
WebSphere MQ for HP OpenVMS

System Administration Guide
Version 6.0

GC34-6610-02

���





WebSphere MQ for HP OpenVMS

System Administration Guide
Version 6.0

GC34-6610-02

���



Note

Before using this information and the product it supports, read the information in “Notices” on page 341 at the back of this
book.

This edition applies to WebSphere MQ for HP OpenVMS, Version 6.0 and to all subsequent releases and
modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1994, 2009.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.



Contents

Figures . . . . . . . . . . . . . . . ix

Tables . . . . . . . . . . . . . . . xi

Chapter 1. Introduction to WebSphere
MQ . . . . . . . . . . . . . . . . . 1
WebSphere MQ and message queuing . . . . . . 1

Time-independent applications . . . . . . . 1
Message-driven processing . . . . . . . . 1

Messages and queues . . . . . . . . . . . 2
What is a message? . . . . . . . . . . . 2
What is a queue? . . . . . . . . . . . . 2

Objects . . . . . . . . . . . . . . . . 3
Object names . . . . . . . . . . . . . 4
Managing objects . . . . . . . . . . . . 4
Object attributes . . . . . . . . . . . . 4
WebSphere MQ queues . . . . . . . . . . 5
WebSphere MQ queue managers . . . . . . 8
Process definitions . . . . . . . . . . . 8
Clusters . . . . . . . . . . . . . . . 8
Namelists . . . . . . . . . . . . . . 9
Authentication information objects . . . . . . 9
Channels . . . . . . . . . . . . . . 9
Client connection channels. . . . . . . . . 9
Listeners . . . . . . . . . . . . . . 10
Services . . . . . . . . . . . . . . 10
System default objects . . . . . . . . . . 10

Clients and servers . . . . . . . . . . . . 11
WebSphere MQ applications in a client-server
environment . . . . . . . . . . . . . 11

Extending queue manager facilities . . . . . . 11
User exits . . . . . . . . . . . . . . 12
API exits . . . . . . . . . . . . . . 12
Installable services . . . . . . . . . . . 12

Security . . . . . . . . . . . . . . . 13
Object Authority Manager (OAM) facility . . . 13
User-written or third party channel exits . . . 13
Channel security using SSL . . . . . . . . 13

Transactional support . . . . . . . . . . . 13

Chapter 2. An introduction to
WebSphere MQ administration . . . . 15
Local and remote administration . . . . . . . 15
Performing administration tasks using commands 15

Control commands . . . . . . . . . . . 16
WebSphere MQ Script (MQSC) commands . . . 16
PCF commands . . . . . . . . . . . . 16
Attributes in WebSphere MQ Script (MQSC) and
PCF commands . . . . . . . . . . . . 17

Understanding WebSphere MQ file names . . . . 17
Queue manager name transformation. . . . . 17
Object name transformation . . . . . . . . 18

Understanding case sensitivity . . . . . . . . 18
Case sensitivity in control commands. . . . . 18

Case sensitivity in MQSC commands . . . . . 19

Chapter 3. Managing queue managers 21
Using control commands . . . . . . . . . . 21

Using WebSphere MQ control commands on HP
OpenVMS systems . . . . . . . . . . . 21

Creating a queue manager . . . . . . . . . 22
Guidelines for creating queue managers . . . . 22
Creating a default queue manager . . . . . . 25
Making an existing queue manager the default 25
Backing up configuration files after creating a
queue manager . . . . . . . . . . . . 26

Starting a queue manager . . . . . . . . . 26
Starting a queue manager automatically . . . . 26
Quiesced shutdown . . . . . . . . . . 26
Immediate shutdown . . . . . . . . . . 27
Preemptive shutdown . . . . . . . . . . 27
If you have problems shutting down a queue
manager . . . . . . . . . . . . . . 27

Deleting a queue manager . . . . . . . . . 28

Chapter 4. Administering local
WebSphere MQ objects . . . . . . . 29
Supporting application programs that use the MQI 29
Performing local administration tasks using MQSC
commands. . . . . . . . . . . . . . . 30

WebSphere MQ object names . . . . . . . 30
Redirecting input and output . . . . . . . 31
Running MQSC commands interactively. . . . 31
Running MQSC commands from text files . . . 32
Resolving problems with MQSC . . . . . . 35

Working with queue managers . . . . . . . . 36
Displaying queue manager attributes . . . . . 37
Altering queue manager attributes. . . . . . 38

Working with local queues . . . . . . . . . 38
Defining a local queue. . . . . . . . . . 38
Displaying default object attributes . . . . . 39
Copying a local queue definition . . . . . . 40
Changing local queue attributes . . . . . . 40
Clearing a local queue . . . . . . . . . . 41
Deleting a local queue . . . . . . . . . . 41
Browsing queues . . . . . . . . . . . 41

Working with alias queues . . . . . . . . . 43
Defining an alias queue . . . . . . . . . 43
Using other commands with alias queues . . . 44

Working with model queues. . . . . . . . . 44
Defining a model queue . . . . . . . . . 45
Using other commands with model queues. . . 45

Working with services . . . . . . . . . . . 45
Defining a service object . . . . . . . . . 46
Managing services . . . . . . . . . . . 47
Additional environment variables . . . . . . 47
Replaceable inserts on service definitions . . . 48
Examples on using service objects . . . . . . 49

Managing objects for triggering. . . . . . . . 51

© Copyright IBM Corp. 1994, 2009 iii



Defining an application queue for triggering . . 51
Defining an initiation queue . . . . . . . . 52
Defining a process . . . . . . . . . . . 53
Displaying attributes of a process definition . . 53

Chapter 5. Automating administration
tasks . . . . . . . . . . . . . . . 55
PCF commands . . . . . . . . . . . . . 55

PCF object attributes . . . . . . . . . . 56
Escape PCFs . . . . . . . . . . . . . 56
Using the MQAI to simplify the use of PCFs . . 56
Command servers . . . . . . . . . . . 57

Administering remote WebSphere MQ objects . . . 57
Channels, clusters, and remote queuing . . . . 57
Remote administration from a local queue
manager . . . . . . . . . . . . . . 59
Creating a local definition of a remote queue . . 65
Using remote queue definitions as aliases . . . 68
Data conversion . . . . . . . . . . . . 69

Chapter 6. Configuring WebSphere MQ 71
WebSphere MQ configuration files. . . . . . . 71

Editing configuration files . . . . . . . . 71
The WebSphere MQ configuration file, mqs.ini . 72
Queue manager configuration files, qm.ini . . . 73

Attributes for changing WebSphere MQ
configuration information . . . . . . . . . 73

AllQueueManagers stanza . . . . . . . . 73
ClientExitPath stanza . . . . . . . . . . 75
DefaultQueueManager stanza . . . . . . . 75
ExitProperties stanza . . . . . . . . . . 75
The LogDefaults stanza . . . . . . . . . 76
API exits . . . . . . . . . . . . . . 78
QueueManagers stanza . . . . . . . . . 78

Changing queue manager configuration information 79
The Service stanza . . . . . . . . . . . 79
The Log stanza . . . . . . . . . . . . 80
The XAResourceManager stanza . . . . . . 82
The Channels stanza . . . . . . . . . . 83
The LU62 and TCP stanzas . . . . . . . . 85
The ExitPath stanza . . . . . . . . . . 86
Example mqs.ini and qm.ini files . . . . . . 87

Chapter 7. WebSphere MQ security . . 91
Why you need to protect WebSphere MQ resources 91
Before you begin . . . . . . . . . . . . 91

User IDs in WebSphere MQ for HP OpenVMS
with resource identifier MQM . . . . . . . 91
For more information . . . . . . . . . . 92

Understanding the Object Authority Manager . . . 92
How the OAM works . . . . . . . . . . 93
Managing access through rights identifiers . . . 93
Default rights identifier . . . . . . . . . 94
Resources you can protect with the OAM . . . 94
Using rights identifiers for authorizations . . . 94
Disabling the object authority manager . . . . 95

Using the Object Authority Manager commands . . 95
What you specify when you use the OAM
commands. . . . . . . . . . . . . . 95
Using the setmqaut command . . . . . . . 96

Access authorizations . . . . . . . . . . 97
Display authority command . . . . . . . . 97

Object Authority Manager guidelines . . . . . . 97
User IDs . . . . . . . . . . . . . . 98
Queue manager directories . . . . . . . . 98
Queues . . . . . . . . . . . . . . . 98
Alternate user authority . . . . . . . . . 98
Context authority . . . . . . . . . . . 99
Remote security considerations . . . . . . . 99
Channel command security. . . . . . . . 100

Understanding the authorization specification
tables . . . . . . . . . . . . . . . . 101

MQI authorizations . . . . . . . . . . 102
Administration authorizations . . . . . . . 105
Authorizations for MQSC commands in escape
PCFs . . . . . . . . . . . . . . . 105

Working with the Secure Sockets Layer (SSL) on
OpenVMS systems . . . . . . . . . . . 107

OpenSSL setup for WebSphere MQ . . . . . 107

Chapter 8. Transactional support . . . 111
Database coordination . . . . . . . . . . 112

Restrictions . . . . . . . . . . . . . 112
Database connections . . . . . . . . . . 113
Configuring database managers . . . . . . 113

Oracle configuration . . . . . . . . . . . 115
Checking the environment variable settings . . 115
Enabling Oracle XA support . . . . . . . 115
Creating the Oracle switch load file . . . . . 115
Creating the Oracle switch load file on
OpenVMS systems . . . . . . . . . . 116
Adding XAResourceManager configuration
information for Oracle . . . . . . . . . 116
Changing Oracle configuration parameters . . 118

Administration tasks . . . . . . . . . . . 118
In-doubt units of work . . . . . . . . . 119
Dislaying outstanding units of work with the
dspmqtrn command . . . . . . . . . . 119
Resolving outstanding units of work with the
rsvmqtrn command . . . . . . . . . . 120
Mixed outcomes and errors. . . . . . . . 121
Changing configuration information . . . . . 122

Chapter 9. The WebSphere MQ
dead-letter queue handler . . . . . . 125
Invoking the DLQ handler . . . . . . . . . 125

The sample DLQ handler, amqsdlq . . . . . 126
The DLQ handler rules table . . . . . . . . 126

Control data. . . . . . . . . . . . . 126
Rules (patterns and actions) . . . . . . . 127
Rules table conventions . . . . . . . . . 130

How the rules table is processed . . . . . . . 132
Ensuring that all DLQ messages are processed 133

An example DLQ handler rules table . . . . . 133

Chapter 10. WebSphere MQ for
OpenVMS and clustering . . . . . . 137
Installing WebSphere MQ in an OpenVMS cluster 137
OpenVMS cluster failover sets . . . . . . . . 138

Overview of OpenVMS cluster failover sets . . 138

iv WebSphere MQ for HP OpenVMS: System Administration Guide



OpenVMS cluster failover set concepts . . . . 139
Preparing to configure an OpenVMS cluster
failover set . . . . . . . . . . . . . 140
Configuring an OpenVMS cluster failover set 140
OpenVMS cluster failover set post-configuration
tasks . . . . . . . . . . . . . . . 141
Editing the FAILOVER.INI configuration file 141
Command procedures used by failover sets . . 142
Administration of failover sets . . . . . . 143
Startup of failover monitors . . . . . . . 144
Starting a queue manager within a failover set 144
Ending a queue manager within a failover set 144
Moving a queue manager within a failover set 145
Displaying the state of a failover set . . . . . 145
Setting DCL symbols to the state of a failover
set . . . . . . . . . . . . . . . . 146
Halting a failover monitor process . . . . . 147
Executing commands while an update is in
progress . . . . . . . . . . . . . . 147
Changing the state of a failover set . . . . . 148
Setting up security for ICC associations . . . 148
Troubleshooting problems with failover sets . . 149
Using MultiNet for OpenVMS with failover sets 150
An example of using failover sets . . . . . 150

Chapter 11. Recovery and restart . . . 157
Making sure that messages are not lost (logging) 157

What logs look like . . . . . . . . . . 158
Types of logging . . . . . . . . . . . 158
Circular logging . . . . . . . . . . . 158
Linear logging . . . . . . . . . . . . 159

Checkpointing – ensuring complete recovery . . . 160
Calculating the size of the log . . . . . . . . 162
Managing logs . . . . . . . . . . . . . 164

What happens when a disk gets full. . . . . 164
Managing log files. . . . . . . . . . . 165

Using the log for recovery . . . . . . . . . 166
Recovering from power loss or communications
failures . . . . . . . . . . . . . . 166
Recovering damaged objects . . . . . . . 167

Protecting WebSphere MQ log files . . . . . . 169
Backing up and restoring WebSphere MQ . . . . 169

Backing up queue manager data . . . . . . 170
Restoring queue manager data . . . . . . 170
Using a backup queue manager . . . . . . 171
Creating a backup queue manager . . . . . 171
Updating a backup queue manager . . . . . 172
Starting a backup queue manager . . . . . 172

Recovery scenarios . . . . . . . . . . . 173
Disk drive failures. . . . . . . . . . . 173
Damaged queue manager object . . . . . . 174
Damaged single object . . . . . . . . . 175
Automatic media recovery failure . . . . . 175

Dumping the contents of the log using the
dmpmqlog command. . . . . . . . . . . 175

Chapter 12. Problem determination 179
Preliminary checks . . . . . . . . . . . 179

Has WebSphere MQ run successfully before? 179
Are there any error messages?. . . . . . . 180

Are there any return codes explaining the
problem? . . . . . . . . . . . . . . 180
Can you reproduce the problem? . . . . . . 180
Have any changes been made since the last
successful run? . . . . . . . . . . . . 180
Has the application run successfully before? . . 180
Problems with commands . . . . . . . . 182
Does the problem affect specific parts of the
network? . . . . . . . . . . . . . . 182
Does the problem occur at specific times of the
day? . . . . . . . . . . . . . . . 182
Is the problem intermittent? . . . . . . . 182
Have you applied any service updates? . . . 182

Looking at problems in more detail . . . . . . 183
Have you obtained incorrect output? . . . . 183
Have you failed to receive a response from a
PCF command? . . . . . . . . . . . 186
Are some of your queues failing?. . . . . . 187
Does the problem affect only remote queues? 187
Is your application or system running slowly? 187

Application design considerations . . . . . . 188
Effect of message length . . . . . . . . . 188
Effect of message persistence . . . . . . . 188
Searching for a particular message . . . . . 188
Queues that contain messages of different
lengths . . . . . . . . . . . . . . 189
Frequency of syncpoints . . . . . . . . . 189
Use of the MQPUT1 call. . . . . . . . . 189

Error logs . . . . . . . . . . . . . . 189
Error log files . . . . . . . . . . . . 189
Operator messages . . . . . . . . . . 193

Dead-letter queues . . . . . . . . . . . 194
Configuration files and problem determination . . 194
Using WebSphere MQ trace . . . . . . . . 194

Trace file names . . . . . . . . . . . 194
Sample trace data . . . . . . . . . . . 195

First-failure support technology ( FFST ) . . . . 195
How to examine the FFSTs . . . . . . . . 195

Problem determination with WebSphere MQ clients 198
Terminating clients . . . . . . . . . . 198

Error messages with clients. . . . . . . . . 198
OpenVMS clients . . . . . . . . . . . 198

Chapter 13. How to use WebSphere
MQ control commands . . . . . . . 199
Names of WebSphere MQ objects. . . . . . . 199
How to read syntax diagrams . . . . . . . . 200
Example syntax diagram . . . . . . . . . 201
Syntax help . . . . . . . . . . . . . . 201

Examples . . . . . . . . . . . . . . 202

Chapter 14. The control commands 203
crtmqcvx (data conversion) . . . . . . . . . 204
crtmqm (create queue manager) . . . . . . . 205
dltmqm (delete queue manager) . . . . . . . 209
dmpmqaut (dump authority) . . . . . . . . 210
dmpmqlog (dump log) . . . . . . . . . . 214
dspmq (display queue managers). . . . . . . 215
dspmqaut (display authority) . . . . . . . . 216
dspmqcsv (display command server) . . . . . 220

Contents v



dspmqfls (display files) . . . . . . . . . . 221
dspmqrte (WebSphere MQ display route
application) . . . . . . . . . . . . . . 222
dspmqtrc (Display WebSphere MQ formatted trace
output) . . . . . . . . . . . . . . . 230
dspmqtrn (display transactions) . . . . . . . 231
dspmqver (display version information) . . . . 232
endmqcsv (end command server). . . . . . . 233
endmqlsr (end listener) . . . . . . . . . . 234
endmqm (end queue manager) . . . . . . . 235
endmqtrc (End WebSphere MQ trace) . . . . . 237
mqftapp (run File Transfer Application GUI) . . . 238
mqftrcv (receive file on server) . . . . . . . 239
mqftrcvc (receive file on client) . . . . . . . 241
mqftsnd (send file from server) . . . . . . . 244
mqftsndc (send file from client) . . . . . . . 246
rcdmqimg (record media image) . . . . . . . 248
rcrmqobj (recreate object) . . . . . . . . . 250
rsvmqtrn (resolve transactions) . . . . . . . 252
runmqchi (run channel initiator) . . . . . . . 253
runmqchl (run channel) . . . . . . . . . . 254
runmqdlq (run dead-letter queue handler). . . . 255
runmqlsr (run listener) . . . . . . . . . . 256
runmqsc (run MQSC commands) . . . . . . . 258
runmqtmc (start client trigger monitor) . . . . . 260
runmqtrm (start trigger monitor) . . . . . . . 261
setmqaut (grant or revoke authority) . . . . . 261

Authorizations for MQI calls . . . . . . . 267
Authorizations for context . . . . . . . . 267
Authorizations for commands . . . . . . . 267
Authorizations for generic operations . . . . 268

setmqprd (enroll production license). . . . . . 268
strmqcsv (start command server) . . . . . . . 268
strmqm (start queue manager). . . . . . . . 269

Appendix A. System and default
objects . . . . . . . . . . . . . . 273

Appendix B. Directory structure . . . 275
Directories and files in MQS_ROOT:[MQM] . . . 277
Directories and files in the
MQS_ROOT:[MQM.QMGRS.QMNAME]
subdirectory . . . . . . . . . . . . . . 277

Appendix C. Comparing command
sets . . . . . . . . . . . . . . . 281
Commands for queue manager administration . . 281
Commands for command server administration 281
Commands for queue administration . . . . . 282
Commands for process administration . . . . . 282
Commands for channel administration . . . . . 283
Other control commands . . . . . . . . . 284

Appendix D. Stopping and removing
queue managers manually. . . . . . 285
Stopping a queue manager manually . . . . . 285

Stopping queue managers in WebSphere MQ for
OpenVMS systems . . . . . . . . . . 285

Removing queue managers manually . . . . . 285

Removing queue managers in WebSphere MQ
for Windows . . . . . . . . . . . . 286
Removing queue managers in WebSphere MQ
for UNIX systems . . . . . . . . . . . 287

Appendix E. Sample MQI programs
and MQSC files . . . . . . . . . . 289
MQSC command file samples . . . . . . . . 289
C and COBOL program samples . . . . . . . 289
Miscellaneous tools . . . . . . . . . . . 290
Command file for application triggering . . . . 290

Examples . . . . . . . . . . . . . . 290

Appendix F. OpenVMS cluster failover
set templates . . . . . . . . . . . 293
Template Configuration File
FAILOVER.TEMPLATE . . . . . . . . . . 293
Template StartCommand procedure
START_QM.TEMPLATE . . . . . . . . . . 294
Template EndCommand procedure
END_QM.TEMPLATE . . . . . . . . . . 295
Template TidyCommand procedure
TIDY_QM.TEMPLATE . . . . . . . . . . 297

Appendix G. MONMQ diagnostic utility 299
Overview. . . . . . . . . . . . . . . 299
Variables within MONMQ . . . . . . . . . 300

Assigning default values . . . . . . . . 302
Opening or creating a trace section and associated
mailbox . . . . . . . . . . . . . . . 302
Displaying the logical unit definition . . . . . 303
Closing and deleting an LU . . . . . . . . 303
Display channel details . . . . . . . . . . 303
Display the current trace mask for a channel . . . 304
Display the contents of the target threads stack . . 304
Display active WebSphere MQ related processes
and memory usage . . . . . . . . . . . 305
Displays all messages held in a channel . . . . 305
Display all WebSphere MQ related global sections
on the current node . . . . . . . . . . . 306
Signals target thread to send mutex table to client
trace process . . . . . . . . . . . . . 307
Signals target thread to send internal events table
to client trace process. . . . . . . . . . . 308
Signals target thread to send internal mapped
shared memory table to the client trace process . . 309
Displays active WebSphere MQ components by
name and hexadecimal ids . . . . . . . . . 310
Display functions within specified component . . 311
Activate tracing from the point a process starts . . 312
Prevent WebSphere MQ process from tracing
immediately from startup . . . . . . . . . 312
Connect target thread to specified channel. . . . 312
Disconnect target thread to specified channel . . . 313
Display real-time trace message written to the LUs
trace mailbox . . . . . . . . . . . . . 313
Detach and end current client process . . . . . 313
Specify trace data . . . . . . . . . . . . 313
Remove single entry from the trace filter table . . 314
Client process writes trace messages to a binary file 314

vi WebSphere MQ for HP OpenVMS: System Administration Guide



Close binary trace messages file . . . . . . . 315
Client process writes trace messages to a text file 315
Close text trace messages file . . . . . . . . 315
Timestamp messages . . . . . . . . . . . 315
Stop timestamping messages . . . . . . . . 315
Enable tracing . . . . . . . . . . . . . 315
Disable tracing . . . . . . . . . . . . . 316
Save message history . . . . . . . . . . . 316
Disable message history . . . . . . . . . . 316
Delete message history . . . . . . . . . . 316
Set history depth . . . . . . . . . . . . 316
Reset stack and history data for a channel . . . . 317
Enable or disable mask bit . . . . . . . . . 317
Set a color for a channel . . . . . . . . . . 318
Redirect output to file . . . . . . . . . . 319
Analyze trace binary file . . . . . . . . . 319
Display current state of WebSphere MQ threads 321
Close trace and exit MONMQ . . . . . . . . 321
Quit MONMQ without closing trace. . . . . . 321
Managing shared memory with MONMQ . . . . 322
Scripts and macros in MONMQ . . . . . . . 323
Sample trace session . . . . . . . . . . . 324

Appendix H. User exits . . . . . . . 335
Channel and Workload Exits . . . . . . . . 335
WebSphere MQ Cluster Workload Exits . . . . 335

Appendix I. Trusted applications . . . 337
User applications . . . . . . . . . . . . 337

Setting up trusted applications . . . . . . 337
Running channels and listeners as trusted
applications . . . . . . . . . . . . . . 338

Fast, nonpersistent messages . . . . . . . 338

Appendix J. SSL CipherSpecs . . . . 339

Notices . . . . . . . . . . . . . . 341

Trademarks . . . . . . . . . . . . 343

Index . . . . . . . . . . . . . . . 345

Sending your comments to IBM . . . 357

Contents vii



viii WebSphere MQ for HP OpenVMS: System Administration Guide



Figures

1. Queues, messages, and applications . . . . 29
2. Extract from the MQSC command file,

myprog.in . . . . . . . . . . . . . 33
3. Extract from the MQSC report file,

myprog.out. . . . . . . . . . . . . 34
4. Typical output from a DISPLAY QMGR

command . . . . . . . . . . . . . 37
5. Typical results from a queue browser . . . . 42
6. Remote administration using MQSC

commands . . . . . . . . . . . . . 60
7. Setting up channels and queues for remote

administration . . . . . . . . . . . 61
8. Example of a WebSphere MQ configuration file

for WebSphere MQ for HP OpenVMS systems . 88
9. Example queue manager configuration file for

WebSphere MQ for HP OpenVMS . . . . . 89
10. Source code for Oracle switch load file,

oraswit.c . . . . . . . . . . . . . 115
11. Sample XAResourceManager entry for Oracle 118
12. Sample dspmqtrn output . . . . . . . 120
13. Sample dspmqtrn output for a transaction in

error . . . . . . . . . . . . . . 122

14. Commented out XAResourceManager stanza 123
15. Sample entry required for

ICC$SYSTARTUP.COM . . . . . . . . 149
16. Failover.template for creating a

FAILOVER.INI configuration file . . . . . 151
17. start_failover_set command procedure 153
18. end_failover_set command procedure 155
19. Checkpointing . . . . . . . . . . . 161
20. Checkpointing with a long-running

transaction . . . . . . . . . . . . 162
21. Sample WebSphere MQ for HP OpenVMS

trace . . . . . . . . . . . . . . 195
22. Default directory structure after a queue

manager has been started . . . . . . . 276
23. Template configuration file: failover.template 294
24. Template StartCommand procedure:

Start_QM.template . . . . . . . . . . 295
25. Template EndCommand procedure:

END_QM.template. . . . . . . . . . 297
26. Template TidyCommand procedure:

TIDY_QM.template . . . . . . . . . 298

© Copyright IBM Corp. 1994, 2009 ix



x WebSphere MQ for HP OpenVMS: System Administration Guide



Tables

1. Categories of control commands . . . . . 21
2. List of possible ISO CCSIDs . . . . . . . 74
3. Default outstanding connection requests (TCP) 85
4. Security authorization needed for MQI calls 102
5. MQSC commands and security authorization

needed. . . . . . . . . . . . . . 105
6. PCF commands and security authorization

needed. . . . . . . . . . . . . . 106
7. Description of the fields within the

FAILOVER.INI file . . . . . . . . . . 141
8. Parameters passed to command procedures 142
9. Failover set queue manager states. . . . . 145

10. Failover set node queue manager states 146
11. Failover set node monitor states . . . . . 146
12. DCL symbols and description . . . . . . 147
13. Log overhead sizes (all values are

approximate). . . . . . . . . . . . 163
14. How to read syntax diagrams . . . . . . 200
15. Specifying authorities for different object

types . . . . . . . . . . . . . . 218

16. Specifying authorities for different object
types . . . . . . . . . . . . . . 265

17. System and default objects for queues 273
18. System and default objects for channels 274
19. System and default objects for namelists 274
20. System and default objects for processes 274
21. Commands for queue manager

administration . . . . . . . . . . . 281
22. Commands for command server

administration . . . . . . . . . . . 281
23. Commands for queue administration 282
24. Commands for process administration 282
25. Commands for channel administration 283
26. Other control commands. . . . . . . . 284
27. MQSC command files. . . . . . . . . 289
28. Sample programs - source files. . . . . . 289
29. Miscellaneous files . . . . . . . . . . 290

© Copyright IBM Corp. 1994, 2009 xi



xii WebSphere MQ for HP OpenVMS: System Administration Guide



Chapter 1. Introduction to WebSphere MQ

This chapter introduces WebSphere® MQ Version 6 from an administrator’s
perspective, and describes the basic concepts of WebSphere MQ and messaging. It
contains these sections:
v “WebSphere MQ and message queuing”
v “Messages and queues” on page 2
v “Objects” on page 3
v “Clients and servers” on page 11
v “Extending queue manager facilities” on page 11
v “Security” on page 13
v “Transactional support” on page 13

WebSphere MQ and message queuing

WebSphere MQ allows application programs to use message queuing to participate
in message-driven processing. Application programs can communicate across
different platforms by using the appropriate message queuing software products.
For example, HP-UX and z/OS® applications can communicate through WebSphere
MQ for HP-UX and WebSphere MQ for z/OS respectively. The applications are
shielded from the mechanics of the underlying communications.

WebSphere MQ implements a common application programming interface known
as the message queue interface (or MQI) wherever the applications run. This makes it
easier for you to port application programs from one platform to another.

The MQI is described in detail in the WebSphere MQ Application Programming
Reference manual.

Note: Message Queue Interface calls cannot be made from within an AST routine
on WebSphere MQ on OpenVMS because WebSphere MQ uses AST routines itself,
and these routines cannot run while another AST routine is active.

Time-independent applications

With message queuing, the exchange of messages between the sending and
receiving programs is independent of time. This means that the sending and
receiving application programs are decoupled; the sender can continue processing
without having to wait for the receiver to acknowledge receipt of the message. The
target application does not even have to be running when the message is sent. It
can retrieve the message after it is has been started.

Message-driven processing

When messages arrive on a queue, they can automatically start an application
using triggering. If necessary, the applications can be stopped when the message (or
messages) have been processed.

© Copyright IBM Corp. 1994, 2009 1



Messages and queues

Messages and queues are the basic components of a message queuing system.

What is a message?

A message is a string of bytes that is meaningful to the applications that use it.
Messages are used to transfer information from one application program to another
(or between different parts of the same application). The applications can be
running on the same platform, or on different platforms.

WebSphere MQ messages have two parts:
v The application data. The content and structure of the application data is defined

by the application programs that use it.
v A message descriptor. The message descriptor identifies the message and contains

additional control information, such as the type of message and the priority
assigned to the message by the sending application.
The format of the message descriptor is defined by WebSphere MQ. For a
complete description of the message descriptor, see the WebSphere MQ
Application Programming Reference manual.

Message lengths

The default maximum message length is 4 MB, although you can increase this to a
maximum length of 100 MB (where 1 MB equals 1 048 576 bytes). In practice, the
message length might be limited by:
v The maximum message length defined for the receiving queue
v The maximum message length defined for the queue manager
v The maximum message length defined by the queue
v The maximum message length defined by either the sending or receiving

application
v The amount of storage available for the message

It might take several messages to send all the information that an application
requires.

How do applications send and receive messages?

Application programs send and receive messages using MQI calls.

For example, to put a message onto a queue, an application:
1. Opens the required queue by issuing an MQI MQOPEN call
2. Issues an MQI MQPUT call to put the message onto the queue

Another application can retrieve the message from the same queue by issuing an
MQI MQGET call

For more information about MQI calls, see the WebSphere MQ Application
Programming Reference manual.

What is a queue?

A queue is a data structure used to store messages.

2 WebSphere MQ for HP OpenVMS: System Administration Guide



Each queue is owned by a queue manager. The queue manager is responsible for
maintaining the queues it owns, and for storing all the messages it receives onto
the appropriate queues. The messages might be put on the queue by application
programs, or by a queue manager as part of its normal operation.

WebSphere MQ Version 6.0 supports queues over 2 GB in size. For information
about planning the amount of storage you need for queues, see WebSphere MQ for
HP OpenVMS Quick Beginnings , or visit the WebSphere MQ Web site:
http://www-306.ibm.com/software/integration/wmqproductline/

Predefined queues and dynamic queues

Queues can be characterized by the way they are created:
v Predefined queues are created by an administrator using the appropriate MQSC

or PCF commands. Predefined queues are permanent; they exist independently
of the applications that use them and survive WebSphere MQ restarts.

v Dynamic queues are created when an application issues an MQOPEN request
specifying the name of a model queue. The queue created is based on a template
queue definition, which is called a model queue. You can create a model queue
using the MQSC command DEFINE QMODEL. The attributes of a model queue
(for example, the maximum number of messages that can be stored on it) are
inherited by any dynamic queue that is created from it.
Model queues have an attribute that specifies whether the dynamic queue is to
be permanent or temporary. Permanent queues survive application and queue
manager restarts; temporary queues are lost on restart.

Retrieving messages from queues

Suitably authorized applications can retrieve messages from a queue according to
the following retrieval algorithms:
v First-in-first-out (FIFO).
v Message priority, as defined in the message descriptor. Messages that have the

same priority are retrieved on a FIFO basis.
v A program request for a specific message.

The MQGET request from the application determines the method used.

Objects

Many of the tasks described in this book involve manipulating WebSphere MQ
objects. The object types are queue managers, queues, process definitions,
namelists, channels, client connection channels, listeners, services, and
authentication information objects.

The manipulation or administration of objects includes:
v Starting and stopping queue managers.
v Creating objects, particularly queues, for applications.
v Working with channels to create communication paths to queue managers on

other (remote) systems. This is described in detail in the WebSphere MQ
Intercommunications manual.

v Creating clusters of queue managers to simplify the overall administration
process, and to balance workload.

Chapter 1. Introduction to WebSphere MQ 3



This book contains detailed information about administration in the following
chapters:
v Chapter 2, “An introduction to WebSphere MQ administration,” on page 15
v Chapter 3, “Managing queue managers,” on page 21
v Chapter 4, “Administering local WebSphere MQ objects,” on page 29
v Chapter 5, “Automating administration tasks,” on page 55

Object names

The naming convention adopted for WebSphere MQ objects depends on the object.

Each instance of a queue manager is known by its name. This name must be
unique within the network of interconnected queue managers, so that one queue
manager can unambiguously identify the target queue manager to which any
given message is sent.

For the other types of object, each object has a name associated with it and can be
referred to by that name. These names must be unique within one queue manager
and object type. For example, you can have a queue and a process with the same
name, but you cannot have two queues with the same name.

In WebSphere MQ, names can have a maximum of 48 characters, with the
exception of channels which have a maximum of 20 characters. For more
information about names, see “Names of WebSphere MQ objects” on page 199.

Managing objects

You can create, alter, display, and delete objects using:
v Control commands, which are typed in from a keyboard
v MQSC commands, which can be typed in from a keyboard or read from a file
v Programmable Command Format (PCF) messages, which can be used in an

automation program
v WebSphere MQ Administration Interface (MQAI) calls in a program

For more information about these methods, see Chapter 2, “An introduction to
WebSphere MQ administration,” on page 15.

Object attributes

The properties of an object are defined by its attributes. Some you can specify,
others you can only view. For example, the maximum message length that a queue
can accommodate is defined by its MaxMsgLength attribute; you can specify this
attribute when you create a queue. The DefinitionType attribute specifies how the
queue was created; you can only display this attribute.

In WebSphere MQ, there are two ways of referring to an attribute:
v Using its PCF name, for example, MaxMsgLength.
v Using its MQSC command name, for example, MAXMSGL.

This book mainly describes how to specify attributes using MQSC commands, and
so it refers to most attributes using their MQSC command names, rather than their
PCF names.

4 WebSphere MQ for HP OpenVMS: System Administration Guide



WebSphere MQ queues

There are four types of queue object available in WebSphere MQ.

Local queue object
A local queue object identifies a local queue belonging to the queue
manager to which the application is connected. All queues are local queues
in the sense that each queue belongs to a queue manager and, for that
queue manager, the queue is a local queue.

Remote queue object
A remote queue object identifies a queue belonging to another queue
manager. This queue must be defined as a local queue to that queue
manager. The information you specify when you define a remote queue
object allows the local queue manager to find the remote queue manager,
so that any messages destined for the remote queue go to the correct
queue manager.

Before applications can send messages to a queue on another queue
manager, you must have defined a transmission queue and channels
between the queue managers, unless you have grouped one or more queue
managers together into a cluster. For more information about clusters, see
“Remote administration using clusters” on page 58.

Alias queue object
An alias queue allows applications to access a queue by referring to it
indirectly in MQI calls. When an alias queue name is used in an MQI call,
the name is resolved to the name of either a local or a remote queue at run
time. This allows you to change the queues that applications use without
changing the application in any way; you merely change the alias queue
definition to reflect the name of the new queue to which the alias resolves.

An alias queue is not a queue, but an object that you can use to access
another queue.

Model queue object
A model queue defines a set of queue attributes that are used as a template
for creating a dynamic queue. Dynamic queues are created by the queue
manager when an application issues an MQOPEN request specifying a
queue name that is the name of a model queue. The dynamic queue that is
created in this way is a local queue whose attributes are taken from the
model queue definition. The dynamic queue name can be specified by the
application, or the queue manager can generate the name and return it to
the application.

Dynamic queues defined in this way can be temporary queues, which do
not survive product restarts, or permanent queues, which do.

Defining queues

Queues are defined to WebSphere MQ using:
v The MQSC command DEFINE
v The PCF Create Queue command

The commands specify the type of queue and its attributes. For example, a local
queue object has attributes that specify what happens when applications reference
that queue in MQI calls. Examples of attributes are:
v Whether applications can retrieve messages from the queue (GET enabled)

Chapter 1. Introduction to WebSphere MQ 5



v Whether applications can put messages on the queue (PUT enabled)
v Whether access to the queue is exclusive to one application or shared between

applications
v The maximum number of messages that can be stored on the queue at the same

time (maximum queue depth)
v The maximum length of messages that can be put on the queue

For further details about defining queue objects, see the WebSphere MQ Script
(MQSC) Command Reference or WebSphere MQ Programmable Command Formats and
Administration Interface manuals.

Queues used by WebSphere MQ

WebSphere MQ uses some local queues for specific purposes related to its
operation. You must define these queues before WebSphere MQ can use them.

Application queues
A queue that is used by an application (through the MQI) is referred to as
an application queue. This can be a local queue on the queue manager to
which an application is connected, or it can be a remote queue that is
owned by another queue manager.

Applications can put messages on local or remote queues. However, they
can get messages only from a local queue.

Initiation queues
Initiation queues are queues that are used in triggering. A queue manager
puts a trigger message on an initiation queue when a trigger event occurs.
A trigger event is a logical combination of conditions that is detected by a
queue manager. For example, a trigger event might be generated when the
number of messages on a queue reaches a predefined depth. This event
causes the queue manager to put a trigger message on a specified initiation
queue. This trigger message is retrieved by a trigger monitor, a special
application that monitors an initiation queue. The trigger monitor then
starts the application program that was specified in the trigger message.

If a queue manager is to use triggering, at least one initiation queue must
be defined for that queue manager. See “Managing objects for triggering”
on page 51 and “runmqtrm (start trigger monitor)” on page 261. For more
information about triggering, see the WebSphere MQ Application
Programming Guide.

Transmission queues
Transmission queues are queues that temporarily store messages that are
destined for a remote queue manager. You must define at least one
transmission queue for each remote queue manager to which the local
queue manager is to send messages directly. These queues are also used in
remote administration; see “Remote administration from a local queue
manager” on page 59. For information about the use of transmission
queues in distributed queuing, see the WebSphere MQ Intercommunications
manual.

Each queue manager can have a default transmission queue. When a
queue manager that is not part of a cluster puts a message onto a remote
queue, the default action, if there is no transmission queue with the same
name as the destination queue manager, is to use the default transmission
queue.

6 WebSphere MQ for HP OpenVMS: System Administration Guide



Cluster transmission queues
Each queue manager within a cluster has a cluster transmission queue
called SYSTEM.CLUSTER.TRANSMIT.QUEUE. A definition of this queue is
created by default when you define a queue manager.

A queue manager that is part of the cluster can send messages on the
cluster transmission queue to any other queue manager that is in the same
cluster.

During name resolution, the cluster transmission queue takes precedence
over the default transmission queue.

When a queue manager is part of a cluster, the default action is to use the
SYSTEM.CLUSTER.TRANSMIT.QUEUE, except when the destination
queue manager is not part of the cluster.

Dead-letter queues
A dead-letter (undelivered-message) queue is a queue that stores messages
that cannot be routed to their correct destinations. This occurs when, for
example, the destination queue is full. The supplied dead-letter queue is
called SYSTEM.DEAD.LETTER.QUEUE.

For distributed queuing, define a dead-letter queue on each queue
manager involved.

Command queues
The command queue, SYSTEM.ADMIN.COMMAND.QUEUE, is a local
queue to which suitably authorized applications can send MQSC
commands for processing. These commands are then retrieved by a
WebSphere MQ component called the command server. The command
server validates the commands, passes the valid ones on for processing by
the queue manager, and returns any responses to the appropriate reply-to
queue.

A command queue is created automatically for each queue manager when
that queue manager is created.

Reply-to queues
When an application sends a request message, the application that receives
the message can send back a reply message to the sending application.
This message is put on a queue, called a reply-to queue, which is normally
a local queue to the sending application. The name of the reply-to queue is
specified by the sending application as part of the message descriptor.

Event queues
WebSphere MQ supports instrumentation events, which can be used to
monitor queue managers independently of MQI applications.
Instrumentation events can be generated in several ways. For example:
v An application attempting to put a message on a queue that is not

available or does not exist
v A queue becoming full
v A channel being started

When an instrumentation event occurs, the queue manager puts an event
message on an event queue. This message can then be read by a
monitoring application, which might inform an administrator or initiate
some remedial action if the event indicates a problem.

Chapter 1. Introduction to WebSphere MQ 7



Note: Trigger events are different from instrumentation events in that
trigger events are not caused by the same conditions, and do not generate
event messages.

For more information about instrumentation events, see the WebSphere MQ
Programmable Command Formats and Administration Interface manual.

WebSphere MQ queue managers

A queue manager provides queuing services to applications, and manages the
queues that belong to it. It ensures that:
v Object attributes are changed according to the commands received.
v Special events such as trigger events or instrumentation events are generated

when the appropriate conditions are met.
v Messages are put on the correct queue, as requested by the application making

the MQPUT call. The application is informed if this cannot be done, and an
appropriate reason code is given.

Each queue belongs to a single queue manager and is said to be a local queue to
that queue manager. The queue manager to which an application is connected is
said to be the local queue manager for that application. For the application, the
queues that belong to its local queue manager are local queues.

A remote queue is a queue that belongs to another queue manager. A remote queue
manager is any queue manager other than the local queue manager. A remote
queue manager can exist on a remote machine across the network, or might exist
on the same machine as the local queue manager. WebSphere MQ supports
multiple queue managers on the same machine.

A queue manager object can be used in some MQI calls. For example, you can
inquire about the attributes of the queue manager object using the MQI call
MQINQ.

Process definitions

A process definition object defines an application that starts in response to a trigger
event on a WebSphere MQ queue manager. See the Initiation queues entry under
“Queues used by WebSphere MQ” on page 6 for more information.

The process definition attributes include the application ID, the application type,
and data specific to the application.

Use the MQSC command DEFINE PROCESS or the PCF command Create Process
to create a process definition.

Clusters

In a traditional WebSphere MQ network using distributed queuing, every queue
manager is independent. If one queue manager needs to send messages to another
queue manager, it must define a transmission queue, a channel to the remote
queue manager, and a remote queue definition for every queue to which it wants
to send messages.

8 WebSphere MQ for HP OpenVMS: System Administration Guide



A cluster is a group of queue managers set up in such a way that the queue
managers can communicate directly with one another over a single network,
without the need for transmission queue, channel, and remote queue definitions.

For information about clusters, see “Administering remote WebSphere MQ objects”
on page 57, and the WebSphere MQ Queue Manager Clusters manual.

Note: WebSphere MQ clusters are not the same as OpenVMS clusters. When the
term cluster is used, it refers to a WebSphere MQ queue manager cluster. An
OpenVMS cluster is always referred to as an OpenVMS cluster. For more
information on OpenVMS clusters, see Chapter 10, “WebSphere MQ for OpenVMS
and clustering,” on page 137

Namelists

A namelist is a WebSphere MQ object that contains a list of other WebSphere MQ
objects. Typically, namelists are used by applications such as trigger monitors,
where they are used to identify a group of queues. The advantage of using a
namelist is that it is maintained independently of applications; it can be updated
without stopping any of the applications that use it. Also, if one application fails,
the namelist is not affected and other applications can continue using it.

Namelists are also used with queue manager clusters to maintain a list of clusters
referred to by more than one WebSphere MQ object.

Authentication information objects

The queue manager authentication information object forms part of WebSphere
MQ support for Secure Sockets Layer (SSL) security. It provides the definitions
needed to check certificate revocation lists (CRLs) using LDAP servers. CRLs allow
Certification Authorities to revoke certificates that can no longer be trusted.

This book describes using the setmqaut, dspmqaut, dmpmqaut, rcrmqobj,
rcdmqimg, and dspmqfls commands with the authentication information object.
For an overview of SSL and the use of the authentication information objects, see
Chapter 7, “WebSphere MQ security,” on page 91.

Channels

Channels are objects that provide a communication path from one queue manager
to another. Channels are used in distributed queuing to move messages from one
queue manager to another. They shield applications from the underlying
communications protocols. The queue managers might exist on the same, or
different, platforms. For queue managers to communicate with one another, you
must define one channel object at the queue manager that is to send messages, and
another, complementary one, at the queue manager that is to receive them.

For information on channels and how to use them, see the WebSphere MQ
Intercommunications manual.

Client connection channels

Client connection channels are objects that provide a communication path from a
WebSphere MQ client to a queue manager. Client connection channels are used in
distributed queuing to move messages between a queue manager and a client.

Chapter 1. Introduction to WebSphere MQ 9



They shield applications from the underlying communications protocols. The client
might exist on the same, or different, platform to the queue manager.

For information on client connection channels and how to use them, see the
WebSphere MQ Intercommunications manual.

Listeners

Listeners are processes that accept network requests from other queue managers, or
client applications, and start associated channels. Listener processes can be started
using the runmqlsr control command.

Listener objects are WebSphere MQ objects that allow you to manage the starting
and stopping of listener processes from within the scope of a queue manager. By
defining attributes of a listener object you do the following:
v Configure the listener process.
v Specify whether the listener process automatically starts and stops when the

queue manager starts and stops.

Services

Service objects are a way of defining programs to be executed when a queue
manager starts or stops. The programs can be split into the following types:

Servers
A server is a service object that has the parameter SERVTYPE specified as
SERVER. A server service object is the definition of a program that is
executed when a specified queue manager is started. Only one instance of
a server process can be executed concurrently. While running, the status of
a server process can be monitored using the MQSC command, DISPLAY
SVSTATUS. Typically server service objects are definitions of programs
such as dead letter handlers or trigger monitors, however the programs
that can be run are not limited to those supplied with WebSphere MQ.
Additionally, a server service object can be defined to include a command
that runs when the specified queue manager is shutdown to end the
program.

Commands
A command is a service object that has the parameter SERVTYPE specified
as COMMAND. A command service object is the definition of a program
that is executed when a specified queue manager is started or stopped.
Multiple instances of a command process can be executed concurrently.
Command service objects differ from server service objects in that once the
program is executed the queue manager does not monitor the program.
Typically command service objects are definitions of programs that are
short lived and perform a specific task such as starting one, or more, other
tasks.

System default objects

The system default objects are a set of object definitions that are created
automatically whenever a queue manager is created. You can copy and modify any
of these object definitions for use in applications at your installation.

10 WebSphere MQ for HP OpenVMS: System Administration Guide



Default object names have the stem SYSTEM; for example, the default local queue
is SYSTEM.DEFAULT.LOCAL.QUEUE, and the default receiver channel is
SYSTEM.DEF.RECEIVER. You cannot rename these objects; default objects of these
names are required.

When you define an object, any attributes that you do not specify explicitly are
copied from the appropriate default object. For example, if you define a local
queue, those attributes that you do not specify are taken from the default queue
SYSTEM.DEFAULT.LOCAL.QUEUE.

For more information see Appendix A, “System and default objects,” on page 273

Clients and servers

WebSphere MQ supports client-server configurations for its applications.

A WebSphere MQ client is a component that allows an application running on a
system to issue MQI calls to a queue manager running on another system. The
output from the call is sent back to the client, which passes it back to the
application.

A WebSphere MQ server is a queue manager that provides queuing services to one
or more clients. All the WebSphere MQ objects, for example queues, exist only on
the queue manager machine (the WebSphere MQ server machine), and not on the
client. A WebSphere MQ server can also support local WebSphere MQ applications.

The difference between a WebSphere MQ server and an ordinary queue manager is
that a server has a dedicated communications link with each client. For more
information about creating channels for clients and servers, see the WebSphere MQ
Intercommunications manual.

For information about client support in general, see the WebSphere MQ Clients
manual.

WebSphere MQ applications in a client-server environment

When linked to a server, client WebSphere MQ applications can issue most MQI
calls in the same way as local applications. The client application issues an
MQCONN call to connect to a specified queue manager. Any additional MQI calls
that specify the connection handle returned from the connect request are then
processed by this queue manager.

You must link your applications to the appropriate client libraries. See the
WebSphere MQ Clients manual for further information.

Extending queue manager facilities

The facilities provided by a queue manager can be extended by:
v User exits
v API exits
v Installable services

See “Installable services” on page 12 for more information about the installable
services.

Chapter 1. Introduction to WebSphere MQ 11



User exits

User exits provide a mechanism for you to insert your own code into a queue
manager function. The user exits supported include:

Channel exits
These exits change the way that channels operate. Channel exits are
described in the WebSphere MQ Intercommunications manual.

Data conversion exits
These exits create source code fragments that can be put into application
programs to convert data from one format to another. Data conversion
exits are described in the WebSphere MQ Application Programming Guide.

The cluster workload exit
The function performed by this exit is defined by the provider of the exit.
Call definition information is given in the WebSphere MQ Queue Manager
Clusters manual.

API exits

API exits let you write code that changes the behavior of WebSphere MQ API calls,
such as MQPUT and MQGET, and then insert that code immediately before or
immediately after those calls. The insertion is automatic; the queue manager drives
the exit code at the registered points. For more information about API exits, see
“API exits” on page 78 and the WebSphere MQ Application Programming Guide.

Installable services

Installable services have formalized interfaces (an API) with multiple entry points.

An implementation of an installable service is called a service component. You can
use the components supplied with WebSphere MQ, or you can write your own
component to perform the functions that you require.

Currently, the following installable services are provided:

Authorization service
The authorization service allows you to build your own security facility.

The default service component that implements the service is the Object
Authority Manager (OAM). By default, the OAM is active, and you do not
have to do anything to configure it. You can use the authorization service
interface to create other components to replace or augment the OAM. For
more information about the OAM, see Chapter 7, “WebSphere MQ
security,” on page 91.

Name service
The name service enables applications to share queues by identifying
remote queues as though they were local queues.

You can write your own name service component. You might want to do
this if you intend to use the name service with WebSphere MQ Version 6.0,
for example. To use the name service you must have either a user-written,
or a third party, component. By default, the name service is inactive.

12 WebSphere MQ for HP OpenVMS: System Administration Guide



Security

In WebSphere MQ, there are three methods of providing security:
v The Object Authority Manager (OAM) facility
v User-written, or third party, channel exits
v Channel security using Secure Sockets Layer (SSL)

Object Authority Manager (OAM) facility

Authorization for using MQI calls, commands, and access to objects is provided by
the Object Authority Manager (OAM), which by default is enabled. Access to
WebSphere MQ entities is controlled through WebSphere MQ user groups and the
OAM. We provide a command line interface to enable administrators to grant or
revoke authorizations as required.

For more information about creating authorization service components, see
Chapter 7, “WebSphere MQ security,” on page 91.

User-written or third party channel exits

Channels can use user-written or third party channel exits. For more information,
see the WebSphere MQ Intercommunications manual.

Channel security using SSL

The Secure Sockets Layer (SSL) protocol provides industry-standard channel
security, with protection against eavesdropping, tampering, and impersonation.

SSL uses public key and symmetric techniques to provide message privacy and
integrity and mutual authentication.

For a comprehensive review of security in WebSphere MQ including detailed
information on SSL, see the WebSphere MQ Security manual. For an overview of
SSL, including pointers to the commands described in this book, see “Working
with Queue Manager and Client Certificates” on page 108.

Transactional support

An application program can group a set of updates into a unit of work. These
updates are usually logically related and must all be successful for data integrity to
be preserved. If one update succeeds while another fails, data integrity is lost.

When a unit of work completes successfully, it is said to commit. Once committed,
all updates made within that unit of work are made permanent and irreversible.
However, if the unit of work fails, all updates are instead backed out. This process,
where units of work are either committed or backed out with integrity, is known
as syncpoint coordination.

A local unit of work is one in which the only resources updated are those of the
WebSphere MQ queue manager. Here syncpoint coordination is provided by the
queue manager itself using a single-phase commit process.

Chapter 1. Introduction to WebSphere MQ 13



A global unit of work is one in which resources belonging to other resource
managers, such as XA-compliant databases, are also updated. Here, a two-phase
commit procedure must be used and the unit of work can be coordinated by the
queue manager itself, or externally by another XA-compliant transaction manager
such as IBM® TXSeries®, or BEA Tuxedo.

For more information, see Chapter 8, “Transactional support,” on page 111.

14 WebSphere MQ for HP OpenVMS: System Administration Guide



Chapter 2. An introduction to WebSphere MQ administration

This chapter introduces WebSphere MQ administration.

Administration tasks include creating, starting, altering, viewing, stopping, and
deleting clusters, processes and WebSphere MQ objects (queue managers, queues,
namelists, process definitions, channels, client connection channels, listeners,
services, and authentication information objects).

The chapter contains the following sections:
v “Local and remote administration”
v “Performing administration tasks using commands”
v “Understanding WebSphere MQ file names” on page 17
v “Understanding case sensitivity” on page 18

Local and remote administration

You administer WebSphere MQ objects locally or remotely.

Local administration means carrying out administration tasks on any queue
managers you have defined on your local system. You can access other systems,
for example through the TCP/IP terminal emulation program telnet, and carry out
administration there. In WebSphere MQ, you can consider this as local
administration because no channels are involved, that is, the communication is
managed by the operating system.

WebSphere MQ supports administration from a single point of contact through
what is known as remote administration. This allows you to issue commands from
your local system that are processed on another system. For example, you can
issue a remote command to change a queue definition on a remote queue manager.
You do not have to log on to that system, although you do need to have the
appropriate channels defined. The queue manager and command server on the
target system must be running.

Some commands cannot be issued in this way, in particular, creating or starting
queue managers and starting command servers. To perform this type of task, you
must either log onto the remote system and issue the commands from there or
create a process that can issue the commands for you.

“Administering remote WebSphere MQ objects” on page 57 describes the subject of
remote administration in greater detail.

Performing administration tasks using commands

There are three sets of commands that you can use to administer WebSphere MQ:
v Control commands
v MQSC commands
v PCF commands

© Copyright IBM Corp. 1994, 2009 15



Control commands

Control commands allow you to perform administrative tasks on queue managers
themselves.

They are described in Chapter 3, “Managing queue managers,” on page 21.

WebSphere MQ Script (MQSC) commands

Use MQSC commands to manage queue manager objects, including the queue
manager itself, queues, process definitions, namelists, channels, client connection
channels, listeners, services, and authentication information objects.

You issue MQSC commands to a queue manager using the runmqsc command.
You can do this interactively, issuing commands from a keyboard, or you can
redirect the standard input device (stdin) to run a sequence of commands from an
ASCII text file. In both cases, the format of the commands is the same.

You can run the runmqsc command in three modes, depending on the flags set on
the command:
v Verification mode, where the MQSC commands are verified on a local queue

manager, but are not actually run
v Direct mode, where the MQSC commands are run on a local queue manager
v Indirect mode, where the MQSC commands are run on a remote queue manager

Object attributes specified in MQSC commands are shown in this book in
uppercase (for example, RQMNAME), although they are not case sensitive. MQSC
command attribute names are limited to eight characters.

MQSC commands are available on other platforms, including i5/OS®, and z/OS.
MQSC commands are summarized in Appendix C, “Comparing command sets,”
on page 281.

See the WebSphere MQ Script (MQSC) Command Reference manual for a description
of each MQSC command and its syntax.

See “Performing local administration tasks using MQSC commands” on page 30
for more information about using MQSC commands in local administration.

PCF commands

WebSphere MQ programmable command format (PCF) commands allow
administration tasks to be programmed into an administration program. In this
way you can create queues and process definitions, and change queue managers,
from a program.

PCF commands cover the same range of functions provided by the MQSC
commands. See “PCF commands” on page 55 for more information.

You can use the WebSphere MQ Administration Interface (MQAI) to obtain easier
programming access to PCF messages. This is described in greater detail in “Using
the MQAI to simplify the use of PCFs” on page 56.

16 WebSphere MQ for HP OpenVMS: System Administration Guide



Attributes in WebSphere MQ Script (MQSC) and PCF
commands

Object attributes specified in MQSC are shownin this book in uppercase: for
example, RQMNAME, although they are not case sensitive.

These attribute names are limited to eight characters, so it is not easy to work out
the meaning of some of them: for example, QDPHIEV. Object attributes in PCF are
shown in italics, are not limited to eight characters, and are therefore easier to
read. The PCF equivalent of RQMNAME, is RemoteQMgrName and of QDPHIEV is
QDepthHighEvent.

Escape PCF commands

Escape PCF commands are PCF commands that contain MQSC commands within
the message text.

You can use PCFs to send commands to a remote queue manager. For more
information about using escape PCFs, see the WebSphere MQ Programmable
Command Formats and Administration Interface manual.

Understanding WebSphere MQ file names

Each WebSphere MQ queue, queue manager, namelist, and process object queue, is
represented by a file. Because object names are not necessarily valid file names, the
queue manager converts the object name into a valid file name where necessary.

The path to a queue manager directory is formed from the following:
v A prefix - the first part of the name: MQS_ROOT:[MQM]

This prefix is defined in the queue manager configuration file.
v A literal: QMGRS
v A coded queue manager name, which is the queue manager name transformed

into a valid directory name.
For example, the queue manager: QUEUE.MANAGER would be represented as:
QUEUE$MANAGER

This process is referred to as name transformation.

Queue manager name transformation

In WebSphere MQ, you can give a queue manager a name containing up to 48
characters.

For example, you could name a queue manager:
QUEUE.MANAGER.ACCOUNTING.SERVICES

However, each queue manager is represented by a file and there are limitations on
the maximum length a file name can be, and on the characters that can be used in
the name. As a result, the names of files representing objects are automatically
transformed to meet the requirements of the file system.

Using the example of a queue manager with the name QUEUE.MANAGER individual
characters are transformed as follows:
v . becomes $

Chapter 2. An introduction to WebSphere MQ administration 17



v / becomes _
v % becomes _

If the queue manager name is still not valid it is truncated to eight characters and
a three-character numeric suffix is appended.

For example, assuming the default prefix, the queue manager name becomes:
MQS_ROOT:[MQM.QMGRS.QUEUE$MANAGER] with the name queue.manager

The transformation algorithm also distinguishes between names that differ only in
case, on file systems that are not case sensitive.

Object name transformation

Object names are not necessarily valid file system names. Therefore, the object
names may need to be transformed. The method used is different from that for
queue manager names because, although there are only a few queue manager
names on each machine, there can be a large number of other objects for each
queue manager. Only process definitions, queues and namelists are represented in
the file system; channels are not affected by these considerations.

When a new name is generated by the transformation process, there is no simple
relationship with the original object name. You can use the dspmqfls command to
convert between real and transformed object names.

Queue file names begin with the letter Q.

For more information on naming objects, see “Names of WebSphere MQ objects”
on page 199.

Understanding case sensitivity

Case sensitivity in control commands

OpenVMS is normally described as a case-insensitive operating system. This means
that, in general, the following three commands all create a queue manager called
"QUEUEMANAGER".
$ crtmqm QueueManager
$ crtmqm queuemanager
$ crtmqm QUEUEMANAGER

With WebSphere MQ for HP OpenVMS, you can use double quotation marks
around the name of the queue manager (or similar parameter) to protect its case.
When the double quotation marks are used, the three commands now create three
different queue managers.

$ crtmqm "QueueManager" creates a queue manager called QueueManager
$ crtmqm "queuemanager" creates a queue manager called queuemanager
$ crtmqm "QUEUEMANAGER" creates a queue manager called QUEUEMANAGER

The following command on WebSphere MQ for HP OpenVMS handles upper and
lower case characters:
set process /parse_style = ( traditional | extended )

18 WebSphere MQ for HP OpenVMS: System Administration Guide



If set process /parse_style command is not used, or if it is used with the
traditional option, then OpenVMS behaves as it always has done with regard to
case sensitivity.

If this command is used with the extended option, the behavior of the
LIB$GET_FOREIGN runtime library routine changes so that it preserves the case of
text that it retrieves. Because WebSphere MQ uses this routine to obtain command
line parameters, the case of the parameters is preserved, even when the parameters
are not enclosed in double quotation marks.

For example, the following sequence of commands creates three different queue
managers. Note that the parameters are not enclosed in double quotation marks.

$ set process /parse_style = extended
$ crtmqm QueueManager creates a queue manager called QueueManager
$ crtmqm queuemanager creates a queue manager called queuemanager
$ crtmqm QUEUEMANAGER creates a queue manager called QUEUEMANAGER

The OpenVMS set process /parse_style command changes a number of things
besides case sensitivity. You can learn more about the command from the
information provided in the OpenVMS DCL Dictionary before applying it to your
system.

Case sensitivity in MQSC commands

WebSphere MQ control commands (for example, runmqsc which invokes the
MQSC facility) are not case sensitive.

MQSC commands, including their attributes, can be written in upper or lower
case. Object names in MQSC commands are automatically converted to upper case
unless the names are enclosed in single quotation marks. If single quotation marks
are not used, the object is processed with a name in upper case. See the WebSphere
MQ Script (MQSC) Command Reference manual for more information.

Chapter 2. An introduction to WebSphere MQ administration 19



20 WebSphere MQ for HP OpenVMS: System Administration Guide



Chapter 3. Managing queue managers

This chapter tells you how to perform operations on queue managers using control
commands and the WebSphere MQ Explorer.

It contains the following topics:
v “Using control commands”
v “Creating a queue manager” on page 22
v “Starting a queue manager” on page 26
v “Stopping a queue manager manually” on page 285
v “Deleting a queue manager” on page 28

For more information, see Chapter 13, “How to use WebSphere MQ control
commands,” on page 199

Using control commands

You use control commands to perform operations on queue managers, command
servers, and channels. Control commands can be divided into three categories, as
shown in Table 1.

Table 1. Categories of control commands

Category Description

Queue manager commands Queue manager control commands include
commands for creating, starting, stopping,
and deleting queue managers and command
servers.

Channel commands Channel commands include commands for
starting and ending channels and channel
initiators.

Utility commands Utility commands include commands
associated with:
v Running MQSC commands
v Conversion exits
v Authority management
v Recording and recovering media images

of queue manager resources
v Displaying and resolving transactions
v Trigger monitors
v Displaying the file names of WebSphere

MQ objects

For information about administration tasks for channels, see the WebSphere MQ
Intercommunications manual.

Using WebSphere MQ control commands on HP OpenVMS
systems

In WebSphere MQ for HP OpenVMS, you enter control commands at a DCL
prompt. The command name and flags themselves are not case sensitive, but the

© Copyright IBM Corp. 1994, 2009 21



parameters may or may not be converted to upper case, depending on an
OpenVMS process option and whether the parameters were enclosed in double
quotation marks to protect the case. For more on how the OpenVMS command
and double quotation marks affect case, see “Understanding case sensitivity” on
page 18.

Typically, in this example:
crtmqm -u system.dead.letter.queue "jupiter.queue.manager"

v The dead-letter queue could be SYSTEM.DEAD.LETTER.QUEUE, even though it
was entered in lower case. Whether its case is automatically converted to upper
case depends on the setting of the OpenVMS command set process/parse_style.
See “Understanding case sensitivity” on page 18.

v The queue manager name is specified as ″jupiter.queue.manager″ (which is
different from ″JUPITER.queue.manager″) because it was enclosed in double
quotation marks.

Therefore, take care to type the commands exactly as you see them in the
examples.

Creating a queue manager

A queue manager manages the resources associated with it, in particular the
queues that it owns. It provides queuing services to applications for Message
Queuing Interface (MQI) calls and commands to create, modify, display, and delete
WebSphere MQ objects.

Before you can do anything with messages and queues, you must create and start
at least one queue manager and its associated objects. To create a queue manager,
use the WebSphere MQ control command crtmqm (described in “crtmqm (create
queue manager)” on page 205). The crtmqm command automatically creates the
required default objects and system objects (described in “System default objects”
on page 10). Default objects form the basis of any object definitions that you make;
system objects are required for queue manager operation. When you have created
a queue manager and its objects, use the strmqm command to start the queue
manager.

Note: WebSphere MQ does not support machine names that contain spaces. If you
install WebSphere MQ on a computer with a machine name that contains spaces,
you cannot create any queue managers.

Guidelines for creating queue managers

Before you can create a queue manager, there are several points you need to
consider (especially in a production environment). Work through the following
checklist:

Naming conventions
Use uppercase names so that you can communicate with queue managers
on all platforms. Remember that names are assigned exactly as you enter
them. To avoid the inconvenience of lots of typing, do not use
unnecessarily long names.

Specify a unique queue manager name
When you create a queue manager, ensure that no other queue manager
has the same name anywhere in your network. Queue manager names are

22 WebSphere MQ for HP OpenVMS: System Administration Guide



not checked when the queue manager is created, and names that are not
unique prevent you from creating channels for distributed queuing.

One way of ensuring uniqueness is to prefix each queue manager name
with its own unique node name. For example, if a node is called ACCOUNTS,
you can name your queue manager ACCOUNTS.SATURN.QUEUE.MANAGER,
where SATURN identifies a particular queue manager and QUEUE.MANAGER is
an extension you can give to all queue managers. Alternatively, you can
omit this, but note that ACCOUNTS.SATURN and
ACCOUNTS.SATURN.QUEUE.MANAGER are different queue manager names.

If you are using WebSphere MQ for communication with other enterprises,
you can also include your own enterprise name as a prefix. This is not
done in the examples, because it makes them more difficult to follow.

Note: Queue manager names in control commands may or may not be
converted to upper case, depending on an OpenVMS process option and
whether the queue manager name was enclosed in double quotation marks
to protect the case. This means that you could create two queue managers
with the names jupiter.queue.manager and JUPITER.queue.manager. For
more on how the OpenVMS process option and double quotation marks
affect case, see “Understanding case sensitivity” on page 18.

Limit the number of queue managers
You can create as many queue managers as resources allow. However,
because each queue manager requires its own resources, it is generally
better to have one queue manager with 100 queues on a node than to have
ten queue managers with ten queues each.

In production systems, many processors can be exploited with a single
queue manager, but larger server machines might run more effectively
with multiple queue managers.

Specify a default queue manager
Each node should have a default queue manager, though it is possible to
configure WebSphere MQ on a node without one. The default queue
manager is the queue manager that applications connect to if they do not
specify a queue manager name in an MQCONN call. It is also the queue
manager that processes MQSC commands when you invoke the runmqsc
command without specifying a queue manager name.

Specifying a queue manager as the default replaces any existing default
queue manager specification for the node.

Changing the default queue manage can affect other users or applications.
The change has no effect on currently-connected applications, because they
can use the handle from their original connect call in any further MQI
calls. This handle ensures that the calls are directed to the same queue
manager. Any applications connecting after you have changed the default
queue manager connect to the new default queue manager. This might be
what you intend, but you should take this into account before you change
the default.

Creating a default queue manager is described in “Creating a default
queue manager” on page 25.

Specify a dead-letter queue
The dead-letter queue is a local queue where messages are put if they
cannot be routed to their intended destination.

Chapter 3. Managing queue managers 23



It is important to have a dead-letter queue on each queue manager in your
network. If you do not define one, errors in application programs might
cause channels to be closed, and replies to administration commands might
not be received.

For example, if an application tries to put a message on a queue on
another queue manager, but gives the wrong queue name, the channel is
stopped and the message remains on the transmission queue. Other
applications cannot then use this channel for their messages.

The channels are not affected if the queue managers have dead-letter
queues. The undelivered message is simply put on the dead-letter queue at
the receiving end, leaving the channel and its transmission queue available.

When you create a queue manager, use the -u flag to specify the name of
the dead-letter queue. You can also use an MQSC command to alter the
attributes of a queue manager that you have already defined to specify the
dead-letter queue to be used. See “Altering queue manager attributes” on
page 38 for an example of the MQSC command ALTER.

Specify a default transmission queue
A transmission queue is a local queue on which messages in transit to a
remote queue manager are queued before transmission. The default
transmission queue is the queue that is used when no transmission queue
is explicitly defined. Each queue manager can be assigned a default
transmission queue.

When you create a queue manager, use the -d flag to specify the name of
the default transmission queue. This does not actually create the queue;
you have to do this explicitly later on. See “Working with local queues” on
page 38 for more information.

Specify the logging parameters you require
You can specify logging parameters on the crtmqm command, including
the type of logging, and the path and size of the log files.

In a development environment, the default logging parameters should be
adequate. However, you can change the defaults if, for example:
v You have a low-end system configuration that cannot support large logs.
v You anticipate a large number of long messages being on your queues at

the same time.
v You anticipate a lot of persistent messages passing through the queue

manager.

Once you have set the logging parameters, some of them can only be
changed by deleting the queue manager and recreating it with the same
name but with different logging parameters.

For more information about logging parameters, see Chapter 11, “Recovery
and restart,” on page 157.

Installing multiple queue managers
If you install multiple queue managers with different logical volumes for
each queue manager, the ftok function might cause shared memory
problems. The ftok function calculates the shared memory key from the
node and the minor number of the housing logical volume. On AIX®,
shared memory problems can occur if two queue managers are installed in
an HACMP™ environment with different logical volumes that have
identical minor device numbers.

24 WebSphere MQ for HP OpenVMS: System Administration Guide



These shared memory problems do not occur if the different logical
volumes are created such that they have different minor device numbers.

Creating a default queue manager

You create a default queue manager using the crtmqm command with the -q flag.
The following crtmqm command:
v Creates a default queue manager called SATURN.QUEUE.MANAGER

v Creates the default and system objects
v Specifies the names of both a default transmission queue and a dead-letter

queue
crtmqm -q -d MY.DEFAULT.XMIT.QUEUE -u SYSTEM.DEAD.LETTER.QUEUE SATURN.QUEUE.MANAGER

where:

-q Indicates that this queue manager is the default queue manager.

-d MY.DEFAULT.XMIT.QUEUE
Is the name of the default transmission queue to be used by this queue
manager.

Note: WebSphere MQ does not create a default transmission queue for
you; you have to define it yourself.

-u SYSTEM.DEAD.LETTER.QUEUE
Is the name of the default dead-letter queue created by WebSphere MQ on
installation.

SATURN.QUEUE.MANAGER
Is the name of this queue manager. This must be the last parameter
specified on the crtmqm command.

The complete syntax of the crtmqm command is shown in “crtmqm (create queue
manager)” on page 205.

The system and default objects are listed in Appendix A, “System and default
objects,” on page 273.

Making an existing queue manager the default

When you create a default queue manager, its name is inserted in the Name
attribute of the DefaultQueueManager stanza in the WebSphere MQ configuration
file (mqs.ini). The stanza and its contents are automatically created if they do not
exist.
v To make an existing queue manager the default, change the queue manager

name on the Name attribute to the name of the new default queue manager. You
can do this manually, using a text editor.

v If you do not have a default queue manager on the node, and you want to make
an existing queue manager the default, create the DefaultQueueManager stanza
with the required name yourself.

v If you accidentally make another queue manager the default and want to revert
to the original default queue manager, edit the DefaultQueueManager stanza in
mqs.ini, replacing the unwanted default queue manager with that of the one you
want.

Chapter 3. Managing queue managers 25



For more information about configuration files, see Chapter 6, “Configuring
WebSphere MQ,” on page 71.

Backing up configuration files after creating a queue manager

There are two types of configuration file:
v When you install the product, the WebSphere MQ configuration file (mqs.ini) is

created. It contains a list of queue managers that is updated each time you create
or delete a queue manager. There is one mqs.ini file per node.

v When you create a new queue manager, a new queue manager configuration file
(qm.ini) is automatically created. This contains configuration parameters for the
queue manager.

After creating a queue manager, we recommend that you back up your
configuration files.

If, later on, you create another queue manager that causes you problems, you can
reinstate the backups when you have removed the source of the problem. As a
general rule, back up your configuration files each time you create a new queue
manager.

For more information about configuration files, see Chapter 6, “Configuring
WebSphere MQ,” on page 71.

Starting a queue manager

Although you have created a queue manager, it cannot process commands or MQI
calls until you start it. You do this using the strmqm command as follows:
strmqm saturn.queue.manager

The strmqm command does not return control until the queue manager has started
and is ready to accept connect requests.

Starting a queue manager automatically

To start a queue manager automatically on WebSphere MQ for OpenVMS do the
following:
1. Edit the file SYS$STARTUP:MQS_STARTUP.COM

2. Locate the following line:
$ mcr sys$system:mqvmsinit

3. After the above line, add the following command:
$ strmqm <queuemanagername>

where queuemanagername is the name of the queue manager you want to start
automatically.

Quiesced shutdown

By default, the endmqm command performs a quiesced shutdown of the specified
queue manager. This might take a while to complete. A quiesced shutdown waits
until all connected applications have disconnected.

Use this type of shutdown to notify applications to stop. If you issue:

26 WebSphere MQ for HP OpenVMS: System Administration Guide



endmqm -c saturn.queue.manager

you are not told when all applications have stopped. (An endmqm -c
saturn.queue.manager command is equivalent to an endmqm saturn.queue.manager
command.)

However, if you issue:
endmqm -w saturn.queue.manager

the command waits until all applications have stopped and the queue manager has
ended.

Immediate shutdown

For an immediate shutdown any current MQI calls are allowed to complete, but any
new calls fail. This type of shutdown does not wait for applications to disconnect
from the queue manager.

For an immediate shutdown, type:
endmqm -i saturn.queue.manager

Preemptive shutdown

Attention!

Do not use this method unless all other attempts to stop the queue manager using
the endmqm command have failed. This method can have unpredictable
consequences for connected applications.

If an immediate shutdown does not work, you must resort to a preemptive
shutdown, specifying the -p flag. For example:
endmqm -p saturn.queue.manager

This stops the queue manager immediately.

If this method still does not work, see “Stopping a queue manager manually” on
page 285 for an alternative solution.

For a detailed description of the endmqm command and its options, see “endmqm
(end queue manager)” on page 235.

Note: After a forced or preemptive shutdown, or if the queue manager fails, the
queue manager may have ended without cleaning up the shared memory that it
owns. This can lead to problems restarting. For information on how to use the
MONMQ utility to clean up after an abrupt ending of this type, see “Managing
shared memory with MONMQ” on page 322.

If you have problems shutting down a queue manager

Problems in shutting down a queue manager are often caused by applications. For
example, when applications:
v Do not check MQI return codes properly
v Do not request notification of a quiesce

Chapter 3. Managing queue managers 27



v Terminate without disconnecting from the queue manager (by issuing an
MQDISC call)

If a problem occurs when you stop the queue manager, you can break out of the
endmqm command using Ctrl-Y.

You can then issue another endmqm command, but this time with a flag that
specifies the type of shutdown that you require.

Deleting a queue manager

To delete a queue manager, first stop it, then issue the following command:
dltmqm saturn.queue.manager

Attention:

v Deleting a queue manager is a drastic step, because you also delete all resources
associated with the queue manager, including all queues and their messages and
all object definitions. There is no displayed prompt that allows you to change
your mind; when you press Enter all the associated resources are lost.

v In WebSphere MQ for Windows®, the dltmqm command also removes a queue
manager from the automatic startup list (described in “Starting a queue manager
automatically” on page 26). When the command has completed, a WebSphere MQ
queue manager ending message is displayed; you are not told that the queue
manager has been deleted.

For a description of the dltmqm command and its options, see “dltmqm (delete
queue manager)” on page 209. Ensure that only trusted administrators have the
authority to use this command. For information about security, see Chapter 7,
“WebSphere MQ security,” on page 91.

28 WebSphere MQ for HP OpenVMS: System Administration Guide



Chapter 4. Administering local WebSphere MQ objects

This chapter tells you how to administer local WebSphere MQ objects to support
application programs that use the Message Queue Interface (MQI). In this context,
local administration means creating, displaying, changing, copying, and deleting
WebSphere MQ objects.

This chapter contains the following sections:
v “Supporting application programs that use the MQI”
v “Performing local administration tasks using MQSC commands” on page 30
v “Working with queue managers” on page 36
v “Working with local queues” on page 38
v “Working with alias queues” on page 43
v “Working with model queues” on page 44
v “Working with services” on page 45
v “Managing objects for triggering” on page 51

Supporting application programs that use the MQI

WebSphere MQ application programs need certain objects before they can run
successfully. For example, Figure 1 shows an application that removes messages
from a queue, processes them, and then sends some results to another queue on
the same queue manager.

Whereas applications can put messages onto local or remote queues (using
MQPUT), they can only get messages directly from local queues (using MQGET).

Before this application can run, the following conditions must be satisfied:
v The queue manager must exist and be running.
v The first application queue, from which the messages are to be removed, must

be defined.
v The second queue, on which the application puts the messages, must also be

defined.

Application

Queue Manager

From other
applications

To other
applications

getput

putget

Figure 1. Queues, messages, and applications

© Copyright IBM Corp. 1994, 2009 29



v The application must be able to connect to the queue manager. To do this it
must be linked to WebSphere MQ. See the WebSphere MQ Application
Programming Guide for more information.

v The applications that put the messages on the first queue must also connect to a
queue manager. If they are remote, they must also be set up with transmission
queues and channels. This part of the system is not shown in Figure 1 on page
29.

Performing local administration tasks using MQSC commands

This section introduces you to MQSC commands and tells you how to use them
for some common tasks.

You can use MQSC commands to manage queue manager objects, including the
queue manager itself, queues, process definitions, channels, client connection
channels, listeners, services, namelists, clusters, and authentication information
objects. This section deals with queue managers, queues, and process definitions;
for information about administering channel, client connection channel, and
listener objects, see the WebSphere MQ Intercommunications manual. For information
about all the MQSC commands for managing queue manager objects, see the
WebSphere MQ Script (MQSC) Command Reference manual.

You issue MQSC commands to a queue manager using the runmqsc command.
(For details of this command, see “runmqsc (run MQSC commands)” on page 258.)
You can do this interactively, issuing commands from a keyboard, or you can
redirect the standard input device (stdin) to run a sequence of commands from an
ASCII text file. In both cases, the format of the commands is the same. (For
information about running the commands from a text file, see “Running MQSC
commands from text files” on page 32.)

You can run the runmqsc command in three ways, depending on the flags set on
the command:
v Verify a command without running it, where the MQSC commands are verified

on a local queue manager, but are not actually run.
v Run a command on a local queue manager, where the MQSC commands are run

on a local queue manager.
v Run a command on a remote queue manager, where the MQSC commands are

run on a remote queue manager.

You can also run the command followed by a question mark to display the syntax.

Object attributes specified in MQSC commands are shown in this book in
uppercase (for example, RQMNAME), although they are not case sensitive. MQSC
command attribute names are limited to eight characters.

WebSphere MQ object names

In examples, we use some long names for objects. This is to help you identify the
type of object you are dealing with.

When you issue MQSC commands, you need specify only the local name of the
queue. In our examples, we use queue names such as:
ORANGE.LOCAL.QUEUE

30 WebSphere MQ for HP OpenVMS: System Administration Guide



The LOCAL.QUEUE part of the name is simply to illustrate that this queue is a local
queue. It is not required for the names of local queues in general.

We also use the name saturn.queue.manager as a queue manager name. The
queue.manager part of the name is simply to illustrate that this object is a queue
manager. It is not required for the names of queue managers in general.

Case-sensitivity in MQSC commands

MQSC commands, including their attributes, can be written in uppercase or
lowercase. Object names in MQSC commands are folded to uppercase (that is,
QUEUE and queue are not differentiated), unless the names are enclosed within
single quotation marks. If quotation marks are not used, the object is processed
with a name in uppercase. See the WebSphere MQ Script (MQSC) Command Reference
manual for more information.

The runmqsc command invocation, in common with all WebSphere MQ control
commands, is case sensitive in some WebSphere MQ environments. See “Using
control commands” on page 21 for more information.

Redirecting input and output

To improve the ease of migration from other operating systems to OpenVMS,
WebSphere MQ supports the UNIX® style of redirection indicators for sys$input,
sys$output, and sys$error, as follows:

< specifies the source for SYS$INPUT

> specifies the source for SYS$OUTPUT

2> specifies the source for SYS$ERROR

This feature is also included with the executable versions of the sample programs.
However, it is not included in the source of the samples and, therefore, is not
available if you rebuild the samples from the source code.

Running MQSC commands interactively

To use MQSC commands interactively, at a DCL prompt enter:
runmqsc

In this command, a queue manager name has not been specified, so the MQSC
commands are processed by the default queue manager. If you want to use a
different queue manager, specify the queue manager name on the runmqsc
command. For example, to run MQSC commands on queue manager
jupiter.queue.manager, use the command:
runmqsc jupiter.queue.manager

After this, all the MQSC commands you type in are processed by this queue
manager, assuming that it is on the same node and is already running.

Now you can type in any MQSC commands, as required. For example, try this
one:
DEFINE QLOCAL (ORANGE.LOCAL.QUEUE)

For commands that have too many parameters to fit on one line, use continuation
characters to indicate that a command is continued on the following line:

Chapter 4. Administering local WebSphere MQ objects 31



v A minus sign (-) indicates that the command is to be continued from the start of
the following line.

v A plus sign (+) indicates that the command is to be continued from the first
nonblank character on the following line.

Command input terminates with the final character of a nonblank line that is not a
continuation character. You can also terminate command input explicitly by
entering a semicolon (;). (This is especially useful if you accidentally enter a
continuation character at the end of the final line of command input.)

Feedback from MQSC commands

When you issue MQSC commands, the queue manager returns operator messages
that confirm your actions or tell you about the errors you have made. For example:
AMQ8006: WebSphere MQ queue created.

This message confirms that a queue has been created.
AMQ8405: Syntax error detected at or near end of command segment below:-

AMQ8426: Valid MQSC commands are:

ALTER
CLEAR
DEFINE
DELETE
DISPLAY
END
PING
REFRESH
RESET
RESOLVE
RESUME
START
STOP
SUSPEND
4 : end

This message indicates that you have made a syntax error.

These messages are sent to the standard output device. If you have not entered the
command correctly, refer to the WebSphere MQ Script (MQSC) Command Reference
manual for the correct syntax.

Ending interactive input of MQSC commands

To stop working with MQSC commands, enter the END command.

Alternatively, you can use the EOF character for your operating system.

Running MQSC commands from text files

Running MQSC commands interactively is suitable for quick tests, but if you have
very long commands, or are using a particular sequence of commands repeatedly,
consider redirecting sys$input from a text file. (See “Redirecting input and output”
on page 31 for information about sys$input and stdout). To do this, first create a
text file containing the MQSC commands using your usual text editor. When you

32 WebSphere MQ for HP OpenVMS: System Administration Guide



use the runmqsc command, use the redirection operators. For example, the
following command runs a sequence of commands contained in the text file
myprog.in:
runmqsc < myprog.in

Similarly, you can also redirect the output to a file. A file containing the MQSC
commands for input is called an MQSC command file. The output file containing
replies from the queue manager is called the output file.

To redirect both sys$input and sys$output on the runmqsc command, use this
form of the command:
runmqsc < myprog.in > myprog.out

This command invokes the MQSC commands contained in the MQSC command
file myprog.in. Because they do not specify a queue manager name, the MQSC
commands run against the default queue manager. The output is sent to the text
file myprog.out. Figure 2 shows an extract from the MQSC command file myprog.in
and Figure 3 on page 34 shows the corresponding extract of the output in
myprog.out.

To redirect sys$input and sys$output on the runmqsc command, for a queue
manager (saturn.queue.manager) that is not the default, use this form of the
command:
runmqsc "saturn.queue.manager" < myprog.in > myprog.out

MQSC command files

MQSC commands are written in human-readable form, that is, in ASCII text.
Figure 2 is an extract from an MQSC command file showing an MQSC command
(DEFINE QLOCAL) with its attributes. A description of each MQSC command and
its syntax is contained in the WebSphere MQ Script (MQSC) Command Reference
manual.

For optimal portability among WebSphere MQ environments, limit the line length
in MQSC command files to 72 characters. The plus sign indicates that the
command is continued on the next line.

.

.

.
DEFINE QLOCAL(ORANGE.LOCAL.QUEUE) REPLACE +

DESCR(' ') +
PUT(ENABLED) +
DEFPRTY(0) +
DEFPSIST(NO) +
GET(ENABLED) +
MAXDEPTH(5000) +
MAXMSGL(1024) +
DEFSOPT(SHARED) +
NOHARDENBO +
USAGE(NORMAL) +
NOTRIGGER

.

.

.

Figure 2. Extract from the MQSC command file, myprog.in

Chapter 4. Administering local WebSphere MQ objects 33



For WebSphere MQ for HP OpenVMS, you must limit lines to a maximum of 80
characters, including the continuation character. The plus sign indicates that the
command is continued on the next line.

MQSC reports

The runmqsc command returns a report, which is sent to SYS$OUTPUT. The report
contains:
v A header identifying MQSC as the source of the report:

Starting WebSphere MQ Commands.

v An optional numbered listing of the MQSC commands issued. By default, the
text of the input is echoed to the output. Within this output, each command is
prefixed by a sequence number, as shown in Figure 3. However, you can use the
-e flag on the runmqsc command to suppress the output.

v A syntax error message for any commands found to be in error.
v An operator message indicating the outcome of running each command. For

example, the operator message for the successful completion of a DEFINE
QLOCAL command is:

AMQ8006: WebSphere MQ queue created.

v Other messages resulting from general errors when running the script file.
v A brief statistical summary of the report indicating the number of commands

read, the number of commands with syntax errors, and the number of
commands that could not be processed.

Note: The queue manager attempts to process only those commands that have
no syntax errors.

Running the supplied MQSC command files

When you install WebSphere MQ for HP OpenVMS, the following MQSC
command file is supplied:

Starting WebSphere MQ Commands.
.
.

12: DEFINE QLOCAL('RED.LOCAL.QUEUE') REPLACE +
: DESCR(' ') +
: PUT(ENABLED) +
: DEFPRTY(0) +
: DEFPSIST(NO) +
: GET(ENABLED) +
: MAXDEPTH(5000) +
: MAXMSGL(1024) +
: DEFSOPT(SHARED) +
: USAGE(NORMAL) +
: NOTRIGGER

AMQ8006: WebSphere MQ queue created.
:

.

.
15 MQSC commands read.
0 commands have a syntax error.
0 commands cannot be processed.

Figure 3. Extract from the MQSC report file, myprog.out.

34 WebSphere MQ for HP OpenVMS: System Administration Guide



amqscos0.tst
Definitions of objects used by sample programs.

