor retrieves the trigger message from the initiation queue.

5. The trigger monitor issues a command to start application B (the server application).

6. Application B opens the application queue and retrieves the message.

Note:

1. If the application queue is open for input, by any program, and has triggering set for FIRST or DEPTH, no trigger event will occur because the queue is
already being served.

2. If the initiation queue is not open for input, the queue manager does not generate any trigger messages; it waits until an application opens the
initiation queue for input.

3. When using triggering for channels, use trigger type FIRST or DEPTH.

So far, the relationship between the queues within triggering has been only on a one to one basis. Consider Figure 2.

Figure 2. Relationship of queues within triggering

Page 134 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

An application queue has a process definition object associated with it that holds details of the application that will process the message. The queue manager
places the information in the trigger message, so only one initiation queue is necessary. The trigger monitor extracts this information from the trigger
message and starts the relevant application to deal with the message on each application queue.

Remember that, if you want to trigger the start of a channel, you do not need to define a process definition object. The transmission queue definition can
determine the channel to be triggered.

Parent topic: Starting WebSphere MQ applications using triggers

This build: January 26, 2011 11:20:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13840_

2.11.2. Prerequisites for triggering

Before your application can take advantage of triggering, follow the steps below:

1. Either:

a. Create an initiation queue for your application queue. For example:

 DEFINE QLOCAL (initiation.queue) REPLACE +

 LIKE (SYSTEM.DEFAULT.LOCAL.QUEUE) +

 DESCR ('initiation queue description')

or

b. Determine the name of a local queue that already exists and can be used by your application (usually this is
SYSTEM.DEFAULT.INITIATION.QUEUE or, if you are starting channels with triggers, SYSTEM.CHANNEL.INITQ), and specify its name in the
InitiationQName field of the application queue.

2. Associate the initiation queue with the application queue. A queue manager can own more than one initiation queue. You might want some of your
application queues to be served by different programs, in which case, you can use one initiation queue for each serving program, although you do not
have to. Here is an example of how to create an application queue:

 DEFINE QLOCAL (application.queue) REPLACE +

 LIKE (SYSTEM.DEFAULT.LOCAL.QUEUE) +

 DESCR (‘appl queue description') +

 INITQ (‘initiation.queue') +

 PROCESS (‘process.name') +

 TRIGGER +

 TRIGTYPE (FIRST)

Here is an extract from a CL program for WebSphere® MQ for i5/OS® that creates an initiation queue:

 /* Queue used by AMQSINQA */

 CRTMQMQ QNAME('SYSTEM.SAMPLE.INQ') +

 QTYPE(*LCL) REPLACE(*YES) +

 MQMNAME +

 TEXT('queue for AMQSINQA') +

 SHARE(*YES) /* Shareable */+

 DFTMSGPST(*YES)/* Persistent messages OK */+

Page 135 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

 +

 TRGENBL(*YES) /* Trigger control on */+

 TRGTYPE(*FIRST)/* Trigger on first message*/+

 PRCNAME('SYSTEM.SAMPLE.INQPROCESS') +

 INITQNAME('SYSTEM.SAMPLE.TRIGGER')

3. If you are triggering an application, create a process definition object to contain information relating to the application that is to serve your application
queue. For example, to trigger-start a CICS® payroll transaction called PAYR:

 DEFINE PROCESS (process.name) +

 REPLACE +

 DESCR ('process description') +

 APPLICID ('PAYR') +

 APPLTYPE (CICS) +

 USERDATA ('Payroll data')

Here is an extract from a CL program for WebSphere MQ for i5/OS that creates a process definition object:

 /* Process definition */

 CRTMQMPRC PRCNAME('SYSTEM.SAMPLE.INQPROCESS') +

 REPLACE(*YES) +

 MQMNAME +

 TEXT('trigger process for AMQSINQA') +

 ENVDATA('JOBPTY(3)') /* Submit parameter */+

 APPID('AMQSINQA') /* Program name */

When the queue manager creates a trigger message, it copies information from the attributes of the process definition object into the trigger message.

4. Create a transmission queue definition and use blanks for the ProcessName attribute .

The TrigData attribute can contain the name of the channel to be triggered or it can be left blank. Except on WebSphere MQ for z/OS, if it is left

blank, the channel initiator searches the channel definition files until it finds a channel that is associated with the named transmission queue. When the
queue manager creates a trigger message, it copies information from the TrigData attribute of the transmission queue definition into the trigger

message.

5. If you have created a process definition object to specify properties of the application that is to serve your application queue, associate the process
object with your application queue by naming it in the ProcessName attribute of the queue.

6. Start instances of the trigger monitors (or trigger servers in WebSphere MQ for i5/OS) that are to serve the initiation queues you have defined. See
Trigger monitors for more information.

If you want to be aware of any undelivered trigger messages, make sure that your queue manager has a dead-letter (undelivered-message) queue defined.
Specify the name of the queue in the DeadLetterQName queue manager field.

You can then set the trigger conditions that you require, using the attributes of the queue object that defines your application queue. For more information
on this, see Controlling trigger events.

Parent topic: Starting WebSphere MQ applications using triggers

This build: January 26, 2011 11:20:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13850_

2.11.3. Conditions for a trigger event

References to shared queues in this section mean shared queues in a queue-sharing group, only available on WebSphere® MQ for z/OS®.

The queue manager creates a trigger message when the following conditions are satisfied:

1. A message is put on a queue.

2. The message has a priority greater than or equal to the threshold trigger priority of the queue. This priority is set in the TriggerMsgPriority local

queue attribute; if it is set to zero, any message qualifies.

3. The number of messages on the queue with priority greater than or equal to TriggerMsgPriority was previously, depending on TriggerType:

� Zero (for trigger type MQTT_FIRST)

� Any number (for trigger type MQTT_EVERY)

� TriggerDepth minus 1 (for trigger type MQTT_DEPTH)

Note:

a. For non-shared local queues, the queue manager counts both committed and uncommitted messages when it assesses whether the conditions
for a trigger event exist. Consequently an application might be started when there are no messages for it to retrieve because the messages on
the queue have not been committed. In this situation, consider using the wait option with a suitable WaitInterval, so that the application waits

for its messages to arrive.

b. For local shared queues the queue manager counts committed messages only.

4. For triggering of type FIRST or DEPTH, no program has the application queue open for removing messages (that is, the OpenInputCount local queue

attribute is zero).

Note:

a. For shared queues, special conditions apply when multiple queue managers have trigger monitors running against a queue. In this situation, if
one or more queue managers have the queue open for input shared, the trigger criteria on the other queue managers are treated as
TriggerType MQTT_FIRST and TriggerMsgPriority zero. When all the queue managers close the queue for input, the trigger conditions revert

to those specified in the queue definition.

b. For shared queues, this condition is applied for each queue manager. That is, a queue manager's OpenInputCount for a queue must be zero for a

trigger message to be generated for the queue by that queue manager. However, if any queue manager in the queue-sharing group has the

Platform To create a process definition object

UNIX systems, Windows systems Use DEFINE PROCESS or use SYSTEM.DEFAULT.PROCESS and modify using ALTER PROCESS

z/OS® Use DEFINE PROCESS (see sample code in step 3), or use the operations and control panels.

i5/OS Use a CL program containing code as in step 3.

Platform Use commands

Windows, UNIX, Linux systems ALTER QLOCAL

z/OS ALTER QLOCAL

i5/OS CHGMQMQ

Page 136 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

queue open using the MQOO_INPUT_EXCLUSIVE option, no trigger message is generated for that queue by any of the queue managers in the
queue-sharing group.

5. On WebSphere MQ for z/OS, if the application queue is one with a Usage attribute of MQUS_NORMAL, get requests for it are not inhibited (that is, the

InhibitGet queue attribute is MQQA_GET_ALLOWED). Also, if the triggered application queue is one with a Usage attribute of MQUS_XMITQ, get

requests for it are not inhibited.

6. Either:

� The ProcessName local queue attribute for the queue is not blank, and the process definition object identified by that attribute has been created,

or

� The ProcessName local queue attribute for the queue is all blank, but the queue is a transmission queue. As the process definition is optional, the

TriggerData attribute might also contain the name of the channel to be started. In this case, the trigger message contains attributes with the

following values:

� QName: queue name

� ProcessName: blanks

� TriggerData: trigger data

� ApplType: MQAT_UNKNOWN

� ApplId: blanks

� EnvData: blanks

� UserData: blanks

7. An initiation queue has been created, and has been specified in the InitiationQName local queue attribute. Also:

� Get requests are not inhibited for the initiation queue (that is, the InhibitGet queue attribute is MQQA_GET_ALLOWED).

� Put requests must not be inhibited for the initiation queue (that is, the InhibitPut queue attribute must be MQQA_PUT_ALLOWED).

� The Usage attribute of the initiation queue must be MQUS_NORMAL.

� In environments where dynamic queues are supported, the initiation queue must not be a dynamic queue that has been marked as logically
deleted.

8. A trigger monitor currently has the initiation queue open for removing messages (that is, the OpenInputCount local queue attribute is greater than

zero).

9. The trigger control (TriggerControl local queue attribute) for the application queue is set to MQTC_ON. To do this, set the trigger attribute when

you define your queue, or use the ALTER QLOCAL command.

10. The trigger type (TriggerType local queue attribute) is not MQTT_NONE.

If all the above required conditions are met, and the message that caused the trigger condition is put as part of a unit of work, the trigger message
does not become available for retrieval by the trigger monitor application until the unit of work completes, whether the unit of work is committed or,
for trigger type MQTT_FIRST or MQTT_DEPTH, backed out.

11. A suitable message is placed on the queue, for a TriggerType of MQTT_FIRST or MQTT_DEPTH, and the queue:

� Was not previously empty (MQTT_FIRST), or

� Had TriggerDepth or more messages (MQTT_DEPTH)

and conditions 2 through 10 (excluding 3) are satisfied, if in the case of MQTT_FIRST a sufficient interval (TriggerInterval queue-manager attribute)

has elapsed since the last trigger message was written for this queue.

This is to allow for a queue server that ends before processing all the messages on the queue. The purpose of the trigger interval is to reduce the
number of duplicate trigger messages that are generated.

Note: If you stop and restart the queue manager, the TriggerInterval timer is reset. There is a small window during which it is possible to produce

two trigger messages. The window exists when the queue’s trigger attribute is set to enabled at the same time as a message arrives and the queue
was not previously empty (MQTT_FIRST) or had TriggerDepth or more messages (MQTT_DEPTH).

12. The only application serving a queue issues an MQCLOSE call, for a TriggerType of MQTT_FIRST or MQTT_DEPTH, and there is at least:

� One (MQTT_FIRST), or

� TriggerDepth (MQTT_DEPTH)

messages on the queue of sufficient priority (condition 2), and conditions 6 through 10 are also satisfied.

This is to allow for a queue server that issues an MQGET call, finds the queue empty, and so ends; however, in the interval between the MQGET and
the MQCLOSE calls, one or more messages arrive.

Note:

a. If the program serving the application queue does not retrieve all the messages, this can cause a closed loop. Each time that the program closes
the queue, the queue manager creates another trigger message that causes the trigger monitor to start the server program again.

b. If the program serving the application queue backs out its get request (or if the program abends) before it closes the queue, the same happens.
However, if the program closes the queue before backing out the get request, and the queue is otherwise empty, no trigger message is created.

c. To prevent such a loop occurring, use the BackoutCount field of MQMD to detect messages that are repeatedly backed out. For more

information, see Messages that are backed out.

13. The following conditions are satisfied using MQSET or a command:

� TriggerControl is changed to MQTC_ON, or

� TriggerControl is already MQTC_ON and the value of either TriggerType, TriggerMsgPriority, or TriggerDepth (if relevant) is

changed,

and there is at least:

� One (MQTT_FIRST or MQTT_EVERY), or

� TriggerDepth (MQTT_DEPTH)

messages on the queue of sufficient priority (condition 2), and conditions 4 through 10 (excluding 8) are also satisfied.

This is to allow for an application or operator changing the triggering criteria, when the conditions for a trigger to occur are already satisfied.

b. The InhibitPut queue attribute of an initiation queue changes from MQQA_PUT_INHIBITED to MQQA_PUT_ALLOWED, and there is at least:

� One (MQTT_FIRST or MQTT_EVERY), or

� TriggerDepth (MQTT_DEPTH)

messages of sufficient priority (condition 2) on any of the queues for which this is the initiation queue, and conditions 4 through 10 are also
satisfied. (One trigger message is generated for each such queue satisfying the conditions.)

This is to allow for trigger messages not being generated because of the MQQA_PUT_INHIBITED condition on the initiation queue, but this
condition now having been changed.

c. The InhibitGet queue attribute of an application queue changes from MQQA_GET_INHIBITED to MQQA_GET_ALLOWED, and there is at least:

� One (MQTT_FIRST or MQTT_EVERY), or

� TriggerDepth (MQTT_DEPTH)

Page 137 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

messages of sufficient priority (condition 2) on the queue, and conditions 4 through 10, excluding 5, are also satisfied.

This allows applications to be triggered only when they can retrieve messages from the application queue.

d. A trigger-monitor application issues an MQOPEN call for input from an initiation queue, and there is at least:

� One (MQTT_FIRST or MQTT_EVERY), or

� TriggerDepth (MQTT_DEPTH)

messages of sufficient priority (condition 2) on any of the application queues for which this is the initiation queue, and conditions 4 through 10
(excluding 8) are also satisfied, and no other application has the initiation queue open for input (one trigger message is generated for each such
queue satisfying the conditions).

This is to allow for messages arriving on queues while the trigger monitor is not running, and for the queue manager restarting and trigger
messages (which are nonpersistent) being lost.

14. MSGDLVSQ is set correctly. If you set MSGDLVSQ=FIFO, messages are delivered to the queue in a First In First Out basis. The priority of the message
is ignored and the default priority of the queue is assigned to the message. If TriggerMsgPriority is set to a higher value than the default priority of

the queue, no messages are triggered. If TriggerMsgPriority is set equal to or lower than the default priority of the queue, triggering occurs for type

FIRST, EVERY, and DEPTH. For information about these types, see the description of the TriggerType field under Controlling trigger events.

If you set MSGDLVSQ=PRIORITY and the message priority is equal to or greater than the TriggerMsgPriority field, messages only count towards a

trigger event. In this case, triggering occurs for type FIRST, EVERY, and DEPTH. As an example, if you put 100 messages of lower priority than the
TriggerMsgPriority, the effective queue depth for triggering purposes is still zero. If you then put another message on the queue, but this time the

priority is greater than or equal to the TriggerMsgPriority, the effective queue depth increases from zero to one and the condition for TriggerType

FIRST is satisfied.

Note:

1. From step 12 (where trigger messages are generated as a result of some event other than a message arriving on the application queue), the trigger
message is not put as part of a unit of work. Also, if the TriggerType is MQTT_EVERY, and if there are one or more messages on the application

queue, only one trigger message is generated.

2. If WebSphere MQ segments a message during MQPUT, a trigger event will not be processed until all the segments have been successfully placed on
the queue. However, once message segments are on the queue, WebSphere MQ treats them as individual messages for triggering purposes. For
example, a single logical message split into three pieces causes only one trigger event to be processed when it is first MQPUT and segmented.
However, each of the three segments causes their own trigger events to be processed as they are moved through the WebSphere MQ network.

Parent topic: Starting WebSphere MQ applications using triggers

This build: January 26, 2011 11:20:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13860_

2.11.4. Controlling trigger events

You control trigger events using some of the attributes that define your application queue.

You can enable and disable triggering, and you can select the number or priority of the messages that count toward a trigger event. There is a full
description of these attributes in the WebSphere MQ Application Programming Reference.

The relevant attributes are:

TriggerControl

Use this attribute to enable and disable triggering for an application queue.

TriggerMsgPriority

The minimum priority that a message must have for it to count toward a trigger event. If a message of priority less than TriggerMsgPriority arrives on

the application queue, the queue manager ignores the message when it determines whether to create a trigger message. If TriggerMsgPriority is set to

zero, all messages count toward a trigger event.

TriggerType

In addition to the trigger type NONE (which disables triggering just like setting the TriggerControl to OFF), you can use the following trigger types to set

the sensitivity of a queue to trigger events:

TriggerDepth

The number of messages on a queue that causes a trigger event when using triggering by depth.

The conditions that must be satisfied for a queue manager to create a trigger message are described in Conditions for a trigger event.

Example of the use of trigger type EVERY

Example of the use of trigger type FIRST

Example of the use of trigger type DEPTH

Special case of trigger type FIRST

EVERY A trigger event occurs every time that a message arrives on the application queue. Use this type of trigger
if you want multiple instances of an application started. You must always process the queue until it is
empty.

FIRST A trigger event occurs only when the number of messages on the application queue changes from zero to
one. Use this type of trigger if you want a serving program to start when the first message arrives on a
queue, continue until there are no more messages to process, then end. Also see Special case of trigger
type FIRST.

DEPTH A trigger event occurs only when the number of messages on the application queue reaches the value of
the TriggerDepth attribute. A typical use of this type of triggering is to start a program when all the

replies to a set of requests are received.

Triggering by depth: With triggering by depth, the queue manager disables triggering (using the
<xph><pv>TriggerControl</pv></xph> attribute) after it creates a trigger message. Your application
must re-enable triggering itself (by using the MQSET call) after this has happened.

The action of disabling triggering is not under syncpoint control, so triggering cannot be re-enabled by
backing out a unit of work. If a program backs out a put request that caused a trigger event, or if the
program abends, you must re-enable triggering by using the MQSET call or the ALTER QLOCAL command.

Page 138 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

With trigger type FIRST, if there is already a message on the application queue when another message arrives, the queue manager does not usually
create another trigger message.

Parent topic: Starting WebSphere MQ applications using triggers

This build: January 26, 2011 11:20:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13870_

2.11.4.1. Example of the use of trigger type EVERY

Consider an application that generates requests for motor insurance. The application might send request messages to a number of insurance companies,
specifying the same reply-to queue each time. It might set a trigger of type EVERY on this reply-to queue so that each time a reply arrives, the reply might
trigger an instance of the server to process the reply.

Parent topic: Controlling trigger events

This build: January 26, 2011 11:20:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13880_

2.11.4.2. Example of the use of trigger type FIRST

Consider an organization with a number of branch offices that each transmit details of the day’s business to the head office. They all do this at the same
time, at the end of the working day, and at the head office there is an application that processes the details from all the branch offices. The first message to
arrive at the head office could cause a trigger event that starts this application. This application would continue processing until there are no more messages
on its queue.

Parent topic: Controlling trigger events

This build: January 26, 2011 11:20:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13890_

2.11.4.3. Example of the use of trigger type DEPTH

Consider a travel agency application that creates a single request to confirm a flight reservation, to confirm a reservation for a hotel room, to rent a car,
and to order some travelers' checks. The application might separate these items into four request messages, sending each to a separate destination. It
might set a trigger of type DEPTH on its reply-to queue (with the depth set to the value 4), so that it is restarted only when all four replies have arrived.

If another message (possibly from a different request) arrives on the reply-to queue before the last of the four replies, the requesting application is triggered
early. To avoid this, when using DEPTH triggering to collect multiple replies to a request, always use a new reply-to queue for each request.

Parent topic: Controlling trigger events

This build: January 26, 2011 11:20:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13900_

2.11.4.4. Special case of trigger type FIRST

With trigger type FIRST, if there is already a message on the application queue when another message arrives, the queue manager does not usually create
another trigger message.

However, the application serving the queue might not actually open the queue (for example, the application might end, possibly because of a system
problem). If an incorrect application name has been put into the process definition object, the application serving the queue will not pick up any of the
messages. In these situations, if another message arrives on the application queue, there is no server running to process this message (and any other
messages on the queue).

To deal with this, the queue manager creates further trigger messages under the following circumstances:

� If another message arrives on the application queue, but only if a predefined time interval has elapsed since the queue manager created the last
trigger message for that queue. This time interval is defined in the queue manager attribute TriggerInterval. Its default value is 999 999 999

milliseconds.

� On WebSphere® MQ for z/OS®, application queues that name an open initiation queue are scanned periodically. If TriggerInterval milliseconds

have passed since the last trigger message was sent and the queue satisfies the conditions for a trigger event and CURDEPTH is greater than zero, a
trigger message is generated. This process is called backstop triggering.

Consider the following points when deciding on a value for the trigger interval to use in your application:

� If you set TriggerInterval to a low value, and there is no application serving the application queue, trigger type FIRST might behave like trigger type

EVERY. This depends on the rate that messages are being put onto the application queue, which in turn might depend on other system activity. This is
because, if the trigger interval is very small, another trigger message is generated each time that a message is put onto the application queue, even
though the trigger type is FIRST, not EVERY. (Trigger type FIRST with a trigger interval of zero is equivalent to trigger type EVERY.)

� On WebSphere MQ for z/OS if you set TriggerInterval to a low value, and there is no application serving the trigger type FIRST application queue,

backstop triggering will generate a trigger message each time the periodic scan of application queues that name open initiation queues takes place.

� If a unit of work is backed out (see Trigger messages and units of work) and the trigger interval has been set to a high value (or the default value),
one trigger message is generated when the unit of work is backed out. However, if you have set the trigger interval to a low value or to zero (causing
trigger type FIRST to behave like trigger type EVERY) many trigger messages can be generated. If the unit of work is backed out, all the trigger

Page 139 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

messages are still made available. The number of trigger messages generated depends on the trigger interval, the maximum number being reached
when trigger interval has been set to zero.

Parent topic: Controlling trigger events

This build: January 26, 2011 11:20:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13910_

2.11.5. Designing an application that uses triggered queues

You have seen how to set up, and control, triggering for your applications. Here are some tips to consider when you design your application.

Trigger messages and units of work
Trigger messages created because of trigger events that are not part of a unit of work are put on the initiation queue, outside any unit of work, with no
dependence on any other messages, and are available for retrieval by the trigger monitor immediately.

Getting messages from a triggered queue
When you design applications that use triggering, be aware that there might be a delay between a trigger monitor starting a program and other
messages becoming available on the application queue. This can happen when the message that causes the trigger event is committed before the
others.

Parent topic: Starting WebSphere MQ applications using triggers

This build: January 26, 2011 11:20:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13920_

2.11.5.1. Trigger messages and units of work

Trigger messages created because of trigger events that are not part of a unit of work are put on the initiation queue, outside any unit of work, with no
dependence on any other messages, and are available for retrieval by the trigger monitor immediately.

Trigger messages created because of trigger events that are part of a unit of work are put on the initiation queue as part of the same unit of work. Trigger
monitors cannot retrieve these trigger messages until the unit of work completes. This applies whether the unit of work is committed or backed out.

If the queue manager fails to put a trigger message on an initiation queue, it will be put on the dead-letter (undelivered-message) queue.

Note:

1. The queue manager counts both committed and uncommitted messages when it assesses whether the conditions for a trigger event exist.

With triggering of type FIRST or DEPTH, trigger messages are made available even if the unit of work is backed out so that a trigger message is always
available when the required conditions are met. For example, consider a put request within a unit of work for a queue that is triggered with trigger
type FIRST. This causes the queue manager to create a trigger message. If another put request occurs, from another unit of work, this does not cause
another trigger event because the number of messages on the application queue has now changed from one to two, which does not satisfy the
conditions for a trigger event. Now if the first unit of work is backed out, but the second is committed, a trigger message is still created.

However, this means that trigger messages are sometimes created when the conditions for a trigger event are not satisfied. Applications that use
triggering must always be prepared to handle this situation. It is recommended that you use the wait option with the MQGET call, setting the
WaitInterval to a suitable value.

2. For local shared queues (that is, shared queues in a queue-sharing group) the queue manager counts committed messages only.

Parent topic: Designing an application that uses triggered queues

This build: January 26, 2011 11:20:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13930_

2.11.5.2. Getting messages from a triggered queue

When you design applications that use triggering, be aware that there might be a delay between a trigger monitor starting a program and other messages
becoming available on the application queue. This can happen when the message that causes the trigger event is committed before the others.

To allow time for messages to arrive, always use the wait option when you use the MQGET call to remove messages from a queue for which trigger
conditions are set. The WaitInterval must be sufficient to allow for the longest reasonable time between a message being put and that put call being

committed. If the message is arriving from a remote queue manager, this time is affected by:

� The number of messages that are put before being committed

� The speed and availability of the communication link

� The sizes of the messages

For an example of a situation where you should use the MQGET call with the wait option, consider the same example that we used when describing units of
work. This was a put request within a unit of work for a queue that is triggered with trigger type FIRST. This event causes the queue manager to create a
trigger message. If another put request occurs, from another unit of work, this does not cause another trigger event because the number of messages on
the application queue has not changed from zero to one. Now if the first unit of work is backed out, but the second is committed, a trigger message is still
created. So the trigger message is created at the time that the first unit of work is backed out. If there is a significant delay before the second message is
committed, the triggered application might need to wait for it.

With triggering of type DEPTH, a delay can occur even if all relevant messages are eventually committed. Suppose that the TriggerDepth queue attribute

has the value 2. When two messages arrive on the queue, the second causes a trigger message to be created. However, if the second message is the first to
be committed, it is at that time that the trigger message becomes available. The trigger monitor starts the server program, but the program can retrieve
only the second message until the first one is committed. So the program might need to wait for the first message to be made available.

Design your application so that it terminates if no messages are available for retrieval when your wait interval expires. If one or more messages arrive

Page 140 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

subsequently, rely on your application being re-triggered to process them. This method prevents applications being idle, and unnecessarily using resources.

Parent topic: Designing an application that uses triggered queues

This build: January 26, 2011 11:20:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13940_

2.11.6. Trigger monitors

To a queue manager, a trigger monitor is like any other application that serves a queue. However, a trigger monitor serves initiation queues.

A trigger monitor is usually a continuously-running program. When a trigger message arrives on an initiation queue, the trigger monitor retrieves that
message. It uses information in the message to issue a command to start the application that is to process the messages on the application queue.

The trigger monitor must pass sufficient information to the program that it is starting so that the program can perform the right actions on the right
application queue.

A channel initiator is an example of a special type of trigger monitor for message channel agents. In this situation however, you must use either trigger type
FIRST or DEPTH.

Trigger monitors on z/OS

Trigger monitors on UNIX and Windows systems

WebSphere MQ for i5/OS trigger monitors
In WebSphere® MQ for i5/OS®, instead of the runmqtrm control command, use the WebSphere MQ for i5/OS CL command STRMQMTRM.

Parent topic: Starting WebSphere MQ applications using triggers

This build: January 26, 2011 11:20:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13950_

2.11.6.1. Trigger monitors on z/OS

The following trigger monitor is provided for CICS® Transaction Server for z/OS® and CICS for MVS/ESA:

CKTI

You need to start one instance of CKTI for each initiation queue (see the WebSphere MQ for z/OS System Administration Guide for information on how to
do this). CKTI passes the MQTM structure of the trigger message to the program that it starts by EXEC CICS START TRANSID. The started program gets
this information by using the EXEC CICS RETRIEVE command. A program can use the EXEC CICS RETRIEVE command with the RTRANSID option to
determine how the program was started; if the value returned is CKTI, the program was started by WebSphere® MQ for z/OS. For an example of how to
use CKTI, see the source code supplied for module CSQ4CVB2 in the Credit Check sample application supplied with WebSphere MQ for z/OS. See The
Credit Check sample for a full description.

The following trigger monitor is provided for IMS/ESA®:

CSQQTRMN

You need to start one instance of CSQQTRMN for each initiation queue (see the WebSphere MQ for z/OS System Administration Guide for information on
how to do this). CSQQTRMN passes the MQTMC2 structure of the trigger message to the programs that it starts.

Parent topic: Trigger monitors

Related concepts
Syncpoints in IMS applications

This build: January 26, 2011 11:20:13

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13960_

2.11.6.2. Trigger monitors on UNIX and Windows systems

The following trigger monitors are provided for the server environment:

amqstrg0

This is a sample trigger monitor that provides a subset of the function provided by runmqtrm. See Sample programs (platforms except z/OS) for more
information on amqstrg0.

runmqtrm

The syntax of this command is runmqtrm [-m QMgrName] [-q InitQ], where QMgrName is the queue manager and InitQ is the initiation queue. The

default queue is SYSTEM.DEFAULT.INITIATION.QUEUE on the default queue manager. It calls programs for the appropriate trigger messages. This trigger
monitor supports the default application type.

The command string passed by the trigger monitor to the operating system is built as follows:

1. The ApplId from the relevant PROCESS definition (if created)

2. The MQTMC2 structure, enclosed in quotation marks

3. The EnvData from the relevant PROCESS definition (if created)

where ApplId is the name of the program to run as it would be entered on the command line.

Page 141 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

The parameter passed is the MQTMC2 character structure. A command string is invoked that has this string, exactly as provided, in quotation marks, in
order that the system command will accept it as one parameter.

The trigger monitor does not look to see if there is another message on the initiation queue until the completion of the application that it has just started.
If the application has a lot of processing to do, the trigger monitor might not be able to keep up with the number of trigger messages arriving. You have
two options:

� Have more trigger monitors running

� Run the started applications in the background

If you have more trigger monitors running, you can control the maximum number of applications that can run at any one time. If you run applications in
the background, there is no restriction imposed by WebSphere MQ on the number of applications that can run.

To run the started application in the background on Windows systems, within the ApplId field, prefix the name of your application with a START

command. For example:

 START ⁄B AMQSECHA

To run the started application in the background on UNIX systems, put an & at the end of the EnvData of the PROCESS definition.

Note: Where a Windows path has spaces as a part of the path name, these should be enclosed in double quotes (") to ensure that it is handled as a single
argument. For example, " C:\Program Files\Application Directory\Application.exe".

The following is an example of an APPLICID string where the file name includes spaces as a part of the path:

 START "" /B "C:\Program Files\Application Directory\Application.exe"

The syntax of the Windows START command in the example includes an empty double-quoted string. START specifies that the first argument in double
quotes will be treated as the title of the new command. To ensure that Windows does not mistake the application path for a 'title' argument, you should
add a title string in double quotes to the command before the application name.

The following trigger monitors are provided for the WebSphere MQ client:

runmqtmc

This is the same as runmqtrm except that it links with the WebSphere MQ client libraries.

For CICS:
The amqltmc0 trigger monitor is provided for CICS®. It works in the same way as the standard trigger monitor, runmqtrm, but you run it in a different
way and it triggers CICS transactions.

Parent topic: Trigger monitors

This build: January 26, 2011 11:20:13

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13970_

2.11.6.2.1. For CICS:

The amqltmc0 trigger monitor is provided for CICS®. It works in the same way as the standard trigger monitor, runmqtrm, but you run it in a different way
and it triggers CICS transactions.

It is supplied as a CICS program; define it with a 4-character transaction name. Enter the 4-character name to start the trigger monitor. It uses the default
queue manager (as named in the qm.ini file or, on WebSphere® MQ for Windows, the registry), and the SYSTEM.CICS.INITIATION.QUEUE.

If you want to use a different queue manager or queue, build the trigger monitor MQTMC2 structure: this requires you to write a program using the EXEC
CICS START call, because the structure is too long to add as a parameter. Then, pass the MQTMC2 structure as data to the START request for the trigger
monitor.

When you use the MQTMC2 structure, you need to supply only the StrucId, Version, QName, and QMgrName parameters to the trigger monitor as it does not

reference any other fields.

Messages are read from the initiation queue and used to start CICS transactions, using EXEC CICS START, assuming the APPL_TYPE in the trigger message
is MQAT_CICS. The reading of messages from the initiation queue is performed under CICS syncpoint control.

Messages are generated when the monitor starts and stops, and when an error occurs. These messages are sent to the CSMT transient data queue.

Here are the available versions of the trigger monitor:

If you need a trigger monitor for other environments, write a program that can process the trigger messages that the queue manager puts on the initiation
queues. Such a program should perform the following actions:

1. Use the MQGET call to wait for a message to arrive on the initiation queue.

2. Examine the fields of the MQTM structure of the trigger message to find the name of the application to start, and the environment in which it runs.

3. Issue an environment-specific start command. For example, in z/OS® batch, submit a job to the internal reader.

4. Convert the MQTM structure to the MQTMC2 structure if required.

5. Pass either the MQTMC2 or MQTM structure to the started application. This can contain user data.

6. Associate with your application queue the application that is to serve that queue. You do this by naming the process definition object (if created) in the
ProcessName attribute of the queue.

Use DEFINE QLOCAL or ALTER QLOCAL. On i5/OS® you can also use CRTMQMQ or CHGMQMQ.

For more information about the trigger monitor interface, see the WebSphere MQ Application Programming Reference.

Parent topic: Trigger monitors on UNIX and Windows systems

Version Use

amqltmc0 TXSeries for AIX®, HP-UX, and Sun Solaris Version 5.1

amqltmc4 TXSeries for Windows, Version 5.1

amqltmcc Client bound version of the CICS trigger monitor

Page 142 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

This build: January 26, 2011 11:20:13

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13980_

2.11.6.3. WebSphere MQ for i5/OS trigger monitors

In WebSphere® MQ for i5/OS®, instead of the runmqtrm control command, use the WebSphere MQ for i5/OS CL command STRMQMTRM.

Use the STRMQMTRM command as follows:

STRMQMTRM INITQNAME(InitQ) MQMNAME(QMgrName)

Details are as for runmqtrm.

The following sample programs are also provided, which you can use as models to write your own trigger monitors:

AMQSTRG4

This is a trigger monitor that submits an i5/OS job for the process that is to be started, but this means that there is additional processing associated with
each trigger message.

AMQSERV4

This is a trigger server. For each trigger message, this server runs the command for the process in its own job, and can call CICS® transactions.

Both the trigger monitor and the trigger server pass an MQTMC2 structure to the programs that they start. For a description of this structure, see the
WebSphere MQ Application Programming Reference. Both of these samples are delivered in both source and executable forms.

Because these trigger monitors can invoke only native i5/OS programs, they cannot trigger Java programs directly, because Java classes are located in the
IFS. However, Java programs can be triggered indirectly by triggering a CL program that then invokes the Java program and passes across the TMC2
structure. The minimum size of the TMC2 structure is 732 bytes.

The source of a sample CLP is shown below:

 PGM PARM(&TMC2)

 DCL &TMC2 *CHAR LEN(800)

 ADDENVVAR ENVVAR(TM) VALUE(&TMC2)

 QSH CMD('java_pgmname $TM')

 RMVENVVAR ENVVAR(TM)

 ENDPGM

Parent topic: Trigger monitors

This build: January 26, 2011 11:20:14

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg13990_

2.11.7. Properties of trigger messages

The following sections describe some other properties of trigger messages.

Persistence and priority of trigger messages
Trigger messages are not persistent because there is no requirement for them to be so.

Queue manager restart and trigger messages
Following the restart of a queue manager, when an initiation queue is next opened for input, a trigger message can be put to this initiation queue if an
application queue associated with it has messages on it, and is defined for triggering.

Trigger messages and changes to object attributes
Trigger messages are created according to the values of the trigger attributes in force at the time of the trigger event.

Format of trigger messages
The format of a trigger message is defined by the MQTM structure.

Parent topic: Starting WebSphere MQ applications using triggers

This build: January 26, 2011 11:20:14

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14000_

2.11.7.1. Persistence and priority of trigger messages

Trigger messages are not persistent because there is no requirement for them to be so.

However, the conditions for generating triggering events do persist, so trigger messages are generated whenever these conditions are met. In the event that
a trigger message is lost, the continued existence of the application message on the application queue guarantees that the queue manager generates a
trigger message as soon as all the conditions are met.

If a unit of work is rolled back, any trigger messages it generated are always delivered.

Trigger messages take the default priority of the initiation queue.

Parent topic: Properties of trigger messages

This build: January 26, 2011 11:20:14

Page 143 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14010_

2.11.7.2. Queue manager restart and trigger messages

Following the restart of a queue manager, when an initiation queue is next opened for input, a trigger message can be put to this initiation queue if an
application queue associated with it has messages on it, and is defined for triggering.

Parent topic: Properties of trigger messages

This build: January 26, 2011 11:20:14

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14020_

2.11.7.3. Trigger messages and changes to object attributes

Trigger messages are created according to the values of the trigger attributes in force at the time of the trigger event.

If the trigger message is not made available to a trigger monitor until later (because the message that caused it to be generated was put within a unit of
work), any changes to the trigger attributes in the meantime have no effect on the trigger message. In particular, disabling triggering does not prevent a
trigger message being made available once it has been created. Also, the application queue might no longer exist at the time that the trigger message is
made available.

Parent topic: Properties of trigger messages

This build: January 26, 2011 11:20:14

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14030_

2.11.7.4. Format of trigger messages

The format of a trigger message is defined by the MQTM structure.

This has the following fields, which the queue manager fills when it creates the trigger message, using information in the object definitions of the application
queue and of the process associated with that queue:

StrucId

The structure identifier.

Version

The version of the structure.

QName

The name of the application queue on which the trigger event occurred. When the queue manager creates a trigger message, it fills this field using the
QName attribute of the application queue.

ProcessName

The name of the process definition object that is associated with the application queue. When the queue manager creates a trigger message, it fills this
field using the ProcessName attribute of the application queue.

TriggerData

A free-format field for use by the trigger monitor. When the queue manager creates a trigger message, it fills this field using the TriggerData attribute of

the application queue. On any WebSphere® MQ product except WebSphere MQ for z/OS®, this field can be used to specify the name of the channel to be
triggered.

ApplType

The type of the application that the trigger monitor is to start. When the queue manager creates a trigger message, it fills this field using the ApplType

attribute of the process definition object identified in ProcessName.

ApplId

A character string that identifies the application that the trigger monitor is to start. When the queue manager creates a trigger message, it fills this field
using the ApplId attribute of the process definition object identified in ProcessName. When you use trigger monitor CKTI or CSQQTRMN supplied by

WebSphere MQ for z/OS, the ApplId attribute of the process definition object is a CICS® or IMS™ transaction identifier.

EnvData

A character field containing environment-related data for use by the trigger monitor. When the queue manager creates a trigger message, it fills this field
using the EnvData attribute of the process definition object identified in ProcessName. The WebSphere MQ for z/OS-supplied trigger monitors (CKTI or

CSQQTRMN) do not use this field, but other trigger monitors might choose to use it.

UserData

A character field containing user data for use by the trigger monitor. When the queue manager creates a trigger message, it fills this field using the
UserData attribute of the process definition object identified in ProcessName. This field can be used to specify the name of the channel to be triggered.

There is a full description of the trigger message structure in WebSphere MQ Application Programming Reference.

Parent topic: Properties of trigger messages

This build: January 26, 2011 11:20:14

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14040_

Page 144 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

2.11.8. When triggering does not work

A program is not triggered if the trigger monitor cannot start the program or the queue manager cannot deliver the trigger message.

For example, the ApplId in the process object must specify that the program is to be started in the background; if this is not done, the trigger monitor
cannot start the program.

If a trigger message is created but cannot be put on the initiation queue (for example, because the queue is full or the length of the trigger message is
greater than the maximum message length specified for the initiation queue), the trigger message is put instead on the dead-letter (undelivered message)
queue.

If the put operation to the dead-letter queue cannot complete successfully, the trigger message is discarded and a warning message is sent to the console
(z/OS®) or to the system operator (i5/OS®), or put on the error log.

Putting the trigger message on the dead-letter queue might generate a trigger message for that queue. This second trigger message is discarded if it adds a
message to the dead-letter queue.

If the program is triggered successfully but abends before it gets the message from the queue, use a trace utility (for example, CICS® AUXTRACE if the
program is running under CICS) to find the cause of the failure.

How CKTI detects errors
If the CKTI trigger monitor in WebSphere® MQ for z/OS detects an error in the structure of a trigger message, or if it cannot start a program, it puts
the trigger message on the dead-letter (undelivered message) queue.

How CSQQTRMN detects errors

How RUNMQTRM detects errors
Describes the actions taken by the RUNMQTRM trigger monitor when it detects certain errors.

Parent topic: Starting WebSphere MQ applications using triggers

This build: January 26, 2011 11:20:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14050_

2.11.8.1. How CKTI detects errors

If the CKTI trigger monitor in WebSphere® MQ for z/OS® detects an error in the structure of a trigger message, or if it cannot start a program, it puts the
trigger message on the dead-letter (undelivered message) queue.

CKTI adds a dead-letter header structure (MQDLH) to the trigger message. It uses a feedback code in the Reason field of this structure to explain why it put

the message on the dead-letter queue.

An instance of CKTI stops serving an initiation queue if it attempts to get a trigger message from the queue and finds that the attributes of the queue have
changed since it last accessed that queue. The attributes could have been changed by another program, or by an operator using the commands or
operations and control panels of WebSphere MQ. CKTI produces an error message, which includes a reason code, explaining the action it has taken.

Parent topic: When triggering does not work

This build: January 26, 2011 11:20:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14060_

2.11.8.2. How CSQQTRMN detects errors

If the CSQQTRMN trigger monitor in WebSphere® MQ for z/OS® detects an error in the structure of a trigger message, or if it cannot start a program, it
puts the trigger message on the dead-letter queue and sends a diagnostic message to a user specified LTERM (the default is MASTER). CSQQTRMN adds a
dead-letter header structure (MQDLH) to the trigger message. It uses a feedback code in the Reason field of this structure to explain why it put the message

on the dead-letter queue. If any other errors are detected, CSQQTRMN sends a diagnostic message to the specified LTERM, and then terminates.

Parent topic: When triggering does not work

This build: January 26, 2011 11:20:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14070_

2.11.8.3. How RUNMQTRM detects errors

Describes the actions taken by the RUNMQTRM trigger monitor when it detects certain errors.

In WebSphere® MQ on UNIX systems, if the RUNMQTRM trigger monitor detects any of the following errors:

� Trigger message structure not valid

� Application type unsupported

� Program cannot start

� Data-conversion error

it puts the trigger message on the dead-letter queue, having added a dead-letter header structure (MQDLH) to the message. It uses a feedback code in the
Reason field of this structure to explain why it put the message on the dead-letter queue.

In WebSphere MQ on Windows systems, the RUNMQTRM trigger monitor fails if the APPLTYPE in the process definition is a non-default application for
Windows systems. For example, if an APPLTYPE of NOTESAGENT, which represents a Lotus Notes® agent, is specified in the process definition, the
RUNMQTRM fails. To successfully trigger a non-default application type, you must write your own trigger monitor application.

Page 145 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Parent topic: When triggering does not work

This build: January 26, 2011 11:20:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14080_

2.12. Using and writing API exits

Introducing API exits

Compiling API exits
Once you have written an exit, you compile and link it as follows.

Reference information
This section contains reference information, mainly of interest to the programmer writing API exits.

Parent topic: Writing a WebSphere MQ application

This build: January 26, 2011 11:20:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14090_

2.12.1. Introducing API exits

Not supported on WebSphere® MQ for z/OS®.

API exits let you write code that changes the behavior of WebSphere MQ API calls, such as MQPUT and MQGET, and then insert that code immediately before
or immediately after those calls. Once you have written an exit program and identified it to WebSphere MQ, the queue manager automatically invokes your
exit code at the registered points.

This chapter tells you how to write API exits, and how to set up WebSphere MQ to enable them. This section explains how you might use them and
introduces the tasks involved. This chapter also contains the following major sections:

� Compiling API exits

� Reference information

Why use API exits
There are many reasons why you might want to insert code that modifies the behavior of applications at the level of the queue manager.

How you use API exits
This section gives a brief overview of the tasks involved in setting up API exits. Each subsection here is supported by detailed information in the
chapters in the rest of this information.

What happens when an API exit runs?

Parent topic: Using and writing API exits

This build: January 26, 2011 11:20:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14100_

2.12.1.1. Why use API exits

There are many reasons why you might want to insert code that modifies the behavior of applications at the level of the queue manager.

Each of your applications has a specific job to do, and its code should do that task as efficiently as possible. At a higher level, you might want to apply
standards or business processes to a particular queue manager for all the applications that use that queue manager. It is more efficient to do this above the
level of individual applications, and thus without having to change the code of each application affected.

Here are a few suggestions of areas in which API exits might be useful:

� For security, you can provide authentication, checking that applications are authorized to access a queue or queue manager. You can also police use of
the API by applications by authenticating the individual API calls, or even the parameters that they use.

� For flexibility, you can respond to rapid changes in your business environment without changing the applications that rely on the data in that
environment. You could, for example, have API exits that respond to changes in interest rates, currency exchange rates, or the price of components in
a manufacturing environment.

� For monitoring use of a queue or queue manager, you can trace the flow of applications and messages, log errors in the API calls, set up audit trails for
accounting purposes, or collect usage statistics for planning purposes.

Parent topic: Introducing API exits

This build: January 26, 2011 11:20:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14110_

2.12.1.2. How you use API exits

This section gives a brief overview of the tasks involved in setting up API exits. Each subsection here is supported by detailed information in the chapters in
the rest of this information.

Page 146 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

How to configure WebSphere MQ for API exits

How to write an API exit
You write exits using the C programming language. To help you to do so, we provide the source of a sample exit, amqsaxe0.c, that generates trace
entries to a file that you specify. Use this as your starting point when writing exits.

Using message handles in API exits
You can control which message properties an API exit has access to. Properties are associated with an ExitMsgHandle. Properties set in a put exit are
set on the message being put, but properties retrieved in a get exit are not returned to the application.

Parent topic: Introducing API exits

This build: January 26, 2011 11:20:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14120_

2.12.1.2.1. How to configure WebSphere MQ for API exits

You configure WebSphere® MQ to enable API exits either by:

� Using WebSphere MQ Explorer to add the IBM® WebSphere MQ properties or the queue manager property, or

� Changing the Windows registry, or

� By editing the WebSphere MQ configuration files, mqs.ini and qm.ini, and adding new stanzas that:

� Name the API exit

� Identify the module and entry point of the API exit code to run

� Optionally pass data with the exit

� Identify the sequence of each exit in relation to other exits

For detailed information on this configuration, see the WebSphere MQ System Administration Guide. For a description of how API exits run, see What
happens when an API exit runs?.
Parent topic: How you use API exits

This build: January 26, 2011 11:20:16

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14130_

2.12.1.2.2. How to write an API exit

You write exits using the C programming language. To help you to do so, we provide the source of a sample exit, amqsaxe0.c, that generates trace entries
to a file that you specify. Use this as your starting point when writing exits.

Exits are available for every API call. Within API exits, the calls take the general form:

MQ_call_EXIT (parameters, context, ApiCallParameters)

where call is the MQI call name without the MQ prefix; for example, PUT, GET, and so on. The parameters control the function of the exit, context

describes the context in which the API exit was called, and ApiCallParameters represent the parameters to the MQI call.

For more information about using the sample exit that we supply, see The API exit sample program. For reference information on the API exit calls, external
control blocks, and associated topics, see Reference information.

Parent topic: How you use API exits

This build: January 26, 2011 11:20:16

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14140_

2.12.1.2.3. Using message handles in API exits

You can control which message properties an API exit has access to. Properties are associated with an ExitMsgHandle. Properties set in a put exit are set on
the message being put, but properties retrieved in a get exit are not returned to the application.

When you register an MQ_INIT_EXIT exit function using the MQXEP MQI call with Function set to MQXF_INIT and ExitReason set to MQXR_CONNECTION,
you pass in an MQXEPO structure as the ExitOpts parameter. The MQXEPO structure contains the ExitProperties field, which specifies the set of properties
to be made available to the exit. It is specified as a character string representing the prefix of the properties, which corresponds to an MQRFH2 folder name.

Each API exit receives an MQAXP structure, containing an ExitMsgHandle field. This field is set to a value generated by Websphere MQ and is specific to a
connection. The handle is therefore unchanged between API exits of the same or different types on the same connection.

In an MQ_PUT_EXIT or MQ_PUT1_EXIT with an ExitReason of MQXR_BEFORE, that is, an API exit performed before putting a message, any properties
(other than message descriptor properties) associated with the ExitMsgHandle when the exit completes are set on the message being put. To prevent this
happening, set ExitMsgHandle to MQHM_NONE. You can also supply a different message handle.

In an MQ_GET_EXIT, the ExitMsgHandle is cleared of properties and populated with the properties specified in the ExitProperties field when the
MQ_INIT_EXIT was registered, other than message descriptor properties. These properties are not made available to the getting application. If the getting
application specified a message handle in the MQGMO (Get message options) field, then any properties associated with that handle, including message
descriptor properties, are available to the API exit. To prevent the ExitMsgHandle being populated with properties, set it to MQHM_NONE.

A sample program, amqsaem0.c, is provided to illustrate the use of message handles in API exits.

Parent topic: How you use API exits

Related information

Page 147 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

API exit reference information
ExitProperties (MQCHARV)

This build: January 26, 2011 11:22:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg20730_

2.12.1.3. What happens when an API exit runs?

The API exit routines to run are specified in stanzas in .ini files or in the Windows registry. You can specify an exit routine in three ways:

1. ApiExitCommon, in the mqs.ini file, identifies routines, for the whole of WebSphere® MQ, applied when queue managers start up. These can be
overridden by routines defined for individual queue managers (see item 3 in this list).

2. ApiExitTemplate, in the mqs.ini file, identifies routines, for the whole of WebSphere MQ, copied to the ApiExitLocal set (see item 3 in this list) when a
new queue manager is created.

3. ApiExitLocal, in the qm.ini file, identifies routines that apply to a particular queue manager.

When a new queue manager is created, the ApiExitTemplate definitions in mqs.ini are copied to the ApiExitLocal definitions in qm.ini for the new queue
manager. When a queue manager is started, both the ApiExitCommon and ApiExitLocal definitions are used. The ApiExitLocal definitions replace the
ApiExitCommon definitions if both identify a routine of the same name. The Sequence attribute, described in the WebSphere MQ System Administration

Guide determines the order in which the routines defined in the stanzas run.

Parent topic: Introducing API exits

This build: January 26, 2011 11:20:16

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14150_

2.12.2. Compiling API exits

Once you have written an exit, you compile and link it as follows.

The following examples show the commands used for the sample program described in The API exit sample program. For platforms other than Windows
systems, you can find the sample API exit code in install-dir/samp and the compiled and linked shared library in install-dir/samp/bin. For Windows

systems, you can find the sample API exit code in install-dir\Tools\c\Samples. install-dir is the directory in which WebSphere® MQ was installed.

Note to users:

1. Guidance on programming 64 bit applications is listed in Coding standards on 64 bit platforms

For information on configuring API exits, see the WebSphere MQ System Administration Guide.

On Solaris

On AIX

On HP-UX

On Linux

On Windows systems

On i5/OS

Parent topic: Using and writing API exits

This build: January 26, 2011 11:20:16

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14160_

2.12.2.1. On Solaris

SPARC platform

x86-64 platform

Parent topic: Compiling API exits

This build: January 26, 2011 11:20:16

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14170_

2.12.2.1.1. SPARC platform

32 bit applications

Page 148 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

64 bit applications

Parent topic: On Solaris

This build: January 26, 2011 11:20:16

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14180_

2.12.2.1.1.1. 32 bit applications

Compile the API exit source code by issuing the following:

cc -xarch=v8plus -KPIC -mt -G -o /var/mqm/exits/amqsaxe \

 amqsaxe0.c -I/opt/mqm/inc -L/opt/mqm/lib -R/opt/mqm/lib \

 -R/usr/lib/32 -lmqm -lmqmcs -lmqmzse -lmqmzf -lsocket -lnsl -ldl

Parent topic: SPARC platform

This build: January 26, 2011 11:20:16

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14190_

2.12.2.1.1.2. 64 bit applications

Compile the API exit source code by issuing the following:

cc -xarch=v9 -KPIC -mt -G -o /var/mqm/exits64/amqsaxe \

 amqsaxe0.c -I/opt/mqm/inc -L/opt/mqm/lib64 -R/opt/mqm/lib64 \

 -R/usr/lib/64 -lmqm -lmqmcs -lmqmzse -lmqmzf -lsocket -lnsl -ldl

Parent topic: SPARC platform

This build: January 26, 2011 11:20:17

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14200_

2.12.2.1.2. x86-64 platform

32 bit applications

64 bit applications

Parent topic: On Solaris

This build: January 26, 2011 11:20:17

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14210_

2.12.2.1.2.1. 32 bit applications

Compile the API exit source code by issuing the following:

cc -xarch=386 -KPIC -mt -G -o /var/mqm/exits/amqsaxe \

 amqsaxe0.c -I/opt/mqm/inc -L/opt/mqm/lib -R/opt/mqm/lib \

 -R/usr/lib/32 -lmqm -lmqmcs -lmqmzse -lmqmzf -lsocket \

 -lnsl -ldl

Parent topic: x86-64 platform

This build: January 26, 2011 11:20:17

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14220_

2.12.2.1.2.2. 64 bit applications

Compile the API exit source code by issuing the following:

cc -xarch=amd64 -KPIC -mt -G -o /var/mqm/exits64/amqsaxe \

 amqsaxe0.c -I/opt/mqm/inc -L/opt/mqm/lib64 -R/opt/mqm/lib64 \

 -R/usr/lib/64 -lmqm -lmqmcs -lmqmzse -lmqmzf -lsocket \

 -lnsl -ldl

Parent topic: x86-64 platform

This build: January 26, 2011 11:20:17

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

Page 149 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

fg14230_

2.12.2.2. On AIX®

32 bit applications

64 bit applications

Parent topic: Compiling API exits

This build: January 26, 2011 11:20:17

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14240_

2.12.2.2.1. 32 bit applications

Non-threaded

Threaded

Parent topic: On AIX

This build: January 26, 2011 11:20:17

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14250_

2.12.2.2.1.1. Non-threaded

A file called amqsaxe.exp is supplied and contains the following:

 #!

 EntryPoint

 MQStart

Compile the API exit source code by issuing the following command:

 cc -e MQStart -bE:amqsaxe.exp -bM:SRE -o /var/mqm/exits/amqsaxe \

 amqsaxe0.c -I/usr/mqm/inc -L/usr/mqm/lib -lmqmzf

Parent topic: 32 bit applications

This build: January 26, 2011 11:20:17

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14260_

2.12.2.2.1.2. Threaded

A file called amqsaxe.exp is supplied and contains the following:

 #!

 EntryPoint

 MQStart

Compile the API exit source code by issuing the following command:

xlc_r -e MQStart -bE:amqsaxe.exp -bM:SRE -o /var/mqm/exits/amqsaxe_r \

 amqsaxe0.c -I/usr/mqm/inc -L/usr/mqm/lib -lmqmzf_r

Parent topic: 32 bit applications

This build: January 26, 2011 11:20:17

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14270_

2.12.2.2.2. 64 bit applications

Non-threaded

Threaded

Parent topic: On AIX

This build: January 26, 2011 11:20:17

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14280_

2.12.2.2.2.1. Non-threaded

Page 150 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

A file called amqsaxe.exp is supplied and contains the following:

 #!

 EntryPoint

 MQStart

Compile the API exit source code by issuing the following command:

 cc -q64 -e MQStart -bE:amqsaxe.exp -bM:SRE -o /var/mqm/exits64/amqsaxe \

 amqsaxe0.c -I/usr/mqm/inc -L/usr/mqm/lib64 -lmqmzf

Parent topic: 64 bit applications

This build: January 26, 2011 11:20:17

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14290_

2.12.2.2.2.2. Threaded

A file called amqsaxe.exp is supplied and contains the following:

 #!

 EntryPoint

 MQStart

Compile the API exit source code by issuing the following command:

 xlc_r -q64 -e MQStart -bE:amqsaxe.exp -bM:SRE -o /var/mqm/exits64/amqsaxe_r \

 amqsaxe0.c -I/usr/mqm/inc -L/usr/mqm/lib64 -lmqmzf_r

Parent topic: 64 bit applications

This build: January 26, 2011 11:20:17

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14300_

2.12.2.3. On HP-UX

PA-RISC platform

Itanium platform

Parent topic: Compiling API exits

This build: January 26, 2011 11:20:17

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14310_

2.12.2.3.1. PA-RISC platform

32 bit applications

64 bit applications

Parent topic: On HP-UX

This build: January 26, 2011 11:20:17

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14320_

2.12.2.3.1.1. 32 bit applications

Non-threaded

Threaded

Parent topic: PA-RISC platform

This build: January 26, 2011 11:20:17

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14330_

2.12.2.3.1.1.1. Non-threaded

1. Compile the ApiExit source code

c89 +e +z -c -D_HPUX_SOURCE -o amqsaxe.o amqsaxe0.c -I/opt/mqm/inc

Page 151 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

2. Link the ApiExit source code

ld +b: -b amqsaxe.o +ee MQStart -o \

 /var/mqm/exits/amqsaxe -L/opt/mqm/lib -L/usr/lib -lmqmzf

rm amqsaxe.o

Parent topic: 32 bit applications

This build: January 26, 2011 11:20:17

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14340_

2.12.2.3.1.1.2. Threaded

1. Compile the ApiExit source code

c89 +e +z -c -D_HPUX_SOURCE -o amqsaxe.o amqsaxe0.c -I/opt/mqm/inc

2. Link the ApiExit object

ld +b: -b amqsaxe.o +ee MQStart -o \

 /var/mqm/exits/amqsaxe_r -L/opt/mqm/lib -L/usr/lib -lmqmzf_r -lpthread

rm amqsaxe.o

Parent topic: 32 bit applications

This build: January 26, 2011 11:20:18

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14350_

2.12.2.3.1.2. 64 bit applications

Non-threaded

Threaded

Parent topic: PA-RISC platform

This build: January 26, 2011 11:20:18

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14360_

2.12.2.3.1.2.1. Non-threaded

1. Compile the ApiExit source code

 c89 +DD64 +e +z -c -D_HPUX_SOURCE -o amqsaxe.o amqsaxe0.c -I/opt/mqm/inc

2. Link the ApiExit source code

ld -b +noenvvar amqsaxe.o +ee MQStart \

 -o /var/mqm/exits64/amqsaxe -L/opt/mqm/lib64 \

 -L/usr/lib/pa20_64 -lmqmzf

rm amqsaxe.o

Parent topic: 64 bit applications

This build: January 26, 2011 11:20:18

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14370_

2.12.2.3.1.2.2. Threaded

1. Compile the ApiExit source code

c89 +DD64 +e +z -c -D_HPUX_SOURCE -o amqsaxe.o amqsaxe0.c -I/opt/mqm/inc

2. Link the ApiExit object

ld -b +noenvvar amqsaxe.o +ee MQStart \

 -o /var/mqm/exits64/amqsaxe_r -L/opt/mqm/lib64 \

 -L/usr/lib/pa20_64 -lmqmzf_r -lpthread

rm amqsaxe.o

Parent topic: 64 bit applications

This build: January 26, 2011 11:20:18

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14380_

2.12.2.3.2. Itanium platform

Page 152 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

32 bit applications

64 bit applications

Parent topic: On HP-UX

This build: January 26, 2011 11:20:18

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14390_

2.12.2.3.2.1. 32 bit applications

Non-threaded

Threaded

Parent topic: Itanium platform

This build: January 26, 2011 11:20:18

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14400_

2.12.2.3.2.1.1. Non-threaded

1. Compile the ApiExit source code

c89 +e +z -c -D_HPUX_SOURCE -o amqsaxe.o amqsaxe0.c -I/opt/mqm/inc

2. Link the ApiExit source code

ld +b: -b amqsaxe.o +ee MQStart -o \

 /var/mqm/exits/amqsaxe -L/opt/mqm/lib -L/usr/lib -lmqmzf

rm amqsaxe.o

Parent topic: 32 bit applications

This build: January 26, 2011 11:20:18

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14410_

2.12.2.3.2.1.2. Threaded

1. Compile the ApiExit source code

c89 +e +z -c -D_HPUX_SOURCE -o amqsaxe.o amqsaxe0.c -I/opt/mqm/inc

2. Link the ApiExit object

ld +b: -b amqsaxe.o +ee MQStart -o \

 /var/mqm/exits/amqsaxe_r -L/opt/mqm/lib -L/usr/lib -lmqmzf_r -lpthread

rm amqsaxe.o

Parent topic: 32 bit applications

This build: January 26, 2011 11:20:18

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14420_

2.12.2.3.2.2. 64 bit applications

Non-threaded

Threaded

Parent topic: Itanium platform

This build: January 26, 2011 11:20:18

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14430_

2.12.2.3.2.2.1. Non-threaded

1. Compile the ApiExit source code

 c89 +DD64 +e +z -c -D_HPUX_SOURCE -o amqsaxe.o amqsaxe0.c -I/opt/mqm/inc

Page 153 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

2. Link the ApiExit source code

ld -b +noenvvar amqsaxe.o +ee MQStart \

 -o /var/mqm/exits64/amqsaxe -L/opt/mqm/lib64 \

 -L/usr/lib/hpux64 -lmqmzf

rm amqsaxe.o

Parent topic: 64 bit applications

This build: January 26, 2011 11:20:18

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14440_

2.12.2.3.2.2.2. Threaded

1. Compile the ApiExit source code

c89 +DD64 +e +z -c -D_HPUX_SOURCE -o amqsaxe.o amqsaxe0.c -I/opt/mqm/inc

2. Link the ApiExit object

ld -b +noenvvar amqsaxe.o +ee MQStart \

 -o /var/mqm/exits64/amqsaxe_r -L/opt/mqm/lib64 \

 -L/usr/lib/hpux64 -lmqmzf_r -lpthread

rm amqsaxe.o

Parent topic: 64 bit applications

This build: January 26, 2011 11:20:18

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14450_

2.12.2.4. On Linux

31 bit applications (zSeries platform)

32 bit applications

64 bit applications

Parent topic: Compiling API exits

This build: January 26, 2011 11:20:18

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14460_

2.12.2.4.1. 31 bit applications (zSeries® platform)

Non-threaded

Threaded

Parent topic: On Linux

This build: January 26, 2011 11:20:20

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14470_

2.12.2.4.1.1. Non-threaded

Compile the API exit source code by issuing the following command:

 gcc -m31 -shared -fPIC -o /var/mqm/exits/amqsaxe amqsaxe0.c \

 -I/opt/mqm/inc -L/opt/mqm/lib -Wl,-rpath=/opt/mqm/lib \

 -Wl,-rpath=/usr/lib -lmqmzf

Parent topic: 31 bit applications (zSeries platform)

This build: January 26, 2011 11:20:20

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14480_

2.12.2.4.1.2. Threaded

Compile the API exit source code by issuing the following command:

gcc -m31 -shared -fPIC -o /var/mqm/exits/amqsaxe_r amqsaxe0.c \

 -I/opt/mqm/inc -L/opt/mqm/lib -Wl,-rpath=/opt/mqm/lib \

Page 154 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

 -Wl,-rpath=/usr/lib -lmqmzf_r

Parent topic: 31 bit applications (zSeries platform)

This build: January 26, 2011 11:20:20

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14490_

2.12.2.4.2. 32 bit applications

Non-threaded

Threaded

Parent topic: On Linux

This build: January 26, 2011 11:20:20

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14500_

2.12.2.4.2.1. Non-threaded

Compile the API exit source code by issuing the following command:

 gcc -m32 -shared -fPIC -o /var/mqm/exits/amqsaxe amqsaxe0.c \

 -I/opt/mqm/inc -L/opt/mqm/lib -Wl,-rpath=/opt/mqm/lib \

 -Wl,-rpath=/usr/lib -lmqmzf

Parent topic: 32 bit applications

This build: January 26, 2011 11:20:20

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14510_

2.12.2.4.2.2. Threaded

Compile the API exit source code by issuing the following command:

gcc -m32 -shared -fPIC -o /var/mqm/exits/amqsaxe_r amqsaxe0.c \

 -I/opt/mqm/inc -L/opt/mqm/lib -Wl,-rpath=/opt/mqm/lib \

 -Wl,-rpath=/usr/lib -lmqmzf_r

Parent topic: 32 bit applications

This build: January 26, 2011 11:20:20

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14520_

2.12.2.4.3. 64 bit applications

Non-threaded

Threaded

Parent topic: On Linux

This build: January 26, 2011 11:20:21

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14530_

2.12.2.4.3.1. Non-threaded

Compile the API exit source code by issuing the following command:

 gcc -m64 -shared -fPIC -o /var/mqm/exits64/amqsaxe amqsaxe0.c \

 -I/opt/mqm/inc -L/opt/mqm/lib64 -Wl,-rpath=/opt/mqm/lib64 \

 -Wl,-rpath=/usr/lib64 -lmqmzf

Parent topic: 64 bit applications

This build: January 26, 2011 11:20:21

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14540_

Page 155 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

2.12.2.4.3.2. Threaded

Compile the API exit source code by issuing the following command:

 gcc -m64 -shared -fPIC -o /var/mqm/exits64/amqsaxe_r amqsaxe0.c \

 -I/opt/mqm/inc -L/opt/mqm/lib64 -Wl,-rpath=/opt/mqm/lib64 \

 -Wl,-rpath=/usr/lib64 -lmqmzf_r

Parent topic: 64 bit applications

This build: January 26, 2011 11:20:21

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14550_

2.12.2.5. On Windows systems

1. Create a file named amqsaxe.link containing the following:

 amqsaxe0.obj

 amqsaxe.exp

 mqm.lib mqmzf.lib

 msvcrt.lib oldnames.lib kernel32.lib user32.lib

amqsaxe.def is provided.

2. Compile the API exit source code:

 set myccflags=-c -W3 -Gs- -Z7 -Od -nologo -LD -D_X86_=1

 set mydefines=-DWIN32 -D_WIN32 -D_MT -D_DLL

 cl %myccflags% %mydefines% amqsaxe0.c

3. Build the export file:

 lib -out:amqsaxe.lib -def:amqsaxe.def -machine:i386

4. Link the output from the compilation:

 link -nod -nologo -debug:full -dll @amqsaxe.link -out:amqsaxe.dll

Parent topic: Compiling API exits

This build: January 26, 2011 11:20:21

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14560_

2.12.2.6. On i5/OS®

An exit is created as follows (for a C language example):

1. Create a module using CRTCMOD. Compile it to use teraspace by including the parameter TERASPACE(*YES *TSIFC).

2. Create a service program from the module using CRTSRVPGM. You must bind it to the service program QMQM/LIBMQMZF_R for multithreaded API
exits.

Parent topic: Compiling API exits

This build: January 26, 2011 11:20:21

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14570_

2.12.3. Reference information

This section contains reference information, mainly of interest to the programmer writing API exits.

It covers:

1. External control blocks

2. The exit chain area and exit chain area header (MQACH)

3. External constants

4. C language typedefs

5. The exit entry point registration call (MQXEP)

6. Invoking exit functions

External control blocks
The external control blocks, MQAXP and MQAXC, are structures that are API exit parameters.

The exit chain area and exit chain area header (MQACH)
If required, an exit function can acquire storage for an exit chain area and set the ExitChainAreaPtr in MQAXP to point to this storage.

External constants

C language typedefs

The exit entry point registration call (MQXEP)

Invoking exit functions
This section tells you how to invoke the exit functions available.

General information on invoking exit functions

Page 156 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

This section provides some general guidance to help you to plan your exits, particularly related to handling errors and unexpected events.

Parent topic: Using and writing API exits

This build: January 26, 2011 11:20:21

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14580_

2.12.3.1. External control blocks

The external control blocks, MQAXP and MQAXC, are structures that are API exit parameters.

WebSphere MQ API exit parameter structure (MQAXP)
The MQAXP structure is used as an input/output parameter to the API exit.

WebSphere MQ API exit context structure (MQAXC)
The MQAXC structure is used as an input parameter to an API exit.

Parent topic: Reference information

This build: January 26, 2011 11:20:21

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14590_

2.12.3.1.1. WebSphere MQ API exit parameter structure (MQAXP)

The MQAXP structure is used as an input/output parameter to the API exit.

MQAXP has the following C declaration:

typedef struct tagMQAXP {

 MQCHAR4 StrucId; /* Structure identifier */

 MQLONG Version; /* Structure version number */

 MQLONG ExitId; /* Exit Identifier */

 MQLONG ExitReason; /* Exit invocation reason */

 MQLONG ExitResponse; /* Response code from exit */

 MQLONG ExitResponse2; /* Secondary response code from exit */

 MQLONG Feedback; /* Feedback code from exit */

 MQLONG APICallerType; /* MQSeries API caller type */

 MQBYTE16 ExitUserArea; /* User area for use by exit */

 MQCHAR32 ExitData; /* Exit data area */

 MQCHAR48 ExitInfoName; /* Exit information name */

 MQBYTE48 ExitPDArea; /* Problem determination area */

 MQCHAR48 QMgrName; /* Name of local queue manager */

 PMQACH ExitChainAreaPtr; /* Inter exit communication area */

 MQHCONFIG Hconfig; /* Configuration handle */

 MQLONG Function; /* Function Identifier */

};

The parameter list described below is passed when functions in an API exit are invoked:

StrucId (MQCHAR4) - input

The exit parameter structure identifier, with a value of:

MQAXP_STRUC_ID.

The exit handler sets this field on entry to each exit function.

Version (MQLONG) - input

The structure version number, with a value of:

MQAXP_VERSION_1

Version number for the exit parameter structure.

MQAXP_CURRENT_VERSION

Current version number for the exit parameter structure.
The exit handler sets this field on entry to each exit function.

ExitId (MQLONG) - input

The exit identifier, set on entry to the exit routine, indicating the type of exit:

MQXT_API_EXIT

API exit.

ExitReason (MQLONG) - input

The reason for invoking the exit, set on entry to each exit function:

MQXR_CONNECTION

The exit is being invoked to initialize itself before an MQCONN or MQCONNX call, or to end itself after an MQDISC call.

MQXR_BEFORE

The exit is being invoked before executing an API call, or before converting data on an MQGET.

MQXR_AFTER

The exit is being invoked after executing an API call.

ExitResponse (MQLONG) - output

The response from the exit, initialized on entry to each exit function to:

MQXCC_OK

Continue normally.

This field must be set by the exit function, to communicate to the queue manager the result of executing the exit function. The value must be one of the

Page 157 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

following:

MQXCC_OK

The exit function completed successfully. Continue normally.

This value can be set by all MQXR_* exit functions. ExitResponse2 is used to decide whether to invoke exit functions later in the chain.

MQXCC_FAILED

The exit function failed because of an error.

This value can be set by all MQXR_* exit functions. The queue manager sets CompCode to MQCC_FAILED, and Reason to:

� MQRC_API_EXIT_INIT_ERROR if the function is MQ_INIT_EXIT

� MQRC_API_EXIT_TERM_ERROR if the function is MQ_TERM_EXIT

� MQRC_API_EXIT_ERROR for all other exit functions

The values set can be altered by an exit function later in the chain.

ExitResponse2 is ignored; the queue manager continues processing as though MQXR2_SUPPRESS_CHAIN had been returned.

MQXCC_SUPPRESS_FUNCTION

Suppress WebSphere® MQ API function.

This value can be set only by an MQXR_BEFORE exit function. It bypasses the API call. If it is returned by the MQ_DATA_CONV_ON_GET_EXIT, data
conversion is bypassed. The queue manager sets CompCode to MQCC_FAILED, and Reason to MQRC_SUPPRESSED_BY_EXIT, but the values set can be
altered by an exit function later in the chain. Other parameters for the call remain as the exit left them. ExitResponse2 is used to decide whether to
invoke exit functions later in the chain.

If this value is set by an MQXR_AFTER or MQXR_CONNECTION exit function, the queue manager continues processing as though MQXCC_FAILED had
been returned.

MQXCC_SKIP_FUNCTION

Skip WebSphere MQ API function.

This value can be set only by an MQXR_BEFORE exit function. It bypasses the API call. If it is returned by the MQ_DATA_CONV_ON_GET_EXIT, data
conversion is bypassed. The exit function must set CompCode and Reason to the values to be returned to the application, but the values set can be
altered by an exit function later in the chain. Other parameters for the call remain as the exit left them. ExitResponse2 is used to decide whether to
invoke exit functions later in the chain.

If this value is set by an MQXR_AFTER or MQXR_CONNECTION exit function, the queue manager continues processing as though MQXCC_FAILED had
been returned.

MQXCC_SUPPRESS_EXIT

Suppress all exit functions belonging to the set of exits.

This value can be set only by the MQXR_BEFORE and MQXR_AFTER exit functions. It bypasses all subsequent invocations of exit functions belonging to
this set of exits for this logical connection. This bypassing continues until the logical disconnect request occurs, when MQ_TERM_EXIT function is invoked
with an ExitReason of MQXR_CONNECTION.

The exit function must set CompCode and Reason to the values to be returned to the application, but the values set can be altered by an exit function
later in the chain. Other parameters for the call remain as the exit left them. ExitResponse2 is ignored.

If this value is set by an MQXR_CONNECTION exit function, the queue manager continues processing as though MQXCC_FAILED had been returned.

For information on the interaction between ExitResponse and ExitResponse2, and its affect on exit processing, see How queue managers process exit
functions.

ExitResponse2 (MQLONG) - output

This is a secondary exit response code that qualifies the primary exit response code for MQXR_BEFORE exit functions. It is initialized to:

MQXR2_DEFAULT_CONTINUATION

on entry to a WebSphere MQ API call exit function. It can then be set to one of the values:

MQXR2_DEFAULT_CONTINUATION

Whether to continue with the next exit in the chain, depending on the value of ExitResponse.

If ExitResponse is MQXCC_SUPPRESS_FUNCTION or MQXCC_SKIP_FUNCTION, bypass exit functions later in the MQXR_BEFORE chain and the matching
exit functions in the MQXR_AFTER chain. Invoke exit functions in the MQXR_AFTER chain that match exit functions earlier in the MQXR_BEFORE chain.

Otherwise, invoke the next exit in the chain.

MQXR2_SUPPRESS_CHAIN

Suppress the chain.

Bypass exit functions later in the MQXR_BEFORE chain and the matching exit functions in the MQXR_AFTER chain for this API call invocation. Invoke exit
functions in the MQXR_AFTER chain that match exit functions earlier in the MQXR_BEFORE chain.

MQXR2_CONTINUE_CHAIN

Continue with the next exit in the chain.
For information on the interaction between ExitResponse and ExitResponse2, and its affect on exit processing, see How queue managers process exit
functions.

Feedback (MQLONG) - input/output

Communicate feedback codes between exit function invocations. This is initialized to:

MQFB_NONE (0)

before invoking the first function of the first exit in a chain.

Exits can set this field to any value, including any valid MQFB_* or MQRC_* value. Exits can also set this field to a user-defined feedback value in the
range MQFB_APPL_FIRST to MQFB_APPL_LAST.

APICallerType (MQLONG) - input

The API caller type, indicating whether the WebSphere MQ API caller is external or internal to the queue manager: MQXACT_EXTERNAL or
MQXACT_INTERNAL.

ExitUserArea (MQBYTE16) - input/output

A user area, available to all the exits associated with a particular ExitInfoObject. It is initialized to MQXUA_NONE (binary zeros for the length of the
ExitUserArea) before invoking the first exit function (MQ_INIT_EXIT) for the hconn. From then on, any changes made to this field by an exit function are
preserved across invocations of functions of the same exit.

Page 158 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

This field is aligned to a multiple of 4 MQLONGs.

Exits can also anchor any storage that they allocate from this area.

For each hconn, each exit in a chain of exits has a different ExitUserArea. The ExitUserArea cannot be shared by exits in a chain, and the contents of the
ExitUserArea for one exit are not available to another exit in a chain.

For C programs, the constant MQXUA_NONE_ARRAY is also defined with the same value as MQXUA_NONE, but as an array of characters instead of a
string.

The length of this field is given by MQ_EXIT_USER_AREA_LENGTH.

ExitData (MQCHAR32) - input

Exit data, set on input to each exit function to the 32 characters of exit-specific data that is provided in the exit. If you define no value in the exit this field
is all blanks.

The length of this field is given by MQ_EXIT_DATA_LENGTH.

ExitInfoName (MQCHAR48) - input

The exit information name, set on input to each exit function to the ApiExit_name specified in the exit definitions in the stanzas.

ExitPDArea (MQBYTE48) - input/output

A problem determination area, initialized to MQXPDA_NONE (binary zeros for the length of the field) for each invocation of an exit function.

For C programs, the constant MQXPDA_NONE_ARRAY is also defined with the same value as MQXPDA_NONE, but as an array of characters instead of a
string.

The exit handler always writes this area to the WebSphere MQ trace at the end of an exit, even when the function is successful.

The length of this field is given by MQ_EXIT_PD_AREA_LENGTH.

QMgrName (MQCHAR48) - input

The name of the local queue manager that has invoked an exit as a result of processing a WebSphere MQ API call.

If the name of a queue manager supplied on an MQCONN or MQCONNX calls is blank, this field is still set to the name of the local or default queue
manager.

The exit handler sets this field on entry to each exit function.

The length of this field is given by MQ_Q_MGR_NAME_LENGTH.

ExitChainAreaPtr (PMQACH) - input/output

This is used to communicate data across invocations of different exits in a chain. It is set to a NULL pointer before invoking the first function
(MQ_INIT_EXIT with ExitReason MQXR_CONNECTION) of the first exit in a chain of exits. The value returned by the exit on one invocation is passed on to
the next invocation.

Refer to The exit chain area and exit chain area header (MQACH) for more details about how to use the exit chain area.

Hconfig (MQHCONFIG) - input

The configuration handle, representing the set of functions being initialized. This value is generated by the queue manager on the MQ_INIT_EXIT function,
and is subsequently passed to the API exit function. It is set on entry to each exit function.

Function (MQLONG) - input

The function identifier, valid values for which are the MQXF_* constants described in External constants.

The exit handler sets this field to the correct value, on entry to each exit function, depending on the WebSphere MQ API call that resulted in the exit being
invoked.

How queue managers process exit functions
The processing performed by the queue manager on return from an exit function depends on both ExitResponse and ExitResponse2.

Parent topic: External control blocks

This build: January 26, 2011 11:20:21

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14600_

2.12.3.1.1.1. How queue managers process exit functions

The processing performed by the queue manager on return from an exit function depends on both ExitResponse and ExitResponse2.

Table 1 below summarizes the possible combinations and their effects for an MQXR_BEFORE exit function, showing:

� Who sets the CompCode and Reason parameters of the API call

� Whether the remaining exit functions in the MQXR_BEFORE chain and the matching exit functions in the MQXR_AFTER chain are invoked

� Whether the API call is invoked

For an MQXR_AFTER exit function:

� CompCode and Reason are set in the same way as MQXR_BEFORE

� ExitResponse2 is ignored (the remaining exit functions in the MQXR_AFTER chain are always invoked)

� MQXCC_SUPPRESS_FUNCTION and MQXCC_SKIP_FUNCTION are not valid

For an MQXR_CONNECTION exit function:

� CompCode and Reason are set in the same way as MQXR_BEFORE

� ExitResponse2 is ignored

� MQXCC_SUPPRESS_FUNCTION, MQXCC_SKIP_FUNCTION, MQXCC_SUPPRESS_EXIT are not valid

In all cases, where an exit or the queue manager sets CompCode and Reason, the values set can be changed by an exit invoked later, or by the API call (if
the API call is invoked later).

Page 159 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Parent topic: WebSphere MQ API exit parameter structure (MQAXP)

This build: January 26, 2011 11:20:22

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14610_

2.12.3.1.2. WebSphere MQ API exit context structure (MQAXC)

The MQAXC structure is used as an input parameter to an API exit.

MQAXC has the following C declaration:

typedef struct tagMQAXC {

 MQCHAR4 StrucId; /* Structure identifier */

 MQLONG Version; /* Structure version number */

 MQLONG Environment; /* Environment */

 MQCHAR12 UserId; /* UserId associated with appl */

 MQBYTE40 SecurityId /* Extension to UserId running appl */

 MQCHAR264 ConnectionName; /* Connection name */

 MQLONG LongMCAUserIdLength; /* long MCA user identifier length */

 MQLONG LongRemoteUserIdLength; /* long remote user identifier length */

 MQPTR LongMCAUserIdPtr; /* long MCA user identifier address */

 MQPTR LongRemoteUserIdPtr; /* long remote user identifier address */

 MQCHAR28 ApplName; /* Application name */

 MQLONG ApplType; /* Application type */

 MQPID ProcessId; /* Process identifier */

 MQTID ThreadId; /* Thread identifier */

 };

The parameters to MQAXC are:

StrucId (MQCHAR4) - input

The exit context structure identifier, with a value of MQAXC_STRUC_ID. For C programs, the constant MQAXC_STRUC_ID_ARRAY is also defined, with the

same value as MQAXC_STRUC_ID, but as an array of characters instead of a string.

The exit handler sets this field on entry to each exit function.

Version (MQLONG) - input

The structure version number, with a value of:

MQAXC_VERSION_1

Version number for the exit context structure.

MQAXC_CURRENT_VERSION

Current version number for the exit context structure.
The exit handler sets this field on entry to each exit function.

Environment (MQLONG) - input

The environment from which a WebSphere® MQ API call was issued that resulted in an exit function being driven. Valid values for this field are:

MQXE_OTHER

An unrecognizable environment

MQXE_MCA

Message channel agent

MQXE_MCA_SVRCONN

A message channel agent acting on behalf of a client

MQXE_COMMAND_SERVER

The command server

MQXE_MQSC

The runmqsc command interpreter
The exit handler sets this field on entry to each exit function.

UserId (MQCHAR12) - input

The user ID associated with the application. In particular, in the case of client connections, this field contains the user ID of the adopted user as opposed
to the user ID under which the channel code is running.

The exit handler sets this field on entry to each exit function. The length of this field is given by MQ_USER_ID_LENGTH.

SecurityId (MQBYTE40) - input

An extension to the userid running the application. Its length is given by MQ_SECURITY_ID_LENGTH.

ConnectionName (MQCHAR264) - input

The connection name field, set to the address of the client. For example, for TCP/IP, it would be the client IP address.

The length of this field is given by MQ_CONN_NAME_LENGTH.

LongMCAUserIdLength (MQLONG) - input

The length of the long MCA user identifier.

Table 1. MQXR_BEFORE exit processing

Value of ExitResponse CompCode and
Reason set by

Value of
ExitResponse2
(default continuation)
Chain

Value of
ExitResponse2
(default continuation)
API

MQXCC_OK exit Y Y

MQXCC_SUPPRESS_EXIT exit Y Y

MQXCC_SUPPRESS_FUNCTION queue manager N N

MQXCC_SKIP FUNCTION exit N N

MQXCC_FAILED queue manager N N

Page 160 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

When MCA connects to the queue manager this field is set to the length of the long MCA user identifier (or zero if there is no such identifier).

LongRemoteUserIdLength (MQLONG) - input

The length of the long remote user identifier.

When MCA connects to the queue manager this field is set to the length of the long remote user identifier. Otherwise this field will be set to zero

LongMCAUserIdPtr (MQPTR) - input

Address of long MCA user identifier.

When MCA connects to the queue manager this field is set to the address of the long MCA user identifier (or to a null pointer if there is no such identifier).

LongRemoteUserIdPtr (MQPTR) - input

The address of the long remote user identifier.

When MCA connects to the queue manager this field is set to the address of the long remote user identifier (or to a null pointer if there is no such
identifier).

ApplName (MQCHAR28) - input

The name of the application or component that issued the WebSphere MQ API call.

The rules for generating the ApplName are the same as for generating the default name for an MQPUT.

The value of this field is found by querying the operating system for the program name. Its length is given by MQ_APPL_NAME_LENGTH.

ApplType (MQLONG) - input

The type of application or component that issued the WebSphere MQ API call.

The value is MQAT_DEFAULT for the platform on which the application is compiled, or it equates to one of the defined MQAT_* values.

The exit handler sets this field on entry to each exit function.

ProcessId (MQPID) - input

The operating system process identifier.

Where applicable, the exit handler sets this field on entry to each exit function.

ThreadId (MQTID) - input

The MQ thread identifier. This is the same identifier used in MQ trace and FFST™ dumps, but might be different from the operating system thread
identifier.

Where applicable, the exit handler sets this field on entry to each exit function.

Parent topic: External control blocks

This build: January 26, 2011 11:20:22

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14620_

2.12.3.2. The exit chain area and exit chain area header (MQACH)

If required, an exit function can acquire storage for an exit chain area and set the ExitChainAreaPtr in MQAXP to point to this storage.

Exits (either the same or different exit functions) can acquire multiple exit chain areas and link them together. Exit chain areas must only be added or
removed from this list while called from the exit handler. This ensures that there are no serialization issues caused by different threads adding or removing
areas from the list at the same time.

An exit chain area must start with an MQACH header structure, the C declaration for which is:

typedef struct tagMQACH {

 MQCHAR4 StrucId; /* Structure identifier */

 MQLONG Version; /* Structure version number */

 MQLONG StrucLength; /* Length of the MQACH structure */

 MQLONG ChainAreaLength; /* Exit chain area length */

 MQCHAR48 ExitInfoName /* Exit information name */

 PMQACH NextChainAreaPtr; /* Pointer to next exit chain area */

 };

The fields in the exit chain area header are:

StrucId (MQCHAR4) - input

The exit chain area structure identifier, with an initial value, defined by MQACH_DEFAULT, of MQACH_STRUC_ID.

For C programs, the constant MQACH_STRUC_ID_ARRAY is also defined; this has the same value as MQACH_STRUC_ID, but as an array of characters
instead of a string.

Version (MQLONG) - input

The structure version number, as follows:

MQACH_VERSION_1

The version number for the exit parameter structure.

MQACH_CURRENT_VERSION

The current version number for the exit context structure.

The initial value of this field, defined by MQACH_DEFAULT, is MQACH_CURRENT_VERSION.

Note: If you introduce a new version of this structure, the layout of the existing part does not change. Exit functions must check that the version number
is equal to or greater than the lowest version containing the fields that the exit function needs to use.

StrucLength (MQLONG) - input

The length of the MQACH structure. Exits can use this field to determine the start of the exit data, setting it to the length of the structure created by the
exit.

Page 161 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

The initial value of this field, defined by MQACH_DEFAULT, is MQACH_CURRENT_LENGTH.

ChainAreaLength (MQLONG) - input

The exit chain area length, set to the overall length of the current exit chain area, including the MQACH header.

The initial value of this field, defined by MQACH_DEFAULT, is zero.

ExitInfoName (MQCHAR48) - input

The exit information name.

When an exit creates an MQACH structure, it must initialize this field with its own ExitInfoName, so that later this MQACH structure can be found by either
another instance of this exit, or by a cooperating exit.

The initial value of this field, defined by MQACH_DEFAULT, is a zero length string ({""}).

NextChainAreaPtr (PMQACH) - input

A pointer to the next exit chain area with an initial value, defined by MQACH_DEFAULT, of null pointer (NULL).

Exit functions must release the storage for any exit chain areas that they acquire, and manipulate the chain pointers to remove their exit chain areas from
the list.

An exit chain area can be constructed as follows:

MQAXP.ExitChainAreaPtr ───┐

 ┌───────────────────────┘

 └──→ ┌─────┬───┬────┬─────┬──┐
 │ ACH │ 1 │ 80 │ ──┐ │ First exit's chain area │
 └─────┴───┴────┴───│─┴──┘

 ┌───────────────────────┘

 └──→ ┌─────┬───┬────┬─────┬───────────────────────────┐
 │ ACH │ 1 │ 64 │ ──┐ │ Second exit's chain area │
 └─────┴───┴────┴───│─┴───────────────────────────┘

 ┌───────────────────────┘

 └──→ ... etc.

Parent topic: Reference information

This build: January 26, 2011 11:20:22

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14630_

2.12.3.3. External constants

The following external constants are available for API exits:

MQXF_* (exit function identifiers)

 MQXF_INIT 1 X'00000001'

 MQXF_TERM 2 X'00000002'

 MQXF_CONN 3 X'00000003'

 MQXF_CONNX 4 X'00000004'

 MQXF_DISC 5 X'00000005'

 MQXF_OPEN 6 X'00000006'

 MQXF_CLOSE 7 X'00000007'

 MQXF_PUT1 8 X'00000008'

 MQXF_PUT 9 X'00000009'

 MQXF_GET 10 X'0000000A'

 MQXF_DATA_CONV_ON_GET 11 X'0000000B'

 MQXF_INQ 12 X'0000000C'

 MQXF_SET 13 X'0000000D'

 MQXF_BEGIN 14 X'0000000E'

 MQXF_CMIT 15 X'0000000F'

 MQXF_BACK 16 X'00000010'

MQXR_* (exit reasons)

 MQXR_BEFORE 1 X'00000001'

 MQXR_AFTER 2 X'00000002'

 MQXR_CONNECTION 3 X'00000003'

MQXE_* (environments)

 MQXE_OTHER 0 X'00000000'

 MQXE_MCA 1 X'00000001'

 MQXE_MCA_SVRCONN 2 X'00000002'

 MQXE_COMMAND_SERVER 3 X'00000003'

 MQXE_MQSC 4 X'00000004'

MQ*_* (additional constants)

 MQAXP_VERSION_1 1

 MQAXP_VERSION_2 2

 MQAXC_VERSION_1 1

 MQACH_VERSION_1 1

 MQAXP_CURRENT_VERSION 1

 MQAXC_CURRENT_VERSION 1

 MQACH_CURRENT_VERSION 1

 MQXACT_EXTERNAL 1

 MQXACT_INTERNAL 2

Page 162 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

 MQXT_API_EXIT 2

 MQACH_LENGTH_1 68 (32-bit platforms)

 72 (64-bit platforms)

 80 (128-bit platforms)

 MQACH_CURRENT_LENGTH 68 (32-bit platforms)

 72 (64-bit platforms)

 80 (128-bit platforms)

MQ*_* (null constants)

 MQXPDA_NONE X'00...00' (48 nulls)

 MQXPDA_NONE_ARRAY '\0','\0',...,'\0','\0'

MQXCC_* (completion codes)

 MQXCC_FAILED -8

MQRC_* (reason codes)

MQRC_API_EXIT_ERROR 2374 X'00000946'

An exit function invocation has returned an invalid response code, or has failed in some way, and the queue manager cannot determine the next action
to take.

Examine both the ExitResponse and ExitResponse2 fields of the MQAXP to determine the bad response code, and change the exit to return a valid
response code.

MQRC_API_EXIT_INIT_ERROR 2375 X'00000947'

The queue manager encountered an error while initializing the execution environment for an API exit function.

MQRC_API_EXIT_TERM_ERROR 2376 X'00000948'

The queue manager encountered an error while closing the execution environment for an API exit function.

MQRC_EXIT_REASON_ERROR 2377 X'00000949'

The value of the ExitReason field supplied on an exit entry point registration call (MQXEP) call is in error.

Examine the value of the ExitReason field to determine and correct the bad exit reason value.

MQRC_RESERVED_VALUE_ERROR 2378 X'0000094A'

The value of the Reserved field is in error.

Examine the value of the Reserved field to determine and correct the Reserved value.

Parent topic: Reference information

This build: January 26, 2011 11:20:22

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14640_

2.12.3.4. C language typedefs

Here are the C language typedefs associated with the API exits:

 typedef PMQLONG MQPOINTER PPMQLONG;

 typedef PMQBYTE MQPOINTER PPMQBYTE;

 typedef PMQHOBJ MQPOINTER PPMQHOBJ;

 typedef PMQOD MQPOINTER PPMQOD;

 typedef PMQMD MQPOINTER PPMQMD;

 typedef PMQPMO MQPOINTER PPMQPMO;

 typedef PMQGMO MQPOINTER PPMQGMO;

 typedef PMQCNO MQPOINTER PPMQCNO;

 typedef PMQBO MQPOINTER PPMQBO;

 typedef MQAXP MQPOINTER PMQAXP;

 typedef MQACH MQPOINTER PMQACH;

 typedef MQAXC MQPOINTER PMQAXC;

 typedef MQCHAR MQCHAR16[16];

 typedef MQCHAR16 MQPOINTER PMQCHAR16;

 typedef MQLONG MQPID;

 typedef MQLONG MQTID;

Parent topic: Reference information

This build: January 26, 2011 11:20:22

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14650_

2.12.3.5. The exit entry point registration call (MQXEP)

Use the MQXEP call to:

1. Register the before and after WebSphere® MQ API exit invocation points at which to invoke exit functions

2. Specify the exit function entry points

3. Deregister the exit function entry points

You would usually code the MQXEP calls in the MQ_INIT_EXIT exit function, but you can specify them in any subsequent exit function.

If you use an MQXEP call to register an already registered exit function, the second MQXEP call completes successfully, replacing the registered exit function.

If you use an MQXEP call to register a NULL exit function, the MQXEP call will complete successfully and the exit function is deregistered.

If MQXEP calls are used to register, deregister, and reregister a given exit function during the life of a connection request, the previously registered exit

Page 163 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

function is reactivated. Any storage still allocated and associated with this exit function instance is available for use by the exit's functions. (This storage is
usually released during the invocation of the termination exit function).

The interface to MQXEP is:

MQXEP (Hconfig, ExitReason, Function, EntryPoint, &ExitOpts, &CompCode, &Reason)

where:

Hconfig (MQHCONFIG) – input

The configuration handle, representing the API exit that includes the set of functions being initialized. This value is generated by the queue manager
immediately before invoking the MQ_INIT_EXIT function, and is passed in the MQAXP to each API exit function.

ExitReason (MQLONG) – input

The reason for which the entry point is being registered, from the following:

� Connection level initialization or termination (MQXR_CONNECTION)

� Before a WebSphere MQ API call (MQXR_BEFORE)

� After a WebSphere MQ API call (MQXR_AFTER)

Function (MQLONG) – input

The function identifier, valid values for which are the MQXF_* constants (see External constants).

EntryPoint (PMQFUNC) - input

The address of the entry point for the exit function to be registered. The value NULL indicates either that the exit function has not been provided, or that a
previous registration of the exit function is being deregistered.

ExitOpts(MQXEPO)

API exits can specify options that control how API exits are registered. If a null pointer is specified for this field, the default values of the MQXEPO
structure are assumed.

CompCode (MQLONG) - output

The completion code, valid values for which are:

MQCC_OK

Successful completion.

MQCC_FAILED

Call failed.

Reason (MQLONG) - output

The reason code that qualifies the completion code.

If the completion code is MQCC_OK:

MQRC_NONE

(0, X'000') No reason to report.
If the completion code is MQCC_FAILED:

MQRC_HCONFIG_ERROR

(2280, X'8E8') The supplied configuration handle is not valid. Use the configuration handle from the MQAXP.

MQRC_EXIT_REASON_ERROR

(2377, X'949') The supplied exit function invocation reason is either not valid or is not valid for the supplied exit function identifier.

Either use one of the valid exit function invocation reasons (MQXR_* value), or use a valid function identifier and exit reason combination. (See Table 1.)

MQRC_FUNCTION_ERROR

(2281, X'8E9') The supplied function identifier is not valid for API exit reason. The following table shows valid combinations of function identifiers and
ExitReasons.

MQRC_RESOURCE_PROBLEM

(2102, X'836') An attempt to register or deregister an exit function has failed because of a resource problem.

MQRC_UNEXPECTED_ERROR

(2195, X'893') An attempt to register or deregister an exit function has failed unexpectedly.

MQRC_PROPERTY_NAME_ERROR

(2442, X'098A') Invalid ExitProperties name.

MQRC_XEPO_ERROR

(2507, X'09CB') Exit options structure not valid.

Table 1. Valid combinations of function identifiers and ExitReasons

Function ExitReason

MQXF_INIT
MQXF_TERM

MQXR_CONNECTION

MQXF_CONN
MQXF_CONNX
MQXF_DISC
MQXF_OPEN
MQXF_CLOSE
MQXF_PUT1
MQXF_PUT
MQXF_GET
MQXF_INQ
MQXF_SET
MQXF_BEGIN
MQXF_CMIT
MQXF_BACK
MQXCF_STAT
MQXCF_CB
MQXCF_CTL
MQXCF_CALLBACK
MQXCF_SUB
MQXCF_SUBRQ

MQXR_BEFORE
MQXR_AFTER

MQXF_DATA_CONV_ON_GET MQXR_BEFORE

Page 164 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

MQXEP C language invocation

MQXEP C function prototype

Parent topic: Reference information

This build: January 26, 2011 11:20:23

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14660_

2.12.3.5.1. MQXEP C language invocation

MQXEP (Hconfig, ExitReason, Function, EntryPoint, &ExitOpts, &CompCode, &Reason);

Declaration for parameter list:

 MQHCONFIG Hconfig; /* Configuration handle */

 MQLONG ExitReason; /* Exit reason */

 MQLONG Function; /* Function identifier */

 PMQFUNC EntryPoint; /* Function entry point */

 MQXEPO ExitOpts; /* Options that control the action of MQXEP */

 MQLONG CompCode; /* Completion code */

 MQLONG Reason; /* Reason code qualifying completion

 code */

Parent topic: The exit entry point registration call (MQXEP)

This build: January 26, 2011 11:20:23

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14670_

2.12.3.5.2. MQXEP C function prototype

void MQXEP (

MQHCONFIG Hconfig, /* Configuration handle */

MQLONG ExitReason, /* Exit reason */

MQLONG Function, /* Function identifier */

PMQFUNC EntryPoint, /* Function entry point */

PMQXEPO pExitOpts; /* Options that control the action of MQXEP */

PMQLONG pCompCode, /* Address of completion code */

PMQLONG pReason); /* Address of reason code qualifying completion

 code */

Parent topic: The exit entry point registration call (MQXEP)

This build: January 26, 2011 11:20:23

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14680_

2.12.3.6. Invoking exit functions

This section tells you how to invoke the exit functions available.

The descriptions of the individual functions start at The API exit functions. This section begins with some general information to help you when using these
function calls.

General rules for API exit routines

The API exit functions
This collection of topics describes each of the exit functions and its parameters.

Parent topic: Reference information

This build: January 26, 2011 11:20:23

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14690_

2.12.3.6.1. General rules for API exit routines

The following general rules apply when invoking API exit routines:

� In all cases, API exit functions are driven before validating API call parameters, and before any security checks (in the case of MQCONN, MQCONNX, or
MQOPEN).

� The values of fields input to and output from an exit routine are:

� On input to a before WebSphere® MQ API exit function, the value of a field can be set by the application program, or by a previous exit function
invocation.

� On output from a before WebSphere MQ API exit function, the value of a field can be left unchanged, or set to some other value by the exit
function.

� On input to an after WebSphere MQ API exit function, the value of a field can be the value set by the queue manager after processing the

Page 165 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

WebSphere MQ API call, or can be set to a value by a previous exit function invocation in the chain of exit functions.

� On output from an after WebSphere MQ API call exit function, the value of a field can be left unchanged, or set to some other value by the exit
function.

� Exit functions must communicate with the queue manager by using the ExitResponse and ExitResponse2 fields.

� The CompCode and Reason code fields communicate back to the application. The queue manager and exit functions can set the CompCode and Reason
code fields.

� The MQXEP call returns new reason codes to the exit functions that call MQXEP. However, exit functions can translate these new reason codes to any
existing reasons codes that existing and new applications can understand.

� Each exit function prototype has similar parameters to the API function with an extra level of indirection except for the CompCode and Reason.

The execution environment
In general, all errors from exit functions are communicated back to the exit handler using the ExitResponse and ExitResponse2 fields in MQAXP.

Parent topic: Invoking exit functions

This build: January 26, 2011 11:20:23

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14700_

2.12.3.6.1.1. The execution environment

In general, all errors from exit functions are communicated back to the exit handler using the ExitResponse and ExitResponse2 fields in MQAXP.

These errors in turn are converted into MQCC_* and MQRC_* values and communicated back to the application in the CompCode and Reason fields.
However, any errors encountered in the exit handler logic are communicated back to the application as MQCC_* and MQRC_* values in the CompCode and
Reason fields.

If an MQ_TERM_EXIT function returns an error:

� The MQDISC call has already taken place

� There is no other opportunity to drive the after MQ_TERM_EXIT exit function (and thus perform exit execution environment cleanup)

� Exit execution environment cleanup is not performed

In other words, the exit cannot be unloaded as it might still be in use. Also, other registered exits further down in the exit chain for which the before exit
was successful, will be driven in the reverse order.

Setting up the exit execution environment
While processing an explicit MQCONN or MQCONNX call, exit handling logic sets up the exit execution environment before invoking the exit
initialization function (MQ_INIT_EXIT). Exit execution environment setup involves loading the exit, acquiring storage for, and initializing exit parameter
structures. The exit configuration handle is also allocated at this point.

Cleaning up the exit execution environment
While processing an explicit MQDISC call, or an implicit disconnect request as a result of an application ending, exit handling logic might need to clean
up the exit execution environment after invoking the exit termination function (MQ_TERM_EXIT), if registered.

Parent topic: General rules for API exit routines

This build: January 26, 2011 11:20:23

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14710_

2.12.3.6.1.1.1. Setting up the exit execution environment

While processing an explicit MQCONN or MQCONNX call, exit handling logic sets up the exit execution environment before invoking the exit initialization
function (MQ_INIT_EXIT). Exit execution environment setup involves loading the exit, acquiring storage for, and initializing exit parameter structures. The
exit configuration handle is also allocated at this point.

If errors occur during this phase, the MQCONN or MQCONNX call fails with CompCode MQCC_FAILED and one of the following reason codes:

MQRC_API_EXIT_LOAD_ERROR

An attempt to load an API exit module has failed.

MQRC_API_EXIT_NOT_FOUND

An API exit function could not be found in the API exit module.

MQRC_STORAGE_NOT_AVAILABLE

An attempt to initialize the execution environment for an API exit function failed because insufficient storage was available.

MQRC_API_EXIT_INIT_ERROR

An error was encountered while initializing the execution environment for an API exit function.

Parent topic: The execution environment

This build: January 26, 2011 11:20:23

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14720_

2.12.3.6.1.1.2. Cleaning up the exit execution environment

While processing an explicit MQDISC call, or an implicit disconnect request as a result of an application ending, exit handling logic might need to clean up the
exit execution environment after invoking the exit termination function (MQ_TERM_EXIT), if registered.

Page 166 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Cleaning up the exit execution environment involves releasing storage for exit parameter structures, possibly deleting any modules previously loaded into
memory.

If errors occur during this phase, an explicit MQDISC call fails with CompCode MQCC_FAILED and the following reason code (errors are not highlighted on
implicit disconnect requests):

MQRC_API_EXIT_TERM_ERROR

An error was encountered while closing the execution environment for an API exit function. The exit should not return any failure from the MQDISC before
or after the MQ_TERM* API exit function calls.

Parent topic: The execution environment

This build: January 26, 2011 11:20:23

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14730_

2.12.3.6.2. The API exit functions

This collection of topics describes each of the exit functions and its parameters.

Backout - MQ_BACK_EXIT
MQ_BACK_EXIT provides a backout exit function to perform before and after backout processing. Use function identifier MQXF_BACK with exit reasons
MQXR_BEFORE and MQXR_AFTER to register before and after backout call exit functions.

Callback - MQ_CALLBACK_EXIT
MQ_CALLBACK_EXIT provides a subscription request exit function to perform before and after callback processing. Use function identifier
MQXF_CALLBACK with exit reasons MQXR_BEFORE and MQXR_AFTER to register before and after callback call exit functions.

Begin - MQ_BEGIN_EXIT
MQ_BEGIN_EXIT provides a begin exit function to perform before and after MQBEGIN call processing. Use function identifier MQXF_BEGIN with exit
reasons MQXR_BEFORE and MQXR_AFTER to register before and after MQBEGIN call exit functions.

Close - MQ_CLOSE_EXIT
MQ_CLOSE_EXIT provides a close exit function to perform before and after MQCLOSE call processing. Use function identifier MQXF_CLOSE with exit
reasons MQXR_BEFORE and MQXR_AFTER to register before and after MQCLOSE call exit functions.

Commit - MQ_CMIT_EXIT
MQ_CMIT_EXIT provides a commit exit function to perform before and after commit processing. Use function identifier MQXF_CMIT with exit reasons
MQXR_BEFORE and MQXR_AFTER to register before and after commit call exit functions.

Connect and connect extension - MQ_CONNX_EXIT

Control callback - MQ_CTL_EXIT
MQ_CTL_EXIT provides a subscription request exit function to perform before and after control callback processing. Use function identifier MQXF_CTL
with exit reasons MQXR_BEFORE and MQXR_AFTER to register before and after control callback call exit functions.

Disconnect - MQ_DISC_EXIT
MQ_DISC_EXIT provides a disconnect exit function to perform before and after MQDISC exit processing. Use function identifier MQXF_DISC with exit
reasons MQXR_BEFORE and MQXR_AFTER to register before and after MQDISC call exit functions.

Get - MQ_GET_EXIT
MQ_GET_EXIT provides a get exit function to perform before and after MQGET call processing.

Initialization - MQ_INIT_EXIT
MQ_INIT_EXIT provides connection level initialization, indicated by setting ExitReason in MQAXP to MQXR_CONNECTION.

Inquire - MQ_INQ_EXIT
MQ_INQ_EXIT provides an inquire exit function to perform before and after MQINQ call processing. Use function identifier MQXF_INQ with exit reasons
MQXR_BEFORE and MQXR_AFTER to register before and after MQINQ call exit functions.

Open - MQ_OPEN_EXIT
MQ_OPEN_EXIT provides an open exit function to perform before and after MQOPEN call processing. Use function identifier MQXF_OPEN with exit
reasons MQXR_BEFORE and MQXR_AFTER to register before and after MQOPEN call exit functions.

Put - MQ_PUT_EXIT
MQ_PUT_EXIT provides a put exit function to perform before and after MQPUT call processing. Use function identifier MQXF_PUT with exit reasons
MQXR_BEFORE and MQXR_AFTER to register before and after MQPUT call exit functions.

Put1 - MQ_PUT1_EXIT
MQ_PUT1_EXIT provides a put one message only exit function to perform before and after MQPUT1 call processing. Use function identifier MQXF_PUT1
with exit reasons MQXR_BEFORE and MQXR_AFTER to register before and after MQPUT1 call exit functions.

Set - MQ_SET_EXIT
MQ_SET_EXIT provides an inquire exit function to perform before and after MQSET call processing. Use function identifier MQXF_SET with exit reasons
MQXR_BEFORE and MQXR_AFTER to register before and after MQSET call exit functions.

Status - MQ_STAT_EXIT

Termination - MQ_TERM_EXIT
MQ_TERM_EXIT provides connection level termination, registered with a function identifier of MQXF_TERM and ExitReason MQXR_CONNECTION. If
registered, MQ_TERM_EXIT is called once for every disconnect request.

Register subscription - MQ_SUB_EXIT
MQ_SUB_EXIT provides a subscription request exit function to perform before and after subscription reregistration processing. Use function identifier
MQXF_SUB with exit reasons MQXR_BEFORE and MQXR_AFTER to register before and after subscription registrationcall exit functions.

Subscription request - MQ_SUBRQ_EXIT

Page 167 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

MQ_SUBRQ_EXIT provides a subscription request exit function to perform before and after subscription request processing. Use function identifier
MQXF_SUBRQ with exit reasons MQXR_BEFORE and MQXR_AFTER to register before and after subscription request call exit functions.

Parent topic: Invoking exit functions

This build: January 26, 2011 11:20:24

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14740_

2.12.3.6.2.1. Backout - MQ_BACK_EXIT

MQ_BACK_EXIT provides a backout exit function to perform before and after backout processing. Use function identifier MQXF_BACK with exit reasons
MQXR_BEFORE and MQXR_AFTER to register before and after backout call exit functions.

The interface to this function is:

MQ_BACK_EXIT (&ExitParms, &ExitContext, &Hconn, &CompCode, &Reason)

where the parameters are:

ExitParms (MQAXP) - input/output

Exit parameter structure.

ExitContext (MQAXC) - input/output

Exit context structure.

Hconn (MQHCONN) - input

Connection handle.

CompCode (MQLONG) - input/output

Completion code, valid values for which are:

MQCC_OK

Successful completion.

MQCC_WARNING

Partial completion.

MQCC_FAILED

Call failed

Reason (MQLONG) - input/output

Reason code qualifying the completion code.

If the completion code is MQCC_OK, the only valid value is:

MQRC_NONE

(0, x'000') No reason to report.
If the completion code is MQCC_FAILED or MQCC_WARNING, the exit function can set the reason code field to any valid MQRC_* value.

C language invocation

Parent topic: The API exit functions

This build: January 26, 2011 11:20:24

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14750_

2.12.3.6.2.1.1. C language invocation

The queue manager logically defines the following variables:

 MQAXP ExitParms; /* Exit parameter structure */

 MQAXC ExitContext; /* Exit context structure */

 MQHCONN Hconn; /* Connection handle */

 MQLONG CompCode; /* Completion code */

 MQLONG Reason; /* Reason code qualifying completion code */

The queue manager then logically calls the exit as follows:

MQ_BACK_EXIT (&ExitParms, &ExitContext, &Hconn, &CompCode, &Reason);

Your exit must match the following C function prototype:

void MQENTRY MQ_BACK_EXIT (

PMQAXP pExitParms, /* Address of exit parameter structure */

PMQAXC pExitContext, /* Address of exit context structure */

PMQHCONN pHconn, /* Address of connection handle */

PMQLONG pCompCode, /* Address of completion code */

PMQLONG pReason); /* Address of reason code qualifying completion

 code */

Parent topic: Backout - MQ_BACK_EXIT

This build: January 26, 2011 11:20:24

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14760_

2.12.3.6.2.2. Callback - MQ_CALLBACK_EXIT

MQ_CALLBACK_EXIT provides a subscription request exit function to perform before and after callback processing. Use function identifier MQXF_CALLBACK

Page 168 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

with exit reasons MQXR_BEFORE and MQXR_AFTER to register before and after callback call exit functions.

The interface to this function is:

MQ_CALLBACK_EXIT (&ExitParms, &ExitContext, &Hconn, &pMsgDesc, &pGetMsgOpts,

 &pBuffer, &pMQCBContext)

where the parameters are:

ExitParms (MQAXP) - input/output

Exit parameter structure

ExitContext (MQAXC) - input/output

Exit context structure

Hconn (MQHCONN) - input/output

Connection handle

pMsgDesc

Message descriptor

pGetMsgOpts

Options that control the action of MQGET

pBuffer

Area to contain the message data

pMQCBContext

Context data for the callback

C language invocation - MQ_CALLBACK_EXIT

Parent topic: The API exit functions

This build: January 26, 2011 11:22:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg20590_

2.12.3.6.2.2.1. C language invocation - MQ_CALLBACK_EXIT

The queue manager logically defines the following variables:

 MQAXP ExitParms; /* Exit parameter structure */

 MQAXC ExitContext; /* Exit context structure */

 MQHCONN Hconn; /* Connection handle */

 PMQMD pMsgDesc; /* Message descriptor */

 PMQGMO pGetMsgOpts; /* Options that define the operation of the consumer */

 PMQVOID pBuffer; /* Area to contain the message data */

 PMQCBC pContext; /* Context data for the callback */

The queue manager then logically calls the exit as follows:

MQ_SUBRQ_EXIT (&ExitParms, &ExitContext, &Hconn, &pMsgDesc, &pGetMsgOpts, &pBuffer,

 &pContext);

Your exit must match the following C function prototype:

void MQENTRY MQ_CALLBACK_EXIT (

PMQAXP pExitParms; /* Exit parameter structure */

PMQAXC pExitContext; /* Exit context structure */

PMQHCONN pHconn; /* Connection handle */

PPMQMD ppMsgDesc; /* Message descriptor */

PPMQGMO ppGetMsgOpts; /* Options that define the operation of the consumer */

PPMQVOID ppBuffer; /* Area to conatin the message data */

PPMQCBC ppContext;) /* Context data for the callback */

Parent topic: Callback - MQ_CALLBACK_EXIT

This build: January 26, 2011 11:22:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg20640_

2.12.3.6.2.3. Begin - MQ_BEGIN_EXIT

MQ_BEGIN_EXIT provides a begin exit function to perform before and after MQBEGIN call processing. Use function identifier MQXF_BEGIN with exit reasons
MQXR_BEFORE and MQXR_AFTER to register before and after MQBEGIN call exit functions.

The interface to this function is:

MQ_BEGIN_EXIT (&ExitParms, &ExitContext, &Hconn, &pBeginOptions, &CompCode,

 &Reason)

where the parameters are:

ExitParms (MQAXP) - input/output

Exit parameter structure.

ExitContext (MQAXC) - input/output

Exit context structure.

Hconn (MQHCONN) - input

Connection handle.

pBeginOptions (PMQBO)- input/output

Pointer to begin options.

CompCode (MQLONG) - input/output

Page 169 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Completion code, valid values for which are:

MQCC_OK

Successful completion.

MQCC_WARNING

Partial completion.

MQCC_FAILED

Call failed

Reason (MQLONG) - input/output

Reason code qualifying the completion code.

If the completion code is MQCC_OK, the only valid value is:

MQRC_NONE

(0, x'000') No reason to report.
If the completion code is MQCC_FAILED or MQCC_WARNING, the exit function can set the reason code field to any valid MQRC_* value.

C language invocation

Parent topic: The API exit functions

This build: January 26, 2011 11:20:24

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14770_

2.12.3.6.2.3.1. C language invocation

The queue manager logically defines the following variables:

 MQAXP ExitParms; /* Exit parameter structure */

 MQAXC ExitContext; /* Exit context structure */

 MQHCONN Hconn; /* Connection handle */

 PMQBO pBeginOptions; /* Ptr to begin options */

 MQLONG CompCode; /* Completion code */

 MQLONG Reason; /* Reason code qualifying completion code */

The queue manager then logically calls the exit as follows:

MQ_BEGIN_EXIT (&ExitParms, &ExitContext, &Hconn, &pBeginOptions, &CompCode,

 &Reason);

Your exit must match the following C function prototype:

void MQENTRY MQ_BEGIN_EXIT (

PMQAXP pExitParms, /* Address of exit parameter structure */

PMQAXC pExitContext, /* Address of exit context structure */

PMQHCONN pHconn, /* Address of connection handle */

PPMQBO ppBeginOptions, /* Address of ptr to begin options */

PMQLONG pCompCode, /* Address of completion code */

PMQLONG pReason); /* Address of reason code qualifying completion

 code */

Parent topic: Begin - MQ_BEGIN_EXIT

This build: January 26, 2011 11:20:24

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14780_

2.12.3.6.2.4. Close - MQ_CLOSE_EXIT

MQ_CLOSE_EXIT provides a close exit function to perform before and after MQCLOSE call processing. Use function identifier MQXF_CLOSE with exit reasons
MQXR_BEFORE and MQXR_AFTER to register before and after MQCLOSE call exit functions.

The interface to this function is:

MQ_CLOSE_EXIT (&ExitParms, &ExitContext, &Hconn, &pHobj,

 &Options, &CompCode, &Reason)

where the parameters are:

ExitParms (MQAXP) - input/output

Exit parameter structure.

ExitContext (MQAXC) - input/output

Exit context structure.

Hconn (MQHCONN) - input

Connection handle.

pHobj (PMQHOBJ) - input

Pointer to object handle.

Options (MQLONG)- input/output

Close options.

CompCode (MQLONG) - input/output

Completion code, valid values for which are:

MQCC_OK

Successful completion.

MQCC_FAILED

Call failed

Page 170 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Reason (MQLONG) - input/output

Reason code qualifying the completion code.

If the completion code is MQCC_OK, the only valid value is:

MQRC_NONE

(0, x'000') No reason to report.
If the completion code is MQCC_FAILED, the exit function can set the reason code field to any valid MQRC_* value.

C language invocation

Parent topic: The API exit functions

This build: January 26, 2011 11:20:24

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14790_

2.12.3.6.2.4.1. C language invocation

The queue manager logically defines the following variables:

 MQAXP ExitParms; /* Exit parameter structure */

 MQAXC ExitContext; /* Exit context structure */

 MQHCONN Hconn; /* Connection handle */

 PMQHOBJ pHobj; /* Ptr to object handle */

 MQLONG Options; /* Close options */

 MQLONG CompCode; /* Completion code */

 MQLONG Reason; /* Reason code */

The queue manager then logically calls the exit as follows:

MQ_CLOSE_EXIT (&ExitParms, &ExitContext,&Hconn, &pHobj, &Options,

 &CompCode, &Reason);

Your exit must match the following C function prototype:

void MQENTRY MQ_CLOSE_EXIT (

PMQAXP pExitParms, /* Address of exit parameter structure */

PMQAXC pExitContext, /* Address of exit context structure */

PMQHCONN pHconn, /* Address of connection handle */

PPMQHOBJ ppHobj, /* Address of ptr to object handle */

PMQLONG pOptions, /* Address of close options */

PMQLONG pCompCode, /* Address of completion code */

PMQLONG pReason); /* Address of reason code qualifying

 completion code */

Parent topic: Close - MQ_CLOSE_EXIT

This build: January 26, 2011 11:20:24

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14800_

2.12.3.6.2.5. Commit - MQ_CMIT_EXIT

MQ_CMIT_EXIT provides a commit exit function to perform before and after commit processing. Use function identifier MQXF_CMIT with exit reasons
MQXR_BEFORE and MQXR_AFTER to register before and after commit call exit functions.

If a commit operation fails, and the transaction is backed out, the MQCMIT call fails with MQCC_WARNING and MQRC_BACKED_OUT. These return and
reason codes are passed into any after MQCMIT exit functions to give the exit functions an indication that the unit of work has been backed out.

The interface to this function is:

MQ_CMIT_EXIT (&ExitParms, &ExitContext, &Hconn, &CompCode, &Reason)

where the parameters are:

ExitParms (MQAXP) - input/output

Exit parameter structure.

ExitContext (MQAXC) - input/output

Exit context structure.

Hconn (MQHCONN) - input

Connection handle.

CompCode (MQLONG) - input/output

Completion code, valid values for which are:

MQCC_OK

Successful completion.

MQCC_WARNING

Partial completion.

MQCC_FAILED

Call failed

Reason (MQLONG) - input/output

Reason code qualifying the completion code.

If the completion code is MQCC_OK, the only valid value is:

MQRC_NONE

(0, x'000') No reason to report.
If the completion code is MQCC_FAILED or MQCC_WARNING, the exit function can set the reason code field to any valid MQRC_* value.

