
WebSphere MQ

Event Monitoring

SC34-6069-02

���

Note!
Before using this information and the product it supports, be sure to read the general information under “Notices” on
page 185.

Third edition (December 2002)

This edition applies to the following WebSphere MQ V5.3 products:
v WebSphere MQ for AIX

v WebSphere MQ for HP-UX

v WebSphere MQ for iSeries

v WebSphere MQ for Linux for Intel

v WebSphere MQ for Linux for zSeries

v WebSphere MQ for Solaris

v WebSphere MQ for Windows

v WebSphere MQ for z/OS

and to all subsequent releases and modifications until otherwise indicated in new editions.

Unless otherwise stated, the information also applies to these products:
v MQSeries for AT&T GIS (NCR) UNIX V2.2.1

v MQSeries for Compaq NonStop Kernel V5.1

v MQSeries for Compaq OpenVMS Alpha V5.1

v MQSeries for Compaq Tru64 UNIX, V5.1

v MQSeries for OS/2 Warp V5.1

v MQSeries for SINIX and DC/OSx V2.2.1

and to all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1994, 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

|
|

|

|

|

|

|

|

|

|

|
|

|

|

|

|

|

|

Contents

Figures vii

Tables ix

About this book xi
Who this book is for xi
What you need to know to understand this book . . xi
Conventions used in this book xi
How this book is organized xi

Summary of changes xiii
Changes for this edition (SC34-6069-02) xiii
Changes for the previous editions (SC34-6069-00
and -01) xiii

Chapter 1. An introduction to
instrumentation events 1
What instrumentation events are. 1

Event notification through event queues 2
Types of event 2

Queue manager events 4
Channel events 6
Performance events 7
Configuration events (z/OS only) 7
Event message data summary 8

Enabling and disabling events 9
Enabling and disabling queue manager events . . 9
Enabling channel events 10
Enabling performance events 10
Enabling configuration events 11

Conditions that cause events. 11
Event queues 11
When an event queue is unavailable 12
Using triggered event queues 12
Format of event messages 12
Using event monitoring in an WebSphere MQ
network 13
Monitoring performance on Windows 14

Chapter 2. Understanding performance
events 15
What performance events are 15

Performance event statistics 15
Understanding queue service interval events . . . 16

What queue service interval events are 16
Understanding the service timer 17
Queue service interval events algorithm 18
Enabling queue service interval events 18

Queue service interval events examples 19
Example 1 (queue service interval events) . . . 20
What queue service interval events tell you. . . 21
Example 2 (queue service interval events) . . . 22
Example 3 (queue service interval events) . . . 23

Understanding queue depth events 25

What queue depth events are 25
Enabling queue depth events 26

Queue depth events examples 28
Example 1 (queue depth events) 29
Example 2 (queue depth events) 30

Chapter 3. Understanding configuration
events (z/OS only) 33
What configuration events are 33
When configuration events are generated 33
When configuration events are not generated . . . 34
How configuration events are used 34

The Refresh Object configuration event 35
When the configuration event queue is not
available 35
Effects of CMDSCOPE. 36

Chapter 4. Event message reference . . 37
Event message format 38

Message descriptor (MQMD) in event messages 39
Message data in event messages 40

MQMD (message descriptor) 40
MQCFH (Event header) 44

C language declaration (MQCFH) 46
COBOL language declaration (MQCFH) 46
PL/I language declaration (MQCFH) 47
RPG/ILE declaration (MQCFH) (OS/400 only) 47
System/390® assembler-language declaration
(MQCFH) (z/OS only). 47
Visual Basic® language declaration (MQCFH)
(Windows platforms only) 48