The file is located in the directory MQS_EXAMPLES:

The command that runs this file is:
runmqsc < amqscos0.tst >test.out

Using runmqsc to verify commands

You can use the runmqsc command to verify MQSC commands on a local queue
manager without actually running them. To do this, set the -v flag in the runmqsc
command. For example:
runmqsc -v < myprog.in > myprog.out

When you invoke runmqsc against an MQSC command file, the queue manager
verifies each command and returns a report without actually running the MQSC
commands. You can then check the syntax of all the commands in your command
file. This is particularly important if you are running a large number of commands
from a command file.

This report is similar to that shown in Figure 2 on page 33.

You cannot use this method to verify MQSC commands remotely. For example, if
you attempt this command:
runmqsc -w 30 -v “jupiter.queue.manager” < myprog.in > myprog.out

the -w flag, which you use to indicate that the queue manager is remote, is
ignored, and the command is run locally in verification mode; 30 is the number of
seconds that WebSphere MQ waits for replies from the remote queue manager.

Resolving problems with MQSC

If you cannot get your MQSC commands to run, use the following checklist to see
if any of these common problems apply to you. It is not always obvious what the
problem is when you read the error generated.

When you use the runmqsc command, remember to:
1. Check that you have created the queue manager that is going to run the

commands.
To do this, look in the configuration file mqs.ini, which, by default, is located in
the MQS_ROOT:[MQM] directory. This file contains the names of the queue
managers and the name of the default queue manager, if you have one.

2. Specify a queue manager name on the runmqsc command if you have not
defined a default queue manager, otherwise you get this error:
AMQ8146: WebSphere MQ queue manager not available.

To correct this type of problem, see “Starting a queue manager” on page 26.
3. Use the indirection operator < when redirecting input from a file. If you omit

the indirection operator, the queue manager interprets the file name as a queue
manager name and issues the following error message:
AMQ8118: WebSphere MQ queue manager does not exist.

Chapter 4. Administering local WebSphere MQ objects 35



4. Use the > indirection operator, if you redirect output to a file. By default, the
output goes to the directory from which you ran the runmqsc command.
Specify a fully-qualified file name to send your output to a specific file and
directory.

5. Start the queue manager if it is not already started; you get an error message if
it is already started.

When you use the runmqsc command, the following restrictions also apply:
v You cannot specify an MQSC command as a runmqsc parameter. For example,

the following is invalid:
runmqsc DEFINE QLOCAL(FRED)

v You cannot enter MQSC commands from DCL before you issue the runmqsc
command. For example:
DEFINE QLOCAL(QUEUE1)
%DCL-W-PARMDEL, invalid parameter delimiter - check use of special characters

v You cannot run control commands from runmqsc. For example, you cannot start
a queue manager once you are running MQSC interactively:
$ runmqsc
0790997, 5724-A38 (C) Copyright IBM Corp. 1996, 2004 ALL RIGHTS RESERVED.
Starting WebSphere MQ Commands.

strmqm saturn.queue.manager
1 : strmqm saturn.queue.manager

AMQ8405: Syntax error detected at or near end of command segment below:-
s

AMQ8426: Valid MQSC commands are:

ALTER
CLEAR
DEFINE
DELETE
DISPLAY
END
PING
REFRESH
RESET
RESOLVE
RESUME
START
STOP
SUSPEND

*CANCEL*

One MQSC command read.
One command has a syntax error.
All valid MQSC commands were processed.
$

See also “If you have problems using MQSC commands remotely” on page 65.

Working with queue managers

This section contains examples of some MQSC commands that you can use to
display or alter queue manager attributes. See the WebSphere MQ Script (MQSC)
Command Reference manual for detailed information about these commands.

36 WebSphere MQ for HP OpenVMS: System Administration Guide



Displaying queue manager attributes

To display the attributes of the queue manager specified on the runmqsc
command, use the following MQSC command:
DISPLAY QMGR

Typical output from this command is shown in Figure 4.

The ALL parameter (the default) on the DISPLAY QMGR command displays all
the queue manager attributes. In particular, the output tells you the default queue
manager name (saturn.queue.manager), the dead-letter queue name
(SYSTEM.DEAD.LETTER.QUEUE), and the command queue name
(SYSTEM.ADMIN.COMMAND.QUEUE).

You can confirm that these queues exist by entering the command:
DISPLAY QUEUE (SYSTEM.*)

This displays a list of queues that match the stem SYSTEM.*. The parentheses are
required.

DISPLAY QMGR
1 : DISPLAY QMGR

AMQ8408: Display Queue Manager details.
QMNAME(SATURN) ACCTCONO(DISABLED)
ACCTINT(1800) ACCTMQI(OFF)
ACCTQ(OFF) ACTIVREC(MSG)
ALTDATE(2005-02-09) ALTTIME(17.21.40)
AUTHOREV(DISABLED) CCSID(850)
CHAD(DISABLED) CHADEV(DISABLED)
CHADEXIT( ) CHLEV(DISABLED)
CLWLDATA( ) CLWLEXIT( )
CLWLLEN(100) CLWLMRUC(999999999)
CLWLUSEQ(LOCAL) CMDLEVEL(600)
COMMANDQ(SYSTEM.ADMIN.COMMAND.QUEUE) CRDATE(2005-02-09)
CRTIME(17.21.40) DEADQ()
DEFXMITQ( ) DESCR( )
DISTL(YES) INHIBTEV(DISABLED)
IPADDRV(IPV4) LOCALEV(DISABLED)
LOGGEREV(DISABLED) MAXHANDS(256)
MAXMSGL(4194304) MAXPRTY(9)
MAXUMSGS(10000) MONACLS(QMGR)
MONCHL(OFF) MONQ(OFF)
PERFMEV(DISABLED) PLATFORM(WINDOWSNT)
QMID(SATURN_2005-02-09_02.00.31) REMOTEEV(DISABLED)
REPOS( ) REPOSNL( )
ROUTEREC(MSG) SCHINIT(QMGR)
SCMDSERV(QMGR) SSLCRLNL( )
SSLCRYP( ) SSLEV(DISABLED)
SSLFIPS(NO)
SSLKEYR(C:\Program Files\IBM\WebSphere MQ\Qmgrs\saturn\ssl\key)
SSLRKEYC(0) STATACLS(QMGR)
STATCHL(OFF) STATINT(1800)
STATMQI(OFF) STATQ(OFF)
STRSTPEV(ENABLED) SYNCPT
TRIGINT(999999999)

Figure 4. Typical output from a DISPLAY QMGR command

Chapter 4. Administering local WebSphere MQ objects 37



Altering queue manager attributes

To alter the attributes of the queue manager specified on the runmqsc command,
use the MQSC command ALTER QMGR, specifying the attributes and values that
you want to change. For example, use the following commands to alter the
attributes of jupiter.queue.manager:
runmqsc "jupiter.queue.manager"

ALTER QMGR DEADQ (ANOTHERDLQ) INHIBTEV (ENABLED)

The ALTER QMGR command changes the dead-letter queue used, and enables
inhibit events.

Working with local queues

This section contains examples of some MQSC commands that you can use to
manage local, model, and alias queues. See the WebSphere MQ Script (MQSC)
Command Reference manual for detailed information about these commands.

Defining a local queue

For an application, the local queue manager is the queue manager to which the
application is connected. Queues managed by the local queue manager are said to
be local to that queue manager.

Use the MQSC command DEFINE QLOCAL to create a local queue. You can also
use the default defined in the default local queue definition, or you can modify the
queue characteristics from those of the default local queue.

Note: The default local queue is named SYSTEM.LOCAL.DEFAULT.QUEUE and it
was created on system installation.

Using the MQSC command shown below, we define a queue called
ORANGE.LOCAL.QUEUE, with the following characteristics:
v It is enabled for gets, enabled for puts, and operates on a priority order basis.
v It is an normal queue; it is not an initiation queue or transmission queue, and it

does not generate trigger messages.
v The maximum queue depth is 5000 messages; the maximum message length is

4194304 bytes.
DEFINE QLOCAL (ORANGE.LOCAL.QUEUE) +

DESCR('Queue for messages from other systems') +
PUT (ENABLED) +
GET (ENABLED) +
NOTRIGGER +
MSGDLVSQ (PRIORITY) +
MAXDEPTH (5000) +
MAXMSGL (4194304) +
USAGE (NORMAL);

Note:

1. With the exception of the value for the description, all the attribute values
shown are the default values. We have shown them here for purposes of
illustration. You can omit them if you are sure that the defaults are what you
want or have not been changed. See also “Displaying default object attributes”
on page 39.

38 WebSphere MQ for HP OpenVMS: System Administration Guide



2. USAGE (NORMAL) indicates that this queue is not a transmission queue.
3. If you already have a local queue on the same queue manager with the name

ORANGE.LOCAL.QUEUE, this command fails. Use the REPLACE attribute if
you want to overwrite the existing definition of a queue, but see also
“Changing local queue attributes” on page 40.

Defining a dead-letter queue

We recommend that each queue manager has a local queue to be used as a
dead-letter queue so that messages that cannot be delivered to their correct
destination can be stored for later retrieval. You must tell the queue manager about
the dead-letter queue. You do this by specifying a dead-letter queue name on the
crtmqm command (crtmqm -u DEAD.LETTER.QUEUE, for example), or by using the
DEADQ attribute on the ALTER QMGR command to specify one later. You must
define the dead-letter queue before using it.

We supply a sample dead-letter queue called SYSTEM.DEAD.LETTER.QUEUE
with the product. This queue is automatically created when you create the queue
manager. You can modify this definition if required, and rename it.

A dead-letter queue has no special requirements except that:
v It must be a local queue
v Its MAXMSGL (maximum message length) attribute must enable the queue to

accommodate the largest messages that the queue manager has to handle plus
the size of the dead-letter header (MQDLH)

WebSphere MQ provides a dead-letter queue handler that allows you to specify
how messages found on a dead-letter queue are to be processed or removed. For
further information, see Chapter 9, “The WebSphere MQ dead-letter queue
handler,” on page 125.

Displaying default object attributes

When you define a WebSphere MQ object, it takes any attributes that you do not
specify from the default object. For example, when you define a local queue, the
queue inherits any attributes that you omit in the definition from the default local
queue, which is called SYSTEM.DEFAULT.LOCAL.QUEUE. To see exactly what
these attributes are, use the following command:
DISPLAY QUEUE (SYSTEM.DEFAULT.LOCAL.QUEUE)

The syntax of this command is different from that of the corresponding DEFINE
command. On the DISPLAY command you can give just the queue name, whereas
on the DEFINE command you have to specify the type of the queue, that is,
QLOCAL, QALIAS, QMODEL, or QREMOTE.

You can selectively display attributes by specifying them individually. For example:
DISPLAY QUEUE (ORANGE.LOCAL.QUEUE) +

MAXDEPTH +
MAXMSGL +
CURDEPTH;

This command displays the three specified attributes as follows:
AMQ8409: Display Queue details.

QUEUE(ORANGE.LOCAL.QUEUE) TYPE(QLOCAL)
CURDEPTH(0) MAXDEPTH(5000)
MAXMSGL(4194304)

Chapter 4. Administering local WebSphere MQ objects 39



CURDEPTH is the current queue depth, that is, the number of messages on the
queue. This is a useful attribute to display, because by monitoring the queue depth
you can ensure that the queue does not become full.

Copying a local queue definition

You can copy a queue definition using the LIKE attribute on the DEFINE
command. For example:
DEFINE QLOCAL (MAGENTA.QUEUE) +

LIKE (ORANGE.LOCAL.QUEUE)

This command creates a queue with the same attributes as our original queue
ORANGE.LOCAL.QUEUE, rather than those of the system default local queue.
Enter the name of the queue to be copied exactly as it was entered when you
created the queue. If the name contains lower case characters, enclose the name in
single quotation marks.

You can also use this form of the DEFINE command to copy a queue definition,
but substitute one or more changes to the attributes of the original. For example:
DEFINE QLOCAL (THIRD.QUEUE) +

LIKE (ORANGE.LOCAL.QUEUE) +
MAXMSGL(1024);

This command copies the attributes of the queue ORANGE.LOCAL.QUEUE to the
queue THIRD.QUEUE, but specifies that the maximum message length on the new
queue is to be 1024 bytes, rather than 4194304.

Note:

1. When you use the LIKE attribute on a DEFINE command, you are copying the
queue attributes only. You are not copying the messages on the queue.

2. If you a define a local queue, without specifying LIKE, it is the same as
DEFINE LIKE(SYSTEM.DEFAULT.LOCAL.QUEUE).

Changing local queue attributes

You can change queue attributes in two ways, using either the ALTER QLOCAL
command or the DEFINE QLOCAL command with the REPLACE attribute. In
“Defining a local queue” on page 38, we defined the queue called
ORANGE.LOCAL.QUEUE. Suppose, for example, you want to decrease the
maximum message length on this queue to 10 000 bytes.
v Using the ALTER command:

ALTER QLOCAL (ORANGE.LOCAL.QUEUE) MAXMSGL(10000)

This command changes a single attribute, that of the maximum message length;
all the other attributes remain the same.

v Using the DEFINE command with the REPLACE option, for example:
DEFINE QLOCAL (ORANGE.LOCAL.QUEUE) MAXMSGL(10000) REPLACE

This command changes not only the maximum message length, but also all the
other attributes, which are given their default values. The queue is now put
enabled whereas previously it was put inhibited. Put enabled is the default, as
specified by the queue SYSTEM.DEFAULT.LOCAL.QUEUE.
If you decrease the maximum message length on an existing queue, existing
messages are not affected. Any new messages, however, must meet the new
criteria.

40 WebSphere MQ for HP OpenVMS: System Administration Guide



Clearing a local queue

To delete all the messages from a local queue called MAGENTA.QUEUE, use the
following command:
CLEAR QLOCAL (MAGENTA.QUEUE)

Note: There is no prompt that enables you to change your mind; once you press
the Enter key the messages are lost.

You cannot clear a queue if:
v There are uncommitted messages that have been put on the queue under

syncpoint.
v An application currently has the queue open.

Deleting a local queue

Use the MQSC command DELETE QLOCAL to delete a local queue. A queue
cannot be deleted if it has uncommitted messages on it. However, if the queue has
one or more committed messages and no uncommitted messages, it can be deleted
only if you specify the PURGE option. For example:
DELETE QLOCAL (PINK.QUEUE) PURGE

Specifying NOPURGE instead of PURGE ensures that the queue is not deleted if it
contains any committed messages.

Browsing queues

If you need to look at the contents of the messages on a queue, WebSphere MQ for
OpenVMS provides a sample queue browser for this purpose. The browser is
supplied both as source and as a module that can be run. By default, the file
names and paths are:

Source
MQS_EXAMPLES:AMQSBCG0.C

Executable
[.BIN]AMQSBCG.EXE, under
MQS_EXAMPLES:

.

The sample takes two parameters, which are the:
v Queue name, for example, SYSTEM.ADMIN.RESPQ.TEST.
v Queue manager name, for example, JJJH

as shown in the following command:

There are no defaults; both parameters are required. Typical results from this
commands are shown in Figure 5 on page 42.

amqsbcg “SYSTEM.ADMIN.RESPQ.TEST” “JJJH”

Chapter 4. Administering local WebSphere MQ objects 41



$ amqsbcg "SYSTEM.ADMIN.RESPQ.TEST" "JJJH"

AMQSBCG0 - starts here
**********************

MQOPEN - 'SYSTEM.ADMIN.RESPQ.TEST'

MQGET of message number 1
****Message descriptor****

StrucId : 'MD ' Version : 2
Report : 0 MsgType : 8
Expiry : -1 Feedback : 0
Encoding : 546 CodedCharSetId : 819
Format : 'MQSTR '
Priority : 0 Persistence : 0
MsgId : X'414D51204A4A4A4820202020202020206EC8753A13200000'
CorrelId : X'000000000000000000000000000000000000000000000000'
BackoutCount : 0
ReplyToQ : ' '
ReplyToQMgr : 'JJJH '
** Identity Context
UserIdentifier : 'SYSTEM '
AccountingToken :
X'0536353534300000000000000000000000000000000000000000000000000006'
ApplIdentityData : ' '
** Origin Context
PutApplType : '12'
PutApplName : 'AMQSPUT.EXE '
PutDate : '20040129' PutTime : '19483901'
ApplOriginData : ' '

GroupId : X'000000000000000000000000000000000000000000000000'
MsgSeqNumber : '1'
Offset : '0'
MsgFlags : '0'
OriginalLength : '14'

**** Message ****

length - 14 bytes

00000000: 7465 7374 206D 6573 7361 6765 2031 'test message 1 '

MQGET of message number 2
****Message descriptor****

StrucId : 'MD ' Version : 2
Report : 0 MsgType : 8
Expiry : -1 Feedback : 0
Encoding : 546 CodedCharSetId : 819
Format : 'MQSTR '
Priority : 0 Persistence : 0
MsgId : X'414D51204A4A4A4820202020202020206EC8753A23200000'
CorrelId : X'000000000000000000000000000000000000000000000000'
BackoutCount : 0
ReplyToQ : ' '
ReplyToQMgr : 'JJJH '
** Identity Context
UserIdentifier : 'SYSTEM '
AccountingToken :
X'0536353534300000000000000000000000000000000000000000000000000006'
ApplIdentityData : ' '
** Origin Context
PutApplType : '12'
PutApplName : 'AMQSPUT.EXE '
PutDate : '20040129' PutTime : '19484323'
ApplOriginData : ' '

GroupId : X'000000000000000000000000000000000000000000000000'
MsgSeqNumber : '1'
Offset : '0'
MsgFlags : '0'

42 WebSphere MQ for HP OpenVMS: System Administration Guide



Working with alias queues

An alias queue provides a way of referring indirectly to another queue. The other
queue can be either:
v A local queue (see “Defining a local queue” on page 38)
v A local definition of a remote queue (see “Creating a local definition of a remote

queue” on page 65)

An alias queue is not a real queue, but a definition that resolves to a real (or
target) queue at run time. The alias queue definition specifies the target queue.
When an application makes an MQOPEN call to an alias queue, the queue
manager resolves the alias to the target queue name. An alias queue cannot resolve
to another alias queue.

Alias queues are useful for:
v Giving different applications different levels of access authorities to the target

queue.
v Allowing different applications to work with the same queue in different ways.

(Perhaps you want to assign different default priorities or different default
persistence values.)

v Simplifying maintenance, migration, and workload balancing. (Perhaps you
want to change the target queue name without having to change your
application, which continues to use the alias.)

For example, assume that an application has been developed to put messages on a
queue called MY.ALIAS.QUEUE. It specifies the name of this queue when it makes
an MQOPEN request and, indirectly, if it puts a message on this queue. The
application is not aware that the queue is an alias queue. For each MQI call using
this alias, the queue manager resolves the real queue name, which could be either
a local queue or a remote queue defined at this queue manager.

By changing the value of the TARGQ attribute, you can redirect MQI calls to
another queue, possibly on another queue manager. This is useful for maintenance,
migration, and load-balancing.

Defining an alias queue

The following command creates an alias queue:
DEFINE QALIAS (MY.ALIAS.QUEUE) TARGQ (YELLOW.QUEUE)

This command redirects MQI calls that specify MY.ALIAS.QUEUE to the queue
YELLOW.QUEUE. The command does not create the target queue; the MQI calls
fail if the queue YELLOW.QUEUE does not exist at run time.

If you change the alias definition, you can redirect the MQI calls to another queue.
For example:
ALTER QALIAS (MY.ALIAS.QUEUE) TARGQ (MAGENTA.QUEUE)

This command redirects MQI calls to another queue, MAGENTA.QUEUE.

Chapter 4. Administering local WebSphere MQ objects 43



You can also use alias queues to make a single queue (the target queue) appear to
have different attributes for different applications. You do this by defining two
aliases, one for each application. Suppose there are two applications:
v Application ALPHA can put messages on YELLOW.QUEUE, but is not allowed

to get messages from it.
v Application BETA can get messages from YELLOW.QUEUE, but is not allowed

to put messages on it.

The following command defines an alias that is put enabled and get disabled for
application ALPHA:
DEFINE QALIAS (ALPHAS.ALIAS.QUEUE) +

TARGQ (YELLOW.QUEUE) +
PUT (ENABLED) +
GET (DISABLED)

The following command defines an alias that is put disabled and get enabled for
application BETA:
DEFINE QALIAS (BETAS.ALIAS.QUEUE) +

TARGQ (YELLOW.QUEUE) +
PUT (DISABLED) +
GET (ENABLED)

ALPHA uses the queue name ALPHAS.ALIAS.QUEUE in its MQI calls; BETA uses
the queue name BETAS.ALIAS.QUEUE. They both access the same queue, but in
different ways.

You can use the LIKE and REPLACE attributes when you define queue aliases, in
the same way that you use these attributes with local queues.

Using other commands with alias queues

You can use the appropriate MQSC commands to display or alter alias queue
attributes, or to delete the alias queue object. For example:

Use the following command to display the alias queue’s attributes:
DISPLAY QUEUE (ALPHAS.ALIAS.QUEUE)

Use the following command to alter the base queue name, to which the alias
resolves, where the force option forces the change even if the queue is open:
ALTER QALIAS (ALPHAS.ALIAS.QUEUE) TARGQ(ORANGE.LOCAL.QUEUE) FORCE

Use the following command to delete this queue alias:
DELETE QALIAS (ALPHAS.ALIAS.QUEUE)

You cannot delete an alias queue if an application currently has the queue open.
See the WebSphere MQ Script (MQSC) Command Reference manual for more
information about this and other alias queue commands.

Working with model queues

A queue manager creates a dynamic queue if it receives an MQI call from an
application specifying a queue name that has been defined as a model queue. The
name of the new dynamic queue is generated by the queue manager when the
queue is created. A model queue is a template that specifies the attributes of any
dynamic queues created from it.

44 WebSphere MQ for HP OpenVMS: System Administration Guide



Model queues provide a convenient method for applications to create queues as
required.

Defining a model queue

You define a model queue with a set of attributes in the same way that you define
a local queue. Model queues and local queues have the same set of attributes,
except that on model queues you can specify whether the dynamic queues created
are temporary or permanent. (Permanent queues are maintained across queue
manager restarts, temporary ones are not.) For example:
DEFINE QMODEL (GREEN.MODEL.QUEUE) +

DESCR('Queue for messages from application X') +
PUT (DISABLED) +
GET (ENABLED) +
NOTRIGGER +
MSGDLVSQ (FIFO) +
MAXDEPTH (1000) +
MAXMSGL (2000) +
USAGE (NORMAL) +
DEFTYPE (PERMDYN)

This command creates a model queue definition. From the DEFTYPE attribute, you
can see that the actual queues created from this template are permanent dynamic
queues. Any attributes not specified are automatically copied from the
SYSYTEM.DEFAULT.MODEL.QUEUE default queue.

You can use the LIKE and REPLACE attributes when you define model queues, in
the same way that you use them with local queues.

Using other commands with model queues

You can use the appropriate MQSC commands to display or alter a model queue’s
attributes, or to delete the model queue object. For example:

Use the following command to display the model queue’s attributes:
DISPLAY QUEUE (GREEN.MODEL.QUEUE)

Use the following command to alter the model to enable puts on any dynamic
queue created from this model:
ALTER QMODEL (BLUE.MODEL.QUEUE) PUT(ENABLED)

Use the following command to delete this model queue:
DELETE QMODEL (RED.MODEL.QUEUE)

Working with services

Service objects are a means by which additional processes can be managed as part
of a queue manger. With services you can define programs that are started and
stopped when the queue manager starts and ends.

Service objects can be either of the following types:

Server A server is a service object that has the parameter SERVTYPE specified as
SERVER. A server service object is the definition of a program that is
executed when a specified queue manager is started. Server service objects

Chapter 4. Administering local WebSphere MQ objects 45



define programs that typically run for a long period of time. For example,
a server service object can be used to execute a trigger monitor process,
such as runmqtrm.

Only one instance of a server service object can run concurrently. The
status of running server service objects can be monitored using the MQSC
command, DISPLAY SVSTATUS.

Command
A command is a service object that has the parameter SERVTYPE specified
as COMMAND. Command service objects are similar to server service
objects, however multiple instances of a command service object can run
concurrently and their status can not be monitored using the MQSC
command DISPLAY SVSTATUS.

If the MQSC command, STOP SERVICE, is executed no check is made to
determine whether the program started by the MQSC command, START
SERVICE, is still active before executing the stop program.

Defining a service object

The attributes used to define a service object are:

SERVTYPE
Defines the type of the service object. Possible values are:

SERVER
A server service object.

Only one instance of a server service object can be executed at a time. The
status of server service objects can be monitored using the MQSC
command, DISPLAY SVSTATUS.

COMMAND
A command service object.

Multiple instances of a command service object can be executed
concurrently. The status of a command service objects cannot be monitored.

STARTCMD
The program that is executed to start the service. A fully qualified path to the
program must be specified.

STARTARG
Arguments passed to the start program.

STDERR
Specifies the path to a file to which the standard error (stderr) of the service
program should be redirected.

STDOUT
Specifies the path to a file to which the standard output (stdout) of the service
program should be redirected.

STOPCMD
The program that is executed to stop the service. A fully qualified path to the
program must be specified.

STOPARG
Arguments passed to the stop program.

CONTROL
Specifies how the service is to be started and stopped:

46 WebSphere MQ for HP OpenVMS: System Administration Guide



MANUAL
The service is not to be started automatically or stopped automatically. It is
controlled by use of the START SERVICE and STOP SERVICE commands.
This is the default value.

QMGR
The service being defined is to be started and stopped at the same time as
the queue manager is started and stopped.

STARTONLY
The service is to be started at the same time as the queue manager is
started, but is not requested to stop when the queue manager is stopped.

Managing services

By using the CONTROL parameter, an instance of a service object can be either
started and stopped automatically by the queue manager, or started and stopped
using the MQSC commands START SERVICE and STOP SERVICE.

When an instance of a service object is started, a message is written to the queue
manager error log containing the name of the service object and the process id of
the started process. An example log entry for a server service object starting
follows:

02/15/2005 11:54:24 AM - Process(10363.1) User(mqm) Program(amqzmgr0)
AMQ5028: The Server 'S1' has started. ProcessId(13031).

EXPLANATION:
The Server process has started.
ACTION:
None.

An example log entry for a command service object starting follows:
02/15/2005 11:53:55 AM - Process(10363.1) User(mqm) Program(amqzmgr0)
AMQ5030: The Command 'C1' has started. ProcessId(13030).

EXPLANATION:
The Command has started.
ACTION:
None.

When an instance server service stops, a message is written to the queue manager
error logs containing the name of the service and the process id of the ending
process. An example log entry for a server service object stopping follows:

02/15/2005 11:54:54 AM - Process(10363.1) User(mqm) Program(amqzmgr0)
AMQ5029: The Server 'S1' has ended. ProcessId(13031).

EXPLANATION:
The Server process has ended.
ACTION:
None.

Additional environment variables

When a service is started, the environment in which the service process is started
is inherited from the environment of the queue manager. It is possible to define
additional environment variables to be set in the environment of the service
process by adding the variables you want to define to one of the service.env
environment override files.

Chapter 4. Administering local WebSphere MQ objects 47



There are two possible files to which you can add environment variables:
v The machine scope service.env file, which is located in MQS_ROOT directory
v The queue manager scope service.env file, which is located in the queue

manager data directory. For example, the location of the environment override
file for a queue manager named QMNAME is:MQS_ROOT[QMGRS.QMNAME]SERVICE.ENV

Both files are processed, if available, with definitions in the queue manager scope
file taking precedence over those in the machine scope file.

The format of the variables defined in the file, service.env, is a list of name and
value variable pairs. Each variable must be defined on a new line, and each
variable is taken as it is explicitly defined, including white space. An example of
the file, service.env, follows:
#********************************************************************#
#* *#
#* <N_OCO_COPYRIGHT> *#
#* Licensed Materials - Property of IBM *#
#* *#
#* 63H9336 *#
#* (C) Copyright IBM Corporation 2005 *#
#* *#
#* <NOC_COPYRIGHT> *#
#* *#
#********************************************************************#
#***********************************************************************#
#* Module Name: service.env *#
#* Type : WebSphere MQ service environment file *#
#* Function : Define additional environment variables to be set *#
#* for SERVICE programs. *#
#* Usage : <VARIABLE>=<VALUE> *#
#* *#
#***********************************************************************#
MYLOC=/opt/myloc/bin
MYTMP=/tmp
TRACEDIR=/tmp/trace
MYINITQ=ACCOUNTS.INITIATION.QUEUE

Replaceable inserts on service definitions

In the definition of a service object, it is possible to substitute tokens. Tokens that
are substituted are automatically replaced with their expanded text when the
service program is executed. Substitute tokens can be taken from the following list
of common tokens, or from any variables that are defined in the file, service.env.

Common tokens

The following are common tokens that can be used to substitute tokens in the
definition of a service object:

MQ_INSTALL_PATH
The install location of WebSphere MQ on OpenVMS systems is MQS_ROOT.

MQ_DATA_PATH
The location of the WebSphere MQ data directory on OpenVMS systems is
MQS_ROOT.

QMNAME
The current queue manager name.

MQ_SERVICE_NAME
The name of the service.

48 WebSphere MQ for HP OpenVMS: System Administration Guide



MQ_SERVER_PID
This token can only be used by the STOPARG and STOPCMD arguments.

For server service objects this token is replaced with the process id of the
process started by the STARTCMD and STARTARG arguments. Otherwise,
this token is replaced with 0.

MQ_Q_MGR_DATA_PATH
The location of the queue manager data directory.

MQ_Q_MGR_DATA_NAME
The transformed name of the queue manager. For more information on
name transformation, see “Understanding WebSphere MQ file names” on
page 17.

To use replaceable inserts, insert the token within + characters into any of the
STARTCMD, STARTARG, STOPCMD, STOPARG, STDOUT or STDERR strings. For
examples of this, see “Examples on using service objects.”

Examples on using service objects

The following services are written with UNIX® style path separator characters,
except where otherwise stated.

Using a server service object

This example shows how to define, use, and alter, a server service object to start a
trigger monitor.
1. A server service object is defined, using the following MQSC command:

DEFINE SERVICE(S1) +
CONTROL(QMGR) +
SERVTYPE(SERVER) +
STARTCMD('+MQ_INSTALL_PATH+bin/runmqtrm') +
STARTARG('-m +QMNAME+ -q ACCOUNTS.INITIATION.QUEUE') +
STOPCMD('+MQ_INSTALL_PATH+bin/amqsstop') +
STOPARG('-m +QMNAME+ -p +MQ_SERVER_PID+')

Where:
+MQ_INSTALL_PATH+ is a token representing the installation directory.
+QMNAME+ is a token representing the name of the queue manager.
ACCOUNTS.INITIATION.QUEUE is the initiation queue.
amqsstop is a sample program provided with WebSphere MQ which
requests the queue manager to break all connections for the process id.
amqsstop generates PCF commands, therefore the command server must be
running.
+MQ_SERVER_PID+ is a token representing the process id passed to the stop
program.

2. An instance of the server service object executes when the queue manager is
next started. However, an instance of the server service object starts
immediately with the following MQSC command:
START SERVICE(S1)

3. The status of the server service process is displayed, using the following MQSC
command:
DISPLAY SVSTATUS(S1)

4. This example now shows how to alter the server service object and have the
updates picked up by manually restarting the server service process. The server

Chapter 4. Administering local WebSphere MQ objects 49



service object is altered so that the initiation queue is specified as
JUPITER.INITIATION.QUEUE. The following MQSC command is used:
ALTER SERVICE(S1) +

STARTARG('-m +QMNAME+ -q JUPITER.INITIATION.QUEUE')

Note: A running service does not pick up any updates to its service definition
until it is restarted.

5. The server service process is restarted so that the alteration is picked up, using
the following MQSC commands:
STOP SERVICE(S1)

Followed by:
START SERVICE(S1)

The server service process is restarted and picks up the alterations made in
Step 4.

Note: The MQSC command, STOP SERVICE, can only be used if a STOPCMD
argument is specified in the service definition.

Using a command service object

This example shows how to define a command service object to start a program
that writes entries to the operating system’s system log when a queue manager is
started or stopped:
1. The command service object is defined, using the following MQSC command:

DEFINE SERVICE(S2) +
CONTROL(QMGR) +
SERVTYPE(COMMAND) +
STARTCMD('/MQS_ROOT/logger') +
STARTARG('Queue manager +QMNAME+ starting') +
STOPCMD('/MQS_ROOT/logger') +
STOPARG('Queue manager +QMNAME+ stopping')

Where:
logger is the UNIX supplied command to write to the system log.
+QMNAME+ is a token representing the name of the queue manager.

Using a command service object when a queue manager ends
only

This example shows how to define a command service object to start a program
that writes entries to the operating system’s system log when a queue manager is
stopped only:
1. The command service object is defined, using the following MQSC command:

DEFINE SERVICE(S3) +
CONTROL(QMGR) +
SERVTYPE(COMMAND) +
STOPCMD('/MQS_ROOT/logger') +
STOPARG('Queue manager +QMNAME+ stopping')

Where:
logger is a sample program provided with WebSphere MQ that can write
entries to the operating system’s system log.
+QMNAME+ is a token representing the name of the queue manager.

50 WebSphere MQ for HP OpenVMS: System Administration Guide



More on passing arguments

This example is written with Windows style path separator characters.

This example shows how to define a server service object to start a program called
runserv when a queue manager is started. One of the arguments that is to be
passed to the starting program is a string containing a space. This argument needs
to be passed as a single string. To achieve this, double quotes are used as shown in
the following command to define the command service object:
1. The server service object is defined, using the following MQSC command:

DEFINE SERVICE(S1) SERVTYPE(SERVER) CONTROL(QMGR) +
STARTCMD('C:\Program Files\Tools\runserv.exe') +
STARTARG('-m +QMNAME+ -d "MQS_ROOT"') +
STDOUT('MQS_ROOT\+MQ_SERVICE_NAME+.out')

Where:
+QMNAME+ is a token representing the name of the queue manager.
"MQS_ROOT" is a string containing a space, which will be passed as a single
string.

Autostarting a Service

This example shows how to define a server service object that can be used to
automatically start the Trigger Monitor when the queue manager starts.
1. The server service object is defined, using the following MQSC command:

DEFINE SERVICE(TRIG_MON_START) +
CONTROL(QMGR) +
SERVTYPE(SERVER) +
STARTCMD('runmqtrm') +
STARTARG('-m +QMNAME+ -q +IQNAME+')

Where:
+QMNAME+ is a token representing the name of the queue manager.
+IQNAME+ is an environment variable defined by the user in one of the
service.env files representing the name of the initiation queue.

Managing objects for triggering

WebSphere MQ enables you to start an application automatically when certain
conditions on a queue are met. For example, you might want to start an
application when the number of messages on a queue reaches a specified number.
This facility is called triggering and is described in detail in the WebSphere MQ
Application Programming Guide.

This section tells you how to set up the required objects to support triggering on
WebSphere MQ.

Defining an application queue for triggering

An application queue is a local queue that is used by applications for messaging,
through the MQI. Triggering requires a number of queue attributes to be defined
on the application queue. Triggering itself is enabled by the Trigger attribute
(TRIGGER in MQSC commands).

Chapter 4. Administering local WebSphere MQ objects 51



In this example, a trigger event is to be generated when there are 100 messages of
priority 5 or greater on the local queue MOTOR.INSURANCE.QUEUE, as follows:
DEFINE QLOCAL (MOTOR.INSURANCE.QUEUE) +

PROCESS (MOTOR.INSURANCE.QUOTE.PROCESS) +
MAXMSGL (2000) +
DEFPSIST (YES) +
INITQ (MOTOR.INS.INIT.QUEUE) +
TRIGGER +
TRIGTYPE (DEPTH) +
TRIGDPTH (100)+
TRIGMPRI (5)

where:

QLOCAL (MOTOR.INSURANCE.QUEUE)
Is the name of the application queue being defined.

PROCESS (MOTOR.INSURANCE.QUOTE.PROCESS)
Is the name of the process definition that defines the application to be
started by a trigger monitor program.

MAXMSGL (2000)
Is the maximum length of messages on the queue.

DEFPSIST (YES)
Specifies that messages on this queue are persistent by default.

INITQ (MOTOR.INS.INIT.QUEUE)
Is the name of the initiation queue on which the queue manager is to put
the trigger message.

TRIGGER
Is the trigger attribute value.

TRIGTYPE (DEPTH)
Specifies that a trigger event is generated when the number of messages of
the required priority (TRIGMPRI) reaches the number specified in
TRIGDPTH.

TRIGDPTH (100)
Is the number of messages required to generate a trigger event.

TRIGMPRI (5)
Is the priority of messages that are to be counted by the queue manager in
deciding whether to generate a trigger event. Only messages with priority
5 or higher are counted.

Defining an initiation queue

When a trigger event occurs, the queue manager puts a trigger message on the
initiation queue specified in the application queue definition. Initiation queues
have no special settings, but you can use the following definition of the local
queue MOTOR.INS.INIT.QUEUE for guidance:
DEFINE QLOCAL(MOTOR.INS.INIT.QUEUE) +

GET (ENABLED) +
NOSHARE +
NOTRIGGER +
MAXMSGL (2000) +
MAXDEPTH (1000)

52 WebSphere MQ for HP OpenVMS: System Administration Guide



Defining a process

Use the DEFINE PROCESS command to create a process definition. A process
definition defines the application to be used to process messages from the
application queue. The application queue definition names the process to be used
and thereby associates the application queue with the application to be used to
process its messages. This is done through the PROCESS attribute on the
application queue MOTOR.INSURANCE.QUEUE. The following MQSC command
defines the required process, MOTOR.INSURANCE.QUOTE.PROCESS, identified
in this example:
DEFINE PROCESS (MOTOR.INSURANCE.QUOTE.PROCESS) +

DESCR ('Insurance request message processing') +
APPLTYPE (OPENVMS) +
APPLICID ('DKA0:[MQM.ADMIN.TEST]IRMP01.EXE') +
USERDATA ('open, close, 235')

Where:

MOTOR.INSURANCE.QUOTE.PROCESS
Is the name of the process definition.

DESCR ('Insurance request message processing')
Describes the application program to which this definition relates. This text
is displayed when you use the DISPLAY PROCESS command. This can
help you to identify what the process does. If you use spaces in the string,
you must enclose the string in single quotation marks.

APPLTYPE (OPENVMS)
Is the type of application that runs on OpenVMS.

APPLICID ('DKA0:[MQM.ADMIN.TEST]IRMP01.EXE')
Is the name of the application executable program.

USERDATA ('open, close, 235')
Is user-defined data, which can be used by the application.

Displaying attributes of a process definition

Use the DISPLAY PROCESS command, with the ALL keyword, to examine the
results of your definition. For example:

You can also use the MQSC command ALTER PROCESS to alter an existing
process definition and DELETE PROCESS to delete a process definition.

DISPLAY PROCESS (MOTOR.INS.PROC) ALL

24 : DISPLAY PROCESS (MOTOR.INS.PROC) ALL
AMQ8407: Display Process details.
DESCR('Insurance request message processing') +
APPLICID('DKA0:[MQM.ADMIN.TEST]IRMP01.EXE') +
USERDATA(open, close, 235) ENVRDATA()+
PROCESS(MOTOR.INS.PROC) ALTDATE(2004-08-25)
ALTTIME(17.30.44) APPLTYPE (OpenVMS)

Chapter 4. Administering local WebSphere MQ objects 53



54 WebSphere MQ for HP OpenVMS: System Administration Guide



Chapter 5. Automating administration tasks

This chapter assumes that you have experience of administering WebSphere MQ
objects.

You might decide that it would be beneficial to your installation to automate some
administration and monitoring tasks. You can automate administration tasks for
both local and remote queue managers using programmable command format
(PCF) commands.

The section “PCF commands” describes how to use programmable command
formats to automate administration tasks.

PCF commands

The purpose of WebSphere MQ programmable command format (PCF) commands
is to allow administration tasks to be programmed into an administration program.
In this way, from a program you can manipulate queue manager objects (queues,
process definitions, namelists, channels, client connection channels, listeners,
services, and authentication information objects), and even manipulate the queue
managers themselves.

PCF commands cover the same range of functions provided by MQSC commands.
You can write a program to issue PCF commands to any queue manager in the
network from a single node. In this way, you can both centralize and automate
administration tasks.

Each PCF command is a data structure that is embedded in the application data
part of a WebSphere MQ message. Each command is sent to the target queue
manager using the MQI function MQPUT in the same way as any other message.
Providing the command server is running on the queue manager receiving the
message, the command server interprets it as a command message and runs the
command. To get the replies, the application issues an MQGET call and the reply
data is returned in another data structure. The application can then process the
reply and act accordingly.

Note: Unlike MQSC commands, PCF commands and their replies are not in a text
format that you can read.

Briefly, these are some of the things needed to create a PCF command message:

Message descriptor
This is a standard WebSphere MQ message descriptor, in which:
v Message type (MsqType) is MQMT_REQUEST.
v Message format (Format) is MQFMT_ADMIN.

Application data
Contains the PCF message including the PCF header, in which:
v The PCF message type (Type) specifies MQCFT_COMMAND.
v The command identifier specifies the command, for example, Change

Queue (MQCMD_CHANGE_Q).

© Copyright IBM Corp. 1994, 2009 55



For a complete description of the PCF data structures and how to implement them,
see the WebSphere MQ Programmable Command Formats and Administration Interface
manual.

PCF object attributes

Object attributes in PCF are not limited to eight characters as they are for MQSC
commands. They are shown in this book in italics. For example, the PCF
equivalent of RQMNAME is RemoteQMgrName.

Escape PCFs

Escape PCFs are PCF commands that contain MQSC commands within the
message text. You can use PCFs to send commands to a remote queue manager.
For more information about using escape PCFs, see the WebSphere MQ
Programmable Command Formats and Administration Interface manual.

Using the MQAI to simplify the use of PCFs

The MQAI is an administration interface to WebSphere MQ that is available on the
HP OpenVMS platform.

It performs administration tasks on a queue manager through the use of data bags.
Data bags allow you to handle properties (or parameters) of objects in a way that
is easier than using PCFs.

Use the MQAI:

To simplify the use of PCF messages
The MQAI is an easy way to administer WebSphere MQ; you do not have
to write your own PCF messages, avoiding the problems associated with
complex data structures.

To pass parameters in programs written using MQI calls, the PCF message
must contain the command and details of the string or integer data. To do
this, you need several statements in your program for every structure, and
memory space must be allocated. This task can be long and laborious.

Programs written using the MQAI pass parameters into the appropriate
data bag and you need only one statement for each structure. The use of
MQAI data bags removes the need for you to handle arrays and allocate
storage, and provides some degree of isolation from the details of the PCF.

To implement self-administering applications and administration tools
For example, the Active Directory Services provided by WebSphere MQ for
Windows Version 5.3 uses the MQAI. (There is currently no example of
this usage on the OpenVMS platform.)

To handle error conditions more easily
It is difficult to get return codes back from PCF commands, but the MQAI
makes it easier for the program to handle error conditions.

After you have created and populated your data bag, you can send an
administration command message to the command server of a queue manager,
using the mqExecute call, which waits for any response messages. The mqExecute
call handles the exchange with the command server and returns responses in a
response bag.

56 WebSphere MQ for HP OpenVMS: System Administration Guide



For more information about using the MQAI, and PCFs in general, see the
WebSphere MQ Programmable Command Formats and Administration Interface manual.

Command servers

Each queue manager can have a command server associated with it. A command
server processes any incoming commands from remote queue managers, or PCF
commands from applications.

For more information about command servers see “Managing the command server
for remote administration” on page 63 in “Administering remote WebSphere MQ
objects”

Administering remote WebSphere MQ objects

This section tells you how to administer WebSphere MQ objects on a remote queue
manager using MQSC commands, and how to use remote queue objects to control
the destination of messages and reply messages.

This chapter describes:
v “Channels, clusters, and remote queuing”
v “Remote administration from a local queue manager” on page 59
v “Creating a local definition of a remote queue” on page 65
v “Using remote queue definitions as aliases” on page 68
v “Data conversion” on page 69

Channels, clusters, and remote queuing

A queue manager communicates with another queue manager by sending a
message and, if required, receiving back a response. The receiving queue manager
could be:
v On the same machine
v On another machine in the same location (or even on the other side of the

world)
v Running on the same platform as the local queue manager
v Running on another platform supported by WebSphere MQ

These messages might originate from:
v User-written application programs that transfer data from one node to another
v User-written administration applications that use PCF commands, the MQAI, or

the ADSI
v Queue managers sending:

– Instrumentation event messages to another queue manager
– MQSC commands issued from a runmqsc command in indirect mode (where

the commands are run on another queue manager)

Before a message can be sent to a remote queue manager, the local queue manager
needs a mechanism to detect the arrival of messages and transport them,
consisting of:
v At least one channel
v A transmission queue

Chapter 5. Automating administration tasks 57



v A message channel agent (MCA)
v A channel listener
v A channel initiator

For a remote queue manager to received a message, a listener is required.

A channel is a one-way communication link between two queue managers and can
carry messages destined for any number of queues at the remote queue manager.

Each end of the channel has a separate definition. For example, if one end is a
sender or a server, the other end must be a receiver or a requester. A simple
channel consists of a sender channel definition at the local queue manager end and a
receiver channel definition at the remote queue manager end. The two definitions
must have the same name and together constitute a single message channel.

If you want the remote queue manager to respond to messages sent by the local
queue manager, set up a second channel to send responses back to the local queue
manager.

Use the MQSC command DEFINE CHANNEL to define channels. In this chapter,
the examples relating to channels use the default channel attributes unless
otherwise specified.

There is a message channel agent (MCA) at each end of a channel, controlling the
sending and receiving of messages. The MCA takes messages from the
transmission queue and puts them on the communication link between the queue
managers.

A transmission queue is a specialized local queue that temporarily holds messages
before the MCA picks them up and sends them to the remote queue manager. You
specify the name of the transmission queue on a remote queue definition.

You can allow an MCA to transfer messages using multiple threads. This process is
known as pipelining. Pipelining enables the MCA to transfer messages more
efficiently, improving channel performance. See “The Channels stanza” on page 83
for details of how to configure a channel to use pipelining.

“Preparing channels and transmission queues for remote administration” on page
60 tells you how to use these definitions to set up remote administration.

For more information about setting up distributed queuing in general, see the
WebSphere MQ Intercommunications manual.

Remote administration using clusters

In a WebSphere MQ network using distributed queuing, every queue manager is
independent. If one queue manager needs to send messages to another queue
manager, it must define a transmission queue, a channel to the remote queue
manager, and a remote queue definition for every queue to which it wants to send
messages.

A cluster is a group of queue managers set up in such a way that the queue
managers can communicate directly with one another over a single network
without complex transmission queue, channel, and queue definitions. Clusters can

58 WebSphere MQ for HP OpenVMS: System Administration Guide



be set up easily, and typically contain queue managers that are logically related in
some way and need to share data or applications. Even the smallest cluster reduces
system administration overheads.

Establishing a network of queue managers in a cluster involves fewer definitions
than establishing a traditional distributed queuing environment. With fewer
definitions to make, you can set up or change your network more quickly and
easily, and reduce the risk of making an error in your definitions.

To set up a cluster, you need one cluster sender (CLUSSDR) and one cluster
receiver (CLUSRCVR) definition for each queue manager. You do not need any
transmission queue definitions or remote queue definitions. The principles of
remote administration are the same when used within a cluster, but the definitions
themselves are greatly simplified.

For more information about clusters, their attributes, and how to set them up, refer
to the WebSphere MQ Queue Manager Clusters manual.

Remote administration from a local queue manager

This section tells you how to administer a remote queue manager from a local
queue manager using MQSC and PCF commands.

Preparing the queues and channels is essentially the same for both MQSC and PCF
commands. In this book, the examples show MQSC commands, because they are
easier to understand. For more information about writing administration programs
using PCF commands, see the WebSphere MQ Programmable Command Formats and
Administration Interface manual.

You send MQSC commands to a remote queue manager either interactively or
from a text file containing the commands. The remote queue manager might be on
the same machine or, more typically, on a different machine. You can remotely
administer queue managers in other WebSphere MQ environments, including AIX ,
AS/400®, and MVS/ESA™.

To implement remote administration, you must create specific objects. Unless you
have specialized requirements, you should find that the default values (for
example, for maximum message length) are sufficient.

Preparing queue managers for remote administration

Figure 6 on page 60 shows the configuration of queue managers and channels that
you need for remote administration using the runmqsc command. The object
source.queue.manager is the source queue manager from which you can issue
MQSC commands and to which the results of these commands (operator messages)
are returned. The object target.queue.manager is the name of the target queue
manager, which processes the commands and generates any operator messages.

Note: If you are using runmqsc with the -w option, source.queue.manager must be
the default queue manager. For further information on creating a queue manager,
see “crtmqm (create queue manager)” on page 205.

Chapter 5. Automating administration tasks 59



On both systems, if you have not already done so:
v Create the queue manager and the default objects, using the crtmqm command.
v Start the queue manager, using the strmqm command.

On the target queue manager:
v The command queue, SYSTEM.ADMIN.COMMAND.QUEUE, must be present.

This queue is created by default when a queue manager is created.

You have to run these commands locally or over a network facility such as Telnet.

Preparing channels and transmission queues for remote
administration

To run MQSC commands remotely, set up two channels, one for each direction,
and their associated transmission queues. This example assumes that you are using
TCP/IP as the transport type and that you know the TCP/IP address involved.

The channel source.to.target is for sending MQSC commands from the source
queue manager to the target queue manager. Its sender is at source.queue.manager
and its receiver is at target.queue.manager. The channel target.to.source is for
returning the output from commands and any operator messages that are
generated to the source queue manager. You must also define a transmission queue
for each channel. This queue is a local queue that is given the name of the
receiving queue manager. The XMITQ name must match the remote queue
manager name in order for remote administration to work, unless you are using a
queue manager alias. Figure 7 on page 61 summarizes this configuration.

runmqsc

MQSC commands

repl ies

Process commands
for example:
DEFINE QLOCAL

Local system Remote system

source.queue.manager target.queue.manager

Figure 6. Remote administration using MQSC commands

60 WebSphere MQ for HP OpenVMS: System Administration Guide



See the WebSphere MQ Intercommunications manual for more information about
setting up channels.

Defining channels and transmission queues:

On the source queue manager (source.queue.manager), issue the following MQSC
commands to define the channels, listener, and the transmission queue:
1. Define the sender channel at the source queue manager:

DEFINE CHANNEL ('source.to.target') +
CHLTYPE(SDR) +
CONNAME (RHX5498) +
XMITQ ('target.queue.manager') +
TRPTYPE(TCP)

2. Define the receiver channel at the source queue manager:
DEFINE CHANNEL ('target.to.source') +

CHLTYPE(RCVR) +
TRPTYPE(TCP)

3. Define the transmission queue on the source queue manager:
DEFINE QLOCAL ('target.queue.manager') +

USAGE (XMITQ)

Issue the following commands on the target queue manager
(target.queue.manager), to create the channels, listener, and the transmission
queue:
1. Define the sender channel on the target queue manager:

DEFINE CHANNEL ('target.to.source') +
CHLTYPE(SDR) +
CONNAME (RHX7721) +
XMITQ ('source.queue.manager') +
TRPTYPE(TCP)

2. Define the receiver channel on the target queue manager:
DEFINE CHANNEL ('source.to.target') +

CHLTYPE(RCVR) +
TRPTYPE(TCP)

3. Define the transmission queue on the target queue manager:
DEFINE QLOCAL ('source.queue.manager') +

USAGE (XMITQ)

repl ies

runmqsc

Local system Remote system

source.queue.manager target.queue.manager

XMITQ=target.queue.manager

source.to.target

target.to.source

XMITQ=source.queue.manager

SYSTEM.ADMIN.COMMAND.QUEUE

SYSTEM.MQSC.REPLY.QUEUE

commands

Figure 7. Setting up channels and queues for remote administration

Chapter 5. Automating administration tasks 61



Note: The TCP/IP connection names specified for the CONNAME attribute in the
sender channel definitions are for illustration only. This is the network name of the
machine at the other end of the connection. Use the values appropriate for your
network.

Starting the listeners and channels:

Start both listeners by using the following MQSC commands:
1. Start the listener on the source queue manager, source.queue.manager, by

issuing the following MQSC command:
START LISTENER ('source.queue.manager')

Or at a DCL prompt enter:
runmqlsr -m "source.queue.manager" -t tcp

2. Start the listener on the target queue manager, target.queue.manager, by
issuing the following MQSC command:
START LISTENER ('target.queue.manager')

Or at a DCL prompt enter:
runmqlsr -m "target.queue.manager" -t tcp

Start both sender channels by using the following MQSC commands:
1. Start the sender channel on the source queue manager, source.queue.manager,

by issuing the following MQSC command:
START CHANNEL ('source.to.target')

Or at a DCL prompt enter:
runmqchl -m "source.queue.manager" -c "source.to.target"

2. Start the sender channel on the target queue manager, target.queue.manager,
by issuing the following MQSC command:
START CHANNEL ('target.to.source')

Or at a DCL prompt enter:
runmqchl -m "source.queue.manager" -c " target.to.source "

The runmqlsr and runmqchl commands are WebSphere MQ control commands.
They cannot be issued using runmqsc.

Automatic definition of channels:

If WebSphere MQ receives an inbound attach request and cannot find an
appropriate receiver or server-connection channel, it creates a channel
automatically. Automatic definitions are based on two default definitions supplied
with WebSphere MQ: SYSTEM.AUTO.RECEIVER and SYSTEM.AUTO.SVRCONN.

You enable automatic definition of receiver and server-connection definitions by
updating the queue manager object using the MQSC command, ALTER QMGR (or
the PCF command Change Queue Manager).

For more information about creating channel definitions automatically, see the
WebSphere MQ Intercommunications manual. For information about automatically
defining channels for clusters, see the WebSphere MQ Queue Manager Clusters
manual.

62 WebSphere MQ for HP OpenVMS: System Administration Guide



Managing the command server for remote administration

Each queue manager can have a command server associated with it. A command
server processes any incoming commands from remote queue managers, or PCF
commands from applications. It presents the commands to the queue manager for
processing and returns a completion code or operator message depending on the
origin of the command.

A command server is mandatory for all administration involving PCF commands,
the MQAI, and also for remote administration.

Note: For remote administration, ensure that the target queue manager is running.
Otherwise, the messages containing commands cannot leave the queue manager
from which they are issued. Instead, these messages are queued in the local
transmission queue that serves the remote queue manager. Avoid this situation.

Starting the command server:

Depending on the value of the queue manager attribute, SCMDSERV, the
command server is either started automatically when the queue manager starts, or
must be started manually. The value of the queue manager attribute can be altered
using the MQSC command ALTER QMGR specifying the parameter SCMDSERV. By
default, the command server is started automatically.

If SCMDSERV is set to MANUAL, start the command server using the command:
strmqcsv saturn.queue.manager

where saturn.queue.manager is the queue manager for which the command server
is being started.

Displaying the status of the command server:

For remote administration, ensure that the command server on the target queue
manager is running. If it is not running, remote commands cannot be processed.
Any messages containing commands are queued in the target queue manager’s
command queue.

To display the status of the command server for a queue manager, issue the
following MQSC command:
DISPLAY QMSTATUS CMDSERV

Stopping a command server:

To end the command server started by the previous example use the following
command:
endmqcsv saturn.queue.manager

You can stop the command server in two ways:
v For a controlled stop, use the endmqcsv command with the -c flag, which is the

default.
v For an immediate stop, use the endmqcsv command with the -i flag.

Note: Stopping a queue manager also ends the command server associated with it.

Chapter 5. Automating administration tasks 63



Issuing MQSC commands on a remote queue manager

The command server must be running on the target queue manager, if it is going
to process MQSC commands remotely. (This is not necessary on the source queue
manager). For information on how to start the command server on a queue
manager, see “Starting the command server” on page 63.

On the source queue manager, you can then run MQSC commands interactively in
indirect mode by typing:
runmqsc -w 30 target.queue.manager

This form of the runmqsc command, with the -w flag, runs the MQSC commands
in indirect mode, where commands are put (in a modified form) on the command
server input queue and executed in order.

When you type in an MQSC command, it is redirected to the remote queue
manager, in this case, target.queue.manager. The timeout is set to 30 seconds; if a
reply is not received within 30 seconds, the following message is generated on the
local (source) queue manager:
AMQ8416: MQSC timed out waiting for a response from the command server.

When you stop issuing MQSC commands, the local queue manager displays any
timed-out responses that have arrived and discards any further responses.

In indirect mode, you can also run an MQSC command file on a remote queue
manager. For example:
runmqsc -w 60 target.queue.manager < mycomds.in > report.out

where mycomds.in is a file containing MQSC commands and report.out is the
report file.

Working with queue managers on MVS/ESA:

You can issue MQSC commands to an MVS/ESA queue manager from a
WebSphere MQ for HP OpenVMS queue manager. However, to do this, you must
modify the runmqsc command and the channel definitions at the sender.

In particular, you add the -x flag to the runmqsc command on an OpenVMS node:
runmqsc -w 30 -x "target.queue.manager"

On the sender channel, set the CONVERT attribute to YES. This specifies that the
required data conversion between the systems is performed at the OpenVMS end.
The channel definition command now becomes:
* Define the sender channel at the source queue manager on OpenVMS

DEFINE CHANNEL ('source.to.target') +
CHLTYPE(SDR) +
CONNAME (RHX5498) +
XMITQ ('target.queue.manager') +
TRPTYPE(TCP) +
CONVERT (YES)

You must also define the receiver channel and the transmission queue at the source
queue manager as before. Again, this example assumes that TCP/IP is the
transmission protocol being used.

64 WebSphere MQ for HP OpenVMS: System Administration Guide



Recommendations for issuing commands remotely

When you are issuing commands on a remote queue manager:
1. Put the MQSC commands to be run on the remote system in a command file.
2. Verify your MQSC commands locally, by specifying the -v flag on the runmqsc

command.
You cannot use runmqsc to verify MQSC commands on another queue
manager.

3. Check that the command file runs locally without error.
4. Run the command file against the remote system.

If you have problems using MQSC commands remotely

If you have difficulty in running MQSC commands remotely, make sure that you
have:
v Started the command server on the target queue manager.
v Defined a valid transmission queue.
v Defined the two ends of the message channels for both:

– The channel along which the commands are being sent.
– The channel along which the replies are to be returned.

v Specified the correct connection name (CONNAME) in the channel definition.
v Started the listeners before you started the message channels.
v Checked that the disconnect interval has not expired, for example, if a channel

started but then shut down after some time. This is especially important if you
start the channels manually.

v Sent requests from a source queue manager that do not make sense to the target
queue manager (for example, requests that include parameters that are not
supported on the remote queue manager).

See also “Resolving problems with MQSC” on page 35.

Creating a local definition of a remote queue

A local definition of a remote queue is a definition on a local queue manager that
refers to a queue on a remote queue manager.

You do not have to define a remote queue from a local position, but the advantage
of doing so is that applications can refer to the remote queue by its locally-defined
name instead of having to specify a name that is qualified by the ID of the queue
manager on which the remote queue is located.

Understanding how local definitions of remote queues work

An application connects to a local queue manager and then issues an MQOPEN
call. In the open call, the queue name specified is that of a remote queue definition
on the local queue manager. The remote queue definition supplies the names of the
target queue, the target queue manager, and optionally, a transmission queue. To
put a message on the remote queue, the application issues an MQPUT call,
specifying the handle returned from the MQOPEN call. The queue manager uses
the remote queue name and the remote queue manager name in a transmission
header at the start of the message. This information is used to route the message to
its correct destination in the network.

Chapter 5. Automating administration tasks 65



As administrator, you can control the destination of the message by altering the
remote queue definition.

Example:

Purpose:

An application needs to put a message on a queue owned by a remote queue
manager.

How it works:

The application connects to a queue manager, for example, saturn.queue.manager.
The target queue is owned by another queue manager.

On the MQOPEN call, the application specifies these fields:

Field value Description

ObjectName CYAN.REMOTE.QUEUE Specifies the local name of the
remote queue object. This defines the
target queue and the target queue
manager.

ObjectType (Queue) Identifies this object as a queue.

ObjectQmgrName Blank or saturn.queue.manager This field is optional.

If blank, the name of the local queue
manager is assumed. (This is the
queue manager on which the remote
queue definition exists.)

After this, the application issues an MQPUT call to put a message onto this queue.

On the local queue manager, you can create a local definition of a remote queue
using the following MQSC commands:

DEFINE QREMOTE (CYAN.REMOTE.QUEUE) +
DESCR ('Queue for auto insurance requests from the branches') +
RNAME (AUTOMOBILE.INSURANCE.QUOTE.QUEUE) +
RQMNAME (jupiter.queue.manager) +
XMITQ (INQUOTE.XMIT.QUEUE)

where:

QREMOTE (CYAN.REMOTE.QUEUE)
Specifies the local name of the remote queue object. This is the name that
applications connected to this queue manager must specify in the
MQOPEN call to open the queue
AUTOMOBILE.INSURANCE.QUOTE.QUEUE on the remote queue
manager jupiter.queue.manager.

DESCR ('Queue for auto insurance requests from the branches')
Provides additional text that describes the use of the queue.

RNAME (AUTOMOBILE.INSURANCE.QUOTE.QUEUE)
Specifies the name of the target queue on the remote queue manager. This
is the real target queue for messages sent by applications that specify the

66 WebSphere MQ for HP OpenVMS: System Administration Guide



queue name CYAN.REMOTE.QUEUE. The queue
AUTOMOBILE.INSURANCE.QUOTE.QUEUE must be defined as a local
queue on the remote queue manager.

RQMNAME (jupiter.queue.manager)
Specifies the name of the remote queue manager that owns the target
queue AUTOMOBILE.INSURANCE.QUOTE.QUEUE.

XMITQ (INQUOTE.XMIT.QUEUE)
Specifies the name of the transmission queue. This is optional; if the name
of a transmission queue is not specified, a queue with the same name as
the remote queue manager is used.

In either case, the appropriate transmission queue must be defined as a
local queue with a Usage attribute specifying that it is a transmission queue
(USAGE(XMITQ) in MQSC commands).

An alternative way of putting messages on a remote queue

Using a local definition of a remote queue is not the only way of putting messages
on a remote queue. Applications can specify the full queue name, including the
remote queue manager name, as part of the MQOPEN call. In this case, you do
not need a local definition of a remote queue. However, this means that
applications must either know, or have access to, the name of the remote queue
manager at run time.

Using other commands with remote queues

You can use MQSC commands to display or alter the attributes of a remote queue
object, or you can delete the remote queue object. For example:
v To display the remote queue’s attributes:

DISPLAY QUEUE (CYAN.REMOTE.QUEUE)

v To change the remote queue to enable puts. This does not affect the target
queue, only applications that specify this remote queue:
ALTER QREMOTE (CYAN.REMOTE.QUEUE) PUT(ENABLED)

v To delete this remote queue. This does not affect the target queue, only its local
definition:

DELETE QREMOTE (CYAN.REMOTE.QUEUE)

Note: When you delete a remote queue, you delete only the local representation of
the remote queue. You do not delete the remote queue itself or any messages on it.

Defining a transmission queue

A transmission queue is a local queue that is used when a queue manager
forwards messages to a remote queue manager through a message channel.

The channel provides a one-way link to the remote queue manager. Messages are
queued at the transmission queue until the channel can accept them. When you
define a channel, you must specify a transmission queue name at the sending end
of the message channel.

The MQSC command attribute USAGE defines whether a queue is a transmission
queue or a normal queue.

Default transmission queues:

Chapter 5. Automating administration tasks 67



When a queue manager sends messages to a remote queue manager, it identifies
the transmission queue using the following sequence:
1. The transmission queue named on the XMITQ attribute of the local definition

of a remote queue.
2. A transmission queue with the same name as the target queue manager. (This

value is the default value on XMITQ of the local definition of a remote queue.)
3. The transmission queue named on the DEFXMITQ attribute of the local queue

manager.

For example, the following MQSC command creates a default transmission queue
on source.queue.manager for messages going to target.queue.manager:

DEFINE QLOCAL ('target.queue.manager') +
DESCR ('Default transmission queue for target qm') +
USAGE (XMITQ)

Applications can put messages directly on a transmission queue, or indirectly
through a remote queue definition. See also “Creating a local definition of a remote
queue” on page 65.

Using remote queue definitions as aliases

In addition to locating a queue on another queue manager, you can also use a local
definition of a remote queue for both:
v Queue manager aliases
v Reply-to queue aliases

Both types of alias are resolved through the local definition of a remote queue.

You must set up the appropriate channels for the message to arrive at its
destination.

Queue manager aliases

An alias is the process by which the name of the target queue manager, as
specified in a message, is modified by a queue manager on the message route.
Queue manager aliases are important because you can use them to control the
destination of messages within a network of queue managers.

You do this by altering the remote queue definition on the queue manager at the
point of control. The sending application is not aware that the queue manager
name specified is an alias.

For more information about queue manager aliases, see the WebSphere MQ
Intercommunications manual.

Reply-to queue aliases

Optionally, an application can specify the name of a reply-to queue when it puts a
request message on a queue.

If the application that processes the message extracts the name of the reply-to
queue, it knows where to send the reply message, if required.

A reply-to queue alias is the process by which a reply-to queue, as specified in a
request message, is altered by a queue manager on the message route. The sending
application is not aware that the reply-to queue name specified is an alias.

68 WebSphere MQ for HP OpenVMS: System Administration Guide



A reply-to queue alias lets you alter the name of the reply-to queue and optionally
its queue manager. This in turn lets you control which route is used for reply
messages.

For more information about request messages, reply messages, and reply-to
queues, see the WebSphere MQ Application Programming Guide.

For more information about reply-to queue aliases, see the WebSphere MQ
Intercommunications manual.

Data conversion

Message data in WebSphere MQ defined formats (also known as built-in formats)
can be converted by the queue manager from one coded character set to another,
provided that both character sets relate to a single language or a group of similar
languages.

For example, conversion between coded character sets with identifiers (CCSIDs)
850 and 500 is supported, because both apply to Western European languages.

For EBCDIC new line (NL) character conversions to ASCII, see
“AllQueueManagers stanza” on page 73.

Supported conversions are defined in the WebSphere MQ Application Programming
Reference manual.

When a queue manager cannot convert messages in built-in
formats

The queue manager cannot automatically convert messages in built-in formats if
their CCSIDs represent different national-language groups. For example,
conversion between CCSID 850 and CCSID 1025 (which is an EBCDIC coded
character set for languages using Cyrillic script) is not supported because many of
the characters in one coded character set cannot be represented in the other. If you
have a network of queue managers working in different national languages, and
data conversion among some of the coded character sets is not supported, you can
enable a default conversion. Default data conversion is described in “Default data
conversion.”

File ccsid.tbl

The file ccsid.tbl specifies:
v Any additional code sets. To specify additional code sets, you need to edit

ccsid.tbl (guidance on how to do this is provided in the file).
v Any default data conversion.

You can update the information recorded in ccsid.tbl. You might want to do this if,
for example, a future release of your operating system supports additional coded
character sets.

In WebSphere MQ for HP OpenVMS, a sample ccsid.tbl is provided as
MQS_EXAMPLES:CCSID.TBL, and the active ccsid.tbl file is located in directory
MQS_ROOT:[MQM.CONV.TABLE]

Default data conversion:

Chapter 5. Automating administration tasks 69



To implement default data conversion, edit the ccsid.tbl file to specify a default
EBCDIC CCSID and a default ASCII CCSID, and also to specify the defaulting
CCSIDs. Instructions on how to do this are included in the file.

If you update ccsid.tbl to implement default data conversion, the queue manager
must be restarted before the change can take effect.

The default data-conversion process is as follows:
v If conversion between the source and target CCSIDs is not supported, but the

CCSIDs of the source and target environments are either both EBCDIC or both
ASCII, the character data is passed to the target application without conversion.

v If one CCSID represents an ASCII-coded character set, and the other represents
an EBCDIC-coded character set, WebSphere MQ converts the data using the
default data-conversion CCSIDs defined in ccsid.tbl.

Note: Try to restrict the characters being converted to those that have the same
code values in the coded character set specified for the message and in the default
coded character set. Using only the set of characters that is valid for WebSphere
MQ object names satisfies this requirement, in general. Exceptions occur with
EBCDIC CCSIDs 290, 930, 1279, and 5026 used in Japan, where the lowercase
characters have different codes from those used in other EBCDIC CCSIDs.

Converting messages in user-defined formats

The queue manager cannot convert messages in user-defined formats from one
coded character set to another. If you need to convert data in a user-defined
format, you must supply a data-conversion exit for each such format. Do not use
default CCSIDs to convert character data in user-defined formats. For more
information about converting data in user-defined formats and about writing data
conversion exits, see the WebSphere MQ Application Programming Guide.

Changing the queue manager CCSID

When you have used the CCSID attribute of the ALTER QMGR command to
change the CCSID of the queue manager, stop and restart the queue manager to
ensure that all running applications, including the command server and channel
programs, are stopped and restarted.

This is necessary, because any applications that are running when the queue
manager CCSID is changed continue to use the existing CCSID.

70 WebSphere MQ for HP OpenVMS: System Administration Guide



Chapter 6. Configuring WebSphere MQ

This chapter tells you how to change the behavior of WebSphere MQ or an
individual queue manager to suit your installation’s needs.

You change WebSphere MQ configuration information by changing the values
specified on a set of configuration attributes (or parameters) that govern
WebSphere MQ.

This chapter describes:
v The attributes you can modify in “WebSphere MQ configuration files”
v The attributes you can use to modify WebSphere MQ configuration (for all

queue managers) in “Attributes for changing WebSphere MQ configuration
information” on page 73

v The attributes you can use to modify the configuration of an individual queue
manager in “Changing queue manager configuration information” on page 79

v Examples of mqs.ini and qm.ini files for WebSphere MQ for HP OpenVMS in
“API exits” on page 86

WebSphere MQ configuration files

Users of WebSphere MQ for HP OpenVMS modify WebSphere MQ configuration
attributes within:
v A WebSphere MQ configuration file (mqs.ini) to make changes to WebSphere

MQ on the node as a whole. There is one mqs.ini file per node.
v A queue manager configuration file (qm.ini) to make changes to specific queue

managers. There is one qm.ini file for each queue manager on the node.

A configuration file (which may also be referred to as a stanza file or .ini file)
contains one or more stanzas, which are simply groups of lines in the file that
together have a common function or define part of a system, for example, log
functions, channel functions, and installable services.

Any changes you make to a configuration file do not take effect until the next time
the queue manager is started.

Editing configuration files

Before attempting to edit a configuration file, back it up so that you have a copy
you can revert to if the need arises!

You can edit configuration files either:
v Automatically, using commands that change the configuration of queue

managers on the node
v Manually, using a standard text editor

You can edit the default values in the WebSphere MQ configuration files after
installation.

© Copyright IBM Corp. 1994, 2009 71



If you set an incorrect value on a configuration file attribute, the value is ignored
and an operator message is issued to indicate the problem. (The effect is the same
as missing out the attribute entirely.)

When you create a new queue manager, you should:
v Back up the WebSphere MQ configuration file
v Back up the new queue manager configuration file

Comments can be included in configuration files by adding a semi colon (;) or a
number sign (#) character before the comment text. If you want to use one of these
characters without it representing a comment, you can prefix the character with a
backslash (\) for it to be used as part of the configuration data.

When do you need to edit a configuration file?

You may need to edit a configuration file if, for example:
v You lose a configuration file; recover from backup if possible.
v You need to move one or more queue managers to a new directory.
v You need to change your default queue manager; this could happen if you

accidentally delete the existing queue manager.
v You are advised to do so by your IBM Support Center.

Configuration file priorities

The attribute values of a configuration file are set according to the following
priorities:
v Parameters entered on the command line take precedence over values defined in

the configuration files
v Values defined in the qm.ini files take precedence over values defined in the

mqs.ini file.

Implementing changes to configuration files

If you edit a configuration file, the changes are not implemented immediately by
the queue manager. Changes made to the WebSphere MQ configuration file are
only implemented when WebSphere MQ is started. Changes made to a queue
manager configuration file are implemented when the queue manager is started. If
the queue manager is running when you make the changes, you must stop and
then restart the queue manager for any changes to be recognized by the system.

The WebSphere MQ configuration file, mqs.ini

The WebSphere MQ configuration file, mqs.ini, contains information relevant to all
the queue managers on the node. It is created automatically during installation. In
particular, the mqs.ini file is used to locate the data associated with each queue
manager.

The mqs.ini file is stored in the data directory by default, MQS_ROOT:[MQM].

The mqs.ini file contains:
v The names of the queue managers
v The name of the default queue manager
v The location of the files associated with each of them.

72 WebSphere MQ for HP OpenVMS: System Administration Guide



For more information on mqs.ini contents, see “Attributes for changing WebSphere
MQ configuration information.”

Queue manager configuration files, qm.ini

A queue manager configuration file, qm.ini, contains information relevant to a
specific queue manager. There is one queue manager configuration file for each
queue manager. The qm.ini file is automatically created when the queue manager
with which it is associated is created.

A qm.ini file is held in the root of the directory tree occupied by the queue
manager.

For example, in WebSphere MQ for HP OpenVMS, the path and the name for a
configuration file for a queue manager called QMNAME is:
MQS_ROOT:[MQM.QMGRS.QMNAME]QM.INI

Note: The queue manager name can be up to 48 characters in length. However,
this does not guarantee that the name is valid or unique. Therefore, a directory
name is generated based on the queue manager name. This process is known as
name transformation. For a description, see “Understanding WebSphere MQ file
names” on page 17.

For more information about qm.ini, see “Changing queue manager configuration
information” on page 79.

Attributes for changing WebSphere MQ configuration information

The attributes described here modify the configuration of WebSphere MQ by
editing the mqs.ini configuration file.

The following are detailed:
v “AllQueueManagers stanza”
v “ClientExitPath stanza” on page 75
v “DefaultQueueManager stanza” on page 75
v “ExitProperties stanza” on page 75
v “The LogDefaults stanza” on page 76
v “QueueManagers stanza” on page 78

A sample mqs.ini is shown in “API exits” on page 86.

AllQueueManagers stanza

The AllQueueManagers stanza can specify:
v The path to the qmgrs directory where the files associated with a queue

manager are stored
v The method for converting EBCDIC-format data to ASCII format

DefaultPrefix=directory_name
This attribute specifies the path to the qmgrs directory, within which the queue
manager data is kept.

Chapter 6. Configuring WebSphere MQ 73



If you change the default prefix for the queue manager, replicate the directory
structure that was created at installation time (see Figure 22 on page 276).

In particular, you must create the qmgrs structure. Stop WebSphere MQ before
changing the default prefix, and restart WebSphere MQ only after you have
moved the structures to the new location and changed the default prefix.

As an alternative to changing the default prefix, you can use the environment
variable MQSPREFIX to override the DefaultPrefix for the crtmqm command.

Because of operating system restrictions, keep the supplied path sufficiently
short so that the sum of the path length and any queue manager name is a
maximum of 70 characters long.

ConvEBCDICNewline=NL_TO_LF|TABLE|ISO
EBCDIC code pages contain a new line (NL) character that is not supported by
ASCII code pages (although some ISO variants of ASCII contain an
equivalent).

Use the ConvEBCDICNewline attribute to specify how WebSphere MQ is to
convert the EBCDIC NL character into ASCII format.

NL_TO_LF
Convert the EBCDIC NL character (X’15’) to the ASCII line feed character,
LF (X’0A’), for all EBCDIC to ASCII conversions.

NL_TO_LF is the default.

TABLE
Convert the EBCDIC NL character according to the conversion tables used
on your platform for all EBCDIC to ASCII conversions.

The effect of this type of conversion might vary from platform to platform
and from language to language; even on the same platform, the behavior
might vary if you use different CCSIDs.

ISO
Convert:
v ISO CCSIDs using the TABLE method
v All other CCSIDs using the NL_TO_CF method

Possible ISO CCSIDs are shown in Table 2.

Table 2. List of possible ISO CCSIDs

CCSID Code Set

819 ISO8859-1

912 ISO8859-2

915 ISO8859-5

1089 ISO8859-6

813 ISO8859-7

916 ISO8859-8

920 ISO8859-9

1051 roman8

If the ASCII CCSID is not an ISO subset, ConvEBCDICNewline defaults to
NL_TO_LF.

74 WebSphere MQ for HP OpenVMS: System Administration Guide



For more information about data conversion, see the WebSphere MQ Application
Programming Guide or “Data conversion” on page 69.

ClientExitPath stanza

The ClientExitPath stanza specifies the default path for location of channel exit on
the client.

ExitsDefaultPath=defaultprefix
The default prefix for the platform, for the location of 32-bit channel exits.

ExitsDefaultPath64=defaultprefix
The default prefix for the platform, for the location of 64-bit channel exits.

DefaultQueueManager stanza

The DefaultQueueManager stanza specifies the default queue manager for the node.

Name=default_queue_manager
The default queue manager processes any commands for which a queue
manager name is not explicitly specified. The DefaultQueueManager attribute is
automatically updated if you create a new default queue manager. If you
inadvertently create a new default queue manager and then want to revert to
the original, alter the DefaultQueueManager attribute manually.

ExitProperties stanza

The ExitProperties stanza specifies configuration options used by queue manager
exit programs.

CLWLMode=SAFE|FAST
The cluster workload exit, CLWL, allows you to specify which cluster queue in
the cluster to open in response to an MQI call (MQOPEN, MQPUT, and so
on). The CLWL exit runs either in FAST mode or SAFE mode depending on
the value you specify on the CLWLMode attribute. If you omit the CLWLMode
attribute, the cluster workload exit runs in SAFE mode.

SAFE
Run the CLWL exit in a separate process from the queue manager. This is
the default.

If a problem arises with the user-written CLWL exit when running in SAFE
mode, the following happens:
v The CLWL server process (amqzlwa0) fails.
v The queue manager restarts the CLWL server process.
v The error is reported to you in the error log. If an MQI call is in

progress, you receive notification in the form of a return code.

The integrity of the queue manager is preserved.

Note: Running the CLWL exit in a separate process can affect performance.

FAST
Run the cluster exit inline in the queue manager process.

Specifying this option improves performance by avoiding the overheads
associated with running in SAFE mode, but does so at the expense of
queue manager integrity. You should only run the CLWL exit in FAST

Chapter 6. Configuring WebSphere MQ 75



mode if you are convinced that there are no problems with your CLWL
exit, and you are particularly concerned about performance.

If a problem arises when the CLWL exit is running in FAST mode, the
queue manager fails and you run the risk of the integrity of the queue
manager being compromised.

The LogDefaults stanza

The LogDefaults stanza specifies the default log attributes for the node. The log
attributes are used as default values when you create a queue manager, but can be
overridden if you specify the log attributes on the crtmqm command. See “crtmqm
(create queue manager)” on page 205 for details of this command.

Once a queue manager has been created, the log attributes for that queue manager
are read from its log stanza in the qm.ini file.

The DefaultPrefix attribute (in the AllQueueManagers stanza) and the LogPath
attribute in the LogDefaults stanza allow for the queue manager and its log to be
on different physical drives. This is the recommended method, although, by
default, they are on the same drive.

For information about calculating log sizes, see “Calculating the size of the log” on
page 162.

Note: The limits given in the following parameter list are limits set by WebSphere
MQ. Operating system limits may reduce the maximum possible log size.

LogPrimaryFiles=3|2-62
Primary log files are the log files allocated during creation for future use.

The minimum number of primary log files you can have is 2 and the
maximum is 62. The default is 3.

The total number of primary and secondary log files must not exceed 63, and
must not be less than 3.

This value is overwritten by the -lp parameter of the crtmqm command when
the queue manager is created.

LogSecondaryFiles=2|1-61
Secondary log files are the log files allocated when the primary files are
exhausted.

The minimum number of secondary log files is 1 and the maximum is 61. The
default number is 2.

The total number of primary and secondary log files must not exceed 63, and
must not be less than 3.

This value is overwritten by the -ls parameter of the crtmqm command when
the queue manager is created.

LogFilePages=number
The log data is held in a series of files called log files. The log file size is
specified in units of 4 KB pages.

For WebSphere MQ for HP OpenVMS, the default number of log file pages is
1024, giving a log file size of 4 MB. The minimum number of log file pages is
64 and the maximum is 16 384.

76 WebSphere MQ for HP OpenVMS: System Administration Guide



This value is overwritten by the -lf parameter of the crtmqm command when
the queue manager is created.

LogType=CIRCULAR|LINEAR
The LogType attribute is used to define the type to be used. The default is
CIRCULAR.

CIRCULAR
Set this value if you want to start restart recovery using the log to roll back
transactions that were in progress when the system stopped.

See “Circular logging” on page 158 for a fuller explanation of circular
logging.

LINEAR
Set this value if you want both restart recovery and media or forward
recovery (creating lost or damaged data by replaying the contents of the
log).

See “Linear logging” on page 159 for a fuller explanation of linear logging.

If you want to change the default logtype, you can edit the LogType attribute in
the mqs.ini file. Alternatively, you can override the default by specifying linear
logging using the -ll parameter on the crtmqm command. You cannot change
the logging method after a queue manager has been created.

LogBufferPages=17|4-32
The amount of memory allocated to buffer records for writing is configurable.
The size of the buffers is specified in units of 4 KB pages.

The minimum number of buffer pages is 4 and the maximum is 32. Larger
buffers lead to higher throughput, especially for larger messages.

The default number of buffer pages is 17, equating to 68 KB.

The value is examined when the queue manager is created or started, and may
be increased or decreased at either of these times. However, a change in the
value is not effective until the queue manager is restarted.

LogDefaultPath=directory_name
You can specify the directory in which the log files for a queue manager reside.
The directory should exist on a local device to which the queue manager can
write and, preferably, should be on a different drive from the message queues.
Specifying a different drive gives added protection in case of system failure.

The default for WebSphere MQ for HP OpenVMS is MQS_ROOT:[MQM.LOG].

Alternatively, you can specify the name of a directory on the crtmqm
command using the -ld flag. When a queue manager is created, a directory is
also created under the queue manager directory, and this is used to hold the
log files. The name of this directory is based on the queue manager name. This
ensures that the Log File Path is unique, and also that it conforms to any
limitations on directory name lengths.

If you do not specify -ld on the crtmqm command, the value of the
LogDefaultPath attribute in the mqs.ini file is used by default and this is
MQS_ROOT:[MQM.LOG].

The queue manager name is appended to the log file directory name to ensure
that multiple queue managers use different log directories.

Chapter 6. Configuring WebSphere MQ 77



When the queue manager has been created, a LogPath value is created in the
Log stanza in the qm.ini file giving the complete directory name for the queue
manager’s log files. This value is used to locate the log files when the queue
manager is started or deleted.

LogWriteIntegrity=SingleWrite|DoubleWrite|TripleWrite
The LogWriteIntegrity attribute is used to reliably write log records. The
default is TripleWrite .

SingleWrite
Some hardware guarantees that, if a write operation writes a page and fails
for any reason, a subsequent read of the same page into a buffer results in
each byte in the buffer being either:
v The same as before the write, or
v The byte that should have been written in the write operation

On this type of hardware (for example, ssa write cache enabled), it is safe
for the logger to write log records in a single write as the hardware assures
full write integrity. This method provides the highest level of performance.

DoubleWrite
The DoubleWrite method was the default method used in WebSphere MQ
V5.2 and is available for back-compatibility purposes only.

TripleWrite
TripleWrite is the default method. Where hardware that assures write
integrity is not available, write log records using the TripleWrite method
because it provides full write integrity.

If you want to change the default logtype, you can edit the LogType attribute in
the mqs.ini file. Alternatively, you can override the default by specifying linear
logging using the -ll parameter on the crtmqm command. You cannot change
the logging method after a queue manager has been created.

API exits

Use the ApiExitTemplate and ApiExitCommon stanza in the mqs.ini file to identify
API exit routines for all queue managers. (To identify API exit routines for
individual queue managers, you use the ApiExitLocal stanza in the qm.ini file.

QueueManagers stanza

There is one QueueManager stanza for every queue manager. These attributes
specify the queue manager name, and the name of the directory containing the
files associated with that queue manager. The name of the directory is based on the
queue manager name, but is transformed if the queue manager name is not a valid
file name. See “Understanding WebSphere MQ file names” on page 17 for more
information about name transformation.

Name=queue_manager_name
The name of the queue manager.

Prefix=prefix
Where the queue manager files are stored. By default, this is the same as the
value specified on the DefaultPrefix attribute of the All Queue Managers
information.

Directory=name
The name of the subdirectory under the <prefix>\QMGRS directory where the

78 WebSphere MQ for HP OpenVMS: System Administration Guide



queue manager files are stored. This name is based on the queue manager
name, but can be transformed if there is a duplicate name or if the queue
manager name is not a valid file name.

Changing queue manager configuration information

The following groups of attributes can appear in a qm.ini file particular to a given
queue manager, or be used to override values set in mqs.ini.
v “The Service stanza”
v “The ServiceComponent stanza” on page 80
v “The Log stanza” on page 80
v “The XAResourceManager stanza” on page 82
v “The Channels stanza” on page 83
v “The LU62 and TCP stanzas” on page 85
v “The ExitPath stanza” on page 86

The Service stanza

The Service stanza specifies the name of an installable service, and the number of
entry points to that service. There must be one Service stanza for every service
used.

For each component within a service, there must be a ServiceComponent stanza,
which identifies the name and path of the module containing the code for that
component. See “The ServiceComponent stanza” on page 80 for more information.

Name=AuthorizationService|NameService
Specifies the name of the required service.