Page 171 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

C language invocation

Parent topic: The API exit functions

This build: January 26, 2011 11:20:24

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14810_

2.12.3.6.2.5.1. C language invocation

The queue manager logically defines the following variables:

 MQAXP ExitParms; /* Exit parameter structure */

 MQAXC ExitContext; /* Exit context structure */

 MQHCONN Hconn; /* Connection handle */

 MQLONG CompCode; /* Completion code */

 MQLONG Reason; /* Reason code qualifying completion code */

The queue manager then logically calls the exit as follows:

MQ_CMIT_EXIT (&ExitParms, &ExitContext,&Hconn, &CompCode, &Reason);

Your exit must match the following C function prototype:

void MQENTRY MQ_CMIT_EXIT (

PMQAXP pExitParms, /* Address of exit parameter structure */

PMQAXC pExitContext, /* Address of exit context structure */

PMQHCONN pHconn, /* Address of connection handle */

PMQLONG pCompCode, /* Address of completion code */

PMQLONG pReason); /* Address of reason code qualifying completion

 code */

Parent topic: Commit - MQ_CMIT_EXIT

This build: January 26, 2011 11:20:24

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14820_

2.12.3.6.2.6. Connect and connect extension - MQ_CONNX_EXIT

MQ_CONNX_EXIT provides:

� Connection exit function to perform before and after MQCONN processing

� Connection extension exit function to perform before and after MQCONNX processing

The same interface, as described below, is invoked for both MQCONN and MQCONNX call exit functions.

When the message channel agent (MCA) responds to an inbound client connection, the MCA can connect and make a number of WebSphere® MQ API calls
before the client state is fully known. These API calls call the API exit functions with the MQAXC based on the MCA program itself (for example in the UserId
and ConnectionName fields of the MQAXC).

When the MCA responds to subsequent inbound client API calls, the MQAXC structure is based on the inbound client, setting the UserId and ConnectionName
fields appropriately.

The queue manager name set by the application on an MQCONN or MQCONNX call is passed to the underlying connect call. Any attempt by a before
MQ_CONNX_EXIT to change the name of the queue manager has no effect.

Use function identifiers MQXF_CONN and MQXF_CONNX with exit reasons MQXR_BEFORE and MQXR_AFTER to register before and after MQCONN and
MQCONNX call exit functions.

An MQ_CONNX_EXIT exit called for reason MQXR_BEFORE must not issue any WebSphere MQ API calls, as the correct environment has not been set up at
this time.

The interface to MQCONN and MQCONNX is identical:

MQ_CONNX_EXIT (&ExitParms, &ExitContext, &pQMgrName, &pConnectOpts,

 &pHconn, &CompCode, &Reason);

where the parameters are:

ExitParms (MQAXP) - input/output

Exit parameter structure.

ExitContext (MQAXC) - input/output

Exit context structure.

pQMgrName (PMQCHAR) - input

Pointer to the queue manager name supplied on the MQCONNX call. The exit must not change this name on the MQCONN or MQCONNX call.

pConnectOpts (PMQCNO) - input/output

Pointer to the options that control the action of the MQCONNX call.

See "MQCNO - Connect options" in the WebSphere MQ Application Programming Reference for details.

For exit function MQXF_CONN, pConnectOpts points to the default connect options structure (MQCNO_DEFAULT).

pHconn (PMQHCONN) - input

Pointer to the connection handle.

CompCode (MQLONG) - input/output

Completion code, valid values for which are:

MQCC_OK

Successful completion.

Page 172 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

MQCC_WARNING

Warning (partial completion)

MQCC_FAILED

Call failed

Reason (MQLONG) - input/output

Reason code qualifying the completion code.

If the completion code is MQCC_OK, the only valid value is:

MQRC_NONE

(0, x'000') No reason to report.
If the completion code is MQCC_FAILED or MQCC_WARNING, the exit function can set the reason code field to any valid MQRC_* value.

C language invocation

Parent topic: The API exit functions

This build: January 26, 2011 11:20:25

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14830_

2.12.3.6.2.6.1. C language invocation

The queue manager logically defines the following variables:

 MQAXP ExitParms; /* Exit parameter structure */

 MQAXC ExitContext; /* Exit context structure */

 PMQCHAR pQMgrName; /* Ptr to Queue manager name */

 PMQCNO pConnectOpts; /* Ptr to Connection options */

 PMQHCONN pHconn; /* Ptr to Connection handle */

 MQLONG CompCode; /* Completion code */

 MQLONG Reason; /* Reason code */

The queue manager then logically calls the exit as follows:

MQ_CONNX_EXIT (&ExitParms, &ExitContext, &pQMgrName, &pConnectOps,

 &pHconn, &CompCode, &Reason);

Your exit must match the following C function prototype:

void MQENTRY MQ_CONNX_EXIT (

PMQAXP pExitParms, /* Address of exit parameter structure */

PMQAXC pExitContext, /* Address of exit context structure */

PPMQCHAR ppQMgrName, /* Address of ptr to queue manager name */

PPMQCNO ppConnectOpts, /* Address of ptr to connection options */

PPMQHCONN ppHconn, /* Address of ptr to connection handle */

PMQLONG pCompCode, /* Address of completion code */

PMQLONG pReason); /* Address of reason code qualifying

 completion code */

Parent topic: Connect and connect extension - MQ_CONNX_EXIT

This build: January 26, 2011 11:20:25

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14840_

2.12.3.6.2.7. Control callback - MQ_CTL_EXIT

MQ_CTL_EXIT provides a subscription request exit function to perform before and after control callback processing. Use function identifier MQXF_CTL with
exit reasons MQXR_BEFORE and MQXR_AFTER to register before and after control callback call exit functions.

The interface to this function is:

MQ_CTL_EXIT (&Hconn, &Operation, &ControlOpts, &CompCode, &Reason)

where the parameters are:

Hconn (MQHCONN) - input/output

Connection handle.

Operation (MQLONG) input/output

The operation being processed on the callback defined for the specified object handle

ControlOpts (MQCTLO) input/output

Options that control the action of MQCTL

CompCode (MQLONG) - input/output

Completion code, valid values for which are:

MQCC_OK

Successful completion.

MQCC_WARNING

Partial completion.

MQCC_FAILED

Call failed

Reason (MQLONG) - input/output

Reason code qualifying the completion code.

If the completion code is MQCC_OK, the only valid value is:

MQRC_NONE

Page 173 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

(0, x'000') No reason to report.
If the completion code is MQCC_FAILED or MQCC_WARNING, the exit function can set the reason code field to any valid MQRC_* value.

C language invocation - MQ_CTL_EXIT

Parent topic: The API exit functions

This build: January 26, 2011 11:22:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg20600_

2.12.3.6.2.7.1. C language invocation - MQ_CTL_EXIT

The queue manager logically defines the following variables:

 MQHCONN Hconn; /* Connection handle */

 MQLONG Operation; /* Operation being processed */

 MQCTLO ControlOpts; /* Options that control the action of MQCTL */

 MQLONG CompCode; /* Completion code */

 MQLONG Reason; /* Reason code qualifying completion code */

The queue manager then logically calls the exit as follows:

MQ_CTL_EXIT (&Hconn, &Operation, &ControlOpts, &CompCode, &Reason);

Your exit must match the following C function prototype:

void MQENTRY MQ_CTL_EXIT (

PMQHCONN pHconn; /* Address of connection handle */

PMQLONG pOperation; /* Address of operation being processed */

PMQCTLO pControlOpts; /* Address of options that control the action of MQCTL */

PMQLONG pCompCode; /* Address of completion code */

PMQLONG pReason;) /* Address of reason code qualifying completion code */

Parent topic: Control callback - MQ_CTL_EXIT

This build: January 26, 2011 11:22:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg20630_

2.12.3.6.2.8. Disconnect - MQ_DISC_EXIT

MQ_DISC_EXIT provides a disconnect exit function to perform before and after MQDISC exit processing. Use function identifier MQXF_DISC with exit reasons
MQXR_BEFORE and MQXR_AFTER to register before and after MQDISC call exit functions.

The interface to this function is

MQ_DISC_EXIT (&ExitParms, &ExitContext, &pHconn,

 &CompCode, &Reason);

where the parameters are:

ExitParms (MQAXP) - input/output

Exit parameter structure.

ExitContext (MQAXC) - input/output

Exit context structure.

pHconn (PMQHCONN) - input

Pointer to the connection handle.

For the before MQDISC call, the value of this field is one of:

� The connection handle returned on the MQCONN or MQCONNX call

� Zero, for environments where an environment-specific adapter has connected to the queue manager

� A value set by a previous exit function invocation

For the after MQDISC call, the value of this field is zero or a value set by a previous exit function invocation.

CompCode (MQLONG) - input/output

Completion code, valid values for which are:

MQCC_OK

Successful completion.

MQCC_WARNING

Partial completion

MQCC_FAILED

Call failed

Reason (MQLONG) - input/output

Reason code qualifying the completion code.

If the completion code is MQCC_OK, the only valid value is:

MQRC_NONE

(0, x'000') No reason to report.
If the completion code is MQCC_FAILED or MQCC_WARNING, the exit function can set the reason code field to any valid MQRC_* value.

C language invocation

Parent topic: The API exit functions

Page 174 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

This build: January 26, 2011 11:20:25

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14850_

2.12.3.6.2.8.1. C language invocation

The queue manager logically defines the following variables:

 MQAXP ExitParms; /* Exit parameter structure */

 MQAXC ExitContext; /* Exit context structure */

 PMQHCONN pHconn; /* Ptr to Connection handle */

 MQLONG CompCode; /* Completion code */

 MQLONG Reason; /* Reason code */

The queue manager then logically calls the exit as follows:

MQ_DISC_EXIT (&ExitParms, &ExitContext, &pHconn,

 &CompCode, &Reason);

Your exit must match the following C function prototype:

void MQENTRY MQ_DISC_EXIT (

PMQAXP pExitParms, /* Address of exit parameter structure */

PMQAXC pExitContext, /* Address of exit context structure */

PPMQHCONN ppHconn, /* Address of ptr to connection handle */

PMQLONG pCompCode, /* Address of completion code */

PMQLONG pReason); /* Address of reason code qualifying

 completion code */

Parent topic: Disconnect - MQ_DISC_EXIT

This build: January 26, 2011 11:20:25

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14860_

2.12.3.6.2.9. Get - MQ_GET_EXIT

MQ_GET_EXIT provides a get exit function to perform before and after MQGET call processing.

There are two function identifiers:

1. Use MQXF_GET with exit reasons MQXR_BEFORE and MQXR_AFTER to register before and after MQGET call exit functions.

2. Use MQXF_DATA_CONV_ON_GET with exit reason MQXR_BEFORE to register a before MQGET data conversion exit function.

The interface to this function is:

MQ_GET_EXIT (&ExitParms, &ExitContext, &Hconn, &Hobj, &pMsgDesc,

 &pGetMsgOpts, &BufferLength, &pBuffer, &pDataLength,

 &CompCode, &Reason)

where the parameters are:

ExitParms (MQAXP) - input/output

Exit parameter structure.

ExitContext (MQAXC) - input/output

Exit context structure.

Hconn (MQHCONN) - input

Connection handle.

Hobj (MQHOBJ) - input/output

Object handle.

pMsgDesc (PMQMD) - input/output

Pointer to message descriptor.

pGetMsgOpts (PMQPMO) - input/output

Pointer to get message options.

BufferLength (MQLONG) - input/output

Message buffer length.

pBuffer (PMQBYTE) - input/output

Pointer to message buffer.

pDataLength (PMQLONG) - input/output

Pointer to data length field.

CompCode (MQLONG) - input/output

Completion code, valid values for which are:

MQCC_OK

Successful completion.

MQCC_WARNING

Partial completion.

MQCC_FAILED

Call failed

Reason (MQLONG) - input/output

Reason code qualifying the completion code.

If the completion code is MQCC_OK, the only valid value is:

MQRC_NONE

Page 175 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

(0, x'000') No reason to report.
If the completion code is MQCC_FAILED or MQCC_WARNING, the exit function can set the reason code field to any valid MQRC_* value.

C language invocation

Parent topic: The API exit functions

This build: January 26, 2011 11:20:25

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14870_

2.12.3.6.2.9.1. C language invocation

The queue manager logically defines the following variables:

 MQAXP ExitParms; /* Exit parameter structure */

 MQAXC ExitContext; /* Exit context structure */

 MQHCONN Hconn; /* Connection handle */

 MQHOBJ Hobj; /* Object handle */

 PMQMD pMsgDesc; /* Ptr to message descriptor */

 PMQPMO pGetMsgOpts; /* Ptr to get message options */

 MQLONG BufferLength; /* Message buffer length */

 PMQBYTE pBuffer; /* Ptr to message buffer */

 PMQLONG pDataLength; /* Ptr to data length field */

 MQLONG CompCode; /* Completion code */

 MQLONG Reason; /* Reason code */

The queue manager then logically calls the exit as follows:

MQ_GET_EXIT (&ExitParms, &ExitContext, &Hconn, &Hobj, &pMsgDesc,

 &pGetMsgOpts, &BufferLength, &pBuffer, &pDataLength,

 &CompCode, &Reason)

Your exit must match the following C function prototype:

void MQENTRY MQ_GET_EXIT (

PMQAXP pExitParms, /* Address of exit parameter structure */

PMQAXC pExitContext, /* Address of exit context structure */

PMQHCONN pHconn, /* Address of connection handle */

PMQHOBJ pHobj, /* Address of object handle */

PPMQMD ppMsgDesc, /* Address of ptr to message descriptor */

PPMQGMO ppGetMsgOpts, /* Address of ptr to get message options */

PMQLONG pBufferLength, /* Address of message buffer length */

PPMQBYTE ppBuffer, /* Address of ptr to message buffer */

PPMQLONG ppDataLength, /* Address of ptr to data length field */

PMQLONG pCompCode, /* Address of completion code */

PMQLONG pReason); /* Address of reason code qualifying

 completion code */

Parent topic: Get - MQ_GET_EXIT

This build: January 26, 2011 11:20:25

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14880_

2.12.3.6.2.10. Initialization - MQ_INIT_EXIT

MQ_INIT_EXIT provides connection level initialization, indicated by setting ExitReason in MQAXP to MQXR_CONNECTION.

During the initialization, note the following:

� The MQ_INIT_EXIT function calls MQXEP to register the WebSphere® MQ API verbs and the ENTRY and EXIT points in which it is interested.

� Exits do not need to intercept all the WebSphere MQ API verbs. Exit functions are invoked only if an interest has been registered.

� Storage that is to be used by the exit can be acquired while initializing it.

� If a call to this function fails, the MQCONN or MQCONNX call that invoked it also fails with a CompCode and Reason that depend on the value of the
ExitResponse field in MQAXP.

� An MQ_INIT_EXIT exit must not issue WebSphere MQ API calls, because the correct environment has not been set up at this time.

� If an MQ_INIT_EXIT fails with MQXCC_FAILED, the queue manager returns from the MQCONN or MQCONNX call that called it with MQCC_FAILED and
MQRC_API_EXIT_ERROR.

� If the queue manager encounters an error while initializing the API exit function execution environment before invoking the first MQ_INIT_EXIT, the
queue manager returns from the MQCONN or MQCONNX call that invoked MQ_INIT_EXIT with MQCC_FAILED and MQRC_API_EXIT_INIT_ERROR.

The interface to MQ_INIT_EXIT is:

MQ_INIT_EXIT (&ExitParms, &ExitContext, &CompCode, &Reason)

where the parameters are:

ExitParms (MQAXP) - input/output

Exit parameter structure.

ExitContext (MQAXC) - input/output

Exit context structure.

CompCode (MQLONG) - input/output

Pointer to completion code, valid values for which are:

MQCC_OK

Successful completion.

MQCC_WARNING

Partial completion.

Page 176 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

MQCC_FAILED

Call failed

Reason (MQLONG) - input/output

Pointer to reason code qualifying the completion code.

If the completion code is MQCC_OK, the only valid value is:

MQRC_NONE

(0, x'000') No reason to report.
If the completion code is MQCC_FAILED or MQCC_WARNING, the exit function can set the reason code field to any valid MQRC_* value.

The CompCode and Reason returned to the application depend on the value of the ExitResponse field in MQAXP.

C language invocation

Parent topic: The API exit functions

This build: January 26, 2011 11:20:25

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14890_

2.12.3.6.2.10.1. C language invocation

The queue manager logically defines the following variables:

 MQAXP ExitParms; /* Exit parameter structure */

 MQAXC ExitContext; /* Exit context structure */

 MQLONG CompCode; /* Completion code */

 MQLONG Reason; /* Reason code */

The queue manager then logically calls the exit as follows:

MQ_INIT_EXIT (&ExitParms, &ExitContext, &CompCode, &Reason)

Your exit must match the following C function prototype:

void MQENTRY MQ_INIT_EXIT (

PMQAXP pExitParms, /* Address of exit parameter structure */

PMQAXC pExitContext, /* Address of exit context structure */

PMQLONG pCompCode, /* Address of completion code */

PMQLONG pReason); /* Address of reason code qualifying

 completion code */

Parent topic: Initialization - MQ_INIT_EXIT

This build: January 26, 2011 11:20:25

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14900_

2.12.3.6.2.11. Inquire - MQ_INQ_EXIT

MQ_INQ_EXIT provides an inquire exit function to perform before and after MQINQ call processing. Use function identifier MQXF_INQ with exit reasons
MQXR_BEFORE and MQXR_AFTER to register before and after MQINQ call exit functions.

The interface to this function is:

MQ_INQ_EXIT (&ExitParms, &ExitContext, &Hconn, &Hobj, &SelectorCount,

 &pSelectors, &IntAttrCount, &pIntAttrs, &CharAttrLength,

 &pCharAttrs, &CompCode, &Reason)

where the parameters are:

ExitParms (MQAXP) - input/output

Exit parameter structure.

ExitContext (MQAXC) - input/output

Exit context structure.

Hconn (MQHCONN) - input

Connection handle.

Hobj (MQHOBJ) - input

Object handle.

SelectorCount (MQLONG) - input

Count of selectors

pSelectors (PMQLONG) - input/output

Pointer to array of selector values.

IntAttrCount (MQLONG) - input

Count of integer attributes.

pIntAttrs (PMQLONG) - input/output

Pointer to array of integer attribute values.

CharAttrLength (MQLONG) - input/output

Character attributes array length.

pCharAttrs (PMQCHAR) - input/output

Pointer to character attributes array.

CompCode (MQLONG) - input/output

Completion code, valid values for which are:

Page 177 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

MQCC_OK

Successful completion.

MQCC_WARNING

Partial completion.

MQCC_FAILED

Call failed

Reason (MQLONG) - input/output

Reason code qualifying the completion code.

If the completion code is MQCC_OK, the only valid value is:

MQRC_NONE

(0, x'000') No reason to report.
If the completion code is MQCC_FAILED or MQCC_WARNING, the exit function can set the reason code field to any valid MQRC_* value.

C language invocation

Parent topic: The API exit functions

This build: January 26, 2011 11:20:25

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14910_

2.12.3.6.2.11.1. C language invocation

The queue manager logically defines the following variables:

 MQAXP ExitParms; /* Exit parameter structure */

 MQAXC ExitContext; /* Exit context structure */

 MQHCONN Hconn; /* Connection handle */

 MQHOBJ Hobj; /* Object handle */

 MQLONG SelectorCount; /* Count of selectors */

 PMQLONG pSelectors; /* Ptr to array of attribute selectors */

 MQLONG IntAttrCount; /* Count of integer attributes */

 PMQLONG pIntAttrs; /* Ptr to array of integer attributes */

 MQLONG CharAttrLength; /* Length of char attributes array */

 PMQCHAR pCharAttrs; /* Ptr to character attributes */

 MQLONG CompCode; /* Completion code */

 MQLONG Reason; /* Reason code qualifying completion code */

The queue manager then logically calls the exit as follows:

MQ_INQ_EXIT (&ExitParms, &ExitContext, &Hconn, &Hobj, &SelectorCount,

 &pSelectors, &IntAttrCount, &pIntAttrs, &CharAttrLength,

 &pCharAttrs, &CompCode, &Reason)

Your exit must match the following C function prototype:

void MQENTRY MQ_INQ_EXIT (

PMQAXP pExitParms, /* Address of exit parameter structure */

PMQAXC pExitContext, /* Address of exit context structure */

PMQHCONN pHconn, /* Address of connection handle */

PMQHOBJ pHobj, /* Address of object handle */

PMQLONG pSelectorCount, /* Address of selector count */

PPMQLONG ppSelectors, /* Address of ptr to array of selectors */

PMQLONG pIntAttrCount; /* Address of count of integer attributes */

PPMQLONG ppIntAttrs, /* Address of ptr to array of integer attributes */

PMQLONG pCharAttrLength, /* Address of character attribute length */

PPMQCHAR ppCharAttrs, /* Address of ptr to character attributes array */

PMQLONG pCompCode, /* Address of completion code */

PMQLONG pReason); /* Address of reason code qualifying completion

 code */

Parent topic: Inquire - MQ_INQ_EXIT

This build: January 26, 2011 11:20:25

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14920_

2.12.3.6.2.12. Open - MQ_OPEN_EXIT

MQ_OPEN_EXIT provides an open exit function to perform before and after MQOPEN call processing. Use function identifier MQXF_OPEN with exit reasons
MQXR_BEFORE and MQXR_AFTER to register before and after MQOPEN call exit functions.

The interface to this function is

MQ_OPEN_EXIT (&ExitParms, &ExitContext, &Hconn, &pObjDesc, &Options,

 &pHobj, &CompCode, &Reason)

where the parameters are:

ExitParms (MQAXP) - input/output

Exit parameter structure.

ExitContext (MQAXC) - input/output

Exit context structure.

Hconn (MQHCONN) - input

Connection handle.

pObjDesc (PMQOD) - input/output

Pointer to object descriptor.

Page 178 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Options (MQLONG) - input/output

Open options.

pHobj (PMQHOBJ) - input

Pointer to object handle.

CompCode (MQLONG) - input/output

Completion code, valid values for which are:

MQCC_OK

Successful completion.

MQCC_WARNING

Partial completion

MQCC_FAILED

Call failed

Reason (MQLONG) - input/output

Reason code qualifying the completion code.

If the completion code is MQCC_OK, the only valid value is:

MQRC_NONE

(0, x'000') No reason to report.
If the completion code is MQCC_FAILED or MQCC_WARNING, the exit function can set the reason code field to any valid MQRC_* value.

C language invocation

Parent topic: The API exit functions

This build: January 26, 2011 11:20:26

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14930_

2.12.3.6.2.12.1. C language invocation

The queue manager logically defines the following variables:

 MQAXP ExitParms; /* Exit parameter structure */

 MQAXC ExitContext; /* Exit context structure */

 MQHCONN Hconn; /* Connection handle */

 PMQOD pObjDesc; /* Ptr to object descriptor */

 MQLONG Options; /* Open options */

 PMQHOBJ pHobj; /* Ptr to object handle */

 MQLONG CompCode; /* Completion code */

 MQLONG Reason; /* Reason code */

The queue manager then logically calls the exit as follows:

MQ_OPEN_EXIT (&ExitParms, &ExitContext, &Hconn, &pObjDesc, &Options,

 &pHobj, &CompCode, &Reason);

Your exit must match the following C function prototype:

void MQENTRY MQ_OPEN_EXIT (

PMQAXP pExitParms, /* Address of exit parameter structure */

PMQAXC pExitContext, /* Address of exit context structure */

PMQHCONN pHconn, /* Address of connection handle */

PPMQOD ppObjDesc, /* Address of ptr to object descriptor */

PMQLONG pOptions, /* Address of open options */

PPMQHOBJ ppHobj, /* Address of ptr to object handle */

PMQLONG pCompCode, /* Address of completion code */

PMQLONG pReason); /* Address of reason code qualifying

 completion code */

Parent topic: Open - MQ_OPEN_EXIT

This build: January 26, 2011 11:20:26

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14940_

2.12.3.6.2.13. Put - MQ_PUT_EXIT

MQ_PUT_EXIT provides a put exit function to perform before and after MQPUT call processing. Use function identifier MQXF_PUT with exit reasons
MQXR_BEFORE and MQXR_AFTER to register before and after MQPUT call exit functions.

The interface to this function is:

MQ_PUT_EXIT (&ExitParms, &ExitContext, &Hconn, &Hobj, &pMsgDesc,

 &pPutMsgOpts, &BufferLength, &pBuffer, &CompCode, &Reason)

where the parameters are:

ExitParms (MQAXP) - input/output

Exit parameter structure.

ExitContext (MQAXC) - input/output

Exit context structure.

Hconn (MQHCONN) - input

Connection handle.

Hobj (MQHOBJ) - input/output

Object handle.

Page 179 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

pMsgDesc (PMQMD) - input/output

Pointer to message descriptor.

pPutMsgOpts (PMQPMO) - input/output

Pointer to put message options.

BufferLength (MQLONG) - input/output

Message buffer length.

pBuffer (PMQBYTE) - input/output

Pointer to message buffer.

CompCode (MQLONG) - input/output

Completion code, valid values for which are:

MQCC_OK

Successful completion.

MQCC_WARNING

Partial completion.

MQCC_FAILED

Call failed

Reason (MQLONG) - input/output

Reason code qualifying the completion code.

If the completion code is MQCC_OK, the only valid value is:

MQRC_NONE

(0, x'000') No reason to report.
If the completion code is MQCC_FAILED or MQCC_WARNING, the exit function can set the reason code field to any valid MQRC_* value.

C language invocation

Parent topic: The API exit functions

This build: January 26, 2011 11:20:26

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14950_

2.12.3.6.2.13.1. C language invocation

The queue manager logically defines the following variables:

 MQAXP ExitParms; /* Exit parameter structure */

 MQAXC ExitContext; /* Exit context structure */

 MQHCONN Hconn; /* Connection handle */

 MQHOBJ Hobj; /* Object handle */

 PMQMD pMsgDesc; /* Ptr to message descriptor */

 PMQPMO pPutMsgOpts; /* Ptr to put message options */

 MQLONG BufferLength; /* Message buffer length */

 PMQBYTE pBuffer; /* Ptr to message data */

 MQLONG CompCode; /* Completion code */

 MQLONG Reason; /* Reason code */

The queue manager then logically calls the exit as follows:

MQ_PUT_EXIT (&ExitParms, &ExitContext, &Hconn, &Hobj, &pMsgDesc,

 &pPutMsgOpts, &BufferLength, &pBuffer, &CompCode, &Reason)

Your exit must match the following C function prototype:

void MQENTRY MQ_PUT_EXIT (

PMQAXP pExitParms, /* Address of exit parameter structure */

PMQAXC pExitContext, /* Address of exit context structure */

PMQHCONN pHconn, /* Address of connection handle */

PMQHOBJ pHobj, /* Address of object handle */

PPMQMD ppMsgDesc, /* Address of ptr to message descriptor */

PPMQPMO ppPutMsgOpts, /* Address of ptr to put message options */

PMQLONG pBufferLength, /* Address of message buffer length */

PPMQBYTE ppBuffer, /* Address of ptr to message buffer */

PMQLONG pCompCode, /* Address of completion code */

PMQLONG pReason); /* Address of reason code qualifying

 completion code */

Parent topic: Put - MQ_PUT_EXIT

This build: January 26, 2011 11:20:26

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14960_

2.12.3.6.2.14. Put1 - MQ_PUT1_EXIT

MQ_PUT1_EXIT provides a put one message only exit function to perform before and after MQPUT1 call processing. Use function identifier MQXF_PUT1 with
exit reasons MQXR_BEFORE and MQXR_AFTER to register before and after MQPUT1 call exit functions.

The interface to this function is:

MQ_PUT1_EXIT (&ExitParms, &ExitContext, &Hconn, &pObjDesc, &pMsgDesc,

 &pPutMsgOpts, &BufferLength, &pBuffer, &CompCode, &Reason)

where the parameters are:

ExitParms (MQAXP) - input/output

Page 180 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Exit parameter structure.

ExitContext (MQAXC) - input/output

Exit context structure.

Hconn (MQHCONN) - input

Connection handle.

pObjDesc (PMQOD) - input/output

Pointer to object descriptor.

pMsgDesc (PMQMD) - input/output

Pointer to message descriptor.

pPutMsgOpts (PMQPMO) - input/output

Pointer to put message options.

BufferLength (MQLONG) - input/output

Message buffer length.

pBuffer (PMQBYTE) - input/output

Pointer to message buffer.

CompCode (MQLONG) - input/output

Completion code, valid values for which are:

MQCC_OK

Successful completion.

MQCC_WARNING

Partial completion.

MQCC_FAILED

Call failed

Reason (MQLONG) - input/output

Reason code qualifying the completion code.

If the completion code is MQCC_OK, the only valid value is:

MQRC_NONE

(0, x'000') No reason to report.
If the completion code is MQCC_FAILED or MQCC_WARNING, the exit function can set the reason code field to any valid MQRC_* value.

C language invocation

Parent topic: The API exit functions

This build: January 26, 2011 11:20:26

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14970_

2.12.3.6.2.14.1. C language invocation

The queue manager logically defines the following variables:

 MQAXP ExitParms; /* Exit parameter structure */

 MQAXC ExitContext; /* Exit context structure */

 MQHCONN Hconn; /* Connection handle */

 PMQOD pObjDesc; /* Ptr to object descriptor */

 PMQMD pMsgDesc; /* Ptr to message descriptor */

 PMQPMO pPutMsgOpts; /* Ptr to put message options */

 MQLONG BufferLength; /* Message buffer length */

 PMQBYTE pBuffer; /* Ptr to message data */

 MQLONG CompCode; /* Completion code */

 MQLONG Reason; /* Reason code */

The queue manager then logically calls the exit as follows:

MQ_PUT1_EXIT (&ExitParms, &ExitContext, &Hconn, &pObjDesc, &pMsgDesc,

 &pPutMsgOpts, &BufferLength, &pBuffer, &CompCode, &Reason)

Your exit must match the following C function prototype:

void MQENTRY MQ_PUT1_EXIT (

PMQAXP pExitParms, /* Address of exit parameter structure */

PMQAXC pExitContext, /* Address of exit context structure */

PMQHCONN pHconn, /* Address of connection handle */

PPMQOD ppObjDesc, /* Address of ptr to object descriptor */

PPMQMD ppMsgDesc, /* Address of ptr to message descriptor */

PPMQPMO ppPutMsgOpts, /* Address of ptr to put message options */

PMQLONG pBufferLength, /* Address of message buffer length */

PPMQBYTE ppBuffer, /* Address of ptr to message buffer */

PMQLONG pCompCode, /* Address of completion code */

PMQLONG pReason); /* Address of reason code qualifying

 completion code */

Parent topic: Put1 - MQ_PUT1_EXIT

This build: January 26, 2011 11:20:26

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14980_

2.12.3.6.2.15. Set - MQ_SET_EXIT

MQ_SET_EXIT provides an inquire exit function to perform before and after MQSET call processing. Use function identifier MQXF_SET with exit reasons

Page 181 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

MQXR_BEFORE and MQXR_AFTER to register before and after MQSET call exit functions.

The interface to this function is:

MQ_SET_EXIT (&ExitParms, &ExitContext, &Hconn, &Hobj, &SelectorCount,

 &pSelectors, &IntAttrCount, &pIntAttrs, &CharAttrLength,

 &pCharAttr, &CompCode, &Reason)

where the parameters are:

ExitParms (MQAXP) - input/output

Exit parameter structure.

ExitContext (MQAXC) - input/output

Exit context structure.

Hconn (MQHCONN) - input

Connection handle.

Hobj (MQHOBJ) - input

Object handle.

SelectorCount (MQLONG) - input

Count of selectors

pSelectors (PMQLONG) - input/output

Pointer to array of selector values.

IntAttrCount (MQLONG) - input

Count of integer attributes.

pIntAttrs (PMQLONG) - input/output

Pointer to array of integer attribute values.

CharAttrLength (MQLONG) - input/output

Character attributes array length.

pCharAttrs (PMQCHAR) - input/output

Pointer to character attribute values.

CompCode (MQLONG) - input/output

Completion code, valid values for which are:

MQCC_OK

Successful completion.

MQCC_WARNING

Partial completion.

MQCC_FAILED

Call failed

Reason (MQLONG) - input/output

Reason code qualifying the completion code.

If the completion code is MQCC_OK, the only valid value is:

MQRC_NONE

(0, x'000') No reason to report.
If the completion code is MQCC_FAILED or MQCC_WARNING, the exit function can set the reason code field to any valid MQRC_* value.

C language invocation

Parent topic: The API exit functions

This build: January 26, 2011 11:20:26

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg14990_

2.12.3.6.2.15.1. C language invocation

The queue manager logically defines the following variables:

 MQAXP ExitParms; /* Exit parameter structure */

 MQAXC ExitContext; /* Exit context structure */

 MQHCONN Hconn; /* Connection handle */

 MQHOBJ Hobj; /* Object handle */

 MQLONG SelectorCount; /* Count of selectors */

 PMQLONG pSelectors; /* Ptr to array of attribute selectors */

 MQLONG IntAttrCount; /* Count of integer attributes */

 PMQLONG pIntAttrs; /* Ptr to array of integer attributes */

 MQLONG CharAttrLength; /* Length of char attributes array */

 PMQCHAR pCharAttrs; /* Ptr to character attributes */

 MQLONG CompCode; /* Completion code */

 MQLONG Reason; /* Reason code qualifying completion code */

The queue manager then logically calls the exit as follows:

MQ_SET_EXIT (&ExitParms, &ExitContext, &Hconn, &Hobj, &SelectorCount,

 &pSelectors, &IntAttrCount, &pIntAttrs, &CharAttrLength,

 &pCharAttrs, &CompCode, &Reason)

Your exit must match the following C function prototype:

void MQENTRY MQ_SET_EXIT (

PMQAXP pExitParms, /* Address of exit parameter structure */

PMQAXC pExitContext, /* Address of exit context structure */

PMQHCONN pHconn, /* Address of connection handle */

PMQHOBJ pHobj, /* Address of object handle */

PMQLONG pSelectorCount, /* Address of selector count */

PPMQLONG ppSelectors, /* Address of ptr to array of selectors */

Page 182 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

PMQLONG pIntAttrCount; /* Address of count of integer attributes */

PPMQLONG ppIntAttrs, /* Address of ptr to array of integer attributes */

PMQLONG pCharAttrLength, /* Address of character attribute length */

PPMQCHAR ppCharAttrs, /* Address of ptr to character attributes array */

PMQLONG pCompCode, /* Address of completion code */

PMQLONG pReason); /* Address of reason code qualifying completion

 code */

Parent topic: Set - MQ_SET_EXIT

This build: January 26, 2011 11:20:26

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15000_

2.12.3.6.2.16. Status - MQ_STAT_EXIT

MQ_STAT_EXIT provides a status exit function to perform before and after MQSTAT call processing. Use function identifier MQXF_STAT with exit reasons
MQXR_BEFORE and MQXR_AFTER to register before and after MQSTAT call exit functions.

The interface to this function is:

MQ_STAT_EXIT (&ExitParms, &ExitContext, &Hconn, &Type, &pStatus

 &CompCode, &Reason)

where the parameters are:

ExitParms (MQAXP) - input/output

Exit parameter structure.

ExitContext (MQAXC) - input/output

Exit context structure.

Hconn (MQHCONN) - input

Connection handle.

Type (MQLONG) - input

Type of status information to retrieve.

pStatus (PMQSTS) - output

Pointer to status buffer.

CompCode (MQLONG) - input/output

Completion code, valid values for which are:

MQCC_OK

Successful completion.

MQCC_WARNING

Partial completion.

MQCC_FAILED

Call failed

Reason (MQLONG) - input/output

Reason code qualifying the completion code.

If the completion code is MQCC_OK, the only valid value is:

MQRC_NONE

(0, x'000') No reason to report.
If the completion code is MQCC_FAILED or MQCC_WARNING, the exit function can set the reason code field to any valid MQRC_* value.

C language invocation

Parent topic: The API exit functions

This build: January 26, 2011 11:20:26

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15003_

2.12.3.6.2.16.1. C language invocation

Your exit must match the following C function prototype:

void MQENTRY MQ_STAT_EXIT (

PMQAXP pExitParms, /* Address of exit parameter structure */

PMQAXC pExitContext, /* Address of exit context structure */

PMQHCONN pHconn, /* Address of connection handle */

PMQLONG pType /* Address of status type */

PPMQSTS ppStatus /* Address of status buffer */

PMQLONG pCompCode, /* Address of completion code */

PMQLONG pReason); /* Address of reason code qualifying completion

 code */

Parent topic: Status - MQ_STAT_EXIT

This build: January 26, 2011 11:20:26

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15006_

Page 183 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

2.12.3.6.2.17. Termination - MQ_TERM_EXIT

MQ_TERM_EXIT provides connection level termination, registered with a function identifier of MQXF_TERM and ExitReason MQXR_CONNECTION. If
registered, MQ_TERM_EXIT is called once for every disconnect request.

As part of the termination, storage no longer required by the exit can be released, and any clean up required can be performed.

If an MQ_TERM_EXIT fails with MQXCC_FAILED, the queue manager returns from the MQDISC that called it with MQCC_FAILED and
MQRC_API_EXIT_ERROR.

If the queue manager encounters an error while terminating the API exit function execution environment after invoking the last MQ_TERM_EXIT, the queue
manager returns from the MQDISC call that invoked MQ_TERM_EXIT with MQCC_FAILED and MQRC_API_EXIT_TERM_ERROR

The interface to this function is:

MQ_TERM_EXIT (&ExitParms, &ExitContext, &CompCode, &Reason)

where the parameters are:

ExitParms (MQAXP) - input/output

Exit parameter structure.

ExitContext (MQAXC) - input/output

Exit context structure.

CompCode (MQLONG) - input/output

Completion code, valid values for which are:

MQCC_OK

Successful completion.

MQCC_FAILED

Call failed

Reason (MQLONG) - input/output

Reason code qualifying the completion code.

If the completion code is MQCC_OK, the only valid value is:

MQRC_NONE

(0, x'000') No reason to report.
If the completion code is MQCC_FAILED, the exit function can set the reason code field to any valid MQRC_* value.

The CompCode and Reason returned to the application depend on the value of the ExitResponse field in MQAXP.

C language invocation

Parent topic: The API exit functions

This build: January 26, 2011 11:20:27

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15010_

2.12.3.6.2.17.1. C language invocation

The queue manager logically defines the following variables:

 MQAXP ExitParms; /* Exit parameter structure */

 MQAXC ExitContext; /* Exit context structure */

 MQLONG CompCode; /* Completion code */

 MQLONG Reason; /* Reason code */

The queue manager then logically calls the exit as follows:

MQ_TERM_EXIT (&ExitParms, &ExitContext, &CompCode, &Reason)

Your exit must match the following C function prototype:

void MQENTRY MQ_TERM_EXIT (

PMQAXP pExitParms, /* Address of exit parameter structure */

PMQAXC pExitContext, /* Address of exit context structure */

PMQLONG pCompCode, /* Address of completion code */

PMQLONG pReason); /* Address of reason code qualifying

 completion code */

Parent topic: Termination - MQ_TERM_EXIT

This build: January 26, 2011 11:20:27

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15020_

2.12.3.6.2.18. Register subscription - MQ_SUB_EXIT

MQ_SUB_EXIT provides a subscription request exit function to perform before and after subscription reregistration processing. Use function identifier
MQXF_SUB with exit reasons MQXR_BEFORE and MQXR_AFTER to register before and after subscription registrationcall exit functions.

The interface to this function is:

MQ_SUB_EXIT (&ExitParms, &ExitContext, &Hconn, &pSubDesc, &pHobj, &pHsub, &CompCode, &Reason)

where the parameters are:

ExitParms (MQAXP) - input/output

Exit parameter structure.

Page 184 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

ExitContext (MQAXC) - input/output

Exit context structure.

Hconn (MQHCONN) - input/output

Connection handle.

pSubDesc - input/output

Array of attribute selectors.

pHobj - input/output

Object handle

pHsub (MQHOBJ) input/output

Subscription handle

CompCode (MQLONG) - input/output

Completion code, valid values for which are:

MQCC_OK

Successful completion.

MQCC_WARNING

Partial completion.

MQCC_FAILED

Call failed

Reason (MQLONG) - input/output

Reason code qualifying the completion code.

If the completion code is MQCC_OK, the only valid value is:

MQRC_NONE

(0, x'000') No reason to report.
If the completion code is MQCC_FAILED or MQCC_WARNING, the exit function can set the reason code field to any valid MQRC_* value.

C language invocation - MQ_SUB_EXIT

Parent topic: The API exit functions

This build: January 26, 2011 11:22:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg20580_

2.12.3.6.2.18.1. C language invocation - MQ_SUB_EXIT

The queue manager logically defines the following variables:

 MQAXP ExitParms; /* Exit parameter structure */

 MQAXC ExitContext; /* Exit context structure */

 MQHCONN Hconn; /* Connection handle */

 PMQSD pSubDesc; /* Subscription descriptor */

 PMQHOBJ pHobj; /* Object Handle */

 PMQHOBJ pHsub; /* Subscription handle */

 MQLONG CompCode; /* Completion code */

 MQLONG Reason; /* Reason code qualifying completion code */

The queue manager then logically calls the exit as follows:

MQ_SUBRQ_EXIT (&ExitParms, &ExitContext, &Hconn, &pSubDesc, &pHobj, &pHsub,

 &CompCode, &Reason);

Your exit must match the following C function prototype:

 PMQAXP pExitParms; /* Exit parameter structure */

 PMQAXC pExitContext; /* Exit context structure */

 PMQHCONN pHconn; /* Connection handle */

 PPMQSD ppSubDesc; /* Subscription descriptor */

 PPMQHOBJ ppHobj; /* Object Handle */

 PPMQHOBJ ppHsub; /* Subscription handle */

 PMQLONG pCompCode; /* Completion code */

 PMQLONG pReason; /* Reason code qualifying completion code */

Parent topic: Register subscription - MQ_SUB_EXIT

This build: January 26, 2011 11:22:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg20610_

2.12.3.6.2.19. Subscription request - MQ_SUBRQ_EXIT

MQ_SUBRQ_EXIT provides a subscription request exit function to perform before and after subscription request processing. Use function identifier
MQXF_SUBRQ with exit reasons MQXR_BEFORE and MQXR_AFTER to register before and after subscription request call exit functions.

The interface to this function is:

MQ_SUBRQ_EXIT (&ExitParms, &ExitContext, &Hconn, &pHsub, &Action, &pSubRqOpts,

 &CompCode, &Reason)

where the parameters are:

ExitParms (MQAXP) - input/output

Exit parameter structure.

ExitContext (MQAXC) - input/output

Page 185 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Exit context structure.

Hconn (MQHCONN) - input/output

Connection handle.

pHsub (MQHOBJ) input/output

Subscription handle

Action (MQLONG) input/output

Action

pSubRqOpts (MQSRO) input/output

CompCode (MQLONG) - input/output

Completion code, valid values for which are:

MQCC_OK

Successful completion.

MQCC_WARNING

Partial completion.

MQCC_FAILED

Call failed

Reason (MQLONG) - input/output

Reason code qualifying the completion code.

If the completion code is MQCC_OK, the only valid value is:

MQRC_NONE

(0, x'000') No reason to report.
If the completion code is MQCC_FAILED or MQCC_WARNING, the exit function can set the reason code field to any valid MQRC_* value.

C language invocation - MQ_SUBRQ_EXIT

Parent topic: The API exit functions

This build: January 26, 2011 11:22:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg20570_

2.12.3.6.2.19.1. C language invocation - MQ_SUBRQ_EXIT

The queue manager logically defines the following variables:

 MQAXP ExitParms; /* Exit parameter structure */

 MQAXC ExitContext; /* Exit context structure */

 MQHCONN Hconn; /* Connection handle */

 PMQLONG pHsub; /* Subscription handle */

 MQLONG Action; /* Action */

 PMQSRO pSubRqOpts; /* Subscription Request Options */

 MQLONG CompCode; /* Completion code */

 MQLONG Reason; /* Reason code qualifying completion code */

The queue manager then logically calls the exit as follows:

MQ_SUBRQ_EXIT (&ExitParms, &ExitContext, &Hconn, &pHsub, &Action, &pSubRqOpts,

 &CompCode, &Reason);

Your exit must match the following C function prototype:

void MQENTRY MQ_SUBRQ_EXIT (

PMQAXP pExitParms, /* Address of exit parameter structure */

PMQAXC pExitContext, /* Address of exit context structure */

PMQHCONN pHconn, /* Address of connection handle */

PPMQHOBJ ppHsub; /* Address of Subscription handle */

PMQLONG pAction; /* Address of Action */

PPMQSRO ppSubRqOpts; /* Address of Subscription Request Options */

PMQLONG pCompCode, /* Address of completion code */

PMQLONG pReason); /* Address of reason code qualifying completion

 code */

Parent topic: Subscription request - MQ_SUBRQ_EXIT

This build: January 26, 2011 11:22:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg20620_

2.12.3.7. General information on invoking exit functions

This section provides some general guidance to help you to plan your exits, particularly related to handling errors and unexpected events.

What happens when exits fail
If an exit function abnormally terminates after a destructive, out of syncpoint, MQGET call but before the message has been passed to the application,
the exit handler can recover from the failure and pass control to the application.

What if the ExitResponse fields are incorrectly set

Parent topic: Reference information

This build: January 26, 2011 11:20:27

Notices | Trademarks | Downloads | Library | Support | Feedback

Page 186 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15030_

2.12.3.7.1. What happens when exits fail

If an exit function abnormally terminates after a destructive, out of syncpoint, MQGET call but before the message has been passed to the application, the
exit handler can recover from the failure and pass control to the application.

In this case, the message might be lost. This is similar to what happens when an application fails immediately after receiving a message from a queue.

The MQGET call might complete with MQCC_FAILED and MQRC_API_EXIT_ERROR.

If a before API call exit function terminates abnormally, the exit handler can recover from the failure and pass control to the application without processing
the API call. In this event, the exit function must recover any resources that it owns.

If chained exits are in use, the after API call exits for any before API call exits that had successfully been driven can themselves be driven. The API call might
fail with MQCC_FAILED and MQRC_API_EXIT_ERROR.

Example error handling for exit functions

Parent topic: General information on invoking exit functions

This build: January 26, 2011 11:20:27

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15040_

2.12.3.7.1.1. Example error handling for exit functions

The following diagram shows the points (eN) at which errors can occur. It is only an example to show how exits behave and should be read together with the
following table. In this example, two exit functions are invoked both before and after each API call to show the behavior with chained exits.

Application ErrPt Exit function API call

----------- ----- ------------- --------

Start

MQCONN -->

 e1

 MQ_INIT_EXIT

 e2

 before MQ_CONNX_EXIT 1

 e3

 before MQ_CONNX_EXIT 2

 e4

 --> MQCONN

 e5

 after MQ_CONNX_EXIT 2

 e6

 after MQ_CONNX_EXIT 1

 e7

 <--

MQOPEN -->

 before MQ_OPEN_EXIT 1

 e8

 before MQ_OPEN_EXIT 2

 e9

 --> MQOPEN

 e10

 after MQ_OPEN_EXIT 2

 e11

 after MQ_OPEN_EXIT 1

 e12

 <--

MQPUT -->

 before MQ_PUT_EXIT 1

 e13

 before MQ_PUT_EXIT 2

 e14

 --> MQPUT

 e15

 after MQ_PUT_EXIT 2

 e16

 after MQ_PUT_EXIT 1

 e17

 <--

MQCLOSE -->

 before MQ_CLOSE_EXIT 1

 e18

 before MQ_CLOSE_EXIT 2

 e19

 --> MQCLOSE

 e20

 after MQ_CLOSE_EXIT 2

 e21

 after MQ_CLOSE_EXIT 1

 e22

 <--

MQDISC -->

 before MQ_DISC_EXIT 1

 e23

 before MQ_DISC_EXIT 2

 e24

 --> MQDISC

 e25

 after MQ_DISC_EXIT 2

Page 187 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

 e26

 after MQ_DISC_EXIT 1

 e27

 <--

end

The following table lists the actions to be taken at each error point. Only a subset of the error points have been covered, as the rules shown here can apply
to all others. It is the actions that specify the intended behavior in each case.

Table 1. API exit errors and appropriate actions to take

ErrPt Description Actions

e1 Error while setting up environment setup. 1. Undo environment setup as required

2. Drive no exit functions

3. Fail MQCONN with MQCC_FAILED, MQRC_API_EXIT_LOAD_ERROR

e2 MQ_INIT_EXIT function completes with:

� MQXCC_FAILED

� MQXCC_*

� For MQXCC_FAILED:

1. Clean up environment

2. Fail MQCONN with MQCC_FAILED, MQRC_API_EXIT_INIT_ERROR

� For MQXCC_*

1. Act as for the values of MQXCC_* and MQXR2_*1

2. Clean up environment

e3 Before MQ_CONNX_EXIT 1 function completes
with:

� MQXCC_FAILED

� MQXCC_*

� For MQXCC_FAILED:

1. Drive MQ_TERM_EXIT function

2. Clean up environment

3. Fail MQCONN call with MQCC_FAILED, MQRC_API_EXIT_ERROR

� For MQXCC_*

1. Act as for the values of MQXCC_* and MQXR2_*1

2. Drive MQ_TERM_EXIT function if required

3. Clean up environment if required

e4 Before MQ_CONNX_EXIT 2 function completes
with:

� MQXCC_FAILED

� MQXCC_*

� For MQXCC_FAILED:

1. Drive after MQ_CONNX_EXIT 1 function

2. Drive MQ_TERM_EXIT function

3. Clean up environment

4. Fail MQCONN call with MQCC_FAILED, MQRC_API_EXIT_ERROR

� For MQXCC_*

1. Act as for the values of MQXCC_* and MQXR2_*1

2. Drive after MQ_CONNX_EXIT 1 function if exit not suppressed

3. Drive MQ_TERM_EXIT function if required

4. Clean up environment if required

e5 MQCONN call fails. 1. Pass MQCONN CompCode and Reason

2. Drive after MQ_CONNX_EXIT 2 function if the before MQ_CONNX_EXIT 2
succeeded and the exit is not suppressed

3. Drive after MQ_CONNX_EXIT 1 function if the before MQ_CONNX_EXIT 1
succeeded and the exit is not suppressed

4. Drive MQ_TERM_EXIT function

5. Clean up environment

e6 After MQ_CONNX_EXIT 2 function completes
with:

� MQXCC_FAILED

� MQXCC_*

� For MQXCC_FAILED:

1. Drive after MQ_CONNX_EXIT 1 function

2. Complete MQCONN call with MQCC_FAILED, MQRC_API_EXIT_ERROR

� For MQXCC_*

1. Act as for the values of MQXCC_* and MQXR2_*1

2. Drive after MQ_CONNX_EXIT 1 function if required

e7 After MQ_CONNX_EXIT 1 function completes
with:

� MQXCC_FAILED

� MQXCC_*

� For MQXCC_FAILED, complete MQCONN call with MQCC_FAILED,
MQRC_API_EXIT_ERROR

� For MQXCC_*, act as for the values of MQXCC_* and MQXR2_*1

e8 Before MQ_OPEN_EXIT 1 function completes
with:

� MQXCC_FAILED

� MQXCC_*

� For MQXCC_FAILED, complete MQOPEN call with MQCC_FAILED,
MQRC_API_EXIT_ERROR

� For MQXCC_*, act as for the values of MQXCC_* and MQXR2_*1

e9 Before MQ_OPEN_EXIT 2 function completes
with:

� MQXCC_FAILED

� MQXCC_*

� For MQXCC_FAILED:

1. Drive after MQ_OPEN_EXIT 1 function

2. Complete MQOPEN call with MQCC_FAILED, MQRC_API_EXIT_ERROR

� For MQXCC_*, act as for the values of MQXCC_* and MQXR2_*1

e10 MQOPEN call fails 1. Pass MQOPEN CompCode and Reason

2. Drive after MQ_OPEN_EXIT 2 function if exit not suppressed

3. Drive after MQ_OPEN_EXIT 1 function if exit not suppressed and if chained
exits not suppressed

e11 After MQ_OPEN_EXIT 2 function completes
with:

� For MQXCC_FAILED:

1. Drive after MQ_OPEN_EXIT 1 function

Page 188 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Note:

1. The values of MQXCC_* and MQXR2_* and their corresponding actions are defined in How queue managers process exit functions.

Parent topic: What happens when exits fail

This build: January 26, 2011 11:20:27

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15050_

2.12.3.7.2. What if the ExitResponse fields are incorrectly set

If the ExitResponse field is set to a value other than one of the supported values, the following actions apply:

� For a before MQCONN or MQDISC API exit function:

� The ExitResponse2 value is ignored.

� No further before exit functions in the exit chain (if any) are invoked; the API call itself is not issued.

� For any before exits that were successfully called, the after exits are called in reverse order.

� If registered, the termination exit functions for those before MQCONN or MQDISC exit functions in the chain that were successfully invoked are
driven to clean up after these exit functions.

� The MQCONN or MQDISC call fails with MQRC_API_EXIT_ERROR.

� For a before WebSphere® MQ API exit function other than MQCONN or MQDISC:

� The ExitResponse2 value is ignored.

� No further before or after data conversion functions in the exit chain (if any) are invoked.

� For any before exits that were successfully called, the after exits are called in reverse order.

� The WebSphere MQ API call itself is not issued.

� The WebSphere MQ API call fails with MQRC_API_EXIT_ERROR.

� For an after MQCONN or MQDISC API exit function:

� The ExitResponse2 value is ignored.

� The remaining exit functions that were successfully called before the API call are called in reverse order.

� If registered, the termination exit functions for those before or after MQCONN or MQDISC exit functions in the chain that were successfully
invoked are driven to clean up after the exit.

� A CompCode of the more severe of MQCC_WARNING and the CompCode returned by the exit is returned to the application.

� A Reason of MQRC_API_EXIT_ERROR is returned to the application.

� The WebSphere MQ API call is successfully issued.

� For an after WebSphere MQ API call exit function other than MQCONN or MQDISC:

� The ExitResponse2 value is ignored.

� The remaining exit functions that were successfully called before the API call are called in reverse order.

� A CompCode of the more severe of MQCC_WARNING and the CompCode returned by the exit is returned to the application.

� A Reason of MQRC_API_EXIT_ERROR is returned to the application.

� The WebSphere MQ API call is successfully issued.

� For the before data conversion on get exit function:

� The ExitResponse2 value is ignored.

� The remaining exit functions that were successfully called before the API call are called in reverse order.

� The message is not converted, and the unconverted message is returned to the application.

� A CompCode of the more severe of MQCC_WARNING and the CompCode returned by the exit is returned to the application.

� A Reason of MQRC_API_EXIT_ERROR is returned to the application.

� The WebSphere MQ API call is successfully issued.

Note: As the error is with the exit, it is better to return MQRC_API_EXIT_ERROR than to return MQRC_NOT_CONVERTED.

If an exit function sets the ExitResponse2 field to a value other than one of the supported values, a value of MQXR2_DEFAULT_CONTINUATION is assumed
instead.

Parent topic: General information on invoking exit functions

This build: January 26, 2011 11:20:27

Notices | Trademarks | Downloads | Library | Support | Feedback

� MQXCC_FAILED

� MQXCC_*

2. Complete MQOPEN call with MQCC_FAILED, MQRC_API_EXIT_ERROR

� For MQXCC_*

1. Act as for the values of MQXCC_* and MQXR2_*1

2. Drive after MQ_OPEN_EXIT 1 function if exit not suppressed

e25 After MQ_DISC_EXIT 2 function completes
with:

� MQXCC_FAILED

� MQXCC_*

� For MQXCC_FAILED:

1. Drive after MQ_DISC_EXIT 1 function

2. Drive MQ_TERM_EXIT function

3. Clean up exit execution environment

4. Complete MQDISC call with MQCC_FAILED, MQRC_API_EXIT_ERROR

� For MQXCC_*

1. Act as for the values of MQXCC_* and MQXR2_*1

2. Drive MQ_TERM_EXIT function

3. Clean up exit execution environment

Page 189 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15060_

2.13. Using and writing applications on WebSphere MQ for z/OS

WebSphere® MQ for z/OS® applications can be made up from programs that run in many different environments. This means that they can take advantage
of the facilities available in more than one environment.

This chapter explains the WebSphere MQ facilities available to programs running in each of the supported environments. In addition,

� For information on using the WebSphere MQ-CICS bridge, see Using and writing WebSphere MQ-CICS bridge applications for z/OS.

� For information on using IMS™ and the IMS Bridge, see IMS and IMS Bridge applications on WebSphere MQ for z/OS.

This chapter introduces WebSphere MQ for z/OS applications, under these headings:

� Environment-dependent WebSphere MQ for z/OS functions

� Program debugging facilities

� Syncpoint support

� Recovery support

� The WebSphere MQ for z/OS interface with the application environment

� Writing z/OS UNIX System Services applications

� The API-crossing exit for z/OS

� WebSphere MQ Workflow

� Application programming with shared queues

Important notice

Distributed queuing using CICS ISC is retained for compatibility with previous releases; there will be no further enhancements to this function. Therefore you
are recommended to use the channel initiator for distributed queuing.

Environment-dependent WebSphere MQ for z/OS functions

Program debugging facilities
WebSphere MQ for z/OS provides a trace facility that you can use to debug your programs in all environments.

Syncpoint support
Synchronizing the start and end of units of work is necessary in a transaction processing environment so that transaction processing can be used
safely.

Recovery support
If the connection between a queue manager and a CICS or IMS system is broken during a transaction, some units of work might not be backed out
successfully.

The WebSphere MQ for z/OS interface with the application environment
To allow applications running in different environments to send and receive messages through a message queuing network, WebSphere MQ for z/OS
provides an adapter for each of the environments it supports.

Writing z/OS UNIX System Services applications

The API-crossing exit for z/OS

WebSphere MQ Workflow
WebSphere MQ Workflow on z/OS is a tool that helps companies improve their business processes.

Application programming with shared queues
This section discusses some of the factors that you need to take into account when designing new applications to use shared queues, and when
migrating existing applications to the shared-queue environment.

Parent topic: Writing a WebSphere MQ application

This build: January 26, 2011 11:20:28

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15070_

2.13.1. Environment-dependent WebSphere MQ for z/OS functions

The main differences to be considered between WebSphere® MQ functions in the environments in which WebSphere MQ for z/OS® runs are:

� WebSphere MQ for z/OS supplies the following trigger monitors:

� CKTI for use in the CICS® environment

� CSQQTRMN for use in the IMS™ environment

You must write your own module to start applications in other environments.

� Syncpointing using two-phase commit is supported in the CICS and IMS environments. It is also supported in the z/OS batch environment using
transaction management and recoverable resource manager services (RRS). Single-phase commit is supported in the z/OS environment by WebSphere
MQ itself.

� For the batch and IMS environments, the MQI provides calls to connect programs to, and to disconnect them from, a queue manager. Programs can
connect to more than one queue manager.

� A CICS system can connect to only one queue manager. This can be made to happen when CICS is initiated if the subsystem name is defined in the
CICS system startup job. The MQI connect and disconnect calls are tolerated, but have no effect, in the CICS environment.

� The API-crossing exit allows a program to intervene in the processing of all MQI calls. This exit is available in the CICS environment only.

� In CICS on multiprocessor systems, some performance advantage is gained because MQI calls can be executed under multiple z/OS TCBs. For more
information, see the WebSphere MQ for z/OS Concepts and Planning Guide.

These features are summarized in Table 1.

Page 190 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Parent topic: Using and writing applications on WebSphere MQ for z/OS

This build: January 26, 2011 11:20:28

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15080_

2.13.2. Program debugging facilities

WebSphere® MQ for z/OS® provides a trace facility that you can use to debug your programs in all environments.

Additionally, in the CICS® environment you can use:

� The CICS Execution Diagnostic Facility (CEDF)

� The CICS Trace Control Transaction (CETR)

� The WebSphere MQ for z/OS API-crossing exit

On the z/OS platform, you can use any available interactive debugging tool that is supported by the programming language that you are using.

Parent topic: Using and writing applications on WebSphere MQ for z/OS

This build: January 26, 2011 11:20:29

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15090_

2.13.3. Syncpoint support

Synchronizing the start and end of units of work is necessary in a transaction processing environment so that transaction processing can be used safely.

This is fully supported by WebSphere® MQ for z/OS® in the CICS® and IMS™ environments. Full support means cooperation between resource managers
so that units of work can be committed or backed out in unison, under control of CICS or IMS. Examples of resource managers are DB2®, CICS File Control,
IMS, and WebSphere MQ for z/OS.

z/OS batch applications can use WebSphere MQ for z/OS calls to give a single-phase commit facility. This means that an application-defined set of queue
operations can be committed, or backed out, without reference to other resource managers.

Two-phase commit is also supported in the z/OS batch environment using transaction management and recoverable resource manager services (RRS). For
further information see Transaction management and recoverable resource manager services.

Parent topic: Using and writing applications on WebSphere MQ for z/OS

This build: January 26, 2011 11:20:29

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15100_

2.13.4. Recovery support

If the connection between a queue manager and a CICS® or IMS™ system is broken during a transaction, some units of work might not be backed out
successfully.

However, these units of work are resolved by the queue manager (under the control of the syncpoint manager) when its connection with the CICS or IMS
system is reestablished.

Parent topic: Using and writing applications on WebSphere MQ for z/OS

This build: January 26, 2011 11:20:29

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15110_

2.13.5. The WebSphere MQ for z/OS interface with the application environment

To allow applications running in different environments to send and receive messages through a message queuing network, WebSphere® MQ for z/OS®
provides an adapter for each of the environments it supports.

These adapters are the interface between application programs and WebSphere MQ for z/OS subsystems. They allow the programs to use the MQI.

The batch adapter

RRS batch adapter

Table 1. z/OS environmental features

 CICS IMS Batch/TSO

Trigger monitor supplied Yes Yes No

Two-phase commit Yes Yes Yes

Single-phase commit Yes No Yes

Connect/disconnect MQI calls Tolerated Yes Yes

API-crossing exit Yes No No

Note: Two-phase commit is supported in the Batch/TSO environment using RRS.

Page 191 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

The CICS adapter
If you are using the CICS® adapter from a WebSphere MQ for z/OS system, ensure that CICS can obtain sufficient storage to accommodate messages
up to 100 MB long.

The IMS adapter
If you are using the IMS™ adapter from a WebSphere MQ for z/OS system, ensure that IMS can obtain sufficient storage to accommodate messages
up to 100 MB long.

Parent topic: Using and writing applications on WebSphere MQ for z/OS

This build: January 26, 2011 11:20:29

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15120_

2.13.5.1. The batch adapter

The batch adapter provides access to WebSphere® MQ for z/OS® resources for programs running in:

� Task (TCB) mode

� Problem or supervisor state

� Primary address space control mode

The programs must not be in cross-memory mode.

Connections between application programs and WebSphere MQ for z/OS are at the task level. The adapter provides a single connection thread from an
application task control block (TCB) to WebSphere MQ for z/OS.

The adapter supports a single-phase commit protocol for changes made to resources owned by WebSphere MQ for z/OS; it does not support multiphase-
commit protocols.

Parent topic: The WebSphere MQ for z/OS interface with the application environment

This build: January 26, 2011 11:20:30

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15130_

2.13.5.2. RRS batch adapter

The transaction management and recoverable resource manager services (RRS) adapter:

� Uses z/OS® RRS for commit control.

� Supports simultaneous connections to multiple WebSphere® MQ subsystems running on a single z/OS instance from a single task.

� Provides z/OS-wide coordinated commitment control (using z/OS RRS) for recoverable resources accessed through z/OS RRS compliant recoverable
managers for:

� Applications that connect to WebSphere MQ using the RRS batch adapter.

� DB2-stored procedures executing in a DB2-stored procedures address space that is managed by a workload manager (WLM) on z/OS.

� Supports the ability to switch a WebSphere MQ batch thread between TCBs.

WebSphere MQ for z/OS provides two RRS batch adapters:

CSQBRSTB

This adapter requires you to change any MQCMIT and MQBACK statements in your WebSphere MQ application to SRRCMIT and SRRBACK respectively. (If
you code MQCMIT or MQBACK in an application linked with CSQBRSTB, you receive MQRC_ENVIRONMENT_ERROR.)

CSQBRRSI

This adapter allows your WebSphere MQ application to use either MQCMIT and MQBACK or SRRCMIT and SRRBACK.

Note: CSQBRSTB and CSQBRRSI are shipped with linkage attributes AMODE(31) RMODE(ANY). If your application loads either stub below the 16 MB line,
first relink the stub with RMODE(24).

Migration
You can migrate existing Batch/TSO WebSphere MQ applications to exploit RRS coordination with few or no changes.

Parent topic: The WebSphere MQ for z/OS interface with the application environment

This build: January 26, 2011 11:20:30

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15140_

2.13.5.2.1. Migration

You can migrate existing Batch/TSO WebSphere® MQ applications to exploit RRS coordination with few or no changes.

If you link-edit your WebSphere MQ application with the CSQBRRSI adapter, MQCMIT and MQBACK syncpoint your unit of work across WebSphere MQ and
all other RRS-enabled resource managers. If you link-edit your WebSphere MQ application with the CSQBRSTB adapter, change MQCMIT and MQBACK to
SRRCMIT and SRRBACK respectively. The latter approach is preferable; it clearly indicates that the syncpoint is not restricted to WebSphere MQ resources
only.

Parent topic: RRS batch adapter

This build: January 26, 2011 11:20:30

Page 192 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15150_

2.13.5.3. The CICS adapter

If you are using the CICS® adapter from a WebSphere® MQ for z/OS® system, ensure that CICS can obtain sufficient storage to accommodate messages
up to 100 MB long.

Note to users

A CICS system can have only one connection to a WebSphere MQ for z/OS queue manager, and this connection is managed by the WebSphere MQ for z/OS
CICS adapter. The CICS adapter provides access to WebSphere MQ for z/OS resources for CICS programs.

In addition to providing access to the MQI calls, the adapter provides:

� A trigger monitor (or task initiator) program that can start programs automatically when certain trigger conditions on a queue are met. For more
information, see Starting WebSphere MQ applications using triggers.

� An API-crossing exit that can be invoked before and after each MQI call. For more information, see The API-crossing exit for z/OS.

� A trace facility to help you when debugging programs.

� Facilities that allow the MQI calls to be executed under multiple z/OS TCBs. For more information, see the WebSphere MQ for z/OS Concepts and
Planning Guide.

CICS adapter performance considerations
This section describes how the CICS adapter optimizes the performance of a CICS to WebSphere MQ connection.

Adapter trace points
Application programmers can use trace points related to the MQI calls (for example, CSQCGMGD (get message data)) for debugging CICS application
programs.

Abends
This section describes some of the things to consider with regard to the CICS AEY9 abends.

Using the CICS Execution Diagnostic Facility
You can use the CICS execution diagnostic facility (CEDF) to monitor applications that use the CICS adapter.

Parent topic: The WebSphere MQ for z/OS interface with the application environment

This build: January 26, 2011 11:20:31

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15160_

2.13.5.3.1. CICS adapter performance considerations

This section describes how the CICS® adapter optimizes the performance of a CICS to WebSphere® MQ connection.

There are a number of factors to consider when performance is critical:

First MQI call

In general, the first MQI call of a task takes longer to perform than subsequent calls. This is because the environment must be set up. For example, the
adapter must acquire storage and security information, and control blocks must be allocated and formatted.

MQGET and the SIGNAL option

Using the SIGNAL option with an MQGET call can impose the use of additional storage in the adapter. This is because the SIGNAL option can produce a
CICS GETMAIN in the adapter, which is used to record the address of the ECB so that it can be posted if the queue manager abends.

API-crossing exit

Using the API-crossing exit also imposes additional host processing on each MQI call. The additional processing in handling the exit parameter block and
the invocations are minimal, but the exit can be invoked twice for each MQI call through EXEC CICS LINK.

CICS tracing

CICS tracing in the adapter also increases the pathlength of an MQI call. A large number of trace entries can be generated depending on how busy the
system is. There is no control over the granularity of the trace entries produced in the adapter. Therefore, tracing should only be switched on if necessary.

MQGET and the WAIT option

Using MQGET with the WAIT option is less efficient if the task has been put into a wait until a message arrives. The adapter implements the wait as a form
of CICS wait. When a message arrives, the adapter effectively reissues the MQGET call for the application.

Therefore, use the WAIT option with care.

MQCLOSE

Issuing an MQCLOSE call is not always necessary because WebSphere MQ automatically closes any unclosed handles when the task ends.

MQPUT1

If there is only one message to be put, MQPUT1 is more efficient than an MQOPEN-MQPUT-MQCLOSE sequence because only one flow is generated
between the WebSphere MQ and the adapter, instead of three.

To put multiple messages, use MQOPEN-MQPUT...MQPUT-MQCLOSE.

EXEC CICS RETURN

Implicit syncpointing generated by EXEC CICS RETURN is more efficient than issuing the explicit syncpoint call EXEC CICS SYNCPOINT followed by EXEC
CICS RETURN.

The EXEC CICS RETURN call accommodates all the work needed for syncpointing and task termination into one flow to WebSphere MQ instead of the two
separate flows used when explicit syncpointing is used.

Two-phase commit

A two-phase commit consumes more resources than a single-phase commit, both in host processor cost and response time. This is because a two-phase

Page 193 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

commit involves one more flow to WebSphere MQ and more physical logging. If an application is restricted to recoverable updates in WebSphere MQ and
no other resource managers, CICS invokes the adapter for a single-phase commit.

Syncpoint bypassing

The adapter does not use the read-only commit feature in CICS. When a transaction is restricted to non-recoverable or non-destructive work in
WebSphere MQ, syncpointing is bypassed because it is not necessary. The clean-up process is performed when the task ends.

Statistics collection

Statistics collection by connection and by task is done for each MQI call and cannot be switched off. This additional processing involved is negligible.

You can use the CKQC transaction to display statistics for the current connection.

The adapter supports a two-phase commit protocol for changes made to resources owned by WebSphere MQ for z/OS®, with CICS acting as the syncpoint
coordinator.

The CICS adapter also supplies facilities (for use by system programmers and administrators) for managing the CICS-WebSphere MQ for z/OS connection,
and for collecting task and connection statistics. These facilities are described in the WebSphere MQ for z/OS System Administration Guide.

Parent topic: The CICS adapter

This build: January 26, 2011 11:20:31

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15170_

2.13.5.3.2. Adapter trace points

Application programmers can use trace points related to the MQI calls (for example, CSQCGMGD (get message data)) for debugging CICS® application
programs.

System programmers can use trace points related to system events, such as recovery and task switching, for diagnosing system-related problems. For full
details of trace points in the CICS adapter, see the WebSphere MQ for z/OS Problem Determination Guide.

Some trace data addresses are passed by applications. If the address of the trace data is in the private storage area of the CICS region, the contents of the
area are traced when necessary. For example, this would be done for the trace entries CSQCGMGD (get message data) or CSQCPMGD (put message data).
If the address is not in the private storage area, message CSQC416I is written to the CICS trace; this contains the address in error.

Parent topic: The CICS adapter

This build: January 26, 2011 11:20:31

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15180_

2.13.5.3.3. Abends

This section describes some of the things to consider with regard to the CICS® AEY9 abends.

For information about all other abends, see the WebSphere MQ for z/OS Messages and Codes.

CICS AEY9 abends
A transaction does not abend with a CICS AEY9 code if it issues an MQI call before the adapter is enabled. Instead, it receives return code
MQCC_FAILED and reason code MQRC_ADAPTER_NOT_AVAILABLE.

Parent topic: The CICS adapter

This build: January 26, 2011 11:20:32

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15190_

2.13.5.3.3.1. CICS AEY9 abends

A transaction does not abend with a CICS® AEY9 code if it issues an MQI call before the adapter is enabled. Instead, it receives return code MQCC_FAILED
and reason code MQRC_ADAPTER_NOT_AVAILABLE.

For more information about CICS AEY9 abends, see the CICS Messages and Codes.

Parent topic: Abends

This build: January 26, 2011 11:20:32

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15200_

2.13.5.3.4. Using the CICS Execution Diagnostic Facility

You can use the CICS® execution diagnostic facility (CEDF) to monitor applications that use the CICS adapter.

For details of how to use CEDF, see the CICS Application Programming Guide.

CEDF uses standard formatting to display MQI calls.

� Before the MQI call is executed:

� CEDF displays the addresses of the call parameters

Page 194 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

� You can use the Working Storage key to verify or modify their contents

� You can skip the call by overtyping the command with NOOP

� After the call has completed:

� The results are returned in the program’s storage

� The return code and reason code are displayed in the call parameter list

� You can modify them before returning to the application program

See WebSphere MQ for z/OS Problem Determination Guide for examples of the output produced by this facility.

Parent topic: The CICS adapter

This build: January 26, 2011 11:20:32

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15220_

2.13.5.4. The IMS adapter

If you are using the IMS™ adapter from a WebSphere® MQ for z/OS® system, ensure that IMS can obtain sufficient storage to accommodate messages up
to 100 MB long.

Note to users

The IMS adapter provides access to WebSphere MQ for z/OS resources for:

� Online message processing programs (MPPs)

� Interactive fast path programs (IFPs)

� Batch message processing programs (BMPs)

To use these resources, the programs must be running in task (TCB) mode and problem state; they must not be in cross-memory mode or access-register
mode.

The adapter provides a connection thread from an application task control block (TCB) to WebSphere MQ. The adapter supports a two-phase commit
protocol for changes made to resources owned by WebSphere MQ for z/OS, with IMS acting as the syncpoint coordinator.

The adapter also provides a trigger monitor program that can start programs automatically when certain trigger conditions on a queue are met. For more
information, see Starting WebSphere MQ applications using triggers.

If you are writing batch DL/I programs, follow the guidance given in this book for z/OS batch programs.

Parent topic: The WebSphere MQ for z/OS interface with the application environment

This build: January 26, 2011 11:20:32

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15230_

2.13.6. Writing z/OS UNIX System Services applications

The batch adapter supports queue manager connections from batch and TSO address spaces:

If we consider a Batch address space, the adapter supports connections from multiple TCBs within that address space as follows:

� Each TCB can connect to multiple queue managers using the MQCONN or MQCONNX call (but a TCB can only have one instance of a connection to a
particular queue manager at any one time).

� Multiple TCBs can connect to the same queue manager (but the queue manager handle returned on any MQCONN or MQCONNX call is bound to the
issuing TCB and cannot be used by any other TCB).

z/OS® UNIX System Services supports two types of pthread_create call:

1. Heavyweight threads, run one for each TCB, that are ATTACHed and DETACHed at thread start and end by z/OS.

2. Medium-weight threads, run one for each TCB, but the TCB can be one of a pool of long-running TCBs. The application must perform all necessary
application cleanup, because, if it is connected to a server, the default thread termination that might be provided by the server at task (TCB)
termination, is not always driven.

Lightweight threads are not supported. (If an application creates permanent threads that dispatch their own work requests, the application is responsible
for cleaning up any resources before starting the next work request.)

WebSphere® MQ for z/OS supports z/OS UNIX System Services threads using the Batch Adapter as follows:

1. Heavyweight threads are fully supported as batch connections. Each thread runs in its own TCB, which is attached and detached at thread start and
end. Should the thread end before issuing an MQDISC call, WebSphere MQ for z/OS performs its standard task cleanup, which includes committing any
outstanding unit of work if the thread terminated normally, or backing it out if the thread terminated abnormally.

2. Medium-weight threads are fully supported, but if the TCB is going to be reused by another thread, the application must ensure that an MQDISC call,
preceded by either MQCMIT or MQBACK, is issued before the next thread start. This implies that if the application has established a Program Interrupt
Handler, and the application then abends, the Interrupt Handler must issue MQCMIT and MQDISC calls before reusing the TCB for another thread.

Note: Threading models do not support access to common WebSphere MQ resources from multiple threads.

Parent topic: Using and writing applications on WebSphere MQ for z/OS

This build: January 26, 2011 11:20:33

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15240_

Page 195 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

2.13.7. The API-crossing exit for z/OS

This section contains product-sensitive programming interface information.

An exit is a point in IBM-supplied code where you can run your own code. WebSphere® MQ for z/OS® provides an API-crossing exit that you can use to
intercept calls to the MQI, and to monitor or modify the function of the MQI calls. This section describes how to use the API-crossing exit, and describes the
sample exit program that is supplied with WebSphere MQ for z/OS.

Note

The API-crossing exit is invoked only by the CICS® adapter of WebSphere MQ for z/OS. The exit program runs in the CICS address space.

Using the API-crossing exit

Writing your own exit program
You can use the sample API-crossing exit program (CSQCAPX) that is supplied with WebSphere MQ for z/OS as a framework for your own program.

The sample API-crossing exit program, CSQCAPX
The sample exit program is supplied as an assembler-language program. The source file (CSQCAPX) is supplied in the library thlqual.SCSQASMS
(where thlqual is the high-level qualifier used by your installation). This source file includes pseudocode that describes the program logic.

Preparing and using the API-crossing exit

Parent topic: Using and writing applications on WebSphere MQ for z/OS

This build: January 26, 2011 11:20:33

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15250_

2.13.7.1. Using the API-crossing exit

You can use the API-crossing exit to:

� Operate additional security checks by examining the contents of each message before and after each MQI call

� Replace the queue name supplied in the message with another queue name

� Cancel the call and either issue a return code of 0 to simulate a successful call, or another value to indicate that the call was not performed

� Monitor the use of MQI calls in an application

� Gather statistics

� Modify input parameters on specific calls

� Modify the results of specific calls

Defining the exit program
Before the exit can be used, an exit program load module must be available when the CICS® adapter connects to WebSphere® MQ for z/OS®.

How the exit is invoked

Communicating with the exit program
After it has been invoked, the exit program is passed a parameter list in the CICS communication area pointed to by a field called DFHEICAP.

Parent topic: The API-crossing exit for z/OS

This build: January 26, 2011 11:20:33

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15260_

2.13.7.1.1. Defining the exit program

Before the exit can be used, an exit program load module must be available when the CICS® adapter connects to WebSphere® MQ for z/OS®.

The exit program is a CICS program that must be named CSQCAPX and reside in a library in the DFHRPL concatenation. CSQCAPX must be defined in the
CICS system definition file (CSD), and the program must be enabled.

When CSQCAPX is loaded, a confirmation message is written to the CKQC adapter control panel or to the console. If the program cannot be loaded, a
diagnostic message is displayed.

Parent topic: Using the API-crossing exit

This build: January 26, 2011 11:20:33

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15270_

2.13.7.1.2. How the exit is invoked

When enabled, the API-crossing exit is invoked:

� By all applications that use the CICS® adapter of WebSphere® MQ for z/OS®

� For the following MQI calls:

� MQCLOSE

Page 196 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

� MQGET

� MQINQ

� MQOPEN

� MQPUT

� MQPUT1

� MQSET

� Every time one of these MQI calls is made

� Both before and after a call

This means that using the API-crossing exit degrades the performance of WebSphere MQ for z/OS, so plan your use of it carefully.

The exit program can be invoked once before a call is executed, and once after the call is executed. On the before type of exit call, the exit program can
modify any of the parameters on the MQI call, suppress the call completely, or allow the call to be processed. If the call is processed, the exit is invoked
again after the call has completed.

Note: The exit program is not recursive. Any MQI calls made inside the exit do not invoke the exit program for a second time.

Parent topic: Using the API-crossing exit

This build: January 26, 2011 11:20:33

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15280_

2.13.7.1.3. Communicating with the exit program

After it has been invoked, the exit program is passed a parameter list in the CICS® communication area pointed to by a field called DFHEICAP.

The CICS Exec Interface Block field EIBCALEN shows the length of this area. The structure of this communication area is defined in the CMQXPA assembler-
language macro that is supplied with WebSphere® MQ for z/OS® :

*

MQXP_COPYPLIST DSECT

 DS 0D Force doubleword alignment

MQXP_PXPB DS AL4 Pointer to exit parameter block

MQXP_PCOPYPARM DS 11AL4 Copy of original plist

*

 ORG MQXP_PCOPYPARM

MQXP_PCOPYPARM1 DS AL4 Copy of 1st parameter

MQXP_PCOPYPARM2 DS AL4 Copy of 2nd parameter

MQXP_PCOPYPARM3 DS AL4 Copy of 3rd parameter

MQXP_PCOPYPARM4 DS AL4 Copy of 4th parameter

MQXP_PCOPYPARM5 DS AL4 Copy of 5th parameter

MQXP_PCOPYPARM6 DS AL4 Copy of 6th parameter

MQXP_PCOPYPARM7 DS AL4 Copy of 7th parameter

MQXP_PCOPYPARM8 DS AL4 Copy of 8th parameter

MQXP_PCOPYPARM9 DS AL4 Copy of 9th parameter

MQXP_PCOPYPARM10 DS AL4 Copy of 10th parameter

MQXP_PCOPYPARM11 DS AL4 Copy of 11th parameter

*

MQXP_COPYPLIST_LENGTH EQU *-MQXP_PXPB

 ORG MQXP_PXPB

MQXP_COPYPLIST_AREA DS CL(MQXP_COPYPLIST_LENGTH)

*

Field MQXP_PXPB points to the exit parameter block, MQXP.

Field MQXP_PCOPYPARM is an array of addresses of the call parameters. For example, if the application issues an MQI call with parameters P1, P2, or P3, the

communication area contains:

 PXPB,PP1,PP2,PP3

where P denotes a pointer (address) and XPB is the exit parameter block.

Parent topic: Using the API-crossing exit

This build: January 26, 2011 11:20:35

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15290_

2.13.7.2. Writing your own exit program

You can use the sample API-crossing exit program (CSQCAPX) that is supplied with WebSphere® MQ for z/OS® as a framework for your own program.

This is described in topic The sample API-crossing exit program, CSQCAPX.

When writing an exit program, to find the name of an MQI call issued by an application, examine the ExitCommand field of the MQXP structure. To find the

number of parameters on the call, examine the ExitParmCount field. You can use the 16-byte ExitUserArea field to store the address of any dynamic

storage that the application obtains. This field is retained across invocations of the exit and has the same lifetime as a CICS® task.

If you are using CICS Transaction Server V3.2, you must write your exit program to be threadsafe and declare your exit program as threadsafe. If you are
using earlier CICS releases, you are also recommended to write and declare your exit programs as threadsafe to be ready for migrating to CICS Transaction
Server V3.2.

Your exit program can suppress execution of an MQI call by returning MQXCC_SUPPRESS_FUNCTION or MQXCC_SKIP_FUNCTION in the ExitResponse field.

To allow the call to be executed (and the exit program to be reinvoked after the call has completed), your exit program must return MQXCC_OK.

When invoked after an MQI call, an exit program can inspect and modify the completion and reason codes set by the call.

Page 197 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Usage notes

Parent topic: The API-crossing exit for z/OS

This build: January 26, 2011 11:20:35

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15300_

2.13.7.2.1. Usage notes

Here are some general points to consider when writing your exit program:

� For performance reasons, write your program in assembler language. If you write it in any of the other languages supported by WebSphere® MQ for
z/OS®, you must provide your own data definition file.

� Link-edit your program as AMODE(31) and RMODE(ANY).

� To define the exit parameter block to your program, use the assembler-language macro, CMQXPA.

� Specify CONCURRENCY(THREADSAFE) when you define your exit program and any programs that your exit program calls.

� If you are using the CICS® Transaction Server for z/OS storage protection feature, your program must run in CICS execution key. That is, you must
specify EXECKEY(CICS) when defining both your exit program and any programs to which it passes control. For information about CICS exit programs
and the CICS storage protection facility, see the CICS Customization Guide.

� Your program can use all the APIs (for example, IMS™, DB2®, and CICS) that a CICS task-related user exit program can use. It can also use any of
the MQI calls except MQCONN, MQCONNX, and MQDISC. However, any MQI calls within the exit program do not invoke the exit program a second
time.

� Your program can issue EXEC CICS SYNCPOINT or EXEC CICS SYNCPOINT ROLLBACK commands. However, these commands commit or roll back all
the updates done by the task up to the point that the exit was used, and so their use is not recommended.

� Your program must end by issuing an EXEC CICS RETURN command. It must not transfer control with an XCTL command.

� Exits are written as extensions to the WebSphere MQ for z/OS code. Ensure that your exit does not disrupt any WebSphere MQ for z/OS programs or
transactions that use the MQI. These are usually indicated with a prefix of CSQ or CK.

� If CSQCAPX is defined to CICS, the CICS system attempts to load the exit program when CICS connects to WebSphere MQ for z/OS. If this attempt is
successful, message CSQC301I is sent to the CKQC panel or to the system console. If the load is unsuccessful (for example, if the load module does
not exist in any of the libraries in the DFHRPL concatenation), message CSQC315 is sent to the CKQC panel or to the system console.

� Because the parameters in the communication area are addresses, the exit program must be defined as local to the CICS system (that is, not as a
remote program).

Parent topic: Writing your own exit program

This build: January 26, 2011 11:20:36

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15310_

2.13.7.3. The sample API-crossing exit program, CSQCAPX

The sample exit program is supplied as an assembler-language program. The source file (CSQCAPX) is supplied in the library thlqual.SCSQASMS (where
thlqual is the high-level qualifier used by your installation). This source file includes pseudocode that describes the program logic.

The sample program contains initialization code and a layout that you can use when writing your own exit programs.

The sample shows how to:

� Set up the exit parameter block

� Address the call and exit parameter blocks

� Determine for which MQI call the exit is being invoked

� Determine whether the exit is being invoked before or after processing of the MQI call

� Put a message on a CICS® temporary storage queue

� Use the macro DFHEIENT for dynamic storage acquisition to maintain reentrancy

� Use DFHEIBLK for the CICS exec interface control block

� Trap error conditions

� Return control to the caller

Design of the sample exit program
The sample exit program writes messages to a CICS temporary storage queue (CSQ1EXIT) to show the operation of the exit.

Parent topic: The API-crossing exit for z/OS

This build: January 26, 2011 11:20:36

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15320_

2.13.7.3.1. Design of the sample exit program

The sample exit program writes messages to a CICS® temporary storage queue (CSQ1EXIT) to show the operation of the exit.

The messages show whether the exit is being invoked before or after the MQI call. If the exit is invoked after the call, the message contains the completion
code and reason code returned by the call. The sample uses named constants from the CMQXPA macro to check on the type of entry (that is, before or after
the call).

The sample does not perform any monitoring function, but simply places time-stamped messages into a CICS queue indicating the type of call it is

Page 198 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

processing. This provides an indication of the performance of the MQI, as well as the correct functioning of the exit program.

Note: The sample exit program issues six EXEC CICS calls for each MQI call that is made while the program is running. If you use this exit program,
WebSphere® MQ for z/OS® performance is degraded.

Parent topic: The sample API-crossing exit program, CSQCAPX

This build: January 26, 2011 11:20:36

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15330_

2.13.7.4. Preparing and using the API-crossing exit

The sample exit is supplied in source form only. To use the sample exit, or an exit program that you have written, create a load library, as you would for any
other CICS® program, as described in topic Building CICS applications.

� For CICS Transaction Server for z/OS® and CICS for MVS/ESA, when you update the CICS system definition (CSD) data set, the definitions you need
are in the member thlqual.SCSQPROC(CSQ4B100).

Note: The definitions use a suffix of MQ. If this suffix is already used in your enterprise, this must be changed before the assembly stage.

If you use the default CICS program definitions supplied, the exit program CSQCAPX is installed in a disabled state. This is because using the exit program
can produce a significant reduction in performance.

To activate the API-crossing exit temporarily:

1. Issue the command CEMT S PROGRAM(CSQCAPX) ENABLED from the CICS master terminal.

2. Run the CKQC transaction, and use option 3 in the Connection pull-down to alter the status of the API-crossing exit to Enabled.

If you want to run WebSphere® MQ for z/OS with the API-crossing exit permanently enabled, with CICS Transaction Server for z/OS and CICS for MVS/ESA,
do one of the following:

� Alter the CSQCAPX definition in member CSQ4B100, changing STATUS(DISABLED) to STATUS(ENABLED). You can update the CICS CSD definition
using the CICS-supplied batch program DFHCSDUP.

� Alter the CSQCAPX definition in the CSQCAT1 group by changing the status from DISABLED to ENABLED.

In both cases you must reinstall the group. You can do this by cold-starting your CICS system or by using the CICS CEDA transaction to reinstall the group
while CICS is running.

Note: Using CEDA might cause an error if any of the entries in the group are currently in use.

End of product-sensitive programming interface information.

Parent topic: The API-crossing exit for z/OS

This build: January 26, 2011 11:20:37

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15340_

2.13.8. WebSphere MQ Workflow

WebSphere® MQ Workflow on z/OS® is a tool that helps companies improve their business processes.

z/OS workload manager (WLM) addresses the need for:

� Managing workload distribution

� Load balancing

� Distribution of computing resources to competing workloads

WebSphere MQ support for z/OS workload manager uses a WLM-managed queue. It is recognized by a value of the INDXTYPE attribute called MSGTOKEN.
The initiation queue associated with a WLM-managed queue must have TRIGTYPE defined as NONE, and no ordinary local queues must be associated with
this initiation queue.

If a WebSphere MQ Workflow server application has the initiation queue open for input, WebSphere MQ updates a WLM worklist as part of commit
processing of MQPUTs to the WLM-managed queue. The setting of TRIGGER or NOTRIGGER on the WLM-managed queue has no effect on the updating of
this WLM worklist.

The PROCESS definition is used to provide the name of the application_environment associated with a WLM-managed queue. This is passed in the APPLICID
attribute. Ensure that a WLM-managed queue uniquely references an associated process and that two processes do not specify the same APPLICID value.

Messages are retrieved from a WLM-managed queue using a unique message_token, which must be passed to MQGET. To do this, you use the
message_token value (MQGMO_MSGTOKEN) and the get message match option (MQMO_MATCH_MSG_TOKEN). Workflow does not usually issue MQGET
calls until the message is placed successfully on the queue. If the application needs to wait for the arrival of a message, it must set the match option to
MQMO_NONE.

There are MQRC values for MQGET (MQRC_MSG_TOKEN_ERROR) and MQPUT (MQRC_MISSING_WIH and MQRC_WIH_ERROR). MQRC_MISSING_WIH is
returned if a message, MQPUT to a WLM-managed queue, does not include the work information header (MQWIH). MQRC_WIH_ERROR is returned if the
message data does not conform to an MQWIH. MQGET does not remove this header from the message.

Note: You might experience excessive CPU usage if your z/OS system is at Version 2.5 or earlier and the number of messages on WLM-managed queues
exceeds 500.

For further information see IBM® WebSphere MQ Workflow: Concepts and Architecture, GH12-6285 and IBM WebSphere MQ Workflow for z/OS:

Customization and Administration, SC33-7030.

Parent topic: Using and writing applications on WebSphere MQ for z/OS

This build: January 26, 2011 11:20:37

Notices | Trademarks | Downloads | Library | Support | Feedback

Page 199 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15350_

2.13.9. Application programming with shared queues

This section discusses some of the factors that you need to take into account when designing new applications to use shared queues, and when migrating
existing applications to the shared-queue environment.

Serializing your applications
Certain types of applications might have to ensure that messages are retrieved from a queue in exactly the same order as they arrived on the queue.

Applications that are not suitable for use with shared queues
Some features of WebSphere MQ are not supported when you are using shared queues, so applications that use these features are not suitable for the
shared queue environment.

Deciding whether to share non-application queues

Migrating your existing applications to use shared queues

Parent topic: Using and writing applications on WebSphere MQ for z/OS

This build: January 26, 2011 11:20:37

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15360_

2.13.9.1. Serializing your applications

Certain types of applications might have to ensure that messages are retrieved from a queue in exactly the same order as they arrived on the queue.

For example, if WebSphere® MQ is being used to shadow database updates on to a remote system, a message describing the update to a record must be
processed after a message describing the insert of that record. In a local queuing environment, this is often achieved by the application that is getting the
messages opening the queue with the MQOO_INPUT_EXCLUSIVE option, thus preventing any other getting application from processing the queue at the
same time.

WebSphere MQ allows applications to open shared queues exclusively in the same way. However, if the application is working from a partition of a queue
(for example, all database updates are on the same queue, but those for table A have a correlation identifier of A, and those for table B a correlation
identifier of B), and applications want to get messages for table A updates and table B updates concurrently, the simple mechanism of opening the queue
exclusively is not possible.

If this type of application is to take advantage of the high availability of shared queues, you might decide that another instance of the application that
accesses the same shared queues, running on a secondary queue manager, should take over if the primary getting application or queue manager fails.

If the primary queue manager fails, two things happen:

� Shared queue peer recovery ensures that any incomplete updates from the primary application are completed or backed out.

� The secondary application takes over processing the queue.

The secondary application might start before all the incomplete units of work have been dealt with, which could lead to the secondary application retrieving
the messages out of sequence. To solve this type of problem, the application can choose to be a serialized application.

A serialized application uses the MQCONNX call to connect to the queue manager, specifying a connection tag when it connects that is unique to that
application. Any units of work performed by the application are marked with the connection tag. WebSphere MQ ensures that units of work within the queue-
sharing group with the same connection tag are serialized (according to the serialization options on the MQCONNX call).

This means that, if the primary application uses the MQCONNX call with a connection tag of Database shadow retriever, and the secondary takeover

application attempts to use the MQCONNX call with an identical connection tag, the secondary application cannot connect to the second WebSphere MQ
until any outstanding primary units of work have been completed, in this case by peer recovery.

Consider using the serialized application technique for applications that depend on the exact sequence of messages on a queue. In particular:

� Applications that must not restart after an application or queue manager failure until all commit and backout operations for the previous execution of
the application are complete.

In this case, the serialized application technique is only applicable if the application works in syncpoint.

� Applications that must not start while another instance of the same application is already running.

In this case, the serialized application technique is only required if the application cannot open the queue for exclusive input.

Note: WebSphere MQ only guarantees to preserve the sequence of messages when certain criteria are met. These are described in the description of the
MQGET call in the WebSphere MQ Application Programming Reference.

Parent topic: Application programming with shared queues

This build: January 26, 2011 11:20:37

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15370_

2.13.9.2. Applications that are not suitable for use with shared queues

Some features of WebSphere® MQ are not supported when you are using shared queues, so applications that use these features are not suitable for the
shared queue environment.

Consider the following points when designing your shared-queue applications:

� Queue indexing is limited for shared queues. If you want to use the message identifier or correlation identifier to select the message that you want to
get from the queue, the queue should be indexed with the correct value. If you are selecting messages by message identifier alone, the queue needs
an index type of MQIT_MSG_ID (although you can also use MQIT_NONE). If you are selecting messages by correlation identifier alone, the queue must
have an index type of MQIT_CORREL_ID.

� You cannot use temporary dynamic queues as shared queues. However, you can use permanent dynamic queues. The models for shared dynamic

Page 200 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

queues have a DEFTYPE of SHAREDYN (shared dynamic) although they are created and destroyed in the same way as PERMDYN (permanent dynamic)
queues.

Parent topic: Application programming with shared queues

This build: January 26, 2011 11:20:37

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15380_

2.13.9.3. Deciding whether to share non-application queues

There are queues other than application queues that you might want to consider sharing:

Initiation queues

If you define a shared initiation queue, you do not need to have a trigger monitor running on every queue manager in the queue-sharing group, as long as
there is at least one trigger monitor running. (You can also use a shared initiation queue even if there is a trigger monitor running on each queue manager
in the queue-sharing group.)

If you have a shared application queue and use the trigger type of EVERY (or a trigger type of FIRST with a small trigger interval, which behaves like a
trigger type of EVERY) your initiation queue must always be a shared queue. For more information about when to use a shared initiation queue, see Table
1.

SYSTEM.* queues

You can define the SYSTEM.ADMIN.* queues used to hold event messages as shared queues. This can be useful to check load balancing if an exception
occurs. Each event message created by WebSphere® MQ contains a correlation identifier indicating which queue manager produced it.

You must define the SYSTEM.QSG.* queues used for shared channels and intra-group queuing as shared queues.

You can also change the definitions of the SYSTEM.DEFAULT.LOCAL.QUEUE to be shared, or define your own default shared queue definition. This is
described in the section Defining system objects in the WebSphere MQ for z/OS Concepts and Planning Guide.

You cannot define any other SYSTEM.* queues as shared queues.

Parent topic: Application programming with shared queues

This build: January 26, 2011 11:20:38

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15390_

2.13.9.4. Migrating your existing applications to use shared queues

Migrating your existing queues to shared queues is described in the WebSphere MQ for z/OS System Administration Guide.

When you migrate your existing applications, consider the following things, which might work in a different way in the shared queue environment:

Reason Codes

When you migrate your existing applications to use shared queues, check for the new reason codes that can be issued.

Triggering

If you are using a shared application queue, triggering works on committed messages only (on a non-shared application queue, triggering works on all
messages).

If you use triggering to start applications, you might want to use a shared initiation queue. Table 1 describes what you need to consider when deciding
which type of initiation queue to use.

MQINQ

When you use the MQINQ call to display information about a shared queue, the values of the number of MQOPEN calls that have the queue open for
input and output relate only to the queue manager that issued the call. No information is produced about other queue managers in the queue-sharing
group that have the queue open.

Parent topic: Application programming with shared queues

This build: January 26, 2011 11:20:38

Notices | Trademarks | Downloads | Library | Support | Feedback

Table 1. When to use a shared-initiation queue

 Non-shared application queue Shared application queue

Non-shared

initiation queue

As for previous releases. If you use a trigger type of FIRST or DEPTH, you can use a non-
shared initiation queue with a shared application queue. Extra trigger
messages might be generated, but this setup is good for triggering
long-running applications (like the CICS® bridge) and provides high
availability.

For trigger type FIRST or DEPTH, a trigger message triggers an
instance of the application on every queue manager that is running a
trigger monitor and that does not already have the application queue
open for input. One trigger message is generated for every queue
manager; if there is more than one trigger monitor running against
the non-shared local initiation queue, on a given queue manager,
they will compete to process the message.

Shared initiation

queue

Do not use a shared initiation queue with a
non-shared application queue.

If you have a shared application queue that has a trigger type of
EVERY, use a shared initiation queue or you will lose trigger
messages.

For trigger type FIRST or DEPTH, one trigger message is generated
by each queue manager that has the named initiation queue open
for input.

Page 201 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15400_

2.14. Using and writing WebSphere MQ-CICS bridge applications for z/OS

Throughout this chapter the terms CICS® bridge and bridge mean WebSphere® MQ-CICS bridge.For CICS Transaction Server V3.2, the adapter
and bridge are provided by CICS but the contents of this topic and its subtopics are still applicable.

Most CICS applications were developed when a 3270 terminal was the main way of interacting with users. To use these applications with new transport
mechanisms, such as WebSphere MQ, it is best to write CICS applications with the business logic of the application separated from the presentation logic.
The business logic can be accessed by a CICS Distributed Program Link (DPL) request to run the program. However, not all applications can be restructured
in this way, for example when the customer does not own the source code of the application. The CICS bridge protects the investment in these legacy
applications by allowing them to be accessed from other platforms. This makes CICS resources readily available to programs not running under CICS. This
can be done for DPL programs and for 3270 transactions.

A WebSphere MQ application can start a CICS application by sending a structured message to the CICS bridge request queue. Any data required by the CICS
application can be included in the request message:

� For DPL programs, the data required is the CICS communication area (COMMAREA) data used by the application.

� For 3270 transactions, the data required is vectors describing the application data structures (ADSs) used by the application.

Similarly, the CICS application can send data back to the WebSphere MQ application in a message that is sent to a reply queue:

� For DPL programs, the data sent back is the COMMAREA data output by the application.

� For 3270 transactions, the data sent back is vectors describing the application data structures (ADSs) output by the application.

The WebSphere MQ application can run on any platform, but the bridge request queue must reside on the local z/OS® queue manager that is connected to
the CICS adapter.

This chapter describes how to use and design WebSphere MQ-CICS bridge applications, and contains the following sections:

� Distributed program link applications

� 3270 applications

� Information applicable to both DPL and 3270

Distributed program link applications

3270 applications

Information applicable to both DPL and 3270

Parent topic: Writing a WebSphere MQ application

This build: January 26, 2011 11:20:38

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15410_

2.14.1. Distributed program link applications

This section contains the following information:

� Using CICS DPL programs with the bridge

� Programming CICS DPL transactions in the distributed environment

� Setting fields in the MQMD and MQCIH structures (DPL)

� Managing MsgId and CorrelId in a unit of work (DPL)

Using CICS DPL programs with the bridge

Programming CICS DPL transactions in the distributed environment
CICS DPL programs and transactions can be driven through the CICS bridge when the client application resides on a workstation.

Setting fields in the MQMD and MQCIH structures (DPL)
Your CICS bridge application must set a number of fields in the MQMD and the MQCIH in order to use the bridge successfully.

Managing MsgId and CorrelId in a unit of work (DPL)

Parent topic: Using and writing WebSphere MQ-CICS bridge applications for z/OS

This build: January 26, 2011 11:20:38

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15420_

2.14.1.1. Using CICS DPL programs with the bridge

To link to another program that has been defined to CICS®, a CICS application can issue a command like this:

EXEC CICS LINK PROGRAM(name) COMMAREA(data-area)

For the complete syntax of this command, see the CICS Application Programming Reference.

If you want a WebSphere® MQ application to run a CICS application that invokes a CICS DPL program, the WebSphere MQ application must send a
structured message to the bridge request queue. In the simplest case, the message data consists only of the name of a DPL program to be run. Follow this
by COMMAREA data if you want to make data available to the DPL program when it starts.

Page 202 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

If you want to run more than one DPL program within a unit of work, or you prefer a specific transaction code (overwriting the default CKBP), or you require
certain levels of authorization to run the DPL program, you must supply information in an MQCIH. The MQCIH must precede the program name and any
COMMAREA data that you send.

CICS DPL bridge message structure
These examples show the different structures that you can use for messages that run DPL programs through the bridge.

Application programming for the CICS DPL bridge
This C-language code fragment shows how you can construct a message buffer when you want to invoke a DPL program with COMMAREA data, and
include a WebSphere MQ CICS Information Header (MQCIH).

Parent topic: Distributed program link applications

This build: January 26, 2011 11:20:39

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15430_

2.14.1.1.1. CICS DPL bridge message structure

These examples show the different structures that you can use for messages that run DPL programs through the bridge.

� Use this structure for an application that runs a single DPL program using default processing options, and does not send or receive COMMAREA data:

┌──────┬──────────┐
│ MQMD │ ProgName │
└──────┴──────────┘

The program specified by ProgName is invoked by CICS® as a DPL program.

� Use this structure for an application that runs a single DPL program using default processing options, and sends and receives COMMAREA data:

┌──────┬──────────┬──────────────┐
│ MQMD │ ProgName │ CommareaData │
└──────┴──────────┴──────────────┘

� Use this structure for an application that runs one or more DPL programs within a unit of work, or needs specific authorization to run the program, but
does not send or receive COMMAREA data:

┌──────┬───────┬──────────┐
│ MQMD │ MQCIH │ ProgName │
└──────┴───────┴──────────┘

� Use this structure for an application that invokes one or more DPL programs within a unit of work, or needs specific authorization to run the program,
and sends and receives COMMAREA data:

┌──────┬───────┬──────────┬──────────────┐
│ MQMD │ MQCIH │ ProgName │ CommareaData │
└──────┴───────┴──────────┴──────────────┘

If a bridge task running a DPL program ends abnormally, it returns a message to the reply queue with the following structure, whether or not the inbound
message preceding the failure contains an MQCIH:

┌──────┬───────┬───────────────┐
│ MQMD │ MQCIH │ CSQC* message │
└──────┴───────┴───────────────┘

CSQC* message represents an error message that indicates the error type. The value of field MQCIH.Format is set to MQFMT_STRING, so that the message

can be properly converted if the final destination uses a different CCSID and encoding. The MQCIH also contains other fields that you can use to diagnose
the problem.

Optionally, additional headers with format names beginning MQH, and containing standard link fields, can precede the MQCIH header. Such headers are

returned unmodified in the output message because the bridge makes no use of data within the headers

Note:

1. The MQMD is shown in the examples to help you to visualize the overall structure of the message. This is the structure that you see if you use the
general queue browser utility of WebSphere® MQ SupportPac MA10 "MQSeries® for MVS/ESA - ISPF utilities".

2. If you want to send only a program name, and no COMMAREA data, to the bridge, the program name must be 8 characters long. It must not be a
name that is padded to the right with spaces, or the bridge reports a COMMAREA negative length error.

3. If you want to send COMMAREA data, you must pad the program name with spaces to the right, to give a total length of eight characters.

4. You can include control data in the message to specify unit of work management, and to provide data for security checking, when you include a
WebSphere MQ CICS information header (CIH) in the message.

Parent topic: Using CICS DPL programs with the bridge

This build: January 26, 2011 11:20:39

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15440_

2.14.1.1.2. Application programming for the CICS DPL bridge

This C-language code fragment shows how you can construct a message buffer when you want to invoke a DPL program with COMMAREA data, and include
a WebSphere® MQ CICS® Information Header (MQCIH).

/*

#defines */

#define PGMNAME "DPLPGM" /* DPL program name */

#define PGMNAMELEN 8

#define CALEN 100 /* Commarea length */ ⋮
/* Data declarations */

MQMD mqmd ; /* Message descriptor */

MQCIH mqcih ; /* CICS information header */

Page 203 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

MQCHAR * Commarea ; /* Commarea pointer */

MQCHAR * MsgBuffer ; /* Message buffer pointer */ ⋮
/* allocate storage for the buffers */

Commarea = malloc(CALEN * sizeof(MQCHAR)) ;

MsgBuffer = malloc(sizeof(MQCIH) + PGMNAMELEN + CALEN) ; ⋮
/* Initialize commarea with data */ ⋮
/* Initialize fields in the MQMD as required, including: */

memcpy(mqmd.MsgId, MQMI_NONE, sizeof(mqmd.MsgId)) ;

memcpy(mqmd.CorrelId, MQCI_NEW_SESSION, sizeof(mqmd.CorrelId)) ;

/* Initialize fields in the MQCIH as required */ ⋮
/* Copy the MQCIH to the start of the message buffer */

memcpy(MsgBuffer, &mqcih, sizeof(MQCIH)) ;

/* Set 8 bytes after the MQCIH to spaces */

memset(MsgBuffer + sizeof(MQCIH), ' ', PGMNAMELEN) ;

/* Append the program name to the MQCIH. If it is less than */

/* 8 characters, it is now padded to the right with spaces. */

memcpy(MsgBuffer + sizeof(MQCIH), PGMNAME, PGMNAMELEN) ;

/* Append the commarea after the program name */

memcpy(MsgBuffer + sizeof(MQCIH) + PGMNAMELEN, &Commarea

 CALEN) ;

/* The message buffer is now ready for the MQPUT */

/* to the Bridge Request Queue. */ ⋮
The DPL program that is invoked must conform to the DPL subset rules. See the CICS Application Programming Guide for further details.
Parent topic: Using CICS DPL programs with the bridge

This build: January 26, 2011 11:20:39

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15450_

2.14.1.2. Programming CICS DPL transactions in the distributed environment

CICS® DPL programs and transactions can be driven through the CICS bridge when the client application resides on a workstation.

The main consideration when programming for the distributed environment is data conversion between the different encoding schemes and CCSID values of
the workstation and z/OS®. Conversion is carried out by two different routines, one for the MQCIH structure and another for the vector.

You can ensure that the MQCIH is converted by specifying MQFMT_CICS in the MQMD.Format field. Data conversion, however, requires a little more
consideration.

If you are driving a DPL program that neither receives nor returns COMMAREA data, or if the COMMAREA data is purely character data, you can achieve data
conversion by specifying MQFMT_STRING in field MQCIH.Format. If your COMMAREA data is not purely character data, you must write your own conversion
routine.

Parent topic: Distributed program link applications

This build: January 26, 2011 11:20:39

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15460_

2.14.1.3. Setting fields in the MQMD and MQCIH structures (DPL)

Your CICS® bridge application must set a number of fields in the MQMD and the MQCIH in order to use the bridge successfully.

You need to consider the open options and the put message options that you use for the bridge request queue if the bridge monitor is started with
authorization levels of VERIFY_UOW or VERIFY_ALL.

Setting the MQMD fields
Fields in the MQMD that can affect the operation of the CICS bridge need to be initialized in your application program:

Setting the MQCIH fields

Parent topic: Distributed program link applications

This build: January 26, 2011 11:20:39

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15470_

2.14.1.3.1. Setting the MQMD fields

Fields in the MQMD that can affect the operation of the CICS® bridge need to be initialized in your application program:

Page 204 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

MQMD.CorrelId

For MQPUTs to the request queue, set the value to MQCI_NEW_SESSION in the first or only message in a unit of work. On subsequent messages in the
unit of work, set the value to the MQMD.MsgId that WebSphere® MQ set in your message descriptor when you put your first message to the request
queue.

For MQGETs from the reply queue, use the value of MQMD.MsgId that WebSphere MQ set in your message descriptor when you put your most recent
message to the request queue, or specify MQCI_NONE.

MQMD.Expiry

Set a message expiry time based on how long you want your application to wait for a reply. You are recommended to set a reasonable value for your
enterprise. Set the MQCIH flags to propagate the remaining expiry time to the reply message.

MQMD.Format

Set the value to MQCICS if you include an MQCIH in the message you send to the bridge request queue; otherwise set it to the format of the data
following.

MQMD.MsgId

For MQPUTs to the request queue, set MsgId to a unique value for the unit of work, or to MQMI_NONE.

For MQGETs from the reply queue, use the value of MQMD.MsgId that WebSphere MQ set in your message descriptor when you put your first message to
the request queue.

MQMD.ReplyToQ

Set the value to the name of the queue where you want the bridge to send reply messages.

The CICS bridge reply messages have the same persistence as the request messages. This means if you use persistent request messages, the reply-to
queue cannot be a temporary dynamic queue or a shared queue on a non-recoverable structure.

MQMD.UserIdentifier

This field is only used when the bridge monitor is running with authorization levels of IDENTIFY, VERIFY_UOW, or VERIFY_ALL. If you use any of these, set
the value to the user ID that is checked for access to the CICS DPL program.

Add the value MQOO_SET_IDENTITY_CONTEXT to the open options when you open the bridge request queue, and also add the value
MQPMO_SET_IDENTITY_CONTEXT to the put message options when you send a message to the queue.

If you use this field with one of the VERIFY_* options, you must also initialize the MQCIH.Authenticator field. Set it to the value of the password or
passticket associated with the user ID.

Parent topic: Setting fields in the MQMD and MQCIH structures (DPL)

This build: January 26, 2011 11:20:39

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15480_

2.14.1.3.2. Setting the MQCIH fields

The MQCIH contains both input and output fields; see the WebSphere MQ Application Programming Reference for full details of this structure. The key input
fields that you need to initialize in your application program when you use the CICS® DPL bridge are as follows:

MQCIH.Authenticator

This field only applies if you are using an authorization level of VERIFY_UOW or VERIFY_ALL.

Set the value to the password or passticket that is to be associated with the user ID in the MQMD.UserIdentifier field. Together, the values are used by the
external security manager to determine whether the user is authorized to link to the DPL program.

If using passtickets, the Applid used for generating the passticket must be the same as the PASSTKTA keyword values used when starting the bridge

monitor.

MQCIH.Flags

Set to MQCIH_PASS_EXPIRATION to pass the remaining expiry time to the reply message.

Set to MQCIH_REPLY_WITHOUT_NULLS to remove trailing null characters ('00'X) from the reply message.

Set to MQCIH_SYNC_ON_RETURN to specify the SYNCONRETURN option on the EXEC CICS LINK command.

You can combine the values by adding them together.

MQCIH.Format

Specifies the format of the data following the MQCIH structure. If the data is character data use MQFMT_STRING; if no conversion is needed use
MQFMT_NONE.

MQCIH.GetWaitInterval

If you allow this to default, the bridge task GET WAIT interval for messages within a unit of work is the value specified on the WAIT parameter when the
bridge monitor was started. If you also allow the WAIT parameter to default, the GET WAIT interval is unlimited.

MQCIH.LinkType

Specify MQCLT_PROGRAM if you are using the DPL bridge.

MQCIH.OutputDataLength

This field applies only to the DPL bridge and sets the length of data returned by the program.

MQCIH.RemoteSysId

Leave this field blank unless you need the request processed by a specific CICS system.

MQCIH.ReplyToFormat

Set this to MQFMT_NONE (the default value) if your application and the bridge are running in the same CCSID and encoding environment. Otherwise, set
the value to the format of the COMMAREA data returned.

MQCIH.TransactionId

Use the default value (four spaces) unless you want the bridge to run the DPL program under a transaction code other than the default value of CKBP.

MQCIH.UOWControl

This controls the unit of work processing performed by the bridge. Allowed values are described in theWebSphere MQ Application Programming Reference.

Page 205 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

See also Managing MsgId and CorrelId in a unit of work (DPL).

Parent topic: Setting fields in the MQMD and MQCIH structures (DPL)

This build: January 26, 2011 11:20:40

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15490_

2.14.1.4. Managing MsgId and CorrelId in a unit of work (DPL)

If your bridge application is running a single DPL program, set the value of MQCIH.UOWControl to MQCUOWC_ONLY. However, if your application is sending

and receiving multiple messages, you must handle units of work correctly for the CICS® DPL bridge. If you want to run multiple user programs within a unit
of work, set:

� The value of MQCIH.UOWControl to MQCUOWC_FIRST in the first request

� MQCUOWC_MIDDLE in any intermediate requests

� MQCUOWC_LAST in the last request

Your application can send multiple request messages within a unit of work before receiving any response messages. At any time after the first message, you
can terminate the unit of work by sending a message with MQCIH.UOWControl set to MQCUOWC_COMMIT or MQCUOWC_BACKOUT.

The following diagram summarizes the values to use and expect in key fields in the MQMD and MQCIH in typical CICS DPL bridge applications.

The first message must specify MQMD.CorrelId = MQCI_NEW_SESSION and subsequent messages must set MQMD.CorrelId to the message Id of the first

message.

In Figure 1, running more than one user program using the DPL bridge, the MsgId of the request message is set by the queue manager (to M1), and

subsequently copied to the CorrelId.

Figure 1. Setting of key fields for many CICS user programs in a unit of work viewed from the perspective of the bridge

Parent topic: Distributed program link applications

This build: January 26, 2011 11:20:40

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15500_

2.14.2. 3270 applications

This section contains the following information:

� Using CICS transactions with the bridge

� Programming CICS transactions in the distributed environment

� From 3270 legacy to 3270 bridge - an example

� Setting fields in the MQMD and MQCIH structures (3270)

� Managing MsgId and CorrelId in a unit of work (3270)

Page 206 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Using CICS transactions with the bridge

Programming CICS transactions in the distributed environment
CICS DPL programs and transactions can be driven through the CICS bridge when the client application resides on a workstation.

From 3270 legacy to 3270 bridge - an example
This section illustrates the differences in the data flows that take place when a CICS 3270 transaction interacts with a 3270 terminal, and a CICS
bridge application.

Setting fields in the MQMD and MQCIH structures (3270)
Your CICS bridge application must set a number of fields in the MQMD and the MQCIH in order to use the bridge successfully.

Managing MsgId and CorrelId in a unit of work (3270)
The usual style of CICS programming is pseudo-conversational, that is, a series of independent transactions that are linked together to form a
complete application. Use the fields and settings described here to maintain the transactions of a pseudo-conversation.

Parent topic: Using and writing WebSphere MQ-CICS bridge applications for z/OS

This build: January 26, 2011 11:20:40

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15510_

2.14.2.1. Using CICS transactions with the bridge

Without using WebSphere® MQ, a CICS® transaction can be started in several ways, including:

� A terminal user can enter the transaction name, followed (optionally) by data. The transaction can obtain any data that follows its identifier by issuing
EXEC CICS RECEIVE when it starts.

� A preceding transaction at the terminal terminates with EXEC CICS RETURN TRANSID(transid); the terminal sends a 3270 data stream and starts a
new transaction. A transaction that is started in this way obtains the data in the 3270 data stream by issuing EXEC CICS RECEIVE MAP or EXEC CICS
RECEIVE, depending on whether it uses BMS (Basic Mapping Support) mapping or terminal control.

� An application issues an EXEC CICS START command. The started transaction issues EXEC CICS RETRIEVE to retrieve any data that has been specified
on the START command.

A transaction that has been invoked at a terminal can subsequently issue commands such as EXEC CICS CONVERSE, EXEC CICS SEND MAP, and EXEC CICS
RECEIVE MAP in a conversation or pseudoconversation with a terminal user.

The CICS bridge can emulate any of these ways of starting CICS transactions. It can also emulate a terminal user sending and receiving screens of data
from the transaction. These emulations are achieved by using CICS bridge vectors, which represent the EXEC CICS command being emulated and provide
any data that is needed. The data needed by a CICS transaction accompanies inbound messages, and the data needed by a CICS bridge application
accompanies outbound messages.

Using CICS bridge vectors
You use vectors to represent EXEC CICS commands in request and reply messages.

CICS 3270 bridge message structure

Application programming for the CICS 3270 bridge

Writing applications using CICS Basic Mapping Support

Transactions with start data

Transactions with EXEC CICS syncpoint

Parent topic: 3270 applications

This build: January 26, 2011 11:20:40

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15520_

2.14.2.1.1. Using CICS bridge vectors

You use vectors to represent EXEC CICS® commands in request and reply messages.

Vectors are identified in bridge messages by strings of numeric characters known as vector descriptors. Each vector descriptor is the CICS EIBFN value of
the EXEC CICS command that it represents. For example, 0402 is the EIBFN value for EXEC CICS RECEIVE, and also the vector descriptor of the RECEIVE

vector. Vectors are further qualified by the letters I and O to show whether they are inbound (to the bridge) or outbound (from the bridge).

An outbound message can contain a request vector or a reply vector. These descriptions do not mean that they go to the request queue or the reply queue;
all outbound messages go to the reply queue. A CICS transaction uses a request vector to request data from the WebSphere® MQ bridge application that is
acting as the virtual terminal. A CICS transaction uses a reply vector when it does not expect any data back. No such distinction is made for inbound
vectors.