Event message descriptions 49
Alias Base Queue Type Error 50

Event data. 50
Bridge Started (z/OS only) 52

Event data. 52
Bridge Stopped (z/OS only) 53

Event data. 53
Change object (z/OS only) 55

Event data. 55
Channel Activated 59

Event data. 59
Channel Auto-definition Error 60

Event data. 60
Channel Auto-definition OK 62

Event data. 62
Channel Conversion Error 63

Event data. 63
Channel Not Activated 66

Event data. 66
Channel SSL Error 68

Event data. 68
Channel Started 71

Event data. 71
Channel Stopped 73

© Copyright IBM Corp. 1994, 2002 iii

||
||

||
|
||

||
||

||

||

|
||
||
||
||
||
||
|
||
||

||
||

||

||

||
||

||
||

Event data. 73
Channel Stopped By User 76

Event data. 76
Create object (z/OS only). 78

Event data. 78
Default Transmission Queue Type Error 82

Event data. 82
Default Transmission Queue Usage Error 84

Event data. 84
Delete object (z/OS only) 86

Event data. 86
Get Inhibited 90

Event data. 90
Not Authorized (type 1) 91

Event data. 91
Not Authorized (type 2) 92

Event data. 92
Not Authorized (type 3) 94

Event data. 94
Not Authorized (type 4) 96

Event data. 96
Put Inhibited 97

Event data. 97
Queue Depth High 99

Event data. 99
Queue Depth Low. 101

Event data 101
Queue Full 103

Event data 103
Queue Manager Active 105

Event data 105
Queue Manager Not Active 106

Event data 106
Queue Service Interval High 107

Event data 107
Queue Service Interval OK 109

Event data 109
Queue Type Error 111

Event data 111
Refresh object (z/OS only) 113

Event data 113
Remote Queue Name Error 117

Event data 117
Transmission Queue Type Error 119

Event data 119
Transmission Queue Usage Error 121

Event data 121
Unknown Alias Base Queue 123

Event data 123
Unknown Default Transmission Queue 125

Event data 125
Unknown Object Name 127

Event data 127
Unknown Remote Queue Manager 129

Event data 129
Unknown Transmission Queue 131

Event data 131

Chapter 5. Example of using
instrumentation events 133

Appendix A. Structure datatypes
MQCFBS, MQCFIN, MQCFSL and
MQCFST 145
MQCFBS - Byte string parameter 145

C language declaration (MQCFBS) 146
COBOL language declaration (MQCFBS) . . . 146
PL/I language declaration (MQCFBS) (z/OS
only) 146
System/390 assembler-language declaration
(MQCFBS) (z/OS only) 147

MQCFIN - Integer parameter 147
C language declaration (MQCFIN) 147
COBOL language declaration (MQCFIN) . . . 148
PL/I language declaration (MQCFIN) 148
RPG/ILE declaration (MQCFIN) (OS/400 only) 148
System/390 assembler-language declaration
(MQCFIN) 148
Visual Basic language declaration (MQCFIN) 148

MQCFSL - String list parameter 148
COBOL language declaration (MQCFSL) . . . 150
PL/I language declaration (MQCFSL) 150
RPG/ILE declaration (MQCFSL) (OS/400 only) 151
System/390 assembler-language declaration
(MQCFSL) (z/OS only) 151
Visual Basic language declaration (MQCFSL)
(Windows systems only). 151

MQCFST - String parameter 151
C language declaration (MQCFST) 153
COBOL language declaration (MQCFST) . . . 154
PL/I language declaration (MQCFST) 154
RPG/ILE declaration (MQCFST) (OS/400 only) 154
System/390 assembler-language declaration
(MQCFST) 154
Visual Basic language declaration (MQCFST) 154