AuthorizationService
For WebSphere MQ, the Authorization Service component is known as the
Object Authority Manager, or OAM.

In WebSphere MQ for HP OpenVMS, the AuthorizationService stanza and
its associated ServiceComponent stanza are added automatically when the
queue manager is created, but can be overridden through the use of
mqsnoaut, by setting the mqsnoaut logical before creating the queue
manager. (See Chapter 7, “WebSphere MQ security,” on page 91 for more
information). Any other ServiceComponent stanzas must be added
manually.

NameService
The NameService stanza must be added to the qm.ini file manually to
enable the supplied name service.

EntryPoints=number-of-entries
Specifies the number of entry points defined for the service. This includes the
initialization and termination entry points.

For more information about installable services and components, see the WebSphere
MQ Programmable Command Formats and Administration Interface manual .

For more information about security services in general, see Chapter 7, “WebSphere
MQ security,” on page 91.

Chapter 6. Configuring WebSphere MQ 79



The ServiceComponent stanza

The ServiceComponent stanza identifies the name and path of the module
containing the code for that component.

There can be more than one ServiceComponent stanza for each service, but each
ServiceComponent stanza must match the corresponding Service stanza.

In WebSphere MQ for HP OpenVMS, the authorization service stanza is present by
default, and the associated component, the OAM, is active.

Service=service_name
Specifies the name of the required service. This name must match the value
specified on the Name attribute of the Service stanza.

Name=component_name
Specifies the descriptive name of the service component. This name must be
unique, and must contain only those characters that are valid for the names of
WebSphere MQ objects (for example, queue names). This name occurs in
operator messages generated by the service. Begin the name with a company
trademark or similar distinguishing string.

Module=module_name
Specifies the name of the module to contain the code for this component.

Note: Specify a full path name.

ComponentDataSize=size
Specifies the size, in bytes, of the component data area passed to the
component on each call. Specify zero if no component data is required.

For more information about installable services and components, see the WebSphere
MQ Programmable Command Formats and Administration Interface manual.

The Log stanza

The Log stanza specifies the log attributes for a particular queue manager. By
default, these are inherited from the settings specified in the LogDefaults stanza in
the mqs.ini file when the queue manager is created, unless overridden by specific
parameters in the crtmqm command. For more information, see both “The
LogDefaults stanza” on page 76 and “crtmqm (create queue manager)” on page
205.

Change attributes of this stanza only if this particular queue manager needs to be
configured differently from your other ones.

The values specified on the attributes in the qm.ini file are read when the queue
manager is started. The file is created when the queue manager is created.

For information about calculating log sizes, see “Calculating the size of the log” on
page 162.

Note: The limits given in the following parameter list are limits set by WebSphere
MQ. Operating system limits may reduce the maximum possible log size.

LogPrimaryFiles=3|2-62
Primary log files are the log files allocated during creation for future use.

80 WebSphere MQ for HP OpenVMS: System Administration Guide



The minimum number of primary log files you can have is 2 and the
maximum is 62. The default is 3.

The total number of primary and secondary log files must not exceed 63, and
must not be less than 3.

The value is examined when the queue manager is created or started. You can
change it after the queue manager has been created. However, a change in the
value is not effective until the queue manager is restarted, and the effect may
not be immediate.

LogSecondaryFiles=2|1-61
Secondary log files are the log files allocated when the primary files are
exhausted.

The minimum number of secondary log files is 1 and the maximum is 61. The
default number is 2.

The total number of primary and secondary log files must not exceed 63, and
must not be less than 3.

The value is examined when the queue manager is started. You can change this
value, but changes do not become effective until the queue manager is
restarted, and even then the effect may not be immediate.

LogFilePages=number
The log data is held in a series of files called log files. The log file size is
specified in units of 4 KB pages.

In WebSphere MQ for HP OpenVMS, the default number of log file pages is
1024, giving a log file size of 4 MB. The minimum number of log file pages is
64 and the maximum is 16 384.

Note: The size of the log files specified during queue manager creation cannot
be changed for an existing queue manager.

LogType=CIRCULAR|LINEAR
The LogType attribute defines the type of logging to be used by the queue
manager. However, you cannot change the type of logging to be used once the
queue manager has been created. Refer to the description of the LogType
attribute in “The LogDefaults stanza” on page 76 for information about
creating a queue manager with the type of logging you require.

CIRCULAR
Set this value if you want to start restart recovery using the log to roll back
transactions that were in progress when the system stopped.

See “Circular logging” on page 158 for a fuller explanation of circular
logging.

LINEAR
Set this value if you want both restart recovery and media or forward
recovery (creating lost or damaged data by replaying the contents of the
log).

See “Linear logging” on page 159 for a fuller explanation of linear logging.

LogBufferPages=17|4-32
The amount of memory allocated to buffer records for writing is configurable.
The size of the buffers is specified in units of 4 KB pages.

The minimum number of buffer pages is 4 and the maximum is 32. Larger
buffers lead to higher throughput, especially for larger messages.

Chapter 6. Configuring WebSphere MQ 81



The default number of buffer pages is 17, equating to 68 KB.

The value is examined when the queue manager is started, and may be
increased or decreased at either of these times. However, a change in the value
is not effective until the queue manager is restarted.

LogPath=directory_name
You can specify the directory in which the log files for a queue manager reside.
The directory should exist on a local device to which the queue manager can
write and, preferably, should be on a different drive from the message queues.
Specifying a different drive gives added protection in case of system failure.

The default is MQS_ROOT:[MQM.LOG].

You can specify the name of a directory on the crtmqm command using the -ld
flag. When a queue manager is created, a directory is also created under the
queue manager directory, and this is used to hold the log files. The name of
this directory is based on the queue manager name. This ensures that the log
file path is unique, and also that it conforms to any limitations on directory
name lengths.

If you do not specify -ld on the crtmqm command, the value of the
LogDefaultPath attribute in the mqs.ini file is used.

Note: In WebSphere MQ for HP OpenVMS, user ID mqm and group mqm
must have full authorities to the log files. If you change the locations of these
files, you must give these authorities yourself. This is not required if the log
files are in the default locations supplied with the product.

The XAResourceManager stanza

The XAResourceManager stanza specifies the resource managers to be involved in
global units of work coordinated by the queue manager.

One XAResourceManager stanza is required in qm.ini for each instance of a resource
manager participating in global units of work; no default values are supplied
through mqs.ini.

See “Database coordination” on page 112 for more information about adding
XAResourceManager attributes to qm.ini.

Name=name (mandatory)
This attribute identifies the resource manager instance.

The Name value can be up to 31 characters in length and must be unique within
qm.ini. You can use the name of the resource manager as defined in its
XA-switch structure. However, if you are using more than one instance of the
same resource manager, you must construct a unique name for each instance.
You could ensure uniqueness by including the name of the database in the
Name string, for example.

WebSphere MQ uses the Name value in messages and in output from the
dspmqtrn command.

Do not change the name of a resource manager instance, or delete its entry
from qm.ini once the associated queue manager has started and the
resource-manager name is in effect.

SwitchFile=name (mandatory)
This attribute specifies the fully-qualified name of the load file containing the
resource manager’s XA switch structure.

82 WebSphere MQ for HP OpenVMS: System Administration Guide



XAOpenString=string (optional)
This attribute specifies the string of data to be passed to the resource
manager’s xa_open entry point. The contents of the string depend on the
resource manager itself. For example, the string could identify the database
that this instance of the resource manager is to access. For more information
about defining this attribute, see “Adding XAResourceManager configuration
information for Oracle” on page 116 and consult your resource manager
documentation for the appropriate string.

XACloseString=string (optional)
This attribute specifies the string of data to be passed to the resource
manager’s xa_close entry point. The contents of the string depend on the
resource manager itself. For more information about defining this attribute, see
“Adding XAResourceManager configuration information for Oracle” on page
116 and consult your database documentation for the appropriate string.

ThreadOfControl=THREAD|PROCESS
The value set on the ThreadOfControl attribute is used by the queue manager
for serialization purposes when it needs to call the resource manager from one
of its own multithreaded processes.

THREAD
Means that the resource manager is fully “thread aware”. In a
multithreaded WebSphere MQ process, XA function calls can be made to
the external resource manager from multiple threads at the same time.

PROCESS
Means that the resource manager is not “thread safe”. In a multithreaded
WebSphere MQ process, only one XA function call at a time can be made
to the resource manager.

The ThreadOfControl entry does not apply to XA function calls issued by the
queue manager in a multithreaded application process. In general, an
application that has concurrent units of work on different threads requires this
mode of operation to be supported by each of the resource managers.

The Channels stanza

The Channels stanza contains information about the channels.

MaxChannels=100|number
This attribute specifies the maximum number of channels allowed. The default
is 100.

MaxActiveChannels=MaxChannels_value
This attribute specifies the maximum number of channels allowed to be active
at any time. The default is the value specified on the MaxChannels attribute.

MaxInitiators=3|number
This attribute specifies the maximum number of initiators.

MQIBINDTYPE=FASTPATH|STANDARD
This attribute specifies the binding for applications.

FASTPATH
Channels connect using MQCONNX FASTPATH. Therefore, there is no
agent process.

STANDARD
Channels connect using STANDARD.

Chapter 6. Configuring WebSphere MQ 83



AdoptNewMCA=NO|SVR|SDR|RCVR|CLUSRCVR|ALL|FASTPATH
If WebSphere MQ receives a request to start a channel but finds that an
amqcrsta process already exists for the same channel, the existing process must
be stopped before the new one can start. The AdoptNewMCA attribute allows you
to control the termination of an existing process and the startup of a new one
for a specified channel type.

If you specify the AdoptNewMCA attribute for a given channel type but the new
channel fails to start because the channel is already running:
1. The new channel tries to stop the previous one by inviting it to end.
2. If the previous channel server does not respond to this invitation by the

time the AdoptNewMCATimeout wait interval expires, the process (or the
thread) for the previous channel server is terminated.

3. If the previous channel server has not ended after step 2, and after the
AdoptNewMCATimeout wait interval expires for a second time, WebSphere
MQ ends the channel with a “CHANNEL IN USE” error.

You specify one or more values, separated by commas or blanks, from the
following list:
NO

The AdoptNewMCA feature is not required. This is the default.
SVR

Adopt server channels
SDR

Adopt sender channels
RCVR

Adopt receiver channels
CLUSRCVR

Adopt cluster receiver channels
ALL

Adopt all channel types, except for FASTPATH channels
FASTPATH

Adopt the channel if it is a FASTPATH channel. This happens only if the
appropriate channel type is also specified, for example,
AdoptNewMCA=RCVR,SVR,FASTPATH

Attention: The AdoptNewMCA attribute may behave in an unpredictable
fashion with FASTPATH channels because of the internal design of the
queue manager. Therefore, be very careful when enabling the AdoptNewMCA
attribute for FASTPATH channels.

AdoptNewMCATimeout=60|1—3600
This attribute specifies the amount of time, in seconds, that the new process
should wait for the old process to end. Specify a value, in seconds, in the
range 1—3600. The default value is 60.

AdoptNewMCACheck=QM|ADDRESS|NAME|ALL
The AdoptNewMCACheck attribute allows you to specify the type checking
required when enabling the AdoptNewMCA attribute. It is important for you to
perform all three of the following checks, if possible, to protect your channels
from being, inadvertently or maliciously, shut down. At the very least check
that the channel names match.

Specify one or more values, separated by commas or blanks, from the
following:
QM

This means that listener process should check that the queue manager
names match.

84 WebSphere MQ for HP OpenVMS: System Administration Guide



ADDRESS
This means that the listener process should check the communications
address. For example, the TCP/IP address.

NAME
This means that the listener process should check that the channel names
match.

ALL
This means that you want the listener process to check for matching queue
manager names, the communications address, and for matching channel
names.

AdoptNewMCACheck=NAME,ADDRESS is the default for FAP1, FAP2, and FAP3,
while AdoptNewMCACheck=NAME,ADDRESS,QM is the default for FAP4 and later.

The LU62 and TCP stanzas

These stanzas specify network protocol configuration parameters. They override
the default attributes for channels.

Note: Only attributes representing changes to the default values need to be
specified.

LU62
The following attributes can be specified:

TPName
This attribute specifies the TP name to start on the remote site.

LocalLU
This is the name of the logical unit to use on local systems.

TCP
The following attributes can be specified:

Port=1414|port_number
This attribute specifies the default port number, in decimal notation, for
TCP/IP sessions. The port number for WebSphere MQ is 1414.

KeepAlive=YES|NO
Use this attribute to switch the KeepAlive function on or off.
KeepAlive=YES causes TCP/IP to check periodically that the other end of
the connection is still available. If it is not, the channel is closed.

ListenerBacklog=number
When receiving on TCP/IP, a maximum number of outstanding connection
requests is set. This can be considered to be a backlog of requests waiting
on the TCP/IP port for the listener to accept the request. The default
listener backlog values are shown in Table 3.

Table 3. Default outstanding connection requests (TCP)

Platform Default ListenerBacklog value

OS/390® 255

OS/2® Warp 10

Windows NT® Server 100

Windows NT Workstation 5

AS/400 255

Sun Solaris 100

Chapter 6. Configuring WebSphere MQ 85



Table 3. Default outstanding connection requests (TCP) (continued)

Platform Default ListenerBacklog value

HP-UX 20

AIX V4.2 or later 100

AIX V4.1 or earlier 10

All other platforms 5

If the backlog reaches the values shown in Table 3 on page 85, the TCP/IP
connection is rejected and the channel cannot start.

For MCA channels, this results in the channel going into a RETRY state
and retrying the connection at a later time.

For client connections, the client receives an
MQRC_Q_MGR_NOT_AVAILABLE reason code from MQCONN and
should retry the connection at a later time.

The ListenerBacklog attribute allows you to override the default number
of outstanding requests for the TCP/IP listener.

Note: Some operating systems support a larger value than the default
shown. If necessary, this can be used to avoid reaching the connection
limit.

The ExitPath stanza
ExitDefaultPath=string

The ExitDefaultPath attribute specifies the location of:
v Channel exits for clients
v Channel exits and data conversion exits for servers

ExitDefaultPath64=string
The ExitDefaultPath64 attribute specifies the location of:
v 64-bit channel exits for clients
v 64-bit channel exits and data conversion exits for servers
v Unqualified XA switch load files

The exit path is read from the ClientExitPath stanza in the mqs.ini file for clients
and from this (ExitPath) stanza for servers.

API exits

Use the ApiExitLocal stanza in the qm.ini file to identify API exit routines for a
queue manager. (To identify API exit routines for all queue managers, you use the
ApiExitCommon and ApiExitTemplate stanzas, in the mqs.ini file.)

Queue manager error logs

Use the QMErrorLog stanza in the qm.ini file to tailor the operation and contents of
queue manager error logs.

ErrorLogSize=maxsize
Specifies the size of the queue manager error log at which it is copied to
the backup. maxsize must be between 32768 and 2147483648 bytes. If
ErrorLogSize is not specified, the default value of 262144 bytes (256KB) is
used.

86 WebSphere MQ for HP OpenVMS: System Administration Guide



ExcludeMessage=msgIds
Specifies messages that are not to be written to the queue manager error
log. msqIds contain a comma separated list of message id’s from the
following:

7163 - Job started message (iSeries® only)
7234 - Number of messages loaded
9001 - Channel program ended normally
9002 - Channel program started
9202 - Remote host not available
9208 - Error on receive from host
9209 - Connection closed
9228 - Cannot start channel responder
9508 - Cannot connect to queue manager
9524 - Remote queue manager unavailable
9528 - User requested closure of channel
9558 - Remote Channel is not available
9999 - Channel program ended abnormally

SuppressMessage=msgIds
Specifies messages that are written to the queue manager error log once
only in a specified time interval. The time interval is specified by
SuppressInterval. msqIds contain a comma separated list of message id’s
from the following:

7163 - Job started message (iSeries only)
7234 - Number of messages loaded
9001 - Channel program ended normally
9002 - Channel program started
9202 - Remote host not available
9208 - Error on receive from host
9209 - Connection closed
9228 - Cannot start channel responder
9508 - Cannot connect to queue manager
9524 - Remote queue manager unavailable
9528 - User requested closure of channel
9558 - Remote Channel is not available
9999 - Channel program ended abnormally

If the same message id is specified in both SuppressMessage and
ExcludeMessage, the message is excluded.

SuppressInterval=length
Specifies the time interval, in seconds, in which messages specified in
SuppressMessage are written to the queue manager error log once only.
length must be between 1 and 86400 seconds. If SuppressInterval is not
specified, the default value of 30 seconds is used.

Example mqs.ini and qm.ini files

Figure 8 on page 88 shows an example of an mqs.ini file in WebSphere MQ for HP
OpenVMS.

Chapter 6. Configuring WebSphere MQ 87



Figure 9 on page 89 shows how groups of attributes might be arranged in a queue
manager configuration file in WebSphere MQ for HP OpenVMS.

#***********************************************************************#
#* Module Name: mqs.ini *#
#* Type : WebSphere MQ Configuration File *#
#* Function : Define WebSphere MQ resources for the node *#
#* *#
#***********************************************************************#
#* Notes : *#
#* 1) This is an example WebSphere MQ configuration file *#
#* *#
#***********************************************************************#
AllQueueManagers:

#********************************************************************#
#* The path to the qmgrs directory, below which queue manager data *#
#* is stored *#
#********************************************************************#
DefaultPrefix=mqs_root:[mqm]

ClientExitPath:
ExitsDefaultPath=mqs_root:[mqm.exits]

LogDefaults:
LogPrimaryFiles=3
LogSecondaryFiles=2
LogFilePages=1024
LogType=CIRCULAR
LogBufferPages=17
LogDefaultPath=mqs_root:[mqm.log]

QueueManager:
Name=saturn.queue.manager
Prefix=mqs_root:[mqm]
Directory=saturn$queue$manager

DefaultQueueManager:
Name=saturn.queue.manager

QueueManager:
Name=pluto.queue.manager
Prefix=mqs_root:[mqm]
Directory=pluto$queue$manager

Figure 8. Example of a WebSphere MQ configuration file for WebSphere MQ for HP OpenVMS systems

88 WebSphere MQ for HP OpenVMS: System Administration Guide



Notes®:

WebSphere MQ on the node is using the default locations for queue managers and
for the logs.

#*******************************************************************#
#* Module Name: qm.ini *#
#* Type : WebSphere MQ queue manager configuration file *#
# Function : Define the configuration of a single queue manager *#
#* *#
#*******************************************************************#
#* Notes : *#
#* 1) This file defines the configuration of the queue manager *#
#* *#
#*******************************************************************#
ExitPath:

ExitsDefaultPath=mqm_root:[mqm.exits]

Service:
Name=AuthorizationService
EntryPoints=9

ServiceComponent:
Service=AuthorizationService
Name=WebSphere MQ.UNIX.auth.service
Module=amqzfu
ComponentDataSize=0

Service:
Name=NameService
EntryPoints=5

ServiceComponent:
Service=NameService
Name=WebSphere MQ.DCE.name.service
Module=amqzfa
ComponentDataSize=0

Log:
LogPrimaryFiles=3
LogSecondaryFiles=2
LogFilePages=1024
LogType=CIRCULAR
LogBufferPages=17
LogPath=mqm_root:[mqm.log.saturn$queue$manager]

XAResourceManager:
Name=Oracle Resource Manager Bank
SwitchFile=sys$share:oraswit0.exe
XAOpenString=MQBankDB
XACloseString=
ThreadOfControl=PROCESS

CHANNELS:
MaxChannels = 20 ; Maximum number of Channels allowed.

; Default is 100.
MaxActiveChannels = 10 ; Maximum number of Channels allowed to be

; active at any time. The default is the
; value of MaxChannels.

TCP: ; TCP/IP entries.
KeepAlive = Yes ; Switch KeepAlive on

Figure 9. Example queue manager configuration file for WebSphere MQ for HP OpenVMS

Chapter 6. Configuring WebSphere MQ 89



The queue manager saturn.queue.manager is the default queue manager for the
node. The directory for files associated with this queue manager has been
automatically transformed into a valid file name for the OpenVMS file system.

Because the WebSphere MQ configuration file is used to locate the data associated
with queue managers, a nonexistent or incorrect configuration file can cause some
or all WebSphere MQ commands to fail. Also, applications cannot connect to a
queue manager that is not defined in the WebSphere MQ configuration file.

90 WebSphere MQ for HP OpenVMS: System Administration Guide



Chapter 7. WebSphere MQ security

This chapter describes the features of security control in WebSphere MQ for HP
OpenVMS and how you can implement this control.

It contains these sections:
v “Why you need to protect WebSphere MQ resources”
v “Before you begin”
v “Understanding the Object Authority Manager” on page 92
v “Using the Object Authority Manager commands” on page 95
v “Object Authority Manager guidelines” on page 97
v “Understanding the authorization specification tables” on page 101
v “Working with the Secure Sockets Layer (SSL) on OpenVMS systems” on page

107

Why you need to protect WebSphere MQ resources

Because WebSphere MQ queue managers handle the transfer of information that is
potentially valuable, you need the safeguard of an authority system. This ensures
that the resources that a queue manager owns and manages are protected from
unauthorized access, which could lead to the loss or disclosure of the information.
In a secure system, it is essential that none of the following are accessed or
changed by any unauthorized user or application:
v Connections to a queue manager.
v Access to WebSphere MQ objects such as queues, clusters, channels, and

processes.
v Commands for queue manager administration, including MQSC commands and

PCF commands.
v Access to WebSphere MQ messages.
v Context information associated with messages.

You should develop your own policy with respect to which users have access to
which resources.

Before you begin

All queue manager resources run with the VMS Rights Identifier:
MQM

This rights identifier is created during WebSphere MQ installation and you must
grant this resource attribute to all users who need to control WebSphere MQ
resources.

User IDs in WebSphere MQ for HP OpenVMS with resource
identifier MQM

If your user ID holds the MQM OpenVMS rights identifier, you have all authorities
to all WebSphere MQ resources. Your user ID must hold the OpenVMS MQM

© Copyright IBM Corp. 1994, 2009 91



rights identifier to be able to use all the WebSphere MQ for HP OpenVMS control
commands except crtmqcvx. In particular, you need this authority to:
v Use the runmqsc command to run MQSC commands.
v Administer authorities on WebSphere MQ for HP OpenVMS using the setmqaut

command.

If you are sending channel commands to queue managers on a remote system, you
must ensure that your user ID holds the OpenVMS rights identifier MQM on the
target system. For a list of PCF and MQSC channel commands, see “Channel
command security” on page 100.

In addition, installation of WebSphere MQ creates an identifier MQS_SERVER. This
is granted ownership of the resource domain where VMS keeps lock information
for WebSphere MQ. By default, access authorities to this identifier are granted to
users who:
v Are in the same user group as the user MQM, or
v Are system users, or
v Have SYSPRV, SYSLCK, or BYPASS privilege set

To allow other users access to the MQ resources, you need to ensure that the
MQS_SERVER identifier has appropriate WORLD privilege by running the
command:

Note: It is not essential for your user ID to hold the rights identifier MQM for
issuing:
v PCF commands—including Escape PCFs—from an administration program
v MQI calls from an application program

For more information

For more information about:
v WebSphere MQ for HP OpenVMS command sets, see Chapter 2, “An

introduction to WebSphere MQ administration,” on page 15.
v WebSphere MQ for HP OpenVMS control commands, see Chapter 13, “How to

use WebSphere MQ control commands,” on page 199.
v PCF commands and Escape PCFs, see the WebSphere MQ Programmable Command

Formats and Administration Interface manual.
v MQI calls, see the WebSphere MQ Application Programming Guide and WebSphere

MQ Application Programming Reference manual.

Understanding the Object Authority Manager

By default, access to queue manager resources is controlled through an
authorization service installable component. This component is formally called the
Object Authority Manager (OAM) for WebSphere MQ for HP OpenVMS. It is
supplied with WebSphere MQ for HP OpenVMS and is automatically installed and
enabled for each queue manager you create, unless you specify otherwise. In this
chapter, the term OAM is used to denote the Object Authority Manager supplied
with this product.

SET SECURITY/CLASS=RESOURCE [MQS_SERVER] /PROTECTION=(W:RWL)

92 WebSphere MQ for HP OpenVMS: System Administration Guide



The OAM is an installable component of the authorization service. Providing the
OAM as an installable service gives you the flexibility to:
v Replace the supplied OAM with your own authorization service component

using the interface provided.
v Augment the facilities supplied by the OAM with those of your own

authorization service component, again using the interface provided.
v Remove or disable the OAM and run with no authorization service at all.

For more information on installable services, see theWebSphere MQ Programmable
Command Formats and Administration Interface manual.

The OAM manages users’ authorizations to manipulate WebSphere MQ objects,
including queues, process definitions, and channels. It also provides a command
interface through which you can grant or revoke access authority to an object for a
specific group of users. The decision to allow access to a resource is made by the
OAM, and the queue manager follows that decision. If the OAM cannot make a
decision, the queue manager prevents access to that resource.

How the OAM works

The OAM works by exploiting the security features of the underlying OpenVMS
operating system. In particular, the OAM uses OpenVMS user, group IDs, and
rights identifiers. Users can access queue manager objects only if they have the
required authority.

Managing access through rights identifiers

In the command interface, we use the term principal rather than user ID. The
reason for this is that authorities granted to a user ID can also be granted to other
entities, for example, an application program that issues MQI calls, or an
administration program that issues PCF commands. In these cases, the principal
associated with the program is not necessarily the user ID that was used when the
program was started. However, in this discussion, principals and user IDs are
always OpenVMS user IDs.

Rights identifiers and the primary rights identifier

Managing access permissions to WebSphere MQ resources is based on OpenVMS
rights identifiers, that is, identifiers held by principals. A principal can hold one or
more OpenVMS rights identifiers. A group is defined as the set of all principals
that have been granted a specific rights identifier.

The OAM maintains authorizations at the level of rights identifiers rather than
individual principals. The mapping of principals to identifier names is carried out
within the OAM and operations are carried out at the rights identifier level. You
can, however, display the authorizations of an individual principal.

When a principal holds more than one rights identifier

The authorizations that a principal has are the union of the authorizations of all
the rights identifiers that it holds, that is, its process rights. Whenever a principal
requests access to a resource, the OAM computes this union, and then checks the
authorization against it. You can use the control command setmqaut to set the
authorizations for a specific principal, or identifier.

Chapter 7. WebSphere MQ security 93



Note: Any changes made using the setmqaut command take immediate effect,
unless the object is in use. In this case, the change comes into force when the object
is next opened. However, changes to a principal’s rights identifier list do not come
into effect until a queue manager is reset, that is, stopped and restarted.

The authorizations associated with a principal are cached when they are computed
by the OAM. Any changes made to an identifier’s authorizations after it has been
cached are not recognized until the queue manager is restarted. Avoid changing
any authorizations while the queue manager is running.

Default rights identifier

The OAM recognizes a default to which all users are nominally assigned. This
group is defined by the pseudo rights identifier of ’NOBODY’. ’NOBODY’ can be
used as if it were a valid rights identifier to assign authorizations using WebSphere
MQ commands. By default, no authorizations are given to this identifier. Users
without specific authorizations can be granted access to WebSphere MQ resources
through this rights identifier.

Resources you can protect with the OAM

Through OAM you can control:
v Access to WebSphere MQ objects through the MQI. When an application

program attempts to access an object, the OAM checks if the user ID making the
request has the authorization (through the identifier held) for the operation
requested.
In particular, this means that queues, and the messages on queues, can be
protected from unauthorized access.

v Permission to use MQSC commands; only principals which hold rights identifier
MQM can execute queue manager administration commands, for example, to
create a queue.

v Permission to use control commands; only principals which hold rights identifier
MQM can execute control commands, for example, creating a queue manager,
starting a command server, or using runmqsc.

v Permission to use PCF commands.

Different users may be granted different kinds of access authority to the same
object. For example, for a specific queue, users holding one identifier may be
allowed to perform both put and get operations; users with another identifier may
only be allowed to browse the queue (MQGET with browse option). Similarly,
users with identifiers may have get and put authority to a queue, but are not
allowed to alter or delete the queue.

Using rights identifiers for authorizations

Using identifiers, rather than individual principals, for authorization reduces the
amount of administration required. Typically, a particular kind of access is required
by more than one principal. For example, you might define an identifier consisting
of end users who want to run a particular application. New users can be given
access simply by granting the appropriate identifier to their OpenVMS user ID.

Try to keep the number of identifiers as small as possible. For example, dividing
principals into one group for application users and one for administrators is a
good place to start.

94 WebSphere MQ for HP OpenVMS: System Administration Guide



Disabling the object authority manager

By default, the OAM is enabled. You can disable it by setting the logical name
MQSNOAUT before the queue manager is created, as follows:

However, if you do this you cannot, in general, restart the OAM later. A much
better approach is to have the OAM enabled and ensure that all users and
applications have access through an appropriate user ID.

You can also disable the OAM for testing purposes only by removing the
authorization service stanza in the queue manager configuration file (qm.ini).

Using the Object Authority Manager commands

The OAM provides a command interface for granting and revoking authority.
Before you can use these commands, you must be suitably authorized – your user
ID must hold the OpenVMS rights identifier MQM. This identifier should have
been set up when you installed the product.

If your user ID holds identifier MQM, you have management authority to the
queue manager. This means that you are authorized to issue any MQI request or
command from your user ID.

The OAM provides two commands that you can invoke from your OpenVMS DCL
to manage the authorizations of users. These are:
v setmqaut (Set or reset authority)
v dspmqaut (Display authority)

Authority checking occurs in the following calls: MQCONN, MQOPEN, MQPUT1,
and MQCLOSE.

Authority checking is only performed at the first instance of any of these calls, and
authority is not amended until you reset (that is, close and reopen) the object.

Therefore, any changes made to the authority of an object using setmqaut do not
take effect until you reset the object.

What you specify when you use the OAM commands

The authority commands apply to the specified queue manager; if you do not
specify a queue manager, the default queue manager is used. On these commands,
you must specify the object uniquely, that is, you must specify the object name and
its type. You also have to specify the principal or identifier name to which the
authority applies.

Authorization lists

On the setmqaut command you specify a list of authorizations. This is simply a
shorthand way of specifying whether authorization is to be granted or revoked,
and which resources the authorization applies to. Each authorization in the list is
specified as a lowercase keyword, prefixed with a plus (+) or minus (-) sign. Use a

$ DEFINE/SYSTEM MQSNOAUT TRUE

Chapter 7. WebSphere MQ security 95



+ sign to add the specified authorization or a - sign to remove the authorization.
You can specify any number of authorizations in a single command. For example:

Using the setmqaut command

Provided you have the required authorization, you can use the setmqaut command
to grant or revoke authorization of a principal or rights identifier to access a
particular object. The following example shows how the setmqaut command is
used:

In this example:

This term...
Specifies the...

saturn.queue.manager
Queue manager name.

queue Object type.

RED.LOCAL.QUEUE
Object name.

GROUPA ID of the group to be given the authorizations.

+browse -get +put
Authorization list for the specified queue. There must be no spaces
between the plus (+) or minus (-) signs and the keyword.

The authorization list specifies the authorizations to be given, where:

This term...
Does this...

+browse
Adds authorization to browse (MQGET with browse option) messages on
the queue.

-get Removes authorization to get (MQGET) messages from the queue.

+put Adds authorization to put (MQPUT) messages on the queue.

This means that applications started with user IDs that hold OpenVMS identifier
GROUPA have these authorizations.

You can specify one or more principals and, at the same time, one or more
identifiers. For example, the following command revokes put authority on the
queue MyQueue to the principal FVUSER and to identifiers GROUPA and GROUPB.

+browse -get +put

setmqaut -m “saturn.queue.manager” -t queue -n RED.LOCAL.QUEUE -g GROUPA +browse -get +put

setmqaut -m “saturn.queue.manager” -t queue -n “MyQueue” -p FVUSER -g GROUPA -g GROUPB -put

96 WebSphere MQ for HP OpenVMS: System Administration Guide



Note: This command also revokes put authority for all rights identifiers held by
FVUSER, that is, all groups to which FVUSER belongs.

For a formal definition of the command and its syntax, see “setmqaut (grant or
revoke authority)” on page 261.

Authority commands and installable services

The setmqaut command takes an additional parameter that specifies the name of
the installable service component to which the update applies. You must specify
this parameter if you have multiple installable components running at the same
time. By default, this is not the case. If the parameter is omitted, the update is
made to the first installable service of that type, if one exists. By default, this is the
supplied OAM.

Access authorizations

Authorizations defined by the authorization list associated with the setmqaut
command can be categorized as follows:
v Authorizations related to MQI calls
v Authorization related administration commands
v Context authorizations
v General authorizations, that is, for MQI calls, for commands, or both

Each authorization is specified by a keyword used with the setmqaut and
dspmqaut commands. These are described in “setmqaut (grant or revoke
authority)” on page 261.

Display authority command

You can use the command dspmqaut to view the authorizations that a specific
principal or identifier has for a particular object. The flags have the same meaning
as those in the setmqaut command. Authorization can only be displayed for one
identifier or principal at a time. See “dspmqaut (display authority)” on page 216
for a formal specification of this command.

For example, the following command displays the authorizations that the group
GpAdmin has to a process definition named Annuities on queue manager QueueMan1.

The keywords displayed as a result of this command identify the authorizations
that are active.

Object Authority Manager guidelines

Some operations are particularly sensitive and should be limited to privileged
users. For example,
v Starting and stopping queue managers.
v Accessing certain special queues, such as transmission queues or the command

queue SYSTEM.ADMIN.COMMAND.QUEUE.
v Programs that use full MQI context options.

dspmqaut -m “QueueMan1” -t process -n "Annuities" -g "GpAdmin"

Chapter 7. WebSphere MQ security 97



v In general, creating and copying application queues.

User IDs

The special user ID MQM that you created during product installation is intended
for use by the product only. It should never be available to non-privileged users.

The user ID used for authorization checks, associated with an MQ process, is the
OpenVMS user ID.

Queue manager directories

The directory containing queues and other queue manager data is private to the
product. Objects in this directory have OpenVMS user authorizations that relate to
their OAM authorizations. However, do not use standard OpenVMS commands to
grant or revoke authorizations to MQI resources because:
v WebSphere MQ objects are not necessarily the same as the corresponding system

object name. See “Understanding WebSphere MQ file names” on page 17 for
more information about this.

v All objects are owned by resource ID MQM.

Queues

The authority to a dynamic queue is based on—but not necessarily the same
as—that of the model queue from which it is derived. See note 1 on page 104 for
more information.

For alias queues and remote queues, the authorization is that of the object itself,
not the queue to which the alias or remote queue resolves. It is, therefore, possible
to authorize a user ID to access an alias queue that resolves to a local queue to
which the user ID has no access permissions.

You should limit the authority to create queues to privileged users. If you do not,
some users may bypass the normal access control simply by creating an alias.

Alternate user authority

Alternate user authority controls whether one user ID can use the authority of
another user ID when accessing a WebSphere MQ object. This is essential where a
server receives requests from a program and the server wishes to ensure that the
program has the required authority for the request. The server may have the
required authority, but it needs to know whether the program has the authority for
the actions it has requested.

For example:
v A server program running under user ID PAYSERV retrieves a request message

from a queue that was put on the queue by user ID USER1.
v When the server program gets the request message, it processes the request and

puts the reply back into the reply-to queue specified with the request message.
v Instead of using its own user ID (PAYSERV) to authorize opening the reply-to

queue, the server can specify some other user ID, in this case, USER1. In this

98 WebSphere MQ for HP OpenVMS: System Administration Guide



example, you can use alternate user authority to control whether PAYSERV is
allowed to specify USER1 as an alternate user ID when it opens the reply-to
queue.

The alternate user ID is specified on the AlternateUserId field of the object
descriptor.

Note: You can use alternate user IDs on any WebSphere MQ object. Use of an
alternate user ID does not affect the user ID used by any other resource managers.

Context authority

Context is information that applies to a particular message and is contained in the
message descriptor, MQMD, which is part of the message. The context information
comes in two sections:

Identity section
This part specifies who the message came from. It consists of the following
fields:
v UserIdentifier

v AccountingToken

v ApplIdentityData

Origin section
This section specifies where the message came from, and when it was put
onto the queue. It consists of the following fields:
v PutApplType

v PutApplName

v PutDate

v PutTime

v ApplOriginData

Applications can specify the context data when either an MQOPEN or an MQPUT
call is made. This data may be generated by the application, it may be passed on
from another message, or it may be generated by the queue manager by default.
For example, context data can be used by server programs to check the identity of
the requester, testing whether the message came from an application, running
under an authorized user ID.

A server program can use the UserIdentifier to determine the user ID of an
alternate user.

You use context authorization to control whether the user can specify any of the
context options on any MQOPEN or MQPUT1 call. For information about the
context options, see the WebSphere MQ Application Programming Guide. For
descriptions of the message descriptor fields relating to context, see the WebSphere
MQ Application Programming Reference manual.

Remote security considerations

For remote security, you should consider:

Chapter 7. WebSphere MQ security 99



Put authority
For security across queue managers you can specify the put authority that
is used when a channel receives a message sent from another queue
manager.

Specify the channel attribute PUTAUT as follows:

DEF Default user ID. This is the user ID that the message channel agent
is running under.

CTX The user ID in the message context.

Transmission queues
Queue managers automatically put remote messages on a transmission
queue; no special authority is required for this. However, putting a
message directly on a transmission queue requires special authorization;
see Table 4 on page 102.

Channel exits
Channel exits can be used for added security.

For more information, see the WebSphere MQ Intercommunication book.

Channel command security

Channel commands can be issued as PCF commands, through the MQAI, MQSC
commands, and control commands.

PCF commands

You can issue PCF channel commands by sending a PCF message to the
SYSTEM.ADMIN.COMMAND.QUEUE on a remote OpenVMS system. The user
ID, as specified in the message descriptor of the PCF message, must hold rights
identifier MQM on the target system. These commands are:
v ChangeChannel

v CopyChannel

v CreateChannel

v DeleteChannel

v PingChannel

v ResetChannel

v StartChannel

v StartChannelInitiator

v StartChannelListener

v StopChannel

v ResolveChannel

See theWebSphere MQ Programmable Command Formats and Administration Interface
manual book for the PCF security requirements.

MQSC channel commands

You can issue MQSC channel commands to a remote OpenVMS system either by
sending the command directly in a PCF escape message or by issuing the
command using runmqsc in indirect mode. The user ID as specified in the
message descriptor of the associated PCF message must hold rights identifier

100 WebSphere MQ for HP OpenVMS: System Administration Guide



MQM on the target system. (PCF commands are implicit in MQSC commands
issued from runmqsc in indirect mode.) These commands are:
v ALTER CHANNEL
v DEFINE CHANNEL
v DELETE CHANNEL
v PING CHANNEL
v RESET CHANNEL
v START CHANNEL
v START CHINIT
v START LISTENER
v STOP CHANNEL
v RESOLVE CHANNEL

For MQSC commands issued from the runmqsc command, the user ID in the PCF
message is normally that of the current user.

Control commands for channels

For the control commands for channels, the user ID that issues them must hold
rights identifier MQM. These commands are:
v runmqchi (Run channel initiator)
v runmqchl (Run channel)

Understanding the authorization specification tables

The authorization specification tables starting in topic Table 4 on page 102 define
precisely how the authorizations work and the restrictions that apply. The tables
apply to these situations:
v Applications that issue MQI calls.
v Administration programs that issue MQSC commands as escape PCFs.
v Administration programs that issue PCF commands.

In this section, the information is presented as a set of tables that specify the
following:

Action to be performed
MQI option, MQSC command, or PCF command.

Access control object
Queue, process, or queue manager.

Authorization required
Expressed as an ‘MQZAO_’ constant.

In the tables, the constants prefixed by MQZAO_ correspond to the keywords in
the authorization list for the setmqaut command for the particular entity. For
example, MQZAO_BROWSE corresponds to the keyword +browse; similarly, the
keyword MQZAO_SET_ALL_CONTEXT corresponds to the keyword +setall and
so on. These constants are defined in the header file cmqzc.h, which is supplied
with the product.

Chapter 7. WebSphere MQ security 101



MQI authorizations

An application is only allowed to issue certain MQI calls and options if the user
identifier under which it is running (or whose authorizations it is able to assume)
has been granted the relevant authorization.

Four MQI calls may require authorization checks: MQCONN, MQOPEN,
MQPUT1, and MQCLOSE.

For MQOPEN and MQPUT1, the authority check is made on the name of the
object being opened, and not on the name, or names, resulting after a name has
been resolved. For example, an application may be granted authority to open an
alias queue without having authority to open the base queue to which the alias
resolves. The rule is that the check is carried out on the first definition encountered
during the process of name resolution that is not a queue-manager alias, unless the
queue-manager alias definition is opened directly; that is, its name appears in the
ObjectName field of the object descriptor. Authority is always needed for the
particular object being opened; in some cases additional queue-independent
authority—which is obtained through an authorization for the queue-manager
object—is required.

Table 4 summarizes the authorizations needed for each call.

Table 4. Security authorization needed for MQI calls

Authorization
required for:

Queue object
(1 on page 103)

Process object Queue manager
object

Namelists

MQCONN option Not applicable Not applicable MQZAO_
CONNECT

Not applicable

MQOPEN Option

MQOO_INQUIRE MQZAO_INQUIRE
(2 on page 104)

MQZAO_INQUIRE
(2 on page 104)

MQZAO_INQUIRE
(2 on page 104)

MQZAO_INQUIRE
(2 on page 104)

MQOO_BROWSE MQZAO_BROWSE Not applicable No check Not applicable

MQOO_INPUT_* MQZAO_INPUT Not applicable No check Not applicable

MQOO_SAVE_
ALL_CONTEXT (3 on page
104)

MQZAO_INPUT Not applicable No check Not applicable

MQOO_OUTPUT (Normal
queue) (4 on page 104)

MQZAO_OUTPUT Not applicable No check Not applicable

MQOO_PASS_
IDENTITY_CONTEXT (5 on
page 104)

MQZAO_PASS_
IDENTITY_
CONTEXT

Not applicable No check Not applicable

MQOO_PASS_
ALL_CONTEXT (5 on page
104, 6 on page 104)

MQZAO_PASS
_ALL_CONTEXT

Not applicable No check Not applicable

MQOO_SET_
IDENTITY_CONTEXT (5 on
page 104, 6 on page 104)

MQZAO_SET_
IDENTITY_
CONTEXT

Not applicable MQZAO_SET_
IDENTITY_
CONTEXT (7 on
page 104)

Not applicable

MQOO_SET_
ALL_CONTEXT (5 on page
104, 8 on page 104)

MQZAO_SET_
ALL_CONTEXT

Not applicable MQZAO_SET_
ALL_CONTEXT (7
on page 104)

Not applicable

102 WebSphere MQ for HP OpenVMS: System Administration Guide



Table 4. Security authorization needed for MQI calls (continued)

Authorization
required for:

Queue object
(1)

Process object Queue manager
object

Namelists

MQOO_OUTPUT
(Transmission queue) (9 on
page 104)

MQZAO_SET_
ALL_CONTEXT

Not applicable MQZAO_SET_
ALL_CONTEXT (7
on page 104)

Not applicable

MQOO_SET MQZAO_SET Not applicable No check Not applicable

MQOO_ALTERNATE_
USER_AUTHORITY

(10 on page 104) (10 on page 104) MQZAO_
ALTERNATE_
USER_
AUTHORITY (10
on page 104, 11 on
page 104)

(10 on page 104)

MQPUT1 Option

MQPMO_PASS_
IDENTITY_CONTEXT

MQZAO_PASS_
IDENTITY_
CONTEXT (12 on
page 104)

Not applicable No check Not applicable

MQPMO_PASS_
ALL_CONTEXT

MQZAO_PASS_
ALL_CONTEXT (12
on page 104)

Not applicable No check Not applicable

MQPMO_SET_
IDENTITY_CONTEXT

MQZAO_SET_
IDENTITY_
CONTEXT (12 on
page 104)

Not applicable MQZAO_SET_
IDENTITY_
CONTEXT (7 on
page 104)

Not applicable

MQPMO_SET_
ALL_CONTEXT

MQZAO_SET_
ALL_CONTEXT (12
on page 104)

Not applicable MQZAO_SET_
ALL_CONTEXT (7
on page 104)

Not applicable

(Transmission queue) (9 on
page 104)

MQZAO_SET_
ALL_CONTEXT

Not applicable MQZAO_SET_
ALL_CONTEXT (7
on page 104)

Not applicable

MQPMO_ALTERNATE_
USER_AUTHORITY

(13 on page 104) Not applicable MQZAO
_ALTERNATE_
USER_
AUTHORITY (11
on page 104)

Not applicable

MQCLOSE Option

MQCO_DELETE MQZAO_DELETE
(14 on page 104)

Not applicable Not applicable Not applicable

MQCO_DELETE_PURGE MQZAO_DELETE
(14 on page 104)

Not applicable Not applicable Not applicable

Specific notes:

1. If a model queue is being opened:
v MQZAO_DISPLAY authority is needed for the model queue, in addition to

whatever other authorities (also for the model queue) are required for the
open options specified.

v MQZAO_CREATE authority is not needed to create the dynamic queue.

Chapter 7. WebSphere MQ security 103



v The user identifier used to open the model queue is automatically granted
all of the queue-specific authorities (equivalent to MQZAO_ALL) for the
dynamic queue created.

2. Either the queue, process, namelist or queue manager object is checked,
depending on the type of object being opened.

3. MQOO_INPUT_* must also be specified. This is valid for a local, model, or
alias queue.

4. This check is performed for all output cases, except the case specified in note
9.

5. MQOO_OUTPUT must also be specified.
6. MQOO_PASS_IDENTITY_CONTEXT is also implied by this option.
7. This authority is required for both the queue manager object and the

particular queue.
8. MQOO_PASS_IDENTITY_CONTEXT, MQOO_PASS_ALL_CONTEXT, and

MQOO_SET_IDENTITY_CONTEXT are also implied by this option.
9. This check is performed for a local or model queue that has a Usage queue

attribute of MQUS_TRANSMISSION, and is being opened directly for output.
It does not apply if a remote queue is being opened (either by specifying the
names of the remote queue manager and remote queue, or by specifying the
name of a local definition of the remote queue).

10. At least one of MQOO_INQUIRE (for any object type), or (for queues)
MQOO_BROWSE, MQOO_INPUT_*, MQOO_OUTPUT, or MQOO_SET must
also be specified. The check carried out is as for the other options specified,
using the supplied alternate user identifier for the specific-named object
authority, and the current application authority for the
MQZAO_ALTERNATE_USER_IDENTIFIER check.

11. This authorization allows any AlternateUserId to be specified.
12. An MQZAO_OUTPUT check is also carried out, if the queue does not have a

Usage queue attribute of MQUS_TRANSMISSION.
13. The check carried out is as for the other options specified, using the supplied

alternate user identifier for the specific-named queue authority, and the
current application authority for the
MQZAO_ALTERNATE_USER_IDENTIFIER check.

14. The check is carried out only if both of the following are true:
v A permanent dynamic queue is being closed and deleted.
v The queue was not created by the MQOPEN which returned the object

handle being used.

Otherwise, there is no check.

General notes:

1. The special authorization MQZAO_ALL_MQI includes all of the following that
are relevant to the object type:
v MQZAO_CONNECT
v MQZAO_INQUIRE
v MQZAO_SET
v MQZAO_BROWSE
v MQZAO_INPUT
v MQZAO_OUTPUT
v MQZAO_PASS_IDENTITY_CONTEXT

104 WebSphere MQ for HP OpenVMS: System Administration Guide



v MQZAO_PASS_ALL_CONTEXT
v MQZAO_SET_IDENTITY_CONTEXT
v MQZAO_SET_ALL_CONTEXT
v MQZAO_ALTERNATE_USER_AUTHORITY

2. MQZAO_DELETE (see note 14 on page 104) and MQZAO_DISPLAY are classed
as administration authorizations. They are not therefore included in
MQZAO_ALL_MQI.

3. ‘No check’ means that no authorization checking is carried out.
4. ‘Not applicable’ means that authorization checking is not relevant to this

operation. For example, you cannot issue an MQPUT call to a process object.

Administration authorizations

These authorizations allow a user to issue administration commands. This can be
an MQSC command as an escape PCF message or as a PCF command itself. These
methods allow a program to send an administration command as a message to a
queue manager, for execution on behalf of that user.

Authorizations for MQSC commands in escape PCFs

Table 5 summarizes the authorizations needed for each MQSC command that is
contained in Escape PCF.

Table 5. MQSC commands and security authorization needed

Authorization
required for:
(2)

Queue object Process object Queue
manager
object

Namelists

MQSC command

ALTER object MQZAO_CHANGE MQZAO_CHANGE MQZAO_CHANGE MQZAO_CHANGE

CLEAR QLOCAL MQZAO_CLEAR Not applicable Not applicable Not applicable

DEFINE object
NOREPLACE (3)

MQZAO_CREATE (4
on page 106)

MQZAO_CREATE (4
on page 106)

Not applicable MQZAO_CREATE (4
on page 106)

DEFINE object
REPLACE (3, 5 on
page 106)

MQZAO_CHANGE MQZAO_CHANGE Not applicable MQZAO_CHANGE

DELETE object MQZAO_DELETE MQZAO_DELETE Not applicable MQZAO_DELETE

DISPLAY object MQZAO_DISPLAY MQZAO_DISPLAY MQZAO_DISPLAY MQZAO_DISPLAY

Specific notes:

1. The user identifier, under which the program (for example, runmqsc) which
submits the command is running, must also have MQZAO_CONNECT
authority to the queue manager.

2. Either the queue, process, namelist or queue manager object is checked,
depending on the type of object.

3. For DEFINE commands, MQZAO_DISPLAY authority is also needed for the
LIKE object if one is specified, or on the appropriate SYSTEM.DEFAULT.xxx
object if LIKE is omitted.

Chapter 7. WebSphere MQ security 105



4. The MQZAO_CREATE authority is not specific to a particular object or object
type. Create authority is granted for all objects, for a specified queue manager,
by specifying an object type of QMGR on the SETMQAUT command.

5. This applies if the object to be replaced does in fact already exist. If it does not,
the check is as for DEFINE object NOREPLACE.

General notes:

1. To perform any PCF command, you must have DISPLAY authority on the
queue manager.

2. The authority to execute an escape PCF depends on the MQSC command
within the text of the escape PCF message.

3. ‘Not applicable’ means that authorization checking is not relevant to this
operation. For example, you cannot issue a CLEAR QLOCAL on a queue
manager object.

Authorizations for PCF commands

Table 6 summarizes the authorizations needed for each PCF command.

Table 6. PCF commands and security authorization needed

Authorization
required for: (2)

Queue object Process object
Queue manager
object

Namelists

PCF command

Change object MQZAO_CHANGE MQZAO_CHANGE MQZAO_CHANGE MQZAO_CHANGE

Clear Queue MQZAO_CLEAR Not applicable Not applicable Not applicable

Copy object (without
replace) (3)

MQZAO_CREATE (4
on page 107)

MQZAO_CREATE (4
on page 107)

Not applicable MQZAO_CREATE (4
on page 107)

Copy object (with
replace) (3, 6 on page
107)

MQZAO_CHANGE MQZAO_CHANGE Not applicable MQZAO_CHANGE

Create object (without
replace) (5 on page
107)

MQZAO_CREATE (4
on page 107)

MQZAO_CREATE (4
on page 107)

Not applicable MQZAO_CREATE (4
on page 107)

Create object (with
replace) (5 on page
107, 6 on page 107)

MQZAO_CHANGE MQZAO_CHANGE Not applicable MQZAO_CHANGE

Delete object MQZAO_DELETE MQZAO_DELETE Not applicable MQZAO_DELETE

Inquire object MQZAO_DISPLAY MQZAO_DISPLAY MQZAO_DISPLAY MQZAO_DISPLAY

Inquire object names No check No check No check No check

Reset queue statistics MQZAO_DISPLAY
and
MQZAO_CHANGE

Not applicable Not applicable Not applicable

Specific notes:

1. The user identifier under which the program submitting the command is
running must also have authority to connect to its local queue manager, and to
open the command admin queue for output.

2. Either the queue, process, namelist or queue-manager object is checked,
depending on the type of object.

3. For Copy commands, MQZAO_DISPLAY authority is also needed for the From
object.

106 WebSphere MQ for HP OpenVMS: System Administration Guide



4. The MQZAO_CREATE authority is not specific to a particular object or object
type. Create authority is granted for all objects, for a specified queue manager,
by specifying an object type of QMGR on the SETMQAUT command.

5. For Create commands, MQZAO_DISPLAY authority is also needed for the
appropriate SYSTEM.DEFAULT.* object.

6. This applies if the object to be replaced already exists. If it does not, the check
is as for Copy or Create without replace.

General notes:

1. To perform any PCF command, you must have DISPLAY authority on the
queue manager.

2. The special authorization MQZAO_ALL_ADMIN includes all of the following
that are relevant to the object type:
v MQZAO_CHANGE
v MQZAO_CLEAR
v MQZAO_DELETE
v MQZAO_DISPLAY
MQZAO_CREATE is not included, because it is not specific to a particular
object or object type.

3. ‘No check’ means that no authorization checking is carried out.
4. ‘Not applicable’ means that authorization checking is not relevant to this

operation. For example, you cannot use a Clear Queue command on a process
object.

Working with the Secure Sockets Layer (SSL) on OpenVMS systems

The Secure Sockets Layer (SSL) protocol provides channel security, with protection
against eavesdropping, tampering, and impersonation.
v You cannot run SSL channels from a WebSphere MQ installation that uses DCE

security exits or the DCE name service.
v Support for cryptographic hardware is not available for WebSphere MQ for HP

OpenVMS, Version 6.0.

On OpenVMS systems, to manage keys and digital certificates, HP SSL for
OpenVMS provides a certificate tool that is a simple menu-driven interface for
viewing and creating SSL certificates. The HP SSL Certificate Tool enables you to
perform the most important certification functions. Using it, you can view
certificates and certificate requests, create certificate requests, sign your own
certificate, create your own certificate authority, and sign client certificate requests.

HP-SSL for OpenVMS does not provide any repository of digital certificates. Each
queue manager has its own certificate. The certificate can be held in the SSL
directory for the queue manager or WebSphere MQ client.

OpenSSL setup for WebSphere MQ

Certificate Handling

Personal Certificates:

You can use the SSL certificate tool for creating a self-signed personal certificate.
This generates a certificate file with the extension .CRT and a private key file with

Chapter 7. WebSphere MQ security 107



the extension .KEY. The locations on OpenVMS of these files default to
SSL$KEY:CERT.KEY and SSL$KEY:CERT.CRT. WebSphere MQ for HP OpenVMS, V6.0
accepts the certificates in PEM format only. For generating the certificate in PEM
format, follow these steps:
1. Enter the command $ COPY CERT.KEY CERT.PEM

2. Enter the command $ APPEND CERT.CRT CERT.PEM

The PEM extension is mandatory for the certificate file. The private key is a part of
the digital certificate, which is in the PEM format. Normally the private key is
encrypted and accessed by a password. The SSL server needs to add the private
key found in the file to SSL_CTX structure. However, to access this, a password is
required. A utility (cryptpasswd) is provided along with the server, which encrypts
the password and puts it in a file.
$ CRYPTPASSWD <password> <name of the certificate file>

For example:
$ CRYPTPASSWD mypassword cert

This generates a file called CERT.PWD in the current directory. Place the generated
PWD file in the same directory as the certificate file.

Certificate Authorities (CA) Certificate:

For generating the list of Certificate Authorities, create a file called CACert.PEM.
This needs to be populated with the list of all the CA certificates. Make sure that
the certificates are in PEM format. This file should be placed in the same directory
as the certificate file.

Note: It is mandatory to name the file CACert.PEM.

Certificate Revocation List (CRL) certificates:

If you want to use certificate revocation lists (CRLs) on the system, you must put
the CRLs in the same file that contains the trusted CA certificates (CACert.PEM) or
the directory that contains the trusted CA certificates. As part of the authentication
process, the system examines the CRLs, if any exist, to determine if the certificate
provided by the partner node has been revoked. The following shows the contents
of a sample CRL file:
-----BEGIN X509 CRL-----
MIIBODCB4zANBgkqhkiG9w0BAQQFADBgMQswCQYDVQQGEwJBVTEMMAoGA1UECBMD
UUxEMRkwFwYDVQQKExBNaW5jb20gUHR5LiBMdGQuMQswCQYDVQQLEwJDUzEbMBkG
A1UEAxMSU1NMZWF5IGRlbW8gc2VydmVyFw0wMTAxMTUxNjI2NTdaFw0wMTAyMTQx
NjI2NTdaMFIwEgIBARcNOTUxMDA5MjMzMjA1WjASAgEDFw05NTEyMDEwMTAwMDBa
MBMCAhI0Fw0wMTAxMTUxNjE5NDdaMBMCAhI1Fw0wMTAxMTUxNjIzNDZaMA0GCSqG
SIb3DQEBBAUAA0EAHPjQ3M93QOj8Ufi+jZM7Y78TfAzG4jJn/E6MYBPFVQFYo/Gp
UZexfjSVo5CIyySOtYscz8oO7avwBxTiMpDEQg==
-----END X509 CRL--

Working with Queue Manager and Client Certificates

Locating the certificate for a queue manager:

Use this procedure to obtain information about the location of your queue
manager’s certificate file:
1. Display your queue manager’s attributes using either of the following MQSC

commands:
DISPLAY QMGR ALL

108 WebSphere MQ for HP OpenVMS: System Administration Guide



DISPLAY QMGR SSLKEYR

2. Examine the output of the above command for the path and name of the
certificate file. For example: /mqs_root/mqm/qmgrs/QM1/ssl/qmcert where
/mqs_root/mqm/qmgrs/QM1/ssl is the default directory path and qmcert
represents the name of the certificate file.

Note: The QMCERT.PWD and CACert.PEM files should be placed in the
default path.

Changing the certificate location for a queue manager:

You can change the location of your queue manager’s certificate file using the
following method:

Use the ALTER QMGR MQSC command to set your queue manager’s certificate
for example:
ALTER QMGR SSLKEYR('/mqs_root/mqm/qmgrs/QM1/ssl/MyQMCert')

The fully qualified path name for the certificate file has to be specified for the
SSLKEYR attribute in UNIX style. The actual location of the certificate on
OpenVMS would be mqs_root:[mqm.qmgrs.QM1.ssl]MyQMCert.pem.

Note:

1. The .pem extension is a mandatory part of the filename, but is not included as
part of the value of the parameter.

2. The MyQMCert.PWD and CACert.PEM files should be placed in the same
directory path, which you have specified in ALTER QMGR SSLKEYR
command.

Specifying the certificate location for a WebSphere MQ client:

You can specify the location of your WebSphere MQ client’s certificate file in one
of the following ways:
v By setting the MQSSLKEYR logical, for example:

$ DEFINE/LOG MQSSLKEYR "/dka100/users/user1/ClientCert"

The fully qualified path name for the certificate file has to be specified for the
above logical in UNIX style. The actual location of the certificate on OpenVMS
would be dka100:[users.user1]ClientCert.pem.

Note:

1. The .pem extension is a mandatory part of the filename, but is not included
as part of the value of the logical.

2. The ClientCert.PWD and CACert.PEM files should be placed in the same
directory path.

v By providing the path and name of the certificate file in the KeyRepository field
of the MQSCO structure when an application makes an MQCONNX call. For
more information about using the MQSCO structure in MQCONNX, refer to the
WebSphere MQ Application Programming Guide.

The path to the CA certificates can be given by two logical names. These are
CACertFile and CACertPath. For example:
$ DEFINE/LOG CACertFile "/path/to/CA/file"
$ DEFINE/LOG CACertPath "/path/to/CA/directory"

Chapter 7. WebSphere MQ security 109



HP SSL version

You must install HP Open VMS V1.3 for OpenVMS Alpha for SSL support. This is
the supported version of SSL for WebSphere MQ for HP OpenVMS, V6.0. It can be
downloaded from:

http://h71000.www7.hp.com/openvms/products/ssl/ssl.html

110 WebSphere MQ for HP OpenVMS: System Administration Guide



Chapter 8. Transactional support

The WebSphere MQ Application Programming Guide contains a complete introduction
to the subject of this chapter. A brief introduction only is provided here.

An application program can group a set of updates into a unit of work. These
updates are usually logically related and must all be successful for data integrity to
be preserved. If one update succeeded while another failed then data integrity
would be lost.

A unit of work commits when it completes successfully. At this point all updates
made within that unit of work are made permanent or irreversible. If the unit of
work fails then all updates are instead backed out. Syncpoint coordination is the
process by which units of work are either committed or backed out with integrity.

A local unit of work is one in which the only resources updated are those of the
WebSphere MQ queue manager. Here, syncpoint coordination is provided by the
queue manager itself using a single-phase commit process.

A global unit of work is one in which resources belonging to other resource
managers, such as XA-compliant databases, are also updated. Here, a two-phase
commit procedure must be used and the unit of work may be coordinated by the
queue manager itself.

In summary, queue manager resources can be updated as part of local or global
units of work:

Local unit of work
Use local units of work when the only resources to be updated are those of
the WebSphere MQ queue manager. Updates are committed using the
MQCMIT verb or backed out using MQBACK.

Global unit of work
Use global units of work when you also need to include updates to
XA-compliant database managers. Here, the coordination may be internal
or external to the queue manager.

Queue manager coordination
Global units of work are started using the MQBEGIN verb and
then committed using MQCMIT or backed out using MQBACK. A
two-phase commit process is used whereby XA-compliant resource
managers such as Oracle are all asked to prepare to commit. Only
if all are prepared successfully are they then be asked to commit. If
any resource manager signals that it cannot prepare to commit, it is
asked to back out instead.

External coordination
Here, the coordination is performed by an XA-compliant
transaction manager such as IBM CICS®, Transarc Encina®, or BEA
Tuxedo. Units of work are started and committed under control of
the transaction manager. The MQBEGIN, MQCMIT and MQBACK
verbs are unavailable.

This chapter describes how to enable support for global units of work (support for
local units of work does not need to be specifically enabled).

© Copyright IBM Corp. 1994, 2009 111



It contains these sections:
v “Database coordination”
v “Oracle configuration” on page 115
v “Administration tasks” on page 118

Database coordination

When the queue manager coordinates global units of work itself it becomes
possible to integrate database updates within MQ units of work. That is, a mixed
MQI and SQL application can be written, and the MQCMIT and MQBACK verbs
can be used to commit or roll back the changes to the queues and databases
together.

The queue manager achieves this using a two-phase commit protocol. When a unit
of work is to be committed, the queue manager first asks each participating
database manager whether it is prepared to commit its updates. Only if all of the
participants, including the queue manager itself, are prepared to commit, are all of
the queue and database updates committed. If any participant cannot prepare its
updates, the unit of work is backed out instead.

Full recovery support is provided if the queue manager loses contact with any of
the database managers during the commit protocol. If a database manager becomes
unavailable while it is in doubt, that is, it has been called to prepare but has yet to
receive a commit or back out decision, the queue manager remembers the outcome
of the unit of work until it has been successfully delivered. Similarly, if the queue
manager terminates with incomplete commit operations outstanding, these are
remembered over queue manager restart.

The MQI verb, MQBEGIN, must be used to denote units of work that are also to
involve database updates. The WebSphere MQ Application Programming Guide
identifies sample programs that make WebSphere MQ and database updates within
the same unit of work.

The queue manager communicates with the database managers using the XA
interface as described in X/Open Distributed Transaction Processing: The XA
Specification (ISBN 1 872630 24 3). This means that the queue manager can
communicate to database managers that also adhere to this standard. Such
database managers are known as XA-compliant database managers.

Restrictions

The following restrictions apply to the database coordination support:
v The ability to coordinate database updates within WebSphere MQ units of work

is not supported in an MQI client application.
v The MQI updates and database updates must be made on the same queue

manager server machine.
v The database server may reside on a different machine from the queue manager

server. In this case, the database needs to be accessed via an XA-compliant client
feature provided by the database manager itself.

v Although the queue manager itself is XA-compliant, it is not possible to
configure another queue manager as a participant in global units of work. This
is because only one connection at a time can be supported.

112 WebSphere MQ for HP OpenVMS: System Administration Guide



Database connections

An application that establishes a standard connection to the queue manager is
associated with a thread in a separate local queue manager agent process. When
the application issues MQBEGIN then both it and the agent process need to
connect to the databases that are to be involved in the unit of work. The database
connections are maintained while the application remains connected to the queue
manager. This is an important consideration if the database supports only a limited
number of users or connections.

One method of reducing the number of connections is for the application to use
the MQCONNX call to request a fastpath binding. In this case the application and
the local queue manager agent become the same process and consequently can
share a single database connection. Before using MQCONNX, consult the
WebSphere MQ Application Programming Guide for a list of restrictions that apply to
fastpath applications.

Configuring database managers

There are two tasks that you must perform before a database manager can
participate in global units of works coordinated by the queue manager:
1. Create an XA switch load file 1 for the database manager.
2. Define the database manager in the queue manager’s configuration file, qm.ini.

Various items, including the name of the switch load file, must be defined in
qm.ini.

Creating switch load files

Instructions for creating switch load files for the supported database managers are
provided in “Creating the Oracle switch load file on OpenVMS systems” on page
116.

Refer to your WebSphere MQ installation documentation for more information
about the installation procedure.

The sample source modules that are used to produce the switch load files all
contain a single function called MQStart. When the switch load file is loaded, the
queue manager calls this function and it returns the address of a structure called
an XA switch. The switch load file is linked to a library provided by the database
manager, which enables WebSphere MQ to call that database manager.

The sample source modules used to build the switch load files for Oracle are
oraswit.c.

Defining database managers

When you have created a switch load file for your database manager, you must
specify its location to your queue manager. This is done in the queue manager’s
qm.ini file in the XAResourceManager stanza.

You need to add an XAResourceManager stanza for each database manager that your
queue manager is going to coordinate.

1. An XA switch load file is a dynamically-loaded object that enables the queue manager and the database manager to communicate
with each other.

Chapter 8. Transactional support 113



The attributes of the XAResourceManager stanza are as follows.

Name=name
User-chosen string that identifies the database manager instance.

The name is mandatory and can be up to 31 characters in length. It must be
unique. It could simply be the name of the database manager, although to
maintain its uniqueness in more complicated configurations it could, for
example, also include the name of the database being updated.

The name that you choose should be meaningful because the queue manager
uses it to refer to this database manager instance both in messages and in
output when the dspmqtrn command is used.

Once you have chosen a name, do not change this attribute. Information about
changing configuration information is given in “Changing configuration
information” on page 122.

SwitchFile=name
This is the fully-qualified name of the database manager’s XA switch load file.
This is a mandatory attribute.

XAOpenString=string
This is a string of data that is passed in calls to the database manager’s
xa_open entry point. The format for this string depends on the particular
database manager, but it should usually identify the name of the database that
is to be updated.

This is an optional attribute; if it is omitted a blank string is assumed.

XACloseString=string
This is a string of data that is passed in calls to the database manager’s
xa_close entry point. The format for this string depends on the particular
database manager.

This is an optional attribute; if it is omitted a blank string is assumed.

ThreadOfControl=THREAD|PROCESS
The ThreadOfControl value can be THREAD or PROCESS. The queue manager
uses it for serialization purposes.

If the database manager is “thread-safe”, the value for ThreadOfControl can be
THREAD, and the queue manager can call the database manager from
multiple threads at the same time.

If the database manager is not thread-safe, the value for ThreadOfControl should
be PROCESS. The queue manager serializes all calls to the database manager
so that only one call at a time is made from within a particular process.

See “The XAResourceManager stanza” on page 82 for fuller descriptions of these
attributes.

“Oracle configuration” on page 115 gives more information about the specific tasks
you need to perform to configure WebSphere MQ with each of the supported
database managers.

114 WebSphere MQ for HP OpenVMS: System Administration Guide



Oracle configuration

You need to perform the following tasks:
v Check Oracle level and apply patches if you have not already done so.
v Check environment variable settings.
v Enable Oracle XA support.
v Create the Oracle switch load file.
v Add XAResourceManager configuration information to the qm.ini file.
v Change the Oracle configuration parameters, if necessary.

Checking the environment variable settings

Ensure that your Oracle environment variables are set for queue manager
processes as well as in your application processes. In particular, the following
environment variables should always be set prior to starting the queue manager:

ORACLE_HOME
Is the Oracle home directory

ORACLE_SID
Is the Oracle SID being used

Enabling Oracle XA support

You need to ensure that Oracle XA support is enabled. In particular, an Oracle
shared library must have been created; this happens during installation of the
Oracle XA library.

During installation of Oracle, the library is built automatically. If you need to
rebuild the library, refer to the Oracle 9i Administrator’s Reference publication
appropriate to your platform.

Creating the Oracle switch load file

The simplest method for creating the Oracle switch load file is to use the sample
file. The source code used to create the Oracle switch load file is shown in
Figure 10.

The xa.h header file that is included is shipped with WebSphere MQ in the same
directory as oraswit.c.

#include <cmqc.h>
#include "xa.h"

extern struct xa_switch_t xaosw;

struct xa_switch_t * MQENTRY MQStart(void)
{

return(&xaosw);
}

Figure 10. Source code for Oracle switch load file, oraswit.c

Chapter 8. Transactional support 115



Creating the Oracle switch load file on OpenVMS systems

To create the Oracle switch load file on OpenVMS systems, oraswit.c must be
compiled and linked against the Oracle client library oraclient_v901.exe.
1. Create the directory into which the Oracle switch load file, oraswit, is to be

built.
2. Copy the following files from mqs_examples:[xatm] into this directory:
v xa.h
v oraswit.c

3. Compile the copied source file (oraswit.c).
For example:
$ cc oraswit0.c

4. Generate the switch load file:
$ link/share oraswit0.obj, sys$input/options
ora_root:[util]oraclient_v901.exe/share
SYMBOL_VECTOR=(MQStart=PROCEDURE)

5. The Oracle switch load file must be copied to sys$share and then installed as a
known image using the OpenVMS INSTALL utility.
For example:
$ install create/open/header/shared sys$share:oraswit0.exe

Before starting a queue manager (for which Oracle XA Transactional support is
required) the logical name MQS_ORA_STARTUP must be defined. This
definition must be the location of the Oracle command file that sets up the
database specific, and the instance specific logicals required to access a given
Oracle instance (for example, ORA_DB:ORAUSER_<database_name>.COM).
For example:
$ define/sys MQS_ORA_STARTUP disk$oracle9:[oracle9.db_mqseries]orauser_mqseries.com

Adding XAResourceManager configuration information for
Oracle

The next step is to modify the qm.ini configuration file of the queue manager, to
define Oracle as a participant in global units of work. You need to add an
XAResourceManager stanza with the following attributes:

Name=name
This attribute is mandatory. Choose a suitable name for this participant. You
could include the name of the database being updated.

SwitchFile=name
This attribute is mandatory. The fully-qualified name of the Oracle switch load
file.

XAOpenString=string
The XA open string for Oracle has the following format:

Oracle_XA+Acc=P//|P/userName/passWord
+SesTm=sessionTimeLimit
[+DB=dataBaseName]
[+GPwd=P/groupPassWord]
[+LogDir=logDir]
[+MaxCur=maximumOpenCursors]
[+SqlNet=connectString]

where:

116 WebSphere MQ for HP OpenVMS: System Administration Guide



Acc= Is mandatory and is used to specify user access information. P//
indicates that no explicit user or password information is provided and
that the ops$login form is to be used. P/userName/passWord indicates a
valid ORACLE user ID and the corresponding password.

SesTm=
Is mandatory and is used to specify the maximum amount of time that
a transaction can be inactive before the system automatically deletes it.
The unit of time is in seconds.

DB= Is used to specify the database name, where DataBaseName is the name
Oracle precompilers use to identify the database. This field is required
only when applications explicitly specify the database name (that is,
use an AT® clause in their SQL statements).

GPwd=
GPwd is used to specify the server security password, where
P/groupPassWord is the server security group password name. Server
security groups provide an extra level of protection for different
applications running against the same ORACLE instance. The default is
an ORACLE-defined server security group.

LogDir=
LogDir is used to specify the directory on a local machine where the
Oracle XA library error and tracing information can be logged. If a
value is not specified, the current directory is assumed. Make sure that
user mqm has write-access to this directory.

MaxCur=
MaxCur is used to specify the number of cursors to be allocated when
the database is opened. It serves the same purpose as the precompiler
option, maxopencursors.

SqlNet=
SqlNet is used to specify the SQL*Net connect string that is used to log
on to the system. The connect string can be an SQL*Net V1 string,
SQL*Net V2 string, or SQL*Net V2 alias. This field is required when
you are setting up Oracle on a machine separate from the queue
manager.

See the Oracle Server Application Developer’s Guide for more information.

XACloseString=string
Oracle does not require an XA close string.

ThreadOfControl=THREAD|PROCESS
You do not need to specify this parameter on WebSphere MQ for HP
OpenVMS platforms.

For fuller descriptions of each of these attributes, see “The XAResourceManager
stanza” on page 82.

In Figure 11 on page 118, the database to be updated is called MQBankDB. Add a
LogDir to the XA open string so that all error and tracing information is logged to
the same place. It is assumed that the Oracle switch load file was copied to the
sys$share directory after it had been created.

Chapter 8. Transactional support 117



Changing Oracle configuration parameters

The queue manager and user applications use the user ID specified in the XA open
string when they connect to Oracle.
v Database privileges The Oracle user ID specified in the open string must have

the privileges to access the DBA_PENDING_TRANSACTIONS view.
The necessary privilege can be given using the following command, where
userID is the user ID for which access is being given.

See Chapter 7, “WebSphere MQ security,” on page 91 for more information
about security.

Administration tasks

In normal operations, only a minimal amount of administration is necessary after
you have completed the configuration steps. The administration job is made easier
because the queue manager tolerates database managers not being available. In
particular this means that:
v The queue manager can start at any time without first starting each of the

database managers.
v The queue manager does not need to stop and restart if one of the database

managers becomes unavailable.

This allows you to start and stop the queue manager independently from the
database server.

Whenever contact is lost between the queue manager and a database, they need to
resynchronize when both become available again. Resynchronization is the process
by which any in-doubt units of work involving that database are completed. In
general, this occurs automatically without the need for user intervention. The
queue manager asks the database for a list of units of work that are in doubt. It
then instructs the database to either commit or roll back each of these in-doubt
units of work.

When a queue manager starts, it resynchronizes with each database. When an
individual database becomes unavailable, only that database needs to be
resynchronized the next time that the queue manager notices it is available again.

The queue manager attempts to regain contact with an unavailable database
manager automatically as new global units of work are started. Alternatively, the
rsvmqtrn command can be used to resolve explicitly all in-doubt units of work.

XAResourceManager:
Name=Oracle MQBankDB
SwitchFile=sys$share:oraswit0
XAOpenString=Oracle_XA+Acc=P/jim/tiger+SesTm=35+LogDir=/tmp/ora.log+DB=MQBankDB

Figure 11. Sample XAResourceManager entry for Oracle

grant select on DBA_PENDING_TRANSACTIONS to userID;

118 WebSphere MQ for HP OpenVMS: System Administration Guide



In-doubt units of work

A database manager may be left with in-doubt units of work if contact with the
queue manager is lost after the database manager has been instructed to PREPARE.
Until the database manager receives the COMMIT or ROLLBACK outcome from
the queue manager, it needs to retain the database locks associated with the
updates.

Because these locks prevent other applications from updating or reading database
records, resynchronization needs to take place as soon as possible.

If for some reason you cannot wait for the queue manager to resynchronize with
the database automatically, you could use facilities provided by the database
manager to commit or rollback the database updates manually. This is called
making a heuristic decision and should be used only as a last resort because of the
possibility of compromising data integrity; you may end up committing the
database updates when all of the other participants rollback, or vice versa.

It is far better to restart the queue manager, or use the rsvmqtrn command when
the database has been restarted, to initiate automatic resynchronization.

Dislaying outstanding units of work with the dspmqtrn
command

While a database manager is unavailable it is possible to use the dspmqtrn
command to check the state of outstanding units of work (UOWs) involving that
database.

When a database manager becomes unavailable, before the two-phase commit
process is entered, any in-flight UOWs in which it was participating are rolled
back. The database manager itself rolls back its in-flight UOWs when it next
restarts.

The dspmqtrn command displays only those units of work in which one or more
participants are in doubt, awaiting the COMMIT or ROLLBACK from the queue
manager.

For each of these units of work the state of each of the participants is displayed. If
the unit of work did not update the resources of a particular resource manager, it
is not displayed.

With respect to an in-doubt unit of work, a resource manager is said to have done
one of the following things:
Prepared

The resource manager is prepared to commit its updates.
Committed

The resource manager has committed its updates.
Rolled-back

The resource manager has rolled back its updates.
Participated

The resource manager is a participant, but has not prepared, committed, or
rolled back its updates.

The queue manager does not remember the individual states of the participants
when the queue manager restarts. If the queue manager is restarted, but is unable

Chapter 8. Transactional support 119



to contact a database manager, then the in-doubt units of work in which that
database manager was participating are not resolved during restart. In this case,
the database manager is reported as being in prepared state until such time as
resynchronization has occurred.

Whenever the dspmqtrn command displays an in-doubt UOW, it first lists all the
possible resource managers that could be participating. These are allocated a
unique identifier, RMId, which is used instead of the Name of the resource
managers when reporting their state with respect to an in-doubt UOW.

Figure 12 shows the result of issuing the following command:

The output from Figure 12 shows that there are three resource managers associated
with the queue manager. The first is the resource manager 0, which is the queue
manager itself. The other two resource manager instances are the MQBankDB and
MQFeeDB Oracle databases.

The example shows only a single in-doubt unit of work. A message is issued for all
three resource managers, which means that updates had been made to the queue
manager and both Oracle databases within the unit of work.

The updates made to the queue manager, resource manager 0, have been
committed. The updates to the Oracle databases are in prepared state, which means
that Oracle must have become unavailable before it was called to commit the
updates to the MQBankDB and MQFeeDB databases.

The in-doubt unit of work has an external identifier called an XID. This is the
identifier that Oracle associates with the updates.

Resolving outstanding units of work with the rsvmqtrn
command

The output shown in Figure 12 showed a single in-doubt UOW in which the
commit decision had yet to be delivered to both Oracle databases.

In order to complete this unit of work, the queue manager and Oracle need to
resynchronize when Oracle next becomes available. The queue manager uses the
start of new units of work as an opportunity to attempt to regain contact with
Oracle. Alternatively, you can instruct the queue manager to resynchronize
explicitly using the rsvmqtrn command. You should do this soon after Oracle has
been restarted so that any database locks associated with the in-doubt unit of work
are released as quickly as possible.

dspmqtrn -m MY_QMGR

AMQ7107: Resource manager 0 is WebSphere MQ.
AMQ7107: Resource manager 1 is Oracle MQBankDB
AMQ7107: Resource manager 2 is Oracle MQFeeDB

AMQ7056: Transaction number 0,1.
XID: formatID 5067085, gtrid_length 12, bqual_length 4

gtrid [3291A5060000201374657374]
bqual [00000001]

AMQ7105: Resource manager 0 has committed.
AMQ7104: Resource manager 1 has prepared.
AMQ7104: Resource manager 2 has prepared.

Figure 12. Sample dspmqtrn output

120 WebSphere MQ for HP OpenVMS: System Administration Guide



This is achieved using the -a option which tells the queue manager to resolve all
in-doubt units of work. In the following example, Oracle had been restarted so the
queue manager was able to resolve the in-doubt unit of work:

Any in-doubt transactions have been resolved.

Mixed outcomes and errors

Although the queue manager uses a two-phase commit protocol, this does not
completely remove the possibility of some units of work completing with mixed
outcomes. This is where some participants commit their updates and some back
out their updates.

Units of work that complete with a mixed outcome have serious implications
because shared resources that should have been updated as a single unit of work
are no longer in a consistent state.

Mixed outcomes are mainly caused when heuristic decisions are made about units
of work instead of allowing the queue manager to resolve in-doubt units of work
itself. Such decisions are outside the queue manager’s control.

Whenever the queue manager detects a mixed outcome, it produces FFST™

information and documents the failure in its error logs, with one of two messages:
v If a database manager rolls back instead of committing:

AMQ7606 A transaction has been committed but one or more resource
managers have rolled back.

v If a database manager commits instead of rolling back:
AMQ7607 A transaction has been rolled back but one or more resource

managers have committed.

Further messages identify the databases that are heuristically damaged. It is then
your responsibility to locally restore consistency to the affected databases. This is a
complicated procedure in which you need first to isolate the update that has been
wrongly committed or rolled back, then to undo or redo the database change
manually.

Damage occurring due to software errors is less likely. Units of work affected in
this way have their transaction number reported by message AMQ7112. The
participants may be in an inconsistent state.

rsvmqtrn -m MY_QMGR -a

Chapter 8. Transactional support 121



The queue manager does not attempt to recover from such failures until the next
queue manager restart. In Figure 13, this would mean that the updates to resource
manager 1, the MQBankDB database, would be left in prepared state even if the
rsvmqtrn was issued to resolve the unit of work.

Changing configuration information

After the queue manager has successfully started to coordinate global units of
work you should take care when making changes to any of the
XAResourceManager stanzas in the qm.ini file.

If you do need to change the qm.ini file you can do so at any time, but the
changes do not take effect until after the queue manager has been restarted. For
example, if you need to alter the XA open string passed to a database manager,
you need to restart the queue manager for your change to take effect.

Note that if you remove an XAResourceManager stanza you are effectively
removing the ability for the queue manager to contact that database manager.

Never change the Name attribute in any of your XAResourceManager stanzas. This
attribute uniquely identifies that database manager instance to the queue manager.
If this unique identifier is changed, the queue manager assumes that the database
manager instance has been removed and a completely new instance has been
added. The queue manager still associates outstanding units of work with the old
Name, possibly leaving the database in an in-doubt state.

Removing database manager instances

If you do need to remove a database or database manager from your configuration
permanently, you should first ensure that the database is not in doubt. You should
perform this check before you restart the queue manager. Most database managers
provide commands for listing in-doubt transactions. If there are any in-doubt
transactions, first allow the queue manager to resynchronize with the database
manager before you remove its XAResourceManager stanza.

If you fail to observe this procedure the queue manager still remembers all
in-doubt units of work involving that database. A warning message, AMQ7623, is
issued every time the queue manager is restarted. If you are never going to
configure this database with the queue manager again, you can instruct the queue

rsvmqtrn -m MY_QMGR

AMQ7107: Resource manager 0 is WebSphere MQ.
AMQ7107: Resource manager 1 is Oracle MQBankDB
AMQ7107: Resource manager 2 is Oracle MQFeeDB

AMQ7112: Transaction number 0,1 has encountered an error.
XID: formatID 5067085, gtrid_length 12, bqual_length 4

gtrid [3291A5060000201374657374]
bqual [00000001]

AMQ7105: Resource manager 0 has committed.
AMQ7104: Resource manager 1 has prepared.
AMQ7104: Resource manager 2 has rolled back.

Figure 13. Sample dspmqtrn output for a transaction in error

122 WebSphere MQ for HP OpenVMS: System Administration Guide



manager to forget about the participation of the database in its in-doubt
transactions using the -r option of the rsvmqtrn command.

Note: The queue manager finally forgets about transactions only when syncpoint
processing has been completed with all participants.

There are times when you might need to remove an XAResourceManager stanza
temporarily. This is best achieved by commenting out the stanza so that it can be
easily reinstated at a later time. You may decide to take this action if you are
suffering errors every time the queue manager contacts a particular database or
database manager. Temporarily removing the XAResourceManager entry concerned
allows the queue manager to start global units of work involving all of the other
participants. An example of a commented out XAResourceManager stanza follows:

# This database has been temporarily removed
#XAResourceManager:
# Name=Oracle MQBankDB
# SwitchFile=sys$share:oraswit0
# XAOpenString=MQBankDB

Figure 14. Commented out XAResourceManager stanza

Chapter 8. Transactional support 123



124 WebSphere MQ for HP OpenVMS: System Administration Guide



Chapter 9. The WebSphere MQ dead-letter queue handler

A dead-letter queue (DLQ), sometimes referred to as an undelivered-message queue, is a
holding queue for messages that cannot be delivered to their destination queues.
Every queue manager in a network should have an associated DLQ.

Messages can be put on the DLQ by queue managers, message channel agents
(MCAs), and applications. All messages on the DLQ must be prefixed with a
dead-letter header structure, MQDLH.

Messages put on the DLQ by a queue manager or a message channel agent always
have an MQDLH; applications putting messages on the DLQ must supply an
MQDLH. The Reason field of the MQDLH structure contains a reason code that
identifies why the message is on the DLQ.

All WebSphere MQ environments need a routine to process messages on the DLQ
regularly. WebSphere MQ supplies a default routine, called the dead-letter queue
handler (the DLQ handler), which you invoke using the runmqdlq command.

Instructions for processing messages on the DLQ are supplied to the DLQ handler
by means of a user-written rules table. That is, the DLQ handler matches messages
on the DLQ against entries in the rules table; when a DLQ message matches an
entry in the rules table, the DLQ handler performs the action associated with that
entry.

This chapter contains the following sections:
v “Invoking the DLQ handler”
v “The DLQ handler rules table” on page 126
v “How the rules table is processed” on page 132
v “An example DLQ handler rules table” on page 133

Invoking the DLQ handler

Invoke the DLQ handler using the runmqdlq command. You can name the DLQ
you want to process and the queue manager you want to use in two ways:
v As parameters to runmqdlq from the command prompt. For example:

runmqdlq ABC1.DEAD.LETTER.QUEUE ABC1.QUEUE.MANAGER <qrule.rul

v In the rules table. For example:
INPUTQ(ABC1.DEAD.LETTER.QUEUE) INPUTQM(ABC1.QUEUE.MANAGER)

The above examples apply to the DLQ called ABC1.DEAD.LETTER.QUEUE,
owned by the queue manager ABC1.QUEUE.MANAGER.