The following vectors are available. To get the CICS command that each represents, prefix the vector name with EXEC CICS.

Outbound reply vectors (no further data is required in the next inbound message):

� SEND

� SEND CONTROL

� SEND MAP

� SEND TEXT

� ISSUE ERASEAUP

Page 207 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Outbound request vectors (further data is required in the next inbound message):

� RECEIVE

� RECEIVE MAP

� CONVERSE

Inbound vectors:

� RECEIVE

� RECEIVE MAP

� CONVERSE

� RETRIEVE

Each of these vectors is an architected structure followed by variable length data. For details of the structures, refer to the CICS External Interfaces Guide.
Parent topic: Using CICS transactions with the bridge

This build: January 26, 2011 11:20:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15530_

2.14.2.1.2. CICS 3270 bridge message structure

The term CICS® 3270 bridge is used here to mean all non-DPL CICS transactions.

Inbound messages
These examples show the possible structures of CICS 3270 bridge inbound messages.

Outbound messages
Outbound messages from the bridge have one of three structures, depending on whether an error occurred.

Parent topic: Using CICS transactions with the bridge

This build: January 26, 2011 11:20:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15540_

2.14.2.1.2.1. Inbound messages

These examples show the possible structures of CICS® 3270 bridge inbound messages.

� Use this structure for an application that invokes a CICS transaction without any data:

| MQMD | MQCIH |

Set the field MQCIH.TransactionId to the name of the transaction that you want to start. Set the other fields in MQCIH to values that are appropriate
for the application.

� Use this structure for inbound messages that have zero length data:

| MQMD | MQCIH | BRMQ structure |

For example, an inbound RECEIVE MAP vector can represent an action where the user has only pressed a PF key. In this case, a field within the BRMQ

structure specifies which AID key has been used, but no data follows the BRMQ structure.

� Use this structure for an application that invokes a transaction that will issue an EXEC CICS command that expects data to be available:

| MQMD | MQCIH | BRMQ structure | data |

BRMQ structure represents any of the inbound vector structures RECEIVE, RECEIVE MAP, CONVERSE, or RETRIEVE. Note that the BRMQ structure

itself consists of a header followed by vectors and that these vectors can contain data.

Optionally, and only for CICS TS2.2 and above, additional headers with format names beginning MQH, and containing standard link fields, can precede the

MQCIH header. Such headers are returned unmodified in the output message because the bridge makes no use of data within the headers.

� Use this structure for inbound messages that have headers before the MQCIH:

| MQRFH2 | MQRFH2 | MQCIH |

Parent topic: CICS 3270 bridge message structure

This build: January 26, 2011 11:20:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15550_

2.14.2.1.2.2. Outbound messages

Outbound messages from the bridge have one of three structures, depending on whether an error occurred.

Although only a single vector is shown in each of these examples, messages can contain several concatenated vectors, except when an error occurs.

� This structure is used when bridge processing concludes normally, no errors were detected, and no data is to be returned to the bridge application:

Page 208 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

| MQMD | MQCIH | BRMQ structure |

Even if an application abends, this is still regarded as normal completion by the bridge. The abend code issued by the application is given in the
MQCIH.

� This structure is used when bridge processing concludes normally, no errors were detected, and data is to be returned to the bridge application:

| MQMD | MQCIH | BRMQ structure | data |

BRMQ structure represents any of the architected outbound reply or request vector structures.

� This structure is used when bridge processing concludes abnormally, an error having been detected by the bridge monitor:

| MQMD | MQCIH | CSQC* message |

CSQC* message represents an error message that indicates the error type. The value of field MQCIH.Format is set to MQFMT_STRING, to ensure that

the message can be properly converted if the final destination uses a different CCSID and encoding. The MQCIH also contains other fields that you can
use to diagnose the problem.

Note:

1. The MQMD is shown in the examples to help you to visualize the overall structure of the message. This is the structure that you see if you use the
general queue browser utility of WebSphere® MQ SupportPac MA10 "MQSeries® for MVS/ESA - ISPF utilities".

2. Only a single vector is shown associated with any message. In practice, a message might contain several vectors concatenated:

� Inbound messages can contain several RECEIVE MAP vectors in anticipation of future RECEIVE MAP requests from the CICS® transaction. The
application needs to know the flow of control in the transaction in order to construct the message.

� Outbound messages can contain several vectors, for example as a result of successive EXEC CICS SEND MAP commands being issued by a
transaction. The CICS transaction does not control whether the outbound message contains a single vector or multiple vectors.

If the transaction issues a command that generates a request vector, the request vector is always the last one in the message.

Parent topic: CICS 3270 bridge message structure

This build: January 26, 2011 11:20:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15560_

2.14.2.1.3. Application programming for the CICS 3270 bridge

Application programming for the CICS® 3270 bridge is usually more complex than application programming for the DPL bridge for these reasons:

� The bridge emulates all the functions of the CICS terminal API, including minimum function BMS.

� The bridge application needs to be aware of the internal logic and flow of control in the CICS transaction that is being run, and it must interpret and
respond to vectors that it receives in outbound messages.

� If a transaction uses BMS maps, the bridge application might not have access to the copybooks created during map assembly to help interpret data in
the vectors. In this case, the data must be analyzed indirectly through the use of an application data structure (ADS) descriptor.

If you are unfamiliar with the terminology used for describing application data structures, refer to the section Application data structure terminology.

Ensure that every inbound message that is sent to the CICS 3270 Bridge includes a vector structure after the CIH, except when you start a transaction with
no data.

The vector structure definitions are available in C-language header file dfhbrmqh.h and COBOL copybook DFHBRMQO. Include these in any application that

uses the bridge. These members are only provided with CICS Transaction Server on z/OS®. If you want to create your application on another platform, copy
them to that environment.

All the vectors have a common header, but their structures differ. Details of the structures are given in the CICS Internet and External Interfaces Guide for
CICS V2.2, or the CICS External Interfaces Guide for CICS V2.3. Refer to these books when you are developing your bridge applications.

Obtain a copy of CICS SupportPac CA1E "CICS Bridge Passthrough" as an aid to analyzing the logic of your existing CICS transactions, and to help plan your
WebSphere® MQ CICS 3270 bridge applications. You might be able to use the SupportPac to test application code. It also enables you to display and
capture the inbound and outbound data flows, to study how messages must be structured, and what values to insert into fields in the MQCIH and the
vectors.

This example illustrates how you might write applications for the CICS 3270 bridge; it shows how to invoke a transaction that would normally be started by
entering its identifier and some command line arguments at a CICS terminal:

Example: Invoking CEMT I TASK from an application
This example shows how an application can start a transaction, in this case CEMT, that expects to receive command line arguments when it is invoked.

Parent topic: Using CICS transactions with the bridge

This build: January 26, 2011 11:20:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15570_

2.14.2.1.3.1. Example: Invoking CEMT I TASK from an application

This example shows how an application can start a transaction, in this case CEMT, that expects to receive command line arguments when it is invoked.

When the CEMT task starts, it issues EXEC CICS® RECEIVE to receive any command line arguments that follow its identifier. The application that emulates
the command line invocation must therefore start CEMT with a RECEIVE vector that contains appropriate values in the vector structure, and also include the
command line values.

The following C-language code fragment shows how the inbound message can be constructed. Note that dfhbrmqh.h is in the CICS SAMPLIB.

Page 209 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

/* #includes */

#include cmqc.h /* WebSphere MQ header */

#include dfhbrmqh.h /* Vector structures */ ⋮
/* #defines */

#define CMDSTRING "CEMT I TASK" /* Command string */

#define RCV_VECTOR "0402" /* Vector descriptor */

#define INBOUND "I " /* Inbound type */

#define VERSION "0000" /* Vector version */

#define YES "Y " /* YES indicator */

#define NO "N " /* NO indicator */ ⋮
/* Data declarations */

/* AID indicator value */

const char AID[4] = { 0x7d, ' ',' ',' ' } ;

MQMD mqmd ; /* Message descriptor */

MQCIH mqcih = {MQCIH_DEFAULT} ; /* CICS information header */

brmq_vector_header brvh ; /* Standard vector header */

brmq_receive brrcv ; /* RECEIVE vector structure */

MQCHAR * MsgBuffer ; /* Message buffer pointer */ ⋮
The outbound message that is returned to the reply queue contains a SEND reply vector with data in terminal control format; your application needs to know
this when it analyzes the data that it receives.

Defining variables

Parent topic: Application programming for the CICS 3270 bridge

This build: January 26, 2011 11:20:42

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15580_

2.14.2.1.3.1.1. Defining variables

/* allocate storage for the message buffer. Note that the RECEIVE */

/* vector structure includes space for the standard vector header. */

MsgBuffer = malloc(sizeof(MQCIH) + sizeof(brrcv)

 + strlen(CMDSTRING)) ; ⋮
Setting up the MQMD

memcpy(mqmd.Format, MQFMT_CICS,sizeof((MQFMT_CICS));

memcpy(mqmd.MsgId, MQMI_NONE, sizeof(MQMI_NONE));

memcpy(mqmd.CorrelId, MQCI_NEW_SESSION, sizeof((MQCI_NEW_SESSION);

mqmd.MsgType = MQMT_REQUEST;

strncpy(mqmd.ReplyToQueue,"MyReplyQueue");

Setting up the MQCIH

mqcih.LinkType = MQCLT_TRANSACTION ;

mqcih.GetWaitInterval= 1000 ; /* one second */

mqcih.FacilityKeepTime = 10000 ; /* |= 0 says return token */

memcpy(mqcih.Facility,MQCFAC_NONE,sizeof(MQCFAC_NONE));

strncpy(mqcih.TransactionId, "CEMT", strlen("CEMT"));

strncpy(mqcih.FacilityLike, " ", strlen(" "));

mqcih.UOWControl = MQCUOWC_FIRST;

memcpy(mqcih.AttentionId,AID,sizeof(mqcih.AttentionId); /* enter pressed */

Setting up the BRMQ

 brvh.brmq_vector_length = sizeof(brrcv) + strlen(CMDSTRING) ;

 strncpy(brvh.brmq_vector_descriptor, RCV_VECTOR, strlen(RCV_VECTOR)) ;

 strncpy(brvh.brmq_vector_type, INBOUND, strlen(INBOUND)) ;

 strncpy(brvh.brmq_vector_version, VERSION, strlen(VERSION)) ;

 /* Initialize fields in the RECEIVE vector structure: */

 strncpy(brrcv.brmq_re_transmit_send_areas, YES, strlen(YES)) ;

 strncpy(brrcv.brmq_re_buffer_indicator, NO, strlen(NO)) ;

 strncpy(brrcv.brmq_re_aid, AID, sizeof(brrcv.brmq_re_aid)) ;

 brrcv.brmq_re_data_len =strlen(CMDSTRING) ;

Building the message

/* Copy the MQCIH to the start of the message buffer */

 memcpy(MsgBuffer, &mqcih, sizeof(MQCIH)) ;

 /* Append the RECEIVE vector to the CIH */

 memcpy(MsgBuffer + sizeof(MQCIH), brrcv, sizeof(brrcv)) ;

 /* Overlay the standard vector header on the RECEIVE vector */

 memcpy(MsgBuffer + sizeof(MQCIH), brvh, sizeof(brvh)) ;

 /* Append the command string to the vector structure */

 strncpy(MsgBuffer + sizeof(MQCIH) + sizeof(brrcv),

 CMDSTRING, strlen(CMDSTRING)) ;

/* the message is now ready for the MQPUT with length of

 sizeof(MQCIH) + sizeof(brrcv)+ strlen(CMDSTRING);

Parent topic: Example: Invoking CEMT I TASK from an application

This build: January 26, 2011 11:20:42

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15590_

2.14.2.1.4. Writing applications using CICS Basic Mapping Support

Page 210 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

If your application does not use maps you do not need to read this section; go to Programming CICS transactions in the distributed environment

CICS Basic Mapping Support (BMS) provides a way for CICS applications to support a number of different terminal types. When the application issues EXEC
CICS SEND MAP, BMS merges terminal-specific control data with the application data to produce a 3270 data stream that can be displayed at the terminal.
When the application issues EXEC CICS RECEIVE MAP, application data is extracted from an inbound 3270 data stream and returned to the application.

A BMS map for a CICS application is created by assembling a set of BMS macros that define the characteristics of fields that are required for the display. One
of the outputs from map assembly is a copybook that maps the display fields to an ADS. The CICS application must include the copybook in its data
definitions so that it can address the fields in the map symbolically. The application data in a SEND MAP, and expected by a RECEIVE MAP, is mapped
directly to the ADS in the copybook.

When the transaction runs under the CICS bridge, EXEC CICS SEND MAP and EXEC CICS RECEIVE MAP commands generate SEND MAP and RECEIVE MAP
vectors in outbound messages. Instead of a 3270 data stream, these vectors contain ADSs equivalent to those used by the CICS application to address fields
in the map.

The format of the ADS is unique for each map. It is described by a copybook created as part of map generation. Without this copybook it is difficult to
interpret the data. Usually WebSphere® MQ applications include the BMS copybooks so that they can create RECEIVE MAP data, and interpret SEND MAP
data. However, you can write an application without the specific BMS copybooks. The format of the data is described by a structure known as the ADS
descriptor (ADSD). The ADSD is added to the end of a SEND MAP vector, and it describes the format of the ADS in the vector. The ADSD contents include
the names, positions, and lengths of the fields in the ADS. An ADSD can also be sent on a RECEIVE MAP request. You can use this in conversational
applications to tell the WebSphere MQ application the structure of the ADS requested by the CICS application. The WebSphere MQ application can then build
a RECEIVE MAP vector with this ADS, and send it as a new request.

As an application programmer, you can choose whether you want to interpret vector data in messages using the ADS, the ADSD, or the ADSDL (long form of
the application data structure descriptor). In order to interpret the ADS directly, include the copybook from map assembly in your WebSphere MQ bridge
application. If you want to do this, but you do not have access to the copybook or map, re-create the map with the CICS utility DFHBMSUP; this requires
CICS Transaction Server 1.2 or later.

If you want to interpret the ADS indirectly through the ADSD or ADSDL, for example if you are creating a generic application that will handle all maps, you
do not need to include the copybook in your bridge application. Instead you need to send control information to the bridge that tells it to include the ADSD
or ADSDL in outbound SEND MAP and RECEIVE MAP request vectors as required.

If your application must run in the distributed environment, include an ADSDL in outbound SEND MAP vectors. WebSphere MQ can then convert data in the
outbound message.

You can specify any of the following options by setting appropriate values in field MQCIH.ADSDescriptor in inbound messages:

� To include an ADSD (short form of the application data structure descriptor) with the SEND MAP vector, set:

 MQCIH.ADSDescriptor = MQCADSD_SEND

If you specify this alone, you also get the short form of the ADS (application data structure) included in the SEND MAP vector.

� To include an ADSD with the RECEIVE MAP vector, set:

 MQCIH.ADSDescriptor = MQCADSD_RECV

The ADS is never present in an outbound RECEIVE MAP request vector.

� To include an ADSDL in the SEND MAP or RECEIVE MAP vector, set:

 MQCIH.ADSDescriptor = MQCADSD_MSGFORMAT

If you specify this, you also get the long form of the ADS included in the SEND MAP vector.

� To not include an ADS descriptor in the SEND MAP or RECEIVE MAP vector set:

 MQCIH.ADSDescriptor = MQCADSD_NONE

This is the default. If you specify this, you will get the short form of the ADS included in the SEND MAP vector.

You can add MQCADSD_* values together to include the long form of the application data structure descriptor in both SEND MAP and RECEIVE MAP vectors:

 MQCIH.ADSDescriptor = MQCADSD_SEND + MQCADSD_RECV + MQCADSD_MSGFORMAT

In this case, the SEND MAP vector also includes an ADS in long form.

Interpreting outbound SEND MAP and RECEIVE MAP vectors
Include logic in your bridge application to interpret outbound SEND MAP and RECEIVE MAP request vectors, and to build and send an inbound RECEIVE
MAP vector in response to the corresponding outbound RECEIVE MAP request.

Parent topic: Using CICS transactions with the bridge

This build: January 26, 2011 11:20:42

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15600_

2.14.2.1.4.1. Interpreting outbound SEND MAP and RECEIVE MAP vectors

Include logic in your bridge application to interpret outbound SEND MAP and RECEIVE MAP request vectors, and to build and send an inbound RECEIVE MAP
vector in response to the corresponding outbound RECEIVE MAP request.

SEND MAP vectors
Include logic in your bridge application to interpret outbound SEND MAP request vectors.

RECEIVE MAP vectors
A RECEIVE MAP request is a request for the client to provide a RECEIVE MAP on the next input message.

Example of an ADSDL and an ADS
An example showing parts of an ADSDL and an ADS is given here.

Parent topic: Writing applications using CICS Basic Mapping Support

This build: January 26, 2011 11:20:42

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15610_

Page 211 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

2.14.2.1.4.1.1. SEND MAP vectors

Include logic in your bridge application to interpret outbound SEND MAP request vectors.

An outbound SEND MAP vector can contain an application data structure (ADS) and an application data structure descriptor in short form (ADSD) or long
form (ADSDL).

To interpret a SEND MAP vector, do the following (assuming that the message contains both an ADS and an ADSD or ADSDL):

1. Get the message containing the SEND MAP vector from the bridge reply queue into a message buffer.

2. Locate the start of the outbound SEND MAP vector in the message buffer. This is appended to the CIH, and so is at an offset equal to the length of the
CIH from the start of the message buffer. You can use the following code fragment as a model:

/* #includes */

#include cmqc.h /* WebSphere MQ header */

#include dfhbrmqh.h /* Vector structures */ ⋮
/* #defines */ ⋮
MQCHAR * MsgBuffer ; /* Message buffer pointer */

brmq_send_map * pVector ; /* Vector pointer */ ⋮
/* Get message from reply queue */ ⋮
/* Set the vector pointer to the start of the vector */

pVector = MsgBuffer + ((MQCIH *) MsgBuffer)->StrucLength ;

3. Identify the starting addresses of the application data structure (ADS) and the application data structure descriptor (ADSD or ADSDL) from the SEND
MAP vector.

The following diagram shows the structure of an outbound SEND MAP vector (assuming that you have set a pointer called pVector to address the start

of the brmq_send_map vector, as in the code fragment above):

|---------------------------x'vvvvvvvv'-------------------------→|
|---------------------x'zzzzzzzz'-------------------→|
|----------------x'xxxxxxxx'------------→|
|---------sizeof(brmq_send_map)---------→|
 --→ x'wwwwwwww' ←--
 1804 O --→ x'yyyyyyyy' ←--
 -------------- ... ------------------------...---------...----

|vvvv|FFFF|D444| |wwww|xxxx|yyyy|zzzz| ADS | ADSD or |

|vvvv|1804|6000| |wwww|xxxx|yyyy|zzzz| | ADSDL |

 -------------- ... ------------------------...---------...----

↑ ↑ ↑ ↑ ↑
pVector | | | pVector->brmq_sm_adsd_offset

 | | pVector->brmq_sm_adsd_len

 | pVector->brmq_sm_data_offset

 pVector->brmq_sm_data_len

Values in the diagram shown like this:

ABCD

1234

show hexadecimal values as you would see them in an ISPF editor with hex on. This is equivalent to the hexadecimal value X'A1B2C3D4'.

Fields pVector->brmq_sm_data_offset and pVector->brmq_sm_data_len give the offset and length of the ADS, and fields pVector-

>brmq_sm_adsd_offset and pVector->brmq_sm_adsd_len give the offset and length of the ADSD or ADSDL.

Fields brmq_sm_adsd_offset and brmq_sm_adsd_len are both set to zero if no ADSD or ADSDL is included in the message.

4. Identify the fields in the ADSD or ADSDL.

The ADSD and ADSDL are both mapped to structures that are defined in header file dfhbrarh.h, which is distributed in library <hlq>.SDFHC370 for
CICS® Transaction Server for OS/390® Version 1.2 or later. You can examine the structure definitions there to see how the fields are laid out. The
fields of the ADSD are also described in the CICS Internet and External Interfaces Guide for CICS V1.2, or the CICS External Interfaces Guide for CICS
V1.3..

To compile your bridge application on a workstation, copy file dfhbrarh.h to that environment.

Both the ADSD and the ADSDL are represented by two types of structure. The first structure is the descriptor, which occurs only once at the start of
the ADSD or ADSDL. These types are defined as follows:

ads_descriptor

Descriptor for the ADSD (short form)

ads_long_descriptor

Descriptor for the ADSDL (long form)

The second structure is the field descriptor, which is repeated once for each field in the map. These types are defined as follows:

ads_field_descriptor

Field descriptor for the ADSD (short form)

ads_long_field_descriptor

Field descriptor for the ADSDL (long form)
This can be shown diagrammatically like this for the ADSDL and the ADSD:

The ADSDL:

 -- ...

| ADS Descriptor | field descriptor | field descriptor |

 -- ...

↑ ↑ ↑
| | ads_long_field_descriptor

| ads_long_field_descriptor

ads_long_descriptor

The ADSD:

 -- ...

| ADS Descriptor | field descriptor | field descriptor |

 -- ...

↑ ↑ ↑
| | ads_field_descriptor

| ads_field_descriptor

ads_descriptor

Fields adsd_field_count and adsdl_field_count in the descriptors identify the number of field descriptors in the ADSD and ADSDL.

You can use the following code fragment to set pointers to the start of the ADSD or ADSDL structures and process the field descriptors sequentially. It
is assumed that pVector already addresses the start of the brmq_send_map vector, and that you have an MQCIH structure named mqcih that contains

the CIH from the inbound message.

/* #includes */

Page 212 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

#include cmqc.h /* WebSphere MQ header */

#include dfhbrmqh.h /* Vector structures */

#include dfhbrarh.h /* ADSD structures */ ⋮
/* Ptr to ADSD descriptor */

ads_descriptor * pADSD_D ;

/* Ptr to ADSDL descriptor */

ads_long_descriptor * pADSDL_D ;

/* Ptr to ADSD field descriptor */

ads_field_descriptor * pADSD_FD ;

/* Ptr to ADSDL field descriptor */

ads_long_field_descriptor * pADSDL_FD ; ⋮
/* Initialize the pointer to the ADSDL descriptor or the */

/* ADSD descriptor depending on mqcih.ADSDescriptor */

if (mqcih.ADSDescriptor && MQCADSD_MSGFORMAT)

{

 pADSDL_D = pVector->brmq_sm_adsd_offset; /* Long form */

 pADSDL_FD = pADSDL_D + sizeof(ads_long_descriptor) ;

 ⋮
/* Enter a loop where we process all field descriptors */

/* in the ADSDL sequentially */

 do

 {

/* Perform some processing */

 ⋮
pADSDL_FD += sizeof(ads_long_field_descriptor) ;

 }

 while (pADSDL_FD < pADSDL_D->adsdl_length) ;

}

else /* Short form */

{

 pADSD_D = pVector->brmq_sm_adsd_offset; /* Short form */

 pADSD_FD = pADSD_D + sizeof(ads_descriptor) ;

/* Enter a loop where we process all field descriptors */

/* in the ADSD sequentially */

 do

 {

/* Perform some processing */

 ⋮
 pADSD_FD += sizeof(ads_field_descriptor) ;

 }

 while (pADSD_FD < pADSD_D->adsd_length) ;

} ⋮
5. Identify the fields in the ADS.

The ADS is mapped to a structure that is generated when you assemble your map. If you include a keyword=parameter value of DSECT=ADSDL in your

mapset definition macro, you get the long form of the ADS. The output from map assembly is a union of two structures: an input structure and an
output structure. This example shows part of such a union (only the first field definition is shown for each structure, and the comments have been
added following map assembly).

union

{

struct {

 char dfhms1[12]; /* 12 reserved bytes */

 int dfhms2; /* Offset to next field */

 int tranidl; /* Data length of this field */

 int tranidf; /* Flag or attribute value */

 int dfhms3[7]; /* Extended attributes array */

 char tranidi[4]; /* Data value of field */

 ...

 } bmstmp1i; /* Input structure */

struct {

 char dfhms56[12]; /* 12 reserved bytes */

 int dfhms57; /* Offset to next field */

 int dfhms58; /* Data length of this field */

 int tranida; /* Flag or attribute value */

 int tranidc; /* Extended attribute */

 int tranidp; /* Extended attribute */

 int tranidh; /* Extended attribute */

 int tranidv; /* Extended attribute */

 int tranidu; /* Extended attribute */

 int tranidm; /* Extended attribute */

 int tranidt; /* Extended attribute */

 char tranido[4]; /* Data value of field */

 ...

 } bmstmp1o; /* Output structure */

} bmstmp1; /* Union */

The two structures are functionally identical, except that the input structure includes the extended attribute values in a seven–element array, and the
output structure provides individually named fields.

You can use the following code fragment to set pointers to the start of the ADS. The structure names shown in the example DSECT above are used for
illustration. Two pointers are set, the first to address inbound data and the second to address outbound data. It is assumed that pVector already

addresses the start of the brmq_send_map vector.

/* #includes */

#include cmqc.h /* WebSphere MQ header */

#include dfhbrmqh.h /* Vector structures */

#include dfhbrarh.h .. /* ADSD structures */

#include mydsect.h /* DSECT from map assembly */ ⋮
bmstmp1i * pADSI ; /* Pointer to the inbound ADS */

bmstmp1o * pADSO ; /* Pointer to the outbound ADS */

bmstmp1i * pADSI_An ; /* Inbound ADS Anchor */

bmstmp1o * pADSO_An ; /* Outbound ADS Anchor */ ⋮
/* We are dealing with an outbound vector, so we will */

/* initialize the outbound pointer to address the ADS */

Page 213 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

pADSO = pVector->brmq_sm_adsd_offset ;

/* Save initial value as anchor */

 pADSO_An = pADSO ;

/* Move to the start of the first field */

pADSO += pADSDL_FD->adsdl_field_offset ;

/* Enter a loop where we process all fields in the ADS */

/* sequentially. It is assumed that the value of pADSDL_FD */

/* is being augmented to the next field descriptor in the */

/* ADSDL with every loop. A model for this is shown in a code*/

/* fragment above. Note that adsdl_field_offset contains */

/* the absolute offset of the field from the start of the */

/* ADS. */

do

{

 /* Perform some processing */

 ⋮
 /* Add offset of next field to ADS Anchor value */

 /* to address the next field */

 pADSO = pADSO_An + pADSDL_FD->adsdl_field_offset ;

}

while (pADSDL_FD < pADSDL_D->adsd_length) ; ⋮
The general structures of the long and short forms of the ADS are given in CICS Transaction Server for OS/390 Version 1 Release 3: Web Support and

3270 Bridge, an IBM® Redbooks® publication.

Parent topic: Interpreting outbound SEND MAP and RECEIVE MAP vectors

This build: January 26, 2011 11:20:42

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15620_

2.14.2.1.4.1.2. RECEIVE MAP vectors

A RECEIVE MAP request is a request for the client to provide a RECEIVE MAP on the next input message.

Unlike a SEND MAP vector, an outbound RECEIVE MAP request vector never contains an ADS. It contains an ADSD or ADSDL that describes the ADS data
that it requires in the next inbound RECEIVE MAP vector, provided that MQCADSD_RECV has been specified in MQCIH.ADSDescriptor. The RECEIVE MAP
vector structure differs from that of the SEND MAP vector. The main difference is that there are no fields giving the offset and length of the ADS.

Do the following to interpret a RECEIVE MAP vector (assuming that the message contains an ADSD or ADSDL):

1. Get the message containing the RECEIVE MAP request vector from the bridge reply queue into a message buffer.

2. Locate the start of the outbound RECEIVE MAP vector in the message buffer. This is appended to the CIH and so is at an offset equal to the length of
the CIH from the start of the message buffer. You can use this code fragment as a model.

/* #includes */

#include cmqc.h /* WebSphere MQ header */

#include dfhbrmqh.h /* Vector structures */ ⋮
/* #defines */ ⋮
MQCHAR * MsgBuffer ; /* Message buffer pointer */

brmq_receive_map_request * pVector ; /* Vector pointer */ ⋮
/* Get message from reply queue */ ⋮
/* Set the vector pointer to the start of the vector */

pVector = MsgBuffer + ((MQCIH *) MsgBuffer)->StrucLength ; ⋮
3. Identify the starting address ADSD or ADSDL from the RECEIVE MAP vector.

This following diagram shows the structure of an outbound RECEIVE MAP request vector (the diagram assumes that you have set a pointer called
pVector to address the start of the brmq_receive_map_request vector, as in the code fragment above).

|--------x'vvvvvvvv'-----------------→|

 sizeof(brmq_receive_map_request)

|------------------------→|

 1802 O --→ x'wwwwwwww' ←--
 -------------- ... ----------------

|vvvv|FFFF|D444| |wwww| ADSD or |

|vvvv|1802|6000| |wwww| ADSDL |

 -------------- ... ----------------

↑ ↑
pVector pVector->brmq_rmr_adsd_len

Values in the diagram shown like this:

ABCD

1234

show hexadecimal values as you would see them in an ISPF editor with hex on. This is equivalent to the hexadecimal value X'A1B2C3D4'.

Field pVector->brmq_rmr_adsd_len gives the length of the ADSD or ADSDL. No offset is given since the ADSDL is appended directly to the

brmq_receive_map_request vector.

4. Identify the fields in the ADSD or ADSDL. To do this, proceed in general as for the SEND MAP vector described in SEND MAP vectors. Use the following
code fragment, however, to set pointers to the start of the ADSD or ADSDL. ⋮

if (mqcih.ADSDescriptor && MQCADSD_MSGFORMAT)

{

 pADSDL_D = pVector + sizeof(brmq_receive_map_request) ;

 ⋮
}

Page 214 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

else /* Short form */

{

 pADSD_D = pVector + sizeof(brmq_receive_map_request) ;

 ⋮
} ⋮

The ADSD or ADSDL has exactly the same structure in the RECEIVE MAP vector as in the SEND MAP vector, so once you have identified its start
address you can proceed as described for the SEND MAP vector.

Parent topic: Interpreting outbound SEND MAP and RECEIVE MAP vectors

This build: January 26, 2011 11:20:43

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15630_

2.14.2.1.4.1.3. Example of an ADSDL and an ADS

An example showing parts of an ADSDL and an ADS is given here.

For full details of all the fields, see the references already cited. Values in the diagrams shown like this:

ABCD

1234

show hexadecimal values as you would see them in an ISPF editor with hex on. This is equivalent to the hexadecimal value X'A1B2C3D4'.

This diagram shows the start of the ADSDL (even though the eyecatcher shows ADSL):

...½ADSL...........±....CHO L┌.......&$...TRANID
000BCCED0000000100040000CCD444444444D400000F000F000100054000EDCDCC44...

005814230001000B001900033860000000003000000F000E00080000A00039159400...

↑ ↑ ↑ ↑ ↑
| adsdl_field_count | | adsdl_first_field

adsdl_length | adsdl_map_columns

 adsdl_map_lines

The fields named in this example show the following:

adsdl_length

This ADSDL is 0x05B8 bytes long

adsdl_field_count

There are 0x1B (27) named fields in the ADS

adsdl_map_lines

The map has 0x18 (24) lines

adsdl_map_columns

The map has 0x50 (80) columns

adsdl_first_field

The start of the first field description in the ADSDL.

The next diagram shows the ADSDL first field descriptor and part of the next field descriptor.

TRANID L ..TERMID

EDCDCC444444444444444444444444440000000000000000D400ECDDCC4444444444...

3915940000000000000000000000000000060000000C000430003594940000000000...

↑ ↑ ↑ ↑ ↑
adsdl_field_name | | | adsdl_next_field

 | | adsdl_field_data_len

 | adsdl_field_offset

 adsdl_field_name_len

The fields named in this example show the following:

adsdl_field_name

The name of the field in the ADS, in this case TRANID. Only the value of the field appears in the ADS, not its name.

adsdl_field_name_len

The length of the name of the field, in this case six bytes.

adsdl_field_offset

The absolute offset of the field from the start of the ADS. The offset is given as 0x0C (twelve) bytes, even though this is the first field. The reason is that
the first twelve bytes of the ADS are reserved and do not contain information for the application programmer.

adsdl_field_data_len

The data length of the named field, in this case four bytes.

adsdl_next_field

The start of the next field description.

The next diagram shows the start of the ADS, which is in long form. The values here relate directly to the sample ADSDL shown above and are for the field
named as TRANID in adsdl_field_name.

..BAAA............

0000000000000002000000000000000000000000000000000000CCCC000200000000...

000000000000000C0000000000000000000000000000000000002111000C00000000...

↑ ↑ ↑ ↑
| Offset to next field | Start of next field

12 bytes reserved Value of field

The meanings of the values shown here are as follows:

12 bytes reserved

Reserved space at the start of every ADS, in both short and long form

Offset to next field

The information given for the current field is 0x2C bytes long, from the start of this fullword length value.

Value of field

Page 215 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

The value of the field, whose name is identified as TRANID in the ADSDL, is BAAA. The offset of the data is always 0x28 bytes from the start of the field for
an ADS in long form.

Start of next field

The start of the information for the next field in the ADS.

In this case, the field information is an exact multiple of fullwords. If this were not the case, padding bytes would appear after the data value and before the
next field to ensure that it started on a fullword boundary. The padding bytes would be included in the offset to next field value.

A number of attribute and extended attribute values for the field, not identified here, appear between the fullword giving the offset to the next field and the
field value itself.

Parent topic: Interpreting outbound SEND MAP and RECEIVE MAP vectors

This build: January 26, 2011 11:20:43

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15640_

2.14.2.1.5. Transactions with start data

An application that starts a transaction that will issue an EXEC CICS® RETRIEVE … QUEUE(data-area) to retrieve its start data sends a message to the
bridge with a RETRIEVE vector structure, which is defined in C as brmq_retrieve. The structure contains a character field of length eight bytes in which the

application program must specify the name of the temporary storage queue that contains the data to be retrieved. A message containing a RETRIEVE vector
is always the first in an exchange representing a conversation or pseudo conversation.

Parent topic: Using CICS transactions with the bridge

This build: January 26, 2011 11:20:43

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15650_

2.14.2.1.6. Transactions with EXEC CICS® syncpoint

Transactions that issue explicit syncpoint or rollback requests also receive an additional message on the reply queue, showing the result of the syncpoint in
the MQCIH TaskEndStatus field. This extra message is sent with an MQMD MsgType of MQMT_DATAGRAM.

No input from the application is expected and the additional message is followed by the normal task end message.

Parent topic: Using CICS transactions with the bridge

This build: January 26, 2011 11:20:43

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15660_

2.14.2.2. Programming CICS transactions in the distributed environment

CICS® DPL programs and transactions can be driven through the CICS bridge when the client application resides on a workstation.

The main consideration when programming for the distributed environment is data conversion between the different encoding schemes and CCSID values of
the workstation and z/OS®. Conversion is carried out by two different routines, one for the MQCIH structure and another for the vector.

You can ensure that the MQCIH is converted by specifying MQFMT_CICS in the MQMD.Format field. Vector conversion, however, requires a little more
consideration.

To convert the SEND MAP and RECEIVE MAP vectors, do the following:

� Make sure that you assemble your maps specifying DSECT=ADSDL in your DFHMSD macro. Your map must be assembled under CICS Transaction

Server for OS/390® Version 1.2 or greater for the ADSD or ADSDL to be made available. If you do not have the original mapset definition, re-create
the map using the CICS DFHBMSUP utility.

� Specify a value of MQCADSD_SEND+MQCADSD_MSGFORMAT in field MQCIH.ADSDescriptor. If you are using an ADSD or ADSDL to build your
RECEIVE MAP ADS, add in the value MQCADSD_RECV for this field.

� Specify a value of CSQCBDCI in field MQCIH.Format on every inbound message.

� Ensure that CONVERT=YES is specified on the channel between z/OS and the workstation.

No support is provided for conversion between workstation and mainframe formats of vectors other than SEND MAP (outbound) and RECEIVE MAP (both
inbound and outbound).

Parent topic: 3270 applications

This build: January 26, 2011 11:20:43

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15670_

2.14.2.3. From 3270 legacy to 3270 bridge - an example

This section illustrates the differences in the data flows that take place when a CICS® 3270 transaction interacts with a 3270 terminal, and a CICS bridge
application.

In this example, the transaction has an identifier of BAAA. It uses BMS maps, which allow the transaction to be adapted easily to run under the CICS bridge.

Page 216 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

In the legacy environment, the transaction is started by entering its name at the CICS 3270 terminal and pressing Enter. Logic in the transaction causes it to
issue EXEC CICS SEND MAP the first time that it is invoked in a pseudoconversation, and then to terminate by issuing EXEC CICS RETURN TRANSID(BAAA).

The user enters values into fields in the map that is displayed at the terminal, and then presses an AID key. Logic in the transaction the second time that it
is invoked causes it to issue EXEC CICS RECEIVE MAP to receive the map. It updates certain fields in the map by changing values in its own application data
structure, and then issues EXEC CICS SEND MAP to redisplay the map at the user's terminal.

The user can then update fields in the redisplayed map, and start the RECEIVE MAP - SEND MAP cycle again. The logic can be illustrated like this (where EC
represent EXEC CICS):

Terminal user 3270 Transaction

BAAA <ENTER> -------------------→ <Initial start>
 <business logic>

 ←------------------- EC SEND MAP FROM(ads)
 EC RETURN TRANSID(BAAA)

Update fields

<ENTER> -------------------→ EC RECEIVE MAP INTO(ads)
 <business logic>

 ←------------------- EC SEND MAP
 EC RETURN TRANSID(BAAA)

Update fields

<ENTER> -------------------→ EC RECEIVE MAP
 ⋮

When the transaction runs in the bridge environment, the physical terminal is replaced by an application. The logic of the 3270 transaction is unchanged,
and the application data that it receives is the same, but the data that flows, and the means by which it is transmitted, are different. Instead of a 3270 data
stream, a WebSphere® MQ message is used that contains an MQCIH structure (a CICS Information Header), a bridge vector structure, and optionally a
representation of the application data structure.

Including these objects in the message depends on the direction in which the message flows (inbound to the bridge or outbound from the bridge), the
sequence of the message in the exchange, and whether an application data structure descriptor has been requested by setting the appropriate value in a
field in the MQCIH.

The section Exact emulation - no optimization shows the flows that take place when the above scheme is emulated exactly. There is scope for optimization
by including more than one vector in inbound messages, as shown in the section Improved emulation, with optimization.

It is assumed that MQCIH.ADSDescriptor is set to:

MQCADSD_SEND + MQCADSD_RECV + MQCADSD_MSGFORMAT

so application data structure descriptors in long form are appended to both outbound and inbound application data structures during the exchange of
messages.

For clarity, the details of messaging are omitted here. For a description of the queuing model used by the CICS bridge, see theWebSphere MQ for z/OS
Concepts and Planning Guide.

Exact emulation - no optimization
If you examine the flows that are captured when such a transaction is run using the Passthrough tool (CICS SupportPac CA1E "CICS 3270 Bridge
Passthrough"), you can identify the structures with the help of the available online documentation.

Improved emulation, with optimization

Parent topic: 3270 applications

This build: January 26, 2011 11:20:43

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15680_

2.14.2.3.1. Exact emulation - no optimization

If you examine the flows that are captured when such a transaction is run using the Passthrough tool (CICS® SupportPac CA1E "CICS 3270 Bridge
Passthrough"), you can identify the structures with the help of the available online documentation.

WebSphere MQ Bridge Application 3270 Transaction

MQPUT to --MQCIH--------------------------------→ <Initial start>
Bridge (Note 1) <business logic>

RequestQ

MQGET from ←--MQCIH+brmq_send_map+ADS+ADSDL-------- EC SEND MAP FROM(ads)
Bridge (Note 2) EC RETURN

ReplyQ TRANSID(BAAA)

MQPUT to --MQCIH--------------------------------→ <Start>
Bridge (Note 3)

RequestQ

MQGET from ←--MQCIH+brmq_receive_map_request+ADSDL- EC RECEIVE MAP INTO(ads)
Bridge (Note 4) |

ReplyQ |

 waits

Updates fields |

 |

MQPUT to ----MQCIH+brmq_receive_map+ADS---------→ ↓
Bridge (Note 5)

RequestQ

 <business logic>

MQGET from ←--MQCIH+brmq_send_map+ADS+ADSDL-------- EC SEND MAP FROM(ads)
Bridge (Note 6) EC RETURN

ReplyQ TRANSID(BAAA)

 ⋮
Note:

1. The initial flow from the application contains just an MQCIH. The MQCIH includes control information specifying which transaction is to be started.

2. The return flow from the 3270 transaction contains an MQCIH, which includes a facility token to be used for all subsequent flows, and diagnostic

Page 217 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

information if an error has occurred. It also contains a SEND MAP vector structure containing control information relating to the map itself, and data
that represents the map. If the initiating application has requested it, an application data structure descriptor is also included.

3. The bridge application sends a message back containing only an MQCIH. This contains control information to start the transaction once more.

4. The 3270 transaction issues EXEC CICS RECEIVE MAP, as it does in the legacy environment. However, in the bridge environment the map data is not
immediately available. The call is converted to a message containing an outbound RECEIVE MAP request vector. The application data structure
descriptor is also included in the message. In this example, the transaction waits while the message is turned around by the bridge application. The
model here is a little different from that in the legacy environment. However, the bridge architecture allows messages to contain more than one vector,
so a number of requests could be satisfied by a single inbound message.

5. Having updated fields in the application data structure, the bridge application sends an inbound RECEIVE MAP reply vector to satisfy the outbound
request.

6. The 3270 transaction issues EXEC CICS SEND MAP, which converts to a SEND MAP vector, and the cycle repeats.

Parent topic: From 3270 legacy to 3270 bridge - an example

This build: January 26, 2011 11:20:44

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15690_

2.14.2.3.2. Improved emulation, with optimization

WebSphere MQ Bridge Application 3270 Transaction

MQPUT to --MQCIH--------------------------------→ <Initial start>
Bridge <business logic>

RequestQ

MQGET from ←--MQCIH+brmq_send_map+ADS+ADSDL--------- EC SEND MAP FROM(ads)
Bridge EC RETURN

ReplyQ TRANSID(BAAA)

MQPUT to ----MQCIH+brmq_receive_map+ADS---------→ <Start>
Bridge

RequestQ EC RECEIVE MAP INTO(ads)

 <business logic>

MQGET from ←--MQCIH+brmq_send_map+ADS+ADSDL--------- EC SEND MAP FROM(ads)
Bridge EC RETURN

ReplyQ TRANSID(BAAA)

 ⋮
If you compare this sequence with the unoptimized flows shown at the section Exact emulation - no optimization, you can see that the CICS transaction does
not have to send a RECEIVE MAP request vector, because the inbound RECEIVE MAP vector has already anticipated the requirement and the inbound map is
already available to the transaction.

Parent topic: From 3270 legacy to 3270 bridge - an example

This build: January 26, 2011 11:20:44

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15700_

2.14.2.4. Setting fields in the MQMD and MQCIH structures (3270)

Your CICS® bridge application must set a number of fields in the MQMD and the MQCIH in order to use the bridge successfully.

You need to consider the open options and the put message options that you use for the bridge request queue if the bridge monitor is started with
authorization levels of VERIFY_UOW or VERIFY_ALL.

Setting the MQMD fields
Fields in the MQMD that can affect the operation of the CICS bridge need to be initialized in your application program:

Setting the MQCIH fields

Parent topic: 3270 applications

This build: January 26, 2011 11:20:44

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15710_

2.14.2.4.1. Setting the MQMD fields

Fields in the MQMD that can affect the operation of the CICS® bridge need to be initialized in your application program:

MQMD.CorrelId

For MQPUTs to the request queue, set the value to MQCI_NEW_SESSION in the first or only message in a unit of work. On subsequent messages in the
unit of work, set the value to the MQMD.MsgId that WebSphere® MQ set in your message descriptor when you put your first message to the request
queue.

For MQGETs from the reply queue, use the value of MQMD.MsgId that WebSphere MQ set in your message descriptor when you put your most recent
message to the request queue, or specify MQCI_NONE. See also Managing MsgId and CorrelId in a unit of work (3270).

MQMD.Expiry

Set a message expiry time based on how long you want your application to wait for a reply. You are recommended to set a reasonable value for your
enterprise. Set the MQCIH flags to propagate the remaining expiry time to the reply message.

Page 218 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

MQMD.Format

The value must be MQFMT_CICS.

MQMD.MsgId

For MQPUTs to the request queue, set MsgId to a unique value for the unit of work, or to MQMI_NONE.

For MQGETs from the reply queue, use the value of MQMD.MsgId that WebSphere MQ set in your message descriptor when you put your first message to
the request queue.

MQMD.ReplyToQ

Set the value to the name of the queue where you want the bridge to send reply messages.

The CICS bridge reply messages have the same persistence as the request messages. This means if you use persistent request messages, the reply-to
queue cannot be a temporary dynamic queue or a shared queue on a non-recoverable structure.

MQMD.UserIdentifier

This field is only used when the bridge monitor is running with authorization levels of IDENTIFY, VERIFY_UOW, or VERIFY_ALL. If you use any of these, set
the value to the user ID that is checked for access to the CICS resources.

Add the value MQOO_SET_IDENTITY_CONTEXT to the open options when you open the bridge request queue, and also add the value
MQPMO_SET_IDENTITY_CONTEXT to the put message options when you send a message to the queue.

If you use this field with one of the VERIFY_* options, you must also initialize the MQCIH.Authenticator field. Set it to the value of the password or
passticket associated with the user ID.

Parent topic: Setting fields in the MQMD and MQCIH structures (3270)

This build: January 26, 2011 11:20:44

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15720_

2.14.2.4.2. Setting the MQCIH fields

The MQCIH contains both input and output fields; see the WebSphere MQ Application Programming Reference for full details of this structure. The key input
fields that you need to initialize in your application program when you use the CICS® 3270 bridge are as follows:

MQCIH.ADSDescriptor

This field applies to transactions that use BMS SEND MAP and RECEIVE MAP calls. If this is the case, and the application that is sending bridge request
messages is on a workstation, set this value to MQCADSD_SEND + MQCADSD_RECV + MQCADSD_MSGFORMAT. This ensures that the vectors in the
bridge request and reply messages are correctly converted between the different CCSID and encoding schemes of the workstation and the mainframe.

MQCIH.AttentionId

Set this field to a value representing the AID key expected by the transaction, if any; otherwise accept the default value of four spaces, which will appear
to the CICS transaction as the ENTER AID key.

The inbound RECEIVE, RECEIVE MAP, and CONVERSE vectors also have fields in which you can specify AID values. The value in the MQCIH is the value to
which EIBAID is set to when the application is started. It represents the PF key used to start the transaction. The value in the inbound vector is the value
used when the data is entered. For example, this would be the value of EIBAID after the EXEC CICS RECEIVE MAP instruction.

Note:

1. For conversational transactions there are separate values for the initial MQCIH value and the value on the vector.

2. If the WebSphere® MQ application is sending a message in response to a request vector, the value in the MQCIH is ignored.

3. In the case of pseudoconversational transactions, enter the same value in the MQCIH and the first vector.

The first byte of this field is set to the value in the CICS copybook DFHAID.

MQCIH.Authenticator

This field only applies if you are using an authorization level of VERIFY_UOW or VERIFY_ALL.

Set the value to the password or passticket that is to be associated with the user ID in the MQMD.UserIdentifier field. Together, the values are used by the
external security manager to determine whether the user is authorized to start the 3270 transaction.

If using passtickets, the Applid used for generating the passticket must be the same as the PASSTKTA keyword values used when starting the bridge

monitor.

MQCIH.ConversationalTask

See the WebSphere MQ Application Programming Reference for details.

MQCIH.Facility

Set this to MQCFAC_NONE in the first message in a pseudoconversation, and also set the MQCIH.FacilityKeepTime to a non zero value. The bridge returns
a facility token in the first message, and this value must be used in all subsequent inbound messages in the pseudoconversation.

MQCIH.FacilityKeepTime

If you are sending more than a single message in a pseudoconversation, set this to a non zero value (in seconds) in the first message for the bridge to
return a facility token. Successive transactions in a pseudoconversation can use the same facility token once it has been set in this way, ensuring that
associated terminal areas, for example the TCTUA, are preserved for the period of the pseudoconversation.

Set the value of MQCIH.Facility to MQCFAC_NONE in the first message in order to receive a facility token from the bridge.

MQCIH.FacilityLike

Either use the default value of four spaces, or specify the name of an installed terminal. You can find the names of installed terminals by entering the CICS
command CEMT I TASK or a CEMT I TERM at a CICS terminal.

MQCIH.Flags

Set the value to MQCIH_PASS_EXPIRATION to pass the remaining expiry time to the reply message.

MQCIH.Format

Set the value to CSQCBDCI. This informs the bridge that any data following the MQCIH is inbound to the bridge, and might need to be converted. The
bridge sets the value of MQCIH.Format in the outbound message, which is returned to the reply queue to CSQCBDCO.

MQCIH.GetWaitInterval

If you allow this to default, the bridge task GET WAIT interval for messages within a unit of work is the value specified on the WAIT parameter when the

Page 219 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

bridge monitor was started. If you also allow the WAIT parameter to default, the GET WAIT interval is unlimited.

MQCIH.LinkType

Specify MQCLT_TRANSACTION if you are using the 3270 bridge.

MQCIH.RemoteSysid

Set to blank on the first message of a pseudo conversation unless you require the request to be processed on a specific CICS system. Set to the value
returned in the first reply message in subsequent messages in the pseudo conversation.

MQCIH.StartCode

Change the value of this field from the default value of MQCSC_NONE only if you are starting a 3270 transaction. The value you use depends on the nature
of the transaction. Use a value of MQCSC_START if the transaction is started by an EXEC CICS START command without data, and it does not issue EXEC
CICS RETRIEVE. Use a value of MQCSC_STARTDATA if the transaction is started by an EXEC CICS START command with data, and it issues EXEC CICS
RETRIEVE. Otherwise, use a value of MQCSC_TERMINPUT.

MQCIH.TransactionId

This is the transaction identifier of the user 3270 transaction to be run by the bridge task. The first message must specify the first transaction to be
started. Set this field in subsequent messages to the value of MQCIH.NextTransactionId that is returned in the preceding reply message.

MQCIH.UOWControl

This controls the unit of work processing performed by the bridge. See also Managing MsgId and CorrelId in a unit of work (3270).

Parent topic: Setting fields in the MQMD and MQCIH structures (3270)

This build: January 26, 2011 11:20:44

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15730_

2.14.2.5. Managing MsgId and CorrelId in a unit of work (3270)

The usual style of CICS® programming is pseudo-conversational, that is, a series of independent transactions that are linked together to form a complete
application. Use the fields and settings described here to maintain the transactions of a pseudo-conversation.

When using the 3270 bridge, the link between the transactions of a pseudo-conversation is maintained by passing the Facility token and RemoteSysId

returned by the first transaction of the sequence into subsequent messages of the conversation.

Note: In earlier versions of the CICS bridge the RemoteSysId field was not used; however, it is important that it is now passed through the conversation to

enable the use of the facility for multiple CICS bridge monitors.

When using a CICS system earlier than CICS TS 2.2, for the first message for each transaction, you must set the:

� CorrelId to MQCI_NEW_SESSION

� MQCIH.UOWControl to MQCUOWC_ONLY

Figure 1 shows a pseudo-conversational 3270 transaction earlier than CICS TS 2.2.

Figure 1. Setting of key fields: WebSphere® MQ - pseudo-conversational 3270 transaction viewed from the perspective of the bridge earlier than CICS TS

2.2

If your transaction is sending and receiving multiple messages, set:

� MQCIH.UOWControl to MQCUOWC_ONLY in the first message, even when a large number of messages are sent by your application

� MQCUOWC_CONTINUE in messages supplying additional data to the transaction

� Correlid to the message identifier generated for the first message of the transaction

If you want to end the transaction that is running, set the value of MQCIHCancelCode to a four-character abend code.

When using CICS TS 2.2 and subsequent releases, you can group the transactions of a pseudo-conversation together within a single bridge session, instead
of using separate sessions for each transaction. Doing this reduces the impact of the bridge monitor on performance. However, you can still use the multiple
session approach if you need to maintain compatibility with older CICS releases, or if there might be long delays within a pseudo-conversation (for example
waits for user input).

To group transactions into a single session, set:

� MQCIH.UOWControl to MQCUOWC_FIRST and the value of Correlid to MQCI_NEW_SESSION for the first message of the bridge session

� MQCIH.UOWControl to MQCUOWC_MIDDLE in subsequent messages of the bridge session, whether they are supplying additional data to a transaction

or starting a new transaction

Page 220 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

� MQCIH.UOWControl to MQCUOW_LAST to indicate a proposed end of session. If the CICS transaction ends with no more requests for data, that is, the

reply message type is MQMT_REPLY, the session is ended. If the CICS transaction requests more data, the Msgtype of the reply is MQMT_REQUEST

and the next message can be sent with MQCUOWC_LAST or MQCUOWC_CONTINUE.

� If the Msgtype of the reply is MQMT_REQUEST and you do not want to continue the session, send MQCIH.UOWControl = MQCUOWC_COMMIT to end

the session. To end a running 3270 transaction set MQCIH.CancelCode to a four-character abend code.

� Correlid to the message identifier generated for the first message of the transaction in all subsequent messages for the bridge session

If you want to end the transaction that is running, set the value of MQCIHCancelCode to a four-character abend code.

If you want to end a session between transactions set MQCIH.UOWControl to MQCUOWC_COMMIT.

The following diagram summarizes the values to use and expect in key fields in the MQMD and MQCIH in typical CICS 3270 bridge applications.

Figure 2 shows a conversational 3270 transaction.

Figure 2. Setting of key fields: WebSphere MQ - conversational 3270 transaction viewed from the perspective of the bridge

Parent topic: 3270 applications

This build: January 26, 2011 11:20:45

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15740_

2.14.3. Information applicable to both DPL and 3270

This section contains the following information:

� Setting the open options and put message options for the bridge request queue

� Error handling by the CICS bridge

� Debugging CICS bridge applications

� Application data structure terminology

Setting the open options and put message options for the bridge request queue
If you start the bridge monitor with authorization levels of IDENTIFY, VERIFY_UOW, or VERIFY_ALL, and need to control the user ID used, open the
bridge request queue with open options that include MQOO_SET_IDENTITY_CONTEXT. Also include a value of MQPMO_SET_IDENTITY_CONTEXT in
your put message options.

Error handling by the CICS bridge

Debugging CICS bridge applications
This section describes some common symptoms when your bridge application appears not to work as you might expect, and suggests procedures for
diagnosing the problem.

Page 221 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Application data structure terminology
An explanation of application data structure and application data structure descriptor terminology and their respective mnemonics.

Parent topic: Using and writing WebSphere MQ-CICS bridge applications for z/OS

This build: January 26, 2011 11:20:45

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15750_

2.14.3.1. Setting the open options and put message options for the bridge request queue

If you start the bridge monitor with authorization levels of IDENTIFY, VERIFY_UOW, or VERIFY_ALL, and need to control the user ID used, open the bridge
request queue with open options that include MQOO_SET_IDENTITY_CONTEXT. Also include a value of MQPMO_SET_IDENTITY_CONTEXT in your put
message options.

Parent topic: Information applicable to both DPL and 3270

This build: January 26, 2011 11:20:45

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15760_

2.14.3.2. Error handling by the CICS bridge

Errors detected by the CICS® bridge cause the bridge to:

� Back out the unit of work.

� If the request queue has a backout threshold (BOTHRESH) specified the request is reprocessed until it succeeds, or the backout count exceeds the
threshold. You are not recommended to specify a backout threshold, unless you have reason to believe that an immediate retry is likely to be
successful.

� Move request messages to the backout requeue queue, if defined, or the dead-letter queue. Messages with report option MQRO_DISCARD are not
written to the dead-letter queue.

� Send an error reply message back to the client if a reply-to queue is available.

� Write a CSQC7nn message to:

� The CICS CSMT transient data queue, or

� The CICS joblog, or

� Both, or

� Issue a transaction abend.

Where it is possible to put a message on the reply-to queue, the message contains this abend code.

Any further request messages in the same unit of work are removed from the request queue and copied to the backout requeue or dead-letter queue, either
during error processing for this unit of work or at the next initialization of the monitor. No further error messages are generated.

If sending a reply message fails, the CICS bridge puts the reply on the dead-letter queue, passing identity context from the CICS bridge request queue. A
unit of work is not backed out if the reply message is successfully put on the dead-letter queue. Failure to put a reply message on the dead-letter queue is
treated as a request error, and the unit of work is backed out.

If the CICS bridge fails to put a request message on the dead-letter queue, the CICS bridge task abends and leaves the CICS bridge monitor to process the
error. If the monitor fails to move a persistent request message to the dead-letter queue, the monitor leaves the message on the request queue, non-
persistent messages are discarded .

Failure to put an error reply is ignored by the CICS bridge. The request message has already been copied to the dead-letter queue and the unit of work has
been backed out by WebSphere® MQ.

Figure 1 shows what happens when an error occurs in a unit of work.

Figure 1. User program abends (only program in the unit of work)

Page 222 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

In this figure:

� The client application sends a request message to run a CICS program named P1. The queue manager used by the client receives the message.

The monitor task browses the request queue awaiting the arrival of a message. When a message arrives, it:

� Gets the request message with browse

� Checks for any problems with the request message

� Starts a CICS bridge task

� Continues browsing the request queue

The CICS bridge task

� Gets the request message from the request queue under syncpoint control

� Takes the information in the request message and builds a COMMAREA for program P1

� Issues an EXEC CICS LINK call to program P1

� Waits for program P1 to complete

When these tasks are complete, the user program abends.

The CICS bridge task abend handler is driven, which:

� Issues an EXEC CICS SYNCPOINT ROLLBACK which:

� Backs out all the changes made by P1

� Reinstates the request message on the request queue

� Gets the request message a second time from the request queue, again under syncpoint control

� Copies the request to the dead-letter queue

� Puts an error reply to the reply-to queue

If the request message includes the name of a reply-to queue, the abend handler:

� Writes a CSQC7nn message to the CICS CSMT transient data queue

Parent topic: Information applicable to both DPL and 3270

This build: January 26, 2011 11:20:45

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15770_

2.14.3.3. Debugging CICS bridge applications

This section describes some common symptoms when your bridge application appears not to work as you might expect, and suggests procedures for
diagnosing the problem.

Message is PUT to the bridge request queue, but is not processed by the bridge monitor

1. Check that the bridge monitor is running. Issue CEMT I TASK and look for CKBR, or whatever other transaction identifier you are using for the bridge
monitor.

If it is not running and you are expecting it to be triggered, make sure that the triggering options on the bridge request queue are correct. Use a
queue attribute of TRIGTYPE(FIRST).

If the bridge monitor was running but is no longer running, check the output in the CICS® CSMT and joblog on all CICS regions where bridge monitors
should be running, to see if there has been an error that has caused the bridge monitor to terminate.

2. If the bridge request queue is defined with QSGDISP(SHARED), check that it also specifies INDXTYPE(CORRELID).

3. Browse the inbound message that is not being processed and check that the values of MQMD.MsgId and MQMD.CorrelId are correct. If this is the first

message in a unit of work or a pseudoconversation, MQMD.CorrelId must be set to a value of MQCI_NEW_SESSION and MQMD.MsgId must be set to

MQMI_NONE (binary zeros).

4. If this is not the first message in a unit of work or pseudoconversation, ensure that your application has checked previous reply messages adequately

Page 223 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

for possible errors. As a minimum, it should check the following fields in the MQCIH:

� MQCIH.ReturnCode

� MQCIH.CompCode

� MQCIH.TaskEndStatus

� MQCIH.AbendCode

� MQCIH.ErrorOffset

Inbound message is taken from the request queue by the bridge monitor, but the CICS DPL program or CICS transaction fails to run

1. Check the output in the CICS MSGUSR log. This will almost always report the reason why the DPL program or transaction failed to run. The common
reasons for this are:

� Program or transaction not defined to CICS. Use CEDA to define the program or transaction and run your bridge application again.

� Insufficient authority to run the program or transaction. Details of how to control the level of authentication used by the CICS bridge are given in
WebSphere MQ for z/OS System Setup Guide.

2. Check the message that is sent to the reply queue by the bridge monitor. If an error has occurred, it is likely that MQCIH.Format is set to

MQFMT_STRING and an error message is appended to the MQCIH in place of a vector.

3. Check the dead letter queue to see if a reply message has been sent there by the bridge monitor. If it has, and the values of MQMD.MsgId and

MQMD.CorrelId are correct, check the value of MQDLH.Reason. This should be set to a feedback code that indicates the reason for the failure.

For information on feedback codes, including those specific to the CICS Bridge, see "MQMD - Message descriptor" in the WebSphere MQ Application
Programming Reference.

Bridge task abends

Abend codes are set in outbound messages in field MQCIH.AbendCode. In addition, the output in the CICS MSGUSR log reports abend codes for failing
bridge tasks.

Abends ABR*, ABS* and ABX* are CICS bridge abends, and are documented in CICS Messages and Codes. Abends MBR* and MQB* are WebSphere® MQ
bridge abends, and are documented in WebSphere MQ for z/OS Messages and Codes.

Some common abend codes can be dealt with as follows:

ABRG

An invalid bridge facility token was specified in an inbound message. Your first inbound message must always specify a value of MQCFAC_NONE in field
MQCIH.Facility, and a non zero value in MQCIH.FacilityKeepTime. CICS returns a facility token in field MQCIH.Facility, and you can use this value in

all subsequent inbound messages in the pseudoconversation.

ABXH

Caused either by having brmq_re_buffer_indicator set to N, when a receive with the buffer option was specified, or having brmq_re_buffer_indicator

set to Y and a receive (without the buffer option) specified.

MBRJ

The MQCIH has invalid data. Check the values in the MQCIH field by field to find the one that is out of range. MBRJ can also be caused by a length
mismatch, for example, when the brmq_vector_length and the length of the data vector do not agree, or there is not enough data in the CICS headers

and vector

MBRN

The message is shorter than expected. There are one or two data length fields in every vector structure. The first is the first fullword field in the standard
header for all vectors, and it should be equal to the overall length of the vector including the variable length data. Some vectors also contain another
fullword length field that gives just the length of the variable length data. If these values indicate more data than there actually is, the bridge task will
abend MBRN.

MBRO and MBRP

There is an error in the vector structure (not the variable length data). The MQCIH field ERROROFFSET gives the offset of the field in error. Check the
values of the fields in the vector against the permitted values, which are described in the CICS Internet and External Interfaces Guide for CICS V1.2, or
the CICS External Interfaces Guide for CICS V1.3..

Bridge monitor errors

Some errors can cause the bridge monitor transaction, CKBR, to terminate unexpectedly. If you are using triggered queues to start the monitor, and there
are still messages on the bridge request queue, the CKTI transaction might attempt to restart CKBR. If the original error persists, this can lead to a loop of
CKBR failures. To halt the loop, set off the TriggerControl attribute of the request queue while you diagnose and fix the underlying problem.

The bridge monitor can fail if it does not have sufficient authority to access the queues or CICS transactions, if it cannot write to the dead letter queue or it
encounters problems when executing CICS or MQ services.

Parent topic: Information applicable to both DPL and 3270

This build: January 26, 2011 11:20:46

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15780_

2.14.3.4. Application data structure terminology

An explanation of application data structure and application data structure descriptor terminology and their respective mnemonics.

Application data structure

The application data structure is the copybook generated while assembling a BMS map. It has the mnemonic ADS, and it can be created in short form or
long form. You sometimes see the long form referred to as ADSL.

The short form of the ADS has fields that are not fullword aligned, whereas the long form of the ADS has all its fields fullword aligned.

The short form of the ADS is generated by default by map assembly. To obtain the long form of the ADS, assemble your BMS maps with the following
parameters specified in the DFHMSD macro:

MSETNAM DFHMSD ⋮
DSECT=ADSL, *

LANG=C, * ⋮

Page 224 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

If you examine the DSECT that is produced on map assembly, you will see that all of the fields are fullword aligned. Be aware that this significantly
increases the size of the application data structure and any message that includes it.

This option is only available for programs written in the C language. However, you can create COBOL data structures from such a DSECT by manually
creating them. CICS® Transaction Server for z/OS® Version 3.2: Web Support and 3270 Bridge, an IBM® Redbooks® publication, gives examples of this.

Application data structure descriptor

The application data structure descriptor is an architected structure that allows an application to interpret the application data structure in a vector without
having access to the copybook generated during map assembly.

There are two forms of the application data structure descriptor:

� The application data structure descriptor in short form contains fields that are not fullword aligned. It has the mnemonic ADSD.

� The application data structure descriptor in long form contains fields that are all fullword aligned. It has the mnemonic ADSDL.

ADSL – an ambiguous mnemonic

The mnemonic ADSL is ambiguous, and is sometimes used to refer to the application data structure in long form, and sometimes the application data
structure descriptor in long form. The correct mnemonic for the application data structure descriptor, long form, is ADSDL. However, if you look at the eye-
catcher in the ADSDL you will see that it is ADSL, which leads to the ambiguity. The correct use of ADSL is to describe the application data structure, not
its descriptor, in long form.

Parent topic: Information applicable to both DPL and 3270

This build: January 26, 2011 11:20:46

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15790_

2.15. IMS and IMS Bridge applications on WebSphere MQ for z/OS®

This chapter helps you to write IMS™ applications using WebSphere® MQ.

� To use syncpoints and MQI calls in IMS applications, see Writing IMS applications using WebSphere MQ.

� To write applications that exploit the WebSphere MQ-IMS Bridge, see Writing WebSphere MQ-IMS bridge applications.

Writing IMS applications using WebSphere MQ
There are further considerations when using WebSphere MQ in IMS applications These include which MQ API calls can be used and the mechanism
used for syncpoint.

Writing WebSphere MQ-IMS bridge applications
This section discusses writing applications to exploit the WebSphere MQ-IMS bridge.

Parent topic: Writing a WebSphere MQ application

This build: January 26, 2011 11:20:46

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15800_

2.15.1. Writing IMS applications using WebSphere MQ

There are further considerations when using WebSphere® MQ in IMS™ applications These include which MQ API calls can be used and the mechanism used
for syncpoint.

Syncpoints in IMS applications

Restrictions
There are restrictions on which WebSphere MQ API calls can used by an application using the IMS adapter.

MQI calls in IMS applications

Parent topic: IMS and IMS Bridge applications on WebSphere MQ for z/OS

This build: January 26, 2011 11:20:46

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15810_

2.15.1.1. Syncpoints in IMS applications

In an IMS™ application, you establish a syncpoint by using IMS calls such as GU (get unique) to the IOPCB and CHKP (checkpoint). To back out all changes
since the previous checkpoint, you can use the IMS ROLB (rollback) call. For more information, see the following:

� IMS/ESA® Application Programming: Transaction Manager

� IMS/ESA Application Programming: Design Guide

The queue manager is a participant in a two-phase commit protocol; the IMS syncpoint manager is the coordinator.

All open handles are closed by the IMS adapter at a syncpoint (except in a batch or non-message driven BMP environment). This is because a different user
could initiate the next unit of work and WebSphere® MQ security checking is performed when the MQCONN, MQCONNX, and MQOPEN calls are made, not
when the MQPUT or MQGET calls are made.

However, in a Wait-for-Input (WFI) or pseudo Wait-for-Input (PWFI) environment IMS does not notify WebSphere MQ to close the handles until either the
next message arrives or a QC status code is returned to the application. If the application is waiting in the IMS region and any of these handles belong to
triggered queues, triggering will not occur because the queues are open. For this reason applications running in a WFI or PWFI environment should explicitly

Page 225 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

MQCLOSE the queue handles before doing the GU to the IOPCB for the next message.

If an IMS application (either a BMP or an MPP) issues the MQDISC call, open queues are closed but no implicit syncpoint is taken. If the application ends
normally, any open queues are closed and an implicit commit occurs. If the application ends abnormally, any open queues are closed and an implicit backout
occurs.

Parent topic: Writing IMS applications using WebSphere MQ

This build: January 26, 2011 11:20:47

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15820_

2.15.1.2. Restrictions

There are restrictions on which WebSphere® MQ API calls can used by an application using the IMS™ adapter.

The following WebSphere MQ API calls are not supported within an application using the IMS adapter:

� MQCB

� MQCB_FUNCTION

� MQCTL

Parent topic: Writing IMS applications using WebSphere MQ

This build: January 26, 2011 11:20:47

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15825_

2.15.1.3. MQI calls in IMS applications

This section covers the use of MQI calls in the following types of IMS™ applications:

� Server applications

� Inquiry applications

Server applications

Inquiry applications

Parent topic: Writing IMS applications using WebSphere MQ

This build: January 26, 2011 11:20:47

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15830_

2.15.1.3.1. Server applications

Here is an outline of the MQI server application model:

 Initialize/Connect

 .

 Open queue for input shared

 .

 Get message from WebSphere MQ queue

 .

 Do while Get does not fail

 .

 If expected message received

 Process the message

 Else

 Process unexpected message

 End if

 .

 Commit

 .

 Get next message from WebSphere MQ queue

 .

 End do

 .

 Close queue/Disconnect

 .

END

Sample program CSQ4ICB3 shows the implementation, in C/370™, of a BMP using this model. The program establishes communication with IMS™ first, and
then with WebSphere® MQ:

main()

 Call InitIMS

 If IMS initialization successful

 Call InitMQM

 If WebSphere MQ initialization successful

 Call ProcessRequests

 Call EndMQM

 End-if

 End-if

Page 226 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Return

The IMS initialization determines whether the program has been called as a message-driven or a batch-oriented BMP and controls WebSphere MQ queue
manager connection and queue handles accordingly:

InitIMS

Get the IO, Alternate and Database PCBs

Set MessageOriented to true

Call ctdli to handle status codes rather than abend

If call is successful (status code is zero)

 While status code is zero

 Call ctdli to get next message from IMS message queue

 If message received

 Do nothing

 Else if no IOPBC

 Set MessageOriented to false

 Initialize error message

 Build 'Started as batch oriented BMP' message

 Call ReportCallError to output the message

 End-if

 Else if response is not 'no message available'

 Initialize error message

 Build 'GU failed' message

 Call ReportCallError to output the message

 Set return code to error

 End-if

 End-if

 End-while

Else

 Initialize error message

 Build 'INIT failed' message

 Call ReportCallError to output the message

 Set return code to error

End-if

Return to calling function

The WebSphere MQ initialization connects to the queue manager and opens the queues. In a message-driven BMP this is called after each IMS syncpoint is
taken; in a batch-oriented BMP, this is called only during program startup:

InitMQM

 Connect to the queue manager

 If connect is successful

 Initialize variables for the open call

 Open the request queue

 If open is not successful

 Initialize error message

 Build 'open failed' message

 Call ReportCallError to output the message

 Set return code to error

 End-if

 Else

 Initialize error message

 Build 'connect failed' message

 Call ReportCallError to output the message

 Set return code to error

 End-if

 Return to calling function

The implementation of the server model in an MPP is influenced by the fact that the MPP processes a single unit of work per invocation. This is because,
when a syncpoint (GU) is taken, the connection and queue handles are closed and the next IMS message is delivered. This limitation can be partially
overcome by one of the following:

� Processing many messages within a single unit-of-work

This involves:

� Reading a message

� Processing the required updates

� Putting the reply

in a loop until all messages have been processed or until a set maximum number of messages has been processed, at which time a syncpoint is taken.

Only certain types of application (for example, a simple database update or inquiry) can be approached in this way. Although the MQI reply messages
can be put with the authority of the originator of the MQI message being handled, the security implications of any IMS resource updates need to be
addressed carefully.

� Processing one message per invocation of the MPP and ensuring multiple scheduling of the MPP to process all available messages.

Use the WebSphere MQ IMS trigger monitor program (CSQQTRMN) to schedule the MPP transaction when there are messages on the WebSphere MQ
queue and no applications serving it.

If trigger monitor starts the MPP, the queue manager name and queue name are passed to the program, as shown in the following COBOL code
extract:

 * Data definition extract

 01 WS-INPUT-MSG.

 05 IN-LL1 PIC S9(3) COMP.

 05 IN-ZZ1 PIC S9(3) COMP.

 05 WS-STRINGPARM PIC X(1000).

 01 TRIGGER-MESSAGE.

 COPY CMQTMC2L.

 *

 * Code extract

 GU-IOPCB SECTION.

 MOVE SPACES TO WS-STRINGPARM.

 CALL 'CBLTDLI' USING GU,

 IOPCB,

 WS-INPUT-MSG.

 IF IOPCB-STATUS = SPACES

 MOVE WS-STRINGPARM TO MQTMC.

 * ELSE handle error

 *

 * Now use the queue manager and queue names passed

 DISPLAY 'MQTMC-QMGRNAME ='

Page 227 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

 MQTMC-QMGRNAME OF MQTMC '='.

 DISPLAY 'MQTMC-QNAME ='

 MQTMC-QNAME OF MQTMC '='.

The server model, which is expected to be a long running task, is better supported in a batch processing region, although the BMP cannot be triggered using
CSQQTRMN.

Parent topic: MQI calls in IMS applications

This build: January 26, 2011 11:20:47

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15840_

2.15.1.3.2. Inquiry applications

A typical WebSphere® MQ application initiating an inquiry or update works as follows:

� Gather data from the user

� Put one or more WebSphere MQ messages

� Get the reply messages (you might have to wait for them)

� Provide a response to the user

Because messages put on to WebSphere MQ queues do not become available to other WebSphere MQ applications until they are committed, they must
either be put out of syncpoint, or the IMS™ application must be split into two transactions.

If the inquiry involves putting a single message, you can use the no syncpoint option; however, if the inquiry is more complex, or resource updates are
involved, you might get consistency problems if failure occurs and you do not use syncpointing.

To overcome this, you can split IMS MPP transactions using MQI calls using a program-to-program message switch; see IMS/ESA® Application

Programming: Data Communication for information about this. This allows an inquiry program to be implemented in an MPP:

 Initialize first program/Connect

 .

 Open queue for output

 .

 Put inquiry to WebSphere MQ queue

 .

 Switch to second WebSphere MQ program, passing necessary data in save

 pack area (this commits the put)

 .

END

 .

 .

 Initialize second program/Connect

 .

 Open queue for input shared

 .

 Get results of inquiry from WebSphere MQ queue

 .

 Return results to originator

 .

END

Parent topic: MQI calls in IMS applications

This build: January 26, 2011 11:20:48

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15850_

2.15.2. Writing WebSphere MQ-IMS bridge applications

This section discusses writing applications to exploit the WebSphere® MQ-IMS bridge.

The following topics are discussed:

� How the WebSphere MQ-IMS bridge deals with messages

� Writing your program

� Triggering

For information about the WebSphere MQ-IMS bridge, see the WebSphere MQ for z/OS Concepts and Planning Guide.

How the WebSphere MQ-IMS bridge deals with messages
When you use the WebSphere MQ-IMS bridge to send messages to an IMS application, you need to construct your messages in a special format.

Writing your program
The coding required to handle IMS transactions through WebSphere MQ depends on the message format required by the IMS transaction and the
range of responses it can return. However, there are several points to consider when your application handles IMS screen formatting information.

Parent topic: IMS and IMS Bridge applications on WebSphere MQ for z/OS

This build: January 26, 2011 11:20:48

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15860_

2.15.2.1. How the WebSphere MQ-IMS bridge deals with messages

When you use the WebSphere® MQ-IMS bridge to send messages to an IMS™ application, you need to construct your messages in a special format.

Page 228 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

You must also put your messages on WebSphere MQ queues that have been defined with a storage class that specifies the XCF group and member name of
the target IMS system. These are known as MQ-IMS bridge queues, or simply bridge queues.

A user does not need to sign on to IMS before sending messages to an IMS application. The user ID in the UserIdentifier field of the MQMD structure is

used for security checking. The level of checking is determined when WebSphere MQ connects to IMS, and is described in the security section of the
WebSphere MQ for z/OS System Setup Guide. This enables a pseudo signon to be implemented.

The WebSphere MQ-IMS bridge accepts the following types of message:

� Messages containing IMS transaction data and an MQIIH structure (described in the WebSphere MQ Application Programming Reference):

MQIIH LLZZ<trancode><data>[LLZZ<data>][LLZZ<data>]

Note:

1. The square brackets, [], represent optional multi-segments.

2. Set the Format field of the MQMD structure to MQFMT_IMS to use the MQIIH structure.

� Messages containing IMS transaction data but no MQIIH structure:

LLZZ<trancode><data> \

[LLZZ<data>][LLZZ<data>]

WebSphere MQ validates the message data to ensure that the sum of the LL bytes plus the length of the MQIIH (if it is present) is equal to the message
length.

When the WebSphere MQ-IMS bridge gets messages from the bridge queues, it processes them as follows:

� If the message contains an MQIIH structure, the bridge verifies the MQIIH (see the WebSphere MQ Application Programming Reference), builds the
OTMA headers, and sends the message to IMS. The transaction code is specified in the input message. If this is an LTERM, IMS replies with a
DFS1288E message. If the transaction code represents a command, IMS executes the command; otherwise the message is queued in IMS for the
transaction.

� If the message contains IMS transaction data, but no MQIIH structure, the IMS bridge makes the following assumptions:

� The transaction code is in bytes 5 through 12 of the user data

� The transaction is in nonconversational mode

� The transaction is in commit mode 0 (commit-then-send)

� The Format in the MQMD is used as the MFSMapName (on input)

� The security mode is MQISS_CHECK

The reply message is also built without an MQIIH structure, taking the Format for the MQMD from the MFSMapName of the IMS output.

The WebSphere MQ-IMS bridge uses one or two Tpipes for each WebSphere MQ queue:

� A synchronized Tpipe is used for all messages using Commit mode 0 (COMMIT_THEN_SEND) (these show with SYN in the status field of the IMS /DIS
TMEMBER client TPIPE xxxx command)

� A non-synchronized Tpipe is used for all messages using Commit mode 1 (SEND_THEN_COMMIT)

The Tpipes are created by WebSphere MQ when they are first used. A non-synchronized Tpipe exists until IMS is restarted. Synchronized Tpipes exist until
IMS is cold started. You cannot delete these Tpipes yourself.

Mapping WebSphere MQ messages to IMS transaction types

If the message cannot be put to the IMS queue

IMS bridge feedback codes
IMS sense codes are normally output in hexadecimal format in WebSphere MQ console messages such as CSQ2001I (for example, sense code 001A).
WebSphere MQ feedback codes as seen in the dead-letter header of messages put to the dead-letter queue are decimal numbers.

The MQMD fields in messages from the IMS bridge

The MQIIH fields in messages from the IMS bridge

Reply messages from IMS
When an IMS transaction ISRTs to its IOPCB, the message is routed back to the originating LTERM or TPIPE.

Using alternate response PCBs in IMS transactions
When an IMS transaction uses alternate response PCBs (ISRTs to the ALTPCB, or issues a CHNG call to a modifiable PCB), the pre-routing exit
(DFSYPRX0) is invoked to determine if the message should be rerouted.

Sending unsolicited messages from IMS
To send messages from IMS to a WebSphere MQ queue, you need to invoke an IMS transaction that ISRTs to an ALTPCB.

Message segmentation
You can define IMS transactions as expecting single- or multi-segment input.

Data conversion
The data conversion is performed by either the distributed queuing facility (which may call any necessary exits) or by the intra group queuing agent
(which does not support the use of exits) when it puts a message to a destination queue that has XCF information defined for its storage class. Any
exits needed by the distributed queuing facility must be available in the data set referenced by the CSQXLIB DD statement. This means that you can
send messages to an IMS application using the WebSphere MQ-IMS bridge from any WebSphere MQ platform.

Parent topic: Writing WebSphere MQ-IMS bridge applications

This build: January 26, 2011 11:20:49

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15870_

2.15.2.1.1. Mapping WebSphere MQ messages to IMS transaction types

Table 1. Mapping WebSphere MQ messages to IMS transaction types

Page 229 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Parent topic: How the WebSphere MQ-IMS bridge deals with messages

This build: January 26, 2011 11:20:51

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15880_

2.15.2.1.2. If the message cannot be put to the IMS queue

If the message cannot be put to the IMS™ queue, the following action is taken by WebSphere® MQ:

� If a message cannot be put to IMS because the message is invalid, the message is put to the dead-letter queue and a message is sent to the system
console.

� If the message is valid, but is rejected by IMS, WebSphere MQ sends an error message to the system console, the message includes the IMS sense
code, and the WebSphere MQ message is put to the dead-letter queue. If the IMS sense code is 001A, IMS sends a WebSphere MQ message
containing the reason for the failure to the reply-to queue.

Note: In the circumstances listed above, if WebSphere MQ cannot put the message to the dead-letter queue for any reason, the message is returned
to the originating WebSphere MQ queue. An error message is sent to the system console, and no further messages are sent from that queue.

To resend the messages, do one of the following:

� Stop and restart the Tpipes in IMS corresponding to the queue

� Alter the queue to GET(DISABLED), and again to GET(ENABLED)

� Stop and restart IMS or the OTMA

� Stop and restart your WebSphere MQ subsystem

� If the message is rejected by IMS for anything other than a message error, the WebSphere MQ message is returned to the originating queue,
WebSphere MQ stops processing the queue, and an error message is sent to the system console.

If an exception report message is required, the bridge puts it to the reply-to queue with the authority of the originator. If the message cannot be put
to the queue, the report message is put to the dead-letter queue with the authority of the bridge. If it cannot be put to the DLQ, it is discarded.

Parent topic: How the WebSphere MQ-IMS bridge deals with messages

This build: January 26, 2011 11:20:51

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15890_

2.15.2.1.3. IMS bridge feedback codes

IMS™ sense codes are normally output in hexadecimal format in WebSphere® MQ console messages such as CSQ2001I (for example, sense code 001A).
WebSphere MQ feedback codes as seen in the dead-letter header of messages put to the dead-letter queue are decimal numbers.

The IMS bridge feedback codes are in the range 301 through 399. They are mapped from the IMS-OTMA sense codes as follows:

1. The IMS-OTMA sense code is converted from a hexadecimal number to a decimal number.

2. 300 is added to the number resulting from the calculation in 1, giving the WebSphere MQ Feedback code.

Refer to the IMS/ESA® Open Transaction Manager Access Guide for information about IMS-OTMA sense codes.

Parent topic: How the WebSphere MQ-IMS bridge deals with messages

This build: January 26, 2011 11:20:51

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15900_

2.15.2.1.4. The MQMD fields in messages from the IMS bridge

The MQMD of the originating message is carried by IMS™ in the User Data section of the OTMA headers. If the message originates in IMS, this is built by the
IMS Destination Resolution Exit. The MQMD of a message received from IMS is built as follows:

StrucID

"MD "

Version

MQMD_VERSION_1

Report

MQRO_NONE

MsgType

WebSphere® MQ message type Commit-then-send (mode 0) - uses

synchronized IMS™ Tpipes

Send-then-commit (mode 1) - uses

non-synchronized IMS Tpipes

Persistent WebSphere MQ messages
� Recoverable full function transactions

� Irrecoverable transactions are rejected
by IMS

� Fastpath transactions

� Conversational transactions

� Full function transactions

Nonpersistent WebSphere MQ messages
� Irrecoverable full function transactions

� Recoverable transactions are rejected
by IMS

� Fastpath transactions

� Conversational transactions

� Full function transactions

Note: IMS commands cannot use persistent WebSphere MQ messages with commit mode 0. See the IMS/ESA® Open Transaction Manager

Access User’s Guide for more information.

Page 230 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

MQMT_REPLY

Expiry

If MQIIH_PASS_EXPIRATION is set in the Flags field of the MQIIH, this field contains the remaining expiry time, else it is set to MQEI_UNLIMITED

Feedback

MQFB_NONE

Encoding

MQENC.Native (the encoding of the z/OS® system)

CodedCharSetId

MQCCSI_Q_MGR (the CodedCharSetID of the z/OS system)

Format

MQFMT_IMS if the MQMD.Format of the input message is MQFMT_IMS, otherwise IOPCB.MODNAME

Priority

MQMD.Priority of the input message

Persistence

Depends on commit mode: MQMD.Persistence of the input message if CM-1; persistence matches recoverability of the IMS message if CM-0

MsgId

MQMD.MsgId if MQRO_PASS_MSG_ID, otherwise New MsgId (the default)

CorrelId

MQMD.CorrelId from the input message if MQRO_PASS_CORREL_ID, otherwise MQMD.MsgId from the input message (the default)

BackoutCount

0

ReplyToQ

Blanks

ReplyToQMgr

Blanks (set to local qmgr name by the queue manager during the MQPUT)

UserIdentifier

MQMD.UserIdentifier of the input message

AccountingToken

MQMD.AccountingToken of the input message

ApplIdentityData

MQMD.ApplIdentityData of the input message

PutApplType

MQAT_XCF if no error, otherwise MQAT_BRIDGE

PutApplName

<XCFgroupName><XCFmemberName> if no error, otherwise QMGR name

PutDate

Date when message was put

PutTime

Time when message was put

ApplOriginData

Blanks

Parent topic: How the WebSphere MQ-IMS bridge deals with messages

This build: January 26, 2011 11:20:51

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15910_

2.15.2.1.5. The MQIIH fields in messages from the IMS bridge

The MQIIH of a message received from IMS™ is built as follows:

StrucId

"IIH "

Version

1

StrucLength

84

Encoding

MQENC_NATIVE

CodedCharSetId

MQCCSI_Q_MGR

Format

MQIIH.ReplyToFormat of the input message if MQIIH.ReplyToFormat is not blank, otherwise IOPCB.MODNAME

Flags

0

LTermOverride

LTERM name (Tpipe) from OTMA header

MFSMapName

Map name from OTMA header

Page 231 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

ReplyToFormat

Blanks

Authenticator

MQIIH.Authenticator of the input message if the reply message is being put to an MQ-IMS bridge queue, otherwise blanks.

TranInstanceId

Conversation ID / Server Token from OTMA header if in conversation, otherwise nulls

TranState

"C" if in conversation, otherwise blank

CommitMode

Commit mode from OTMA header ("0" or "1")

SecurityScope

Blank

Reserved

Blank

Parent topic: How the WebSphere MQ-IMS bridge deals with messages

This build: January 26, 2011 11:20:52

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15920_

2.15.2.1.6. Reply messages from IMS

When an IMS™ transaction ISRTs to its IOPCB, the message is routed back to the originating LTERM or TPIPE.

These are seen in WebSphere® MQ as reply messages. Reply messages from IMS are put onto the reply-to queue specified in the original message. If the
message cannot be put onto the reply-to queue, it is put onto the dead-letter queue using the authority of the bridge. If the message cannot be put onto the
dead-letter queue, a negative acknowledgement is sent to IMS to say that the message cannot be received. Responsibility for the message is then returned
to IMS. If you are using commit mode 0, messages from that Tpipe are not sent to the bridge, and remain on the IMS queue; that is, no further messages
are sent until restart. If you are using commit mode 1, other work can continue.

If the reply has an MQIIH structure, its format type is MQFMT_IMS; if not, its format type is specified by the IMS MOD name used when inserting the
message.

Parent topic: How the WebSphere MQ-IMS bridge deals with messages

This build: January 26, 2011 11:20:52

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15930_

2.15.2.1.7. Using alternate response PCBs in IMS transactions

When an IMS™ transaction uses alternate response PCBs (ISRTs to the ALTPCB, or issues a CHNG call to a modifiable PCB), the pre-routing exit (DFSYPRX0)
is invoked to determine if the message should be rerouted.

If the message is to be rerouted, the destination resolution exit (DFSYDRU0) is invoked to confirm the destination and prepare the header information See
the WebSphere MQ for z/OS System Setup Guide for information about these exit programs.

Unless action is taken in the exits, all output from IMS transactions initiated from a WebSphere® MQ queue manager, whether to the IOPCB or to an
ALTPCB, will be returned to the same queue manager.

Parent topic: How the WebSphere MQ-IMS bridge deals with messages

This build: January 26, 2011 11:20:52

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15940_

2.15.2.1.8. Sending unsolicited messages from IMS

To send messages from IMS™ to a WebSphere® MQ queue, you need to invoke an IMS transaction that ISRTs to an ALTPCB.

You need to write pre-routing and destination resolution exits to route unsolicited messages from IMS and build the OTMA user data, so that the MQMD of
the message can be built correctly. See the WebSphere MQ for z/OS System Setup Guide for information about these exit programs.

Note: The WebSphere MQ-IMS bridge does not know whether a message that it receives is a reply or an unsolicited message. It handles the message the
same way in each case, building the MQMD and MQIIH of the reply based on the OTMA UserData that arrived with the message

Unsolicited messages can create new Tpipes. For example, if an existing IMS transaction switched to a new LTERM (for example PRINT01), but the
implementation requires that the output be delivered through OTMA, a new Tpipe (called PRINT01 in this example) is created. By default, this is a non-
synchronized Tpipe. If the implementation requires the message to be recoverable, set the destination resolution exit output flag. See the IMS Customization

Guide for more information.

Parent topic: How the WebSphere MQ-IMS bridge deals with messages

This build: January 26, 2011 11:20:52

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

Page 232 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

fg15950_

2.15.2.1.9. Message segmentation

You can define IMS™ transactions as expecting single- or multi-segment input.

The originating WebSphere® MQ application must construct the user input following the MQIIH structure as one or more LLZZ-data segments. All segments
of an IMS message must be contained in a single WebSphere MQ message sent with a single MQPUT.

The maximum length of an LLZZ-data segment is defined by IMS/OTMA (32764 bytes). The total WebSphere MQ message length is the sum of the LL bytes,
plus the length of the MQIIH structure.

All the segments of the reply are contained in a single WebSphere MQ message.

There is a further restriction on the 32 KB limitation on messages with format MQFMT_IMS_VAR_STRING. When the data in an ASCII-mixed CCSID message
is converted to an EBCDIC-mixed CCSID message, a shift-in byte or a shift-out byte is added every time that there is a transition between SBCS and DBCS
characters. The 32 KB restriction applies to the maximum size of the message. That is, because the LL field in the message cannot exceed 32 KB, the
message must not exceed 32 KB including all shift-in and shift-out characters. The application building the message must allow for this.

Parent topic: How the WebSphere MQ-IMS bridge deals with messages

This build: January 26, 2011 11:20:52

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15960_

2.15.2.1.10. Data conversion

The data conversion is performed by either the distributed queuing facility (which may call any necessary exits) or by the intra group queuing agent
(which does not support the use of exits) when it puts a message to a destination queue that has XCF information defined for its storage class. Any exits
needed by the distributed queuing facility must be available in the data set referenced by the CSQXLIB DD statement. This means that you can send
messages to an IMS application using the WebSphere MQ-IMS bridge from any WebSphere MQ platform.

Any exits needed must be available to the distributed queuing facility in the data set referenced by the CSQXLIB DD statement. This means that you can
send messages to an IMS™ application using the WebSphere® MQ-IMS bridge from any WebSphere MQ platform.

Note: Because the WebSphere MQ-IMS bridge does not convert messages when it gets a message, messages arriving through the CICS® distributed
queuing facility are not converted.

If there are conversion errors, the message is put to the queue unconverted; this results eventually in it being treated as an error by the WebSphere MQ-
IMS bridge, because the bridge cannot recognize the header format. If a conversion error occurs, an error message is sent to the z/OS® console.

See Writing data-conversion exits for detailed information about data conversion in general.

Sending messages to the WebSphere MQ-IMS bridge
To ensure that conversion is performed correctly, you must tell the queue manager what the format of the message is.

Receiving messages from the WebSphere MQ-IMS bridge
If an MQIIH structure is present on the original message that you are sending to IMS, one is also present on the reply message.

Parent topic: How the WebSphere MQ-IMS bridge deals with messages

This build: January 26, 2011 11:20:53

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15970_

2.15.2.1.10.1. Sending messages to the WebSphere® MQ-IMS bridge

To ensure that conversion is performed correctly, you must tell the queue manager what the format of the message is.

If the message has an MQIIH structure, the Format in the MQMD must be set to the built-in format MQFMT_IMS, and the Format in the MQIIH must be set

to the name of the format that describes your message data. If there is no MQIIH, set the Format in the MQMD to your format name.

If your data (other than the LLZZs) is all character data (MQCHAR), use as your format name (in the MQIIH or MQMD, as appropriate) the built-in format
MQFMT_IMS_VAR_STRING. Otherwise, use your own format name, in which case you must also provide a data-conversion exit for your format. The exit
must handle the conversion of the LLZZs in your message, in addition to the data itself (but it does not have to handle any MQIIH at the start of the
message).

If your application uses MFSMapName, you are recommended to use messages with the MQFMT_IMS instead, and define the map name passed to the IMS™

transaction in the MFSMapName field of the MQIIH.

Parent topic: Data conversion

This build: January 26, 2011 11:20:53

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15980_

2.15.2.1.10.2. Receiving messages from the WebSphere® MQ-IMS bridge

If an MQIIH structure is present on the original message that you are sending to IMS™, one is also present on the reply message.

To ensure that your reply is converted correctly:

� If you have an MQIIH structure on your original message, specify the format that you want for your reply message in the MQIIH ReplytoFormat field

Page 233 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

of the original message. This value is placed in the MQIIH Format field of the reply message. This is particularly useful if all your output data is of the

form LLZZ<character data>.

� If you do not have an MQIIH structure on your original message, specify the format that you want for the reply message as the MFS MOD name in the
IMS application’s ISRT to the IOPCB.

Parent topic: Data conversion

This build: January 26, 2011 11:20:53

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg15990_

2.15.2.2. Writing your program

The coding required to handle IMS™ transactions through WebSphere® MQ depends on the message format required by the IMS transaction and the range
of responses it can return. However, there are several points to consider when your application handles IMS screen formatting information.

When an IMS transaction is started from a 3270 screen, the message passes through IMS Message Format Services. This can remove all terminal
dependency from the data stream seen by the transaction. When a transaction is started through OTMA, MFS is not involved. If application logic is
implemented in MFS, this must be re-created in the new application.

In some IMS transactions, the end-user application can modify certain 3270 screen behavior, for example, highlighting a field that has had invalid data
entered. This type of information is communicated by adding a two-byte attribute field to the IMS message for each screen field that needs to be modified by
the program.

Thus, if you are coding an application to mimic a 3270, you need to take account of these fields when building or receiving messages.

You might need to code information in your program to process:

� Which key is pressed (for example, Enter and PF1)

� Where the cursor is when the message is passed to your application

� Whether the attribute fields have been set by the IMS application

� High, normal, or zero intensity

� Color

� Whether IMS is expecting the field back the next time that Enter is pressed

� Whether the IMS application has used null characters (X'3F') in any fields.

If your IMS message contains only character data (apart from the LLZZ-data segment), and you are using an MQIIH structure, set the MQMD format to
MQFMT_IMS and the MQIIH format to MQFMT_IMS_VAR_STRING.

If your IMS message contains only character data (apart from the LLZZ-data segment), and you are not using an MQIIH structure, set the MQMD format to
MQFMT_IMS_VAR_STRING and ensure that your IMS application specifies MODname MQFMT_IMS_VAR_STRING when replying. If a problem occurs (for
example, user not authorized to use the transaction) and IMS sends an error message, this has an MODname of the form DFSMOx, where x is a number
between 1 and 5. This is put in the MQMD.Format.

If your IMS message contains binary, packed, or floating point data (apart from the LLZZ-data segment), code your own data-conversion routines. Refer to
IMS/ESA® Application Programming: Transaction Manager for information about IMS screen formatting.

Writing WebSphere MQ applications to invoke IMS conversational transactions

Triggering
The WebSphere MQ-IMS bridge does not support trigger messages.

Writing programs containing IMS commands
An application program can build a WebSphere MQ message of the form LLZZ<command>, instead of a transaction, where <command> is of the
form /DIS TRAN PART or /DIS POOL ALL.

Parent topic: Writing WebSphere MQ-IMS bridge applications

This build: January 26, 2011 11:20:53

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16000_

2.15.2.2.1. Writing WebSphere MQ applications to invoke IMS conversational transactions

When you write an application that invokes an IMS™ conversation, consider the following:

� Include an MQIIH structure with your application message.

� Set the CommitMode in MQIIH to MQICM_SEND_THEN_COMMIT.

� To invoke a new conversation, set TranState in MQIIH to MQITS_NOT_IN_CONVERSATION.

� To invoke second and subsequent steps of a conversation, set TranState to MQITS_IN_CONVERSATION, and set TranInstanceId to the value of that

field returned in the previous step of the conversation.

� There is no easy way in IMS to find the value of a TranInstanceId, should you lose the original message sent from IMS.

� The application must check the TranState of messages from IMS to check whether the IMS transaction has terminated the conversation.

� You can use /EXIT to end a conversation. You must also quote the TranInstanceId, set TranState to MQITS_IN_CONVERSATION, and use the

WebSphere® MQ queue on which the conversation is being carried out.

� You cannot use /HOLD or /REL to hold or release a conversation.

� Conversations invoked through the WebSphere MQ-IMS bridge are terminated if IMS is restarted.

Parent topic: Writing your program

This build: January 26, 2011 11:20:53

Notices | Trademarks | Downloads | Library | Support | Feedback

Page 234 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16010_

2.15.2.2.2. Triggering

The WebSphere® MQ-IMS bridge does not support trigger messages.

If you define an initiation queue that uses a storage class with XCF parameters, messages put to that queue are rejected when they get to the bridge.

Parent topic: Writing your program

This build: January 26, 2011 11:20:53

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16020_

2.15.2.2.3. Writing programs containing IMS commands

An application program can build a WebSphere® MQ message of the form LLZZ<command>, instead of a transaction, where <command> is of the
form /DIS TRAN PART or /DIS POOL ALL.

Most IMS™ commands can be issued in this way; see the IMS/ESA® V6 OTMA Guide and Reference for details. The command output is received in the
WebSphere MQ reply message in the text form as would be sent to a 3270 terminal for display.

OTMA has implemented a special form of the IMS display transaction command, which returns an architected form of the output. The exact format is defined
in the IMS/ESA V6 OTMA Guide and Reference. To invoke this form from a WebSphere MQ message, build the message data as before, for example /DIS
TRAN PART, and set the TranState field in the MQIIH to MQITS_ARCHITECTED. IMS processes the command, and returns the reply in the architected form.
An architected response contains all the information that could be found in the text form of the output, and one additional piece of information: whether the
transaction is defined as recoverable or non-recoverable.

Parent topic: Writing your program

This build: January 26, 2011 11:20:54

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16030_

2.16. Object-oriented programming with WebSphere MQ

WebSphere® MQ provides two ways of programming WebSphere MQ applications that can be used with object-oriented programming languages.

The WebSphere MQ Object Model provides classes that provide the same functionality as WebSphere MQ calls and structures, but that are a more natural
way of programming in an object-oriented environment.

Websphere MQ also provides classes that implement the Java Message Service (JMS) specification. For details of the Websphere MQ classes for JMS, see
WebSphere MQ Using Java. Message Service Clients for C/C++ and .NET provide an application programming Interface (API) called XMS that has the same
set of interfaces as the Java Message Service (JMS) API.

What is in the WebSphere MQ Object Model?

Programming language considerations
The WebSphere MQ Object Model is implemented in C++, Java, and for the .NET environment.

Parent topic: Writing a WebSphere MQ application

This build: January 26, 2011 11:20:54

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16040_

2.16.1. What is in the WebSphere MQ Object Model?

The WebSphere® MQ Object Model consists of the following:

� Classes representing familiar WebSphere MQ concepts such as queue managers, queues, and messages.

� Methods on each class corresponding to MQI calls.

� Properties on each class corresponding to attributes of WebSphere MQ objects.

When creating a WebSphere MQ application using the WebSphere MQ Object Model, you create instances of these classes in the program. An instance of a
class in object-oriented programming is called an object. When an object has been created, you interact with the object by examining or setting the values
of the object’s properties (the equivalent of issuing an MQINQ or MQSET call), and by making method calls against the object (the equivalent of issuing the
other MQI calls).

Classes
The WebSphere MQ Object Model provides the following base set of classes.

Object references
In a WebSphere MQ program that uses the MQI, WebSphere MQ returns connection handles and object handles to the program.

Return codes
Issuing a method call or setting a property value results in return codes being set.

Page 235 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Parent topic: Object-oriented programming with WebSphere MQ

This build: January 26, 2011 11:20:54

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16050_

2.16.1.1. Classes

The WebSphere® MQ Object Model provides the following base set of classes.

The actual implementation of the model varies slightly between the different supported object-oriented environments.

MQQueueManager

An object of the MQQueueManager class represents a connection to a queue manager. It has methods to Connect(), Disconnect(), Commit(), and Backout
() (the equivalent of MQCONN or MQCONNX, MQDISC, MQCMIT, and MQBACK). It has properties corresponding to the attributes of a queue manager.
Accessing a queue manager attribute property implicitly connects to the queue manager if not already connected. Destroying an MQQueueManager object
implicitly disconnects from the queue manager.

MQQueue

An object of the MQQueue class represents a queue. It has methods to Put() and Get() messages to and from the queue (the equivalent of MQPUT and
MQGET). It has properties corresponding to the attributes of a queue. Accessing a queue attribute property, or issuing a Put() or Get() method call,
implicitly opens the queue (the equivalent of MQOPEN). Destroying an MQQueue object implicitly closes the queue (the equivalent of MQCLOSE).

MQTopic

An object of the MQTopic class represents a topic. It has methods to Put() (publish) and Get() (receive or subscribe) messages to and from the topic (the
equivalent of MQPUT and MQGET). It has properties corresponding to the attributes of a topic. An MQTopic object can only be accessed for publication or
subscription, not both simultaneously. When used for receiving messages the MQTopic object can be created with an unmanaged or managed subscription
and as a durable or non-durable subscriber - multiple overloaded constructors are provided for these differing scenarios.

MQMessage

An object of the MQMessage class represents a message to be put on a queue or got from a queue. It contains a buffer, and encapsulates both application
data and MQMD. It has properties corresponding to MQMD fields, and methods that allow you to write and read user data of different types (for example,
strings, long integers, short integers, single bytes) to and from the buffer.

MQPutMessageOptions

An object of the MQPutMessageOptions class represents the MQPMO structure. It has properties corresponding to MQPMO fields.

MQGetMessageOptions

An object of the MQGetMessageOptions class represents the MQGMO structure. It has properties corresponding to MQGMO fields.

MQProcess

An object of the MQProcess class represents a process definition (used with triggering). It has properties that represent the attributes of a process
definition.

MQDistributionList

(Not WebSphere MQ for z/OS®.) An object of the MQDistributionList class represents a distribution list (used to send multiple messages with a single
MQPUT). It contains a list of MQDistributionListItem objects.

MQDistributionListItem

(Not WebSphere MQ for z/OS.) An object of the MQDistributionListItem class represents a single distribution list destination. It encapsulates the MQOR,
MQRR, and MQPMR structures, and has properties corresponding to the fields of these structures.

Parent topic: What is in the WebSphere MQ Object Model?

This build: January 26, 2011 11:20:54

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16060_

2.16.1.2. Object references

In a WebSphere® MQ program that uses the MQI, WebSphere MQ returns connection handles and object handles to the program.

These handles must be passed as parameters on subsequent WebSphere MQ calls. With the WebSphere MQ Object Model, these handles are hidden from the
application program. Instead, the creation of an object from a class results in an object reference being returned to the application program. It is this object
reference that is used when making method calls and property accesses against the object.

Parent topic: What is in the WebSphere MQ Object Model?

This build: January 26, 2011 11:20:54

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16070_

2.16.1.3. Return codes

Issuing a method call or setting a property value results in return codes being set.

These return codes are a completion code and a reason code, and are themselves properties of the object. The values of completion code and reason code
are the same as those defined for the MQI, with some extra values specific to the object-oriented environment.

Parent topic: What is in the WebSphere MQ Object Model?

This build: January 26, 2011 11:20:54

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

Page 236 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

fg16080_

2.16.2. Programming language considerations

The WebSphere® MQ Object Model is implemented in C++, Java, and for the .NET environment.

See WebSphere MQ Using C++ for information about coding programs using the WebSphere MQ Object Model in C++.

See WebSphere MQ Using Java for information about coding programs using the WebSphere MQ Object Model in Java.

See WebSphere MQ Using .NET for information about coding .NET programs using the WebSphere MQ .NET classes.

Coding in ActiveX
Support for ActiveX has been stabilized at the WebSphere MQ Version 6.0 level. To exploit features introduced to WebSphere MQ later than Version
6.0, consider using .NET instead.

Parent topic: Object-oriented programming with WebSphere MQ

This build: January 26, 2011 11:20:55

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16090_

2.16.2.1. Coding in ActiveX

Support for ActiveX has been stabilized at the WebSphere® MQ Version 6.0 level. To exploit features introduced to WebSphere MQ later than Version 6.0,
consider using .NET instead.

Refer to WebSphere MQ Using the Component Object Model Interface for information about coding programs using the WebSphere MQ Object Model in
ActiveX.

The WebSphere MQ ActiveX is commonly known as the MQAX. The MQAX is included as part of WebSphere MQ for Windows.

Parent topic: Programming language considerations

This build: January 26, 2011 11:20:55

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16120_

3. Building a WebSphere MQ application

Building your application on AIX
The AIX® publications describe how to build executable applications from the programs that you write.

Building your application on HP-UX
This chapter describes the additional tasks, and the changes to the standard tasks, that you must perform when building WebSphere MQ for HP-UX
applications to run under HP-UX.

Building your application on Linux
This chapter describes the additional tasks, and the changes to the standard tasks, that you must perform when building WebSphere MQ for Linux
applications to run.

Building your application on i5/OS
The i5/OS® publications describe how to build executable applications from the programs that you write, to run with i5/OS on iSeries® or System i®
systems.

Building your application on Solaris
This chapter describes the additional tasks, and the changes to the standard tasks, that you must perform when building WebSphere MQ for Solaris
applications to run under Solaris.

Building your application on Windows systems
The Windows systems publications describe how to build executable applications from the programs that you write.

Building your application on z/OS
The CICS®, IMS™, and z/OS® publications describe how to build applications that run in these environments.

Using lightweight directory access protocol services with WebSphere MQ for Windows
This chapter explains what a directory service is and the part played by a directory access protocol (DAP). It also explains how WebSphere MQ
applications can use a lightweight directory access protocol (LDAP) directory using a sample program as a guide.

Parent topic: Application Programming Guide

This build: January 26, 2011 11:20:55

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16130_

3.1. Building your application on AIX

The AIX® publications describe how to build executable applications from the programs that you write.

This chapter describes the additional tasks, and the changes to the standard tasks, that you must perform when building WebSphere® MQ for AIX

Page 237 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

applications to run under AIX. C, C++, and COBOL are supported. For information about preparing your C++ programs, see WebSphere MQ Using C++.

The tasks that you must perform to create an executable application using WebSphere MQ for AIX vary with the programming language that your source
code is written in. In addition to coding the MQI calls in your source code, you must add the appropriate language statements to include the WebSphere MQ
for AIX include files for the language that you are using. Make yourself familiar with the contents of these files. See WebSphere MQ data definition files for a
full description.

When you run threaded server or threaded client applications, set the environment variable AIXTHREAD_SCOPE=S.

Preparing C programs

Preparing COBOL programs

Preparing CICS programs

Parent topic: Building a WebSphere MQ application

This build: January 26, 2011 11:20:55

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16140_

3.1.1. Preparing C programs

Precompiled C programs are supplied in the /usr/mqm/samp/bin directory. Use the ANSI compiler and run the following commands. For further information
on programming 64 bit applications see Coding standards on 64 bit platforms.

For 32–bit applications:

 $ cc -o amqsput_32 amqsput0.c -I/usr/mqm/inc -L/usr/mqm/lib -lmqm

where amqsput0 is a sample program.

For 64–bit applications:

 $ cc -q64 -o amqsput_64 amqsput0.c -I/usr/mqm/inc -L/usr/mqm/lib64 -lmqm

where amqsput0 is a sample program.

If you are using the VisualAge® C/C++ v6.0 compiler for C++ programs you must include the option -q namemangling=v5 to get all the WebSphere® MQ

symbols resolved when linking the libraries.

If you want to use the programs on a machine that has only the WebSphere MQ client for AIX® installed, recompile the programs to link them with the
client library (-lmqic) instead.

Linking libraries

Parent topic: Building your application on AIX

This build: January 26, 2011 11:20:56

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16150_

3.1.1.1. Linking libraries

You need the following libraries:

� Link your programs with the appropriate library provided by WebSphere® MQ.

In a non-threaded environment, link to one of the following libraries:

In a threaded environment, link to one of the following libraries:

For example, to build a simple threaded WebSphere MQ application from a single compilation unit run the following commands.

For 32–bit applications:

 $ xlc_r -o amqsputc_32_r amqsput0.c -I/usr/mqm/inc -L/usr/mqm/lib -lmqm_r

where amqsput0 is a sample program.

For 64–bit applications:

 $ xlc_r -q64 -o amqsputc_64_r amqsput0.c -I/usr/mqm/inc -L/usr/mqm/lib64 -lmqm_r

where amqsput0 is a sample program.

If you want to use the programs on a machine that has only the WebSphere MQ client for AIX® installed, recompile the programs to link them with the
client library (-lmqic) instead.

Note:

1. If you are writing an installable service (see the WebSphere MQ System Administration Guide for further information), you need to link to the
libmqmzf.a library in a non-threaded application and to the libmqmzf_r.a library in a threaded application.

2. If you are producing an application for external coordination by an XA-compliant transaction manager such as IBM® TXSeries, Encina, or BEA
Tuxedo, you need to link to the libmqmxa.a (or libmqmxa64.a if your transaction manager treats the 'long' type as 64-bit) and libmqz.a libraries
in a non-threaded application and to the libmqmxa_r.a (or libmqmxa64_r.a) and libmqz_r.a libraries in a threaded application.

3. You need to link trusted applications to the threaded WebSphere MQ libraries. However, only one thread in a trusted application on WebSphere

Library file Program/exit type

libmqm.a Server for C

libmqic.a Client for C

Library file Program/exit type

libmqm_r.a Server for C

libmqic_r.a Client for C

Page 238 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

MQ on UNIX systems can be connected at a time.

4. You must link WebSphere MQ libraries before any other product libraries.

Parent topic: Preparing C programs

This build: January 26, 2011 11:20:56

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16160_

3.1.2. Preparing COBOL programs

Notes® to users

1. 32 bit COBOL copy books are installed in the following directory:

/usr/mqm/inc/cobcpy32

and symbolic links are created in:

/usr/mqm/inc

2. 64 bit COBOL copy books are installed in the following directory:

/usr/mqm/inc/cobcpy64

3. In the following examples set COBCPY to:

/usr/mqm/inc/cobcpy32

for 32 bit applications, and:

/usr/mqm/inc/cobcpy64

for 64 bit applications.

You need to link your program with one of the following:

You can use the IBM® COBOL Set compiler or Micro Focus COBOL compiler depending on the program:

� Programs beginning amqm are suitable for the Micro Focus COBOL compiler, and

� Programs beginning amq0 are suitable for either compiler.

Preparing COBOL programs using IBM COBOL Set for AIX

Preparing COBOL programs using Micro Focus COBOL

Parent topic: Building your application on AIX

This build: January 26, 2011 11:20:56

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16170_

3.1.2.1. Preparing COBOL programs using IBM® COBOL Set for AIX®

Sample COBOL programs are supplied with WebSphere® MQ. To compile such a program, enter the appropriate command from the list below:

32 bit non-threaded server application

$ cob2 -o amq0put0 amq0put0.cbl -L/usr/mqm/lib -lmqmcb -qLIB \

-I<COBCPY>

32 bit non-threaded client application

$ cob2 -o amq0put0 amq0put0.cbl -L /usr/mqm/lib -lmqicb -qLIB \

-I<COBCPY>

32 bit threaded server application

$ cob2_r -o amq0put0 amq0put0.cbl -qTHREAD -L/usr/mqm/lib \

-lmqmcb_r -qLIB -I<COBCPY>

32 bit threaded client application

$ cob2_r -o amq0put0 amq0put0.cbl -qTHREAD -L /usr/mqm/lib \

-lmqicb_r -qLIB -I<COBCPY>

Parent topic: Preparing COBOL programs

This build: January 26, 2011 11:20:56

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16180_

3.1.2.2. Preparing COBOL programs using Micro Focus COBOL

Set environment variables before compiling your program as follows:

export COBCPY=<COBCPY>

Library file Program/exit type

libmqmcb.a Server for COBOL

libmqicb.a Client for COBOL

libmqmcb_r Server for COBOL (threaded application)

Page 239 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

export LIB=/usr/mqm/lib:$LIB

To compile a 32 bit COBOL program using Micro Focus COBOL, enter:

 $ cob32 -xvP amqsput.cbl -L /usr/mqm/lib -lmqmcb Server for COBOL

 $ cob32 -xvP amqsput.cbl -L /usr/mqm/lib -lmqicb Client for COBOL

 $ cob32 -xtvP amqsput.cbl -L /usr/mqm/lib -lmqmcb_r Threaded Server for COBOL

 $ cob32 -xtvP amqsput.cbl -L /usr/mqm/lib -lmqicb_r Threaded Client for COBOL

To compile a 64 bit COBOL program using Micro Focus COBOL, enter:

 $ cob64 -xvP amqsput.cbl -L /usr/mqm/lib64 -lmqmcb Server for COBOL

 $ cob64 -xvP amqsput.cbl -L /usr/mqm/lib64 -lmqicb Client for COBOL

 $ cob64 -xtvP amqsput.cbl -L /usr/mqm/lib64 -lmqmcb_r Threaded Server for COBOL

 $ cob64 -xtvP amqsput.cbl -L /usr/mqm/lib64 -lmqicb_r Threaded Client for COBOL

where amqsput is a sample program

See the Micro Focus COBOL documentation for a description of the environment variables that you need to set up.

Parent topic: Preparing COBOL programs

This build: January 26, 2011 11:20:56

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16190_

3.1.3. Preparing CICS programs

XA switch modules are provided to enable you to link CICS® with WebSphere® MQ:

You are recommended to use the prebuilt version of amqzsc that is shipped with the product. If you need to rebuild the switch load file for any reason (for
example, a new CICS release might require this), then you can do it as follows:

export MQM_HOME=/usr/mqm

echo "amqzscix" > tmp.exp

xlc_r4 $MQM_HOME/samp/amqzscix.c -I/usr/lpp/encina/include \

 -e amqzscix -bE:tmp.exp -bM:SRE -o amqzsc \

 /usr/lpp/cics/lib/regxa_swxa.o -L$MQM_HOME/lib \

 -L/usr/lpp/cics/lib -L/usr/lpp/encina/lib \

 -lcicsrt -lEncina -lEncServer -lpthreads -lc_r \

 -lmqmcics_r -lmqmxa_r -lmqz_r -lmqmcs_r -lmqmzse

rm tmp.exp

Always link your C transactions with the threadsafe WebSphere MQ library libmqm_r.a., and your COBOL transactions with the COBOL library libmqmcb_r.a.

You can find more information about supporting CICS transactions in the WebSphere MQ System Administration Guide.

TXSeries CICS support
WebSphere MQ on AIX supports TXSeries CICS using the XA interface. Ensure that CICS applications are linked to the threaded version of the MQ
libraries.

Parent topic: Building your application on AIX

This build: January 26, 2011 11:20:56

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16200_

3.1.3.1. TXSeries CICS support

WebSphere® MQ on AIX® supports TXSeries CICS® using the XA interface. Ensure that CICS applications are linked to the threaded version of the MQ
libraries.

You can run CICS programs using IBM® COBOL Set for AIX or Micro Focus COBOL. The following sections describe the difference between these.

Preparing CICS COBOL programs using IBM COBOL Set for AIX

Preparing CICS COBOL programs using Micro Focus COBOL

Preparing CICS C programs

Parent topic: Preparing CICS programs

This build: January 26, 2011 11:20:57

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16210_

3.1.3.1.1. Preparing CICS COBOL programs using IBM COBOL Set for AIX

Table 1. Essential code for CICS applications (AIX)

Description C (source) C (exec) - add to your

XAD.Stanza

XA initialization routine amqzscix.c amqzsc - CICS for AIX

Page 240 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

To use IBM® COBOL, follow these steps:

1. Export the following environment variable:

 export LDFLAGS="-qLIB -bI:/usr/lpp/cics/lib/cicsprIBMCOB.exp \

 -I/usr/mqm/inc -I/usr/lpp/cics/include \

 -e _iwz_cobol_main \

where LIB is a compiler directive.

2. Translate, compile, and link the program by typing:

 cicstcl -l IBMCOB <yourprog>.ccp

Parent topic: TXSeries CICS support

This build: January 26, 2011 11:20:57

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16220_

3.1.3.1.2. Preparing CICS COBOL programs using Micro Focus COBOL

To use Micro Focus COBOL, follow these steps:

1. Add the WebSphere® MQ COBOL run-time library module to the run-time library using the following command:

 cicsmkcobol -L/usr/lib/dce -L/usr/mqm/lib \

 /usr/mqm/lib/libmqmcbrt.o -lmqz_r

Note: With cicsmkcobol, WebSphere MQ does not allow you to make MQI calls in the C programming language from your COBOL application.

If your existing applications have any such calls, you are strongly recommended to move these functions from the COBOL applications to your own
library, for example, myMQ.so. After you have done this, do not include the WebSphere MQ library libmqmcbrt.o when building the COBOL application

for CICS®.

Additionally, if your COBOL application does not make any COBOL MQI call , do not link libmqmz_r with cicsmkcobol.

This creates the Micro Focus COBOL language method file and enables the CICS run-time COBOL library to call WebSphere MQ on UNIX systems.