Appendix B. Constants 155
List of constants 155

MQ_* (Lengths of character string and byte
fields) 155
MQBACF_* (Byte attribute command format
parameter) 155
MQBT_* (Bridge type) 156
MQCA_* (Character attribute selector) 156
MQCACF_* (Character attribute command
format parameter) 156
MQCACH_* (Channel character attribute
command format parameter) 157
MQCC_* (Completion code) 157
MQCFC_* (Command format control options) 157
MQCFH_* (Command format header structure
length) 157
MQCFH_* (Command format header version) 158
MQCFIN_* (Command format integer
parameter structure length). 158
MQCFST_* (Command format string parameter
structure length) 158
MQCFT_* (Command structure type) 158
MQCHT_* (Channel type) 158
MQCMD_* (Command identifier) 158
MQEVO_* (Event origin) 158

iv Event Monitoring

||
||

||
||

||
||

||
||
||
|
||
|
||

||

||
||
||
||
|
||
|
||

||

|
||

||

|
||

||

MQIA_* (Integer attribute selector) 159
MQIACF_* (Integer attribute command format
parameter) 160
MQIACH_* (Channel Integer attribute
command format parameter) 160
MQOT_* (Object type) 160
MQQSGD_* (Queue Sharing Group Disposition) 160
MQQT_* (Queue type) 161
MQRC_* (Reason code in MQCFH) 161
MQRCCF_* (Reason code for command format) 162
MQRQ_* (Reason qualifier). 162

Appendix C. Header, COPY, and
INCLUDE files 163
C header files 163
COBOL COPY files 163
PL/I INCLUDE files 164
RPG (ILE) COPY files 164
System/390 Assembler macros 164
Visual Basic header files 165

Appendix D. Event data for object
attributes 167
Authentication information attributes 167
CF structure attributes 167
Channel attributes 168
Namelist attributes 173
Process attributes 173
Queue attributes 174
Queue manager attributes 179
Storage class attributes 182

Notices 185
Trademarks 186

Index 189

Sending your comments to IBM . . . 191

Contents v

||

|
||
||
||

||
||

||
||
||
||
||
||
||
||

vi Event Monitoring

Figures

1. Understanding instrumentation events 2
2. Monitoring queue managers across different

platforms, on a single node 4
3. Understanding queue service interval events 17
4. Queue service interval events - example 1 20
5. Queue service interval events - example 2 22

6. Queue service interval events - example 3 24
7. Definition of MYQUEUE1. 29
8. Queue depth events (1) 29
9. Queue depth events (2) 31

10. Event monitoring sample program 133

© Copyright IBM Corp. 1994, 2002 vii

|
||

viii Event Monitoring

Tables

1. Event message data summary 8
2. Enabling queue manager events using MQSC

commands 10
3. Performance event statistics 15
4. Enabling queue service interval events using

MQSC 19
5. Event statistics summary for example 1 21
6. Event statistics summary for example 2 23
7. Event statistics summary for example 3 24
8. Enabling queue depth events using MQSC 28
9. Event statistics summary for queue depth

events (example 1) 30

10. Summary showing which events are enabled 30
11. Event statistics summary for queue depth

events (example 2) 32
12. Summary showing which events are enabled 32
13. Event message structure for queue service

interval events 39
14. C header files 163
15. COBOL COPY files 163
16. PL/I INCLUDE files 164
17. RPG (ILE) COPY files 164
18. System/390 Assembler macros 164
19. Visual Basic header files 165

© Copyright IBM Corp. 1994, 2002 ix

||

x Event Monitoring

About this book

This book describes the facilities available on WebSphere® MQ products for
monitoring instrumentation events in a network of connected systems that use
IBM® WebSphere MQ products in different operating system environments.

Who this book is for
Primarily, this book is intended for system programmers who write programs to
monitor and administer WebSphere MQ products.

What you need to know to understand this book
You should have:
v Experience in writing systems management applications.
v An understanding of the Message Queue Interface (MQI).
v Experience of WebSphere MQ programs in general, or familiarity with the

content of the other books in the WebSphere MQ library.