If you do not specify the DLQ or the queue manager as shown above, the default
queue manager for the installation is used along with the DLQ belonging to that
queue manager.

The runmqdlq command takes its input from SYS$INPUT; you associate the rules
table with runmqdlq by redirecting SYS$INPUT from the rules table.

© Copyright IBM Corp. 1994, 2009 125



To run the DLQ handler you must be authorized to access both the DLQ itself and
any message queues to which messages on the DLQ are forwarded. For the DLQ
handler to put messages on queues with the authority of the user ID in the
message context, you must also be authorized to assume the identity of other
users.

For more information about the runmqdlq command, see “runmqdlq (run
dead-letter queue handler)” on page 255.

Attention: Running the DLQ handler without redirecting SYS$INPUT to a rule file
causes the DLQ handler to loop.

The sample DLQ handler, amqsdlq

In addition to the DLQ handler invoked using the runmqdlq command,
WebSphere MQ provides the source of a sample DLQ handler, amqsdlq, whose
function is similar to that provided by runmqdlq. You can customize amqsdlq to
provide a DLQ handler that meets your requirements. For example, you might
decide that you want a DLQ handler that can process messages without dead-letter
headers. (Both the default DLQ handler and the sample, amqsdlq, process only
those messages on the DLQ that begin with a dead-letter header, MQDLH.
Messages that do not begin with an MQDLH are identified as being in error, and
remain on the DLQ indefinitely.)

The source of amqsdlq is supplied in the directory:
[.DLQ], under MQS_EXAMPLES

and the compiled version is supplied in the directory:
[.BIN], under MQS_EXAMPLES

The DLQ handler rules table

The DLQ handler rules table defines how the DLQ handler is to process messages
that arrive on the DLQ. There are two types of entry in a rules table:
v The first entry in the table, which is optional, contains control data.
v All other entries in the table are rules for the DLQ handler to follow. Each rule

consists of a pattern (a set of message characteristics) that a message is matched
against, and an action to be taken when a message on the DLQ matches the
specified pattern. There must be at least one rule in a rules table.

Each entry in the rules table comprises one or more keywords.

Control data

This section describes the keywords that you can include in a control-data entry in
a DLQ handler rules table. Note the following:
v The default value for a keyword, if any, is underlined.
v The vertical line (|) separates alternatives, only one of which can be specified.
v All keywords are optional.

INPUTQ (QueueName|’ ’)
The name of the DLQ you want to process:

126 WebSphere MQ for HP OpenVMS: System Administration Guide



1. Any INPUTQ value you supply as a parameter to the runmqdlq command
overrides any INPUTQ value in the rules table.

2. If you do not specify an INPUTQ value as a parameter to the runmqdlq
command, but you do specify a value in the rules table, the INPUTQ value
in the rules table is used.

3. If no DLQ is specified or you specify INPUTQ(’ ’) in the rules table, the
name of the DLQ belonging to the queue manager whose name is supplied
as a parameter to the runmqdlq command is used.

4. If you do not specify an INPUTQ value as a parameter to the runmqdlq
command or as a value in the rules table, the DLQ belonging to the queue
manager named on the INPUTQM keyword in the rules table is used.

INPUTQM (QueueManagerName|’ ’)
The name of the queue manager that owns the DLQ named on the INPUTQ
keyword:
1. Any INPUTQM value you supply as a parameter to the runmqdlq

command overrides any INPUTQM value in the rules table.
2. If you do not specify an INPUTQM value as a parameter to the runmqdlq

command, the INPUTQM value in the rules table is used.
3. If no queue manager is specified or you specify INPUTQM(’ ’) in the rules

table, the default queue manager for the installation is used.

RETRYINT (Interval|60)
The interval, in seconds, at which the DLQ handler should reprocess messages
on the DLQ that could not be processed at the first attempt, and for which
repeated attempts have been requested. By default, the retry interval is 60
seconds.

WAIT (YES|NO|nnn)
Whether the DLQ handler should wait for further messages to arrive on the
DLQ when it detects that there are no further messages that it can process.

YES The DLQ handler waits indefinitely.

NO The DLQ handler ends when it detects that the DLQ is either empty or
contains no messages that it can process.

nnn The DLQ handler waits for nnn seconds for new work to arrive before
ending, after it detects that the queue is either empty or contains no
messages that it can process.

Specify WAIT (YES) for busy DLQs, and WAIT (NO) or WAIT (nnn) for DLQs
that have a low level of activity. If the DLQ handler is allowed to terminate,
invoke it again using triggering. For more information about triggering, see the
WebSphere MQ Application Programming Guide.

An alternative to including control data in the rules table is to supply the names of
the DLQ and its queue manager as input parameters to the runmqdlq command.
If you specify a value both in the rules table and as input to the runmqdlq
command, the value specified on the runmqdlq command takes precedence.

If you include a control-data entry in the rules table, it must be the first entry in
the table.

Rules (patterns and actions)

Here is an example rule from a DLQ handler rules table:

Chapter 9. The WebSphere MQ dead-letter queue handler 127



PERSIST(MQPER_PERSISTENT) REASON (MQRC_PUT_INHIBITED) +
ACTION (RETRY) RETRY (3)

This rule instructs the DLQ handler to make three attempts to deliver to its
destination queue any persistent message that was put on the DLQ because
MQPUT and MQPUT1 were inhibited.

All keywords that you can use on a rule are described in the rest of this section.
Note the following:
v The default value for a keyword, if any, is underlined. For most keywords, the

default value is * (asterisk), which matches any value.
v The vertical line (|) separates alternatives, only one of which can be specified.
v All keywords except ACTION are optional.

This section begins with a description of the pattern-matching keywords (those
against which messages on the DLQ are matched), and then describes the action
keywords (those that determine how the DLQ handler is to process a matching
message).

The pattern-matching keywords

The pattern-matching keywords, which you use to specify values against which
messages on the DLQ are matched, are described below. All pattern-matching
keywords are optional.

APPLIDAT (ApplIdentityData|*)
The ApplIdentityData value specified in the message descriptor, MQMD, of the
message on the DLQ.

APPLNAME (PutApplName|*)
The name of the application that issued the MQPUT or MQPUT1 call, as
specified in the PutApplName field of the message descriptor MQMD of the
message on the DLQ.

APPLTYPE (PutApplType|*)
The PutApplType value, specified in the message descriptor MQMD, of the
message on the DLQ.

DESTQ (QueueName|*)
The name of the message queue for which the message is destined.

DESTQM (QueueManagerName|*)
The name of the queue manager of the message queue for which the message
is destined.

FEEDBACK (Feedback|*)
When the MsgType value is MQFB_REPORT, Feedback describes the nature of
the report.

You can use symbolic names. For example, you can use the symbolic name
MQFB_COA to identify those messages on the DLQ that need confirmation of
their arrival on their destination queues.

FORMAT (Format|*)
The name that the sender of the message uses to describe the format of the
message data.

MSGTYPE (MsgType|*)
The message type of the message on the DLQ.

128 WebSphere MQ for HP OpenVMS: System Administration Guide



You can use symbolic names. For example, you can use the symbolic name
MQMT_REQUEST to identify those messages on the DLQ that need replies.

PERSIST (Persistence|*)
The persistence value of the message. (The persistence of a message determines
whether it survives restarts of the queue manager.)

You can use symbolic names. For example, you can use the symbolic name
MQPER_PERSISTENT to identify messages on the DLQ that are persistent.

REASON (ReasonCode|*)
The reason code that describes why the message was put to the DLQ.

You can use symbolic names. For example, you can use the symbolic name
MQRC_Q_FULL to identify those messages placed on the DLQ because their
destination queues were full.

REPLYQ (QueueName|*)
The name of the reply-to queue specified in the message descriptor, MQMD, of
the message on the DLQ.

REPLYQM (QueueManagerName|*)
The name of the queue manager of the reply-to queue, as specified in the
message descriptor, MQMD, of the message on the DLQ.

USERID (UserIdentifier|*)
The user ID of the user who originated the message on the DLQ, as specified
in the message descriptor, MQMD.

The action keywords

The action keywords, used to describe how a matching message is to be processed,
are described below.

ACTION (DISCARD|IGNORE|RETRY|FWD)
The action to be taken for any message on the DLQ that matches the pattern
defined in this rule.

DISCARD
Delete the message from the DLQ.

IGNORE
Leave the message on the DLQ.

RETRY
If the first attempt to put the message on its destination queue fails, try
again. The RETRY keyword sets the number of tries made to
implement an action. The RETRYINT keyword of the control data
controls the interval between attempts.

FWD Forward the message to the queue named on the FWDQ keyword.

You must specify the ACTION keyword.

FWDQ (QueueName|&DESTQ|&REPLYQ)
The name of the message queue to which to forward the message when
ACTION (FWD) is requested.

QueueName
The name of a message queue. FWDQ(’ ’) is not valid.

&DESTQ
Take the queue name from the DestQName field in the MQDLH
structure.

Chapter 9. The WebSphere MQ dead-letter queue handler 129



&REPLYQ
Take the queue name from the ReplyToQ field in the message
descriptor, MQMD.

To avoid error messages when a rule specifying FWDQ (&REPLYQ)
matches a message with a blank ReplyToQ field, specify REPLYQ (?*) in
the message pattern.

FWDQM (QueueManagerName|&DESTQM|&REPLYQM|’ ’)
The queue manager of the queue to which to forward a message.

QueueManagerName
The name of the queue manager of the queue to which to forward a
message when ACTION (FWD) is requested.

&DESTQM
Take the queue manager name from the DestQMgrName field in the
MQDLH structure.

&REPLYQM
Take the queue manager name from the ReplyToQMgr field in the
message descriptor, MQMD.

’ ’ FWDQM(’ ’), which is the default value, identifies the local queue
manager.

HEADER (YES|NO)
Whether the MQDLH should remain on a message for which ACTION (FWD)
is requested. By default, the MQDLH remains on the message. The HEADER
keyword is not valid for actions other than FWD.

PUTAUT (DEF|CTX)
The authority with which messages should be put by the DLQ handler:

DEF Put messages with the authority of the DLQ handler itself.

CTX Put the messages with the authority of the user ID in the message
context. If you specify PUTAUT (CTX), you must be authorized to
assume the identity of other users.

RETRY (RetryCount|1)
The number of times, in the range 1–999 999 999, to try an action (at the
interval specified on the RETRYINT keyword of the control data). The count of
attempts made by the DLQ handler to implement any particular rule is specific
to the current instance of the DLQ handler; the count does not persist across
restarts. If the DLQ handler is restarted, the count of attempts made to apply a
rule is reset to zero.

Rules table conventions

The rules table must adhere to the following conventions regarding its syntax,
structure, and contents:
v A rules table must contain at least one rule.
v Keywords can occur in any order.
v A keyword can be included only once in any rule.
v Keywords are not case-sensitive.
v A keyword and its parameter value must be separated from other keywords by

at least one blank or comma.
v There can be any number of blanks at the beginning or end of a rule, and

between keywords, punctuation, and values.

130 WebSphere MQ for HP OpenVMS: System Administration Guide



v Each rule must begin on a new line.
v For reasons of portability, the significant length of a line must not be greater

than 72 characters.
v Use the plus sign (+) as the last nonblank character on a line to indicate that the

rule continues from the first nonblank character in the next line. Use the minus
sign (-) as the last nonblank character on a line to indicate that the rule
continues from the start of the next line. Continuation characters can occur
within keywords and parameters.
For example:
APPLNAME('ABC+

D')

results in ’ABCD’, and
APPLNAME('ABC-

D')

results in ’ABC D’.
v Comment lines, which begin with an asterisk (*), can occur anywhere in the

rules table.
v Blank lines are ignored.
v Each entry in the DLQ handler rules table comprises one or more keywords and

their associated parameters. The parameters must follow these syntax rules:
– Each parameter value must include at least one significant character. The

delimiting quotation marks in quoted values are not considered significant.
For example, these parameters are valid:

FORMAT('ABC') 3 significant characters
FORMAT(ABC) 3 significant characters
FORMAT('A') 1 significant character
FORMAT(A) 1 significant character
FORMAT(' ') 1 significant character

These parameters are invalid because they contain no significant characters:

FORMAT('')
FORMAT( )
FORMAT()
FORMAT

– Wildcard characters are supported. You can use the question mark (?) instead
of any single character, except a trailing blank; you can use the asterisk (*)
instead of zero or more adjacent characters. The asterisk (*) and the question
mark (?) are always interpreted as wildcard characters in parameter values.

– Wildcard characters cannot be included in the parameters of these keywords:
ACTION, HEADER, RETRY, FWDQ, FWDQM, and PUTAUT.

– Trailing blanks in parameter values, and in the corresponding fields in the
message on the DLQ, are not significant when performing wildcard matches.
However, leading and embedded blanks within strings in quotation marks are
significant to wildcard matches.

– Numeric parameters cannot include the question mark (?) wildcard character.
You can use the asterisk (*) instead of an entire numeric parameter, but not as
part of a numeric parameter. For example, these are valid numeric
parameters:

MSGTYPE(2) Only reply messages are eligible

Chapter 9. The WebSphere MQ dead-letter queue handler 131



MSGTYPE(*) Any message type is eligible
MSGTYPE('*') Any message type is eligible

However, MSGTYPE('2*') is not valid, because it includes an asterisk (*) as
part of a numeric parameter.

– Numeric parameters must be in the range 0–999 999 999. If the parameter
value is in this range, it is accepted, even if it is not currently valid in the
field to which the keyword relates. You can use symbolic names for numeric
parameters.

– If a string value is shorter than the field in the MQDLH or MQMD to which
the keyword relates, the value is padded with blanks to the length of the
field. If the value, excluding asterisks, is longer than the field, an error is
diagnosed. For example, these are all valid string values for an 8 character
field:

'ABCDEFGH' 8 characters
'A*C*E*G*I' 5 characters excluding asterisks
'*A*C*E*G*I*K*M*O*' 8 characters excluding asterisks

– Enclose strings that contain blanks, lowercase characters, or special characters
other than period (.), forward slash (/), underscore (_), and percent sign (%)
in single quotation marks. Lowercase characters not enclosed in quotation
marks are folded to uppercase. If the string includes a quotation, use two
single quotation marks to denote both the beginning and the end of the
quotation. When the length of the string is calculated, each occurrence of
double quotation marks is counted as a single character.

How the rules table is processed

The DLQ handler searches the rules table for a rule whose pattern matches a
message on the DLQ. The search begins with the first rule in the table, and
continues sequentially through the table. When the DLQ handler finds a rule with
a matching pattern, it takes the action from that rule. The DLQ handler increments
the retry count for a rule by 1 whenever it applies that rule. If the first try fails, the
DLQ handler tries again until the number of tries matches the number specified on
the RETRY keyword. If all attempts fail, the DLQ handler searches for the next
matching rule in the table.

This process is repeated for subsequent matching rules until an action is successful.
When each matching rule has been attempted the number of times specified on its
RETRY keyword, and all attempts have failed, ACTION (IGNORE) is assumed.
ACTION (IGNORE) is also assumed if no matching rule is found.

Note:

1. Matching rule patterns are sought only for messages on the DLQ that begin
with an MQDLH. Messages that do not begin with an MQDLH are reported
periodically as being in error, and remain on the DLQ indefinitely.

2. All pattern keywords can be allowed to default, such that a rule can consist of
an action only. Note, however, that action-only rules are applied to all messages
on the queue that have MQDLHs and that have not already been processed in
accordance with other rules in the table.

3. The rules table is validated when the DLQ handler starts, and errors are
flagged at that time. (Error messages issued by the DLQ handler are described

132 WebSphere MQ for HP OpenVMS: System Administration Guide



in the WebSphere MQ Messages manual..) You can make changes to the rules
table at any time, but those changes do not come into effect until the DLQ
handler restarts.

4. The DLQ handler does not alter the content of messages, the MQDLH, or the
message descriptor. The DLQ handler always puts messages to other queues
with the message option MQPMO_PASS_ALL_CONTEXT.

5. Consecutive syntax errors in the rules table might not be recognized because
the rules table is designed to eliminate the generation of repetitive errors
during validation.

6. The DLQ handler opens the DLQ with the MQOO_INPUT_AS_Q_DEF option.
7. Multiple instances of the DLQ handler can run concurrently against the same

queue, using the same rules table. However, it is more usual for there to be a
one-to-one relationship between a DLQ and a DLQ handler.

Ensuring that all DLQ messages are processed

The DLQ handler keeps a record of all messages on the DLQ that have been seen
but not removed. If you use the DLQ handler as a filter to extract a small subset of
the messages from the DLQ, the DLQ handler still has to keep a record of those
messages on the DLQ that it did not process. Also, the DLQ handler cannot
guarantee that new messages arriving on the DLQ are seen, even if the DLQ is
defined as first-in-first-out (FIFO). If the queue is not empty, the DLQ is
periodically re-scanned to check all messages.

For these reasons, try to ensure that the DLQ contains as few messages as possible;
if messages that cannot be discarded or forwarded to other queues (for whatever
reason) are allowed to accumulate on the queue, the workload of the DLQ handler
increases and the DLQ itself can fill up.

You can take specific measures to enable the DLQ handler to empty the DLQ. For
example, try not to use ACTION (IGNORE), which simply leaves messages on the
DLQ. (Remember that ACTION (IGNORE) is assumed for messages that are not
explicitly addressed by other rules in the table.) Instead, for those messages that
you would otherwise ignore, use an action that moves the messages to another
queue. For example:
ACTION (FWD) FWDQ (IGNORED.DEAD.QUEUE) HEADER (YES)

Similarly, make the final rule in the table a catchall to process messages that have
not been addressed by earlier rules in the table. For example, the final rule in the
table could be something like this:
ACTION (FWD) FWDQ (REALLY.DEAD.QUEUE) HEADER (YES)

This forwards messages that fall through to the final rule in the table to the queue
REALLY.DEAD.QUEUE, where they can be processed manually. If you do not have
such a rule, messages are likely to remain on the DLQ indefinitely.

An example DLQ handler rules table

The following example rules table contains a single control-data entry and several
rules:
*************************************************************************
* An example rules table for the runmqdlq command *
*************************************************************************
* Control data entry

Chapter 9. The WebSphere MQ dead-letter queue handler 133



* ------------------
* If no queue manager name is supplied as an explicit parameter to
* runmqdlq, use the default queue manager for the machine.
* If no queue name is supplied as an explicit parameter to runmqdlq,
* use the DLQ defined for the local queue manager.
*
inputqm(' ') inputq(' ')

* Rules
* -----
* We include rules with ACTION (RETRY) first to try to
* deliver the message to the intended destination.
* If a message is placed on the DLQ because its destination
* queue is full, attempt to forward the message to its
* destination queue. Make 5 attempts at approximately
* 60-second intervals (the default value for RETRYINT).

REASON(MQRC_Q_FULL) ACTION(RETRY) RETRY(5)

* If a message is placed on the DLQ because of a put inhibited
* condition, attempt to forward the message to its
* destination queue. Make 5 attempts at approximately
* 60-second intervals (the default value for RETRYINT).

REASON(MQRC_PUT_INHIBITED) ACTION(RETRY) RETRY(5)

* The AAAA corporation are always sending messages with incorrect
* addresses. When we find a request from the AAAA corporation,
* we return it to the DLQ (DEADQ) of the reply-to queue manager
* (&REPLYQM).
* The AAAA DLQ handler attempts to redirect the message.

MSGTYPE(MQMT_REQUEST) REPLYQM(AAAA.*) +
ACTION(FWD) FWDQ(DEADQ) FWDQM(&REPLYQM)

* The BBBB corporation never do things by half measures. If
* the queue manager BBBB.1 is unavailable, try to
* send the message to BBBB.2

DESTQM(bbbb.1) +
action(fwd) fwdq(&DESTQ) fwdqm(bbbb.2) header(no)

* The CCCC corporation considers itself very security
* conscious, and believes that none of its messages
* will ever end up on one of our DLQs.
* Whenever we see a message from a CCCC queue manager on our
* DLQ, we send it to a special destination in the CCCC organization
* where the problem is investigated.

REPLYQM(CCCC.*) +
ACTION(FWD) FWDQ(ALARM) FWDQM(CCCC.SYSTEM)

* Messages that are not persistent run the risk of being
* lost when a queue manager terminates. If an application
* is sending nonpersistent messages, it should be able
* to cope with the message being lost, so we can afford to
* discard the message. PERSIST(MQPER_NOT_PERSISTENT) ACTION(DISCARD)
* For performance and efficiency reasons, we like to keep
* the number of messages on the DLQ small.
* If we receive a message that has not been processed by
* an earlier rule in the table, we assume that it
* requires manual intervention to resolve the problem.
* Some problems are best solved at the node where the
* problem was detected, and others are best solved where
* the message originated. We don't have the message origin,
* but we can use the REPLYQM to identify a node that has
* some interest in this message.
* Attempt to put the message onto a manual intervention

134 WebSphere MQ for HP OpenVMS: System Administration Guide



* queue at the appropriate node. If this fails,
* put the message on the manual intervention queue at
* this node.

REPLYQM('?*') +
ACTION(FWD) FWDQ(DEADQ.MANUAL.INTERVENTION) FWDQM(&REPLYQM)

ACTION(FWD) FWDQ(DEADQ.MANUAL.INTERVENTION)

Chapter 9. The WebSphere MQ dead-letter queue handler 135



136 WebSphere MQ for HP OpenVMS: System Administration Guide



Chapter 10. WebSphere MQ for OpenVMS and clustering

OpenVMS clusters and WebSphere MQ queue manager clusters are two different
things, independent of one another.

Note: When the term cluster is used, it refers to a WebSphere MQ queue manager
cluster. An OpenVMS cluster is always referred to as OpenVMS cluster.

WebSphere MQ queue manager clusters do not necessarily use OpenVMS cluster
intercommunication protocols, the OpenVMS cluster distributed lock manager or
the OpenVMS cluster file system. All communication between queue managers in a
WebSphere MQ cluster is via WebSphere MQ channels using one of the supported
protocols. Thus it is possible to configure WebSphere MQ queue manager clusters
with queue managers that run on OpenVMS systems that are not part of the same
OpenVMS cluster.

If a WebSphere MQ queue manager is configured within an OpenVMS cluster, the
WebSphere MQ queue manager can run only on one OpenVMS node (referred to
as a node for the rest of this chapter) within the OpenVMS cluster at a time. The
function of a single WebSphere MQ queue manager cannot be distributed across
multiple OpenVMS nodes within an OpenVMS cluster. If an attempt is made to
start a WebSphere MQ queue manager on more than one OpenVMS node, an error
is returned. However, if there are multiple WebSphere MQ queue managers
configured in an OpenVMS cluster they can be run on different OpenVMS nodes
within the OpenVMS cluster.

In an OpenVMS cluster, failover sets provide a higher availability of WebSphere
MQ queue managers. This enables a queue manager to be automatically restarted
on another OpenVMS cluster node if a failure occurs. This feature can be used
with or without WebSphere MQ queue manager clusters. (See “OpenVMS cluster
failover sets” on page 138).

Installing WebSphere MQ in an OpenVMS cluster

Installing WebSphere MQ for HP OpenVMS, V6.0 in an OpenVMS cluster is very
similar to installing WebSphere MQ on a standalone OpenVMS system. However,
before installing, you need to consider the following:
v If there are multiple system disks in the OpenVMS cluster, WebSphere MQ

needs to be installed on each system disk that has a node booted from it and that
has to run WebSphere MQ. WebSphere MQ needs to be installed only once per
system disk, not once per node.

v The disk holding the MQS_ROOT directory structure must be mounted system
wide on the OpenVMS nodes that are to run the queue managers contained
within the directory structure. It is possible to have different MQS_ROOT
directory structures for each node. But, if failover sets are to be configured, each
OpenVMS node in a failover set must refer to the same MQS_ROOT directory
structure. When installing WebSphere MQ, you must specify the MQS_ROOT
directory (in response to the question ’Enter the root device for the WebSphere
MQ datafiles:’) for each installation.

v If the disk containing the log files for a queue manager is different from the disk
containing MQS_ROOT, the disk containing the log files must be mounted
system-wide on all nodes in a Failover set.

© Copyright IBM Corp. 1994, 2009 137



v WebSphere MQ uses an account MQM which has a default directory
SYS$SPECIFIC:[MQS_SERVER]. This directory is created only for the node on
which WebSphere MQ is installed. The directory must be created for each
additional node that boots from the same system disk and that has to run
WebSphere MQ. This can be done by executing the following DCL commands
on each additional node:

v On OpenVMS clusters sharing the same system disk, only one version of
WebSphere MQ (V5.3 or V6.0) can be installed. On OpenVMS clusters where the
cluster nodes have their own independent system disk, it is possible to install
different versions of MQ running on different nodes. In that case cluster nodes
with queue managers belonging to the same failover set must have the same
version of WebSphere MQ, because they share a common MQS_ROOT directory.

OpenVMS cluster failover sets

Overview of OpenVMS cluster failover sets

OpenVMS cluster failover sets allow WebSphere MQ queue managers to be
automatically restarted on another OpenVMS node in an OpenVMS cluster if the
WebSphere MQ queue manager fails. The following types of failure are supported
by OpenVMS cluster failover sets:
v Halt of an OpenVMS node running a WebSphere MQ queue manager
v System crash of an OpenVMS node running a WebSphere MQ queue manager
v Shutdown of an OpenVMS node running a WebSphere MQ queue manager

without the clean ending of the WebSphere MQ queue manager
v The failure of a WebSphere MQ queue manager Execution Controller process

The following types of failure are not supported by OpenVMS cluster failover sets:
v A fault on an OpenVMS node running a WebSphere MQ queue manager that

does not cause the node or the WebSphere MQ queue manager to fail.
v The failure of a WebSphere MQ queue manager process except for the Execution

Controller process. A WebSphere MQ queue manager is never automatically
restarted on the same node.

v A software or hardware failure of the disk holding the WebSphere MQ queue
manager queue files and log data.

v Corruption of the WebSphere MQ queue manager queue files or log data.

OpenVMS cluster failover sets are supported only for queue managers that use the
TCP/IP protocol for WebSphere MQ channels. The following TCP/IP stacks are
supported:
v HP TCP/IP Services for OpenVMS V5.4-15 (Alpha) V5.5-81 (Itanium®)
v Process Software TCPware for OpenVMS V5.6 (Alpha) V5.6 (Itanium)
v Process Software Multinet for OpenVMS V5.0 (Alpha Only)

$create/directory sys$specific:[mqs_server]/owner=[mqs_server] -
/protection=(s:rwed,o:rwed,g,w)
$set sec/acl=(identifier=mqm,options=default,access=r+w+e+d+c) -
sys$specific:[000000]mqs_server.dir
$set sec/acl=(identifier=mqm,access=r+w+e+d+c) -
sys$specific:[000000]mqs_server.dir

138 WebSphere MQ for HP OpenVMS: System Administration Guide



OpenVMS cluster failover set concepts

An OpenVMS cluster failover set is a collection of OpenVMS nodes that can
potentially run a WebSphere MQ queue manager. There may be between one and
four OpenVMS nodes in an OpenVMS cluster failover set and all the OpenVMS
nodes must be members of the same OpenVMS cluster. An OpenVMS cluster
failover set is specific to one WebSphere MQ queue manager. There may be more
than one OpenVMS cluster failover set configured in an OpenVMS cluster. Note
that the maximum length of a queue manager name supported by OpenVMS
cluster failover sets is 25 characters.

Failover is the process by which a WebSphere MQ queue manager is restarted on
another OpenVMS node when a supported failure occurs. After this process has
completed the WebSphere MQ queue manager is said to have failed over.

Failback is the process by which a WebSphere MQ queue manager is restarted on
its original OpenVMS node after a failure has been resolved. OpenVMS cluster
failover sets do not support automatic failback but it can be performed manually.
After this process has completed the WebSphere MQ queue manager is said to
have failed back.

A failover monitor is a process that runs on each member of an OpenVMS cluster
failover set. The failover monitors are responsible for performing all functions of
the failover sets. The failover monitors within an OpenVMS cluster failover set
cooperate with one another to provide these functions. A failover monitor is started
using the runmqfm command.

One failover monitor is nominated as the watcher failover monitor and this failover
monitor is said to be in a watching state. The first failover monitor to start in a
failover set is the initial watcher failover monitor. A failover set becomes live when
the first failover monitor is started. If the watcher failover monitor fails, or the
OpenVMS node on which it is running fails, another failover monitor is
automatically nominated as the watcher failover monitor. The watcher failover
monitor is responsible for checking that the WebSphere MQ queue manager is
running and for initiating a failover operation if a supported failure occurs. Any
operation that must be performed on another OpenVMS node is forwarded by the
watcher failover monitor to the failover monitor running on the relevant OpenVMS
node which actually performs the operation.

OpenVMS cluster failover sets are administered using the DCL command failover.
The failover command can be used from any node in the OpenVMS cluster
failover set. All commands are sent to the watcher failover monitor which then
decides which failover monitor should process the command and if necessary
forwards it onto another failover monitor.

The OpenVMS cluster failover set configuration file holds the details of the
OpenVMS cluster failover set including the number and names of the OpenVMS
nodes. The file is called FAILOVER.INI and resides in the directory
MQS_ROOT:[MQM.QMGRS.queuemanagername]. It is a text file which is modified with a
text editor and must be created prior to starting the first failover monitor. A
template configuration file called FAILOVER.TEMPLATE is provided in the directory
MQS_EXAMPLES. The parameters in the configuration file cannot be changed
dynamically. For a change to take effect all failover monitors must be stopped and
then started again. Care must be taken when this is done because automatic
failover of the WebSphere MQ queue manager cannot occur when the failover
monitors are not started.

Chapter 10. WebSphere MQ for OpenVMS and clustering 139



For a WebSphere MQ queue manager in a failover set, all WebSphere MQ
commands continue to work as normal except for the strmqm and endmqm
commands. These two commands return an error when a WebSphere MQ queue
manager is in a live failover set. The failover command must be used to start and
end the WebSphere MQ queue manager.

The OpenVMS node priority is the priority given to each OpenVMS node in the
OpenVMS cluster failover set and is used to determine on which OpenVMS node
the queue manager should be started after a failure has occurred. The OpenVMS
node with the lowest numeric priority value has the highest priority.

The OpenVMS cluster failover set TCP/IP address is the TCP/IP address assigned
to the failover set. All channels that refer to the failover set queue manager must
be configured to specify this TCP/IP address in the connection name. Each
OpenVMS cluster failover set must use a unique TCP/IP address. All OpenVMS
nodes in the OpenVMS cluster failover set must have an interface TCP/IP address
in the same subnet and the OpenVMS cluster failover set TCP/IP address must be
in the same subnet.

Preparing to configure an OpenVMS cluster failover set

The following steps must be taken before configuring an OpenVMS cluster failover
set:
1. Create the queue manager using crtmqm if it does not already exist.
2. Obtain a TCP/IP address for the OpenVMS cluster failover set.
3. Create or modify WebSphere MQ channels to use the OpenVMS cluster TCP/IP

failover set TCP/IP address.
4. Decide on the OpenVMS nodes that are to be in the OpenVMS cluster failover

set and decide their priorities.
5. Ensure that the MQS_ROOT logical refers to the same directory on all

OpenVMS nodes in the OpenVMS cluster failover set and that the disk is
mounted system-wide on all of the nodes. The disks containing the MQS_ROOT
directory and the log files should not be MSCP served from one node in the
failover set to another node because if the node serving the disk becomes
unavailable, the node to which the disk is served is no longer able to access the
disks.

Configuring an OpenVMS cluster failover set

The following steps are required to configure an OpenVMS cluster failover set:
1. Copy the MQS_EXAMPLES:FAILOVER.TEMPLATE file to

MQS_ROOT:[MQM.QMGRS.queuemanagername]FAILOVER.INI.

2. Edit the MQS_ROOT:[MQM.QMGRS.queuemanagername]FAILOVER.INI file and modify
for this OpenVMS cluster failover set configuration. (See “Editing the
FAILOVER.INI configuration file” on page 141.)

3. Edit the START_QM.COM, END_QM.COM and TIDY_QM.COM command
procedures. (See “Command procedures used by failover sets” on page 142.)

4. Set up ICC security for the ICC Association used by the failover monitors (See
“Setting up security for ICC associations” on page 148. )

5. Start a failover monitor on each node in the OpenVMS cluster failover set using
the runmqfm -m queuemanagername command.

6. Start the queue manager using the failover -m queuemanagername -n nodename -s
command.

140 WebSphere MQ for HP OpenVMS: System Administration Guide



7. Modify the site specific shutdown to:
v End or Move the queue manager if it is running on a node when it is shut

down.
v Halt the failover monitor.

OpenVMS cluster failover set post-configuration tasks

The following are tasks you can perform after your cluster failover set has been
configured:
v Edit the system startup file to start the failover monitor processes on each node

in the OpenVMS cluster failover set using the runmqfm command. The
runmqfm command should be placed after the command to start WebSphere
MQ.

v If it is required to start the queue manager automatically on system startup,
place a command in the system startup on the relevant node to start the queue
manager after the failover monitor has been started. The command to start the
queue manager on a node is failover -m queuemanagername -n nodename -s.

v Modify the site specific shutdown to end the failover monitor on shutdown of
the system. Also End or Move the queue manager if it is running on a node
when it is shut down.

Editing the FAILOVER.INI configuration file

The FAILOVER.INI file must be customized for each OpenVMS cluster failover set.
The meaning of each of the fields is listed in Table 7. The template configuration
file supplied in MQS_EXAMPLES is included in the Appendix F, “OpenVMS cluster
failover set templates,” on page 293. Any line in the file that begins with a ’#’
character is ignored when it is read by a failover monitor process. The character
case of the field names within the file must be as specified in the template file.
Each field name must be followed by an ’=’ character and then the associated
value. All the fields in the template file are mandatory so no fields must be
removed.

Table 7. Description of the fields within the FAILOVER.INI file

Field name Description

IpAddress The TCP/IP address to be used by the failover set

PortNumber The TCP/IP port number used by the listener for the queue
manager

TimeOut This time out value is passed to the EndCommand procedure.
See “Command procedures used by failover sets” on page 142.

StartCommand The command procedure used to start the queue manager

EndCommand The command procedure used to end the queue manager

TidyCommand The command procedure used to tidy up on a node after a queue
manager failure in which the OpenVMS node survives

LogDirectory The directory which holds the log files created by the
StartCommand, EndCommand and TidyCommand procedures

NodeCount The number of nodes in the failover set. The number of node
triplets defined after this field must correspond to this value. The
maximum number of nodes supported is four.

NodeName The node name of the node. That is the value specified for the
SCSNODE OpenVMS system parameter.

Chapter 10. WebSphere MQ for OpenVMS and clustering 141



Table 7. Description of the fields within the FAILOVER.INI file (continued)

Field name Description

Interface The TCP/IP interface name for the node when using the Digital
TCP/IP Services for OpenVMS TCP/IP stack. This can be
obtained from the output of the $tcpip show interface command.
This field is not used when using the TCPware for OpenVMS
TCP/IP or Multinet for OpenVMS TCP/IP stacks but the default
value of we0 should still be specified. (Do not remove the field
from the configuration file.)

Priority This is the priority given to this node within the failover set. The
value must be between 1 and 10. A value of 1 is the highest
priority. Multiple nodes can have the same priority. When a
failure occurs or no specific node is specified in a failover -s or -f
command, the queue manager is started on the highest priority
node that is available.

Command procedures used by failover sets

Failover sets use three command procedures to implement some of its functions.
The locations of these command procedures are specified in the FAILOVER.INI
configuration file by the field names StartCommand, EndCommand and
TidyCommand. Template files for these command procedures, with names
START_QM.TEMPLATE, END_QM.TEMPLATE and TIDY_QM.TEMPLATE
respectively, are provided in MQS_EXAMPLES. These files are listed in Appendix F,
“OpenVMS cluster failover set templates,” on page 293.

The command procedures are passed five or six parameters. These are listed in
Table 8:

Table 8. Parameters passed to command procedures

Parameter Value

P1 Queue manager name

P2 Queue manager directory name

P3 Cluster TCP/IP address

P4 Node Interface name

P5 Listener port number

P6 End queue manager timeout (EndCommand procedure only)

The StartCommand procedure is used to start the queue manager in the following
circumstances:
v When explicitly specified with the -s flag of the failover command
v When the queue manager is moved to another OpenVMS node using the -f flag

of the failover command.
v When automatically restarted after a queue manager failure

By default the StartCommand procedure configures the failover set TCP/IP
address on the node to run the Queue manager and then starts the queue manager
using the strmqm -m queuemanagername command. Depending on system
requirements the command procedure can be modified in the following ways:
v Change the strmqm command
v Add commands to start additional WebSphere MQ processes such as the listener

142 WebSphere MQ for HP OpenVMS: System Administration Guide



v Add commands to start application processes

The StartCommand procedure must exit with a status of 1 for the queue manager
to be monitored after the queue manager has started.

The EndCommand procedure is used to end the queue manager in the following
circumstances:
v When explicitly specified with the -e flag of the failover command
v When the queue manager is moved to another OpenVMS node using the -f flag

of the failover command

By default the EndCommand procedure attempts to end the queue manager with
the endmqm -i queuemanagername command. If the queue manager has not ended
within the timeout period specified in the configuration file, the procedure
attempts to end the queue manager with the endmqm -p queuemanagername
command. If the queue has still not ended within another timeout period, the
queue manager is ended by deleting the Execution Controller process. Once the
Queue manager is ended, the failover set TCP/IP address is deconfigured. If the
queue manager is successfully ended using the endmqm commands, the status
SS$_NORMAL is returned. If the queue manager is ended by deleting the
Execution Controller, the status SS$_ABORT is returned. If the queue manager is
not ended after a third timeout period, the status SS$_TIMEOUT is returned. These
statuses are used by the watcher failover monitor to determine the outcome of the
EndCommand procedure and sets the state of the failover set accordingly.
Depending on system requirements the command procedure can be modified in
the following ways:
v Add commands to end additional WebSphere MQ processes such as the listener
v Add commands to end Application processes

The TidyCommand procedure is used to tidy up on an OpenVMS node if the
queue manager fails but the OpenVMS node continues to run.

By default the TidyCommand procedure deconfigures the failover set TCP/IP
address. Depending on system requirements the command procedure can be
modified in the following ways:
v Add commands to end any WebSphere MQ processes that are still running such

as the listener
v Add commands to end Application processes that are still running

The template files are set up by default to use Digital TCP/IP Services for
OpenVMS commands to configure and de-configure the TCP/IP address. If you
are using TCPware for OpenVMS or MultiNet for OpenVMS, comment out
(deactivate) the Digital TCP/IP Services for OpenVMS commands and uncomment
(activate) the TCPware for OpenVMS or MultiNet for OpenVMS commands.

Administration of failover sets

Failover sets must be managed from the SYSTEM account or from a WebSphere
MQ Administration account. Failover sets are managed using two commands DCL
runmqfm and failover. The runmqfm command is used to start the failover
monitors and the failover command performs all other administration tasks.

Chapter 10. WebSphere MQ for OpenVMS and clustering 143



Startup of failover monitors

Failover monitors are started by executing the runmqfm command on the
OpenVMS node on which it is required to have the failover monitor started. For
example to start a failover monitor for queue manager TESTQM, use the command:

This creates a detached process with a name based on the queue manager name
and ending in _FM. In this example the process name is TESTQM_FM. This process is
listed in a monmq active display.

If a log file is required, this can be specified by redirecting output of the runmqfm
command and additional debug information can be displayed in the log file by
specifying the -d flag. For example:

Note that the runmqfm command only starts failover monitor processes it does not
start the queue manager.

Starting a queue manager within a failover set

To start a queue manager within a failover set, at least one failover monitor must
be running and there must be a failover monitor running on the node on which
you wish to start the queue manager. A queue manager is started using the -s flag
of the failover command. The command can be executed from any OpenVMS node
within the failover set. For example if you wish to start the queue manager TESTQM
on node BATMAN, use the following command:

If it is required to start the queue manager on the OpenVMS node with the highest
priority available omit the -n flag from the command. For example:

Note that once a failover monitor is started for a queue manager (on any node),
any attempt to use the strmqm command to start a queue manager fails. However,
once all failover monitors have been stopped for a queue manager, the strmqm
command can be used normally.

Ending a queue manager within a failover set

To end a queue manager within a failover set, there must be a failover monitor
running on the node on which the queue manager is running. A queue manager is
ended using the -e flag of the failover command. The command can be executed
from any OpenVMS node within the failover set. For example if you wish to end

$ runmqfm -m TESTQM

$ runmqm -m TESTQM -d > sys$manager:fm.log

$ failover -m TESTQM -n BATMAN -s

$ failover -m TESTQM -s

144 WebSphere MQ for HP OpenVMS: System Administration Guide



the queue manager TESTQM, use the following command:

Note that once a failover monitor is started for a queue manager (on any node),
any attempt to use the endmqm command to end a queue manager fails. However,
once all failover monitors have been stopped for a queue manager, the endmqm
command can be used normally.

Moving a queue manager within a failover set

Moving a queue manager within a failover set means stopping the queue manager
on the node on which it is currently running and then starting it again on another
node within the failover set. To move a queue manager within a failover set, there
must be a failover monitor running on the node on which the queue manager is
currently running and there must be a failover monitor running on the node on
which you wish to move the queue manager.

A queue manager is moved using the -f flag of the failover command. The
command can be executed from any OpenVMS node within the failover set. For
example if you wish to move the queue manager TESTQM to node ROBIN, use the
following command:

If it is required to move the queue manager to the OpenVMS node with the
highest priority available, omit the -n flag from the command. For example:

Displaying the state of a failover set

There are three types of state that the describe the over all state of the failover set:
v The failover set queue manager state
v The failover set node queue manager states (one for each node)
v The failover set Node Monitor states (one for each node)

The possible values of each of the states are described in the following three tables.

Table 9. Failover set queue manager states

State Description

STOPPED The queue manager has never been started in the failover set or has
been cleanly shutdown

STARTED The queue manager has been started in the failover set. The failover
set tries to restart the queue manager if a queue manager failure
occurs.

$ failover -m TESTQM -e

$ failover -m TESTQM -n ROBIN -f

$ failover -m TESTQM -f

Chapter 10. WebSphere MQ for OpenVMS and clustering 145



Table 10. Failover set node queue manager states

State Description

AVAILABLE The node is free to have the queue manager started on it if a failure
occurs on another node.

RUNNING The queue manager is running on this node.

EXCLUDED The queue manager was stopped on this node in an unclean manner
without the node itself failing. If a queue manager fails on another
node it is not restarted on this node.

Table 11. Failover set node monitor states

State Description

STARTED A failover monitor is running on this node but it is not the watcher.

WATCHING A failover monitor is running on this node and it is the watcher.

STOPPED There is no failover monitor running on this node.

The state of a failover set is displayed using the -q flag of the failover command.
There must be at least one failover monitor process running and the command can
be executed from any node within the failover set. For example to display the state
of the failover set for the queue manager TESTQM, use the following command:

Sample output from the command is shown below:

Setting DCL symbols to the state of a failover set

In some cases it may be necessary to write DCL command procedures to control
failover sets. The -l flag of the failover command sets three local DCL symbols to
indicate the state of the failover set. These symbols can then be used to take

$ failover -m TESTQM -q

OpenVMS Cluster Failover Set - Configuration and State.

Queue Manager Name : TESTQM
Sequence No : 11
TCP/IP Address : 10.20.30.40
Listener Port Number : 1414
Timeout to end the Queue Manager : 30
Queue Manager state in Failover Set : STARTED

OpenVMS Node - Configuration and State

Node name : BATMAN
Priority : 2
TCP/IP Interface : we0
Queue Manager state : RUNNING
Failover Monitor state : WATCHING

Node name : ROBIN
Priority : 1
TCP/IP Interface : we0
Queue Manager state : EXCLUDED
Failover Monitor state : STARTED

146 WebSphere MQ for HP OpenVMS: System Administration Guide



conditional actions based on the state of the queue manager. There must be at least
one failover monitor process running and the command can be executed from any
node within the failover set. The symbols that are set are shown in Table 12.

Table 12. DCL symbols and description

DCL symbol name Description

MQS$QMGR_NODE Set to the OpenVMS node that is running
the queue manager or a null string if there is
no queue manager running

MQS$AVAILABLE_NODES Set to the list of OpenVMS nodes that are
available to run the queue manager. That is
the nodes that are in the queue manager
AVAILABLE state and that have a failover
monitor running.

MQS$MONITOR_NODES Set to the list of OpenVMS nodes that have
a failover monitor running on them.

For example to set the symbols to the state of the failover set for the queue
manager TESTQM, use the following command:

Example results for the setting of the symbols are shown below:

Halting a failover monitor process

The failover monitor process on an OpenVMS node can be halted using the -h flag
of the failover command. The command can be executed from any node within the
failover set. For example to halt the failover monitor for queue manager TESTQM on
node BATMAN use the following command:

If the failover monitor being halted is the watcher failover monitor, another
failover monitor becomes the watcher if one exists. If the failover monitor being
halted is the last failover monitor for the failover set, the failover set is no longer
live. In this case, the queue manager can now be started and ended using the
strmqm and endmqm commands. The -h flag of the failover command never ends
a queue manager. If the queue manager is running on the OpenVMS node on
which the failover monitor is being halted, the queue manager continues to run.

Executing commands while an update is in progress

The failover commands with flags -s, -e, -f and -c are considered updates. While
these commands are in progress, an update in progress flag is set by the watcher
failover monitor. When this flag is set, any other update and failover monitor halt

$ failover -m TESTQM -l

MQS$AVAILABLE_NODES = ""
MQS$MONITOR_NODES = "BATMAN,ROBIN"
MQS$QMGR_NODE = "BATMAN"

$ failover -m TESTQM -n BATMAN -h

Chapter 10. WebSphere MQ for OpenVMS and clustering 147



command fails because simultaneous updates are not allowed. Non-update
commands such as the -q and -l flags continue to work when an update is in
progress.

In rare circumstances, a failed update may leave the update in progress flag set.
The -u flag of the failover command clears the update in progress flag. This
command should be used with caution. For example to clear the update in
progress flag for queue manager TESTQM, use the following command:

Changing the state of a failover set

In some circumstances it may be necessary to change the state of a failover set.
This is achieved using the -c flag of the failover command. This is most likely
needed when a queue manager state on a node is EXCLUDED after a failure and
you want to change the state back to AVAILABLE after cleaning up the node. For
example, to change the state to AVAILABLE for queue manager TESTQM on node
BATMAN, use the following command:

Also you may want to temporarily exclude a node from being considered as a
candidate for running the queue manager by changing the Node queue manager
state from AVAILABLE to EXCLUDED. For example to change the state to
EXCLUDED for queue manager TESTQM on node BATMAN, use the following
command:

It is also possible to change all of the other states but any change takes effect only
if the change requested is consistent with the running system. For instance, if a
failover monitor is running on a node and you try to change the Monitor state to
STOPPED, this change does not take effect. Apart from changing the Node queue
manager states between EXCLUDED and AVAILABLE, it should not be necessary
to use the change state command because every 30 seconds the watcher failover
monitor performs an integrity check and makes any changes to the states if there is
a discrepancy with the running system.

Setting up security for ICC associations

The failover set monitor and client programs use OpenVMS Intra Cluster
Communication (ICC) calls to pass messages. To prevent unauthorized users
sending messages to the failover monitor processes, the security for the ICC
Associations should be configured in the SYS$STARTUP:ICC$SYSTARTUP.COM
command procedure.

Each failover set uses two association names: one with the name of the queue
manager which is used for communication with the watcher failover monitor and
the other with the name of the queue manager with _MQ_FM appended which is
used to communicate with each failover monitor.

$ failover -m TESTQM -u

$ failover -m TESTQM -n BATMAN -c -qmgr available

$ failover -m TESTQM - n BATMAN -c -qmgr excluded

148 WebSphere MQ for HP OpenVMS: System Administration Guide



An example is shown in Figure 15 of the entries required in
ICC$SYSTARTUP.COM for each node in a failover set. There are two nodes in the
failover set called BATMAN and ROBIN and the queue manager name is TESTQM.

Note that ICC Association names are limited to 31 characters, therefore the
maximum supported length of WebSphere MQ queue manager name is 25
characters when used in a failover set. Further information on setting up the
security of ICC Associations can be found in the OpenVMS System Manager’s
Manual.

Troubleshooting problems with failover sets

When the start_qm.com, end_qm.com and tidy_qm.com procedures are executed,
a log file is written to the LogDirectory specified in the failover.ini configuration
file. The names of the log files are qmgrname_procedurename.log. For example, for a
queue manager name of TESTQM the start_qm.com command procedure produces a
log file with name testqm_start_qm.log.

By default the failover monitor does not produce a log file, but a log file can be
specified using the redirection parameter on the runmqfm command. Additional
debug information can be written to the file by specifying the -d parameter on the
runmqfm command.

Check whether any FDC files have been generated in MQS_ROOT:[MQM.ERRORS].

$! --------------------- List Nodes with Special Actions -------------------
$!
$ nodeactions = "/BATMAN/ROBIN/"
$ if f$locate("/"+nodename+"/",nodeactions) .eq. f$length(nodeactions) -
then goto exit ! No action for this node
$ goto 'nodename' ! Go to action code for this node
$!
$! -------------------- Major Nodes ----------------------
$BATMAN:
$ROBIN:
$!
$! Place in here calls to @SYS$MANAGER:ICC$CREATE_SECURITY_OBJECT and
$! @SYS$MANAGER:ICC$ADD_REGISTRY_TABLE that apply to FAilover odes in the
$! cluster
$!
$!
$ @SYS$MANAGER:ICC$CREATE_SECURITY_OBJECT ICC$::"TESTQM" -
"/owner=MQM/acl=((id=MQM,access=open+access),(id=*,access=none))"
$!
$ @SYS$MANAGER:ICC$CREATE_SECURITY_OBJECT 'nodename'::"TESTQM" -
"/owner=MQM/acl=((id=MQM,access=open+access),(id=*,access=none))"
$!
$ @SYS$MANAGER:ICC$CREATE_SECURITY_OBJECT 'nodename'::"TESTQM_MQ_FM" -
"/owner=MQM/acl=((id=MQM,access=open+access),(id=*,access=none))"
$!
$ set security/class=logical_name_table icc$registry_table -

/acl=(id=MQM,access=read+write)
$!
$ GOTO EXIT
$!

Figure 15. Sample entry required for ICC$SYSTARTUP.COM

Chapter 10. WebSphere MQ for OpenVMS and clustering 149



Using MultiNet for OpenVMS with failover sets

To use Multinet for OpenVMS with failover sets, the cluster alias service must be
enabled. The cluster alias service is enabled with command:

The template command files assume that there is only one cluster alias address,
and that is used by the failover set. However, if there are other cluster alias
addresses being used, the command procedures need to be modified so that the
other addresses remain in the MULTINET_CLUSTER_IP_ALIASES logical name.

An example of using failover sets

The following is an example of configuring two nodes, BATMAN and ROBIN, in
an OpenVMS cluster into a failover set for queue manager TESTQM. The failover set
TCP/IP address is 10.20.30.40 and the TCP/IP listener port is 1414. The node
BATMAN is nominated as the primary node and ROBIN the secondary node.
Initially, the queue manager is started on BATMAN and if the queue manager fails,
it is restarted on ROBIN. If the queue manager is running on ROBIN the queue
manager is not failed back onto BATMAN when ROBIN is rebooted. If the node
running the queue manager is shutdown, the queue manager is ended and the
failover monitor halted. If the node is not running, the queue manager is not shut
down and only the failover monitor is halted.

Customizing failover.template

The failover.template file is modified as follows and copied as
mqs_root:[mqm.qmgrs.testqm]failover.ini.

$ MULTINET CONFIGURE/SERVERS
SERVER-CONFIG> ENABLE CLUSTERALIAS
SERVER-CONFIG> EXIT

150 WebSphere MQ for HP OpenVMS: System Administration Guide



# FAILOVER.TEMPLATE
# Template for creating a FAILOVER.INI configuration file
# All lines beginning with a '#' are treated as comments
#
# OpenVMS Cluster Failover Set Configuration information
# ------------------------------------------------------
#
# The TCP/IP address used by the OpenVMS Cluster Failover Set
#
IpAddress=10.20.30.40
#
# The TCP/IP port number used by the WebSphere MQ Queue Manager
#
PortNumber=1414
#
# The timeout used by the EndCommand command procedure
#
TimeOut=30
#
# The command procedure used to start the Queue Manager
#
StartCommand=@sys$manager:start_qm
#
# The command procedure used to end the Queue Manager
#
EndCommand=@sys$manager:end_qm
#
# The command procedure used to tidy up on a node after a
# Queue Manager failure but the OpenVMS node did not fail
#
TidyCommand=@sys$manager:tidy_qm
#
# The directory in which the log files for the start, end and
# tidy commands are written
#
LogDirectory=mqs_root:[mqm.errors]
#
# The number of nodes in the OpenVMS Cluster Failover Set. The
# number of nodes defined below must agree with this number
#
NodeCount=2
#
# The Name of the OpenVMS node
#
NodeName=BATMAN
#
# The TCP/IP interface name for the node
#Interface=we0
#
# The priority of the node
#
Priority=1
#
# The Name of the OpenVMS node
#
NodeName=ROBIN
#
# The TCP/IP interface name for the node
#
Interface=we0
#
# The priority of the node
#
Priority=2

Figure 16. Failover.template for creating a FAILOVER.INI configuration file

Chapter 10. WebSphere MQ for OpenVMS and clustering 151



Modification of failover set command procedures

The command procedures are copied from the template files. The only
modifications are that the start of the listener in start_qm.com and the end of the
listener in end_qm.com are uncommented (activated). If there are applications to
be stopped and started, the appropriate commands could be added to the
command procedures.

Example failover set start command procedure,
start_failover_set.com

The start_failover_set.com command procedure is used to start the failover
monitor on each node and conditionally start the queue manager. The procedure is
called from the system startup after the MQS_STARTUP.COM command
procedure has been executed. The procedure is passed two parameters: the queue
manager name and the primary node name. In this case it is called as follows:

The start_failover_set.com command procedure starts the failover monitor and
then uses then -l parameter on the failover command to find out the state of the
failover set. Note that the failover monitor may not have completely started when
the failover command is executed so the command is retried up to three times
with a second between each attempt. Then if the node is the primary node and the
queue manager is not started, it is started using the -s parameter of the failover
command.

$@start_failover_set testqm batman

152 WebSphere MQ for HP OpenVMS: System Administration Guide



$on error then exit
$@sy$manager:mqs_symbols
$!
$! start_failover_set.com
$! ----------------------
$! Command procedure to start a Failover Set Queue Manager during startup
$!
$! p1 = Queue Manager name
$! p2 = Primary Node name
$!
$! Check that the Queue Manager has been specified
$!
$if p1 .eqs ""
$then
$ Write sys$output "Queue Manager name omitted"
$ exit
$else
$ qmgr_name = p1
$endif
$!
$! Check that the primary node name has been specified
$!
$if p2 .eqs ""
$then
$ Write sys$output "Node name omitted"
$ exit
$else
$ primary_node = p2
$endif
$!
$! Get the node name of this node
$!
$this_node=f$getsyi("nodename")
$!
$! Start the Failover Monitor on this node
$!
$runmqfm -m 'qmgr_name'
$!
$! Check that the Failover Monitor has fully started
$! Wait up to 3 seconds
$!
$count = 0
$check_start:
$on error then continue
$!
$! Set the MQS$* symbols to the state of Failover Set
$! Wait up to 3 seconds
$!

$failover -m 'qmgr_name' -l
$!
$! If an error is returned wait a second and try again
$!
$if ( ($status/8) .and %xfff ) .ne. 0 then goto wait
$!
$! If this node is not listed as running a monitor wait a second and try again
$!
$if f$locate( this_node, mqs$monitor_nodes ) .ne. f$length( mqs$monitor_nodes )
$then
$ goto start_qm
$endif
$wait:
$on error then exit
$count = count + 1
$!
$! If we have waited 3 seconds display an error and exit
$!
$if count .ge. 3
$then
$ write sys$output "Failover Monitor not started"
$ exit
$else
$ wait 00:00:01
$ goto check start

Chapter 10. WebSphere MQ for OpenVMS and clustering 153



Example failover set end command procedure,
end_failover_set.com

The end_failover_set.com command procedure is used to conditionally end the
queue manager and then the failover monitor on each node. The procedure is
called from the site-specific shutdown before the MQS_SHUTDOWN.COM
command procedure has been executed. The procedure is passed one parameter,
the queue manager name. In this case it is called as follows:

The end_failover_set.com command procedure obtains the failover set state using
the -l parameter of the failover command. Then if the queue manager is running
on this node, it is ended. Then the failover monitor is halted.

$@start_failover_set testqm

154 WebSphere MQ for HP OpenVMS: System Administration Guide



on error then exit
$@sys$manager:mqs_symbols
$!
$! end_failover_set.com
$! --------------------------
$! Command procedure to end a Failover Set Queue Manager during shutdown
$!
$! p1 = Queue Manager name
$!
$! Check that the Queue Manager has been specified
$!
$if p1 .eqs ""
$then
$ Write sys$output "Queue Manager name omitted"
$ exit
$else
$ qmgr_name = p1
$endif
$!
$! Get the node name of this node
$!
$this_node=f$getsyi("nodename")
$!
$! Set the MQS$* symbols to the state of the Failover Set
$!
$failover -m 'qmgr_name' -l
$!
$! If an error then exit
$!
$if ( ($status/8) .and %xfff ) .ne. 0
$then
$ write sys$output "Error querying Failover Set"
$ exit
$endif
$!
$! If the Queue Manager is not running on this node then exit
$!
$ if mqs$qmgr_node .nes. this_node
$then
$ write sys$output "Queue Manager not running on this node"
$ goto halt_fm
$endif
$!
$! End the Queue Manager
$!
$failover -m gjtest -e
$halt_fm:
$!
$! Halt the Failover Monitor
$!
$failover -m gjtest -n 'this_node' -h

Figure 18. end_failover_set command procedure

Chapter 10. WebSphere MQ for OpenVMS and clustering 155



156 WebSphere MQ for HP OpenVMS: System Administration Guide



Chapter 11. Recovery and restart

A messaging system ensures that messages entered into the system are delivered to
their destination. This means that it must provide a method of tracking the
messages in the system, and of recovering messages if the system fails for any
reason.

WebSphere MQ ensures that messages are not lost by maintaining recovery logs of
the activities of the queue managers that handle the receipt, transmission, and
delivery of messages. It uses these logs for three types of recovery:
1. Restart recovery, when you stop WebSphere MQ in a planned way.
2. Crash recovery, when a failure stops WebSphere MQ.
3. Media recovery, to restore damaged objects.

In all cases, the recovery restores the queue manager to the state it was in when
the queue manager stopped, except that any in-flight transactions are rolled back,
removing from the queues any updates that were in-flight at the time the queue
manager stopped. Recovery restores all persistent messages; nonpersistent
messages can be lost during the process.

The rest of this chapter introduces the concepts of recovery and restart in more
detail, and tells you how to recover if problems occur. It covers the following
topics:
v “Making sure that messages are not lost (logging)”
v “Checkpointing – ensuring complete recovery” on page 160
v “Calculating the size of the log” on page 162
v “Managing logs” on page 164
v “Using the log for recovery” on page 166
v “Protecting WebSphere MQ log files” on page 169
v “Backing up and restoring WebSphere MQ” on page 169
v “Recovery scenarios” on page 173
v “Dumping the contents of the log using the dmpmqlog command” on page 175

Making sure that messages are not lost (logging)

WebSphere MQ records all significant changes to the data controlled by the queue
manager in a recovery log.

This includes creating and deleting objects, persistent message updates, transaction
states, changes to object attributes, and channel activities. The log contains the
information you need to recover all updates to message queues by:
v Keeping records of queue manager changes
v Keeping records of queue updates for use by the restart process
v Enabling you to restore data after a hardware or software failure

© Copyright IBM Corp. 1994, 2009 157



What logs look like

A WebSphere MQ log consists of two components:
1. One or more files of log data.
2. A log control file

A file of log data is also known as a log extent.

There are a number of log files that contain the data being recorded. You can
define the number and size (as explained in Chapter 6, “Configuring WebSphere
MQ,” on page 71), or take the system default of three files.

In WebSphere MQ for Windows, each of the three files defaults to 1 MB. In
WebSphere MQ for UNIX systems, each of the three files defaults to 4 MB.

When you create a queue manager, the number of log files you define is the
number of primary log files allocated. If you do not specify a number, the default
value is used.

In WebSphere MQ for HP OpenVMS systems, if you have not changed the log
path, log files are created in the directory:
MQS_ROOT:[MQM.LOG.QmName.ACTIVE]

WebSphere MQ starts with these primary log files, but if the primary log space is
not sufficient, it allocates secondary log files. It does this dynamically and removes
them when the demand for log space reduces. By default, up to two secondary log
files can be allocated. You can change this default allocation, as described in
Chapter 6, “Configuring WebSphere MQ,” on page 71.

The log control file

The log control file contains the information needed to control the use of log files,
such as their size and location, the name of the next available file, and so on.

Note: Ensure that the logs created when you start a queue manager are large
enough to accommodate the size and volume of messages that your applications
handle. You may need to change the default log numbers and sizes to meet your
requirements. For more information, see “Calculating the size of the log” on page
162.

Types of logging

In WebSphere MQ, the number of files that are used for logging depends on the
file size, the number of messages you have received, and the length of the
messages. There are two ways of maintaining records of queue manager activities:
circular logging and linear logging.

Circular logging

Use circular logging if all you want is restart recovery, using the log to roll back
transactions that were in progress when the system stopped.

Circular logging keeps all restart data in a ring of log files. Logging fills the first
file in the ring, then moves on to the next, and so on, until all the files are filled. It

158 WebSphere MQ for HP OpenVMS: System Administration Guide



then goes back to the first file in the ring and starts again. This continues as long
as the product is in use and has the advantage that you never run out of log files.

The above is a simple explanation of circular logging. However, there is a
complication. The log entries required to restart the queue manager without loss of
data are kept until they are no longer required to ensure queue manager data
recovery. For now, you should know that WebSphere MQ uses secondary log files
to extend the log capacity as necessary. The mechanism for releasing log files for
reuse is described in “Checkpointing – ensuring complete recovery” on page 160.

Linear logging

Use linear logging if you want both restart recovery and media recovery
(recreating lost or damaged data by replaying the contents of the log).

Linear logging keeps the log data in a continuous sequence of files. Space is not
reused, so you can always retrieve any record logged in any log extent that has not
been deleted

As disk space is finite, you might have to think about some form of archiving. It is
an administrative task to manage your disk space for the log, reusing or extending
the existing space as necessary.

The number of log files used with linear logging can be very large, depending on
your message flow and the age of your queue manager. However, there are a
number of files that are said to be active. Active files contain the log entries
required to restart the queue manager. Collectively, active log files are known as
the active log. The number of active log files is usually less than the number of
primary log files as defined in the configuration files. (See “Calculating the size of
the log” on page 162 for information about defining the number.)

The key event that controls whether a log file is termed active or not is a
checkpoint. A WebSphere MQ checkpoint is a point of consistency between the
recovery log and object files. A checkpoint determines the set of log files needed to
perform restart recovery. Log files that are not active are not required for restart
recovery, and are termed inactive. In some cases inactive log files are required for
media recovery. (See “Checkpointing – ensuring complete recovery” on page 160
for further information about checkpointing.)

Inactive log files can be archived as they are not required for restart recovery.
Inactive log files that are not required for media recovery can be considered as
superfluous log files. You can delete superfluous log files if they are no longer of
interest to your operation. Refer to “Managing logs” on page 164 for further
information about the disposition of log files.

If a new checkpoint is recorded in the second, or later, primary log file, the first file
can become inactive and a new primary file is formatted and added to the end of
the primary pool, restoring the number of primary files available for logging. In
this way the primary log file pool can be seen to be a current set of files in an
ever-extending list of log files. Again, it is an administrative task to manage the
inactive files according to the requirements of your operation.

Although secondary log files are defined for linear logging, they are not used in
normal operation. If a situation arises when, probably due to long-lived

Chapter 11. Recovery and restart 159



transactions, it is not possible to free a file from the active pool because it might
still be required for a restart, secondary files are formatted and added to the active
log file pool.

If the number of secondary files available is used up, requests for most further
operations requiring log activity are refused with an
MQRC_RESOURCE_PROBLEM return code being returned to the application.

Both types of logging can cope with unexpected loss of power, assuming that there
is no hardware failure.

Checkpointing – ensuring complete recovery

Persistent updates to message queues happen in two stages. First, the records
representing the update are written to the log, then the queue file is updated. The
log files can thus become more up-to-date than the queue files. To ensure that
restart processing begins from a consistent point, WebSphere MQ uses checkpoints.
A checkpoint is a point in time when the record described in the log is the same as
the record in the queue. The checkpoint itself consists of the series of log records
needed to restart the queue manager; for example, the state of all transactions (that
is, units of work) active at the time of the checkpoint.

Checkpoints are generated automatically by WebSphere MQ. They are taken when
the queue manager starts, at shutdown, when logging space is running low, and
after every 1000 operations logged. As the queues handle further messages, the
checkpoint record becomes inconsistent with the current state of the queues.

When WebSphere MQ is restarted, it locates the latest checkpoint record in the log.
This information is held in the checkpoint file that is updated at the end of every
checkpoint. The checkpoint record represents the most recent point of consistency
between the log and the data. The data from this checkpoint is used to rebuild the
queues as they existed at the checkpoint time. When the queues are recreated, the
log is then played forward to bring the queues back to the state they were in
before system failure or close down.

WebSphere MQ maintains internal pointers to the head and tail of the log. It
moves the head pointer to the most recent checkpoint that is consistent with
recovering message data.

Checkpoints are used to make recovery more efficient, and to control the reuse of
primary and secondary log files.

160 WebSphere MQ for HP OpenVMS: System Administration Guide



In Figure 19, all records before the latest checkpoint, checkpoint 2, are no longer
needed by WebSphere MQ. The queues can be recovered from the checkpoint
information and any later log entries. For circular logging, any freed files prior to
the checkpoint can be reused. For a linear log, the freed log files no longer need to
be accessed for normal operation and become inactive. In the example, the queue
head pointer is moved to point at the latest checkpoint, Checkpoint 2, which then
becomes the new queue head, Head 2. Log File 1 can now be reused.

Checkpoint
1

Put PutGetGet

Get Get PutPut

Put Put GetGetGet

Checkpoint
2

Head 1

Head 2

Log File 1

Log File 2

Log File 3

Figure 19. Checkpointing. For simplicity, only the ends of the log files are shown.

Chapter 11. Recovery and restart 161



Figure 20 shows how a long-running transaction affects reuse of log files. In the
example, a long-running transaction has caused an entry to the log, shown as LR 1,
after the first checkpoint shown. The transaction does not complete, shown as LR
2, until after the third checkpoint. All the log information from LR 1 onwards is
retained to allow recovery of that transaction, if necessary, until it has completed.

After the long-running transaction has completed, at LR 2, the head of the log is
moved to Checkpoint 3, the latest logged checkpoint. The files containing log
records prior to Checkpoint 3, Head 2, are no longer needed. If you are using
circular logging, the space can be reused.

If the primary log files are completely filled before the long-running transaction
completes, secondary log files are used to avoid the risk of a log full situation if
possible.

When the log head is moved and you are using circular logging, the primary log
files may become eligible for reuse and the logger, after filling the current file,
reuses the first primary file available to it. If you are using linear logging, the log
head is still moved down the active pool and the first file becomes inactive. A new
primary file is formatted and added to the bottom of the pool in readiness for
future logging activities.

Calculating the size of the log

After deciding whether the queue manager should use circular or linear logging,
you need to estimate the size of the log that the queue manager needs. The size of
the log is determined by the following log configuration parameters:

LogFilePages
The size of each primary and secondary log file in units of 4K pages

Checkpoint
1

Put PutGetGet

Get Get PutPut

Put PutGetCheckpoint
3

Get

Checkpoint
2

Head 1

Head 2

Log File 1

Log File 2

Log File 3

LR 1

LR 2

Figure 20. Checkpointing with a long-running transaction. For simplicity, only the ends of the log files are shown.

162 WebSphere MQ for HP OpenVMS: System Administration Guide



LogPrimaryFiles
The number of preallocated primary log files

LogSecondaryFiles
The number of secondary log files that can be created for use when the
primary log files are full

Table 13 shows the amount of data the queue manager logs for various operations.
Most queue manager operations need a minimal amount of log space. However,
when a persistent message is put to a queue, all the message data must be written
to the log to make it possible to recover the message. The size of the log depends,
typically, on the number and size of the persistent messages the queue manager
needs to handle.

Table 13. Log overhead sizes (all values are approximate)

Operation Size

Put persistent message 750 bytes + message length

If the message is large, it is divided into segments of 15700
bytes, each with a 300-byte overhead.

Get message 260 bytes

Syncpoint, commit 750 bytes

Syncpoint, rollback 1000 bytes + 12 bytes for each get or put to be rolled back

Create object 1500 bytes

Delete object 300 bytes

Alter attributes 1024 bytes

Record media image 800 bytes + image

The image is divided into segments of 260 000 bytes, each
having a 300-byte overhead.

Checkpoint 750 bytes + 200 bytes for each active unit of work

Additional data might be logged for any uncommitted puts
or gets that have been buffered for performance reasons.

Note:

1. You can change the number of primary and secondary log files each time the
queue manager starts.

2. You cannot change the log file size; you must determine it before creating the
queue manager.

3. The number of primary log files and the log file size determine the amount of
log space that is preallocated when the queue manager is created.

4. The total number of primary and secondary log files cannot exceed 63, which
in the presence of long-running transactions, limits the maximum amount of
log space available to the queue manager for restart recovery. The amount of
log space the queue manager might need for media recovery does not share
this limit.

5. When circular logging is being used, the queue manager reuses primary log
space. This means that the queue manager’s log can be smaller than the
amount of data you have estimated that the queue manager needs to log. The
queue manager allocates, up to a limit, a secondary log file when a log file
becomes full, and the next primary log file in the sequence is not available.

Chapter 11. Recovery and restart 163



6. Primary log files are made available for reuse during a checkpoint. The queue
manager takes both the primary and secondary log space into consideration
before taking a checkpoint because the amount of log space is running low.
If you do not define more primary log files than secondary log files, the queue
manager might allocate secondary log files before a checkpoint is taken. This
makes the primary log files available for reuse.

Managing logs

Over time, some of the log records written become unnecessary for restarting the
queue manager. If you are using circular logging, the queue manager reclaims
freed space in the log files. This activity is transparent to the user and you do not
usually see the amount of disk space used reduce because the space allocated is
quickly reused.

Of the log records, only those written since the start of the last complete
checkpoint, and those written by any active transactions, are needed to restart the
queue manager. Thus, the log might fill if a checkpoint has not been taken for a
long time, or if a long-running transaction wrote a log record a long time ago. The
queue manager tries to take checkpoints often enough to avoid the first problem.

When a long-running transaction fills the log, attempts to write log records fail and
some MQI calls return MQRC_RESOURCE_PROBLEM. (Space is reserved to
commit or roll back all in-flight transactions, so MQCMIT or MQBACK should
not fail.)

The queue manager rolls back transactions that consume too much log space. An
application whose transaction is rolled back in this way cannot perform
subsequent MQPUT or MQGET operations specifying syncpoint under the same
transaction. An attempt to put or get a message under syncpoint in this state
returns MQRC_BACKED_OUT. The application can then issue MQCMIT, which
returns MQRC_BACKED_OUT, or MQBACK and start a new transaction. When
the transaction consuming too much log space has been rolled back, its log space is
released and the queue manager continues to operate normally.

If the log fills, message AMQ7463 is issued. In addition, if the log fills because a
long-running transaction has prevented the space being released, message
AMQ7465 is issued.

Finally, if records are being written to the log faster than the asynchronous
housekeeping processes can handle them, message AMQ7466 is issued. If you see
this message, increase the number of log files or reduce the amount of data being
processed by the queue manager.

What happens when a disk gets full

The queue manager logging component can cope with a full disk, and with full log
files. If the disk containing the log fills, the queue manager issues message
AMQ6708 and an error record is taken.

The log files are created at their maximum size, rather than being extended as log
records are written to them. This means that WebSphere MQ can run out of disk
space only when it is creating a new file; it cannot run out of space when it is

164 WebSphere MQ for HP OpenVMS: System Administration Guide



writing a record to the log. WebSphere MQ always knows how much space is
available in the existing log files, and manages the space within the files
accordingly.

If you fill the drive containing the log files, you might be able to free some disk
space. If you are using a linear log, there might be some inactive log files in the
log directory, and you can copy these files to another drive or device. If you still
run out of space, check that the configuration of the log in the queue manager
configuration file is correct. You might be able to reduce the number of primary or
secondary log files so that the log does not outgrow the available space. You
cannot alter the size of the log files for an existing queue manager. The queue
manager assumes that all log files are the same size.

Managing log files

If you are using circular logging, ensure that there is sufficient space to hold the
log files when you configure your system (see “The LogDefaults stanza” on page
76 and “The Log stanza” on page 80). The amount of disk space used by the log
does not increase beyond the configured size, including space for secondary files to
be created when required.

If you are using a linear log, the log files are added continually as data is logged,
and the amount of disk space used increases with time. If the rate of data being
logged is high, disk space is consumed rapidly by new log files.

Over time, the older log files for a linear log are no longer needed to restart the
queue manager or to perform media recovery of any damaged objects. The
following are methods for determining which log files are still required:

Logger event messages
When enabled, logger event messages are generated when queue managers
starts writing log records to a new log file. The contents of logger event
messages specify the log files that are still required for queue manager
restart, and media recovery. For more information on logger event
messages, see the Monitoring WebSphere MQ manual.

Queue manager status
Executing the MQSC command, DISPLAY QMSTATUS, or the PCF
command, Inquire Queue Manager Status, returns queue manager
information, including details of the required log files. For more
information on MQSC commands, see the WebSphere MQ Script (MQSC)
Command Reference manual, and for information on PCF commands, see the
theWebSphere MQ Programmable Command Formats and Administration
Interface manual.

Queue manager messages
Periodically, the queue manager issues a pair of messages to indicate
which of the log files are needed:
v Message AMQ7467 gives the name of the oldest log file needed to restart

the queue manager. This log file and all newer log files must be
available during queue manager restart.

v Message AMQ7468 gives the name of the oldest log file needed for
media recovery.

Only log files required for queue manager restart, active log files, need to be
online. Inactive log files can be copied to an archive medium such as tape for
disaster recovery, and removed from the log directory. Inactive log files that are not

Chapter 11. Recovery and restart 165



required for media recovery can be considered as superfluous log files. You can
delete superfluous log files if they are no longer of interest to your operation.

If any log file that is needed cannot be found, operator message AMQ6767 is
issued. Make the log file, and all subsequent log files, available to the queue
manager and retry the operation.

Note: When performing media recovery, all the required log files must be available
in the log file directory at the same time. Make sure that you take regular media
images of any objects you might wish to recover to avoid running out of disk
space to hold all the required log files.

Messages AMQ7467 and AMQ7468 can also be issued at the time of running the
rcdmqimg command. For more information about this command, see “rcdmqimg
(record media image)” on page 248.

Log file location

When choosing a location for your log files, remember that operation is severely
impacted if WebSphere MQ fails to format a new log because of lack of disk space.

If you are using a circular log, ensure that there is sufficient space on the drive for
at least the configured primary log files. Also leave space for at least one
secondary log file, which is needed if the log has to grow.

If you are using a linear log, allow considerably more space; the space consumed
by the log increases continuously as data is logged.

Ideally, place the log files on a separate disk drive from the queue manager data.
This has benefits in terms of performance. It might also be possible to place the log
files on multiple disk drives in a mirrored arrangement. This protects against
failure of the drive containing the log. Without mirroring, you could be forced to
go back to the last backup of your WebSphere MQ system.

Using the log for recovery

There are several ways that your data can be damaged. WebSphere MQ helps you
to recover from:
v A damaged data object
v A power loss in the system
v A communications failure

This section looks at how the logs are used to recover from these problems.

Recovering from power loss or communications failures

WebSphere MQ can recover from both communications failures and loss of power.
In addition, it can sometimes recover from other types of problem, such as
inadvertent deletion of a file.

In the case of a communications failure, messages remain on queues until they are
removed by a receiving application. If the message is being transmitted, it remains

166 WebSphere MQ for HP OpenVMS: System Administration Guide



on the transmission queue until it can be successfully transmitted. To recover from
a communications failure, you can usually restart the channels using the link that
failed.

If you lose power, when the queue manager is restarted WebSphere MQ restores
the queues to their committed state at the time of the failure. This ensures that no
persistent messages are lost. Nonpersistent messages are discarded; they do not
survive when WebSphere MQ stops abruptly.

Recovering damaged objects

There are ways in which a WebSphere MQ object can become unusable, for
example because of inadvertent damage. You then have to recover either your
complete system or some part of it. The action required depends on when the
damage is detected, whether the log method selected supports media recovery, and
which objects are damaged.

Media recovery

Media recovery re-creates objects from information recorded in a linear log. For
example, if an object file is inadvertently deleted, or becomes unusable for some
other reason, media recovery can re-create it. The information in the log required
for media recovery of an object is called a media image. Media images can be
recorded manually, using the rcdmqimg command, or automatically in some
circumstances.

A media image is a sequence of log records containing an image of an object from
which the object itself can be re-created.

The first log record required to re-create an object is known as its media recovery
record; it is the start of the latest media image for the object. The media recovery
record of each object is one of the pieces of information recorded during a
checkpoint.

When an object is re-created from its media image, it is also necessary to replay
any log records describing updates performed on the object since the last image
was taken.

Consider, for example, a local queue that has an image of the queue object taken
before a persistent message is put onto the queue. In order to re-create the latest
image of the object, it is necessary to replay the log entries recording the putting of
the message to the queue, as well as replaying the image itself.

When an object is created, the log records written contain enough information to
completely re-create the object. These records make up the object’s first media
image. Subsequently, at each shutdown, the queue manager records media images
automatically as follows:
v Images of all process objects and queues that are not local
v Images of empty local queues

Media images can also be recorded manually using the rcdmqimg command,
described in “rcdmqimg (record media image)” on page 248. This command writes
a media image of the WebSphere MQ object. Once this has been done, only the
logs that hold the media image, and all the logs created after this time, are needed

Chapter 11. Recovery and restart 167



to re-create damaged objects. The benefit of doing this depends on such factors as
the amount of free storage available, and the speed at which log files are created.

Recovering from media images

WebSphere MQ automatically recovers some objects from their media image if it
finds that they are corrupt or damaged. In particular, this applies to objects found
to be damaged during the normal queue manager startup. If any transaction was
incomplete when the queue manager last shutdown, any queue affected is also
recovered automatically in order to complete the startup operation.

You must recover other objects manually, using the rcrmqobj command, which
replays the records in the log to re-create the WebSphere MQ object. The object is
re-created from its latest image found in the log, together with all applicable log
events between the time the image was saved and the time the re-create command
was issued. If a WebSphere MQ object becomes damaged, the only valid actions
that can be performed are either to delete it or to re-create it by this method.
Nonpersistent messages cannot be recovered in this way.

See “rcrmqobj (recreate object)” on page 250 for further details of the rcrmqobj
command.

The log file containing the media recovery record, and all subsequent log files,
must be available in the log file directory when attempting media recovery of an
object. If a required file cannot be found, operator message AMQ6767 is issued and
the media recovery operation fails. If you do not take regular media images of the
objects that you want to re-create, you might have insufficient disk space to hold
all the log files required to re-create an object.

Recovering damaged objects during start up

If the queue manager discovers a damaged object during startup, the action it
takes depends on the type of object and whether the queue manager is configured
to support media recovery.

If the queue manager object is damaged, the queue manager cannot start unless it
can recover the object. If the queue manager is configured with a linear log, and
thus supports media recovery, WebSphere MQ automatically tries to re-create the
queue manager object from its media images. If the log method selected does not
support media recovery, you can either restore a backup of the queue manager or
delete the queue manager.

If any transactions were active when the queue manager stopped, the local queues
containing the persistent, uncommitted messages put or got inside these
transactions are also needed to start the queue manager successfully. If any of
these local queues is found to be damaged, and the queue manager supports
media recovery, it automatically tries to re-create them from their media images. If
any of the queues cannot be recovered, WebSphere MQ cannot start.

If any damaged local queues containing uncommitted messages are discovered
during startup processing on a queue manager that does not support media
recovery, the queues are marked as damaged objects and the uncommitted
messages on them are ignored. This is because it is not possible to perform media
recovery of damaged objects on such a queue manager and the only action left is
to delete them. Message AMQ7472 is issued to report any damage.

168 WebSphere MQ for HP OpenVMS: System Administration Guide



Recovering damaged objects at other times

Media recovery of objects is automatic only during startup. At other times, when
object damage is detected, operator message AMQ7472 is issued and most
operations using the object fail. If the queue manager object is damaged at any
time after the queue manager has started, the queue manager performs a
preemptive shutdown. When an object has been damaged you can delete it or, if
the queue manager is using a linear log, attempt to recover it from its media image
using the rcrmqobj command (see “rcrmqobj (recreate object)” on page 250 for
further details).

Protecting WebSphere MQ log files

Do not remove the active log files manually when a WebSphere MQ queue
manager is running. If a user inadvertently deletes the log files that a queue
manager needs to restart, WebSphere MQ does not issue any errors and continues
to process data including persistent messages. The queue manager shuts down
normally, but can fail to restart. Recovery of messages then becomes impossible.

Users with the authority to remove logs that are being used by an active queue
manager also have authority to delete other important queue manager resources
(such as queue files, the object catalog, and WebSphere MQ executables). They can
therefore damage, perhaps through inexperience, a running or dormant queue
manager in a way against which WebSphere MQ cannot protect itself.

Exercise caution when conferring super user or mqm authority.

Backing up and restoring WebSphere MQ

Periodically, you can take measures to protect queue managers against possible
corruption caused by hardware failures. There are two ways of protecting a queue
manager:

Backup the queue manager data
In the event of hardware failure, a queue manager can be forced to stop. If
any queue manager log data is lost due to the hardware failure, the queue
manager might be unable to restart. Through backing up queue manager
data you may be able to recover some, or all, of the lost queue manager
data.

In general, the more frequently you back up queue manager data, the less
data you lose in the event of hardware failure resulting in loss of integrity
in the recovery log.

To backup queue manager data, the queue manager must not be running.

For instructions of how to backup queue manager data, and how to restore
queue manager data, see:
v “Backing up queue manager data” on page 170.
v “Restoring queue manager data” on page 170.

Using a backup queue manager
In the event of severe hardware failure, a queue manager can be
unrecoverable. In this situation, if the unrecoverable queue manager has a
dedicated backup queue manager, the backup queue manager can be
activated in place of the unrecoverable queue manager. If it was updated

Chapter 11. Recovery and restart 169



regularly, the backup queue manager log can contain log data up to, and
including, the last complete log extent from the unrecoverable queue
manager.

A backup queue manager can be updated while the existing queue
manager is still running.

For instructions of how to create a backup queue manager, and how to
activate a backup queue manager, see:
v “Creating a backup queue manager” on page 171.
v “Starting a backup queue manager” on page 172.

Backing up queue manager data

To take a backup copy of a queue manager’s data:
1. Ensure that the queue manager is not running. If you try to take a backup of a

running queue manager, the backup might not be consistent because of updates
in progress when the files were copied.
If possible, stop your queue manager in an orderly way. Try executing
endmqm -w (a wait shutdown); only if that fails, use endmqm -i (an
immediate shutdown).

2. Find the directories under which the queue manager places its data and its log
files, using the information in the configuration files. For more information
about this, see Chapter 6, “Configuring WebSphere MQ,” on page 71.

Note: You might have some difficulty in understanding the names that appear
in the directory. The names are transformed to ensure that they are compatible
with the platform on which you are using WebSphere MQ. For more
information about name transformations, see “Understanding WebSphere MQ
file names” on page 17.

3. Take copies of all the queue manager’s data and log file directories, including
all subdirectories.
Make sure that you do not miss any files, especially the log control file and the
configuration files (or equivalent Registry entries on Windows). Some of the
directories might be empty, but you need them all to restore the backup at a
later date, so save them too.

4. Preserve the ownerships of the files. For WebSphere MQ for UNIX systems,
you can do this with the tar command.

Restoring queue manager data

To restore a backup of a queue manager’s data:
1. Ensure that the queue manager is not running.
2. Find the directories under which the queue manager places its data and its log

files, using the information in the configuration files
3. Clear out the directories into which you are going to place the backed-up data.
4. Copy the backed-up queue manager data and log files into the correct places.
5. Update the configuration information files (or equivalent Registry entries on

Windows).

Check the resulting directory structure to ensure that you have all the required
directories.

170 WebSphere MQ for HP OpenVMS: System Administration Guide



See Appendix B, “Directory structure,” on page 275 for more information about
WebSphere MQ directories and subdirectories.

Make sure that you have a log control file as well as the log files. Also check that
the WebSphere MQ and queue manager configuration files are consistent so that
WebSphere MQ can look in the correct places for the restored data.

If the data was backed up and restored correctly, the queue manager starts.

For circular logging, backup the queue manager data and log file directories at the
same time as this should allow a consistent set of queue manager data and logs to
be restored.