Note: Run cicsmkcobol only when you install one of the following:

� New version or release of Micro Focus COBOL

� New version or release of CICS for AIX®

� New version or release of any supported database product (for COBOL transactions only)

� New version or release of WebSphere MQ

2. Export the following environment variable:

 COBCPY=/usr/mqm/inc export COBCPY

3. Translate, compile, and link the program by typing:

 cicstcl -l COBOL -e <yourprog>.ccp

Parent topic: TXSeries CICS support

This build: January 26, 2011 11:20:57

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16230_

3.1.3.1.3. Preparing CICS C programs

Build CICS® C programs using the standard CICS facilities:

1. Export one of the following environment variables:

� LDFLAGS = “-L/usr⁄mqm⁄lib -lmqm_r” export LDFLAGS

� USERLIB = “-L/usr⁄mqm⁄lib -lmqm_r” export USERLIB

2. Translate, compile, and link the program by typing:

 cicstcl -l C amqscic0.ccs

CICS C sample transaction

Parent topic: TXSeries CICS support

This build: January 26, 2011 11:20:57

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16240_

3.1.3.1.3.1. CICS C sample transaction

Sample C source for a CICS® WebSphere® MQ transaction is provided by AMQSCIC0.CCS. The transaction reads messages from the transmission queue
SYSTEM.SAMPLE.CICS.WORKQUEUE on the default queue manager and places them onto the local queue whose name is contained in the transmission
header of the message. Any failures are sent to the queue SYSTEM.SAMPLE.CICS.DLQ. Use the sample MQSC script AMQSCIC0.TST to create these queues
and sample input queues.

Parent topic: Preparing CICS C programs

This build: January 26, 2011 11:20:57

Notices | Trademarks | Downloads | Library | Support | Feedback

Page 241 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16250_

3.2. Building your application on HP-UX

This chapter describes the additional tasks, and the changes to the standard tasks, that you must perform when building WebSphere® MQ for HP-UX
applications to run under HP-UX.

C, C++, and COBOL are supported. For information about preparing your C++ programs, see WebSphere MQ Using C++.

The tasks that you must perform to create an executable application using WebSphere MQ for HP-UX vary with the programming language that your source
code is written in. In addition to coding the MQI calls in your source code, you must add the appropriate language statements to include the WebSphere MQ
for HP-UX include files for the language that you are using. Make yourself familiar with the contents of these files. See WebSphere MQ data definition files for
a full description.

Throughout this chapter, we use the \ character to split long commands over more than one line. Do not enter this character; enter each command as a
single line.

Preparing C programs

Preparing COBOL programs

Preparing CICS programs

Address Space models supported by WebSphere MQ for HP-UX on IA64 (IPF)
The HP-UX provides several address space models that can be exploited by WebSphere MQ applications.

Parent topic: Building a WebSphere MQ application

This build: January 26, 2011 11:20:58

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16260_

3.2.1. Preparing C programs

Work in your normal environment. Precompiled C programs are supplied in the /opt/mqm/samp/bin directory. For further information on programming 64 bit
applications see Coding standards on 64 bit platforms.

To use SSL, WebSphere® MQ clients on HP-UX 11i v1 and HP-UX 11i v2 must be built:

� Using the C++ compiler (not the C compiler)

� Using POSIX threads

� With the compiler options: -W1,+b/opt/ibm/gsk7/lib:/opt/mqm/lib

PA-RISC platform
Build examples of amqsput0, cliexit and srvexit on PA-RISC platform.

IA64 (IPF) platform
Build examples of amqsput0, cliexit and srvexit on IA64(IPF) platform.

Linking libraries
You need to link your programs with the appropriate library provided by WebSphere MQ.

Parent topic: Building your application on HP-UX

This build: January 26, 2011 11:20:58

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16270_

3.2.1.1. PA-RISC platform

Build examples of amqsput0, cliexit and srvexit on PA-RISC platform.

The following example builds the sample program amqsput0 as a client application in a non-threaded 32-bit environment:

c89 -Wl,+b,: +e -D_HPUX_SOURCE -o amqsput_32 amqsput0.c -I/opt/mqm/inc

 -L/opt/mqm/lib -L/usr/lib -lmqic

The following example builds the sample program amqsput0 as a client application in a threaded 32-bit environment:

c89 -mt -Wl,+b,: +e -D_HPUX_SOURCE -o amqsput_32_r amqsput0.c -I/opt/mqm/inc

 -L/opt/mqm/lib -L/usr/lib -lmqic_r -lpthread

The following example builds the sample program amqsput0 as a client application in a non-threaded 64-bit environment:

c89 +DD64 +e -Wl,+noenvvar -D_HPUX_SOURCE -o amqsput_64 amqsput0.c -I/opt/mqm/inc

 -L/opt/mqm/lib64 -L/usr/lib/pa20_64 -lmqic

The following example builds the sample program amqsput0 as a client application in a threaded 64-bit environment:

c89 -mt +DD64 +e -Wl,+noenvvar -D_HPUX_SOURCE -o amqsput_64_r amqsput0.c -I/opt/mqm/inc

 -L/opt/mqm/lib64 -L/usr/lib/pa20_64 -lmqic_r -lpthread

The following example builds the sample program amqsput0 as a server application in a non-threaded 32-bit environment:

c89 -Wl,+b,: +e -D_HPUX_SOURCE -o amqsput_32 amqsput0.c -I/opt/mqm/inc

 -L/opt/mqm/lib -L/usr/lib -lmqm

The following example builds the sample program amqsput0 as a server application in a threaded 32-bit environment:

Page 242 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

c89 -mt -Wl,+b,: +e -D_HPUX_SOURCE -o amqsput_32_r amqsput0.c -I/opt/mqm/inc

 -L/opt/mqm/lib -L/usr/lib -lmqm_r -lpthread

The following example builds the sample program amqsput0 as a server application in a non-threaded 64-bit environment:

c89 +DD64 +e -Wl,+noenvvar -D_HPUX_SOURCE -o amqsput_64 amqsput0.c -I/opt/mqm/inc

 -L/opt/mqm/lib64 -L/usr/lib/pa20_64 -lmqm

The following example builds the sample program amqsput0 as a server application in a threaded 64-bit environment:

c89 -mt +DD64 +e -Wl,+noenvvar -D_HPUX_SOURCE -o amqsput_64_r amqsput0.c -I/opt/mqm/inc

 -L/opt/mqm/lib64 -L/usr/lib/pa20_64 -lmqm_r -lpthread

The following example builds a client exit cliexit in a non-threaded 32-bit environment:

c89 +e +z -c -D_HPUX_SOURCE -o cliexit.o cliexit.c -I/opt/mqm/inc

ld +b: -b cliexit.o +ee MQStart -o /var/mqm/exits/cliexit_32 -L/opt/mqm/lib \

 -L/usr/lib -lmqic

The following example builds a client exit cliexit in a threaded 32-bit environment:

c89 -mt +e +z -c -D_HPUX_SOURCE -o cliexit.o cliexit.c -I/opt/mqm/inc

ld +b: -b cliexit.o +ee MQStart -o /var/mqm/exits/cliexit_32_r -L/opt/mqm/lib \

 -L/usr/lib -lmqic_r -lpthread

The following example builds a client exit cliexit in a non-threaded 64-bit environment:

c89 +DD64 +e +z -c -D_HPUX_SOURCE -o cliexit.o cliexit.c -I/opt/mqm/inc

ld -b +noenvvar cliexit.o +ee MQStart -o /var/mqm/exits64/cliexit_64 \

 -L/opt/mqm/lib64 -L/usr/lib/pa20_64 -lmqic

The following example builds a client exit cliexit in a threaded 64-bit environment:

c89 -mt +DD64 +e +z -c -D_HPUX_SOURCE -o cliexit.o cliexit.c -I/opt/mqm/inc

ld -b +noenvvar cliexit.o +ee MQStart -o /var/mqm/exits64/cliexit_64_r \

 -L/opt/mqm/lib64 -L/usr/lib/pa20_64 -lmqic_r -lpthread

The following example builds a server exit srvexit in a non-threaded 32-bit environment:

c89 +e +z -c -D_HPUX_SOURCE -o srvexit.o srvexit.c -I/opt/mqm/inc

ld +b: -b srvexit.o +ee MQStart -o /var/mqm/exits/srvexit_32 -L/opt/mqm/lib \

 -L/usr/lib -lmqic

The following example builds a server exit srvexit in a threaded 32-bit environment:

c89 -mt +e +z -c -D_HPUX_SOURCE -o srvexit.o srvexit.c -I/opt/mqm/inc

ld +b: -b srvexit.o +ee MQStart -o /var/mqm/exits/srvexit_32_r -L/opt/mqm/lib \

 -L/usr/lib -lmqic_r -lpthread

The following example builds a server exit srvexit in a non-threaded 64-bit environment:

c89 +DD64 +e +z -c -D_HPUX_SOURCE -o srvexit.o srvexit.c -I/opt/mqm/inc

ld -b +noenvvar srvexit.o +ee MQStart -o /var/mqm/exits64/srvexit_64 \

 -L/opt/mqm/lib64 -L/usr/lib/pa20_64 -lmqic

The following example builds a server exit srvexit in a threaded 64-bit environment:

c89 -mt +DD64 +e +z -c -D_HPUX_SOURCE -o srvexit.o srvexit.c -I/opt/mqm/inc

ld -b +noenvvar srvexit.o +ee MQStart -o /var/mqm/exits64/srvexit_64_r \

 -L/opt/mqm/lib64 -L/usr/lib/pa20_64 -lmqic_r -lpthread

Parent topic: Preparing C programs

This build: January 26, 2011 11:20:58

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16280_

3.2.1.2. IA64 (IPF) platform

Build examples of amqsput0, cliexit and srvexit on IA64(IPF) platform.

The following example builds the sample program amqsput0 as a client application in a non-threaded 32-bit environment:

c89 -Wl,+b,: +e -D_HPUX_SOURCE -o amqsputc_32 amqsput0.c -I/opt/mqm/inc

 -L/opt/mqm/lib -L/usr/lib/hpux32 -lmqic

The following example builds the sample program amqsput0 as a client application in a threaded 32-bit environment:

c89 -mt -Wl,+b,: +e -D_HPUX_SOURCE -o amqsputc_32_r amqsput0.c -I/opt/mqm/inc

 -L/opt/mqm/lib -L/usr/lib/hpux32 -lmqic_r -lpthread

The following example builds the sample program amqsput0 as a client application in a non-threaded 64-bit environment:

c89 +DD64 +e -Wl,+noenvvar -D_HPUX_SOURCE -o amqsputc_64 amqsput0.c -I/opt/mqm/inc

 -L/opt/mqm/lib64 -L/usr/lib/hpux64 -lmqic

The following example builds the sample program amqsput0 as a client application in a threaded 64-bit environment:

c89 -mt +DD64 +e -Wl,+noenvvar -D_HPUX_SOURCE -o amqsputc_64_r amqsput0.c -I/opt/mqm/inc

 -L/opt/mqm/lib64 -L/usr/lib/hpux64 -lmqic_r -lpthread

The following example builds the sample program amqsput0 as a server application in a non-threaded 32-bit environment:

c89 -Wl,+b,: +e -D_HPUX_SOURCE -o amqsput_32 amqsput0.c -I/opt/mqm/inc

 -L/opt/mqm/lib -L/usr/lib/hpux32 -lmqm

The following example builds the sample program amqsput0 as a server application in a threaded 32-bit environment:

c89 -mt -Wl,+b,: +e -D_HPUX_SOURCE -o amqsput_32_r amqsput0.c -I/opt/mqm/inc

 -L/opt/mqm/lib -L/usr/lib/hpux32 -lmqm_r -lpthread

The following example builds the sample program amqsput0 as a server application in a non-threaded 64-bit environment:

c89 +DD64 +e -Wl,+noenvvar -D_HPUX_SOURCE -o amqsput_64 amqsput0.c -I/opt/mqm/inc

 -L/opt/mqm/lib64 -L/usr/lib/hpux64 -lmqm

The following example builds the sample program amqsput0 as a server application in a threaded 64-bit environment:

c89 -mt +DD64 +e -Wl,+noenvvar -D_HPUX_SOURCE -o amqsput_64_r amqsput0.c -I/opt/mqm/inc

 -L/opt/mqm/lib64 -L/usr/lib/hpux64 -lmqm_r -lpthread

Page 243 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

The following example builds a client exit cliexit in a non-threaded 32-bit environment:

c89 +e +z -c -D_HPUX_SOURCE -o cliexit.o cliexit.c -I/opt/mqm/inc

ld +b: -b cliexit.o +ee MQStart -o /var/mqm/exits/cliexit_32 -L/opt/mqm/lib \

-L/usr/lib/hpux32 -lmqic

The following example builds a client exit cliexit in a threaded 32-bit environment:

c89 -mt +e +z -c -D_HPUX_SOURCE -o cliexit.o cliexit.c -I/opt/mqm/inc

ld +b: -b cliexit.o +ee MQStart -o /var/mqm/exits/cliexit_32_r -L/opt/mqm/lib \

-L/usr/lib/hpux32 -lmqic_r -lpthread

The following example builds a client exit cliexit in a non-threaded 64-bit environment:

c89 +DD64 +e +z -c -D_HPUX_SOURCE -o cliexit.o cliexit.c -I/opt/mqm/inc

ld -b +noenvvar cliexit.o +ee MQStart -o /var/mqm/exits64/cliexit_64 \

-L/opt/mqm/lib64 -L/usr/lib/hpux64 -lmqic

The following example builds a client exit cliexit in a threaded 64-bit environment:

c89 -mt +DD64 +e +z -c -D_HPUX_SOURCE -o cliexit.o cliexit.c -I/opt/mqm/inc

ld -b +noenvvar cliexit.o +ee MQStart -o /var/mqm/exits/cliexit_64_r \

-L/opt/mqm/lib64 -L/usr/lib/hpux64 -lmqic_r -lpthread

The following example builds a server exit srvexit in a non-threaded 32-bit environment:

c89 +e +z -c -D_HPUX_SOURCE -o srvexit.o srvexit.c -I/opt/mqm/inc

ld +b: -b srvexit.o +ee MQStart -o /var/mqm/exits/srvexit_32 -L/opt/mqm/lib \

-L/usr/lib/hpux32 -lmqm

The following example builds a server exit srvexit in a threaded 32-bit environment:

c89 -mt +e +z -c -D_HPUX_SOURCE -o srvexit.o srvexit.c -I/opt/mqm/inc

ld +b: -b srvexit.o +ee MQStart -o /var/mqm/exits/srvexit_32_r -L/opt/mqm/lib \

-L/usr/lib/hpux32 -lmqm_r -lpthread

The following example builds a server exit srvexit in a non-threaded 64-bit environment:

c89 +DD64 +e +z -c -D_HPUX_SOURCE -o srvexit.o srvexit.c -I/opt/mqm/inc

ld -b +noenvvar srvexit.o +ee MQStart -o /var/mqm/exits64/srvexit_64 \

-L/opt/mqm/lib64 -L/usr/lib/hpux64 -lmqm

The following example builds a server exit srvexit in a threaded 64-bit environment:

c89 -mt +DD64 +e +z -c -D_HPUX_SOURCE -o srvexit.o srvexit.c -I/opt/mqm/inc

ld -b +noenvvar srvexit.o +ee MQStart -o /var/mqm/exits/srvexit_64_r \

-L/opt/mqm/lib64 -L/usr/lib/hpux64 -lmqm_r -lpthread

Parent topic: Preparing C programs

This build: January 26, 2011 11:20:58

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16290_

3.2.1.3. Linking libraries

You need to link your programs with the appropriate library provided by WebSphere® MQ.

The following table shows which library to use in different environments

Note:

1. If you are writing an installable service (see the WebSphere MQ System Administration Guide for further information), you need to link to the
libmqmzf.sl library.

2. If you are producing an application for external coordination by an XA-compliant transaction manager such as IBM® TXSeries Encina, or BEA Tuxedo,
you need to link to the libmqmxa.sl (or libmqmxa64.sl if your transaction manager treats the 'long' type as 64-bit) and libmqz.sl libraries in a non-
threaded application and to the libmqmxa_r.sl (or libmqmxa64_r.sl) and libmqz_r.sl libraries in a threaded application.

3. You must link WebSphere MQ libraries before any other product libraries.

Parent topic: Preparing C programs

This build: January 26, 2011 11:20:58

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16300_

3.2.2. Preparing COBOL programs

Notes® to users

1. 32 bit COBOL copy books are installed in the following directory:

/opt/mqm/inc/cobcpy32

and symbolic links are created in:

/opt/mqm/inc

Hardware platform Threaded or non-threaded

environment

Program/exit type Library file

PA-RISC Threaded Server for C libmqm_r.sl

PA-RISC Threaded Client for C libmqic_r.sl

PA-RISC Non-threaded Server for C libmqm.sl

PA-RISC Non-threaded Client for C libmqic.sl

IA64 (IPF) Threaded Server for C libmqm_r.so

IA64 (IPF) Threaded Client for C libmqic_r.so

IA64 (IPF) Non-threaded Server for C libmqm.so

IA64 (IPF) Non-threaded Client for C libmqic.so

Page 244 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

2. 64 bit COBOL copy books are installed in the following directory:

/opt/mqm/inc/cobcpy64

3. In the following examples set COBCPY to:

/opt/mqm/inc/cobcpy32

for 32 bit applications, and:

/opt/mqm/inc/cobcpy64

for 64 bit applications.

Compile the programs using the Micro Focus compiler. The copy files that declare the structures are in /opt/mqm/inc:

 $ export LIB=/usr/mqm/lib:$LIB

 $ export COBCPY=“<COBCPY>”

Compiling 32 bit programs:

 $ cob32 -xv amqsput.cbl -L /opt/mqm/lib -lmqmcb Server for COBOL

 $ cob32 -xv amqsput.cbl -L /opt/mqm/lib -lmqicb Client for COBOL

 $ cob32 -xtv amqsput.cbl -L /opt/mqm/lib -lmqmcb_r Threaded Server for COBOL

 $ cob32 -xtv amqsput.cbl -L /opt/mqm/lib -lmqicb_r Threaded Client for COBOL

Compiling 64 bit programs:

 $ cob64 -xv amqsput.cbl -L /opt/mqm/lib64 -lmqmcb Server for COBOL

 $ cob64 -xv amqsput.cbl -L /opt/mqm/lib64 -lmqicb Client for COBOL

 $ cob64 -xtv amqsput.cbl -L /opt/mqm/lib64 -lmqmcb_r Threaded Server for COBOL

 $ cob64 -xtv amqsput.cbl -L /opt/mqm/lib64 -lmqicb_r Threaded Client for COBOL

where amqsput is a sample program

Ensure that you have specified adequate run-time stack sizes; 16 KB is the recommended minimum.

You need to link your programs with the appropriate library provided by WebSphere® MQ. The following table shows which library to use in different
environments

Using Micro Focus Server Express with WebSphere MQ on the IA64 (IPF) platform

Programs to run in the WebSphere MQ client environment

Parent topic: Building your application on HP-UX

This build: January 26, 2011 11:20:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16310_

3.2.2.1. Using Micro Focus Server Express with WebSphere MQ on the IA64 (IPF) platform

See Address Space models supported by WebSphere MQ for HP-UX on IA64 (IPF) for details on using Micro Focus Server Express in conjunction with
WebSphere® MQ on the HP/IPF platform.

Parent topic: Preparing COBOL programs

This build: January 26, 2011 11:20:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16320_

3.2.2.2. Programs to run in the WebSphere® MQ client environment

If you are using LU 6.2 to connect your MQI client to a server, link your application to libsna.a, part of the SNAplusAPI product. Use the –lV3 and –lstr

options on your compile and link command.

� The –lV3 option gives your program access to the AT&T signaling library (the SNAplusAPI uses AT&T signals)

� The –lstr option links your program to the streams component

If you are not using LU 6.2, consider linking to libsnastubs.a (in ⁄opt⁄mqm⁄lib) to fully resolve function names. The need to link to this library varies with how
you are using the -B flag during the linking stage.

Parent topic: Preparing COBOL programs

This build: January 26, 2011 11:20:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16330_

3.2.3. Preparing CICS programs

Hardware platform Program/exit type Library file

PA-RISC Server for COBOL libmqmcb.sl

PA-RISC Client for COBOL libmqicb.sl

PA-RISC Threaded applications amqmcb_r.sl

IA64 (IPF) Server for COBOL libmqmcb.so

IA64 (IPF) Client for COBOL libmqicb.so

IA64 (IPF) Threaded applications amqmcb_r.so

Page 245 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

To build the sample CICS® transaction, amqscic0.ccs, run the following command:

 $ export USERLIB=“-lmqm_r”

 $ cicstcl -l C amqscic0.ccs

An XA switch module is provided to enable you to link CICS with WebSphere® MQ:

You can find more information about supporting CICS transactions in the WebSphere MQ System Administration Guide.

TXSeries CICS support
WebSphere MQ on HP-UX supports TXSeries CICS using the XA interface. Ensure that CICS applications are linked to the threaded version of the MQ
libraries.

Parent topic: Building your application on HP-UX

This build: January 26, 2011 11:20:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16340_

3.2.3.1. TXSeries CICS support

WebSphere® MQ on HP-UX supports TXSeries CICS® using the XA interface. Ensure that CICS applications are linked to the threaded version of the MQ
libraries.

CICS C sample transaction

Preparing CICS COBOL programs using Micro Focus COBOL

Parent topic: Preparing CICS programs

This build: January 26, 2011 11:20:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16350_

3.2.3.1.1. CICS C sample transaction

Sample C source for a CICS® WebSphere® MQ transaction is provided by AMQSCIC0.CCS. The transaction reads messages from the transmission queue
SYSTEM.SAMPLE.CICS.WORKQUEUE on the default queue manager and places them onto the local queue whose name is contained in the transmission
header of the message. Any failures are sent to the queue SYSTEM.SAMPLE.CICS.DLQ. Use the sample MQSC script AMQSCIC0.TST to create these queues
and sample input queues.

Parent topic: TXSeries CICS support

This build: January 26, 2011 11:20:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16360_

3.2.3.1.2. Preparing CICS COBOL programs using Micro Focus COBOL

To use Micro Focus COBOL, follow these steps:

1. Add the WebSphere® MQ COBOL run-time library module to the run-time library using the following command:

 cicsmkcobol -L/usr/lib/dce -L/opt/mqm/lib \

 /opt/mqm/lib/libmqmcbrt.o -lmqz_r

Note: With cicsmkcobol, WebSphere MQ does not allow you to make MQI calls in the C programming language from your COBOL application.

If your existing applications have any such calls, you are strongly recommended to move these functions from the COBOL applications to your own
library, for example, myMQ.so. After you have done this, do not include the WebSphere MQ library libmqmcbrt.o when building the COBOL application

for CICS®.

Additionally, if your COBOL application does not make any COBOL MQI call , do not link libmqmz_r with cicsmkcobol.

This creates the Micro Focus COBOL language method file and enables the CICS run-time COBOL library to call WebSphere MQ on UNIX systems.

Note: Run cicsmkcobol only when you install one of the following:

� New version or release of Micro Focus COBOL

� New version or release of CICS for HP-UX

� New version or release of any supported database product (for COBOL transactions only)

� New version or release of WebSphere MQ

2. Export the following environment variable:

 COBCPY=/usr/mqm/inc export COBCPY

3. Translate, compile, and link the program by typing:

 cicstcl -l COBOL -e <yourprog>.ccp

Parent topic: TXSeries CICS support

This build: January 26, 2011 11:21:00

Table 1. Essential code for CICS applications (HP-UX)

Description C (source) C (exec)

XA initialization routine amqzscix.c amqzsc

Page 246 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16370_

3.2.4. Address Space models supported by WebSphere MQ for HP-UX on IA64 (IPF)

The HP-UX provides several address space models that can be exploited by WebSphere MQ applications.

HP-UX supports two Address Space models:

� MGAS - Mostly Global Address space (this is the default and is used by WebSphere® MQ)

� MPAS - Mostly Private Address space

Applications which connect to WebSphere MQ can use either the MGAS or MPAS address space models. Applications built using the MPAS model that connect
to WebSphere MQ using shared memory might incur a minor performance cost due to the inefficiency in mapping the shared memory pages used by
WebSphere MQ into the virtual address space of the MPAS program.

COBOL applications built using Micro Focus Server Express use the MPAS model by default.

You can use the chatr program to check and change the addressing model used by a program.

If you encounter problems connecting to WebSphere MQ from 32–bit MPAS programs, consider using the MGAS addressing model, or building your
application as a 64–bit MPAS application rather than a 32–bit MPAS application.

More details on the MGAS and MPAS address space models can be found in the HP-UX documentation.

Parent topic: Building your application on HP-UX

This build: January 26, 2011 11:21:00

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16380_

3.3. Building your application on Linux

This chapter describes the additional tasks, and the changes to the standard tasks, that you must perform when building WebSphere® MQ for Linux
applications to run.

C, and C++ are supported. For information about preparing your C++ programs, see WebSphere MQ Using C++.

Preparing C programs

Preparing COBOL programs

Parent topic: Building a WebSphere MQ application

This build: January 26, 2011 11:21:00

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16390_

3.3.1. Preparing C programs

Precompiled C programs are supplied in the /opt/mqm/samp/bin directory. To build a sample from source code, use the gcc compiler.

Work in your normal environment. Precompiled C programs are supplied in the /opt/mqm/samp/bin directory. To build a sample from source code, use the
gcc compiler. For further information on programming 64 bit applications see Coding standards on 64 bit platforms.

Building 31-bit applications
The following section contains examples of the commands used to build 31-bit programs in various environments.

Building 32-bit applications
The following section contains examples of the commands used to build 32-bit programs in various environments.

Building 64-bit applications
The following section contains examples of the commands used to build 64-bit programs in various environments.

Linking libraries
The following lists the libraries that you need.

Parent topic: Building your application on Linux

This build: January 26, 2011 11:21:00

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16400_

3.3.1.1. Building 31-bit applications

Page 247 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

The following section contains examples of the commands used to build 31-bit programs in various environments.

C client application, 31-bit, non-threaded

gcc -m31 -o amqsputc_32 amqsput0.c -I/opt/mqm/inc -L/opt/mqm/lib

-Wl,-rpath=/opt/mqm/lib -Wl,-rpath=/usr/lib -lmqic

C client application, 31-bit, threaded

gcc -m31 -o amqsputc_32_r amqsput0.c -I/opt/mqm/inc -L/opt/mqm/lib

-Wl,-rpath=/opt/mqm/lib -Wl,-rpath=/usr/lib -lmqic_r -lpthread

C server application, 31-bit, non-threaded

gcc -m31 -o amqsput_32 amqsput0.c -I/opt/mqm/inc -L/opt/mqm/lib

-Wl,-rpath=/opt/mqm/lib -Wl,-rpath=/usr/lib -lmqm

C server application, 31-bit, threaded

gcc -m31 -o amqsput_32_r amqsput0.c -I/opt/mqm/inc -L/opt/mqm/lib

-Wl,-rpath=/opt/mqm/lib -Wl,-rpath=/usr/lib -lmqm_r -lpthread

C++ client application, 31-bit, non-threaded

g++ -m31 -fsigned-char -o imqsputc_32 imqsput.cpp -I/opt/mqm/inc

-L/opt/mqm/lib -Wl,-rpath=/opt/mqm/lib -Wl,-rpath=/usr/lib -limqc23gl

-limqb23gl -lmqic

C++ client application, 31-bit, threaded

g++ -m31 -fsigned-char -o imqsputc_32_r imqsput.cpp -I/opt/mqm/inc

-L/opt/mqm/lib -Wl,-rpath=/opt/mqm/lib -Wl,-rpath=/usr/lib -limqc23gl_r

-limqb23gl_r -lmqic_r -lpthread

C++ server application, 31-bit, non-threaded

g++ -m31 -fsigned-char -o imqsput_32 imqsput.cpp -I/opt/mqm/inc

-L/opt/mqm/lib -Wl,-rpath=/opt/mqm/lib -Wl,-rpath=/usr/lib -limqs23gl

-limqb23gl -lmqm

C++ server application, 31-bit, threaded

g++ -m31 -fsigned-char -o imqsput_32_r imqsput.cpp -I/opt/mqm/inc

-L/opt/mqm/lib -Wl,-rpath=/opt/mqm/lib -Wl,-rpath=/usr/lib -limqs23gl_r

-limqb23gl_r -lmqm_r -lpthread

C client exit, 31-bit, non-threaded

gcc -m31 -shared -fPIC -o /var/mqm/exits/cliexit_32 cliexit.c

-I/opt/mqm/inc -L/opt/mqm/lib -Wl,-rpath=/opt/mqm/lib -Wl,-rpath=/usr/lib

-lmqic

C client exit, 31-bit, threaded

gcc -m31 -shared -fPIC -o /var/mqm/exits/cliexit_32_r cliexit.c

-I/opt/mqm/inc -L/opt/mqm/lib -Wl,-rpath=/opt/mqm/lib -Wl,-rpath=/usr/lib

-lmqic_r -lpthread

C server exit, 31-bit, non-threaded

gcc -m31 -shared -fPIC -o /var/mqm/exits/srvexit_32 srvexit.c

-I/opt/mqm/inc -L/opt/mqm/lib -Wl,-rpath=/opt/mqm/lib -Wl,-rpath=/usr/lib

-lmqm

C server exit, 31-bit, threaded

gcc -m31 -shared -fPIC -o /var/mqm/exits/srvexit_32_r srvexit.c

-I/opt/mqm/inc -L/opt/mqm/lib -Wl,-rpath=/opt/mqm/lib -Wl,-rpath=/usr/lib

-lmqm_r -lpthread

Parent topic: Preparing C programs

This build: January 26, 2011 11:21:00

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16410_

3.3.1.2. Building 32-bit applications

The following section contains examples of the commands used to build 32-bit programs in various environments.

C client application, 32-bit, non-threaded

gcc -m32 -o amqsputc_32 amqsput0.c -I/opt/mqm/inc -L/opt/mqm/lib

-Wl,-rpath=/opt/mqm/lib -Wl,-rpath=/usr/lib -lmqic

C client application, 32-bit, threaded

gcc -m32 -o amqsputc_32_r amqsput0.c -I/opt/mqm/inc -L/opt/mqm/lib

-Wl,-rpath=/opt/mqm/lib -Wl,-rpath=/usr/lib -lmqic_r -lpthread

C server application, 32-bit, non-threaded

gcc -m32 -o amqsput_32 amqsput0.c -I/opt/mqm/inc -L/opt/mqm/lib

-Wl,-rpath=/opt/mqm/lib -Wl,-rpath=/usr/lib -lmqm

C server application, 32-bit, threaded

gcc -m32 -o amqsput_32_r amqsput0.c -I/opt/mqm/inc -L/opt/mqm/lib

-Wl,-rpath=/opt/mqm/lib -Wl,-rpath=/usr/lib -lmqm_r -lpthread

C++ client application, 32-bit, non-threaded

g++ -m32 -fsigned-char -o imqsputc_32 imqsput.cpp -I/opt/mqm/inc

-L/opt/mqm/lib -Wl,-rpath=/opt/mqm/lib -Wl,-rpath=/usr/lib

-limqc23gl -limqb23gl -lmqic

C++ client application, 32-bit, threaded

g++ -m32 -fsigned-char -o imqsputc_32_r imqsput.cpp -I/opt/mqm/inc

-L/opt/mqm/lib -Wl,-rpath=/opt/mqm/lib -Wl,-rpath=/usr/lib

Page 248 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

-limqc23gl_r -limqb23gl_r -lmqic_r -lpthread

C++ server application, 32-bit, non-threaded

g++ -m32 -fsigned-char -o imqsput_32 imqsput.cpp -I/opt/mqm/inc

-L/opt/mqm/lib -Wl,-rpath=/opt/mqm/lib -Wl,-rpath=/usr/lib

-limqs23gl -limqb23gl -lmqm

C++ server application, 32-bit, threaded

g++ -m32 -fsigned-char -o imqsput_32_r imqsput.cpp -I/opt/mqm/inc

-L/opt/mqm/lib -Wl,-rpath=/opt/mqm/lib -Wl,-rpath=/usr/lib

-limqs23gl_r -limqb23gl_r -lmqm_r -lpthread

C client exit, 32-bit, non-threaded

gcc -m32 -shared -fPIC -o /var/mqm/exits/cliexit_32 cliexit.c

-I/opt/mqm/inc -L/opt/mqm/lib -Wl,-rpath=/opt/mqm/lib -Wl,-rpath=/usr/lib

-lmqic

C client exit, 32-bit, threaded

gcc -m32 -shared -fPIC -o /var/mqm/exits/cliexit_32_r cliexit.c

-I/opt/mqm/inc -L/opt/mqm/lib -Wl,-rpath=/opt/mqm/lib -Wl,-rpath=/usr/lib

-lmqic_r -lpthread

C server exit, 32-bit, non-threaded

gcc -m32 -shared -fPIC -o /var/mqm/exits/srvexit_32 srvexit.c -I/opt/mqm/inc

-L/opt/mqm/lib -Wl,-rpath=/opt/mqm/lib -Wl,-rpath=/usr/lib -lmqm

C server exit, 32-bit, threaded

gcc -m32 -shared -fPIC -o /var/mqm/exits/srvexit_32_r srvexit.c

I/opt/mqm/inc -L/opt/mqm/lib -Wl,-rpath=/opt/mqm/lib -Wl,-rpath=/usr/lib

lmqm_r -lpthread

Parent topic: Preparing C programs

This build: January 26, 2011 11:21:00

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16420_

3.3.1.3. Building 64-bit applications

The following section contains examples of the commands used to build 64-bit programs in various environments.

C client application, 64-bit, non-threaded

gcc -m64 -o amqsputc_64 amqsput0.c -I/opt/mqm/inc -L/opt/mqm/lib64

-Wl,-rpath=/opt/mqm/lib64 -Wl,-rpath=/usr/lib64 -lmqic

C client application, 64-bit, threaded

gcc -m64 -o amqsputc_64_r amqsput0.c -I/opt/mqm/inc -L/opt/mqm/lib64

-Wl,-rpath=/opt/mqm/lib64 -Wl,-rpath=/usr/lib64 -lmqic_r -lpthread

C server application, 64-bit, non-threaded

gcc -m64 -o amqsput_64 amqsput0.c -I/opt/mqm/inc -L/opt/mqm/lib64

-Wl,-rpath=/opt/mqm/lib64 -Wl,-rpath=/usr/lib64 -lmqm

C server application, 64-bit, threaded

gcc -m64 -o amqsput_64_r amqsput0.c -I/opt/mqm/inc -L/opt/mqm/lib64

-Wl,-rpath=/opt/mqm/lib64 -Wl,-rpath=/usr/lib64 -lmqm_r -lpthread

C++ client application, 64-bit, non-threaded

g++ -m64 -fsigned-char -o imqsputc_64 imqsput.cpp -I/opt/mqm/inc

-L/opt/mqm/lib64 -Wl,-rpath=/opt/mqm/lib64 -Wl,-rpath=/usr/lib64

-limqc23gl -limqb23gl -lmqic

C++ client application, 64-bit, threaded

g++ -m64 -fsigned-char -o imqsputc_64_r imqsput.cpp -I/opt/mqm/inc

-L/opt/mqm/lib64 -Wl,-rpath=/opt/mqm/lib64 -Wl,-rpath=/usr/lib64

-limqc23gl_r -limqb23gl_r -lmqic_r -lpthread

C++ server application, 64-bit, non-threaded

g++ -m64 -fsigned-char -o imqsput_64 imqsput.cpp -I/opt/mqm/inc

-L/opt/mqm/lib64 -Wl,-rpath=/opt/mqm/lib64 -Wl,-rpath=/usr/lib64

-limqs23gl -limqb23gl -lmqm

C++ server application, 64-bit, threaded

g++ -m64 -fsigned-char -o imqsput_64_r imqsput.cpp -I/opt/mqm/inc

-L/opt/mqm/lib64 -Wl,-rpath=/opt/mqm/lib64 -Wl,-rpath=/usr/lib64

-limqs23gl_r -limqb23gl_r -lmqm_r -lpthread

C client exit, 64-bit, non-threaded

gcc -m64 -shared -fPIC -o /var/mqm/exits64/cliexit_64 cliexit.c

-I/opt/mqm/inc -L/opt/mqm/lib64 -Wl,-rpath=/opt/mqm/lib64

-Wl,-rpath=/usr/lib64 -lmqic

C client exit, 64-bit, threaded

gcc -m64 -shared -fPIC -o /var/mqm/exits64/cliexit_64_r cliexit.c

-I/opt/mqm/inc -L/opt/mqm/lib64 -Wl,-rpath=/opt/mqm/lib64

-Wl,-rpath=/usr/lib64 -lmqic_r -lpthread

C server exit, 64-bit, non-threaded

gcc -m64 -shared -fPIC -o /var/mqm/exits64/srvexit_64 srvexit.c

-I/opt/mqm/inc -L/opt/mqm/lib64 -Wl,-rpath=/opt/mqm/lib64

-Wl,-rpath=/usr/lib64 -lmqm

C server exit, 64-bit, threaded

gcc -m64 -shared -fPIC -o /var/mqm/exits64/srvexit_64_r srvexit.c

Page 249 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

-I/opt/mqm/inc -L/opt/mqm/lib64 -Wl,-rpath=/opt/mqm/lib64

-Wl,-rpath=/usr/lib64 -lmqm_r -lpthread

Parent topic: Preparing C programs

This build: January 26, 2011 11:21:00

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16430_

3.3.1.4. Linking libraries

The following lists the libraries that you need.

� You need to link your programs with the appropriate library provided by WebSphere® MQ.

In a non-threaded environment, link to one of the following libraries:

In a threaded environment, link to one of the following libraries:

Note:

1. If you are writing an installable service (see the WebSphere MQ System Administration Guide for further information), you need to link to the
libmqmzf.so library.

2. If you are producing an application for external coordination by an XA-compliant transaction manager such as IBM® TXSeries Encina, or BEA
Tuxedo, you need to link to the libmqmxa.so (or libmqmxa64.so if your transaction manager treats the 'long' type as 64-bit) and libmqz.so
libraries in a non-threaded application and to the libmqmxa_r.so (or libmqmxa64_r.so) and libmqz_r.so libraries in a threaded application.

3. You must link WebSphere MQ libraries before any other product libraries.

Parent topic: Preparing C programs

This build: January 26, 2011 11:21:01

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16440_

3.3.2. Preparing COBOL programs

Notes® to users

1. 32 bit COBOL copy books are installed in the following directory:

/opt/mqm/inc/cobcpy32

and symbolic links are created in:

/opt/mqm/inc

2. On 64-bit platforms, 64 bit COBOL copy books are installed in the following directory:

/opt/mqm/inc/cobcpy64

3. In the following examples set COBCPY to:

/opt/mqm/inc/cobcpy32

for 32 bit applications, and:

/opt/mqm/inc/cobcpy64

for 64 bit applications.

You need to link your program with one of the following:

Preparing COBOL programs using Micro Focus COBOL

Parent topic: Building your application on Linux

This build: January 26, 2011 11:21:01

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16450_

3.3.2.1. Preparing COBOL programs using Micro Focus COBOL

Set environment variables before compiling your program as follows:

Library file Program/exit type

libmqm.so Server for C

libmqic.so Client for C

Library file Program/exit type

libmqm_r.so Server for C

libmqic_r.so Client for C

Library file Program/exit type

libmqmcb.so Server for COBOL

libmqicb.so Client for COBOL

libmqmcb_r.so Server for COBOL (threaded application)

libmqicb_r.so Client for COBOL (threaded application)

Page 250 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

export COBCPY=<COBCPY>

export LIB=/opt/mqm/lib:$LIB

To compile a 32 bit COBOL program, where supported, using Micro Focus COBOL, enter:

 $ cob32 -xvP amqsput.cbl -L /opt/mqm/lib -lmqmcb Server for COBOL

 $ cob32 -xvP amqsput.cbl -L /opt/mqm/lib -lmqicb Client for COBOL

 $ cob32 -xtvP amqsput.cbl -L /opt/mqm/lib -lmqmcb_r Threaded Server for COBOL

 $ cob32 -xtvP amqsput.cbl -L /opt/mqm/lib -lmqicb_r Threaded Client for COBOL

To compile a 64 bit COBOL program using Micro Focus COBOL, enter:

 $ cob64 -xvP amqsput.cbl -L /opt/mqm/lib64 -lmqmcb Server for COBOL

 $ cob64 -xvP amqsput.cbl -L /opt/mqm/lib64 -lmqicb Client for COBOL

 $ cob64 -xtvP amqsput.cbl -L /opt/mqm/lib64 -lmqmcb_r Threaded Server for COBOL

 $ cob64 -xtvP amqsput.cbl -L /opt/mqm/lib64 -lmqicb_r Threaded Client for COBOL

where amqsput is a sample program

See the Micro Focus COBOL documentation for a description of the environment variables that you need to be up.

Parent topic: Preparing COBOL programs

This build: January 26, 2011 11:21:01

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16460_

3.4. Building your application on i5/OS

The i5/OS® publications describe how to build executable applications from the programs that you write, to run with i5/OS on iSeries® or System i®
systems.

This chapter describes the additional tasks, and the changes to the standard tasks, that you must perform when building WebSphere® MQ for i5/OS
applications to run on i5/OS systems. COBOL, C, C++, Java and RPG programming languages are supported. For information about preparing your C++
programs, see WebSphere MQ Using C++. For information about preparing your Java programs, see WebSphere MQ Using Java.

The tasks that you must perform to create an executable WebSphere MQ for i5/OS application depend on the programming language that the source code is
written in. In addition to coding the MQI calls in your source code, you must add the appropriate language statements to include the WebSphere MQ for
i5/OS data definition files for the language that you are using. Make yourself familiar with the contents of these files. See WebSphere MQ data definition files
for a full description.

Preparing C programs
WebSphere MQ for i5/OS supports messages up to 100 MB in size. Application programs written in ILE C, supporting WebSphere MQ messages greater
than 16 MB, need to use the Teraspace compiler option to allocate sufficient memory for these messages.

Preparing COBOL programs

Preparing CICS programs

Preparing RPG programs

SQL programming considerations

i5/OS programming considerations
If you have compiled programs for releases of WebSphere MQ for i5/OS earlier than V4R4, you will have linked to AMQZSTUB and, possibly,
AMQVSTUB. These libraries are provided at this release for compatibility purposes; you do not need to recompile your applications.

Parent topic: Building a WebSphere MQ application

This build: January 26, 2011 11:21:01

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16470_

3.4.1. Preparing C programs

WebSphere® MQ for i5/OS® supports messages up to 100 MB in size. Application programs written in ILE C, supporting WebSphere MQ messages greater
than 16 MB, need to use the Teraspace compiler option to allocate sufficient memory for these messages.

For further information on the C compiler options, see the WebSphere WebSphere Development Studio ILE C/C++ Programmer's Guide.

To compile a C module, you can use the i5/OS command, CRTCMOD. Make sure that the library containing the include files (QMQM) is in the library list when
you perform the compilation.

You must then bind the output of the compiler with the service program using the CRTPGM command.

An example of the command for a nonthreaded environment is:

where pgmname is the name of your program.

An example of the command for a threaded environment is:

Table 1. Example of CRTPGM in the nonthreaded environment

Command Program⁄exit type

CRTPGM PGM(pgmname) MODULE(pgmname)

BNDSRVPGM(QMQM/LIBMQM)

Server for C

Table 2. Example of CRTPGM in the threaded environment

Command Program⁄exit type

Page 251 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

where pgmname is the name of your program.

Parent topic: Building your application on i5/OS

This build: January 26, 2011 11:21:02

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16480_

3.4.2. Preparing COBOL programs

WebSphere® MQ for i5/OS® provides two methods for accessing the MQI from within COBOL programs:

1. A dynamic call interface to programs having the names of the MQI functions, such as MQCONN and MQOPEN. This interface is intended primarily for
use with the OPM (Original Program Mode) COBOL compiler, but can also be used with the ILE (Integrated Language Environment®) COBOL compiler.
Some functions in WebSphere MQ for i5/OS, such as MQCMIT and MQBACK, are not supported through this interface, which is provided for
compatibility with previous releases.

2. A bound procedural call interface provided by service programs. This provides access to all the MQI functions in WebSphere MQ for i5/OS, support for
threaded applications, and potentially better performance than the dynamic call interface. This interface can be used only with the ILE COBOL
compiler.

In both cases the standard COBOL CALL syntax is used to access the MQI functions.

The COBOL copy files containing the named constants and structure definitions for use with the MQI are contained in the source physical file
QMQM/QCBLLESRC.

The COBOL copy files use the single quotation mark character (') as the string delimiter. The i5/OS COBOL compilers assume that the delimiter is the double
quote("). To prevent the compilers generating warning messages, specify OPTION(*APOST) on the commands CRTCBLPGM, CRTBNDCBL, or CRTCBLMOD.

To make the compiler accept the single quotation mark character (') as the string delimiter in the COBOL copy files, use the compiler option \APOST.

Using the dynamic call interface

� The QMQM library must be in your library list when you compile and when you run COBOL programs using the MQI dynamic call interface.

� Use the CRTCBLPGM command to invoke the OPM COBOL compiler.

� Use either the CRTBNDCBL command or the two separate commands CRTCBLMOD and CRTPGM to invoke the ILE COBOL compiler.

Using the bound procedure call interface

� First create a module using the CRTCBLMOD compiler specifying the parameter:

LINKLIT(*PRC)

� Then use the CRTPGM command to create the program object specifying the parameter:

for non-threaded applications

BNDSRVPGM(QMQM/AMQ0STUB)

for threaded applications

BNDSRVPGM(QMQM/AMQ0STUB_R)

Note: Except for programs created using the V4R4 ILE COBOL compiler and containing the THREAD(SERIALIZE) option in the PROCESS statement, COBOL
programs must not use the threaded WebSphere MQ libraries. Even if a COBOL program has been made thread safe in this manner, be careful when you
design the application, because THREAD(SERIALIZE) forces serialization of COBOL procedures at the module level and might have an impact on overall
performance.

See the WebSphere WebSphere Development Studio: ILE COBOL Programmer's Guide and the WebSphere WebSphere Development Studio: ILE COBOL

Reference for further information.

For more information on compiling a CICS® application, see the CICS for i5/OS Application Programming Guide, SC41-5454.

Parent topic: Building your application on i5/OS

This build: January 26, 2011 11:21:02

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16490_

3.4.3. Preparing CICS programs

To create a program that includes EXEC CICS® statements and MQI calls, perform these steps:

1. If necessary, prepare maps using the CRTCICSMAP command.

2. Translate the EXEC CICS commands into native language statements. Use the CRTCICSC command for a C program. Use the CRTCICSCBL command
for a COBOL program.

Include CICSOPT(*NOGEN) in the CRTCICSC or CRTCICSCBL command. This halts processing to enable you to include the appropriate CICS and

WebSphere® MQ service programs. This command puts the code, by default, into QTEMP/QACYCICS.

3. Compile the source code using the CRTCMOD command (for a C program) or the CRTCBLMOD command (for a COBOL program).

4. Use CRTPGM to link the compiled code with the appropriate CICS and WebSphere MQ service programs. This creates the executable program.

An example of such code follows (it compiles the shipped CICS sample program):

CRTCICSC OBJ(QTEMP/AMQSCIC0) SRCFILE(/MQSAMP/QCSRC) +

 SRCMBR(AMQSCIC0) OUTPUT(*PRINT) +

 CICSOPT(*SOURCE *NOGEN)

CRTCMOD MODULE(MQTEST/AMQSCIC0) +

 SRCFILE(QTEMP/QACYCICS) OUTPUT(*PRINT)

CRTPGM PGM(MQTEST/AMQSCIC0) MODULE(MQTEST/AMQSCIC0) +

 BNDSRVPGM(QMQM/LIBMQM QCICS/AEGEIPGM)

CRTPGM PGM(pgmname) MODULE(pgmname)

BNDSRVPGM(QMQM/LIBMQM_R)

Server for C

Page 252 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Parent topic: Building your application on i5/OS

This build: January 26, 2011 11:21:02

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16500_

3.4.4. Preparing RPG programs

If you are using WebSphere® MQ for i5/OS®, you can write your applications in RPG. For more information see Coding in RPG, and refer to the WebSphere
MQ for i5/OS Application Programming Reference (ILE/RPG).

Parent topic: Building your application on i5/OS

This build: January 26, 2011 11:21:02

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16510_

3.4.5. SQL programming considerations

If your program contains EXEC SQL statements and MQI calls, perform these steps:

1. Translate the EXEC SQL commands into native language statements. Use the CRTSQLCI command for a C program. Use the CRTSQLCBLI command for
a COBOL program.

Include OPTION(*NOGEN) in the CRTSQLCI or CRTSQLCBLI command. This halts processing to enable you to include the appropriate WebSphere® MQ

service programs. This command puts the code, by default, into QTEMP/QSQLTEMP.

2. Compile the source code using the CRTCMOD command (for a C program) or the CRTCBLMOD command (for a COBOL program).

3. Use CRTPGM to link the compiled code with the appropriate WebSphere MQ service programs. This creates the executable program.

An example of such code follows (it compiles a program, SQLTEST, in library, SQLUSER):

CRTSQLCI OBJ(MQTEST/SQLTEST) SRCFILE(SQLUSER/QCSRC) +

 SRCMBR(SQLTEST) OUTPUT(*PRINT) OPTION(*NOGEN)

CRTCMOD MODULE(MQTEST/SQLTEST) +

 SRCFILE(QTEMP/QSQLTEMP) OUTPUT(*PRINT)

CRTPGM PGM(MQTEST/SQLTEST) +

 BNDSRVPGM(QMQM/LIBMQM)

Parent topic: Building your application on i5/OS

This build: January 26, 2011 11:21:02

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16520_

3.4.6. i5/OS programming considerations

If you have compiled programs for releases of WebSphere® MQ for i5/OS® earlier than V4R4, you will have linked to AMQZSTUB and, possibly, AMQVSTUB.
These libraries are provided at this release for compatibility purposes; you do not need to recompile your applications.

These libraries provide support for the default connection handle (MQHC_DEF_HCONN). This is no longer provided by the standard V4R4 libraries.
However, the libraries provided at this release for compatibility purposes do not support all new features (for example, MQCONNX, MQCMIT, and
MQBACK).

QMQM activation group
When creating your program on i5/OS, the QMQM activation group should not be used. The QMQM activation group is for the use of WebSphere MQ
only.

Parent topic: Building your application on i5/OS

This build: January 26, 2011 11:21:02

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16530_

3.4.6.1. QMQM activation group

When creating your program on i5/OS®, the QMQM activation group should not be used. The QMQM activation group is for the use of WebSphere® MQ
only.

Parent topic: i5/OS programming considerations

This build: January 26, 2011 11:21:03

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16540_

3.5. Building your application on Solaris

This chapter describes the additional tasks, and the changes to the standard tasks, that you must perform when building WebSphere® MQ for Solaris

Page 253 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

applications to run under Solaris.

COBOL, C, and C++ programming languages are supported. For information about preparing your C++ programs, see WebSphere MQ Using C++.

In addition to coding the MQI calls in your source code, you must add the appropriate include files. Make yourself familiar with the contents of these files.
See WebSphere MQ data definition files for a full description.

Throughout this chapter the \ character is used to split long commands over more than one line. Do not enter this character, enter each command as a
single line.

Preparing C programs

Preparing COBOL programs

Preparing CICS programs

Parent topic: Building a WebSphere MQ application

This build: January 26, 2011 11:21:04

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16550_

3.5.1. Preparing C programs

Precompiled C programs are supplied in the /opt/mqm/samp/bin directory. For further information on programming 64 bit applications see Coding standards
on 64 bit platforms.

If you want to use the programs on a machine that has only the WebSphere® MQ client for Solaris installed, compile the programs to link them with the
client library (-lmqic).

If you use the unsupported compiler ⁄usr⁄ucb⁄cc, your application might compile and link successfully. However when you run it, it will fail when it attempts
to connect to the queue manager.

Building applications on x86-64
The following section contains examples of the commands used to build programs in various environments on the x86-64 platform.

Building applications on SPARC
The following section contains examples of the commands used to build programs in various environments on the SPARC platform.

Linking libraries

Parent topic: Building your application on Solaris

This build: January 26, 2011 11:21:04

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16560_

3.5.1.1. Building applications on x86-64

The following section contains examples of the commands used to build programs in various environments on the x86-64 platform.

C client application, 32-bit

cc -xarch=386 -mt -o amqsputc_32 amqsput0.c -I/opt/mqm/inc -L/opt/mqm/lib

-R/opt/mqm/lib -R/usr/lib/32 -lmqic -lmqmcs -lmqmzse -lsocket -lnsl -ldl

C client application, 64-bit

cc -xarch=amd64 -mt -o amqsputc_64 amqsput0.c -I/opt/mqm/inc

-L/opt/mqm/lib64 -R/opt/mqm/lib64 -R/usr/lib/64 -lmqic -lmqmcs

-lmqmzse -lsocket -lnsl -ldl

C server application, 32-bit

cc -xarch=386 -mt -o amqsput_32 amqsput0.c -I/opt/mqm/inc -L/opt/mqm/lib

-R/opt/mqm/lib -R/usr/lib/32 -lmqm -lmqmcs -lmqmzse -lsocket -lnsl -ldl

C server application, 64-bit

cc -xarch=amd64 -mt -o amqsput_64 amqsput0.c -I/opt/mqm/inc

-L/opt/mqm/lib64 -R/opt/mqm/lib64 -R/usr/lib/64 -lmqm -lmqmcs -lmqmzse

-lsocket -lnsl -ldl

C++ client application, 32-bit

CC -xarch=386 -mt -o imqsputc_32 imqsput.cpp -I/opt/mqm/inc -L/opt/mqm/lib

-R/opt/mqm/lib -R/usr/lib/32 -limqc23as -limqb23as -lmqic -lmqmcs -lmqmzse

-lsocket -lnsl -ldl

C++ client application, 64-bit

CC -xarch=amd64 -mt -o imqsputc_64 imqsput.cpp -I/opt/mqm/inc

-L/opt/mqm/lib64 -R/opt/mqm/lib64 -R/usr/lib/64 -limqc23as -limqb23as

-lmqic -lmqmcs -lmqmzse -lsocket -lnsl -ldl

C++ server application, 32-bit

CC -xarch=386 -mt -o imqsput_32 imqsput.cpp -I/opt/mqm/inc -L/opt/mqm/lib

-R/opt/mqm/lib -R/usr/lib/32 -limqs23as -limqb23as -lmqm -lmqmcs -lmqmzse

-lsocket -lnsl -ldl

C++ server application, 64-bit

Page 254 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

CC -xarch=amd64 -mt -o imqsput_64 imqsput.cpp -I/opt/mqm/inc

-L/opt/mqm/lib64 -R/opt/mqm/lib64 -R/usr/lib/64 -limqs23as -limqb23as -lmqm

-lmqmcs -lmqmzse -lsocket -lnsl -ldl

C client exit, 32-bit

cc -xarch=386 -mt -G -KPIC -o /var/mqm/exits/cliexit_32 cliexit.c

-I/opt/mqm/inc -L/opt/mqm/lib -R/opt/mqm/lib -R/usr/lib/32 -lmqic -lmqmcs

-lmqmzse -lsocket -lnsl -ldl

C client exit, 64-bit

cc -xarch=amd64 -mt -G -KPIC -o /var/mqm/exits64/cliexit_64 cliexit.c

-I/opt/mqm/inc -L/opt/mqm/lib64 -R/opt/mqm/lib64 -R/usr/lib/64 -lmqic

-lmqmcs -lmqmzse -lsocket -lnsl -ldl

C server exit, 32-bit

cc -xarch=386 -mt -G -KPIC -o /var/mqm/exits/srvexit_32 srvexit.c

-I/opt/mqm/inc -L/opt/mqm/lib -R/opt/mqm/lib -R/usr/lib/32 -lmqm -lmqmcs

-lmqmzse -lsocket -lnsl -ldl

C server exit, 64-bit

cc -xarch=amd64 -mt -G -KPIC -o /var/mqm/exits64/srvexit_64 srvexit.c

-I/opt/mqm/inc -L/opt/mqm/lib64 -R/opt/mqm/lib64 -R/usr/lib/64 -lmqm

-lmqmcs -lmqmzse -lsocket -lnsl -ldl

Parent topic: Preparing C programs

This build: January 26, 2011 11:21:04

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16570_

3.5.1.2. Building applications on SPARC

The following section contains examples of the commands used to build programs in various environments on the SPARC platform.

C client application, 32-bit

cc -xarch=v8plus -mt -o amqsputc_32 amqsput0.c -I/opt/mqm/inc -L/opt/mqm/lib

-R/opt/mqm/lib -R/usr/lib/32 -lmqic -lmqmcs -lmqmzse -lsocket -lnsl -ldl

C client application, 64-bit

cc -xarch=v9 -mt -o amqsputc_64 amqsput0.c -I/opt/mqm/inc

-L/opt/mqm/lib64 -R/opt/mqm/lib64 -R/usr/lib/64 -lmqic -lmqmcs

-lmqmzse -lsocket -lnsl -ldl

C server application, 32-bit

cc -xarch=v8plus -mt -o amqsput_32 amqsput0.c -I/opt/mqm/inc -L/opt/mqm/lib

-R/opt/mqm/lib -R/usr/lib/32 -lmqm -lmqmcs -lmqmzse -lsocket -lnsl -ldl

C server application, 64-bit

cc -xarch=v9 -mt -o amqsput_64 amqsput0.c -I/opt/mqm/inc

-L/opt/mqm/lib64 -R/opt/mqm/lib64 -R/usr/lib/64 -lmqm -lmqmcs -lmqmzse

-lsocket -lnsl -ldl

C++ client application, 32-bit

CC -xarch=v8plus -mt -o imqsputc_32 imqsput.cpp -I/opt/mqm/inc

-L/opt/mqm/lib -R/opt/mqm/lib -R/usr/lib/32 -limqc23as -limqb23as -lmqic

-lmqmcs -lmqmzse -lsocket -lnsl -ldl

C++ client application, 64-bit

CC -xarch=v9 -mt -o imqsputc_64 imqsput.cpp -I/opt/mqm/inc

-L/opt/mqm/lib64 -R/opt/mqm/lib64 -R/usr/lib/64 -limqc23as -limqb23as

-lmqic -lmqmcs -lmqmzse -lsocket -lnsl -ldl

C++ server application, 32-bit

CC -xarch=v8plus -mt -o imqsput_32 imqsput.cpp -I/opt/mqm/inc -L/opt/mqm/lib

-R/opt/mqm/lib -R/usr/lib/32 -limqs23as -limqb23as -lmqm -lmqmcs -lmqmzse

-lsocket -lnsl -ldl

C++ server application, 64-bit

CC -xarch=v9 -mt -o imqsput_64 imqsput.cpp -I/opt/mqm/inc

-L/opt/mqm/lib64 -R/opt/mqm/lib64 -R/usr/lib/64 -limqs23as -limqb23as -lmqm

-lmqmcs -lmqmzse -lsocket -lnsl -ldl

C client exit, 32-bit

cc -xarch=v8plus -mt -G -KPIC -o /var/mqm/exits/cliexit_32 cliexit.c

-I/opt/mqm/inc -L/opt/mqm/lib -R/opt/mqm/lib -R/usr/lib/32 -lmqic -lmqmcs

-lmqmzse -lsocket -lnsl -ldl

C client exit, 64-bit

cc -xarch=v9 -mt -G -KPIC -o /var/mqm/exits64/cliexit_64 cliexit.c

-I/opt/mqm/inc -L/opt/mqm/lib64 -R/opt/mqm/lib64 -R/usr/lib/64 -lmqic

-lmqmcs -lmqmzse -lsocket -lnsl -ldl

C server exit, 32-bit

cc -xarch=v8plus -mt -G -KPIC -o /var/mqm/exits/srvexit_32 srvexit.c

-I/opt/mqm/inc -L/opt/mqm/lib -R/opt/mqm/lib -R/usr/lib/32 -lmqm -lmqmcs

-lmqmzse -lsocket -lnsl -ldl

C server exit, 64-bit

cc -xarch=v9 -mt -G -KPIC -o /var/mqm/exits64/srvexit_64 srvexit.c

-I/opt/mqm/inc -L/opt/mqm/lib64 -R/opt/mqm/lib64 -R/usr/lib/64 -lmqm

-lmqmcs -lmqmzse -lsocket -lnsl -ldl

Parent topic: Preparing C programs

Page 255 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

This build: January 26, 2011 11:21:04

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16580_

3.5.1.3. Linking libraries

You must link with the WebSphere® MQ libraries that are appropriate for your application type:

Note:

1. If you are writing an installable service (see the WebSphere MQ System Administration Guide for further information), link to the libmqmzf.so library.

2. If you are producing an application for external coordination by an XA-compliant transaction manager such as IBM® TXSeries Encina, or BEA Tuxedo,
you need to link to the libmqmxa.so (or libmqmxa64.so if your transaction manager treats the 'long' type as 64-bit) and libmqz.so libraries.

3. You must link WebSphere MQ libraries before any other product libraries.

Parent topic: Preparing C programs

This build: January 26, 2011 11:21:04

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16590_

3.5.2. Preparing COBOL programs

Notes® to users

1. 32 bit COBOL copy books are installed in the following directory:

/opt/mqm/inc/cobcpy32

and symbolic links are created in:

/opt/mqm/inc

2. 64 bit COBOL copy books are installed in the following directory:

/opt/mqm/inc/cobcpy64

3. In the following examples set COBCPY to:

/opt/mqm/inc/cobcpy32

for 32 bit applications, and:

/opt/mqm/inc/cobcpy64

for 64 bit applications.

Compile the programs using Micro Focus compiler. The copy files that declare the structures are in /opt/mqm/inc:

$ export LIB=/opt/mqm/lib:$LIB

$ export COBCPY="<COBCPY>"

Compiling 32 bit programs:

� $ cob32 -xv amqs0put0.cbl -L /opt/mqm/lib -lmqmcb

Server for COBOL

� $ cob32 -xv amqs0put0.cbl -L /opt/mqm/lib -lmqicb

Client for COBOL

� $ cob32 -xtv amqs0put0.cbl -L /opt/mqm/lib -lmqmcb_r

Threaded Server for COBOL

� $ cob32 -xtv amqs0put0.cbl -L /opt/mqm/lib -lmqicb_r

Threaded Client for COBOL

Compiling 64-bit programs:

� $ cob64 -xv amqs0put0.cbl -L /opt/mqm/lib64 -lmqmcb

Server for COBOL

� $ cob64 -xv amqs0put0.cbl -L /opt/mqm/lib64 -lmqicb

Client for COBOL

� $ cob64 -xtv amqs0put0.cbl -L /opt/mqm/lib64 -lmqmcb_r

Threaded Server for COBOL

� $ cob64 -xtv amqs0put0.cbl -L /opt/mqm/lib64 -lmqicb_r

Threaded Client for COBOL

where amqs0put0.cbl is a sample program

You need to link your program with one of the following:

� libmqmcb.so

Server for COBOL

� libmqicb.so

Client for COBOL

Parent topic: Building your application on Solaris

This build: January 26, 2011 11:21:04

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

Program/exit type Library files

Server for C libmqm.so

Client for C libmqic.so

Page 256 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

This topic's URL:

fg16600_

3.5.3. Preparing CICS programs

An XA switch module is provided to enable you to link CICS® with WebSphere® MQ:

Always link your transactions with the thread safe WebSphere MQ library libmqm_so.

You can find more information about supporting CICS transactions in the WebSphere MQ System Administration Guide.

TXSeries CICS support
WebSphere MQ for Solaris supports TXSeries CICS using the XA interface.

Parent topic: Building your application on Solaris

This build: January 26, 2011 11:21:05

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16610_

3.5.3.1. TXSeries CICS support

WebSphere® MQ for Solaris supports TXSeries CICS® using the XA interface.

Preparing CICS COBOL programs using Micro Focus COBOL

Preparing CICS C programs

Parent topic: Preparing CICS programs

This build: January 26, 2011 11:21:05

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16620_

3.5.3.1.1. Preparing CICS COBOL programs using Micro Focus COBOL

To use Micro Focus COBOL, follow these steps:

1. Add the WebSphere® MQ COBOL run-time library module to the run-time library using the following command:

 cicsmkcobol -L/usr/lib/dce -L/opt/mqm/lib \

 /opt/mqm/lib/libmqmcbrt.o -lmqm

Note: With cicsmkcobol, WebSphere MQ does not allow you to make MQI calls in the C programming language from your COBOL application.

If your existing applications have any such calls, you are strongly recommended to move these functions from the COBOL applications to your own
library, for example, myMQ.so. After you have done this, do not include the WebSphere MQ library libmqmcbrt.o when building the COBOL application

for CICS®.

Additionally, if your COBOL application does not make any COBOL MQI call , do not link libmqmz_r with cicsmkcobol.

This creates the Micro Focus COBOL language method file and enables the CICS run-time COBOL library to call WebSphere MQ on UNIX systems.

Note: Run cicsmkcobol only when you install one of the following:

� New version or release of Micro Focus COBOL

� New version or release of TXSeries for Solaris

� New version or release of any supported database product (for COBOL transactions only)

� New version or release of WebSphere MQ

2. Export the following environment variable:

 COBCPY=/usr/mqm/inc export COBCPY

3. Translate, compile, and link the program by typing:

 cicstcl -l COBOL -e <yourprog>.ccp

Parent topic: TXSeries CICS support

This build: January 26, 2011 11:21:05

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16630_

3.5.3.1.2. Preparing CICS C programs

Build CICS® C programs using the standard CICS facilities:

1. Export one of the following environment variables:

� LDFLAGS = “-L/usr⁄mqm⁄lib -lmqm_r” export LDFLAGS

� USERLIB = “-L/usr⁄mqm⁄lib -lmqm_r” export USERLIB

Table 1. Essential code for CICS applications (Solaris)

Description C (source) C (exec)

XA initialization routine amqzscix.c amqzsc - TXSeries for Solaris

Page 257 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

2. Translate, compile, and link the program by typing:

 cicstcl -l C amqscic0.ccs

CICS C sample transaction

Parent topic: TXSeries CICS support

This build: January 26, 2011 11:21:05

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16640_

3.5.3.1.2.1. CICS C sample transaction

Sample C source for a CICS® WebSphere® MQ transaction is provided by AMQSCIC0.CCS. The transaction reads messages from the transmission queue
SYSTEM.SAMPLE.CICS.WORKQUEUE on the default queue manager and places them onto the local queue whose name is contained in the transmission
header of the message. Any failures are sent to the queue SYSTEM.SAMPLE.CICS.DLQ. Use the sample MQSC script AMQSCIC0.TST to create these queues
and sample input queues.

Parent topic: Preparing CICS C programs

This build: January 26, 2011 11:21:05

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16650_

3.6. Building your application on Windows systems

The Windows systems publications describe how to build executable applications from the programs that you write.

This chapter describes the additional tasks, and the changes to the standard tasks, that you must perform when building WebSphere® MQ for Windows
applications to run under Windows systems. ActiveX, C, C++, COBOL, and Visual Basic programming languages are supported. For information about
preparing your ActiveX programs, see WebSphere MQ Using the Component Object Model Interface. For information about preparing your C++ programs,
see WebSphere MQ Using C++.

The tasks that you must perform to create an executable application using WebSphere MQ for Windows vary with the programming language that your
source code is written in. In addition to coding the MQI calls in your source code, you must add the appropriate language statements to include the
WebSphere MQ for Windows include files for the language that you are using. Make yourself familiar with the contents of these files. See WebSphere MQ
data definition files for a full description.

Building 64-bit applications on Windows
Both 32-bit and 64-bit applications are supported on WebSphere MQ for Windows Version 7.0. The WebSphere MQ executable and library files are
supplied in both 32-bit and 64-bit forms, use the appropriate version depending on the application you are working with.

Preparing C programs
Work in your usual Windows environment; WebSphere MQ for Windows requires nothing special.

Preparing COBOL programs

Preparing Visual Basic programs

SSPI security exit
WebSphere MQ for Windows supplies a security exit for both the WebSphere MQ client and the WebSphere MQ server. This is a channel-exit program
that provides authentication for WebSphere MQ channels by using the Security Services Programming Interface (SSPI). The SSPI provides the
integrated security facilities of Windows systems.

Parent topic: Building a WebSphere MQ application

This build: January 26, 2011 11:21:05

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16660_

3.6.1. Building 64-bit applications on Windows

Both 32-bit and 64-bit applications are supported on WebSphere® MQ for Windows Version 7.0. The WebSphere MQ executable and library files are supplied
in both 32-bit and 64-bit forms, use the appropriate version depending on the application you are working with.

Executable files and libraries

Both 32-bit and 64-bit versions of the WebSphere MQ libraries are supplied in the following locations:

32-bit applications continue to work normally after migration. The 32-bit files exist in the same directory as in previous versions of the product.

If you want to create 64-bit version you must ensure that your environment is configured to use the library files in install_location\Tools\Lib64. Ensure

that the LIB environment variable is not set to look in the folder containing the 32-bit libraries.

Parent topic: Building your application on Windows systems

Table 1. Location of WebSphere MQ libraries

Library version Directory containing library files

32-bit install_location\Tools\Lib

64-bit install_location\Tools\Lib64

Page 258 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

This build: January 26, 2011 11:21:06

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16661_

3.6.2. Preparing C programs

Work in your usual Windows environment; WebSphere® MQ for Windows requires nothing special.

For further information on programming 64-bit applications see Coding standards on 64 bit platforms.

� Link your programs with the appropriate libraries provided by WebSphere MQ:

The following command gives an example of compiling the sample program amqsget0 (using the Microsoft Visual C++ compiler).

For 32-bit applications:

cl -MD amqsget0.c /Fe amqsget.exe install_location/Tools/Lib/mqm.lib

For 64-bit applications:

cl -MD amqsget0.c /Fe amqsget.exe install_location/Tools/Lib64/mqm.lib

Note:

� If you are writing an installable service (see the WebSphere MQ System Administration Guide for further information), you need to link to the
mqmzf.lib library.

� If you are producing an application for external coordination by an XA-compliant transaction manager such as IBM® TXSeries Encina, or BEA
Tuxedo, you need to link to the mqmxa.lib or mqmxa.lib library.

� If you are writing a CICS® exit, link to the mqmcics4.lib library.

� You must link WebSphere MQ libraries before any other product libraries.

� The DLLs must be in the path (PATH) that you have specified.

� If you use lowercase characters whenever possible, you can move from WebSphere MQ for Windows to WebSphere MQ on UNIX systems, where use of
lowercase is necessary.

Preparing CICS and Transaction Server programs

Parent topic: Building your application on Windows systems

This build: January 26, 2011 11:21:06

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16670_

3.6.2.1. Preparing CICS and Transaction Server programs

Sample C source for a CICS® WebSphere® MQ transaction is provided by AMQSCIC0.CCS. You build it using the standard CICS facilities. For example, for
TXSeries for Windows 2000:

1. Set the environment variable (enter the following on one line):

 set CICS_IBMC_FLAGS=-IC:\Program Files\IBM\WebSphere MQ\Tools\C\Include;

 %CICS_IBMC_FLAGS%

2. Set the USERLIB environment variable:

 set USERLIB=MQM.LIB;%USERLIB%

3. Translate, compile, and link the sample program:

 cicstcl -l IBMC amqscic0.ccs

This is described in the Transaction Server for Windows NT Application Programming Guide (CICS) V4.

You can find more information about supporting CICS transactions in the WebSphere MQ System Administration Guide.

Parent topic: Preparing C programs

This build: January 26, 2011 11:21:06

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16680_

3.6.3. Preparing COBOL programs

Notes® to users

1. The 32-bit COBOL copy books are installed in the following directory:

C:\Program Files\IBM\WebSphere MQ\Tools\cobol\CopyBook

2. The 64-bit COBOL copy books are installed in the following directory:

C:\Program Files\IBM\WebSphere MQ\Tools\cobol\CopyBook64

Library file Program/exit type

install_location\Tools\Lib\mqm.lib server for 32-bit C

install_location\Tools\Lib\mqic.lib client for 32-bit C

install_location\Tools\Lib\mqicxa.lib client for 32-bit C with transaction co-ordination

install_location\Tools\Lib64\mqm.lib server for 64-bit C

install_location\Tools\Lib64\mqic.lib client for 64-bit C

install_location\Tools\Lib64

\mqicxa.lib
client for 64-bit C with transaction co-ordination

Page 259 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

3. In the following examples set CopyBook to:

CopyBook

for 32-bit applications, and:

CopyBook64

for 64-bit applications.

To prepare COBOL programs on Windows systems, link your program to one of the following libraries provided by WebSphere® MQ:

When you are running a program in the MQI client environment, ensure that the DOSCALLS library appears before any COBOL or WebSphere MQ library.

You can use the IBM COBOL Set compiler or Micro Focus COBOL compiler depending on the program:

� Programs beginning amqi are suitable for the IBM COBOL Set compiler,

� Programs beginning amqm are suitable for the Micro Focus COBOL compiler, and

� Programs beginning amq0 are suitable for either compiler.

IBM and Micro Focus COBOL

Relink any existing 32-bit WebSphere MQ Micro Focus COBOL programs using either mqmcb.lib or mqiccb.lib, rather than the mqmcbb and mqiccbb libraries.

To compile, for example, the sample program amq0put0, using IBM VisualAge® COBOL:

1. Set the SYSLIB environment variable to include the path to the WebSphere MQ VisualAge COBOL copybooks (enter the following on one line):

 set SYSLIB=<drive>:\Program Files\IBM\WebSphere MQ\

 Tools\Cobol\Copybook\VAcobol;%SYSLIB%

2. For use on the WebSphere MQ server:

 cob2 amq0put0.cbl -qlib "<drive>:\Program Files\IBM\WebSphere MQ\

 Tools\Lib\mqmcbb.lib"

3. For use on the WebSphere MQ client:

 cob2 amq0put0.cbl -qlib "<drive>:\Program Files\IBM\WebSphere MQ\

 Tools\Lib\mqiccbb.lib"

Note: Although you must use the compiler option CALLINT(SYSTEM), this is the default for cob2.

To compile, for example, the sample program amq0put0, using Micro Focus COBOL:

1. Set the COBCPY environment variable to point to the WebSphere MQ COBOL copybooks (enter the following on one line):

 set COBCPY=<drive>:\Program Files\IBM\WebSphere MQ\

 Tools\Cobol\Copybook

2. Compile the program to give you an object file:

 cobol amq0put0 LITLINK

3. Link the object file to the runtime system.

� Set the LIB environment variable to point to the compiler COBOL libraries.

� Link the object file for use on the WebSphere MQ server:

 cbllink amq0put0.obj mqmcb.lib

� Or link the object file for use on the WebSphere MQ client:

 cbllink amq0put0.obj mqiccb.lib

Preparing CICS and Transaction Server programs

Parent topic: Building your application on Windows systems

This build: January 26, 2011 11:21:07

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16690_

3.6.3.1. Preparing CICS and Transaction Server programs

To compile and link a TXSeries for Windows NT, V5.1 program using IBM® VisualAge® COBOL:

1. Set the environment variable (enter the following on one line):

 set CICS_IBMCOB_FLAGS=c:\Program Files\IBM\WebSphere MQ\Tools\

 Cobol\Copybook\VAcobol;%CICS_IBMCOB_FLAGS%

2. Set the USERLIB environment variable:

 set USERLIB=MQMCBB.LIB

3. Translate, compile, and link your program:

 cicstcl -l IBMCOB myprog.ccp

Library file Program or exit type

install_location\Tools\Lib\mqmcbb 32-bit server for IBM® COBOL

install_location\Tools\Lib\mqmcb 32-bit server for Micro Focus COBOL

install_location\Tools\Lib\mqiccbb 32-bit client for IBM COBOL

install_location\Tools\Lib\mqiccb 32-bit client for Micro Focus COBOL

install_location\Tools\Lib64

\mqmcbb
64-bit server for IBM COBOL

install_location\Tools\Lib64\mqmcb 64-bit server for Micro Focus COBOL

install_location\Tools\Lib64

\mqiccbb
64-bit client for IBM COBOL

install_location\Tools\Lib64

\mqiccb
64-bit client for Micro Focus COBOL

Page 260 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

This is described in the Transaction Server for Windows NT, V4 Application Programming Guide.

To compile and link a CICS® for Windows V5 program using Micro Focus COBOL:

� Set the INCLUDE variable:

set

INCLUDE=<drive>:\<programname>\ibm\websphere\tools\c\include;

 <drive>:\opt\cics\include;%INCLUDE%

� Set the COBCPY environment variable:

 setCOBCPY=<drive>:\<programname>\ibm\websphere\tools\cobol\copybook;

 <drive>:\opt\cics\include

� Set the COBOL options:

� set

� COBOPTS=/LITLINK /NOTRUNC

and run the following code:

cicstran cicsmq00.ccp

cobol cicsmq00.cbl /LITLINK /NOTRUNC

cbllink -D -Mcicsmq00 -Ocicsmq00.cbmfnt cicsmq00.obj

%CICSLIB%\cicsprCBMFNT.lib user32.lib msvcrt.lib kernel32.lib mqmcb32.lib

Parent topic: Preparing COBOL programs

This build: January 26, 2011 11:21:07

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16700_

3.6.4. Preparing Visual Basic programs

Note: 64-bit versions of the Visual Basic module files are not supplied.

To prepare Visual Basic programs on Windows:

1. Create a new project.

2. Add the supplied module file, CMQB.BAS, to the project.

3. Add other supplied module files if you need them:

See Coding in Visual Basic for information about using the MQCONNXAny call from within Visual Basic.

Call the procedure MQ_SETDEFAULTS before making any MQI calls in the project code. This procedure sets up default structures that the MQI calls require.

Specify whether you are creating a WebSphere® MQ server or client, before you compile or run the project, by setting the conditional compilation variable
MqType. Set MqType in a Visual Basic project to 1 for a server or 2 for a client as follows:

1. Select the Project menu.

2. Select Name Properties (where Name is the name of the current project).

3. Select the Make tab in the dialog box.

4. In the Conditional Compilation Arguments field, enter this for a server:

MqType=1

or this for a client:

MqType=2

Parent topic: Building your application on Windows systems

This build: January 26, 2011 11:21:07

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16710_

3.6.5. SSPI security exit

WebSphere® MQ for Windows supplies a security exit for both the WebSphere MQ client and the WebSphere MQ server. This is a channel-exit program that
provides authentication for WebSphere MQ channels by using the Security Services Programming Interface (SSPI). The SSPI provides the integrated security
facilities of Windows systems.

The security packages are loaded from either security.dll or secur32.dll. These DLLs are supplied with your operating system.

One-way authentication is provided using NTLM authentication services. Two way authentication is provided using Kerberos authentication services.

The security exit program is supplied in source and object format. You can use the object code as it is, or you can use the source code as a starting point to
create your own user-exit programs.

See also Using the SSPI security exit on Windows systems.

Introduction to security exits
A security exit forms a secure connection between two security exit programs, where one program is for the sending message channel agent (MCA),
and one is for the receiving MCA.

Parent topic: Building your application on Windows systems

CMQBB.BAS MQAI support

CMQCFB.BAS PCF support

CMQXB.BAS Channel exits support

CMQPSB.BAS Publish/subscribe

Page 261 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

This build: January 26, 2011 11:21:07

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16720_

3.6.5.1. Introduction to security exits

A security exit forms a secure connection between two security exit programs, where one program is for the sending message channel agent (MCA), and one
is for the receiving MCA.

The program that initiates the secure connection, that is, the first program to get control after the MCA session is established, is known as the context
initiator. The partner program is known as the context acceptor.

The following table shows some of the channel types that are context initiators and their associated context acceptors.

The security exit program has two entry points:

� SCY_NTLM

This uses NTLM authentication services, which provide one-way authentication. NTLM allows servers to verify the identities of their clients. It does not
allow clients to verify a server's identity, or one server to verify the identity of another. NTLM authentication was designed for a network environment
in which servers are assumed to be genuine.

� SCY_KERBEROS

This uses Kerberos mutual authentication services. The Kerberos protocol does not assume that servers in a network environment are genuine. Parties
at both ends of a network connection can verify the identity of the other party. That is, servers can verify the identity of clients and other servers, and
clients can verify the identity of a server.

What the security exit does
This section describes what the SSPI channel-exit programs do.

WebSphere MQ access control and Windows principals
The access control that WebSphere MQ provides is based on the user and group. The authentication that Windows provides is based on principals, such
as user and servicePrincipalName (SPN). In the case of servicePrincipalName, there might be many of these associated with a single user.

Parent topic: SSPI security exit

This build: January 26, 2011 11:21:08

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16730_

3.6.5.1.1. What the security exit does

This section describes what the SSPI channel-exit programs do.

The supplied channel-exit programs provide either one-way or two-way (mutual) authentication of a partner system when a session is being established. For
a particular channel, each exit program has an associated principal (similar to a user ID, see WebSphere MQ access control and Windows principals). A
connection between two exit programs is an association between the two principals.

After the underlying session is established, a secure connection between two security exit programs (one for the sending MCA and one for the receiving
MCA), is established. The sequence of operations is as follows:

1. Each program is associated with a particular principal, for example as a result of an explicit login operation.

2. The context initiator requests a secure connection with the partner from the security package (for Kerberos, the named partner) and receives a token
(called token1). The token is sent, using the underlying session that is already established, to the partner program.

3. The partner program (the context acceptor) passes token1 to the security package, which verifies that the context initiator is authentic. For NTLM, the
connection is now established.

4. For the Kerberos-supplied security exit (that is, for mutual authentication), the security package also generates a second token (called token2), which
the context acceptor returns to the context initiator by using the underlying session.

5. The context initiator uses token2 to verify that the context acceptor is authentic.

6. At this stage, if both applications are satisfied with the authenticity of the partner's token, the secure (authenticated) connection is established.

Parent topic: Introduction to security exits

This build: January 26, 2011 11:21:08

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16740_

3.6.5.1.2. WebSphere MQ access control and Windows principals

The access control that WebSphere® MQ provides is based on the user and group. The authentication that Windows provides is based on principals, such as
user and servicePrincipalName (SPN). In the case of servicePrincipalName, there might be many of these associated with a single user.

The SSPI security exit uses the relevant Windows principals for authentication. If Windows authentication is successful, the exit passes the user ID that is
associated with the Windows principal to WebSphere MQ for access control.

The Windows principals that are relevant for authentication vary, depending on the type of authentication used.

� For NTLM authentication, the Windows principal for Context Initiator is the user ID associated with the process that is running. Because this

Table 1. Context initiators and their associated context acceptors

Context Initiator Context Acceptor

MQCHT_CLNTCONN MQCHT_SVRCONN

MQCHT_RECEIVER MQCHT_SENDER

MQCHT_CLUSRCVR MQCHT_CLUSSDR

Page 262 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

authentication is one-way, the principal associated with the Context Acceptor is irrelevant.

� For Kerberos authentication, on CLNTCONN channels, the Windows principal is the user ID associated with the process that is running. Otherwise, the
Windows principal is the servicePrincipalName that is formed by adding the following prefix to the QueueManagerName.

ibmMQSeries/

Parent topic: Introduction to security exits

This build: January 26, 2011 11:21:08

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16750_

3.7. Building your application on z/OS

The CICS®, IMS™, and z/OS® publications describe how to build applications that run in these environments.

This chapter describes the additional tasks, and the changes to the standard tasks, that you must perform when building WebSphere® MQ for z/OS
applications for these environments. COBOL, C, C++, Assembler, and PL/I programming languages are supported. (For information on building C++
applications see WebSphere MQ Using C++.)

The tasks that you must perform to create an executable WebSphere MQ for z/OS application depend on both the programming language that the program
is written in, and the environment in which the application will run.

In addition to coding the MQI calls in your program, add the appropriate language statements to include the WebSphere MQ for z/OS data definition file for
the language that you are using. Make yourself familiar with the contents of these files. See WebSphere MQ data definition files for a full description.

Note

The name thlqual is the high-level qualifier of the installation library on z/OS.

This chapter introduces building z/OS applications, under these headings:

� Preparing your program to run

� Dynamically calling the WebSphere MQ stub

� Debugging your programs

Preparing your program to run
After you have written the program for your WebSphere MQ application, to create an executable application you have to compile or assemble it, then
link-edit the resulting object code with the stub program that WebSphere MQ for z/OS supplies for each environment that it supports.

Dynamically calling the WebSphere MQ stub
Instead of link-editing the WebSphere MQ stub program with your object code, you can dynamically call the stub from within your program.

Debugging your programs
The main aids to debugging WebSphere MQ for z/OS application programs are the reason codes returned by each API call.

Parent topic: Building a WebSphere MQ application

This build: January 26, 2011 11:21:08

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16760_

3.7.1. Preparing your program to run

After you have written the program for your WebSphere® MQ application, to create an executable application you have to compile or assemble it, then link-
edit the resulting object code with the stub program that WebSphere MQ for z/OS® supplies for each environment that it supports.

How you prepare your program depends on both the environment (batch, CICS®, IMS(BMP or MPP), or UNIX System services) in which the application runs,
and the structure of the data sets on your z/OS installation. The details are described in the following sections.

Dynamically calling the WebSphere MQ stub describes an alternative method of making MQI calls in your programs so that you do not need to link-edit a
WebSphere MQ stub. This method is not available for all languages and environments.

Do not link-edit a higher level of stub program than that of the version of WebSphere MQ for z/OS on which your program is running. For example, a
program running on MQSeries® for OS/390®, V5.2 must not be link-edited with a stub program supplied with WebSphere MQ for z/OS V7.

Building z/OS batch applications

Building z/OS batch applications using Language Environment
WebSphere MQ for z/OS provides a set of dynamic link libraries (DLLs) that must be used when you link-edit your applications.

Building CICS applications

Building IMS (BMP or MPP) applications

Building z/OS UNIX System Services applications

Parent topic: Building your application on z/OS

This build: January 26, 2011 11:21:08

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16770_

Page 263 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

3.7.1.1. Building z/OS batch applications

To build an application for WebSphere® MQ for z/OS® that runs under z/OS batch, create job control language (JCL) that performs these tasks:

1. Compile (or assemble) the program to produce object code. The JCL for your compilation must include SYSLIB statements that make the product data
definition files available to the compiler. The data definitions are supplied in the following WebSphere MQ for z/OS libraries:

� For COBOL, thlqual.SCSQCOBC

� For assembler language, thlqual.SCSQMACS

� For C, thlqual.SCSQC370

� For PL/I, thlqual.SCSQPLIC

2. For a C application, prelink the object code created in step 1.

3. For PL/I applications, use the compiler option EXTRN(SHORT).

4. Link-edit the object code created in step 1 (or step 2 for a C application) to produce a load module. When you link-edit the code, you must include one
of the WebSphere MQ for z/OS batch stub programs (CSQBSTUB or one of the RRS stub programs: CSQBRRSI or CSQBRSTB).

CSQBSTUB

single-phase commit provided by WebSphere MQ for z/OS

CSQBRRSI

two-phase commit provided by RRS using the MQI

CSQBRSTB

two-phase commit provided by RRS directly

Note: If you use CSQBRSTB, you must also link-edit your application with ATRSCSS from SYS1.CSSLIB. Figure 1 and Figure 2 show fragments of JCL
to do this. The stubs are language-independent and are supplied in library thlqual.SCSQLOAD.

5. Store the load module in an application load library.

Figure 1. Fragments of JCL to link-edit the object module in the batch environment, using single-phase commit⋮
//*

//* WEBSPHERE MQ FOR Z/OS LIBRARY CONTAINING BATCH STUB

//*

//CSQSTUB DD DSN=++HLQ.MQM100++.SCSQLOAD,DISP=SHR

//* ⋮
//SYSIN DD *

 INCLUDE CSQSTUB(CSQBSTUB) ⋮
/*

Figure 2. Fragments of JCL to link-edit the object module in the batch environment, using two-phase commit⋮
//*

//* WEBSPHERE MQ FOR Z/OS LIBRARY CONTAINING BATCH STUB

//*

//CSQSTUB DD DSN=++HLQ.MQM100++.SCSQLOAD,DISP=SHR

//CSSLIB DD DSN=SYS1.CSSLIB,DISP=SHR

//* ⋮
//SYSIN DD *

 INCLUDE CSQSTUB(CSQBRSTB)

 INCLUDE CSSLIB(ATRSCSS) ⋮
/*

To run a batch or RRS program, you must include the libraries thlqual.SCSQAUTH and thlqual.SCSQLOAD in the STEPLIB or JOBLIB data set concatenation.

To run a TSO program, you must include the libraries thlqual.SCSQAUTH and thlqual.SCSQLOAD in the STEPLIB used by the TSO session.

To run an UNIX System Services batch program from the UNIX System Services shell, add the libraries thlqual.SCSQAUTH and thlqual.SCSQLOAD to the
STEPLIB specification in your $HOME⁄.profile like this:

 STEPLIB=thlqual.SCSQAUTH:thlqual.SCSQLOAD

 export STEPLIB

Parent topic: Preparing your program to run

This build: January 26, 2011 11:21:09

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16780_

3.7.1.2. Building z/OS batch applications using Language Environment

WebSphere® MQ for z/OS® provides a set of dynamic link libraries (DLLs) that must be used when you link-edit your applications.

There are 2 variants of the libraries which allow the application to use one of the following calling interfaces

� the 31 bit LE calling interface.

� the 31 bit XPLINK calling interface. z/OS XPLINK is a high performance calling convention available for C applications.

To use the DLLs, the application is bound or linked against so called sidedecks, instead of the stubs provided with earlier versions. The sidedecks are found
in the SCSQDEFS library (instead of the SCSQLOAD library).

Table 1.

 31 bit LE

DLL

31 bit XPLINK

DLL

Equivalent stub

name

1 phase commit MQI libraries
CSQBMQ1 CSQBMQ1X CSQBSTUB

2 phase commit with RRS co-ordination using RRS transaction-
control verbs CSQBRR1 CSQBRR1X CSQBRSTB

2 phase commit with RRS co-ordination using MQI transaction-
control verbs CSQBRI1 CSQBRI1X CSQBRRSI

Page 264 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Common issues:

� The following message appears on the job log if your application uses asynchronous message consume (MQCB or MQCTL calls) and the above DLL
interface is not used:

CSQB001E Language environment programs running in z/OS batch or USS must use the DLL interface to WebSphere MQ

Solution: Rebuild your application using sidedecks instead of stubs as detailed above.

� At program build time, the following message appears

 IEW2469E The Attributes of a reference to MQAPI-NAME from section your-code do not match the attributes of the target symbol

Reason: This means that you have compiled your XPLINK program with V701 (or later) version of cmqc.h, but are not binding with sidedecks.

Solution: Change your program's build file to bind against the appropriate sidedeck from SCSQDEFS instead of a stub from SCSQLOAD

The following sample JCL demonstrates how you can compile and link-edit a C program to use the new 31 bit LE DLL calling interface:

//CLG EXEC EDCCB,

// INFILE=MYPROGS.CPROGS(MYPROGRAM),

// CPARM='OPTF(DD:OPTF)',

// BPARM='XREF,MAP,DYNAM=DLL' < LINKEDIT OPTIONS
//COMPILE.OPTF DD *

RENT,CHECKOUT(ALL),SSCOM,DEFINE(MVS),NOMARGINS,NOSEQ,DLL

SE(DD:SYSLIBV)

//COMPILE.SYSLIB DD

// DD

// DD DISP=SHR,DSN=hlq.SCSQC370

//COMPILE.SYSLIBV DD DISP=SHR,DSN=hlq.BASE.H

/*

//BIND.SYSOBJ DD DISP=SHR,DSN=CEE.SCEEOBJ

// DD DISP=SHR,DSN=hlq.SCSQDEFS

//BIND.SYSLMOD DD DISP=SHR,DSN=hlq.LOAD(MYPROGAM)

//BIND.SYSIN DD *

 ENTRY CEESTART

 INCLUDE SYSOBJ(CSQBMQ1)

 NAME MYPROGAM(R)

//

Note: The compile uses the DLL option. The link-edit uses DYNAM=DLL option and the references the CSQBMQ1 library.

The following sample JCL demonstrates how you can compile and link-edit a C program to use the new 31 bit XPLINK DLL calling interface:

//CLG EXEC EDCXCB,

// INFILE=MYPROGS.CPROGS(MYPROGRAM),

// CPARM='OPTF(DD:OPTF)',

// BPARM='XREF,MAP,DYNAM=DLL' < LINKEDIT OPTIONS
//COMPILE.OPTF DD *

RENT,CHECKOUT(ALL),SSCOM,DEFINE(MVS),NOMARGINS,NOSEQ,XPLINK,DLL

SE(DD:SYSLIBV)

//COMPILE.SYSLIB DD

// DD

// DD DISP=SHR,DSN=hlq.SCSQC370

//COMPILE.SYSLIBV DD DISP=SHR,DSN=hlq.BASE.H

/*

//BIND.SYSOBJ DD DISP=SHR,DSN=CEE.SCEEOBJ

// DD DISP=SHR,DSN=hlq.SCSQDEFS

//BIND.SYSLMOD DD DISP=SHR,DSN=hlq.LOAD(MYPROGAM)

//BIND.SYSIN DD *

 ENTRY CEESTART

 INCLUDE SYSOBJ(CSQBMQ1X)

 NAME MYPROGAM(R)

//

Note: The compile uses the XPLINK and DLL options. The link-edit uses DYNAM=DLL option and references the CSQBMQ1X library.

Parent topic: Preparing your program to run

This build: January 26, 2011 11:21:09

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16785_

3.7.1.3. Building CICS applications

To build an application for WebSphere® MQ for z/OS® that runs under CICS®, you must:

� Translate the CICS commands in your program into the language in which the rest of your program is written.

� Compile or assemble the output from the translator to produce object code.

� For PL/I programs, use the compiler option EXTRN(SHORT).

� If the application is using XPLINK, use the compiler option DEFINE(MQ_OS_LINKAGE=1).

� Link-edit the object code to create a load module.

CICS provides a procedure to execute these steps in sequence for each of the programming languages it supports.

� For CICS Transaction Server for z/OS, the CICS Transaction Server for z/OS System Definition Guide describes how to use these procedures and the
CICS/ESA Application Programming Guide gives more information on the translation process.

You must include:

� In the SYSLIB statement of the compilation (or assembly) stage, statements that make the product data definition files available to the compiler. The
data definitions are supplied in the following WebSphere MQ for z/OS libraries:

� For COBOL, thlqual.SCSQCOBC

� For assembler language, thlqual.SCSQMACS

� For C, thlqual.SCSQC370

� For PL/I, thlqual.SCSQPLIC

� In your link-edit JCL, the WebSphere MQ for z/OS CICS stub program (CSQCSTUB). Figure 1 shows fragments of JCL code to do this. The stub is

Note: All sidedecks contain a definition of the data conversion entry point, MQXCNVC, previously resolved by including CSQASTUB.

Page 265 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

language-independent and is supplied in library thlqual.SCSQLOAD.

When you have completed these steps, store the load module in an application load library and define the program to CICS in the usual way.

Figure 1. Fragments of JCL to link-edit the object module in the CICS environment⋮
//*

//* WEBSPHERE MQ FOR Z/OS LIBRARY CONTAINING CICS STUB

//*

//CSQSTUB DD DSN=++HLQ.MQM100++.SCSQLOAD,DISP=SHR

//* ⋮
//LKED.SYSIN DD *

 INCLUDE CSQSTUB(CSQCSTUB) ⋮
/*

Before you run a CICS program, your system administrator must define it to CICS as a WebSphere MQ program and transaction, You can then run it in the
usual way.

Parent topic: Preparing your program to run

This build: January 26, 2011 11:21:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16790_

3.7.1.4. Building IMS (BMP or MPP) applications

If you are building batch DL/I programs, see Building z/OS batch applications. To build other applications that run under IMS™ (either as a BMP or an MPP),
create JCL that performs these tasks:

1. Compile (or assemble) the program to produce object code. The JCL for your compilation must include SYSLIB statements that make the product data
definition files available to the compiler. The data definitions are supplied in the following WebSphere® MQ for z/OS® libraries:

� For COBOL, thlqual.SCSQCOBC

� For assembler language, thlqual.SCSQMACS

� For C, thlqual.SCSQC370

� For PL/I, thlqual.SCSQPLIC

2. For a C application, prelink the object module created in step 1.

3. For PL/I programs, use the compiler option EXTRN(SHORT).

4. If the application is using XPLINK, use the compiler option DEFINE(MQ_OS_LINKAGE=1).

5. Link-edit the object code created in step 1 (or step 2 for a C/370™ application) to produce a load module:

a. Include the IMS language interface module (DFSLI000).

b. Include the WebSphere MQ for z/OS IMS stub program (CSQQSTUB). Figure 1 shows fragments of JCL to do this. The stub is language
independent and is supplied in library thlqual.SCSQLOAD.

Note: If you are using COBOL, select the NODYNAM compiler option to enable the linkage editor to resolve references to CSQQSTUB unless you
intend to use dynamic linking as described in Dynamically calling the WebSphere MQ stub.

6. Store the load module in an application load library.

Figure 1. Fragments of JCL to link-edit the object module in the IMS environment⋮
//*

//* WEBSPHERE MQ FOR Z/OS LIBRARY CONTAINING IMS STUB

//*

//CSQSTUB DD DSN=thlqual.SCSQLOAD,DISP=SHR

//* ⋮
//LKED.SYSIN DD *

 INCLUDE CSQSTUB(CSQQSTUB) ⋮
/*

Before you run an IMS program, your system administrator must define it to IMS as a WebSphere MQ program and transaction: you can then run it in the
usual way.

Parent topic: Preparing your program to run

This build: January 26, 2011 11:21:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16800_

3.7.1.5. Building z/OS UNIX System Services applications

To build a C application for WebSphere® MQ for z/OS® that runs under UNIX System Services, compile and link your application as follows:

cc -o mqsamp -W c,DLL -I "//'thlqual.SCSQC370'" mqsamp.c
"//'thlqual.SCSQDEFS(CSQBMQ1)'"

where thlqual is the high-level qualifier used by your installation.

To run the C program, you need to add the following to your .profile file; this should be in your root directory:

STEPLIB=thlqual.SCSQANLE:thlqual.SCSQAUTH: STEPLIB

Note that you need to exit from UNIX System Services, and enter UNIX System Services again, for the change to be recognized.

If you want to run multiple shells, add the word export at the beginning of the line, that is:

export STEPLIB=thlqual.SCSQANLE:thlqual.SCSQAUTH: STEPLIB

Once this completes successfully you can link the CSQBSTUB and issue WebSphere MQ calls.

Page 266 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Dynamically calling the WebSphere MQ stub describes an alternative method of making MQI calls in your programs so that you do not need to link-edit a
WebSphere MQ stub. This method is not available for all languages and environments.

Do not link-edit a higher level of stub program than that of the version of WebSphere MQ for z/OS on which your program is running. For example, a
program running on MQSeries® for OS/390®, V5.2 must not be link-edited with a stub program supplied with WebSphere MQ for z/OS, V5.3.

Parent topic: Preparing your program to run

This build: January 26, 2011 11:21:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16810_

3.7.2. Dynamically calling the WebSphere MQ stub

Instead of link-editing the WebSphere® MQ stub program with your object code, you can dynamically call the stub from within your program.

You can do this in the batch, IMS™, and CICS® environments. This facility is not supported by programs using PL/I in the CICS environment. and it is not
supported in the RRS environment. If your application program uses RRS to coordinate updates, see RRS Considerations.

However, this method:

� Increases the complexity of your programs

� Increases the storage required by your programs at execution time

� Reduces the performance of your programs

� Means that you cannot use the same programs in other environments

If you call the stub dynamically, the appropriate stub program and its aliases must be available at execution time. To ensure this, include the WebSphere MQ
for z/OS® data set SCSQLOAD:

For IMS, ensure that the library containing the dynamic stub (built as described in the information about installing the IMS adapter in the WebSphere MQ for
z/OS System Setup Guide) is ahead of the data set SCSQLOAD in the STEPLIB concatenation of the region JCL.

Use the names shown in Table 1 when you call the stub dynamically. In PL/I, only declare the call names used in your program.

For examples of how to use this technique, see the following figures:

Figure 1. Dynamic linking using COBOL in the batch environment

For batch and IMS In the STEPLIB concatenation of the JCL

For CICS In the CICS DFHRPL concatenation

Table 1. Call names for dynamic linking

MQI call Dynamic call name

 Batch (non-RRS) CICS IMS

MQBACK CSQBBACK not supported not supported

MQBUFMH CSQBBFMH CSQCBFMH MQBUFMH

MQCB CSQBCB CSQCCB MQCB

MQCLOSE CSQBCLOS CSQCCLOS MQCLOSE

MQCMIT CSQBCOMM not supported not supported

MQCONN CSQBCONN CSQCCONN MQCONN

MQCONNX CSQBCONX CSQCCONX MQCONNX

MQCRTMH CSQBCRMH CSQCCRMH MQCRTMH

MQCTL CSQBCTL CSQCCTL MQCTL

MQDISC CSQBDISC CSQCDISC MQDISC

MQDLTMH CSQBDLMH CSQCDLMH MQDLTMH

MQDLTMP CSQBDLMP CSQCDLMP MQDLTMP

MQGET CSQBGET CSQCGET MQGET

MQINQ CSQBINQ CSQCINQ MQINQ

MQINQMP CSQBINMP CSQCINMP MQINQMP

MQMHBUF CSQBMHBF CSQCMHBF MQMHBUF

MQOPEN CSQBOPEN CSQCOPEN MQOPEN

MQPUT CSQBPUT CSQCPUT MQPUT

MQPUT1 CSQBPUT1 CSQCPUT1 MQPUT1

MQSET CSQBSET CSQCSET MQSET

MQSETMP CSQBSTMP CSQCSTMP MQSETMP

MQSTAT CSQBSTAT CSQCSTAT MQSTAT

MQSUB CSQBSUB CSQCSUB MQSUB

MQSUBRQ CSQBSBRQ CSQCSBRQ MQSUBRQ

Batch and COBOL Figure 1

CICS and COBOL Figure 2

IMS and COBOL Figure 3

Batch and assembler Figure 4

CICS and assembler Figure 5

IMS and assembler Figure 6

Batch and C Figure 7

CICS and C Figure 8

IMS and C Figure 9

Batch and PL/I Figure 10

IMS and PL/I Figure 11

Page 267 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

…

 WORKING-STORAGE SECTION.

…

 05 WS-MQOPEN PIC X(8) VALUE 'CSQBOPEN'.

…

 PROCEDURE DIVISION.

…

 CALL WS-MQOPEN WS-HCONN

 MQOD

 WS-OPTIONS

 WS-HOBJ

 WS-COMPCODE

 WS-REASON.

…

Figure 2. Dynamic linking using COBOL in the CICS environment

…

 WORKING-STORAGE SECTION.

…

 05 WS-MQOPEN PIC X(8) VALUE 'CSQCOPEN'.

…

 PROCEDURE DIVISION.

…

 CALL WS-MQOPEN WS-HCONN

 MQOD

 WS-OPTIONS

 WS-HOBJ

 WS-COMPCODE

 WS-REASON.

…

Figure 3. Dynamic linking using COBOL in the IMS environment

…

 WORKING-STORAGE SECTION.

…

 05 WS-MQOPEN PIC X(8) VALUE 'MQOPEN'.

…

 PROCEDURE DIVISION.

…

 CALL WS-MQOPEN WS-HCONN

 MQOD

 WS-OPTIONS

 WS-HOBJ

 WS-COMPCODE

 WS-REASON.

…

 * --- *

 *

 * If the compile option 'DYNAM' is specified

 * then you may code the MQ calls as follows

 *

 * --- *

…

 CALL 'MQOPEN' WS-HCONN

 MQOD

 WS-OPTIONS

 WS-HOBJ

 WS-COMPCODE

 WS-REASON.

…

Figure 4. Dynamic linking using assembler language in the batch environment

…

 LOAD EP=CSQBOPEN

…

 CALL (15),(HCONN,MQOD,OPTIONS,HOBJ,COMPCODE,REASON),VL

…

 DELETE EP=CSQBOPEN

…

Figure 5. Dynamic linking using assembler language in the CICS environment

…

 EXEC CICS LOAD PROGRAM('CSQCOPEN') ENTRY(R15)

…

 CALL (15),(HCONN,MQOD,OPTIONS,HOBJ,COMPCODE,REASON),VL

…

 EXEC CICS RELEASE PROGRAM('CSQCOPEN')

…

Figure 6. Dynamic linking using assembler language in the IMS environment

…

 LOAD EP=MQOPEN

…

 CALL (15),(HCONN,MQOD,OPTIONS,HOBJ,COMPCODE,REASON),VL

…

 DELETE EP=MQOPEN

…

Figure 7. Dynamic linking using C language in the batch environment

…

typedef void CALL_ME();

#pragma linkage(CALL_ME, OS)

…

main()

{

CALL_ME * csqbopen;

…

csqbopen = (CALL_ME *) fetch("CSQBOPEN");

(*csqbopen)(Hconn,&ObjDesc,Options,&Hobj,&CompCode,&Reason);

…

Page 268 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Figure 8. Dynamic linking using C language in the CICS environment

…

typedef void CALL_ME();

#pragma linkage(CALL_ME, OS)

…

main()

{

CALL_ME * csqcopen;

…

 EXEC CICS LOAD PROGRAM("CSQCOPEN") ENTRY(csqcopen);

(*csqcopen)(Hconn,&ObjDesc,Options,&Hobj,&CompCode,&Reason);

…

Figure 9. Dynamic linking using C language in the IMS environment

…

typedef void CALL_ME();

#pragma linkage(CALL_ME, OS)

…

main()

{

CALL_ME * mqopen;

…

mqopen = (CALL_ME *) fetch("MQOPEN");

(*mqopen)(Hconn,&ObjDesc,Options,&Hobj,&CompCode,&Reason);

…

Figure 10. Dynamic linking using PL/I in the batch environment

…

 DCL CSQBOPEN ENTRY EXT OPTIONS(ASSEMBLER INTER);

…

 FETCH CSQBOPEN;

 CALL CSQBOPEN(HQM,

 MQOD,

 OPTIONS,

 HOBJ,

 COMPCODE,

 REASON);

 RELEASE CSQBOPEN;

Figure 11. Dynamic linking using PL/I in the IMS environment

…

 DCL MQOPEN ENTRY EXT OPTIONS(ASSEMBLER INTER);

…

 FETCH MQOPEN;

 CALL MQOPEN(HQM,

 MQOD,

 OPTIONS,

 HOBJ,

 COMPCODE,

 REASON);

 RELEASE MQOPEN;

RRS Considerations

Parent topic: Building your application on z/OS

This build: January 26, 2011 11:21:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16820_

3.7.2.1. RRS Considerations

WebSphere® MQ provides two different stubs for batch programs which need RRS coordination - see RRS batch adapter. The difference in behavior of
subsequent API calls is determined at MQCONN time by the batch adapter from information passed by the stub routine on the MQCONN or MQCONNX API.
This means that dynamic API calls are available for batch programs which need RRS coordination, provided that the initial connection to MQ has been done
via the appropriate stub. The following example illustrates this:

 WORKING-STORAGE SECTION.

 05 WS-MQOPEN PIC X(8) VALUE 'MQOPEN' .

.

.

.

 PROCEDURE DIVISION.

.

.

.

 *

 * Static call to MQCONN must be resolved by linkage edit to

 * CSQBRSTB or CSQBRRSI for RRS coordination

 *

 CALL 'MQCONN' USING W00-QMGR

 W03-HCONN

 W03-COMPCODE

 W03-REASON.

.

.

.

 *

 CALL WS-MQOPEN WS-HCONN

 MQOD

 WS-OPTIONS

 WS-HOBJ

Page 269 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

 WS-COMPCODE

 WS-REASON.

Parent topic: Dynamically calling the WebSphere MQ stub

This build: January 26, 2011 11:22:06

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg20000_

3.7.3. Debugging your programs

The main aids to debugging WebSphere® MQ for z/OS® application programs are the reason codes returned by each API call.

For a list of these, including ideas for corrective action, see:

� WebSphere MQ for z/OS Messages and Codes for WebSphere MQ for z/OS

� WebSphere MQ Messages for all other WebSphere MQ platforms

This chapter also suggests other debugging tools to use in particular environments.

Debugging CICS programs
You can use the CICS Execution Diagnostic Facility (CEDF) to test your CICS programs interactively without having to modify the program or program-
preparation procedure.

Debugging TSO programs

Parent topic: Building your application on z/OS

This build: January 26, 2011 11:21:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16830_

3.7.3.1. Debugging CICS programs

You can use the CICS® Execution Diagnostic Facility (CEDF) to test your CICS programs interactively without having to modify the program or program-
preparation procedure.

For more information about EDF, see the CICS Transaction Server for z/OS CICS Application Programming Guide.

CICS trace
You will probably also find it helpful to use the CICS Trace Control transaction (CETR) to control CICS trace activity.

Parent topic: Debugging your programs

This build: January 26, 2011 11:21:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16840_

3.7.3.1.1. CICS trace

You will probably also find it helpful to use the CICS® Trace Control transaction (CETR) to control CICS trace activity.

For more information about CETR, see CICS Transaction Server for z/OS CICS-Supplied Transactions manual.

To determine whether CICS trace is active, display connection status using the CKQC panel. This panel also shows the trace number.

To interpret CICS trace entries, see Table 1.

The CICS trace entry for these values is AP0xxx (where xxx is the trace number specified when the CICS adapter was enabled). All trace entries except

CSQCTEST are issued by CSQCTRUE. CSQCTEST is issued by CSQCRST and CSQCDSP.

Table 1. CICS adapter trace entries

Name Description Trace sequence Trace data

CSQCABNT Abnormal termination Before issuing END_THREAD ABNORMAL
to WebSphere® MQ. This is because of
the end of the task and an implicit
backout could be performed by the
application. A ROLLBACK request is
included in the END_THREAD call in this
case.

Unit of work information. You can use this
information when finding out about the
status of work. (For example, it can be
verified against the output produced by
the DISPLAY THREAD command, or the
WebSphere MQ for z/OS® log print
utility.)

CSQCBACK Syncpoint backout Before issuing BACKOUT to WebSphere
MQ for z/OS. This is due to an explicit
backout request from the application.

Unit of work information.

CSQCCCRC Completion code and reason
code

After unsuccessful return from API call. Completion code and reason code.

CSQCCOMM Syncpoint commit Before issuing COMMIT to WebSphere MQ
for z/OS. This can be due to a single-
phase commit request or the second
phase of a two-phase commit request.
The request is due to a explicit syncpoint
request from the application.

Unit of work information.

CSQCEXER Execute resolve Before issuing EXECUTE_RESOLVE to The unit of work information of the unit of

Page 270 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Parent topic: Debugging CICS programs

This build: January 26, 2011 11:21:13

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16850_

3.7.3.2. Debugging TSO programs

WebSphere MQ for z/OS. work issuing the EXECUTE_RESOLVE.
This is the last indoubt unit of work in the
resynchronization process.

CSQCGETW GET wait Before issuing CICS wait. Address of the ECB to be waited on.

CSQCGMGD GET message data After successful return from MQGET. Up to 40 bytes of the message data.

CSQCGMGH GET message handle Before issuing MQGET to WebSphere MQ
for z/OS.

Object handle.

CSQCGMGI Get message ID After successful return from MQGET. Message ID and correlation ID of the
message.

CSQCINDL Indoubt list After successful return from the second
INQUIRE_INDOUBT.

The indoubt units of work list.

CSQCINDO IBM® use only

CSQCINDS Indoubt list size After successful return from the first
INQUIRE_INDOUBT and the indoubt list is
not empty.

Length of the list. Divided by 64 gives the
number of indoubt units of work.

CSQCINQH INQ handle Before issuing MQINQ to WebSphere MQ
for z/OS.

Object handle.

CSQCLOSH CLOSE handle Before issuing MQCLOSE to WebSphere
MQ for z/OS.

Object handle.

CSQCLOST Disposition lost During the resynchronization process,
CICS informs the adapter that it has been
cold started so no disposition information
regarding the unit of work being
resynchronized is available.

Unit of work ID known to CICS for the
unit of work being resynchronized.

CSQCNIND Disposition not indoubt During the resynchronization process,
CICS informs the adapter that the unit of
work being resynchronized should not
have been indoubt (that is, perhaps it is
still running).

Unit of work ID known to CICS for the
unit of work being resynchronized.

CSQCNORT Normal termination Before issuing END_THREAD NORMAL to
WebSphere MQ for z/OS. This is due to
the end of the task and therefore the
application might perform an implicit
syncpoint commit. A COMMIT request is
included in the END_THREAD call in this
case.

Unit of work information.

CSQCOPNH OPEN handle After successful return from MQOPEN. Object handle.

CSQCOPNO OPEN object Before issuing MQOPEN to WebSphere
MQ for z/OS.

Object name.

CSQCPMGD PUT message data Before issuing MQPUT to WebSphere MQ
for z/OS.

Up to 40 bytes of the message data.

CSQCPMGH PUT message handle Before issuing MQPUT to WebSphere MQ
for z/OS.

Object handle.

CSQCPMGI PUT message ID After successful MQPUT from WebSphere
MQ for z/OS.

Message ID and correlation ID of the
message.

CSQCPREP Syncpoint prepare Before issuing PREPARE to WebSphere
MQ for z/OS in the first phase of two-
phase commit processing. This call can
also be issued from the distributed
queuing component as an API call.

Unit of work information.

CSQCP1MD PUTONE message data Before issuing MQPUT1 to WebSphere MQ
for z/OS.

Up to 40 bytes of data of the message.

CSQCP1MI PUTONE message ID After successful return from MQPUT1. Message ID and correlation ID of the
message.

CSQCP1ON PUTONE object name Before issuing MQPUT1 to WebSphere MQ
for z/OS.

Object name.

CSQCRBAK Resolved backout Before issuing RESOLVE_ROLLBACK to
WebSphere MQ for z/OS.

Unit of work information.

CSQCRCMT Resolved commit Before issuing RESOLVE_COMMIT to
WebSphere MQ for z/OS.

Unit of work information.

CSQCRMIR RMI response Before returning to the CICS RMI
(resource manager interface) from a
specific invocation.

Architected RMI response value. Its
meaning depends of the type of the
invocation. These values are documented
in the CICS Transaction Server for z/OS
Customization Guide. To determine the
type of invocation, look at previous trace
entries produced by the CICS RMI
component.

CSQCRSYN Resynchronization Before the resynchronization process
starts for the task.

Unit of work ID known to CICS for the
unit of work being resynchronized.

CSQCSETH SET handle Before issuing MQSET to WebSphere MQ
for z/OS.

Object handle.

CSQCTASE IBM use only

CSQCTEST Trace test Used in EXEC CICS ENTER TRACE call to
verify the trace number supplied by the
user or the trace status of the
connection.

No data.

CSQCDCFF IBM use only

Page 271 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

The following interactive debugging tools are available for TSO programs:

� TEST tool

� VS COBOL II interactive debugging tool

� INSPECT interactive debugging tool for C and PL/I programs

Parent topic: Debugging your programs

This build: January 26, 2011 11:21:13

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16860_

3.8. Using lightweight directory access protocol services with WebSphere MQ for Windows

This chapter explains what a directory service is and the part played by a directory access protocol (DAP). It also explains how WebSphere® MQ applications
can use a lightweight directory access protocol (LDAP) directory using a sample program as a guide.

Note: The sample program is designed for someone who is already familiar with LDAP.

What is a directory service?
A directory is a repository of information about objects, which is organized in such a way that it is easy to find the information on a specific object.

What is LDAP?
A brief explanation of Lightweight Directory Access Protocol (LDAP).

Using LDAP with WebSphere MQ

LDAP sample program
The sample program is designed for someone who is familiar with LDAP and probably already uses it. It is intended to show how WebSphere MQ
applications can use an LDAP directory.

Parent topic: Building a WebSphere MQ application

This build: January 26, 2011 11:21:13

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16870_

3.8.1. What is a directory service?

A directory is a repository of information about objects, which is organized in such a way that it is easy to find the information on a specific object.

A common example is a telephone directory, where information (address and telephone number) is stored about people and companies. Another example is
an address book for an e-mail system, where e-mail addresses, and optionally other information such as telephone numbers, are stored for people.

On computer systems, directories can store information about computer resources, such as printers or shared disks. For example you could use a directory
to find out where the nearest color printer is located. In a WebSphere® MQ application a directory can be used to provide the association between an
application service (such as accounts-receivable processing) and the queue to be used for messages requiring that service (possibly identified through the
queue name and its host queue manager name).

Directories are implemented as client-server systems, where the directory server holds all the information and answers requests from clients. The clients
could be user-interface programs, which provide the information directly to the user, or application programs which need to locate resources to complete
their work. A Directory Service comprises the directory server, administrative programs, and the client libraries and programs that are needed to configure,
update, and read the directory.

Parent topic: Using lightweight directory access protocol services with WebSphere MQ for Windows

This build: January 26, 2011 11:21:13

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16880_

3.8.2. What is LDAP?

A brief explanation of Lightweight Directory Access Protocol (LDAP).

Many directory services exist, such as Novell Directory Services, DCE Cell Directory Service, Banyan StreetTalk, Windows Directory Services, X.500, and the
address book services associated with e-mail products. X.500 was proposed as a standard for global directory services by the International Standards
Organization (ISO). It requires an OSI protocol stack for its communications, and largely because of this, its use has been restricted to large organizations
and academic institutions. An X.500 directory server communicates with its clients using the Directory Access Protocol (DAP).

LDAP (Lightweight Directory Access Protocol) was created as a simplified version of DAP. It is easier to implement, omits some of the lesser-used features of
DAP, and runs over TCP/IP. As a result of these changes it is rapidly being adopted as the directory access protocol for most purposes, replacing the
multitude of proprietary protocols previously used. LDAP clients can still access an X.500 server through a gateway (X.500 still requires the OSI protocol
stack), or increasingly X.500 implementations typically include native support for LDAP as well as DAP access.

LDAP directories can be distributed and can use replication to enable efficient access to their contents.

For a more complete description of LDAP, see Understanding LDAP, an IBM® Redbooks® publication.