Conventions used in this book
v z/OS™ means any release of z/OS or OS/390® that supports the current version

of WebSphere MQ.
v Throughout this book, the term object refers to any WebSphere MQ queue

manager, queue, namelist, channel, storage class, process, authentication
information or CF structure.

v Throughout this book, the term Windows® refers to Windows NT® and Windows
2000.

v Throughout this book, there may be sections that do not specify which compliers
and programming languages are supported on certain platforms. For
information about which compilers and programming languages are supported
on each platform see the WebSphere MQ Application Programming Reference
manual.

How this book is organized
v Chapter 1, “An introduction to instrumentation events”, on page 1 gives a

general overview of instrumentation events.
v Chapter 2, “Understanding performance events”, on page 15 goes into greater

detail about performance events, specifically enabling and disabling them.
v Chapter 3, “Understanding configuration events (z/OS only)”, on page 33 goes

into greater detail about configuration events.
v Chapter 4, “Event message reference”, on page 37 provides detailed reference

information for specific events.
v Chapter 5, “Example of using instrumentation events”, on page 133 contains an

example of using events.

© Copyright IBM Corp. 1994, 2002 xi

|

|
|

|
|
|

|
|

|
|
|
|
|

|

|
|

|
|

|
|

About this book

xii Event Monitoring

Summary of changes

This section describes changes in this edition of WebSphere MQ Event Monitoring.
Changes since the previous edition of the book are marked by vertical lines to the
left of the changes.

Changes for this edition (SC34-6069-02)
This edition provides additions and clarifications for users of Version 5.1 of
MQSeries® for Compaq NonStop Kernel, MQSeries for Compaq OpenVMS Alpha,
and MQSeries for Compaq Tru64 UNIX.

Changes for the previous editions (SC34-6069-00 and -01)
The first two editions for WebSphere MQ included the following major changes:
v Changes have been made throughout the book to reflect the rebranding of

MQSeries to WebSphere MQ.
v The configuration event has been introduced. The configuration event is a new

type of instrumentation event and there are four types of configuration event:
– Create object
– Change object
– Delete object
– Refresh object

v The following constant types have been introduced:
– MQBACF_*
– MQEVO_*
– MQOT_*
– MQQSGD_*

v WebSphere MQ is now fully integrated with the Secure Sockets Layer (SSL)
protocol. There is a new event that the SSL protocol can generate, it is called the
Channel SSL Error event. For details of the SSL implementation on WebSphere
MQ, see the WebSphere MQ Security book.

v The structure datatypes MQCFBS and MQCFSL have been introduced.
v RPG/ILE declaration examples have been introduced in the following structure

datatypes:
– MQCFIN
– MQCFSL
– MQCFST

© Copyright IBM Corp. 1994, 2002 xiii

|

|
|
|

|

|

|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|

|
|
|
|
|

Changes

xiv Event Monitoring

Chapter 1. An introduction to instrumentation events

This chapter discusses:
v “What instrumentation events are”
v “Types of event” on page 2
v “Enabling and disabling events” on page 9
v “Conditions that cause events” on page 11
v “Event queues” on page 11
v “Format of event messages” on page 12
v “Using event monitoring in an WebSphere MQ network” on page 13
v “Monitoring performance on Windows” on page 14

What instrumentation events are
In WebSphere MQ, an instrumentation event is a logical combination of conditions
that is detected by a queue manager or channel instance. Such an event causes the
queue manager or channel instance to put a special message, called an event
message, on an event queue.

WebSphere MQ instrumentation events provide information about errors,
warnings, and other significant occurrences in a queue manager. You can use these
events to monitor the operation of queue managers (in conjunction with other
methods such as NetView®). This chapter tells you what these events are, and how
you use them.

Figure 1 on page 2 illustrates the concept of instrumentation events.

© Copyright IBM Corp. 1994, 2002 1

Event notification through event queues
When an event occurs, the queue manager puts an event message on the
appropriate event queue, if defined. The event message contains information about
the event that you can retrieve by writing a suitable MQI application program that:
v Gets the message from the queue.
v Processes the message to extract the event data. For an overview of event

message formats, see “Format of event messages” on page 12. For detailed
descriptions of the format of each event message, see “Event message format” on
page 38.