For linear logging, we recommend that you backup the queue manager data and
log file directories at the same time. However, it is possible to restore only the
queue manager data files if a corresponding complete sequence of log files is
available.

Using a backup queue manager

An existing queue manager can have a dedicated backup queue manager. A
backup queue manager is an inactive copy of the existing queue manager. If the
existing queue manager becomes unrecoverable due to severe hardware failure, the
backup queue manager can be brought online to replace the unrecoverable queue
manager.

The existing queue manager log files must regularly be copied to the backup
queue manager to ensure that the backup queue manager remains an effective
method for disaster recovery. The existing queue manager does not need to be
stopped for log files to be copied, however you should only copy a log file if the
queue manager has finished writing to it. Because the existing queue manager log
is continually updated, there is always a slight discrepancy between the existing
queue manager log and the log data copied to the backup queue manager log.
Regular updates to the backup queue manager minimizes the discrepancy between
the two logs.

If a backup queue manager is required to be brought online it must be activated,
and then started. The requirement to activate a backup queue manager before it is
started is a preventative measure to protect against a backup queue manager being
started accidentally. Once a backup queue manager is activated it can no longer be
updated.

For information on how to create, update, and start a backup queue manager, see
the following:
v “Creating a backup queue manager”
v “Updating a backup queue manager” on page 172
v “Starting a backup queue manager” on page 172

Creating a backup queue manager

You can only use a backup queue manager when using linear logging.

To create a backup queue manager for an existing queue manager, do the
following:

Chapter 11. Recovery and restart 171



1. Create a backup queue manager for the existing queue manager using the
control command crtmqm. The backup queue manager requires the following:
v To have the same attributes as the existing queue manager, for example the

queue manager name, the logging type, and the log file size.
v To be on the same platform as the existing queue manager.
v To be at an equal, or higher, code level than the existing queue manager.

2. Take copies of all the existing queue manager’s data and log file directories,
including all subdirectories, as described in “Backing up queue manager data”
on page 170.

3. Overwrite the backup queue manager’s data and log file directories, including
all subdirectories, with the copies taken from the existing queue manager.

4. Execute the following control command on the backup queue manager:
strmqm -r BackupQMName

This flags the queue manager as a backup queue manager within WebSphere
MQ, and replays all the copied log extents to bring the backup queue manager
in step with the existing queue manager.

Updating a backup queue manager

To ensure that a backup queue manager remains an effective method for disaster
recovery it must be updated regularly. Regular updating lessens the discrepancy
between the backup queue manager log, and the existing queue manager log. To
update a backup queue manager, do the following:
1. Copy all the log extents that have been completed since the last update from

the existing queue manager log directory to the backup queue manager log
directory.

2. Execute the following control command on the backup queue manager:
strmqm -r BackupQMName

This replays all the copied log extents and brings the backup queue manager in
step with the existing queue manager. Once complete, a message is generated
which identifies all the log extents required for restart recovery, and all the log
extents required for media recovery.

Warning: If you copy a non-contiguous set of logs to the backup queue
manager log directory, only the logs up to the point where the first missing log
is found are replayed.

Starting a backup queue manager

To substitute an unrecoverable queue manager with it’s backup queue manager, do
the following:
1. Execute the following control command to activate the backup queue manager:

strmqm -a BackupQMName

The backup queue manager is activated. Now active, the backup queue
manager can no longer be updated.

2. Execute the following control command to start the backup queue manager:
strmqm BackupQMName

172 WebSphere MQ for HP OpenVMS: System Administration Guide



WebSphere MQ regards this as restart recovery, and utilizes the log from the
backup queue manager. During the last update to the backup queue manager
replay occurred: therefore, only the active transactions from the last recorded
checkpoint are rolled back.
When an unrecoverable queue manager is substituted for a backup queue
manager some of the queue manager data from the unrecoverable queue
manager can be lost. The amount of lost data is dependent on how recently the
backup queue manager was last updated. The more recently the last update,
the less queue manager data loss.

3. Restart all channels.

Check the resulting directory structure to ensure that you have all the required
directories.

See Appendix B, “Directory structure,” on page 275 for more information about
WebSphere MQ directories and subdirectories.

Make sure that you have a log control file as well as the log files. Also check that
the WebSphere MQ and queue manager configuration files are consistent so that
WebSphere MQ can look in the correct places for the restored data.

If the data was backed up and restored correctly, the queue manager starts.

Note: Even though the queue manager data and log files are held in different
directories, back up and restore the directories at the same time. If the queue
manager data and log files have different ages, the queue manager is not in a valid
state and may not start. If it does start, your data is likely to be corrupt.

Recovery scenarios

This section looks at a number of possible problems and indicates how to recover
from them.

Disk drive failures

You might have problems with a disk drive containing either the queue manager
data, the log, or both. Problems can include data loss or corruption. The three cases
differ only in the part of the data that survives, if any.

In all cases first check the directory structure for any damage and, if necessary,
repair such damage. If you lose queue manager data, the queue manager directory
structure might have been damaged. If so, re-create the directory tree manually
before you restart the queue manager.

If damage has occurred to the queue manager data files, but not to the queue
manager log files, then the queue manager is normally able to restart. If any
damage has occurred to the queue manager log files, then it is likely that the
queue manager is not able to restart.

Having checked for structural damage, there are a number of things you can do,
depending on the type of logging that you use.

Chapter 11. Recovery and restart 173



v Where there is major damage to the directory structure or any damage to the
log, remove all the old files back to the QMgrName level, including the
configuration files, the log, and the queue manager directory, restore the last
backup, and restart the queue manager.

v For linear logging with media recovery, ensure that the directory structure is
intact and restart the queue manager. If the queue manager restarts, check, using
MQSC commands such as DISPLAY QUEUE, whether any other objects have
been damaged. Recover those you find, using the rcrmqobj command. For
example:
rcrmqobj -m QMgrName -t all *

where QMgrName is the queue manager being recovered. -t all * indicates that
all damaged objects of any type are to be recovered. If only one or two objects
have been reported as damaged, you can specify those objects by name and type
here.

v For linear logging with media recovery and with an undamaged log, you
might be able to restore a backup of the queue manager data leaving the
existing log files and log control file unchanged. Starting the queue manager
applies the changes from the log to bring the queue manager back to its state
when the failure occurred.
This method relies on two things:
1. You must restore the checkpoint file as part of the queue manager data. This

file contains the information determining how much of the data in the log
must be applied to give a consistent queue manager.

2. You must have the oldest log file required to start the queue manager at the
time of the backup, and all subsequent log files, available in the log file
directory.

If this is not possible, restore a backup of both the queue manager data and the
log, both of which were taken at the same time. This causes message integrity to
be lost.

v For circular logging, if the queue manager log files are damaged, restore the
queue manager from the latest backup that you have. Once you have restored
the backup, restart the queue manager and check as above for damaged objects.
However, because you do not have media recovery, you must find other ways of
re-creating the damaged objects.
If the queue manager log files are not damaged, the queue manager is normally
able to restart. Following the restart you must identify all damaged objects, then
delete and redefine them.

Damaged queue manager object

If the queue manager object has been reported as damaged during normal
operation, the queue manager performs a preemptive shutdown. There are two
ways of recovering in these circumstances, depending on the type of logging you
use:
v For linear logging, manually delete the file containing the damaged object and

restart the queue manager. (You can use the dspmqfls command to determine
the real, file-system name of the damaged object.) Media recovery of the
damaged object is automatic.

v For circular logging, restore the last backup of the queue manager data and log,
and restart the queue manager.

174 WebSphere MQ for HP OpenVMS: System Administration Guide



Damaged single object

If a single object is reported as damaged during normal operation:
v For linear logging, re-create the object from its media image.
v For circular logging, we do not support re-creating a single object.

Automatic media recovery failure

If a local queue required for queue manager startup with a linear log is damaged,
and the automatic media recovery fails, restore the last backup of the queue
manager data and log and restart the queue manager.

Dumping the contents of the log using the dmpmqlog command

Use the dmpmqlog command to dump the contents of the queue manager log. By
default all active log records are dumped, that is, the command starts dumping
from the head of the log (usually the start of the last completed checkpoint).

The log can usually be dumped only when the queue manager is not running.
Because the queue manager takes a checkpoint during shutdown, the active
portion of the log usually contains a small number of log records. However, you
can use the dmpmqlog command to dump more log records using one of the
following options to change the start position of the dump:
v Start dumping from the base of the log. The base of the log is the first log record

in the log file that contains the head of the log. The amount of additional data
dumped in this case depends on where the head of the log is positioned in the
log file. If it is near the start of the log file, only a small amount of additional
data is dumped. If the head is near the end of the log file, significantly more
data is dumped.

v Specify the start position of the dump as an individual log record. Each log
record is identified by a unique log sequence number (LSN). In the case of circular
logging, this starting log record cannot be before the base of the log; this
restriction does not apply to linear logs. You might need to reinstate inactive log
files before running the command. You must specify a valid LSN, taken from
previous dmpmqlog output, as the start position.
For example, with linear logging you can specify the nextlsn from your last
dmpmqlog output. The nextlsn appears in Log File Header and indicates the
LSN of the next log record to be written. Use this as a start position to format all
log records written since the last time the log was dumped.

v For linear logs only, you can instruct dmpmqlog to start formatting log records
from any given log file extent. In this case, dmpmqlog expects to find this log
file, and each successive one, in the same directory as the active log files. This
option does not apply to circular logs, where dmpmqlog cannot access log
records prior to the base of the log.

The output from the dmpmqlog command is the Log File Header and a series of
formatted log records. The queue manager uses several log records to record
changes to its data.

Some of the information that is formatted is only of use internally. The following
list includes the most useful log records:

Log File Header
Each log has a single log file header, which is always the first thing formatted

Chapter 11. Recovery and restart 175



by the dmpmqlog command. It contains the following fields:

logactive The number of primary log extents.

loginactive The number of secondary log extents.

logsize The number of 4 KB pages per extent.

baselsn The first LSN in the log extent containing the head of the log.

nextlsn The LSN of the next log record to be written.

headlsn The LSN of the log record at the head of the log.

tailsn The LSN identifying the tail position of the log.

hflag1 Whether the log is CIRCULAR or LOG RETAIN® (linear).

HeadExtentID The log extent containing the head of the log.

Log Record Header
Each log record within the log has a fixed header containing the following
information:

LSN The log sequence number.

LogRecdType The type of the log record.

XTranid The transaction identifier associated with this log record (if any).

A TranType of MQI indicates a WebSphere MQ-only transaction.
A TranType of XA is involved with other resource managers.
Updates involved within the same unit of work have the same
XTranid.

QueueName The queue associated with this log record (if any).

Qid The unique internal identifier for the queue.

PrevLSN The LSN of the previous log record within the same transaction
(if any).

Start Queue Manager
This logs that the queue manager has started.

StartDate The date that the queue manager started.

StartTime The time that the queue manager started.

Stop Queue Manager
This logs that the queue manager has stopped.

StopDate The date that the queue manager stopped.

StopTime The time that the queue manager stopped.

ForceFlag The type of shutdown used.

Start Checkpoint
This denotes the start of a queue manager checkpoint.

End Checkpoint
This denotes the end of a queue manager checkpoint.

ChkPtLSN The LSN of the log record that started this checkpoint.

176 WebSphere MQ for HP OpenVMS: System Administration Guide



Put Message
This logs a persistent message put to a queue. If the message was put under
syncpoint, the log record header contains a non-null XTranid. The remainder of
the record contains:

SpcIndex An identifier for the message on the queue. It can be used to
match the corresponding MQGET that was used to get this
message from the queue. In this case a subsequent Get Message
log record can be found containing the same QueueName and
SpcIndex. At this point the SpcIndex identifier can be reused for
a subsequent put message to that queue.

Data Contained in the hex dump for this log record is various
internal data followed by the Message Descriptor (eyecatcher
MD) and the message data itself.

Put Part
Persistent messages that are too large for a single log record are logged as a
single Put Message record followed by multiple Put Part log records.

Data Continues the message data where the previous log record left
off.

Get Message
Only gets of persistent messages are logged. If the message was got under
syncpoint, the log record header contains a non-null XTranid. The remainder of
the record contains:

SpcIndex Identifies the message that was retrieved from the queue. The
most recent Put Message log record containing the same
QueueName and SpcIndex identifies the message that was
retrieved.

QPriority The priority of the message retrieved from the queue.

Start Transaction
Indicates the start of a new transaction. A TranType of MQI indicates a
WebSphere MQ-only transaction. A TranType of XA indicates one that involves
other resource managers. All updates made by this transaction have the same
XTranid.

Prepare Transaction
Indicates that the queue manager is prepared to commit the updates associated
with the specified XTranid. This log record is written as part of a two-phase
commit involving other resource managers.

Commit Transaction
Indicates that the queue manager has committed all updates made by a
transaction.

Rollback Transaction
This denotes the queue manager’s intention to roll back a transaction.

End Transaction
This denotes the end of a rolled-back transaction.

Transaction Table
This record is written during syncpoint. It records the state of each transaction
that has made persistent updates. For each transaction the following
information is recorded:

Chapter 11. Recovery and restart 177



XTranid The transaction identifier.

FirstLSN The LSN of the first log record associated with the transaction.

LastLSN The LSN of the last log record associated with the transaction.

Transaction Participants
This log record is written by the XA Transaction Manager component of the
queue manager. It records the external resource managers that are participating
in transactions. For each participant the following is recorded:

RMName The name of the resource manager.

RMID The resource manager identifier. This is also logged in
subsequent Transaction Prepared log records that record global
transactions in which the resource manager is participating.

SwitchFile The switch load file for this resource manager.

XAOpenString The XA open string for this resource manager.

XACloseString The XA close string for this resource manager.

Transaction Prepared
This log record is written by the XA Transaction Manager component of the
queue manager. It indicates that the specified global transaction has been
successfully prepared. Each of the participating resource managers is instructed
to commit. The RMID of each prepared resource manager is recorded in the log
record. If the queue manager itself is participating in the transaction a
Participant Entry with an RMID of zero is present.

Transaction Forget
This log record is written by the XA Transaction Manager component of the
queue manager. It follows the Transaction Prepared log record when the
commit decision has been delivered to each participant.

Purge Queue
This logs the fact that all messages on a queue have been purged, for example,
using the MQSC command CLEAR QUEUE.

Queue Attributes
This logs the initialization or change of the attributes of a queue.

Create Object
This logs the creation of a WebSphere MQ object.

ObjName The name of the object that was created.

UserId The user ID performing the creation.

Delete Object
This logs the deletion of a WebSphere MQ object.

ObjName The name of the object that was deleted.

178 WebSphere MQ for HP OpenVMS: System Administration Guide



Chapter 12. Problem determination

This chapter suggests reasons for some of the problems you might experience
using WebSphere MQ. You usually start with a symptom, or set of symptoms, and
trace them back to their cause.

Problem determination is not problem solving. However, the process of problem
determination often enables you to solve a problem. For example, if you find that
the cause of the problem is an error in an application program, you can solve the
problem by correcting the error.

Not all problems can be solved immediately, for example, performance problems
caused by the limitations of your hardware. Also, if you think that the cause of the
problem is in the WebSphere MQ code, contact your IBM Support Center. This
chapter contains these sections:
v “Preliminary checks”
v “Looking at problems in more detail” on page 183
v “Application design considerations” on page 188
v “Error logs” on page 189
v “Dead-letter queues” on page 194
v “Configuration files and problem determination” on page 194
v “Using WebSphere MQ trace” on page 194
v “First-failure support technology ( FFST )” on page 195
v “Problem determination with WebSphere MQ clients” on page 198
v “Error messages with clients” on page 198

Preliminary checks

Before you start problem determination in detail, it is worth considering the facts
to see if there is an obvious cause of the problem, or a likely area in which to start
your investigation. This approach to debugging can often save a lot of work by
highlighting a simple error, or by narrowing down the range of possibilities.

The cause of your problem could be in:
v WebSphere MQ
v The network
v The application

The sections that follow raise some fundamental questions that you need to
consider. As you work through the questions, make a note of anything that might
be relevant to the problem. Even if your observations do not suggest a cause
immediately, they could be useful later if you have to carry out a systematic
problem determination exercise.

Has WebSphere MQ run successfully before?

If WebSphere MQ has not run successfully before, it may not have been set up
correctly. See WebSphere MQ for HP OpenVMS Quick Beginnings to check that
WebSphere MQ has been installed and set up correctly.

© Copyright IBM Corp. 1994, 2009 179



Are there any error messages?

WebSphere MQ uses error logs to capture messages concerning its own operation,
any queue managers that you start, and error data coming from the channels that
are in use. Check the error logs to see if any messages have been recorded that are
associated with your problem.

See “Error logs” on page 189 for information about the locations and contents of
the error logs.

Are there any return codes explaining the problem?

If your application gets a return code indicating that a Message Queue Interface
(MQI) call has failed, refer to the WebSphere MQ Application Programming Reference
manual for a description of that return code.

Can you reproduce the problem?

If you can reproduce the problem, consider the conditions under which it is
reproduced:
v Is it caused by a command or an equivalent administration request?

Does the operation work if it is entered by another method? If the command
works if it is entered on the command line, but not otherwise, check that the
command server has not stopped, and that the queue definition of the
SYSTEM.ADMIN.COMMAND.QUEUE has not been changed.

v Is it caused by a program? Does it fail on all WebSphere MQ systems and all
queue managers, or only on some?

v Can you identify any application that always seems to be running in the system
when the problem occurs? If so, examine the application to see if it is in error.

Have any changes been made since the last successful run?

When you are considering changes that might recently have been made, think
about the WebSphere MQ system, and also about the other programs it interfaces
with, the hardware, and any new applications. Consider also the possibility that a
new application that you are not aware of might have been run on the system.
v Have you changed, added, or deleted any queue definitions?
v Have you changed or added any channel definitions? Changes might have been

made to either WebSphere MQ channel definitions or any underlying
communications definitions required by your application.

v Do your applications deal with return codes that they might get as a result of
any changes you have made?

v Have you changed any component of the operating system that could affect the
operation of WebSphere MQ? For example, have you modified the Windows
Registry.

Has the application run successfully before?

If the problem appears to involve one particular application, consider whether the
application has run successfully before.

Before you answer Yes to this question, consider the following:

180 WebSphere MQ for HP OpenVMS: System Administration Guide



v Have any changes been made to the application since it last ran successfully?
If so, it is likely that the error lies somewhere in the new or modified part of the
application. Take a look at the changes and see if you can find an obvious
reason for the problem. Is it possible to retry using a back level of the
application?

v Have all the functions of the application been fully exercised before?
Could it be that the problem occurred when part of the application that had
never been invoked before was used for the first time? If so, it is likely that the
error lies in that part of the application. Try to find out what the application was
doing when it failed, and check the source code in that part of the program for
errors.
If a program has been run successfully on many previous occasions, check the
current queue status and the files that were being processed when the error
occurred. It is possible that they contain some unusual data value that invokes a
rarely-used path in the program.

v Does the application check all return codes?
Has your WebSphere MQ system been changed, perhaps in a minor way, such
that your application does not check the return codes it receives as a result of
the change. For example, does your application assume that the queues it
accesses can be shared? If a queue has been redefined as exclusive, can your
application deal with return codes indicating that it can no longer access that
queue?

v Does the application run on other WebSphere MQ systems?
Could it be that there is something different about the way that this WebSphere
MQ system is set up that is causing the problem? For example, have the queues
been defined with the same message length or priority?

If the application has not run successfully before

If your application has not yet run successfully, examine it carefully to see if you
can find any errors.

Before you look at the code, and depending upon which programming language
the code is written in, examine the output from the translator, or the compiler and
linkage editor, to see if any errors have been reported.

If your application fails to translate, compile, or link-edit into the load library, it
also fails to run if you attempt to invoke it. See the WebSphere MQ Application
Programming Guide for information about building your application.

If the documentation shows that each of these steps was accomplished without
error, consider the coding logic of the application. Do the symptoms of the
problem indicate the function that is failing and, therefore, the piece of code in
error? See “Common programming errors” for some examples of common errors
that cause problems with WebSphere MQ applications.

Common programming errors

The errors in the following list illustrate the most common causes of problems
encountered while running WebSphere MQ programs. Consider the possibility that
the problem with your WebSphere MQ system could be caused by one or more of
these errors:
v Assuming that queues can be shared, when they are in fact exclusive.
v Passing incorrect parameters in an MQI call.

Chapter 12. Problem determination 181



v Passing insufficient parameters in an MQI call. This might mean that WebSphere
MQ cannot set up completion and reason codes for your application to process.

v Failing to check return codes from MQI requests.
v Passing variables with incorrect lengths specified.
v Passing parameters in the wrong order.
v Failing to initialize MsgId and CorrelId correctly.
v Failing to initialize Encoding and CodedCharSetId following

MQRC_TRUNCATED_MSG_ACCEPTED.

Problems with commands

Be careful when including special characters, for example, back slash (\) and
double quote (”) characters, in descriptive text for some commands. If you use
either of these characters in descriptive text, precede them with a \, that is, enter
\\ or \” if you want \ or ” in your text.

Does the problem affect specific parts of the network?

You might be able to identify specific parts of the network that are affected by the
problem (remote queues, for example). If the link to a remote message queue
manager is not working, the messages cannot flow to a remote queue.

Check that the connection between the two systems is available, and that the
intercommunication component of WebSphere MQ has started.

Check that messages are reaching the transmission queue, and check the local
queue definition of the transmission queue and any remote queues.

Have you made any network-related changes, or changed any WebSphere MQ
definitions, that might account for the problem?

Does the problem occur at specific times of the day?

If the problem occurs at specific times of day, it could be that it depends on system
loading. Typically, peak system loading is at mid-morning and mid-afternoon, so
these are the times when load-dependent problems are most likely to occur. (If
your WebSphere MQ network extends across more than one time zone, peak
system loading might seem to occur at some other time of day.)

Is the problem intermittent?

An intermittent problem could be caused by the way that processes can run
independently of each other. For example, a program might issue an MQGET call
without specifying a wait option before an earlier process has completed. An
intermittent problem might also be seen if your application tries to get a message
from a queue while the call that put the message is in-doubt (that is, before it has
been committed or backed out).

Have you applied any service updates?

If you have applied a service update to WebSphere MQ, check that the update
action completed successfully and that no error message was produced.
v Did the update have any special instructions?

182 WebSphere MQ for HP OpenVMS: System Administration Guide



v Was any test run to verify that the update was applied correctly and completely?
v Does the problem still exist if WebSphere MQ is restored to the previous service

level?
v If the installation was successful, check with the IBM Support Center for any

maintenance package errors.
v If a maintenance package has been applied to any other program, consider the

effect it might have on the way WebSphere MQ interfaces with it.

Looking at problems in more detail

Perhaps the preliminary checks have enabled you to find the cause of the problem.
If so, you should now be able to resolve it, possibly with the help of other books in
the WebSphere MQ library and in the libraries of other licensed programs.

If you have not yet found the cause, start to look at the problem in greater detail.
The purpose of this section is to help you identify the cause of your problem if the
preliminary checks have not enabled you to find it. When you have established
that no changes have been made to your system, and that there are no problems
with your application programs, choose the option that best describes the
symptoms of your problem.
v “Have you obtained incorrect output?”
v “Have you failed to receive a response from a PCF command?” on page 186
v “Are some of your queues failing?” on page 187
v “Does the problem affect only remote queues?” on page 187
v “Is your application or system running slowly?” on page 187

If none of these symptoms describe your problem, consider whether it might have
been caused by another component of your system.

Have you obtained incorrect output?

In this book, incorrect output refers to your application:
v Not receiving a message that it was expecting.
v Receiving a message containing unexpected or corrupted information.
v Receiving a message that it was not expecting, for example, one that was

destined for a different application.

Messages that do not appear on the queue

If messages do not appear when you are expecting them, check for the following:
v Has the message been put on the queue successfully?

– Has the queue been defined correctly? For example, is MAXMSGL sufficiently
large?

– Is the queue enabled for putting?
– Is the queue already full?
– Has another application got exclusive access to the queue?

v Are you able to get any messages from the queue?
– Do you need to take a syncpoint?

If messages are being put or retrieved within syncpoint, they are not available
to other tasks until the unit of recovery has been committed.

Chapter 12. Problem determination 183



– Is your wait interval long enough?
You can set the wait interval as an option for the MQGET call. Ensure that
you are waiting long enough for a response.

– Are you waiting for a specific message that is identified by a message or
correlation identifier (MsgId or CorrelId)?
Check that you are waiting for a message with the correct MsgId or CorrelId.
A successful MQGET call sets both these values to that of the message
retrieved, so you might need to reset these values in order to get another
message successfully.
Also, check whether you can get other messages from the queue.

– Can other applications get messages from the queue?
– Was the message you are expecting defined as persistent?

If not, and WebSphere MQ has been restarted, the message has been lost.
– Has another application got exclusive access to the queue?

If you cannot find anything wrong with the queue, and WebSphere MQ is running,
check the process that you expected to put the message onto the queue for the
following:
v Did the application start?

If it should have been triggered, check that the correct trigger options were
specified.

v Did the application stop?
v Is a trigger monitor running?
v Was the trigger process defined correctly?
v Did the application complete correctly?

Look for evidence of an abnormal end in the job log.
v Did the application commit its changes, or were they backed out?

If multiple transactions are serving the queue, they can conflict with one another.
For example, suppose one transaction issues an MQGET call with a buffer length
of zero to find out the length of the message, and then issues a specific MQGET
call specifying the MsgId of that message. However, in the meantime, another
transaction issues a successful MQGET call for that message, so the first
application receives a reason code of MQRC_NO_MSG_AVAILABLE. Applications
that are expected to run in a multiple server environment must be designed to
cope with this situation.

Consider that the message could have been received, but that your application
failed to process it in some way. For example, did an error in the expected format
of the message cause your program to reject it? If this is the case, refer to
“Messages that contain unexpected or corrupted information.”

Messages that contain unexpected or corrupted information

If the information contained in the message is not what your application was
expecting, or has been corrupted in some way, consider the following:
v Has your application, or the application that put the message onto the queue,

changed?
Ensure that all changes are simultaneously reflected on all systems that need to
be aware of the change.

184 WebSphere MQ for HP OpenVMS: System Administration Guide



For example, the format of the message data might have been changed, in which
case, both applications must be recompiled to pick up the changes. If one
application has not been recompiled, the data appears corrupt to the other.

v Is an application sending messages to the wrong queue?
Check that the messages your application is receiving are not really intended for
an application servicing a different queue. If necessary, change your security
definitions to prevent unauthorized applications from putting messages on to
the wrong queues.
If your application uses an alias queue, check that the alias points to the correct
queue.

v Has the trigger information been specified correctly for this queue?
Check that your application should have started; or should a different
application have started?

If these checks do not enable you to solve the problem, check your application
logic, both for the program sending the message, and for the program receiving it.

Problems with incorrect output when using distributed queues

If your application uses distributed queues, consider the following points:
v Has WebSphere MQ been correctly installed on both the sending and receiving

systems, and correctly configured for distributed queuing?
v Are the links available between the two systems?

Check that both systems are available, and connected to WebSphere MQ. Check
that the connection between the two systems is active.
You can use the MQSC command PING against either the queue manager (PING
QMGR) or the channel (PING CHANNEL) to verify that the link is operable.

v Is triggering set on in the sending system?
v Is the message for which you are waiting a reply message from a remote

system?
Check that triggering is activated in the remote system.

v Is the queue already full?
If so, check if the message has been put onto the dead-letter queue.
The dead-letter queue header contains a reason or feedback code explaining why
the message could not be put onto the target queue. See the WebSphere MQ
Application Programming Reference manual for information about the dead-letter
queue header structure.

v Is there a mismatch between the sending and receiving queue managers?
For example, the message length could be longer than the receiving queue
manager can handle.

v Are the channel definitions of the sending and receiving channels compatible?
For example, a mismatch in sequence number wrap can stop the distributed
queuing component. See the WebSphere MQ Intercommunications manual for more
information about distributed queuing.

v Is data conversion involved? If the data formats between the sending and
receiving applications differ, data conversion is necessary. Automatic conversion
occurs when the MQGET call is issued if the format is recognized as one of the
built-in formats.
If the data format is not recognized for conversion, the data conversion exit is
taken to allow you to perform the translation with your own routines.

Chapter 12. Problem determination 185



Refer to the WebSphere MQ Application Programming Guide for further details of
data conversion.

Have you failed to receive a response from a PCF command?

If you have issued a command but have not received a response, consider the
following:
v Is the command server running?

Work with the dspmqcsv command to check the status of the command server.
– If the response to this command indicates that the command server is not

running, use the strmqcsv command to start it.
– If the response to the command indicates that the

SYSTEM.ADMIN.COMMAND.QUEUE is not enabled for MQGET requests,
enable the queue for MQGET requests.

v Has a reply been sent to the dead-letter queue?
The dead-letter queue header structure contains a reason or feedback code
describing the problem. See the WebSphere MQ Application Programming Reference
manual for information about the dead-letter queue header structure (MQDLH).
If the dead-letter queue contains messages, you can use the provided browse
sample application (amqsbcg) to browse the messages using the MQGET call.
The sample application steps through all the messages on a named queue for a
named queue manager, displaying both the message descriptor and the message
context fields for all the messages on the named queue.

v Has a message been sent to the error log?
See “Error logs” on page 189 for further information.

v Are the queues enabled for put and get operations?
v Is the WaitInterval long enough?

If your MQGET call has timed out, a completion code of MQCC_FAILED and a
reason code of MQRC_NO_MSG_AVAILABLE are returned. (See the WebSphere
MQ Application Programming Reference manual for information about the
WaitInterval field, and completion and reason codes from MQGET.)

v If you are using your own application program to put commands onto the
SYSTEM.ADMIN.COMMAND.QUEUE, do you need to take a syncpoint?
Unless you have specifically excluded your request message from syncpoint, you
need to take a syncpoint before receiving reply messages.

v Are the MAXDEPTH and MAXMSGL attributes of your queues set sufficiently
high?

v Are you using the CorrelId and MsgId fields correctly?
Set the values of MsgId and CorrelId in your application to ensure that you
receive all messages from the queue.

Try stopping the command server and then restarting it, responding to any error
messages that are produced.

If the system still does not respond, the problem could be with either a queue
manager or the whole of the WebSphere MQ system. First, try stopping individual
queue managers to isolate a failing queue manager. If this does not reveal the
problem, try stopping and restarting WebSphere MQ, responding to any messages
that are produced in the error log.

If the problem still occurs after restart, contact your IBM Support Center for help.

186 WebSphere MQ for HP OpenVMS: System Administration Guide



Are some of your queues failing?

If you suspect that the problem occurs with only a subset of queues, check the
local queues that you think are having problems:
1. Display the information about each queue. You can use the MQSC command

DISPLAY QUEUE to display the information.
2. Use the data displayed to do the following checks:
v If CURDEPTH is at MAXDEPTH, the queue is not being processed. Check

that all applications are running normally.
v If CURDEPTH is not at MAXDEPTH, check the following queue attributes to

ensure that they are correct:
– If triggering is being used:

- Is the trigger monitor running?
- Is the trigger depth too great? That is, does it generate a trigger event

often enough?
- Is the process name correct?
- Is the process available and operational?

– Can the queue be shared? If not, another application could already have it
open for input.

– Is the queue enabled appropriately for GET and PUT?
v If there are no application processes getting messages from the queue,

determine why this is so. It could be because the applications need to be
started, a connection has been disrupted, or the MQOPEN call has failed for
some reason.
Check the queue attributes IPPROCS and OPPROCS. These attributes
indicate whether the queue has been opened for input and output. If a value
is zero, it indicates that no operations of that type can occur. The values
might have changed; the queue might have been open but is now closed.
You need to check the status at the time you expect to put or get a message.

If you are unable to solve the problem, contact your IBM Support Center for help.

Does the problem affect only remote queues?

If the problem affects only remote queues:
v Check that required channels have started, can be triggered, and any required

initiators are running.
v Check that the programs that should be putting messages to the remote queues

have not reported problems.
v If you use triggering to start the distributed queuing process, check that the

transmission queue has triggering set on. Also, check that the trigger monitor is
running.

v Check the error logs for messages indicating channel errors or problems.
v If necessary, start the channel manually. See the WebSphere MQ

Intercommunications manual for information about starting channels.

Is your application or system running slowly?

If your application is running slowly, it might be in a loop or waiting for a
resource that is not available.

Chapter 12. Problem determination 187



This might also indicate a performance problem. Perhaps your system is operating
near the limits of its capacity. This type of problem is probably worst at peak
system load times, typically at mid-morning and mid-afternoon. (If your network
extends across more than one time zone, peak system load might seem to occur at
some other time.)

A performance problem might be caused by a limitation of your hardware.

If you find that performance degradation is not dependent on system loading, but
happens sometimes when the system is lightly loaded, a poorly-designed
application program is probably to blame. This could appear to be a problem that
only occurs when certain queues are accessed.

The following symptoms might indicate that WebSphere MQ is running slowly:
v Your system is slow to respond to MQSC commands.
v Repeated displays of the queue depth indicate that the queue is being processed

slowly for an application with which you would expect a large amount of queue
activity.

If the performance of your system is still degraded after reviewing the above
possible causes, the problem might lie with WebSphere MQ itself. If you suspect
this, contact your IBM Support Center for help.

Application design considerations

There are a number of ways in which poor program design can affect performance.
These can be difficult to detect because the program can appear to perform well
itself, but affect the performance of other tasks. Several problems specific to
programs making WebSphere MQ calls are discussed in the following sections.

For more information about application design, see the WebSphere MQ Application
Programming Guide.

Effect of message length

The amount of data in a message can affect the performance of the application that
processes the message. To achieve the best performance from your application,
send only the essential data in a message. For example, in a request to debit a
bank account, the only information that might need to be passed from the client to
the server application is the account number and the amount of the debit.

Effect of message persistence

Persistent messages are usually logged. Logging messages reduces the performance
of your application, so use persistent messages for essential data only. If the data
in a message can be discarded if the queue manager stops or fails, use a
nonpersistent message.

Searching for a particular message

The MQGET call usually retrieves the first message from a queue. If you use the
message and correlation identifiers (MsgId and CorrelId) in the message descriptor

188 WebSphere MQ for HP OpenVMS: System Administration Guide



to specify a particular message, the queue manager has to search the queue until it
finds that message. Using the MQGET call in this way affects the performance of
your application.

Queues that contain messages of different lengths

If your application cannot use messages of a fixed length, grow and shrink the
buffers dynamically to suit the typical message size. If the application issues an
MQGET call that fails because the buffer is too small, the size of the message data
is returned. Add code to your application so that the buffer is resized accordingly
and the MQGET call is re-issued.

Note: if you do not set the MaxMsgLength attribute explicitly, it defaults to 4 MB,
which might be very inefficient if this is used to influence the application buffer
size.

Frequency of syncpoints

Programs that issue very large numbers of MQPUT or MQGET calls within
syncpoint, without committing them, can cause performance problems. Affected
queues can fill up with messages that are currently inaccessible, while other tasks
might be waiting to get these messages. This has implications in terms of storage,
and in terms of threads tied up with tasks that are attempting to get messages.

Use of the MQPUT1 call

Use the MQPUT1 call only if you have a single message to put on a queue. If you
want to put more than one message, use the MQOPEN call, followed by a series of
MQPUT calls and a single MQCLOSE call.

Error logs

WebSphere MQ uses a number of error logs to capture messages concerning its
own operation of WebSphere MQ, any queue managers that you start, and error
data coming from the channels that are in use.

The location of the error logs depends on whether the queue manager name is
known and whether the error is associated with a client.
v If the queue manager name is known and the queue manager is available, the

error log is shown here:
MQS_ROOT:[MQM.QMGRS.QMgrName.ERRORS]AMQERR01.LOG

v If the queue manager is not available, the error log is shown here:
MQS_ROOT:[MQM.QMGRS.$SYSTEM.ERRORS]AMQERR01.LOG

v If an error has occurred with a client application, the error log is shown here:
MQS_ROOT:[MQM.ERRORS]AMQERR01.LOG

Error log files

At installation time an [MQM.QMGRS.$SYSTEM.ERRORS] directory is created in
theQMGRS file path. The errors subdirectory can contain up to three error log files
named:
v AMQERR01.LOG

Chapter 12. Problem determination 189



v AMQERR02.LOG
v AMQERR03.LOG

After you have created a queue manager, three error log files are created when
they are needed by the queue manager. These files have the same names as the
$SYSTEM ones, that is AMQERR01, AMQERR02, and AMQERR03, and each has a
capacity of 256 KB. The files are placed in the errors subdirectory of each queue
manager that you create.

As error messages are generated they are placed in AMQERR01. When
AMQERR01 gets bigger than 256 KB it is copied to AMQERR02. Before the copy,
AMQERR02 is copied to AMQERR03.LOG. The previous contents, if any, of
AMQERR03 are discarded.

The latest error messages are thus always placed in AMQERR01, the other files
being used to maintain a history of error messages.

All messages relating to channels are also placed in the appropriate queue
manager’s errors files unless the name of their queue manager is unknown or the
queue manager is unavailable. When the queue manager name is unavailable or its
name cannot be determined, channel-related messages are placed in the
[MQM.QMGRS.$SYSTEM.ERRORS] subdirectory.

To examine the contents of any error log file, use your usual OpenVMS editor.

Early errors

There are a number of special cases where the above error logs have not yet been
established and an error occurs. WebSphere MQ attempts to record any such errors
in an error log. The location of the log depends on how much of a queue manager
has been established.

If, due to a corrupt configuration file for example, no location information can be
determined, errors are logged to an errors directory that is created at installation
time on the root directory, mqm.

If the WebSphere MQ configuration file is readable, and the DefaultPrefix attribute
of the AllQueueManagers stanza is readable, errors are logged in the
DefaultPrefix[.errors] directory.

For further information about configuration files, see Chapter 6, “Configuring
WebSphere MQ,” on page 71.

Example error log

This example shows part of a WebSphere MQ for HP OpenVMS error log:
...
06/29/00 09:41:39 AMQ7467: The oldest log file required to start queue
manager BKM1 is S0000000.LOG.

EXPLANATION: The log file S0000000.LOG contains the oldest log record
required to restart the queue manager. Log records older than this may
be required for media recovery.
ACTION: You can move log files older than S0000000.LOG to an archive
medium to release space in the log directory. If you move any of the log
files required to recreate objects from their media images, you will
have to restore them to recreate the objects.
--------------------------------------------- --

190 WebSphere MQ for HP OpenVMS: System Administration Guide



06/29/00 09:41:39 AMQ7468: The oldest log file required to perform media
recovery of queue manager BKM1 is S0000000.LOG.

EXPLANATION: The log file S0000000.LOG contains the oldest log record
required to recreate any of the objects from their media images. Any
log files prior to this will not be accessed by media recovery operations.
ACTION: You can move log files older than S0000000.LOG to an archive
medium to release space in the log directory.
--------------------------------------------- --
06/29/00 09:42:05 AMQ7467: The oldest log file required to start queue
manager BKM1 is S0000000.LOG.

EXPLANATION: The log file S0000000.LOG contains the oldest log record
required to restart the queue manager. Log records older than this
may be required for media recovery.
ACTION: You can move log files older than S0000000.LOG to an archive
medium to release space in the log directory. If you move any of the log
files required to recreate objects from their media images,
you will have to restore them to recreate the objects.
--------------------------------------- --
06/29/00 09:42:05 AMQ7468: The oldest log file required to perform media
recovery of queue manager BKM1 is S0000000.LOG.

EXPLANATION: The log file S0000000.LOG contains the oldest log record
required to recreate any of the objects from their media images. Any
log files prior to this will not be accessed by media recovery operations.
ACTION: You can move log files older than S0000000.LOG to an archive
medium to release space in the log directory.
--------------------------------------- --
06/29/00 09:42:06 AMQ8003: WebSphere MQ queue manager started.

EXPLANATION: WebSphere MQ queue manager BKM1 started.
ACTION: None.
--------------------------------------- --
06/29/00 09:42:06 AMQ7467: The oldest log file required to start queue
manager BKM1 is S0000000.LOG.

EXPLANATION: The log file S0000000.LOG contains the oldest log record
required to restart the queue manager. Log records older than this
may be required for media recovery.
ACTION: You can move log files older than S0000000.LOG to an archive
medium to release space in the log directory. If you move any of the
log files required to recreate objects from their media images,
you will have to restore them to recreate the objects.
--------------------------------------- --
06/29/00 09:42:06 AMQ7468: The oldest log file required to perform media
recovery of queue manager BKM1 is S0000000.LOG.

EXPLANATION: The log file S0000000.LOG contains the oldest log record
required to recreate any of the objects from their media images.
Any log files prior to this will not be accessed by media recovery
operations.
ACTION: You can move log files older than S0000000.LOG to an archive medium
to release space in the log directory.
--------------------------------------- --
06/29/00 09:46:27 AMQ7030: Request to quiesce the queue manager accepted.
The queue manager will stop when there is no further work for it to
perform.

EXPLANATION: You have requested that the queue manager end when there is no
more work for it. In the meantime, it will refuse new applications
that attempt to start, although it allows those already running to
complete their work.
ACTION: None.
--------------------------------------- --
06/29/00 09:46:43 AMQ7467: The oldest log file required to start queue
manager BKM1 is S0000000.LOG.

Chapter 12. Problem determination 191



EXPLANATION: The log file S0000000.LOG contains the oldest log record
required to restart the queue manager. Log records older than this may be
required for media recovery.
ACTION: You can move log files older than S0000000.LOG to an archive
medium to release space in the log directory. If you move any of the
log files required to recreate objects from their media images, you
will have to restore them to recreate the objects.
----------------------------------- --
06/29/00 09:46:43 AMQ7468: The oldest log file required to perform media
recovery of queue manager BKM1 is S0000000.LOG.

EXPLANATION: The log file S0000000.LOG contains the oldest log record
required to recreate any of the objects from their media images. Any
log files prior to this will not be accessed by media recovery operations.
ACTION: You can move log files older than S0000000.LOG to an archive medium
to release space in the log directory.
----------------------------------- --
06/29/00 09:46:44 AMQ8004: WebSphere MQ queue manager ended.

EXPLANATION: WebSphere MQ queue manager BKM1 ended.
ACTION: None.
----------------------------------- --
06/29/00 09:46:59 AMQ7467: The oldest log file required to start queue
manager BKM1 is S0000000.LOG.

EXPLANATION: The log file S0000000.LOG contains the oldest log record
required to restart the queue manager. Log records older than this
may be required for media recovery.
ACTION: You can move log files older than S0000000.LOG to an archive medium
to release space in the log directory. If you move any of the log files
required to recreate objects from their media images, you will have to
restore them to recreate the objects.
------------------------------------- --
06/29/00 09:47:00 AMQ7468: The oldest log file required to perform media
recovery of queue manager BKM1 is S0000000.LOG.

EXPLANATION: The log file S0000000.LOG contains the oldest log record
required to recreate any of the objects from their media images. Any log
files prior to this will not be accessed by media recovery operations.
ACTION: You can move log files older than S0000000.LOG to an archive medium
to release space in the log directory.
-------------------------------------- --
06/29/00 09:47:08 AMQ7472: Object TEST1, type queue damaged.

EXPLANATION: Object TEST1, type queue has been marked as damaged. This
indicates that the queue manager was either unable to access the object in
the file system, or that some kind of inconsistency with the data in
the object was detected.
ACTION: If a damaged object is detected, the action performed depends on
whether the queue manager supports media recovery and when the damage
was detected. If the queue manager does not support media recovery,
you must delete the object as no recovery is possible. If the queue manager
does support media recovery and the damage is detected during the processing
performed when the queue manager is being started, the queue manager will
automatically initiate media recovery of the object. If the queue
manager supports media recovery and the damage is detected once the queue
manager has started, it may be recovered from a media image using the
rcrmqobj command or it may be deleted.
-------------------------------------- --
06/29/00 09:47:09 AMQ8003: WebSphere MQ queue manager started.

EXPLANATION: WebSphere MQ queue manager BKM1 started.
ACTION: None.
--------------------------------------- --
06/29/00 09:47:09 AMQ7467: The oldest log file required to start queue
manager BKM1 is S0000000.LOG.

192 WebSphere MQ for HP OpenVMS: System Administration Guide



EXPLANATION: The log file S0000000.LOG contains the oldest log record
required to restart the queue manager. Log records older than this may be
required for media recovery.
ACTION: You can move log files older than S0000000.LOG to an archive medium
to release space in the log directory. If you move any of the log files
required to recreate objects from their media images, you will have to
restore them to recreate the objects.
------------------------------------ --
06/29/00 09:47:10 AMQ7468: The oldest log file required to perform media
recovery of queue manager BKM1 is S0000000.LOG.

EXPLANATION: The log file S0000000.LOG contains the oldest log record
required to recreate any of the objects from their media images. Any log
files prior to this will not be accessed by media recovery operations.
ACTION: You can move log files older than S0000000.LOG to an archive medium
to release space in the log directory.
------------------------------------- --
06/29/00 09:47:47 AMQ7081: Object TEST1, type queue recreated.

EXPLANATION: The object TEST1, type queue was recreated from its media
image.
ACTION: None.
------------------------------------- --
06/29/00 11:22:10 AMQ7467: The oldest log file required to start queue
manager BKM1 is S0000000.LOG.

EXPLANATION: The log file S0000000.LOG contains the oldest log record
required to restart the queue manager. Log records older than this may
be required for media recovery.
ACTION: You can move log files older than S0000000.LOG to an archive medium
to release space in the log directory. If you move any of the log files
required to recreate objects from their media images, you will have
to restore them to recreate the objects.
----------------------------------- --
06/29/00 11:22:10 AMQ7468: The oldest log file required to perform media
recovery of queue manager BKM1 is S0000000.LOG.

EXPLANATION: The log file S0000000.LOG contains the oldest log record
required to recreate any of the objects from their media images. Any log files
prior to this will not be accessed by media recovery operations.
ACTION: You can move log files older than S0000000.LOG to an archive medium
to release space in the log directory.
-------------------------------- --
06/29/00 11:22:11 AMQ8004: WebSphere MQ queue manager ended.

EXPLANATION: WebSphere MQ queue manager BKM1 ended.
ACTION: None.
-------------------------------- --
...

Operator messages

Operator messages identify normal errors, typically caused directly by users doing
things like using parameters that are not valid on a command. Operator messages
are national-language enabled, with message catalogs installed in standard
locations.

These messages are written to the associated window, if any. In addition, some
operator messages are written to the AMQERR01.LOG file in the queue manager
directory, and others to the equivalent file in the system error log directory.

Chapter 12. Problem determination 193



Dead-letter queues

Messages that cannot be delivered for some reason are placed on the dead-letter
queue. You can check whether the queue contains any messages by issuing the
MQSC command DISPLAY QUEUE. If the queue contains messages, use the
provided browse sample application (amqsbcg) to browse messages on the queue
using the MQGET call. The sample application steps through all the messages on
a named queue for a named queue manager, displaying both the message
descriptor and the message context fields for each message. See “Browsing queues”
on page 41 for more information about running this sample and about the kind of
output it produces.

You must decide how to dispose of any messages found on the dead-letter queue,
depending on the reasons for the messages being put on the queue.

Problems might occur if you do not associate a dead-letter queue with each queue
manager. For more information about dead-letter queues, see Chapter 9, “The
WebSphere MQ dead-letter queue handler,” on page 125.

Configuration files and problem determination

Configuration file errors typically prevent queue managers from being found, and
result in queue manager unavailable errors. Ensure that the configuration files exist,
and that the WebSphere MQ configuration file references the correct queue
manager and log directories.

Using WebSphere MQ trace

WebSphere MQ for HP OpenVMS uses the following commands for the trace
facility:
v dspmqtrc – see “dspmqtrc (Display WebSphere MQ formatted trace output)” on

page 230
v endmqtrc – see “endmqtrc (End WebSphere MQ trace)” on page 237

The trace facility uses one file for each entity being traced, with the trace
information being recorded in the appropriate file.

Files associated with trace are created in the directory MQS_ROOT:[MQM.TRACE].

The files in this directory include details of queue managers, as well as all early
tracing and all $SYSTEM tracing.

Trace file names

Trace file names are constructed in the following way:
AMQpppppppp.TRC

where pppppppp is the process identifier (PID) of the process producing the trace.

Note:

1. In WebSphere MQ for HP OpenVMS, the value of the process identifier is
always eight characters long.

194 WebSphere MQ for HP OpenVMS: System Administration Guide



2. There is one trace file for each process running as part of the entity being
traced.

Sample trace data

The following sample is an extract from an OpenVMS trace:

Note:

1. In this example the data is truncated. In a real trace, the complete function
names and return codes are present.

2. The return codes are given as values, not literals.

First-failure support technology ( FFST )

Information that is normally recorded in FFST logs is, on WebSphere MQ for HP
OpenVMS, recorded in a file in the MQS_ROOT:[MQM.ERRORS] directory.

These errors are normally severe, unrecoverable errors and indicate either a
configuration problem with the system or a WebSphere MQ internal error.

How to examine the FFSTs

The files are named AMQnnnnnnnn_mm.FDC, where:

nnnnnnnn
Is the process id reporting the error

mm Is a sequence number, normally 0

When a process creates an FFST it also writes an entry in the system error log. The
record contains the name of the FFST file to assist in automatic problem tracking.
+-----------------------------------------------------------------------------+
| |
| WebSphere MQ First Failure Symptom Report |
| ========================================= |
| |
| Date/Time :- Wednesday October 28 13:26:33 GMT 2009 |
| Host Name :- IPF3 (OpenVMS V8.3-1H1) |

...
20:02:16.652000 538969462.1 component:24 pointer:8B9FA0
20:02:16.652000 538969462.1 -----------} xcsFreeMem rc=OK
20:02:16.652000 538969462.1 This set has 1 connections left (including us)
20:02:16.652000 538969462.1 -----------{ xcsFreeMem
20:02:16.652000 538969462.1 component:24 pointer:62720D0
20:02:16.652000 538969462.1 -----------} xcsFreeMem rc=OK
20:02:16.652000 538969462.1 -----------{ xcsReleaseThreadMutexSem
20:02:16.652000 538969462.1 -----------} xcsReleaseThreadMutexSem rc=OK
20:02:16.652000 538969462.1 ----------} xcsDisconnectSharedMemSet rc=OK
20:02:16.652000 538969462.1 ----------{ xcsDisconnectSharedMemSet
20:02:16.653000 538969462.1 About to disconnect set 1::0::0-460
20:02:16.653000 538969462.1 -----------{ xcsRequestThreadMutexSem
20:02:16.653000 538969462.1 -----------} xcsRequestThreadMutexSem rc=OK
20:02:16.653000 538969462.1 -----------{ xcsFreeMem
20:02:16.653000 538969462.1 component:24 pointer:7C1D60
20:02:16.653000 538969462.1 -----------} xcsFreeMem rc=OK ...

Figure 21. Sample WebSphere MQ for HP OpenVMS trace

Chapter 12. Problem determination 195



| PIDS :- 5697175 |
| LVLS :- 6.0.1.2 |
| Product Long Name :- WebSphere MQ for OpenVMS Itanium |
| Vendor :- IBM |
| Probe Id :- ZX005020 |
| Application Name :- MQM |
| Component :- zxcProcessChildren |
| SCCS Info :- cmd/zmain/amqzxmb0.c, 1.377.1.11 |
| Line Number :- 6272 |
| Build Date :- Mar 4 2009 |
| CMVC level :- p600-101-060504 |
| Build Type :- IKAP - (Production) |
| Userid :- [400,400] (MQMQMQ) |
| Program Name :- AMQZXMA0.EXE |
| Addressing mode :- 64-bit |
| Program Name :- AMQZXMA0.EXE |
| Process :- 538969253 |
| Thread :- 1 |
| QueueManager :- test28 |
| ConnId(1) IPCC :- 2 |
| ConnId(2) QM :- 2 |
| ConnId(3) QM-P :- 2 |
| ConnId(4) App :- 2 |
| Major Errorcode :- zrcX_PROCESS_MISSING |
| Minor Errorcode :- OK |
| Probe Type :- MSGAMQ5008 |
| Probe Severity :- 2 |
| Probe Description :- AMQ5008: An essential WebSphere MQ process 538969255 |
| (zllCRIT) cannot be found and is assumed to be terminated. |
| FDCSequenceNumber :- 0 |
| Arith1 :- 538969255 202004a7 |
| Comment1 :- zllCRIT |
| VMS Errorcode :- No message (00000000) |
| |
| JPI Quota information: |
| ====================== |
| ASTCNT=4115/4120(99%) * BIOCNT=2048/2048(100%) * |
| BYTCNT=29981504/29981504(4294967253%) * DIOCNT=4096/4096(100%) * |
| ENQCNT=15917/16000(99%) * FILCNT=1014/1024(99%) * |
| PAGFILCNT=9916864/10000000(99%) * TQCNT=794/800(99%) * |
| FREPTECNT=2147483647 APTCNT=0 |
| GPGCNT=30544 PPGCNT=5328 |
| VIRTPEAK=346112 DFWSCNT=16384 |
| WSAUTH=32768 WSAUTHEXT=784384 |
| WSEXTENT=784384 WSPEAK=35872 |
| WSQUOTA=32768 WSSIZE=48768 |
| CPULIM=0 MAXDETACH=0 |
| MAXJOBS=0 JOBPRCCNT=5 |
| PAGEFLTS=2998 PRCCNT=5/300(1%) + |
| (*) - % resource remaining, (+) - % resource used |
| |
| Privilege and rights information: |
| ================================= |
| CURPRIV=acnt allspool altpri audit bugchk bypass cmexec cmkrnl detach |
| diagnose downgrade exquota group grpnam grpprv import log_io |
| mount netmbx oper pfnmap phy_io prmceb prmgbl prmmbx |
| pswapm readall security setprv share shmem sysgbl syslck |
| sysnam sysprv tmpmbx upgrade volpro world |
| IMAGPRIV=bugchk prmgbl sysgbl world |
| AUTHPRIV=acnt allspool altpri audit bugchk bypass cmexec cmkrnl detach |
| diagnose downgrade exquota group grpnam grpprv import log_io |
| mount netmbx oper pfnmap phy_io prmceb prmgbl prmmbx |
| pswapm readall security setprv share shmem sysgbl syslck |
| sysnam sysprv tmpmbx upgrade volpro world |
| MAHESH INTERA |
| REMOTE SYS$NO |
| IMAGE_RIGHTS= |

196 WebSphere MQ for HP OpenVMS: System Administration Guide



| SYS$NODE_IPF3 |
| |
| SYI information: |
| ================ |
| ACTIVE CPU=2/2(100%) + CLUSTER NODES=1 |
| FREE_GBLPAGES=3003952/3447272(87%) * GBLPAGFIL=197084 |
| FREE_GBLSECTS=251/1600(15%) * MEMSIZE=262096 |
| PAGEFILE_FREE=262600/262600(100%) * PAGE_SIZE=8192 |
| SWAPFILE_FREE=5512/5512(100%) * MAXPROCESSCNT=695 |
| PROCSECTCNT=128 BALSETCNT=693 |
| WSMAX=784384 NPAGEDYN=17973248 |
| NPAGEVIR=98287616 PAGEDYN=10158080 |
| VIRTUALPAGECNT=2147483647 LOCKIDTBL_MAX=1842328 |
| PQL_DASTLM=24 PQL_MASTLM=100 |
| PQL_DBIOLM=32 PQL_MBIOLM=100 |
| PQL_DBYTLM=262144 PQL_MBYTLM=128000 |
| PQL_DCPULM=0 PQL_MCPULM=0 |
| PQL_DDIOLM=32 PQL_MDIOLM=100 |
| PQL_DFILLM=128 PQL_MFILLM=100 |
| PQL_DPGFLQUOTA=700000 PQL_MPGFLQUOTA=512000 |
| PQL_DPRCLM=32 PQL_MPRCLM=10 |
| PQL_DTQELM=16 PQL_MTQELM=0 |
| PQL_DWSDEFAULT=16384 PQL_MWSDEFAULT=16384 |
| PQL_DWSQUOTA=32768 PQL_MWSQUOTA=32768 |
| PQL_DWSEXTENT=784384 PQL_MWSEXTENT=784384 |
| PQL_DENQLM=2048 PQL_MENQLM=300 |
| PQL_DJTQUOTA=8192 PQL_MJTQUOTA=0 |
| CLISYMTBL=750 DEFMBXMXMSG=256 |
| DEFMBXBUFQUO=1056 CHANNELCNT=512 |
| DLCKEXTRASTK=2560 PIOPAGES=975 |
| CTLPAGES=1056 CTLIMGLIM=35 |
| (*) - % resource remaining, (+) - % resource used |
| |
+-----------------------------------------------------------------------------+

MQM Function Stack
ExecCtrlrMain
zxcProcessChildren
xcsFFST

MQM Trace History
---{ kill
Data: 0x00000000 0x00000000
---} kill rc=OK
--} xcsCheckProcess rc=OK
--{ zdmHealthCheck
---{ xcsCheckProcess
Data: 0x202004aa
----{ kill

.

.

.

.

The Function Stack and Trace History are used by IBM to assist in problem
determination. In most cases there is little that the system administrator can do
when an FFST is generated, apart from raising problems through the support
centers.

However, there is one set of problems that they may be able to solve. If the FFST
shows “quota exceeded” or “out of space on device” descriptions when calling one
of the internal functions, it is likely that the relevant SYSGEN parameter limit has
been exceeded.

Chapter 12. Problem determination 197



To resolve the problem, adjust the system parameters to increase the internal limits.
See Chapter 6, “Configuring WebSphere MQ,” on page 71 for further details.

Problem determination with WebSphere MQ clients

An MQI client application receives MQRC_* reason codes in the same way as
non-client MQI applications. However, there are additional reason codes for error
conditions associated with clients. For example:
v Remote machine not responding
v Communications line error
v Invalid machine address

The most common time for errors to occur is when an application issues an
MQCONN and receives the response MQRC_Q_MQR_NOT_AVAILABLE. An
error message, written to the client log file, explains the cause of the error.
Messages might also be logged at the server, depending on the nature of the
failure.

Terminating clients

Even though a client has terminated, the process at the server can still hold its
queues open. Normally, this is only for a short time until the communications layer
detects that the partner has gone.

Error messages with clients

When an error occurs with a client system, error messages are put into the error
files associated with the server, if possible. If an error cannot be placed there, the
client code attempts to place the error message in an error log in the root directory
of the client machine.

OpenVMS clients

Error messages for OpenVMS systems clients are placed in the error logs on their
respective WebSphere MQ server systems. Typically, these files appear in the
MQS_ROOT:[MQM.ERRORS] directory on OpenVMS systems.

The names of the default files held in this directory are:

AMQERR01.LOG
For error messages.

AMQERR01.FDC
For First Failure Data Capture messages.

198 WebSphere MQ for HP OpenVMS: System Administration Guide



Chapter 13. How to use WebSphere MQ control commands

This chapter describes how to use the WebSphere MQ control commands. If you
want to issue control commands, your user ID must be a member of the mqm
group.

All commands in this chapter can be issued from an OpenVMS DCL prompt.
Command names and their flags are not case sensitive: you can enter them in
upper case, lower case, or a combination of upper case and lower case. However,
parameters to control commands (such as queue names) can be case sensitive. See
“Case sensitivity in control commands” on page 18 for more information.

Before using any control command, mqs_startup must have been run once since
the last restart.

Names of WebSphere MQ objects

In general, the names of WebSphere MQ objects can have up to 48 characters. This
rule applies to all the following objects:
v Queue managers
v Queues
v Process definitions
v Namelists
v Clusters
v Listeners
v Services
v Authentication information objects

The maximum length of channel, and client connection channel names is 20
characters.

The characters that can be used for all WebSphere MQ names are:
v Uppercase A–Z
v Lowercase a–z
v Numerics 0–9
v Period (.)
v Underscore (_)
v Forward slash (/) (see note 1)
v Percent sign (%) (see note 1)

Note:

1. Forward slash and percent are special characters. If you use either of these
characters in a name, the name must be enclosed in double quotation marks
whenever it is used.

2. Leading or embedded blanks are not allowed.
3. National language characters are not allowed.
4. Names can be enclosed in double quotation marks, but this is essential only if

special characters are included in the name.

© Copyright IBM Corp. 1994, 2009 199



How to read syntax diagrams

This section describes the interpretation of syntax diagrams (sometimes referred to
as “railroad” diagrams).

Each syntax diagram begins with a double right arrow and ends with a right and
left arrow pair. Lines beginning with a single right arrow are continuation lines.
You read a syntax diagram from left to right and from top to bottom, following the
direction of the arrows.

Other conventions used in syntax diagrams are:

Table 14. How to read syntax diagrams

Convention Meaning

�� A B C ��
You must specify values A, B, and C. Required values are shown on
the main line of a syntax diagram.

��
A

��
You may specify value A. Optional values are shown below the main
line of a syntax diagram.

�� A
B
C

��
Values A, B, and C are alternatives, one of which you must specify.

��
A
B
C

��
Values A, B, and C are alternatives, one of which you may specify.

�� �

,

A
B
C

��

You may specify one or more of the values A, B, and C. Any required
separator for multiple or repeated values (in this example, the
comma (,)) is shown on the arrow.

��
A

B
C

��

Values A, B, and C are alternatives, one of which you may specify. If
you specify none of the values shown, the default A (the value
shown above the main line) is used.

�� Name ��

Name:

A
B

The syntax fragment Name is shown separately from the main syntax
diagram.

200 WebSphere MQ for HP OpenVMS: System Administration Guide



Example syntax diagram

Here is an example syntax diagram that describes the hello command:

Hello Command

�� hello
Name Greeting

��

Name

�

,
(1)

name

Greeting

, how are you?

Notes:

1 You can code up to three names.

According to the syntax diagram, these are all valid versions of the hello
command:
hello
hello name
hello name, name
hello name, name, name
hello, how are you?
hello name, how are you?
hello name, name, how are you?
hello name, name, name, how are you?

The space before the name value is significant: if you do not code name at all, you
must still code the comma before how are you?.

Syntax help

You can obtain help for the syntax of any control command by entering the
command followed by a question mark. WebSphere MQ responds by listing the
syntax required for the selected command.

The syntax shows all the parameters and variables associated with the command.
Different forms of parentheses are used to indicate whether a parameter is
required. For example:
CmdName [-x OptParam ] ( -c | -b ) argument

where:

CmdName
Is the command name for which you have requested help.

Chapter 13. How to use WebSphere MQ control commands 201



[-x OptParam ]
Square brackets enclose one or more optional parameters. Where square
brackets enclose multiple parameters, you can select no more than one of
them.

( -c | -b )
Brackets enclose multiple values, one of which you must select. In this
example, you must select either flag c or flag b.

argument
A mandatory argument.

Examples
1. Result of entering endmqm ?

endmqm [-z][-c | -w | -i | -p] QMgrName

2. Result of entering rcdmqimg ?

rcdmqimg [-z] [-m QMgrName] -t ObjType [GenericObjName]

202 WebSphere MQ for HP OpenVMS: System Administration Guide



Chapter 14. The control commands

This section provides reference information for each of the following WebSphere
MQ control commands:

Command name Purpose

crtmqcvx Convert data

crtmqm Create a local queue manager

dltmqm Delete a queue manager

dmpmqaut Dump authorizations to an object

dmpmqlog Dump a log

dspmq Display queue managers

dspmqaut Display authorizations to an object

dspmqcsv Display the status of a command server

dspmqfls Display file names

dspmqrte WebSphere MQ display route application

dspmqtrc Display formatted trace output (UNIX systems only)

dspmqrtn Display details of transactions

dspmqver Display version number

endmqcsv Stop the command server on a queue manager

endmqlsr Stop the listener process on a queue manager

endmqm Stop a local queue manager

endmqtrc Stop tracing for an entity

mqftapp Run the File Transfer Application

mqftrcv Receive file using the File Transfer Application (server)

mqftrcvc Receive file using the File Transfer Application (client)

mqftsnd Send file using the File Transfer Application (server)

mqftsndc Send file using the File Transfer Application (client)

rcdmqimg Write an image of an object to the log

rcrmqobj Recreate an object from their image in the log

rsvmqtrn Commit or back out a transaction

runmqchi Start a channel initiator process

runmqchl Start a sender or requester channel

runmqdlq Start the dead-letter queue handler

runmqlsr Start a listener process

runmqsc Issue MQSC commands to a queue manager

runmqtmc Invoke the client trigger monitor

runmqtrm Invoke a trigger monitor for a server

setmqaut Change authorizations to an object

setmqprd Enroll production license

strmqcsv Start the command server for a queue manager

© Copyright IBM Corp. 1994, 2009 203



strmqm Start a local queue manager

crtmqcvx (data conversion)

Purpose

Use the crtmqcvx command to create a fragment of code that performs data
conversion on data type structures. The command generates a C function that can
be used in an exit to convert C structures.

The command reads an input file containing structures to be converted, and writes
an output file containing code fragments to convert those structures.

For information about using this command, see the WebSphere MQ Application
Programming Guide.

Syntax

�� crtmqcvx SourceFile TargetFile ��

Required parameters

SourceFile
The input file containing the C structures to convert.

TargetFile
The output file containing the code fragments generated to convert the
structures.

Return codes

0 Command completed normally
10 Command completed with unexpected results
20 An error occurred during processing

Examples

The following example shows the results of using the data conversion command
against a source C structure. The command issued is:
crtmqcvx source.tmp target.c

The input file, source.tmp looks like this:

/* This is a test C structure which can be converted by the */
/* crtmqcvx utility */

struct my_structure
{

int code;
MQLONG value;

};

204 WebSphere MQ for HP OpenVMS: System Administration Guide



The output file, target.c, produced by the command is shown below. You can use
these code fragments in your applications to convert data structures. However, if
you do so, the fragment uses macros supplied in the header file amqsvmha.h.

crtmqm (create queue manager)

Purpose

Use the crtmqm command to create a local queue manager and define the default
and system objects. The objects created by crtmqm are listed in Appendix A,
“System and default objects,” on page 273. When a queue manager has been
created, use the strmqm command to start it.

Syntax

�� crtmqm
-c Text -d DefaultTransmissionQueue

�

�
-h MaximumHandleLimit

-lc

-ll -ld LogPath
�

�
-lf LogFilePages -lp LogPrimaryFiles

�

�
-ls LogSecondaryFiles -q -g ApplicationGroup

�

MQLONG Convertmy_structure(
PMQBYTE *in_cursor,
PMQBYTE *out_cursor,
PMQBYTE in_lastbyte,
PMQBYTE out_lastbyte,
MQHCONN hConn,
MQLONG opts,
MQLONG MsgEncoding,
MQLONG ReqEncoding,
MQLONG MsgCCSID,
MQLONG ReqCCSID,
MQLONG CompCode,
MQLONG Reason)

{
MQLONG ReturnCode = MQRC_NONE;

ConvertLong(1); /* code */

AlignLong();
ConvertLong(1); /* value */

Fail:
return(ReturnCode);

}

Chapter 14. The control commands 205



�
-t IntervalValue -u DeadLetterQueue

�

�
-x MaximumUncommittedMessages -z

QMgrName ��

Required parameters

QMgrName
The name of the queue manager to create. The name can contain up to 48
characters. This must be the last item in the command.

Optional parameters

-c Text
Descriptive text for this queue manager. You can use up to 64 characters; the
default is all blanks.

If you include special characters, enclose the description in double quotes. The
maximum number of characters is reduced if the system is using a double-byte
character set (DBCS).

-d DefaultTransmissionQueue
The name of the local transmission queue where remote messages are put if a
transmission queue is not explicitly defined for their destination. There is no
default.

-h MaximumHandleLimit
The maximum number of handles that any one application can have open at
the same time.

Specify a value in the range 1 through 999 999 999. The default value is 256.

The next six parameter descriptions relate to logging, which is described in “Using
the log for recovery” on page 166.

Note: Choose the logging arrangements with care, because some cannot be
changed once they are committed.

-lc Use circular logging. This is the default logging method.

-ll Use linear logging.

-ld LogPath
The directory used to hold log files.

In WebSphere MQ for Windows, the default is C:\Program
Files\IBM\WebSphere MQ\log (assuming that C is your data drive).

In WebSphere MQ for UNIX systems, the default is /var/mqm/log.

User ID mqm and group mqm must have full authorities to the log files. If you
change the locations of these files, you must give these authorities yourself.
This occurs automatically if the log files are in their default locations.

-lf LogFilePages
The log data is held in a series of files called log files. The log file size is
specified in units of 4 KB pages.

206 WebSphere MQ for HP OpenVMS: System Administration Guide



In WebSphere MQ for UNIX systems, the default number of log file pages is
1024, giving a log file size of 4 MB. The minimum number of log file pages is
64 and the maximum is 65 535.

In WebSphere MQ for Windows, the default number of log file pages is 256,
giving a log file size of 1 MB. The minimum number of log file pages is 32
and the maximum is 65 535.

Note: The size of the log files specified during queue manager creation cannot
be changed for a queue manager.

-lp LogPrimaryFiles
The log files allocated when the queue manager is created.

The minimum number of primary log files you can have is 2 and the
maximum is 254 on Windows, or 510 on UNIX systems. The default is 3.

The total number of primary and secondary log files must not exceed 255 on
Windows, or 511 on UNIX systems, and must not be less than 3.

Operating system limits can reduce the maximum possible log size.

The value is examined when the queue manager is created or started. You can
change it after the queue manager has been created. However, a change in the
value is not effective until the queue manager is restarted, and the effect might
not be immediate.

For more information on primary log files, see “What logs look like” on page
158.

To calculate the size of the primary log files, see “Calculating the size of the
log” on page 162.

-ls LogSecondaryFiles
The log files allocated when the primary files are exhausted.

The minimum number of secondary log files is 1 and the maximum is 253 on
Windows, or 509 on UNIX systems. The default number is 2.

The total number of primary and secondary log files must not exceed 255 on
Windows, or 511 on UNIX systems, and must not be less than 3.

Operating system limits can reduce the maximum possible log size.

The value is examined when the queue manager is started. You can change this
value, but changes do not become effective until the queue manager is
restarted, and even then the effect might not be immediate.

For more information on the use of secondary log files, see “What logs look
like” on page 158.

To calculate the size of the secondary log files, see “Calculating the size of the
log” on page 162.

-q Makes this queue manager the default queue manager. The new queue
manager replaces any existing default queue manager.

If you accidentally use this flag and want to revert to an existing queue
manager as the default queue manager, change the default queue manager as
described in “Making an existing queue manager the default” on page 25.

-g ApplicationGroup
The name of the group containing members allowed to:
v Run MQI applications

Chapter 14. The control commands 207



v Update all IPCC resources
v Change the contents of some queue manager directories

This option applies only to WebSphere MQ for AIX, Solaris, HP-UX, and
Linux®.

The default value is -g all, which allows unrestricted access.

The -g ApplicationGroup value is recorded in the queue manager configuration
file, qm.ini.

The mqm user ID and the user executing the command must belong to the
specified ApplicationGroup.

-t IntervalValue
The trigger time interval in milliseconds for all queues controlled by this queue
manager. This value specifies the time after receiving a trigger-generating
message when triggering is suspended. That is, if the arrival of a message on a
queue causes a trigger message to be put on the initiation queue, any message
arriving on the same queue within the specified interval does not generate
another trigger message.

You can use the trigger time interval to ensure that your application is allowed
sufficient time to deal with a trigger condition before it is alerted to deal with
another on the same queue. You might choose to see all trigger events that
happen; if so, set a low or zero value in this field.

Specify a value in the range 0 through 999 999 999. The default is 999 999 999
milliseconds, a time of more than 11 days. Allowing the default to be used
effectively means that triggering is disabled after the first trigger message.
However, an application can enable triggering again by servicing the queue
using a command to alter the queue to reset the trigger attribute.

-u DeadLetterQueue
The name of the local queue that is to be used as the dead-letter
(undelivered-message) queue. Messages are put on this queue if they cannot be
routed to their correct destination.

The default is no dead-letter queue.

-x MaximumUncommittedMessages
The maximum number of uncommitted messages under any one syncpoint.
That is, the sum of:
v The number of messages that can be retrieved from queues
v The number of messages that can be put on queues
v Any trigger messages generated within this unit of work

This limit does not apply to messages that are retrieved or put outside a
syncpoint.

Specify a value in the range 1 through 999 999 999. The default value is
10 000 uncommitted messages.

-z Suppresses error messages.

This flag is used within WebSphere MQ to suppress unwanted error messages.
Because using this flag can result in loss of information, do not use it when
entering commands on a command line.

Return codes

0 Queue manager created

208 WebSphere MQ for HP OpenVMS: System Administration Guide



8 Queue manager already exists
49 Queue manager stopping
69 Storage not available
70 Queue space not available
71 Unexpected error
72 Queue manager name error
100 Log location invalid
111 Queue manager created. However, there was a problem processing the default

queue manager definition in the product configuration file. The default queue
manager specification might be incorrect.

115 Invalid log size
119 Permission denied (Windows only)

Examples
1. This command creates a default queue manager called Paint.queue.manager,

with a description of Paint shop, and creates the system and default objects. It
also specifies that linear logging is to be used:
crtmqm -c "Paint shop" -ll -q Paint.queue.manager

2. This command creates a default queue manager called Paint.queue.manager,
creates the system and default objects, and requests two primary and three
secondary log files:
crtmqm -c "Paint shop" -ll -lp 2 -ls 3 -q Paint.queue.manager

3. This command creates a queue manager called travel, creates the system and
default objects, sets the trigger interval to 5000 milliseconds (or 5 seconds), and
specifies SYSTEM.DEAD.LETTER.QUEUE as its dead-letter queue.
crtmqm -t 5000 -u SYSTEM.DEAD.LETTER.QUEUE travel

Related commands

strmqm Start queue manager
endmqm End queue manager
dltmqm Delete queue manager

dltmqm (delete queue manager)

Purpose

Use the dltmqm command to delete a specified queue manager and all objects
associated with it. Before you can delete a queue manager you must end it using
the endmqm command.

In WebSphere MQ for Windows, it is an error to delete a queue manager when
queue manager files are open. If you get this error, close the files and reissue the
command.

Syntax

�� dltmqm
-z

QMgrName ��

Chapter 14. The control commands 209



Required parameters

QMgrName
The name of the queue manager to delete.

Optional parameters

-z Suppresses error messages.

Return codes

0 Queue manager deleted
3 Queue manager being created
5 Queue manager running
16 Queue manager does not exist
24 A process that was using the previous instance of the queue manager has not yet

disconnected.
49 Queue manager stopping
69 Storage not available
71 Unexpected error
72 Queue manager name error
100 Log location invalid
112 Queue manager deleted. However, there was a problem processing the default

queue manager definition in the product configuration file. The default queue
manager specification might be incorrect.

119 Permission denied (Windows only)

Examples
1. The following command deletes the queue manager saturn.queue.manager.

dltmqm saturn.queue.manager

2. The following command deletes the queue manager travel and also suppresses
any messages caused by the command.
dltmqm -z travel

Related commands

crtmqm Create queue manager
strmqm Start queue manager
endmqm End queue manager

dmpmqaut (dump authority)

Purpose

Use the dmpmqaut command to dump the current authorizations to a specified
object.

Syntax

�� dmpmqaut
-m QMgrName -n Profile

-l
-t ObjectType

�

210 WebSphere MQ for HP OpenVMS: System Administration Guide



�
-s ServiceComponent -p PrincipalName

-g GroupName
-e
-x

��

Optional parameters

-m QMgrName
Dump authority records only for the queue manager specified. If you omit this
parameter, only authority records for the default queue manager are dumped.

-n Profile
The name of the profile for which to dump authorizations.

-l Dump only the profile name and type. Use this option to generate a terse list of
all defined profile names and types.

-t ObjectType
The type of object for which to dump authorizations. Possible values are:

authinfo Authentication information object, for use with Secure
Sockets Layer (SSL) channel security

channel or chl A channel

clntconn or clcn A client connection channel

listener or lstr A listener

namelist or nl A namelist

process or prcs A process

queue or q A queue or queues matching the object name parameter

qmgr A queue manager

service or srvc A service

-s ServiceComponent
If installable authorization services are supported, specifies the name of the
authorization service for which to dump authorizations. This parameter is
optional; if you omit it, the authorization inquiry is made to the first installable
component for the service.

-p PrincipalName
This parameter applies to WebSphere MQ for Windows only; UNIX systems
keep only group authority records.

The name of a user for whom to dump authorizations to the specified object.
The name of the principal can optionally include a domain name, specified in
the following format:
userid@domain

For more information about including domain names on the name of a
principal, see Chapter 7, “WebSphere MQ security,” on page 91.

-g GroupName
The name of the user group for which to dump authorizations. You can specify
only one name, which must be the name of an existing user group. On
Windows systems, you can use only local groups.

-e Display all profiles used to calculate the cumulative authority that the entity
has to the object specified in -n Profile. The variable Profile must not
contain any wildcard characters.

Chapter 14. The control commands 211



The following parameters must also be specified:
v -m QMgrName

v -n Profile

v -t ObjectType

and either -p PrincipalName, or -g GroupName.

-x Display all profiles with exactly the same name as specified in -n Profile.
This option does not apply to the QMGR object, so a dump request of the
form dmpmqaut -m QM -t QMGR ... -x is not valid.

Examples

The following examples show the use of dmpmqaut to dump authority records for
generic profiles:
1. This example dumps all authority records with a profile that matches queue

a.b.c for principal user1.
dmpmqaut -m qm1 -n a.b.c -t q -p user1

The resulting dump would look something like this:
profile: a.b.*
object type: queue
entity: user1
type: principal
authority: get, browse, put, inq

Note: UNIX users cannot use the -p option; they must use -g groupname
instead.

2. This example dumps all authority records with a profile that matches queue
a.b.c.
dmpmqaut -m qmgr1 -n a.b.c -t q

The resulting dump would look something like this:
profile: a.b.c
object type: queue
entity: Administrator
type: principal
authority: all
- - - - - - - - - - - - - - - - -
profile: a.b.*
object type: queue
entity: user1
type: principal
authority: get, browse, put, inq
- - - - - - - - - - - - - - - - -
profile: a.**
object type: queue
entity: group1
type: group
authority: get

3. This example dumps all authority records for profile a.b.*, of type queue.
dmpmqaut -m qmgr1 -n a.b.* -t q

The resulting dump would look something like this:

212 WebSphere MQ for HP OpenVMS: System Administration Guide



profile: a.b.*
object type: queue
entity: user1
type: principal
authority: get, browse, put, inq

4. This example dumps all authority records for queue manager qmX.
dmpmqaut -m qmX

The resulting dump would look something like this:
profile: q1
object type: queue
entity: Administrator
type: principal
authority: all
- - - - - - - - - - - - - - - - -
profile: q*
object type: queue
entity: user1
type: principal
authority: get, browse
- - - - - - - - - - - - - - - - -
profile: name.*
object type: namelist
entity: user2
type: principal
authority: get
- - - - - - - - - - - - - - - - -
profile: pr1
object type: process
entity: group1
type: group
authority: get

5. This example dumps all profile names and object types for queue manager
qmX.
dmpmqaut -m qmX -l

The resulting dump would look something like this:
profile: q1, type: queue
profile: q*, type: queue
profile: name.*, type: namelist
profile: pr1, type: process

Note:

1. For WebSphere MQ for Windows only, all principals displayed include domain
information, for example:
profile: a.b.*
object type: queue
entity: user1@domain1
type: principal
authority: get, browse, put, inq

2. Each class of object has authority records for each group or principal. These
records have the profile name @CLASS and track the crt (create) authority
common to all objects of that class. If the crt authority for any object of that
class is changed then this record is updated. For example:
profile: @class
object type: queue
entity: test
entity type: principal
authority: crt

Chapter 14. The control commands 213



This shows that members of the group test have crt authority to the class
queue.

3. For WebSphere MQ for Windows only, members of the “Administrators” group
are by default given full authority. This authority, however, is given
automatically by the OAM, and is not defined by the authority records. The
dmpmqaut command displays authority defined only by the authority records.
Unless an authority record has been explicitly defined, therefore, running the
dmpmqaut command against the “Administrators” group displays no authority
record for that group.

Related commands

dspmqaut Display authority
setmqaut Set or reset authority

dmpmqlog (dump log)

Purpose

Use the dmpmqlog command to dump a formatted version of the WebSphere MQ
system log.

The log to be dumped must have been created on the same type of operating
system as that being used to issue the command.

Syntax

�� dmpmqlog
-b
-s StartLSN
-n ExtentNumber

-e EndLSN -f LogFilePath
�

�
-m QMgrName

��

Optional parameters

Dump start point
Use one of the following parameters to specify the log sequence number (LSN)
at which the dump should start. If you omit this, dumping starts by default
from the LSN of the first record in the active portion of the log.

-b Start dumping from the base LSN. The base LSN identifies the start of the
log extent that contains the start of the active portion of the log.

-s StartLSN
Start dumping from the specified LSN. The LSN is specified in the format
nnnn:nnnn:nnnn:nnnn.

If you are using a circular log, the LSN value must be equal to or greater
than the base LSN value of the log.

-n ExtentNumber
Start dumping from the specified extent number. The extent number must
be in the range 0–9 999 999.

This parameter is valid only for queue managers using linear logging.

214 WebSphere MQ for HP OpenVMS: System Administration Guide



-e EndLSN
End dumping at the specified LSN. The LSN is specified in the format
nnnn:nnnn:nnnn:nnnn.

-f LogFilePath
The absolute (rather than relative) directory path name to the log files. The
specified directory must contain the log header file (amqhlctl.lfh) and a
subdirectory called active. The active subdirectory must contain the log files.
By default, log files are assumed to be in the directories specified in the
WebSphere MQ configuration information. If you use this option, queue names
associated with queue identifiers are shown in the dump only if you use the
-m option to name a queue manager name that has the object catalog file in its
directory path.

On a system that supports long file names this file is called qmqmobjcat and,
to map the queue identifiers to queue names, it must be the file used when the
log files were created. For example, for a queue manager named qm1, the
object catalog file is located in the directory ..\qmgrs\qm1\qmanager\. To
achieve this mapping, you might need to create a temporary queue manager,
for example named tmpq, replace its object catalog with the one associated
with the specific log files, and then start dmpmqlog, specifying -m tmpq and -f
with the absolute directory path name to the log files.

-m QMgrName
The name of the queue manager. If you omit this parameter, the name of the
default queue manager is used.

The queue manager must not be running when the dmpmqlog command is
issued. Similarly, the queue manager must not be started while dmpmqlog is
running.

dspmq (display queue managers)

Purpose

Use the dspmq command to display names and details of the queue managers on
a system.

Syntax

�� dspmq
-m QMgrName

�

-s

-o all

-o default
-o status

��

Required parameters

None

Chapter 14. The control commands 215



Optional parameters

-m QMgrName
The queue manager for which to display details. If you give no name, all
queue manager names are displayed.

-s Displays the operational status of the queue managers. This is the default
status setting.

The parameter -o status is equivalent to -s.

-o all
Displays the operational status of the queue managers, and whether any are
the default queue manager.

-o default
Displays whether any of the queue managers are the default queue manager.

-o status
Displays the operational status of the queue managers.

Queue Manager States

The following is a list of the different states a queue manager can be in:

Starting
Running
Quiescing
Ending immediately
Ending preemptively
Ended normally
Ended immediately
Ended unexpectedly
Ended preemptively

Return codes

0 Command completed normally
36 Invalid arguments supplied
71 Unexpected error
72 Queue manager name error

dspmqaut (display authority)

Purpose

Use the dspmqaut command to display the current authorizations to a specified
object.

If a user ID is a member of more than one group, this command displays the
combined authorizations of all the groups.

Only one group or principal can be specified.

For more information about authorization service components, see “The Service
stanza” on page 79 and “The ServiceComponent stanza” on page 80.

216 WebSphere MQ for HP OpenVMS: System Administration Guide



Syntax

�� dspmqaut
-m QMgrName

-n ObjectName -t ObjectType �

� -g GroupName
-p PrincipalName -s ServiceComponent

��

Required parameters

-n ObjectName
The name of the object on which to make the inquiry.

This parameter is required, unless you are displaying the authorizations of a
queue manager, in which case you must not include it and instead specify the
queue manager name using the -m parameter.

-t ObjectType
The type of object on which to make the inquiry. Possible values are:

authinfo Authentication information object, for use with Secure
Sockets Layer (SSL) channel security

channel or chl A channel

clntconn or clcn A client connection channel

listener or lstr A Listener

namelist or nl A namelist

process or prcs A process

queue or q A queue or queues matching the object name parameter

qmgr A queue manager

service or srvc A service

Optional parameters

-m QMgrName
The name of the queue manager on which to make the inquiry. This parameter
is optional if you are displaying the authorizations of your default queue
manager.

-g GroupName
The name of the user group on which to make the inquiry. You can specify
only one name, which must be the name of an existing user group. On
Windows systems, you can use only local groups.

-p PrincipalName
The name of a user for whom to display authorizations to the specified object.

For WebSphere MQ for Windows only, the name of the principal can optionally
include a domain name, specified in the following format:
userid@domain

For more information about including domain names on the name of a
principal, see Chapter 7, “WebSphere MQ security,” on page 91.

-s ServiceComponent
If installable authorization services are supported, specifies the name of the

Chapter 14. The control commands 217



authorization service to which the authorizations apply. This parameter is
optional; if you omit it, the authorization inquiry is made to the first installable
component for the service.

Returned parameters

Returns an authorization list, which can contain none, one, or more authorization
values. Each authorization value returned means that any user ID in the specified
group or principal has the authority to perform the operation defined by that
value.

Table 15 shows the authorities that can be given to the different object types.