Parent topic: Using lightweight directory access protocol services with WebSphere MQ for Windows

This build: January 26, 2011 11:21:13

Notices | Trademarks | Downloads | Library | Support | Feedback

Page 272 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16890_

3.8.3. Using LDAP with WebSphere MQ

In WebSphere® MQ configurations, the information that defines message and transmission queues is stored locally. This means that in a WebSphere MQ
network the various definitions are distributed, with no central directory of this information being available for browsing. Remote messaging between
WebSphere MQ applications is commonly achieved through the use of local definitions of remote queues. The application first issues an MQOPEN call using
the name specified in the local definition of the remote queue. To put the message on the remote queue, the application then issues MQPUT, specifying the
handle returned from the MQOPEN call. The remote queue definition supplies the name of the destination queue, the destination queue manager, and
optionally, a transmission queue. In this technique the application has to know at run-time the name specified in the local queue definition.

A variation on the above avoids the use of local definitions of remote queues. The application can specify the full destination queue name, which includes the
remote queue manager name as part of the MQOPEN. The application therefore has to know these two names at runtime. Again the local queue manager
must be correctly configured with the local queue definition, and with a suitably named (or default) transmission queue and an associated channel that
delivers to the target.

In the case where both the source and target queue managers are defined as being members of the same cluster, the transmission queue and channel
aspects of the above two scenarios can be ignored. If the target transmission queue is a cluster queue, a local definition of a remote queue is also not
required. However, similarly to the previous cases described, the application must still know the name of the destination queue.

A directory service can be used to remove this application dependency on queue names (or the combination of queue and queue manager names). The
mapping between application criteria and WebSphere MQ object names can be held in a directory and updated dynamically, and independently of
applications. At run time the WebSphere MQ application that wants to send a message first queries the directory using application-based criteria, for
example where: service_name = “accounts receivable”, retrieves the relevant WebSphere MQ object names, and then uses these returned values in the
MQOPEN call.

Another example of the use of a directory is for a company that has many small depots or offices, WebSphere MQ clients can be used to send messages to
WebSphere MQ servers located in the larger offices. The clients need to know the name of the host machine, MQI channel, and queue name for each server
that they send messages to. Occasionally it might be necessary to move a WebSphere MQ server to another machine; every client that communicates with
the server would need to know about the change. An LDAP directory service could be used to store the names of the host machines (and the channel and
queue names) and the client programs could retrieve the information from the directory whenever they want to send a message to a server. In this case
only the directory needs to be updated if a host name (or channel or queue name) changed.

Multiple destinations for an application message could be stored in a directory, with the one chosen being dependent on availability or load-sharing
considerations.

WebSphere MQ can also use an LDAP directory to store authentication information for use with Secure Sockets Layer (SSL). WebSphere MQ classes for Java
can also store information in an LDAP directory.

Parent topic: Using lightweight directory access protocol services with WebSphere MQ for Windows

This build: January 26, 2011 11:21:14

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16900_

3.8.4. LDAP sample program

The sample program is designed for someone who is familiar with LDAP and probably already uses it. It is intended to show how WebSphere® MQ
applications can use an LDAP directory.

Building the sample program

Configuring the directory
Before the sample program can be run, an LDAP Directory Server must be configured with sample data.

Configuring the IBM eNetwork LDAP server
Refer to the eNetwork LDAP Directory Administrator’s Guide for information about installing the directory. In the chapter “Installing and Configuring
Server”, work through the sections “Installing Server” and “Basic Server Configuration”. If necessary, read through the chapter “Administrator
Interface” to familiarize yourself with how the interface works.

Configuring the Netscape directory server
Using the Netscape Server Administration page, click Create New Netscape Directory Server.

Running the sample program

Program design
The program has two distinct parts: the first part uses the environment variables and command line value to query an LDAP directory server; the
second part establishes the WebSphere MQ connection using the information returned from the directory and sends the messages.

Parent topic: Using lightweight directory access protocol services with WebSphere MQ for Windows

This build: January 26, 2011 11:21:14

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16910_

3.8.4.1. Building the sample program

This program has been built and tested only on Windows using TCP/IP. As well as the general considerations mentioned in Preparing C programs, note the
following points:

� This program is designed to run as a client program, so it should be linked with the MQIC.LIB library.

� As well as the WebSphere MQ header files and libraries, this program must be built using LDAP client header files and libraries. These are available
from several locations, including the IBM® eNetwork Web site at:

Page 273 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

http://www.software.ibm.com/enetwork

For example, using the IBM eNetwork client, link the program with the LIBLDAPSTATICE.LIB and LIBLBERSTATICSSL.LIB libraries.

Parent topic: LDAP sample program

This build: January 26, 2011 11:21:14

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16920_

3.8.4.2. Configuring the directory

Before the sample program can be run, an LDAP Directory Server must be configured with sample data.

The file MQuser.ldif, in the tools\c\samples directory, contains some sample data in LDIF (LDAP Data Interchange Format). You can edit this file to suit

your needs. It contains data for a fictitious company called MQuser that has a Transport Department comprising three offices. Each of these offices has a
machine that runs a WebSphere® MQ server.

As a minimum, you must edit the three lines that contain the host names of the machines running the WebSphere MQ servers: lines 18, 27, and 36:

host: LondonHost

 ...

host: SydneyHost

 ...

host: WashingtonHost

You must change LondonHost, SydneyHost, and WashingtonHost to the names of three of your machines that run WebSphere MQ servers. You can also

change the channel and queue names if you want (the sample uses names of the system defaults). You might also want to increase or decrease the number
of offices in the sample data.

Parent topic: LDAP sample program

This build: January 26, 2011 11:21:14

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16930_

3.8.4.3. Configuring the IBM® eNetwork LDAP server

Refer to the eNetwork LDAP Directory Administrator’s Guide for information about installing the directory. In the chapter “Installing and Configuring Server”,
work through the sections “Installing Server” and “Basic Server Configuration”. If necessary, read through the chapter “Administrator Interface” to
familiarize yourself with how the interface works.

In the chapter “Configuring - How Do I”, follow the instructions for starting up the administrator, then work through the section “Configure Database” and
create a default database. Skip the section “Configure replica” and using the section “Work with Suffixes”, add a suffix “o=MQuser”.

Before adding any entries to the database, you must extend the directory schema by adding some attribute definitions and an objectclass definition. This is
described in the eNetwork LDAP Directory Administrator’s Guide in the chapter “Reference Information” under the section “Directory Schema”. Two sample
files are included to help you with this. The file mq.at.conf includes the attribute definitions that you must add to the file ⁄etc⁄slapd.at.conf. Do this by

including the sample file by editing slapd.at.conf and adding a line:

include <pathname>/mq.at.conf

Alternatively you can edit the file slapd.at.conf and add the contents of the sample file directly to it, that is, add the lines:

MQ attribute definitions

attribute mqChannel ces mqChannel 1000 normal

attribute mqQueueManager ces mqQueueManager 1000 normal

attribute mqQueue ces mqQueue 1000 normal

attribute mqPort cis mqPort 64 normal

Similarly for the objectclass definition, you can either include the sample file by editing etc⁄slapd.oc.conf and add the line:

include <pathname>/mq.oc.conf

or you can add the contents of the sample file directly to slapd.oc.conf, that is, add the lines:

MQ object classdefinition

objectclass mqApplication

 requires

 objectClass,

 cn,

 host,

 mqChannel,

 mqQueue

 allows

 mqQueueManager,

 mqPort,

 description,

 l,

 ou,

 seeAlso

You can now start the directory server (Administration, Server, Startup) and add the sample entries to it. To add the sample entries, go to the
Administration, Add Entries page of the administrator, type in the full pathname of the sample file MQuser.ldif and click Submit.

The directory server is now running and loaded with data suitable for running the sample program.

Parent topic: LDAP sample program

This build: January 26, 2011 11:21:14

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16940_

Page 274 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

3.8.4.4. Configuring the Netscape directory server

Using the Netscape Server Administration page, click Create New Netscape Directory Server.

You should now be presented with a form containing configuration information. Change the Directory Suffix to o=MQuser and add a password for the
Unrestricted User. You can also change any other information to suit your installation. Click OK, and the directory should be created successfully. Click
Return to Server Administration and start the directory server. Click the directory name to start the Directory Server Administration server for the new
directory.

Before adding any entries to the database, extend the directory schema by adding some attribute definitions and an objectclass definition. Click the Schema
tab of the Directory Server page. You are now presented with a form that allows you to add new attributes. Add the following attributes (leave the Attribute
OID blank for all of them):

Attribute Name Syntax

-------------- ------

mqChannel Case Exact String

mqQueueManager Case Exact String

mqQueue Case Exact String

mqPort Integer

Add a new objectClass by clicking Create ObjectClass in the side panel. Enter mqApplication as the ObjectClass Name, select applicationProcess as the
parent ObjectClass and leave the ObjectClass OID blank. Now add some attributes to the objectClass. Select host, mqChannel, and mqQueue as
Required Attributes, and select mqQueueManager and mqPort as Allowed attributes. Press the Create New ObjectClass button to create the
objectClass.

To add the sample data, click the Database Management tab and select Add Entries from the side panel. Enter the path name of the sample data file
<pathname>\MQuser.ldif, enter the password, and click OK.

The sample program runs as an unauthorized user, and by default the Netscape Directory does not allow unauthorized users to search the directory.
Change this by clicking the Access Control tab. Enter the password for the Unrestricted User and click OK to load in the access control entries for the
directory. These should currently be empty. Press the New ACI button to create a new access control entry. In the entry box that appears, click Deny
(which is underlined) and in the resultant dialog box, change it to Allow. Add a name, for example, MQuser-access, and click choose a suffix to select
o=MQuser. Enter o=MQuser as the target, enter the password for the Unrestricted User, and click Submit.

The directory server is now running and loaded with data suitable for running the sample program.

Parent topic: LDAP sample program

This build: January 26, 2011 11:21:14

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16950_

3.8.4.5. Running the sample program

You should now have an LDAP Directory Server running and populated with the sample data. The data specifies three host machines, all of which should be
running WebSphere® MQ servers. Ensure that the default queue manager is running on each machine (unless you changed the sample data to specify a
different queue manager).

Also, start the WebSphere MQ listener program on each machine; the sample uses TCP/IP with the default WebSphere MQ port number, so you can start the
listener with the command:

runmqlsr -t tcp

To test the sample, you might also want to run a program to read the messages arriving at each WebSphere MQ server, for example you could use the
amqstrg sample program:

amqstrg SYSTEM.DEFAULT.LOCAL.QUEUE

The sample program uses three environment variables, one required and two optional. The required variable is LDAP_BASEDN, which specifies the base
Distinguished Name for the directory search. To work with the sample data, set this to ou=Transport, o=MQuser, for example, at a command prompt on

Windows systems type:

set LDAP_BASEDN=ou=Transport, o=MQuser

The optional variables are LDAP_HOST and LDAP_VERSION. The LDAP_HOST variable specifies the name of the host where the LDAP server is running; it
defaults to the local host if it is not specified. The LDAP_VERSION variable specifies the version of the LDAP protocol to be used, and can be either 2 or 3.
Most LDAP servers now support version 3 of the protocol; they all support the older version 2. This sample works equally well with either version of the
protocol, and if it is not specified it defaults to version 2.

You can now run the sample by typing the program name followed by the name of the WebSphere MQ application that you want to send messages to, in the
case of the sample data the application names are London, Sydney, and Washington. For example, to send messages to the London application:

amqsldpc London

If the program fails to connect to the WebSphere MQ server, an appropriate error message appears. If it connects successfully you can start typing
messages, each line that you type (terminated by <return> or <enter>) is sent as a separate message, an empty line ends the program.

Parent topic: LDAP sample program

This build: January 26, 2011 11:21:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16960_

3.8.4.6. Program design

The program has two distinct parts: the first part uses the environment variables and command line value to query an LDAP directory server; the second
part establishes the WebSphere® MQ connection using the information returned from the directory and sends the messages.

The LDAP calls used in the first part of the program differ slightly depending on whether LDAP version 2 or 3 is being used, and they are described in detail
by the documentation that comes with the LDAP client libraries. This section gives a brief description.

The first part of the program checks that it has been called correctly and reads the environment variables. It then establishes a connection with the LDAP
directory server at the specified host:

Page 275 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

if (ldapVersion == LDAP_VERSION3)

{

 if ((ld = ldap_init(ldapHost, LDAP_PORT)) == NULL)

 ...

}

else

{

 if ((ld = ldap_open(ldapHost, LDAP_PORT)) == NULL)

 ...

}

When a connection has been established, the program sets some options on the server with the “ldap_set_option” call, and then authenticates itself to the
server by binding to it:

if (ldapVersion == LDAP_VERSION3)

{

 if (ldap_simple_bind_s(ld, bindDN, password) != LDAP_SUCCESS)

 ...

}

else

{

 if (ldap_bind_s(ld, bindDN, password, LDAP_AUTH_SIMPLE) !=

 LDAP_SUCCESS)

 ...

}

In the sample program bindDN and password are set to NULL, which means that the program authenticates itself as an anonymous user, that is, it does not

have any special access rights and can access only information that is publicly available. In practice, most organizations restrict access to the information
that they store in directories so that only authorized users can access it.

The first parameter to the bind call ld is a handle that is used to identify this particular LDAP session throughout the rest of the program. After

authenticating, the program searches the directory for entries that match the application name:

rc = ldap_search_s(ld, /* LDAP Handle */

 baseDN, /* base distinguished name */

 LDAP_SCOPE_ONELEVEL, /* one-level search */

 filterPattern, /* filter search pattern */

 attrs, /* attributes required */

 FALSE, /* NOT attributes only */

 &ldapResult); /* search result */

This is a simple synchronous call to the server that returns the results directly. There are other types of search that are more appropriate for complex
queries or when a large number of results is expected. The first parameter to the search is the handle ld that identifies the session. The second parameter is

the base distinguished name, which specifies where in the directory the search is to begin, and the third parameter is the scope of the search, that is, which
entries relative to the starting point are searched. These two parameters together define which entries in the directory are searched. The next parameter,
filterPattern specifies what we are searching for. The attrs parameter lists the attributes that we want to get back from the object when we have found

it. The next attribute says whether we want just the attributes or their values as well; setting this to FALSE means that we want the attribute values. The
final parameter is used to return the result.

The result could contain many directory entries, each with the specified attributes and their values. We have to extract the values that we want from the
result. In this sample program we only expect one entry to be found, so we only look at the first entry in the result:

ldapEntry = ldap_first_entry(ld, ldapResult);

This call returns a handle that represents the first entry, and we set up a for loop to extract all the attributes from the entry:

for (attribute = ldap_first_attribute(ld, ldapEntry, &ber);

 attribute != NULL;

 attribute = ldap_next_attribute(ld, ldapEntry, ber))

{

For each of these attributes, we extract the values associated with it. Again we only expect one value per attribute, so we only use the first value; we
determine which attribute we have and store the value in the appropriate program variable:

values = ldap_get_values(ld, ldapEntry, attribute);

if (values != NULL && values[0] != NULL)

{

 if (stricmp(attribute, MQ_HOST_ATTR) == 0)

 {

 mqHost = strdup(values[0]);

 ...

Finally we tidy up by freeing memory (ldap_value_free, ldap_memfree, ldap_msgfree) and close the session by unbinding from the server:

ldap_unbind(ld);

We check that we have found all the WebSphere MQ values that we need from the directory, and if so we call sendMessages() to connect to the WebSphere
MQ server and send the WebSphere MQ messages.

The second part of the sample program is the sendMessages() routine that contains all the WebSphere MQ calls. This is modelled on the amqsput0 sample
program, the differences being that the parameters to the program have been extended and MQCONNX is used instead of the MQCONN call.

Parent topic: LDAP sample program

This build: January 26, 2011 11:21:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16970_

4. Sample WebSphere MQ programs

Sample programs (platforms except z/OS)
This topic describes the sample programs delivered with WebSphere MQ, written in C and COBOL. The samples demonstrate typical uses of the
Message Queue Interface (MQI).

Sample programs for WebSphere MQ for z/OS
This chapter describes the sample applications that are delivered with WebSphere MQ for z/OS®. These samples demonstrate typical uses of the
Message Queue Interface (MQI).

Parent topic: Application Programming Guide

Page 276 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

This build: January 26, 2011 11:21:15

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16980_

4.1. Sample programs (platforms except z/OS®)

This topic describes the sample programs delivered with WebSphere® MQ, written in C and COBOL. The samples demonstrate typical uses of the Message
Queue Interface (MQI).

The samples are not intended to demonstrate general programming techniques, so some error checking that you might want to include in a production
program has been omitted. However, these samples are suitable for use as a base for your own message queuing programs.

The source code for all the samples is provided with the product; this source includes comments that explain the message queuing techniques demonstrated
in the programs.

C++ sample programs: See WebSphere MQ Using C++ for a description of the sample programs available in C++.

RPG sample programs: See the WebSphere MQ for i5/OS Application Programming Reference (ILE/RPG) for a description of the sample programs available
in RPG.

The names of the samples start with the prefix amq. The fourth character indicates the programming language, and the compiler where necessary.

This topic introduces the sample programs, under these headings:

Features demonstrated in the sample programs

Preparing and running the sample programs
The following sections help you to find the samples that you need to run on the different platforms.

The API exit sample program

The Asynchronous consume sample program
The amqscbf sample program demonstrates the use of MQCB and MQCTL to consume messages from multiple queues asynchronously.

The Asynchronous Put sample program

The Browse sample programs
The Browse sample programs browse messages on a queue using the MQGET call.

The Browser sample program
The Browser sample program reads and writes both the message descriptor and the message content fields of all the messages on a queue.

The CICS transaction sample
A sample CICS® transaction program is provided, named amqscic0.ccs for source code and amqscic0 for the executable version. You can build
transactions using the standard CICS facilities.

The Connect sample program
The Connect sample program allows you to explore the MQCONNX call and its options from a client. The sample connects to the queue manager using
the MQCONNX call, inquires about the name of the queue manager using the MQINQ call, and displays it.

The Data-Conversion sample program
The data-conversion sample program is a skeleton of a data conversion exit routine.

Database coordination samples

Dead-letter queue handler sample
A sample dead-letter queue handler is provided, the name of the executable version is amqsdlq. If you want a dead-letter queue handler that is
different from RUNMQDLQ, the source of the sample is available for you to use as your base.

The Distribution List sample program
The Distribution List sample amqsptl0 gives an example of putting a message on several message queues. It is based on the MQPUT sample,
amqsput0.

The Echo sample programs
The Echo sample programs echo a message from a message queue to the reply queue.

Encina sample program
This program puts 10 messages to the queue, backing out the odd numbered messages and committing the even numbered messages. The message
is a 4-byte number.

The Get sample programs
The Get sample programs get messages from a queue using the MQGET call.

High availability sample programs
The amqsghac, amqsphac and amqsmhac high availability sample programs use automated client reconnection to demonstrate recovery following the
failure of a queue manager.

The Inquire sample programs
The Inquire sample programs inquire about some of the attributes of a queue using the MQINQ call.

Publish - MQ_PUBLISH_EXIT

s C language

0 COBOL language on both IBM® and Micro Focus compilers

i COBOL language on IBM compilers only

m COBOL language on Micro Focus compilers only

Page 277 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

MQ_PUBLISH_EXIT provides a publish exit function that allows you to alter the contents of published messages before they are received by
subscribers. You can also change the message header or choose to inhibit publication of the message.

The Publish/Subscribe sample programs
The publish/subscribe sample programs demonstrate the use of the publish and subscribe features in WebSphere MQ.

The Put sample programs
The Put sample programs put messages on a queue using the MQPUT call.

The Reference Message sample programs
The Reference Message samples allow a large object to be transferred from one node to another (usually on different systems) without the need for
the object to be stored on WebSphere MQ queues at either the source or the destination nodes.

The Request sample programs
The Request sample programs demonstrate client/server processing. The samples are the clients that put request messages on a target server queue
that is processed by a server program. They wait for the server program to put a reply message on a reply-to queue.

The Set sample programs

The SSL/TLS sample program
AMQSSSLC is a sample C program that demonstrates how to use the MQCNO and MQSCO structures to supply SSL or TLS client connection information
on the MQCONNX call.

The Triggering sample programs
The function provided in the triggering sample is a subset of that provided in the trigger monitor in the runmqtrm program.

TUXEDO samples

Using the SSPI security exit on Windows systems
This section describes how to use the SSPI channel-exit programs on Windows systems. The supplied exit code is in two formats: object and source.

Running the samples using remote queues
You can demonstrate remote queuing by running the samples on connected queue managers.

Parent topic: Sample WebSphere MQ programs

This build: January 26, 2011 11:21:16

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg16990_

4.1.1. Features demonstrated in the sample programs

The following tables show the techniques demonstrated by the WebSphere® MQ sample programs on systems other than z/OS® (see Sample programs for
WebSphere MQ for z/OS). All the samples open and close queues using the MQOPEN and MQCLOSE calls, so these techniques are not listed separately in the
tables. See the heading that includes the platform that you are interested in.

Samples for UNIX systems

Samples for WebSphere MQ for Windows

Visual Basic samples for WebSphere MQ for Windows

Samples for WebSphere MQ for i5/OS

Parent topic: Sample programs (platforms except z/OS)

This build: January 26, 2011 11:21:16

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17000_

4.1.1.1. Samples for UNIX systems

Table 1 shows the techniques demonstrated by the sample programs for WebSphere® MQ on UNIX systems. The table lists which C and COBOL source files
are provided, and whether a server or client executable is included.

Table 1. WebSphere MQ on UNIX sample programs demonstrating use of the MQI (C and COBOL)

Technique
C (source) (1) COBOL

(source)

(2)

Server

(C executable)

Client

(C executable)

(3)

Using the publish/subscribe interface amqspuba amqssuba
amqssbxa

no sample amqspub
amqssub amqssbx

no sample

Putting messages using the MQPUT call amqsput0 amq0put0 amqsput amqsputc

Putting a single message using the MQPUT1 call amqsinqa amqsecha amqminqx
amqmechx
amqiinqx
amqiechx
amqvinqx
amqviechx

amqsinq amqsech amqsechc

Putting messages to a distribution list (4) amqsptl0 amq0ptl0.cbl amqsptl amqsptlc

Replying to a request message amqsinqa amqminqx
amqiinqx

amqsinq no sample

Page 278 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Parent topic: Features demonstrated in the sample programs

This build: January 26, 2011 11:21:17

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17010_

amqvinqx

Getting messages (no wait) amqsgbr0 amq0gbr0 amqsgbr no sample

Getting messages (wait with a time limit) amqsget0 amq0get0 amqsget amqsgetc

Getting messages (unlimited wait) amqstrg0 no sample amqstrg amqstrgc

Getting messages (with data conversion) amqsecha no sample amqsech no sample

Putting Reference Messages to a queue (4) amqsprma no sample amqsprm amqsprmc

Getting Reference Messages from a queue (4) amqsgrma no sample amqsgrm amqsgrmc

Reference Message channel exit (4) amqsqrma amqsxrma no sample amqsxrm no sample

Browsing first 20 characters of a message amqsgbr0 amq0gbr0 amqsgbr amqsgbrc

Browsing complete messages amqsbcg0 no sample amqsbcg amqsbcgc

Using a shared input queue amqsinqa amqminqx
amqiinqx
amqvinqx

amqsinq amqsinqc

Using an exclusive input queue amqstrg0 amq0req0 amqstrg amqstrgc

Using the MQINQ call amqsinqa amqminqx
amqiinqx
amqvinqx

amqsinq no sample

Using the MQSET call amqsseta amqmsetx
amqisetx
amqvsetx

amqsset amqssetc

Using a reply-to queue amqsreq0 amq0req0 amqsreq amqsreqc

Requesting message exceptions amqsreq0 amq0req0 amqsreq no sample

Accepting a truncated message amqsgbr0 amq0gbr0 amqsgbr no sample

Using a resolved queue name amqsgbr0 amq0gbr0 amqsgbr no sample

Triggering a process amqstrg0 no sample amqstrg amqstrgc

Using data conversion (5) no sample no sample no sample

WebSphere MQ (coordinating XA-compliant
database managers) accessing a single database
using SQL

amqsxas0.sqc DB2®
amqsxas0.ec Informix®

amq0xas0.sqb no sample no sample

WebSphere MQ (coordinating XA-compliant
database managers) accessing two databases
using SQL

amqsxag0.c
amqsxab0.sqc
amqsxaf0.sqc

amq0xag0.cbl
amq0xab0.sqb
amq0xaf0.sqb

no sample no sample

CICS® transaction (6) amqscic0.ccs no sample amqscic0 no sample

Encina transaction (4) amqsxae0 no sample amqsxae0 no sample

TUXEDO transaction to put messages (7) amqstxpx no sample no sample no sample

TUXEDO transaction to get messages (7) amqstxgx no sample no sample no sample

Server for TUXEDO (7) amqstxsx no sample no sample no sample

Dead-letter queue handler Directory
./tools/c/Samples/dlq

(8)

no sample amqsdlq no sample

From an MQI client, putting a message no sample no sample no sample amqsputc

From an MQI client, getting a message no sample no sample no sample amqsgetc

Connecting to the queue manager using
MQCONNX

amqscnxc no sample no sample amqscnxc

Using API exits amqsaxe0 no sample amqsaxe no sample

Cluster workload balancing exit amqswlm0 no sample amqswlm no sample

Putting messages asynchronously and getting
status using the MQSTAT call

amqsapt0 no sample amqsapt amqsaptc

Reconnectable clients

amqsphac
amqsghac
amqsmhac

no sample not applicable

amqsphac
amqsghac
amqsmhac

Using message consumers to asynchronously
consume messages from multiple queues

amqscbf0 no sample amqscbf amqscbfc

Specifying SSL/TLS connection information on
MQCONNX

amqssslc no sample not applicable amqssslc

Notes:

1. The executable version of the WebSphere MQ client samples share the same source as the samples that run in a server environment.

2. Compile programs beginning ‘amqm' with the Micro Focus COBOL compiler, those beginning ‘amqi' with the IBM® COBOL compiler, and
those beginning ‘amq0' with either.

3. The executable versions of the WebSphere MQ client samples are not available on WebSphere MQ for HP-UX.

4. Supported on WebSphere MQ for AIX®, WebSphere MQ for HP-UX, and WebSphere MQ for Solaris only.

5. On WebSphere MQ for AIX, WebSphere MQ for HP-UX, and WebSphere MQ for Solaris this program is called amqsvfc0.c

6. CICS is supported by WebSphere MQ for AIX and WebSphere MQ for HP-UX only.

7. TUXEDO is not supported by WebSphere MQ for Linux on System p.

8. The source for the dead-letter queue handler is made up of several files and is provided in a separate directory.

Detailed information about support for UNIX systems is available on the WebSphere MQ system requirements page
athttp://www.ibm.com/software/integration/wmq/requirements/.

Page 279 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

4.1.1.2. Samples for WebSphere MQ for Windows

Table 1 shows the techniques demonstrated by the sample programs for WebSphere® MQ for Windows. The table lists which C and COBOL source files are
provided, and whether a server or client executable is included.

Parent topic: Features demonstrated in the sample programs

This build: January 26, 2011 11:21:19

Table 1. WebSphere MQ for Windows sample programs demonstrating use of the MQI (C and COBOL)

Technique C (source) COBOL

(source)

Server

(C executable)

Client

(C executable)

Using the publish/subscribe interface amqspuba.c amqssuba.c
amqssbxa.c

no sample amqspub
amqssub amqssbx

no sample

Putting messages using the MQPUT call amqsput0 amq0put0 amqsput amqsputc

Putting a single message using the MQPUT1 call amqsinqa amqsecha amqminq2
amqmech2
amqiinq2
amqiech2

amqsinq amqsech amqsinqc
amqsechc

Putting messages to a distribution list amqsptl0 amq0ptl0.cbl amqsptl amqsptlc

Replying to a request message amqsinqa amqminq2
amqiinq2

amqsinq amqsinqc

Getting messages (no wait) amqsgbr0 amq0gbr0 amqsgbr amqsgbrc

Getting messages (wait with a time limit) amqsget0 amq0get0 amqsget amqsgetc

Getting messages (unlimited wait) amqstrg0 no sample amqstrg amqstrgc

Getting messages (with data conversion) amqsecha no sample amqsech amqsechc

Putting Reference Messages to a queue amqsprma no sample amqsprm amqsprmc

Getting Reference Messages from a queue amqsgrma no sample amqsgrm amqsgrmc

Reference Message channel exit amqsqrma amqsxrma no sample amqsxrm no sample

Browsing first 20 characters of a message amqsgbr0 amq0gbr0 amqsgbr amqsgbrc

Browsing complete messages amqsbcg0 no sample amqsbcg amqsbcgc

Using a shared input queue amqsinqa amqminq2
amqiinq2

amqsinq amqsinqc

Using an exclusive input queue amqstrg0 amq0req0 amqstrg amqstrgc

Using the MQINQ call amqsinqa amqminq2
amqiinq2

amqsinq amqsinqc

Using the MQSET call amqsseta amqmset2
amqiset2

amqsset amqssetc

Using a reply-to queue amqsreq0 amq0req0 amqsreq amqsreqc

Requesting message exceptions amqsreq0 amq0req0 amqsreq amqsreqc

Accepting a truncated message amqsgbr0 amq0gbr0 amqsgbr amqsgbrc

Using a resolved queue name amqsgbr0 amq0gbr0 amqsgbr amqsgbrc

Triggering a process amqstrg0 no sample amqstrg amqstrgc

Using data conversion amqsvfc0 no sample no sample no sample

WebSphere MQ (coordinating XA-compliant
database managers) accessing a single database
using SQL

amqsxas0.sqc
DB2
amqsxas0.ec
Informix

amq0xas0.sqb no sample no sample

WebSphere MQ (coordinating XA-compliant
database managers) accessing two databases
using SQL

amqsxag0.c
amqsxab0.sqc
amqsxaf0.sqc

amq0xag0.cbl
amq0xab0.sqb
amq0xaf0.sqb

no sample no sample

TUXEDO transaction to put messages amqstxpx no sample no sample no sample

TUXEDO transaction to get messages amqstxgx no sample no sample no sample

Server for TUXEDO amqstxsx no sample no sample no sample

Dead-letter queue handler Directory
./tools/c/Samples/dlq

(1)

no sample amqsdlq no sample

From a WebSphere MQ client, putting a message no sample no sample no sample amqsputc

From a WebSphere MQ client, getting a message no sample no sample no sample amqsgetc

Connecting to the queue manager using
MQCONNX

amqscnxc no sample no sample amqscnxc

Using API exits amqsaxe0 no sample amqsaxe no sample

Cluster workload balancing amqswlm0 no sample amqswlm no sample

SSPI security routines amqsspin no sample amqrspin.dll amqrspin.dll

Putting messages asynchronously and getting
status using the MQSTAT call

amqsapt0 no sample amqsapt amqsaptc

Reconnectable clients

amqsphac
amqsghac
amqsmhac

no sample Not applicable

amqsphac
amqsghac
amqsmhac

Using message consumers to asynchronously
consume messages from multiple queues

amqscbf0 no sample amqscbf amqscbfc

Specifying SSL/TLS connection information on
MQCONNX

amqssslc no sample not applicable amqssslc

Notes:

1. The source for the dead-letter queue handler is made up of several files and is provided in a separate directory.

Page 280 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17020_

4.1.1.3. Visual Basic samples for WebSphere MQ for Windows

Table 1 shows the techniques demonstrated by the WebSphere® MQ for Windows sample programs.

A project can contain several files. When you open a project within Visual Basic, the other files are loaded automatically. No executable programs are
provided.

All the sample projects, except mqtrivc.vbp, are set up to work with the WebSphere MQ server. To find out how to change the sample projects to work with
the WebSphere MQ clients see Preparing Visual Basic programs.

Parent topic: Features demonstrated in the sample programs

This build: January 26, 2011 11:21:19

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17030_

4.1.1.4. Samples for WebSphere MQ for i5/OS

Table 1 shows the techniques demonstrated by the WebSphere® MQ for i5/OS® sample programs. Some techniques occur in more than one sample
program, but only one program is listed in the table.

Table 1. WebSphere MQ for Windows sample programs demonstrating use of the MQI (Visual Basic)

Technique Project file name

Putting messages using the MQPUT call amqsputb.vbp

Getting messages using the MQGET call amqsgetb.vbp

Browsing a queue using the MQGET call amqsbcgb.vbp

Simple MQGET and MQPUT sample (client) mqtrivc.vbp

Simple MQGET and MQPUT sample (server) mqtrivs.vbp

Putting and getting strings and user-defined structures using MQPUT and MQGET strings.vbp

Using PCF structures to start and stop a channel pcfsamp.vbp

Creating a queue using the MQAI amqsaicq.vbp

Listing a queue manager’s queues using the MQAI amqsailq.vbp

Monitoring events using the MQAI amqsaiem.vbp

Table 1. WebSphere MQ for i5/OS sample programs demonstrating use of the MQI (C and COBOL)

Technique C (source) (1) COBOL (source)

(2)

RPG (source)

(3)

Putting messages using the MQPUT call AMQSPUT0 AMQ0PUT4 AMQ3PUT4

Putting messages from a data file using the MQPUT call AMQSPUT4 no sample no sample

Putting a single message using the MQPUT1 call AMQSINQ4,
AMQSECH4

AMQ0INQ4,
AMQ0ECH4

AMQ3INQ4,
AMQ3ECH4

Putting messages to a distribution list AMQSPTL4 no sample no sample

Replying to a request message AMQSINQ4 AMQ0INQ4 AMQ3INQ4

Getting messages (no wait) AMQSGBR4 AMQ0GBR4 AMQ3GBR4

Getting messages (wait with a time limit) AMQSGET4 AMQ0GET4 AMQ3GET4

Getting messages (unlimited wait) AMQSTRG4 no sample AMQ3TRG4

Getting messages (with data conversion) AMQSECH4 AMQ0ECH4 AMQ3ECH4

Putting Reference Messages to a queue AMQSPRM4 no sample no sample

Getting Reference Messages from a queue AMQSGRM4 no sample no sample

Reference Message channel exit AMQSQRM4,
AMQSXRM4

no sample no sample

Message exit AMQSCMX4 no sample no sample

Browsing first 49 characters of a message AMQSGBR4 AMQ0GBR4 AMQ3GBR4

Browsing complete messages AMQSBCG4 no sample no sample

Using a shared input queue AMQSINQ4 AMQ0INQ4 AMQ3INQ4

Using an exclusive input queue AMQSREQ4 AMQ0REQ4 AMQ3REQ4

Using the MQINQ call AMQSINQ4 AMQ0INQ4 AMQ3INQ4

Using the MQSET call AMQSSET4 AMQ0SET4 AMQ3SET4

Using a reply-to queue AMQSREQ4 AMQ0REQ4 AMQ3REQ4

Requesting message exceptions AMQSREQ4 AMQ0REQ4 AMQ3REQ4

Accepting a truncated message AMQSGBR4 AMQ0GBR4 AMQ3GBR4

Using a resolved queue name AMQSGBR4 AMQ0GBR4 AMQ3GBR4

Triggering a process AMQSTRG4 no sample AMQ3TRG4

Trigger server AMQSERV4 no sample AMQ3SRV4

Using a trigger server (including CICS® transactions) AMQSERV4 no sample AMQ3SRV4

Using data conversion AMQSVFC4 no sample no sample

Using API exits AMQSAXE0 no sample no sample

Cluster workload balancing AMQSWLM0 no sample no sample

Putting messages asynchronously and getting status using the MQSTAT
call

AMQSAPT0 no sample no sample

Notes:

Page 281 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

In addition to these, the WebSphere MQ for i5/OS sample option includes a sample data file, which you use as input to the sample programs, AMQSDATA
and sample CL programs that demonstrate administration tasks. The CL samples are described in the WebSphere MQ for i5/OS System Administration
Guide. You could use the sample CL program amqsamp4 to create queues to use with the sample programs described in this chapter.

Parent topic: Features demonstrated in the sample programs

This build: January 26, 2011 11:21:20

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17040_

4.1.2. Preparing and running the sample programs

The following sections help you to find the samples that you need to run on the different platforms.

i5/OS
The source for WebSphere MQ for i5/OS® sample programs are provided in library QMQMSAMP as members of QCSRC, QCLSRC, QCBLLESRC, and
QRPGLESRC.

UNIX systems

Windows systems

Running the sample programs

Parent topic: Sample programs (platforms except z/OS)

This build: January 26, 2011 11:21:20

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17050_

4.1.2.1. i5/OS

The source for WebSphere® MQ for i5/OS® sample programs are provided in library QMQMSAMP as members of QCSRC, QCLSRC, QCBLLESRC, and
QRPGLESRC.

To run the samples use either the C executable versions, supplied in the library QMQM, or compile them as you would any other WebSphere MQ application.
For more information see Running the sample programs.

Parent topic: Preparing and running the sample programs

This build: January 26, 2011 11:21:20

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17060_

4.1.2.2. UNIX systems

The WebSphere MQ on UNIX systems sample files are in the directories listed in Table 1 if the defaults were used at installation time. To run the samples,
either use the executable versions supplied or compile the source versions as you would any other applications, using an ANSI compiler. For information on
how to do this, see Running the sample programs.

Parent topic: Preparing and running the sample programs

This build: January 26, 2011 11:21:20

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17070_

4.1.2.3. Windows systems

1. Source for the C samples is in the file QMQMSAMP/QCSRC. Include files exist as members in the file QMQM/H.

2. Source for the COBOL samples are in the files QMQMSAMP/QCBLLESRC. The members are named AMQ0xxx4, where xxx indicates the

sample function.

3. Source for the RPG samples is in QMQMSAMP/QRPGLESRC. Members are named AMQ3xxx4, where xxx indicates the sample function.

Copy members exist in QMQM/QRPGLESRC. Each member name has the suffix G.

Table 1. Where to find the samples for WebSphere MQ on UNIX systems

Content Directory

source files ⁄mqmtop⁄samp

dead-letter queue handler source files ⁄mqmtop⁄samp⁄dlq

executable files ⁄mqmtop⁄samp⁄bin

Note: For WebSphere® MQ for AIX® mqmtop is /usr⁄mqm; for WebSphere MQ for other UNIX systems mqmtop is /opt⁄mqm.

Table 1. Where to find the samples for WebSphere MQ for Windows

Content
Directory

Page 282 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Note:

1. 64-bit versions are available of some C executable file samples.

The WebSphere® MQ for Windows sample files are in the directories listed in Table 1 if the defaults were used at installation time; the installation drive
defaults to <c:>. To run the samples, either use the executable versions supplied or compile the source versions as you would any other WebSphere MQ for
Windows applications. For information on how to do this, see Running the sample programs.

Parent topic: Preparing and running the sample programs

This build: January 26, 2011 11:21:21

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17080_

4.1.2.4. Running the sample programs

Before you can run any of the sample programs, create a queue manager and set up the default definitions. This is explained in WebSphere MQ System
Administration Guide.

On all platforms except i5/OS
The samples need a set of queues to work with. Either use your own queues or run the sample MQSC file amqscos0.tst to create a set.

On i5/OS
You can use your own queues when you run the samples, or you can run the sample program AMQSAMP4 to create some sample queues. The source
for this program is shipped in file QCLSRC in library QMQMSAMP. It can be compiled using the CRTCLPGM command.

Length of queue name
For the COBOL sample programs, when you pass queue names as parameters, you must provide 48 characters, padding with blank characters if
necessary. Anything other than 48 characters causes the program to fail with reason code 2085.

Inquire, Set, and Echo examples
For the Inquire, Set, and Echo examples, the sample definitions trigger the C versions of these samples.

Parent topic: Preparing and running the sample programs

This build: January 26, 2011 11:21:21

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17090_

4.1.2.4.1. On all platforms except i5/OS®

The samples need a set of queues to work with. Either use your own queues or run the sample MQSC file amqscos0.tst to create a set.

To do this on UNIX systems, enter:

� runmqsc QManagerName <amqscos0.tst >⁄tmp⁄sampobj.out

Check the sampobj.out file to ensure that there are no errors.

To do this on Windows systems enter:

� runmqsc QManagerName <amqscos0.tst > sampobj.out

Check the sampobj.out file to ensure that there are no errors. This file is in your current directory.

You can now run the sample applications. Enter the name of the sample application followed by any parameters, for example:

� amqsput myqueue qmanagername

where myqueue is the name of the queue on which the messages are going to be put, and qmanagername is the queue manager that owns myqueue.

See the description of the individual samples for information on the parameters that each of them expects.

Parent topic: Running the sample programs

This build: January 26, 2011 11:21:21

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17100_

4.1.2.4.2. On i5/OS®

You can use your own queues when you run the samples, or you can run the sample program AMQSAMP4 to create some sample queues. The source for this

C source code
<install_location>\Tools\C\Samples

Source code for dead-letter
handler sample <install_location>\Tools\C\Samples\DLQ

COBOL source code
<install_location>\Tools\Cobol\Samples

C executable files1
<install_location>\ Tools\C\Samples\Bin (32-bit versions)
<install_location>\ Tools\C\Samples\Bin64 (64-bit versions)

Sample MQSC files
<install_location>\Tools\MQSC\Samples

Visual Basic source code
<install_location>\Tools\VB\SampVB6

.NET samples
<install_location>\Tools\dotnet\Samples

Page 283 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

program is shipped in file QCLSRC in library QMQMSAMP. It can be compiled using the CRTCLPGM command.

To call one of the sample programs using data from member PUT in file AMQSDATA of library QMQMSAMP, use a command like:

 CALL PGM(QMQM/AMQSPUT4) PARM('QMQMSAMP/AMQSDATA(PUT)')

The sample data only applies to the C/400® sample programs.

Note: For a compiled module to use the IFS file system, specify the option SYSIFCOPT(*IFSIO) on CRTCMOD, then the file name, passed as a parameter,
must be specified in the following format:

home/me/myfile

Parent topic: Running the sample programs

This build: January 26, 2011 11:21:21

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17110_

4.1.2.4.3. Length of queue name

For the COBOL sample programs, when you pass queue names as parameters, you must provide 48 characters, padding with blank characters if necessary.
Anything other than 48 characters causes the program to fail with reason code 2085.

Parent topic: Running the sample programs

This build: January 26, 2011 11:21:21

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17120_

4.1.2.4.4. Inquire, Set, and Echo examples

For the Inquire, Set, and Echo examples, the sample definitions trigger the C versions of these samples.

If you want the COBOL versions you must change the process definitions:

� SYSTEM.SAMPLE.INQPROCESS

� SYSTEM.SAMPLE.SETPROCESS

� SYSTEM.SAMPLE.ECHOPROCESS

On Windows systems and UNIX do this by editing the amqscos0.tst file and changing the C executable file names to the COBOL executable file names before
using the runmqsc command above.

On i5/OS®, you can use the CHGMQMPRC command (described in the WebSphere MQ for i5/OS System Administration Guide), or edit and run AMQSAMP4
with the alternative definition.

Parent topic: Running the sample programs

This build: January 26, 2011 11:21:21

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17130_

4.1.3. The API exit sample program

The sample API exit generates an MQI trace to a user-specified file with a prefix defined in the MQAPI_TRACE_LOGFILE environment variable. For more
information about API exits, see Using and writing API exits.

Source

amqsaxe0.c

Binary

amqsaxe

Configuring for the sample exit

Parent topic: Sample programs (platforms except z/OS)

This build: January 26, 2011 11:21:32

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17950_

4.1.3.1. Configuring for the sample exit

1. Add the following to the qm.ini file (or the registry on Windows). See the WebSphere MQ System Administration Guide for how to do this.

Platforms other than Windows

ApiExitLocal:

 Sequence=100

 Function=EntryPoint

 Module=install_dir/samp/bin/amqsaxe

 Name=SampleApiExit

Page 284 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

where install_dir is the directory where WebSphere® MQ was installed.

Windows

ApiExitLocal:

 Sequence=100

 Function=EntryPoint

 Module=install_dir\Tools\c\Samples\bin\amqsaxe

 Name=SampleApiExit

where install_dir is the directory where WebSphere MQ was installed.

2. Set the environment variable

MQAPI_TRACE_LOGFILE=/tmp/MqiTrace

3. Run your application.

Output files will appear in the /tmp directory with names like: MqiTrace.<pid>.<tid>.log

Parent topic: The API exit sample program

This build: January 26, 2011 11:21:32

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17960_

4.1.4. The Asynchronous consume sample program

The amqscbf sample program demonstrates the use of MQCB and MQCTL to consume messages from multiple queues asynchronously.

amqscbf is provided as C source code, and a binary client and server executable on Windows and Unix platforms.

The program is started from the command line and takes the following optional parameters:

Usage: [Options] <Queue Name> { <Queue Name> }

 where Options are:

 -m <Queue Manager Name>

 -o <Open options>

 -r <Reconnect Type>

 d Reconnect Disabled

 r Reconnect

 m Reconnect Queue Manager

Provide more than one queue name to read messages from multiple queues (a maximum of ten queues are supported by the sample.)

Note: Reconnect type is only valid for client programs.

Example
The example shows amqscbf run as a server program reading one message from QL1 and then being stopped.

Use WebSphere MQ Explorer to put a test message on QL1. Stop the program by pressing enter.

C:\>amqscbf QL1

Sample AMQSCBF0 start

Press enter to end

Message Call (9 Bytes) :

Message 1

Sample AMQSCBF0 end

What amqscbf demonstrates

The sample shows how to read messages from multiple queues in the order of their arrival. This would require a lot more code using synchronous MQGET. In
the case of asynchronous consume, no polling is required, and thread and storage management is performed by WebSphere MQ. A "real world" example
would need to deal with errors; in the sample errors are written out to the console.

The sample code has the following steps,

1. Define the single message consumption callback function,

void MessageConsumer(MQHCONN hConn,

 MQMD * pMsgDesc,

 MQGMO * pGetMsgOpts,

 MQBYTE * Buffer,

 MQCBC * pContext)

{ ... }

2. Connect to the queue manager,

MQCONNX(QMName,&cno,&Hcon,&CompCode,&CReason);

3. Open the input queues, and associate each one with the MessageConsumer callback function,

 MQOPEN(Hcon,&od,O_options,&Hobj,&OpenCode,&Reason);

 cbd.CallbackFunction = MessageConsumer;

 MQCB(Hcon,MQOP_REGISTER,&cbd,Hobj,&md,&gmo,&CompCode,&Reason);

cbd.CallbackFunction does not need to be set for each queue; it is an input-only field. But you could associate a different callback function with each

queue.

4. Start consumption of the messages,

MQCTL(Hcon,MQOP_START,&ctlo,&CompCode,&Reason);

5. Wait until the user has pressed enter and then stop consumption of messages,

MQCTL(Hcon,MQOP_STOP,&ctlo,&CompCode,&Reason);

6. Finally disconnect from the queue manager,

MQDISC(&Hcon,&CompCode,&Reason);

Parent topic: Sample programs (platforms except z/OS)

Page 285 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

This build: January 26, 2011 11:22:06

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg19965_

4.1.5. The Asynchronous Put sample program

The asynchronous put sample program puts messages on a queue using the asynchronous MQPUT call and then retrieves status information using the
MQSTAT call. See Features demonstrated in the sample programs for the name of this program on different platforms.

Running the amqsapt sample

Design of the Asynchronous Put sample program
The program uses the MQOPEN call with the output options supplied, or with the MQOO_OUTPUT and MQOO_FAIL_IF_QUIESCING options to open the
target queue for putting messages.

Parent topic: Sample programs (platforms except z/OS)

This build: January 26, 2011 11:22:05

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg19960_

4.1.5.1. Running the amqsapt sample

This programs takes up to 6 parameters:

1. The name of the target queue (required)

2. The name of the queue manager (optional)

3. Open options (optional)

4. Close options (optional)

5. The name of the target queue manager (optional)

6. The name of the dynamic queue (optional)

If a queue manager is not specified, amqsapt connects to the default queue manager.

Parent topic: The Asynchronous Put sample program

This build: January 26, 2011 11:22:06

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg19970_

4.1.5.2. Design of the Asynchronous Put sample program

The program uses the MQOPEN call with the output options supplied, or with the MQOO_OUTPUT and MQOO_FAIL_IF_QUIESCING options to open the target
queue for putting messages.

If it cannot open the queue, the program outputs an error message containing the reason code returned by the MQOPEN call. To keep the program simple,
on this and on subsequent MQI calls, the program uses default values for many of the options.

For each line of input, the program reads the text into a buffer and uses the MQPUT call with MQPMO_ASYNC_REPONSE to create a datagram message
containing the text of that line and asynchronously put it to the target queue. The program continues until it reaches the end of the input or the MQPUT call
fails. If the program reaches the end of the input, it closes the queue using the MQCLOSE call.

The program then issues the MQSTAT call, returning an MQSTS structure, and displays messages containing the number of messages put successfully, the
number of messages put with a warning, and the number of failures.

Parent topic: The Asynchronous Put sample program

This build: January 26, 2011 11:22:06

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg19980_

4.1.6. The Browse sample programs

The Browse sample programs browse messages on a queue using the MQGET call.

See Features demonstrated in the sample programs for the names of these programs.

UNIX systems and Windows systems

i5/OS
Each program retrieves copies of all the messages on the queue that you specify when you call the program; the messages remain on the queue.

Design of the Browse sample program
The program opens the target queue using the MQOPEN call with the MQOO_BROWSE option. If it cannot open the queue, the program outputs an
error message containing the reason code returned by the MQOPEN call.

Page 286 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Parent topic: Sample programs (platforms except z/OS)

This build: January 26, 2011 11:21:22

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17230_

4.1.6.1. UNIX systems and Windows systems

The C version of the program takes 2 parameters

1. The name of the source queue (necessary)

2. The name of the queue manager (optional)

If a queue manager is not specified, it connects to the default one. For example, enter one of the following:

� amqsgbr myqueue qmanagername

� amqsgbrc myqueue qmanagername

� amq0gbr0 myqueue

where myqueue is the name of the queue that the messages will be viewed from, and qmanagername is the queue manager that owns myqueue.

If you omit the qmanagername, when running the C sample, it assumes that the default queue manager owns the queue.

The COBOL version does not have any parameters. It connects to the default queue manager and when you run it you are prompted:

Please enter the name of the target queue

Only the first 50 characters of each message are displayed, followed by - - - truncated when this is the case.

Parent topic: The Browse sample programs

This build: January 26, 2011 11:21:23

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17240_

4.1.6.2. i5/OS®

Each program retrieves copies of all the messages on the queue that you specify when you call the program; the messages remain on the queue.

You can use the supplied queue SYSTEM.SAMPLE.LOCAL; run the Put sample program first to put some messages on the queue. You can use the queue
SYSTEM.SAMPLE.ALIAS, which is an alias name for the same local queue. The program continues until it reaches the end of the queue or an MQI call fails.

The C samples let you specify the queue manager name, generally as the second parameter, in a similar fashion to the Windows systems samples. For
example:

CALL PGM(QMQM/AMQSTRG4) PARM('SYSTEM.SAMPLE.TRIGGER' 'QM01')

If a queue manager is not specified, it connects to the default one. This is also relevant to the RPG samples. However, with the RPG samples you must
supply a queue manager name rather than allowing it to default.
Parent topic: The Browse sample programs

This build: January 26, 2011 11:21:23

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17250_

4.1.6.3. Design of the Browse sample program

The program opens the target queue using the MQOPEN call with the MQOO_BROWSE option. If it cannot open the queue, the program outputs an error
message containing the reason code returned by the MQOPEN call.

For each message on the queue, the program uses the MQGET call to copy the message from the queue, then displays the data contained in the message.
The MQGET call uses these options:

MQGMO_BROWSE_NEXT

After the MQOPEN call, the browse cursor is positioned logically before the first message in the queue, so this option causes the first message to be
returned when the call is first made.

MQGMO_NO_WAIT

The program does not wait if there are no messages on the queue.

MQGMO_ACCEPT_TRUNCATED_MSG

The MQGET call specifies a buffer of fixed size. If a message is longer than this buffer, the program displays the truncated message, together with a
warning that the message has been truncated.

The program demonstrates how you must clear the MsgId and CorrelId fields of the MQMD structure after each MQGET call, because the call sets these

fields to the values contained in the message it retrieves. Clearing these fields means that successive MQGET calls retrieve messages in the order in which
the messages are held in the queue.

The program continues to the end of the queue; at this point the MQGET call returns the MQRC_NO_MSG_AVAILABLE reason code and the program displays
a warning message. If the MQGET call fails, the program displays an error message that contains the reason code.

The program then closes the queue using the MQCLOSE call.

Parent topic: The Browse sample programs

This build: January 26, 2011 11:21:23

Notices | Trademarks | Downloads | Library | Support | Feedback

Page 287 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17260_

4.1.7. The Browser sample program

The Browser sample program reads and writes both the message descriptor and the message content fields of all the messages on a queue.

The sample program is written as a utility, not just to demonstrate a technique. See Features demonstrated in the sample programs for the names of these
programs.

This program takes these parameters:

1. The name of the source queue

2. The name of the queue manager

3. An optional parameter for properties.

The first two input parameters for this program are mandatory. For example, enter one of the following:

� amqsbcg myqueue qmanagername

� amqsbcgc myqueue qmanagername

where myqueue is the name of the queue on which the messages are going to be browsed, and qmanagername is the queue manager that owns myqueue.

It reads each message from the queue and writes the following to stdout:

� Formatted message descriptor fields

� Message data (dumped in hex and, where possible, character format)

Permissible values for the property parameter are:

The program is restricted to printing the first 65535 characters of the message, and fails with the reason truncated msg if a longer message is read.

See the WebSphere MQ System Administration Guide for an example of the output from this utility.

Parent topic: Sample programs (platforms except z/OS)

This build: January 26, 2011 11:21:23

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17270_

4.1.8. The CICS transaction sample

A sample CICS® transaction program is provided, named amqscic0.ccs for source code and amqscic0 for the executable version. You can build transactions
using the standard CICS facilities.

See Building a WebSphere MQ application for details on the commands needed for your platform.

The transaction reads messages from the transmission queue SYSTEM.SAMPLE.CICS.WORKQUEUE on the default queue manager and places them onto the
local queue, the name of which is contained in the transmission header of the message. Any failures are sent to the queue SYSTEM.SAMPLE.CICS.DLQ.

Note: You can use a sample MQSC script amqscic0.tst to create these queues and sample input queues.

Parent topic: Sample programs (platforms except z/OS)

This build: January 26, 2011 11:21:30

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17800_

4.1.9. The Connect sample program

The Connect sample program allows you to explore the MQCONNX call and its options from a client. The sample connects to the queue manager using the
MQCONNX call, inquires about the name of the queue manager using the MQINQ call, and displays it.

Note: The Connect sample program is a client sample. You can compile and run it on a server but the function is meaningful only on a client, and only client
executables are supplied.

Running the amqscnxc sample

Value Behavior

0 Default behaviour, as it was for V6. The properties that get delivered to the application depend on the PropertyControl queue
attribute that the message is retrieved from.

1 A message handle is created and used with the MQGET. Properties of the message, except those contained in the message
descriptor (or extension) are displayed in a similar fashion to the message descriptor. For example:

****Message properties****

 <property name> : <property value>

Or if no properties are available:

****Message properties****

 None

Numeric values are displayed using printf, string values are surrounding in single quotes, and byte strings are surrounded

with X and single quotes, as for the message descriptor.

2 MQGMO_NO_PROPERTIES is specified, so that only message descriptor properties will be returned.

3 MQGMO_PROPERTIES_FORCE_MQRFH2 is specified, so that all properties are returned in the message data.

4 MQGMO_PROPERTIES_COMPATIBILITY is specified, so that all properties can be returned depending on whether a version 6
property is included, otherwise the properties are discarded.

Page 288 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Parent topic: Sample programs (platforms except z/OS)

This build: January 26, 2011 11:21:31

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17930_

4.1.9.1. Running the amqscnxc sample

The command-line syntax of the Connect sample program is:

amqscnxc [-x ConnName [-c SvrconnChannelName]] [QMgrName]

The parameters are optional and their order is not important with the exception of QMgrName, which, if specified, must come last. The parameters are:

ConnName

The TCP/IP connection name of the server queue manager

SvrconnChannelName

The name of the server connection channel

QMgrName

The name of the target queue manager

If you do not specify the TCP/IP connection name, MQCONNX is issued with the ClientConnPtr set to NULL. If you specify the TCP/IP connection name but
not the server connection channel (the reverse is not allowed), the sample uses the name SYSTEM.DEF.SVRCONN. If you do not specify the target queue
manager, the sample connects to whichever queue manager is listening at the given TCP/IP connection name.

Note: If you enter a question mark as the only parameter, or if you enter incorrect parameters, you get a message explaining how to use the program.

If you run the sample with no command-line options, the contents of the MQSERVER environment variable are used to determine the connection
information. (In this example MQSERVER is set to SYSTEM.DEF.SVRCONN⁄TCP⁄machine.site.company.com.) You see output like this:

Sample AMQSCNXC start

Connecting to the default queue manager

with no client connection information specified.

Connection established to queue manager machine

Sample AMQSCNXC end

If you run the sample and provide a TCP/IP connection name and a server connection channel name but no target queue manager name, like this:

amqscnxc -x machine.site.company.com -c SYSTEM.ADMIN.SVRCONN

the default queue manager name is used and you see output like this:

Sample AMQSCNXC start

Connecting to the default queue manager

using the server connection channel SYSTEM.ADMIN.SVRCONN

on connection name machine.site.company.com.

Connection established to queue manager MACHINE

Sample AMQSCNXC end

If you run the sample and provide a TCP/IP connection name and a target queue manager name, like this:

amqscnxc -x machine.site.company.com MACHINE

you see output like this:

Sample AMQSCNXC start

Connecting to queue manager MACHINE

using the server connection channel SYSTEM.DEF.SVRCONN

on connection name machine.site.company.com.

Connection established to queue manager MACHINE

Sample AMQSCNXC end

Parent topic: The Connect sample program

This build: January 26, 2011 11:21:32

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17940_

4.1.10. The Data-Conversion sample program

The data-conversion sample program is a skeleton of a data conversion exit routine.

See Features demonstrated in the sample programs for the names of these programs.

Design of the data-conversion sample
Each data-conversion exit routine converts a single named message format. This skeleton is intended as a wrapper for code fragments generated by
the data-conversion exit generation utility program.

Parent topic: Sample programs (platforms except z/OS)

This build: January 26, 2011 11:21:27

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17610_

4.1.10.1. Design of the data-conversion sample

Each data-conversion exit routine converts a single named message format. This skeleton is intended as a wrapper for code fragments generated by the

Page 289 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

data-conversion exit generation utility program.

The utility produces one code fragment for each data structure; several such structures make up a format, so several code fragments are added to this
skeleton to produce a routine to do data conversion of the entire format.

The program then checks whether the conversion is a success or failure, and returns the values required to the caller.

Parent topic: The Data-Conversion sample program

This build: January 26, 2011 11:21:27

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17620_

4.1.11. Database coordination samples

Two samples are provided that demonstrate how WebSphere® MQ can coordinate both WebSphere MQ updates and database updates within the same unit
of work:

1. AMQSXAS0 (in C) or AMQ0XAS0 (in COBOL), which updates a single database within a WebSphere MQ unit of work.

2. AMQSXAG0 (in C) or AMQ0XAG0 (in COBOL), AMQSXAB0 (in C) or AMQ0XAB0 (in COBOL), and AMQSXAF0 (in C) or AMQ0XAF0 (in COBOL), which
together update two databases within a WebSphere MQ unit of work, showing how multiple databases can be accessed. These samples are provided to
show the use of the MQBEGIN call, mixed SQL and WebSphere MQ calls, and where and when to connect to a database.

Figure 1 shows how the samples provided are used to update databases:

Figure 1. The database coordination samples

The programs read a message from a queue (under syncpoint), then, using the information in the message, obtain the relevant information from the
database and update it. The new status of the database is then printed.

The program logic is as follows:

1. Use the name of the input queue from the program argument

2. Connect to the default queue manager (or optionally the supplied name in C) using MQCONN

3. Open a queue (using MQOPEN) for input while there are no failures

4. Start a unit of work using MQBEGIN

5. Get the next message (using MQGET) from the queue under syncpoint

6. Get information from databases

7. Update information from databases

8. Commit changes using MQCMIT

9. Print updated information (no message being available counts as a failure, and the loop ends)

10. Close the queue using MQCLOSE

11. Disconnect from the queue using MQDISC

SQL cursors are used in the samples, so that reads from the databases (that is, multiple instances) are locked while a message is being processed, allowing
multiple instances of these programs to run simultaneously. The cursors are explicitly opened, but implicitly closed by the MQCMIT call.

The single database sample (AMQSXAS0 or AMQ0XAS0) has no SQL CONNECT statements and the connection to the database is implicitly made by
WebSphere MQ with the MQBEGIN call. The multiple database sample (AMQSXAG0 or AMQ0XAG0, AMQSXAB0 or AMQ0XAB0, and AMQSXAF0 or AMQ0XAF0)
has SQL CONNECT statements, as some database products allow only one active connection. If this is not the case for your database product, or if you are
accessing a single database in multiple database products, the SQL CONNECT statements can be removed.

The samples are prepared with the IBM® DB2® database product, so you might need to modify them to work with other database products.

The SQL error checking uses routines in UTIL.C and CHECKERR.CBL supplied by DB2. These must be compiled or replaced before compiling and linking.

Note: If you are using the Micro Focus COBOL source CHECKERR.MFC for SQL error checking, you must change the program ID to uppercase, that is
CHECKERR, for AMQ0XAS0 to link correctly.

Page 290 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Creating the databases and tables
Create the databases and tables before compiling the samples.

Precompiling, compiling, and linking the samples
Precompile the .SQC files (in C) and .SQB files (in COBOL), and bind them against the appropriate database to produce the .C or .CBL files. To do this,
use the usual method for your database product, as shown below.

Running the samples

Parent topic: Sample programs (platforms except z/OS)

This build: January 26, 2011 11:21:29

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17710_

4.1.11.1. Creating the databases and tables

Create the databases and tables before compiling the samples.

To create the databases, use the usual method for your database product, for example:

 DB2 CREATE DB MQBankDB

 DB2 CREATE DB MQFeeDB

Create the tables using SQL statements as follows:

In C:

EXEC SQL CREATE TABLE MQBankT(Name VARCHAR(40) NOT NULL,

 Account INTEGER NOT NULL,

 Balance INTEGER NOT NULL,

 PRIMARY KEY (Account));

EXEC SQL CREATE TABLE MQBankTB(Name VARCHAR(40) NOT NULL,

 Account INTEGER NOT NULL,

 Balance INTEGER NOT NULL,

 Transactions INTEGER,

 PRIMARY KEY (Account));

EXEC SQL CREATE TABLE MQFeeTB(Account INTEGER NOT NULL,

 FeeDue INTEGER NOT NULL,

 TranFee INTEGER NOT NULL,

 Transactions INTEGER,

 PRIMARY KEY (Account));

In COBOL:

 EXEC SQL CREATE TABLE

 MQBankT(Name VARCHAR(40) NOT NULL,

 Account INTEGER NOT NULL,

 Balance INTEGER NOT NULL,

 PRIMARY KEY (Account))

 END-EXEC.

EXEC SQL CREATE TABLE

 MQBankTB(Name VARCHAR(40) NOT NULL,

 Account INTEGER NOT NULL,

 Balance INTEGER NOT NULL,

 Transactions INTEGER,

 PRIMARY KEY (Account))

 END-EXEC.

EXEC SQL CREATE TABLE

 MQFeeTB(Account INTEGER NOT NULL,

 FeeDue INTEGER NOT NULL,

 TranFee INTEGER NOT NULL,

 Transactions INTEGER,

 PRIMARY KEY (Account))

 END-EXEC.

Enter data into the tables using SQL statements as follows:

EXEC SQL INSERT INTO MQBankT VALUES ('Mr Fred Bloggs',1,0);

EXEC SQL INSERT INTO MQBankT VALUES ('Mrs S Smith',2,0);

EXEC SQL INSERT INTO MQBankT VALUES ('Ms Mary Brown',3,0); ⋮
EXEC SQL INSERT INTO MQBankTB VALUES ('Mr Fred Bloggs',1,0,0);

EXEC SQL INSERT INTO MQBankTB VALUES ('Mrs S Smith',2,0,0);

EXEC SQL INSERT INTO MQBankTB VALUES ('Ms Mary Brown',3,0,0); ⋮
EXEC SQL INSERT INTO MQFeeTB VALUES (1,0,50,0);

EXEC SQL INSERT INTO MQFeeTB VALUES (2,0,50,0);

EXEC SQL INSERT INTO MQFeeTB VALUES (3,0,50,0); ⋮

Note: For COBOL, use the same SQL statements but add END_EXEC at the end of each line.

Parent topic: Database coordination samples

This build: January 26, 2011 11:21:29

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17720_

4.1.11.2. Precompiling, compiling, and linking the samples

Page 291 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Precompile the .SQC files (in C) and .SQB files (in COBOL), and bind them against the appropriate database to produce the .C or .CBL files. To do this, use
the usual method for your database product, as shown below.

Precompiling in C

Precompiling in COBOL

Compiling and linking

Parent topic: Database coordination samples

This build: January 26, 2011 11:21:29

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17730_

4.1.11.2.1. Precompiling in C

db2 connect to MQBankDB

db2 prep AMQSXAS0.SQC

db2 connect reset

db2 connect to MQBankDB

db2 prep AMQSXAB0.SQC

db2 connect reset

db2 connect to MQFeeDB

db2 prep AMQSXAF0.SQC

db2 connect reset

Parent topic: Precompiling, compiling, and linking the samples

This build: January 26, 2011 11:21:29

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17740_

4.1.11.2.2. Precompiling in COBOL

db2 connect to MQBankDB

db2 prep AMQ0XAS0.SQB bindfile target ibmcob

db2 bind AMQ0XAS0.BND

db2 connect reset

db2 connect to MQBankDB

db2 prep AMQ0XAB0.SQB bindfile target ibmcob

db2 bind AMQ0XAB0.BND

db2 connect reset

db2 connect to MQFeeDB

db2 prep AMQ0XAF0.SQB bindfile target ibmcob

db2 bind AMQ0XAF0.BND

db2 connect reset

Parent topic: Precompiling, compiling, and linking the samples

This build: January 26, 2011 11:21:29

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17750_

4.1.11.2.3. Compiling and linking

The following sample commands use the symbol <DB2TOP>. <DB2TOP> represents the installation directory for the DB2® product.

� On AIX® the directory path is:

/usr/lpp/db2_05_00

� On HP-UX and Solaris the directory path is:

/opt/IBMdb2/V5.0

� On Windows systems the directory path depends on the path chosen when installing the product. If you chose the default settings the path is:

c:\sqllib

Note: Before issuing the link command on Windows systems, ensure that the LIB environment variable contains paths to the DB2 and WebSphere® MQ
libraries.

Copy the following files into a temporary directory:

� The amqsxag0.c file from your WebSphere MQ installation

Note: This file can be found in the following directories:

� On UNIX:

<MQMTOP>/samp/xatm

� On Windows systems:

<MQMTOP>\tools\c\samples\xatm

Page 292 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

� The .c files that you have obtained by precompiling the .sqc source files, amqsxas0.sqc, amqsxaf0.sqc, and amqsxab0.sqc

� The files util.c and util.h from your DB2 installation.

Note: These files can be found in the directory:

<DB2TOP>/samples/c

Build the object files for each .c file using the following compiler command for the platform that you are using:

� AIX

xlc_r -I<MQMTOP>/inc -I<DB2TOP>/include -c -o

 <FILENAME>.o <FILENAME>.c

� HP-UX

cc -Aa +z -I<MQMTOP>/inc -I<DB2TOP>/include -c -o

 <FILENAME>.o <FILENAME>.c

� Solaris

cc -Aa -KPIC -mt -I<MQMTOP>/inc -I<DB2TOP>/include -c -o

 <FILENAME>.o <FILENAME>.c

� Windows systems

cl /c /I<MQMTOP>\tools\c\include /I<DB2TOP>\include

 <FILENAME>.c

Build the amqsxag0 executable using the following link command for the platform that you are using:

� AIX

xlc_r -H512 -T512 -L<DB2TOP>/lib -ldb2 -L<MQMTOP>/lib

 -lmqm util.o amqsxaf0.o amqsxab0.o amqsxag0.o -o amqsxag0

� HP-UX Revision 11i

ld -E -L<DB2TOP>/lib -ldb2 -L<MQMTOP>/lib -lmqm -lc -lpthread -lcl

 /lib/crt0.o util.o amqsxaf0.o amqsxab0.o amqsxag0.o -o amqsxag0

� Solaris

cc -mt -L<DB2TOP>/lib -ldb2 -L<MQMTOP>/lib

 -lmqm -lmqmzse-lmqmcs -lthread -lsocket -lc -lnsl -ldl util.o

 amqsxaf0.o amqsxab0.o amqsxag0.o -o amqsxag0

� Windows systems

link util.obj amqsxaf0.obj amqsxab0.obj amqsxag0.obj mqm.lib db2api.lib

 /out:amqsxag0.exe

Build the amqsxas0 executable using the following compile and link commands for the platform that you are using:

� AIX

xlc_r -H512 -T512 -L<DB2TOP>/lib -ldb2

 -L<MQMTOP>/lib -lmqm util.o amqsxas0.o -o amqsxas0

� HP-UX Revision 11i

ld -E -L<DB2TOP>/lib -ldb2 -L<MQMTOP>/lib -lmqm -lc -lpthread

 -lcl /lib/crt0.o util.o amqsxas0.o -o amqsxas0

� Solaris

cc -mt -L<DB2TOP>/lib -ldb2-L<MQMTOP>/lib

 -lqm -lmqmzse -lmqmcs -lthread -lsocket -lc -lnsl -ldl util.o

 amqsxas0.o -o amqsxas0

� Windows systems

link util.obj amqsxas0.obj mqm.lib db2api.lib /out:amqsxas0.exe

Additional information

If you are working on AIX or HP-UX and want to access Oracle, use the xlc_r compiler and link to libmqm_r.a.

Parent topic: Precompiling, compiling, and linking the samples

This build: January 26, 2011 11:21:29

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17760_

4.1.11.3. Running the samples

Before you run the samples, configure the queue manager with the database product that you are using. For information about how to do this, see the
WebSphere MQ System Administration Guide.

C samples

COBOL samples

Parent topic: Database coordination samples

This build: January 26, 2011 11:21:29

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17770_

4.1.11.3.1. C samples

Page 293 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Messages must be in the following format to be read from a queue:

UPDATE Balance change=nnn WHERE Account=nnn

AMQSPUT can be used to put the messages on the queue.

The database coordination samples take two parameters:

1. Queue name (required)

2. Queue manager name (optional)

Assuming that you have created and configured a queue manager for the single database sample called singDBQM, with a queue called singDBQ, you
increment Mr Fred Bloggs’s account by 50 as follows:

 AMQSPUT singDBQ singDBQM

Then key in the following message:

 UPDATE Balance change=50 WHERE Account=1

You can put multiple messages on the queue.

 AMQSXAS0 singDBQ singDBQM

The updated status of Mr Fred Bloggs’s account is then printed.

Assuming that you have created and configured a queue manager for the multiple-database sample called multDBQM, with a queue called multDBQ, you
decrement Ms Mary Brown’s account by 75 as follows:

 AMQSPUT multDBQ multDBQM

Then key in the following message:

 UPDATE Balance change=-75 WHERE Account=3

You can put multiple messages on the queue.

 AMQSXAG0 multDBQ multDBQM

The updated status of Ms Mary Brown’s account is then printed.
Parent topic: Running the samples

This build: January 26, 2011 11:21:30

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17780_

4.1.11.3.2. COBOL samples

Messages must be in the following format to be read from a queue:

 UPDATE Balance change=snnnnnnnn WHERE Account=nnnnnnnn

For simplicity, the Balance change must be a signed eight-character number and the Account must be an eight-character number.

The sample AMQSPUT can be used to put the messages on the queue.

The samples take no parameters and use the default queue manager. It can be configured to run only one of the samples at any time. Assuming that you
have configured the default queue manager for the single database sample, with a queue called singDBQ, you increment Mr Fred Bloggs’s account by 50 as
follows:

 AMQSPUT singDBQ

Then key in the following message:

 UPDATE Balance change=+00000050 WHERE Account=00000001

You can put multiple messages on the queue:

 AMQ0XAS0

Type in the name of the queue:

 singDBQ

The updated status of Mr Fred Bloggs’s account is then printed.

Assuming that you have configured the default queue manager for the multiple database sample, with a queue called multDBQ, you decrement Ms Mary
Brown’s account by 75 as follows:

 AMQSPUT multDBQ

Then key in the following message:

 UPDATE Balance change=-00000075 WHERE Account=00000003

You can put multiple messages on the queue:

 AMQ0XAG0

Type in the name of the queue:

 multDBQ

The updated status of Ms Mary Brown’s account is then printed.
Parent topic: Running the samples

This build: January 26, 2011 11:21:30

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17790_

4.1.12. Dead-letter queue handler sample

A sample dead-letter queue handler is provided, the name of the executable version is amqsdlq. If you want a dead-letter queue handler that is different
from RUNMQDLQ, the source of the sample is available for you to use as your base.

The sample is similar to the dead-letter handler provided within the product but trace and error reporting are different. There are two environment variables
available to you:

ODQ_TRACE

Page 294 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Set to YES or yes to switch tracing on

ODQ_MSG

Set to the name of the file containing error and information messages. The file provided is called amqsdlq.msg.

You need to make these variables known to your environment using either the export or set commands, depending on your platform; trace is turned off
using the unset command.

You can modify the error message file, amqsdlq.msg, to suit your own requirements. The sample puts messages to stdout, not to the WebSphere® MQ
error log file.

The WebSphere MQ System Administration Guide or the System Management Guide for your platform explains how the dead-letter handler works, and how
you run it.

Parent topic: Sample programs (platforms except z/OS)

This build: January 26, 2011 11:21:31

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17920_

4.1.13. The Distribution List sample program

The Distribution List sample amqsptl0 gives an example of putting a message on several message queues. It is based on the MQPUT sample, amqsput0.

Running the Distribution List sample, amqsptl0
The Distribution List sample runs in a similar way to the Put samples.

Design of the Distribution List sample

Parent topic: Sample programs (platforms except z/OS)

This build: January 26, 2011 11:21:22

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17200_

4.1.13.1. Running the Distribution List sample, amqsptl0

The Distribution List sample runs in a similar way to the Put samples.

It takes the following parameters:

� The names of the queues

� The names of the queue managers

These values are entered as pairs. For example:

amqsptl0 queue1 qmanagername1 queue2 qmanagername2

The queues are opened using MQOPEN and messages are put to the queues using MQPUT. Reason codes are returned if any of the queue or queue manager
names are not recognized.

Remember to define channels between queue managers so that messages can flow between them. The sample program does not do that for you.

Parent topic: The Distribution List sample program

This build: January 26, 2011 11:21:22

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17210_

4.1.13.2. Design of the Distribution List sample

Put Message Records (MQPMRs) specify message attributes for each destination. The sample provides values for MsgId and CorrelId, and these override

the values specified in the MQMD structure.

The PutMsgRecFields field in the MQPMO structure indicates which fields are present in the MQPMRs:

 MQLONG PutMsgRecFields=MQPMRF_MSG_ID + MQPMRF_CORREL_ID;

Next, the sample allocates the response records and object records. The object records (MQORs) require at least one pair of names and an even number of
names, that is, ObjectName and ObjectQMgrName.

The next stage involves connecting to the queue managers using MQCONN. The sample attempts to connect to the queue manager associated with the first
queue in the MQOR; if this fails, it goes through the object records in turn. You are informed if it is not possible to connect to any queue manager and the
program exits.

The target queues are opened using MQOPEN and the message is put to these queues using MQPUT. Any problems and failures are reported in the response
records (MQRRs).

Finally, the target queues are closed using MQCLOSE and the program disconnects from the queue manager using MQDISC. The same response records are
used for each call stating the CompCode and Reason.

Parent topic: The Distribution List sample program

This build: January 26, 2011 11:21:22

Page 295 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17220_

4.1.14. The Echo sample programs

The Echo sample programs echo a message from a message queue to the reply queue.

See Features demonstrated in the sample programs for the names of these programs.

The programs are intended to run as triggered programs.

On i5/OS®, UNIX systems, and Windows systems, their only input is an MQTMC2 (trigger message) structure that contains the name of a target queue and
the queue manager. The COBOL version uses the default queue manager.

On i5/OS, for the triggering process to work, ensure that the Echo sample program that you want to use is triggered by messages arriving on queue
SYSTEM.SAMPLE.ECHO. To do this, specify the name of the Echo sample program that you want to use in the ApplId field of the process definition

SYSTEM.SAMPLE.ECHOPROCESS. (For this, you can use the CHGMQMPRC command, described in WebSphere MQ for i5/OS System Administration Guide.)
The sample queue has a trigger type of FIRST, so, if there are already messages on the queue before you run the Request sample, the Echo sample is not
triggered by the messages that you send.

When you have set the definition correctly, first start AMQSERV4 in one job, then start AMQSREQ4 in another. You could use AMQSTRG4 instead of
AMQSERV4, but potential job submission delays could make it less easy to follow what is happening.

Use the Request sample programs to send messages to queue SYSTEM.SAMPLE.ECHO. The Echo sample programs send a reply message containing the data
in the request message to the reply-to queue specified in the request message.

Design of the Echo sample programs

Parent topic: Sample programs (platforms except z/OS)

This build: January 26, 2011 11:21:27

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17590_

4.1.14.1. Design of the Echo sample programs

The program opens the queue named in the trigger message structure that it was passed when it started. (For clarity, we will call this the request queue.)
The program uses the MQOPEN call to open this queue for shared input.

The program uses the MQGET call to remove messages from this queue. This call uses the MQGMO_ACCEPT_TRUNCATED_MSG, MQGMO_CONVERT, and
MQGMO_WAIT options, with a wait interval of 5 seconds. The program tests the descriptor of each message to see if it is a request message; if it is not, the
program discards the message and displays a warning message.

For each line of input, the program then reads the text into a buffer and uses the MQPUT1 call to put a request message, containing the text of that line,
onto the reply-to queue.

If the MQGET call fails, the program puts a report message on the reply-to queue, setting the Feedback field of the message descriptor to the reason code

returned by the MQGET.

When there are no messages remaining on the request queue, the program closes that queue and disconnects from the queue manager.

On i5/OS®, the program can also respond to messages sent to the queue from platforms other than WebSphere® MQ for i5/OS, although no sample is
supplied for this situation. To make the ECHO program work:

� Write a program, correctly specifying the Format, Encoding, and CCSID parameters, to send text request messages.

The ECHO program requests the queue manager to perform message data conversion, if this is needed.

� Specify CONVERT(*YES) on the WebSphere MQ for i5/OS sending channel, if the program that you have written does not provide similar conversion for
the reply.

Parent topic: The Echo sample programs

This build: January 26, 2011 11:21:27

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17600_

4.1.15. Encina sample program

This program puts 10 messages to the queue, backing out the odd numbered messages and committing the even numbered messages. The message is a 4-
byte number.

The queue used by this sample is the SYSTEM.DEFAULT.MODEL.QUEUE, so a temporary dynamic queue is created each time that the program is run. You
need to run trace to see what happens when the program runs.

Building the AMQSXAE0.C sample

Parent topic: Sample programs (platforms except z/OS)

This build: January 26, 2011 11:21:31

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

Page 296 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

This topic's URL:

fg17900_

4.1.15.1. Building the AMQSXAE0.C sample

Here, we give the commands needed for Solaris systems as a sample; use the appropriate equivalents for the UNIX system that you are running:

cc -xarch=v8plus -mt -o amqsxae amqsxae0.c -l/opt/mqm/inc -l/opt/encina/include \

-L/opt/mqm/lib -L/opt/encina/lib -L/opt/dcelocal/lib \

-R/opt/mqm/lib -R/opt/encina/lib -R/opt/dcelocal/lib -R/usr/lib/32 \

-lmqmxa -lmqz -lmqm -lmqmcs - lmqmzse -lEncina -lEncServer -ldce -lsocket \

-linsl -ldl -lthread -lc -lm

Parent topic: Encina sample program

This build: January 26, 2011 11:21:31

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17910_

4.1.16. The Get sample programs

The Get sample programs get messages from a queue using the MQGET call.

See Features demonstrated in the sample programs for the names of these programs.

Running the amqsget and amqsgetc samples

Running the amq0get sample

Running the AMQSGET4 and the AMQ0GET4 samples (i5/OS)

Design of the Get sample program

Parent topic: Sample programs (platforms except z/OS)

This build: January 26, 2011 11:21:23

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17280_

4.1.16.1. Running the amqsget and amqsgetc samples

These programs each take two parameters:

1. The name of the source queue (required)

2. The name of the queue manager (optional)

If a queue manager is not specified, amqsget connects to the default queue manager, and amqsgetc connects to the queue manager identified by an
environment variable or the client channel definition file.

To run these programs, enter one of the following:

� amqsget myqueue qmanagername

� amqsgetc myqueue qmanagername

where myqueue is the name of the queue from which the program will get messages, and qmanagername is the queue manager that owns myqueue.

If you omit the qmanagername, the programs assume the default, or, in the case of the MQI client, the queue manager identified by an environment variable

or the client channel definition file.

Parent topic: The Get sample programs

This build: January 26, 2011 11:21:23

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17290_

4.1.16.2. Running the amq0get sample

The COBOL version does not have any parameters. It connects to the default queue manager and when you run it you are prompted:

Please enter the name of the source queue

Each program removes messages from the queue that you specify when you call the program. You could use the supplied queue SYSTEM.SAMPLE.LOCAL;
run the Put sample program first to put some messages on the queue. You could use the queue SYSTEM.SAMPLE.ALIAS, which is an alias name for the same
local queue. The program continues until the queue is empty or an MQI call fails.

Parent topic: The Get sample programs

This build: January 26, 2011 11:21:23

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17300_

4.1.16.3. Running the AMQSGET4 and the AMQ0GET4 samples (i5/OS)

Page 297 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

The following Get sample programs, available only for the i5/OS platform, get messages from a queue using the MQGET call, and have the following
names:

Each program removes messages from the queue that you specify when you call the program. You could use the supplied queue SYSTEM.SAMPLE.LOCAL;
run the Put sample program first to put some messages on the queue. You could use the queue SYSTEM.SAMPLE.ALIAS, which is an alias name for the same
local queue. The program continues until the queue is empty or an MQI call fails.

An example of a command to call the C program is:

 CALL PGM(QMQM/AMQSGET4) PARM('SYSTEM.SAMPLE.LOCAL')

Parent topic: The Get sample programs

This build: January 26, 2011 11:21:23

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17310_

4.1.16.4. Design of the Get sample program

The program opens the target queue using the MQOPEN call with the MQOO_INPUT_AS_Q_DEF option. If it cannot open the queue, the program displays an
error message containing the reason code returned by the MQOPEN call.

For each message on the queue, the program uses the MQGET call to remove the message from the queue, then displays the data contained in the
message. The MQGET call uses the MQGMO_WAIT option, specifying a WaitInterval of 15 seconds, so that the program waits for this period if there is no

message on the queue. If no message arrives before this interval expires, the call fails and returns the MQRC_NO_MSG_AVAILABLE reason code.

The program demonstrates how you must clear the MsgId and CorrelId fields of the MQMD structure after each MQGET call because the call sets these

fields to the values contained in the message it retrieves. Clearing these fields means that successive MQGET calls retrieve messages in the order in which
the messages are held in the queue.

The MQGET call specifies a buffer of fixed size. If a message is longer than this buffer, the call fails and the program stops.

The program continues until either the MQGET call returns the MQRC_NO_MSG_AVAILABLE reason code or the MQGET call fails. If the call fails, the program
displays an error message that contains the reason code.

The program then closes the queue using the MQCLOSE call.

Parent topic: The Get sample programs

This build: January 26, 2011 11:21:23

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17320_

4.1.17. High availability sample programs

The amqsghac, amqsphac and amqsmhac high availability sample programs use automated client reconnection to demonstrate recovery following the failure
of a queue manager.

The programs are started from the command line, and can be used in combination to demonstrate reconnection after the failure of one instance of a multi-
instance queue manager. Alternatively, you can also use the samples to demonstrate client reconnection to single instance queue managers, typically
configured into a queue manager group. To keep the example simple, so it is easy to configure, you are shown the sample programs reconnecting to a single
instance queue manager that is started, stopped and then restarted again; see, Setup and control the queue manager.

amqsphac queueName [qMgrName]

� Puts a sequence of messages to a queue with a 2-second delay between each message.

� Displays events sent to its event handler.

� No sync point is used.

� Reconnection can be made to any queue manager in the same queue manager group.

amqsghac queueName [qMgrName]

� Gets messages from a queue.

� Displays events sent to its event handler.

� No sync point is used.

� Reconnection can be made to any queue manager in the same queue manager group.

amqsmhac -s sourceQueueName -t targetQueueName [-m qMgrName] [-w waitInterval]

� Copies messages from one queue to another under sync point, with a default wait interval of 15 minutes after the last message that is received
before the program finishes.

� Sync point is used.

� Reconnection can be made only to the same queue manager.

Configuring a client connection

You need to configure a client and server connection channel to run the samples. The following references that explain how to set up a client test
environment are to the Quick Beginnings for Windows topics; refer to the Quick Beginnings for the platform you are using.

1. Setting up the WebSphere MQ server

2. Setting up the WebSphere MQ client

3. Post demonstration tasks

C language AMQSGET4

COBOL language AMQ0GET4

Page 298 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Alternatively, use the configuration provided in the example below.

Example

The example demonstrates reconnectable clients using a single instance queue manager.

Messages are placed on the queue SOURCE by amqsphac, transferred to TARGET by amqsmhac, and retrieved from TARGET by amqsghac; see Figure 1.

Figure 1. Reconnectable client samples

Follow these steps to run the samples.

1. Create a file hasamples.tst containing the commands:

DEFINE QLOCAL(SOURCE) REPLACE

DEFINE QLOCAL(TARGET) REPLACE

DEFINE CHANNEL(CHANNEL1) CHLTYPE(SVRCONN) TRPTYPE(TCP) +

 MCAUSER(MUSR_MQADMIN) REPLACE

DEFINE CHANNEL(CHANNEL1) CHLTYPE(CLNTCONN) TRPTYPE(TCP) +

 CONNAME('LOCALHOST(2345)') QMNAME(QM1) REPLACE

ALTER LISTENER(SYSTEM.DEFAULT.LISTENER.TCP) TRPTYPE(TCP) +

 PORT(2345)

START LISTENER(SYSTEM.DEFAULT.LISTENER.TCP)

START CHANNEL(CHANNEL1)

2. Type the following commands at a command prompt:

a. crtmqm QM1

b. strmqm QM1

c. runmqsc QM1 < hasamples.tst

3. Set the environment variable MQCHLLIB to the path to the AMQCLCHL.TAB client channel definition file; for example, SET MQCHLLIB=C:\IBM\MQ\MQ7

\Data\qmgrs\QM1\@ipcc.

4. Open three new windows with MQCHLLIB set; for example on Windows, type start three times at the previous command prompt starting each
program in one of the windows. See step 5 in Setup and control the queue manager.)

5. Type the command endmqm -r -p QM1 to stop the queue manager, and then allow the clients to reconnect.

6. Type the command strmqm QM1 to restart the queue manager.

The results from running the samples on Windows are shown in the examples below.

Setup and control the queue manager

1. Create the queue manager.

C:\>crtmqm QM1

WebSphere MQ queue manager created.

Directory 'C:\IBM\MQ\MQ7\Data\qmgrs\QM1' created.

Creating or replacing default objects for QM1.

Default objects statistics : 67 created. 0 replaced. 0 failed.

Completing setup.

Setup completed.

Remember the data directory to set the MQCHLLIB variable later.

2. Start the queue manager.

C:\>strmqm QM1

WebSphere MQ queue manager 'QM1' starting.

5 log records accessed on queue manager 'QM1' during the log replay phase.

Log replay for queue manager 'QM1' complete.

Transaction manager state recovered for queue manager 'QM1'.

WebSphere MQ queue manager 'QM1' started.

3. Create the queues and channels, modify the listener port, and start the listener and channel.

C:\>runmqsc QM1 < hasamples.tst

5724-H72 (C) Copyright IBM Corp. 1994, 2008. ALL RIGHTS RESERVED.

Starting MQSC for queue manager QM1.

 1 : DEFINE QLOCAL(SOURCE) REPLACE

AMQ8006: WebSphere MQ queue created.

 2 : DEFINE QLOCAL(TARGET) REPLACE

AMQ8006: WebSphere MQ queue created.

 3 : DEFINE CHANNEL(CHANNEL1) CHLTYPE(SVRCONN) TRPTYPE(TCP) MCAUSER(MUSR_MQADMIN) REPLACE

AMQ8014: WebSphere MQ channel created.

 4 : DEFINE CHANNEL(CHANNEL1) CHLTYPE(CLNTCONN) TRPTYPE(TCP) CONNAME('LOCALHOST(2345)') QMNAME(QM1) REPLACE

AMQ8014: WebSphere MQ channel created.

 5 : ALTER LISTENER(SYSTEM.DEFAULT.LISTENER.TCP) TRPTYPE(TCP) PORT(2345)

AMQ8623: WebSphere MQ listener changed.

 6 : START LISTENER(SYSTEM.DEFAULT.LISTENER.TCP)

AMQ8021: Request to start WebSphere MQ Listener accepted.

 7 : START CHANNEL(CHANNEL1)

AMQ8018: Start WebSphere MQ channel accepted.

7 MQSC commands read.

No commands have a syntax error.

All valid MQSC commands were processed.

4. Make the client channel table known to the clients.

Use the data directory returned from the crtmqm command in step 1, and add the directory @ipcc to it to set the MQCHLLIB variable.

C:\>SET MQCHLLIB=C:\IBM\MQ\MQ7\Data\qmgrs\QM1\@ipcc

Page 299 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

5. Start the sample programs in the other windows

C:\>start amqsphac SOURCE QM1

C:\>start amqsmhac -s SOURCE -t TARGET -m QM1

C:\>start amqsghac TARGET QM1

6. End the queue manager and restart it again.

C:\>endmqm -r -p QM1

Waiting for queue manager 'QM1' to end.

WebSphere MQ queue manager 'QM1' ending.

WebSphere MQ queue manager 'QM1' ended.

C:\>strmqm QM1

WebSphere MQ queue manager 'QM1' starting.

5 log records accessed on queue manager 'QM1' during the log replay phase.

Log replay for queue manager 'QM1' complete.

Transaction manager state recovered for queue manager 'QM1'.

WebSphere MQ queue manager 'QM1' started.

amqsphac

Sample AMQSPHAC start

target queue is SOURCE

message <Message 1>

message <Message 2>

16:25:22 : EVENT : Connection Reconnecting (Delay: 0ms)

16:25:45 : EVENT : Connection Reconnecting (Delay: 0ms)

16:26:02 : EVENT : Connection Reconnectedmessage

<Message 3>

message <Message 4>

message <Message 5>

amqsmhac

Sample AMQSMHA0 start

16:25:22 : EVENT : Connection Reconnecting (Delay: 0ms)

16:25:45 : EVENT : Connection Reconnecting (Delay: 0ms)

16:26:02 : EVENT : Connection Reconnected

No more messages.

Sample AMQSMHA0 end

C:\>

amqsghac

Sample AMQSGHAC start

message <Message 1>

message <Message 2>

16:25:22 : EVENT : Connection Reconnecting (Delay: 0ms)

16:25:45 : EVENT : Connection Reconnecting (Delay: 0ms)

16:26:02 : EVENT : Connection Reconnected

message <Message 3>

message <Message 4>

message <Message 5>

Parent topic: Sample programs (platforms except z/OS)

This build: January 26, 2011 11:21:22

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17235_

4.1.18. The Inquire sample programs

The Inquire sample programs inquire about some of the attributes of a queue using the MQINQ call.

See Features demonstrated in the sample programs for the names of these programs.

These programs are intended to run as triggered programs, so their only input is an MQTMC2 (trigger message) structure for i5/OS®, Windows systems,
and UNIX. This structure contains the name of a target queue whose attributes are to be inquired. The C version also uses the queue manager name. The
COBOL version uses the default queue manager.

For the triggering process to work, ensure that the Inquire sample program that you want to use is triggered by messages arriving on queue
SYSTEM.SAMPLE.INQ. To do this, specify the name of the Inquire sample program that you want to use in the ApplicId field of the process definition

SYSTEM.SAMPLE.INQPROCESS. For i5/OS, you can use the CHGMQMPRC command described in the WebSphere MQ for i5/OS System Administration Guide
for this. The sample queue has a trigger type of FIRST; if there are already messages on the queue before you run the request sample, the inquire sample is
not triggered by the messages that you send.

When you have set the definition correctly:

� For UNIX systems and Windows systems, start the runmqtrm program in one session, then start the amqsreq program in another.

� For i5/OS, start the AMQSERV4 program in one session, then start the AMQSREQ4 program in another. You could use AMQSTRG4 instead of
AMQSERV4, but potential job submission delays could make it less easy to follow what is happening.

Use the Request sample programs to send request messages, each containing just a queue name, to queue SYSTEM.SAMPLE.INQ. For each request
message, the Inquire sample programs send a reply message containing information about the queue specified in the request message. The replies are sent
to the reply-to queue specified in the request message.

On i5/OS, if the sample input file member QMQMSAMP.AMQSDATA(INQ) is used, the last queue named does not exist, so the sample returns a report
message with a reason code for the failure.

Design of the Inquire sample program

Parent topic: Sample programs (platforms except z/OS)

This build: January 26, 2011 11:21:27

Notices | Trademarks | Downloads | Library | Support | Feedback

Page 300 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17550_

4.1.18.1. Design of the Inquire sample program

The program opens the queue named in the trigger message structure that it was passed when it started. (For clarity, we will call this the request queue.)
The program uses the MQOPEN call to open this queue for shared input.

The program uses the MQGET call to remove messages from this queue. This call uses the MQGMO_ACCEPT_TRUNCATED_MSG and MQGMO_WAIT options,
with a wait interval of 5 seconds. The program tests the descriptor of each message to see if it is a request message; if it is not, the program discards the
message and displays a warning message.

For each request message removed from the request queue, the program reads the name of the queue (which we will call the target queue) contained in the
data, and opens that queue using the MQOPEN call with the MQOO_INQ option. The program then uses the MQINQ call to inquire about the values of the
InhibitGet, CurrentQDepth, and OpenInputCount attributes of the target queue.

If the MQINQ call is successful, the program uses the MQPUT1 call to put a reply message on the reply-to queue. This message contains the values of the
three attributes.

If the MQOPEN or MQINQ call is unsuccessful, the program uses the MQPUT1 call to put a report message on the reply-to queue. In the Feedback field of the

message descriptor of this report message is the reason code returned by either the MQOPEN or MQINQ call, depending on which one failed.

After the MQINQ call, the program closes the target queue using the MQCLOSE call.

When there are no messages remaining on the request queue, the program closes that queue and disconnects from the queue manager.

Parent topic: The Inquire sample programs

This build: January 26, 2011 11:21:27

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17560_

4.1.19. Publish - MQ_PUBLISH_EXIT

MQ_PUBLISH_EXIT provides a publish exit function that allows you to alter the contents of published messages before they are received by subscribers. You
can also change the message header or choose to inhibit publication of the message.

The interface to this function is:

MQ_PUBLISH_EXIT (&ExitParms, &PubContext, &SubContext)

where the parameters are:

ExitParms (MQPSXP) - input/output

Exit parameter structure. This structure contains information relating to the invocation of the exit.

PubContext (MQPBC) - input/output

Publication context structure. This structure contains contextual information relating to the publisher of the publication.

SubContext (MQPBC) - input/output

Subscription context structure. This structure contains contextual information relating to the subscriber receiving the publication.

Parent topic: Sample programs (platforms except z/OS)

This build: January 26, 2011 11:22:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg20760_

4.1.20. The Publish/Subscribe sample programs

The publish/subscribe sample programs demonstrate the use of the publish and subscribe features in WebSphere MQ.

There are three C language sample programs illustrating how to program to the WebSphere MQ publish/subscribe interface. There are some C samples that
use older interfaces, and there are Java samples. The Java samples use the WebSphere MQ publish/subscribe interface in com.ibm.mq.jar and the JMS
publish/subscribe interface in com.ibm.mqjms. We shall not discuss the JMS samples.

C

Find the publisher sample amqspub in the C samples folder. Run it with any topic name you like as the first parameter, followed by an optional queue

manager name. For example, amqspub mytopic QM3.

The publisher connects to the default queue manager and responds with the output, target topic is mytopic. Every line you type into this window from

now onwards is published to mytopic.

Open another command window in the same directory, and run the subscriber program, amqssub, supplying it with the same topic name, and an optional

queue manager name. For example, amqssub mytopic QM3.

The subscriber responds with the output, Calling MQGET : 30 seconds wait time. From now onwards, lines you type into the publisher appear in the

output of the subscriber.

Start another subscriber in another command window, and watch both subscribers receive publications.

For full documentation of the parameters, including setting options, refer to the sample source code. The values for the subscriber options field is described
in the following topic: MQSD - Options.

Page 301 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

There is another subscriber sample amqssbx, which offers additional subscription options as command line switches.

Type amqssbx -d mysub -t mytopic -k to invoke the subscriber using durable subscriptions that are retained after the subscriber has terminated.

Test the subscription by publishing another item using the publisher. Wait for 30 seconds for the subscriber to terminate. Publish some more items under the
same topic. Restart the subscriber. The last item published while the subscriber was not running is displayed by the subscriber immediately it is restarted.

C legacy

There is an additional set of C samples which demonstrate queued commands. Some of these samples were originally shipped as part of the MQ0C
Supportpac. The capabilities the samples demonstrate are fully supported, for compatibility reasons.

We discourage you from using the queued command interface. It is much more complex than the publish/subscribe API, and there is no compelling
functional reason to program complex queued commands. However, you might find the queued approach more suitable, perhaps because you are already
using the interface, or because your programming environment makes it easier to build a complex message and call a generic MQPUT, rather than
constructing different calls to MQSUB.

The additional samples are located in the pubsub subdirectory in the samples folder.

There are six types of sample listed in Table 1.

Java

The Java sample MQPubSubApiSample.java combines publisher and subscribers in a single program. Its source and compiled class files are found in the

wmqjava samples folder.

Run the sample from the command line using the Java command, if you have a Java environment configured. You can also run the sample from the
WebSphere MQ Explorer Eclipse workspace that has a Java programming workbench already set up.

You might need to change some of the sample program's properties to run it. You do this by providing parameters to the JVM, or editing the source.

The instructions that follow show how to run the sample from the Eclipse workspace.

Running the MQPubSubApiSample Java sample
How to run the MQPubSubApiSample using the Eclipse platform.

Parent topic: Sample programs (platforms except z/OS)

This build: January 26, 2011 11:21:24

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17335_

4.1.20.1. Running the MQPubSubApiSample Java sample

How to run the MQPubSubApiSample using the Eclipse platform.

Before you begin
Open the Eclipse workbench that is installed as a prerequisite for running WebSphere MQ Explorer. Create a new workspace directory and select it. Close
the welcome window.

About this task
The Java publish/subscribe sample program is a WebSphere MQ Client Java program. The sample runs without modification using a default queue manager
listening on port 1414. The task describes this simple case, and indicates in general terms how to provide parameters and modify the sample to suit different
WebSphere MQ configurations. The example is illustrated running on Windows. The file paths will differ on other platforms.

Procedure

1. Import the Java sample programs

a. In the workbench, click Window > Open perspective > Other > Java and click OK.

b. Switch to the Package Explorer view.

c. Right-click in the white-space in the Package Explorer view. Click New > Java project.

Table 1. Categories of legacy publish/subscribe sample C programs

Category Programs Comments

RFH1 amqssr1a.c

amqspr1a.c

Simple publish/subscribe example built using RFH1 format messages.

RFH2 amqssr2a.c

amqssp2a.c

Simple publish/subscribe example built using RFH2 format messages.

MQAI samples amqsppca.c

amqsspca.c

Simple publish/subscribe example built using PCF commands and the MQAI command
interface.

MA0C Results
service using
RFH1

amqsgama.c

amqsresa.c

Results service built using RFH1 headers

1. Requires the queues defined in amqsgama.tst and amqsresa.tst

2. amqsresa must be started before amqsgama

MA0C Results
service using
RFH2

amqsgr2a.c

amqsrr2a.c

Results service built using RFH2 headers

1. Requires the queues defined in amqsgama.tst and amqsresa.tst

2. amqsresa must be started before amqsgama

Routing exit
publish/subscribe
sample

amqspsra.c Demonstrates how to change the queue or queue manager destination for a
publish/subscribe message in a routing exit.

Page 302 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

d. In the Project name field type MQ Java Samples. Click Next.

e. In the Java Settings panel, switch to the Libraries tab.

f. Click Add External JARs.

g. Browse to ... \java\lib in the WebSphere MQ installation folder and select com.ibm.mq.jar and com.ibm.mq.jmqi.jar

h. Click Open > Finish.

i. Right-click src in the Package Explorer view.

j. Select Import... > General > File System > Next > Browse... and browse to the path ..\tools\wmqjava\samples in the WebSphere MQ

installation directory.

k. In the left pane of the Import panel, Figure 1, click samples (do not select the check box).

l. In the right pane, select MQPubSubApiSample.java. The Into folder field should contain MQ Java Samples/src. Click Finish.

Figure 1. File system import

2. Run the publish/subscribe sample program. There are two ways to run the program, depending on whether you need to change the default
parameters.

� The first choice is to run the program with out making any changes.

� In the workspace main menu, expand the src folder. Right-click MQPubSubApiSample.javaRun-as > 1. Java Application

� The second choice is if you need to provide parameters or modify the source code for the sample to run in your environment.

� Open MQPubSubApiSample.java and study the MQPubSubApiSample constructor.

� Modify the attributes of the program.

These attributes are modifiable using the -D JVM switch, or by providing a default value for the System property by editing the source
code.

� topicObject

� queueManagerName

� subscriberCount

These attributes are changeable only by editing the source code in the constructor.

� hostname

� port

� channel

To set System properties, code a default value in the accessor, for example,

queueManagerName = System.getProperty("com.ibm.mq.pubSubSample.queueManagerName", "QM3");

Or provide the parameter to the JVM using the -D option, as shown in the steps below.

a. Copy the full name of the System.Property you want to set, for example, com.ibm.mq.pubSubSample.queueManagerName.

b. In the workspace, right-click Run > Open Run Dialog. Double click Java Application in Create, Manage and Run applications and click the
(x) = Arguments tab.

c. In the VM arguments: pane, type -D and paste the System.property name, com.ibm.mq.pubSubSample.queueManagerName, followed by

=QM3. Click Apply > Run.

d. Add further arguments as a comma separated list, or as additional lines in the pane, without comma separators.

For example,-Dcom.ibm.mq.pubSubSample.queueManagerName=QM3, -Dcom.ibm.mq.pubSubSample.subscriberCount=6.

Parent topic: The Publish/Subscribe sample programs

This build: January 26, 2011 11:21:24

Notices | Trademarks | Downloads | Library | Support | Feedback

Page 303 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

runningmqpubsubapisample

4.1.21. The Put sample programs

The Put sample programs put messages on a queue using the MQPUT call.

See Features demonstrated in the sample programs for the names of these programs.

Running the amqsput and amqsputc samples

Running the amq0put sample

Running the AMQSPUT4 C sample (i5/OS)
The C program AMQSPUT4, available only for the i5/OS platform, creates messages by reading data from a member of a source file.

Running the AMQ0PUT4 COBOL sample (i5/OS)
The COBOL program AMQ0PUT4, available only on the i5/OS platform, creates messages by accepting data from the keyboard.

Design of the Put sample program
The program uses the MQOPEN call with the MQOO_OUTPUT option to open the target queue for putting messages.

Parent topic: Sample programs (platforms except z/OS)

This build: January 26, 2011 11:21:21

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17140_

4.1.21.1. Running the amqsput and amqsputc samples

These programs each take 2 parameters:

1. The name of the target queue (required)

2. The name of the queue manager (optional)

If a queue manager is not specified, amqsput connects to the default queue manager and amqsputc connects to the queue manager identified by an
environment variable or the client channel definition file. To run these programs, enter one of the following:

� amqsput myqueue qmanagername

� amqsputc myqueue qmanagername

where myqueue is the name of the queue on which the messages are going to be put, and qmanagername is the queue manager that owns myqueue.

Parent topic: The Put sample programs

This build: January 26, 2011 11:21:22

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17150_

4.1.21.2. Running the amq0put sample

The COBOL version does not have any parameters. It connects to the default queue manager and when you run it you are prompted:

Please enter the name of the target queue

It takes input from StdIn and adds each line of input to the target queue. A blank line indicates there is no more data.

Parent topic: The Put sample programs

This build: January 26, 2011 11:21:22

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17160_

4.1.21.3. Running the AMQSPUT4 C sample (i5/OS)

 The C program AMQSPUT4, available only for the i5/OS platform, creates messages by reading data from a member of a source file.

You must specify the name of the file as a parameter when you start the program. The structure of the file must be:

 queue name

 text of message 1

 text of message 2

 ⋮
 text of message n

 blank line

A sample of input for the put samples is supplied in library QMQMSAMP file AMQSDATA member PUT.

Note: Remember that queue names are case sensitive. All the queues created by the sample file create program AMQSAMP4 have names created in
uppercase characters.

The C program puts messages on the queue named in the first line of the file; you can use the supplied queue SYSTEM.SAMPLE.LOCAL. The program puts
the text of each of the following lines of the file into separate datagram messages, and stops when it reads a blank line at the end of the file.

Using the example data file the command is:

Page 304 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

 CALL PGM(QMQM/AMQSPUT4) PARM('QMQMSAMP/AMQSDATA(PUT)')

Parent topic: The Put sample programs

This build: January 26, 2011 11:21:22

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17170_

4.1.21.4. Running the AMQ0PUT4 COBOL sample (i5/OS)

 The COBOL program AMQ0PUT4, available only on the i5/OS platform, creates messages by accepting data from the keyboard.

To start the program, call the program and give the name of your target queue as a program parameter. The program accepts input from the keyboard into
a buffer and creates a datagram message for each line of text. The program stops when you enter a blank line at the keyboard.

Parent topic: The Put sample programs

This build: January 26, 2011 11:21:22

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17180_

4.1.21.5. Design of the Put sample program

The program uses the MQOPEN call with the MQOO_OUTPUT option to open the target queue for putting messages.

If it cannot open the queue, the program outputs an error message containing the reason code returned by the MQOPEN call. To keep the program simple,
on this and on subsequent MQI calls, the program uses default values for many of the options.

For each line of input, the program reads the text into a buffer and uses the MQPUT call to create a datagram message containing the text of that line. The
program continues until either it reaches the end of the input or the MQPUT call fails. If the program reaches the end of the input, it closes the queue using
the MQCLOSE call.

Parent topic: The Put sample programs

This build: January 26, 2011 11:21:22

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17190_

4.1.22. The Reference Message sample programs

The Reference Message samples allow a large object to be transferred from one node to another (usually on different systems) without the need for the
object to be stored on WebSphere® MQ queues at either the source or the destination nodes.

A set of sample programs is provided to demonstrate how Reference Messages can be put to a queue, received by message exits, and taken from a queue.
The sample programs use Reference Messages to move files. If you want to move other objects such as databases, or if you want to perform security
checks, define your own exit, based on our sample, amqsxrm. The following sections describe the Reference Message sample programs.

There version of the Reference Message exit sample program to use depends on the platform on which the channel is running. On all platforms, use
amqsxrma at the sending end. Use amqsxrma at the receiving end if the receiver is running under any WebSphere MQ product except WebSphere MQ for
i5/OS®; use amqsxrm4 if the receiver is running under WebSphere MQ for i5/OS.

Notes for i5/OS users
To receive a Reference Message using the sample message exit, specify a file in the root file system of IFS or any subdirectory so that a stream file
can be created.

Running the Reference Message samples

Design of the Put Reference Message sample (amqsprma.c, AMQSPRM4)

Design of the Reference Message Exit sample (amqsxrma.c, AMQSXRM4)
This sample recognizes Reference Messages with an object type that matches the object type in the message exit user data field of the channel
definition.

Design of the Get Reference Message sample (amqsgrma.c, AMQSGRM4)

Parent topic: Sample programs (platforms except z/OS)

This build: January 26, 2011 11:21:23

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17330_

4.1.22.1. Notes® for i5/OS users

To receive a Reference Message using the sample message exit, specify a file in the root file system of IFS or any subdirectory so that a stream file can be
created.

The sample message exit on i5/OS® creates the file, converts the data to EBCDIC, and sets the code page to your system code page. You can then copy this
file to the QSYS.LIB file system using the CPYFRMSTMF command. For example:

CPYFRMSTMF FROMSTMF('JANEP/TEST.TXT')

Page 305 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

 TOMBR('qsys.lib.janep.lib/test.fie/test.mbr') MBROPT(*REPLACE)

 CVTDTA(*NONE)

The CPYFRMSTMF command does not create the file. You must create it before running this command.

If you send a file from QSYS.LIB, no changes are required to the samples. For any other file system ensure that the CCSID specified in the CodedCharSetId
field in the MQRMH structure matches the bulk data that you are sending.

When using the integrated file system, create program modules with the SYSIFCOPT(*IFSIO) option set. If you want to move database or fixed-length
record files, define your own exit based on the supplied sample AMQSXRM4.

The recommended method of transferring a database file is to convert it to IFS structure, using the CPYTOSTMF command, and then send the Reference
Message attaching the IFS file. If you choose to transfer a database file by referring to it from within IFS, but do not convert it to IFS structure, you must
specify the member name. Data integrity is not guaranteed if you choose this method.

Parent topic: The Reference Message sample programs

This build: January 26, 2011 11:21:24

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17340_

4.1.22.2. Running the Reference Message samples

The Reference Message samples run as follows:

Figure 1. Running the Reference Message samples

1. Set up the environment to start the listeners, channels, and trigger monitors, and define your channels and queues.

For the purposes of describing how to set up the Reference Message example this refers to the sending machine as MACHINE1 with a queue manager
called QMGR1 and the receiving machine as MACHINE2 with a queue manager called QMGR2.

Note: The following definitions allow a Reference Message to be built to send a file with an object type of FLATFILE from queue manager QMGR1 to
QMGR2 and to re-create the file as defined in the call to AMQSPRM (or AMQSPRMA on i5/OS®). The Reference Message (including the file data) is sent
using channel CHL1 and transmission queue XMITQ and placed on queue DQ. Exception and COA reports are sent back to QMGR1 using the channel
REPORT and transmission queue QMGR1.

The application that receives the Reference Message (AMQSGRM or AMQSGRMA on i5/OS) is triggered using the initiation queue INITQ and process
PROC. Ensure that the CONNAME fields are set correctly and the MSGEXIT field reflects your directory structure, depending on machine type and
where the WebSphere® MQ product is installed.

The MQSC definitions have used an AIX® style for defining the exits, so if you are using MQSC on i5/OS you need to modify these accordingly. It is
important to note that the message data FLATFILE is case sensitive and the sample will not work unless it is in uppercase.

On machine MACHINE1, queue manager QMGR1

MQSC syntax

define chl(chl1) chltype(sdr) trptype(tcp) conname('machine2') xmitq(xmitq)

msgdata(FLATFILE) msgexit('/usr/lpp/mqm/samp/bin/amqsxrm(MsgExit)

')

define ql(xmitq) usage(xmitq)

define chl(report) chltype(rcvr) trptype(tcp) replace

define qr(qr) rname(dq) rqmname(qmgr2) xmitq(xmitq) replace

i5/OS command syntax

Note: If you do not specify a queue manager name the system uses the default queue manager.

Page 306 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

CRTMQMCHL CHLNAME(CHL1) CHLTYPE(*SDR) MQMNAME(QMGR1) +

 REPLACE(*YES) TRPTYPE(*TCP) +

 CONNAME('MACHINE2(60501)') TMQNAME(XMITQ) +

 MSGEXIT(QMQM/AMQSXRM4) MSGUSRDATA(FLATFILE)

CRTMQMQ QNAME(XMITQ) QTYPE(*LCL) MQMNAME(QMGR1) +

 REPLACE(*YES) USAGE(*TMQ)

CRTMQMCHL CHLNAME(REPORT) CHLTYPE(*RCVR) +

 MQMNAME(QMGR1) REPLACE(*YES) TRPTYPE(*TCP)

CRTMQMQ QNAME(QR) QTYPE(*RMT) MQMNAME(QMGR1) +

 REPLACE(*YES) RMTQNAME(DQ) +

 RMTMQMNAME(QMGR2) TMQNAME(XMITQ)

On machine MACHINE2, queue manager QMGR2

MQSC syntax

define chl(chl1) chltype(rcvr) trptype(tcp)

msgexit('/usr/lpp/mqm/samp/bin/amqsxrm(MsgExit)')

 msgdata(flatfile)

define chl(report) chltype(sdr) trptype(tcp) conname('MACHINE1')

 xmitq(qmgr1)

define ql(initq)

define ql(qmgr1) usage(xmitq)

define pro(proc) applicid('/usr/lpp/mqm/samp/bin/amqsgrm')

define ql(dq) initq(initq) process(proc) trigger trigtype(first)

i5/OS command syntax

Note: If you do not specify a queue manager name the system uses the default queue manager.

CRTMQMCHL CHLNAME(CHL1) CHLTYPE(*RCVR) MQMNAME(QMGR2) +

 REPLACE(*YES) TRPTYPE(*TCP) +

 MSGEXIT(QMQM/AMQSXRM4) MSGUSRDATA(FLATFILE)

CRTMQMCHL CHLNAME(REPORT) CHLTYPE(*SDR) MQMNAME(QMGR2) +

 REPLACE(*YES) TRPTYPE(*TCP) +

 CONNAME('MACHINE1(60500)') TMQNAME(QMGR1)

CRTMQMQ QNAME(INITQ) QTYPE(*LCL) MQMNAME(QMGR2) +

 REPLACE(*YES) USAGE(*NORMAL)

CRTMQMQ QNAME(QMGR1) QTYPE(*LCL) MQMNAME(QMGR2) +

 REPLACE(*YES) USAGE(*TMQ)

CRTMQMPRC PRCNAME(PROC) MQMNAME(QMGR2) REPLACE(*YES) +

 APPID('QMQM/AMQSGRM4')

CRTMQMQ QNAME(DQ) QTYPE(*LCL) MQMNAME(QMGR2) +

 REPLACE(*YES) PRCNAME(PROC) TRGENBL(*YES) +

 INITQNAME(INITQ)

2. Once the above WebSphere MQ objects have been created:

a. Where applicable to the platform, start the listener for the sending and receiving queue managers

b. Start the channels CHL1 and REPORT

c. On the receiving queue manager start the trigger monitor for the initiation queue INITQ

3. Invoke the put Reference Message sample program AMQSPRM (AMQSPRMA on i5/OS) from the command line using the following parameters:

For example, to use the sample with the objects defined above you would use the following parameters:

-mQMGR1 -iInput File -oOutput File -qQR -tFLATFILE -w120

Increasing the waiting time allows time for a large file to be sent across a network before the program putting the messages times out.

amqsprm -q QR -m QMGR1 -i d:\x\file.in -o d:\y\file.out -t FLATFILE

i5/OS users:

a. Use the following command:

CALL PGM(QMQM/AMQSPRM4) PARM('-mQMGR1' +

 '-i/refmsgs/rmsg1' +

 '-o/refmsgs/rmsgx' '-qQR' +

 '-gQMGR1' '-tFLATFILE' '-w15')

This assumes that the original file rmsg1 is in IFS directory /refmsgs and that you want the destination file to be rmsgx in IFS directory /refmsgs

on the target system.

b. Create your own directory using the CRTDIR command rather than using the root directory.

c. When you call the program that puts data, remember that the output file name needs to reflect the IFS naming convention; for
instance /TEST/FILENAME creates a file called FILENAME in the directory TEST.

Note: You can use either a forward slash (/) or a dash (-) when specifying parameters.

For example:

 amqsprm /i d:\files\infile.dat /o e:\files\outfile.dat /q QR

 /m QMGR1 /w 30 /t FLATFILE

Note: For UNIX platforms, you must use two backslashes (\\) instead of one to denote the destination file directory. Therefore, the above command
looks like this:

 amqsprm -i /files/infile.dat -o e:\\files\\outfile.dat -q QR

 -m QMGR1 -w 30 -t FLATFILE

-m Name of the local queue manager; this defaults to the default queue manager

-i Name and location of source file

-o Name and location of destination file

-q Name of queue

-g Name of queue manager where the queue, defined in the -q parameter exists This defaults to the queue manager specified in the -m
parameter

-t Object type

-w Wait interval, that is, the waiting time for exception and COA reports from the receiving queue manager

Page 307 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Running the put Reference Message program does the following:

� The Reference Message is put to queue QR on queue manager QMGR1.

� The source file and path is d:\files\infile.dat and exists on the system where the example command is issued.

� If the queue QR is a remote queue, the Reference Message is sent to another queue manager, on a different system, where a file is created with
the name and path e:\files\outfile.dat. The contents of this file are the same as the source file.

� amqsprm waits for 30 seconds for a COA report from the destination queue manager.

� The object type is flatfile, so the channel used to move messages from the queue QR must specify this in the MsgData field.

4. When you define your channels, select the message exit at both the sending and receiving ends to be amqsxrm. This is defined on WebSphere MQ for
Windows as follows:

 msgexit('pathname\amqsxrm.dll(MsgExit)')

This is defined on WebSphere MQ for AIX, WebSphere MQ for HP-UX, and WebSphere MQ for Solaris as follows:

 msgexit('pathname/amqsxrm(MsgExit)')

If you specify a path name, specify the complete name. If you omit the path name, it is assumed that the program is in the path specified in the
qm.ini file (or, on WebSphere MQ for Windows, the path specified in the registry). This is explained fully in WebSphere MQ Intercommunication.