Types of event
WebSphere MQ instrumentation events come in the following types:

Queue Manager

For example:
Queue full

+ event enabled1. Event conditions

2. Event message
put on event queue

3. Event message
processed by a
user application

Event message

Event queue

User Application

Figure 1. Understanding instrumentation events

Event notification through event queues

2 Event Monitoring

Queue manager events
These events are related to the definitions of resources within queue
managers. For example, an application tries to put a message to a queue
that does not exist.

Channel events
These events are reported by channels as a result of conditions detected
during their operation. For example, when a channel instance is stopped.

Performance events
These events are notifications that a threshold condition has been reached
by a resource. For example, a queue depth limit has been reached.

Configuration events
These events are notifications about the attributes of an object. They are
generated automatically when the object is created, changed, or deleted,
and are also generated by explicit requests. For example, when a namelist
is created.

Note: Configuration events are available only with WebSphere MQ for
z/OS.

For each queue manager, each category of event has its own event queue. All
events in that category result in an event message being put onto the same queue.

This event queue: Contains messages from:
SYSTEM.ADMIN.QMGR.EVENT Queue manager events
SYSTEM.ADMIN.CHANNEL.EVENT Channel events
SYSTEM.ADMIN.PERFM.EVENT Performance events
SYSTEM.ADMIN.CONFIG.EVENT Configuration events

By incorporating instrumentation events into your own system management
application, you can monitor the activities across many queue managers, across
many different nodes, for multiple WebSphere MQ applications. In particular, you
can monitor all the nodes in your system from a single node (for those nodes that
support WebSphere MQ events) as shown in Figure 2 on page 4.

Instrumentation events can be reported through a user-written reporting
mechanism to an administration application that can present the events to an
operator.

Types of event

Chapter 1. An introduction to instrumentation events 3

|
|
|
|
|

|
|

|

Instrumentation events also enable applications acting as agents for other
administration networks, for example NetView, to monitor reports and create the
appropriate alerts.

Queue manager events
Queue manager events are related to the use of resources within queue managers,
such as an application trying to put a message to a queue that does not exist. The
event messages for queue manager events are put on the
SYSTEM.ADMIN.QMGR.EVENT queue. The following queue manager event types
are supported:
v Authority (on Windows, Compaq OpenVMS Alpha, Compaq NonStop Kernel,

and UNIX® systems only)
v Inhibit
v Local
v Remote
v Start and stop (z/OS supports only start)

For each event type in this list, there is a queue manager attribute that enables or
disables the event type. See the WebSphere MQ Script (MQSC) Command Reference
for more information.

The conditions that give rise to the event include:
v An application issues an MQI call that fails. The reason code from the call is the

same as the reason code in the event message.
A similar condition can occur during the internal operation of a queue manager,
for example, when generating a report message. The reason code in an event
message might match an MQI reason code, even though it is not associated with
any application. Do not assume that, because an event message reason code

Event monitoring
from a single node

Event
messages

WebSphere MQ
for z/OS

WebSphere MQ
for AIX

WebSphere MQ
for Solaris

Figure 2. Monitoring queue managers across different platforms, on a single node

Types of event

4 Event Monitoring

|

|
|

|
|

looks like an MQI reason code, the event was necessarily caused by an
unsuccessful MQI call from an application.

v A command is issued to a queue manager and processing this command causes
an event. For example:
– A queue manager is stopped or started.
– A command is issued where the associated user ID is not authorized for that

command.

Authority events

Note

1. All authority events are valid on Digital OpenVMS, OS/400®, Windows,
and UNIX systems only.

2. Compaq NSK supports only Not Authorized (type 1).

Authority events report an authorization, such as an application trying to open a
queue for which it does not have the required authority, or a command being
issued from a user ID that does not have the required authority.