Table 15. Specifying authorities for different object types

Authority Queue Process Queue
manager

Namelist Auth info Clntconn Channel Listener Service

all Yes Yes Yes Yes Yes Yes Yes Yes Yes

alladm Yes Yes Yes Yes Yes Yes Yes Yes Yes

allmqi Yes Yes Yes Yes Yes No No No No

none Yes Yes Yes Yes Yes Yes Yes Yes Yes

altusr No No Yes No No No No No No

browse Yes No No No No No No No No

chg Yes Yes Yes Yes Yes Yes Yes Yes Yes

clr Yes No No No No No No No No

connect No No Yes No No No No No No

crt Yes Yes Yes Yes Yes Yes Yes Yes Yes

ctrl No No No No No No Yes Yes Yes

ctrlx No No No No No No Yes No No

dlt Yes Yes Yes Yes Yes Yes Yes Yes Yes

dsp Yes Yes Yes Yes Yes Yes Yes Yes Yes

get Yes No No No No No No No No

put Yes No No No No No No No No

inq Yes Yes Yes Yes Yes No No No No

passall Yes No No No No No No No No

passid Yes No No No No No No No No

set Yes Yes Yes No No No No No No

setall Yes No Yes No No No No No No

setid Yes No Yes No No No No No No

The following list defines the authorizations associated with each value:

all Use all operations relevant to the object.
alladm Perform all administration operations relevant to the object.
allmqi Use all MQI calls relevant to the object.
altusr Specify an alternate user ID on an MQI call.
browse Retrieve a message from a queue by issuing an MQGET call with the

BROWSE option.

218 WebSphere MQ for HP OpenVMS: System Administration Guide



chg Change the attributes of the specified object, using the appropriate command
set.

clr Clear a queue (PCF command Clear queue only).
ctrl Start, and stop the specified channel, listener, or service. And ping the

specified channel.
ctrlx Reset or resolve the specified channel.
connect Connect the application to the specified queue manager by issuing an

MQCONN call.
crt Create objects of the specified type using the appropriate command set.
dlt Delete the specified object using the appropriate command set.
dsp Display the attributes of the specified object using the appropriate command

set.
get Retrieve a message from a queue by issuing an MQGET call.
inq Make an inquiry on a specific queue by issuing an MQINQ call.
passall Pass all context.
passid Pass the identity context.
put Put a message on a specific queue by issuing an MQPUT call.
set Set attributes on a queue from the MQI by issuing an MQSET call.
setall Set all context on a queue.
setid Set the identity context on a queue.

The authorizations for administration operations, where supported, apply to these
command sets:
v Control commands
v MQSC commands
v PCF commands

Return codes

0 Successful operation
36 Invalid arguments supplied
40 Queue manager not available
49 Queue manager stopping
69 Storage not available
71 Unexpected error
72 Queue manager name error
133 Unknown object name
145 Unexpected object name
146 Object name missing
147 Object type missing
148 Invalid object type
149 Entity name missing

Examples
v The following example shows a command to display the authorizations on

queue manager saturn.queue.manager associated with user group staff:
dspmqaut -m saturn.queue.manager -t qmgr -g staff

The results from this command are:
Entity staff has the following authorizations for object:

get
browse
put
inq
set

Chapter 14. The control commands 219



connect
altusr
passid
passall
setid

v The following example displays the authorities user1 has for queue a.b.c:
dspmqaut -m qmgr1 -n a.b.c -t q -p user1

The results from this command are:
Entity user1 has the following authorizations for object:

get
put

Related commands

dmpmqaut Dump authority
setmqaut Set or reset authority

dspmqcsv (display command server)

Purpose

Use the dspmqcsv command to display the status of the command server for the
specified queue manager.

The status can be one of the following:
v Starting
v Running
v Running with SYSTEM.ADMIN.COMMAND.QUEUE not enabled for gets
v Ending
v Stopped

Syntax

�� dspmqcsv
QMgrName

��

Required parameters

None

Optional parameters

QMgrName
The name of the local queue manager for which the command server status is
being requested.

Return codes

0 Command completed normally
10 Command completed with unexpected results
20 An error occurred during processing

220 WebSphere MQ for HP OpenVMS: System Administration Guide



Examples

The following command displays the status of the command server associated with
venus.q.mgr:
dspmqcsv venus.q.mgr

Related commands

strmqcsv Start a command server
endmqcsv End a command server

dspmqfls (display files)

Purpose

Use the dspmqfls command to display the real file system name for all WebSphere
MQ objects that match a specified criterion. You can use this command to identify
the files associated with a particular object. This is useful for backing up specific
objects. See “Understanding WebSphere MQ file names” on page 17 for
information about name transformation.

Syntax

�� dspmqfls
-m QMgrName -t ObjType

GenericObjName ��

Required parameters

GenericObjName
The name of the object. The name is a string with no flag and is a required
parameter. Omitting the name returns an error.

This parameter supports a wild card character * at the end of the string.

Optional parameters

-m QMgrName
The name of the queue manager for which to examine files. If you omit this
name, the command operates on the default queue manager.

-t ObjType
The object type. The following list shows the valid object types. The
abbreviated name is shown first followed by the full name.

* or all All object types; this is the default

authinfo Authentication information object, for use with Secure
Sockets Layer (SSL) channel security

channel or chl A channel

clntconn or clcn A client connection channel

catalog or ctlg An object catalog

namelist or nl A namelist

listener or lstr A listener

Chapter 14. The control commands 221



process or prcs A process

queue or q A queue or queues matching the object name parameter

qalias or qa An alias queue

qlocal or ql A local queue

qmodel or qm A model queue

qremote or qr A remote queue

qmgr A queue manager object

service or srvc A service

Note:

1. The dspmqfls command displays the name of the directory containing the
queue, not the name of the queue itself.

2. In WebSphere MQ for UNIX systems, you need to prevent the shell from
interpreting the meaning of special characters, for example, *. The way you do
this depends on the shell you are using, but might involve the use of single
quotation marks, double quotation marks, or a backslash.

Return codes

0 Command completed normally
10 Command completed but not entirely as expected
20 An error occurred during processing

Examples
1. The following command displays the details of all objects with names

beginning SYSTEM.ADMIN defined on the default queue manager.
dspmqfls SYSTEM.ADMIN*

2. The following command displays file details for all processes with names
beginning PROC defined on queue manager RADIUS.
dspmqfls -m RADIUS -t prcs PROC*

dspmqrte (WebSphere MQ display route application)

Purpose

The WebSphere MQ display route application (dspmqrte) can be executed on all
WebSphere MQ Version 6.0 queue managers, with the exception of WebSphere MQ
for z/OS queue managers. You can execute the WebSphere MQ display route
application as a client to a WebSphere MQ for z/OS Version 6.0 queue manager by
specifying the -c parameter when issuing the dspmqrte command.

Note: To run a client application against a WebSphere MQ for z/OS queue
manager, the client attachment feature must be installed.

Use dspmqrte to help determine the route a message has taken through a queue
manager network. The WebSphere MQ display route application generates and
puts a trace-route message into a queue manager network. As the trace-route
message travels through the queue manager network, activity information is
recorded. When the trace-route message reaches it’s target queue the activity
information is collected by the WebSphere MQ display route application and

222 WebSphere MQ for HP OpenVMS: System Administration Guide



displayed. For more information, and examples of using the WebSphere MQ
display route application, see the Monitoring WebSphere MQWebSphere MQ
Monitoring book.

Syntax

�� dspmqrte
-c

Generation options

-i CorrelId Display options
�

� -q TargetQName
-m QMgrName

��

Generation options:

-ac
-ar

-d Deliver -f Forward
�

�
(1)

-l Persistence
-o -p Priority

�

�
-qm TargetQMgrName

�

-ro none
,

ReportOption

�

�
-rq ReplyToQ

-rqm ReplyToQMgr
-s Activities

�

�
-t Detail -xp PassExpiry -xs Expiry

�

�
Display options

(2)
-n

Display options:

-b

�

-v summary

-v all
none
outline

,

DisplayOption

�

Chapter 14. The control commands 223



�
-w WaitTime

Notes:

1 If Persistence is specified as yes, and is accompanied by a request for a
trace-route reply message (-ar), or any report generating options (-ro
ReportOption), then you must specify the parameter -rq ReplyToQ. The reply-to
queue must not resolve to a temporary dynamic queue.

2 If this parameter is accompanied by a request for a trace-route reply message
(-ar), or any of the report generating options (-ro ReportOption), then a
specific (non-model) reply-to queue must be specified using -rq ReplyToQ. By
default, activity report messages are requested.

Required parameters

-q TargetQName
If the WebSphere MQ display route application is being used to send a
trace-route message into a queue manager network, TargetQName specifies the
name of the target queue.

If the WebSphere MQ display route application is being used to view
previously gathered activity information, TargetQName specifies the name of
the queue where the activity information is stored.

Optional parameters

-c Specifies that the WebSphere MQ display route application connects as a client
application. For more information on how to set up client machines, see the
WebSphere MQ ClientsWebSphere MQ Clients book.

If you do not specify this parameter, the WebSphere MQ display route
application does not connect as a client application.

-i CorrelId
This parameter is used when the WebSphere MQ display route application is
used to display previously accumulated activity information only. There can be
many activity reports and trace-route reply messages on the queue specified by
-q TargetQName. CorrelId is used to identify the activity reports, or a trace-route
reply message, related to a trace-route message. Specify the message identifier
of the original trace-route message in CorrelId.

The format of CorrelId is a 48 character hexadecimal string.

-m QMgrName
The name of the queue manager to which the WebSphere MQ display route
application connects. The name can contain up to 48 characters.

If you do not specify this parameter, the default queue manager is used.

Generation Options

The following parameters are used when the WebSphere MQ display route
application is used to put a trace-route message into a queue manager network.

-ac
Specifies that activity information is to be accumulated within the trace-route
message.

If you do not specify this parameter, activity information is not accumulated
within the trace-route message.

224 WebSphere MQ for HP OpenVMS: System Administration Guide



-ar Requests that a trace-route reply message containing all accumulated activity
information is generated in the following circumstances:
v The trace-route message is discarded by a WebSphere MQ Version 6 queue

manager.
v The trace-route message is put to a local queue (target queue or dead-letter

queue) by a WebSphere MQ Version 6 queue manager.
v The number of activities performed on the trace-route message exceeds the

value of specified in -s Activities.

For more information on trace-route reply messages, see the Monitoring
WebSphere MQWebSphere MQ Monitoring book.

If you do not specify this parameter, a trace-route reply message is not
requested.

-d Deliver
Specifies whether the trace-route message is to be delivered to the target queue
on arrival. Possible values for Deliver are:

yes On arrival, the trace-route message is put to the target
queue, even if the queue manager does not support
trace-route messaging.

no On arrival, the trace-route message is not put to the target
queue.

If you do not specify this parameter, the trace-route message is not put to the
target queue.

-f Forward
Specifies the type of queue manager that the trace-route message can be
forwarded to. Queue managers use an algorithm when determining whether to
forward a message to a remote queue manager. For details of this algorithm,
see Monitoring WebSphere MQWebSphere MQ Monitoring. The possible values
for Forward are:

all The trace-route message is forwarded to any queue
manager.
Warning: If forwarded to a WebSphere MQ queue manager
prior to Version 6.0, the trace-route message is not
recognized and can be delivered to a local queue despite
the value of the -d Deliver parameter.

supported The trace-route message is forwarded only to a queue
manager that honors the Deliver parameter from the
TraceRoute PCF group.

If you do not specify this parameter, the trace-route message is forwarded only
to a queue manager that honors the Deliver parameter.

-l Persistence
Specifies the persistence of the generated trace-route message. Possible values
for Persistence are:

yes The generated trace-route message is persistent.
(MQPER_PERSISTENT).

no The generated trace-route message is not persistent.
(MQPER_NOT_PERSISTENT).

Chapter 14. The control commands 225



q The generated trace-route message inherits it’s persistence
value from the queue specified by -q TargetQName.
(MQPER_PERSISTENCE_AS_Q_DEF).

A trace-route reply message, or any report messages, returned share the same
persistence value as the original trace-route message.

If Persistence is specified as yes, you must specify the parameter -rq ReplyToQ.
The reply-to queue must not resolve to a temporary dynamic queue.

If you do not specify this parameter, the generated trace-route message is not
persistent.

-o Specifies that the target queue is not bound to a specific destination. Typically
this parameter is used when the trace-route message is to be put across a
cluster. The target queue is opened with option MQOO_BIND_NOT_FIXED.

If you do not specify this parameter, the target queue is bound to a specific
destination.

-p Priority
Specifies the priority of the trace-route message. The value of Priority is either
greater than or equal to 0, or MQPRI_PRIORITY_AS_Q_DEF.
MQPRI_PRIORITY_AS_Q_DEF specifies that the priority value is taken from
the queue specified by -q TargetQName.

If you do not specify this parameter, the priority value is taken from the queue
specified by -q TargetQName.

-qm TargetQMgrName
Qualifies the target queue name; normal queue manager name resolution
applies. The target queue is specified with -q TargetQName.

If you do not specify this parameter, the queue manager to which the
WebSphere MQ display route application is connected is used as the reply-to
queue manager.

-ro none | ReportOption

none Specifies no report options are set.

ReportOption Specifies report options for the trace-route message.
Multiple report options can be specified using a comma as a
separator. Possible values for ReportOption are:

activity The report option MQRO_ACTIVITY is set.

coa The report option
MQRO_COA_WITH_FULL_DATA is set.

cod The report option
MQRO_COD_WITH_FULL_DATA is set.

exception
The report option
MQRO_EXCEPTION_WITH_FULL_DATA is set.

expiration
The report option
MQRO_EXPIRATION_WITH_FULL_DATA is set.

discard The report option MQRO_DISCARD_MSG is set.

If neither -ro ReportOption nor -ro none are specified, then the
MQRO_ACTIVITY and MQRO_DISCARD_MSG report options are specified.

226 WebSphere MQ for HP OpenVMS: System Administration Guide



-rq ReplyToQ
Specifies the name of the reply-to queue that all responses to the trace-route
message are sent to. If the trace-route message is persistent, or if the -n
parameter is specified, a reply-to queue must be specified that is not a
temporary dynamic queue.

If you do not specify this parameter, the system default model queue,
SYSTEM.DEFAULT.MODEL.QUEUE is used as the reply-to queue. Using this
model queue causes a temporary dynamic queue, for the WebSphere MQ
display route application, to be created.

-rqm ReplyToQMgr
Specifies the name of the queue manager where the reply-to queue resides. The
name can contain up to 48 characters.

If you do not specify this parameter, the queue manager to which the
WebSphere MQ display route application is connected is used as the reply-to
queue manager.

-s Activities
Specifies the maximum number of recorded activities that can be performed on
behalf of the trace-route message before it is discarded. This prevents the
trace-route message from being forwarded indefinitely if caught in an infinite
loop. The value of Activities is either greater than or equal to 1, or
MQROUTE_UNLIMITED_ACTIVITIES. MQROUTE_UNLIMITED_ACTIVITIES
specifies that an unlimited number of activities can be performed on behalf of
the trace-route message.

If you do not specify this parameter, an unlimited number of activities can be
performed on behalf of the trace-route message.

-t Detail
Specifies the activities that are recorded. The possible values for Detail are:

low Activities performed by user-defined application are
recorded only.

medium Activities specified in low are recorded. Additionally,
activities performed by MCAs are recorded.

high Activities specified in low, and medium are recorded.
MCAs do not expose any further activity information at this
level of detail. This option is available to user-defined
applications that are to expose further activity information
only. For example, if a user-defined application determines
the route a message takes by considering certain message
characteristics, the routing logic could be included with this
level of detail.

If you do not specify this parameter, medium level activities are recorded.

-xp PassExpiry
Specifies whether the report option MQRO_DISCARD_MSG and the remaining
expiry time from the trace-route message is passed on to the trace-route reply
message. Possible values for PassExpiry are:

Chapter 14. The control commands 227



yes The report option MQRO_PASS_DISCARD_AND_EXPIRY is
specified in the message descriptor of the trace-route
message.

If a trace-route reply message, or activity reports, are
generated for the trace-route message, the
MQRO_DISCARD_MSG report option (if specified), and the
remaining expiry time are passed on.

This is the default value.

no The report option MQRO_PASS_DISCARD_AND_EXPIRY is
not specified.

If a trace-route reply message is generated for the
trace-route message, the discard option and remaining
expiry time from the trace-route message are not passed on.

If you do not specify this parameter, the
MQRO_PASS_DISCARD_AND_EXPIRY report option is not specified in the
trace-route message.

-xs Expiry
Specifies the expiry time for the trace-route message, in seconds.

If you do not specify this parameter, the expiry time is specified as 60 seconds.

-n Specifies that activity information returned for the trace-route message is not to
be displayed.

If this parameter is accompanied by a request for a trace-route reply message,
(-ar), or any of the report generating options from (-ro ReportOption), then a
specific (non-model) reply-to queue must be specified using -rq ReplyToQ. By
default, activity report messages are requested.

After the trace-route message is put to the specified target queue, a 48
character hexadecimal string is returned containing the message identifier of
the trace-route message. The message identifier can be used by the WebSphere
MQ display route application to display the activity information for the
trace-route message at a later time, using the -i CorrelId parameter.

If you do not specify this parameter, activity information returned for the
trace-route message is displayed in the form specified by the -v parameter.

Display options

The following parameters are used when the WebSphere MQ display route
application is used to display collected activity information.

-b Specifies that the WebSphere MQ display route application browses only
activity reports or a trace-route reply message related to a message. This allows
activity information to be displayed again at a later time.

If you do not specify this parameter, the WebSphere MQ display route
application destructively gets activity reports or a trace-route reply message
related to a message.

-v summary | all | none | outline DisplayOption

summary The queues that the trace-route message was routed
through are displayed.

all All available information is displayed.

none No information is displayed.

228 WebSphere MQ for HP OpenVMS: System Administration Guide



outline DisplayOption Specifies display options for the trace-route message.
Multiple display options can be specified using a comma as
a separator.

If no values are supplied the following is displayed:

v The application name

v The type of each operation

v Any operation specific parameters

Possible values for DisplayOption are:

activity All non-PCF group parameters in Activity PCF
groups are displayed.

identifiers
Values with parameter identifiers
MQBACF_MSG_ID or MQBACF_CORREL_ID are
displayed. This overrides msgdelta.

message
All non-PCF group parameters in Message PCF
groups are displayed. When this value is specified,
you cannot specify msgdelta.

msgdelta
All non-PCF group parameters in Message PCF
groups, that have changed since the last operation,
are displayed. When this value is specified, you
cannot specify message.

operation
All non-PCF group parameters in Operation PCF
groups are displayed.

traceroute
All non-PCF group parameters in TraceRoute PCF
groups are displayed.

If you do not specify this parameter, a summary of the message route is
displayed.

-w WaitTime
Specifies the time, in seconds, that the WebSphere MQ display route
application waits for activity reports, or a trace-route reply message, to return
to the specified reply-to queue.

If you do not specify this parameter, the wait time is specified as the expiry
time of the trace-route message, plus 60 seconds.

Return codes

0 Command completed normally
10 Invalid arguments supplied
20 An error occurred during processing

Examples
1. The following command puts a trace-route message into a queue manager

network with the target queue specified as TARGET.Q. Providing queue
managers on route are enabled for activity recording, activity reports are
generated. Depending on the queue manager attribute, ACTIVREC, activity

Chapter 14. The control commands 229



reports are either delivered to the reply-to queue ACT.REPORT.REPLY.Q, or are
delivered to a system queue. The trace-route message is discarded on arrival at
the target queue.
dspmqrte -q TARGET.Q -rq ACT.REPORT.REPLY.Q

Providing one or more activity reports are delivered to the reply-to queue,
ACT.REPORT.REPLY.Q, the WebSphere MQ display route application orders and
displays the activity information.

2. The following command puts a trace-route message into a queue manager
network with the target queue specified as TARGET.Q. Activity information is
accumulated within the trace-route message, but activity reports are not
generated. On arrival at the target queue the trace-route message is discarded.
Depending on the value of the target queue manager attribute, ROUTEREC, a
trace-route reply message can be generated and delivered to either the reply-to
queue, TRR.REPLY.TO.Q, or to a system queue.
dspmqrte -ac -ar -ro discard -rq TRR.REPLY.TO.Q -q TARGET.Q

Providing a trace-route reply message is generated and is delivered to the
reply-to queue TRR.REPLY.TO.Q, the WebSphere MQ display route application
orders and displays the activity information that was accumulated in the
trace-route message.

For more examples of using the WebSphere MQ display route application and its
output, see the Monitoring WebSphere MQWebSphere MQ Monitoring book.

dspmqtrc (Display WebSphere MQ formatted trace output)

Purpose

Use the dspmqtrc command to display WebSphere MQ formatted trace output.

Syntax

�� dspmqtrc
-t FormatTemplate -h -o OutputFilename

�

� InputFileName ��

Required parameters

InputFileName
Specifies the name of the file containing the unformatted trace. For example
MQS_ROOT:[MQM.TRACE]AMQ20202345.TRC.

Optional parameters

-t FormatTemplate
Specifies the name of the template file containing details of how to display the
trace. The default value is SYS$SHARE:AMQTRC.FMT.

-h Omit header information from the report.

230 WebSphere MQ for HP OpenVMS: System Administration Guide



-o output_filename
The name of the file into which to write formatted data.

Examples
1. The following command shows the redirection of output:

Related commands
endmqtrc

End WebSphere MQ trace
strmqtrc

Start WebSphere MQ trace

dspmqtrn (display transactions)

Purpose

Use the dspmqtrn command to display details of in-doubt transactions. This
includes transactions coordinated by WebSphere MQ and by an external
transaction manager.

For each in-doubt transaction, a transaction number (a human-readable transaction
identifier), the transaction state, and the transaction ID are displayed. (Transaction
IDs can be up to 128 characters long, hence the need for a transaction number.)

Syntax

�� dspmqtrn
-e -i -m QMgrName

��

Optional parameters

-e Requests details of externally coordinated, in-doubt transactions. Such
transactions are those for which WebSphere MQ has been asked to prepare to
commit, but has not yet been informed of the transaction outcome.

-i Requests details of internally coordinated, in-doubt transactions. Such
transactions are those for which each resource manager has been asked to
prepare to commit, but WebSphere MQ has yet to inform the resource
managers of the transaction outcome.

Information about the state of the transaction in each of its participating
resource managers is displayed. This information can help you assess the
affects of failure in a particular resource manager.

Note: If you specify neither -e nor -i, details of both internally and externally
coordinated in-doubt transactions are displayed.

-m QMgrName
The name of the queue manager for which to display transactions. If you omit
the name, the default queue manager’s transactions are displayed.

dspmqtrc mqs_root:[mqm.trace]amq20202345.trc > mqs_root:[mqm.trace]amq20202345.fmt

Chapter 14. The control commands 231



Return codes

0 Successful operation
36 Invalid arguments supplied
40 Queue manager not available
49 Queue manager stopping
69 Storage not available
71 Unexpected error
72 Queue manager name error
102 No transactions found

Related commands

rsvmqtrn Resolve transaction

dspmqver (display version information)

Purpose

Use the dspmqver command to display WebSphere MQ version and build
information.

Syntax

�� dspmqver
-p Components -f Fields -b -v

��

Optional parameters

-p Components
Display information for the components specified by Component. Either a single
component, or multiple components can be specified. To specify multiple
components, sum the values of the required components, then specify
Component as the total of the summation. Available components and related
values follow:

1 WebSphere MQ server, or client.

2 WebSphere MQ classes for Java™.

4 WebSphere MQ classes for Java Message Service.

8 WebScale Distribution Hub

The default value is 1.

-f Fields
Display information for the fields specified by Field. Either a single field, or
multiple fields can be specified. To specify multiple fields, sum the values of
the required fields, then specify Field as the total of the summation. Available
fields and related values follow:

1 Name

232 WebSphere MQ for HP OpenVMS: System Administration Guide



2
Version, in the form V.R.M.F:
Where V=Version, R=Release, M=Modification,
and F=Fix pack

4 CMVC level

8 Build type

Information for each selected field is displayed on a separate line when the
dspmqver command is executed.

The default value is 15. This displays information for all fields.

-b Omit header information from the report.

-v Display verbose output.

Return codes

0 Command completed normally.
10 Command completed with unexpected results.
20 An error occurred during processing.

Examples

The following command displays WebSphere MQ version and build information,
using the default settings for -p Components and -f Fields:
dspmqver

The following command displays version and build information for the WebSphere
MQ classes for Java:
dspmqver -p 2

The following command displays the name and version of the WebSphere MQ
classes for Java Message Service:
dspmqver -p 4 -f 3

The following command displays the build level of the WebScale Distribution Hub:
dspmqver -p 8 -f 4

endmqcsv (end command server)

Purpose

Use the endmqcsv command to stop the command server on the specified queue
manager.

If the queue manager attribute, SCMDSERV, is specified as QMGR then changing
the state of the command server using endmqcsv does not effect how the queue
manager acts upon the SCMDSERV attribute at the next restart.

Chapter 14. The control commands 233



Syntax

�� endmqcsv
-c

-i
QMgrName ��

Required parameters

QMgrName
The name of the queue manager for which to end the command server.

Optional parameters

-c Stops the command server in a controlled manner. The command server is
allowed to complete the processing of any command message that it has
already started. No new message is read from the command queue.

This is the default.

-i Stops the command server immediately. Actions associated with a command
message currently being processed might not complete.

Return codes

0 Command completed normally
10 Command completed with unexpected results
20 An error occurred during processing

Examples
1. The following command stops the command server on queue manager

saturn.queue.manager:
endmqcsv -c saturn.queue.manager

The command server can complete processing any command it has already
started before it stops. Any new commands received remain unprocessed in the
command queue until the command server is restarted.

2. The following command stops the command server on queue manager pluto
immediately:
endmqcsv -i pluto

Related commands

strmqcsv Start a command server
dspmqcsv Display the status of a command server

endmqlsr (end listener)

Purpose

The endmqlsr command ends all listener processes for the specified queue
manager.

You do not need to stop the queue manager before issuing the endmqlsr
command. If any of the listeners are configured to have inbound channels running
within the runmqlsr listener process, rather than within a pool process, the request

234 WebSphere MQ for HP OpenVMS: System Administration Guide



to end that listener might fail if channels are still active. In this case a message is
written indicating how many listeners were successfully ended and how many
listeners are still running.

If the listener attribute, CONTROL, is specified as QMGR then changing the state
of the listener using endmqlsr does not effect how the queue manager acts upon
the CONTROL attribute at the next restart.

Syntax

�� endmqlsr
-w -m QMgrName

��

Optional parameters

-m QMgrName
The name of the queue manager. If you omit this, the command operates on
the default queue manager.

-w Wait before returning control.

Control is returned to you only after all listeners for the specified queue
manager have stopped.

Return codes

0 Command completed normally
10 Command completed with unexpected results
20 An error occurred during processing

endmqm (end queue manager)

Purpose

Use the endmqm command to end (stop) a specified local queue manager. This
command stops a queue manager in one of three modes:
v Controlled or quiesced shutdown
v Immediate shutdown
v Preemptive shutdown

The attributes of the queue manager and the objects associated with it are not
affected. You can restart the queue manager using the strmqm (Start queue
manager) command.

To delete a queue manager, stop it and then use the dltmqm (Delete queue
manager) command.

Issuing the endmqm command affects any client application connected through a
server-connection channel. The effect varies depending on the parameter used, but
it is as though a STOP CHANNEL command was issued in one of the three
possible modes. See WebSphere MQ ClientsWebSphere MQ Clients, for information
on the effects of STOP CHANNEL modes on server-connection channels. The
endmqm optional parameter descriptions state which STOP CHANNEL mode they
are equivalent to.

Chapter 14. The control commands 235



Syntax

�� endmqm
-c

-w
-i
-p

-z
QMgrName ��

Required parameters

QMgrName
The name of the message queue manager to be stopped.

Optional parameters

-c Controlled (or quiesced) shutdown. This is the default.

The queue manager stops, but only after all applications have disconnected.
Any MQI calls currently being processed are completed.

Control is returned to you immediately and you are not notified of when the
queue manager has stopped.

The effect on any client applications connected through a server-connection
channel is equivalent to a STOP CHANNEL command issued in QUIESCE
mode.

-w Wait shutdown.

This type of shutdown is equivalent to a controlled shutdown except that
control is returned to you only after the queue manager has stopped. You
receive the message Waiting for queue manager qmName to end while
shutdown progresses.

The effect on any client applications connected through a server-connection
channel is equivalent to a STOP CHANNEL command issued in QUIESCE
mode.

-i Immediate shutdown. The queue manager stops after it has completed all the
MQI calls currently being processed. Any MQI requests issued after the
command has been issued fail. Any incomplete units of work are rolled back
when the queue manager is next started.

Control is returned after the queue manager has ended.

The effect on any client applications connected through a server-connection
channel is equivalent to a STOP CHANNEL command issued in FORCE mode.

-p Preemptive shutdown.

Use this type of shutdown only in exceptional circumstances. For example,
when a queue manager does not stop as a result of a normal endmqm
command.

The queue manager might stop without waiting for applications to disconnect
or for MQI calls to complete. This can give unpredictable results for
WebSphere MQ applications. The shutdown mode is set to immediate shutdown.
If the queue manager has not stopped after a few seconds, the shutdown mode
is escalated, and all remaining queue manager processes are stopped.

The effect on any client applications connected through a server-connection
channel is equivalent to a STOP CHANNEL command issued in TERMINATE
mode.

236 WebSphere MQ for HP OpenVMS: System Administration Guide



-z Suppresses error messages on the command.

Return codes

0 Queue manager ended
3 Queue manager being created
16 Queue manager does not exist
40 Queue manager not available
49 Queue manager stopping
69 Storage not available
71 Unexpected error
72 Queue manager name error
119 Permission denied (Windows only)

Examples

The following examples show commands that stop the specified queue managers.
1. This command ends the queue manager named mercury.queue.manager in a

controlled way. All applications currently connected are allowed to disconnect.
endmqm mercury.queue.manager

2. This command ends the queue manager named saturn.queue.manager
immediately. All current MQI calls complete, but no new ones are allowed.
endmqm -i saturn.queue.manager

Related commands

crtmqm Create a queue manager
strmqm Start a queue manager
dltmqm Delete a queue manager

endmqtrc (End WebSphere MQ trace)

Purpose

Use the endmqtrc command to end tracing for the specified entity or all entities.

Syntax

�� endmqtrc
-a
-m QMgrName

-e

��

Optional parameters

-m QMgrName
Is the name of the queue manager for which tracing is to be ended.

A maximum of one -m flag and associated queue manager name can be
supplied on the command.

Chapter 14. The control commands 237



A queue manager name and -m flag can be specified on the same command as
the -e flag.

-e If this flag is specified, early tracing is ended.

-a If this flag is specified all tracing is ended.

This flag must be specified alone.

Return codes
AMQ5611

This message is issued if arguments that are not valid are supplied to the
command.

Examples

This command ends tracing of data for a queue manager called QM1.

Related commands
dspmqtrc

Display formatted trace output
strmqtrc

Start WebSphere MQ trace

mqftapp (run File Transfer Application GUI)

Purpose

The mqftapp command is available with the File Transfer Application on
WebSphere MQ for Windows, and WebSphere MQ for Linux (x86 platform)
servers only.

Use the mqftapp command to run the File Transfer Application graphical user
interface (GUI).

Alternatively, on WebSphere MQ for Windows you can start the File Transfer
Application by selecting it through the start menu.

When run for the first time, the graphical user interface must be configured. For
instructions of how to do this, see Appendix F, “OpenVMS cluster failover set
templates,” on page 293.

Syntax

The syntax of this command follows:

�� mqftapp ��

Related commands

mqftrcv Receive file on server

mqftrcvc Receive file on client

endmqtrc -m QM1

238 WebSphere MQ for HP OpenVMS: System Administration Guide



mqftsnd Send file from server

mqftsndc Send file from client

mqftrcv (receive file on server)

Purpose

The mqftrcv command is available with the File Transfer Application on
WebSphere MQ for Windows, and WebSphere MQ for Linux (x86 platform)
servers only.

Use the mqftrcv command to do one of the following:
v Receive a file.
v Extract a file.
v Delete a file.
v View sent files.

Syntax

�� mqftrcv -q QueueName
-m QMgrName -c CorrelId

�

�
-u MsgId -s UserData -v

-a

-l
-i
-o
-d
-g

-y
-e

-y

�

�
-r FileName -f FileName

��

Required parameters

-q QueueName
The local name of the destination queue.

Optional parameters

-m QMgrName
The name of the queue manager that hosts the destination queue. A queue
manager that does not have the File Transfer Application installed can be
specified. If you omit this parameter, the default queue manager is used.

-c CorrelId
Select all files matching CorrelId. Selection can be combined with -s UserData,
and -f FileName.

Chapter 14. The control commands 239



-u MsgID
Select the message that has a message ID that matches MsgID. Used to select
other messages.

-s UserData
Select files by locating any occurrence of the character string UserData, in part
or all of the file’s UserData. The comparison is case sensitive, and wildcard
characters cannot be used.

Selection can be combined with -c CorrelId, and -f FileName.

-v Return the CorrelId, and MsgId of the file.

-a List all files and messages, in the following order:
1. Complete files, ordered by queue name
2. Incomplete files, ordered by queue name
3. Other messages, ordered by queue name

This is the default value. For more information on file status see Appendix G,
“MONMQ diagnostic utility,” on page 299.

-l List all complete files, ordered by queue name.

-i List all incomplete files, ordered by queue name.

-o List all other messages, ordered by queue name.

-d Delete the specified file, or the group of messages. If more than one file
matches the selection criteria, no files are deleted and a return code is
returned.

-g Receive a complete file. Message associated with the file are removed. If a file
already exists of the same name, do one of the following:
v Specify the -y parameter, so that the existing file is overwritten.
v Specify the -r FileName parameter, so that the file is renamed.

-e Extract a complete, or incomplete file. Messages associated with the file are not
removed. If a file already exists of the same name, do one of the following:
v Specify the -y parameter, so that the existing file is overwritten.
v Specify the -r FileName parameter, so that the file is renamed.

-y Replace an existing file of the same name. Used with optional parameters -g,
and -e.

-r FileName
Assign new file name and/or file location.

Used to rename, or to relocate a file. The file is assigned the name specified in
FileName. A fully qualified file name can be specified to relocate the file. If the
file name, or path, contains embedded spaces, it must be specified in double
quotes. One file can be specified only, and you cannot use wildcard characters.

-f FileName
Select all files matching FileName. The fully qualified file name can be
specified. If the file name contains embedded spaces, it must be specified in
double quotes. You cannot use wildcard characters.

Selection can be combined with -c CorrelId, and -s UserData.

Return codes

0 Successful operation

240 WebSphere MQ for HP OpenVMS: System Administration Guide



36 Invalid arguments supplied
40 Queue manager not available
69 Storage not available
71 Unexpected error
163 Queue name required
164 Cannot open queue
165 Cannot open file
166 Cannot put to queue
167 No file name specified (Send)
168 Message length is too small to send data
169 Sending file has changed
170 Cannot get from queue
171 Cannot write to file
172 CorrelId is invalid
173 MsgId is invalid
174 No messages to receive
175 File for delete is not unique

Examples

This command lists all files and messages on the queue, MY.QUEUE, located on the
default queue manager:
mqftrcv -q MY.QUEUE -a

This command gets the first complete file on the queue, MY.QUEUE, located on
queue manager QM1:
mqftrcv -q MY.QUEUE -m QM1 -g

This command gets the complete file, named My document.txt, on the queue,
MY.QUEUE, located on the default queue manager:
mqftrcv -q MY.QUEUE -g -f "My document.txt"

This command gets the complete file, named My document.txt, also marked URGENT,
on the queue, MY.QUEUE, located on queue manager QM1 :
mqftrcv -q MY.QUEUE -m QM1 -g -f "My document.txt" -s "URGENT"

Related commands

mqftapp Run File Transfer Application
mqftrcvc Receive file on client
mqftsnd Send file from server
mqftsndc Send file from client

mqftrcvc (receive file on client)

Purpose

The mqftrcvc command is available with the File Transfer Application on
WebSphere MQ for Windows, and WebSphere MQ for Linux (x86 platform)
clients only.

Use the mqftrcvc command to do one of the following:
v Receive a file from a connected server.

Chapter 14. The control commands 241



v Extract a file from a connected server.
v Delete a file from a connected server.
v View sent files on a connected server.

Syntax

�� mqftrcvc -q QueueName
-m QMgrName -c CorrelId

�

�
-u MsgId -s UserData -v

-a

-l
-i
-o
-d
-g

-y
-e

-y

�

�
-r FileName -f FileName

��

Required parameters

-q QueueName
The local name of the destination queue.

Optional parameters

-m QMgrName
The name of the queue manager that hosts the destination queue. A queue
manager that does not have the File Transfer Application installed can be
specified. If you omit this parameter, the default queue manager is used.

-c CorrelId
Select all files matching CorrelId. Selection can be combined with -s UserData,
and -f FileName.

-u MsgID
Select the message that has a message ID that matches MsgID. Used to select
other messages.

-s UserData
Select files by locating any occurrence of the character string UserData, in part
or all of the file’s UserData. The comparison is case sensitive, and wildcard
characters cannot be used.

Selection can be combined with -c CorrelId, and -f FileName.

-v Return the CorrelId, and MsgId of the file.

-a List all files and messages, in the following order:
1. Complete files, ordered by queue name
2. Incomplete files, ordered by queue name
3. Other messages, ordered by queue name

242 WebSphere MQ for HP OpenVMS: System Administration Guide



This is the default value. For more information on file status see Appendix G,
“MONMQ diagnostic utility,” on page 299.

-l List all complete files, ordered by queue name.

-i List all incomplete files, ordered by queue name.

-o List all other messages, ordered by queue name.

-d Delete the specified file, or the group of messages. If more than one file
matches the selection criteria, no files are deleted and a return code is
returned.

-g Receive a complete file. Message associated with the file are removed. If a file
already exists of the same name, do one of the following:
v Specify the -y parameter, so that the existing file is overwritten.
v Specify the -r FileName parameter, so that the file is renamed.

-e Extract a complete, or incomplete file. Messages associated with the file are not
removed. If a file already exists of the same name, do one of the following:
v Specify the -y parameter, so that the existing file is overwritten.
v Specify the -r FileName parameter, so that the file is renamed.

-y Replace an existing file of the same name. Used with optional parameters -g,
and -e.

-r FileName
Assign new file name and/or file location.

Used to rename, or to relocate a file. The file is assigned the name specified in
FileName. A fully qualified file name can be specified to relocate the file. If the
file name, or path, contains embedded spaces, it must be specified in double
quotes. One file can be specified only, and you cannot use wildcard characters.

-f FileName
Select all files matching FileName. The fully qualified file name can be
specified. If the file name contains embedded spaces, it must be specified in
double quotes. You cannot use wildcard characters.

Selection can be combined with -c CorrelId, and -s UserData.

Return codes

0 Successful operation
36 Invalid arguments supplied
40 Queue manager not available
69 Storage not available
71 Unexpected error
163 Queue name required
164 Cannot open queue
165 Cannot open file
166 Cannot put to queue
167 No file name specified (Send)
168 Message length is too small to send data
169 Sending file has changed
170 Cannot get from queue
171 Cannot write to file
172 CorrelId is invalid
173 MsgId is invalid
174 No messages to receive

Chapter 14. The control commands 243



175 File for delete is not unique

Examples

This command lists all files and messages on the queue, MY.QUEUE, located on the
default queue manager:
mqftrcvc -q MY.QUEUE -a

This command gets the first complete file on the queue, MY.QUEUE, located on
queue manager QM1:
mqftrcvc -q MY.QUEUE -m QM1 -g

This command gets the complete file, named My document.txt, on the queue,
MY.QUEUE, located on the default queue manager:
mqftrcvc -q MY.QUEUE -g -f "My document.txt"

This command gets the complete file, named My document.txt, also marked URGENT,
on the queue, MY.QUEUE, located on queue manager QM1 :
mqftrcvc -q MY.QUEUE -m QM1 -g -f "My document.txt" -s "URGENT"

Related commands

mqftapp Run File Transfer Application
mqftrcv Receive file on server
mqftsnd Send file from server
mqftsndc Send file from client

mqftsnd (send file from server)

Purpose

The mqftsnd command is available with the File Transfer Application on
WebSphere MQ for Windows, and WebSphere MQ for Linux (x86 platform)
servers only.

Use the mqftsnd command to send a file from a WebSphere MQ server using the
File Transfer Application.

Syntax

�� mqftsnd -q QueueName
-m QMgrName -t TargetQMgrName

�

�
-v -l MsgLength

-p yes

-p no
-p queue

-s UserData
�

� -f FileName ��

244 WebSphere MQ for HP OpenVMS: System Administration Guide



Required parameters

-q QueueName
The local name of the destination queue.

-f FileName
The name of the file to be transmitted. The fully qualified file name can be
specified. If the file name contains embedded spaces, it must be specified in
double quotes. One file can be specified only, and you cannot use wildcard
characters.

Note: The file is not deleted from it’s original location during a send.

Optional parameters

-m QMgrName
The name of the queue manager that has access to the file at it’s origin. If you
omit this parameter, the default queue manager is used.

-t TargetQMgrName
The name of the queue manager that hosts the destination queue. If you omit
this parameter, the queue manager specified by QMgrName is used.

-v Return the CorrelId of the file.

-l MessageSize
The maximum size of a segmented message in bytes.

If a file is too large to be sent as a single message, the file is segmented into a
number smaller messages, known as segments, and all these segments are
transmitted instead. When all the segments reach their destination, the target
queue manager reassembles them to form the original file.

Specify a value between 250 and the queue manager’s maximum message
length. To determine the maximum message length, use the
MQIA_MAX_MSG_LENGTH selector with the MQINQ call.

The default value is 100000.

-p yes
Messages are persistent. This is the default value.

-p no
Messages are not persistent.

-p queue
Messages persistence is defined by the queue.

-s UserData
An character string that contains user information relevant to the file being
sent. The content of this data is of no significance to the target queue manager.

Return codes

0 Successful operation
36 Invalid arguments supplied
40 Queue manager not available
69 Storage not available
71 Unexpected error
163 Queue name required
164 Cannot open queue
165 Cannot open file

Chapter 14. The control commands 245



166 Cannot put to queue
167 No file name specified (Send)
168 Message length is too small to send data
169 Sending file has changed
170 Cannot get from queue
171 Cannot write to file
172 CorrelId is invalid
173 MsgId is invalid
174 No messages to receive
175 File for delete is not unique

Examples

This command sends a file from the default queue manager, to the queue DEST.Q,
located on queue manager QM2:
mqftsnd -q DEST.Q -t QM2 -f "My document.txt"

This command sends a file as non-persistent messages from queue manager QM1,
to the queue DEST.Q, located on the default queue manager, setting the maximum
segment size to 50000 bytes:
mqftsnd -q DEST.Q -m QM1 -l 50000 -p no -f "C:\My Downloads\My document.idd"

Related commands

mqftapp Run File Transfer Application
mqftrcv Receive file on server
mqftrcvc Receive file on client
mqftsndc Send file from client

mqftsndc (send file from client)

Purpose

The mqftsndc command is available with the File Transfer Application on
WebSphere MQ for Windows, and WebSphere MQ for Linux (x86 platform)
clients only.

Use the mqftsndc command to send a file from a WebSphere MQ client using the
File Transfer Application.

Syntax

�� mqftsndc -q QueueName
-m QMgrName -t TargetQMgrName

�

�
-v -l MsgLength

-p yes

-p no
-p queue

-s UserData
�

246 WebSphere MQ for HP OpenVMS: System Administration Guide



� -f FileName ��

Required parameters

-q QueueName
The local name of the destination queue.

-f FileName
The name of the file to be transmitted. The fully qualified file name can be
specified. If the file name contains embedded spaces, it must be specified in
double quotes. One file can be specified only, and you cannot use wildcard
characters.

Note: The file is not deleted from it’s original location during a send.

Optional parameters

-m QMgrName
The name of the queue manager that has access to the file at it’s origin. If you
omit this parameter, the default queue manager is used.

-t TargetQMgrName
The name of the queue manager that hosts the destination queue. If you omit
this parameter, the queue manager specified by QMgrName is used.

-v Return the CorrelId of the file.

-l MessageSize
The maximum size of a segmented message in bytes.

If a file is too large to be sent as a single message, the file is segmented into a
number smaller messages, known as segments, and all these segments are
transmitted instead. When all the segments reach their destination, the target
queue manager reassembles them to form the original file.

Specify a value between 250 and the queue manager’s maximum message
length. To determine the maximum message length, use the
MQIA_MAX_MSG_LENGTH selector with the MQINQ call.

The default value is 100000.

-p yes
Messages are persistent. This is the default value.

-p no
Messages are not persistent.

-p queue
Messages persistence is defined by the queue.

-s UserData
An character string that contains user information relevant to the file being
sent. The content of this data is of no significance to the target queue manager.

Return codes

0 Successful operation
36 Invalid arguments supplied
40 Queue manager not available
69 Storage not available

Chapter 14. The control commands 247



71 Unexpected error
163 Queue name required
164 Cannot open queue
165 Cannot open file
166 Cannot put to queue
167 No file name specified (Send)
168 Message length is too small to send data
169 Sending file has changed
170 Cannot get from queue
171 Cannot write to file
172 CorrelId is invalid
173 MsgId is invalid
174 No messages to receive
175 File for delete is not unique

Examples

This command sends a file from the default queue manager, to the queue DEST.Q,
located on queue manager QM2:
mqftsndc -q DEST.Q -t QM2 -f "My document.txt"

This command sends a non-persistent file from queue manager QM1, to the queue
DEST.Q, located on the default queue manager, setting the maximum segment size
to 50000 bytes:
mqftsndc -q DEST.Q -m QM1 -l 50000 -p no -f "C:\My Downloads\My document.idd"

Related commands

mqftapp Run File Transfer Application
mqftrcv Receive file on server
mqftrcvc Receive file on client
mqftsnd Send file from server

rcdmqimg (record media image)

Purpose

Use the rcdmqimg command to write an image of an object, or group of objects, to
the log for use in media recovery. This command can only be used when using
linear logging. Use the associated command rcrmqobj to recreate the object from
the image.

You use this command with an active queue manager. Further activity on the
queue manager is logged so that, although the image becomes out of date, the log
records reflect any changes to the object.

Syntax

�� rcdmqimg
-m QMgrName -z -l

-t ObjectType �

248 WebSphere MQ for HP OpenVMS: System Administration Guide



� GenericObjName ��

Required parameters

GenericObjName
The name of the object to record. This parameter can have a trailing asterisk to
record that any objects with names matching the portion of the name before
the asterisk.

This parameter is required unless you are recording a queue manager object or
the channel synchronization file. Any object name you specify for the channel
synchronization file is ignored.

-t ObjectType
The types of object for which to record images. Valid object types are:

* or all All the object types

authinfo Authentication information object, for use with Secure
Sockets Layer (SSL) channel security

channel or chl Channels

clntconn or clcn Client connection channels

catalog or ctlg An object catalog

listener or lstr Listeners

namelist or nl Namelists

process or prcs Processes

queue or q All types of queue

qalias or qa Alias queues

qlocal or ql Local queues

qmodel or qm Model queues

qremote or qr Remote queues

qmgr Queue manager object

service or srvc Service

syncfile Channel synchronization file.

Note: When using WebSphere MQ for UNIX systems, you need to prevent the
shell from interpreting the meaning of special characters, for example, *. How you
do this depends on the shell you are using, but might involve the use of single
quotation marks, double quotation marks, or a backslash.

Optional parameters

-m QMgrName
The name of the queue manager for which to record images. If you omit this,
the command operates on the default queue manager.

-z Suppresses error messages.

-l Writes messages containing the names of the oldest log files needed to restart
the queue manager and to perform media recovery. The messages are written
to the error log and the standard error destination. (If you specify both the -z
and -l parameters, the messages are sent to the error log, but not to the
standard error destination.)

Chapter 14. The control commands 249



When issuing a sequence of rcdmqimg commands, include the -l parameter
only on the last command in the sequence, so that the log file information is
gathered only once.

Return codes

0 Successful operation
36 Invalid arguments supplied
40 Queue manager not available
49 Queue manager stopping
68 Media recovery not supported
69 Storage not available
71 Unexpected error
72 Queue manager name error
119 User not authorized
128 No objects processed
131 Resource problem
132 Object damaged
135 Temporary object cannot be recorded

Examples

The following command records an image of the queue manager object
saturn.queue.manager in the log.
rcdmqimg -t qmgr -m saturn.queue.manager

Related commands

rcrmqobj Recreate a queue manager object

rcrmqobj (recreate object)

Purpose

Use this command to recreate an object, or group of objects, from their images
contained in the log. This command can only be used when using linear logging.
Use the associated command, rcdmqimg, to record the object images to the log.

Use this command on a running queue manager. All activity on the queue
manager after the image was recorded is logged. To recreate an object, replay the
log to recreate events that occurred after the object image was captured.

Syntax

�� rcrmqobj
-m QMgrName -z

-t ObjectType GenericObjName ��

Required parameters

GenericObjName
The name of the object to re-create. This parameter can have a trailing asterisk
to re-create any objects with names matching the portion of the name before
the asterisk.

250 WebSphere MQ for HP OpenVMS: System Administration Guide



This parameter is required unless the object type is the channel
synchronization file; any object name supplied for this object type is ignored.

-t ObjectType
The types of object to re-create. Valid object types are:

* or all All object types

authinfo Authentication information object, for use with Secure
Sockets Layer (SSL) channel security

channel or chl Channels

clntconn or clcn Client connection channels

clchltab Client channel table

listener or lstr Listener

namelist or nl Namelists

process or prcs Processes

queue or q All types of queue

qalias or qa Alias queues

qlocal or ql Local queues

qmodel or qm Model queues

qremote or qr Remote queues

service or srvc Service

syncfile Channel synchronization file.

You can use this option when circular logs are configured
but syncfile fails if the channel scratchpad files, which are
used to rebuild syncfile, are damaged or missing.

Note: When using WebSphere MQ for UNIX systems, you need to prevent the
shell from interpreting the meaning of special characters, for example, *. How you
do this depends on the shell you are using, but might involve the use of single
quotation marks, double quotation marks, or a backslash.

Optional parameters

-m QMgrName
The name of the queue manager for which to recreate objects. If omitted, the
command operates on the default queue manager.

-z Suppresses error messages.

Return codes

0 Successful operation
36 Invalid arguments supplied
40 Queue manager not available
49 Queue manager stopping
66 Media image not available
68 Media recovery not supported
69 Storage not available
71 Unexpected error
72 Queue manager name error
119 User not authorized
128 No objects processed

Chapter 14. The control commands 251



135 Temporary object cannot be recovered
136 Object in use

Examples
1. The following command recreates all local queues for the default queue

manager:
rcrmqobj -t ql *

2. The following command recreates all remote queues associated with queue
manager store:
rcrmqobj -m store -t qr *

Related commands

rcdmqimg Record an object in the log

rsvmqtrn (resolve transactions)

Purpose

Use the rsvmqtrn command to commit or back out internally or externally
coordinated in-doubt transactions.

Use this command only when you are certain that transactions cannot be resolved
by the normal protocols. Issuing this command might result in the loss of
transactional integrity between resource managers for a distributed transaction.

Syntax

�� rsvmqtrn -a
-b Transaction
-c
-r RMID

-m QMgrName ��

Required parameters

-m QMgrName
The name of the queue manager.

Optional parameters

-a The queue manager resolves all internally-coordinated, in-doubt transactions
(that is, all global units of work).

-b Backs out the named transaction. This flag is valid for externally-coordinated
transactions (that is, for external units of work) only.

-c Commits the named transaction. This flag is valid for externally-coordinated
transactions (that is, external units of work) only.

-r RMID
The resource manager whose participation in the in-doubt transaction can be
ignored. This flag is valid for internally-coordinated transactions only, and for
resource managers that have had their resource manager configuration entries
removed from the queue manager configuration information.

252 WebSphere MQ for HP OpenVMS: System Administration Guide



Note: The queue manager does not call the resource manager. Instead, it
marks the resource manager’s participation in the transaction as being
complete.

Transaction
The transaction number of the transaction being committed or backed out. Use
the dspmqtrn command to find the relevant transaction number. This
parameter is required with the -b, -c, and -r RMID parameters.

Return codes

0 Successful operation
32 Transactions could not be resolved
34 Resource manager not recognized
35 Resource manager not permanently unavailable
36 Invalid arguments supplied
40 Queue manager not available
49 Queue manager stopping
69 Storage not available
71 Unexpected error
72 Queue manager name error
85 Transactions not known

Related commands

dspmqtrn Display list of prepared transactions

runmqchi (run channel initiator)

Purpose

Use the runmqchi command to run a channel initiator process. For more
information about the use of this command, refer to WebSphere MQ
IntercommunicationWebSphere MQ Intercommunications.

The channel initiator is started by default as part of the queue manager.

Syntax

�� runmqchi
-q InitiationQName -m QMgrName

��

Optional parameters

-q InitiationQName
The name of the initiation queue to be processed by this channel initiator. If
you omit it, SYSTEM.CHANNEL.INITQ is used.

-m QMgrName
The name of the queue manager on which the initiation queue exists. If you
omit the name, the default queue manager is used.

& To run the channel initiator as a background process add ampersand (&) at the
end of the runmqchi control command line.

Chapter 14. The control commands 253



Return codes

0 Command completed normally
10 Command completed with unexpected results
20 An error occurred during processing

If errors occur that result in return codes of either 10 or 20, review the queue
manager error log that the channel is associated with for the error messages, and
the system error log for records of problems that occur before the channel is
associated with the queue manager. For more information about error logs, see
“Error logs” on page 189.

runmqchl (run channel)

Purpose

Use the runmqchl command to run either a sender (SDR) or a requester (RQSTR)
channel.

The channel runs synchronously. To stop the channel, issue the MQSC command
STOP CHANNEL.

Syntax

�� runmqchl -c ChannelName
-m QMgrName

��

Required parameters

-c ChannelName
The name of the channel to run.

Optional parameters

-m QMgrName
The name of the queue manager with which this channel is associated. If you
omit the name, the default queue manager is used.

& To run the channel as a background process add ampersand (&) at the end of
the runmqchl control command line.

Return codes

0 Command completed normally
10 Command completed with unexpected results
20 An error occurred during processing

If return codes 10 or 20 are generated, review the error log of the associated queue
manager for the error messages, and the system error log for records of problems
that occur before the channel is associated with the queue manager.

254 WebSphere MQ for HP OpenVMS: System Administration Guide



runmqdlq (run dead-letter queue handler)

Purpose

Use the runmqdlq command to start the dead-letter queue (DLQ) handler, which
monitors and handles messages on a dead-letter queue.

Syntax

�� runmqdlq
QName

QMgrName

��

Description

Use the dead-letter queue handler to perform various actions on selected messages
by specifying a set of rules that can both select a message and define the action to
be performed on that message.

The runmqdlq command takes its input from stdin. When the command is
processed, the results and a summary are put into a report that is sent to stdout.

By taking stdin from the keyboard, you can enter runmqdlq rules interactively.

By redirecting the input from a file, you can apply a rules table to the specified
queue. The rules table must contain at least one rule.

If you use the DLQ handler without redirecting stdin from a file (the rules table),
the DLQ handler reads its input from the keyboard. In WebSphere MQ for AIX,
Solaris, HP-UX, and Linux, the DLQ handler does not start to process the named
queue until it receives an end_of_file (Ctrl+D) character. In WebSphere MQ for
Windows, it does not start to process the named queue until you press the
following sequence of keys: Ctrl+Z, Enter, Ctrl+Z, Enter.

For more information about rules tables and how to construct them, see “The DLQ
handler rules table” on page 126.

Optional parameters

The MQSC command rules for comment lines and for joining lines also apply to
the DLQ handler input parameters.

QName
The name of the queue to be processed.

If you omit the name, the dead-letter queue defined for the local queue
manager is used. If you enter one or more blanks (’ ’), the dead-letter queue of
the local queue manager is explicitly assigned.

QMgrName
The name of the queue manager that owns the queue to be processed.

If you omit the name, the default queue manager for the installation is used. If
you enter one or more blanks (’ ’), the default queue manager for this
installation is explicitly assigned.

Chapter 14. The control commands 255



runmqlsr (run listener)

Purpose

Use the runmqlsr command to start a listener process.

This command is run synchronously and waits until the listener process has
finished before returning to the caller.

Syntax

�� runmqlsr -t �

�

�

�

tcp
-p Port -i IPAddr -b Backlog

lu62 -n TpName

netbios
-a Adapter
-l LocalName
-e Names
-s Sessions
-o Commands

spx
-x Socket
-b Backlog

�

�
-m QMgrName

��

Required parameters

-t The transmission protocol to be used:

tcp Transmission Control Protocol / Internet Protocol (TCP/IP)

lu62 SNA LU 6.2 (Windows only)

netbios NetBIOS (Windows only)

spx SPX (Windows only)

Optional parameters

-p Port
The port number for TCP/IP. This flag is valid for TCP only. If you omit the
port number, it is taken from the queue manager configuration information, or
from defaults in the program. The default value is 1414.

-i IPAddr
The IP address for the listener, specified in one of the following formats:
v IPv4 dotted decimal
v IPv6 hexadecimal notation
v Alphanumeric format

This flag is valid for TCP/IP only.

256 WebSphere MQ for HP OpenVMS: System Administration Guide



On systems that are both IPv4 and IPv6 capable you can split the traffic by
running two separate listeners, one listening on all IPv4 addresses and one
listening on all IPv6 addresses. If you omit this parameter, the listener listens
on all configured IPv4 and IPv6 addresses.

-n TpName
The LU 6.2 transaction program name. This flag is valid only for the LU 6.2
transmission protocol. If you omit the name, it is taken from the queue
manager configuration information.

-a Adapter
The adapter number on which NetBIOS listens. By default the listener uses
adapter 0.

-l LocalName
The NetBIOS local name that the listener uses. The default is specified in the
queue manager configuration information.

-e Names
The number of names that the listener can use. The default value is specified
in the queue manager configuration information.

-s Sessions
The number of sessions that the listener can use. The default value is specified
in the queue manager configuration information.

-o Commands
The number of commands that the listener can use. The default value is
specified in the queue manager configuration information.

-x Socket
The SPX socket on which SPX listens. The default value is hexadecimal 5E86.

-m QMgrName
The name of the queue manager. By default the command operates on the
default queue manager.

-b Backlog
The number of concurrent connection requests that the listener supports. See
“The LU62 and TCP stanzas” on page 85 for a list of default values and further
information.

& To run listener as a background process add ampersand (&) at the end of the
runmqlsr control command line.

Return codes

0 Command completed normally
10 Command completed with unexpected results
20 An error occurred during processing

Examples

The following command runs a listener on the default queue manager using the
NetBIOS protocol. The listener can use a maximum of five names, five commands,
and five sessions. These resources must be within the limits set in the queue
manager configuration information.
runmqlsr -t netbios -e 5 -s 5 -o 5

Chapter 14. The control commands 257



runmqsc (run MQSC commands)

Purpose

Use the runmqsc command to issue MQSC commands to a queue manager. MQSC
commands enable you to perform administration tasks, for example defining,
altering, or deleting a local queue object. MQSC commands and their syntax are
described in the WebSphere MQ Script (MQSC) Command ReferenceWebSphere MQ
Script (MQSC) Command Reference.

Syntax

�� runmqsc �

-e
-v
-w WaitTime

-x

QMgrName
��

Description

You can invoke the runmqsc command in three ways:

Verify command
Verify MQSC commands but do not run them. An output report is
generated indicating the success or failure of each command. This mode is
available on a local queue manager only.

Run command directly
Send MQSC commands directly to a local queue manager.

Run command indirectly
Run MQSC commands on a remote queue manager. These commands are
put on the command queue on a remote queue manager and run in the
order in which they were queued. Reports from the commands are
returned to the local queue manager.

Indirect mode operation is performed through the default queue manager.

The runmqsc command takes its input from stdin. When the commands are
processed, the results and a summary are put into a report that is sent to stdout.

By taking stdin from the keyboard, you can enter MQSC commands interactively.

By redirecting the input from a file, you can run a sequence of frequently-used
commands contained in the file. You can also redirect the output report to a file.

Optional parameters

-e Prevents source text for the MQSC commands from being copied into a report.
This is useful when you enter commands interactively.

-v Verifies the specified commands without performing the actions. This mode is
only available locally. The -w and -x flags are ignored if they are specified at
the same time.

258 WebSphere MQ for HP OpenVMS: System Administration Guide



-w WaitTime
Run the MQSC commands on another queue manager. You must have the
required channel and transmission queues set up for this. See “Preparing
channels and transmission queues for remote administration” on page 60 for
more information.

WaitTime
The time, in seconds, that runmqsc waits for replies. Any replies
received after this are discarded, but the MQSC commands still run.
Specify a time between 1 and 999 999 seconds.

Each command is sent as an Escape PCF to the command queue
(SYSTEM.ADMIN.COMMAND.QUEUE) of the target queue manager.

The replies are received on queue SYSTEM.MQSC.REPLY.QUEUE and
the outcome is added to the report. This can be defined as either a
local queue or a model queue.

Indirect mode operation is performed through the default queue
manager.

This flag is ignored if the -v flag is specified.

-x The target queue manager is running under z/OS. This flag applies only in
indirect mode. The -w flag must also be specified. In indirect mode, the MQSC
commands are written in a form suitable for the WebSphere MQ for z/OS
command queue.

QMgrName
The name of the target queue manager on which to run the MQSC commands,
by default, the default queue manager.

Return codes

00 MQSC command file processed successfully
10 MQSC command file processed with errors; report contains reasons for failing

commands
20 Error; MQSC command file not run

Examples
1. Enter this command at the command prompt:

runmqsc

Now you can enter MQSC commands directly at the command prompt. No
queue manager name is specified, so the MQSC commands are processed on
the default queue manager.

2. Use one of these commands, as appropriate in your environment, to specify
that MQSC commands are to be verified only:
runmqsc -v BANK < "/u/users/commfile.in"

runmqsc -v BANK < "c:\users\commfile.in"

This command verifies the MQSC commands in file commfile.in. The queue
manager name is BANK. The output is displayed in the current window.

3. These commands run the MQSC command file mqscfile.in against the default
queue manager.

Chapter 14. The control commands 259



runmqsc < "/var/mqm/mqsc/mqscfile.in" > "/var/mqm/mqsc/mqscfile.out"

runmqsc < "c:\Program Files\IBM\WebSphere MQ\mqsc\mqscfile.in" >
"c:\Program Files\IBM\WebSphere MQ\mqsc\mqscfile.out"

In this example, the output is directed to file mqscfile.out.

runmqtmc (start client trigger monitor)

Purpose

Use the runmqtmc command to invoke a trigger monitor for a client. For further
information about using trigger monitors, refer to the WebSphere MQ Application
Programming GuideWebSphere MQ Application Programming Guide.

Once a trigger monitor has started, it continuously monitors the specified initiation
queue. The trigger monitor doesl not stop until the queue manager ends, see
“endmqm (end queue manager)” on page 235. While the client trigger monitor is
running it keeps the dead letter queue open.

Syntax

�� runmqtmc
-m QMgrName -q InitiationQName

��

Optional parameters

-m QMgrName
The name of the queue manager on which the client trigger monitor operates,
by default the default queue manager.

-q InitiationQName
The name of the initiation queue to be processed, by default
SYSTEM.DEFAULT.INITIATION.QUEUE.

& To run listener as a background process add ampersand (&) at the end of the
runmqtmc control command line.

Return codes

0 Not used. The client trigger monitor is designed to run continuously and
therefore not to end. The value is reserved.

10 Client trigger monitor interrupted by an error.
20 Error; client trigger monitor not run.

Examples

For examples of using this command, refer to the WebSphere MQ Application
Programming GuideWebSphere MQ Application Programming Guide.

260 WebSphere MQ for HP OpenVMS: System Administration Guide



runmqtrm (start trigger monitor)

Purpose

Use the runmqtrm command to invoke a trigger monitor. For further information
about using trigger monitors, refer to the WebSphere MQ Application
Programming GuideWebSphere MQ Application Programming Guide.

Once a trigger monitor has started, it continuously monitors the specified initiation
queue. The trigger monitor does not stop until the queue manager ends, see
“endmqm (end queue manager)” on page 235. While the trigger monitor is
running it keeps the dead letter queue open.

Syntax

�� runmqtrm
-m QMgrName -q InitiationQName

��

Optional parameters

-m QMgrName
The name of the queue manager on which the trigger monitor operates, by
default the default queue manager.

-q InitiationQName
Specifies the name of the initiation queue to be processed, by default
SYSTEM.DEFAULT.INITIATION.QUEUE.

& To run the trigger monitor as a background process add ampersand (&) at the
end of the runmqtrm control command line.

Return codes

0 Not used. The trigger monitor is designed to run continuously and therefore not
to end. Hence a value of 0 would not be seen. The value is reserved.

10 Trigger monitor interrupted by an error.
20 Error; trigger monitor not run.

setmqaut (grant or revoke authority)

Purpose

Use the setmqaut command to change the authorizations to a profile, object, or
class of objects. Authorizations can be granted to, or revoked from, any number of
principals or groups.

For more information about authorization service components, see “The Service
stanza” on page 79 and “The ServiceComponent stanza” on page 80,.

Syntax

�� setmqaut
-m QMgrName

-n Profile -t ObjectType �

Chapter 14. The control commands 261



�
-s ServiceComponent

� -p PrincipalName
-g GroupName

�

� � MQI authorizations
Context authorizations
Administration authorizations
Generic authorizations
+remove
-remove

��

MQI authorizations:

� +altusr
-altusr
+browse
-browse
+connect
-connect
+get
-get
+inq
-inq
+put
-put
+set
-set

Context authorizations:

� +passall
-passall
+passid
-passid
+setall
-setall
+setid
-setid

Administration authorizations:

262 WebSphere MQ for HP OpenVMS: System Administration Guide



� +chg
-chg
+clr
-clr
+crt
-crt
+dlt
-dlt
+dsp
-dsp
+ctrl
-ctrl
+ctrlx
-ctrlx

Generic authorizations:

� +all
-all
+alladm
-alladm
+allmqi
-allmqi
+none

Description

Use setmqaut both to grant an authorization, that is, give a principal or user group
permission to perform an operation, and to revoke an authorization, that is, remove
the permission to perform an operation. You must specify the principals and user
groups to which the authorizations apply, the queue manager, object type, and the
profile name identifying the object or objects.

The authorizations that can be given are categorized as follows:
v Authorizations for issuing MQI calls
v Authorizations for MQI context
v Authorizations for issuing commands for administration tasks
v Generic authorizations

Each authorization to be changed is specified in an authorization list as part of the
command. Each item in the list is a string prefixed by a plus sign (+) or a minus
sign (-). For example, if you include +put in the authorization list, you grant
authority to issue MQPUT calls against a queue. Alternatively, if you include -put
in the authorization list, you revoke the authority to issue MQPUT calls.

You can specify any number of principals, user groups, and authorizations in a
single command, but you must specify at least one principal or user group.

Chapter 14. The control commands 263



If a principal is a member of more than one user group, the principal effectively
has the combined authorities of all those user groups. On Windows systems, the
principal also has all the authorities that have been granted to it explicitly using
the setmqaut command.

On UNIX systems, all authorities are held by user groups internally, not by
principals. This has the following implications:
v If you use the setmqaut command to grant an authority to a principal, the

authority is actually granted to the primary user group of the principal. This
means that the authority is effectively granted to all members of that user group.

v If you use the setmqaut command to revoke an authority from a principal, the
authority is actually revoked from the primary user group of the principal. This
means that the authority is effectively revoked from all members of that user
group.

To alter authorizations for a cluster sender channel that has been automatically
generated by a repository, see WebSphere MQ Queue Manager ClustersWebSphere
MQ Queue Manager Clusters. This book describes how the authority is inherited
from a cluster receiver channel object.

Required parameters

-t ObjectType
The type of object for which to change authorizations.

Possible values are:

authinfo An authentication information object

channel or chl A channel

clntconn or clcn A client connection channel

lstr or listener A listener

namelist or nl A namelist

process or prcs A process

queue or q A queue

qmgr A queue manager

srvc or service A service

-n Profile
The name of the profile for which to change authorizations. The authorizations
apply to all WebSphere MQ objects with names that match the profile name
specified.

If you give an explicit profile name (without any wildcard characters), the
object identified must exist.

This parameter is required, unless you are changing the authorizations of a
queue manager, in which case you must not include it. To change the
authorizations of a queue manager use the queue manager name, for example
setmqaut -m QMGR -t qmgr -p user1 +connect

where QMGR is the name of the queue manager and user1 is the user
requesting the change.

264 WebSphere MQ for HP OpenVMS: System Administration Guide



Optional parameters

-m QMgrName
The name of the queue manager of the object for which to change
authorizations. The name can contain up to 48 characters.

This parameter is optional if you are changing the authorizations of your
default queue manager.

-p PrincipalName
The name of the principal for which to change authorizations.

For WebSphere MQ for Windows only, the name of the principal can optionally
include a domain name, specified in the following format:
userid@domain

For more information about including domain names on the name of a
principal, see Chapter 7, “WebSphere MQ security,” on page 91.

You must have at least one principal or group.

-g GroupName
The name of the user group for which to change authorizations. You can
specify more than one group name, but each name must be prefixed by the -g
flag. On Windows systems, you can use only local groups.

-s ServiceComponent
The name of the authorization service to which the authorizations apply (if
your system supports installable authorization services). This parameter is
optional; if you omit it, the authorization update is made to the first installable
component for the service.

+remove or -remove
Remove the specified profile. The authorizations associated with the profile no
longer apply to WebSphere MQ objects with names that match the profile.

This option cannot be used with the option -t qmgr.

Authorizations
The authorizations to be granted or revoked. Each item in the list is prefixed
by a plus sign (+), indicating that authority is to be granted, or a minus sign
(-), indicating that authority is to be revoked.

For example, to grant authority to issue MQPUT calls, specify +put in the list.
To revoke the authority to issue MQPUT calls, specify -put.

Table 16 shows the authorities that can be given to the different object types.

Table 16. Specifying authorities for different object types

Authority Queue Process Queue
manager

Namelist Auth info Clntconn Channel Listener Service

all Yes Yes Yes Yes Yes Yes Yes Yes Yes

alladm Yes Yes Yes Yes Yes Yes Yes Yes Yes

allmqi Yes Yes Yes Yes Yes No No No No

none Yes Yes Yes Yes Yes Yes Yes Yes Yes

altusr No No Yes No No No No No No

browse Yes No No No No No No No No

chg Yes Yes Yes Yes Yes Yes Yes Yes Yes

clr Yes No No No No No No No No

Chapter 14. The control commands 265



Table 16. Specifying authorities for different object types (continued)

Authority Queue Process Queue
manager

Namelist Auth info Clntconn Channel Listener Service

connect No No Yes No No No No No No

crt Yes Yes Yes Yes Yes Yes Yes Yes Yes

ctrl No No No No No No Yes Yes Yes

ctrlx No No No No No No Yes No No

dlt Yes Yes Yes Yes Yes Yes Yes Yes Yes

dsp Yes Yes Yes Yes Yes Yes Yes Yes Yes

get Yes No No No No No No No No

put Yes No No No No No No No No

inq Yes Yes Yes Yes Yes No No No No

passall Yes No No No No No No No No

passid Yes No No No No No No No No

set Yes Yes Yes No No No No No No

setall Yes No Yes No No No No No No

setid Yes No Yes No No No No No No

Return codes

0 Successful operation
36 Invalid arguments supplied
40 Queue manager not available
49 Queue manager stopping
69 Storage not available
71 Unexpected error
72 Queue manager name error
133 Unknown object name
145 Unexpected object name
146 Object name missing
147 Object type missing
148 Invalid object type
149 Entity name missing
150 Authorization specification missing
151 Invalid authorization specification

Examples
1. This example shows a command that specifies that the object on which

authorizations are being given is the queue orange.queue on queue manager
saturn.queue.manager. If the queue does not exist, the command fails.
setmqaut -m saturn.queue.manager -n orange.queue -t queue

-g tango +inq +alladm

The authorizations are given to a user group called tango, and the associated
authorization list specifies that the user group can:
v Issue MQINQ calls
v Perform all administration operations on that object

2. In this example, the authorization list specifies that a user group called foxy:

266 WebSphere MQ for HP OpenVMS: System Administration Guide



v Cannot issue any MQI calls to the specified queue
v Can perform all administration operations on the specified queue

If the queue does not exist, the command fails.
setmqaut -m saturn.queue.manager -n orange.queue -t queue

-g foxy -allmqi +alladm

3. This example gives user1 full access to all queues with names beginning a.b. on
queue manager qmgr1. The profile is persistent and applies to any object with
a name that matches the profile.
setmqaut -m qmgr1 -n a.b.* -t q -p user1 +all

4. This example deletes the specified profile.
setmqaut -m qmgr1 -n a.b.* -t q -p user1 -remove

5. This example creates a profile with no authority.
setmqaut -m qmgr1 -n a.b.* -t q -p user1 +none

Related commands

dmpmqaut Dump authority
dspmqaut Display authority

Authorizations for MQI calls

altusr Use another user’s authority for MQOPEN and MQPUT1 calls.
browse Retrieve a message from a queue using an MQGET call with the BROWSE

option.
connect Connect the application to the specified queue manager using an MQCONN

call.
get Retrieve a message from a queue using an MQGET call.
inq Make an inquiry on a specific queue using an MQINQ call.
put Put a message on a specific queue using an MQPUT call.
set Set attributes on a queue from the MQI using an MQSET call.

Note: If you open a queue for multiple options, you must be authorized for each
option.

Authorizations for context

passall Pass all context on the specified queue. All the context fields are copied from
the original request.

passid Pass identity context on the specified queue. The identity context is the same
as that of the request.

setall Set all context on the specified queue. This is used by special system utilities.
setid Set identity context on the specified queue. This is used by special system

utilities.

Authorizations for commands

chg Change the attributes of the specified object.
clr Clear the specified queue.
crt Create objects of the specified type.
dlt Delete the specified object.
dsp Display the attributes of the specified object.

Chapter 14. The control commands 267



ctrl Start, and stop the specified channel, listener, or service. And ping the
specified channel.

ctrlx Reset or resolve the specified channel.

Authorizations for generic operations

all Use all operations applicable to the object.
alladm Use all administration operations applicable to the object.
allmqi Use all MQI calls applicable to the object.
none No authority. Use this to create profiles without authority.

setmqprd (enroll production license)

Purpose

Use the setmqprd command to enroll a WebSphere MQ production license.

For further information about enrolling production licenses, see the WebSphere
MQ Quick Beginnings book for your operating system.

Syntax

�� setmqprd LicenseFile ��

Required parameters

LicenseFile
Specifies the fully-qualified name of the production license certificate file.

This is usually amqpcert.lic.

strmqcsv (start command server)

Purpose

Use the strmqcsv command to start the command server for the specified queue
manager. This enables WebSphere MQ to process commands sent to the command
queue.

If the queue manager attribute, SCMDSERV, is specified as QMGR then changing
the state of the command server using strmqcsv does not effect how the queue
manager acts upon the SCMDSERV attribute at the next restart.

Syntax

�� strmqcsv
-a QMgrName

��

Required parameters

None

268 WebSphere MQ for HP OpenVMS: System Administration Guide



Optional parameters

-a Blocks the following PCF commands from modifying or displaying authority
information:
v Inquire authority records (MQCMD_INQUIRE_AUTH_RECS)
v Inquire entity authority (MQCMD_INQUIRE_ENTITY_AUTH)
v Set authority record (MQCMD_SET_AUTH_REC).
v Delete authority record (MQCMD_DELETE_AUTH_REC).

QMgrName
The name of the queue manager on which to start the command server. If
omitted, the default queue manager is used.

Return codes

0 Command completed normally
10 Command completed with unexpected results
20 An error occurred during processing

Examples

The following command starts a command server for queue manager earth:
strmqcsv earth

Related commands

endmqcsv End a command server
dspmqcsv Display the status of a command server

strmqm (start queue manager)

Purpose

Use the strmqm command to start a local queue manager.

If the queue manager start up takes more than a few seconds WebSphere MQ
shows intermittent messages detailing the start up progress. For more information
on these messages see WebSphere MQ MessagesWebSphere MQ Messages.

Syntax

�� strmqm
-c

-ns
-r
-a

-d Information -z QMgrName
��

Optional parameters

-c Starts the queue manager, redefines the default and system objects, then stops
the queue manager. (Use the crtmqm command to create the default and
system objects for a queue manager.) Any existing system and default objects
belonging to the queue manager are replaced if you specify this flag.

Chapter 14. The control commands 269



-ns
Prevents any of the following processes from starting automatically when the
queue manager starts:
v The channel initiator
v The command server
v Listeners
v Services

-r Updates the backup queue manager. The backup queue manager is not started.

WebSphere MQ updates the backup queue manager’s objects by reading the
queue manager log and replaying updates to the object files.

For more information on using backup queue managers, see “Backing up and
restoring WebSphere MQ” on page 169.

-a Activate the specified backup queue manager. The backup queue manager is
not started.

Once activated, a backup queue manager can be started using the control
command strmqm QMgrName. The requirement to activate a backup queue
manager prevents accidental startup.

Once activated, a backup queue manager can no longer be updated.

For more information on using backup queue managers, see “Backing up and
restoring WebSphere MQ” on page 169.

-d Information
Specifies whether information messages are displayed. Possible values for
Information follow:

all All information messages are displayed. This is the
default value.

minimal The minimal number of information messages are
displayed.

none No information messages are displayed. This
parameter is equivalent to -z.

The -z parameter takes precedence over this parameter.

-z Suppresses error messages.

This flag is used within WebSphere MQ to suppress unwanted information
messages. Because using this flag could result in loss of information, do not
use it when entering commands on a command line.

This parameter takes precedence over the -d parameter.

QMgrName
The name of a local queue manager. If omitted, the default queue manager is
used.

Return codes

0 Queue manager started
3 Queue manager being created
5 Queue manager running
16 Queue manager does not exist
23 Log not available

270 WebSphere MQ for HP OpenVMS: System Administration Guide



24 A process that was using the previous instance of the queue manager has not yet
disconnected.

49 Queue manager stopping
69 Storage not available
71 Unexpected error
72 Queue manager name error
100 Log location invalid
119 User not authorized to start the queue manager

Examples

The following command starts the queue manager account:
strmqm account

Related commands

crtmqm Create a queue manager
dltmqm Delete a queue manager
endmqm End a queue manager

Chapter 14. The control commands 271



272 WebSphere MQ for HP OpenVMS: System Administration Guide



Appendix A. System and default objects

When you create a queue manager using the crtmqm control command, the system
objects and default objects are created automatically.
v The system objects are those WebSphere MQ objects required for the operation

of a queue manager or channel.
v The default objects define all of the attributes of an object. When you create an

object, such as a local queue, any attributes that you do not specify explicitly are
inherited from the default object.

Table 17. System and default objects for queues

Object Name Description

SYSTEM.ADMIN.ACCOUNTING.QUEUE The queue that holds accounting monitoring
data.

SYSTEM.ADMIN.ACTIVITY.QUEUE The queue that holds returned activity
reports.

SYSTEM.ADMIN.CHANNEL.EVENT Event queue for channels.

SYSTEM.ADMIN.COMMAND.QUEUE Administration command queue. Used for
remote MQSC commands and PCF
commands.

SYSTEM.ADMIN.CONFIG.EVENT Event queue for configuration events.

SYSTEM.ADMIN.PERFM.EVENT Event queue for performance events.

SYSTEM.ADMIN.QMGR.EVENT Event queue for queue manager events.

SYSTEM.ADMIN.STATISTICS.QUEUE The queue that holds statistics monitoring
data.

SYSTEM.ADMIN.TRACE.ROUTE.QUEUE The queue that holds returned trace-route
reply messages.

SYSTEM.AUTH.DATA.QUEUE The queue that holds access control lists for
the queue manager.

SYSTEM.CHANNEL.INITQ Channel initiation queue.

SYSTEM.CHANNEL.SYNCQ The queue that holds the synchronization
data for channels.

SYSTEM.CICS.INITIATION.QUEUE Default CICS initiation queue.

SYSTEM.CLUSTER.COMMAND.QUEUE The queue used to carry messages to the
repository queue manager.

SYSTEM.CLUSTER.REPOSITORY.QUEUE The queue used to store all repository
information.

SYSTEM.CLUSTER.TRANSMIT.QUEUE The transmission queue for all messages to
all clusters.

SYSTEM.DEAD.LETTER.QUEUE Dead-letter (undelivered-message) queue.

SYSTEM.DEFAULT.ALIAS.QUEUE The transmission queue for all messages to
all clusters.

SYSTEM.DEFAULT.INITIATION.QUEUE Default initiation queue.

SYSTEM.DEFAULT.LOCAL.QUEUE Default local queue.

SYSTEM.DEFAULT.MODEL.QUEUE Default model queue.

SYSTEM.DEFAULT.REMOTE.QUEUE Default remote queue.

© Copyright IBM Corp. 1994, 2009 273



Table 17. System and default objects for queues (continued)

Object Name Description

SYSTEM.MQEXPLORER.REPLY.MODEL The WebSphere MQ Explorer reply-to queue.
This is a model queue that creates a
temporary dynamic queue for replies to the
WebSphere MQ Explorer.

SYSTEM.MQSC.REPLY.QUEUE MQSC reply-to-queue. This a model queue
that creates a temporary dynamic queue for
replies to remote MQSC commands.

SYSTEM.PENDING.DATA.QUEUE Support deferred messages in JMS.

Table 18. System and default objects for channels

Object Name Description

SYSTEM.DEF.SENDER Default sender channel.

SYSTEM.DEF.SERVER Default server channel.

SYSTEM.DEF.RECEIVER Default receiver channel.

SYSTEM.DEF.REQUESTER Default requester channel.

SYSTEM.DEF.SVRCONN Default server connection channel.

SYSTEM.DEF.CLNTCONN Default client connection channel.

SYSTEM.AUTO.RECEIVER Dynamic receiver channel.

SYSTEM.AUTO.SVRCONN Dynamic server-connection channel.

SYSTEM.DEF.CLUSRCVR Default receiver channel for the cluster used
to supply default values for any attributes
not specified when a CLUSRCVR channel is
created on a queue manager in a cluster.

SYSTEM.DEF.CLUSSDR Default sender channel for the cluster used
to supply default values for any attributes
not specified when CLUSSDR channel is
created on a queue manager in the cluster.

Table 19. System and default objects for namelists

Object Name Description

SYSTEM.DEFAULT.NAMELIST Default namelist.

Table 20. System and default objects for processes

Object Name Description

SYSTEM.DEFAULT.PROCESS Default process definition.

274 WebSphere MQ for HP OpenVMS: System Administration Guide



Appendix B. Directory structure

Figure 22 on page 276 shows the general layout of the data and log directories
associated with a specific queue manager. The directories shown apply to the
default installation. If you change this, the locations of the files and directories are
modified accordingly.

© Copyright IBM Corp. 1994, 2009 275



In Figure 22, the layout is representative of WebSphere MQ after a queue manager
has been in use for some time. The actual structure that you have depends on
which operations have occurred on the queue manager.

MQS_ROOT:[MQM]
+--> [.CONV]
| +--> [.TABLE] --> CCSID.TBL
+--> [.ERRORS]
+--> [.EXITS]
+--> [.LOG] --> [.Qmname] --> amqhlctl.lfh
| +--> [.ACTIVE] --> S0000000*.LOG
+--> MQS.INI
+--> [.QMGRS] +--> [.$SYSTEM] ---> amqcap.inf
| | +--> [.ERRORS]
| | +--> [.ESEM]
| | +--> [.ISEM]
| | +--> [.MSEM]
| | +--> [.SHMEM]
| | +--> [.SSEM]
| [.Qmname] ---> amqalchk.fil
| +--> qm.ini
| +--> qmstatus.ini
| +--> [.$APP]
| | +--> [.ESEM]
| | +--> [.ISEM]
| | +--> [.MSEM]
| | +--> [.SHMEM]
| | +--> [.SPIPE]
| +--> [.$IPCC]
| | +--> AMQCLCHL.TAB
| | +--> AMQRSYNA.DAT
| | +--> [.ESEM]
| | +--> [.ISEM]
| | +--> [.MSEM]
| | +--> [.SHMEM]
| | +--> [.SPIPE]
| +--> [.$QMPERSIST]
| | +--> [.ESEM]
| | +--> [.ISEM]
| | +--> [.MSEM]
| | +--> [.SHMEM]
| | +--> [.SPIPE]
| +--> [.AUTHINFO]
| | +--> SYSTEM$DEFAULT$AUTHINFO$CRLLDAP.
| +--> [.CHANNEL]
| | +--> SYSTEM$AUTO$RECEIVER.
| | +--> SYSTEM$AUTO$SVRCONN.
| | +--> SYSTEM$DEF$CLUSRCVR.
| | +--> SYSTEM$DEF$CLUSSDR.
| | +--> SYSTEM$DEF$RECEIVER.
| | +--> SYSTEM$DEF$REQUESTER.
| | +--> SYSTEM$DEF$SENDER.
| | +--> SYSTEM$DEF$SERVER.
| | +--> SYSTEM$DEF$SVRCONN.
| +--> [.CLNTCONN]
| | +--> SYSTEM$DEF$CLNTCONN.
| +--> [.ERRORS] --> AMQERR0*.LOG
| +--> [.ESEM]
| +--> [.ISEM]
| +--> [.LISTENER]
| | +--> SYSTEM$DEFAULT$LISTENER$TCP.
| +--> [.MSEM]
| +--> [.NAMELIST]
| | +--> SYSTEM$DEFAULT$NAMELIST.
| +--> [.PLUGCOMP]
| +--> [.PROCDEF]
| | +--> SYSTEM$DEFAULT$PROCESS.
| |
| +--> [.QMANAGER]
| | +--> QMANAGER.
| | +--> QMQMOBJCAT.
| |
| +--> [.QUEUES]
| +--> [.SERVICES]
| | +--> SYSTEM$BROKER.
| | +--> SYSTEM$DEFAULT$SERVICE.
| |
| +--> [.SHMEM]
| +--> [.SPIPE]
| +--> [.SSL]
| +--> [.STARTPRM]
| +--> [.ZSOCKETAPP]
| +--> [.ZSOCKETEC]
|
|
+---> [.TRACE]

Figure 22. Default directory structure after a queue manager has been started

276 WebSphere MQ for HP OpenVMS: System Administration Guide



Directories and files in MQS_ROOT:[MQM]

By default, the following directories and files are located in the directory
MQS_ROOT:[MQM]:

.conv This directory contains all files used for data conversion.