5. The channel exit reads the Reference Message header and finds the file that it refers to.

6. The channel exit can then segment the file before sending it down the channel along with the header. On WebSphere MQ for AIX, WebSphere MQ for
HP-UX, and WebSphere MQ for Solaris, change the group owner of the target directory to ‘mqm' so that the sample message exit can create the file in
that directory. Also, change the permissions of the target directory to allow mqm group members to write to it. The file data is not stored on the
WebSphere MQ queues.

7. When the last segment of the file is processed by the receiving message exit, the Reference Message is put to the destination queue specified by
amqsprm. If this queue is triggered (that is, the definition specifies Trigger, InitQ, and Process queue attributes), the program specified by the

PROC parameter of the destination queue is triggered. The program to be triggered must be defined in the ApplId field of the Process attribute.

8. When the Reference Message reaches the destination queue (DQ), a COA report is sent back to the putting application (amqsprm).

9. The Get Reference Message sample, amqsgrm, gets messages from the queue specified in the input trigger message and checks the existence of the
file.

Parent topic: The Reference Message sample programs

This build: January 26, 2011 11:21:25

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17350_

4.1.22.3. Design of the Put Reference Message sample (amqsprma.c, AMQSPRM4)

This sample creates a Reference Message that refers to a file and puts it on a specified queue:

1. The sample connects to a local queue manager using MQCONN.

2. It then opens (MQOPEN) a model queue that is used to receive report messages.

3. The sample builds a Reference Message containing the values required to move the file, for example, the source and destination file names and the
object type. As an example, the sample shipped with WebSphere® MQ builds a Reference Message to send the file d:\x\file.in from QMGR1 to QMGR2

and to re-create the file as d:\y\file.out using the following parameters:

 amqsprm -q QR -m QMGR1 -i d:\x\file.in -o d:\y\file.out -t FLATFILE

Where QR is a remote queue definition that refers to a target queue on QMGR2.

Note: For UNIX platforms, use two backslashes (\\) instead of one to denote the destination file directory. Therefore, the above command looks like
this:

 amqsprm -q QR -m QMGR1 -i /x/file.in -o d:\\y\\file.out -t FLATFILE

4. The Reference Message is put (without any file data) to the queue specified by the /q parameter. If this is a remote queue, the message is put to the
corresponding transmission queue.

5. The sample waits, for the duration of time specified in the /w parameter (which defaults to 15 seconds), for COA reports, which, along with exception
reports, are sent back to the dynamic queue created on the local queue manager (QMGR1).

Parent topic: The Reference Message sample programs

This build: January 26, 2011 11:21:25

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17360_

4.1.22.4. Design of the Reference Message Exit sample (amqsxrma.c, AMQSXRM4)

This sample recognizes Reference Messages with an object type that matches the object type in the message exit user data field of the channel definition.

For these messages, the following happens:

� At the sender or server channel, the specified length of data is copied from the specified offset of the specified file into the space remaining in the
agent buffer after the Reference Message. If the end of the file is not reached, the Reference Message is put back on the transmission queue after
updating the DataLogicalOffset field.

� At the requester or receiver channel, if the DataLogicalOffset field is zero and the specified file does not exist, it is created. The data following the

Reference Message is added to the end of the specified file. If the Reference Message is not the last one for the specified file, it is discarded.
Otherwise, it is returned to the channel exit, without the appended data, to be put on the target queue.

For sender and server channels, if the DataLogicalLength field in the input Reference Message is zero, the remaining part of the file, from

DataLogicalOffset to the end of the file, is to be sent along the channel. If it is not zero, only the length specified is sent.

If an error occurs (for example, if the sample cannot open a file), MQCXP.ExitResponse is set to MQXCC_SUPPRESS_FUNCTION so that the message being

processed is put to the dead-letter queue instead of continuing to the destination queue. A feedback code is returned in MQCXP.Feedback and returned to

the application that put the message in the Feedback field of the message descriptor of a report message. This is because the putting application requested

exception reports by setting MQRO_EXCEPTION in the Report field of the MQMD.

If the encoding or CodedCharacterSetId (CCSID) of the Reference Message is different from that of the queue manager, the Reference Message is

converted to the local encoding and CCSID. In our sample, amqsprm, the format of the object is MQFMT_STRING, so amqsxrm converts the object data to

Page 308 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

the local CCSID at the receiving end before the data is written to the file.

Do not specify the format of the file being transferred as MQFMT_STRING if the file contains multibyte characters (for example, DBCS or Unicode). This is
because a multibyte character could be split when the file is segmented at the sending end. To transfer and convert such a file, specify the format as
something other than MQFMT_STRING so that the Reference Message exit does not convert it and convert the file at the receiving end when the transfer is
complete.

Compiling the Reference Message Exit sample

Parent topic: The Reference Message sample programs

This build: January 26, 2011 11:21:25

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17370_

4.1.22.4.1. Compiling the Reference Message Exit sample

To compile amqsxrma, use the following commands:

On AIX®

xlc_r -q64 -e MsgExit -bE:amqsxrm.exp -bM:SRE -o amqsxrm_64_r

-I/usr/mqm/inc -L/usr/mqm/lib64 -lmqm_r amqsxrma.c

On HP-UX

$ c89 +DD64 +z -c -D_HPUX_SOURCE -o amqsxrma.o amqsxrma.c -I/opt/mqm/inc

$ ld -b +noenvvar amqsxrma.o -o /var/mqm/exits64/amqsxrma -L/opt/mqm/lib64

-L/usr/lib/pa20_64 -lmqm_r -lpthread

On i5/OS®

 CRTCMOD MODULE(MYLIB/AMQSXRMA) SRCFILE(QMQMSAMP/QCSRC)

 TERASPACE(*YES *TSIFC)

Note:

1. To create your module so that it uses the IFS file system, add the option SYSIFCOPT(*IFSIO)

2. To create the program for use with non-threaded channels use the following command: CRTPGM PGM(MYLIB/AMQSXRMA) BNDSRVPGM(QMQM/LIBMQM)

3. To create the program for use with threaded channels use the following command: CRTPGM PGM(MYLIB/AMQSXRMA) BNDSRVPGM(QMQM/LIBMQM_R)

On Linux

$ gcc -m64 -shared -fPIC -o /var/mqm/exits64/amqsxrma amqsxrma.c -I/opt/mqm/inc

-L/opt/mqm/lib64 -Wl,-rpath=/opt/mqm/lib64 -Wl,-rpath=/usr/lib64 -lmqm_r

On Solaris

$ cc -xarch=v9 -mt -G -o /var/mqm/exits64/amqsxrma amqsxrma.c -I/opt/mqm/inc

-L/opt/mqm/lib64 -R/opt/mqm/lib64 -R/usr/lib/64 -lmqm -lmqmcs -lmqmzse -lsocket

-lnsl -ldl

On Windows

cl amqsxrma.c /link /out:amqsxrm.dll /dll mqm.lib mqmvx.lib /def:amqsxrm.def

For general information about writing and compiling channel exits, see Writing and compiling channel-exit programs.

Parent topic: Design of the Reference Message Exit sample (amqsxrma.c, AMQSXRM4)

This build: January 26, 2011 11:21:25

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17380_

4.1.22.5. Design of the Get Reference Message sample (amqsgrma.c, AMQSGRM4)

The program logic is as follows:

1. The sample is triggered and extracts the queue and queue manager names from the input trigger message.

2. It then connects to the specified queue manager using MQCONN and opens the specified queue using MQOPEN.

3. The sample issues MQGET with a wait interval of 15 seconds within a loop to get messages from the queue.

4. If a message is a Reference Message, the sample checks the existence of the file that has been transferred.

5. It then closes the queue and disconnects from the queue manager.

Parent topic: The Reference Message sample programs

This build: January 26, 2011 11:21:26

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17450_

4.1.23. The Request sample programs

The Request sample programs demonstrate client/server processing. The samples are the clients that put request messages on a target server queue that is

Page 309 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

processed by a server program. They wait for the server program to put a reply message on a reply-to queue.

The Request samples put a series of request messages on the target server queue using the MQPUT call. These messages specify the local queue,
SYSTEM.SAMPLE.REPLY as the reply-to queue, which can be a local or remote queue. The programs wait for reply messages, then display them. Replies are
sent only if the target server queue is being processed by a server application, or if an application is triggered for that purpose (the Inquire, Set, and Echo
sample programs are designed to be triggered). The C sample waits 1 minute (the COBOL sample waits 5 minutes), for the first reply to arrive (to allow time
for a server application to be triggered), and 15 seconds for subsequent replies, but both samples can end without getting any replies. See Features
demonstrated in the sample programs for the names of the Request sample programs.

Running the amqsreq0.c, amqsreq, and amqsreqc samples

Running the amq0req0.cbl sample

Running the AMQSREQ4 sample

Running the AMQ0REQ4 sample

Running the Request sample using triggering

Design of the Request sample program
The program opens the target server queue so that it can put messages. It uses the MQOPEN call with the MQOO_OUTPUT option. If it cannot open the
queue, the program displays an error message containing the reason code returned by the MQOPEN call.

Parent topic: Sample programs (platforms except z/OS)

This build: January 26, 2011 11:21:26

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17460_

4.1.23.1. Running the amqsreq0.c, amqsreq, and amqsreqc samples

The C version of the program takes 2 parameters:

1. The name of the target server queue (necessary)

2. The name of the queue manager (optional)

If a queue manager is not specified, it connects to the default one. For example, enter one of the following:

� amqsreq myqueue qmanagername

� amqsreqc myqueue qmanagername

� amq0req0 myqueue

where myqueue is the name of the target server queue, and qmanagername is the queue manager that owns myqueue.

If you omit the qmanagername, when running the C sample, it assumes that the default queue manager owns the queue.

Parent topic: The Request sample programs

This build: January 26, 2011 11:21:26

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17470_

4.1.23.2. Running the amq0req0.cbl sample

The COBOL version does not have any parameters. It connects to the default queue manager and when you run it you are prompted:

 Please enter the name of the target server queue

The program takes its input from StdIn and adds each line to the target server queue, taking each line of text as the content of a request message. The
program ends when a null line is read.

Parent topic: The Request sample programs

This build: January 26, 2011 11:21:26

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17480_

4.1.23.3. Running the AMQSREQ4 sample

The C program creates messages by taking data from stdin (the keyboard) with a blank time terminating input. The program takes up to three parameters:
the name of the target queue (required), the queue manager name (optional), and the reply-to queue name (optional). If no queue manager name is
specified, the default queue manager is used. If no reply-to queue is specified, the SYSTEM.SAMPLE.REPLY queue is used.

Here is an example of how to call the C sample program, specifying the reply-to queue, but letting the queue manager default:

 CALL PGM(QMQM/AMQSREQ4) PARM('SYSTEM.SAMPLE.LOCAL' '' 'SYSTEM.SAMPLE.REPLY')

Note: Remember that queue names are case sensitive. All the queues created by the sample file create program AMQSAMP4 have names created in
uppercase characters.

Parent topic: The Request sample programs

This build: January 26, 2011 11:21:26

Notices | Trademarks | Downloads | Library | Support | Feedback

Page 310 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17490_

4.1.23.4. Running the AMQ0REQ4 sample

The COBOL program creates messages by accepting data from the keyboard. To start the program, call the program and specify the name of your target
queue as a parameter. The program accepts input from the keyboard into a buffer and creates a request message for each line of text. The program stops
when you enter a blank line at the keyboard.

Parent topic: The Request sample programs

This build: January 26, 2011 11:21:26

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17500_

4.1.23.5. Running the Request sample using triggering

If the sample is used with triggering and one of the Inquire, Set, or Echo sample programs, the line of input must be the queue name of the queue that you
want the triggered program to access.

UNIX systems, and Windows systems

i5/OS
To try the samples using triggering on i5/OS®, start the sample trigger server, AMQSERV4, in one job, then start AMQSREQ4 in another.

Parent topic: The Request sample programs

This build: January 26, 2011 11:21:26

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17510_

4.1.23.5.1. UNIX systems, and Windows systems

To run the samples using triggering:

1. Start the trigger monitor program RUNMQTRM in one session (the initiation queue SYSTEM.SAMPLE.TRIGGER is available for you to use).

2. Start the amqsreq program in another session.

3. Make sure that you have defined a target server queue.

The sample queues available to you to use as the target server queue for the request sample to put messages are:

� SYSTEM.SAMPLE.INQ - for the Inquire sample program

� SYSTEM.SAMPLE.SET - for the Set sample program

� SYSTEM.SAMPLE.ECHO - for the Echo sample program

These queues have a trigger type of FIRST, so if there are already messages on the queues before you run the Request sample, server applications are
not triggered by the messages you send.

4. Make sure that you have defined a queue for the Inquire, Set or Echo sample program to use.

This means that the trigger monitor is ready when the request sample sends a message.

Note: The sample process definitions created using RUNMQSC and the amqscos0.tst file trigger the C samples. Change the process definitions in
amqscos0.tst and use RUNMQSC with this updated file to use COBOL versions.

Figure 1 demonstrates how to use the Request and Inquire samples together.

Figure 1. Request and Inquire samples using triggering

Page 311 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

In Figure 1 the Request sample puts messages onto the target server queue, SYSTEM.SAMPLE.INQ, and the Inquire sample queries the queue, MYQUEUE.
Alternatively, you can use one of the sample queues defined when you ran amqscos0.tst, or any other queue that you have defined, for the Inquire sample.

Note: The numbers in Figure 1 show the sequence of events.

To run the Request and Inquire samples, using triggering:

1. Check that the queues that you want to use are defined. Run amqscos0.tst, to define the sample queues, and define a queue MYQUEUE.

2. Run the trigger monitor command RUNMQTRM:

RUNMQTRM -m qmanagername -q SYSTEM.SAMPLE.TRIGGER

3. Run the request sample

amqsreq SYSTEM.SAMPLE.INQ

Note: The process object defines what is to be triggered. If the client and server are not running on the same platform, any processes started by the
trigger monitor must define ApplType, otherwise the server takes its default definitions (that is, the type of application that is normally associated with

the server machine) and causes a failure.

For a list of application types, see the WebSphere MQ Application Programming Reference.

4. Enter the name of the queue that you want the Inquire sample to use:

MYQUEUE

5. Enter a blank line (to end the Request program).

6. The request sample will then display a message, containing the data the Inquire program obtained from MYQUEUE.

You can use more than one queue; in this case, enter the names of the other queues at step 4.

For more information on triggering see Starting WebSphere MQ applications using triggers.

Parent topic: Running the Request sample using triggering

This build: January 26, 2011 11:21:26

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17520_

4.1.23.5.2. i5/OS

To try the samples using triggering on i5/OS®, start the sample trigger server, AMQSERV4, in one job, then start AMQSREQ4 in another.

This means that the trigger server is ready when the Request sample program sends a message.

Note:

1. The sample definitions created by AMQSAMP4 trigger the C versions of the samples. If you want to trigger the COBOL versions, change the process
definitions SYSTEM.SAMPLE.ECHOPROCESS, SYSTEM.SAMPLE.INQPROCESS, and SYSTEM.SAMPLE.SETPROCESS. You can use the CHGMQMPRC
command (described in the WebSphere MQ for i5/OS System Administration Guide) to do this, or edit and run your own version of AMQSAMP4.

2. Source code for AMQSERV4 is supplied for the C language only. However, a compiled version (that you can use with the COBOL samples) is supplied in
library QMQM.

You could put your request messages on these sample server queues:

� SYSTEM.SAMPLE.ECHO (for the Echo sample programs)

� SYSTEM.SAMPLE.INQ (for the Inquire sample programs)

Page 312 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

� SYSTEM.SAMPLE.SET (for the Set sample programs)

A flow chart for the SYSTEM.SAMPLE.ECHO program is shown in Figure 1. Using the example data file the command to issue the C program request to this
server is:

 CALL PGM(QMQMSAMP/AMQSREQ4) PARM('QMQMSAMP/AMQSDATA(ECHO)')

Note: This sample queue has a trigger type of FIRST, so if there are already messages on the queue before you run the Request sample, server applications
are not triggered by the messages you send.

If you want to attempt further examples, you can try the following variations:

� Use AMQSTRG4 (or its command line equivalent STRMQMTRM; see the WebSphere MQ for i5/OS System Administration Guide) instead of AMQSERV4
to submit the job instead, but potential job submission delays could make it less easy to follow what is happening.

� Run the SYSTEM.SAMPLE.INQUIRE and SYSTEM.SAMPLE.SET sample programs. Using the example data file the commands to issue the C program
requests to these servers are, respectively:

 CALL PGM(QMQMSAMP/AMQSREQ4) PARM('QMQMSAMP/AMQSDATA(INQ)')

 CALL PGM(QMQMSAMP/AMQSREQ4) PARM('QMQMSAMP/AMQSDATA(SET)')

These sample queues also have a trigger type of FIRST.

Parent topic: Running the Request sample using triggering

This build: January 26, 2011 11:21:26

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17530_

4.1.23.6. Design of the Request sample program

The program opens the target server queue so that it can put messages. It uses the MQOPEN call with the MQOO_OUTPUT option. If it cannot open the
queue, the program displays an error message containing the reason code returned by the MQOPEN call.

The program then opens the reply-to queue called SYSTEM.SAMPLE.REPLY so that it can get reply messages. For this, the program uses the MQOPEN call
with the MQOO_INPUT_EXCLUSIVE option. If it cannot open the queue, the program displays an error message containing the reason code returned by the
MQOPEN call.

For each line of input, the program then reads the text into a buffer and uses the MQPUT call to create a request message containing the text of that line. On
this call the program uses the MQRO_EXCEPTION_WITH_DATA report option to request that any report messages sent about the request message will
include the first 100 bytes of the message data. The program continues until either it reaches the end of the input or the MQPUT call fails.

The program then uses the MQGET call to remove reply messages from the queue, and displays the data contained in the replies. The MQGET call uses the
MQGMO_WAIT, MQGMO_CONVERT, and MQGMO_ACCEPT_TRUNCATED options. The WaitInterval is 5 minutes in the COBOL version, and 1 minute in the C

version, for the first reply (to allow time for a server application to be triggered), and 15 seconds for subsequent replies. The program waits for these
periods if there is no message on the queue. If no message arrives before this interval expires, the call fails and returns the MQRC_NO_MSG_AVAILABLE
reason code. The call also uses the MQGMO_ACCEPT_TRUNCATED_MSG option, so messages longer than the declared buffer size are truncated.

The program demonstrates how to clear the MsgId and CorrelId fields of the MQMD structure after each MQGET call because the call sets these fields to the

values contained in the message it retrieves. Clearing these fields means that successive MQGET calls retrieve messages in the order in which the messages
are held in the queue.

The program continues until either the MQGET call returns the MQRC_NO_MSG_AVAILABLE reason code or the MQGET call fails. If the call fails, the program
displays an error message that contains the reason code.

The program then closes both the target server queue and the reply-to queue using the MQCLOSE call.

Figure 1. Sample i5/OS® Client/Server (Echo) program flowchart

Page 313 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Parent topic: The Request sample programs

This build: January 26, 2011 11:21:26

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17540_

4.1.24. The Set sample programs

The Set sample programs inhibit put operations on a queue by using the MQSET call to change the queue’s InhibitPut attribute. See Features

demonstrated in the sample programs for the names of these programs.

The programs are intended to run as triggered programs, so their only input is an MQTMC2 (trigger message) structure that contains the name of a target
queue whose attributes are to be inquired. The C version also uses the queue manager name. The COBOL version uses the default queue manager.

For the triggering process to work, ensure that the Set sample program that you want to use is triggered by messages arriving on queue
SYSTEM.SAMPLE.SET. To do this, specify the name of the Set sample program that you want to use in the ApplicId field of the process definition

SYSTEM.SAMPLE.SETPROCESS. The sample queue has a trigger type of FIRST; if there are already messages on the queue before you run the Request
sample, the Set sample is not triggered by the messages that you send.

When you have set the definition correctly:

� For UNIX systems and Windows systems, start the runmqtrm program in one session, then start the amqsreq program in another.

� For i5/OS®, start the AMQSERV4 program in one session, then start the AMQSREQ4 program in another. You could use AMQSTRG4 instead of
AMQSERV4, but potential job submission delays could make it less easy to follow what is happening.

Use the Request sample programs to send request messages, each containing just a queue name, to queue SYSTEM.SAMPLE.SET. For each request
message, the Set sample programs send a reply message containing a confirmation that put operations have been inhibited on the specified queue. The
replies are sent to the reply-to queue specified in the request message.

Design of the Set sample program
The program opens the queue named in the trigger message structure that it was passed when it started. (For clarity, we will call this the request
queue.) The program uses the MQOPEN call to open this queue for shared input.

Parent topic: Sample programs (platforms except z/OS)

This build: January 26, 2011 11:21:27

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17570_

4.1.24.1. Design of the Set sample program

The program opens the queue named in the trigger message structure that it was passed when it started. (For clarity, we will call this the request queue.)
The program uses the MQOPEN call to open this queue for shared input.

The program uses the MQGET call to remove messages from this queue. This call uses the MQGMO_ACCEPT_TRUNCATED_MSG and MQGMO_WAIT options,
with a wait interval of 5 seconds. The program tests the descriptor of each message to see if it is a request message; if it is not, the program discards the
message and displays a warning message.

Page 314 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

For each request message removed from the request queue, the program reads the name of the queue (which we will call the target queue) contained in the
data and opens that queue using the MQOPEN call with the MQOO_SET option. The program then uses the MQSET call to set the value of the InhibitPut

attribute of the target queue to MQQA_PUT_INHIBITED.

If the MQSET call is successful, the program uses the MQPUT1 call to put a reply message on the reply-to queue. This message contains the string PUT

inhibited.

If the MQOPEN or MQSET call is unsuccessful, the program uses the MQPUT1 call to put a report message on the reply-to queue. In the Feedback field of

the message descriptor of this report message is the reason code returned by either the MQOPEN or MQSET call, depending on which one failed.

After the MQSET call, the program closes the target queue using the MQCLOSE call.

When there are no messages remaining on the request queue, the program closes that queue and disconnects from the queue manager.

Parent topic: The Set sample programs

This build: January 26, 2011 11:21:27

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17580_

4.1.25. The SSL/TLS sample program

AMQSSSLC is a sample C program that demonstrates how to use the MQCNO and MQSCO structures to supply SSL or TLS client connection information on
the MQCONNX call.

Note: The SSL/TLS sample program is a client sample. You can link and run it on a server but in that case it connects to a local queue manager and
ignores the client connection information.

Using MQCONNX enables a client MQI application to provide the definition of its client connection channel and SSL or TLS settings at run time without a
client channel definition table.

You can determine what the program does by supplying a number of parameters:

� If you supply a connection name, the program constructs a client connection channel definition in a channel definition (MQCD) structure.

� If you supply any SSL or TLS settings, the program constructs an SSL configuration options (MQSCO) structure.

� If you supply any OCSP certificate revocation settings, the program constructs an authentication information record (MQAIR) structure.

You can specify these parameters on the command line. Any settings that you do not supply on the command line are taken from the following sources (in
decreasing order of priority):

1. Environment variables such as MQSSLKEYR

2. Client configuration file settings such as SSLKeyRepository

3. The client channel definition table file

The program connects to the queue manager using MQCONNX. It inquires and displays the name of the queue manager to which it is connected.

Running the SSL/TLS sample program
To run the SSL/TLS sample program you must first set up your SSL or TLS environment. You then run the sample from the command line, supplying a
number of parameters.

Parent topic: Sample programs (platforms except z/OS)

This build: January 26, 2011 11:22:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg20740_

4.1.25.1. Running the SSL/TLS sample program

To run the SSL/TLS sample program you must first set up your SSL or TLS environment. You then run the sample from the command line, supplying a
number of parameters.

About this task
The following instructions run the sample program using personal certificates. By varying the command, you can use CA certificates, check their status using
an OCSP responder, and so on. See the instructions within the sample.

Procedure

1. Create a queue manager with the name QM1. For more information, see crtmqm.

2. Create a key repository for the queue manager. For more information, see Setting up a key repository.

3. Create a key repository for the client. Call it clientkey.kdb.

4. Create a personal certificate for the queue manager. For more information, see Creating a self-signed personal certificate.

5. Create a personal certificate for the client.

6. Extract the personal certificate from the server key repository and add it to the client repository. For more information, see Extracting the CA part of a
self-signed certificate, and Adding a CA certificate into a key repository.

7. Extract the personal certificate from the client key repository and add it to the server key repository.

8. Create a server connection channel using the MQSC command:

DEFINE CHANNEL(QM1SVRCONN) CHLTYPE(SVRCONN) TRPTYPE(TCP) SSLCIPH(NULL_SHA)

For more information see Server-connection channel

9. Define and start a channel listener on the queue manager. For more information see DEFINE LISTENER and START LISTENER.

10. Run the sample program using the following command:

AMQSSSLC -m QM1 -c QM1SVRCONN -x localhost

-k "c:\Program Files\IBM\WebSphere MQ\clientkey" -s NULL_SHA

Page 315 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

-o http://dummy.OCSP.responder

Results
The sample program performs the following actions:

1. Connects to any specified queue manager, or to the default queue manager, using any options specified.

2. Opens the queue manager and inquires on its name.

3. Closes the queue manager.

4. Disconnects from the queue manager.

If the sample program runs successfully, it displays output similar to the following example:
Sample AMQSSSLC start

Connecting to queue manager QM1

Using the server connection channel QM1SVRCONN

on connection name localhost.

Using SSL CipherSpec NULL_SHA

Using SSL key repository stem c:\Program Files\IBM\WebSphere MQ\clientkey

Using OCSP responder URL http://dummy.OCSP.responder

Connection established to queue manager QM1

Sample AMQSSSLC end

If the sample program encounters a problem, it displays an appropriate error message, for example if you specify an invalid OCSP responder URL, you
receive the following message:
MQCONNX ended with reason code 2553

A list of reason codes is provided at Reason code list.

Parent topic: The SSL/TLS sample program

This build: January 26, 2011 11:22:12

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg20750_

4.1.26. The Triggering sample programs

The function provided in the triggering sample is a subset of that provided in the trigger monitor in the runmqtrm program.

See Features demonstrated in the sample programs for the names of these programs.

Running the amqstrg0.c, amqstrg, and amqstrgc samples

Running the AMQSTRG4 sample
This is a trigger monitor for the i5/OS® environment. It submits one i5/OS job for each application to be started. This means that there is additional
processing associated with each trigger message.

Design of the triggering sample

Running the AMQSERV4 sample
This is a trigger server for the i5/OS environment. For each trigger message, this server runs the start command in its own job to start the specified
application. The trigger server can call CICS® transactions.

Design of the trigger server

Ending the triggering sample programs on i5/OS
A trigger monitor program can be ended by the sysrequest option 2 (ENDRQS) or by inhibiting gets from the trigger queue.

Parent topic: Sample programs (platforms except z/OS)

This build: January 26, 2011 11:21:28

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17630_

4.1.26.1. Running the amqstrg0.c, amqstrg, and amqstrgc samples

The program takes 2 parameters:

1. The name of the initiation queue (necessary)

2. The name of the queue manager (optional)

If a queue manager is not specified, it connects to the default one. A sample initiation queue will have been defined when you ran amqscos0.tst; the name
of that queue is SYSTEM.SAMPLE.TRIGGER, and you can use it when you run this program.

Note: The function in this sample is a subset of the full triggering function that is supplied in the runmqtrm program.

Parent topic: The Triggering sample programs

This build: January 26, 2011 11:21:28

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17640_

4.1.26.2. Running the AMQSTRG4 sample

This is a trigger monitor for the i5/OS® environment. It submits one i5/OS job for each application to be started. This means that there is additional
processing associated with each trigger message.

Page 316 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

AMQSTRG4 (in QCSRC) takes two parameters: the name of the initiation queue that it is to serve, and the name of the queue manager (optional).
AMQSAMP4 (in QCLSRC) defines a sample initiation queue, SYSTEM.SAMPLE.TRIGGER, that you can use when you try the sample programs.

Using the example trigger queue, the command to issue is:

 CALL PGM(QMQM/AMQSTRG4) PARM('SYSTEM.SAMPLE.TRIGGER')

Alternatively, you can use the CL equivalent STRMQMTRM; see the WebSphere MQ for i5/OS System Administration Guide.

Parent topic: The Triggering sample programs

This build: January 26, 2011 11:21:28

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17650_

4.1.26.3. Design of the triggering sample

The triggering sample program opens the initiation queue using the MQOPEN call with the MQOO_INPUT_AS_Q_DEF option. It gets messages from the
initiation queue using the MQGET call with the MQGMO_ACCEPT_TRUNCATED_MSG and MQGMO_WAIT options, specifying an unlimited wait interval. The
program clears the MsgId and CorrelId fields before each MQGET call to get messages in sequence.

When it has retrieved a message from the initiation queue, the program tests the message by checking the size of the message to make sure that it is the
same size as an MQTM structure. If this test fails, the program displays a warning.

For valid trigger messages, the triggering sample copies data from these fields: ApplicId, EnvrData, Version, and ApplType. The last two of these fields

are numeric, so the program creates character replacements to use in an MQTMC2 structure for i5/OS®, UNIX, and Windows systems.

The triggering sample issues a start command to the application specified in the ApplicId field of the trigger message, and passes an MQTMC2 or MQTMC (a

character version of the trigger message) structure. In UNIX systems and Windows systems, the EnvData field is used as an extension to the invoking

command string. In i5/OS, it is used as job submission parameters, for example, the job priority or the job description. See the WebSphere MQ for i5/OS
System Administration Guide for a discussion of job priority and job description.

Finally, the program closes the initiation queue.

Parent topic: The Triggering sample programs

This build: January 26, 2011 11:21:28

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17660_

4.1.26.4. Running the AMQSERV4 sample

This is a trigger server for the i5/OS® environment. For each trigger message, this server runs the start command in its own job to start the specified
application. The trigger server can call CICS® transactions.

AMQSERV4 takes two parameters: the name of the initiation queue that it is to serve, and the name of the queue manager (optional). AMQSAMP4 defines a
sample initiation queue, SYSTEM.SAMPLE.TRIGGER, that you can use when you try the sample programs.

Using the example trigger queue the command to issue is:

 CALL PGM(QMQM/AMQSERV4) PARM('SYSTEM.SAMPLE.TRIGGER')

Parent topic: The Triggering sample programs

This build: January 26, 2011 11:21:28

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17670_

4.1.26.5. Design of the trigger server

The design of the trigger server is similar to that of the trigger monitor, except that the trigger server:

� Allows MQAT_CICS as well as MQAT_OS400 applications

� Calls i5/OS® applications in its own job (or uses STRCICSUSR to start CICS® applications) rather than submitting an i5/OS job

� For CICS applications, substitutes the EnvData, for example, to specify the CICS region, from the trigger message in the STRCICSUSR command

� Opens the initiation queue for shared input, so that many trigger servers can run at the same time

Note: Programs started by AMQSERV4 must not use the MQDISC call because this stops the trigger server. If programs started by AMQSERV4 use the
MQCONN call, they get the MQRC_ALREADY_CONNECTED reason code.

Parent topic: The Triggering sample programs

This build: January 26, 2011 11:21:28

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17680_

4.1.26.6. Ending the triggering sample programs on i5/OS®

A trigger monitor program can be ended by the sysrequest option 2 (ENDRQS) or by inhibiting gets from the trigger queue.

If the sample trigger queue is used, the command is:

Page 317 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

 CHGMQMQ QNAME('SYSTEM.SAMPLE.TRIGGER') MQMNAME GETENBL(*NO)

Note: Before starting triggering again on this queue, you must enter the command:

 CHGMQMQ QNAME('SYSTEM.SAMPLE.TRIGGER') GETENBL(*YES)

Parent topic: The Triggering sample programs

This build: January 26, 2011 11:21:29

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17690_

4.1.27. TUXEDO samples

Before running these samples, you must build the server environment.

Note: Throughout this section the \ character is used to split long commands over more than one line. Do not enter this character, enter each command as
a single line.

Building the server environment

Server sample program for TUXEDO
This sample server program (amqstxsx) is designed to run with the Put (amqstxpx.c) and the Get (amqstxgx.c) sample programs. The program runs
automatically when TUXEDO is started.

Put sample program for TUXEDO
This sample allows you to put a message on a queue multiple times, in batches, demonstrating syncpointing using TUXEDO as the resource manager.

Get sample for TUXEDO
This sample allows you to get messages from a queue in batches.

Parent topic: Sample programs (platforms except z/OS)

This build: January 26, 2011 11:21:30

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17810_

4.1.27.1. Building the server environment

It is assumed that you have a working TUXEDO environment.

Building the server environment for WebSphere MQ for AIX (32–bit)

Building the server environment for WebSphere MQ for AIX (64–bit)

Building the server environment for WebSphere MQ for Solaris (32–bit)

Building the server environment for WebSphere MQ for Solaris (64–bit)

Building the server environment for WebSphere MQ for HP-UX (32–bit)

Building the server environment for WebSphere MQ for HP-UX (64–bit)

Building the server environment for WebSphere MQ for Windows (32–bit)

Bulding the server environment for WebSphere MQ for Windows (64–bit)

Parent topic: TUXEDO samples

This build: January 26, 2011 11:21:30

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17820_

4.1.27.1.1. Building the server environment for WebSphere® MQ for AIX® (32–bit)

1. Create a directory (for example, <APPDIR>) in which the server environment is built and execute all commands in this directory.

2. Export the following environment variables, where TUXDIR is the root directory for TUXEDO:

 $ export CFLAGS=“-I ⁄usr⁄mqm⁄inc -I /<APPDIR> -L /usr⁄mqm⁄lib”

 $ export LDOPTS=“-lmqm -lmqmcs”

 $ export FIELDTBLS=/usr/mqm/samp/amqstxvx.flds

 $ export VIEWFILES=/<APPDIR>/amqstxvx.V

 $ export LIBPATH=$TUXDIR⁄lib:⁄usr⁄mqm⁄lib:⁄lib

3. Add the following to the TUXEDO file udataobj/RM

 MQSeries_XA_RMI:MQRMIXASwitchDynamic: -lmqmxa -lmqm -lmqmcs

4. Run the commands:

 $ mkfldhdr /usr/mqm/samp/amqstxvx.flds

 $ viewc /usr/mqm/samp/amqstxvx.v

 $ buildtms -o MQXA -r MQSeries_XA_RMI

Page 318 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

 $ buildserver -o MQSERV1 -f /usr/mqm/samp/amqstxsx.c \

 -f /usr/mqm/lib/libmqm.a \

 -r MQSeries_XA_RMI -s MPUT1:MPUT \

 -s MGET1:MGET \

 -v -bshm

 $ buildserver -o MQSERV2 -f /usr/mqm/samp/amqstxsx.c \

 -f /usr/mqm/lib/libmqm.a \

 -r MQSeries_XA_RMI -s MPUT2:MPUT

 -s MGET2:MGET \

 -v -bshm

 $ buildclient -o doputs -f /usr/mqm/samp/amqstxpx.c \

 -f /usr/mqm/lib/libmqm.a

 $ buildclient -o dogets -f /usr/mqm/samp/amqstxgx.c \

 -f /usr/mqm/lib/libmqm.a

5. Edit ubbstxcx.cfg and add details of the machine name, working directories, and queue manager as necessary:

 $ tmloadcf -y /usr/mqm/samp/ubbstxcx.cfg

6. Create the TLOGDEVICE:

 $tmadmin -c

A prompt then appears. At this prompt, enter:

 > crdl -z /<APPDIR>/TLOG1

7. Start the queue manager:

 $ strmqm

8. Start Tuxedo:

 $ tmboot -y

You can now use the doputs and dogets programs to put messages to a queue and retrieve them from a queue.

Parent topic: Building the server environment

This build: January 26, 2011 11:21:30

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17830_

4.1.27.1.2. Building the server environment for WebSphere® MQ for AIX® (64–bit)

1. Create a directory (for example, <APPDIR>) in which the server environment is built and execute all commands in this directory.

2. Export the following environment variables, where TUXDIR is the root directory for TUXEDO:

 $ export CFLAGS=“-I ⁄usr⁄mqm⁄inc -I /<APPDIR> -L /usr⁄mqm⁄lib64”

 $ export LDOPTS=“-lmqm -lmqmcs”

 $ export FIELDTBLS=/usr/mqm/samp/amqstxvx.flds

 $ export VIEWFILES=/<APPDIR>/amqstxvx.V

 $ export LIBPATH=$TUXDIR⁄lib64:⁄usr⁄mqm⁄lib64:⁄lib64

3. Add the following to the TUXEDO file udataobj/RM

 MQSeries_XA_RMI:MQRMIXASwitchDynamic: -lmqmxa64 -lmqm -lmqmcs

4. Run the commands:

 $ mkfldhdr /usr/mqm/samp/amqstxvx.flds

 $ viewc /usr/mqm/samp/amqstxvx.v

 $ buildtms -o MQXA -r MQSeries_XA_RMI

 $ buildserver -o MQSERV1 -f /usr/mqm/samp/amqstxsx.c \

 -f /usr/mqm/lib64/libmqm.a \

 -r MQSeries_XA_RMI -s MPUT1:MPUT \

 -s MGET1:MGET \

 -v -bshm

 $ buildserver -o MQSERV2 -f /usr/mqm/samp/amqstxsx.c \

 -f /usr/mqm/lib64/libmqm.a \

 -r MQSeries_XA_RMI -s MPUT2:MPUT

 -s MGET2:MGET \

 -v -bshm

 $ buildclient -o doputs -f /usr/mqm/samp/amqstxpx.c \

 -f /usr/mqm/lib64/libmqm.a

 $ buildclient -o dogets -f /usr/mqm/samp/amqstxgx.c \

 -f /usr/mqm/lib64/libmqm.a

5. Edit ubbstxcx.cfg and add details of the machine name, working directories, and queue manager as necessary:

 $ tmloadcf -y /usr/mqm/samp/ubbstxcx.cfg

6. Create the TLOGDEVICE:

 $tmadmin -c

A prompt then appears. At this prompt, enter:

 > crdl -z /<APPDIR>/TLOG1

7. Start the queue manager:

 $ strmqm

8. Start Tuxedo:

 $ tmboot -y

You can now use the doputs and dogets programs to put messages to a queue and retrieve them from a queue.

Parent topic: Building the server environment

This build: January 26, 2011 11:22:10

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

Page 319 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

This topic's URL:

fg20650_

4.1.27.1.3. Building the server environment for WebSphere® MQ for Solaris (32–bit)

1. Create a directory (for example, <APPDIR>) in which the server environment is built and execute all commands in this directory.

2. Export the following environment variables, where TUXDIR is the root directory for TUXEDO:

 $ export CFLAGS="-I /<APPDIR>"

 $ export FIELDTBLS=amqstxvx.flds

 $ export VIEWFILES=amqstxvx.V

 $ export SHLIB_PATH=$TUXDIR⁄lib:⁄opt⁄mqm⁄lib:⁄lib

 $ export LD_LIBRARY_PATH=$TUXDIR⁄lib:⁄opt⁄mqm⁄lib:⁄lib

3. Add the following to the TUXEDO file udataobj/RM (RM must include /opt/mqm/lib/libmqmcs and /opt/mqm/lib/libmqmzse).

 MQSeries_XA_RMI:MQRMIXASwitchDynamic: \

 /opt/mqm/lib/libmqmxa.a /opt/mqm/lib/libmqm.so \

 /opt/tuxedo/lib/libtux.a /opt/mqm/lib/libmqmcs.so \

 /opt/mqm/lib/libmqmzse.so

4. Run the commands:

 $ mkfldhdr amqstxvx.flds

 $ viewc amqstxvx.v

 $ buildtms -o MQXA -r MQSeries_XA_RMI

 $ buildserver -o MQSERV1 -f amqstxsx.c \

 -f /opt/mqm/lib/libmqm.so \

 -r MQSeries_XA_RMI -s MPUT1:MPUT \

 -s MGET1:MGET \

 -v -bshm

 -l -ldl

 $ buildserver -o MQSERV2 -f amqstxsx.c \

 -f /opt/mqm/lib/libmqm.so \

 -r MQSeries_XA_RMI -s MPUT2:MPUT \

 -s MGET2:MGET \

 -v -bshm

 -l -ldl

 $ buildclient -o doputs -f amqstxpx.c \

 -f /opt/mqm/lib/libmqm.so \

 -f /opt/mqm/lib/libmqmzse.co \

 -f /opt/mqm/lib/libmqmcs.so

 $ buildclient -o dogets -f amqstxgx.c \

 -f /opt/mqm/lib/libmqm.so

 -f /opt/mqm/lib/libmqmzse.co \

 -f /opt/mqm/lib/libmqmcs.so

5. Edit ubbstxcx.cfg and add details of the machine name, working directories, and queue manager as necessary:

 $ tmloadcf -y ubbstxcx.cfg

6. Create the TLOGDEVICE:

 $tmadmin -c

A prompt then appears. At this prompt, enter:

 > crdl -z /<APPDIR>/TLOG1

7. Start the queue manager:

 $ strmqm

8. Start Tuxedo:

 $ tmboot -y

You can now use the doputs and dogets programs to put messages to a queue and retrieve them from a queue.

Parent topic: Building the server environment

This build: January 26, 2011 11:21:30

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17840_

4.1.27.1.4. Building the server environment for WebSphere® MQ for Solaris (64–bit)

1. Create a directory (for example, <APPDIR>) in which the server environment is built and execute all commands in this directory.

2. Export the following environment variables, where TUXDIR is the root directory for TUXEDO:

 $ export CFLAGS="-I /<APPDIR>"

 $ export FIELDTBLS=amqstxvx.flds

 $ export VIEWFILES=amqstxvx.V

 $ export SHLIB_PATH=$TUXDIR⁄lib:⁄opt⁄mqm⁄lib:⁄lib64

 $ export LD_LIBRARY_PATH=$TUXDIR⁄lib64:⁄opt⁄mqm⁄lib64:⁄lib64

3. Add the following to the TUXEDO file udataobj/RM (RM must include /opt/mqm/lib/libmqmcs and /opt/mqm/lib/libmqmzse).

 MQSeries_XA_RMI:MQRMIXASwitchDynamic: \

 /opt/mqm/lib64/libmqmxa64.a /opt/mqm/lib64/libmqm.so \

 /opt/tuxedo/lib64/libtux.a /opt/mqm/lib64/libmqmcs.so \

 /opt/mqm/lib64/libmqmzse.so

4. Run the commands:

 $ mkfldhdr amqstxvx.flds

 $ viewc amqstxvx.v

 $ buildtms -o MQXA -r MQSeries_XA_RMI

 $ buildserver -o MQSERV1 -f amqstxsx.c \

 -f /opt/mqm/lib64/libmqm.so \

 -r MQSeries_XA_RMI -s MPUT1:MPUT \

 -s MGET1:MGET \

 -v -bshm

 -l -ldl

Page 320 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

 $ buildserver -o MQSERV2 -f amqstxsx.c \

 -f /opt/mqm/lib64/libmqm.so \

 -r MQSeries_XA_RMI -s MPUT2:MPUT \

 -s MGET2:MGET \

 -v -bshm

 -l -ldl

 $ buildclient -o doputs -f amqstxpx.c \

 -f /opt/mqm/lib64/libmqm.so \

 -f /opt/mqm/lib64/libmqmzse.co \

 -f /opt/mqm/lib64/libmqmcs.so

 $ buildclient -o dogets -f amqstxgx.c \

 -f /opt/mqm/lib64/libmqm.so

 -f /opt/mqm/lib64/libmqmzse.co \

 -f /opt/mqm/lib64/libmqmcs.so

5. Edit ubbstxcx.cfg and add details of the machine name, working directories, and queue manager as necessary:

 $ tmloadcf -y ubbstxcx.cfg

6. Create the TLOGDEVICE:

 $tmadmin -c

A prompt then appears. At this prompt, enter:

 > crdl -z /<APPDIR>/TLOG1

7. Start the queue manager:

 $ strmqm

8. Start Tuxedo:

 $ tmboot -y

You can now use the doputs and dogets programs to put messages to a queue and retrieve them from a queue.

Parent topic: Building the server environment

This build: January 26, 2011 11:22:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg20660_

4.1.27.1.5. Building the server environment for WebSphere® MQ for HP-UX (32–bit)

Note: The 32-bit TUXEDO server environment can only be built on the Itanium platform. This is because Oracle does not ship the 32-bit version of TUXEDO
installable for the HPUX PA-RISC platform.

1. Create a directory (for example, <APPDIR>) in which the server environment is built and execute all commands in this directory.

2. Export the following environment variables, where TUXDIR is the root directory for TUXEDO:

 $ export CFLAGS="-Aa -D_HPUX_SOURCE"

 $ export FIELDTBLS=/opt/mqm/samp/amqstxvx.flds

 $ export VIEWFILES=$APPDIR/amqstxvx.V

 $ export TUXCONFIG=$APPDIR/tuxconfig

 $ export PATH=$TUXDIR/bin:/usr/bin:/sbin:/opt/mqm/bin:$PATH

 $ export SHLIB_PATH=$TUXDIR/lib:/opt/mqm/lib:/lib

 $ export FLDTBLDIR=$APPDIR:$TUXDIR/udataobj

3. Add the following to the TUXEDO file udataobj/RM

 MQSeries_XA_RMI:MQRMIXASwitchDynamic: \

 /opt/mqm/lib/libmqmxa.so /opt/mqm/lib/libmqm.so \

 /opt/tuxedo/lib/libtux.sl

4. Run the commands:

 $ mkfldhdr /opt/mqm/samp/amqstxvx.flds

 $ viewc /opt/mqm/samp/amqstxvx.v

After running the mkfldhdr and viewc commands, the amqstxvx.h header file is created in the TUXEDO application directory. Copy this file from the
TUXEDO application directory into the TUXEDO include directory, and then run the following commands.

 $ buildtms -o MQXA -r MQSeries_XA_RMI

 $ buildserver -o MQSERV1 -f /opt/mqm/samp/amqstxsx.c \

 -f /opt/mqm/lib/libmqm.so \

 -r MQSeries_XA_RMI -s MPUT1:MPUT \

 -s MGET1:MGET \

 -v -bshm

 $ buildserver -o MQSERV2 -f /opt/mqm/samp/amqstxsx.c \

 -f /opt/mqm/lib/libmqm.so \

 -r MQSeries_XA_RMI -s MPUT2:MPUT \

 -s MGET2:MGET \

 -v -bshm

 $ buildclient -o doputs -f /opt/mqm/samp/amqstxpx.c \

 -f /opt/mqm/lib/libmqm.so

 $ buildclient -o dogets -f /opt/mqm/samp/amqstxgx.c \

 -f /opt/mqm/lib/libmqm.so

5. Edit ubbstxcx.cfg and add details of the machine name, working directories, and queue manager as necessary:

 $ tmloadcf -y /opt/mqm/samp/ubbstxcx.cfg

6. Create the TLOGDEVICE:

 $tmadmin -c

A prompt then appears. At this prompt, enter:

 > crdl -z /<APPDIR>/TLOG1

7. Start the queue manager:

 $ strmqm

8. Start TUXEDO:

Page 321 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

 $ tmboot -y

You can now use the doputs and dogets programs to put messages to a queue and retrieve them from a queue.

Parent topic: Building the server environment

This build: January 26, 2011 11:21:30

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17850_

4.1.27.1.6. Building the server environment for WebSphere® MQ for HP-UX (64–bit)

1. Create a directory (for example, <APPDIR>) in which the server environment is built and execute all commands in this directory.

2. Export the following environment variables, where TUXDIR is the root directory for TUXEDO:

 $ export CFLAGS="-Aa -D_HPUX_SOURCE"

 $ export FIELDTBLS=/opt/mqm/samp/amqstxvx.flds

 $ export VIEWFILES=$APPDIR/amqstxvx.V

 $ export TUXCONFIG=$APPDIR/tuxconfig

 $ export PATH=$TUXDIR/bin:/usr/bin:/sbin:/opt/mqm/bin:$PATH

 $ export SHLIB_PATH=$TUXDIR/lib:/opt/mqm/lib64:/lib64

 $ export FLDTBLDIR=$APPDIR:$TUXDIR/udataobj

3. Add the following to the TUXEDO file udataobj/RM

On the HP-UX PA-RISC platform:

 MQSeries_XA_RMI:MQRMIXASwitchDynamic: \

 /opt/mqm/lib64/libmqmxa64.sl /opt/mqm/lib64/libmqm.sl \

 /opt/tuxedo/lib/libtux.sl

Note: The WebSphere MQ libraries shipped on the HP-UX PA-RISC platform have a .sl file name extension

On the HP-UX IA64 (IPF) platform:

 MQSeries_XA_RMI:MQRMIXASwitchDynamic: \

 /opt/mqm/lib64/libmqmxa64.so /opt/mqm/lib64/libmqm.so \

 /opt/tuxedo/lib/libtux.sl

Note: The WebSphere MQ libraries shipped on the HP-UX IA64 (IPF) platform have a .so file name extension.

4. Run the commands:

 $ mkfldhdr /opt/mqm/samp/amqstxvx.flds

 $ viewc /opt/mqm/samp/amqstxvx.v

After running the mkfldhdr and viewc commands, the amqstxvx.h header file is created in the TUXEDO application directory. Copy this file from the
TUXEDO application directory into the TUXEDO include directory, and then run the following commands.

 $ buildtms -o MQXA -r MQSeries_XA_RMI

On the HP-UX PA-RISC platform:

 $ buildserver -o MQSERV1 -f /opt/mqm/samp/amqstxsx.c \

 -f /opt/mqm/lib64/libmqm.sl \

 -r MQSeries_XA_RMI -s MPUT1:MPUT \

 -s MGET1:MGET \

 -v -bshm

 $ buildserver -o MQSERV2 -f /opt/mqm/samp/amqstxsx.c \

 -f /opt/mqm/lib64/libmqm.sl \

 -r MQSeries_XA_RMI -s MPUT2:MPUT \

 -s MGET2:MGET \

 -v -bshm

 $ buildclient -o doputs -f /opt/mqm/samp/amqstxpx.c \

 -f /opt/mqm/lib64/libmqm.sl

 $ buildclient -o dogets -f /opt/mqm/samp/amqstxgx.c \

 -f /opt/mqm/lib64/libmqm.sl

On the HP-UX IA64 (IPF) platform:

 $ buildserver -o MQSERV1 -f /opt/mqm/samp/amqstxsx.c \

 -f /opt/mqm/lib64/libmqm.so \

 -r MQSeries_XA_RMI -s MPUT1:MPUT \

 -s MGET1:MGET \

 -v -bshm

 $ buildserver -o MQSERV2 -f /opt/mqm/samp/amqstxsx.c \

 -f /opt/mqm/lib64/libmqm.so \

 -r MQSeries_XA_RMI -s MPUT2:MPUT \

 -s MGET2:MGET \

 -v -bshm

 $ buildclient -o doputs -f /opt/mqm/samp/amqstxpx.c \

 -f /opt/mqm/lib64/libmqm.so

 $ buildclient -o dogets -f /opt/mqm/samp/amqstxgx.c \

 -f /opt/mqm/lib64/libmqm.so

5. Edit ubbstxcx.cfg and add details of the machine name, working directories, and queue manager as necessary:

 $ tmloadcf -y /opt/mqm/samp/ubbstxcx.cfg

6. Create the TLOGDEVICE:

 $tmadmin -c

A prompt then appears. At this prompt, enter:

 > crdl -z /<APPDIR>/TLOG1

Page 322 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

7. Start the queue manager:

 $ strmqm

8. Start TUXEDO:

 $ tmboot -y

You can now use the doputs and dogets programs to put messages to a queue and retrieve them from a queue.

Parent topic: Building the server environment

This build: January 26, 2011 11:22:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg20670_

4.1.27.1.7. Building the server environment for WebSphere MQ for Windows (32–bit)

Note: Change the fields identified by <> in the following, to the directory paths:

To build the server environment and samples:

1. Create an application directory in which to build the sample application, for example:

 f:\tuxedo\apps\mqapp

2. Copy the following sample files from the WebSphere MQ sample directory to the application directory:

 amqstxmn.mak

 amqstxen.env

 ubbstxcn.cfg

3. Edit each of these files to set the directory names and directory paths used on your installation.

4. Edit ubbstxcn.cfg (see Figure 1) to add details of the machine name and the queue manager that you want to connect to.

5. Add the following line to the TUXEDO file <TUXDIR>udataobj\rm

 MQSeries_XA_RMI;MQRMIXASwitchDynamic;

 <MQMDIR>\tools\lib\mqmxa.lib <MQMDIR>\tools\lib\mqm.lib

where <MQMDIR> is replaced as above. Although shown here as two lines, the new entry must be one line in the file.

6. Set the following environment variables:

 TUXDIR=<TUXDIR>

 TUXCONFIG=<APPDIR>\tuxconfig

 FIELDTBLS=<MQMDIR>\tools\c\samples\amqstxvx.fld

 LANG=C

7. Create a TLOG device for TUXEDO. To do this, invoke tmadmin -c, and enter the command:

 crdl -z <APPDIR>\TLOG

where <APPDIR> is replaced as above.

8. Set the current directory to <APPDIR>, and invoke the sample makefile (amqstxmn.mak) as an external project makefile. For example, with Microsoft
Visual C++ , issue the command:

 msvc amqstxmn.mak

Select build to build all the sample programs.

Figure 1. Example of ubbstxcn.cfg file for WebSphere MQ for Windows

*RESOURCES

IPCKEY 99999

UID 0

GID 0

MAXACCESSERS 20

MAXSERVERS 20

MAXSERVICES 50

MASTER SITE1

MODEL SHM

LDBAL N

*MACHINES

<MachineName> LMID=SITE1

 TUXDIR=“f:\tuxedo”

 APPDIR=“f:\tuxedo\apps\mqapp;g:\Program Files\IBM\WebSphere MQ\bin”

 ENVFILE=“f:\tuxedo\apps\mqapp\amqstxen.env”

 TUXCONFIG=“f:\tuxedo\apps\mqapp\tuxconfig”

 ULOGPFX=“f:\tuxedo\apps\mqapp\ULOG”

 TLOGDEVICE=“f:\tuxedo\apps\mqapp\TLOG”

 TLOGNAME=TLOG

 TYPE=“i386NT”

 UID=0

 GID=0

*GROUPS

GROUP1

 LMID=SITE1 GRPNO=1

 TMSNAME=MQXA

 OPENINFO=“MQSeries_XA_RMI:MYQUEUEMANAGER”

*SERVERS

DEFAULT: CLOPT=“-A -- -m MYQUEUEMANAGER”

MQSERV1 SRVGRP=GROUP1 SRVID=1

MQSERV2 SRVGRP=GROUP1 SRVID=2

*SERVICES

<MQMDIR> the directory path specified when WebSphere® MQ was installed, for example
g:\Program Files\IBM\WebSphere MQ

<TUXDIR> the directory path specified when TUXEDO was installed, for example f:\tuxedo

<APPDIR> the directory path to be used for the sample application, for example f:\tuxedo\apps\mqapp

Page 323 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

MPUT1

MGET1

MPUT2

MGET2

Note: Change the directory names and directory paths to match your installation. Also change the queue manager name MYQUEUEMANAGER to the name of
the queue manager that you want to connect to. Other information that you need to add is identified by <> characters.

The sample ubbconfig file for WebSphere MQ for Windows is listed in Figure 1. It is supplied as ubbstxcn.cfg in the WebSphere MQ samples directory.

The sample makefile (see Figure 2) supplied for WebSphere MQ for Windows is called ubbstxmn.mak, and is held in the WebSphere MQ samples directory.

Figure 2. Sample TUXEDO makefile for WebSphere MQ for Windows

TUXDIR = f:\tuxedo

MQMDIR = g:\Program Files\IBM\WebSphere MQ

APPDIR = f:\tuxedo\apps\mqapp

MQMLIB = $(MQMDIR)\tools\lib

MQMINC = $(MQMDIR)\tools\c\include

MQMSAMP = $(MQMDIR)\tools\c\samples

INC = -f “-I$(MQMINC) -I$(APPDIR)”

DBG = -f “/Zi”

amqstx.exe:

 $(TUXDIR)\bin\mkfldhdr -d$(APPDIR) $(MQMSAMP)\amqstxvx.fld

 $(TUXDIR)\bin\viewc -d$(APPDIR) $(MQMSAMP)\amqstxvx.v

 $(TUXDIR)\bin\buildtms -o MQXA -r MQSeries_XA_RMI

 $(TUXDIR)\bin\buildserver -o MQSERV1 -f $(MQMSAMP)\amqstxsx.c \

 -f $(MQMLIB)\mqm.lib -v $(INC) $(DBG) \

 -r MQSeries_XA_RMI \

 -s MPUT1:MPUT -s MGET1:MGET

 $(TUXDIR)\bin\buildserver -o MQSERV2 -f $(MQMSAMP)\amqstxsx.c \

 -f $(MQMLIB)\mqm.lib -v $(INC) $(DBG) \

 -r MQSeries_XA_RMI \

 -s MPUT2:MPUT -s MGET2:MGET

 $(TUXDIR)\bin\buildclient -o doputs -f $(MQMSAMP)\amqstxpx.c \

 -f $(MQMLIB)\mqm.lib -v $(INC) $(DBG)

 $(TUXDIR)\bin\buildclient -o dogets -f $(MQMSAMP)\amqstxgx.c \

 -f $(MQMLIB)\mqm.lib $(INC) -v $(DBG)

 $(TUXDIR)\bin\tmloadcf -y $(APPDIR)\ubbstxcn.cfg

Parent topic: Building the server environment

This build: January 26, 2011 11:21:31

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17860_

4.1.27.1.8. Bulding the server environment for WebSphere MQ for Windows (64–bit)

Note: Change the fields identified by <> in the following, to the directory paths:

To build the server environment and samples:

1. Create an application directory in which to build the sample application, for example:

 f:\tuxedo\apps\mqapp

2. Copy the following sample files from the WebSphere MQ sample directory to the application directory:

 amqstxmn.mak

 amqstxen.env

 ubbstxcn.cfg

3. Edit each of these files to set the directory names and directory paths used on your installation.

4. Edit ubbstxcn.cfg (see Figure 1) to add details of the machine name and the queue manager that you want to connect to.

5. Add the following line to the TUXEDO file <TUXDIR>udataobj\rm

 MQSeries_XA_RMI;MQRMIXASwitchDynamic;

 <MQMDIR>\tools\lib64\mqmxa64.lib <MQMDIR>\tools\lib64\mqm.lib

where <MQMDIR> is replaced as above. Although shown here as two lines, the new entry must be one line in the file.

6. Set the following environment variables:

 TUXDIR=<TUXDIR>

 TUXCONFIG=<APPDIR>\tuxconfig

 FIELDTBLS=<MQMDIR>\tools\c\samples\amqstxvx.fld

 LANG=C

7. Create a TLOG device for TUXEDO. To do this, invoke tmadmin -c, and enter the command:

 crdl -z <APPDIR>\TLOG

where <APPDIR> is replaced as above.

8. Set the current directory to <APPDIR>, and invoke the sample makefile (amqstxmn.mak) as an external project makefile. For example, with Microsoft
Visual C++ , issue the command:

 msvc amqstxmn.mak

Select build to build all the sample programs.

Figure 1. Example of ubbstxcn.cfg file for WebSphere MQ for Windows

*RESOURCES

IPCKEY 99999

UID 0

GID 0

MAXACCESSERS 20

<MQMDIR> the directory path specified when WebSphere® MQ was installed, for example
g:\Program Files\IBM\WebSphere MQ

<TUXDIR> the directory path specified when TUXEDO was installed, for example f:\tuxedo

<APPDIR> the directory path to be used for the sample application, for example f:\tuxedo\apps\mqapp

Page 324 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

MAXSERVERS 20

MAXSERVICES 50

MASTER SITE1

MODEL SHM

LDBAL N

*MACHINES

<MachineName> LMID=SITE1

 TUXDIR=“f:\tuxedo”

 APPDIR=“f:\tuxedo\apps\mqapp;g:\Program Files\IBM\WebSphere MQ\bin”

 ENVFILE=“f:\tuxedo\apps\mqapp\amqstxen.env”

 TUXCONFIG=“f:\tuxedo\apps\mqapp\tuxconfig”

 ULOGPFX=“f:\tuxedo\apps\mqapp\ULOG”

 TLOGDEVICE=“f:\tuxedo\apps\mqapp\TLOG”

 TLOGNAME=TLOG

 TYPE=“i386NT”

 UID=0

 GID=0

*GROUPS

GROUP1

 LMID=SITE1 GRPNO=1

 TMSNAME=MQXA

 OPENINFO=“MQSeries_XA_RMI:MYQUEUEMANAGER”

*SERVERS

DEFAULT: CLOPT=“-A -- -m MYQUEUEMANAGER”

MQSERV1 SRVGRP=GROUP1 SRVID=1

MQSERV2 SRVGRP=GROUP1 SRVID=2

*SERVICES

MPUT1

MGET1

MPUT2

MGET2

Note: Change the directory names and directory paths to match your installation. Also change the queue manager name MYQUEUEMANAGER to the name of
the queue manager that you want to connect to. Other information that you need to add is identified by <> characters.

The sample ubbconfig file for WebSphere MQ for Windows is listed in Figure 1. It is supplied as ubbstxcn.cfg in the WebSphere MQ samples directory.

The sample makefile (see Figure 2) supplied for WebSphere MQ for Windows is called ubbstxmn.mak, and is held in the WebSphere MQ samples directory.

Figure 2. Sample TUXEDO makefile for WebSphere MQ for Windows

TUXDIR = f:\tuxedo

MQMDIR = g:\Program Files\IBM\WebSphere MQ

APPDIR = f:\tuxedo\apps\mqapp

MQMLIB = $(MQMDIR)\tools\lib64

MQMINC = $(MQMDIR)\tools\c\include

MQMSAMP = $(MQMDIR)\tools\c\samples

INC = -f “-I$(MQMINC) -I$(APPDIR)”

DBG = -f “/Zi”

amqstx.exe:

 $(TUXDIR)\bin\mkfldhdr -d$(APPDIR) $(MQMSAMP)\amqstxvx.fld

 $(TUXDIR)\bin\viewc -d$(APPDIR) $(MQMSAMP)\amqstxvx.v

 $(TUXDIR)\bin\buildtms -o MQXA -r MQSeries_XA_RMI

 $(TUXDIR)\bin\buildserver -o MQSERV1 -f $(MQMSAMP)\amqstxsx.c \

 -f $(MQMLIB)\mqm.lib -v $(INC) $(DBG) \

 -r MQSeries_XA_RMI \

 -s MPUT1:MPUT -s MGET1:MGET

 $(TUXDIR)\bin\buildserver -o MQSERV2 -f $(MQMSAMP)\amqstxsx.c \

 -f $(MQMLIB)\mqm.lib -v $(INC) $(DBG) \

 -r MQSeries_XA_RMI \

 -s MPUT2:MPUT -s MGET2:MGET

 $(TUXDIR)\bin\buildclient -o doputs -f $(MQMSAMP)\amqstxpx.c \

 -f $(MQMLIB)\mqm.lib -v $(INC) $(DBG)

 $(TUXDIR)\bin\buildclient -o dogets -f $(MQMSAMP)\amqstxgx.c \

 -f $(MQMLIB)\mqm.lib $(INC) -v $(DBG)

 $(TUXDIR)\bin\tmloadcf -y $(APPDIR)\ubbstxcn.cfg

Parent topic: Building the server environment

This build: January 26, 2011 11:22:11

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg20680_

4.1.27.2. Server sample program for TUXEDO

This sample server program (amqstxsx) is designed to run with the Put (amqstxpx.c) and the Get (amqstxgx.c) sample programs. The program runs
automatically when TUXEDO is started.

Note: You must start your queue manager before you start TUXEDO.

The sample server provides two TUXEDO services, MPUT1 and MGET1:

� The MPUT1 service is driven by the PUT sample and uses MQPUT1 in syncpoint to put a message in a unit of work controlled by TUXEDO. It takes the
parameters QName and Message Text, which are supplied by the PUT sample.

� The MGET1 service opens and closes the queue each time that it gets a message. It takes the parameters QName and Message Text, which are
supplied by the GET sample.

Any error messages, reason codes, and status messages are written to the TUXEDO log file.

Figure 1. How TUXEDO samples work together

Page 325 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Parent topic: TUXEDO samples

This build: January 26, 2011 11:21:31

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17870_

4.1.27.3. Put sample program for TUXEDO

This sample allows you to put a message on a queue multiple times, in batches, demonstrating syncpointing using TUXEDO as the resource manager.

The sample server program amqstxsx must be running for the put sample to succeed; the server sample program connects to the queue manager and uses

the XA interface. To run the sample enter:

� doputs –n queuename –b batchsize –c trancount –t message

For example:

� doputs -n myqueue -b 5 -c 6 -t “Hello World”

This puts 30 messages onto the queue named myqueue, in six batches, each with five messages in it. If there are any problems it backs a batch of messages

out, otherwise it commits them.

Any error messages are written to the TUXEDO log file and to stderr. Any reason codes are written to stderr.

Parent topic: TUXEDO samples

This build: January 26, 2011 11:21:31

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17880_

4.1.27.4. Get sample for TUXEDO

This sample allows you to get messages from a queue in batches.

The sample server program amqstxsx must be running for the put sample to succeed; the server sample program connects to the queue manager and uses

the XA interface. To run the sample enter:

� dogets –n queuename –b batchsize –c trancount

For example:

� dogets -n myqueue -b 6 -c 4

This takes 24 messages off the queue named myqueue, in six batches, each with four messages in it. If you run this after the put example, which puts 30

messages on myqueue, you have only six messages on myqueue. The number of batches and the batch size can vary between putting the messages and

getting them.

Any error messages are written to the TUXEDO log file and to stderr. Any reason codes are written to stderr.

Parent topic: TUXEDO samples

This build: January 26, 2011 11:21:31

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17890_

Page 326 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

4.1.28. Using the SSPI security exit on Windows systems

This section describes how to use the SSPI channel-exit programs on Windows systems. The supplied exit code is in two formats: object and source.

Object code

Source code
The exit source code file is called amqsspin.c. It is in C:\Program Files\IBM\WebSphere MQ\Tools\c\Samples.

Parent topic: Sample programs (platforms except z/OS)

This build: January 26, 2011 11:21:32

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17970_

4.1.28.1. Object code

The object code file is called amqrspin.dll. For both client and server, it is installed as a standard part of WebSphere® MQ for Windows in the exits folder,
and is loaded as a standard user exit. You can run the supplied security channel exit and use authentication services in your definition of the channel.

To do this, specify either of the following:

SCYEXIT('amqrspin(SCY_KERBEROS)')

SCYEXIT('amqrspin(SCY_NTLM)')

To provide support for a restricted channel, specify the following on the SRVCONN channel:

SCYDATA('remote_principal_name')

where remote_principal_name is in the form DOMAIN\user. The secure channel is established only if the name of the remote principal matches
remote_principal_name.

To use the supplied channel-exit programs between systems that operate within a Kerberos security domain, create a servicePrincipalName for the queue
manager.

Parent topic: Using the SSPI security exit on Windows systems

This build: January 26, 2011 11:21:32

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17980_

4.1.28.2. Source code

The exit source code file is called amqsspin.c. It is in C:\Program Files\IBM\WebSphere MQ\Tools\c\Samples.

If you modify the source code, you must recompile the modified source.

You compile and link it in the same way as any other channel exit for the relevant platform, except that SSPI headers need to be accessed at compile time,
and the SSPI security libraries, together with any recommended associated libraries, need to be accessed at link time.

Before you execute the following command, make sure that cl.exe, and the Visual C++ library and the include folder are available in your path. For

example:

cl /VERBOSE /LD /MT /I<path_to_Microsoft_platform_SDK\include>

/I<path_to_WebSphere MQ\tools\c\include> amqsspin.c /DSECURITY_WIN32

-link /DLL /EXPORT:SCY_KERBEROS /EXPORT:SCY_NTLM STACK:8192

Note: The source code does not include any provision for tracing or error handling. If you modify and use the source code, add your own tracing and error-
handling routines.

Parent topic: Using the SSPI security exit on Windows systems

This build: January 26, 2011 11:21:32

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17990_

4.1.29. Running the samples using remote queues

You can demonstrate remote queuing by running the samples on connected queue managers.

Program amqscos0.tst provides a local definition of a remote queue (SYSTEM.SAMPLE.REMOTE) that uses a remote queue manager named OTHER. To use
this sample definition, change OTHER to the name of the second queue manager that you want to use. You must also set up a message channel between
your two queue managers; for information on how to do this, see WebSphere MQ Intercommunication.

The Request sample programs put their own local queue manager name in the ReplyToQMgr field of messages that they send. The Inquire and Set samples

send reply messages to the queue and message queue manager named in the ReplyToQ and ReplyToQMgr fields of the request messages that they process.

Parent topic: Sample programs (platforms except z/OS)

This build: January 26, 2011 11:21:29

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg17700_

Page 327 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

4.2. Sample programs for WebSphere MQ for z/OS

This chapter describes the sample applications that are delivered with WebSphere® MQ for z/OS®. These samples demonstrate typical uses of the Message
Queue Interface (MQI).

WebSphere MQ for z/OS also provides a sample API-crossing exit program, described in The API-crossing exit for z/OS, and sample data-conversion exits,
described in Writing data-conversion exits.

All the sample applications are supplied in source form; several are also supplied in executable form. The source modules include pseudocode that describes
the program logic.

Note: Although some of the sample applications have basic panel-driven interfaces, they do not aim to demonstrate how to design the look and feel of your
applications. For more information on how to design panel-driven interfaces for nonprogrammable terminals, see the SAA Common User Access: Basic

Interface Design Guide (SC26-4583) and its addendum (GG22-9508). These provide guidelines to help you to design applications that are consistent both
within the application and across other applications.

This chapter introduces the sample programs, under these headings:

Features demonstrated in the sample applications
This section summarizes the MQI features demonstrated in each of the sample applications, shows the programming languages in which each sample
is written, and the environment in which each sample runs.

Preparing and running sample applications for the batch environment
To prepare a sample application that runs in the batch environment, perform the same steps that you would when building any batch WebSphere MQ
for z/OS application.

Preparing sample applications for the TSO environment
To prepare a sample application that runs in the TSO environment, perform the same steps that you would when building any batch WebSphere MQ for
z/OS application.

Preparing the sample applications for the CICS environment
Before you run the CICS® sample programs, log on to CICS using a LOGMODE of 32702. This is because the sample programs have been written to
use a 3270 mode 2 screen.

Preparing the sample application for the IMS environment
Part of the Credit Check sample application can run in the IMS™ environment.

The Put samples
The Put sample programs put messages on a queue using the MQPUT call.

The Get samples
The Get sample programs get messages from a queue using the MQGET call.

The Browse sample
The Browse sample is a batch application that demonstrates how to browse messages on a queue using the MQGET call.

The Print Message sample
The Print Message sample is a batch application that demonstrates how to remove all the messages from a queue using the MQGET call.

The Queue Attributes sample
The Queue Attributes sample is a conversational-mode CICS application that demonstrates the use of the MQINQ and MQSET calls.

The Mail Manager sample
The Mail Manager sample application is a suite of programs that demonstrates sending and receiving messages, both within a single environment and
across different environments. The application is a simple electronic mailing system that allows users to exchange messages, even if they use different
queue managers.

The Credit Check sample
The Credit Check sample application is a suite of programs that demonstrates how to use many of the features provided by WebSphere MQ for z/OS. It
shows how the many component programs of an application can pass messages to each other using message queuing techniques.

The Message Handler sample
The Message Handler sample TSO application allows you to browse, forward, and delete messages on a queue. The sample is available in C and
COBOL.

The Asynchronous Put sample
The Asynchronous Put sample program puts messages on a queue using the asynchronous MQPUT call. The sample also retrieves status information
using the MQSTAT call.

The Batch Asynchronous Consume sample
The CSQ4BCS1 sample program is delivered in C, it demonstrates the use of MQCB and MQCTL to consume messages from multiple queues
asynchronously.

The CICS Asynchronous Consume and Publish/Subscribe sample
The Asynchronous Consume and Publish/Subscribe sample programs demonstrate the use of asynchronous consume, and publish and subscribe
features within CICS.

The Publish/Subscribe Sample
The Publish/Subscribe sample programs demonstrate the use of the publish and subscribe features in WebSphere MQ.

The Set and Inquire message property sample
The message property sample programs demonstrate the addition of user-defined properties to a message handle, and the inquisition of the properties
associated with that message.

Parent topic: Sample WebSphere MQ programs

This build: January 26, 2011 11:21:33

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18000_

Page 328 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

4.2.1. Features demonstrated in the sample applications

This section summarizes the MQI features demonstrated in each of the sample applications, shows the programming languages in which each sample is
written, and the environment in which each sample runs.

Put samples
The Put samples demonstrate how to put messages on a queue using the MQPUT call.

Get samples
The Get samples demonstrate how to get messages from a queue using the MQGET call.

Browse sample
The Browse sample demonstrates how to browse a message, print it, then step through the messages on a queue.

Print Message sample
The Print Message sample demonstrates how to remove a message from a queue and print the data in the message, together with all the fields of its
message descriptor. It can, optionally, display all of the message properties associated with each message.

Queue Attributes sample
The Queue Attributes sample demonstrates how to inquire about and set the values of WebSphere MQ for z/OS object attributes.

Mail Manager sample

Credit Check sample

The Message Handler sample
The Message Handler sample allows you to browse, forward, and delete messages on a queue.

Distributed queuing exit samples

Data-conversion exit samples

Publish/Subscribe samples
The Publish/Subscribe sample programs demonstrate the use of the publish and subscribe features in WebSphere MQ.

Parent topic: Sample programs for WebSphere MQ for z/OS

This build: January 26, 2011 11:21:33

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18010_

4.2.1.1. Put samples

The Put samples demonstrate how to put messages on a queue using the MQPUT call.

The application uses these MQI calls:

� MQCONN

� MQOPEN

� MQPUT

� MQCLOSE

� MQDISC

The program is delivered in COBOL and C, and runs in the batch and CICS® environment. See Table 1 for the batch application and Table 1 for the CICS
application.

Parent topic: Features demonstrated in the sample applications

This build: January 26, 2011 11:21:34

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18020_

4.2.1.2. Get samples

The Get samples demonstrate how to get messages from a queue using the MQGET call.

The application uses these MQI calls:

� MQCONN

� MQOPEN

� MQGET

� MQCLOSE

� MQDISC

The program is delivered in COBOL and C, and runs in the batch and CICS® environment. See Table 1 for the batch application and Table 1 for the CICS
application.

Parent topic: Features demonstrated in the sample applications

This build: January 26, 2011 11:21:34

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

Page 329 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

This topic's URL:

fg18030_

4.2.1.3. Browse sample

The Browse sample demonstrates how to browse a message, print it, then step through the messages on a queue.

The application uses these MQI calls:

� MQCONN

� MQOPEN

� MQGET for browsing messages

� MQCLOSE

� MQDISC

The program is delivered in the COBOL, assembler, PL/I, and C languages. The application runs in the batch environment. See Table 2 for the batch
application.

Parent topic: Features demonstrated in the sample applications

This build: January 26, 2011 11:21:34

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18040_

4.2.1.4. Print Message sample

The Print Message sample demonstrates how to remove a message from a queue and print the data in the message, together with all the fields of its
message descriptor. It can, optionally, display all of the message properties associated with each message.

By removing comment characters from two lines in the source module, you can change the program so that it browses, rather than removes, the messages
on a queue. This program can usefully be used for diagnosing problems with an application that is putting messages on a queue.

The application uses these MQI calls:

� MQCONN

� MQOPEN

� MQGET for removing messages from a queue (with an option to browse)

� MQCLOSE

� MQDISC

� MQCRTMH

� MQDLTMH

� MQINQMP

The program is delivered in the C language. The application runs in the batch environment. See Batch Print Message sample for the batch application.

Parent topic: Features demonstrated in the sample applications

This build: January 26, 2011 11:21:34

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18050_

4.2.1.5. Queue Attributes sample

The Queue Attributes sample demonstrates how to inquire about and set the values of WebSphere® MQ for z/OS® object attributes.

The application uses these MQI calls:

� MQOPEN

� MQINQ

� MQSET

� MQCLOSE

The program is delivered in the COBOL, assembler, and C languages. The application runs in the CICS® environment. See Table 2 for the CICS application.

Parent topic: Features demonstrated in the sample applications

This build: January 26, 2011 11:21:35

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18060_

4.2.1.6. Mail Manager sample

The Mail Manager sample demonstrates these techniques:

� Using alias queues

� Using a model queue to create a temporary dynamic queue

� Using reply-to queues

� Using syncpoints in the CICS® and batch environments

� Sending commands to the system-command input queue

Page 330 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

� Testing return codes

� Sending messages to remote queue managers, both by using a local definition of a remote queue and by putting messages directly on a named queue
at a remote queue manager

The application uses these MQI calls:

� MQCONN

� MQOPEN

� MQPUT1

� MQGET

� MQINQ

� MQCMIT

� MQCLOSE

� MQDISC

Three versions of the application are provided:

� A CICS application written in COBOL

� A TSO application written in COBOL

� A TSO application written in C

The TSO applications use the WebSphere® MQ for z/OS® batch adapter and include some ISPF panels.

See Table 1 for the TSO application, and Table 3 for the CICS application.

Parent topic: Features demonstrated in the sample applications

This build: January 26, 2011 11:21:35

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18070_

4.2.1.7. Credit Check sample

The Credit Check sample is a suite of programs that demonstrates these techniques:

� Developing an application that runs in more than one environment

� Using a model queue to create a temporary dynamic queue

� Using a correlation identifier

� Setting and passing context information

� Using message priority and persistence

� Starting programs by using triggering

� Using reply-to queues

� Using alias queues

� Using a dead-letter queue

� Using a namelist

� Testing return codes

The application uses these MQI calls:

� MQOPEN

� MQPUT

� MQPUT1

� MQGET for browsing and getting messages, using the wait and signal options, and for getting a specific message

� MQINQ

� MQSET

� MQCLOSE

The sample can run as a stand-alone CICS® application. However, to demonstrate how to design a message queuing application that uses the facilities
provided by both the CICS and IMS™ environments, one module is also supplied as an IMS batch message processing program.

The CICS programs are delivered in C and COBOL. The single IMS program is delivered in C.

See Table 4 for the CICS application, and Table 1 for the IMS application.

Parent topic: Features demonstrated in the sample applications

This build: January 26, 2011 11:21:35

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18080_

4.2.1.8. The Message Handler sample

The Message Handler sample allows you to browse, forward, and delete messages on a queue.

The application uses these MQI calls:

� MQCONN

� MQOPEN

� MQINQ

Page 331 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

� MQPUT1

� MQCMIT

� MQBACK

� MQGET

� MQCLOSE

� MQDISC

The program is delivered in C and COBOL programming languages. The application runs under TSO. See Table 2 for the TSO application.

Parent topic: Features demonstrated in the sample applications

This build: January 26, 2011 11:21:35

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18090_

4.2.1.9. Distributed queuing exit samples

The names of the source programs of the distributed queuing exit samples are listed in the following table:

Note: The source programs are link-edited with CSQXSTUB.

See WebSphere MQ Intercommunication for a description of the distributed queuing exit samples.

Parent topic: Features demonstrated in the sample applications

This build: January 26, 2011 11:21:35

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18100_

4.2.1.10. Data-conversion exit samples

A skeleton is provided for a data-conversion exit routine, and a sample is shipped with WebSphere® MQ illustrating the MQXCNVC call. The names of the
source programs of the data-conversion exit samples are listed in the following table:

Note: The source programs are link-edited with CSQASTUB.

See Writing data-conversion exits for more information.

Parent topic: Features demonstrated in the sample applications

This build: January 26, 2011 11:21:36

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18110_

4.2.1.11. Publish/Subscribe samples

The Publish/Subscribe sample programs demonstrate the use of the publish and subscribe features in WebSphere® MQ.

There are four C and two COBOL programming language sample programs demonstrating how to program to the WebSphere MQ Publish/Subscribe
interface.

The applications use these MQI calls:

� MQCONN

� MQOPEN

� MQPUT

� MQSUB

� MQGET

� MQCLOSE

� MQDISC

� MQCRTMH

� MQDLTMH

� MQINQMP

Table 1. Source for the distributed queuing exit samples

Member name For language Description Supplied in library

CSQ4BAX0 Assembler Source program SCSQASMS

CSQ4BCX1 C Source program SCSQC37S

CSQ4BCX2 C Source program SCSQC37S

Table 1. Source for the data conversion exit samples (assembler language only)

Member name Description Supplied in library

CSQ4BAX8 Source program SCSQASMS

CSQ4BAX9 Source program SCSQASMS

CSQ4CAX9 Source program SCSQASMS

Page 332 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

The Public/Subscribe sample programs are delivered in the C and COBOL programming languages. The sample applications run in the batch environment.
See Publish/Subscribe samples for the batch applications.

Parent topic: Features demonstrated in the sample applications

This build: January 26, 2011 11:21:34

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18015_

4.2.2. Preparing and running sample applications for the batch environment

To prepare a sample application that runs in the batch environment, perform the same steps that you would when building any batch WebSphere® MQ for
z/OS® application.

These steps are listed in Building z/OS batch applications.

Alternatively, where we supply an executable form of a sample, you can run it from the thlqual.SCSQLOAD load library.

Note: The assembler language version of the Browse sample uses data control blocks (DCBs), so you must link-edit it using RMODE(24).

The library members to use are listed in Table 1, Table 2, Table 3, and Table 4.

You must edit the run JCL supplied for the samples that you want to use (see Table 1, Table 2, Table 3, and Table 4).

The PARM statement in the supplied JCL contains a number of parameters that you need to modify. To run the C sample programs, separate the parameters
by spaces; to run the assembler, COBOL, and PL/I sample programs, separate them by commas. For example, if the name of your queue manager is CSQ1
and you want to run the application with a queue named LOCALQ1, in the COBOL, PL/I, and assembler-language JCL, your PARM statement should look like
this:

 PARM=(CSQ1,LOCALQ1)

In the C language JCL, your PARM statement should look like this:

 PARM=('CSQ1 LOCALQ1')

You are now ready to submit the jobs.

Names of the sample batch applications
This topic provides a summary of the programs supplied for sample batch applications.

Parent topic: Sample programs for WebSphere MQ for z/OS

This build: January 26, 2011 11:21:36

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18120_

4.2.2.1. Names of the sample batch applications

This topic provides a summary of the programs supplied for sample batch applications.

The batch application programs are summarized in the following tables:

Put and Get samples Table 1

Browse sample Table 2

Print message sample Table 3

Publish/Subscribe samples Table 4

Other samples Table 5

Table 1. Batch Put and Get samples

Member name For language Description Source file supplied

in library

Executable file

supplied in library

CSQ4BCJ1 C Get source program SCSQC37S SCSQLOAD

CSQ4BCK1 C Put source program SCSQC37S SCSQLOAD

CSQ4BCJR C Sample run JCL for
CSQ4BCJ1 and CSQBCK1

SCSQPROC None

CSQ4BVJ1 COBOL Get source program SCSQCOBS SCSQLOAD

CSQ4BVK1 COBOL Put source program SCSQCOBS SCSQLOAD

CSQ4BVJR COBOL Sample run JCL for
CSQBVJ1 and CSQBVK1

SCSQPROC None

Table 2. Batch Browse sample

Member name For language Description Source file supplied

in library

Executable file

supplied in library

CSQ4BVA1 COBOL Source program SCSQCOBS SCSQLOAD

CSQ4BVAR COBOL Sample run JCL for
CSQ4BVA1

SCSQPROC None

CSQ4BAA1 Assembler Source program SCSQASMS SCSQLOAD

CSQ4BAAR Assembler Sample run JCL for
CSQ4BAA1

SCSQPROC None

CSQ4BCA1 C Source program SCSQC37S SCSQLOAD

CSQ4BCAR C Sample run JCL for
CSQ4BCA1

SCSQPROC None

Page 333 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Parent topic: Preparing and running sample applications for the batch environment

This build: January 26, 2011 11:21:37

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18130_

4.2.3. Preparing sample applications for the TSO environment

To prepare a sample application that runs in the TSO environment, perform the same steps that you would when building any batch WebSphere® MQ for
z/OS® application.

These steps are listed in Building z/OS batch applications. The library members to use are listed in Table 1.

Alternatively, where we supply an executable form of a sample, you can run it from the thlqual.SCSQLOAD load library.

For the Mail Manager sample application, ensure that the queues that it uses are available on your system. They are defined in the member
thlqual.SCSQPROC(CSQ4CVD). To ensure that these queues are always available, you could add these members to your CSQINP2 initialization input data
set, or use the CSQUTIL program to load these queue definitions.

Names of the sample TSO applications

Parent topic: Sample programs for WebSphere MQ for z/OS

This build: January 26, 2011 11:21:37

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18140_

4.2.3.1. Names of the sample TSO applications

The names of the programs supplied for each of the sample TSO applications, and the libraries where the source, JCL, and, for the Message Handler sample

CSQ4BPA1 PL/I Source program SCSQPLIS SCSQLOAD

CSQ4BPAR PL/I Sample run JCL for
CSQ4BPA1

SCSQPROC None

Table 3. Batch Print Message sample (C language only)

Member name Description Source file supplied in

library

Executable file supplied in

library

CSQ4BCG1 Source program SCSQC37S SCSQLOAD

CSQ4BCGR Sample run JCL for CSQ4BCG1 SCSQPROC None

CSQ4BCL1 Browse source program SCSQC37S SCSQLOAD

CSQ4BCLR Sample run JCL for CSQ4BCL1 SCSQPROC None

Table 4. Publish/Subscribe samples

Member

name

For

language

Description Source file

supplied in

library

JCL in SCSQPROC Executable file

supplied in

library

CSQ4BCP1 C Publish to topic source
program

SCSQC37S CSQ4BCPP SCSQLOAD

CSQ4BCP2 C Subscribe to topic and get
messages source program

SCSQC37S CSQ4BCPS SCSQLOAD

CSQ4BCP3 C Subscribe to topic using a
user provided destination
and get messages source
program

SCSQC37S CSQ4BCPD SCSQLOAD

CSQ4BCP4 C Subscribe to topic using
extended options and get
messages source program

SCSQC37S CSQ4BCPE SCSQLOAD

CSQ4BVP1 COBOL Publish to topic source
program

SCSQCOBS CSQ4BVPP SCSQLOAD

CSQ4BVP2 COBOL Subscribe to topic and get
messages source program

SCSQCOBS CSQ4BVPS SCSQLOAD

Table 5. Other samples

Member

name

For

language

Description Source file

supplied in

library

JCL in SCSQPROC Executable file

supplied in

library

CSQ4BCS1 C Asynchronous consume
source program

SCSQC37S CSQ4BCSC SCSQLOAD

CSQ4BCS2 C Asynchronous Put, and Check
status source program

SCSQC37S CSQ4BCSP SCSQLOAD

CSQ4BCM1 C Inquire message properties
source program

SCSQC37S CSQ4BCMP SCSQLOAD

CSQ4BCM2 C Set message properties
source program

SCSQC37S CSQ4BCMP SCSQLOAD

Page 334 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

only, the executables reside, are listed in the following tables:

These samples use ISPF panels. You must therefore include the ISPF stub, ISPLINK, when you link-edit the programs.

Parent topic: Preparing sample applications for the TSO environment

This build: January 26, 2011 11:21:38

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18150_

4.2.4. Preparing the sample applications for the CICS environment

Before you run the CICS® sample programs, log on to CICS using a LOGMODE of 32702. This is because the sample programs have been written to use a
3270 mode 2 screen.

To prepare a sample application that runs in the CICS environment, perform the following steps:

1. Create the symbolic description map and the physical screen map for the sample by assembling the BMS screen definition source (supplied in library
thlqual.SCSQMAPS, where thlqual is the high-level qualifier used by your installation). When you name the maps, use the name of the BMS screen
definition source (not available for Put and Get sample programs), but omit the last character of that name.

2. Perform the same steps that you would when building any CICS WebSphere® MQ for z/OS® application. These steps are listed in Building CICS
applications. The library members to use are listed in Table 1, Table 2, Table 3, and Table 4.

Alternatively, where we supply an executable form of a sample, you can run it from the thlqual.SCSQCICS load library.

3. Identify the map set, programs, and transaction to CICS by updating the CICS system definition (CSD) data set. The definitions that you require are in
the member thlqual.SCSQPROC(CSQ4S100). For guidance on how to do this, see the WebSphere MQ for z/OS System Setup Guide.

Note: For the Credit Check sample application, you get an error message at this stage if you have not already created the VSAM data set that the
sample uses.

4. For the Credit Check and Mail Manager sample applications, ensure that the queues that they use are available on your system. For the Credit Check
sample, they are defined in the member thlqual.SCSQPROC(CSQ4CVB) for COBOL, and thlqual.SCSQPROC(CSQ4CCB) for C. For the Mail Manager
sample, they are defined in the member thlqual.SCSQPROC(CSQ4CVD). To ensure that these queues are always available, you could add these

Mail manager sample Table 1

Message handler sample Table 2

Table 1. TSO Mail Manager sample

Member name For language Description Source supplied in library

CSQ4CVD independent WebSphere® MQ for z/OS®
object definitions

SCSQPROC

CSQ40 independent ISPF messages SCSQMSGE

CSQ4RVD1 COBOL CLIST to initiate CSQ4TVD1 SCSQCLST

CSQ4TVD1 COBOL Source program for Menu
program

SCSQCOBS

CSQ4TVD2 COBOL Source program for Get Mail
program

SCSQCOBS

CSQ4TVD4 COBOL Source program for Send Mail
program

SCSQCOBS

CSQ4TVD5 COBOL Source program for Nickname
program

SCSQCOBS

CSQ4VDP1-6 COBOL Panel definitions SCSQPNLA

CSQ4VD0 COBOL Data definition SCSQCOBC

CSQ4VD1 COBOL Data definition SCSQCOBC

CSQ4VD2 COBOL Data definition SCSQCOBC

CSQ4VD4 COBOL Data definition SCSQCOBC

CSQ4RCD1 C CLIST to initiate CSQ4TCD1 SCSQCLST

CSQ4TCD1 C Source program for Menu
program

SCSQC37S

CSQ4TCD2 C Source program for Get Mail
program

SCSQC37S

CSQ4TCD4 C Source program for Send Mail
program

SCSQC37S

CSQ4TCD5 C Source program for Nickname
program

SCSQC37S

CSQ4CDP1-6 C Panel definitions SCSQPNLA

CSQ4TC0 C Include file SCSQC370

Table 2. TSO Message Handler sample

Member name For language Description Source supplied in

library

Executable supplied

in library

CSQ4TCH0 C Data definition SCSQC370 None

CSQ4TCH1 C Source program SCSQC37S SCSQLOAD

CSQ4TCH2 C Source program SCSQC37S SCSQLOAD

CSQ4TCH3 C Source program SCSQC37S SCSQLOAD

CSQ4RCH1 C and COBOL CLIST to initiate
CSQ4TCH1 or CSQ4TVH1

SCSQCLST None

CSQ4CHP1 C and COBOL Panel definition SCSQPNLA None

CSQ4CHP2 C and COBOL Panel definition SCSQPNLA None

CSQ4CHP3 C and COBOL Panel definition SCSQPNLA None

CSQ4CHP9 C and COBOL Panel definition SCSQPNLA None

CSQ4TVH0 COBOL Data definition SCSQCOBC None

CSQ4TVH1 COBOL Source program SCSQCOBS SCSQLOAD

CSQ4TVH2 COBOL Source program SCSQCOBS SCSQLOAD

CSQ4TVH3 COBOL Source program SCSQCOBS SCSQLOAD

Page 335 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

members to your CSQINP2 initialization input data set, or use the CSQUTIL program to load these queue definitions.

For the Queue Attributes sample application, you could use one or more of the queues that are supplied for the other sample applications.
Alternatively, you could use your own queues. However, in the form that it is supplied, this sample works only with queues that have the characters
CSQ4SAMP in the first eight bytes of their name.

Names of the sample CICS applications
This topic provides a summary of the programs supplied for sample CICS applications.

Parent topic: Sample programs for WebSphere MQ for z/OS

This build: January 26, 2011 11:21:38

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18160_

4.2.4.1. Names of the sample CICS applications

 This topic provides a summary of the programs supplied for sample CICS® applications.

The CICS application programs are summarized in the following tables:

Put and Get samples Table 1

Queue attributes sample Table 2

Mail Manager (CICS) sample Table 3

Credit Check (CICS) sample Table 4

Asynchronous Consume and
Publish/Subscribe sample

Table 5

Table 1. CICS Put and Get samples

Member name For language Description Source supplied in

library

Executable supplied

in library

CSQ4CCK1 C Source program SCSQC37S SCSQCICS

CSQ4CCJ1 C Source program SCSQC37S SCSQCICS

CSQ4CVJ1 COBOL Source program SCSQCOBS SCSQCICS

CSQ4CVK1 COBOL Source program SCSQCOBS SCSQCICS

CSQ4S100 independent CICS system definition
data set

SCSQPROC None

Table 2. CICS Queue Attributes sample

Member name For language Description Source supplied in

library

Executable supplied

in library

CSQ4CVC1 COBOL Source program SCSQCOBS SCSQCICS

CSQ4VMSG COBOL Message definition SCSQCOBC None

CSQ4VCMS COBOL BMS screen definition SCSQMAPS SCSQCICS (named
CSQ4ACM)

CSQ4CAC1 Assembler Source program SCSQASMS SCSQCICS

CSQ4AMSG Assembler Message definition SCSQMACS None

CSQ4ACMS Assembler BMS screen definition SCSQMAPS SCSQCICS (named
CSQ4ACM)

CSQ4CCC1 C Source program SCSQC37S SCSQCICS

CSQ4CMSG C Message definition SCSQC370 None

CSQ4CCMS C BMS screen definition SCSQMAPS SCSQCICS (named
CSQ4ACM)

CSQ4S100 independent CICS system definition
data set

SCSQPROC None

Table 3. CICS Mail Manager sample (COBOL only)

Member name Description Source supplied in library

CSQ4CVD WebSphere® MQ for z/OS® object
definitions

SCSQPROC

CSQ4CVD1 Source for Menu program SCSQCOBS

CSQ4CVD2 Source for Get Mail program SCSQCOBS

CSQ4CVD3 Source for Display Message program SCSQCOBS

CSQ4CVD4 Source for Send Mail program SCSQCOBS

CSQ4CVD5 Source for Nickname program SCSQCOBS

CSQ4VDMS BMS screen definition source SCSQMAPS

CSQ4S100 CICS system definition data set SCSQPROC

CSQ4VD0 Data definition SCSQCOBC

CSQ4VD3 Data definition SCSQCOBC

CSQ4VD4 Data definition SCSQCOBC

Table 4. CICS Credit Check sample

Member name For language Description Source supplied in

library

CSQ4CVB independent WebSphere MQ object definitions SCSQPROC

CSQ4CCB independent WebSphere MQ object definitions SCSQPROC

CSQ4CVB1 COBOL Source for user-interface program SCSQCOBS

CSQ4CVB2 COBOL Source for credit application manager SCSQCOBS

CSQ4CVB3 COBOL Source for checking-account program SCSQCOBS

CSQ4CVB4 COBOL Source for distribution program SCSQCOBS

CSQ4CVB5 COBOL Source for agency-query program SCSQCOBS

Page 336 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Parent topic: Preparing the sample applications for the CICS environment

This build: January 26, 2011 11:21:40

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18180_

4.2.5. Preparing the sample application for the IMS environment

Part of the Credit Check sample application can run in the IMS™ environment.

To prepare this part of the application to run with the CICS® sample, first perform the steps described in Preparing the sample applications for the CICS
environment.

Then perform the following steps:

1. Perform the same steps that you would when building any IMS WebSphere® MQ for z/OS® application. These steps are listed in Building IMS (BMP or
MPP) applications. The library members to use are listed in Table 1.

2. Identify the application program and database to IMS. Samples are provided with PSBGEN, DBDGEN, ACB definition, IMSGEN, and IMSDALOC
statements to enable this.

3. Load the database CSQ4CA by tailoring and running the sample JCL provided for this purpose (CSQ4ILDB). This JCL loads the database with data from
the file CSQ4BAQ. Update the IMS control region with a DD statement for the database CSQ4CA.

4. Start the checking-account program as a batch message processing (BMP) program by tailoring and running the sample JCL provided for this purpose.
This JCL starts a batch-oriented BMP program. To run the program as a message-oriented BMP program, remove the comment characters from the line
in the JCL that contains the IN= statement.

Names of the sample IMS application

Parent topic: Sample programs for WebSphere MQ for z/OS

This build: January 26, 2011 11:21:40

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18190_

4.2.5.1. Names of the sample IMS application

The source and JCL that are supplied for the Credit Check sample IMS™ application are listed in Table 1.

CSQ4CCB1 C Source for user-interface program SCSQC37S

CSQ4CCB2 C Source for credit application manager SCSQC37S

CSQ4CCB3 C Source for checking-account program SCSQC37S

CSQ4CCB4 C Source for distribution program SCSQC37S

CSQ4CCB5 C Source for agency-query program SCSQC37S

CSQ4CB0 C Include file SCSQC370

CSQ4CBMS C BMS screen definition source SCSQMAPS

CSQ4VBMS COBOL BMS screen definition source SCSQMAPS

CSQ4VB0 COBOL Data definition SCSQCOBC

CSQ4VB1 COBOL Data definition SCSQCOBC

CSQ4VB2 COBOL Data definition SCSQCOBC

CSQ4VB3 COBOL Data definition SCSQCOBC

CSQ4VB4 COBOL Data definition SCSQCOBC

CSQ4VB5 COBOL Data definition SCSQCOBC

CSQ4VB6 COBOL Data definition SCSQCOBC

CSQ4VB7 COBOL Data definition SCSQCOBC

CSQ4VB8 COBOL Data definition SCSQCOBC

CSQ4BAQ independent Source for VSAM data set SCSQPROC

CSQ4FILE independent JCL to build VSAM data set used by CSQ4CVB3 SCSQPROC

CSQ4S100 independent CICS system definition data set SCSQPROC

Table 5. CICS Asynchronous Consume and Publish/Subscribe samples

Member name Description Source file supplied in library

CSQ4CVCN Source for Simple Message Consume program SCSQCOBS

CSQ4CVCT Source for Control Message Consume program SCSQCOBS

CSQ4CVEV Source for Event Handler program SCSQCOBS

CSQ4CVPT Source for Message Put Client program SCSQCOBS

CSQ4CVRG Source for Registration Client program SCSQCOBS

CSQ4S100 CICS System Definition data set SCSQPROC

Table 1. Source and JCL for the Credit Check IMS sample (C only)

Member name Description Supplied in library

CSQ4CVB WebSphere® MQ object definitions SCSQPROC

CSQ4ICB3 Source for checking-account program SCSQC37S

CSQ4ICBL Source for loading the checking-account
database

SCSQC37S

CSQ4CBI Data definition SCSQC370

Page 337 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Parent topic: Preparing the sample application for the IMS environment

This build: January 26, 2011 11:21:40

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18200_

4.2.6. The Put samples

The Put sample programs put messages on a queue using the MQPUT call.

The source programs are supplied in C and COBOL in the batch and CICS® environments (see Table 1 and Table 1).

Design of the Put sample

The Put samples for the batch environment

The Put samples for the CICS environment

Parent topic: Sample programs for WebSphere MQ for z/OS

This build: January 26, 2011 11:21:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18210_

4.2.6.1. Design of the Put sample

The flow through the program logic is:

1. Connect to the queue manager using the MQCONN call. If this call fails, print the completion and reason codes and stop processing.

Note: If you are running the sample in a CICS® environment, you do not need to issue an MQCONN call; if you do, it returns DEF_HCONN. You can
use the connection handle MQHC_DEF_HCONN for the MQI calls that follow.

2. Open the queue using the MQOPEN call with the MQOO_OUTPUT option. On input to this call, the program uses the connection handle that is returned
in step 1. For the object descriptor structure (MQOD), it uses the default values for all fields except the queue name field, which is passed as a
parameter to the program. If the MQOPEN call fails, print the completion and reason codes and stop processing.

3. Create a loop within the program issuing MQPUT calls until the required number of messages are put on the queue. If an MQPUT call fails, the loop is
abandoned early, no further MQPUT calls are attempted, and the completion and reason codes are returned.

4. Close the queue using the MQCLOSE call with the object handle returned in step 2. If this call fails, print the completion and reason codes.

5. Disconnect from the queue manager using the MQDISC call with the connection handle returned in step 1. If this call fails, print the completion and
reason codes.

Note: If you are running the sample in a CICS environment, you do not need to issue an MQDISC call.

Parent topic: The Put samples

This build: January 26, 2011 11:21:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18220_

4.2.6.2. The Put samples for the batch environment

To run the samples, edit and run the sample JCL, as described in Preparing and running sample applications for the batch environment.

The programs take the following parameters in an EXEC PARM, separated by spaces in C and commas in COBOL:

1. The name of the queue manager (4 characters)

2. The name of the target queue (48 characters)

3. The number of messages (up to 4 digits)

4. The padding character to write in the message (1 character)

5. The number of characters to write in the message (up to 4 digits)

6. The persistence of the message (1 character: P for persistent or N for nonpersistent)

If you enter any of the above parameters wrongly, you receive appropriate error messages.

Any messages from the samples are written to the SYSPRINT data set.

CSQ4PSBL PSBGEN JCL for database-load program SCSQPROC

CSQ4PSB3 PSBGEN JCL for checking-account program SCSQPROC

CSQ4DBDS DBDGEN JCL for database CSQ4CA SCSQPROC

CSQ4GIMS IMSGEN macro definitions for CSQ4IVB3 and
CSQ4CA

SCSQPROC

CSQ4ACBG Application control block (ACB) definition for
CSQ4IVB3

SCSQPROC

CSQ4BAQ Source for database SCSQPROC

CSQ4ILDB Sample run JCL for database-load job SCSQPROC

CSQ4ICBR Sample run JCL for checking-account
program

SCSQPROC

CSQ4DYNA IMSDALOC macro definitions for database SCSQPROC

Page 338 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Usage notes

Parent topic: The Put samples

This build: January 26, 2011 11:21:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18230_

4.2.6.2.1. Usage notes

� To keep the samples simple, there are some minor functional differences between language versions. However, these differences are minimized if you
use the layout of the parameters shown in the sample run JCL, CSQ4BCJR, and CSQ4BVJR. None of the differences relate to the MQI.

� CSQ4BCK1 allows you to enter more than four digits for the number of messages sent and the length of the messages.

� For the two numeric fields, enter any digit between 1 and 9999. The value that you enter should be a positive number. For example, to put a single
message, you can enter 1, 01, 001, or 0001 as the value. If you enter nonnumeric or negative values, you might receive an error. For example, if you
enter -1, the COBOL program sends a one-byte message, but the C program receives an error.

� For both programs, CSQ4BCK1 and CSQ4BVK1, you must enter P in the persistence parameter, ++PER++, if you want the message to be persistent.
If you fail to do so, the message will be nonpersistent.

Parent topic: The Put samples for the batch environment

This build: January 26, 2011 11:21:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18240_

4.2.6.3. The Put samples for the CICS environment

The transactions take the following parameters separated by commas:

1. The number of messages (up to 4 digits)

2. The padding character to write in the message (1 character)

3. The number of characters to write in the message (up to 4 digits)

4. The persistence of the message (1 character: P for persistent or N for nonpersistent)

5. The name of the target queue (48 characters)

If you enter any of the above parameters wrongly, you receive appropriate error messages.

For the COBOL sample, invoke the Put sample in the CICS® environment by entering:

 MVPT,9999,*,9999,P,QUEUE.NAME

For the C sample, invoke the Put sample in the CICS environment by entering:

 MCPT,9999,*,9999,P,QUEUE.NAME

Any messages from the samples are displayed on the screen.

Usage notes

Parent topic: The Put samples

This build: January 26, 2011 11:21:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18250_

4.2.6.3.1. Usage notes

� To keep the samples simple, there are some minor functional differences between language versions. None of the differences relate to the MQI.

� If you enter a queue name that is longer than 48 characters, its length is truncated to the maximum of 48 characters but no error message is
returned.

� Before entering the transaction, press the CLEAR key.

� For the two numeric fields, enter any number between 1 and 9999. The value that you enter should be a positive number. For example, to put a single
message, you can enter the value 1, 01, 001, or 0001. If you enter nonnumeric or negative values, you might receive an error. For example, if you
enter -1, the COBOL program sends a 1-byte message, and the C program abends with an error from malloc().

� For both programs, CSQ4CCK1 and CSQ4CVK1, enter P in the persistence parameter if you want the message to be persistent. For non-persistent
messages, enter N in the persistence parameter. If you enter any other value you receive an error message.

� The messages are put in syncpoint because default values are used for all parameters except those set during program invocation.

Parent topic: The Put samples for the CICS environment

This build: January 26, 2011 11:21:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18260_

4.2.7. The Get samples

Page 339 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

The Get sample programs get messages from a queue using the MQGET call.

The source programs are supplied in C and COBOL in the batch and CICS® environments (see Table 1 and Table 1).

Design of the Get sample

The Get samples for the CICS environment

Parent topic: Sample programs for WebSphere MQ for z/OS

This build: January 26, 2011 11:21:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18270_

4.2.7.1. Design of the Get sample

The flow through the program logic is:

1. Connect to the queue manager using the MQCONN call. If this call fails, print the completion and reason codes and stop processing.

Note: If you are running the sample in a CICS® environment, you do not need to issue an MQCONN call; if you do, it returns DEF_HCONN. You can
use the connection handle MQHC_DEF_HCONN for the MQI calls that follow.

2. Open the queue using the MQOPEN call with the MQOO_INPUT_SHARED and MQOO_BROWSE options. On input to this call, the program uses the
connection handle that is returned in step 1. For the object descriptor structure (MQOD), it uses the default values for all fields except the queue name
field, which is passed as a parameter to the program. If the MQOPEN call fails, print the completion and reason codes and stop processing.

3. Create a loop within the program issuing MQGET calls until the required number of messages are retrieved from the queue. If an MQGET call fails, the
loop is abandoned early, no further MQGET calls are attempted, and the completion and reason codes are returned. The following options are specified
on the MQGET call:

� MQGMO_NO_WAIT

� MQGMO_ACCEPT_TRUNCATED_MESSAGE

� MQGMO_SYNCPOINT or MQGMO_NO_SYNCPOINT

� MQGMO_BROWSE_FIRST and MQGMO_BROWSE_NEXT

For a description of these options, see the WebSphere MQ Application Programming Reference. For each message, the message number is printed
followed by the length of the message and the message data.

4. Close the queue using the MQCLOSE call with the object handle returned in step 2. If this call fails, print the completion and reason codes.

5. Disconnect from the queue manager using the MQDISC call with the connection handle returned in step 1. If this call fails, print the completion and
reason codes.

Note: If you are running the sample in a CICS environment, you do not need to issue an MQDISC call.

The Get samples for the batch environment

Usage notes

Parent topic: The Get samples

This build: January 26, 2011 11:21:42

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18280_

4.2.7.1.1. The Get samples for the batch environment

To run the samples, edit and run the sample JCL, as described in Preparing and running sample applications for the batch environment.

The programs take the following parameters in an EXEC PARM, separated by spaces in C and commas in COBOL:

1. The name of the queue manager (4 characters)

2. The name of the target queue (48 characters)

3. The number of messages to get (up to 4 digits)

4. The browse/get message option (1 character: B to browse or D to destructively get the messages)

5. The syncpoint control (1 character: S for syncpoint or N for no syncpoint)

If you enter any of the above parameters incorrectly, you receive appropriate error messages.

Output from the samples is written to the SYSPRINT data set:

=====================================

PARAMETERS PASSED :

 QMGR - VC9

 QNAME - A.Q

 NUMMSGS - 000000002

 GET - D

 SYNCPOINT - N

=====================================

MQCONN SUCCESSFUL

MQOPEN SUCCESSFUL

000000000 : 000000010 : **********

000000001 : 000000010 : **********

000000002 MESSAGES GOT FROM QUEUE

MQCLOSE SUCCESSFUL

MQDISC SUCCESSFUL

Parent topic: Design of the Get sample

This build: January 26, 2011 11:21:42

Page 340 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18290_

4.2.7.1.2. Usage notes

� To keep the samples simple, there are some minor functional differences between language versions. However, these differences are minimized if you
use the layout of the parameters shown in the sample run JCL, CSQ4BCJR, and CSQ4BVJR,. None of the differences relate to the MQI.

� CSQ4BCJ1 allows you to enter more than four digits for the number of messages retrieved.

� Messages longer than 64 KB are truncated.

� CSQ4BCJ1 can only correctly display character messages because it only displays until the first NULL (\0) character is displayed.

� For the numeric number-of-messages field, enter any digit between 1 and 9999. The value that you enter should be a positive number. For example,
to get a single message, you can enter 1, 01, 001, or 0001 as the value. If you enter nonnumeric or negative values, you might receive an error. For
example, if you enter -1, the COBOL program retrieves one message, but the C program does not retrieve any messages.

� For both programs, CSQ4BCJ1 and CSQ4BVJ1, enter B in the get parameter, ++GET++, if you want to browse the messages.

� For both programs, CSQ4BCJ1 and CSQ4BVJ1, enter S in the syncpoint parameter, ++SYNC++, for messages to be retrieved in syncpoint.

Parent topic: Design of the Get sample

This build: January 26, 2011 11:21:42

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18300_

4.2.7.2. The Get samples for the CICS environment

The transactions take the following parameters in an EXEC PARM, separated by commas:

1. The number of messages to get (up to four digits)

2. The browse/get message option (one character: B to browse or D to destructively get the messages)

3. The syncpoint control (one character: S for syncpoint or N for no syncpoint)

4. The name of the target queue (48 characters)

If you enter any of the above parameters incorrectly, you receive appropriate error messages.

For the COBOL sample, invoke the Get sample in the CICS® environment by entering:

 MVGT,9999,B,S,QUEUE.NAME

For the C sample, invoke the Get sample in the CICS environment by entering:

 MCGT,9999,B,S,QUEUE.NAME

When the messages are retrieved from the queue, they are put on a CICS temporary storage queue with the same name as the CICS transaction (for
example, MCGT for the C sample).

Here is example output of the Get samples:

**************************** TOP OF QUEUE ************************

000000000 : 000000010: **********

000000001 : 000000010 :**********

*************************** BOTTOM OF QUEUE **********************

Usage notes

Parent topic: The Get samples

This build: January 26, 2011 11:21:42

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18310_

4.2.7.2.1. Usage notes

� To keep the samples simple, there are some minor functional differences between language versions. None of the differences relate to the MQI.

� If you enter a queue name that is longer than 48 characters, its length is truncated to the maximum of 48 characters but no error message is
returned.

� Before entering the transaction, press the CLEAR key.

� CSQ4CCJ1 can only correctly display character messages because it only displays until the first NULL (\0) character is displayed.

� For the numeric field, enter any number between 1 and 9999. The value that you enter should be a positive number. For example, to get a single
message, you can enter the value 1, 01, 001, or 0001. If you enter a nonnumeric or negative value, you might receive an error.

� Messages longer than 24 526 bytes in C and 9 950 bytes in COBOL are truncated. This is due to the way that the CICS® temporary storage queues
are used.

� For both programs, CSQ4CCK1 and CSQ4CVK1, enter B in the get parameter if you want to browse the messages, otherwise enter D. This performs
destructive MQGET calls. If you enter any other value you receive an error message.

� For both programs, CSQ4CCJ1 and CSQ4CVJ1, enter S in the syncpoint parameter to retrieve messages in syncpoint. If you enter N in the syncpoint
parameter, the MQGET calls are issued out of syncpoint. If you enter any other value you receive an error message.

Parent topic: The Get samples for the CICS environment

This build: January 26, 2011 11:21:42

Notices | Trademarks | Downloads | Library | Support | Feedback

Page 341 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18320_

4.2.8. The Browse sample

The Browse sample is a batch application that demonstrates how to browse messages on a queue using the MQGET call.

The application steps through all the messages in a queue, printing the first 80 bytes of each one. You could use this application to look at the messages on
a queue without changing them.

Source programs and sample run JCL are supplied in the COBOL, assembler, PL/I, and C languages (see Table 2).

To start the application, edit and run the sample run JCL, as described in Preparing and running sample applications for the batch environment. You can look
at messages on one of your own queues by specifying the name of the queue in the run JCL.

When you run the application (and there are some messages on the queue), the output data set looks this:

07/12/1998 SAMPLE QUEUE REPORT PAGE 1

 QUEUE MANAGER NAME : VC4

 QUEUE NAME : CSQ4SAMP.DEAD.QUEUE

 RELATIVE

 MESSAGE MESSAGE

 NUMBER LENGTH ------------------- MESSAGE DATA -------------

 1 740 HELLO. PLEASE CALL ME WHEN YOU GET BACK.

 2 429 CSQ4BQRM

 3 429 CSQ4BQRM

 4 429 CSQ4BQRM

 5 22 THIS IS A TEST MESSAGE

 6 8 CSQ4TEST

 7 36 CSQ4MSG - ANOTHER TEST MESSAGE.....!

 8 9 CSQ4STOP

 ********** END OF REPORT **********

If there are no messages on the queue, the data set contains the headings and the End of report message only. If an error occurs with any of the MQI calls,
the completion and reason codes are added to the output data set.

Design of the Browse sample
The Browse sample application uses a single program module; one is provided in each of the supported programming languages.

Language-dependent design considerations
Source modules are provided for the Browse sample in four programming languages.

Parent topic: Sample programs for WebSphere MQ for z/OS

This build: January 26, 2011 11:21:42

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18330_

4.2.8.1. Design of the Browse sample

The Browse sample application uses a single program module; one is provided in each of the supported programming languages.

The flow through the program logic is:

1. Open a print data set and print the title line of the report. Check that the names of the queue manager and queue have been passed from the run JCL.
If both names have been passed, print the lines of the report that contain the names. If they have not, print an error message, close the print data
set, and stop processing.

The way that the program tests the parameters it is passed from the JCL depends on the language in which the program is written; for more
information, see Language-dependent design considerations.

2. Connect to the queue manager using the MQCONN call. If this call is not successful, print the completion and reason codes, close the print data set,
and stop processing.

3. Open the queue using the MQOPEN call with the MQOO_BROWSE option. On input to this call, the program uses the connection handle returned in step
2. For the object descriptor structure (MQOD), it uses the default values for all the fields except the queue name (which was passed in step 1). If this
call is not successful, print the completion and reason codes, close the print data set, and stop processing.

4. Browse the first message on the queue, using the MQGET call. On input to this call, the program specifies:

� The connection and queue handles from steps 2 and 3

� An MQMD structure with all fields set to their initial values

� Two options:

� MQGMO_BROWSE_FIRST

� MQGMO_ACCEPT_TRUNCATED_MSG

� A buffer of size 80 bytes to hold the data copied from the message

The MQGMO_ACCEPT_TRUNCATED_MSG option allows the call to complete even if the message is longer than the 80-byte buffer specified in the call.
If the message is longer than the buffer, the message is truncated to fit the buffer, and the completion and reason codes are set to show this. The
sample was designed so that messages are truncated to 80 characters to make the report easy to read. The buffer size is set by a DEFINE statement,

so you can easily change it if you want to.

5. Perform the following loop until the MQGET call fails:

a. Print a line of the report showing:

� The sequence number of the message (this is a count of the browse operations).

� The true length of the message (not the truncated length). This value is returned in the DataLength field of the MQGET call.

� The first 80 bytes of the message data.

b. Reset the MsqId and CorrelId fields of the MQMD structure to nulls

c. Browse the next message, using the MQGET call with these two options:

� MQGMO_BROWSE_NEXT

Page 342 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

� MQGMO_ACCEPT_TRUNCATED_MSG

6. If the MQGET call fails, test the reason code to see if the call has failed because the browse cursor has got to the end of the queue. In this case, print
the End of report message and go to step 7; otherwise, print the completion and reason codes, close the print data set, and stop processing.

7. Close the queue using the MQCLOSE call with the object handle returned in step 3.

8. Disconnect from the queue manager using the MQDISC call with the connection handle returned in step 2.

9. Close the print data set and stop processing.

Parent topic: The Browse sample

This build: January 26, 2011 11:21:42

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18340_

4.2.8.2. Language-dependent design considerations

Source modules are provided for the Browse sample in four programming languages.

There are two main differences between the source modules:

� When testing the parameters passed from the run JCL, the COBOL, PL/I, and assembler-language modules search for the comma character (,). If the
JCL passes PARM=(,LOCALQ1), the application attempts to open queue LOCALQ1 on the default queue manager. If there is no name after the comma

(or no comma), the application returns an error. The C module does not search for the comma character. If the JCL passes a single parameter (for
example, PARM=('LOCALQ1')), the C module uses this as a queue name on the default queue manager.

� To keep the assembler-language module simple, it uses the date format yy/ddd (for example, 05/116) when it creates the print report. The other
modules use the calendar date in mm/dd/yy format.

Parent topic: The Browse sample

This build: January 26, 2011 11:21:42

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18350_

4.2.9. The Print Message sample

The Print Message sample is a batch application that demonstrates how to remove all the messages from a queue using the MQGET call.

The Print Message sample uses three parameters:

1. The name of the queue manager

2. The name of the source queue

3. An optional parameter for properties

It also prints, for each message, the fields of the message descriptor, followed by the message data. The program prints the data both in hexadecimal and
as characters (if they are printable). If a character is not printable, the program replaces it with a period character (.). You can use the program when
diagnosing problems with an application that is putting messages on a queue.

Permissible values for the property parameter are:

You can change the application so that it browses the messages, rather than removing them from the queue. To do this, compile with the option of -
DBROWSE, to define the BROWSE macro, as indicated in Design of the print message sample. Executable code is provided for you in the SCSQLOAD library.
Module CSQ4BCG0 is built with -DBROWSE; module CSQ4BCG1 destructively reads the queue.

The application has a single source program, which is written in the C language. Sample run JCL code is also supplied (see Table 3).