For more information about the event data returned in authority event messages
see:

“Not Authorized (type 1)” on page 91
“Not Authorized (type 2)” on page 92
“Not Authorized (type 3)” on page 94
“Not Authorized (type 4)” on page 96

Inhibit events
Inhibit events indicate that an MQPUT or MQGET operation has been attempted
against a queue, where the queue is inhibited for puts or gets.

For more information about the event data returned in inhibit event messages, see:
“Get Inhibited” on page 90
“Put Inhibited” on page 97

Local events
Local events indicate that an application (or the queue manager) has not been able
to access a local queue or other local object. For example, an application might try
to access an object that has not been defined.

For more information about the event data returned in local event messages, see:
“Alias Base Queue Type Error” on page 50
“Unknown Alias Base Queue” on page 123
“Unknown Object Name” on page 127

Remote events
Remote events indicate that an application (or the queue manager) cannot access a
(remote) queue on another queue manager. For example, the transmission queue to
be used might not be correctly defined.

For more information about the event data returned in the remote event messages,
see:

“Default Transmission Queue Type Error” on page 82
“Default Transmission Queue Usage Error” on page 84
“Queue Type Error” on page 111

Types of event

Chapter 1. An introduction to instrumentation events 5

|
|

“Remote Queue Name Error” on page 117
“Transmission Queue Type Error” on page 119
“Transmission Queue Usage Error” on page 121
“Unknown Default Transmission Queue” on page 125
“Unknown Remote Queue Manager” on page 129
“Unknown Transmission Queue” on page 131

Start and stop events
Start and stop events (z/OS supports only start) indicate that a queue manager has
been started or has been requested to stop or quiesce.

Stop events are not recorded unless the default message-persistence of the
SYSTEM.ADMIN.QMGR.EVENT queue is defined as persistent.

For more information about the event data returned in the start and stop event
messages, see:

“Queue Manager Active” on page 105
“Queue Manager Not Active” on page 106

Channel events
Channel events are reported by channels as a result of conditions detected during
their operation, such as when a channel instance is stopped. Channel events are
generated:
v By a command to start or stop a channel.
v When a channel instance starts or stops.
v When a channel receives a conversion error warning when getting a message.
v When an attempt is made to create a channel automatically; the event is

generated whether the attempt succeeds or fails.

Notes:

1. No channel events are generated when using WebSphere MQ for z/OS with
distributed queuing provided by CICS®.

2. Client connections on MQSeries for OS/390 Version 2, MQSeries Version 5, or
later products, do not cause Channel Started or Channel Stopped events.

When a command is used to start a channel, an event is generated. Another event
is generated when the channel instance starts. However, starting a channel by a
listener, runmqchl, or a queue manager trigger message does not generate an
event; in this case the only event generated is when the channel instance starts.

A successful start or stop channel command generates at least two events. These
events are generated for both queue managers connected by the channel (unless
one of the queue managers does not support events, as they do in versions of
MQSeries for AS/400® previous to V3R2). Channel event messages are put onto
the SYSTEM.ADMIN.CHANNEL.EVENT queue, if it is available. Otherwise, they
are ignored.

If a channel event is put onto an event queue, an error condition causes the queue
manager to create an event as usual.

For more information about the event data returned in the channel event messages,
see:

“Channel Activated” on page 59
“Channel Auto-definition Error” on page 60
“Channel Auto-definition OK” on page 62

Types of event

6 Event Monitoring

“Channel Conversion Error” on page 63
“Channel Not Activated” on page 66
“Channel Started” on page 71
“Channel Stopped” on page 73
“Channel Stopped By User” on page 76

IMS™ bridge events (z/OS only)
These events are reported when an IMS bridge starts or stops.

For more information about the event data returned in the messages specific to
IMS bridge events, see

“Bridge Started (z/OS only)” on page 52
“Bridge Stopped (z/OS only)” on page 53

SSL events
The only SSL event is the Channel SSL Error event. This event is reported when a
channel using the Secure Sockets Layer (SSL) fails to establish an SSL connection.