.table This directory contains the ccsid.tbl. file.

.errors This directory contains the operator message files, from newest to oldest:
v AMQERR01.LOG
v AMQERR02.LOG
v AMQERR03.LOG

.exits An empty directory to contain user-written exits.

.lib This directory contains the subdirectory .iconv. The subdirectory contains
all the codeset conversion tables.

.iconv A directory containing codeset conversion tables (such as
002501B5.TBL to 44B031A8.TBL).

.log This directory contains the following subdirectory and files after you have
installed WebSphere MQ, created and started a queue manager, and have
been using that queue manager for some time.

amqhlctl.lfh
Log control file.

active This directory contains the log files, numbered as follows:
v S0000000.LOG
v S0000001.LOG
v S0000002.LOG
v ... and so on.

mqs.ini
WebSphere MQ configuration file.

.qmgrs
This directory contains a subdirectory .$system and a subdirectory .qmname
for each queue manager. The .$system directory contains directories and
files used internally by WebSphere MQ. For more information about the
.qmname subdirectory, see “Directories and files in the
MQS_ROOT:[MQM.QMGRS.QMNAME] subdirectory.”

.trace This directory contains the trace files created from the strmqtrc command.

Directories and files in the MQS_ROOT:[MQM.QMGRS.QMNAME]
subdirectory

By default, the following directories and files are located in the directory
MQS_ROOT:[MQM.QMGRS.QMNAME]. The .QMNAME is created for every
queue manager created and running on the system.

amqalchk.fil
Checkpoint file containing information about last checkpoint.

.auth This directory contains subdirectories and files associated with authority.

$aclass.;
This file contains the authority stanzas for all classes.

Appendix B. Directory structure 277



.namelist
This directory contains a file for each namelist. Each file contains
the authority stanzas for the associated namelist.

$class.;
This file contains the authority stanzas for the namelist
class.

.$mangled
When namelist names contain invalid OpenVMS
characters, they are automatically converted to valid
OpenVMS names. The valid OpenVMS names are held in
this file. See “Directories and files in the
MQS_ROOT:[MQM.QMGRS.QMNAME] subdirectory” on
page 277.

system$default$namelist
This file contains authority stanzas for the system default
namelist.

.procdef
Each WebSphere MQ process definition is associated with a file in
this directory.

$class.;
This file contains the authority stanzas for the process
definition class.

.$mangled
When process definition names contain invalid OpenVMS
characters, they are automatically converted to valid
OpenVMS names. The valid OpenVMS names are held in
this file. See “Understanding WebSphere MQ file names”
on page 17.

.system$default$process.;
This file contains authority stanzas for the system default
processes.

.qmanager
This directory contains a file for each queue manager. Each file
contains the authority stanzas for the associated queue manager.

$class.;
This file contains the authority stanzas for the queue
manager class.

.$mangled
When queue manager definition names contain invalid
OpenVMS characters, they are automatically converted to
valid OpenVMS names. The valid OpenVMS names are
held in this file. See “Understanding WebSphere MQ file
names” on page 17.

self.; This file contains the authority stanzas for the queue
manager object.

.queues
This directory contains a file for each queue. Each file contains the
authority stanzas for the associated queue.

278 WebSphere MQ for HP OpenVMS: System Administration Guide



$CLASS
This file contains the authority stanzas for the queue class.

.$mangled
When queue names contain invalid OpenVMS characters,
they are automatically converted to valid OpenVMS names.
The valid OpenVMS names are held in this file. See
“Understanding WebSphere MQ file names” on page 17.

Definition files for the queue
Each file corresponds to an object predefined for the queue
manager.
v system$admin$channel$event.;
v system$admin$command$queue.;
v system$admin$perfm$event.;
v system$admin$qmgr$event.;
v system$channel$initq.;
v system$channel$syncq.;
v system$cics$initiation$queue.;
v system$cluster$command$queue.;
v system$cluster$repository$queue.;
v system$cluster$transmit$queue.;
v system$dead$letter$queue.;
v system$default$alias$queue.;
v system$default$initiation$queue.;
v system$default$local$queue.;
v system$default$model$queue.;
v system$default$remote$queue.;
v system$mqsc$reply$queue.;

.qaadmin.;
File used internally for controlling authorizations.

.dce Empty directory reserved for use by DCE support.

.errors This directory contains the operator message files, from newest to oldest:
v amqerr01.log
v amqerr02.log
v amqerr03.log

.esem Directory containing files used internally.

.isem Directory containing files used internally.

.msem Directory containing files used internally.

.namelist
This directory contains namelists for each queue manager.

.plugcomp
This empty directory is reserved for use by installable services.

.procdef
Each WebSphere MQ process definition is associated with a file in this
directory. The filename matches the process definition name.

qm.ini Queue manager configuration file.

.qmanager
The queue manager object.

qmstatus.ini
This file contains text describing the status of the queue manager.

Appendix B. Directory structure 279



.queues
Each queue has a directory in here containing a single file called ‘q’.

The file name matches the queue name—subject to certain restrictions; see
“Understanding WebSphere MQ file names” on page 17.

.shmem

.perQueue
Directory containing files used internally.

.ssem Directory containing files used internally.

.startprm
Directory containing temporary files used internally.

.$ipcc

amqclchl.tab
Client channel table file.

amqrfcda.dat
Channel table file.

.esem Directory containing files used internally.

.isem Directory containing files used internally.

.msem Directory containing files used internally.

.shmem

.perQueue
Directory containing files used internally.

.ssem Directory containing files used internally.

280 WebSphere MQ for HP OpenVMS: System Administration Guide



Appendix C. Comparing command sets

The following tables compare the facilities available from the different
administration command sets:
v “Commands for queue manager administration”
v “Commands for command server administration”
v “Commands for queue administration” on page 282
v “Commands for process administration” on page 282
v “Commands for channel administration” on page 283
v “Other control commands” on page 284

Note: Only MQSC commands that apply to WebSphere MQ for HP OpenVMS are
shown.

Commands for queue manager administration
Table 21. Commands for queue manager administration

PCF MQSC Control

Change Queue Manager ALTER QMGR –

(Create queue manager). – crtmqm

(Delete queue manager). – dltmqm

Inquire Queue Manager DISPLAY QMGR –

(Stop queue manager). – endmqm

Ping Queue Manager PING QMGR –

(Start queue manager). – strmqm

Note: . Not available as PCF commands.

Commands for command server administration
Table 22. Commands for command server administration

Description Control

Display command server dspmqcsv

Start command server strmqcsv

Stop command server endmqcsv

© Copyright IBM Corp. 1994, 2009 281



Table 22. Commands for command server administration (continued)

Description Control

Note: Functions in this group are available only as control commands. There are no
equivalent MQSC or PCF commands in this group.

Commands for queue administration
Table 23. Commands for queue administration

PCF MQSC

Change Queue ALTER QLOCAL
ALTER QALIAS
ALTER QMODEL
ALTER QREMOTE

Clear Queue CLEAR QUEUE

Copy Queue DEFINE QLOCAL(x) LIKE(y)
DEFINE QALIAS(x) LIKE(y)
DEFINE QMODEL(x) LIKE(y)
DEFINE QREMOTE(x) LIKE(y)

Create Queue DEFINE QLOCAL
DEFINE QALIAS
DEFINE QMODEL
DEFINE QREMOTE

Delete Queue DELETE QLOCAL
DELETE QALIAS
DELETE QMODEL
DELETE QREMOTE

Inquire Queue DISPLAY QUEUE

Inquire Queue Names DISPLAY QUEUE

Note: There are no equivalent control commands in this group.

Commands for process administration
Table 24. Commands for process administration

PCF MQSC

Change Process ALTER PROCESS

Copy Process DEFINE PROCESS(x) LIKE(y)

282 WebSphere MQ for HP OpenVMS: System Administration Guide



Table 24. Commands for process administration (continued)

PCF MQSC

Create Process DEFINE PROCESS

Delete Process DELETE PROCESS

Inquire Process DISPLAY PROCESS

Inquire Process Names DISPLAY PROCESS

Note: There are no equivalent control commands in this group.

Commands for channel administration
Table 25. Commands for channel administration

PCF MQSC Control

Change Channel ALTER CHANNEL –

Copy Channel DEFINE CHANNEL(x) LIKE(y) –

Create Channel DEFINE CHANNEL –

Delete Channel DELETE CHANNEL –

Inquire Channel DISPLAY CHANNEL –

Inquire Channel Names DISPLAY CHANNEL –

Ping Channel PING CHANNEL –

Reset Channel RESET CHANNEL –

Resolve Channel RESOLVE CHANNEL –

Start Channel START CHANNEL runmqchl

Start Channel Initiator START CHINIT runmqchi

Start Channel Listener – runmqlsr

Stop Channel STOP CHANNEL –

Appendix C. Comparing command sets 283



Other control commands
Table 26. Other control commands

Description Control

Create WebSphere MQ conversion exit crtmqcvx

Display authority dspmqaut

Display files used by objects dspmqfls

Display WebSphere MQ formatted trace output dspmqtrc

End WebSphere MQ trace endmqtrc

Manage a failover set failover

Record media image rcdmqimg

Recreate media object rcrmqobj

Resolve WebSphere MQ transactions rsvmqtrn

Run MQSC commands runmqsc

Run trigger monitor runmqtrm

Run client trigger monitor runmqtmc

Set or reset authority setmqaut

Start a failover monitor runmqfm

Start WebSphere MQ trace strmqtrc

Note: Functions in this group are available only as control commands. There are no direct
PCF or MQSC equivalents.

284 WebSphere MQ for HP OpenVMS: System Administration Guide



Appendix D. Stopping and removing queue managers
manually

If the standard methods for stopping and removing queue managers fail, try the
methods described here.

Stopping a queue manager manually

The standard way of stopping queue managers, using the endmqm command,
should work even in the event of failures within the queue manager. In exceptional
circumstances, if this method of stopping a queue manager fails, you can use one
of the procedures described here to stop it manually.

Stopping queue managers in WebSphere MQ for OpenVMS
systems

To stop a queue manager running under WebSphere MQ for OpenVMS systems:
1. Find the process IDs of the queue manager programs that are still running

using the MQPROC command:
$ MQPROC

2. End any queue manager processes that are still running. Use the DCL
command STOP/ID, specifying the process IDs discovered using the MQPROC
command.
End the processes in the following order:

AMQZMUC0 Critical process manager
AMQZXMA0 Execution controller
AMQZFUMA OAM process
AMQZLAA0 LQM agents
AMQZMGR0 Process controller
AMQZMUR0 Restartable process manager
AMQRRMFA The repository process (for clusters)
AMQZDMAA Deferred message processor
AMQPCSEA The command server
RUNMQCHI The channel initiator

If you stop the queue manager manually, FFSTs might be taken, and FDC files
placed in MQS_ROOT:[MQM.ERRORS]. Do not regard this as a defect in the queue
manager.

The queue manager should restart normally, even after you have stopped it using
this method.

Removing queue managers manually

If you want to delete the queue manager after stopping it manually, use the
dltmqm command.

© Copyright IBM Corp. 1994, 2009 285



Removing queue managers in WebSphere MQ for Windows

If you encounter problems with the dltmqm command in WebSphere MQ for
Windows, use the following procedure to delete a queue manager:
1. Type REGEDIT from the command prompt to start the Registry Editor.
2. Select the HKEY_LOCAL_MACHINE window.
3. Navigate the tree structure in the left-hand pane of the Registry Editor to the

following key:
HKEY_LOCAL_MACHINE\SOFTWARE\IBM\MQSeries\CurrentVersion

Make a note of the values within this key called WorkPath and LogPath.
Within each of the directories named by these values, you are going to delete
a subdirectory containing the data for the queue manager that you are trying
to delete. You now need to find out the name of the subdirectory which
corresponds to your queue manager.

4. Navigate the tree structure to the following key:
HKEY_LOCAL_MACHINE\SOFTWARE\IBM\MQSeries\CurrentVersion\
Configuration\QueueManager

Within this key there is a key for each of the queue managers on this
computer containing the configuration information for the queue manager.
The name of this queue manager key is the name of the subdirectory in which
the queue manager’s data is stored in the file system. By default, this name is
the same as the queue manager name, but the name might be a
transformation of the queue manager name.

5. Examine the keys within the current key. Look for the key that contains a
value called Name. Name contains the name of the queue manager you are
trying to delete. Make a note of the name of the key containing the name of
the queue manager you are trying to delete. This is the subdirectory name.

6. Locate the queue manager data directory. The name of this directory is the
WorkPath followed by the subdirectory name. Delete this directory, and all
subdirectories and files.

7. Locate the queue manager’s log directory. The name of this directory is the
LogPath followed by the subdirectory name. Delete this directory, and all
subdirectories and files.

8. Remove the registry entries that refer to the deleted queue manager. First,
navigate the tree structure in the Registry Editor to the following key:
HKEY_LOCAL_MACHINE\SOFTWARE\IBM\MQSeries\CurrentVersion\
Configuration\DefaultQueueManager

9. If the value called Name within this key matches the name of the queue
manager you are deleting, delete the DefaultQueueManager key.

10. Navigate the tree to the following key:
HKEY_LOCAL_MACHINE\SOFTWARE\IBM\MQSeries\CurrentVersion\
Configuration\Services

11. Within this key, delete the key whose name matches the subdirectory name of
the queue manager which you are deleting.

12. Navigate the tree to the following key:
HKEY_LOCAL_MACHINE\SOFTWARE\IBM\MQSeries\CurrentVersion\
Configuration\QueueManager

13. Within this key, delete the key whose name matches the subdirectory name of
the queue manager which you are deleting.

286 WebSphere MQ for HP OpenVMS: System Administration Guide



Removing queue managers from the automatic startup list

If for any reason the WebSphere MQ Explorer cannot be used to change the startup
state of a particular queue manager, use the following routine to carry out the
same procedure manually:
1. Stop the WebSphere MQ Explorer either from the task bar icon or from the

control panel.
2. Type REGEDIT on the command line.
3. Select the HKEY_LOCAL_MACHINE window.
4. Navigate the tree structure to find the following key:

LOCAL_MACHINE\Software\IBM\MQSeries\CurrentVersion\Configuration\
Services\<QMgrName>\QueueManager

5. Change the startup value to 0. (1 means automatic and 0 means manual.)
6. Close the Registry Editor.
7. Run amqmdain regsec.

Removing queue managers in WebSphere MQ for UNIX
systems

The manual removal of a queue manager is potentially very disruptive,
particularly if multiple queue managers are being used on a single system. This is
because, to completely remove a queue manager, you must delete files, shared
memory, and semaphores.

If you need to delete a queue manager manually, use the following procedure:
1. Stop the queue manager running, and execute the following command, as user

mqm:
amqiclen -x -m QMGR

This ensures that all IPC resources that are specifically reserved for queue
manager QMGR are removed.

2. Locate the queue manager directory from the configuration file
/var/mqm/mqs.ini. To do this, look for the QueueManager stanza naming the
queue manager to be deleted.
Its Prefix and Directory attributes identify the queue manager directory. For a
Prefix attribute of <Prefix> and a Directory attribute of <Directory>, the full
path to the queue manager directory is: <Prefix>/qmgrs/<Directory>

3. Locate the queue manager log directory from the qm.ini configuration file in
the queue manager directory. The LogPath attribute of the Log stanza identifies
this directory.

4. Delete the queue manager directory, all subdirectories and files.
5. Delete the queue manager log directory, all subdirectories and files.
6. Remove the queue manager’s QueueManager stanza from the /var/mqm/mqs.ini

configuration file.
7. If the queue manager being deleted is also the default queue manager, remove

the DefaultQueueManager stanza from the /var/mqm/mqs.ini configuration file.

Appendix D. Stopping and removing queue managers manually 287



288 WebSphere MQ for HP OpenVMS: System Administration Guide



Appendix E. Sample MQI programs and MQSC files

WebSphere MQ for HP OpenVMS provides a set of short sample MQI programs
and MQSC command files that you can use and experiment with. These are
described in the following sections:
v “MQSC command file samples”
v “C and COBOL program samples”
v “Miscellaneous tools” on page 290

MQSC command file samples

Table 27 lists the MQSC command file samples. These are simply ASCII text files
containing MQSC commands. You can invoke the runmqsc command against each
file in turn to create the objects specified in the file. See “Running the supplied
MQSC command files” on page 34.

By default, these files are located in directory MQS_EXAMPLES:

Table 27. MQSC command files

File name Purpose

AMQSCOS0.TST Creates a set of MQI objects for use with the C and COBOL program samples.

C and COBOL program samples

Table 28 lists the sample MQI source files. By default, the source files are located in
directory MQS_EXAMPLES: and the compiled versions in [.BIN] directory under
MQS_EXAMPLES:. To find out more about what the programs do and how to use
them, see the WebSphere MQ Application Programming Guide.

Table 28. Sample programs - source files

C COBOL Purpose

AMQSBCG0.C – Reads and then outputs both the message descriptor and message context
fields of all the messages on a specified queue.

AMQSECHA.C AMQVECHX.COB Echoes a message from a message queue to the reply-to queue. Can be run
as a triggered application program.

AMQSGBR0.C AMQ0GBR0.COB Writes messages from a queue to SYS$OUTPUT leaving the messages on
the queue. Uses MQGET with the browse option.

AMQSGET0.C AMQ0GET0.COB Removes the messages from the named queue (using MQGET) and writes
them to SYS$OUTPUT.

AMQSINQA.C AMQVINQX.COB Reads the triggered queue; each request read as a queue name; responds
with information about that queue.

AMQSPUT0.C AMQ0PUT0.COB Copies SYS$INPUT to a message and then puts this message on a specified
queue.

AMQSREQ0.C AMQ0REQ0.COB Puts request messages on a specified queue and then displays the reply
messages.

AMQSSETA.C AMQVSETX.COB Inhibits puts on a named queue and responds with a statement of the
result. Runs as a triggered application.

© Copyright IBM Corp. 1994, 2009 289



Table 28. Sample programs - source files (continued)

C COBOL Purpose

AMQSTRG0.C – A trigger monitor that reads a named initiation queue and then starts the
program associated with each trigger message. Provides a subset of the full
triggering function of the supplied runmqtrm command.

AMQSVFCX.C – A sample C skeleton of a Data Conversion exit routine.

Miscellaneous tools

These tool files are provided to support the formatter and code conversion.

Table 29. Miscellaneous files

File name Location Purpose

AMQTRC.FMT SYS$LIBRARY Defines WebSphere MQ trace
formats.

CCSID.TBL MQS_ROOT:[MQM.CONV.TABLE] Edit this file to add any newly
supported CSSID values to your
WebSphere MQ system. For more
information about CCSID, see the
CDRA (Character Data
Representation Architecture)
documentation.

Command file for application triggering

The command file MQTRIGGER.COM is supplied as an example of a command
file designed to take the parameters supplied by the WebSphere MQ trigger
monitor (RUNMQTRM) and separate the fields in the MQTMC2 structure.

The command file expects the first parameter to be the image, or command file, to
invoke with selected fields from the MQTMC2 structure.

MQTRIGGER passes the following fields from the MQTMC2 structure to the
invoked image or command file:

Parameter MQTMC2 Field

1 QName
2 ProcessName
3 TriggerData
4 ApplType
5 UserData
6 QMgrName

Examples
1. To trigger the amqsech image:

The ApplicId field of the trigger process definition is specified as follows:

290 WebSphere MQ for HP OpenVMS: System Administration Guide



This example assumes that the MQBIN logical directory has been defined as:

2. To invoke a command file, dka200:[user]cmd.com:
The ApplicId field of the trigger process definition is specified as follows:

APPLICID('@mqs_examples:mqtrigger $mqbin:amqsech')

SYS$SYSROOT:[SYSHLP.EXAMPLES.MQSERIES.BIN]

APPLICID('@mqs_examples:mqtrigger @dka200:[user]cmd')

Appendix E. Sample MQI programs and MQSC files 291



292 WebSphere MQ for HP OpenVMS: System Administration Guide



Appendix F. OpenVMS cluster failover set templates

This appendix contains the following failover set templates:
v “Template Configuration File FAILOVER.TEMPLATE”
v “Template StartCommand procedure START_QM.TEMPLATE” on page 294
v “Template EndCommand procedure END_QM.TEMPLATE” on page 295
v “Template TidyCommand procedure TIDY_QM.TEMPLATE” on page 297

Template Configuration File FAILOVER.TEMPLATE
#********************************************************************#
#* *#
#* Statement: Licensed Materials - Property of IBM *#
#* *#
#* (C) Copyright IBM Corp. 2000, 2004 *#
#* *#
#********************************************************************#
#
# FAILOVER.TEMPLATE
# Template for creating a FAILOVER.INI configuration file
# All lines beginning with a '#' are treated as comments
#
# OpenVMS Cluster Failover Set Configuration information
# ------------------------------------------------------
#
# The TCP/IP address used by the OpenVMS Cluster Failover Set
#
IpAddress=n.n.n.n
#
# The TCP/IP port number used by the WebSphere MQ Queue Manager
#
PortNumber=1414
#
# The timeout used by the EndCommand command procedure
#
TimeOut=30
#
# The command procedure used to start the Queue Manager
#
StartCommand=@sys$manager:start_qm
#
# The command procedure used to end the Queue Manager
#
EndCommand=@sys$manager:end_qm
#
# The command procedure used to tidy up on a node after a
# Queue Manager failure but the OpenVMS node did not fail
#
TidyCommand=@sys$manager:tidy_qm
#
# The directory in which the log files for the start, end and
# tidy commands are written
#
LogDirectory=mqs_root:[mqm.errors]
#
# The number of nodes in the OpenVMS Cluster Failover Set. The
# number of nodes defined below must agree with this number
#
NodeCount=2
#
# The Name of the OpenVMS node

© Copyright IBM Corp. 1994, 2009 293



#
NodeName=BATMAN
#
# The TCP/IP interface name for the node
#
Interface=we0
#
# The priority of the node
#
Priority=1
#
# The Name of the OpenVMS node
#
NodeName=ROBIN
#
# The TCP/IP interface name for the node
#
Interface=we0
#
# The priority of the node
#
Priority=2

Template StartCommand procedure START_QM.TEMPLATE
$ on error then exit
$!********************************************************************
$!* Statement: Licensed Materials - Property of IBM *
$!* (C) Copyright IBM Corp. 2000, 2004 *
$!********************************************************************
$! Template command procedure used by Failover Sets to start the
$! queue manager
$! Parameters :
$! P1 = Queue Manager Name
$! P2 = Queue Manager Directory Name
$! P3 = TCP/IP address
$! P4 = TCP/IP interface name
$! P5 = Listener port number
$!
$ @sys$startup:mqs_symbols
$ set def mqs_root:[mqm.qmgrs.'p2'.errors]
$ define sys$scratch mqs_root:[mqm.qmgrs.'p2'.errors]
$!
$! Digital TCP/IP Services for OpenVMS commands
$!
$ @sys$startup:tcpip$define_commands
$!
$! Configure the IP address
$!
$ ifconfig 'p4' alias 'p3'
$!
$! TCPware for OpenVMS commands
$!
$! @tcpware:tcpware_commands
$!
$! Configure the IP address
$!
$! netcu add secondary 'p3'
$!
$! MultiNet for OpenVMS commands
$!
$! Configure the IP address

Figure 23. Template configuration file: failover.template

294 WebSphere MQ for HP OpenVMS: System Administration Guide



$!
$! define/sys/exec multinet_ip_cluster_aliases "''p3'"
$!
$! Restart the Multinet server
$!
$! @multinet:start_server
$!$! Start the queue manager
$!
$ strmqm 'p1'
$!
$! Start the listener
$!
$! runmqlsr -t tcp -p 'p5' -m 'p1'
$!
$! Insert commands to start any applications
$!
$exit

Template EndCommand procedure END_QM.TEMPLATE
$ on error then exit
$!
$!********************************************************************
$!* *
$!* Statement: Licensed Materials - Property of IBM *
$!* *
$!* (C) Copyright IBM Corp. 2000, 2004 *
$!* *
$!********************************************************************
$!
$! Template Command procedure used by Failover Sets to end the
$! queue manager
$!
$! Parameters :
$!
$! P1 = Queue Manager Name
$! P2 = Queue Manager Directory Name
$! P3 = TCP/IP address
$! P4 = TCP/IP interface name
$! P5 = Listener port number
$! P6 = End Queue Manager Timeout
$!
$ @sys$startup:mqs_symbols
$ check_qm:==$sys$system:mqcheckqm
$ set def mqs_root:[mqm.qmgrs.'p2'.errors]
$ define sys$scratch mqs_root:[mqm.qmgrs.'p2'.errors]
$ SS$_NORMAL=1
$ SS$_ABORT=44
$ SS$_TIMEOUT=556
$!
$! Insert commands to shutdown any applications prior to ending WebSphere MQ
$!
$! Get the timeout period for each operation seconds
$!
$ timeout = 'p6'
$!
$! Initialise the outer loop
$!
$ out_count = 0
$!
$! Initialise the complete flag
$!

Figure 24. Template StartCommand procedure: Start_QM.template

Appendix F. OpenVMS cluster failover set templates 295



$ complete = 0
$!
$ out_next:
$ if (out_count .gt. 2) .or. (complete .eq. 1) then goto out_finish
$!
$ if out_count .eq. 0
$ then
$!
$! End the queue manager gracefully first
$!
$ spawn/nowait $endmqm -i 'p1'
$ else
$ if out_count .eq. 1
$ then
$!
$! End the queue manager abruptly
$!
$ spawn/nowait $endmqm -p 'p1'
$ else
$!
$! Stop/id the execution controller
$!
$ check_qm -m 'p1'
$ if ( mqs$ec_pid .nes. "") then $stop/id='mqs$ec_pid'
$ endif
$ endif
$!
$ in_start:
$!
$! Initialise the outer loop
$!
$ in_count = 0
$!
$ in_next:
$!
$! Inner loop
$!
$ if ( ( in_count .ge. timeout) .and. ( timeout .ne. 0 ) ) -

.or. (complete .eq. 1) then goto in_finish
$!
$! Check if the execution controller is still running
$!
$ check_qm -m 'p1'
$ if mqs$ec_pid .eqs. ""
$ then
$!
$! The Execution controller is no longer running so we are finished
$!
$ complete = 1
$ goto in_finish
$ endif
$!
$! Wait a second and go round again
$!
$ wait 00:00:01
$ in_count = in_count + 1
$ goto in_next
$ in_finish:
$!
$! End of the inner loop
$!
$ out_count = out_count + 1
$ goto out_next
$ out_finish:
$!
$! End of the outer loop
$!

296 WebSphere MQ for HP OpenVMS: System Administration Guide



$! Digital TCP/IP Services for OpenVMS commands
$!
$ @sys$startup:tcpip$define_commands
$!
$! De-configure the IP address
$!
$ ifconfig 'p4' -alias 'p3'
$!
$! TCPware for OpenVMS commands
$!
$! @tcpware:tcpware_commands
$!
$! De-configure the IP address
$!
$! netcu remove secondary 'p3'
$!
$! MultiNet for OpenVMS commands
$!
$! De-configure the IP address
$!
$! deass/sys/exec multinet_ip_cluster_aliases
$!
$! Restart the Multinet server
$!
$! @multinet:start_server
$!
$!
$! If the Queue Manager was shutdown successfully set the status
$! to SS$_NORMAL. If it was necessary to STOP/ID the Execution
$! controller set the status to SS$_ABORT and if the Execution
$! controller is still running set the status to SS$_TIMEOUT to
$! indicate an error
$!
$ if ( complete .eq. 1 )
$then
$!
$! End the listener process
$!
$! endmqlsr -m 'p1'
$!
$ if ( out_count .eq. 3 )
$ then
$ exit SS$_ABORT
$ else
$ exit SS$_NORMAL
$ endif
$else
$ exit SS$_TIMEOUT
$endif

Template TidyCommand procedure TIDY_QM.TEMPLATE
$ on error then exit
$!********************************************************************
$!* Statement: Licensed Materials - Property of IBM *
$!* *
$!* (C) Copyright IBM Corp. 2000, 2004 *
$!********************************************************************
$! Template Command procedure used by Failover Sets to tidy up after
$! a queue manager failure
$!
$! Parameters :

Figure 25. Template EndCommand procedure: END_QM.template

Appendix F. OpenVMS cluster failover set templates 297



$! P1 = Queue Manager Name
$! P2 = Queue Manager Directory Name
$! P3 = TCP/IP address
$! P4 = TCP/IP interface name
$! P5 = Listener port number
$!
$ @sys$startup:mqs_symbols
$ set def mqs_root:[mqm.qmgrs.'p2'.errors]
$ define sys$scratch mqs_root:[mqm.qmgrs.'p2'.errors]
$!
$! Insert commands to do any tidying up after a queue manager has failed
$!
$! Digital TCP/IP Services for OpenVMS commands
$!
$ @sys$startup:tcpip$define_commands
$!
$! De-configure the IP address
$!
$ ifconfig 'p4' -alias 'p3'
$!
$! TCPware for OpenVMS commands
$!
$! @tcpware:tcpware_commands
$!
$! De-configure the IP address
$!
$! netcu remove secondary 'p3'
$!
$! MultiNet for OpenVMS commands
$!
$! De-configure the IP address
$!
$! deass/sys/exec multinet_ip_cluster_aliases
$!
$! Restart the Multinet server
$!
$! @multinet:start_server
$!
$exit

Figure 26. Template TidyCommand procedure: TIDY_QM.template

298 WebSphere MQ for HP OpenVMS: System Administration Guide



Appendix G. MONMQ diagnostic utility

The MONMQ utility is a tool to assist in the diagnosis and resolution of problems
with WebSphere MQ for HP OpenVMS. The MONMQ utility can be used
interactively, from the command line, or from within a DCL script.

The MONMQ utility is most commonly used to:
v Manage shared memory
v Help gather OpenVMS resource usage information
v Obtain trace output from a running queue manager.

MONMQ has a help system to assist with parameters and can also run a script of
MONMQ commands. When MONMQ starts, a default script
sys$manager:mqs_trace_startup.mqt is run to provide an initial configuration.

Overview

Tracing WebSphere MQ on OpenVMS is implemented using global sections and
mailboxes. Up to ten trace sections (LUs) can coexist on any one node where
WebSphere MQ is installed. However, you should ensure that a trace session
employs only one LU at any time. It is also not advisable for more than one user
to have the same LU open at any one time. The results of either of these conditions
are unpredictable.

Each shared section (LU) contains the channel definitions and the LU definition
itself. Each channel definition contains the connected thread details, the threads

$monmq
ok - LU:0 opened

MQT> help
Help [ <verb> | <parameter/variable name> | commands | parameters | examples ]
Help [ expressions ]

Valid trace commands are in the format:
Verb [<parameters>] [<variable = expression>] [; [optional second command]]

A list of valid command verbsis displayed by entering
MQT> help commands
A list of valid parameters or variables can also be displayed by entering
MQT> help parameters
The expression can be numeric, a range of values, a string, or even an
arithmetic expression. The following command displays more information on
expressions
MQT> help expression
To obtain more help on a specific verb, parameter or variable enter the command
MQT> help <parameter or verb name>

Verb, parameter, or variable names can be shortened to any unique abbreviation

Commands that make use of a variable parameter can often use a default value
if it is not specified on the command line. The current default values can be
displayed with the "variables" command. The default can be changed with the
"default" command

© Copyright IBM Corp. 1994, 2009 299



private stack and the threads circular buffer. Furthermore the shared section
contains a set of flags used for interprocess communication between MONMQ and
the connected threads.

For each LU there is an associated mailbox used for receiving realtime trace
messages. To perform realtime tracing, a client process must be initiated using the
TRACE START command. This dedicated detached process reads, formats and
displays each message as it arrives in the LUs mailbox. Each connected thread
writes to the same mailbox and thus provides you with the ability to physically
view the intercommunication between WebSphere MQ processes/threads.

MONMQ, if driven correctly, can provide a comprehensive method for diagnosing
problems such as, interprocess timing problems, exhausted operating system
resources or even coding problems.

The MONMQ commands are described in this appendix.

Variables within MONMQ

Many commands within MONMQ make use of variables. A variable uses a default
value, defined by the set command, if one is not specified within the command.
When a variable is used with a command other than set, the default value for that
variable is not changed.

Variables can contain:
v Integer variables (either decimal or hexadecimal).

Hexadecimal values can be entered with a leading 0x, or by entering a value
with letters a-f where a hexadecimal value is expected.

v Text, which must be quoted.
v A range, which is entered by putting minimum:maximum.

A range is used so that, for example, a command can apply to a range of
channels.

For example:

The current default value for the variables can be displayed by using the variables
command.

MQT> set lu=2
MQT> set pid=0x223
MQT> set pid=2fa
MQT> set buffile="filename.buf"
MQT> set chl=0:20

300 WebSphere MQ for HP OpenVMS: System Administration Guide



Set default values to simplify the commands. For example, the following command
sequences are functionally identical:

or

MONMQ commands can be abbreviated to the minimum number of characters
required to ensure a unique command. This series of commands could be
shortened still further to:

MONMQ can also perform simple arithmetic operations with variables so that
commands such as set lu=lu+1 is possible.

New variables can be declared with the declare command. The parameters are:

MQT> variables
defined variables
lu=0:0 nochls=20 buffer=1000
chl=0:20 component=0(HEX) line=0
mask=0(HEX) pid=0(HEX) node=(null)
function=0(HEX) div=0 depth=32
resource=0 wait=1(BOOL) timestamp=0(BOOL)
listfile=(null) buffile=(null) step=0(BOOL)
active=0(BOOL) fname=(null) delay=100
post=0(BOOL)

defined constants
fent=1(HEX) fout=2(HEX) ferr=4(HEX)
fxxx=8(HEX) dgn=10(HEX) shm=20(HEX)
spl=40(HEX) evt=80(HEX) mtx=100(HEX)
prc=200(HEX) msc=400(HEX) inf=800(HEX)
log=2000(HEX) shl=4000(HEX) memory=3
mutex=4 mailbox=5 nanoseconds=1
microseconds=2 milliseconds=3 seconds=4

MQT> open lu=0 buffer=1000 nochls=20
MQT> open lu=1 buffer=1000 nochls=20
MQT> show channels lu=0 chl=1:10
MQT> show channels lu=1 chl=1:10

MQT> set nochls=20 chl=0:10 buffer=1000 lu=0
MQT> open
MQT> open lu=1
MQT> show channels
MQT> show channels lu=1

MQT> se noc=20 ch=0:10 buffe=1000 lu=0
MQT> op
MQT> op lu=1
MQT> sh ch
MQT> sh ch lu=1

Appendix G. MONMQ diagnostic utility 301



v Variable name
v Variable type
v Help text. The help command can then retrieve the help text.

Assigning default values

DEFAULT variable=<expression> [variable=expression] ...

This command allows default values to be assigned to all variables defined within
MONMQ. Once set, the default variable name can then be omitted from the
command line. For example:

This command sets the default value 2 to the lu variable and the values 3 to 6
inclusive to the channel variable. From now on, when using a typical command
such as show channels, channels 3 to 6 inclusive on lu 2 is displayed.

Default values are used only where the variable is omitted from the command line.
All default values are set in the startup script file MQS_TRACE_STARTUP.MQT. This file
can be edited to suit your needs.

Opening or creating a trace section and associated mailbox

OPEN [lu=number] [nochls=number] [buffer=number]

This command opens or creates a trace section and associated mailbox. The open
command creates the basic resource required for tracing WebSphere MQ processes.
Each LU has an associated shared section and mailbox used to communicate with
WebSphere MQ processes.

This command takes three optional parameters. The first parameter [LU] is the
number assigned to the trace section/mailbox and is used as a reference by most
other MONMQ commands. A maximum of ten LUs may be created on a single
node. The default value is zero. If the specified LU already exists then MONMQ
connects to the existing trace section. If no section exists then a new section is
created.

MQT> declare ec int "channel number for execution controller"
MQT> set ec = 4
MQT> show channel chl=ec
Chl Pid Mailbox Stack Active Post Time Mask Process Name

4 2c1f 7ee70290 4 0 0 0 ffffffff AMQZXMA0.EXE
MQT> help ec

VARIABLE ec:
channel number for execution controller

MQT>

MQT>default lu=2 chl=3:6

302 WebSphere MQ for HP OpenVMS: System Administration Guide



The second parameter [nochls] specifies the number of channels that this LU has.
Each channel represents a single WebSphere MQ process/thread connection. The
default value is 20.

The third parameter [buffer] specifies the maximum size of the trace history buffer
for each channel. The default is 1000.

You must have at least one LU open before being able to perform other MONMQ
commands.

Displaying the logical unit definition

SHOW SEGMENT [lu=range]

This command displays the Logical Unit definition. An example of the output is
shown below with a brief description along side each field when you type the
command show segment lu=0.

Closing and deleting an LU

CLOSE [lu=number]

This command performs the opposite to OPEN and closes and deletes the specified
LU. The LU is closed in a controlled sequence by first signalling each connected
process to disconnect, then resetting each channel and then finally deassigning the
trace mailbox and deleting the shared section. This command should only be
performed when a trace session has been completed.

Display channel details

SHOW CHANNELS [full] [connect] [chl=range]

This command displays the details of the specified channels. The [connected]
parameter causes only channels that have a thread connected to be displayed. For
example, the show channels connected command displays the following:

Trace LU : 0 /* The LU number as specified in the OPEN [lu] parameter.
Mailbox name : MQS_TRC_MBX_0 /* The permanent mailbox name assigned to this LU
Device name : MBA1065: /* The device name of the mailbox
Status : Disabled /* The current status of the mailbox ie.
Mailbox channel : 352 /* The mailbox channel number assigned to the MONMQ process
History buffer size: 1000 /* The maximum number of message entries in the history

/* circular buffer (as specified by the OPEN [buffer] parameter)
Threads mapped # : 1 /* The number of processes/threads mapped to this LUs global

/* section (MONMQ always attached)
Time stamping : Enabled /* Global timestamp flag (not yet implemented)
Max channels # : 20 /* Number of channels defined for this LU as specified by the

/* OPEN [nochls] parameter.
Display depth : 0 /* The stack display depth. Default (0) is to display all stack entries.
Text filename : /* The client text trace file
Binary filename : /* The client binary trace file
Last status : 1 /* Last status of mailbox Qio activity (useful if VMS low on

/* resources and MONMQ fails)
Connection map[0] : 0 /* A bit map of all connected channels (maximum no. of channels is 128)

Appendix G. MONMQ diagnostic utility 303



The [full] parameter displays the complete definition of the specified channels. For
example, the show channels full connected chl=0:3 command displays:

Display the current trace mask for a channel

SHOW MASK [chl=range]

This command displays the current trace mask for a channel. A highlighted line
indicates that the btrace mask bit is enabled. For example, the command, show
mask chl=1 displays:

This output shows that function entry, function exit, spinlocks and event messages
are traced for this thread. All other types of messages are blocked.

Display the contents of the target threads stack

SHOW STACK [chl=range]

Chl Pid/Tid Mailbox Stack History RTime Time Mask Process Name
0 00000245/1 800b0330 4 0 0 0 fffffff AMQZLAA0.EXE
1 00000244/1 800b0200 8 0 0 0 ffffffff RUNMQCHI.EXE
2 00000243/1 800b01e0 10 0 0 0 ffffffff AMQRRMFA.EXE
3 00000242/1 800b01c0 4 0 0 0 ffffffff AMQZLLP0.EXE
4 00000241/1 800b0220 5 0 0 0 ffffffff AMQHASMX.EXE
5 00000240/1 800b03f0 4 0 0 0 ffffffff AMQZXMA0.EXE

Pid/Tid : 0000024b/1 /* Connected threads process id and thread sequence number
Status : ** Connected ** /* Current status of channel (thread is connected)
Process name : AMQRRMFA.EXE /* Process name of connected thread
Assigned LU : 0 /* This channels associated LU
Channel no. : 2 /* Allocated channle number within the LU
Mailbox channel : 800b01e0 /* Connected threads mailbox channel number for the trace mailbox
Current stack depth : 10 /* Threads current stack depth
Circular logging : Disabled /* History enabled flag
Next log entry : 0 /* Next history buffer slot number
Realtime tracing : Disabled /* Real time enable flag (needs client to read messages)
Time stamping : Disabled /* Enables timestamping for this threads messages
Trace mask : ffffffff /* Hexadecimal format of trace mask for this thread (see show mask command)
Step mode : Off /* Not yet implemented
No Wait : On /* Forces threads qio activity to wait for a resource if not available
Last QIO status : 0 /* Threads last qio call status
Mapped address : 9a2000-c9ffff /* The virtual mapped address range of the LU global section for this thread

Trace Mask for Channel 1

Bit 00 - (fent) function entry Function entry messages
Bit 01 - (fout) function exit Function exit messages
Bit 02 - (ferr) function exit with error Function exit with error return status
Bit 03 - (fxx) missing function exit Unbalanced function entry/exit message (see note below)
Bit 04 - (dgn) diagnostic messages Diagnostic messages
Bit 05 - (shm) shared memory OVMS shared memory messages
Bit 06 - (spl) spinlocks OVMS spinlock messages
Bit 07 - (evt) events OVMS event messages
Bit 08 - (mtx) mutexes OVMS mutex messages
Bit 09 - (prc) process msgs OVMS thread messages
Bit 10 - (msc) miscellaneous OVMS kernal niscellaneous messages
Bit 11 - (inf) informational Internal data messages as requested by show command
Bit 12 - Reserved for user defined messages

304 WebSphere MQ for HP OpenVMS: System Administration Guide



This command displays the contents of the target threads stack. For example, the
command show stack chl=0:1 displays:

Display active WebSphere MQ related processes and memory usage

SHOW PROCESSES

This command displays all active WebSphere MQ related processes on the current
node along with their memory usage. For example, the command show process
displays:

Displays all messages held in a channel

SHOW HISTORY [chl=range]

This command displays all messages held in the channel circular history buffer.
Each message is formatted and the output is indented according to the stack depth
at which it was generated. For example, the command show history chl=3
displays:

0001- 00:00:00.00 03 - 01 -->| ExecCtrlrMain
0002 - 12:36:20.18 03 - 02 --->| zcpReceiveOnLink
0003 - 12:36:20.81 03 - 03 ---->| xcsWaitEventSem
0004 - 12:36:20.83 03 - 04 ----->| vms_evt

0001- 00:00:00.00 03 - 01 -->| ExecCtrlrMain
0002 - 12:36:20.18 03 - 02 --->| zcpSendOnLink
0003 - 12:36:20.81 03 - 03 ---->| xcsPostEventSem
0004 - 12:36:20.83 03 - 04 ----->| vms_evt

PID Proc_Name Image Process WS_Size WS_Peak Virt_Peak Gbl_Pg_Cnt Prc_Pg_Cnt Total_Mem

0000023D BKM3_AG AMQZLAA0 Agent 23152 16576 203776 3616 12960 16576
0000023C BKM3_CI RUNMQCHI Run Chan Init 8752 6208 180832 1840 4368 6208
0000023B BKM3_RM AMQRRMFA Repository Mgr 11152 8144 185360 2224 5920 8144
0000023A BKM3_CP AMQZLLP0 Checkpoint 8752 6384 185952 1920 4464 6384
00000239 BKM3_LG AMQHASMX Logger 8752 6288 182016 2080 4208 6288
00000238 BKM3_EC AMQZXMA0 EC 20752 15232 203792 3536 11680 15216
00000128 _FTA4: MONMQ MONMQ Utility 8400 8528 198736 2224 3584 5808

Appendix G. MONMQ diagnostic utility 305



This sample output shows the line number within the history buffer, the time the
message was generated, the channel number, the stack depth when the message
was generated and the name of the function. When the LU was opened, the
maximum number of history messages entries was defined. When this buffer is
full, MONMQ wraps back to the first entry and overwrites the first and
subsequent messages. While tracing, if an FFST is generated, then at the point of
failure tracing is disabled for the failing thread. This is to prevent trace messages
generated by error routines from filling the buffer. Therefore the last message
displayed in the history buffer is the point at which the FFST was generated.

Display all WebSphere MQ related global sections on the current node

SHOW GLOBALS

This command displays all WebSphere MQ related global sections on the current
node.

0215 - 12:35:44.52 03 - 02 ---<| zxcProcessChildren
0216 - 12:35:44.55 03 - 02 --->| zxcStartWLMServer
0217 - 12:35:44.57 03 - 02 ---<| zxcStartWLMServer
0218 - 12:35:44.59 03 - 02 --->| zcpReceiveOnLink
0219 - 12:35:44.61 03 - 03 ---->| xcsRequestMutexSem
0220 - 12:35:44.63 03 - 04 ----->| xllSemReq
0221 - 12:35:44.66 03 - 05 ------>| vms_mtx
0222 - 12:35:44.66 03 - 05 .......| vms_mtx :- Locking BKM3/@ipcc_m_1_10 - timeout: -1
0223 - 12:35:44.70 03 - 06 ------->| vms_get_lock
0224 - 12:35:44.72 03 - 06 -------<| vms_get_lock
0225 - 12:35:44.74 03 - 05 ------<| vms_mtx
0226 - 12:35:44.76 03 - 04 -----<| xllSemReq
0227 - 12:35:44.79 03 - 03 ----<| xcsRequestMutexSem
0228 - 12:35:44.81 03 - 03 ---->| xcsResetEventSem
0229 - 12:35:44.83 03 - 04 ----->| vms_evt
0230 - 12:35:44.83 03 - 04 ......| vms_evt Reset on mailbox BKM3/@ipcc_e_1_2 : tout = -1
0231 - 12:35:44.87 03 - 05 ------>| vms_get_mbx_chan
0232 - 12:35:44.87 03 - 05 .......| vms_get_mbx_chan Getting mbx BKM3/@ipcc_e_1_2
0233 - 12:35:44.87 03 - 05 .......| vms_get_mbx_chan Returning key 1a0
0234 - 12:35:44.94 03 - 05 ------<| vms_get_mbx_chan
0235 - 12:35:44.83 03 - 04 ......| vms_evt rc = 0
0236 - 12:35:44.98 03 - 04 -----<| vms_evt
0237 - 12:35:45.00 03 - 03 ----<| xcsResetEventSem
0238 - 12:35:45.03 03 - 03 ---->| xcsReleaseMutexSem
0239 - 12:35:45.05 03 - 04 ----->| xllSemRel
0240 - 12:35:45.07 03 - 05 ------>| vms_mtx
0241 - 12:35:45.07 03 - 05 .......| vms_mtx :- Unlocking BKM3/@ipcc_m_1_10 - timeout: -1
0242 - 12:35:45.11 03 - 06 ------->| vms_get_lock
0243 - 12:35:45.13 03 - 06 -------<| vms_get_lock
0244 - 12:35:45.16 03 - 05 ------<| vms_mtx

306 WebSphere MQ for HP OpenVMS: System Administration Guide



Signals target thread to send mutex table to client trace process

SHOW MUTEX [chl=range]

This command signals the target thread to send the contents of its internal mutex
table to the client trace process. Note that it is important that the correct trace
mask bits are set to enable this type of informational data to be displayed by the
client. Bits INF and DGN must be enabled in the trace mask for this channel. (See
“Operator messages” on page 193.) For example, the command show mutex chl=2
displays:

MQS1_shm_00000000
(00000000) WRT DZRO PRM SYS Pgltcnt/Refcnt=6128/383

MQS1_shm_01300010
(00000000) WRT DZRO PRM SYS Pgltcnt/Refcnt=1904/119

MQS1_shm_012c000f
(00000000) WRT DZRO PRM SYS Pgltcnt/Refcnt=464/87

MQS1_shm_012c000e
(00000000) WRT DZRO PRM SYS Pgltcnt/Refcnt=4112/514

MQS1_shm_012c000d
(00000000) WRT DZRO PRM SYS Pgltcnt/Refcnt=240/30

MQS1_shm_012c000c
(00000000) WRT DZRO PRM SYS Pgltcnt/Refcnt=528/132

MQS1_shm_012c000b
(00000000) WRT DZRO PRM SYS Pgltcnt/Refcnt=272/51

MQS1_shm_012c000a
(00000000) WRT DZRO PRM SYS Pgltcnt/Refcnt=4112/771

MQS1_shm_012c0009
(00000000) WRT DZRO PRM SYS Pgltcnt/Refcnt=272/51

MQS1_shm_012c0008
(00000000) WRT DZRO PRM SYS Pgltcnt/Refcnt=144/27

MQS1_shm_012c0007
(00000000) WRT DZRO PRM SYS Pgltcnt/Refcnt=528/99

MQS1_shm_012c0006
(00000000) WRT DZRO PRM SYS Pgltcnt/Refcnt=16/2

MQS1_shm_012c0005
(00000000) WRT DZRO PRM SYS Pgltcnt/Refcnt=128/24

MQS1_shm_012c0004
(00000000) WRT DZRO PRM SYS Pgltcnt/Refcnt=1968/492

MQS1_shm_012c0003
(00000000) WRT DZRO PRM SYS Pgltcnt/Refcnt=1904/476

MQS1_shm_012c0002
(00000000) WRT DZRO PRM SYS Pgltcnt/Refcnt=304/76

MQS1_shm_012c0001
(00000000) WRT DZRO PRM SYS Pgltcnt/Refcnt=1904/595

MQS1_shm_01280000
(00000000) WRT DZRO PRM SYS Pgltcnt/Refcnt=16/6

MQS1_shm_fffffffe
(00000000) WRT DZRO PRM SYS Pgltcnt/Refcnt=16/0

MQS1_shm_ffffffff
(00000000) WRT DZRO PRM SYS Pgltcnt/Refcnt=144/63

Appendix G. MONMQ diagnostic utility 307



The data shows the line number in the history file, the mutex name and the system
lock id.

Signals target thread to send internal events table to client trace
process

SHOW EVENTS [chl=range]

This command signals the target thread to send the contents of its internal events
table to the client trace process. Note that it is important that the correct trace
mask bits are set to enable this type of informational data to be displayed by the
client. Bits INF and DGN must be enabled in the trace mask for this channel. (See
“Operator messages” on page 193.) For example, the command show events chl=2
displays:

Mutex Utilisation for Process AMQZXMA0.EXE - Pid 248 ***

0960 - Lock ID: 0100013c - Name: BKM3/@ipcc_m_1_24
0961 - Lock ID: 020006ca - Name: BKM3/@ipcc_m_1_23
0962 - Lock ID: 0b00061e - Name: BKM3/@ipcc_m_1_22
0963 - Lock ID: 0900068e - Name: BKM3/@ipcc_m_1_21
0964 - Lock ID: 0b00032f - Name: BKM3/@ipcc_m_1_20
0965 - Lock ID: 210006eb - Name: BKM3/@ipcc_m_1_19
0966 - Lock ID: 07000742 - Name: BKM3/@ipcc_m_1_18
0967 - Lock ID: 1e000075 - Name: BKM3/@ipcc_m_1_17
0968 - Lock ID: 0c0004dd - Name: BKM3_m_1_45
0969 - Lock ID: 0d00035a - Name: BKM3/@ipcc_m_1_16
0970 - Lock ID: 190000a1 - Name: BKM3/@ipcc_m_1_15
0971 - Lock ID: 1a0005a3 - Name: BKM3/@ipcc_m_1_14
0972 - Lock ID: 14000628 - Name: BKM3/@ipcc_m_1_13
0973 - Lock ID: 130005f3 - Name: BKM3/@ipcc_m_1_12
0974 - Lock ID: 0f0000dc - Name: BKM3_m_1_43
0975 - Lock ID: 02000095 - Name: BKM3_m_1_42
0976 - Lock ID: 2200053e - Name: BKM3_m_1_41
0977 - Lock ID: 020000fc - Name: BKM3_m_1_40
0978 - Lock ID: 31000113 - Name: BKM3_m_1_39
0979 - Lock ID: 02000555 - Name: BKM3_m_1_38
0980 - Lock ID: 2e000389 - Name: BKM3_m_1_37
0981 - Lock ID: 2300011f - Name: BKM3_m_1_36
0982 - Lock ID: 02000109 - Name: BKM3_m_1_35
0983 - Lock ID: 02000327 - Name: BKM3_m_1_34
0984 - Lock ID: 020004a8 - Name: BKM3_m_1_33
0985 - Lock ID: 02000453 - Name: BKM3_m_1_32
0986 - Lock ID: 260007ad - Name: BKM3_m_1_31
0987 - Lock ID: 0200060c - Name: BKM3_m_1_30

308 WebSphere MQ for HP OpenVMS: System Administration Guide



The data shows the line number in the history file, the mailbox channel number
and the event name.

Signals target thread to send internal mapped shared memory table to
the client trace process

SHOW MEMORY [chl=range]

This command signals the target thread to send the contents of its internal mapped
shared memory table to the client trace process. Please note that it is important
that the correct trace mask bits are set to enable this type of informational data to
be received by the client. Bits INF and DGN must be enabled in the trace mask for
this channel. (See “Operator messages” on page 193.) For example, the command
show memory chl=2 displays:

Event Utilisation for Process AMQZXMA0.EXE - Pid 248 ***

1037 - Channel: 000003e0 - Name: BKM3/@ipcc_e_1_19
1038 - Channel: 000003d0 - Name: BKM3/@ipcc_e_1_18
1039 - Channel: 000003c0 - Name: BKM3/@ipcc_e_1_17
1040 - Channel: 000003b0 - Name: BKM3/@ipcc_e_1_14
1041 - Channel: 000003a0 - Name: BKM3/@ipcc_e_1_13
1042 - Channel: 00000390 - Name: BKM3/@ipcc_e_1_12
1043 - Channel: 00000380 - Name: BKM3/@ipcc_e_1_10
1044 - Channel: 00000370 - Name: BKM3/@ipcc_e_1_9
1045 - Channel: 00000360 - Name: BKM3/@ipcc_e_1_8
1046 - Channel: 00000330 - Name: BKM3/@ipcc_e_1_7
1047 - Channel: 00000300 - Name: BKM3/@ipcc_e_1_6
1048 - Channel: 000002f0 - Name: BKM3/@ipcc_e_1_5
1049 - Channel: 000002b0 - Name: BKM3_e_1_11
1050 - Channel: 000002a0 - Name: BKM3_e_1_10
1051 - Channel: 00000290 - Name: BKM3_e_1_9
1052 - Channel: 00000280 - Name: BKM3_e_1_8
1053 - Channel: 00000270 - Name: BKM3_e_1_7
1054 - Channel: 00000260 - Name: BKM3_e_1_6
1055 - Channel: 00000250 - Name: BKM3_e_1_5
1056 - Channel: 00000240 - Name: BKM3_e_1_4
1057 - Channel: 00000230 - Name: BKM3_e_1_3
1058 - Channel: 00000220 - Name: BKM3_e_1_2
1059 - Channel: 00000210 - Name: BKM3_e_1_1
1060 - Channel: 00000200 - Name: BKM3_e_1_0
1061 - Channel: 000001c0 - Name: BKM3/@ipcc_e_1_4
1062 - Channel: 000001b0 - Name: BKM3/@ipcc_e_1_3
1063 - Channel: 000001a0 - Name: BKM3/@ipcc_e_1_2
1064 - Channel: 00000190 - Name: BKM3/@ipcc_e_1_1
1065 - Channel: 00000180 - Name: BKM3/@ipcc_e_1_0
1066 - *** End of data ***

Appendix G. MONMQ diagnostic utility 309



The data shows the line number in the history file, shared memory id, the virtual
mapped address range, the flags used in creating/mapping to the section and the
internal WebSphere MQ name given to the section.

Displays active WebSphere MQ components by name and hexadecimal
ids

SHOW COMPONENTS

This command displays all active WebSphere MQ components by name and their
associated hexadecimal ids. Use these hex ids in other MONMQ show commands
such as show functions and select component. For example, the command show
components displays:

*** Shared Memory Utilisation for Process AMQZXMA0.EXE - pid/tid 248-1 ***

0942 - ShmId: 0248000f - Addr: 011d8000/01211fff - Perm: 950 - Size: 00038530 Name: /mqs_root/mqm/qmgrs/BKM3/@ipcc/shmem/AMQ
0943 - ShmId: 0248000e - Addr: 00fbc000/011bdfff - Perm: 950 - Size: 002005f8 Name: /mqs_root/mqm/qmgrs/BKM3/@ipcc/shmem/AMQ
0944 - ShmId: 0248000d - Addr: 00f1c000/00f39fff - Perm: 950 - Size: 0001d478 Name: /mqs_root/mqm/qmgrs/BKM3/@ipcc/shmem/WLM
0945 - ShmId: 0248000c - Addr: 00cba000/00cfbfff - Perm: 944 - Size: 000405f0 Name: /mqs_root/mqm/qmgrs/BKM3/shmem/HMEMSET.0
0946 - ShmId: 0248000b - Addr: 00c98000/00cb9fff - Perm: 944 - Size: 000205f0 Name: /mqs_root/mqm/qmgrs/BKM3/shmem/Anon005.0
0947 - ShmId: 0248000a - Addr: 00a96000/00c97fff - Perm: 944 - Size: 00200584 Name: /mqs_root/mqm/qmgrs/BKM3/shmem/Anon004.0
0948 - ShmId: 02480009 - Addr: 00a74000/00a95fff - Perm: 944 - Size: 000205f0 Name: /mqs_root/mqm/qmgrs/BKM3/shmem/Anon003.0
0949 - ShmId: 02480008 - Addr: 00a62000/00a73fff - Perm: 944 - Size: 000105f0 Name: /mqs_root/mqm/qmgrs/BKM3/shmem/Anon002.0
0950 - ShmId: 02480007 - Addr: 00a20000/00a61fff - Perm: 944 - Size: 000405f0 Name: /mqs_root/mqm/qmgrs/BKM3/shmem/Anon001.0
0951 - ShmId: 02480006 - Addr: 00908000/00909fff - Perm: 950 - Size: 00001664 Name: /mqs_root/mqm/qmgrs/BKM3/@ipcc/shmem/PLU
0952 - ShmId: 02480005 - Addr: 008f8000/00907fff - Perm: 950 - Size: 0000fff8 Name: /mqs_root/mqm/qmgrs/BKM3/@ipcc/shmem/IPC
0953 - ShmId: 02480004 - Addr: 00802000/008f7fff - Perm: 950 - Size: 000f4838 Name: /mqs_root/mqm/qmgrs/BKM3/@ipcc/shmem/IPC
0954 - ShmId: 02480003 - Addr: 00714000/00801fff - Perm: 950 - Size: 000ec718 Name: /mqs_root/mqm/qmgrs/BKM3/@ipcc/shmem/SUB
0955 - ShmId: 02480002 - Addr: 006ee000/00713fff - Perm: 944 - Size: 000253a8 Name: /mqs_root/mqm/qmgrs/BKM3/shmem/zutSESSAN
0956 - ShmId: 02480001 - Addr: 00600000/006edfff - Perm: 944 - Size: 000ec710 Name: /mqs_root/mqm/qmgrs/BKM3/shmem/SUBPOOL.0
0957 - ShmId: 01280000 - Addr: 005f8000/005f9fff - Perm: 950 - Size: 00000454 Name: /var/mqm/errors
0958 - *** End of data ***

310 WebSphere MQ for HP OpenVMS: System Administration Guide



Display functions within specified component

SHOW FUNCTIONS [comp=hex]

This command displays all functions within the specified component. The
component must be entered in hex. Use SHOW COMPONENT to display all active
WebSphere MQ components. For example, the command show functions
component=0x1f displays:

00000001 - Data hardening
00000002 - Log management
00000003 - Object Catalogue
00000004 - Queue management
00000005 - Transaction Management
00000006 - Mobile Component
00000007 - Mobile Component
00000008 - Communications
0000000a - Object Authority Manager
0000000b - Logger
0000000d - LQM Kernal
0000000f - Administration App
00000010 - Administration App
00000013 - Command Server
00000014 - Remote queue processor
00000015 - XA Transaction Manager
00000016 - Data Conversion
00000017 - Common Services
00000018 - Common Services (overflow)
00000019 - Application Interface
0000001a - IPCC
0000001b - DCE Support
0000001c - Pluggable Services
0000001d - Agent
0000001e - XA Transaction Manager
0000001f - C++ Layer
00000020 - CLI
00000021 - Z Utilities
00000022 - Execution Controller
00000023 - App. Bindings
00000024 - Service Component
00000025 - Publish/Subscribe
00000026 - MMC Snap-in for Admin
00000027 - Web Administration
00000028 - KYG Services
00000029 - Thread Manager/MTS Support
0000002a - MS Cluster Server
0000002b - Active Directory support
0000002d - OVMS MQ kernel

Appendix G. MONMQ diagnostic utility 311



Activate tracing from the point a process starts

ONSTARTUP [ON] [lu=number] [chl=range]

This command allows tracing to be activated from the point a process starts. When
executed, a logical name MQS_DEF_TRACE is defined in the system logical name
table and has an equivalent name of the following format: lu channel. When any
WebSphere MQ process starts, this logical name is checked inside the processes
initialization routine and, if present, connects to the specified LU and channel
number. If the channel id is already allocated then the next available channel is
used. This command is useful when tracing is required during the early phases of
WebSphere MQ process/thread creation.

Prevent WebSphere MQ process from tracing immediately from startup

ONSTARTUP [OFF]

This command deasssigns the MQS_DEF_TRACE logical from the system logical
name table and thus prevents WebSphere MQ processes from tracing immediately
from startup.

Connect target thread to specified channel

CONNECT pid number [tid=number] [chl=range]

This command signals the target thread to connect to the specified channel. If no
channel is specified then the first available channel is used.

00000000 - ImqBinary::copyOut
00000001 - ImqBinary::pasteIn
00000002 - ImqCache::operator =
00000003 - ImqCache::moreBytes
00000004 - ImqCache::read
00000005 - ImqCache::resizeBuffer
00000006 - ImqCache::setDataOffset
00000007 - ImqCache::setMessageLength
00000008 - ImqCache::useEmptyBuffer
00000009 - ImqCache::write
0000000a - ImqDeadLetterHeader::pasteIn
0000000b - ImqDistributionList::openInfoPrepare
0000000c - ImqItem::structureIdIs
0000000d - ImqQueueManager::backout
0000000e - ImqQueueManager::begin
0000000f - ImqQueueManager::commit
00000010 - ImqQueueManager::connect
00000011 - ImqQueueManager::disconnect
00000012 - ImqMessageTracker::setAccountingToken
00000013 - ImqMessageTracker::setCorrelationId
00000014 - ImqMessageTracker::setGroupId
00000015 - ImqMessageTracker::setMessageId
00000016 - ImqObject::close
00000017 - ImqObject::closeTemporarily
00000018 - ImqObject::inquire
00000019 - ImqObject::open
0000001a - ImqObject::openFor
............

312 WebSphere MQ for HP OpenVMS: System Administration Guide



Disconnect target thread to specified channel

DISCONNECT [chl=range]

This command signals the target thread to disconnect from the specified channel.

Display real-time trace message written to the LUs trace mailbox

TRACE START [node=string]

This command launches a client trace process to display the real-time trace
message written to the LUs trace mailbox. The optional node parameter creates a
window on the specified node and directs output to that window.

Detach and end current client process

TRACE STOP

This command causes the current client process to detach from the trace mailbox
and end. All threads currently writing to this mailbox are disabled from writing
messages.

The above output appears on the trace client window.

Specify trace data

SELECT [component] AND/OR [function] OR [fname]

This command allows you to specify up to eight combinations of
component/functions to be traced. All other trace data are filtered out. Either a
function name can specified or a component or a component/function. The
selected component/function if valid is written to the filter table. If no entries exist
then ALL function component/functions are traced as the default.

Entering the SELECT command with no parameters causes the contents of the
filter table to be displayed. Against each line of output is the table index entry and
the component and function in hex and the text name of the function. If only a
component is entered then all functions within this component are traced. This is
shown as 0xffff against the function value.

For example, the command SELECT on its own displays:

MQT> trace stop

Circular buffering has been disabled for process 24d thread 1
Circular buffering has been disabled for process 24c thread 1
Circular buffering has been disabled for process 24b thread 1
Circular buffering has been disabled for process 248 thread 1
Disconnecting thread pid : 24d, tid : 1 from channel 0 ..... OK
Disconnecting thread pid : 24c, tid : 1 from channel 1 ..... OK
Disconnecting thread pid : 24b, tid : 1 from channel 2 ..... OK
Disconnecting thread pid : 248, tid : 1 from channel 3 .....OK

*** Trace ended - no processes connected ***

Appendix G. MONMQ diagnostic utility 313



The following set of commands,

displays:

Remove single entry from the trace filter table

DESELECT INDEX=<0:7>

This command removes a single entry from the trace filter table as specified by the
table index parameter. All components/functions are traced when all eight entries
are empty. For example, a select command displays the following entries with their
indexes:

The following deselect commands remove the specified processes or functions:

Client process writes trace messages to a binary file

OPEN BINARY [filename=string]

Chl:0 - Cmp/fnc selection criteria
ALL component/functions

MQT>select fname="kill"
MQT>select comp=0x1f
MQT>select comp=0x20 func=0x3
MQT>select

Chl:0 - Cmp/fnc selection criteria
Idx: 0 - Cmp: 00000029 - Fnc: 00000005 - Name - kill
Idx: 1 - Cmp: 00000019 - Fnc: 0000ffff - Name -
Idx: 2 - Cmp: 00000016 - Fnc: 00000003 - Name - vqiAddCacheEntry

Chl:0 - Cmp/fnc selection criteria
Idx: 0 - Cmp: 00000029 - Fnc: 00000005 - Name - kill
Idx: 1 - Cmp: 00000019 - Fnc: 0000ffff - Name -
Idx: 2 - Cmp: 00000016 - Fnc: 00000003 - Name - vqiAddCacheEntry

MQT> desel index=0
MQT> desel index=2

MQT>select
Chl:0 - Cmp/fnc selection criteria
Idx: 1 - Cmp: 00000019 - Fnc: 0000ffff - Name -
--------------------------------------------
MQT> deselect index=1
MQT> select

Chl:0 - Cmp/fnc selection criteria
ALL component/functions
--------------------------------------------

314 WebSphere MQ for HP OpenVMS: System Administration Guide



This command opens a trace message binary file and causes the client process to
write realtime trace messages to this file. This file can be later used for analyzing
performance of WebSphere MQ applications. The default filename is
mqs_root:[mqm.errors]mqs_buffer_xx.bin (where xx is the LU number).

Close binary trace messages file

CLOSE BINARY

This command closes the specified LU binary trace file.

Client process writes trace messages to a text file

OPEN TEXT [filename=string]

This command opens a readable text file and causes the client process to write
formatted binary trace messages to this file. This file can be viewed later by simply
using the DCL type command or edit. The default filename is
mqs_root:[mqm.errors]mqs_buffer_xx.lis (where xx is the LU number). The
advantages of using this type of output file is that it requires no preprocessing for
it to be read. However the disadvantage is that it consumes more disk space than a
binary file.

Close text trace messages file

CLOSE TEXT

This command closes the specified LU text trace file.

Timestamp messages

ENABLE TIMESTAMP [chl=range]

This command sets the Timestamp flag in the channel definition table. Use this
command to force WebSphere MQ processes to stamp each message with the
current time. This flag has to be set when using a binary trace file for performance
analysis.

Stop timestamping messages

DISABLE TIMESTAMP [chl=range]

This command unsets the Timestamp flag in the channel definition table. (See
“Timestamp messages.”)

Enable tracing

ENABLE TRACE [chl=range]

Appendix G. MONMQ diagnostic utility 315



This command sets the RTime trace flag in the channel definition table. Use this
flag to enable and disable the sending of trace messages to a trace client. When a
thread is connected and a trace client is present, for example, TRACE START can
be used to switch the channel in or out rather than disconnecting this thread.

Disable tracing

DISABLE TRACE [chl=range]

This command unsets the RTime trace flag in the channel definition table. (See
“Enable tracing” on page 315.)

Save message history

ENABLE HISTORY [chl=range]

This command sets the History flag in the channel definition table for the specified
channels. This command signals the connected thread to write trace messages to
the LUs circular buffer. As the writing of the message is performed by the traced
process then it is not necessary for a client process to exist. The size of the trace
circular buffer is defined during LU creation by the open command. This buffer
wraps back to the beginning when the last entry is written. The Next Log record
field in the LU definition table specifies where the next record in the buffer is to be
written.

Disable message history

DISABLE HISTORY [chl=range]

This command unsets the History flag in the channel definition table for the
specified channels. See “Save message history.”

Delete message history

DELETE HISTORY [chl=range]

This command deletes all messages in the circular history buffer. This command
can be performed even when there are processes writing to the buffer so it is not
necessary to disable history before deleting.

Set history depth

SET [depth]

This command controls the maximum stack depth to be output to the trace client
window. Messages deeper than this value are not output: however, they do appear
in the binary trace file and history buffer if enabled. The default value of zero
allows all messages at whatever stack depth to be output. Users should set this to
a very low value (for example, 1) when writing analysis data to the binary file.
Full stack display adversely affects the performance of a client process.

316 WebSphere MQ for HP OpenVMS: System Administration Guide



Reset stack and history data for a channel

SET [free] [chl=range]

This command resets the specified channel. All existing stack and history data is
deleted and the channel is unallocated and available for reuse.

Enable or disable mask bit

SET [mask=var] [chl=range]

This command either enables or disables a mask bit within the connected threads
bit mask field. Each bit represents a message type that is generated by a
WebSphere MQ process. You can use this command to filter the type of messages
that need to be traced. The message types are as follows:

To specify a combination of these message types delimit each mask type with an
OR symbol for example:

MQT>set mask = 0xffffff chl=1
MQT>show mask chl=1

Trace Mask for Channel 1
Bit 00 - (fent) function entry
Bit 01 - (fout) function exit
Bit 02 - (ferr) function exit with error
Bit 03 - (fxx) missing function exit
Bit 04 - (dgn) diagnostic messages
Bit 05 - (shm) shared memory
Bit 06 - (spl) spinlocks
Bit 07 - (evt) events
Bit 08 - (mtx) mutexes
Bit 09 - (prc) process msgs
Bit 10 - (msc) miscellaneous
Bit 11 - (inf) informational
Bit 12 -

MQT>set mask =0x0 chl=1 MQT>show mask chl=1

Appendix G. MONMQ diagnostic utility 317



Each mask comprises of eight mask types which you can toggle to either enable or
disable a particular message type. For example if you were interested only in
function entry points then enter the command set mask = fent.

Set a color for a channel

SET COLOR [chl=range]

This command associates a color with the specified channel. All output related to
this channel is displayed in this color until either the color is changed or the
channel is reset. This command is useful for highlighting or distinguishing
between different threads’ messages within a single output stream. For example,
the commands:

displays:

Trace Mask for Channel 1
Bit 00 - (fent) function entry
Bit 01 - (fout) function exit
Bit 02 - (ferr) function exit with error
Bit 03 - (fxx) missing function exit
Bit 04 - (dgn) diagnostic messages
Bit 05 - (shm) shared memory
Bit 06 - (spl) spinlocks
Bit 07 - (evt) events
Bit 08 - (mtx) mutexes
Bit 09 - (prc) process msgs
Bit 10 - (msc) miscellaneous
Bit 11 - (inf) informational
Bit 12 -

MQT>set mask = mtx | evt | fent chl=1
MQT>show mask chl=1

Trace Mask for Channel 1
Bit 00 - (fent) function entry
Bit 01 - (fout) function exit
Bit 02 - (ferr) function exit with error
Bit 03 - (fxx) missing function exit
Bit 04 - (dgn) diagnostic messages
Bit 05 - (shm) shared memory
Bit 06 - (spl) spinlocks
Bit 07 - (evt) events
Bit 08 - (mtx) mutexes
Bit 09 - (prc) process msgs
Bit 10 - (msc) miscellaneous
Bit 11 - (inf) informational
Bit 12 -

MQT> set color=yellow chl=2
MQT> set color=blue chl=0
MQT> sho chan chl=0:3 connected

318 WebSphere MQ for HP OpenVMS: System Administration Guide



where Channel 0 is blue and Channel 2 is yellow.

Redirect output to file

SET OUTPUT [filename=string]

This command directs all output to the specified file and disables output to the
display. The output command, when used as a parameter with other commands, is
effective for that command only. Note that errors continue to be reported to the
display device and not to file. Only valid trace data is written to the specified file.

Analyze trace binary file

ANALYSE [component] [function] [unit=xx]

This command analyzes the contents of trace binary file previously used in a trace
session. Although you can specify the component or function to be analyzed, this
is effective only if the file contains such data relating to this component or
function. For example, if when the file was generated, you specified a trace mask
or even selected a specific component, then only these selected items are found in
the binary file and hence components or functions outside this criteria cannot be
used in the analysis.

Note: If you are going to use the full command, spell it ANALYSE with a S. Do
not confuse this MONMQ command with the OpenVMS command ANALYZE.
The two commands are different from each other.

The unit parameter is used to specify the unit of time for the analysis and can
have one of the following values (xx) - seconds, milliseconds, microseconds,
nanoseconds The default is milliseconds.

For example, to display output in microseconds, using the command analyse
unit=micro: The following is a sample output for this command:

Chl Pid/Tid Mailbox Stack History RTime Time Mask Process Name
0 00000245/1 800b0330 4 0 0 0 ffffffff AMQZLAA0.EXE
1 00000244/1 800b0200 8 0 0 0 ffffffff RUNMQCHI.EXE
2 00000243/1 800b01e0 10 0 0 0 ffffffff AMQRRMFA.EXE
3 00000242/1 800b01c0 4 0 0 0 ffffffff AMQZLLP0.EXE

Appendix G. MONMQ diagnostic utility 319



Columns are:
Calls The number of entries into the function during the trace session.
Minimum

This is the fastest time spent inside the function.
Average

This is the total time spent inside all calls to the function divided by the
number of calls.

Maximum
The longest time spent inside the function.

Total The total time spent in this function for all calls.
Function

The function name.

==========================================================================================
COMPONENT :- Common Services

==========================================================================================
Calls Minimum Average Maximum Total Function
42 0.00 66.41 311.78 2789.15 xcsRequestMutexSem
42 0.00 96.98 222.64 4072.98 xcsReleaseMutexSem
6 0.00 138.50 286.11 831.00 xcsResetEventSem
5 0.00 10112.60 10159.51 50563.01 xcsWaitEventSem
6 0.00 564.74 1029.23 3388.45 xcsCheckExtendMemory
42 0.00 51.32 266.86 2155.41 xllSemReq
42 0.00 73.05 159.17 3068.16 xllSemRel

==========================================================================================
COMPONENT :- Common Services (overflow)

==========================================================================================
Calls Minimum Average Maximum Total Function
36 0.00 41.15 122.06 1481.35 xcsCheckProcess
6 0.00 37.92 68.35 227.52 xihGetConnSPDetailsFromList
6 0.00 65.26 114.25 391.58 xihHANDLEtoSUBPOOLFn
6 0.00 12.69 23.44 1267.49 xihGetNextSetConnDetailsFromList
6 0.00 12.53 22.46 75.19 xcsRequestThreadMutexSem
6 0.00 12.37 22.46 74.21 xcsReleaseThreadMutexSem

==========================================================================================
COMPONENT :- IPCC

==========================================================================================
Calls Minimum Average Maximum Total Function

5 0.00 10589.97 11029.84 52949.85 xcpReceiveOnLink
==========================================================================================

COMPONENT :- CLI
==========================================================================================
Calls Minimum Average Maximum Total Function

6 0.00 1.95 1.95 11.72 zapInquireStatus
==========================================================================================

COMPONENT :- Execution Controller
==========================================================================================
Calls Minimum Average Maximum Total Function

6 0.00 954.46 3275.18 11726.79 zxcProcessChildren
6 0.00 12.69 22.46 76.17 zxcStartWLMServer

==========================================================================================
COMPONENT :- OVMS MQ kernel

==========================================================================================
Calls Minimum Average Maximum Total Function
36 0.00 15.49 99.60 557.58 kill
6 0.00 0.65 3.91 3.91 vms_mapgbl
84 0.00 11.17 88.16 938.68 vms_get_lock
84 0.00 42.41 221.94 3562.54 vms_mtx
12 0.00 44.51 149.40 534.14 vms_get_mbx_chan
11 0.00 4651.77 10137.05 51169.42 vms_evt
6 0.00 1.63 4.88 9.76 vms_check_health

320 WebSphere MQ for HP OpenVMS: System Administration Guide



Note: The scope of the analysis is the content of the binary trace file. It is up to the
user to define the boundaries of the analysis by opening a trace binary file and
enable/disabling the trace at the desired time.

Display current state of WebSphere MQ threads

FFST [chl=range]

This command forces the thread connected to the target channel to force an FFST.
This command does NOT effect the target threads path of execution. This
command allows you to take a snapshot of any WebSphere MQ threads current
state. The FFST cut contains the threads resource usage, privileges and other useful
system information. The FFST is clearly marked in the header as having been
created by MONMQ (see below) and is NOT a result of a failure.

The following is some sample output:

Close trace and exit MONMQ

EXIT

This command performs a CLOSE command and exits MONMQ.

Quit MONMQ without closing trace

QUIT

WebSphere MQ First Failure Symptom Report
=====================================

Date/Time :- Friday Sep 17 10:59:38 GMT 2004
Host Name :- CATWMN (Unknown)
PIDS :- 5697175
LVLS :- 530
Product Long Name :- WebSphere MQ for OpenVMS Alpha
Vendor :- IBM
Probe Id :- VM026000
Application Name :- MQM
Component :- vms_evt
Build Date :- July 22 2004 (Collector)
Userid :- [400,400] (SYSTEM)
Program Name :- AMQZXMA0.EXE
Process :- 00000248
Thread :- 00000001
QueueManager :- BKM3
Major Errorcode :- xecF_E_UNEXPECTED_SYSTEM_RC
Minor Errorcode :- OK
Probe Type :- MSGAMQ6119
Probe Severity :- 2
Probe Description :- AMQ6119: An internal WebSphere MQ error has occurred

(*** FORCED FFST BY USER ***)
Comment1 :- *** FORCED FFST BY USER ***
Comment2 :- -SYSTEM-S-NORMAL, normal successful completion

etc.....

Appendix G. MONMQ diagnostic utility 321



This command does not perform a CLOSE command but exits MONMQ. This
command is useful if you want to leave Trace running but want to shutdown
MONMQ. The next time MONMQ is activated the previous trace session is
resumed.

Managing shared memory with MONMQ

In unusual circumstances, for example, a queue manager failure or forced
shutdown with the OpenVMS stop /id command, it is possible that WebSphere
MQ shared memory segments are not automatically deleted by the queue manager.
If this occurs it is not possible to restart the queue manager, because strmqm
reports that the queue manager is already running.

MONMQ can list MQ shared memory (global sections) that currently exist, and can
delete these shared memory sections.

Note: Ensure that all queue managers are shutdown before using the MONMQ
utility to delete shared memory segments. Deleting the shared memory of a
running queue manager causes the queue manager to fail, possibly corrupting the
queue files.

The MONMQ SHOW PROCESS command can be used to ensure that there are no
MQ processes running. If there are processes running on a failed queue manager
that can not be stopped by the endmqm command then the OpenVMS DCL
command stop /id=<pid> can be used.

Check there are no WebSphere MQ processes running by using the following
command:

List the shared memory global sections that currently exist by using the command:

Delete these global sections:

MQT> show process

MQ Processes
PID Proc Name Image Process WS Size WS Peak Virt Peak Gbl Pg Cnt Prc Pg Cnt Total Mem
---------------------------------------------------------------------------------------------------------------------
List the shared memory global sections that currently exist

MQT> show globals
MQS1_shm_2695000a

(00000000) WRT DZRO PRM SYS Pgltcnt/Refcnt=4112/514
MQS1_shm_26950009

(00000000) WRT DZRO PRM SYS Pgltcnt/Refcnt=272/34
MQS1_shm_ffffffff

(00000000) WRT DZRO TMP SYS Pgltcnt/Refcnt=144/63
MQS1_shm_00000000

(00000000) WRT DZRO TMP SYS Pgltcnt/Refcnt=6304/394

MQT> show globals

MQT> delete
Deleted global section: MQS1_shm_2695000a
Deleted global section: MQS1_shm_26950009
Deleted global section: MQS1_shm_ffffffff
sys$delgbl - unable to delete section MQS1_shm_00000000

322 WebSphere MQ for HP OpenVMS: System Administration Guide



The error deleting section MQS_shm_00000000 is expected since this section is used
by MONMQ. You can now exit MONMQ by issuing the command:

You can use the delete command from within a script if you are certain that all
queue manager processes are stopped:

Scripts and macros in MONMQ

It is possible to run a script of MONMQ commands either from within MONMQ
or from the command prompt. Scripts can be useful to collect a set of data, or to
configure the MONMQ environment. When MONMQ starts, a script is run from
SYS$MANAGER:MQS_TRACE_STARTUP.MQT to configure the trace variables in MONMQ.

Note: If the script is not in the current directory, the full path name to the script
must be quoted. For example:

It is also possible to define a macro to shorten common or repetitive tasks. A macro
declaration consists of three parts:
1. The first part is the macro name, which must be a unique command name.
2. The second part is the macro body, which can span multiple lines and consists

of a list of WebSphere MQ commands. The macro body is delimited by { and }.
The MONMQ prompt changes to **MACRO> when a multiple line macro body
is being declared. Any $n, where n is a single digit number, is replaced with
parameter n on the macro command line.

3. The third part of a macro definition is a short help text description that is
displayed when help <macroname> is used. The help text must be quoted.

You must consider timing issues when declaring a macro. A macro processes very
quickly, but some MONMQ commands signal a remote process to perform a task,
and this task must be finished before the next macro command is started.

For this reason a short delay is sometimes required. You do this by using the sleep
command, which has a delay parameter that is specified in tenths of a second.

The following commands can be entered to create a macro that disconnects a
channel, resets the trace mask, and frees the channel.

Note: More than one MONMQ command can be placed on a line by using the “;”
as a separator.

MQT> exit

$ monmq delete
Deleted global section: MQS1_shm_2695000a
Deleted global section: MQS1_shm_26950009
Deleted global section: MQS1_shm_ffffffff
sys$delgbl - unable to delete section MQS1_shm_00000000

MQT> ! “sys$manager:test.mqt“

Appendix G. MONMQ diagnostic utility 323



Sample trace session

This section describes a typical trace session showing each MONMQ command in
sequence. This sample is tracing a running queue manager’s execution controller
and its related agents main thread.

Before you begin the trace, the following conditions must be met:
v Start queue manager to be traced - STRMQM BKM3
v Check that sys$manager:mqs_trace_startup.mqt has no additional commands

apart from the preinstalled defaults.
v Check that the logical MQS_DEF_TRACE is NOT defined. If it is then perform an

ONSTARTUP END in MONMQ.

Start momq.

The MONMQ prompt is displayed:

Open a single LU with an ID of zero with ten channels and a history buffer of 100
messages. (Note: 100 messages would be too small for normal tracing purposes.
1000 is normally adequate.)

Display LU1 definition:

MQT> declare tmpchl intrange "variable to hold a chl range temporarily"
MQT> macro remove { set tmpchl = chl ; dis chl= $1 ; sleep delay=5
**MACRO> set mask=0xffffffff chl= $1 ; set free chl = $1
**MACRO> set chl=tmpchl
**MACRO> } "A macro to disconnect and free channels Param: chl number"
MQT> help remove

VERB remove:
A macro to disconnect and free channels Param: chl number

Macro text:
set tmpchl = chl ; dis chl= $1 ; sleep delay=5 ; set mask=0xffffffff chl=$1
; set free chl = $1 ; set chl=tmpchl
MQT>remove 4
ok - process disconnected process 282 from channel 4

>monmq

MQT>

MQT> open lu=0 nochls=10 buffer=100
ok - LU:0 opened

324 WebSphere MQ for HP OpenVMS: System Administration Guide



Display WebSphere MQ processes:

Identify the execution controller and agent process and connect them to channel
one and two respectively.

Check connection details.