To start the application, edit and run the sample run JCL, as described in Preparing and running sample applications for the batch environment. When you
run the application (and there are some messages on the queue), the output data set looks like that in Figure 1.

Figure 1. Example of a report from the Print Message sample application

CSQ4BCG1 - starts here

 MQCONN to MQ1E

 MQOPEN - 'TEST.QUEUE'

Value Behavior

0 Default behaviour, as it was for V6. The properties that get delivered to the application depend on the PropertyControl queue
attribute that the message is retrieved from.

1 A message handle is created and used with the MQGET. Properties of the message, except those contained in the message
descriptor (or extension) are displayed in a similar fashion to the message descriptor. For example:

****Message properties****

 <property name> : <property value>

Or if no properties are available:

****Message properties****

 None

Numeric values are displayed using printf, string values are surrounding in single quotes, and byte strings are surrounded

with X and single quotes, as for the message descriptor.

2 MQGMO_NO_PROPERTIES is specified, so that only message descriptor properties will be returned.

3 MQGMO_PROPERTIES_FORCE_MQRFH2 is specified, so that all properties are returned in the message data.

4 MQGMO_PROPERTIES_COMPATIBILITY is specified, so that all properties can be returned depending on whether a version 6
property is included, otherwise the properties are discarded.

Page 343 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

 MQCRTMH

 MQGET of message number 1

****Message descriptor****

 StrucId : 'MD ' Version : 2

 Report : 0 MsgType : 8

 Expiry : -1 Feedback : 0

 Encoding : 785 CodedCharSetId : 500

 Format : 'MQSTR '

 Priority : 0 Persistence : 0

 MsgId : X'C3E2D840D4D8F1C54040404040404040C1EA537F03167D88'

 CorrelId : X'C3E2D840D4D8F1C54040404040404040C1EA537F0317A928'

 BackoutCount : 0

 ReplyToQ : ' '

 ReplyToQMgr : ''

 ** Identity Context

 UserIdentifier : 'FRED '

 AccountingToken :

 X'00'

 ApplIdentityData : ' '

 ** Origin Context

 PutApplType : '2'

 PutApplName : 'FRED6 '

 PutDate : '20080207' PutTime : '17373745'

 ApplOriginData : ' '

 GroupId : X'00'

 MsgSeqNumber : '1'

 Offset : '0'

 MsgFlags : '0'

 OriginalLength : '-1'

****Message properties****

 None

**** Message ****

 length - 30 bytes

00000000: E388 89A2 4089 A240 8140 A289 9497 9385 'This is a simple'

00000010: 40A3 85A2 A340 9485 A2A2 8187 855A ' test message! '

 No more messages

 MQDLTMH

 MQCLOSE

 MQDISC

Design of the print message sample
The Print message sample application uses a single program written in the C language.

Parent topic: Sample programs for WebSphere MQ for z/OS

This build: January 26, 2011 11:21:42

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18360_

4.2.9.1. Design of the print message sample

The Print message sample application uses a single program written in the C language.

The flow through the program logic is:

1. Check that the names of the queue manager and queue have been passed from the run JCL. If they have not, print an error message and stop
processing.

2. Connect to the queue manager using the MQCONN call. If this call is not successful, print the completion and reason codes and stop processing;
otherwise print the name of the queue manager.

3. Open the queue using the MQOPEN call with the MQOO_INPUT_SHARED option.

Note: If you want the application to browse the messages rather than remove them from the queue, compile the sample with -DBROWSE, or, add
#define BROWSE at the top of the source. When you do this, the macro preprocessor adds the line in the program that selects the MQOO_BROWSE

option in the compilation.

On input to this call, the program uses the connection handle returned in step 2. For the object descriptor structure (MQOD), it uses the default values
for all the fields except the queue name (which was passed in step 1). If this call is not successful, print the completion and reason codes and stop
processing; otherwise, print the name of the queue.

4. If you use a message handle to obtain the message properties use MQCRTMH to create such a handle for use with subsequent MQGET calls. If this call
is not successful, print the completion and reason codes and stop processing.

5. Set the get message options to reflect the request action for any message properties.

6. Perform the following loop until the MQGET call fails:

a. Initialize the buffer to blanks so that the message data does not get corrupted by any data already in the buffer.

b. Set the MsgId and CorrelId fields of the MQMD structure to nulls so that the MQGET call selects the first message from the queue.

c. Get a message from the queue, using the MQGET call. On input to this call, the program specifies:

� The connection and object handles from steps 2 and 3.

� An MQMD structure with all fields set to their initial values. (MsgId and CorrelId are reset to nulls for each MQGET call.)

� The option MQGMO_NO_WAIT.

Note: If you want the application to browse the messages rather than remove them from the queue, compile the sample with -DBROWSE,
or, add #define BROWSE at the top of the source. When you do this, the macro preprocessor adds the line in the program that selects the

MQGMO_BROWSE_NEXT option to the compilation. When this option is used on a call against a queue for which no browse cursor has
previously been used with the current object handle, the browse cursor is positioned logically before the first message.

� A buffer of size 32 KB to hold the data copied from the message.

Page 344 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

d. Call the printMD subroutine. This prints the name of each field in the message descriptor, followed by its contents.

e. If you created a message handle in step 4 call the printProperties subroutine to display any message properties.

f. Print the length of the message, followed by the message data. Each line of message data is in this format:

� Relative position (in hexadecimal) of this part of the data

� 16 bytes of hexadecimal data

� The same 16 bytes of data in character format, if it is printable (nonprintable characters are replaced by periods)

7. If the MQGET call fails, test the reason code to see if the call failed because there are no more messages on the queue. In this case, print the
message: No more messages; otherwise, print the completion and reason codes. In both cases, go to step 9.

Note: The MQGET call fails if it finds a message that has more than 32 KB of data. To change the program to handle larger messages, you could do
one of the following:

� Add the MQGMO_ACCEPT_TRUNCATED_MSG option to the MQGET call, so that the call gets the first 32 KB of data and discards the remainder

� Make the program leave the message on the queue when it finds one with this amount of data

� Increase the size of the buffer

8. If you created a message handle in step 4 call MQDLTMH to delete it.

9. Close the queue using the MQCLOSE call with the object handle returned in step 3.

10. Disconnect from the queue manager using the MQDISC call with the connection handle returned in step 2.

Parent topic: The Print Message sample

This build: January 26, 2011 11:21:43

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18370_

4.2.10. The Queue Attributes sample

The Queue Attributes sample is a conversational-mode CICS® application that demonstrates the use of the MQINQ and MQSET calls.

It shows how to inquire about the values of the InhibitPut and InhibitGet attributes of queues, and how to change them so that programs cannot put

messages on, or get messages from, a queue. You might want to lock a queue in this way when you are testing a program.

To prevent accidental interference with your own queues, this sample works only on a queue object that has the characters CSQ4SAMP in the first eight
bytes of its name. However, the source code includes comments to show you how to remove this restriction.

Source programs are supplied in the COBOL, assembler, and C languages (see Table 2).

The assembler-language version of the sample uses reenterable code. To do this, you will notice that the code for each MQI call in that version of the sample
includes the MF keyword; for example:

 CALL MQCONN,(NAME,HCONN,COMPCODE,REASON),MF=(E,PARMAREA),VL

(The VL keyword means that you can use the CICS Execution Diagnostic Facility (CEDF) supplied transaction for debugging the program.) For more
information on writing reenterable programs, see Coding in System/390® assembler language.

To start the application, start your CICS system and use the following CICS transactions:

� For COBOL, MVC1

� For assembler language, MAC1

� For C, MCC1

You can change the name of any of these transactions by changing the CSD data set mentioned in step 3.

Design of the sample

Parent topic: Sample programs for WebSphere MQ for z/OS

This build: January 26, 2011 11:21:43

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18380_

4.2.10.1. Design of the sample

When you start the sample, it displays a screen map that has fields for:

� Name of the queue

� User request (valid actions are: inquire, allow, or inhibit)

� Current status of put operations for the queue

� Current status of get operations for the queue

The first two fields are for user input. The last two fields are filled by the application: they show the word INHIBITED or the word ALLOWED.

The application validates the values that you enter in the first two fields. It checks that the queue name starts with the characters CSQ4SAMP and that you

entered one of the three valid requests in the Action field. The application converts all your input to uppercase, so you cannot use any queues with names
that contain lowercase characters.

If you enter inquire in the Action field, the flow through the program logic is:

1. Open the queue using the MQOPEN call with the MQOO_INQUIRE option

2. Call MQINQ using the selectors MQIA_INHIBIT_GET and MQIA_INHIBIT_PUT

3. Close the queue using the MQCLOSE call

4. Analyze the attributes that are returned in the IntAttrs parameter of the MQINQ call and move the words INHIBITED or ALLOWED, as appropriate, to

the relevant screen fields

If you enter inhibit in the Action field, the flow through the program logic is:

Page 345 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

1. Open the queue using the MQOPEN call with the MQOO_SET option

2. Call MQSET using the selectors MQIA_INHIBIT_GET and MQIA_INHIBIT_PUT, and with the values MQQA_GET_INHIBITED and MQQA_PUT_INHIBITED
in the IntAttrs parameter

3. Close the queue using the MQCLOSE call

4. Move the word INHIBITED to the relevant screen fields

If you enter allow in the Action field, the application performs similar processing to that for an inhibit request. The only differences are the settings of the

attributes and the words displayed on the screen.

When the application opens the queue, it uses the default connection handle to the queue manager. (CICS® establishes a connection to the queue manager
when you start your CICS system.) The application can trap the following errors at this stage:

� The application is not connected to the queue manager

� The queue does not exist

� The user is not authorized to access the queue

� The application is not authorized to open the queue

For other MQI errors, the application displays the completion and reason codes.

Parent topic: The Queue Attributes sample

This build: January 26, 2011 11:21:43

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18390_

4.2.11. The Mail Manager sample

The Mail Manager sample application is a suite of programs that demonstrates sending and receiving messages, both within a single environment and across
different environments. The application is a simple electronic mailing system that allows users to exchange messages, even if they use different queue
managers.

The application demonstrates how to create queues using the MQOPEN call and by putting WebSphere® MQ for z/OS® commands on the system-command
input queue.

Three versions of the application are provided:

� A CICS® application written in COBOL

� A TSO application written in COBOL

� A TSO application written in C

Preparing the sample
The Mail Manager is provided in versions that run in two environments. The preparation that you must carry out before you run the application
depends on the environment that you want to use.

Running the sample
To start the sample in the TSO environment, execute your tailored version of the CLIST from the TSO command processor within ISPF.

Design of the sample
The following sections describe each of the programs that comprise the Mail Manager sample application.

Parent topic: Sample programs for WebSphere MQ for z/OS

This build: January 26, 2011 11:21:43

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18400_

4.2.11.1. Preparing the sample

The Mail Manager is provided in versions that run in two environments. The preparation that you must carry out before you run the application depends on
the environment that you want to use.

Users can access mail queues and nickname queues from both TSO and CICS® so long as their sign-on user IDs are the same on each system.

Before you can send messages to another queue manager, you must set up a message channel to that queue manager. To do this, use the channel control
function of WebSphere® MQ, described in WebSphere MQ Intercommunication.

Preparing the sample for the TSO environment

Parent topic: The Mail Manager sample

This build: January 26, 2011 11:21:43

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18410_

4.2.11.1.1. Preparing the sample for the TSO environment

Follow these steps:

1. Prepare the sample as described in Preparing sample applications for the TSO environment.

2. Tailor the CLIST provided for the sample to define:

� The location of the panels

Page 346 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

� The location of the message file

� The location of the load modules

� The name of the queue manager that you want to use with the application

A separate CLIST is provided for each language version of the sample:

3. Ensure that the queues used by the application are available on the queue manager. (The queues are defined in CSQ4CVD.)

Note: VS COBOL II does not support multitasking with ISPF. This means that you cannot use the Mail Manager sample application on both sides of a split
screen. If you do, the results are unpredictable.

Parent topic: Preparing the sample

This build: January 26, 2011 11:21:43

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18420_

4.2.11.2. Running the sample

To start the sample in the TSO environment, execute your tailored version of the CLIST from the TSO command processor within ISPF.

To start the sample in the CICS® Transaction Server for z/OS® environment, run transaction MAIL. If you have not already signed on to CICS, the
application prompts you to enter a user ID to which it can send your mail.

When you start the application, it opens your mail queue. If this queue does not already exist, the application creates one for you. Mail queues have names
of the form CSQ4SAMP.MAILMGR.userid, where userid depends on the environment:

In TSO

The user's TSO ID

In CICS

The user's CICS sign-on or the user ID entered by the user when prompted when the Mail Manager started

All parts of the queue names that the Mail Manager uses must be uppercase.

The application then presents a menu panel that has options for:

� Read incoming mail

� Send mail

� Create nickname

The menu panel also shows you how many messages are waiting on your mail queue. Each of the menu options displays a further panel:

Read incoming mail

The Mail Manager displays a list of the messages that are on your mail queue. (Only the first 99 messages on the queue are displayed.) For an example of
this panel, see Figure 1. When you select a message from this list, the contents of the message are displayed (see Figure 2).

Send mail

A panel prompts you to enter:

� The name of the user to whom you want to send a message

� The name of the queue manager that owns their mail queue

� The text of your message

In the user name field you can enter either a user ID or a nickname that you created using the Mail Manager. You can leave the queue manager name field
blank if the user's mail queue is owned by the same queue manager that you are using, and you must leave it blank if you entered a nickname in the user
name field:

� If you specify only a user name, the program first assumes that the name is a nickname, and sends the message to the object defined by that name.
If there is no such nickname, the program attempts to send the message to a local queue of that name.

� If you specify both a user name and a queue manager name, the program sends the message to the mail queue that is defined by those two names.

For example, if you want to send a message to user JONESM on remote queue manager QM12, you could send them a message in either of two ways:

� Use both fields to specify user JONESM at queue manager QM12.

� Define a nickname (for example, MARY) for that user and send them a message by putting MARY in the user name field and nothing in the queue
manager name field.

Create nickname

You can define an easy-to-remember name that you can use when you send a message to another user who you contact frequently. You are prompted to
enter the user ID of the other user and the name of the queue manager that owns their mail queue.

Nicknames are queues that have names of the form CSQ4SAMP.MAILMGR.userid.nickname, where userid is your own user ID and nickname is the
nickname that you want to use. With names structured in this way, users can each have their own set of nicknames.

The type of queue that the program creates depends on how you complete the fields of the Create Nickname panel:

� If you specify only a user name, or the queue manager name is the same as that of the queue manager to which the Mail Manager is connected, the
program creates an alias queue.

� If you specify both a user name and a queue manager name (and the queue manager is not the one to which the Mail Manager is connected), the
program creates a local definition of a remote queue. The program does not check the existence of the queue to which this definition resolves, or
even that the remote queue manager exists.

For example, if your own user ID is SMITHK and you create a nickname called MARY for user JONESM (who uses the remote queue manager QM12), the
nickname program creates a local definition of a remote queue named CSQ4SAMP.MAILMGR.SMITHK.MARY. This definition resolves to Mary's mail queue,
which is CSQ4SAMP.MAILMGR.JONESM at queue manager QM12. If you are using queue manager QM12 yourself, the program instead creates an alias
queue of the same name (CSQ4SAMP.MAILMGR.SMITHK.MARY).

The C version of the TSO application makes greater use of ISPF's message-handling capabilities than does the COBOL version. You might notice that
different error messages are displayed by the C and COBOL versions.

For the COBOL version: CSQ4RVD1

For the C version: CSQ4RCD1

Page 347 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Parent topic: The Mail Manager sample

This build: January 26, 2011 11:21:44

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18430_

4.2.11.3. Design of the sample

The following sections describe each of the programs that comprise the Mail Manager sample application.

The relationships between the programs and the panels that the application uses is shown in Figure 1 for the TSO version, and Figure 2 for the CICS®
Transaction Server for z/OS® version.

Figure 1. Programs and panels for the TSO versions of the Mail Manager. This figure shows the names for the COBOL version.

Figure 2. Programs and panels for the CICS version of the Mail Manager

Menu program

Page 348 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

In the TSO environment, the menu program is invoked by the CLIST. In the CICS environment, the program is invoked by transaction MAIL.

Get-mail and display-message programs
In the TSO versions of the application, the get-mail and display-message functions are performed by the same program (CSQ4TVD2). In the CICS
version of the application, these functions are performed by separate programs (CSQ4CVD2 and CSQ4CVD3).

Send-mail program
When the user has completed the Send Mail panel (CSQ4VDP4 for TSO, VD4 for CICS), the send-mail program (CSQ4TVD4 for TSO, CSQ4CVD4 for
CICS) puts the message on the receiver's mail queue.

Nickname program
When the user defines a nickname, the nickname program (CSQ4TVD5 for TSO, CSQ4CVD5 for CICS) creates a queue that has the nickname as part
of its name.

Parent topic: The Mail Manager sample

This build: January 26, 2011 11:21:44

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18440_

4.2.11.3.1. Menu program

In the TSO environment, the menu program is invoked by the CLIST. In the CICS® environment, the program is invoked by transaction MAIL.

The menu program (CSQ4TVD1 for TSO, CSQ4CVD1 for CICS) is the initial program in the suite. It displays the menu (CSQ4VDP1 for TSO, VD1 for CICS)
and invokes the other programs when they are selected from the menu.

The program first obtains the user's ID:

� In the CICS version of the program, if the user has signed on to CICS, the user ID is obtained by using the CICS command ASSIGN USERID. If the
user has not signed on, the program displays the sign on panel (CSQ4VD0) to prompt the user to enter a user ID. There is no security processing
within this program; the user can give any user ID.

� In the TSO version, the user's ID is obtained from TSO in the CLIST. It is passed to the menu program as a variable in the ISPF shared pool.

After the program has obtained the user ID, it checks to ensure that the user has a mail queue (CSQ4SAMP.MAILMGR.userid). If a mail queue does not
exist, the program creates one by putting a message on the system-command input queue. The message contains the WebSphere® MQ for z/OS®
command DEFINE QLOCAL. The object definition that this command uses sets the maximum depth of the queue to 9999 messages.

The program also creates a temporary dynamic queue to handle replies from the system-command input queue. To do this, the program uses the MQOPEN
call, specifying the SYSTEM.DEFAULT.MODEL.QUEUE as the template for the dynamic queue. The queue manager creates the temporary dynamic queue with
a name that has the prefix CSQ4SAMP; the remainder of the name is generated by the queue manager.

The program then opens the user's mail queue and finds the number of messages on the queue by inquiring about the current depth of the queue. To do
this, the program uses the MQINQ call, specifying the MQIA_CURRENT_Q_DEPTH selector.

The program then performs a loop that displays the menu and processes the selection that the user makes. The loop is stopped when the user presses the
PF3 key. When a valid selection is made, the appropriate program is started; otherwise an error message is displayed.

Parent topic: Design of the sample

This build: January 26, 2011 11:21:44

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18450_

4.2.11.3.2. Get-mail and display-message programs

In the TSO versions of the application, the get-mail and display-message functions are performed by the same program (CSQ4TVD2). In the CICS® version
of the application, these functions are performed by separate programs (CSQ4CVD2 and CSQ4CVD3).

The Mail Awaiting panel (CSQ4VDP2 for TSO, VD2 for CICS; see Figure 1 for an example) shows all the messages that are on the user’s mail queue. To
create this list, the program uses the MQGET call to browse all the messages on the queue, saving information about each one. In addition to the
information displayed, the program records the MsgId and CorrelId of each message.

Figure 1. Example of a panel showing a list of waiting messages

 --------------------- WebSphere MQ for z/OS Sample Programs ------- ROW 16 OF 29

 COMMAND ==> Scroll ===> PAGE

 USERID - NTSFV02

 Mail Manager System QMGR - VC4

 Mail Awaiting

 Msg Mail Date Time

 No From Sent Sent

 16

 16 Deleted

 17 JOHNJ 01/06/1993 12:52:02

 18 JOHNJ 01/06/1993 12:52:02

 19 JOHNJ 01/06/1993 12:52:03

 20 JOHNJ 01/06/1993 12:52:03

 21 JOHNJ 01/06/1993 12:52:03

 22 JOHNJ 01/06/1993 12:52:04

 23 JOHNJ 01/06/1993 12:52:04

 24 JOHNJ 01/06/1993 12:52:04

 25 JOHNJ 01/06/1993 12:52:05

 26 JOHNJ 01/06/1993 12:52:05

 27 JOHNJ 01/06/1993 12:52:05

 28 JOHNJ 01/06/1993 12:52:06

 29 JOHNJ 01/06/1993 12:52:06

From the Mail Awaiting panel the user can select one message and display the contents of the message (see Figure 2 for an example). The program uses the
MQGET call to remove this message from the queue, using the MsgId and CorrelId that the program noted when it browsed all the messages. This MQGET

Page 349 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

call is performed using the MQGMO_SYNCPOINT option. The program displays the contents of the message, then declares a syncpoint: this commits the
MQGET call, so the message now no longer exists.

Figure 2. Example of a panel showing the contents of a message

 --------------------- WebSphere MQ for z/OS Sample Programs ---------------------

 COMMAND ==>

 USERID - NTSFV02

 Mail Manager System QMGR - VC4

 Received Mail

 Mail sent from JOHNJ at VC4

 Sent on the 01/06/1993 at 12:52:02

 ------------------------------------ Message -------------------------------

 | HELLO FROM JOHNJ |

 | |

 | |

 | |

 | |

 | |

 | |

 | |

 | |

 | |

 '--'

An obvious extension to the function provided by the Mail Manager is to give the user the option to leave the message on the queue after viewing its
contents. To do this, you would have to back out the MQGET call that removes the message from the queue, after displaying the message.

Parent topic: Design of the sample

This build: January 26, 2011 11:21:44

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18460_

4.2.11.3.3. Send-mail program

When the user has completed the Send Mail panel (CSQ4VDP4 for TSO, VD4 for CICS®), the send-mail program (CSQ4TVD4 for TSO, CSQ4CVD4 for CICS)
puts the message on the receiver's mail queue.

To do this, the program uses the MQPUT1 call. The destination of the message depends on how the user has filled the fields in the Send Mail panel:

� If the user has specified only a user name, the program first assumes that the name is a nickname, and sends the message to the object defined by
that name. If there is no such nickname, the program attempts to send the message to a local queue of that name.

� If the user has specified both a user name and a queue manager name, the program sends the message to the mail queue that is defined by those two
names.

The program does not accept blank messages, and it removes leading blanks from each line of the message text.

If the MQPUT1 call is successful, the program displays a message that shows that the user name and queue manager name to which the message was put.
If the call is unsuccessful, the program checks specifically for the reason codes that indicate the queue or the queue manager do not exist; these are
MQRC_UNKNOWN_OBJECT_NAME and MQRC_UNKNOWN_OBJECT_Q_MGR. The program displays its own error message for each of these errors; for other
errors, the program displays the completion and reason codes returned by the call.

Parent topic: Design of the sample

This build: January 26, 2011 11:21:45

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18470_

4.2.11.3.4. Nickname program

When the user defines a nickname, the nickname program (CSQ4TVD5 for TSO, CSQ4CVD5 for CICS®) creates a queue that has the nickname as part of its
name.

The program does this by putting a message on the system-command input queue. The message contains the WebSphere® MQ for z/OS® command
DEFINE QALIAS or DEFINE QREMOTE. The type of queue that the program creates depends on how the user has filled the fields of the Create Nickname
panel (CSQ4VDP5 for TSO, VD5 for CICS):

� If the user has specified only a user name, or the queue manager name is the same as that of the queue manager to which the Mail Manager is
connected, the program creates an alias queue.

� If the user has specified both a user name and a queue manager name (and the queue manager is not the one to which the Mail Manager is
connected), the program creates a local definition of a remote queue. The program does not check the existence of the queue to which this definition
resolves, or even that the remote queue manager exists.

The program also creates a temporary dynamic queue to handle replies from the system-command input queue.

If the queue manager cannot create the nickname queue for a reason that the program expects (for example, the queue already exists), the program
displays its own error message. If the queue manager cannot create the queue for a reason that the program does not expect, the program displays up to
two of the error messages that are returned to the program by the command server.

Note: For each nickname, the nickname program creates only an alias queue or a local definition of a remote queue. The local queues to which these queue
names resolve are created only when the user ID that is contained in the nickname is used to start the Mail Manager application.

Parent topic: Design of the sample

This build: January 26, 2011 11:21:45

Notices | Trademarks | Downloads | Library | Support | Feedback

Page 350 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18480_

4.2.12. The Credit Check sample

The Credit Check sample application is a suite of programs that demonstrates how to use many of the features provided by WebSphere® MQ for z/OS®. It
shows how the many component programs of an application can pass messages to each other using message queuing techniques.

The sample can run as a standalone CICS® application. However, to demonstrate how to design a message queuing application that uses the facilities
provided by both the CICS and IMS™ environments, one module is also supplied as an IMS batch message processing program. This extension to the sample
is described in The IMS extension to the Credit Check sample.

You can also run the sample on more than one queue manager, and send messages between each instance of the application. To do this, see The Credit
Check sample with multiple queue managers.

The CICS programs are delivered in C and COBOL. The single IMS program is delivered only in C. The supplied data sets are shown in Table 4 and Table 1.

The application demonstrates a method of assessing the risk when bank customers ask for loans. The application shows how a bank could work in two ways
to process loan requests:

� When dealing directly with a customer, bank staff want immediate access to account and credit-risk information.

� When dealing with written applications, bank staff can submit a series of requests for account and credit-risk information, and deal with the replies at a
later time.

The financial and security details in the application have been kept simple so that the message queuing techniques are clear.

Preparing and running the Credit Check sample

Design of the sample
This section describes the design of each of the programs that comprise the Credit Check sample application.

Design considerations

The Credit Check sample with multiple queue managers
You can use the Credit Check sample application to demonstrate distributed queuing by installing the sample on two queue managers and CICS
systems (with each queue manager connected to a different CICS system).

The IMS extension to the Credit Check sample
A version of the checking-account program is supplied as an IMS batch message processing (BMP) program. It is written in the C language.

Parent topic: Sample programs for WebSphere MQ for z/OS

This build: January 26, 2011 11:21:45

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18490_

4.2.12.1. Preparing and running the Credit Check sample

To prepare and run the Credit Check sample, perform the following steps:

1. Create the VSAM data set that holds information about some example accounts. Do this by editing and running the JCL supplied in data set CSQ4FILE.

2. Perform the steps in Preparing the sample applications for the CICS environment. (The additional steps that you must perform if you want to use the
IMS™ extension to the sample are described in The IMS extension to the Credit Check sample.)

3. Start the CKTI trigger monitor (supplied with WebSphere® MQ for z/OS®) against queue CSQ4SAMP.INITIATION.QUEUE, using the CICS transaction
CKQC.

4. To start the application, start your CICS system and use the transaction MVB1.

5. Select Immediate or Batch inquiry from the first panel.

The immediate and batch inquiry panels are similar; Figure 1 shows the Immediate Inquiry panel.

Figure 1. Immediate Inquiry panel for the Credit Check sample application

 CSQ4VB2 WebSphere MQ for z/OS Sample Programs

 Credit Check - Immediate Inquiry

 Specify details of the request, then press Enter.

 Name ____________________

 Social security number ___ __ ____

 Bank account name . . ______________________________

 Account number __________

 Amount requested . . . 012345

 Response from CHECKING ACCOUNT for name : ____________________

 Account information not found

 Credit worthiness index - NOT KNOWN

 ..

 ..

 ..

 ..

 ..

 ..

 ..

 ..

 ..

 MESSAGE LINE

 F1=Help F3=Exit F5=Make another inquiry

6. Enter an account number and loan amount in the appropriate fields. See Entering information in the inquiry panels for guidance on what information to
enter in these fields.

Entering information in the inquiry panels
The Credit Check sample application checks that the data you enter in the Amount requested field of the inquiry panels is in the form of integers.

Page 351 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Parent topic: The Credit Check sample

This build: January 26, 2011 11:21:45

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18500_

4.2.12.1.1. Entering information in the inquiry panels

The Credit Check sample application checks that the data you enter in the Amount requested field of the inquiry panels is in the form of integers.

If you enter one of the following account numbers, the application finds the appropriate account name, average account balance, and credit worthiness index
in the VSAM data set CSQ4BAQ:

� 2222222222

� 3111234329

� 3256478962

� 3333333333

� 3501676212

� 3696879656

� 4444444444

� 5555555555

� 6666666666

� 7777777777

You can enter any, or no, information in the other fields. The application retains any information that you enter and returns the same information in the
reports that it generates.

Parent topic: Preparing and running the Credit Check sample

This build: January 26, 2011 11:21:45

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18510_

4.2.12.2. Design of the sample

This section describes the design of each of the programs that comprise the Credit Check sample application.

For a discussion of some of the techniques that were considered during the design of the application, see Design considerations.

Figure 1 shows the programs that make up the application, and also the queues that these programs serve. In this figure, the prefix CSQ4SAMP has been
omitted from all the queue names to make the figure easier to understand.

Figure 1. Programs and queues for the Credit Check sample application (COBOL programs only). In the sample application, the queue names shown in this

figure have the prefix CSQ4SAMP.

Page 352 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

User interface program (CSQ4CVB1)
When you start the conversational-mode CICS® transaction MVB1, this starts the user interface program for the application.

Credit application manager (CSQ4CVB2)
The Credit Application Manager (CAM) program performs most of the processing for the Credit Check application.

Checking-account program (CSQ4CVB3)
The checking-account program is started by a trigger event on queue CSQ4SAMP.B3.MESSAGES. After it has opened the queue, this program gets a
message from the queue using the MQGET call with the wait option, and with the wait interval set to 30 seconds.

Distribution program (CSQ4CVB4)

Agency-query program (CSQ4CVB5/CSQ4CCB5)
The agency-query program is supplied as both a COBOL program and a C program. Both programs have the same design. This shows that programs of
different types can easily coexist within a WebSphere MQ application, and that the program modules that comprise such an application can easily be
replaced.

Parent topic: The Credit Check sample

This build: January 26, 2011 11:21:45

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

Page 353 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

fg18520_

4.2.12.2.1. User interface program (CSQ4CVB1)

When you start the conversational-mode CICS® transaction MVB1, this starts the user interface program for the application.

This program puts inquiry messages on queue CSQ4SAMP.B2.INQUIRY and gets replies to those inquiries from a reply-to queue that it specifies when it
makes the inquiry. From the user interface you can submit either immediate or batch inquiries:

� For immediate inquiries, the program creates a temporary dynamic queue that it uses as a reply-to queue. This means that each inquiry has its own
reply-to queue.

� For batch inquiries, the user-interface program gets replies from the queue CSQ4SAMP.B2.RESPONSE. For simplicity, the program gets replies for all
its inquiries from this one reply-to queue. It is easy to see that a bank might want to use a separate reply-to queue for each user of MVB1, so that
they could each see replies to only those inquiries that they had initiated.

Important differences between the properties of messages used in the application when in batch and immediate mode are:

� For batch working, the messages have a low priority, so they are processed after any loan requests that are entered in immediate mode. Also, the
messages are persistent, so they are recovered if the application or the queue manager has to restart.

� For immediate working, the messages have a high priority, so they are processed before any loan requests that are entered in batch mode. Also,
messages are not persistent so they are discarded if the application or the queue manager has to restart.

However, in all cases, the properties of loan request messages are propagated throughout the application. So, for example, all messages that result from a
high-priority request will also have a high priority.

Parent topic: Design of the sample

This build: January 26, 2011 11:21:46

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18530_

4.2.12.2.2. Credit application manager (CSQ4CVB2)

The Credit Application Manager (CAM) program performs most of the processing for the Credit Check application.

The CAM is started by the CKTI trigger monitor (supplied with WebSphere® MQ for z/OS®) when a trigger event occurs on either queue
CSQ4SAMP.B2.INQUIRY or queue CSQ4SAMP.B2.REPLY.n, where n is an integer that identifies one of a set of reply queues. The trigger message contains
data that includes the name of the queue on which the trigger event occurred.

The CAM uses queues with names of the form CSQ4SAMP.B2.WAITING.n to store information about inquiries that it is processing. The queues are named so
that they are each paired with a reply-to queue; for example, queue CSQ4SAMP.B2.WAITING.3 contains the input data for a particular inquiry, and queue
CSQ4SAMP.B2.REPLY.3 contains a set of reply messages (from programs that query databases) all relating to that same inquiry. To understand the reasons
behind this design, see Separate inquiry and reply queues in the CAM.

Startup logic
If the trigger event occurs on queue CSQ4SAMP.B2.INQUIRY, the CAM opens the queue for shared access. It then tries to open each reply queue until
a free one is found. If it cannot find a free reply queue, the CAM logs the fact and terminates normally.

Getting a message
The CAM first attempts to get a message from the inquiry queue using the MQGET call with the MQGMO_SET_SIGNAL option. If a message is available
immediately, the message is processed; if no message is available, a signal is set.

Processing the message retrieved

Sending an answer
When the CAM has received all the replies it is expecting for an inquiry, it processes the replies and creates a single response message.

Recovery of partially-completed inquiries

Parent topic: Design of the sample

This build: January 26, 2011 11:21:46

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18540_

4.2.12.2.2.1. Startup logic

If the trigger event occurs on queue CSQ4SAMP.B2.INQUIRY, the CAM opens the queue for shared access. It then tries to open each reply queue until a free
one is found. If it cannot find a free reply queue, the CAM logs the fact and terminates normally.

If the trigger event occurs on queue CSQ4SAMP.B2.REPLY.n, the CAM opens the queue for exclusive access. If the return code reports that the object is
already in use, the CAM terminates normally. If any other error occurs, the CAM logs the error and terminates. The CAM opens the corresponding waiting
queue and the inquiry queue, then starts getting and processing messages. From the waiting queue, the CAM recovers details of partially-completed
inquiries.

For the sake of simplicity in this sample, the names of the queues used are held in the program. In a business environment, the queue names would
probably be held in a file accessed by the program.

Parent topic: Credit application manager (CSQ4CVB2)

This build: January 26, 2011 11:21:46

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18550_

Page 354 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

4.2.12.2.2.2. Getting a message

The CAM first attempts to get a message from the inquiry queue using the MQGET call with the MQGMO_SET_SIGNAL option. If a message is available
immediately, the message is processed; if no message is available, a signal is set.

The CAM then attempts to get a message from the reply queue, again using the MQGET call with the same option. If a message is available immediately, the
message is processed; otherwise a signal is set.

When both signals are set, the program waits until one of the signals is posted. If a signal is posted to indicate that a message is available, the message is
retrieved and processed. If the signal expires or the queue manager is terminating, the program terminates.

Parent topic: Credit application manager (CSQ4CVB2)

This build: January 26, 2011 11:21:46

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18560_

4.2.12.2.2.3. Processing the message retrieved

A message retrieved by the CAM can be one of four types:

� An inquiry message

� A reply message

� A propagation message

� An unexpected or unwanted message

The CAM processes these messages as follows:

Inquiry message

Inquiry messages come from the user interface program. It creates an inquiry message for each loan request.

For all loan requests, the CAM requests the average balance of the customer's checking account. It does this by putting a request message on alias
queue CSQ4SAMP.B2.OUTPUT.ALIAS. This queue name resolves to queue CSQ4SAMP.B3.MESSAGES, which is processed by the checking-account
program, CSQ4CVB3. When the CAM puts a message on this alias queue, it specifies the appropriate CSQ4SAMP.B2.REPLY.n queue for the reply-to queue.
An alias queue is used here so that program CSQ4CVB3 can easily be replaced by another program that processes a base queue of a different name. To do
this, you redefine the alias queue so that its name resolves to the new queue. Also, you could assign differing access authorities to the alias queue and to
the base queue.

If a user requests a loan that is larger than 10000 units, the CAM initiates checks on other databases as well. It does this by putting a request message on
queue CSQ4SAMP.B4.MESSAGES, which is processed by the distribution program, CSQ4CVB4. The process serving this queue propagates the message to
queues served by programs that have access to other records such as credit card history, savings accounts, and mortgage payments. The data from these
programs is returned to the reply-to queue specified in the put operation. Additionally, a propagation message is sent to the reply-to queue by this
program to specify how many propagation messages have been sent.

In a business environment, the distribution program would probably reformat the data provided to match the format required by each of the other types of
bank account.

Any of the queues referred to here can be on a remote system.

For each inquiry message, the CAM initiates an entry in the memory-resident Inquiry Record Table (IRT). This record contains:

� The MsgId of the inquiry message

� In the ReplyExp field, the number of responses expected (equal to the number of messages sent)

� In the ReplyRec field, the number of replies received (zero at this stage)

� In the PropsOut field, an indication of whether a propagation message is expected

The CAM copies the inquiry message onto the waiting queue with:

� Priority set to 3

� CorrelId set to the MsgId of the inquiry message

� The other message-descriptor fields set to those of the inquiry message

Propagation message

A propagation message contains the number of queues to which the distribution program has forwarded the inquiry. The message is processed as follows:

1. Add to the ReplyExp field of the appropriate record in the IRT the number of messages sent. This information is in the message.

2. Increment by 1 the ReplyRec field of the record in the IRT.

3. Decrement by 1 the PropsOut field of the record in the IRT.

4. Copy the message onto the waiting queue. The CAM sets the Priority to 2 and the other fields of the message descriptor to those of the

propagation message.

Reply message

A reply message contains the response to one of the requests to the checking-account program or to one of the agency-query programs. Reply messages
are processed as follows:

1. Increment by 1 the ReplyRec field of the record in the IRT.

2. Copy the message onto the waiting queue with Priority set to 1 and the other fields of the message descriptor set to those of the reply message.

3. If ReplyRec = ReplyExp, and PropsOut = 0, set the MsgComplete flag.

Other messages

The application does not expect other messages. However, the application might receive messages broadcast by the system, or reply messages with
unknown CorrelIds.

The CAM puts these messages on queue CSQ4SAMP.DEAD.QUEUE, where they can be examined. If this put operation fails, the message is lost and the
program continues. For more information on the design of this part of the program, see How the sample handles unexpected messages.

Parent topic: Credit application manager (CSQ4CVB2)

This build: January 26, 2011 11:21:46

Page 355 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18570_

4.2.12.2.2.4. Sending an answer

When the CAM has received all the replies it is expecting for an inquiry, it processes the replies and creates a single response message.

It consolidates into one message all the data from all reply messages that have the same CorrelId. This response is put on the reply-to queue specified in

the original loan request. The response message is put within the same unit of work that contains the retrieval of the final reply message. This is to simplify
recovery by ensuring that there is never a completed message on queue CSQ4SAMP.B2.WAITING.n.

Parent topic: Credit application manager (CSQ4CVB2)

This build: January 26, 2011 11:21:46

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18580_

4.2.12.2.2.5. Recovery of partially-completed inquiries

The CAM copies onto queue CSQ4SAMP.B2.WAITING.n all the messages that it receives. It sets the fields of the message descriptor like this:

� Priority is determined by the type of message:

� For request messages, priority = 3

� For datagrams, priority = 2

� For reply messages, priority = 1

� CorrelId is set to the MsgId of the loan request message

� Other MQMD fields are copied from those of the received message

When an inquiry has been completed, the messages for a specific inquiry are removed from the waiting queue during answer processing. Therefore, at any
time, the waiting queue contains all messages relevant to in-progress inquiries. These messages are used to recover details of in-progress inquiries if the
program has to restart. The different priorities are set so that inquiry messages are recovered before propagations or reply messages.

Parent topic: Credit application manager (CSQ4CVB2)

This build: January 26, 2011 11:21:46

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18590_

4.2.12.2.3. Checking-account program (CSQ4CVB3)

The checking-account program is started by a trigger event on queue CSQ4SAMP.B3.MESSAGES. After it has opened the queue, this program gets a
message from the queue using the MQGET call with the wait option, and with the wait interval set to 30 seconds.

The program searches VSAM data set CSQ4BAQ for the account number in the loan request message. It retrieves the corresponding account name, average
balance, and credit worthiness index, or notes that the account number is not in the data set.

The program then puts a reply message (using the MQPUT1 call) on the reply-to queue named in the loan request message. For this reply message, the
program:

� Copies the CorrelId of the loan request message

� Uses the MQPMO_PASS_IDENTITY_CONTEXT option

The program continues to get messages from the queue until the wait interval expires.

Parent topic: Design of the sample

This build: January 26, 2011 11:21:46

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18600_

4.2.12.2.4. Distribution program (CSQ4CVB4)

The distribution program is started by a trigger event on queue CSQ4SAMP.B4.MESSAGES. To simulate the distribution of the loan request to other agencies
that have access to records such as credit card history, savings accounts, and mortgage payments, the program puts a copy of the same message on all the
queues in the namelist CSQ4SAMP.B4.NAMELIST. There are three of these queues, with names of the form CSQ4SAMP.Bn.MESSAGES, where n is 5, 6, or 7.
In a business application, the agencies could be at separate locations, so these queues could be remote queues. If you want to modify the sample
application to show this, see The Credit Check sample with multiple queue managers.

The distribution program performs the following steps:

1. From the namelist, gets the names of the queues that the program is to use. The program does this by using the MQINQ call to inquire about the
attributes of the namelist object.

2. Opens these queues and also CSQ4SAMP.B4.MESSAGES.

3. Performs the following loop until there are no more messages on queue CSQ4SAMP.B4.MESSAGES:

a. Get a message using the MQGET call with the wait option, and with the wait interval set to 30 seconds.

b. Put a message on each queue listed in the namelist, specifying the name of the appropriate CSQ4SAMP.B2.REPLY.n queue for the reply-to queue.
The program copies the CorrelId of the loan request message to these copy messages, and it uses the MQPMO_PASS_IDENTITY_CONTEXT

option on the MQPUT call.

Page 356 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

c. Send a datagram message to queue CSQ4SAMP.B2.REPLY.n to show how many messages it has successfully put.

d. Declare a syncpoint.

Parent topic: Design of the sample

This build: January 26, 2011 11:21:46

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18610_

4.2.12.2.5. Agency-query program (CSQ4CVB5/CSQ4CCB5)

The agency-query program is supplied as both a COBOL program and a C program. Both programs have the same design. This shows that programs of
different types can easily coexist within a WebSphere® MQ application, and that the program modules that comprise such an application can easily be
replaced.

An instance of the program is started by a trigger event on any of these queues:

� For the COBOL program (CSQ4CVB5):

� CSQ4SAMP.B5.MESSAGES

� CSQ4SAMP.B6.MESSAGES

� CSQ4SAMP.B7.MESSAGES

� For the C program (CSQ4CCB5), queue CSQ4SAMP.B8.MESSAGES

Note: If you want to use the C program, you must alter the definition of the namelist CSQ4SAMP.B4.NAMELIST to replace the queue
CSQ4SAMP.B7.MESSAGES with CSQ4SAMP.B8.MESSAGES. To do this, you can use any one of:

� The WebSphere MQ for z/OS® operations and control panels

� The ALTER NAMELIST command (described in the WebSphere MQ Script (MQSC) Command Reference)

� The CSQUTIL utility (described in the WebSphere MQ for z/OS System Administration Guide)

After it has opened the appropriate queue, this program gets a message from the queue using the MQGET call with the wait option, and with the wait
interval set to 30 seconds.

The program simulates the search of an agency’s database by searching the VSAM data set CSQ4BAQ for the account number that was passed in the loan
request message. It then builds a reply that includes the name of the queue that it is serving and a creditworthiness index. To simplify the processing, the
creditworthiness index is selected at random.

When putting the reply message, the program uses the MQPUT1 call and:

� Copies the CorrelId of the loan request message

� Uses the MQPMO_PASS_IDENTITY_CONTEXT option

The program sends the reply message to the reply-to queue named in the loan request message. (The name of the queue manager that owns the reply-to
queue is also specified in the loan request message.)
Parent topic: Design of the sample

This build: January 26, 2011 11:21:46

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18620_

4.2.12.3. Design considerations

This section discusses:

� Why the CAM uses separate inquiry and reply queues

� How the sample handles errors

� How the sample handles unexpected messages

� How the sample uses syncpoints

� How the sample uses message context information

Separate inquiry and reply queues in the CAM

How the sample handles errors
The user interface program handles errors by reporting them directly to the user.

How the sample handles unexpected messages
When you design a message-queuing application, you must decide how to handle messages that arrive on a queue unexpectedly.

How the sample uses syncpoints

How the sample uses message context information
When the user interface program (CSQ4CVB1) sends messages, it uses the MQPMO_DEFAULT_CONTEXT option. This means that the queue manager
generates both identity and origin context information. The queue manager gets this information from the transaction that started the program (MVB1)
and from the user ID that started the transaction.

Use of message and correlation identifiers in the CAM
The application has to monitor the progress of all the live inquiries it is processing at any one time. To do this it uses the unique message identifier of
each loan request message to associate all the information that it has about each inquiry.

Parent topic: The Credit Check sample

This build: January 26, 2011 11:21:46

Notices | Trademarks | Downloads | Library | Support | Feedback

Page 357 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18630_

4.2.12.3.1. Separate inquiry and reply queues in the CAM

The application could use a single queue for both inquiries and replies, but it was designed to use separate queues for the following reasons:

� When the program is handling the maximum number of inquiries, further inquiries can be left on the queue. If a single queue were being used, these
would have to be taken off the queue and stored elsewhere.

� Other instances of the CAM could be started automatically to service the same inquiry queue if message traffic was high enough to warrant it. But the
program must track in-progress inquiries, and to do this it must get back all replies to inquiries it has initiated. If only one queue were used, the
program would have to browse the messages to see if they were for this program or for another. This would make the operation much less efficient.

The application can support multiple CAMs and can recover in-progress inquiries effectively by using paired reply-to and waiting queues.

� The program can wait on multiple queues effectively by using signaling.

Parent topic: Design considerations

This build: January 26, 2011 11:21:46

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18640_

4.2.12.3.2. How the sample handles errors

 The user interface program handles errors by reporting them directly to the user.

The other programs do not have user interfaces, so they have to handle errors in other ways. Also, in many situations (for example, if an MQGET call fails)
these other programs do not know the identity of the user of the application.

The other programs put error messages on a CICS® temporary storage queue called CSQ4SAMP. You can browse this queue using the CICS-supplied
transaction CEBR. The programs also write error messages to the CICS CSML log.

Parent topic: Design considerations

This build: January 26, 2011 11:21:47

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18650_

4.2.12.3.3. How the sample handles unexpected messages

When you design a message-queuing application, you must decide how to handle messages that arrive on a queue unexpectedly.

The two basic choices are:

� The application does no more work until it has processed the unexpected message. This probably means that the application notifies an operator,
terminates itself, and ensures that it is not restarted automatically (it can do this by setting triggering off). This choice means that all processing for
the application can be halted by a single unexpected message, and the intervention of an operator is required to restart the application.

� The application removes the message from the queue it is serving, puts the message in another location, and continues processing. The best place to
put this message is on the system dead-letter queue.

If you choose the second option:

� An operator, or another program, should examine the messages that are put on the dead-letter queue to find out where the messages are coming
from.

� An unexpected message is lost if it cannot be put on the dead-letter queue.

� An long unexpected message is truncated if it is longer than the limit for messages on the dead-letter queue, or longer than the buffer size in the
program.

To ensure that the application smoothly handles all inquiries with minimal impact from outside activities, the Credit Check sample application uses the
second option. To allow you to keep the sample separate from other applications that use the same queue manager, the Credit Check sample does not use
the system dead-letter queue; instead, it uses its own dead-letter queue. This queue is named CSQ4SAMP.DEAD.QUEUE. The sample truncates any
messages that are longer than the buffer area provided for the sample programs. You can use the Browse sample application to browse messages on this
queue, or use the Print Message sample application to print the messages together with their message descriptors.

However, if you extend the sample to run across more than one queue manager, unexpected messages, or messages that cannot be delivered, could be put
on the system dead-letter queue by the queue manager.

Parent topic: Design considerations

This build: January 26, 2011 11:21:47

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18660_

4.2.12.3.4. How the sample uses syncpoints

The programs in the Credit Check sample application declare syncpoints to ensure that:

� Only one reply message is sent in response to each expected message

� Multiple copies of unexpected messages are never put on the sample’s dead-letter queue

� The CAM can recover the state of all partially-completed inquiries by getting persistent messages from its waiting queue

To achieve this, a single unit of work is used to cover the getting of a message, the processing of that message, and any subsequent put operations.

Page 358 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Parent topic: Design considerations

This build: January 26, 2011 11:21:47

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18670_

4.2.12.3.5. How the sample uses message context information

When the user interface program (CSQ4CVB1) sends messages, it uses the MQPMO_DEFAULT_CONTEXT option. This means that the queue manager
generates both identity and origin context information. The queue manager gets this information from the transaction that started the program (MVB1) and
from the user ID that started the transaction.

When the CAM sends inquiry messages, it uses the MQPMO_PASS_IDENTITY_CONTEXT option. This means that the identity context information of the
message being put is copied from the identity context of the original inquiry message. With this option, origin context information is generated by the queue
manager.

When the CAM sends reply messages, it uses the MQPMO_ALTERNATE_USER_AUTHORITY option. This causes the queue manager to use an alternate user
ID for its security check when the CAM opens a reply-to queue. The CAM uses the user ID of the submitter of the original inquiry message. This means that
users are allowed to see replies to only those inquiries that they have originated. The alternate user ID is obtained from the identity context information in
the message descriptor of the original inquiry message.

When the query programs (CSQ4CVB3/4/5) send reply messages, they use the MQPMO_PASS_IDENTITY_CONTEXT option. This means that the identity
context information of the message being put is copied from the identity context of the original inquiry message. With this option, origin context information
is generated by the queue manager.

Note: The user ID associated with the MVB3/4/5 transactions requires access to the B2.REPLY.n queues. These user IDs might not be the same as those
associated with the request being processed. To get around this possible security exposure, the query programs could use the
MQPMO_ALTERNATE_USER_AUTHORITY option when putting their replies. This would mean that each individual user of MVB1 needs authority to open the
B2.REPLY.n queues.

Parent topic: Design considerations

This build: January 26, 2011 11:21:47

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18680_

4.2.12.3.6. Use of message and correlation identifiers in the CAM

The application has to monitor the progress of all the live inquiries it is processing at any one time. To do this it uses the unique message identifier of each
loan request message to associate all the information that it has about each inquiry.

The CAM copies the MsgId of the inquiry message into the CorrelId of all the request messages it sends for that inquiry. The other programs in the sample

(CSQ4CVB3 - 5) copy the CorrelId of each message that they receive into the CorrelId of their reply message.

Parent topic: Design considerations

This build: January 26, 2011 11:21:47

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18690_

4.2.12.4. The Credit Check sample with multiple queue managers

You can use the Credit Check sample application to demonstrate distributed queuing by installing the sample on two queue managers and CICS® systems
(with each queue manager connected to a different CICS system).

When the sample program is installed, and the trigger monitor (CKTI) is running on each system, you need to:

1. Set up the communication link between the two queue managers. For information on how to do this, see WebSphere MQ Intercommunication.

2. On one queue manager, create a local definition for each of the remote queues (on the other queue manager) that you want to use. These queues can
be any of CSQ4SAMP.Bn.MESSAGES, where n is 3, 5, 6, or 7. (These are the queues that are served by the checking-account program and the
agency-query program.) For information on how to do this, see the WebSphere MQ Script (MQSC) Command Reference.

3. Change the definition of the namelist (CSQ4SAMP.B4.NAMELIST) so that it contains the names of the remote queues that you want to use. For
information on how to do this, see the WebSphere MQ Script (MQSC) Command Reference.

Parent topic: The Credit Check sample

This build: January 26, 2011 11:21:47

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18700_

4.2.12.5. The IMS extension to the Credit Check sample

A version of the checking-account program is supplied as an IMS™ batch message processing (BMP) program. It is written in the C language.

The program performs the same function as the CICS® version, except that to obtain the account information, the program reads an IMS database instead
of a VSAM file. If you replace the CICS version of the checking-account program with the IMS version, you see no difference in the method of using the
application.

To prepare and run the IMS version you must:

1. Follow the steps in Preparing and running the Credit Check sample.

2. Follow the steps in Preparing the sample application for the IMS environment.

Page 359 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

3. Alter the definition of the alias queue CSQ4SAMP.B2.OUTPUT.ALIAS to resolve to queue CSQ4SAMP.B3.IMS.MESSAGES (instead of
CSQ4SAMP.B3.MESSAGES). To do this, you can use one of:

� The WebSphere® MQ for z/OS® operations and control panels

� The ALTER QALIAS command (described in the WebSphere MQ Script (MQSC) Command Reference)

Another way of using the IMS checking-account program is to make it serve one of the queues that receives messages from the distribution program. In the
delivered form of the Credit Check sample application, there are three of these queues (B5/6/7.MESSAGES), all served by the agency-query program. This
program searches a VSAM data set. To compare the use of the VSAM data set and the IMS database, you could make the IMS checking-account program
serve one of these queues instead. To do this, you must alter the definition of the namelist CSQ4SAMP.B4.NAMELIST to replace one of the
CSQ4SAMP.Bn.MESSAGES queues with the CSQ4SAMP.B3.IMS.MESSAGES queue. You can use one of:

� The WebSphere MQ for z/OS operations and control panels

� The ALTER NAMELIST command (described in the WebSphere MQ Script (MQSC) Command Reference)

You can then run the sample from CICS transaction MVB1 as usual. The user sees no difference in operation or response. The IMS BMP stops either after
receiving a stop message or after being inactive for five minutes.

Design of the IMS checking-account program (CSQ4ICB3)

Parent topic: The Credit Check sample

This build: January 26, 2011 11:21:47

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18710_

4.2.12.5.1. Design of the IMS checking-account program (CSQ4ICB3)

This program runs as a BMP. Start the program using its JCL before any WebSphere® MQ messages are sent to it.

The program searches an IMS™ database for the account number in the loan request messages. It retrieves the corresponding account name, average
balance, and credit worthiness index.

The program sends the results of the database search to the reply-to queue named in the WebSphere MQ message being processed. The message returned
appends the account type and the results of the search to the message received so that the transaction building the response can confirm that the correct
query is being processed. The message is in the form of three 79-character groups, as follows:

'Response from CHECKING ACCOUNT for name : JONES J B'

' Opened 870530, 3-month average balance = 000012.57'

' Credit worthiness index - BBB'

When running as a message-oriented BMP, the program drains the IMS message queue, then reads messages from the WebSphere MQ for z/OS® queue
and processes them. No information is received from the IMS message queue. The program reconnects to the queue manager after each checkpoint because
the handles have been closed.

When running in a batch-oriented BMP, the program continues to be connected to the queue manager after each checkpoint because the handles are not
closed.

Parent topic: The IMS extension to the Credit Check sample

This build: January 26, 2011 11:21:47

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18720_

4.2.13. The Message Handler sample

The Message Handler sample TSO application allows you to browse, forward, and delete messages on a queue. The sample is available in C and COBOL.

Preparing and running the sample

Using the sample

Design of the sample
This section describes the design of each of the programs that comprise the Message Handler sample application.

Parent topic: Sample programs for WebSphere MQ for z/OS

This build: January 26, 2011 11:21:48

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18730_

4.2.13.1. Preparing and running the sample

Follow these steps:

1. Prepare the sample as described in Preparing sample applications for the TSO environment.

2. Tailor the CLIST (CSQ4RCH1) provided for the sample to define the location of the panels, the location of the message file, and the location of the load
modules.

You can use CLIST CSQ4RCH1 to run both the C and the COBOL version of the sample. The supplied version of CSQ4RCH1 runs the C version, and contains
instructions on the tailoring necessary for the COBOL version.

Note:

Page 360 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

1. There are no sample queue definitions provided with the sample.

2. VS COBOL II does not support multitasking with ISPF, so do not use the Message Handler sample application on both sides of a split screen. If you do,
the results are unpredictable.

Parent topic: The Message Handler sample

This build: January 26, 2011 11:21:48

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18740_

4.2.13.2. Using the sample

Having installed the sample and invoked it from the tailored CLIST CSQ4RCH1, the screen shown in Figure 1 is displayed.

Figure 1. Initial screen for Message Handler sample

----------------------- WebSphere MQ for z/OS -- Samples ------------------------

 COMMAND ===>

 User Id : JOHNJ

 Enter information. Press ENTER :

 Queue Manager Name : __ :

 Queue Name : __ :

 F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=RCHANGE

 F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE

Enter the queue manager and queue name to be viewed (case sensitive) and the message list screen is displayed (see Figure 2).

Figure 2. Message list screen for Message Handler sample

----------------------- WebSphere MQ for z/OS -- Samples ------- Row 1 to 4 of 4

COMMAND ==>

 Queue Manager : VM03 :

 Queue : MQEI.IMS.BRIDGE.QUEUE :

 Message number 01 of 04

 Msg Put Date Put Time Format User Put Application

 No MM/DD/YYYY HH:MM:SS Name Identifier Type Name

 01 10/16/1998 13:51:19 MQIMS NTSFV02 00000002 NTSFV02A

 02 10/16/1998 13:55:45 MQIMS JOHNJ 00000011 EDIT\CLASSES\BIN\PROGTS

 03 10/16/1998 13:54:01 MQIMS NTSFV02 00000002 NTSFV02B

 04 10/16/1998 13:57:22 MQIMS johnj 00000011 EDIT\CLASSES\BIN\PROGTS

******************************* Bottom of data ********************************

This screen shows the first 99 messages on the queue and, for each, shows the following fields:

Msg No

Message number

Put Date MM/DD/YYYY

Date that the message was put on the queue (GMT)

Put Time HH:MM:SS

Time that the message was put on the queue (GMT)

Format Name

MQMD.Format field

User Identifier

MQMD.UserIdentifier field

Put Application Type

MQMD.PutApplType field

Put Application Name

MQMD.PutApplName field

The total number of messages on the queue is also displayed.

From this screen a message can be chosen, by number not by cursor position, and then displayed. For an example, see Figure 3.

Figure 3. Chosen message is displayed

----------------------- WebSphere MQ for z/OS -- Samples ----- Row 1 to 35 of 35

COMMAND ==>

 Queue Manager : VM03 :

 Queue : MQEI.IMS.BRIDGE.QUEUE :

 Forward to Q Mgr : VM03 :

 Forward to Queue : QL.TEST.ISCRES1 :

Page 361 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

 Action : _ : (D)elete (F)orward

 Message Content :

 Message Descriptor

 StrucId : `MD `

 Version : 000000001

 Report : 000000000

 MsgType : 000000001

 Expiry : -00000001

 Feedback : 000000000

 Encoding : 000000785

 CodedCharSetId : 000000500

 Format : `MQIMS `

 Priority : 000000000

 Persistence : 000000001

 MsgId : `C3E2D840E5D4F0F34040404040404040AF6B30F0A89B7605`X

 CorrelId : `00`X

 BackoutCount : 000000000

 ReplyToQ : `QL.TEST.ISCRES1 `

 ReplyToQMgr : `VM03 `

 UserIdentifier : `NTSFV02 `

 AccountingToken :

 `06F2F5F5F3F0F100`X

 ApplIdentityData : ` `

 PutApplType : 000000002

 PutApplName : `NTSFV02A `

 PutDate : `19971016`

 PutTime : `13511903`

 ApplOriginData : ` `

 Message Buffer : 108 byte(s)

 00000000 : C9C9 C840 0000 0001 0000 0054 0000 0311 `IIH`

 00000010 : 0000 0000 4040 4040 4040 4040 0000 0000 `.... `

 00000020 : 4040 4040 4040 4040 4040 4040 4040 4040 ` `

 00000030 : 4040 4040 4040 4040 4040 4040 4040 4040 ` `

 00000040 : 0000 0000 0000 0000 0000 0000 0000 0000 `................`

 00000050 : 40F1 C300 0018 0000 C9C1 D7D4 C4C9 F2F8 ` 1C.....IAPMDI28`

 00000060 : 40C8 C5D3 D3D6 40E6 D6D9 D3C4 ` HELLO WORLD `

******************************* Bottom of data ********************************

Once the message has been displayed it can be deleted, left on the queue, or forwarded to another queue. The Forward to Q Mgr and Forward to Queue

fields are initialized with values from the MQMD, these can be changed before forwarding the message.

The sample design allows only messages with unique MsgId / CorrelId combinations to be selected and displayed, because the message is retrieved using

the MsgId and CorrelId as the key. If the key is not unique the sample cannot retrieve the chosen message with certainty.

Parent topic: The Message Handler sample

This build: January 26, 2011 11:21:48

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18750_

4.2.13.3. Design of the sample

This section describes the design of each of the programs that comprise the Message Handler sample application.

Object validation program
This requests a valid queue and queue manager name.

Message list program
This displays a list of messages on a queue with information about them such as the putdate, puttime, and the message format.

Message content program
This displays message content.

Parent topic: The Message Handler sample

This build: January 26, 2011 11:21:48

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18760_

4.2.13.3.1. Object validation program

This requests a valid queue and queue manager name.

If you do not specify a queue manager name, the default queue manager is used, if available. Only local queues can be used; an MQINQ is issued to check
the queue type and an error is reported if the queue is not local. If the queue is not opened successfully, or the MQGET call is inhibited on the queue, error
messages are returned indicating the CompCode and Reason return code.

Parent topic: Design of the sample

This build: January 26, 2011 11:21:48

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18770_

Page 362 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

4.2.13.3.2. Message list program

This displays a list of messages on a queue with information about them such as the putdate, puttime, and the message format.

The maximum number of messages stored in the list is 99. If there are more messages on the queue than this, the current queue depth is also displayed. To
choose a message for display, type the message number into the entry field (the default is 01). If your entry is not valid, you receive an appropriate error
message.

Parent topic: Design of the sample

This build: January 26, 2011 11:21:48

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18780_

4.2.13.3.3. Message content program

This displays message content.

The content is formatted and split into two parts:

1. Message descriptor

2. Message buffer

The message descriptor shows the contents of each field on a separate line.

The message buffer is formatted depending on its contents. If the buffer holds a dead letter header (MQDLH) or a transmission queue header (MQXQH),
these are formatted and displayed before the buffer itself.

Before the buffer data is formatted, a title line shows the buffer length of the message in bytes. The maximum buffer size is 32768 bytes, and any message
longer than this is truncated. The full size of the buffer is displayed along with a message indicating that only the first 32768 bytes of the message are
displayed.

The buffer data is formatted in two ways:

1. After the offset into the buffer is printed, the buffer data is displayed in hexadecimal.

2. The buffer data is then displayed again as EBCDIC values. If any EBCDIC value cannot be printed, it prints a . (period) instead.

You can enter D for delete, or F for forward into the action field. If you choose to forward the message, the forward-to queue and queue manager name

must be filled in appropriately. The defaults for these fields are read from the message descriptor ReplyToQ and ReplyToQMgr fields.

If you forward a message, any header block stored in the buffer is stripped. If the message is forwarded successfully, it is removed from the original queue.
If you enter invalid actions, error messages are displayed.

An example help panel called CSQ4CHP9 is also available.

Parent topic: Design of the sample

This build: January 26, 2011 11:21:48

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18790_

4.2.14. The Asynchronous Put sample

The Asynchronous Put sample program puts messages on a queue using the asynchronous MQPUT call. The sample also retrieves status information using
the MQSTAT call.

The Asynchronous Put applications use these MQI calls:

� MQCONN

� MQOPEN

� MQPUT

� MQSTAT

� MQCLOSE

� MQDISC

The sample programs are delivered in the C programming language.

The Asynchronous Put applications run in the batch environment. See Other samples for the batch applications.

This topic also provides information about the design of the Asynchronous Consume program, and running the CSQ4BCS2 sample.

� Running the CSQ4BCS2 sample

� Design of the Asynchronous Put sample program

Running the CSQ4BCS2 sample

This sample program takes up to six parameters:

1. The name of the target queue (required).

2. The name of the queue manager (optional).

3. Open options (optional).

4. Close options (optional).

5. The name of the target queue manager (optional).

6. The name of the dynamic queue (optional).

Page 363 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

If a queue manager is not specified, CSQ4BCS2 connects to the default queue manager. Message content is provided through standard input (SYSIN DD).

There is a sample JCL to run the program, it resides in CSQ4BCSP.

Design of the Asynchronous Put sample program

The program uses the MQOPEN call with either the output options supplied, or with the MQOO_OUTPUT and MQOO_FAIL_IF_QUIESCING options, to open the
target queue for putting messages.

If the program cannot open the queue, the program outputs an error message containing the reason code returned by the MQOPEN call. To keep the
program simple on this and subsequent MQI calls, default values are used for many of the options.

For each line of input, the program reads the text into a buffer and uses the MQPUT call with MQPMO_ASYNC_REPONSE to create a datagram message
containing the text of that line and asynchronously puts the message on the target queue. The program continues until it reaches the end of the input, or
until the MQPUT call fails. If the program reaches the end of the input, it closes the queue using the MQCLOSE call.

The program then issues the MQSTAT call which returns an MQSTS structure, and displays messages containing the number of messages put successfully,
the number of messages put with a warning, and the number of failures.

Note: To observe what happens when an MQPUT error is detected by the MQSTAT call, set MAXDEPTH on the target queue to a low value.

Parent topic: Sample programs for WebSphere MQ for z/OS

This build: January 26, 2011 11:21:41

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18206_

4.2.15. The Batch Asynchronous Consume sample

The CSQ4BCS1 sample program is delivered in C, it demonstrates the use of MQCB and MQCTL to consume messages from multiple queues asynchronously.

The Asynchronous Consume samples run in the batch environment. See Other samples for the batch applications.

There is also a COBOL sample which runs in the CICS® environment, see The CICS Asynchronous Consume and Publish/Subscribe sample.

The applications use these MQI calls:

� MQCONN

� MQOPEN

� MQCLOSE

� MQDISC

� MQCB

� MQCTL

This topic also provided information about the following headings:

� Running the CSQ4BCS1 sample

� Design of the Batch Asynchronous Consume sample program

Running the CSQ4BCS1 sample

This sample program follows the following syntax:

Syntax diagram format Railroad diagram Dotted decimal

Open options\n' + '2 -t Run time\n' + '3+ \n' + '3 Queue name (1) \n' + '\n' + '

');break; default:document.write('

\n'

+ ' .-----------------------------. .--------------------. \n'

+ ' V | V (1) | \n'

+ '>>-CSQ4BCS1----+-------------------------+-+------Queue name-------+-><\n'

+ ' +- -m--Queue Manager Name-+ \n'

+ ' +- -0--Open options-------+ \n'

+ ' \'- -t--Run time-----------\' \n'

+ '\n'

+ '

');} //]]>
Notes:

1. A maximum of 10 queues are supported by this sample. Provide more than one queue name in order to read messages from multiple queues.

There is a sample JCL to run this program, it resides in CSQ4BCSC.

Design of the Batch Asynchronous Consume sample program

The sample shows how to read messages from multiple queues in the order of their arrival. This would require more code using synchronous MQGET. With
asynchronous consume, no polling is required, and thread and storage management is performed by WebSphere® MQ. In the sample program, errors are
written to the console.

The sample code has the following steps:

1. Define the single message consumption callback function.

void MessageConsumer(MQHCONN hConn,

 MQMD * pMsgDesc,

 MQGMO * pGetMsgOpts,

 MQBYTE * Buffer,

 MQCBC * pContext)

{ ... }

2. Connect to the queue manager.

nmlkj nmlkj

Page 364 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

MQCONN(QMName,&Hcon,&CompCode,&CReason);

3. Open the input queues, and associate each queue with the MessageConsumer callback function.

MQOPEN(Hcon,&od,O_options,&Hobj,&OpenCode,&Reason);

cbd.CallbackFunction = MessageConsumer;

 MQCB(Hcon,MQOP_REGISTER,&cbd,Hobj,&md,&gmo,&CompCode,&Reason);

cbd.CallbackFunction does not need to be set for each queue; it is an input-only field. You can associate a different callback function with each

queue.

4. Start consumption of the messages.

MQCTL(Hcon,MQOP_START,&ctlo,&CompCode,&Reason);

5. Wait for the user to press Enter, then stop consumption of messages.

MQCTL(Hcon,MQOP_STOP,&ctlo,&CompCode,&Reason);

6. Finally, disconnect from the queue manager.

MQDISC(&Hcon,&CompCode,&Reason);

Parent topic: Sample programs for WebSphere MQ for z/OS

This build: January 26, 2011 11:21:40

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18205_

4.2.16. The CICS Asynchronous Consume and Publish/Subscribe sample

The Asynchronous Consume and Publish/Subscribe sample programs demonstrate the use of asynchronous consume, and publish and subscribe features
within CICS®.

A Registration client program registers three Callback handlers (an event handler, and two message consumers), and starts Asynchronous Consume. A
Messaging client program puts messages to a queue, or publishes suitable messages from a CICS console for consumption by the two Message Consumers
(CSQ4CVCN and CSQ4CVCT).

To provide runtime control over the behavior of the sample, one of the message consumers can be instructed using the messages it receives, to SUSPEND,
RESUME, or DEREGISTER any of the Callback handlers. It can also be used to issue an MQCTL STOP to end Asynchronous Consume under control. The other
message consumer is registered to subscribe to a topic.

Each program issues COBOL DISPLAY statements at appropriate points to display the behavior of the sample.

The applications use these MQI calls:

� MQOPEN

� MQPUT

� MQSUB

� MQGET

� MQCLOSE

� MQCB

� MQCTL

The programs are delivered in the COBOL language. See CICS Asynchronous Consume and Publish/Subscribe samples for the CICS applications.

This topic also provides information on the following topics:

� Setup

� Registration Client CSQ4CVRG

� Event handler CSQ4CVEV

� Simple Message Consumer CSQ4CVCN

� Control Message Consumer CSQ4CVCT

� Messaging Client CSQ4CVPT

Setup

The names of the Queue and Topic used by the Message Consumers are hardcoded in the Registration and Messaging Client programs.

The Queue, SAMPLE.CONTROL.QUEUE, should be defined to the Queue Manager associated with the CICS region before running the sample. The Topic,
News/Media/Movies, can be defined if required, or it is created at runtime under the default Administrative Object if it does not exist.

CICS programs and transaction definitions can be installed by installing a group: CSQ4SAMP.

Registration Client CSQ4CVRG

The Registration Client program must be started under the CICS transaction MVRG. It takes no input.

When started, the Registration Client registers the following Callback handlers using MQCB:

� CSQ4CVEV as an Event Handler.

� CSQ4CVCN as a Message Consumer on a topic, News/Media/Movies.

� CSQ4CVCT as a Message Consumer on a Queue, SAMPLE.CONTROL.QUEUE.

The Registration Client passes a data structure containing the names of all three registered Callback handlers to this handler, together with the object
handles associated with the two message consumers.

Having registered the Callback handlers, the Registration Client issues an MQCTL START_WAIT to start Asynchronous Consume, and suspend until control is
returned to it (for example, by one of the Callback handlers issuing an MQCTL STOP).

Event handler CSQ4CVEV

When driven, the Event Handler displays a message indicating the call type (for example, START). When driven for WebSphere® MQ reason code

Page 365 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

CONNECTION_QUIESCING, the Event Handler issues an MQCTL STOP to end Asynchronous Consume and return control to the Registration Client.

Simple Message Consumer CSQ4CVCN

When driven, this Message Consumer displays a message indicating the call type (for example, REGISTER). When driven for the MSG_REMOVED call type,
the Message Consumer retrieves the inbound message and outputs it to the CICS job log.

Control Message Consumer CSQ4CVCT

When driven, this Message Consumer displays a message indicating the call type (for example, START). When driven for the MSG_REMOVED call type, the
Message Consumer retrieves the inbound message and the data structure passed by the Registration Client. Based on the message content, it issues
appropriate MQCB or MQCTL commands to one of the following:

� STOP Asynchronous Consume (returning control to the Registration Client).

� SUSPEND, RESUME, or DEREGISTER a named Callback handler (including itself).

Messaging Client CSQ4CVPT

The Messaging Client has two functions:

� It publishes a message to a topic for consumption by the Message Consumer CSQ4CVCN.

� It puts a control message to a queue for consumption by the Control Message Consumer CSQ4CVCT, resulting in a potential change in behavior of the
sample.

The Messaging Client program must be started from a CICS console under a CICS transaction, and it takes command line input with the following syntax:

Syntax diagram format Railroad diagram Dotted decimal

Callback Handler ,\n' + '\n' + '

');break; default:document.write('

\n'

+ '>>-MVMP--,--+-PUBLISH--,--+---,-------------+--------+---------><\n'

+ ' | \'-Message Text--,-\' | \n'

+ ' +-STOP--,--------------------------------+ \n'

+ ' \'-+-DEREGISTER--,-+--Callback Handler--,-\' \n'

+ ' +-RESUME--,-----+ \n'

+ ' \'-SUSPEND--,----\' \n'

+ '\n'

+ '

');} //]]>

PUBLISH

Publish the Message Text (or a default message) as a Retained Message for consumption by the Simple Message Consumer.

STOP

Stop Asynchronous Consume.

DEREGISTER

Deregister the named Callback handler.

RESUME

Resume the named Callback handler.

SUSPEND

Suspend the named Callback handler.

Input fields are positional, and comma-separated. Keywords and Callback Handler names are not case-sensitive.

Examples:

Where MVMP is the CICS transaction associated with the Messaging Client program CSQ4CVPT.

Note:

� Suspending or deregistering all Callback handlers terminates the START_WAIT issued by the Registration Client, returning control to it, and ending the
task.

� Suspending or deregistering the Control Callback Handler has deliberately not been prevented, but it removes the ability to further control the behavior
of the sample.

Parent topic: Sample programs for WebSphere MQ for z/OS

This build: January 26, 2011 11:21:36

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18105_

4.2.17. The Publish/Subscribe Sample

The Publish/Subscribe sample programs demonstrate the use of the publish and subscribe features in WebSphere® MQ.

There are four C and two COBOL programming language sample programs demonstrating how to program to the WebSphere MQ Publish/Subscribe interface.
The programs are delivered in the C and COBOL language. The applications run in the batch environment; see Publish/Subscribe samples for the batch
applications.

There are also COBOL samples that run in the CICS® environment; see The CICS Asynchronous Consume and Publish/Subscribe sample.

nmlkj nmlkj

MVMP,PUBLISH,, Publish a default message

MVMP,publish,A short message, Publish the given text

MVMP,STOP, Stop Asynchronous Consume

MVMP,DEREGISTER,CSQ4CVEV, Deregister the Event Handler

MVMP,resume,csq4cvcn, Resume the Simple Message Consumer

MVMP,SUSPEND,CSQ4CVEV, Suspend the Event Handler

Page 366 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

This topic also provides information about how to run Publish/Subscribe sample programs. These sample programs include:

� Running the CSQ4BCP1 sample

� Running the CSQ4BCP2 sample

� Running the CSQ4BCP3 sample

� Running the CSQ4BCP4 sample

� Running the CSQ4BVP1 sample

� Running the CSQ4BVP2 sample

Running the CSQ4BCP1 sample

This program is written in C, it publishes messages to a topic. Start one of the subscriber samples before running this program.

This program takes up to four parameters:

1. The name of the target topic (required).

2. The name of the queue manager (optional).

3. Open options (optional).

4. Close options (optional).

If a queue manager is not specified, CSQ4BCP1 connects to the default queue manager. There is a sample JCL to run the program, it resides in CSQ4BCPP.

Message content is provided through standard input (SYSIN DD).

Running the CSQ4BCP2 sample

This program is written in C, it subscribes to a topic and prints the messages received.

This program takes up to three parameters:

1. The name of the target topic (required).

2. The name of the queue manager (optional).

3. MQSD subscription options (optional).

If a queue manager is not specified, CSQ4BCP2 connects to the default queue manager. There is a sample JCL to run the program, it resides in CSQ4BCPS.

Running the CSQ4BCP3 sample

This program is written in C, it subscribes to a topic using a user-specified destination queue and prints the messages received.

This program takes up to four parameters:

1. The name of the target topic (required).

2. The name of the destination (required).

3. The name of the queue manager (optional).

4. MQSD subscription options (optional).

If a queue manager is not specified, CSQ4BCP3 connects to the default queue manager. There is a sample JCL to run the program, it resides in CSQ4BCPD.

Running the CSQ4BCP4 sample

This program is written in C, it subscribes and gets messages from a topic allowing the use of extended options on the MQSUB call, extending those
available on the simpler MQSUB sample: CSQ4BCP2. In addition to the message payload, message properties for each message is received and displayed.

This program takes a variable set of parameters:

1. -t <string>: Topic string (required).

2. -o <name>: Topic object name (required).

3. -m <name>: Queue manager name (optional).

4. -q <name>: Destination queue name (optional).

5. -w <seconds>: Wait interval on MQGET in seconds (optional).

6. -d <subname>: Create or resume named durable subscription (optional).

7. -k : Keep durable subscription on MQCLOSE (optional).

If a queue manager is not specified, CSQ4BCP4 connects to the default queue manager. There is a sample JCL to run the program, it resides in CSQ4BCPE.

Running the CSQ4BVP1 sample

This program is written in COBOL, it publishes messages to a topic. Start one of the subscriber samples before running this program.

This program takes no parameters. SYSIN DD provides the input topic name, queue manager name, and message content.

If a queue manager is not specified, CSQ4BVP1 connects to the default queue manager. There is a sample JCL to run the program, it resides in CSQ4BVPP.

Running the CSQ4BVP2 sample

This program is written in COBOL, it subscribes to a topic and prints the messages received.

This program takes no parameters. SYSIN DD provides the input for topic name and queue manager name.

If a queue manager is not specified, CSQ4BVP1 connects to the default queue manager. There is a sample JCL to run the program, it resides in CSQ4BVPP.

Parent topic: Sample programs for WebSphere MQ for z/OS

unlimited MQWI_UNLIMITED

none No wait

n Wait interval in seconds

 When no value is specified, the default is 30 seconds

Page 367 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

This build: January 26, 2011 11:21:48

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18761_

4.2.18. The Set and Inquire message property sample

The message property sample programs demonstrate the addition of user-defined properties to a message handle, and the inquisition of the properties
associated with that message.

The applications use these MQI calls:

� MQCONN

� MQOPEN

� MQPUT

� MQGET

� MQCLOSE

� MQDISC

� MQCRTMH

� MQDLTMH

� MQINQMP

� MQSETMP

The programs are delivered in the C language. The applications run in the batch environment. See Other samples for the batch applications.

The CSQ4BCM1 program is used to inquire the properties of a message handle from a message queue, and it is an example of the use of the MQINQMP API
call. The sample gets one message from a queue and then prints all the message handle properties.

The CSQ4BCM2 program is used to set the properties of a message handle on a message queue, and it is an example of the use of the MQSETMP API call.
The sample creates a message handle and puts it into the MsgHandle field of the MQGMO structure. It then puts the message to a queue.

Other examples of inquiring and printing message properties are included in the CSQ4BCG1 and CSQ4BCP4 sample programs.

This topic also provides information on running the Set and Inquire message property samples under the following headings:

� Running the CSQ4BCM1 sample

� Running the CSQ4BCM2 sample

Running the CSQ4BCM1 sample

This program takes up to four parameters:

1. The name of the target queue (required).

2. The name of the queue manager (optional).

3. Open options (optional).

4. Close options (optional).

Running the CSQ4BCM2 sample

This program takes up to six parameters:

1. The name of the target queue (required).

2. The name of the queue manager (optional).

3. Open options (optional).

4. Close options (optional).

5. The name of the target queue manager (optional).

6. The name of the dynamic queue (optional).

The property names, values, and message content are provided through the standard input (SYSIN DD). There is a sample JCL to run the program, it
resides in CSQ4BCMP.

Parent topic: Sample programs for WebSphere MQ for z/OS

This build: January 26, 2011 11:21:35

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18075_

5. C language examples

The extracts in this appendix are mostly taken from the WebSphere® MQ for z/OS® sample applications. They are applicable to all platforms, except where
noted.

The examples in this appendix demonstrate the following techniques:

� Connecting to a queue manager

� Disconnecting from a queue manager

� Creating a dynamic queue

� Opening an existing queue

� Closing a queue

� Putting a message using MQPUT

Page 368 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

� Putting a message using MQPUT1

� Getting a message

� Getting a message using the wait option

� Getting a message using signaling

� Inquiring about the attributes of an object

� Setting the attributes of a queue

� Retrieving status information with MQSTAT

Connecting to a queue manager
This example demonstrates how to use the MQCONN call to connect a program to a queue manager in z/OS batch.

Disconnecting from a queue manager
This example demonstrates how to use the MQDISC call to disconnect a program from a queue manager in z/OS batch.

Creating a dynamic queue
This example demonstrates how to use the MQOPEN call to create a dynamic queue.

Opening an existing queue
This example demonstrates how to use the MQOPEN call to open a queue that has already been defined.

Closing a queue
This example demonstrates how to use the MQCLOSE call to close a queue.

Putting a message using MQPUT
This example demonstrates how to use the MQPUT call to put a message on a queue.

Putting a message using MQPUT1
This example demonstrates how to use the MQPUT1 call to open a queue, put a single message on the queue, then close the queue.

Getting a message
This example demonstrates how to use the MQGET call to remove a message from a queue.

Getting a message using the wait option
This example demonstrates how to use the wait option of the MQGET call.

Getting a message using signaling

Inquiring about the attributes of an object
This example demonstrates how to use the MQINQ call to inquire about the attributes of a queue.

Setting the attributes of a queue
This example demonstrates how to use the MQSET call to change the attributes of a queue.

Retrieving status information with MQSTAT
This example demonstrates how to issue an asynchronous MQPUT and retrieve the status information with MQSTAT.

Parent topic: Application Programming Guide

This build: January 26, 2011 11:21:52

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18800_

5.1. Connecting to a queue manager

This example demonstrates how to use the MQCONN call to connect a program to a queue manager in z/OS® batch.

This extract is taken from the Browse sample application (program CSQ4BCA1) supplied with WebSphere® MQ for z/OS. For the names and locations of the
sample applications on other platforms, see Sample programs (platforms except z/OS).

#include <cmqc.h> ⋮
static char Parm1[MQ_Q_MGR_NAME_LENGTH] ; ⋮
int main(int argc, char *argv[])

 {

 /* */

 /* Variables for MQ calls */

 /* */

 MQHCONN Hconn; /* Connection handle */

 MQLONG CompCode; /* Completion code */

 MQLONG Reason; /* Qualifying reason */ ⋮
 /* Copy the queue manager name, passed in the */

 /* parm field, to Parm1 */

 strncpy(Parm1,argv[1],MQ_Q_MGR_NAME_LENGTH); ⋮
 /* */

 /* Connect to the specified queue manager. */

 /* Test the output of the connect call. If the */

 /* call fails, print an error message showing the */

 /* completion code and reason code, then leave the */

 /* program. */

 /* */

 MQCONN(Parm1,

 &Hconn,

 &CompCode,

 &Reason);

 if ((CompCode != MQCC_OK) | (Reason != MQRC_NONE))

 {

Page 369 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

 sprintf(pBuff, MESSAGE_4_E,

 ERROR_IN_MQCONN, CompCode, Reason);

 PrintLine(pBuff);

 RetCode = CSQ4_ERROR;

 goto AbnormalExit2;

 } ⋮
 }

Parent topic: C language examples

This build: January 26, 2011 11:21:52

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18810_

5.2. Disconnecting from a queue manager

This example demonstrates how to use the MQDISC call to disconnect a program from a queue manager in z/OS® batch.

The variables used in this code extract are those that were set in Connecting to a queue manager. This extract is taken from the Browse sample application
(program CSQ4BCA1) supplied with WebSphere® MQ for z/OS. For the names and locations of the sample applications on other platforms, see Sample
programs (platforms except z/OS). ⋮

 /* */

 /* Disconnect from the queue manager. Test the */

 /* output of the disconnect call. If the call */

 /* fails, print an error message showing the */

 /* completion code and reason code. */

 /* */

 MQDISC(&Hconn,

 &CompCode,

 &Reason);

 if ((CompCode != MQCC_OK) || (Reason != MQRC_NONE))

 {

 sprintf(pBuff, MESSAGE_4_E,

 ERROR_IN_MQDISC, CompCode, Reason);

 PrintLine(pBuff);

 RetCode = CSQ4_ERROR;

 } ⋮
Parent topic: C language examples

This build: January 26, 2011 11:21:52

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18820_

5.3. Creating a dynamic queue

This example demonstrates how to use the MQOPEN call to create a dynamic queue.

This extract is taken from the Mail Manager sample application (program CSQ4TCD1) supplied with WebSphere® MQ for z/OS®. For the names and
locations of the sample applications on other platforms, see Sample programs (platforms except z/OS). ⋮

MQLONG HCONN = 0; /* Connection handle */

MQHOBJ HOBJ; /* MailQ Object handle */

MQHOBJ HobjTempQ; /* TempQ Object Handle */

MQLONG CompCode; /* Completion code */

MQLONG Reason; /* Qualifying reason */

MQOD ObjDesc = {MQOD_DEFAULT};

 /* Object descriptor */

MQLONG OpenOptions; /* Options control MQOPEN */ ⋮
 /*--- */

 /* Initialize the Object Descriptor (MQOD) */

 /* control block. (The remaining fields */

 /* are already initialized.) */

 /*--*/

 strncpy(ObjDesc.ObjectName,

 SYSTEM_REPLY_MODEL,

 MQ_Q_NAME_LENGTH);

 strncpy(ObjDesc.DynamicQName,

 SYSTEM_REPLY_INITIAL,

 MQ_Q_NAME_LENGTH);

 OpenOptions = MQOO_INPUT_AS_Q_DEF;

 /*--*/

 /* Open the model queue and, therefore, */

 /* create and open a temporary dynamic */

 /* queue */

 /*--*/

 MQOPEN(HCONN,

 &ObjDesc,

 OpenOptions,

 &HobjTempQ,

 &CompCode,

 &Reason);

 if (CompCode == MQCC_OK) { ⋮
 }

 else {

 /*---------------------------------------*/

 /* Build an error message to report the */

Page 370 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

 /* failure of the opening of the model */

 /* queue */

 /*---------------------------------------*/

 MQMErrorHandling("OPEN TEMPQ", CompCode,

 Reason);

 ErrorFound = TRUE;

 }

 return ErrorFound;

} ⋮
Parent topic: C language examples

This build: January 26, 2011 11:21:52

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18830_

5.4. Opening an existing queue

This example demonstrates how to use the MQOPEN call to open a queue that has already been defined.

This extract is taken from the Browse sample application (program CSQ4BCA1) supplied with WebSphere® MQ for z/OS®. For the names and locations of
the sample applications on other platforms, see Sample programs (platforms except z/OS).

#include <cmqc.h> ⋮
static char Parm1[MQ_Q_MGR_NAME_LENGTH]; ⋮
int main(int argc, char *argv[])

 {

 /*

 /* Variables for MQ calls */

 /*

 MQHCONN Hconn ; /* Connection handle */

 MQLONG CompCode; /* Completion code */

 MQLONG Reason; /* Qualifying reason */

 MQOD ObjDesc = { MQOD_DEFAULT };

 /* Object descriptor */

 MQLONG OpenOptions; /* Options that control */

 /* the MQOPEN call */

 MQHOBJ Hobj; /* Object handle */ ⋮
 /* Copy the queue name, passed in the parm field, */

 /* to Parm2 strncpy(Parm2,argv[2], */

 /* MQ_Q_NAME_LENGTH); */ ⋮
 /* */

 /* Initialize the object descriptor (MQOD) control */

 /* block. (The initialization default sets StrucId, */

 /* Version, ObjectType, ObjectQMgrName, */

 /* DynamicQName, and AlternateUserid fields) */

 /* */

 strncpy(ObjDesc.ObjectName,Parm2,MQ_Q_NAME_LENGTH); ⋮
 /* Initialize the other fields required for the open */

 /* call (Hobj is set by the MQCONN call). */

 /* */

 OpenOptions = MQOO_BROWSE; ⋮
 /* */

 /* Open the queue. */

 /* Test the output of the open call. If the call */

 /* fails, print an error message showing the */

 /* completion code and reason code, then bypass */

 /* processing, disconnect and leave the program. */

 /* */

 MQOPEN(Hconn,

 &ObjDesc,

 OpenOptions,

 &Hobj,

 &CompCode,

 &Reason);

 if ((CompCode != MQCC_OK) || (Reason != MQRC_NONE))

 {

 sprintf(pBuff, MESSAGE_4_E,

 ERROR_IN_MQOPEN, CompCode, Reason);

 PrintLine(pBuff);

 RetCode = CSQ4_ERROR;

 goto AbnormalExit1; /* disconnect processing */

 } ⋮
 } /* end of main */

Parent topic: C language examples

This build: January 26, 2011 11:21:53

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18840_

5.5. Closing a queue

This example demonstrates how to use the MQCLOSE call to close a queue.

This extract is taken from the Browse sample application (program CSQ4BCA1) supplied with WebSphere® MQ for z/OS®. For the names and locations of

Page 371 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

the sample applications on other platforms, see Sample programs (platforms except z/OS). ⋮
 /* */

 /* Close the queue. */

 /* Test the output of the close call. If the call */

 /* fails, print an error message showing the */

 /* completion code and reason code. */

 /* */

 MQCLOSE(Hconn,

 &Hobj,

 MQCO_NONE,

 &CompCode,

 &Reason);

 if ((CompCode != MQCC_OK) || (Reason != MQRC_NONE))

 {

 sprintf(pBuff, MESSAGE_4_E,

 ERROR_IN_MQCLOSE, CompCode, Reason);

 PrintLine(pBuff);

 RetCode = CSQ4_ERROR;

 } ⋮
Parent topic: C language examples

This build: January 26, 2011 11:21:53

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18850_

5.6. Putting a message using MQPUT

This example demonstrates how to use the MQPUT call to put a message on a queue.

This extract is not taken from the sample applications supplied with WebSphere® MQ. For the names and locations of the sample applications, see Sample
programs (platforms except z/OS) and Sample programs for WebSphere MQ for z/OS. ⋮

qput()

{

 MQMD MsgDesc;

 MQPMO PutMsgOpts;

 MQLONG CompCode;

 MQLONG Reason;

 MQHCONN Hconn;

 MQHOBJ Hobj;

 char message_buffer[] = "MY MESSAGE";

 /*-------------------------------*/

 /* Set up PMO structure. */

 /*-------------------------------*/

 memset(&PutMsgOpts, '\0', sizeof(PutMsgOpts));

 memcpy(PutMsgOpts.StrucId, MQPMO_STRUC_ID,

 sizeof(PutMsgOpts.StrucId));

 PutMsgOpts.Version = MQPMO_VERSION_1;

 PutMsgOpts.Options = MQPMO_SYNCPOINT;

 /*-------------------------------*/

 /* Set up MD structure. */

 /*-------------------------------*/

 memset(&MsgDesc, '\0', sizeof(MsgDesc));

 memcpy(MsgDesc.StrucId, MQMD_STRUC_ID,

 sizeof(MsgDesc.StrucId));

 MsgDesc.Version = MQMD_VERSION_1;

 MsgDesc.Expiry = MQEI_UNLIMITED;

 MsgDesc.Report = MQRO_NONE;

 MsgDesc.MsgType = MQMT_DATAGRAM;

 MsgDesc.Priority = 1;

 MsgDesc.Persistence = MQPER_PERSISTENT;

 memset(MsgDesc.ReplyToQ,

 '\0',

 sizeof(MsgDesc.ReplyToQ));

 /*---*/

 /* Put the message. */

 /*---*/

 MQPUT(Hconn, Hobj, &MsgDesc, &PutMsgOpts,

 sizeof(message_buffer), message_buffer,

 &CompCode, &Reason);

 /*-------------------------------------*/

 /* Check completion and reason codes. */

 /*-------------------------------------*/

 switch (CompCode)

 {

 case MQCC_OK:

 break;

 case MQCC_FAILED:

 switch (Reason)

 {

 case MQRC_Q_FULL:

 case MQRC_MSG_TOO_BIG_FOR_Q:

 break;

 default:

 break; /* Perform error processing */

 }

 break;

 default:

 break; /* Perform error processing */

 }

}

Parent topic: C language examples

Page 372 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

This build: January 26, 2011 11:21:53

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18860_

5.7. Putting a message using MQPUT1

This example demonstrates how to use the MQPUT1 call to open a queue, put a single message on the queue, then close the queue.

This extract is taken from the Credit Check sample application (program CSQ4CCB5) supplied with WebSphere® MQ for z/OS®. For the names and locations
of the sample applications on other platforms, see Sample programs (platforms except z/OS). ⋮

MQLONG Hconn; /* Connection handle */

MQHOBJ Hobj_CheckQ; /* Object handle */

MQLONG CompCode; /* Completion code */

MQLONG Reason; /* Qualifying reason */

MQOD ObjDesc = {MQOD_DEFAULT};

 /* Object descriptor */

MQMD MsgDesc = {MQMD_DEFAULT};

 /* Message descriptor */

MQLONG OpenOptions; /* Control the MQOPEN call */

MQGMO GetMsgOpts = {MQGMO_DEFAULT};

 /* Get Message Options */

MQLONG MsgBuffLen; /* Length of message buffer */

CSQ4BCAQ MsgBuffer; /* Message structure */

MQLONG DataLen; /* Length of message */

MQPMO PutMsgOpts = {MQPMO_DEFAULT};

 /* Put Message Options */

CSQ4BQRM PutBuffer; /* Message structure */

MQLONG PutBuffLen = sizeof(PutBuffer);

 /* Length of message buffer */ ⋮
void Process_Query(void)

 {

 /* */

 /* Build the reply message */

 /* */ ⋮
 /* */

 /* Set the object descriptor, message descriptor and */

 /* put message options to the values required to */

 /* create the reply message. */

 /* */

 strncpy(ObjDesc.ObjectName, MsgDesc.ReplyToQ,

 MQ_Q_NAME_LENGTH);

 strncpy(ObjDesc.ObjectQMgrName, MsgDesc.ReplyToQMgr,

 MQ_Q_MGR_NAME_LENGTH);

 MsgDesc.MsgType = MQMT_REPLY;

 MsgDesc.Report = MQRO_NONE;

 memset(MsgDesc.ReplyToQ, ' ', MQ_Q_NAME_LENGTH);

 memset(MsgDesc.ReplyToQMgr, ' ', MQ_Q_MGR_NAME_LENGTH);

 memcpy(MsgDesc.MsgId, MQMI_NONE, sizeof(MsgDesc.MsgId));

 PutMsgOpts.Options = MQPMO_SYNCPOINT +

 MQPMO_PASS_IDENTITY_CONTEXT;

 PutMsgOpts.Context = Hobj_CheckQ;

 PutBuffLen = sizeof(PutBuffer);

 MQPUT1(Hconn,

 &ObjDesc,

 &MsgDesc,

 &PutMsgOpts,

 PutBuffLen,

 &PutBuffer,

 &CompCode,

 &Reason);

 if (CompCode != MQCC_OK)

 {

 strncpy(TS_Operation, "MQPUT1",

 sizeof(TS_Operation));

 strncpy(TS_ObjName, ObjDesc.ObjectName,

 MQ_Q_NAME_LENGTH);

 Record_Call_Error();

 Forward_Msg_To_DLQ();

 }

 return;

 } ⋮
Parent topic: C language examples

This build: January 26, 2011 11:21:53

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18870_

5.8. Getting a message

This example demonstrates how to use the MQGET call to remove a message from a queue.

This extract is taken from the Browse sample application (program CSQ4BCA1) supplied with WebSphere® MQ for z/OS®. For the names and locations of
the sample applications on other platforms, see Sample programs (platforms except z/OS).

Page 373 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

#include "cmqc.h" ⋮
#define BUFFERLENGTH 80 ⋮
int main(int argc, char *argv[])

 {

 /* */

 /* Variables for MQ calls */

 /* */

 MQHCONN Hconn ; /* Connection handle */

 MQLONG CompCode; /* Completion code */

 MQLONG Reason; /* Qualifying reason */

 MQHOBJ Hobj; /* Object handle */

 MQMD MsgDesc = { MQMD_DEFAULT };

 /* Message descriptor */

 MQLONG DataLength ; /* Length of the message */

 MQCHAR Buffer[BUFFERLENGTH+1];

 /* Area for message data */

 MQGMO GetMsgOpts = { MQGMO_DEFAULT };

 /* Options which control */

 /* the MQGET call */

 MQLONG BufferLength = BUFFERLENGTH ;

 /* Length of buffer */ ⋮
 /* No need to change the message descriptor */

 /* (MQMD) control block because initialization */

 /* default sets all the fields. */

 /* */

 /* Initialize the get message options (MQGMO) */

 /* control block (the copy file initializes all */

 /* the other fields). */

 /* */

 GetMsgOpts.Options = MQGMO_NO_WAIT +

 MQGMO_BROWSE_FIRST +

 MQGMO_ACCEPT_TRUNCATED_MSG;

 /* */

 /* Get the first message. */

 /* Test for the output of the call is carried out */

 /* in the 'for' loop. */

 /* */

 MQGET(Hconn,

 Hobj,

 &MsgDesc,

 &GetMsgOpts,

 BufferLength,

 Buffer,

 &DataLength,

 &CompCode,

 &Reason);

 /* */

 /* Process the message and get the next message, */

 /* until no messages remaining. */ ⋮
 /* If the call fails for any other reason, */

 /* print an error message showing the completion */

 /* code and reason code. */

 /* */

 if ((CompCode == MQCC_FAILED) &&

 (Reason == MQRC_NO_MSG_AVAILABLE))

 { ⋮
 }

 else

 {

 sprintf(pBuff, MESSAGE_4_E,

 ERROR_IN_MQGET, CompCode, Reason);

 PrintLine(pBuff);

 RetCode = CSQ4_ERROR;

 } ⋮
 } /* end of main */

Parent topic: C language examples

This build: January 26, 2011 11:21:53

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18880_

5.9. Getting a message using the wait option

This example demonstrates how to use the wait option of the MQGET call.

This code accepts truncated messages. This extract is taken from the Credit Check sample application (program CSQ4CCB5) supplied with WebSphere® MQ
for z/OS®. For the names and locations of the sample applications on other platforms, see Sample programs (platforms except z/OS). ⋮

MQLONG Hconn; /* Connection handle */

MQHOBJ Hobj_CheckQ; /* Object handle */

MQLONG CompCode; /* Completion code */

MQLONG Reason; /* Qualifying reason */

MQOD ObjDesc = {MQOD_DEFAULT};

 /* Object descriptor */

MQMD MsgDesc = {MQMD_DEFAULT};

 /* Message descriptor */

MQLONG OpenOptions;

 /* Control the MQOPEN call */

MQGMO GetMsgOpts = {MQGMO_DEFAULT};

 /* Get Message Options */

Page 374 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

MQLONG MsgBuffLen; /* Length of message buffer */

CSQ4BCAQ MsgBuffer; /* Message structure */

MQLONG DataLen; /* Length of message */ ⋮
void main(void)

 { ⋮
 /* */

 /* Initialize options and open the queue for input */

 /* */ ⋮
 /* */

 /* Get and process messages */

 /* */

 GetMsgOpts.Options = MQGMO_WAIT +

 MQGMO_ACCEPT_TRUNCATED_MSG +

 MQGMO_SYNCPOINT;

 GetMsgOpts.WaitInterval = WAIT_INTERVAL;

 MsgBuffLen = sizeof(MsgBuffer);

 memcpy(MsgDesc.MsgId, MQMI_NONE,

 sizeof(MsgDesc.MsgId));

 memcpy(MsgDesc.CorrelId, MQCI_NONE,

 sizeof(MsgDesc.CorrelId));

 /* */

 /* Make the first MQGET call outside the loop */

 /* */

 MQGET(Hconn,

 Hobj_CheckQ,

 &MsgDesc,

 &GetMsgOpts,

 MsgBuffLen,

 &MsgBuffer,

 &DataLen,

 &CompCode,

 &Reason); ⋮
 /* */

 /* Test the output of the MQGET call. If the call */

 /* failed, send an error message showing the */

 /* completion code and reason code, unless the */

 /* reason code is NO_MSG AVAILABLE. */

 /* */

 if (Reason != MQRC_NO_MSG_AVAILABLE)

 {

 strncpy(TS_Operation, "MQGET", sizeof(TS_Operation));

 strncpy(TS_ObjName, ObjDesc.ObjectName,

 MQ_Q_NAME_LENGTH);

 Record_Call_Error();

 } ⋮
Parent topic: C language examples

This build: January 26, 2011 11:21:53

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18890_

5.10. Getting a message using signaling

Signaling is available only with WebSphere® MQ for z/OS®.

This example demonstrates how to use the MQGET call to set a signal so that you are notified when a suitable message arrives on a queue. This extract is
not taken from the sample applications supplied with WebSphere MQ. ⋮

get_set_signal()

{

 MQMD MsgDesc;

 MQGMO GetMsgOpts;

 MQLONG CompCode;

 MQLONG Reason;

 MQHCONN Hconn;

 MQHOBJ Hobj;

 MQLONG BufferLength;

 MQLONG DataLength;

 char message_buffer[100];

 long int q_ecb, work_ecb;

 short int signal_sw, endloop;

 long int mask = 255;

 /*---------------------------*/

 /* Set up GMO structure. */

 /*---------------------------*/

 memset(&GetMsgOpts,'\0',sizeof(GetMsgOpts));

 memcpy(GetMsgOpts.StrucId, MQGMO_STRUC_ID,

 sizeof(GetMsgOpts.StrucId);

 GetMsgOpts.Version = MQGMO_VERSION_1;

 GetMsgOpts.WaitInterval = 1000;

 GetMsgOpts.Options = MQGMO_SET_SIGNAL +

 MQGMO_BROWSE_FIRST;

 q_ecb = 0;

 GetMsgOpts.Signal1 = &q_ecb;

 /*---------------------------*/

 /* Set up MD structure. */

 /*---------------------------*/

 memset(&MsgDesc,'\0',sizeof(MsgDesc));

 memcpy(MsgDesc.StrucId, MQMD_STRUC_ID,

 sizeof(MsgDesc.StrucId);

 MsgDesc.Version = MQMD_VERSION_1;

Page 375 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

 MsgDesc.Report = MQRO_NONE;

 memcpy(MsgDesc.MsgId,MQMI_NONE,

 sizeof(MsgDesc.MsgId));

 memcpy(MsgDesc.CorrelId,MQCI_NONE,

 sizeof(MsgDesc.CorrelId));

 /*---*/

 /* Issue the MQGET call. */

 /*---*/

 BufferLength = sizeof(message_buffer);

 signal_sw = 0;

 MQGET(Hconn, Hobj, &MsgDesc, &GetMsgOpts,

 BufferLength, message_buffer, &DataLength,

 &CompCode, &Reason);

 /*-------------------------------------*/

 /* Check completion and reason codes. */

 /*-------------------------------------*/

 switch (CompCode)

 {

 case (MQCC_OK): /* Message retrieved */

 break;

 case (MQCC_WARNING):

 switch (Reason)

 {

 case (MQRC_SIGNAL_REQUEST_ACCEPTED):

 signal_sw = 1;

 break;

 default:

 break; /* Perform error processing */

 }

 break;

 case (MQCC_FAILED):

 switch (Reason)

 {

 case (MQRC_Q_MGR_NOT_AVAILABLE):

 case (MQRC_CONNECTION_BROKEN):

 case (MQRC_Q_MGR_STOPPING):

 break;

 default:

 break; /* Perform error processing. */

 }

 break;

 default:

 break; /* Perform error processing. */

 }

 /*---*/

 /* If the SET_SIGNAL was accepted, set up a loop to */

 /* check whether a message has arrived at one second */

 /* intervals. The loop ends if a message arrives or */

 /* the wait interval specified in the MQGMO */

 /* structure has expired. */

 /* */

 /* If a message arrives on the queue, another MQGET */

 /* must be issued to retrieve the message. If other */

 /* MQM calls have been made in the intervening */

 /* period, this may necessitate reinitializing the */

 /* MQMD and MQGMO structures. */

 /* In this code, no intervening calls */

 /* have been made, so the only change required to */

 /* the structures is to specify MQGMO_NO_WAIT, */

 /* since we now know the message is there. */

 /* */

 /* This code uses the EXEC CICS DELAY command to */

 /* suspend the program for a second. A batch program */

 /* may achieve the same effect by calling an */

 /* assembler language subroutine which issues a */

 /* z/OS STIMER macro. */

 /*---*/

 if (signal_sw == 1)

 {

 endloop = 0;

 do

 {

 EXEC CICS DELAY FOR HOURS(0) MINUTES(0) SECONDS(1);

 work_ecb = q_ecb & mask;

 switch (work_ecb)

 {

 case (MQEC_MSG_ARRIVED):

 endloop = 1;

 mqgmo_options = MQGMO_NO_WAIT;

 MQGET(Hconn, Hobj, &MsgDesc, &GetMsgOpts,

 BufferLength, message_buffer,

 &DataLength, &CompCode, &Reason);

 if (CompCode != MQCC_OK)

 ; /* Perform error processing. */

 break;

 case (MQEC_WAIT_INTERVAL_EXPIRED):

 case (MQEC_WAIT_CANCELED):

 endloop = 1;

 break;

 default:

 break;

 }

 } while (endloop == 0);

 }

 return;

}

Parent topic: C language examples

This build: January 26, 2011 11:21:54

Notices | Trademarks | Downloads | Library | Support | Feedback

Page 376 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18900_

5.11. Inquiring about the attributes of an object

This example demonstrates how to use the MQINQ call to inquire about the attributes of a queue.

This extract is taken from the Queue Attributes sample application (program CSQ4CCC1) supplied with WebSphere® MQ for z/OS®. For the names and
locations of the sample applications on other platforms, see Sample programs (platforms except z/OS).

#include <cmqc.h> /* MQ API header file */ ⋮
#define NUMBEROFSELECTORS 2

const MQHCONN Hconn = MQHC_DEF_HCONN; ⋮
static void InquireGetAndPut(char *Message,

 PMQHOBJ pHobj,

 char *Object)

 {

 /* Declare local variables */

 /* */

 MQLONG SelectorCount = NUMBEROFSELECTORS;

 /* Number of selectors */

 MQLONG IntAttrCount = NUMBEROFSELECTORS;

 /* Number of int attrs */

 MQLONG CharAttrLength = 0;

 /* Length of char attribute buffer */

 MQCHAR *CharAttrs ;

 /* Character attribute buffer */

 MQLONG SelectorsTable[NUMBEROFSELECTORS];

 /* attribute selectors */

 MQLONG IntAttrsTable[NUMBEROFSELECTORS];

 /* integer attributes */

 MQLONG CompCode; /* Completion code */

 MQLONG Reason; /* Qualifying reason */

 /* */

 /* Open the queue. If successful, do the inquire */

 /* call. */

 /* */

 /* */

 /* Initialize the variables for the inquire */

 /* call: */

 /* - Set SelectorsTable to the attributes whose */

 /* status is */

 /* required */

 /* - All other variables are already set */

 /* */

 SelectorsTable[0] = MQIA_INHIBIT_GET;

 SelectorsTable[1] = MQIA_INHIBIT_PUT;

 /* */

 /* Issue the inquire call */

 /* Test the output of the inquire call. If the */

 /* call failed, display an error message */

 /* showing the completion code and reason code,*/

 /* otherwise display the status of the */

 /* INHIBIT-GET and INHIBIT-PUT attributes */

 /* */

 MQINQ(Hconn,

 *pHobj,

 SelectorCount,

 SelectorsTable,

 IntAttrCount,

 IntAttrsTable,

 CharAttrLength,

 CharAttrs,

 &CompCode,

 &Reason);

 if (CompCode != MQCC_OK)

 {

 sprintf(Message, MESSAGE_4_E,

 ERROR_IN_MQINQ, CompCode, Reason);

 SetMsg(Message);

 }

 else

 {

 /* Process the changes */

 } /* end if CompCode */

Parent topic: C language examples

This build: January 26, 2011 11:21:54

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18910_

5.12. Setting the attributes of a queue

This example demonstrates how to use the MQSET call to change the attributes of a queue.

This extract is taken from the Queue Attributes sample application (program CSQ4CCC1) supplied with WebSphere® MQ for z/OS®. For the names and
locations of the sample applications on other platforms, see Sample programs (platforms except z/OS).

#include <cmqc.h> /* MQ API header file */ ⋮
#define NUMBEROFSELECTORS 2

Page 377 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

const MQHCONN Hconn = MQHC_DEF_HCONN;

static void InhibitGetAndPut(char *Message,

 PMQHOBJ pHobj,

 char *Object)

 {

 /* */

 /* Declare local variables */

 /* */

 MQLONG SelectorCount = NUMBEROFSELECTORS;

 /* Number of selectors */

 MQLONG IntAttrCount = NUMBEROFSELECTORS;

 /* Number of int attrs */

 MQLONG CharAttrLength = 0;

 /* Length of char attribute buffer */

 MQCHAR *CharAttrs ;

 /* Character attribute buffer */

 MQLONG SelectorsTable[NUMBEROFSELECTORS];

 /* attribute selectors */

 MQLONG IntAttrsTable[NUMBEROFSELECTORS];

 /* integer attributes */

 MQLONG CompCode; /* Completion code */

 MQLONG Reason; /* Qualifying reason */ ⋮
 /* */

 /* Open the queue. If successful, do the */

 /* inquire call. */

 /* */ ⋮
 /* */

 /* Initialize the variables for the set call: */

 /* - Set SelectorsTable to the attributes to be */

 /* set */

 /* - Set IntAttrsTable to the required status */

 /* - All other variables are already set */

 /* */

 SelectorsTable[0] = MQIA_INHIBIT_GET;

 SelectorsTable[1] = MQIA_INHIBIT_PUT;

 IntAttrsTable[0] = MQQA_GET_INHIBITED;

 IntAttrsTable[1] = MQQA_PUT_INHIBITED; ⋮
 /* */

 /* Issue the set call. */

 /* Test the output of the set call. If the */

 /* call fails, display an error message */

 /* showing the completion code and reason */

 /* code; otherwise move INHIBITED to the */

 /* relevant screen map fields */

 /* */

 MQSET(Hconn,

 *pHobj,

 SelectorCount,

 SelectorsTable,

 IntAttrCount,

 IntAttrsTable,

 CharAttrLength,

 CharAttrs,

 &CompCode,

 &Reason);

 if (CompCode != MQCC_OK)

 {

 sprintf(Message, MESSAGE_4_E,

 ERROR_IN_MQSET, CompCode, Reason);

 SetMsg(Message);

 }

 else

 {

 /* Process the changes */

 } /* end if CompCode */

Parent topic: C language examples

This build: January 26, 2011 11:21:54

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18920_

5.13. Retrieving status information with MQSTAT

This example demonstrates how to issue an asynchronous MQPUT and retrieve the status information with MQSTAT.

This extract is taken from the Calling MQSTAT sample application (program amqsapt0) supplied with WebSphere® MQ for Windows systems. For the names
and locations of the sample applications on other platforms, see Sample programs (platforms except z/OS).

 /**/

 /* */

 /* Program name: AMQSAPT0 */

 /* */

 /* Description: Sample C program that asynchronously puts messages */

 /* to a message queue (example using MQPUT & MQSTAT). */

 /* */

 /* Licensed Materials - Property of IBM */

 /* */

 /* 63H9336 */

 /* (c) Copyright IBM Corp. 2006 All Rights Reserved. */

 /* */

 /* US Government Users Restricted Rights - Use, duplication or */

 /* disclosure restricted by GSA ADP Schedule Contract with */

 /* IBM Corp. */

Page 378 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

 /* */

 /**/

 /* */

 /* Function: */

 /* */

 /* AMQSAPT0 is a sample C program to put messages on a message */

 /* queue with asynchronous response option, querying the success */

 /* of the put operations with MQSTAT. */

 /* */

 /* -- messages are sent to the queue named by the parameter */

 /* */

 /* -- gets lines from StdIn, and adds each to target */

 /* queue, taking each line of text as the content */

 /* of a datagram message; the sample stops when a null */

 /* line (or EOF) is read. */

 /* New-line characters are removed. */

 /* If a line is longer than 99 characters it is broken up */

 /* into 99-character pieces. Each piece becomes the */

 /* content of a datagram message. */

 /* If the length of a line is a multiple of 99 plus 1, for */

 /* example, 199, the last piece will only contain a */

 /* new-line character so will terminate the input. */

 /* */

 /* -- writes a message for each MQI reason other than */

 /* MQRC_NONE; stops if there is a MQI completion code */

 /* of MQCC_FAILED */

 /* */

 /* -- summarizes the overall success of the put operations */

 /* through a call to MQSTAT to query MQSTAT_TYPE_ASYNC_ERROR*/

 /* */

 /* Program logic: */

 /* MQOPEN target queue for OUTPUT */

 /* while end of input file not reached, */

 /* . read next line of text */

 /* . MQPUT datagram message with text line as data */

 /* MQCLOSE target queue */

 /* MQSTAT connection */

 /* */

 /* */

 /**/

 /* */

 /* AMQSAPT0 has the following parameters */

 /* required: */

 /* (1) The name of the target queue */

 /* optional: */

 /* (2) Queue manager name */

 /* (3) The open options */

 /* (4) The close options */

 /* (5) The name of the target queue manager */

 /* (6) The name of the dynamic queue */

 /* */

 /**/

 #include <stdio.h>

 #include <stdlib.h>

 #include <string.h>

 /* includes for MQI */

 #include <cmqc.h>

 int main(int argc, char **argv)

 {

 /* Declare file and character for sample input */

 FILE *fp;

 /* Declare MQI structures needed */

 MQOD od = {MQOD_DEFAULT}; /* Object Descriptor */

 MQMD md = {MQMD_DEFAULT}; /* Message Descriptor */

 MQPMO pmo = {MQPMO_DEFAULT}; /* put message options */

 MQSTS sts = {MQSTS_DEFAULT}; /* status information */

 /** note, sample uses defaults where it can **/

 MQHCONN Hcon; /* connection handle */

 MQHOBJ Hobj; /* object handle */

 MQLONG O_options; /* MQOPEN options */

 MQLONG C_options; /* MQCLOSE options */

 MQLONG CompCode; /* completion code */

 MQLONG OpenCode; /* MQOPEN completion code */

 MQLONG Reason; /* reason code */

 MQLONG CReason; /* reason code for MQCONN */

 MQLONG messlen; /* message length */

 char buffer[100]; /* message buffer */

 char QMName[50]; /* queue manager name */

 printf("Sample AMQSAPT0 start\n");

 if (argc < 2)

 {

 printf("Required parameter missing - queue name\n");

 exit(99);

 }

 /**/

 /* */

 /* Connect to queue manager */

 /* */

 /**/

 QMName[0] = 0; /* default */

 if (argc > 2)

 strcpy(QMName, argv[2]);

 MQCONN(QMName, /* queue manager */

 &Hcon, /* connection handle */

 &Compcode, /* completion code */

 &Reason); /* reason code */

 /* report reason and stop if it failed */

 if (CompCode == MQCC_FAILED)

 {

 printf("MQCONN ended with reason code %d\n", CReason);

 exit((int)CReason);

Page 379 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

 }

 /**/

 /* */

 /* Use parameter as the name of the target queue */

 /* */

 /**/

 strncpy(od.ObjectName, argv[1], (size_t)MQ_Q_NAME_LENGTH);

 printf("target queue is %s\n", od.ObjectName);

 if (argc > 5)

 {

 strncpy(od.ObjectQMgrName, argv[5], (size_t) MQ_Q_MGR_NAME_LENGTH);

 printf("target queue manager is %s\n", od.ObjectQMgrName);

 }

 if (argc > 6)

 {

 strncpy(od.DynamicQName, argv[6], (size_t) MQ_Q_NAME_LENGTH);

 printf("dynamic queue name is %s\n", od.DynamicQName);

 }

 /**/

 /* */

 /* Open the target message queue for output */

 /* */

 /**/

 if (argc > 3)

 {

 O_options = atoi(argv[3]);

 printf("open options are %d\n", O_options);

 }

 else

 {

 O_options = MQOO_OUTPUT /* open queue for output */

 | MQOO_FAIL_IF_QUIESCING /* but not if MQM stopping */

 ; /* = 0x2010 = 8208 decimal */

 }

 MQOPEN(Hcon, /* connection handle */

 &od, /* object descriptor for queue */

 O_options, /* open options */

 &Hobj, /* object handle */

 &OpenCode, /* MQOPEN completion code */

 &Reason); /* reason code */

 /* report reason, if any; stop if failed */

 if (Reason != MQRC_NONE)

 {

 printf("MQOPEN ended with reason code %d\n", Reason);

 }

 if (OpenCode == MQCC_FAILED)

 {

 printf("unable to open queue for output\n");

 }

 /**/

 /* */

 /* Read lines from the file and put them to the message queue */

 /* Loop until null line or end of file, or there is a failure */

 /* */

 /**/

 CompCode = OpenCode; /* use MQOPEN result for initial test */

 fp = stdin;

 memcpy(md.Format, /* character string format */

 MQFMT_STRING, (size_t)MQ_FORMAT_LENGTH);

 /**/

 /* These options specify that put operation should occur */

 /* asynchronously and the application will check the success */

 /* using MQSTAT at a later time. */

 /**/

 md.Persistence = MQPER_NOT_PERSISTENT;

 pmo.Options |= MQPMO_ASYNC_RESPONSE;

 /**/

 /* These options cause the MsgId and CorrelId to be replaced, so */

 /* that there is no need to reset them before each MQPUT */

 /**/

 pmo.Options |= MQPMO_NEW_MSG_ID;

 pmo.Options |= MQPMO_NEW_CORREL_ID;

 while (CompCode != MQCC_FAILED)

 {

 if (fgets(buffer, sizeof(buffer), fp) != NULL)

 {

 messlen = (MQLONG)strlen(buffer); /* length without null */

 if (buffer[messlen-1] == '\n') /* last char is a new-line */

 {

 buffer[messlen-1] = '\0'; /* replace new-line with null */

 --messlen; /* reduce buffer length */

 }

 }

 else messlen = 0; /* treat EOF same as null line */

 /**/

 /* */

 /* Put each buffer to the message queue */

 /* */

 /**/

 if (messlen > 0)

 {

 MQPUT(Hcon, /* connection handle */

Page 380 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

 Hobj, /* object handle */

 &md, /* message descriptor */

 &pmo, /* default options (datagram) */

 messlen, /* message length */

 buffer, /* message buffer */

 &CompCode, /* completion code */

 &Reason); /* reason code */

 /* report reason, if any */

 if (Reason != MQRC_NONE)

 {

 printf("MQPUT ended with reason code %d\n", Reason);

 }

 }

 else /* satisfy end condition when empty line is read */

 CompCode = MQCC_FAILED;

 }

 /**/

 /* */

 /* Close the target queue (if it was opened) */

 /* */

 /**/

 if (OpenCode != MQCC_FAILED)

 {

 if (argc > 4)

 {

 C_options = atoi(argv[4]);

 printf("close options are %d\n", C_options);

 }

 else

 {

 C_options = MQCO_NONE; /* no close options */

 }

 MQCLOSE(Hcon, /* connection handle */

 &Hobj, /* object handle */

 C_options,

 &CompCode, /* completion code */

 &Reason); /* reason code */

 /* report reason, if any */

 if (Reason != MQRC_NONE)

 {

 printf("MQCLOSE ended with reason code %d\n", Reason);

 }

 }

 /**/

 /* */

 /* Query how many asynchronous puts succeeded */

 /* */

 /**/

 MQSTAT(&Hcon, /* connection handle */

 MQSTAT_TYPE_ASYNC_ERROR, /* status type */

 &Sts, /* MQSTS structure */

 &CompCode, /* completion code */

 &Reason); /* reason code */

 /* report reason, if any */

 if (Reason != MQRC_NONE)

 {

 printf("MQSTAT ended with reason code %d\n", Reason);

 }

 else

 {

 /* Display results */

 printf("Succeeded putting %d messages\n",

 sts.PutSuccessCount);

 printf("%d messages were put with a warning\n",

 sts.PutWarningCount);

 printf("Failed to put %d messages\n",

 sts.PutFailureCount);

 if(sts.CompCode == MQCC_WARNING)

 {

 printf("The first warning that occurred had reason code %d\n",

 sts.Reason);

 }

 else if(sts.CompCode == MQCC_FAILED)

 {

 printf("The first error that occurred had reason code %d\n",

 sts.Reason);

 }

 }

 /**/

 /* */

 /* Disconnect from MQM if not already connected */

 /* */

 /**/

 if (CReason != MQRC_ALREADY_CONNECTED)

 {

 MQDISC(&Hcon, /* connection handle */

 &CompCode, /* completion code */

 &Reason); /* reason code */

 /* report reason, if any */

 if (Reason != MQRC_NONE)

 {

 printf("MQDISC ended with reason code %d\n", Reason);

 }

 }

 /**/

Page 381 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

 /* */

 /* END OF AMQSAPT0 */

 /* */

 /**/

 printf("Sample AMQSAPT0 end\n");

 return(0);

 }

Parent topic: C language examples

This build: January 26, 2011 11:22:05

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg19550_

6. COBOL examples

The examples in this appendix are taken from the WebSphere® MQ for z/OS® sample applications. They are applicable to all platforms, except where noted.

The examples in this appendix demonstrate the following techniques:

� Connecting to a queue manager

� Disconnecting from a queue manager

� Creating a dynamic queue

� Opening an existing queue

� Closing a queue

� Putting a message using MQPUT

� Putting a message using MQPUT1

� Getting a message

� Getting a message using the wait option

� Getting a message using signaling

� Inquiring about the attributes of an object

� Setting the attributes of a queue

Connecting to a queue manager
This example demonstrates how to use the MQCONN call to connect a program to a queue manager in z/OS batch.

Disconnecting from a queue manager
This example demonstrates how to use the MQDISC call to disconnect a program from a queue manager in z/OS batch.

Creating a dynamic queue
This example demonstrates how to use the MQOPEN call to create a dynamic queue.

Opening an existing queue
This example demonstrates how to use the MQOPEN call to open an existing queue.

Closing a queue
This example demonstrates how to use the MQCLOSE call.

Putting a message using MQPUT
This example demonstrates how to use the MQPUT call using context.

Putting a message using MQPUT1
This example demonstrates how to use the MQPUT1 call.

Getting a message
This example demonstrates how to use the MQGET call to remove a message from a queue.

Getting a message using the wait option
This example demonstrates how to use the MQGET call with the wait option and accepting truncated messages.

Getting a message using signaling

Inquiring about the attributes of an object
This example demonstrates how to use the MQINQ call to inquire about the attributes of a queue.

Setting the attributes of a queue
This example demonstrates how to use the MQSET call to change the attributes of a queue.

Parent topic: Application Programming Guide

This build: January 26, 2011 11:21:54

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18930_

6.1. Connecting to a queue manager

This example demonstrates how to use the MQCONN call to connect a program to a queue manager in z/OS® batch.

This extract is taken from the Browse sample application (program CSQ4BVA1) supplied with WebSphere® MQ for z/OS. For the names and locations of the
sample applications on other platforms, see Sample programs (platforms except z/OS).

Page 382 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

* ---*

 WORKING-STORAGE SECTION.

* ---*

* W02 - Data fields derived from the PARM field

 01 W02-MQM PIC X(48) VALUE SPACES.

* W03 - MQM API fields

 01 W03-HCONN PIC S9(9) BINARY.

 01 W03-COMPCODE PIC S9(9) BINARY.

 01 W03-REASON PIC S9(9) BINARY.

*

* MQV contains constants (for filling in the control

* blocks)

* and return codes (for testing the result of a call)

*

 01 W05-MQM-CONSTANTS.

 COPY CMQV SUPPRESS. ⋮
* Separate into the relevant fields any data passed

* in the PARM statement

*

 UNSTRING PARM-STRING DELIMITED BY ALL ','

 INTO W02-MQM

 W02-OBJECT. ⋮
* Connect to the specified queue manager.

*

 CALL 'MQCONN' USING W02-MQM

 W03-HCONN

 W03-COMPCODE

 W03-REASON.

*

* Test the output of the connect call. If the call

* fails, print an error message showing the

* completion code and reason code.

*

 IF (W03-COMPCODE NOT = MQCC-OK) THEN ⋮
 END-IF. ⋮

Parent topic: COBOL examples

This build: January 26, 2011 11:21:54

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18940_

6.2. Disconnecting from a queue manager

This example demonstrates how to use the MQDISC call to disconnect a program from a queue manager in z/OS® batch.

The variables used in this code extract are those that were set in Connecting to a queue manager. This extract is taken from the Browse sample application
(program CSQ4BVA1) supplied with WebSphere® MQ for z/OS. For the names and locations of the sample applications on other platforms, see Sample
programs (platforms except z/OS). ⋮

*

* Disconnect from the queue manager

*

 CALL 'MQDISC' USING W03-HCONN

 W03-COMPCODE

 W03-REASON.

*

* Test the output of the disconnect call. If the

* call fails, print an error message showing the

* completion code and reason code.

*

 IF (W03-COMPCODE NOT = MQCC-OK) THEN ⋮
 END-IF. ⋮

Parent topic: COBOL examples

This build: January 26, 2011 11:21:54

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18950_

6.3. Creating a dynamic queue

This example demonstrates how to use the MQOPEN call to create a dynamic queue.

This extract is taken from the Credit Check sample application (program CSQ4CVB1) supplied with WebSphere® MQ for z/OS®. For the names and locations
of the sample applications on other platforms, see Sample programs (platforms except z/OS). ⋮

* ---*

 WORKING-STORAGE SECTION.

* ---*

*

* W02 - Queues processed in this program

*

 01 W02-MODEL-QNAME PIC X(48) VALUE

 'CSQ4SAMP.B1.MODEL '.

 01 W02-NAME-PREFIX PIC X(48) VALUE

 'CSQ4SAMP.B1.* '.

 01 W02-TEMPORARY-Q PIC X(48).

Page 383 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

*

* W03 - MQM API fields

*

 01 W03-HCONN PIC S9(9) BINARY VALUE ZERO.

 01 W03-OPTIONS PIC S9(9) BINARY.

 01 W03-HOBJ PIC S9(9) BINARY.

 01 W03-COMPCODE PIC S9(9) BINARY.

 01 W03-REASON PIC S9(9) BINARY.

*

* API control blocks

*

 01 MQM-OBJECT-DESCRIPTOR.

 COPY CMQODV.

*

* CMQV contains constants (for setting or testing

* field values) and return codes (for testing the

* result of a call)

*

 01 MQM-CONSTANTS.

 COPY CMQV SUPPRESS.

* ---*

 PROCEDURE DIVISION.

* ---* ⋮
* ---*

 OPEN-TEMP-RESPONSE-QUEUE SECTION.

* ---*

*

* This section creates a temporary dynamic queue

* using a model queue

*

* ---*

*

* Change three fields in the Object Descriptor (MQOD)

* control block. (MQODV initializes the other fields)

*

 MOVE MQOT-Q TO MQOD-OBJECTTYPE.

 MOVE W02-MODEL-QNAME TO MQOD-OBJECTNAME.

 MOVE W02-NAME-PREFIX TO MQOD-DYNAMICQNAME.

*

 COMPUTE W03-OPTIONS = MQOO-INPUT-EXCLUSIVE.

*

 CALL 'MQOPEN' USING W03-HCONN

 MQOD

 W03-OPTIONS

 W03-HOBJ-MODEL

 W03-COMPCODE

 W03-REASON.

*

 IF W03-COMPCODE NOT = MQCC-OK

 MOVE 'MQOPEN' TO M01-MSG4-OPERATION

 MOVE W03-COMPCODE TO M01-MSG4-COMPCODE

 MOVE W03-REASON TO M01-MSG4-REASON

 MOVE M01-MESSAGE-4 TO M00-MESSAGE

 ELSE

 MOVE MQOD-OBJECTNAME TO W02-TEMPORARY-Q

 END-IF.

*

 OPEN-TEMP-RESPONSE-QUEUE-EXIT.

*

* Return to performing section.

*

 EXIT.

 EJECT

*

Parent topic: COBOL examples

This build: January 26, 2011 11:21:55

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18960_

6.4. Opening an existing queue

This example demonstrates how to use the MQOPEN call to open an existing queue.

This extract is taken from the Browse sample application (program CSQ4BVA1) supplied with WebSphere® MQ for z/OS®. For the names and locations of
the sample applications on other platforms, see Sample programs (platforms except z/OS). ⋮

* ---*

 WORKING-STORAGE SECTION.

* ---*

*

* W01 - Fields derived from the command area input

*

 01 W01-OBJECT PIC X(48).

*

* W02 - MQM API fields

*

 01 W02-HCONN PIC S9(9) BINARY VALUE ZERO.

 01 W02-OPTIONS PIC S9(9) BINARY.

 01 W02-HOBJ PIC S9(9) BINARY.

 01 W02-COMPCODE PIC S9(9) BINARY.

 01 W02-REASON PIC S9(9) BINARY.

*

* CMQODV defines the object descriptor (MQOD)

*

 01 MQM-OBJECT-DESCRIPTOR.

 COPY CMQODV.

Page 384 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

*

* CMQV contains constants (for setting or testing

* field values) and return codes (for testing the

* result of a call)

*

 01 MQM-CONSTANTS.

 COPY CMQV SUPPRESS.

* ---*

 E-OPEN-QUEUE SECTION.

* ---*

* *

* This section opens the queue *

*

* Initialize the Object Descriptor (MQOD) control

* block

* (The copy file initializes the remaining fields.)

*

 MOVE MQOT-Q TO MQOD-OBJECTTYPE.

 MOVE W01-OBJECT TO MQOD-OBJECTNAME.

*

* Initialize W02-OPTIONS to open the queue for both

* inquiring about and setting attributes

*

 COMPUTE W02-OPTIONS = MQOO-INQUIRE + MQOO-SET.

*

* Open the queue

*

 CALL 'MQOPEN' USING W02-HCONN

 MQOD

 W02-OPTIONS

 W02-HOBJ

 W02-COMPCODE

 W02-REASON.

*

* Test the output from the open

*

* If the completion code is not OK, display a

* separate error message for each of the following

* errors:

*

* Q-MGR-NOT-AVAILABLE - MQM is not available

* CONNECTION-BROKEN - MQM is no longer connected to CICS

* UNKNOWN-OBJECT-NAME - The queue does not exist

* NOT-AUTHORIZED - The user is not authorized to open

* the queue

*

* For any other error, display an error message

* showing the completion and reason codes

*

 IF W02-COMPCODE NOT = MQCC-OK

 EVALUATE TRUE

*

 WHEN W02-REASON = MQRC-Q-MGR-NOT-AVAILABLE

 MOVE M01-MESSAGE-6 TO M00-MESSAGE

*

 WHEN W02-REASON = MQRC-CONNECTION-BROKEN

 MOVE M01-MESSAGE-6 TO M00-MESSAGE

*

 WHEN W02-REASON = MQRC-UNKNOWN-OBJECT-NAME

 MOVE M01-MESSAGE-2 TO M00-MESSAGE

*

 WHEN W02-REASON = MQRC-NOT-AUTHORIZED

 MOVE M01-MESSAGE-3 TO M00-MESSAGE

*

 WHEN OTHER

 MOVE 'MQOPEN' TO M01-MSG4-OPERATION

 MOVE W02-COMPCODE TO M01-MSG4-COMPCODE

 MOVE W02-REASON TO M01-MSG4-REASON

 MOVE M01-MESSAGE-4 TO M00-MESSAGE

 END-EVALUATE

 END-IF.

 E-EXIT.

*

* Return to performing section

*

 EXIT.

 EJECT

Parent topic: COBOL examples

This build: January 26, 2011 11:21:55

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18970_

6.5. Closing a queue

This example demonstrates how to use the MQCLOSE call.

The variables used in this code extract are those that were set in Connecting to a queue manager. This extract is taken from the Browse sample application
(program CSQ4BVA1) supplied with WebSphere® MQ for z/OS. For the names and locations of the sample applications on other platforms, see Sample
programs (platforms except z/OS). ⋮

*

* Close the queue

*

 MOVE MQCO-NONE TO W03-OPTIONS.

*

 CALL 'MQCLOSE' USING W03-HCONN

 W03-HOBJ

Page 385 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

 W03-OPTIONS

 W03-COMPCODE

 W03-REASON.

*

* Test the output of the MQCLOSE call. If the call

* fails, print an error message showing the

* completion code and reason code.

*

 IF (W03-COMPCODE NOT = MQCC-OK) THEN

 MOVE 'CLOSE' TO W04-MSG4-TYPE

 MOVE W03-COMPCODE TO W04-MSG4-COMPCODE

 MOVE W03-REASON TO W04-MSG4-REASON

 MOVE W04-MESSAGE-4 TO W00-PRINT-DATA

 PERFORM PRINT-LINE

 MOVE W06-CSQ4-ERROR TO W00-RETURN-CODE

 END-IF.

*

Parent topic: COBOL examples

This build: January 26, 2011 11:21:55

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18980_

6.6. Putting a message using MQPUT

This example demonstrates how to use the MQPUT call using context.

This extract is taken from the Credit Check sample application (program CSQ4CVB1) supplied with WebSphere® MQ for z/OS®. For the names and locations
of the sample applications on other platforms, see Sample programs (platforms except z/OS). ⋮

* ---*

 WORKING-STORAGE SECTION.

* ---*

*

* W02 - Queues processed in this program

*

 01 W02-TEMPORARY-Q PIC X(48).

*

* W03 - MQM API fields

*

 01 W03-HCONN PIC S9(9) BINARY VALUE ZERO.

 01 W03-HOBJ-INQUIRY PIC S9(9) BINARY.

 01 W03-OPTIONS PIC S9(9) BINARY.

 01 W03-BUFFLEN PIC S9(9) BINARY.

 01 W03-COMPCODE PIC S9(9) BINARY.

 01 W03-REASON PIC S9(9) BINARY.

*

 01 W03-PUT-BUFFER.

*

 05 W03-CSQ4BIIM.

 COPY CSQ4VB1.

*

* API control blocks

*

 01 MQM-MESSAGE-DESCRIPTOR.

 COPY CMQMDV.

 01 MQM-PUT-MESSAGE-OPTIONS.

 COPY CMQPMOV.

*

* MQV contains constants (for filling in the

* control blocks) and return codes (for testing

* the result of a call).

*

 01 MQM-CONSTANTS.

 COPY CMQV SUPPRESS.

* ---*

 PROCEDURE DIVISION.

* ---* ⋮
* Open queue and build message. ⋮
*

* Set the message descriptor and put-message options to

* the values required to create the message.

* Set the length of the message.

*

 MOVE MQMT-REQUEST TO MQMD-MSGTYPE.

 MOVE MQCI-NONE TO MQMD-CORRELID.

 MOVE MQMI-NONE TO MQMD-MSGID.

 MOVE W02-TEMPORARY-Q TO MQMD-REPLYTOQ.

 MOVE SPACES TO MQMD-REPLYTOQMGR.

 MOVE 5 TO MQMD-PRIORITY.

 MOVE MQPER-NOT-PERSISTENT TO MQMD-PERSISTENCE.

 COMPUTE MQPMO-OPTIONS = MQPMO-NO-SYNCPOINT +

 MQPMO-DEFAULT-CONTEXT.

 MOVE LENGTH OF CSQ4BIIM-MSG TO W03-BUFFLEN.

*

 CALL 'MQPUT' USING W03-HCONN

 W03-HOBJ-INQUIRY

 MQMD

 MQPMO

 W03-BUFFLEN

 W03-PUT-BUFFER

 W03-COMPCODE

 W03-REASON.

 IF W03-COMPCODE NOT = MQCC-OK ⋮
 END-IF.

Page 386 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Parent topic: COBOL examples

This build: January 26, 2011 11:21:55

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg18990_

6.7. Putting a message using MQPUT1

This example demonstrates how to use the MQPUT1 call.

This extract is taken from the Credit Check sample application (program CSQ4CVB5) supplied with WebSphere® MQ for z/OS®. For the names and locations
of the sample applications on other platforms, see Sample programs (platforms except z/OS). ⋮

* ---*

 WORKING-STORAGE SECTION.

* ---*

*

* W03 - MQM API fields

*

 01 W03-HCONN PIC S9(9) BINARY VALUE ZERO.

 01 W03-OPTIONS PIC S9(9) BINARY.

 01 W03-COMPCODE PIC S9(9) BINARY.

 01 W03-REASON PIC S9(9) BINARY.

 01 W03-BUFFLEN PIC S9(9) BINARY.

*

 01 W03-PUT-BUFFER.

 05 W03-CSQ4BQRM.

 COPY CSQ4VB4.

*

* API control blocks

*

 01 MQM-OBJECT-DESCRIPTOR.

 COPY CMQODV.

 01 MQM-MESSAGE-DESCRIPTOR.

 COPY CMQMDV.

 01 MQM-PUT-MESSAGE-OPTIONS.

 COPY CMQPMOV.

*

* CMQV contains constants (for filling in the

* control blocks) and return codes (for testing

* the result of a call).

*

 01 MQM-MQV.

 COPY CMQV SUPPRESS.

* ---*

 PROCEDURE DIVISION.

* ---* ⋮
* Get the request message. ⋮
* ---*

 PROCESS-QUERY SECTION.

* ---* ⋮
* Build the reply message. ⋮
*

* Set the object descriptor, message descriptor and

* put-message options to the values required to create

* the message.

* Set the length of the message.

*

 MOVE MQMD-REPLYTOQ TO MQOD-OBJECTNAME.

 MOVE MQMD-REPLYTOQMGR TO MQOD-OBJECTQMGRNAME.

 MOVE MQMT-REPLY TO MQMD-MSGTYPE.

 MOVE SPACES TO MQMD-REPLYTOQ.

 MOVE SPACES TO MQMD-REPLYTOQMGR.

 MOVE LOW-VALUES TO MQMD-MSGID.

 COMPUTE MQPMO-OPTIONS = MQPMO-SYNCPOINT +

 MQPMO-PASS-IDENTITY-CONTEXT.

 MOVE W03-HOBJ-CHECKQ TO MQPMO-CONTEXT.

 MOVE LENGTH OF CSQ4BQRM-MSG TO W03-BUFFLEN.

*

 CALL 'MQPUT1' USING W03-HCONN

 MQOD

 MQMD

 MQPMO

 W03-BUFFLEN

 W03-PUT-BUFFER

 W03-COMPCODE

 W03-REASON.

 IF W03-COMPCODE NOT = MQCC-OK

 MOVE 'MQPUT1' TO M02-OPERATION

 MOVE MQOD-OBJECTNAME TO M02-OBJECTNAME

 PERFORM RECORD-CALL-ERROR

 PERFORM FORWARD-MSG-TO-DLQ

 END-IF.

*

Parent topic: COBOL examples

This build: January 26, 2011 11:21:55

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg19000_

Page 387 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

6.8. Getting a message

This example demonstrates how to use the MQGET call to remove a message from a queue.

This extract is taken from the Credit Check sample application (program CSQ4CVB1) supplied with WebSphere® MQ for z/OS®. For the names and locations
of the sample applications on other platforms, see Sample programs (platforms except z/OS). ⋮

* ---*

 WORKING-STORAGE SECTION.

* ---*

*

* W03 - MQM API fields

*

 01 W03-HCONN PIC S9(9) BINARY VALUE ZERO.

 01 W03-HOBJ-RESPONSE PIC S9(9) BINARY.

 01 W03-OPTIONS PIC S9(9) BINARY.

 01 W03-BUFFLEN PIC S9(9) BINARY.

 01 W03-DATALEN PIC S9(9) BINARY.

 01 W03-COMPCODE PIC S9(9) BINARY.

 01 W03-REASON PIC S9(9) BINARY.

*

 01 W03-GET-BUFFER.

 05 W03-CSQ4BAM.

 COPY CSQ4VB2.

*

* API control blocks

*

 01 MQM-MESSAGE-DESCRIPTOR.

 COPY CMQMDV.

 01 MQM-GET-MESSAGE-OPTIONS.

 COPY CMQGMOV.

*

* MQV contains constants (for filling in the

* control blocks) and return codes (for testing

* the result of a call).

*

 01 MQM-CONSTANTS.

 COPY CMQV SUPPRESS.

* ---*

 A-MAIN SECTION.

* ---* ⋮
* Open response queue. ⋮
* ---*

 PROCESS-RESPONSE-SCREEN SECTION.

* ---*

* *

* This section gets a message from the response queue. *

* *

* When a correct response is received, it is *

* transferred to the map for display; otherwise *

* an error message is built. *

* *

* ---*

*

* Set get-message options

*

 COMPUTE MQGMO-OPTIONS = MQGMO-SYNCPOINT +

 MQGMO-ACCEPT-TRUNCATED-MSG +

 MQGMO-NO-WAIT.

*

* Set msgid and correlid in MQMD to nulls so that any

* message will qualify.

* Set length to available buffer length.

*

 MOVE MQMI-NONE TO MQMD-MSGID.

 MOVE MQCI-NONE TO MQMD-CORRELID.

 MOVE LENGTH OF W03-GET-BUFFER TO W03-BUFFLEN.

*

 CALL 'MQGET' USING W03-HCONN

 W03-HOBJ-RESPONSE

 MQMD

 MQGMO

 W03-BUFFLEN

 W03-GET-BUFFER

 W03-DATALEN

 W03-COMPCODE

 W03-REASON.

 EVALUATE TRUE

 WHEN W03-COMPCODE NOT = MQCC-FAILED ⋮
* Process the message ⋮
 WHEN (W03-COMPCODE = MQCC-FAILED AND

 W03-REASON = MQRC-NO-MSG-AVAILABLE)

 MOVE M01-MESSAGE-9 TO M00-MESSAGE

 PERFORM CLEAR-RESPONSE-SCREEN

*

 WHEN OTHER

 MOVE 'MQGET ' TO M01-MSG4-OPERATION

 MOVE W03-COMPCODE TO M01-MSG4-COMPCODE

 MOVE W03-REASON TO M01-MSG4-REASON

 MOVE M01-MESSAGE-4 TO M00-MESSAGE

 PERFORM CLEAR-RESPONSE-SCREEN

 END-EVALUATE.

Parent topic: COBOL examples

This build: January 26, 2011 11:21:55

Notices | Trademarks | Downloads | Library | Support | Feedback

Page 388 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg19010_

6.9. Getting a message using the wait option

This example demonstrates how to use the MQGET call with the wait option and accepting truncated messages.

This extract is taken from the Credit Check sample application (program CSQ4CVB5) supplied with WebSphere® MQ for z/OS®. For the names and locations
of the sample applications on other platforms, see Sample programs (platforms except z/OS). ⋮

* ---*

 WORKING-STORAGE SECTION.

* ---*

*

* W00 - General work fields

*

 01 W00-WAIT-INTERVAL PIC S9(09) BINARY VALUE 30000.

*

* W03 - MQM API fields

*

 01 W03-HCONN PIC S9(9) BINARY VALUE ZERO.

 01 W03-OPTIONS PIC S9(9) BINARY.

 01 W03-HOBJ-CHECKQ PIC S9(9) BINARY.

 01 W03-COMPCODE PIC S9(9) BINARY.

 01 W03-REASON PIC S9(9) BINARY.

 01 W03-DATALEN PIC S9(9) BINARY.

 01 W03-BUFFLEN PIC S9(9) BINARY.

*

 01 W03-MSG-BUFFER.

 05 W03-CSQ4BCAQ.

 COPY CSQ4VB3.

*

* API control blocks

*

 01 MQM-MESSAGE-DESCRIPTOR.

 COPY CMQMDV.

 01 MQM-GET-MESSAGE-OPTIONS.

 COPY CMQGMOV.

*

* CMQV contains constants (for filling in the

* control blocks) and return codes (for testing

* the result of a call).

*

 01 MQM-MQV.

 COPY CMQV SUPPRESS.

* ---*

 PROCEDURE DIVISION.

* ---* ⋮
* Open input queue. ⋮
*

* Get and process messages.

*

 COMPUTE MQGMO-OPTIONS = MQGMO-WAIT +

 MQGMO-ACCEPT-TRUNCATED-MSG +

 MQGMO-SYNCPOINT.

 MOVE LENGTH OF W03-MSG-BUFFER TO W03-BUFFLEN.

 MOVE W00-WAIT-INTERVAL TO MQGMO-WAITINTERVAL.

 MOVE MQMI-NONE TO MQMD-MSGID.

 MOVE MQCI-NONE TO MQMD-CORRELID.

*

* Make the first MQGET call outside the loop.

*

 CALL 'MQGET' USING W03-HCONN

 W03-HOBJ-CHECKQ

 MQMD

 MQGMO

 W03-BUFFLEN

 W03-MSG-BUFFER

 W03-DATALEN

 W03-COMPCODE

 W03-REASON.

*

* Test the output of the MQGET call using the

* PERFORM loop that follows.

*

* Perform whilst no failure occurs

* - process this message

* - reset the call parameters

* - get another message

* End-perform

* ⋮
*

* Test the output of the MQGET call. If the call

* fails, send an error message showing the

* completion code and reason code, unless the

* completion code is NO-MSG-AVAILABLE.

*

 IF (W03-COMPCODE NOT = MQCC-FAILED) OR

 (W03-REASON NOT = MQRC-NO-MSG-AVAILABLE)

 MOVE 'MQGET ' TO M02-OPERATION

 MOVE MQOD-OBJECTNAME TO M02-OBJECTNAME

 PERFORM RECORD-CALL-ERROR

 END-IF. ⋮
Parent topic: COBOL examples

This build: January 26, 2011 11:21:56

Page 389 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg19020_

6.10. Getting a message using signaling

Signaling is available only with WebSphere® MQ for z/OS®.

This example demonstrates how to use the MQGET call with signaling. This extract is taken from the Credit Check sample application (program CSQ4CVB2)
supplied with WebSphere MQ for z/OS. ⋮

* ---*

 WORKING-STORAGE SECTION.

* ---*

*

* W00 - General work fields ⋮
 01 W00-WAIT-INTERVAL PIC S9(09) BINARY VALUE 30000.

*

* W03 - MQM API fields

*

 01 W03-HCONN PIC S9(9) BINARY VALUE ZERO.

 01 W03-HOBJ-REPLYQ PIC S9(9) BINARY.

 01 W03-COMPCODE PIC S9(9) BINARY.

 01 W03-REASON PIC S9(9) BINARY.

 01 W03-DATALEN PIC S9(9) BINARY.

 01 W03-BUFFLEN PIC S9(9) BINARY. ⋮
 01 W03-GET-BUFFER.

 05 W03-CSQ4BQRM.

 COPY CSQ4VB4.

*

 05 W03-CSQ4BIIM REDEFINES W03-CSQ4BQRM.

 COPY CSQ4VB1.

*

 05 W03-CSQ4BPGM REDEFINES W03-CSQ4BIIM.

 COPY CSQ4VB5. ⋮
* API control blocks

*

 01 MQM-MESSAGE-DESCRIPTOR.

 COPY CMQMDV.

 01 MQM-GET-MESSAGE-OPTIONS.

 COPY CMQGMOV. ⋮
* MQV contains constants (for filling in the

* control blocks) and return codes (for testing

* the result of a call).

*

 01 MQM-MQV.

 COPY CMQV SUPPRESS.

* ---*

 LINKAGE SECTION.

* ---*

 01 L01-ECB-ADDR-LIST.

 05 L01-ECB-ADDR1 POINTER.

 05 L01-ECB-ADDR2 POINTER.

*

 01 L02-ECBS.

 05 L02-INQUIRY-ECB1 PIC S9(09) BINARY.

 05 L02-REPLY-ECB2 PIC S9(09) BINARY.

 01 REDEFINES L02-ECBS.

 05 PIC X(02).

 05 L02-INQUIRY-ECB1-CC PIC S9(04) BINARY.

 05 PIC X(02).

 05 L02-REPLY-ECB2-CC PIC S9(04) BINARY.

*

* ---*

 PROCEDURE DIVISION.

* ---* ⋮
* Initialize variables, open queues, set signal on

* inquiry queue. ⋮
* ---*

 PROCESS-SIGNAL-ACCEPTED SECTION.

* ---*

* This section gets a message with signal. If a *

* message is received, process it. If the signal *

* is set or is already set, the program goes into *

* an operating system wait. *

* Otherwise an error is reported and call error set. *

* ---*

*

 PERFORM REPLYQ-GETSIGNAL.

*

 EVALUATE TRUE

 WHEN (W03-COMPCODE = MQCC-OK AND

 W03-REASON = MQRC-NONE)

 PERFORM PROCESS-REPLYQ-MESSAGE

*

 WHEN (W03-COMPCODE = MQCC-WARNING AND

 W03-REASON = MQRC-SIGNAL-REQUEST-ACCEPTED)

 OR

 (W03-COMPCODE = MQCC-FAILED AND

 W03-REASON = MQRC-SIGNAL-OUTSTANDING)

 PERFORM EXTERNAL-WAIT

*

 WHEN OTHER

Page 390 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

 MOVE 'MQGET SIGNAL' TO M02-OPERATION

 MOVE MQOD-OBJECTNAME TO M02-OBJECTNAME

 PERFORM RECORD-CALL-ERROR

 MOVE W06-CALL-ERROR TO W06-CALL-STATUS

 END-EVALUATE.

*

 PROCESS-SIGNAL-ACCEPTED-EXIT.

* Return to performing section

 EXIT.

 EJECT

*

* ---*

 EXTERNAL-WAIT SECTION.

* ---*

* This section performs an external CICS wait on two *

* ECBs until at least one is posted. It then calls *

* the sections to handle the posted ECB. *

* ---*

 EXEC CICS WAIT EXTERNAL

 ECBLIST(W04-ECB-ADDR-LIST-PTR)

 NUMEVENTS(2)

 END-EXEC.

*

* At least one ECB must have been posted to get to this

* point. Test which ECB has been posted and perform

* the appropriate section.

*

 IF L02-INQUIRY-ECB1 NOT = 0

 PERFORM TEST-INQUIRYQ-ECB

 ELSE

 PERFORM TEST-REPLYQ-ECB

 END-IF.

*

 EXTERNAL-WAIT-EXIT.

*

* Return to performing section.

*

 EXIT.

 EJECT ⋮
* ---*

 REPLYQ-GETSIGNAL SECTION.

* ---*

* *

* This section performs an MQGET call (in syncpoint with *

* signal) on the reply queue. The signal field in the *

* MQGMO is set to the address of the ECB. *

* Response handling is done by the performing section. *

* *

* ---*

*

 COMPUTE MQGMO-OPTIONS = MQGMO-SYNCPOINT +

 MQGMO-SET-SIGNAL.

 MOVE W00-WAIT-INTERVAL TO MQGMO-WAITINTERVAL.

 MOVE LENGTH OF W03-GET-BUFFER TO W03-BUFFLEN.

*

 MOVE ZEROS TO L02-REPLY-ECB2.

 SET MQGMO-SIGNAL1 TO ADDRESS OF L02-REPLY-ECB2.

*

* Set msgid and correlid to nulls so that any message

* will qualify.

*

 MOVE MQMI-NONE TO MQMD-MSGID.

 MOVE MQCI-NONE TO MQMD-CORRELID.

*

 CALL 'MQGET' USING W03-HCONN

 W03-HOBJ-REPLYQ

 MQMD

 MQGMO

 W03-BUFFLEN

 W03-GET-BUFFER

 W03-DATALEN

 W03-COMPCODE

 W03-REASON.

*

 REPLYQ-GETSIGNAL-EXIT.

*

* Return to performing section.

*

 EXIT.

 EJECT

* ⋮
Parent topic: COBOL examples

This build: January 26, 2011 11:21:56

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg19030_

6.11. Inquiring about the attributes of an object

This example demonstrates how to use the MQINQ call to inquire about the attributes of a queue.

This extract is taken from the Queue Attributes sample application (program CSQ4CVC1) supplied with WebSphere® MQ for z/OS®. For the names and
locations of the sample applications on other platforms, see Sample programs (platforms except z/OS). ⋮

* ---*

Page 391 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

 WORKING-STORAGE SECTION.

* ---*

*

* W02 - MQM API fields

*

 01 W02-SELECTORCOUNT PIC S9(9) BINARY VALUE 2.

 01 W02-INTATTRCOUNT PIC S9(9) BINARY VALUE 2.

 01 W02-CHARATTRLENGTH PIC S9(9) BINARY VALUE ZERO.

 01 W02-CHARATTRS PIC X VALUE LOW-VALUES.

 01 W02-HCONN PIC S9(9) BINARY VALUE ZERO.

 01 W02-HOBJ PIC S9(9) BINARY.

 01 W02-COMPCODE PIC S9(9) BINARY.

 01 W02-REASON PIC S9(9) BINARY.

 01 W02-SELECTORS-TABLE.

 05 W02-SELECTORS PIC S9(9) BINARY OCCURS 2 TIMES

 01 W02-INTATTRS-TABLE.

 05 W02-INTATTRS PIC S9(9) BINARY OCCURS 2 TIMES

*

* CMQODV defines the object descriptor (MQOD).

*

 01 MQM-OBJECT-DESCRIPTOR.

 COPY CMQODV.

*

* CMQV contains constants (for setting or testing field

* values) and return codes (for testing the result of a

* call).

*

 01 MQM-CONSTANTS.

 COPY CMQV SUPPRESS.

* ---*

 PROCEDURE DIVISION.

* ---*

*

* Get the queue name and open the queue.

* ⋮
*

* Initialize the variables for the inquiry call:

* - Set W02-SELECTORS-TABLE to the attributes whose

* status is required

* - All other variables are already set

*

 MOVE MQIA-INHIBIT-GET TO W02-SELECTORS(1).

 MOVE MQIA-INHIBIT-PUT TO W02-SELECTORS(2).

*

* Inquire about the attributes.

*

 CALL 'MQINQ' USING W02-HCONN,

 W02-HOBJ,

 W02-SELECTORCOUNT,

 W02-SELECTORS-TABLE,

 W02-INTATTRCOUNT,

 W02-INTATTRS-TABLE,

 W02-CHARATTRLENGTH,

 W02-CHARATTRS,

 W02-COMPCODE,

 W02-REASON.

*

* Test the output from the inquiry:

*

* - If the completion code is not OK, display an error

* message showing the completion and reason codes

*

* - Otherwise, move the correct attribute status into

* the relevant screen map fields

*

 IF W02-COMPCODE NOT = MQCC-OK

 MOVE 'MQINQ' TO M01-MSG4-OPERATION

 MOVE W02-COMPCODE TO M01-MSG4-COMPCODE

 MOVE W02-REASON TO M01-MSG4-REASON

 MOVE M01-MESSAGE-4 TO M00-MESSAGE

*

 ELSE

* Process the changes. ⋮
 END-IF. ⋮

Parent topic: COBOL examples

This build: January 26, 2011 11:21:56

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg19040_

6.12. Setting the attributes of a queue

This example demonstrates how to use the MQSET call to change the attributes of a queue.

This extract is taken from the Queue Attributes sample application (program CSQ4CVC1) supplied with WebSphere® MQ for z/OS®. For the names and
locations of the sample applications on other platforms, see Sample programs (platforms except z/OS)⋮

* ---*

 WORKING-STORAGE SECTION.

* ---*

*

* W02 - MQM API fields

*

 01 W02-SELECTORCOUNT PIC S9(9) BINARY VALUE 2.

 01 W02-INTATTRCOUNT PIC S9(9) BINARY VALUE 2.

Page 392 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

 01 W02-CHARATTRLENGTH PIC S9(9) BINARY VALUE ZERO.

 01 W02-CHARATTRS PIC X VALUE LOW-VALUES.

 01 W02-HCONN PIC S9(9) BINARY VALUE ZERO.

 01 W02-HOBJ PIC S9(9) BINARY.

 01 W02-COMPCODE PIC S9(9) BINARY.

 01 W02-REASON PIC S9(9) BINARY.

 01 W02-SELECTORS-TABLE.

 05 W02-SELECTORS PIC S9(9) BINARY OCCURS 2 TIMES.

 01 W02-INTATTRS-TABLE.

 05 W02-INTATTRS PIC S9(9) BINARY OCCURS 2 TIMES.

*

* CMQODV defines the object descriptor (MQOD).

*

 01 MQM-OBJECT-DESCRIPTOR.

 COPY CMQODV.

*

* CMQV contains constants (for setting or testing

* field values) and return codes (for testing the

* result of a call).

*

 01 MQM-CONSTANTS.

 COPY CMQV SUPPRESS.

* ---*

 PROCEDURE DIVISION.

* ---*

*

* Get the queue name and open the queue.

* ⋮
*

*

* Initialize the variables required for the set call:

* - Set W02-SELECTORS-TABLE to the attributes to be set

* - Set W02-INTATTRS-TABLE to the required status

* - All other variables are already set

*

 MOVE MQIA-INHIBIT-GET TO W02-SELECTORS(1).

 MOVE MQIA-INHIBIT-PUT TO W02-SELECTORS(2).

 MOVE MQQA-GET-INHIBITED TO W02-INTATTRS(1).

 MOVE MQQA-PUT-INHIBITED TO W02-INTATTRS(2).

*

* Set the attributes.

*

 CALL 'MQSET' USING W02-HCONN,

 W02-HOBJ,

 W02-SELECTORCOUNT,

 W02-SELECTORS-TABLE,

 W02-INTATTRCOUNT,

 W02-INTATTRS-TABLE,

 W02-CHARATTRLENGTH,

 W02-CHARATTRS,

 W02-COMPCODE,

 W02-REASON.

*

* Test the output from the call:

*

* - If the completion code is not OK, display an error

* message showing the completion and reason codes

*

* - Otherwise, move 'INHIBITED' into the relevant

* screen map fields

*

 IF W02-COMPCODE NOT = MQCC-OK

 MOVE 'MQSET' TO M01-MSG4-OPERATION

 MOVE W02-COMPCODE TO M01-MSG4-COMPCODE

 MOVE W02-REASON TO M01-MSG4-REASON

 MOVE M01-MESSAGE-4 TO M00-MESSAGE

 ELSE

*

* Process the changes. ⋮
 END-IF.

Parent topic: COBOL examples

This build: January 26, 2011 11:21:56

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg19050_

7. System/390® assembler-language examples

The extracts in this appendix are mostly taken from the WebSphere® MQ for z/OS® sample applications.

The examples in this appendix demonstrate the following techniques:

� Connecting to a queue manager

� Disconnecting from a queue manager

� Creating a dynamic queue

� Opening an existing queue

� Closing a queue

� Putting a message using MQPUT

� Putting a message using MQPUT1

� Getting a message

Page 393 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

� Getting a message using the wait option

� Getting a message using signaling

� Inquiring about and setting the attributes of a queue

Connecting to a queue manager
This example demonstrates how to use the MQCONN call to connect a program to a queue manager in z/OS batch.

Disconnecting from a queue manager
This example demonstrates how to use the MQDISC call to disconnect a program from a queue manager in z/OS batch.

Creating a dynamic queue
This example demonstrates how to use the MQOPEN call to create a dynamic queue.

Opening an existing queue
This example demonstrates how to use the MQOPEN call to open a queue that has already been defined.

Closing a queue
This example demonstrates how to use the MQCLOSE call to close a queue.

Putting a message using MQPUT
This example demonstrates how to use the MQPUT call to put a message on a queue.

Putting a message using MQPUT1
This example demonstrates how to use the MQPUT1 call to open a queue, put a single message on the queue, then close the queue.

Getting a message
This example demonstrates how to use the MQGET call to remove a message from a queue.

Getting a message using the wait option
This example demonstrates how to use the wait option of the MQGET call.

Getting a message using signaling
This example demonstrates how to use the MQGET call to set a signal so that you are notified when a suitable message arrives on a queue.

Inquiring about and setting the attributes of a queue
This example demonstrates how to use the MQINQ call to inquire about the attributes of a queue and to use the MQSET call to change the attributes of
a queue.

Parent topic: Application Programming Guide

This build: January 26, 2011 11:21:56

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg19060_

7.1. Connecting to a queue manager

This example demonstrates how to use the MQCONN call to connect a program to a queue manager in z/OS® batch.

This extract is taken from the Browse sample program (CSQ4BAA1) supplied with WebSphere® MQ for z/OS. ⋮
WORKAREA DSECT

*

PARMLIST CALL ,(0,0,0,0,0,0,0,0,0,0,0),VL,MF=L

*

COMPCODE DS F Completion code

REASON DS F Reason code

HCONN DS F Connection handle

 ORG

PARMADDR DS F Address of parm field

PARMLEN DS H Length of parm field

*

MQMNAME DS CL48 Queue manager name

*

*

**

* SECTION NAME : MAINPARM *

**

MAINPARM DS 0H

 MVI MQMNAME,X'40'

 MVC MQMNAME+1(L'MQMNAME-1),MQMNAME

*

* Space out first byte and initialize

*

*

* Code to address and verify parameters passed omitted

*

*

PARM1MVE DS 0H

 SR R1,R3 Length of data

 LA R4,MQMNAME Address for target

 BCTR R1,R0 Reduce for execute

 EX R1,MOVEPARM Move the data

*

**

* EXECUTES *

**

MOVEPARM MVC 0(*-*,R4),0(R3)

*

 EJECT

**

* SECTION NAME : MAINCONN *

Page 394 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

**

*

*

MAINCONN DS 0H

 XC HCONN,HCONN Null connection handle

*

 CALL MQCONN, X

 (MQMNAME, X

 HCONN, X

 COMPCODE, X

 REASON), X

 MF=(E,PARMLIST),VL

*

 LA R0,MQCC_OK Expected compcode

 C R0,COMPCODE As expected?

 BER R6 Yes .. return to caller

*

 MVC INF4_TYP,=CL10'CONNECT '

 BAL R7,ERRCODE Translate error

 LA R0,8 Set exit code

 ST R0,EXITCODE to 8

 B ENDPROG End the program

*

Parent topic: System/390 assembler-language examples

This build: January 26, 2011 11:21:57

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg19070_

7.2. Disconnecting from a queue manager

This example demonstrates how to use the MQDISC call to disconnect a program from a queue manager in z/OS® batch.

This extract is not taken from the sample applications supplied with WebSphere® MQ. ⋮
*

* ISSUE MQI DISC REQUEST USING REENTRANT FORM

* OF CALL MACRO

*

* HCONN WAS SET BY A PREVIOUS MQCONN REQUEST

* R5 = WORK REGISTER

*

DISC DS 0H

 CALL MQDISC, X

 (HCONN, X

 COMPCODE, X

 REASON), X

 VL,MF=(E,CALLLST)

*

 LA R5,MQCC_OK

 C R5,COMPCODE

 BNE BADCALL ⋮
BADCALL DS 0H ⋮
* CONSTANTS

*

 CMQA

*

* WORKING STORAGE (RE-ENTRANT)

*

WEG3 DSECT

*

CALLLST CALL ,(0,0,0,0,0,0,0,0,0,0,0),VL,MF=L

*

HCONN DS F

COMPCODE DS F

REASON DS F

*

*

LEG3 EQU *-WKEG3

 END

Parent topic: System/390 assembler-language examples

This build: January 26, 2011 11:21:57

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg19080_

7.3. Creating a dynamic queue

This example demonstrates how to use the MQOPEN call to create a dynamic queue.

This extract is not taken from the sample applications supplied with WebSphere® MQ. ⋮
*

* R5 = WORK REGISTER.

*

OPEN DS 0H

*

 MVC WOD_AREA,MQOD_AREA INITIALIZE WORKING VERSION OF

* MQOD WITH DEFAULTS

 MVC WOD_OBJECTNAME,MOD_Q COPY IN THE MODEL Q NAME

Page 395 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

 MVC WOD_DYNAMICQNAME,DYN_Q COPY IN THE DYNAMIC Q NAME

 L R5,=AL4(MQOO_OUTPUT) OPEN FOR OUTPUT AND

 A R5,=AL4(MQOO_INQUIRE) INQUIRE

 ST R5,OPTIONS

*

* ISSUE MQI OPEN REQUEST USING REENTRANT

* FORM OF CALL MACRO

*

 CALL MQOPEN, X

 (HCONN, X

 WOD, X

 OPTIONS, X

 HOBJ, X

 COMPCODE, X

 REASON),VL,MF=(E,CALLLST)

*

 LA R5,MQCC_OK CHECK THE COMPLETION CODE

 C R5,COMPCODE FROM THE REQUEST AND BRANCH

 BNE BADCALL TO ERROR ROUTINE IF NOT MQCC_OK

*

 MVC TEMP_Q,WOD_OBJECTNAME SAVE NAME OF TEMPORARY Q

* CREATED BY OPEN OF MODEL Q

* ⋮
BADCALL DS 0H ⋮
*

*

* CONSTANTS:

*

MOD_Q DC CL48'QUERY.REPLY.MODEL' MODEL QUEUE NAME

DYN_Q DC CL48'QUERY.TEMPQ.*' DYNAMIC QUEUE NAME

*

 CMQODA DSECT=NO,LIST=YES CONSTANT VERSION OF MQOD

 CMQA MQI VALUE EQUATES

*

* WORKING STORAGE

*

 DFHEISTG

HCONN DS F CONNECTION HANDLE

OPTIONS DS F OPEN OPTIONS

HOBJ DS F OBJECT HANDLE

COMPCODE DS F MQI COMPLETION CODE

REASON DS F MQI REASON CODE

TEMP_Q DS CL(MQ_Q_NAME_LENGTH) SAVED QNAME AFTER OPEN

*

WOD CMQODA DSECT=NO,LIST=YES WORKING VERSION OF MQOD

*

CALLLST CALL ,(0,0,0,0,0,0,0,0,0,0,0),VL,MF=L LIST FORM

 OF CALL

* MACRO ⋮
 END

Parent topic: System/390 assembler-language examples

This build: January 26, 2011 11:21:57

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg19090_

7.4. Opening an existing queue

This example demonstrates how to use the MQOPEN call to open a queue that has already been defined.

It shows how to specify two options. This extract is not taken from the sample applications supplied with WebSphere® MQ. ⋮
*

* R5 = WORK REGISTER.

*

OPEN DS 0H

*

 MVC WOD_AREA,MQOD_AREA INITIALIZE WORKING VERSION OF

* MQOD WITH DEFAULTS

 MVC WOD_OBJECTNAME,Q_NAME SPECIFY Q NAME TO OPEN

 LA R5,MQOO_INPUT_EXCLUSIVE OPEN FOR MQGET CALLS

*

 ST R5,OPTIONS

*

* ISSUE MQI OPEN REQUEST USING REENTRANT FORM

* OF CALL MACRO

*

 CALL MQOPEN, X

 (HCONN, X

 WOD, X

 OPTIONS, X

 HOBJ, X

 COMPCODE, X

 REASON),VL,MF=(E,CALLLST)

*

 LA R5,MQCC_OK CHECK THE COMPLETION CODE

 C R5,COMPCODE FROM THE REQUEST AND BRANCH

 BNE BADCALL TO ERROR ROUTINE IF NOT MQCC_OK

* ⋮
BADCALL DS 0H ⋮
*

*

* CONSTANTS:

Page 396 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

*

Q_NAME DC CL48'REQUEST.QUEUE' NAME OF QUEUE TO OPEN

*

 CMQODA DSECT=NO,LIST=YES CONSTANT VERSION OF MQOD

 CMQA MQI VALUE EQUATES

*

* WORKING STORAGE

*

 DFHEISTG

HCONN DS F CONNECTION HANDLE

OPTIONS DS F OPEN OPTIONS

HOBJ DS F OBJECT HANDLE

COMPCODE DS F MQI COMPLETION CODE

REASON DS F MQI REASON CODE

*

WOD CMQODA DSECT=NO,LIST=YES WORKING VERSION OF MQOD

*

CALLLST CALL ,(0,0,0,0,0,0,0,0,0,0,0),VL,MF=L LIST FORM

 OF CALL

* MACRO ⋮
 END

Parent topic: System/390 assembler-language examples

This build: January 26, 2011 11:21:57

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg19100_

7.5. Closing a queue

This example demonstrates how to use the MQCLOSE call to close a queue.

This extract is not taken from the sample applications supplied with WebSphere® MQ. ⋮
*

* ISSUE MQI CLOSE REQUEST USING REENTRANT FROM OF

* CALL MACRO

*

* HCONN WAS SET BY A PREVIOUS MQCONN REQUEST

* HOBJ WAS SET BY A PREVIOUS MQOPEN REQUEST

* R5 = WORK REGISTER

*

CLOSE DS 0H

 LA R5,MQCO_NONE NO SPECIAL CLOSE OPTIONS

 ST R5,OPTIONS ARE REQUIRED.

*

 CALL MQCLOSE, X

 (HCONN, X

 HOBJ, X

 OPTIONS, X

 COMPCODE, X

 REASON), X

 VL,MF=(E,CALLLST)

*

 LA R5,MQCC_OK

 C R5,COMPCODE

 BNE BADCALL

* ⋮
BADCALL DS 0H ⋮
* CONSTANTS

*

 CMQA

*

* WORKING STORAGE (REENTRANT)

*

WEG4 DSECT

*

CALLLST CALL ,(0,0,0,0,0,0,0,0,0,0,0),VL,MF=L

*

HCONN DS F

HOBJ DS F

OPTIONS DS F

COMPCODE DS F

REASON DS F

*

*

LEG4 EQU *-WKEG4

 END

Parent topic: System/390 assembler-language examples

This build: January 26, 2011 11:21:57

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg19110_

7.6. Putting a message using MQPUT

This example demonstrates how to use the MQPUT call to put a message on a queue.

This extract is not taken from the sample applications supplied with WebSphere® MQ. ⋮

Page 397 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

* CONNECT TO QUEUE MANAGER

*

CONN DS 0H ⋮
*

* OPEN A QUEUE

*

OPEN DS 0H ⋮
*

* R4,R5,R6,R7 = WORK REGISTER.

*

PUT DS 0H

 LA R4,MQMD SET UP ADDRESSES AND

 LA R5,MQMD_LENGTH LENGTH FOR USE BY MVCL

 LA R6,WMD INSTRUCTION, AS MQMD IS

 LA R7,WMD_LENGTH OVER 256 BYES LONG.

 MVCL R6,R4 INITIALIZE WORKING VERSION

* OF MESSAGE DESCRIPTOR

*

 MVC WPMO_AREA,MQPMO_AREA INITIALIZE WORKING MQPMO

*

 LA R5,BUFFER_LEN RETRIEVE THE BUFFER LENGTH

 ST R5,BUFFLEN AND SAVE IT FOR MQM USE

*

 MVC BUFFER,TEST_MSG SET THE MESSAGE TO BE PUT

*

* ISSUE MQI PUT REQUEST USING REENTRANT FORM

* OF CALL MACRO

*

* HCONN WAS SET BY PREVIOUS MQCONN REQUEST

* HOBJ WAS SET BY PREVIOUS MQOPEN REQUEST

*

 CALL MQPUT, X

 (HCONN, X

 HOBJ, X

 WMD, X

 WPMO, X

 BUFFLEN, X

 BUFFER, X

 COMPCODE, X

 REASON),VL,MF=(E,CALLLST)

*

 LA R5,MQCC_OK

 C R5,COMPCODE

 BNE BADCALL

* ⋮
BADCALL DS 0H ⋮
*

* CONSTANTS

*

 CMQMDA DSECT=NO,LIST=YES,PERSISTENCE=MQPER_PERSISTENT

 CMQPMOA DSECT=NO,LIST=YES

 CMQA

TEST_MSG DC CL80'THIS IS A TEST MESSAGE'

*

* WORKING STORAGE DSECT

*

WORKSTG DSECT

*

COMPCODE DS F

REASON DS F

BUFFLEN DS F

OPTIONS DS F

HCONN DS F

HOBJ DS F

*

BUFFER DS CL80

BUFFER_LEN EQU *-BUFFER

*

WMD CMQMDA DSECT=NO,LIST=NO

WPMO CMQPMOA DSECT=NO,LIST=NO

*

CALLLST CALL ,(0,0,0,0,0,0,0,0,0,0,0),VL,MF=L

* ⋮
 END

Parent topic: System/390 assembler-language examples

This build: January 26, 2011 11:21:57

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg19120_

7.7. Putting a message using MQPUT1

This example demonstrates how to use the MQPUT1 call to open a queue, put a single message on the queue, then close the queue.

This extract is not taken from the sample applications supplied with WebSphere® MQ. ⋮
*

* CONNECT TO QUEUE MANAGER

*

CONN DS 0H ⋮
*

Page 398 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

* R4,R5,R6,R7 = WORK REGISTER.

*

PUT DS 0H

*

 MVC WOD_AREA,MQOD_AREA INITIALIZE WORKING VERSION OF

* MQOD WITH DEFAULTS

 MVC WOD_OBJECTNAME,Q_NAME SPECIFY Q NAME FOR PUT1

*

 LA R4,MQMD SET UP ADDRESSES AND

 LA R5,MQMD_LENGTH LENGTH FOR USE BY MVCL

 LA R6,WMD INSTRUCTION, AS MQMD IS

 LA R7,WMD_LENGTH OVER 256 BYES LONG.

 MVCL R6,R4 INITIALIZE WORKING VERSION

* OF MESSAGE DESCRIPTOR

*

 MVC WPMO_AREA,MQPMO_AREA INITIALIZE WORKING MQPMO

*

 LA R5,BUFFER_LEN RETRIEVE THE BUFFER LENGTH

 ST R5,BUFFLEN AND SAVE IT FOR MQM USE

*

 MVC BUFFER,TEST_MSG SET THE MESSAGE TO BE PUT

*

* ISSUE MQI PUT REQUEST USING REENTRANT FORM OF CALL MACRO

*

* HCONN WAS SET BY PREVIOUS MQCONN REQUEST

* HOBJ WAS SET BY PREVIOUS MQOPEN REQUEST

*

 CALL MQPUT1, X

 (HCONN, X

 LMQOD, X

 LMQMD, X

 LMQPMO, X

 BUFFERLENGTH, X

 BUFFER, X

 COMPCODE, X

 REASON),VL,MF=(E,CALLLST)

*

 LA R5,MQCC_OK

 C R5,COMPCODE

 BNE BADCALL

* ⋮
BADCALL DS 0H ⋮
*

* CONSTANTS

*

 CMQMDA DSECT=NO,LIST=YES,PERSISTENCE=MQPER_PERSISTENT

 CMQPMOA DSECT=NO,LIST=YES

 CMQODA DSECT=NO,LIST=YES

 CMQA

*

TEST_MSG DC CL80'THIS IS ANOTHER TEST MESSAGE'

Q_NAME DC CL48'TEST.QUEUE.NAME'

*

* WORKING STORAGE DSECT

*

WORKSTG DSECT

*

COMPCODE DS F

REASON DS F

BUFFLEN DS F

OPTIONS DS F

HCONN DS F

HOBJ DS F

*

BUFFER DS CL80

BUFFER_LEN EQU *-BUFFER

*

WOD CMQODA DSECT=NO,LIST=YES WORKING VERSION OF MQOD

WMD CMQMDA DSECT=NO,LIST=NO

WPMO CMQPMOA DSECT=NO,LIST=NO

*

CALLLST CALL ,(0,0,0,0,0,0,0,0,0,0,0),VL,MF=L

* ⋮
 END

Parent topic: System/390 assembler-language examples

This build: January 26, 2011 11:21:57

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg19130_

7.8. Getting a message

This example demonstrates how to use the MQGET call to remove a message from a queue.

This extract is not taken from the sample applications supplied with WebSphere® MQ. ⋮
*

* CONNECT TO QUEUE MANAGER

*

CONN DS 0H ⋮
*

* OPEN A QUEUE FOR GET

Page 399 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

*

OPEN DS 0H ⋮
*

* R4,R5,R6,R7 = WORK REGISTER.

*

GET DS 0H

 LA R4,MQMD SET UP ADDRESSES AND

 LA R5,MQMD_LENGTH LENGTH FOR USE BY MVCL

 LA R6,WMD INSTRUCTION, AS MQMD IS

 LA R7,WMD_LENGTH OVER 256 BYES LONG.

 MVCL R6,R4 INITIALIZE WORKING VERSION

* OF MESSAGE DESCRIPTOR

*

 MVC WGMO_AREA,MQGMO_AREA INITIALIZE WORKING MQGMO

*

 LA R5,BUFFER_LEN RETRIEVE THE BUFFER LENGTH

 ST R5,BUFFLEN AND SAVE IT FOR MQM USE

*

*

* ISSUE MQI GET REQUEST USING REENTRANT FORM OF CALL MACRO

*

* HCONN WAS SET BY PREVIOUS MQCONN REQUEST

* HOBJ WAS SET BY PREVIOUS MQOPEN REQUEST

*

 CALL MQGET, X

 (HCONN, X

 HOBJ, X

 WMD, X

 WGMO, X

 BUFFLEN, X

 BUFFER, X

 DATALEN, X

 COMPCODE, X

 REASON), X

 VL,MF=(E,CALLLST)

*

 LA R5,MQCC_OK

 C R5,COMPCODE

 BNE BADCALL

* ⋮
BADCALL DS 0H ⋮
*

* CONSTANTS

*

 CMQMDA DSECT=NO,LIST=YES

 CMQGMOA DSECT=NO,LIST=YES

 CMQA

*

* WORKING STORAGE DSECT

*

WORKSTG DSECT

*

COMPCODE DS F

REASON DS F

BUFFLEN DS F

DATALEN DS F

OPTIONS DS F

HCONN DS F

HOBJ DS F

*

BUFFER DS CL80

BUFFER_LEN EQU *-BUFFER

*

WMD CMQMDA DSECT=NO,LIST=NO

WGMO CMQGMOA DSECT=NO,LIST=NO

*

CALLLST CALL ,(0,0,0,0,0,0,0,0,0,0,0),VL,MF=L

* ⋮
 END

Parent topic: System/390 assembler-language examples

This build: January 26, 2011 11:21:58

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg19140_

7.9. Getting a message using the wait option

This example demonstrates how to use the wait option of the MQGET call.

This code accepts truncated messages. This extract is not taken from the sample applications supplied with WebSphere® MQ. ⋮
* CONNECT TO QUEUE MANAGER

CONN DS 0H ⋮
* OPEN A QUEUE FOR GET

OPEN DS 0H ⋮
* R4,R5,R6,R7 = WORK REGISTER.

GET DS 0H

 LA R4,MQMD SET UP ADDRESSES AND

 LA R5,MQMD_LENGTH LENGTH FOR USE BY MVCL

 LA R6,WMD INSTRUCTION, AS MQMD IS

 LA R7,WMD_LENGTH OVER 256 BYES LONG.

Page 400 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

 MVCL R6,R4 INITIALIZE WORKING VERSION

* OF MESSAGE DESCRIPTOR

*

 MVC WGMO_AREA,MQGMO_AREA INITIALIZE WORKING MQGMO

 L R5,=AL4(MQGMO_WAIT)

 A R5,=AL4(MQGMO_ACCEPT_TRUNCATED_MSG)

 ST R5,WGMO_OPTIONS

 MVC WGMO_WAITINTERVAL,TWO_MINUTES WAIT UP TO TWO

 MINUTES BEFORE

 FAILING THE

 CALL

*

 LA R5,BUFFER_LEN RETRIEVE THE BUFFER LENGTH

 ST R5,BUFFLEN AND SAVE IT FOR MQM USE

*

* ISSUE MQI GET REQUEST USING REENTRANT FORM OF CALL MACRO

*

* HCONN WAS SET BY PREVIOUS MQCONN REQUEST

* HOBJ WAS SET BY PREVIOUS MQOPEN REQUEST

*

 CALL MQGET, X

 (HCONN, X

 HOBJ, X

 WMD, X

 WGMO, X

 BUFFLEN, X

 BUFFER, X

 DATALEN, X

 COMPCODE, X

 REASON), X

 VL,MF=(E,CALLLST)

*

 LA R5,MQCC_OK DID THE MQGET REQUEST

 C R5,COMPCODE WORK OK?

 BE GETOK YES, SO GO AND PROCESS.

 LA R5,MQCC_WARNING NO, SO CHECK FOR A WARNING.

 C R5,COMPCODE IS THIS A WARNING?

 BE CHECK_W YES, SO CHECK THE REASON.

*

 LA R5,MQRC_NO_MSG_AVAILABLE IT MUST BE AN ERROR.

 IS IT DUE TO AN EMPTY

 C R5,REASON QUEUE?

 BE NOMSG YES, SO HANDLE THE ERROR

 B BADCALL NO, SO GO TO ERROR ROUTINE

*

CHECK_W DS 0H

 LA R5,MQRC_TRUNCATED_MSG_ACCEPTED IS THIS A

 TRUNCATED

 C R5,REASON MESSAGE?

 BE GETOK YES, SO GO AND PROCESS.

 B BADCALL NO, SOME OTHER WARNING

*

NOMSG DS 0H ⋮
GETOK DS 0H ⋮
BADCALL DS 0H ⋮
*

* CONSTANTS

*

 CMQMDA DSECT=NO,LIST=YES

 CMQGMOA DSECT=NO,LIST=YES

 CMQA

*

TWO_MINUTES DC F'120000' GET WAIT INTERVAL

*

* WORKING STORAGE DSECT

*

WORKSTG DSECT

*

COMPCODE DS F

REASON DS F

BUFFLEN DS F

DATALEN DS F

OPTIONS DS F

HCONN DS F

HOBJ DS F

*

BUFFER DS CL80

BUFFER_LEN EQU *-BUFFER

*

WMD CMQMDA DSECT=NO,LIST=NO

WGMO CMQGMOA DSECT=NO,LIST=NO

*

CALLLST CALL ,(0,0,0,0,0,0,0,0,0,0,0),VL,MF=L

* ⋮
 END

Parent topic: System/390 assembler-language examples

This build: January 26, 2011 11:21:58

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg19150_

7.10. Getting a message using signaling

This example demonstrates how to use the MQGET call to set a signal so that you are notified when a suitable message arrives on a queue.

Page 401 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

This extract is not taken from the sample applications supplied with WebSphere® MQ. ⋮
*

* CONNECT TO QUEUE MANAGER

*

CONN DS 0H ⋮
*

* OPEN A QUEUE FOR GET

*

OPEN DS 0H ⋮
*

* R4,R5,R6,R7 = WORK REGISTER.

*

GET DS 0H

 LA R4,MQMD SET UP ADDRESSES AND

 LA R5,MQMD_LENGTH LENGTH FOR USE BY MVCL

 LA R6,WMD INSTRUCTION, AS MQMD IS

 LA R7,WMD_LENGTH OVER 256 BYES LONG.

 MVCL R6,R4 INITIALIZE WORKING VERSION

* OF MESSAGE DESCRIPTOR

*

 MVC WGMO_AREA,MQGMO_AREA INITIALIZE WORKING MQGMO

 LA R5,MQGMO_SET_SIGNAL

 ST R5,WGMO_OPTIONS

 MVC WGMO_WAITINTERVAL,FIVE_MINUTES WAIT UP TO FIVE

 MINUTES BEFORE

* FAILING THE CALL

*

 XC SIG_ECB,SIG_ECB CLEAR THE ECB

 LA R5,SIG_ECB GET THE ADDRESS OF THE ECB

 ST R5,WGMO_SIGNAL1 AND PUT IT IN THE WORKING

* MQGMO

*

 LA R5,BUFFER_LEN RETRIEVE THE BUFFER LENGTH

 ST R5,BUFFLEN AND SAVE IT FOR MQM USE

*

*

* ISSUE MQI GET REQUEST USING REENTRANT FORM OF CALL MACRO

*

* HCONN WAS SET BY PREVIOUS MQCONN REQUEST

* HOBJ WAS SET BY PREVIOUS MQOPEN REQUEST

*

 CALL MQGET, X

 (HCONN, X

 HOBJ, X

 WMD, X

 WGMO, X

 BUFFLEN, X

 BUFFER, X

 DATALEN, X

 COMPCODE, X

 REASON), X

 VL,MF=(E,CALLLST)

*

 LA R5,MQCC_OK DID THE MQGET REQUEST

 C R5,COMPCODE WORK OK?

 BE GETOK YES, SO GO AND PROCESS.

 LA R5,MQCC_WARNING NO, SO CHECK FOR A WARNING.

 C R5,COMPCODE IS THIS A WARNING?

 BE CHECK_W YES, SO CHECK THE REASON.

 B BADCALL NO, SO GO TO ERROR ROUTINE

*

CHECK_W DS 0H

 LA R5,MQRC_SIGNAL_REQUEST_ACCEPTED

 C R5,REASON SIGNAL REQUEST SIGNAL SET?

 BNE BADCALL NO, SOME ERROR OCCURRED

 B DOWORK YES, SO DO SOMETHING

* ELSE

*

CHECKSIG DS 0H

 CLC SIG_ECB+1(3),=AL3(MQEC_MSG_ARRIVED)

 IS A MESSAGE AVAILABLE?

 BE GET YES, SO GO AND GET IT

*

 CLC SIG_ECB+1(3),=AL3(MQEC_WAIT_INTERVAL_EXPIRED)

 HAVE WE WAITED LONG ENOUGH?

 BE NOMSG YES, SO SAY NO MSG AVAILABLE

 B BADCALL IF IT'S ANYTHING ELSE

* GO TO ERROR ROUTINE.

*

DOWORK DS 0H ⋮
 TM SIG_ECB,X'40' HAS THE SIGNAL ECB BEEN POSTED?

 BO CHECKSIG YES, SO GO AND CHECK WHY

 B DOWORK NO, SO GO AND DO MORE WORK

*

NOMSG DS 0H ⋮
GETOK DS 0H ⋮
BADCALL DS 0H ⋮
*

* CONSTANTS

*

 CMQMDA DSECT=NO,LIST=YES

 CMQGMOA DSECT=NO,LIST=YES

 CMQA

*

FIVE_MINUTES DC F'300000' GET SIGNAL INTERVAL

Page 402 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

*

* WORKING STORAGE DSECT

*

WORKSTG DSECT

*

COMPCODE DS F

REASON DS F

BUFFLEN DS F

DATALEN DS F

OPTIONS DS F

HCONN DS F

HOBJ DS F

SIG_ECB DS F

*

BUFFER DS CL80

BUFFER_LEN EQU *-BUFFER

*

WMD CMQMDA DSECT=NO,LIST=NO

WGMO CMQGMOA DSECT=NO,LIST=NO

*

CALLLST CALL ,(0,0,0,0,0,0,0,0,0,0,0),VL,MF=L

* ⋮
 END

Parent topic: System/390 assembler-language examples

This build: January 26, 2011 11:21:58

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg19160_

7.11. Inquiring about and setting the attributes of a queue

This example demonstrates how to use the MQINQ call to inquire about the attributes of a queue and to use the MQSET call to change the attributes of a
queue.

This extract is taken from the Queue Attributes sample application (program CSQ4CAC1) supplied with WebSphere® MQ for z/OS®. ⋮
DFHEISTG DSECT ⋮
OBJDESC CMQODA LIST=YES Working object descriptor

*

SELECTORCOUNT DS F Number of selectors

INTATTRCOUNT DS F Number of integer attributes

CHARATTRLENGTH DS F char attributes length

CHARATTRS DS C Area for char attributes

*

OPTIONS DS F Command options

HCONN DS F Handle of connection

HOBJ DS F Handle of object

COMPCODE DS F Completion code

REASON DS F Reason code

SELECTOR DS 2F Array of selectors

INTATTRS DS 2F Array of integer attributes ⋮
OBJECT DS CL(MQ_Q_NAME_LENGTH) Name of queue ⋮
CALLLIST CALL ,(0,0,0,0,0,0,0,0,0,0,0),VL,MF=L

**

* PROGRAM EXECUTION STARTS HERE * ⋮
CSQ4CAC1 DFHEIENT CODEREG=(R3),DATAREG=(R13) ⋮
* Initialize the variables for the set call

*

 SR R0,R0 Clear register zero

 ST R0,CHARATTRLENGTH Set char length to zero

 LA R0,2 Load to set

 ST R0,SELECTORCOUNT selectors add

 ST R0,INTATTRCOUNT integer attributes

*

 LA R0,MQIA_INHIBIT_GET Load q attribute selector

 ST R0,SELECTOR+0 Place in field

 LA R0,MQIA_INHIBIT_PUT Load q attribute selector

 ST R0,SELECTOR+4 Place in field

*

UPDTEST DS 0H

 CLC ACTION,CINHIB Are we inhibiting?

 BE UPDINHBT Yes branch to section

*

 CLC ACTION,CALLOW Are we allowing?

 BE UPDALLOW Yes branch to section

*

 MVC M00_MSG,M01_MSG1 Invalid request

 BR R6 Return to caller

*

UPDINHBT DS 0H

 MVC UPDTYPE,CINHIBIT Indicate action type

 LA R0,MQQA_GET_INHIBITED Load attribute value

 ST R0,INTATTRS+0 Place in field

 LA R0,MQQA_PUT_INHIBITED Load attribute value

 ST R0,INTATTRS+4 Place in field

 B UPDCALL Go and do call

*

UPDALLOW DS 0H

 MVC UPDTYPE,CALLOWED Indicate action type

 LA R0,MQQA_GET_ALLOWED Load attribute value

Page 403 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

 ST R0,INTATTRS+0 Place in field

 LA R0,MQQA_PUT_ALLOWED Load attribute value

 ST R0,INTATTRS+4 Place in field

 B UPDCALL Go and do call

*

UPDCALL DS 0H

 CALL MQSET, C

 (HCONN, C

 HOBJ, C

 SELECTORCOUNT, C

 SELECTOR, C

 INTATTRCOUNT, C

 INTATTRS, C

 CHARATTRLENGTH, C

 CHARATTRS, C

 COMPCODE, C

 REASON), C

 VL,MF=(E,CALLLIST)

*

 LA R0,MQCC_OK Load expected compcode

 C R0,COMPCODE Was set successful? ⋮
* SECTION NAME : INQUIRE *

* FUNCTION : Inquires on the objects attributes *

* CALLED BY : PROCESS *

* CALLS : OPEN, CLOSE, CODES *

* RETURN : To Register 6 *

INQUIRE DS 0H ⋮

* Initialize the variables for the inquire call

*

 SR R0,R0 Clear register zero

 ST R0,CHARATTRLENGTH Set char length to zero

 LA R0,2 Load to set

 ST R0,SELECTORCOUNT selectors add

 ST R0,INTATTRCOUNT integer attributes

*

 LA R0,MQIA_INHIBIT_GET Load attribute value

 ST R0,SELECTOR+0 Place in field

 LA R0,MQIA_INHIBIT_PUT Load attribute value

 ST R0,SELECTOR+4 Place in field

 CALL MQINQ, C

 (HCONN, C

 HOBJ, C

 SELECTORCOUNT, C

 SELECTOR, C

 INTATTRCOUNT, C

 INTATTRS, C

 CHARATTRLENGTH, C

 CHARATTRS, C

 COMPCODE, C

 REASON), C

 VL,MF=(E,CALLLIST)

 LA R0,MQCC_OK Load expected compcode

 C R0,COMPCODE Was inquire successful? ⋮

Parent topic: System/390 assembler-language examples

This build: January 26, 2011 11:21:58

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg19170_

8. PL/I examples

The use of PL/I is supported by z/OS® only.

The examples demonstrate the following techniques:

� Connecting to a queue manager

� Disconnecting from a queue manager

� Creating a dynamic queue

� Opening an existing queue

� Closing a queue

� Putting a message using MQPUT

� Putting a message using MQPUT1

� Getting a message

� Getting a message using the wait option

� Getting a message using signaling

� Inquiring about the attributes of an object

� Setting the attributes of a queue

Connecting to a queue manager
This example demonstrates how to use the MQCONN call to connect a program to a queue manager in z/OS batch.

Disconnecting from a queue manager
This example demonstrates how to use the MQDISC call to disconnect a program from a queue manager in z/OS batch.

Page 404 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Creating a dynamic queue
This example demonstrates how to use the MQOPEN call to create a dynamic queue.

Opening an existing queue
This example demonstrates how to use the MQOPEN call to open an existing queue.

Closing a queue
This example demonstrates how to use the MQCLOSE call.

Putting a message using MQPUT
This example demonstrates how to use the MQPUT call using context.

Putting a message using MQPUT1
This example demonstrates how to use the MQPUT1 call.

Getting a message
This example demonstrates how to use the MQGET call to remove a message from a queue.

Getting a message using the wait option
This example demonstrates how to use the MQGET call with the wait option and accepting truncated messages.

Getting a message using signaling
A code extract that demonstrates how to use the MQGET call with signaling.

Inquiring about the attributes of an object
This example demonstrates how to use the MQINQ call to inquire about the attributes of a queue.

Setting the attributes of a queue
This example demonstrates how to use the MQSET call to change the attributes of a queue.

Parent topic: Application Programming Guide

This build: January 26, 2011 11:21:58

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg19180_

8.1. Connecting to a queue manager

This example demonstrates how to use the MQCONN call to connect a program to a queue manager in z/OS® batch.

This extract is not taken from the sample applications supplied with WebSphere® MQ.

 %INCLUDE SYSLIB(CMQP);

 %INCLUDE SYSLIB(CMQEPP);

 :

 /**/

 /* STRUCTURE BASED ON PARAMETER INPUT AREA (PARAM) */

 /**/

 DCL 1 INPUT_PARAM BASED(ADDR(PARAM)),

 2 PARAM_LENGTH FIXED BIN(15),

 2 PARAM_MQMNAME CHAR(48); ⋮
 /**/

 /* WORKING STORAGE DECLARATIONS */

 /**/

 DCL MQMNAME CHAR(48);

 DCL COMPCODE BINARY FIXED (31);

 DCL REASON BINARY FIXED (31);

 DCL HCONN BINARY FIXED (31); ⋮
 /**/

 /* COPY QUEUE MANAGER NAME PARAMETER */

 /* TO LOCAL STORAGE */

 /**/

 MQMNAME = ' ';

 MQMNAME = SUBSTR(PARAM_MQMNAME,1,PARAM_LENGTH); ⋮
 /**/

 /* CONNECT FROM THE QUEUE MANAGER */

 /**/

 CALL MQCONN (MQMNAME, /* MQM SYSTEM NAME */

 HCONN, /* CONNECTION HANDLE */

 COMPCODE, /* COMPLETION CODE */

 REASON); /* REASON CODE */

 /**/

 /* TEST THE COMPLETION CODE OF THE CONNECT CALL. */

 /* IF THE CALL HAS FAILED ISSUE AN ERROR MESSAGE */

 /* SHOWING THE COMPLETION CODE AND THE REASON CODE. */

 /**/

 IF COMPCODE ¬= MQCC_OK

 THEN DO;

 ⋮
 CALL ERROR_ROUTINE;

 END;

Parent topic: PL/I examples

This build: January 26, 2011 11:21:58

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg19190_

Page 405 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

8.2. Disconnecting from a queue manager

This example demonstrates how to use the MQDISC call to disconnect a program from a queue manager in z/OS® batch.

This extract is not taken from the sample applications supplied with WebSphere® MQ.

 %INCLUDE SYSLIB(CMQP);

 %INCLUDE SYSLIB(CMQEPP);

 :

 /**/

 /* WORKING STORAGE DECLARATIONS */

 /**/

 DCL COMPCODE BINARY FIXED (31);

 DCL REASON BINARY FIXED (31);

 DCL HCONN BINARY FIXED (31);

 ⋮
 /**/

 /* DISCONNECT FROM THE QUEUE MANAGER */

 /**/

 CALL MQDISC (HCONN, /* CONNECTION HANDLE */

 COMPCODE, /* COMPLETION CODE */

 REASON); /* REASON CODE */

/**/

/* TEST THE COMPLETION CODE OF THE DISCONNECT CALL. */

/* IF THE CALL HAS FAILED ISSUE AN ERROR MESSAGE */

/* SHOWING THE COMPLETION CODE AND THE REASON CODE. */

/**/

 IF COMPCODE ¬= MQCC_OK

 THEN DO;

 ⋮
 CALL ERROR_ROUTINE;

 END;

Parent topic: PL/I examples

This build: January 26, 2011 11:21:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg19200_

8.3. Creating a dynamic queue

This example demonstrates how to use the MQOPEN call to create a dynamic queue.

This extract is not taken from the sample applications supplied with WebSphere® MQ.

 %INCLUDE SYSLIB(CMQP);

 %INCLUDE SYSLIB(CMQEPP);

 :

/***/

/* WORKING STORAGE DECLARATIONS */

/***/

DCL COMPCODE BINARY FIXED (31);

DCL REASON BINARY FIXED (31);

DCL HCONN BINARY FIXED (31);

DCL HOBJ BINARY FIXED (31);

DCL OPTIONS BINARY FIXED (31); ⋮
DCL MODEL_QUEUE_NAME CHAR(48) INIT('PL1.REPLY.MODEL');

DCL DYNAMIC_NAME_PREFIX CHAR(48) INIT('PL1.TEMPQ.*');

DCL DYNAMIC_QUEUE_NAME CHAR(48) INIT(' '); ⋮
/***/

/* LOCAL COPY OF OBJECT DESCRIPTOR */

/***/

DCL 1 LMQOD LIKE MQOD; ⋮
/***/

/* SET UP OBJECT DESCRIPTOR FOR OPEN OF REPLY QUEUE */

/***/

LMQOD.OBJECTTYPE =MQOT_Q;

LMQOD.OBJECTNAME = MODEL_QUEUE_NAME;

LMQOD.DYNAMICQNAME = DYNAMIC_NAME_PREFIX;

OPTIONS = MQOO_INPUT_EXCLUSIVE;

 CALL MQOPEN (HCONN,

 LMQOD,

 OPTIONS,

 HOBJ,

 COMPCODE,

 REASON);

/***/

/* TEST THE COMPLETION CODE OF THE OPEN CALL. */

/* IF THE CALL HAS FAILED ISSUE AN ERROR MESSAGE */

/* SHOWING THE COMPLETION CODE AND THE REASON CODE. */

/* IF THE CALL HAS SUCCEEDED THEN EXTRACT THE NAME OF */

/* THE NEWLY CREATED DYNAMIC QUEUE FROM THE OBJECT */

/* DESCRIPTOR. */

/***/

 IF COMPCODE ¬= MQCC_OK

 THEN DO;

 ⋮
 CALL ERROR_ROUTINE;

 END;

 ELSE

 DYNAMIC_QUEUE_NAME = LMQOD_OBJECTNAME;

Parent topic: PL/I examples

Page 406 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

This build: January 26, 2011 11:21:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg19210_

8.4. Opening an existing queue

This example demonstrates how to use the MQOPEN call to open an existing queue.

This extract is not taken from the sample applications supplied with WebSphere® MQ.

%INCLUDE SYSLIB(CMQP);

%INCLUDE SYSLIB(CMQEPP);

:

/***/

/* WORKING STORAGE DECLARATIONS */

/***/

DCL COMPCODE BINARY FIXED (31);

DCL REASON BINARY FIXED (31);

DCL HCONN BINARY FIXED (31);

DCL HOBJ BINARY FIXED (31);

DCL OPTIONS BINARY FIXED (31); ⋮
DCL QUEUE_NAME CHAR(48) INIT('PL1.LOCAL.QUEUE'); ⋮
/***/

/* LOCAL COPY OF OBJECT DESCRIPTOR */

/***/

DCL 1 LMQOD LIKE MQOD; ⋮
/***/

/* SET UP OBJECT DESCRIPTOR FOR OPEN OF REPLY QUEUE */

/***/

LMQOD.OBJECTTYPE = MQOT_Q;

LMQOD.OBJECTNAME = QUEUE_NAME;

OPTIONS = MQOO_INPUT_EXCLUSIVE;

CALL MQOPEN (HCONN,

 LMQOD,

 OPTIONS,

 HOBJ,

 COMPCODE,

 REASON);

/***/

/* TEST THE COMPLETION CODE OF THE OPEN CALL. */

/* IF THE CALL HAS FAILED ISSUE AN ERROR MESSAGE */

/* SHOWING THE COMPLETION CODE AND THE REASON CODE. */

/***/

 IF COMPCODE ¬= MQCC_OK

 THEN DO;

 ⋮
 CALL ERROR_ROUTINE;

 END;

Parent topic: PL/I examples

This build: January 26, 2011 11:21:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg19220_

8.5. Closing a queue

This example demonstrates how to use the MQCLOSE call.

This extract is not taken from the sample applications supplied with WebSphere® MQ.

%INCLUDE SYSLIB(CMQP);

%INCLUDE SYSLIB(CMQEPP);

:

/***/

/* WORKING STORAGE DECLARATIONS */

/***/

DCL COMPCODE BINARY FIXED (31);

DCL REASON BINARY FIXED (31);

DCL HCONN BINARY FIXED (31);

DCL HOBJ BINARY FIXED (31);

DCL OPTIONS BINARY FIXED (31); ⋮
/***/

/* SET CLOSE OPTIONS */

/***/

OPTIONS=MQCO_NONE;

/***/

/* CLOSE QUEUE */

/***/

 CALL MQCLOSE (HCONN, /* CONNECTION HANDLE */

 HOBJ, /* OBJECT HANDLE */

 OPTIONS, /* CLOSE OPTIONS */

 COMPCODE, /* COMPLETION CODE */

 REASON); /* REASON CODE */

/***/

/* TEST THE COMPLETION CODE OF THE CLOSE CALL. */

/* IF THE CALL HAS FAILED ISSUE AN ERROR MESSAGE */

/* SHOWING THE COMPLETION CODE AND THE REASON CODE. */

Page 407 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

/***/

 IF COMPCODE ¬= MQCC_OK

 THEN DO;

 ⋮
 CALL ERROR_ROUTINE;

 END;

Parent topic: PL/I examples

This build: January 26, 2011 11:21:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg19230_

8.6. Putting a message using MQPUT

This example demonstrates how to use the MQPUT call using context.

This extract is not taken from the sample applications supplied with WebSphere® MQ.

%INCLUDE SYSLIB(CMQP);

%INCLUDE SYSLIB(CMQEPP);

:

/***/

/* WORKING STORAGE DECLARATIONS */

/***/

DCL COMPCODE BINARY FIXED (31);

DCL REASON BINARY FIXED (31);

DCL HCONN BINARY FIXED (31);

DCL HOBJ BINARY FIXED (31);

DCL OPTIONS BINARY FIXED (31);

DCL BUFFLEN BINARY FIXED (31);

DCL BUFFER CHAR(80); ⋮
DCL PL1_TEST_MESSAGE CHAR(80)

INIT('***** THIS IS A TEST MESSAGE *****'); ⋮
**/

/* LOCAL COPY OF MESSAGE DESCRIPTOR */

/* AND PUT MESSAGE OPTIONS */

/***/

DCL 1 LMQMD LIKE MQMD;

DCL 1 LMQPMO LIKE MQPMO; ⋮
/***/

/* SET UP MESSAGE DESCRIPTOR */

/***/

LMQMD.MSGTYPE = MQMT_DATAGRAM;

LMQMD.PRIORITY = 1;

LMQMD.PERSISTENCE = MQPER_PERSISTENT;

LMQMD.REPLYTOQ = ' ';

LMQMD.REPLYTOQMGR = ' ';

LMQMD.MSGID = MQMI_NONE;

LMQMD.CORRELID = MQCI_NONE;

/***/

/* SET UP PUT MESSAGE OPTIONS */

/***/

LMQPMO.OPTIONS = MQPMO_NO_SYNCPOINT;

/***/

/* SET UP LENGTH OF MESSAGE BUFFER AND THE MESSAGE */

/***/

BUFFLEN = LENGTH(BUFFER);

BUFFER = PL1_TEST_MESSAGE;

/***/

/* */

/* HCONN WAS SET BY PREVIOUS MQCONN REQUEST. */

/* HOBJ WAS SET BY PREVIOUS MQOPEN REQUEST. */

/* */

/***/

CALL MQPUT (HCONN,

 HOBJ,

 LMQMD,

 LMQPMO,

 BUFFLEN,

 BUFFER,

 COMPCODE,

 REASON);

/***/

/* TEST THE COMPLETION CODE OF THE PUT CALL. */

/* IF THE CALL HAS FAILED ISSUE AN ERROR MESSAGE */

/* SHOWING THE COMPLETION CODE AND THE REASON CODE. */

/***/

 IF COMPCODE ¬= MQCC_OK

 THEN DO;

 ⋮
 CALL ERROR_ROUTINE;

 END;

Parent topic: PL/I examples

This build: January 26, 2011 11:21:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg19240_

Page 408 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

8.7. Putting a message using MQPUT1

This example demonstrates how to use the MQPUT1 call.

This extract is not taken from the sample applications supplied with WebSphere® MQ.

%INCLUDE SYSLIB(CMQEPP);

%INCLUDE SYSLIB(CMQP);

:

/***/

/* WORKING STORAGE DECLARATIONS */

/***/

DCL COMPCODE BINARY FIXED (31);

DCL REASON BINARY FIXED (31);

DCL HCONN BINARY FIXED (31);

DCL OPTIONS BINARY FIXED (31);

DCL BUFFLEN BINARY FIXED (31);

DCL BUFFER CHAR(80); ⋮
DCL REPLY_TO_QUEUE CHAR(48) INIT('PL1.REPLY.QUEUE');

DCL QUEUE_NAME CHAR(48) INIT('PL1.LOCAL.QUEUE');

DCL PL1_TEST_MESSAGE CHAR(80)

 INIT('***** THIS IS ANOTHER TEST MESSAGE *****'); ⋮
/***/

/* LOCAL COPY OF OBJECT DESCRIPTOR, MESSAGE DESCRIPTOR */

/* AND PUT MESSAGE OPTIONS */

/***/

DCL 1 LMQOD LIKE MQOD;

DCL 1 LMQMD LIKE MQMD;

DCL 1 LMQPMO LIKE MQPMO; ⋮
/***/

/* SET UP OBJECT DESCRIPTOR AS REQUIRED. */

/***/

LMQOD.OBJECTTYPE = MQOT_Q;

LMQOD.OBJECTNAME = QUEUE_NAME;

/***/

/* SET UP MESSAGE DESCRIPTOR AS REQUIRED. */

/***/

LMQMD.MSGTYPE = MQMT_REQUEST;

LMQMD.PRIORITY = 5;

LMQMD.PERSISTENCE = MQPER_PERSISTENT;

LMQMD.REPLYTOQ = REPLY_TO_QUEUE;

LMQMD.REPLYTOQMGR = ' ';

LMQMD.MSGID = MQMI_NONE;

LMQMD.CORRELID = MQCI_NONE;

/***/

/* SET UP PUT MESSAGE OPTIONS AS REQUIRED */

/***/

 LMQPMO.OPTIONS = MQPMO_NO_SYNCPOINT;

/***/

/* SET UP LENGTH OF MESSAGE BUFFER AND THE MESSAGE */

/***/

 BUFFLEN = LENGTH(BUFFER);

 BUFFER = PL1_TEST_MESSAGE;

 CALL MQPUT1 (HCONN,

 LMQOD,

 LMQMD,

 LMQPMO,

 BUFFLEN,

 BUFFER,

 COMPCODE,

 REASON);

/***/

/* TEST THE COMPLETION CODE OF THE PUT1 CALL. */

/* IF THE CALL HAS FAILED ISSUE AN ERROR MESSAGE SHOWING */

/* THE COMPLETION CODE AND THE REASON CODE. */

/***/

 IF COMPCODE ¬= MQCC_OK

 THEN DO;

 ⋮
 CALL ERROR_ROUTINE;

 END;

Parent topic: PL/I examples

This build: January 26, 2011 11:21:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg19250_

8.8. Getting a message

This example demonstrates how to use the MQGET call to remove a message from a queue.

This extract is not taken from the sample applications supplied with WebSphere® MQ.

 %INCLUDE SYSLIB(CMQP);

 %INCLUDE SYSLIB(CMQEPP);

 :

/***/

/* WORKING STORAGE DECLARATIONS */

/***/

 DCL COMPCODE BINARY FIXED (31);

 DCL REASON BINARY FIXED (31);

 DCL HCONN BINARY FIXED (31);

Page 409 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

 DCL HOBJ BINARY FIXED (31);

 DCL BUFFLEN BINARY FIXED (31);

 DCL DATALEN BINARY FIXED (31);

 DCL BUFFER CHAR(80);

 ⋮
/***/

/* LOCAL COPY OF MESSAGE DESCRIPTOR AND */

/* GET MESSAGE OPTIONS */

/***/

 DCL 1 LMQMD LIKE MQMD;

 DCL 1 LMQGMO LIKE MQGMO;

 ⋮
/***/

/* SET UP MESSAGE DESCRIPTOR AS REQUIRED. */

/* MSGID AND CORRELID IN MQMD SET TO NULLS SO FIRST */

/* AVAILABLE MESSAGE WILL BE RETRIEVED. */

/***/

 LMQMD.MSGID = MQMI_NONE;

 LMQMD.CORRELID = MQCI_NONE;

/***/

/* SET UP GET MESSAGE OPTIONS AS REQUIRED. */

/***/

 LMQGMO.OPTIONS = MQGMO_NO_SYNCPOINT;

/***/

/* SET UP LENGTH OF MESSAGE BUFFER. */

/***/

 BUFFLEN = LENGTH(BUFFER);

/***/

/* */

/* HCONN WAS SET BY PREVIOUS MQCONN REQUEST. */

/* HOBJ WAS SET BY PREVIOUS MQOPEN REQUEST. */

/* */

/***/

 CALL MQGET (HCONN,

 HOBJ,

 LMQMD,

 LMQGMO,

 BUFFERLEN,

 BUFFER,

 DATALEN,

 COMPCODE,

 REASON);

/***/

/* TEST THE COMPLETION CODE OF THE GET CALL. */

/* IF THE CALL HAS FAILED ISSUE AN ERROR MESSAGE */

/* SHOWING THE COMPLETION CODE AND THE REASON CODE. */

/***/

 IF COMPCODE ¬= MQCC_OK

 THEN DO;

 :

 :

 :

 CALL ERROR_ROUTINE;

 END;

Parent topic: PL/I examples

This build: January 26, 2011 11:21:59

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg19260_

8.9. Getting a message using the wait option

This example demonstrates how to use the MQGET call with the wait option and accepting truncated messages.

This extract is not taken from the sample applications supplied with WebSphere® MQ.

 %INCLUDE SYSLIB(CMQP);

 %INCLUDE SYSLIB(CMQEPP);

 :

/***/

/* WORKING STORAGE DECLARATIONS */

/***/

 DCL COMPCODE BINARY FIXED (31);

 DCL REASON BINARY FIXED (31);

 DCL HCONN BINARY FIXED (31);

 DCL HOBJ BINARY FIXED (31);

 DCL BUFFLEN BINARY FIXED (31);

 DCL DATALEN BINARY FIXED (31);

 DCL BUFFER CHAR(80);

 ⋮
/***/

/* LOCAL COPY OF MESSAGE DESCRIPTOR AND GET MESSAGE */

/* OPTIONS */

/***/

 DCL 1 LMQMD LIKE MQMD;

 DCL 1 LMQGMO LIKE MQGMO;

 ⋮
/***/

/* SET UP MESSAGE DESCRIPTOR AS REQUIRED. */

/* MSGID AND CORRELID IN MQMD SET TO NULLS SO FIRST */

/* AVAILABLE MESSAGE WILL BE RETRIEVED. */

/***/

 LMQMD.MSGID = MQMI_NONE;

 LMQMD.CORRELID = MQCI_NONE;

Page 410 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

/***/

/* SET UP GET MESSAGE OPTIONS AS REQUIRED. */

/* WAIT INTERVAL SET TO ONE MINUTE. */

/***/

 LMQGMO.OPTIONS = MQGMO_WAIT +

 MQGMO_ACCEPT_TRUNCATED_MSG +

 MQGMO_NO_SYNCPOINT;

 LMQGMO.WAITINTERVAL=60000;

/***/

/* SET UP LENGTH OF MESSAGE BUFFER. */

/***/

 BUFFLEN = LENGTH(BUFFER);

/***/

/* */

/* HCONN WAS SET BY PREVIOUS MQCONN REQUEST. */

/* HOBJ WAS SET BY PREVIOUS MQOPEN REQUEST. */

/* */

/***/

 CALL MQGET (HCONN,

 HOBJ,

 LMQMD,

 LMQGMO,

 BUFFERLEN,

 BUFFER,

 DATALEN,

 COMPCODE,

 REASON);

/***/

/* TEST THE COMPLETION CODE OF THE GET CALL. */

/* TAKE APPROPRIATE ACTION BASED ON COMPLETION CODE AND */

/* REASON CODE. */

/***/

 SELECT(COMPCODE);

 WHEN (MQCC_OK) DO; /* GET WAS SUCCESSFUL */

 ⋮
 END;

 WHEN (MQCC_WARNING) DO;

 IF REASON = MQRC_TRUNCATED_MSG_ACCEPTED

 THEN DO; /* GET WAS SUCCESSFUL */

 ⋮
 END;

 ELSE DO;

 ⋮
 CALL ERROR_ROUTINE;

 END;

 END;

 WHEN (MQCC_FAILED) DO;

 ⋮
 CALL ERROR_ROUTINE;

 END;

 END;

 OTHERWISE;

 END;

Parent topic: PL/I examples

This build: January 26, 2011 11:22:00

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg19270_

8.10. Getting a message using signaling

A code extract that demonstrates how to use the MQGET call with signaling.

Signaling is available only with WebSphere® MQ for z/OS®.

This extract is not taken from the sample applications supplied with WebSphere MQ.

 %INCLUDE SYSLIB(CMQP);

 %INCLUDE SYSLIB(CMQEPP);

 :

/***/

/* WORKING STORAGE DECLARATIONS */

/***/

 DCL COMPCODE BINARY FIXED (31);

 DCL REASON BINARY FIXED (31);

 DCL HCONN BINARY FIXED (31);

 DCL HOBJ BINARY FIXED (31);

 DCL DATALEN BINARY FIXED (31);

 DCL BUFFLEN BINARY FIXED (31);

 DCL BUFFER CHAR(80);

 ⋮
 DCL ECB_FIXED FIXED BIN(31);

 DCL 1 ECB_OVERLAY BASED(ADDR(ECB_FIXED)),

 3 ECB_WAIT BIT,

 3 ECB_POSTED BIT,

 3 ECB_FLAG3_8 BIT(6),

 3 ECB_CODE PIC'999';

 ⋮
/***/

/* LOCAL COPY OF MESSAGE DESCRIPTOR AND GET MESSAGE */

/* OPTIONS */

/***/

 DCL 1 LMQMD LIKE MQMD;

 DCL 1 LMQGMO LIKE MQGMO;

Page 411 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

 ⋮
/***/

/* CLEAR ECB FIELD. */

/***/

 ECB_FIXED = 0;

 ⋮
/***/

/* SET UP MESSAGE DESCRIPTOR AS REQUIRED. */

/* MSGID AND CORRELID IN MQMD SET TO NULLS SO FIRST */

/* AVAILABLE MESSAGE WILL BE RETRIEVED. */

/***/

 LMQMD.MSGID = MQMI_NONE;

 LMQMD.CORRELID = MQCI_NONE;

/***/

/* SET UP GET MESSAGE OPTIONS AS REQUIRED. */

/* WAIT INTERVAL SET TO ONE MINUTE. */

/***/

 LMQGMO.OPTIONS = MQGMO_SET_SIGNAL +

 MQGMO_NO_SYNCPOINT;

 LMQGMO.WAITINTERVAL=60000;

 LMQGMO.SIGNAL1 = ADDR(ECB_FIXED);

/***/

/* SET UP LENGTH OF MESSAGE BUFFER. */

/* CALL MESSGE RETRIEVAL ROUTINE. */

/***/

 BUFFLEN = LENGTH(BUFFER);

 CALL GET_MSG;

/***/

/* TEST THE COMPLETION CODE OF THE GET CALL. */

/* TAKE APPROPRIATE ACTION BASED ON COMPLETION CODE AND */

/* REASON CODE. */

/***/

 SELECT;

 WHEN ((COMPCODE = MQCC_OK) &

 (REASON = MQCC_NONE)) DO

 ⋮
 CALL MSG_ROUTINE;

 ⋮
 END;

 WHEN ((COMPCODE = MQCC_WARNING) &

 (REASON = MQRC_SIGNAL_REQUEST_ACCEPTED)) DO;

 ⋮
 CALL DO_WORK;

 ⋮
 END;

 WHEN ((COMPCODE = MQCC_FAILED) &

 (REASON = MQRC_SIGNAL_OUTSTANDING)) DO;

 ⋮
 CALL DO_WORK;

 ⋮
 END;

 OTHERWISE DO; /* FAILURE CASE */

/***/

/* ISSUE AN ERROR MESSAGE SHOWING THE COMPLETION CODE */

/* AND THE REASON CODE. */

/***/

 ⋮
 CALL ERROR_ROUTINE;

 ⋮
 END;

 END;

 ⋮
 DO_WORK: PROC;

 ⋮
 IF ECB_POSTED

 THEN DO;

 SELECT(ECB_CODE);

 WHEN(MQEC_MSG_ARRIVED) DO;

 ⋮
 CALL GET_MSG;

 ⋮
 END;

 WHEN(MQEC_WAIT_INTERVAL_EXPIRED) DO;

 ⋮
 CALL NO_MSG;

 ⋮
 END;

 OTHERWISE DO; /* FAILURE CASE */

/***/

/* ISSUE AN ERROR MESSAGE SHOWING THE COMPLETION CODE */

/* AND THE REASON CODE. */

/***/

 ⋮
 CALL ERROR_ROUTINE;

 ⋮
 END;

 END;

 END;

 ⋮
 END DO_WORK;

 GET_MSG: PROC;

/***/

/* */

/* HCONN WAS SET BY PREVIOUS MQCONN REQUEST. */

/* HOBJ WAS SET BY PREVIOUS MQOPEN REQUEST. */

Page 412 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

/* MD AND GMO SET UP AS REQUIRED. */

/* */

/***/

 CALL MQGET (HCONN,

 HOBJ,

 LMQMD,

 LMQGMO,

 BUFFLEN,

 BUFFER,

 DATALEN,

 COMPCODE,

 REASON);

 END GET_MSG;

 NO_MSG: PROC;

 ⋮
 END NO_MSG;

Parent topic: PL/I examples

This build: January 26, 2011 11:22:00

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg19280_

8.11. Inquiring about the attributes of an object

This example demonstrates how to use the MQINQ call to inquire about the attributes of a queue.

This extract is not taken from the sample applications supplied with WebSphere® MQ.

 %INCLUDE SYSLIB(CMQP);

 %INCLUDE SYSLIB(CMQEPP);

 :

/***/

/* WORKING STORAGE DECLARATIONS */

/***/

 DCL COMPCODE BINARY FIXED (31);

 DCL REASON BINARY FIXED (31);

 DCL HCONN BINARY FIXED (31);

 DCL HOBJ BINARY FIXED (31);

 DCL OPTIONS BINARY FIXED (31);

 DCL SELECTORCOUNT BINARY FIXED (31);

 DCL INTATTRCOUNT BINARY FIXED (31);

 DCL 1 SELECTOR_TABLE,

 3 SELECTORS(5) BINARY FIXED (31);

 DCL 1 INTATTR_TABLE,

 3 INTATTRS(5) BINARY FIXED (31);

 DCL CHARATTRLENGTH BINARY FIXED (31);

 DCL CHARATTRS CHAR(100);

 ⋮

/***/

/* SET VARIABLES FOR INQUIRE CALL */

/* INQUIRE ON THE CURRENT QUEUE DEPTH */

/***/

 SELECTORS(01) = MQIA_CURRENT_Q_DEPTH;

 SELECTORCOUNT = 1;

 INTATTRCOUNT = 1;

 CHARATTRLENGTH = 0;

/***/

/* */

/* HCONN WAS SET BY PREVIOUS MQCONN REQUEST. */

/* HOBJ WAS SET BY PREVIOUS MQOPEN REQUEST. */

/* */

/***/

 CALL MQINQ (HCONN,

 HOBJ,

 SELECTORCOUNT,

 SELECTORS,

 INTATTRCOUNT,

 INTATTRS,

 CHARATTRLENGTH,

 CHARATTRS,

 COMPCODE,

 REASON);

/***/

/* TEST THE COMPLETION CODE OF THE INQUIRE CALL. */

/* IF THE CALL HAS FAILED ISSUE AN ERROR MESSAGE SHOWING */

/* THE COMPLETION CODE AND THE REASON CODE. */

/***/

 IF COMPCODE ¬= MQCC_OK

 THEN DO;

 ⋮
 CALL ERROR_ROUTINE;

 END;

Parent topic: PL/I examples

This build: January 26, 2011 11:22:00

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg19290_

Page 413 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

8.12. Setting the attributes of a queue

This example demonstrates how to use the MQSET call to change the attributes of a queue.

This extract is not taken from the sample applications supplied with WebSphere® MQ.

 %INCLUDE SYSLIB(CMQP);

 %INCLUDE SYSLIB(CMQEPP);

 :

/***/

/* WORKING STORAGE DECLARATIONS */

/***/

 DCL COMPCODE BINARY FIXED (31);

 DCL REASON BINARY FIXED (31);

 DCL HCONN BINARY FIXED (31);

 DCL HOBJ BINARY FIXED (31);

 DCL OPTIONS BINARY FIXED (31);

 DCL SELECTORCOUNT BINARY FIXED (31);

 DCL INTATTRCOUNT BINARY FIXED (31);

 DCL 1 SELECTOR_TABLE,

 3 SELECTORS(5) BINARY FIXED (31);

 DCL 1 INTATTR_TABLE,

 3 INTATTRS(5) BINARY FIXED (31);

 DCL CHARATTRLENGTH BINARY FIXED (31);

 DCL CHARATTRS CHAR(100);

 ⋮

/***/

/* SET VARIABLES FOR SET CALL */

/* SET GET AND PUT INHIBITED */

/***/

 SELECTORS(01) = MQIA_INHIBIT_GET;

 SELECTORS(02) = MQIA_INHIBIT_PUT;

 INTATTRS(01) = MQQA_GET_INHIBITED;

 INTATTRS(02) = MQQA_PUT_INHIBITED;

 SELECTORCOUNT = 2;

 INTATTRCOUNT = 2;

 CHARATTRLENGTH = 0;

/***/

/* */

/* HCONN WAS SET BY PREVIOUS MQCONN REQUEST. */

/* HOBJ WAS SET BY PREVIOUS MQOPEN REQUEST. */

/* */

/***/

 CALL MQSET (HCONN,

 HOBJ,

 SELECTORCOUNT,

 SELECTORS,

 INTATTRCOUNT,

 INTATTRS,

 CHARATTRLENGTH,

 CHARATTRS,

 COMPCODE,

 REASON);

/***/

/* TEST THE COMPLETION CODE OF THE SET CALL. */

/* IF THE CALL HAS FAILED ISSUE AN ERROR MESSAGE SHOWING */

/* THE COMPLETION CODE AND THE REASON CODE. */

/***/

 IF COMPCODE ¬= MQCC_OK

 THEN DO;

 ⋮
 CALL ERROR_ROUTINE;

 END;

Parent topic: PL/I examples

This build: January 26, 2011 11:22:00

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg19300_

9. WebSphere MQ data definition files

WebSphere® MQ provides data definition files to help you to write your applications. Data definition files are also known as:

The data definition files to help you to write channel exits are described in WebSphere MQ Intercommunication.

The data definition files to help you to write installable services exits are described in the WebSphere MQ System Administration Guide.

For data definition files supported on C++, see WebSphere MQ Using C++.

For data definition files supported on RPG, see the WebSphere MQ for i5/OS Application Programming Reference (ILE/RPG).

Language Data definitions

C Include files or header files

Visual Basic Module files (32-bit versions only)

COBOL Copy files

Assembler Macros

PL/I Include files

Page 414 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

The names of the data definition files have the prefix CMQ, and a suffix that is determined by the programming language:

Installation library

The name thlqual is the high-level qualifier of the installation library on z/OS®.

This chapter introduces WebSphere MQ data definition files, under these headings:

� C language include files

� Visual Basic module files

� COBOL copy files

� System/390 assembler-language macros

� PL/I include files

C language include files

Visual Basic module files
WebSphere MQ for Windows provides four Visual Basic module files.

COBOL copy files
For COBOL, WebSphere MQ provides separate copy files containing the named constants, and two copy files for each of the structures.

System/390 assembler-language macros
WebSphere MQ for z/OS provides two assembler-language macros containing the named constants, and one macro to generate each structure.

PL/I include files
WebSphere MQ for z/OS provides include files that contain all the definitions that you need when you write WebSphere MQ applications in PL/I.

Parent topic: Application Programming Guide

This build: January 26, 2011 11:22:00

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg19310_

9.1. C language include files

The WebSphere® MQ C include files are listed in WebSphere MQ Constants. They are installed in the following directories or libraries:

Note: For UNIX platforms, the include files are symbolically linked into /usr/include.

For more information on the structure of directories, see the WebSphere MQ System Administration Guide.

Parent topic: WebSphere MQ data definition files

This build: January 26, 2011 11:22:01

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg19320_

9.2. Visual Basic module files

WebSphere® MQ for Windows provides four Visual Basic module files.

They are listed in WebSphere MQ Constants and installed in

 \Program Files\IBM\WebSphere MQ\Tools\Samples\VB\Include

Parent topic: WebSphere MQ data definition files

This build: January 26, 2011 11:22:01

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg19330_

9.3. COBOL copy files

Suffix Language

a Assembler language

b Visual Basic

c C

l COBOL (without initialized values)

p PL/I

v COBOL (with default values set)

Platform Installation directory or library

AIX® /usr/mqm/inc/

i5/OS® QMQM/H

UNIX platforms /opt/mqm/inc/

Windows systems \Program Files\IBM\WebSphere MQ\Tools\c\include

z/OS® thlqual.SCSQC370

Page 415 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

For COBOL, WebSphere® MQ provides separate copy files containing the named constants, and two copy files for each of the structures.

There are two copy files for each structure because each is provided both with and without initial values:

� In the WORKING-STORAGE SECTION of a COBOL program, use the files that initialize the structure fields to default values. These structures are
defined in the copy files that have names suffixed with the letter V (values).

� In the LINKAGE SECTION of a COBOL program, use the structures without initial values. These structures are defined in copy files that have names
suffixed with the letter L (linkage).

Copy files containing data and interface definitions for WebSphere MQ for i5/OS® are provided for ILE COBOL programs using prototyped calls to the MQI.
The files exist in QMQM/QCBLLESRC with member names that have a suffix of L (for structures without initial values) or a suffix of V (for structures with
initial values).

The WebSphere MQ COBOL copy files are listed in WebSphere MQ Constants. They are installed in the following directories:

Include in your program only those files that you need. Do this with one or more COPY statements after a level-01 declaration. This means that you can
include multiple versions of the structures in a program if necessary. Note that CMQV is a large file.

Here is an example of COBOL code to include the CMQMDV copy file:

01 MQM-MESSAGE-DESCRIPTOR.

 COPY CMQMDV.

Each structure declaration begins with a level-01 item; you can declare several instances of the structure by coding the level-01 declaration followed by a
COPY statement to copy in the remainder of the structure declaration. To refer to the appropriate instance, use the IN keyword.

Here is an example of COBOL code to include two instances of CMQMDV:

* Declare two instances of MQMD

 01 MY-CMQMD.

 COPY CMQMDV.

 01 MY-OTHER-CMQMD.

 COPY CMQMDV.

*

* Set MSGTYPE field in MY-OTHER-CMQMD

 MOVE MQMT-REQUEST TO MQMD-MSGTYPE IN MY-OTHER-CMQMD.

Align the structures on 4-byte boundaries. If you use the COPY statement to include a structure following an item that is not the level-01 item, ensure that
the structure is a multiple of 4-bytes from the start of the level-01 item. If you do not do this, you might reduce the performance of your application.

The structures are described in the WebSphere MQ Application Programming Reference. The descriptions of the fields in the structures show the names of
fields without a prefix. In COBOL programs, prefix the field names with the name of the structure followed by a hyphen, as shown in the COBOL
declarations. The fields in the structure copy files are prefixed in this way.

The field names in the declarations in the structure copy files are in uppercase. You can use mixed case or lowercase instead. For example, the field StrucId

of the MQGMO structure is shown as MQGMO-STRUCID in the COBOL declaration and in the copy file.

The V-suffix structures are declared with initial values for all the fields, so you need to set only those fields where the value required is different from the
initial value.

Parent topic: WebSphere MQ data definition files

This build: January 26, 2011 11:22:01

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg19340_

9.4. System/390® assembler-language macros

WebSphere® MQ for z/OS® provides two assembler-language macros containing the named constants, and one macro to generate each structure.

They are listed in WebSphere MQ Constants and installed in thlqual.SCSQMACS.

These macros are called using code like this:

 MY_MQMD CMQMDA EXPIRY=0,MSGTYPE=MQMT_DATAGRAM

Parent topic: WebSphere MQ data definition files

This build: January 26, 2011 11:22:01

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg19350_

9.5. PL/I include files

WebSphere® MQ for z/OS® provides include files that contain all the definitions that you need when you write WebSphere MQ applications in PL/I.

The files are listed in WebSphere MQ Constants and installed in the thlqual.SCSQPLIC directory:

Include these files in your program if you are going to link the WebSphere MQ stub to your program (see Preparing your program to run). Include only CMQP
if you intend to link the WebSphere MQ calls dynamically (see Dynamically calling the WebSphere MQ stub). Dynamic linking can be performed for batch and
IMS™ programs only.

Platform Installation directory or library

AIX® /usr/mqm/inc/

Other UNIX platforms /opt/mqm/inc/

i5/OS QMQM/QCBLLESRC

Windows \Program Files\IBM\WebSphere MQ\Tools\cobol\copybook (for Micro Focus COBOL) \Program
Files\IBM\WebSphere MQ\Tools\cobol\copybook\VAcobol (for IBM® VisualAge® COBOL)

z/OS® thlqual.SCSQCOBC

Page 416 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Parent topic: WebSphere MQ data definition files

This build: January 26, 2011 11:22:01

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg19360_

10. Coding standards on 64 bit platforms

Preferred data types
These types never change size and are available on both 32-bit and 64-bit WebSphere MQ platforms:

Standard data types

Parent topic: Application Programming Guide

This build: January 26, 2011 11:22:02

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg19370_

10.1. Preferred data types

These types never change size and are available on both 32-bit and 64-bit WebSphere® MQ platforms:

Parent topic: Coding standards on 64 bit platforms

This build: January 26, 2011 11:22:02

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg19380_

10.2. Standard data types

32-bit UNIX applications

64-bit UNIX applications

Windows 64–bit applications

Parent topic: Coding standards on 64 bit platforms

This build: January 26, 2011 11:22:02

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg19390_

10.2.1. 32-bit UNIX applications

This section is included for comparison and is based on Solaris. Any differences with other UNIX platforms are noted:

Name Length

MQLONG 4 bytes

MQULONG 4 bytes

MQINT32 4 bytes

MQUINT32 4 bytes

MQINT64 8 bytes

MQUINT64 8 bytes

Name Length

char 1 byte

short 2 bytes

int 4 bytes

long 4 bytes

float 4 bytes

double 8 bytes

long double 16 bytes

Note that on AIX® and Linux PPC a long double is 8 bytes.

pointer 4 bytes

ptrdiff_t 4 bytes

size_t 4 bytes

time_t 4 bytes

clock_t 4 bytes

wchar_t 4 bytes

Note that on AIX a wchar_t is 2 bytes.

Page 417 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Parent topic: Standard data types

This build: January 26, 2011 11:22:02

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg19400_

10.2.2. 64-bit UNIX applications

This section is based on Solaris. Any differences with other UNIX platforms are noted:

Parent topic: Standard data types

This build: January 26, 2011 11:22:02

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg19410_

10.2.3. Windows 64–bit applications

Coding considerations on Windows

Parent topic: Standard data types

This build: January 26, 2011 11:22:03

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg19420_

10.2.3.1. Coding considerations on Windows

HANDLE hf;

size_t len fgets

printf

Name Length

char 1 byte

short 2 bytes

int 4 bytes

long 8 bytes

float 4 bytes

double 8 bytes

long double 16 bytes

Note that on AIX® and Linux PPC a long double is 8 bytes.

pointer 8 bytes

ptrdiff_t 8 bytes

size_t 8 bytes

time_t 8 bytes

clock_t 8 bytes

Note that on the other UNIX platforms a clock_t is 4 bytes.

wchar_t 4 bytes

Note that on AIX a wchar_t is 2 bytes.

Name Length

char 1 byte

short 2 bytes

int 4 bytes

long 4 bytes

float 4 bytes

double 8 bytes

long double 8 bytes

pointer 8 bytes

Note that all pointers are 8 bytes.

ptrdiff_t 8 bytes

size_t 8 bytes

time_t 8 bytes

clock_t 4 bytes

wchar_t 2 bytes

WORD 2 bytes

DWORD 4 bytes

HANDLE 8 bytes

HFILE 4 bytes

Page 418 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

char *ptr

alignBytes

len

sscanf

Notices

Parent topic: Windows 64–bit applications

This build: January 26, 2011 11:22:03

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg19430_

10.2.3.1.1. HANDLE hf;

Use

hf = CreateFile((LPCTSTR) FileName,

 Access,

 ShareMode,

 xihSecAttsNTRestrict,

 Create,

 AttrAndFlags,

 NULL);

Do not use

HFILE hf;

hf = (HFILE) CreateFile((LPCTSTR) FileName,

 Access,

 ShareMode,

 xihSecAttsNTRestrict,

 Create,

 AttrAndFlags,

 NULL);

as this produces an error.

Parent topic: Coding considerations on Windows

This build: January 26, 2011 11:22:03

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg19440_

10.2.3.1.2. size_t len fgets

Use

size_t len

while (fgets(string1, (int) len, fp) != NULL)

len = strlen(buffer);

Do not use

int len;

while (fgets(string1, len, fp) != NULL)

len = strlen(buffer);

Parent topic: Coding considerations on Windows

This build: January 26, 2011 11:22:03

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg19450_

10.2.3.1.3. printf

Use

printf("My struc pointer: %p", pMyStruc);

 Do not use

printf("My struc pointer: %x", pMyStruc);

 If you need hexadecimal output, you have to print the upper and lower 4 bytes separately.

Parent topic: Coding considerations on Windows

This build: January 26, 2011 11:22:03

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg19460_

10.2.3.1.4. char *ptr

Page 419 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

Use

char * ptr1;

char * ptr2;

size_t bufLen;

bufLen = ptr2 - ptr1;

Do not use

char *ptr1;

char *ptr2;

UINT32 bufLen;

bufLen = ptr2 - ptr1;

Parent topic: Coding considerations on Windows

This build: January 26, 2011 11:22:03

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg19470_

10.2.3.1.5. alignBytes

Use

alignBytes = (unsigned short) ((size_t) address % 16);

Do not use

void *address;

unsigned short alignBytes;

alignBytes = (unsigned short) ((UINT32) address % 16);

Parent topic: Coding considerations on Windows

This build: January 26, 2011 11:22:03

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg19480_

10.2.3.1.6. len

Use

len = (UINT32) ((char *) address2 - (char *) address1);

Do not use

void *address1;

void *address2;

UINT32 len;

len = (UINT32) ((char *) address2 - (char *) address1);

Parent topic: Coding considerations on Windows

This build: January 26, 2011 11:22:03

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg19500_

10.2.3.1.7. sscanf

Use

MQLONG SBCSprt;

sscanf(line, "%d", &SBCSprt);

Do not use

MQLONG SBCSprt;

sscanf(line, "%1d", &SBCSprt);

%ld tries to put an eight byte type into a four byte type; only use %l if you are dealing with an actual long data type. MQLONG, UINT32 and INT32 are

defined to be four bytes, the same as an int on all WebSphere® MQ platforms:

Parent topic: Coding considerations on Windows

This build: January 26, 2011 11:22:03

Notices | Trademarks | Downloads | Library | Support | Feedback

Copyright IBM Corporation 1999, 2009. All Rights Reserved.

This topic's URL:

fg19510_

Page 420 of 420Application Programming Guide

15/03/2011http://127.0.0.1:1085/help/advanced/print.jsp?topic=/com.ibm.mq.csqzal.doc/fg10120...