MQT> show seg lu=1

Trace LU : 1
Mailbox name : MQS_TRC_MBX_1
Device name : MBA431:
Status : Disabled
Mailbox channel : 384
History buffer size : 100
Threads mapped # : 1
Time stamping : Enabled
Max channels # : 10
Display depth : 0
Text filename :
Binary filename :
Last status : 1
Connection map[0] : 0
========================================

MQT> show process

PID Proc_Name Image Process WS_Size WS_Peak Virt_Peak Gbl_Pg_Cnt Prc_Pg_Cnt Total_Mem

2A00023D BKM1_AG AMQZLAA0 Agent 23152 16576 203776 3616 12960 16576
2A00023C BKM1_CI RUNMQCHI Run Chan Init 8752 6208 180832 1840 4368 6208
2A00023B BKM1_RM AMQRRMFA Repository Mgr11152 8144 185360 2224 5920 8144
2A00023A BKM1_CP AMQZLLP0 Checkpoint 8752 6384 185952 1920 4464 6384
2A000239 BKM1_LG AMQHASMX Logger 8752 6288 182016 2080 4208 6288
2A000238 BKM1_EC AMQZXMA0 EC 20752 15232 203792 3536 11680 15216
2A000128 _FTA4: MONMQ MONMQ Utility 8400 8528 198736 2224 3584 5808

------------------
52112

MQT>connect pid=0x238 tid=1 lu=1 chl=1
MQT>connect pid=0x23D tid=1 lu=1 chl=2

MQT>show channel full connected lu=1

Appendix G. MONMQ diagnostic utility 325



Set defaults for chl, lu and tid to save entering these each time for subsequent
commands.

Set channel colors so as to distinguish between different trace message. Note that
the chl parameter is specified in these two commands because, had the default
(1:2) been used then both channels would have been set to yellow and then cyan.

Now show channels.

Pid/Tid : 2a000bc/1
Status : *** Connected ***
Process name : AMQZXMA0.EXE
Assigned LU : 1
Channel no. : 1
Mailbox channel : 800c03f0
Current stack depth : 4
Circular logging : Disabled
Next log entry : 0
Realtime tracing : Disabled
Time stamping : Disabled
Trace mask : ffffffff
Step mode : Off
No Wait : On
Last QIO status : 0
Mapped address : 1242000-126bfff
========================================

Pid/Tid : 2a000c1/1
Status : *** Connected ***
Process name : AMQZLAA0.EXE
Assigned LU : 1
Channel no. : 2
Mailbox channel : 800c03f0
Current stack depth : 4
Circular logging : Disabled
Next log entry : 0
Realtime tracing : Disabled
Time stamping : Disabled
Trace mask : ffffffff
Step mode : Off
No Wait : On
Last QIO status : 0
Mapped address : 1376000-139ffff
========================================

MQT>default chl=1:2 lu=1 tid=1

MQT>set chl=1 color=yellow
MQT>set chl=2 color=cyan

MQT>show channels

326 WebSphere MQ for HP OpenVMS: System Administration Guide



Now that both processes have been connected to channels, we can now examine
their stacks.

By enabling timestamping for these two channels we are able to see whether either
process has hung or not.

It can now be seen that there are some messages with a valid timestamp. This
shows that both processes are active. In this case both processes are in an event
loop with a 10 second timeout period. This timeout can be checked against the
message timestamp by continuously performing a show stack command until
there is a change in the timestamp data.

By enabling history we can now force each process to write their trace messages to
the circular buffer.

At this point we are writing all trace messages to the buffer. You can check this by
showing the trace mask and the component/function table.

Chl Pid/Tid Mailbox Stack History RTime Time Mask Process Name
1 2a0000bc/1 800c03f0 4 0 0 0 ffffffff AMQZXMA.EXE
2 2a0000c1/1 800c0360 4 0 0 0 ffffffff AMQZLAA0.EXE

MQT>show stacks

0001- 00:00:00.00 03 - 01 -->| ExecCtrlrMain
0002 - 00:00:00.00 03 - 02 --->| zcpReceiveOnLink
0003 - 00:00:00.00 03 - 03 ---->| xcsWaitEventSem
0004 - 00:00:00.00 03 - 04 ----->| vms_evt

0001- 00:00:00.00 03 - 01 -->| zlaMain
0002 - 00:00:00.00 03 - 02 --->| zcpReceiveOnLink
0003 - 00:00:00.00 03 - 03 ---->| xcsWaitEventSem
0004 - 00:00:00.00 03 - 04 ----->| vms_evt

MQT>enable timestamp
MQT>show stack

0001- 00:00:00.00 03 - 01 -->| ExecCtrlrMain
0002 - 12:36:20.18 03 - 02 --->| zcpReceiveOnLink
0003 - 12:36:20.81 03 - 03 ---->| xcsWaitEventSem
0004 - 12:36:20.83 03 - 04 ----->| vms_evt

0001- 00:00:00.00 03 - 01 -->| zlaMain
0002 - 12:36:20.18 03 - 02 --->| zcpReceiveOnLink
0003 - 12:36:20.81 03 - 03 ---->| xcsWaitEventSem
0004 - 12:36:20.83 03 - 04 ----->| vms_evt

MQT>enable history
MQT> show history

Appendix G. MONMQ diagnostic utility 327



MQT>show mask

Trace Mask for Channel 1
Bit 00 - (fent) function entry
Bit 01 - (fout) function exit
Bit 02 - (ferr) function exit with error
Bit 03 - (fxx) missing function exit
Bit 04 - (dgn) diagnostic messages
Bit 05 - (shm) shared memory
Bit 06 - (spl) spinlocks
Bit 07 - (evt) events
Bit 08 - (mtx) mutexes
Bit 09 - (prc) process msgs
Bit 10 - (msc) miscellaneous
Bit 11 - (inf) informational
Bit 12 -

Trace Mask for Channel 2
Bit 00 - (fent) function entry
Bit 01 - (fout) function exit
Bit 02 - (ferr) function exit with error
Bit 03 - (fxx) missing function exit
Bit 04 - (dgn) diagnostic messages
Bit 05 - (shm) shared memory
Bit 06 - (spl) spinlocks
Bit 07 - (evt) events
Bit 08 - (mtx) mutexes
Bit 09 - (prc) process msgs
Bit 10 - (msc) miscellaneous
Bit 11 - (inf) informational
Bit 12 -

MQT> select

Chl:1 - Cmp/fnc selection criteria
ALL component/functions
--------------------------------------------
Chl:2 - Cmp/fnc selection criteria
ALL component/functions
--------------------------------------------

328 WebSphere MQ for HP OpenVMS: System Administration Guide



Let’s now focus on a particular type of message. Say, for example, that we are
interested only in shared memory diagnostic messages.

Both processes write only diagnostic memory type messages to the buffer. Let’s
delete the buffer, wait a few seconds and re-examine the contents of the buffer.

Trace Mask for Channel 1
Bit 00 - (fent) function entry
Bit 01 - (fout) function exit
Bit 02 - (ferr) function exit with error
Bit 03 - (fxx) missing function exit
Bit 04 - (dgn) diagnostic messages
Bit 05 - (shm) shared memory
Bit 06 - (spl) spinlocks
Bit 07 - (evt) events
Bit 08 - (mtx) mutexes
Bit 09 - (prc) process msgs
Bit 10 - (msc) miscellaneous
Bit 11 - (inf) informational
Bit 12 -

Trace Mask for Channel 2
Bit 00 - (fent) function entry
Bit 01 - (fout) function exit
Bit 02 - (ferr) function exit with error
Bit 03 - (fxx) missing function exit
Bit 04 - (dgn) diagnostic messages
Bit 05 - (shm) shared memory
Bit 06 - (spl) spinlocks
Bit 07 - (evt) events
Bit 08 - (mtx) mutexes
Bit 09 - (prc) process msgs
Bit 10 - (msc) miscellaneous
Bit 11 - (inf) informational
Bit 12 -

MQT>set mask=shm
MQT>show mask

MQT>clear history

(wait a few seconds)

MQT> show history

Appendix G. MONMQ diagnostic utility 329



Now let’s also display event type diagnostic messages in the trace output. We must
wait for a few seconds after setting the mask.

*** Trace History Chl:1 ***

0990 - 00:00:00.00 00 - 04 ......| vms_mapgbl key : fffffffe - addr : 0/0
0991 - 00:00:00.00 00 - 04 ......| vms_mapgbl Section MQS1_shm_fffffffe mapped at 1510000-1511fff
0992 - 00:00:00.00 00 - 04 ......| vms_mapgbl key : fffffffe - addr : 0/0
0993 - 00:00:00.00 00 - 04 ......| vms_mapgbl Section MQS1_shm_fffffffe mapped at 1510000-1511fff
0994 - 00:00:00.00 00 - 04 ......| vms_mapgbl key : fffffffe - addr : 0/0
0995 - 00:00:00.00 00 - 04 ......| vms_mapgbl Section MQS1_shm_fffffffe mapped at 1510000-1511fff
0996 - 00:00:00.00 00 - 04 ......| vms_mapgbl key : fffffffe - addr : 0/0
0997 - 00:00:00.00 00 - 04 ......| vms_mapgbl Section MQS1_shm_fffffffe mapped at 1510000-1511fff
0998 - 00:00:00.00 00 - 04 ......| vms_mapgbl key : fffffffe - addr : 0/0
0999 - 00:00:00.00 00 - 04 ......| vms_mapgbl Section MQS1_shm_fffffffe mapped at 1510000-1511fff

*** End of buffer ***
*** Trace History Chl: ***

*** End of buffer ***

MQT>set mask=evt | shm

(wait a few seconds)

MQT>show history

330 WebSphere MQ for HP OpenVMS: System Administration Guide



Now we focus on tracing a specific function. Using SHOW COMPONENT and
SHOW FUNCTION we can identify the particular area we want to trace. In this
example we are going to trace the common services function
’xcsRequestMutexSem’. The component is 0x17 and the function code is 0x1b. We
can set this one of two ways:

*** Trace History Chl:1 ***

0977 - 00:00:00.00 00 - 04 ......| vms_mapgbl Section MQS1_shm_fffffffe mapped at 1510000-1511fff
0978 - 00:00:00.00 00 - 04 ......| vms_evt Event BKM3/@ipcc_e_1_2 TIMEOUT
0979 - 00:00:00.00 00 - 04 ......| vms_evt rc = 1
0980 - 00:00:00.00 00 - 04 ......| vms_mapgbl key : fffffffe - addr : 0/0
0981 - 00:00:00.00 00 - 04 ......| vms_mapgbl Section MQS1_shm_fffffffe mapped at 1510000-1511fff
0982 - 00:00:00.00 00 - 04 ......| vms_evt Reset on mailbox BKM3/@ipcc_e_1_2 : tout = -1
0983 - 00:00:00.00 00 - 05 .......| vms_get_mbx_chan Getting mbx BKM3/@ipcc_e_1_2
0984 - 00:00:00.00 00 - 05 .......| vms_get_mbx_chan Returning key 1a0
0985 - 00:00:00.00 00 - 04 ......| vms_evt rc = 0
0986 - 00:00:00.00 00 - 04 ......| vms_evt Wait on mailbox BKM3/@ipcc_e_1_2 : tout = 10000
0987 - 00:00:00.00 00 - 05 .......| vms_get_mbx_chan Getting mbx BKM3/@ipcc_e_1_2
0988 - 00:00:00.00 00 - 05 .......| vms_get_mbx_chan Returning key 1a0
0989 - 00:00:00.00 00 - 04 ......| vms_evt Event BKM3/@ipcc_e_1_2 TIMEOUT
0990 - 00:00:00.00 00 - 04 ......| vms_evt rc = 1
0991 - 00:00:00.00 00 - 04 ......| vms_mapgbl key : fffffffe - addr : 0/0
0992 - 00:00:00.00 00 - 04 ......| vms_mapgbl Section MQS1_shm_fffffffe mapped at 1510000-1511fff
0993 - 00:00:00.00 00 - 04 ......| vms_evt Reset on mailbox BKM3/@ipcc_e_1_2 : tout = -1
0994 - 00:00:00.00 00 - 05 .......| vms_get_mbx_chan Getting mbx BKM3/@ipcc_e_1_2
0995 - 00:00:00.00 00 - 05 .......| vms_get_mbx_chan Returning key 1a0
0996 - 00:00:00.00 00 - 04 ......| vms_evt rc = 0
0997 - 00:00:00.00 00 - 04 ......| vms_evt Wait on mailbox BKM3/@ipcc_e_1_2 : tout = 10000
0998 - 00:00:00.00 00 - 05 .......| vms_get_mbx_chan Getting mbx BKM3/@ipcc_e_1_2
0999 - 00:00:00.00 00 - 05 .......| vms_get_mbx_chan Returning key 1a0

*** End of buffer ***

*** Trace History Chl:2 ***

0982 - 00:00:00.00 01 - 04 ......| vms_evt Event BKM3/@ipcc_e_1_7 TIMEOUT
0983 - 00:00:00.00 01 - 04 ......| vms_evt rc = 1
0984 - 00:00:00.00 01 - 04 ......| vms_evt Reset on mailbox BKM3/@ipcc_e_1_7 : tout = -1
0985 - 00:00:00.00 01 - 05 .......| vms_get_mbx_chan Getting mbx BKM3/@ipcc_e_1_7
0986 - 00:00:00.00 01 - 05 .......| vms_get_mbx_chan Returning key 1c0
0987 - 00:00:00.00 01 - 04 ......| vms_evt rc = 0
0988 - 00:00:00.00 01 - 04 ......| vms_evt Wait on mailbox BKM3/@ipcc_e_1_7 : tout = 10000
0989 - 00:00:00.00 01 - 05 .......| vms_get_mbx_chan Getting mbx BKM3/@ipcc_e_1_7
0990 - 00:00:00.00 01 - 05 .......| vms_get_mbx_chan Returning key 1c0
0991 - 00:00:00.00 01 - 04 ......| vms_evt Event BKM3/@ipcc_e_1_7 TIMEOUT
0992 - 00:00:00.00 01 - 04 ......| vms_evt rc = 1
0993 - 00:00:00.00 01 - 04 ......| vms_evt Reset on mailbox BKM3/@ipcc_e_1_7 : tout = -1
0994 - 00:00:00.00 01 - 05 .......| vms_get_mbx_chan Getting mbx BKM3/@ipcc_e_1_7
0995 - 00:00:00.00 01 - 05 .......| vms_get_mbx_chan Returning key 1c0
0996 - 00:00:00.00 01 - 04 ......| vms_evt rc = 0
0997 - 00:00:00.00 01 - 04 ......| vms_evt Wait on mailbox BKM3/@ipcc_e_1_7 : tout = 10000
0998 - 00:00:00.00 01 - 05 .......| vms_get_mbx_chan Getting mbx BKM3/@ipcc_e_1_7
0999 - 00:00:00.00 01 - 05 .......| vms_get_mbx_chan Returning key 1c0

*** End of buffer ***

MQT>disable history
MQT>clear history

Appendix G. MONMQ diagnostic utility 331



or

If we now enable history, we find that no output appears in the buffer. This is
because we need to reset the trace mask bits to all.

MQT>select comp=0x17 func=0x1b

MQT>select fname="xcsRequestMutexSem"

MQT>enable history
MQT>show history

*** Trace History Chl:1 ***

*** End of buffer ***
*** Trace History Ch:2 ***

*** End of buffer ***

MQT>set mask=0xffffffff
MQT>show history

332 WebSphere MQ for HP OpenVMS: System Administration Guide



We can now see that only the specified function and child functions are traced for
both processes. Up to eight components and functions can be traced
simultaneously using the select command. To enable trace in real time (that is, as it
happens) we need to create a client process to display the messages for a specific
LU. We do this by performing the TRACE command.

This launches a client process on the specified node and waits for incoming trace
messages. Trace sessions on client windows can still be controlled using MONMQ.

Now enable the client process and display the messages as and when they arrive.

WebSphere MQ threads can be added or removed from the trace output at will.
Threads can remain connected but their trace data can be disabled so that tracing
has no adverse effects on performance.

Tracing can be initiated the moment a process or thread starts. The ONSTARTUP
command is used to do this and results in all new WebSphere MQ processes to be
traced from startup.

*** Trace History Chl:1 ***

0973 - 00:00:00.00 01 - 02 --->| xcsRequestMutexSem
0974 - 00:00:00.00 01 - 03 ---->| xllSemReq
0975 - 00:00:00.00 01 - 04 ----->| vms_mtx
0976 - 00:00:00.00 01 - 04 ......| vms_mtx :- Locking BKM3_m_1_45 - timeout: -1
0977 - 00:00:00.00 01 - 05 ------>| vms_get_lock
0978 - 00:00:00.00 01 - 05 ------<| vms_get_lock
0979 - 00:00:00.00 01 - 04 -----<| vms_mtx
0980 - 00:00:00.00 01 - 03 ----<| xllSemReq
0981 - 00:00:00.00 01 - 02 ---<| xcsRequestMutexSem
0982 - 00:00:00.00 01 - 03 ---->| xcsRequestMutexSem
0983 - 00:00:00.00 01 - 04 ----->| xllSemReq
0984 - 00:00:00.00 01 - 05 ------>| vms_mtx
0985 - 00:00:00.00 01 - 05 .......| vms_mtx :- Locking BKM3_m_1_6 - timeout: -1
0986 - 00:00:00.00 01 - 06 ------->| vms_get_lock
0987 - 00:00:00.00 01 - 06 -------<| vms_get_lock
0988 - 00:00:00.00 01 - 05 ------<| vms_mtx
0989 - 00:00:00.00 01 - 04 -----<| xllSemReq
0990 - 00:00:00.00 01 - 03 ----<| xcsRequestMutexSem
0991 - 00:00:00.00 01 - 03 ---->| xcsRequestMutexSem
0992 - 00:00:00.00 01 - 04 ----->| xllSemReq
0993 - 00:00:00.00 01 - 05 ------>| vms_mtx
0994 - 00:00:00.00 01 - 05 .......| vms_mtx :- Locking BKM3/@ipcc_m_1_18 - timeout: -1
0995 - 00:00:00.00 01 - 06 ------->| vms_get_lock
0996 - 00:00:00.00 01 - 06 -------<| vms_get_lock
0997 - 00:00:00.00 01 - 05 ------<| vms_mtx
0998 - 00:00:00.00 01 - 04 -----<| xllSemReq
0999 - 00:00:00.00 01 - 03 ----<| xcsRequestMutexSem

*** End of buffer ***

MQT>trace start node="mihell"

MQT>enable trace

Appendix G. MONMQ diagnostic utility 333



To shutdown a trace session, all active channels should be disabled and client
process ended. The close command does all this for you.

If you want to leave tracing running then use quit from MONMQ and resume
tracing at a later date.

Note that trace mask bits and component/function selection are very different.
Trace mask bits control the output of trace message types. For example trace entry
and trace output are message types. If you disable these then whatever you set
using the select command has no effect because component/function selection
relies on these mask bits being set.

334 WebSphere MQ for HP OpenVMS: System Administration Guide



Appendix H. User exits

WebSphere MQ for HP OpenVMS supports both channel exit programs and
data-conversion exit programs. For information about channel exits, see the
WebSphere MQ Intercommunication book. For information about data-conversion
exits, see the WebSphere MQ Application Programming Guide and the WebSphere MQ
Application Programming Reference book.

This appendix provides information specific to the use of exit programs in
WebSphere MQ for HP OpenVMS.

Channel and Workload Exits

The requirement to link a separate threaded version of an Exit is not applicable in
WebSphere MQ for HP OpenVMS.

WebSphere MQ Cluster Workload Exits

When linking a workload exit on OpenVMS, the following should be specified in
the linker options file:
sys$share:mqm/share
sys$share:mqutl/share
SYMBOL_VECTOR=(clwlFunction=PROCEDURE,MQStart=PROCEDURE)

A system wide executive logical name is required to reference the exit image. For
example if the exit name is SYS$SHARE:AMQSWLM.EXE the following logical
name should be defined:
$DEFINE/SYSTEM/EXEC AMQSWLM SYS$SHARE:AMQSWLM

The .EXE file extension must not be specified in the logical name definition.

For this logical name to be defined during system startup, define it in
SYS$MANAGER:MQS_SYSTARTUP.COM.

© Copyright IBM Corp. 1994, 2009 335



336 WebSphere MQ for HP OpenVMS: System Administration Guide



Appendix I. Trusted applications

If performance is an important consideration in your environment and your
environment is stable, then user applications, channels, and listeners may be
defined to be ″trusted″ that is, they use fastpath binding. (The time taken to
process MQPUT and MQGET calls of nonpersistent messages can be reduced by
up to 400% on OpenVMS systems.)

In a trusted application, the WebSphere MQ application and the local queue
manager agent become the same process. The application connects directly to
queue manager resources and effectively becomes an extension of the queue
manager. This option can compromise the integrity of a queue manager as there is
no protection from overwriting its storage.

Also, trusted applications may need to create certain resources like shared memory.
These resources may need to be accessed by another queue manager process and,
therefore, must be owned by the same UIC. The queue manager processes all run
under the MQM account and thus trusted applications must also run under this
account.

The issues detailed above should be considered before using trusted applications.

User applications

It is not necessary to run your application directly from the MQM account.
Following a successful connection to a queue manager, WebSphere MQ
automatically modifies the security profile of the active thread such that the thread
assumes the identity of the MQM account. The natural identity of the thread is
resumed following a call to disconnect from the queue manager.

It is important to note that while a trusted application is connected to a queue
manager the application is effectively running under the MQM account. If it is
necessary to change the identity of the thread to another UIC while connected to a
queue manager, you must ensure that you change it back to MQM before making
the next MQI call.

Setting up trusted applications

To run a trusted application on WebSphere MQ for OpenVMS you should specify
the type of binding in the Options field of the MQCONNX call to be
MQCNO_FASTPATH_BINDING. (For standard binding use the
MQCNO_STANDARD_BINDING option.) If no options are specified
(MQCNO_NONE) the default is to use STANDARD_BINDING.

In addition, the logical name MQ_CONNECT_TYPE may be used to override the
binding type specified on the MQCONNX call. If the logical name is defined, it
should have the value FASTPATH or STANDARD to select the type of binding
required. However, FASTPATH binding is used only if the connect option is
appropriately specified on the MQCONNX call. This logical name enables you to
execute an application with the STANDARD_BINDING if any problems occur with
the FASTPATH_BINDING, without the need to rebuild the application.

© Copyright IBM Corp. 1994, 2009 337



In summary, to run a trusted application, either:
v Specify the MQCNO_FASTPATH_BINDING option on the MQCONNX call and

define the MQ_CONNECT_TYPE logical name as FASTPATH

or
v Specify the MQCNO_FASTPATH_BINDING option on the MQCONNX call and

leave the MQ_CONNECT_TYPE logical name undefined.

For further information on the use of trusted applications see the WebSphere MQ
Intercommunication.

Running channels and listeners as trusted applications

Channel programs started using the runmqsc start channel command run under
the MQM account. Channel receiver programs started by incoming TCP (or
DECnet connect) requests run under the MQM account also.

The runmqchl and runmqlsr commands create a detached process that runs under
the MQM account. A combination of the MQ_CONNECT_TYPE logical name and
MQIBindType in the channels stanza of a queue manager’s qm.ini file define
whether a channel or listener is to be run as trusted.

To set up a trusted channel or listener, either:
v Specify MQIBindType=FASTPATH in the qm.ini file and set the logical name to

FASTPATH

or
v Specify MQIBindType=FASTPATH in the qm.ini file and leave the logical name

undefined.

Fast, nonpersistent messages

The nonpersistent message speed (NPMSPEED) channel attribute can be used to
specify the speed at which nonpersistent messages are to be sent. You can specify
either normal or fast. The default is fast, which means that nonpersistent messages
on a channel need not wait for syncpoint before being made available for retrieval.
Such messages become available for retrieval far more quickly but may be lost if
there is a transmission failure or if the channel stops while the messages are in
transit. For further information on running channels and listeners as trusted
applications and fast, nonpersistent messages see the WebSphere MQ
Intercommunication book.

338 WebSphere MQ for HP OpenVMS: System Administration Guide



Appendix J. SSL CipherSpecs

The following table maps the SSL cipherspecs defined for WebSphere MQ on other
platforms, and their equivalents for HP SSL

WebSphere MQ OpenSSL

DES_SHA_EXPORT EXP-DES-CBC-SHA

DES_SHA_EXPORT1024 EXP1024-DES-CBC-SHA

NULL_MD5 NULL-MD5

NULL_SHA NULL-SHA

RC2_MD5_EXPORT EXP-RC2-MD5

RC4_56_SHA_EXPORT1024 EXP1024-RC4-SHA

RC4_MD5_EXPORT EXP-RC4-MD5

RC4_MD5_US RC4-MD5

RC4_SHA_US RC5-SHA

TLS_RSA_WITH_3DES_EDE_CBC_SHA DES-CBC3-SHA

TLS_RSA_WITH_AES_128_CBC_SHA AES128-SHA

TLS_RSA_WITH_AES_256_CBC_SHA AES256-SHA

TLS_RSA_WITH_DES_CBC_SHA DES-CBC-SHA

TRIPLE_DES_SHA_US DES-CBC3-SHA

© Copyright IBM Corp. 1994, 2009 339



The following table lists the CipherSpecs supported on WebSphere MQ.

WebSphere MQ OpenSSL

DES_SHA_EXPORT

DES_SHA_EXPORT1024

NULL_MD5

NULL_SHA

RC2_MD5_EXPORT

RC4_56_SHA_EXPORT1024

RC4_MD5_EXPORT

RC4_MD5_US

RC4_SHA_US

TLS_RSA_WITH_3DES_EDE_CBC_SHA

TLS_RSA_WITH_AES_128_CBC_SHA

TLS_RSA_WITH_AES_256_CBC_SHA

TLS_RSA_WITH_DES_CBC_SHA

TRIPLE_DES_SHA_US

ADH-AES256-SHA

DHE-RSA-AES256-SHA

DHE-DSS-AES256-SHA

AES256-SHA

ADH-AES128-SHA

DHE-RSA-AES128-SHA

DHE-DSS-AES128-SHA

AES128-SHA

DHE-DSS-RC4-SHA

EXP1024-DHE-DSS-RC4-SHA

EXP1024-RC4-SHA

EXP1024-DHE-DSS-DES-CBC-SHA

EXP1024-DES-CBC-SHA

EXP1024-RC2-CBC-MD5

EXP1024-RC4-MD5

EDH-RSA-DES-CBC-SHA

EXP-EDH-RSA-DES-CBC-SHA

EDH-DSS-DES-CBC3-SHA

EDH-DSS-DES-CBC-SHA

EXP-EDH-DSS-DES-CBC-SHA

DES-CBC3-SHA

DES-CBC-SHA

EXP-DES-CBC-SHA

IDEA-CBC-SHA

EXP-RC2-CBC-MD5

RC4-SHA

RC4-MD5

EXP-RC4-MD5

ADH-DES-CBC3-SHA

ADH-DES-CBC-SHA

EXP-ADH-DES-CBC-SHA

ADH-RC4-MD5

EXP-ADH-RC4-MD5

RC4-64-MD5

DES-CBC3-MD5

DES-CBC-MD5

IDEA-CBC-MD5

RC2-CBC-MD5

EXP-RC2-CBC-MD5

RC4-MD5

EXP-RC4-MD5

NULL-SHA

NULL-MD5

340 WebSphere MQ for HP OpenVMS: System Administration Guide



Notices

This information was developed for products and services offered in the United
States. IBM may not offer the products, services, or features discussed in this
information in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply
that only that IBM product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any IBM intellectual
property right may be used instead. However, it is the user’s responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this information. The furnishing of this information does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive Armonk, NY
10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

:IBM World Trade Asia Corporation Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION ″AS IS″
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the information. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
information at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1994, 2009 341



Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM United Kingdom Laboratories,
Mail Point 151,
Hursley Park,
Winchester,
Hampshire,
England
SO21 2JN.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This product includes the compression library zlib, which is available from:
http://www.gzip.org/zlib.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

342 WebSphere MQ for HP OpenVMS: System Administration Guide



Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at ″Copyright and
trademark information″ at www.ibm.com/legal/copytrade.shtml.

© Copyright IBM Corp. 1994, 2009 343



344 WebSphere MQ for HP OpenVMS: System Administration Guide



Index

A
accidental deletion of default queue

manager 207
ACTION keyword, rules table 129
administration

authorizations 105
control commands 21
for database managers 118
introduction to 15
local, definition of 15
MQAI, using 56
MQSC commands 16, 30
object name transformation 18
PCF commands 55
queue manager name

transformation 17
remote administration, definition

of 15
remote objects 57
understanding WebSphere MQ file

names 17
using control commands 16
using PCF commands 16

AdoptNewMCA attribute 84
AIX operating system

MQAI support 56
start client trigger monitor

(runmqtmc) command 260
alias queues

authorizations to 98
DEFINE QALIAS command 43
defining alias queues 43
remote queues as queue manager

aliases 68
reply-to queues 68
working with alias queues 43

aliases
queue manager aliases 68
working with alias queues 43

AllQueueManagers stanza, mqs.ini 73
alternate user authority 98
amqsdlq, the sample DLQ handler 126
analyse trace command (MONMQ) 319
API exits 12
ApiExitCommon stanza, mqs.ini 78
ApiExitLocal stanza, qm.ini 86
ApiExitTemplate stanza, mqs.ini 78
application

trusted 337
application programs

design considerations 188
message length, effects on

performance 188
MQI local administration, support

for 29
persistent messages, effect on

performance 188
programming errors, examples

of 181
receiving messages 2
retrieving messages from queues 3

application programs (continued)
searching for messages, effect on

performance 188
sending messages 2
time-independent applications 1

application queues
defining application queues for

triggering 51
description of 6

APPLIDAT keyword, rules table 128
APPLNAME keyword, rules table 128
APPLTYPE keyword, rules table 128
attributes

changing local queue attributes 40
LIKE attribute, DEFINE command 40
queue manager 37, 38
queues 5
WebSphere MQ and PCF commands,

a comparison 56
authentication information objects

description of 9
authority

alternate user 98
commands 97
context 99
grant or revoke command 261
installable services 97

authorization
administration 105
dspmqaut command 97
lists 95
MQI 102
rights identifiers 94
setmqaut command 97

authorization service 12
automatic definition of channels 62

B
backing up queue manager data 169
binary

close trace binary file 315
open a trace binary file 314

bindings
for trusted applications 337

browsing queues 41
built-in formats, data conversion 69

C
calculating the size of logs 162
case sensitivity 18

control commands 18
MQSC commands 19

ccsid.tbl, data conversion 69
changing

CCSID 70
local queue attributes 40
queue manager attributes 38
the default queue manager 25

channel
Channels stanza, qm.ini 83
command security requirements 100
commands 100
connect target thread to 312
disconnect target thread from 313
escape command authorizations 105
fastpath 84
security 100
show channel details (MONMQ) 303
show history of messages 305
show mask (MONMQ) 304
trusted 338

channels
administering a remote queue

manager from a local one 59
auto-definition of 62
defining channels for remote

administration 61
description of 9, 57
exits 12
preparing channels for remote

administration 60
remote queuing 57
starting 62
using the run channel (runmqchl)

command 254
using the run initiator (runmqchi)

command 253
Channels stanza, qm.ini 83
character code sets, updating 69
circular logging 158
clearing a local queue 41
client connection channels

description of 9
ClientExitPath stanza 75
clients and servers

definitions 11
problem determination 198
start client trigger monitor

(runmqtmc) command 260
close binary command (MONMQ) 315
close LU command (MONMQ) 303
close text command (MONMQ) 315
cluster

OpenVMS
difference from queue manager

cluster 137
failover sets 138
installing WebSphere MQ 137

queue manager
workload exit 335

cluster alias service 150
cluster workload exit 335
clusters

cluster transmission queues 7
description of 8, 58
ExitProperties stanza attributes 75
remote queuing 57

coded character sets, specifying 69
command files 33

© Copyright IBM Corp. 1994, 2009 345



command procedures 142
examples 152
modifying 152

command queues
command server status 63
description of 7
mandatory for remote

administration 60
command server

display command server (dspmqcsv)
command 220

displaying status 63
end command server (endmqcsv)

command 233
remote administration 57, 63
starting a command server 63
starting the command server

(strmqcsv) command 268
stopping a command server 63

command set
comparison 281

command sets
control commands 21
MQSC commands 30
PCF commands 55

commands
comparison of sets 281
control commands 21
create queue manager (crtmqm)

command 205
data conversion (crtmqcvx)

command 204
delete queue manager (dltmqm)

command 209
display authority (dspmqaut)

command 216
display command server (dspmqcsv)

command 220
display version information

(dspmqver) 232
display WebSphere MQ files

(dspmqfls) command 221
display WebSphere MQ formatted

trace (dspmqtrc) 230
display WebSphere MQ queue

managers (dspmq) command 215
display WebSphere MQ transactions

(dspmqtrn) command 231
dump authority (dmpmqaut)

command 210
dump log (dmpmqlog)

command 214
end command server (endmqcsv)

command 233
end listener (endmqlsr)

command 234
end queue manager (endmqm)

command 235
end WebSphere MQ trace

(endmqtrc) 237
enroll production license

(setmqprd) 268
grant or revoke authority

(setmqaut) 261
help with syntax 201
issuing MQSC commands using an

ASCII file 30

commands (continued)
MQSC command files

input 33
output reports 34

PCF commands 55
receive file on client (mqftrcvc) 241
receive file on server (mqftrcv) 239
record media image (rcdmqimg)

command 248
recreate object (rcrmqobj)

command 250
resolve WebSphere MQ transactions

(rsvmqtrn) command 252
run channel (runmqchl)

command 254
run channel initiator (runmqchi) 253
run dead-letter queue handler 255
run DLQ handler (runmqdlq)

command 125
run File Transfer Application

(mqftapp) 238
run listener (runmqlsr)

command 256
run MQSC commands (runmqsc) 258
runmqsc command, to issue MQSC

commands 30
security commands

dspmqaut 97
setmqaut 95

send file from client (mqftsndc) 246
send file from server (mqftsnd) 244
set/reset authority (setmqaut) 96
start client trigger monitor

(runmqtmc) command 260
start command server (strmqcsv) 268
start queue manager (strmqm) 269
start trigger monitor (runmqtrm) 261
WebSphere MQ (MQSC)

verifying 35
WebSphere MQ display route

application (dspmqrte) 222
component

show functions (MONMQ) 311
configuration files

AllQueueManagers stanza,
mqs.ini 73

ApiExitCommon, mqs.ini 78
ApiExitLocal, qm.ini 86
ApiExitTemplate, mqs.ini 78
backing up of 26
ClientExitPath stanza 75
DefaultQueueManager stanza 75
editing 71
ExitProperties stanza 75
failover.template 293
OpenVMS cluster failover set 141
queue manager (qm.ini)

Channels stanza 83
contents 73, 88
disabling the object authority

manager 95
ExitPath stanza 86
Log stanza 80
LU62 and TCP stanzas 85
Service Component stanza 80
Service stanza 79
XARsourceManager stanza 82

configuration files (continued)
QueueManager stanza, mqs.ini 78
WebSphere MQ (mqs.ini)

contents 72
LogDefaults stanza 76
path 35

configuring
Channels stanza, qm.ini 83
database managers 113
databases, qm.ini 82
editing 71
example qm.ini file 88
Exitpath stanza, qm.ini 86
failover.ini 141
implementing changes 72
Log stanza, qm.ini 80
LogDefaults stanza, mqs.ini 76
logs 80
LU62 stanza, qm.ini 85
mqs.ini, description of 72
OpenVMS cluster failover set 141
Oracle 115
priorities 72
queue manager configuration file,

qm.ini 73
Service stanza, qm.ini 79
ServiceComponent stanza, qm.ini 80
TCP stanza, qm.ini 85
XAResourceManager stanza,

qm.ini 82
connect command (MONMQ) 312
context authority 99
control commands

case sensitivity 18
changing the default queue

manager 25
creating a default queue manager 25
creating a queue manager 22
crtmqm, creating a default queue

manager 25
deleting a queue manager,

dltmqm 28
dltmqm, deleting a queue

manager 28
immediate shutdown 27
preemptive shutdown 27
quiesced shutdown 26
runmqsc, using interactively 31
starting a queue manager 26
strmqm, starting a queue

manager, 26
using 21

controlled shutdown of a queue
manager 27

CorrelId, performance
considerations 188

creating
a default queue manager 25
a dynamic (temporary) queue 3
a model queue 3
a predefined (permanent) queue 3
a process definition 53
a queue manager 22, 205
a transmission queue 67

crtmqcvx (data conversion) command
examples 204
format 204

346 WebSphere MQ for HP OpenVMS: System Administration Guide



crtmqcvx (data conversion) command
(continued)

parameters 204
purpose 204
return codes 204

crtmqm (create queue manager)
command

examples 209
format 205
parameters 206
purpose 205
related commands 209
return codes 208

CURDEPTH, current queue depth 40
current queue depth, CURDEPTH 40

D
data conversion

built-in formats 69
ccsid.tbl, uses for 69
ConvEBCDICNewline attribute,

AllQueueManagers stanza 74
converting user-defined message

formats 70
data conversion (crtmqcvx)

command 204
default data conversion 70
EBCDIC NL character conversion to

ASCII 74
introduction 69
updating coded character sets 69

database managers
changing the configuration

information 122
configuring 113
connections to 113
coordination 112
database manager instances,

removing 122
defining database managers in

qm.ini 113
dspmqtrn command, checking

outstanding UOWs 119
in-doubt units of work 119
restrictions, database coordination

support 112
rsvmqtrn command, explicit

resynchronization of UOWs 120
switch load files, creating 113

DCE Generic Security Service (GSS)
name service, installable service 12

dead-letter header, MQDLH 125
dead-letter queue handler

ACTION keyword, rules table 129
action keywords, rules table 129
APPLIDAT keyword, rules table 128
APPLNAME keyword, rules

table 128
APPLTYPE keyword, rules table 128
control data 126
DESTQ keyword, rules table 128
DESTQM keyword, rules table 128
example of a rules table 133
FEEDBACK keyword, rules table 128
FORMAT keyword, rules table 128
FWDQ keyword, rules table 129

dead-letter queue handler (continued)
FWDQM keyword, rules table 130
HEADER keyword, rules table 130
INPUTQ, rules table 126
INPUTQM keyword, rules table 127
invoking the DLQ handler 125
MSGTYPE keyword, rules table 128
pattern-matching keywords, rules

table 128
patterns and actions (rules) 127
PERSIST keyword, rules table 129
processing all DLQ messages 133
processing rules, rules table 132
PUTAUT keyword, rules table 130
REASON keyword, rules table 129
REPLYQ keyword, rules table 129
REPLYQM keyword, rules table 129
RETRY keyword, rules table 130
RETRYINT, rules table 127
rule table conventions 130
rules table, description of 126
sample, amqsdlq 126
syntax rules, rules table 131
USERID keyword, rules table 129
WAIT keyword, rules table 127

dead-letter queues
defining a dead-letter queue 39
description of 7
DLQ handler 255
MQDLH, dead-letter header 125
specifying 23

debugging
command syntax errors 182
common command errors 182
common programming errors 181
further checks 183
preliminary checks 179

default
rights identifier for authority 94
system objects 273

default data conversion 70
default transmission queues 68
default variable command

(MONMQ) 302
DefaultQueueManager stanza 75
defaults

changing the default queue
manager 25

creating a default queue manager 25
objects 10
queue manager 23
reverting to the original default queue

manager 25
transmission queue 24

defining
a model queue 45
an alias queue 43
an initiation queue 52
WebSphere MQ queues 5

delete history command (MONMQ) 316
deleting

a local queue 41
a queue manager 28
a queue manager using the dltmqm

command 209
queue managers,WebSphere MQ for

UNIX systems 287

deleting (continued)
Windows queue managers 286
Windows queue managers, automatic

startup list 287
deselect index command (MONMQ) 314
DESTQ keyword, rules table 128
DESTQM keyword, rules table 128
determining current queue depth 40
Digital TCP/IP Services for

OpenVMS 143
directories

queue manager 98
directory structure 275
disable history command

(MONMQ) 316
disable timestamp command

(MONMQ) 315
disable tracing command

(MONMQ) 316
disabling the object authority

manager 95
disconnect command (MONMQ) 313
display

active WebSphere MQ processes 305
current authorizations (dmpmqaut)

command 210
current authorizations (dspmqaut)

command 216
default object attributes 39
file system name (dspmqfls)

command 221
hexidecimal ids for components 310
memory table 309
process definitions 53
queue manager attributes 37
queue managers (dspmq)

command 215
status of command server 63
status of command server (dspmqcsv)

command 220
target threads stack 304
WebSphere MQ formatted trace

output command 230
WebSphere MQ transactions

(dspmqtrn) command 231
display version information, dspmqver

command 232
distributed queuing, incorrect

output 185
dltmqm (delete queue manager)

command
examples 210
format 209
parameters 210
purpose 209
related commands 210
return codes 210

dltmqm control command 28
dmpmqlog (dump log) command

format 214
parameters 214
purpose 214

dspmq (display WebSphere MQ queue
managers) command

format 215
parameters 215
purpose 215

Index 347



dspmq (display WebSphere MQ queue
managers) command (continued)

Queue Manager States 216
return codes 216

dspmqaut (display authority) command
dspmqaut command 219
examples 212, 219
format 217
parameters 217
purpose 210, 216
related commands 220
results 218
return codes 219

dspmqaut command
using 95, 97

dspmqcsv (display command server)
command

examples 221
format 220
parameters 220
purpose 220
related commands 221
return codes 220

dspmqfls (display WebSphere MQ files)
command

examples 222
format 221
parameters 221
purpose 221
return codes 222

dspmqrte
format 223
parameters 223

dspmqtrc command 230
examples 231
parameters 230
related commands 231

dspmqtrn (display WebSphere MQ
transactions) command

format 231
parameters 231
purpose 231
related commands 232
return codes 232

dspmqver
examples 233
format 232
parameters 232

dump
dumping log records (dmpmqlog

command) 175
dumping the contents of a recovery

log 175
formatted system log (dmpmqlog)

command 214
dynamic definition of channels 62
dynamic queues

authorizations to 98
description of 3

E
EBCDIC NL character conversion to

ASCII 74
enable history command (MONMQ) 316
enable timestamp command

(MONMQ) 315

enable tracing command (MONMQ) 315
enabling

security 95
End command procedure 142
end WebSphere MQ trace 237
EndCommand procedure

template 295
ending

interactive MQSC commands 32
endmqcsv (end command server)

command
examples 234
format 234
parameters 234
purpose 233
related commands 234
return codes 234

endmqlsr (end listener) command
format 235
parameters 235
purpose 234
return codes 235

endmqm (end queue manager) command
examples 237
format 236
parameters 236
purpose 235
related commands 237
return codes 237

endmqtrc command 237
examples 238
parameters 237
related commands 238
return codes 238

enroll production license, setmqprd
command 268

environment variables
MQSPREFIX 74
ORACLE_HOME, Oracle 115
ORACLE_SID, Oracle 115

error log
error occurring before

established 190
example 190

error logs
description of 189
log files 189

error messages, MQSC commands 32
escape PCF command 17
escape PCFs 56
event queues

description of 7
events

show events (MONMQ) 308
examples

creating a transmission queue 67
crtmqcvx command 204
crtmqm command 209
dltmqm command 210
dmpmqaut command 212
dspmqaut command 219
dspmqcsv command 221
dspmqfls command 222
dspmqrte command 229
dspmqtrc command 231
dspmqver command 233
endmqcsv command 234

examples (continued)
endmqm command 237
endmqtrc command 238
error log 190
mqftrcv command 241
mqftrcvc command 244
mqftsnd command 246
mqftsndc command 248
mqs.ini file, WebSphere MQ for HP

OpenVMS 87
programming errors 181
qm.ini file 88
rcdmqimg command 250
rcrmqobj command 252
runmqlsr command 257
runmqsc command 259
runmqtmc command 260
setmqaut command 266
strmqcsv command 269
strmqm command 271

exit
cluster workload 335

exit command (MONMQ) 321
Exitpath stanza, qm.ini 86
ExitProperties stanza 75
extending queue manager facilities 11

F
failback

description 139
failover

description 139
failover command 139, 142
failover monitor

description 139
halting 147
starting 144
watcher 139

failover set
changing state 148
command procedures 142
configuration file 139
configuring 140
displaying state 145
ending queue manager within 144
example configuration 150
moving queue manager within 145
starting queue manager within 144
steps before configuring 140
troubleshooting 149
using Intra Cluster Communication

(ICC) 148
using MultiNet for OpenVMS 150

failover set templates 293
failover sets

administration 143
description 138

failover.ini configuration file 150
editing 141

failover.template 150
fastpath binding 337
fastpath channel 84
FEEDBACK keyword, rules table 128
feedback, MQSC commands 32
FFST

FFST (MONMQ) 321

348 WebSphere MQ for HP OpenVMS: System Administration Guide



FFST command (MONMQ) 321
FFST, examining 195
file names 17
file sizes, for logs 162
files

log control file 158
log files, in problem

determination 189
logs 158
names 17
queue manager configuration 73
sizes, for logs 162
understanding names 17
WebSphere MQ configuration 72

FORMAT keyword, rules table 128
functions

display within component 311
FWDQ keyword, rules table 129
FWDQM keyword, rules table 130

G
global sections 306
global units of work

adding XAResourcemanager stanza to
qm.ini, Oracle 116

definition of 14, 111
guidelines for creating queue

managers 22

H
HEADER keyword, rules table 130
help with command syntax 201
hexadecimal ids

display for components 310
history

delete history (MONMQ) 316
disable history (MONMQ) 316
enable history (MONMQ) 316
of messages in channel 305
reset for channel (MONMQ) 317
set history (MONMQ) 316

HP-UX
MQAI support for 56

I
indirect mode, runmqsc command 64
indoubt transactions

database managers 119
display WebSphere MQ transactions

(dspmqtrn) command 231
using the resolve WebSphere MQ

(rsvmqtrn) command 252
initiation queues

defining 52
description of 6

input, standard 31
installable component

authority manager (OAM) 92
installable services

authorization service 12
definition of 12
disabling object authority manager

disabling 95

installable services (continued)
installable services, list of 12
name service 12
object authority manager 92
service component 12

Installing multiple queue managers 24
Intra Cluster Communication (ICC) 148
issuing

MQSC commands remotely 64
MQSC commands using an ASCII

file 30
MQSC commands using runmqsc

command 30

L
LIKE attribute, DEFINE command 40
linear logging 159
listener

end listener (endmqlsr)
command 234

starting 62
trusted 338
using the run listener (runmqlsr)

command 256
listener objects

description of 10
ListenerBacklog attribute 86
listeners

defining listeners for remote
administration 61

local administration
creating a queue manager 22
definition of 15
issuing MQSC commands using an

ASCII file 30
runmqsc command, to issue MQSC

commands 30
support for application programs 29

local queues 38
changing queue attributes, commands

to use 40
clearing 41
copying a local queue definition 40
defining 38
defining application queues for

triggering 51
deleting 41
description of 8
specific queues used by WebSphere

MQ 6
working with local queues 38

local unit of work
definition of 13, 111

log
configuring 80
error, example of 190
file

reuse 160
Log stanza, qm.ini 80

Log stanza, qm.ini 80
LogDefaults stanza, mqs.ini 76
logging

calculating the size of logs 162
checkpoints 159, 160
circular 158
contents of logs 157

logging (continued)
linear logging 159
locations for log files 166
media recovery 168
parameters 24
types of 158
what happens when a disk fills

up? 164
logical name, disabling security 95
logical unit

close (MONMQ) 303
display using show segment

(MONMQ) 303
logs

calculating the size of logs 162
checkpoints 159
dumping log records (dmpmqlog

command) 175
dumping the contents of 175
error logs 189
format of a log 158
log control file 158
log files, in problem

determination 189
logging parameters 24
managing 164, 165
media recovery, linear logs 167
oldest required for recovery and

restart 249
output from the dmpmqlog

command 175
overheads 162
parameters 24
persistent messages, effect upon log

sizes 163
primary log files 158
protecting 169
recreating objects (rcrmqobj)

command 250
secondary log files 158
types of logs 157
using logs for recovery 166
what happens when a disk fills

up? 164
LU62 stanza, qm.ini 85

M
macros

MONMQ 323
managing access 93
managing objects for triggering 51
managing shared memory 322
manual removal of a queue

manager 285
manually stopping a queue

manager 285
mask

set mask (MONMQ) 317
maximum line length for MQSC

commands 34
MCA (message channel agent) 125
media images

automatic media recovery failure,
scenario 175

description of 167
oldest log required for recovery 249

Index 349



media images (continued)
record media image (rcdmqimg)

command 248
recording media images 167
recovering damaged objects during

start up 168
recovering media images 168

memory table 309
message

nonpersistent message speed 338
message channel agent (MCA) 125

AdoptNewMCA attribute 84
channel in RETRY state 86

message length, decreasing 40
message queuing 1
message-driven processing 1
messages

application data 2
containing unexpected

information 184
converting user-defined message

formats 70
definition of 2
message descriptor 2
message length, effects on

performance 188
message lengths 2
message-driven processing 1
not appearing on queues 183
operator messages 193
persistent messages, effect on

performance 188
persistent messages, when

determining log sizes 163
queuing 1
retrieval algorithms 3
retrieving messages from queues 3
sending and receiving 2
undelivered 194
variable length 189

model queues
creating a model queue 3
DEFINE QMODEL command 45
defining 45
working with 44

monitoring
start client trigger monitor

(runmqtmc) command 260
starting a trigger monitor (runmqtrm

command) 261
monmq utility

commands
analyse trace 319
close binary 315
close lu 303
close text 315
connect 312
default variable 302
delete history 316
deselect index 314
disable history 316
disable timestamp 315
disable trace 316
disconnect 313
enable history 316
enable timestamp 315
enable trace 315

monmq utility (continued)
commands (continued)

exit 321
FFST 321
onstartup start 312
onstartup stop 312
open 302
open binary 314
open text 315
select 313
set color 318
set depth 316
set free 317
set mask 317
set output 319
show channels 303
show components 310
show events 308
show functions 311
show globals 306
show history 305
show mask 304
show memory 309
show mutex 307
show process 305
show segment 303
show stack 304
trace start 300, 313
trace stop 313

managing shared memory with 322
overview 299
tracing WebSphere MQ processes

sample trace session 324
scripts and macros in

MONMQ 323
variables within MONMQ 300

MQAI (WebSphere MQ administrative
interface)

description of 56
MQDLH, dead-letter header 125
mqftapp

format 238
related commands 238

mqftrcv
examples 241
format 239
parameters 239
related commands 241
return codes 239

mqftrcvc
examples 244
format 241
parameters 241
related commands 244
return codes 241

mqftsnd
examples 246
format 244
parameters 244
related commands 246
return codes 244

mqftsndc
examples 248
format 246
parameters 246
related commands 248
return codes 246

MQI
authorizations 101, 102

MQI (message-queuing interface)
definition of 1
local administration support 29
queue manager calls 8
receiving messages 2
sending messages 2

MQM
rights identifier 91
user ID 98

MQOPEN authorizations 102
MQPUT and MQPUT1, performance

considerations 189
MQPUT authorizations 102
mqs.ini

definition of 71
editing 71
LogDefaults stanza 76
path to 35
priorities 72

mqs.ini configuration file
AllQueueManagers stanza 73
ApiExitCommon stanza 78
ApiExitTemplate 78
QueueManager stanza 78

MQSC
case sensitivity 19
command files

input 33
output reports 34
running 34

maximum line length 34
problems

local 35
sample files 289
security requirements on

channels 100
verifying commands 35

MQSC commands
case sensitivity 19
maximum line length 34

MQSNOAUT logical name 95
MQSPREFIX, environment variable 74
MQZAO constants and authority 102
MsgId, performance considerations when

using 188
MSGTYPE keyword, rules table 128
MultiNet for OpenVMS 150

configuring template files 143
multiple queue managers, installing 24
mutex table 307
MVS/ESA queue manager 64

N
name service 12
name transformations 17
namelists

description of 9
naming conventions

national language support 199
object names 4
queue manager name

transformation 17
national language support

data conversion 69

350 WebSphere MQ for HP OpenVMS: System Administration Guide



national language support (continued)
EBCDIC NL character conversion to

ASCII 74
naming conventions for 199
operator messages 193

NL character, EBCDIC conversion to
ASCII 74

nobody, default rights identifier 94
nonpersistent message 338

O
OAM 92
OAM (Object Authority Manager)

authorization service, installable
service 12

overview 13
using the grant or revoke authority

(setmqaut) command 261
object authority manager 92

default rights identifier 94
disabling 95
dspmqaut command 97
how it works 93
principals 93
sensitive operations 97
setmqaut command 95, 96

object name transformation 18
objects

access to 91
administration of 15
attributes of 4, 17
automation of administration

tasks 16
default object attributes,

displaying 39
description of 8, 9, 58
display file system name (dspmqfls)

command 221
local queues 8
managing objects for triggering 51
media images 167
multiple queues 8
name transformation 18
naming conventions 4, 199
object name transformation 18
process definitions 8
queue manager objects used by MQI

calls 8
queue managers 8
recovering damaged objects during

start up 168
recovering from media images 168
recreate (rcrmqobj) command 250
remote administration 57
remote queue objects 68
remote queues 8
system default 273
system default objects 10
types of 3
using MQSC commands to

administer 16
onstartup start command

(MONMQ) 312
onstartup stop command

(MONMQ) 312
open binary command (MONMQ) 314

open command (MONMQ) 302
open text command (MONMQ) 315
OpenVMS cluster failover set 140
OpenVMS clusters 137
OpenVMS logged-in user ID 98
OpenVMS rights identifier

default, nobody 94
MQM 91

operating system logical name, disabling
security 95

operator
commands, no response from 186
messages 193

oracle
configuration parameters,

changing 118
configuring 115
environment variable settings,

checking 115
Oracle XA support, enabling 115
ORACLE_HOME, environment

variable 115
ORACLE_SID, environment

variable 115
switch load file, creating 115
XAResourcemanager stanza, adding to

qm.ini 116
output

redirect 319
output, standard 31
overheads, for logs 162

P
PCF (programmable command format)

administration tasks 16
attributes in MQSC commands and

PCF 56
automating administrative tasks using

PCF 55
escape PCF 17
escape PCFs 56
MQAI, using to simplify use of 56
object attribute names 4, 17

performance
advantages of using MQPUT1 189
application design, impact on 188
CorrelId, effect on 188
message length, effects on 188
message persistence, effect on 188
MsgId, effect on 188
syncpoints, effects on 189

performance considerations
when using trace 194

permanent (predefined) queues 3
PERSIST keyword, rules table 129
persistent messages, effect on

performance 188
predefined (permanent) queues 3
preemptive shutdown of a queue

manager 27
primary group authorizations 93
primary rights identifier, for

authority 93
principals

holding more than one rights
identifier 93

principals (continued)
managing access to 93

problem determination
application design

considerations 188
applications or systems running

slowly 187
clients 198
command errors 182
common programming errors 181
configuration files 194
has the application run successfully

before? 180
incorrect output, definition of 183
incorrect output, distributed

queuing 185
intermittent problems 182
introduction 179
log files 189
no response from operator

commands 186
preliminary checks 179
problems affecting parts of a

network 182
problems caused by service

updates 182
problems that occur at specific times

in the day 182
problems with shutdown 27
queue failures, problems caused

by 187
remote queues, problems

affecting 187
reproducing the problem 180
return codes 180, 181
searching for messages, performance

effects 188
things to check first 179
trace 194
undelivered messages 194
WebSphere MQ error messages 180
what is different since the last

successful run? 180
problems

running MQSC commands 35
using MQSC locally 35

process
point to start trace 312

process definitions
creating 53
description of 8
displaying 53

process rights authorizations 93
processing, message-driven 1
programmable command format (PCF)

authorizations 101
security requirements 100

programming errors, examples of 181
further checks 183, 188
secondary checks 183, 188

programs, samples supplied 289
protected resources 94
PUTAUT keyword, rules table 130

Index 351



Q
qm.ini configuration file

ApiExitLocal stanza 86
Channels stanza 83
definition of 73
editing 71
Exitpath stanza 86
Log stanza 80
LU62 stanza 85
priorities 72
Service stanza 79
ServiceComponent stanza 80
TCP stanza 85
XAResourceManager stanza 82

queue depth, current 40
queue manager

authorizations 98
command server 57
directories 98
ending within failover set 144
moving within failover set 145
object authority manager

description 92
disabling 95

qm.ini files 73
starting within failover set 144

queue managers
accidental deletion of default 207
activating a backup queue

manager 172
attributes, changing 38
attributes, displaying 37
backing up queue manager data 169
CCSID, changing 70
changing the CCSID 70
changing the default queue

manager 25
command server 63
configuration files, backing up 26
creating a default queue manager 25
creating a queue manager 22, 205
default for each node 23
deleting a queue manager 28
deleting a queue manager (dltmqm)

command 209
description of 8
display queue managers (dspmq)

command 215
dumping formatted system log

(dmpmqlog) command 214
dumping the contents of a recovery

log 175
end queue manager (endmqm)

command 235
extending queue manager

facilities 11
guidelines for creating a queue

manager 22
immediate shutdown 27
limiting the numbers of 23
linear logging 159
log maintenance, recovery 157
MVS/ESA queue manager 64
name transformation 17
objects used in MQI calls 8
oldest log required to restart 249
preemptive shutdown 27

queue managers (continued)
preparing for remote

administration 59
queue manager aliases 68
quiesced shutdown 26
recording media images 167
remote administration 57
removing a queue manager

manually 285
restoring queue manager data 169,

170
reverting to the original default 25
specifying unique names for 22
starting a queue manager 26
starting a queue manager

automatically 26
starting a queue manager, strmqm

command 269
stopping a queue manager

manually 285
QueueManager stanza, mqs.ini 78
queues

alias 43
application queues 51
attributes 5
authorizations to 98
browsing 41
changing queue attributes 40
clearing local queues 41
current queue depth, determining 40
dead-letter, defining 39
defaults, transmission queues 24
defining WebSphere MQ queues 5
definition of 2
deleting a local queue 41
distributed, incorrect output

from 185
dynamic (temporary) queues 3
extending queue manager

facilities 11
for MQSeries applications 29
initiation queues 52
local definition of a remote queue 65
local queues 8
local, working with 38
model queues 3, 44, 45
multiple queues 8
predefined (permanent) queues 3
preparing transmission queues for

remote administration 60
queue manager aliases 68
queue managers, description of 8
remote queue objects 68
reply-to queues 68
retrieving messages from 3
specific local queues used by

WebSphere MQ 6
specifying dead-letter queues 23
specifying undelivered-message 23

quiesced shutdown of a queue
manager 26

preemptive shutdown 27
quit command (MONMQ) 321

R
railroad diagrams, how to read 200

rcdmqimg (record media image)
command

examples 250
format 248
parameters 249
purpose 248
related commands 250
return codes 250

rcrmqobj (recreate object) command
examples 252
format 250
parameters 250
purpose 250
related commands 252
return codes 251

REASON keyword, rules table 129
receiver channel, automatic definition

of 62
recovery

activating a backup queue
manager 172

automatic media recovery failure,
scenario 175

backing up queue manager data 169
backing up WebSphere MQ 170
disk drive failure, scenario 173
making sure messages are not lost

using logs 157
media images, recovering 167, 168
recovering a damaged queue manager

object, scenario 174
recovering a damaged single object,

scenario 175
recovering damaged objects at other

times 169
recovering damaged objects during

start up 168
recovering from problems 166
restoring queue manager data 170
scenarios 173
using the log for recovery 166

redirecting input and output, MQSC
commands 32

remote
security considerations 99

remote administration
administering a remote queue

manager from a local one 59
command server 57, 63
defining channels and transmission

queues 61
definition of remote

administration 15
initial problems 65
of objects 57
preparing channels for 60
preparing queue managers for 59
preparing transmission queues for 60

remote issuing of MQSC commands 64
remote queue objects 68
remote queues

as reply-to queue aliases 68
authorizations to 98
defining remote queues 65
recommendations for remote

queuing 65
remote queuing 57

352 WebSphere MQ for HP OpenVMS: System Administration Guide



removing a queue manager
manually 285

REPLACE attribute, DEFINE
commands 34

reply-to queue aliases 68
reply-to queues

description of 7
reply-to queue aliases 68

REPLYQ keyword, rules table 129
REPLYQM keyword, rules table 129
resources

protected 94
updating under syncpoint control 13
why protect 91

restarting a queue manager
oldest logs required 249

restoring queue manager data 169
restrictions

access to MQM objects 91
database coordination support 112
on object names 199

retrieval algorithms for messages 3
RETRY keyword, rules table 130
RETRYINT keyword, rules tables 127
return codes

crtmqcvx command 204
crtmqm command 208
dltmqm command 210
dspmq command 216
dspmqcsv command 220
dspmqfls command 222
dspmqrte command 229
dspmqtrn command 232
dspmqver command 233
endmqcsv command 234
endmqlsr command 235
endmqm command 237
endmqtrc command 238
mqftrcv command 239
mqftrcvc command 241
mqftsnd command 244
mqftsndc command 246
problem determination 181
rcdmqimg command 250
rcrmqobj command 251
rsvmqtrn command 253
runmqchi command 254
runmqchl command 254
runmqlsr command 257
runmqsc command 259
runmqtmc command 260
runmqtrm command 261
setmqaut command 266
strmqcsv command 269
strmqm command 270

rights identifier
default for authority 94
default, nobody 94
MQM 91

rights identifiers, for authority 93
rsvmqtrn (resolve WebSphere MQ

transactions) command
format 252
parameters 252
purpose 252
related commands 253
return codes 253

rules table (DLQ handler)
ACTION keyword 129
action keywords 129
APPLIDAT keyword 128
APPLNAME keyword 128
APPLTYPE keyword 128
control-data entry 126
conventions 130
description of 126
DESTQ keyword 128
DESTQM keyword 128
example of a rules table 133
FEEDBACK keyword 128
FORMAT keyword 128
FWDQ keyword 129
FWDQM keyword 130
HEADER keyword 130
INPUTQ keyword 126
INPUTQM keyword 127
MSGTYPE keyword 128
pattern-matching keywords 128
patterns and actions 127
PERSIST keyword 129
processing rules 132
PUTAUT keyword 130
REASON keyword 129
REPLYQ keyword 129
REPLYQM keyword 129
RETRY keyword 130
RETRYINT keyword 127
syntax rules 131
USERID keyword 129
WAIT keyword 127

runmqchi (run channel initiator)
command

format 253
parameters 253
purpose 253
return codes 254

runmqchl (run channel) command
format 254
parameters 254
purpose 254
return codes 254

runmqdlq (run DLQ handler) command
format 255
parameters 255
purpose 255
run DLQ handler (runmqdlq)

command 125
usage 255

runmqfm command 139
runmqlsr (run listener) command

example 257
format 256
parameters 256
purpose 256
return codes 257

runmqsc
problems 35
verifying 35

runmqsc (run WebSphere MQ
commands) command

ending 32
examples 259
feedback 32
format 258

runmqsc (run WebSphere MQ
commands) command (continued)

indirect mode 64
parameters 258
purpose 258
redirecting input and output 32
return codes 259
usage 258
using 32
using interactively 31

runmqtmc (start client trigger monitor)
command

examples 260
format 260
parameters 260
purpose 260
return codes 260

runmqtrm (start trigger monitor)
command

format 261
parameters 261
purpose 261
return codes 261

S
sample

MQSC files 289
programs, using 289
trace data 195

scripts
MONMQ 323

secure sockets layer
OpenSSL setup 107

secure sockets layer (SSL)
overview 13

security 91
channel security 13
enabling 95
failover set monitor 148
name service security, overview 13
OAM 13
object authority manager (OAM) 13
protecting log files 169
remote 99
restoring queue manager data 169
ssl

understanding 107
SSL 13
using the commands 95, 97
using the grant or revoke authority

(setmqaut) command 261
select command (MONMQ) 313
server-connection channel, automatic

definition of 62
servers 11
service component 12
service objects

description of 10
Service stanza, qm.ini 79
ServiceComponent stanza, qm.ini 80
services 45
set color command (MONMQ) 318
set depth command (MONMQ) 316
set free command (MONMQ) 317
set mask command (MONMQ) 317
set output command (MONMQ) 319

Index 353



setmqaut (grant or revoke authority)
command

examples 266
format 261
parameters 264
purpose 261
related commands 267
return codes 266
usage 263

setmqaut command
installable services 97
using 95, 96

setmqprd
format 268
parameters 268

setmquat (set/reset authority) command
examples 229
parameters 224
purpose 222
return codes 229

show channels command
(MONMQ) 303

show components command
(MONMQ) 310

show events command (MONMQ) 308
show functions command

(MONMQ) 311
show globals command (MONMQ) 306
show history command (MONMQ) 305
show mask command (MONMQ) 304
show memory command

(MONMQ) 309
show mutex command (MONMQ) 307
show processes command

(MONMQ) 305
show segment command

(MONMQ) 303
show stack command (MONMQ) 304
shutting down a queue manager

a queue manager, quiesced 26
immediate 27
preemptive 27

Solaris
MQAI support for 56

specifying coded character sets 69
SSL

OpenSSL setup 107
stanzas

AllQueueManagers, mqs.ini 73
ApiExitCommon, mqs.ini 78
ApiExitLocal, qm.ini 86
ApiExitTemplate, mqs.ini 78
Channels, qm.ini 83
ClientExitPath 75
DefaultQueueManager 75
ExitPath, qm.ini 86
ExitProperties, 75
Log, qm.ini 80
LogDefaults, mqs.ini 76
LU62, qm.ini 85
QueueManager, mqs.ini 78
Service, qm.ini 79
ServiceComponent, qm.ini 80
TCP, qm.ini 85
XAResourceManager, qm.ini 82

Start command procedure 142

StartCommand procedure
template 294

starting
a channel 62
a command server 63
a listener 62
a queue manager 26
a queue manager automatically 26
queue manager within failover

set 144
stdin, on runmqsc 32
stdout, on runmqsc 32
stopping

a queue manager manually 285
command server 63

strmqcsv (start command server)
command

examples 269
format 268
parameters 268
purpose 268
related commands 269
return codes 269

strmqm (start queue manager) command
examples 271
format 269
parameters 269
purpose 232, 268, 269
related commands 271
return codes 233, 270

strmqtrc (start WebSphere MQ trace)
command

purpose 238
switch load files, creating 113
syncpoint, performance

considerations 189
syntax

diagrams, how to read 200
syntax, help with 201
system

default objects 273
system default objects 10

T
TCP stanza, qm.ini 85
TCP/IP

configured by StartCommand
procedure 142

configuring 85
connection rejected 86
Digital TCP/IP Services for

OpenVMS 143
mandatory for OpenVMS cluster

operation 140
supports OpenVMS clusters 138

temporary (dynamic) queues 3
Tidy command procedure 142
TidyCommand procedure

template 297
time-independent applications 1
timed out responses from MQSC

commands 64
timestamp

disable timestamp (MONMQ) 315
enable timestamp (MONMQ) 315

trace
data sample 195
disable trace (MONMQ) 316
enable trace (MONMQ) 315
exit trace (MONMQ) 321
performance considerations 194
quit MONMQ trace 321
sample MONMQ session 324
specify component or function 313
start trace (MONMQ) 313
start when process starts 312
stop trace (MONMQ) 313
using MONMQ 299

trace start command (MONMQ) 313
trace stop command (MONMQ) 313
transactional support

transactional support 111
updating under syncpoint control 13

transactions
display WebSphere MQ transactions

(dspmqtrn) command 231
using the resolve WebSphere MQ

(rsvmqtrn command) 252
transmission queues

cluster transmission queues 7
creating 67
default 24
default transmission queues 68
defining transmission queues remote

administration 61
description of 6
preparing transmission queues for

remote administration 60
triggering 290

defining an application queue for
triggering 51

managing objects for triggering 51
message-driven processing 1
start client trigger monitor

(runmqtmc) command 260
start trigger monitor (runmqtrm)

command 261
trusted application 337

bindings 337

U
unauthorized access, protecting from 91
unit of work

definition of 111
explicit resynchronization of

(rsvmqtrn command) 120
units of work

mixed outcomes 121
UNIX operating system

object authority manager (OAM) 13
queue managers, deleting 287

updating coded character sets 69
user exit 335

cluster workload 335
user exits

channel exits 12
data conversion exits 12

user ID
authority 91
authorization 98
belonging to group nobody 94

354 WebSphere MQ for HP OpenVMS: System Administration Guide



user ID (continued)
for authorization 98
OpenVMS logged-in user 98
principals 93

user-defined message formats 70
USERID keyword, rules table 129

V
verifying MQSC commands 35

W
WAIT keyword, rules table 127
watcher failover monitor

description 139
halting 147

WebSphere MQ 232, 268
attributes of MQSC commands 56
commands 30
issuing MQSC commands using an

ASCII file 30
rights identifier, MQM 91
runmqsc command, to issue MQSC

commands 30
WebSphere MQ commands

attributes of 56
ending interactive input 32
escape PCFs 56
issuing interactively 31
issuing MQSC commands

remotely 64
object attribute names 4, 17
overview 16, 30
problems using MQSC commands

remotely 65
redirecting input and output 32
runmqsc control command,

modes 16, 30
syntax errors 32
timed out command responses 64
using 32

WebSphere MQ queues, defining 5
Windows operating system

adding a queue manager to 26
deleting queue managers 286
deletions from automatic startup

list 287
MQAI support for 56
object authority manager (OAM) 13

Windows Registry
deleting queue managers in

Windows 286
deletions from automatic startup

list 287
using in problem determination 189

working with 45

X
XAResourceManager stanza, qm.ini 82

Index 355



356 WebSphere MQ for HP OpenVMS: System Administration Guide



Sending your comments to IBM

If you especially like or dislike anything about this book, please use one of the
methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on
the accuracy, organization, subject matter, or completeness of this book.

Please limit your comments to the information in this book and the way in which
the information is presented.

To make comments about the functions of IBM products or systems, talk to your
IBM representative or to your IBM authorized remarketer.

When you send comments to IBM , you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate, without incurring
any obligation to you.

You can send your comments to IBM in any of the following ways:
v By mail, to this address:

User Technologies Department (MP095)
IBM United Kingdom Laboratories
Hursley Park
WINCHESTER,
Hampshire
SO21 2JN
United Kingdom

v By fax:
– From outside the U.K., after your international access code use 44-1962-816151
– From within the U.K., use 01962-816151

v Electronically, use the appropriate network ID:
– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
– IBMLink™: HURSLEY(IDRCF)
– Internet: idrcf@hursley.ibm.com

Whichever method you use, ensure that you include:
v The publication title and order number
v The topic to which your comment applies
v Your name and address/telephone number/fax number/network ID.

© Copyright IBM Corp. 1994, 2009 357



358 WebSphere MQ for HP OpenVMS: System Administration Guide





����

GC34-6610-02


	Contents
	Figures
	Tables
	Chapter 1. Introduction to WebSphere MQ
	WebSphere MQ and message queuing
	Time-independent applications
	Message-driven processing

	Messages and queues
	What is a message?
	Message lengths
	How do applications send and receive messages?

	What is a queue?
	Predefined queues and dynamic queues
	Retrieving messages from queues


	Objects
	Object names
	Managing objects
	Object attributes
	WebSphere MQ queues
	Defining queues
	Queues used by WebSphere MQ

	WebSphere MQ queue managers
	Process definitions
	Clusters
	Namelists
	Authentication information objects
	Channels
	Client connection channels
	Listeners
	Services
	System default objects

	Clients and servers
	WebSphere MQ applications in a client-server environment

	Extending queue manager facilities
	User exits
	API exits
	Installable services

	Security
	Object Authority Manager (OAM) facility
	User-written or third party channel exits
	Channel security using SSL

	Transactional support

	Chapter 2. An introduction to WebSphere MQ administration
	Local and remote administration
	Performing administration tasks using commands
	Control commands
	WebSphere MQ Script (MQSC) commands
	PCF commands
	Attributes in WebSphere MQ Script (MQSC) and PCF commands

	Understanding WebSphere MQ file names
	Queue manager name transformation
	Object name transformation

	Understanding case sensitivity
	Case sensitivity in control commands
	Case sensitivity in MQSC commands


	Chapter 3. Managing queue managers
	Using control commands
	Using WebSphere MQ control commands on HP OpenVMS systems

	Creating a queue manager
	Guidelines for creating queue managers
	Creating a default queue manager
	Making an existing queue manager the default
	Backing up configuration files after creating a queue manager

	Starting a queue manager
	Starting a queue manager automatically
	Quiesced shutdown
	Immediate shutdown
	Preemptive shutdown
	If you have problems shutting down a queue manager

	Deleting a queue manager

	Chapter 4. Administering local WebSphere MQ objects
	Supporting application programs that use the MQI
	Performing local administration tasks using MQSC commands
	WebSphere MQ object names
	Case-sensitivity in MQSC commands

	Redirecting input and output
	Running MQSC commands interactively
	Feedback from MQSC commands
	Ending interactive input of MQSC commands

	Running MQSC commands from text files
	MQSC command files
	MQSC reports
	Running the supplied MQSC command files
	Using runmqsc to verify commands

	Resolving problems with MQSC

	Working with queue managers
	Displaying queue manager attributes
	Altering queue manager attributes

	Working with local queues
	Defining a local queue
	Defining a dead-letter queue

	Displaying default object attributes
	Copying a local queue definition
	Changing local queue attributes
	Clearing a local queue
	Deleting a local queue
	Browsing queues

	Working with alias queues
	Defining an alias queue
	Using other commands with alias queues

	Working with model queues
	Defining a model queue
	Using other commands with model queues

	Working with services
	Defining a service object
	Managing services
	Additional environment variables
	Replaceable inserts on service definitions
	Common tokens

	Examples on using service objects
	Using a server service object
	Using a command service object
	Using a command service object when a queue manager ends only
	More on passing arguments
	Autostarting a Service


	Managing objects for triggering
	Defining an application queue for triggering
	Defining an initiation queue
	Defining a process
	Displaying attributes of a process definition


	Chapter 5. Automating administration tasks
	PCF commands
	PCF object attributes
	Escape PCFs
	Using the MQAI to simplify the use of PCFs
	Command servers

	Administering remote WebSphere MQ objects
	Channels, clusters, and remote queuing
	Remote administration using clusters

	Remote administration from a local queue manager
	Preparing queue managers for remote administration
	Preparing channels and transmission queues for remote administration
	Managing the command server for remote administration
	Issuing MQSC commands on a remote queue manager
	Recommendations for issuing commands remotely
	If you have problems using MQSC commands remotely

	Creating a local definition of a remote queue
	Understanding how local definitions of remote queues work
	An alternative way of putting messages on a remote queue
	Using other commands with remote queues
	Defining a transmission queue

	Using remote queue definitions as aliases
	Queue manager aliases
	Reply-to queue aliases

	Data conversion
	When a queue manager cannot convert messages in built-in formats
	File ccsid.tbl
	Converting messages in user-defined formats
	Changing the queue manager CCSID



	Chapter 6. Configuring WebSphere MQ
	WebSphere MQ configuration files
	Editing configuration files
	When do you need to edit a configuration file?
	Configuration file priorities
	Implementing changes to configuration files

	The WebSphere MQ configuration file, mqs.ini
	Queue manager configuration files, qm.ini

	Attributes for changing WebSphere MQ configuration information
	AllQueueManagers stanza
	ClientExitPath stanza
	DefaultQueueManager stanza
	ExitProperties stanza
	The LogDefaults stanza
	API exits
	QueueManagers stanza

	Changing queue manager configuration information
	The Service stanza
	The ServiceComponent stanza

	The Log stanza
	The XAResourceManager stanza
	The Channels stanza
	The LU62 and TCP stanzas
	The ExitPath stanza
	API exits
	Queue manager error logs

	Example mqs.ini and qm.ini files


	Chapter 7. WebSphere MQ security
	Why you need to protect WebSphere MQ resources
	Before you begin
	User IDs in WebSphere MQ for HP OpenVMS with resource identifier MQM
	For more information

	Understanding the Object Authority Manager
	How the OAM works
	Managing access through rights identifiers
	Rights identifiers and the primary rights identifier
	When a principal holds more than one rights identifier

	Default rights identifier
	Resources you can protect with the OAM
	Using rights identifiers for authorizations
	Disabling the object authority manager

	Using the Object Authority Manager commands
	What you specify when you use the OAM commands
	Authorization lists

	Using the setmqaut command
	Authority commands and installable services

	Access authorizations
	Display authority command

	Object Authority Manager guidelines
	User IDs
	Queue manager directories
	Queues
	Alternate user authority
	Context authority
	Remote security considerations
	Channel command security
	PCF commands
	MQSC channel commands
	Control commands for channels


	Understanding the authorization specification tables
	MQI authorizations
	Administration authorizations
	Authorizations for MQSC commands in escape PCFs
	Authorizations for PCF commands


	Working with the Secure Sockets Layer (SSL) on OpenVMS systems
	OpenSSL setup for WebSphere MQ
	Certificate Handling
	Working with Queue Manager and Client Certificates
	HP SSL version



	Chapter 8. Transactional support
	Database coordination
	Restrictions
	Database connections
	Configuring database managers
	Creating switch load files
	Defining database managers


	Oracle configuration
	Checking the environment variable settings
	Enabling Oracle XA support
	Creating the Oracle switch load file
	Creating the Oracle switch load file on OpenVMS systems
	Adding XAResourceManager configuration information for Oracle
	Changing Oracle configuration parameters

	Administration tasks
	In-doubt units of work
	Dislaying outstanding units of work with the dspmqtrn command
	Resolving outstanding units of work with the rsvmqtrn command
	Mixed outcomes and errors
	Changing configuration information
	Removing database manager instances



	Chapter 9. The WebSphere MQ dead-letter queue handler
	Invoking the DLQ handler
	The sample DLQ handler, amqsdlq

	The DLQ handler rules table
	Control data
	Rules (patterns and actions)
	The pattern-matching keywords
	The action keywords

	Rules table conventions

	How the rules table is processed
	Ensuring that all DLQ messages are processed

	An example DLQ handler rules table

	Chapter 10. WebSphere MQ for OpenVMS and clustering
	Installing WebSphere MQ in an OpenVMS cluster
	OpenVMS cluster failover sets
	Overview of OpenVMS cluster failover sets
	OpenVMS cluster failover set concepts
	Preparing to configure an OpenVMS cluster failover set
	Configuring an OpenVMS cluster failover set
	OpenVMS cluster failover set post-configuration tasks
	Editing the FAILOVER.INI configuration file
	Command procedures used by failover sets
	Administration of failover sets
	Startup of failover monitors
	Starting a queue manager within a failover set
	Ending a queue manager within a failover set
	Moving a queue manager within a failover set
	Displaying the state of a failover set
	Setting DCL symbols to the state of a failover set
	Halting a failover monitor process
	Executing commands while an update is in progress
	Changing the state of a failover set
	Setting up security for ICC associations
	Troubleshooting problems with failover sets
	Using MultiNet for OpenVMS with failover sets
	An example of using failover sets
	Customizing failover.template
	Modification of failover set command procedures
	Example failover set start command procedure, start_failover_set.com
	Example failover set end command procedure, end_failover_set.com



	Chapter 11. Recovery and restart
	Making sure that messages are not lost (logging)
	What logs look like
	The log control file

	Types of logging
	Circular logging
	Linear logging

	Checkpointing – ensuring complete recovery
	Calculating the size of the log
	Managing logs
	What happens when a disk gets full
	Managing log files
	Log file location


	Using the log for recovery
	Recovering from power loss or communications failures
	Recovering damaged objects
	Media recovery
	Recovering from media images
	Recovering damaged objects during start up
	Recovering damaged objects at other times


	Protecting WebSphere MQ log files
	Backing up and restoring WebSphere MQ
	Backing up queue manager data
	Restoring queue manager data
	Using a backup queue manager
	Creating a backup queue manager
	Updating a backup queue manager
	Starting a backup queue manager

	Recovery scenarios
	Disk drive failures
	Damaged queue manager object
	Damaged single object
	Automatic media recovery failure

	Dumping the contents of the log using the dmpmqlog command

	Chapter 12. Problem determination
	Preliminary checks
	Has WebSphere MQ run successfully before?
	Are there any error messages?
	Are there any return codes explaining the problem?
	Can you reproduce the problem?
	Have any changes been made since the last successful run?
	Has the application run successfully before?
	If the application has not run successfully before
	Common programming errors

	Problems with commands
	Does the problem affect specific parts of the network?
	Does the problem occur at specific times of the day?
	Is the problem intermittent?
	Have you applied any service updates?

	Looking at problems in more detail
	Have you obtained incorrect output?
	Messages that do not appear on the queue
	Messages that contain unexpected or corrupted information
	Problems with incorrect output when using distributed queues

	Have you failed to receive a response from a PCF command?
	Are some of your queues failing?
	Does the problem affect only remote queues?
	Is your application or system running slowly?

	Application design considerations
	Effect of message length
	Effect of message persistence
	Searching for a particular message
	Queues that contain messages of different lengths
	Frequency of syncpoints
	Use of the MQPUT1 call

	Error logs
	Error log files
	Early errors
	Example error log

	Operator messages

	Dead-letter queues
	Configuration files and problem determination
	Using WebSphere MQ trace
	Trace file names
	Sample trace data

	First-failure support technology ( FFST )
	How to examine the FFSTs

	Problem determination with WebSphere MQ clients
	Terminating clients

	Error messages with clients
	OpenVMS clients


	Chapter 13. How to use WebSphere MQ control commands
	Names of WebSphere MQ objects
	How to read syntax diagrams
	Example syntax diagram
	Syntax help
	Examples


	Chapter 14. The control commands
	crtmqcvx (data conversion)
	crtmqm (create queue manager)
	dltmqm (delete queue manager)
	dmpmqaut (dump authority)
	dmpmqlog (dump log)
	dspmq (display queue managers)
	dspmqaut (display authority)
	dspmqcsv (display command server)
	dspmqfls (display files)
	dspmqrte (WebSphere MQ display route application)
	dspmqtrc (Display WebSphere MQ formatted trace output)
	dspmqtrn (display transactions)
	dspmqver (display version information)
	endmqcsv (end command server)
	endmqlsr (end listener)
	endmqm (end queue manager)
	endmqtrc (End WebSphere MQ trace)
	mqftapp (run File Transfer Application GUI)
	mqftrcv (receive file on server)
	mqftrcvc (receive file on client)
	mqftsnd (send file from server)
	mqftsndc (send file from client)
	rcdmqimg (record media image)
	rcrmqobj (recreate object)
	rsvmqtrn (resolve transactions)
	runmqchi (run channel initiator)
	runmqchl (run channel)
	runmqdlq (run dead-letter queue handler)
	runmqlsr (run listener)
	runmqsc (run MQSC commands)
	runmqtmc (start client trigger monitor)
	runmqtrm (start trigger monitor)
	setmqaut (grant or revoke authority)
	Authorizations for MQI calls
	Authorizations for context
	Authorizations for commands
	Authorizations for generic operations

	setmqprd (enroll production license)
	strmqcsv (start command server)
	strmqm (start queue manager)

	Appendix A. System and default objects
	Appendix B. Directory structure
	Directories and files in MQS_ROOT:[MQM]
	Directories and files in the MQS_ROOT:[MQM.QMGRS.QMNAME] subdirectory

	Appendix C. Comparing command sets
	Commands for queue manager administration
	Commands for command server administration
	Commands for queue administration
	Commands for process administration
	Commands for channel administration
	Other control commands

	Appendix D. Stopping and removing queue managers manually
	Stopping a queue manager manually
	Stopping queue managers in WebSphere MQ for OpenVMS systems

	Removing queue managers manually
	Removing queue managers in WebSphere MQ for Windows
	Removing queue managers from the automatic startup list

	Removing queue managers in WebSphere MQ for UNIX systems


	Appendix E. Sample MQI programs and MQSC files
	MQSC command file samples
	C and COBOL program samples
	Miscellaneous tools
	Command file for application triggering
	Examples


	Appendix F. OpenVMS cluster failover set templates
	Template Configuration File FAILOVER.TEMPLATE
	Template StartCommand procedure START_QM.TEMPLATE
	Template EndCommand procedure END_QM.TEMPLATE
	Template TidyCommand procedure TIDY_QM.TEMPLATE

	Appendix G. MONMQ diagnostic utility
	Overview
	Variables within MONMQ
	Assigning default values

	Opening or creating a trace section and associated mailbox
	Displaying the logical unit definition
	Closing and deleting an LU
	Display channel details
	Display the current trace mask for a channel
	Display the contents of the target threads stack
	Display active WebSphere MQ related processes and memory usage
	Displays all messages held in a channel
	Display all WebSphere MQ related global sections on the current node
	Signals target thread to send mutex table to client trace process
	Signals target thread to send internal events table to client trace process
	Signals target thread to send internal mapped shared memory table to the client trace process
	Displays active WebSphere MQ components by name and hexadecimal ids
	Display functions within specified component
	Activate tracing from the point a process starts
	Prevent WebSphere MQ process from tracing immediately from startup
	Connect target thread to specified channel
	Disconnect target thread to specified channel
	Display real-time trace message written to the LUs trace mailbox
	Detach and end current client process
	Specify trace data
	Remove single entry from the trace filter table
	Client process writes trace messages to a binary file
	Close binary trace messages file
	Client process writes trace messages to a text file
	Close text trace messages file
	Timestamp messages
	Stop timestamping messages
	Enable tracing
	Disable tracing
	Save message history
	Disable message history
	Delete message history
	Set history depth
	Reset stack and history data for a channel
	Enable or disable mask bit
	Set a color for a channel
	Redirect output to file
	Analyze trace binary file
	Display current state of WebSphere MQ threads
	Close trace and exit MONMQ
	Quit MONMQ without closing trace
	Managing shared memory with MONMQ
	Scripts and macros in MONMQ
	Sample trace session

	Appendix H. User exits
	Channel and Workload Exits
	WebSphere MQ Cluster Workload Exits

	Appendix I. Trusted applications
	User applications
	Setting up trusted applications

	Running channels and listeners as trusted applications
	Fast, nonpersistent messages


	Appendix J. SSL CipherSpecs
	Notices
	Trademarks
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	Sending your comments to IBM