For more information about the event data returned in the message specific to the
SSL event, see “Channel SSL Error” on page 68

Performance events
These events report that a resource has reached a threshold condition. For example,
a queue depth limit might have been reached. For further details on performance
events, see Chapter 2, “Understanding performance events”, on page 15.

Performance events relate to conditions that can affect the performance of
applications that use a specified queue. They are not generated for the event
queues themselves.

The event type is returned in the command identifier field in the message data.

If a queue manager tries to put a queue manager event or performance event
message on an event queue and an error that would normally create an event is
detected, another event is not created and no action is taken.

MQGET and MQPUT calls within a unit of work can generate performance events
regardless of whether the unit of work is committed or backed out.

There are two types of performance event:

Queue depth events
Queue depth events relate to the number of messages on a queue; that is how full,
or empty, the queue is. These event is supported for shared queues.

Queue service interval events
Queue service interval events relate to whether messages are processed within a
user-specified time interval. These events are not supported for shared queues.

WebSphere MQ for z/OS supports queue depth events for QSGDISP (SHARED)
queues, but not service interval events. Queue manager and channel events remain
unaffected by shared queues.

Configuration events (z/OS only)
Configuration events report the attributes of an object that has been created or
modified in some way. For example, a configuration event message is generated if

Types of event

Chapter 1. An introduction to instrumentation events 7

|

|

|
|
|

|
|

|

|
|

a namelist object is created. For more information see Chapter 3, “Understanding
configuration events (z/OS only)”, on page 33.

There are four types of configuration event:

Create object events
These events are generated when an object is created. For more
information see “Create object (z/OS only)” on page 78.

Change object events
These events are generated when an object is changed. For more
information see “Change object (z/OS only)” on page 55.

Delete object events
These events are generated when an object is deleted. For more
information see “Delete object (z/OS only)” on page 86.

Refresh object events
These events are generated by an explicit request to refresh. For more
information see “Refresh object (z/OS only)” on page 113.

Event message data summary
Table 1 is a full list of events. Use it to find information about a particular type of
event message:

Table 1. Event message data summary

Event type Event name page

Authority events Not authorized (type 1)
Not authorized (type 2)
Not authorized (type 3)
Not authorized (type 4)

91
92
94
96

Channel events Channel activated
Channel auto-Definition Error
Channel auto-Definition OK
Channel conversion Error
Channel not Activated
Channel started
Channel stopped
Channel stopped by user

59
60
62
63
66
71
73
76

Configuration events Create object
Change object
Delete object
Refresh object

78
55
86

113

IMS Bridge events Bridge started
Bridge stopped

52
53

Inhibit events Get inhibited
Put inhibited

90
97

Local events Alias base queue type error
Unknown alias base queue
Unknown object name

50
123
127

Performance events Queue depth high
Queue depth low
Queue full
Queue service interval high
Queue service interval OK

99
101
103
107
109

Types of event

8 Event Monitoring

|
|

|

|
|
|

|
|
|

|
|
|

|
|
|

|

|

Table 1. Event message data summary (continued)

Event type Event name page

Remote events Default transmission queue type error
Default transmission queue usage error
Queue type error
Remote queue name error
Transmission queue type error
Transmission queue usage error
Unknown default transmission queue
Unknown remote queue manager
Unknown transmission queue

82
84

111
117
119
121
125
129
131

SSL events Channel SSL error 68

Start and stop
events

Queue manager active
Queue manager not active

105
106

Enabling and disabling events
With the exception of channel events, all instrumentation events must be enabled
before they can be generated. For example, the conditions giving rise to a Queue
Full event are:
v Queue Full events are enabled for a specified queue and
v An application issues an MQPUT request to put a message on that queue, but

the request fails because the queue is full.

You can enable and disable events by specifying the appropriate values for queue
manager or queue attributes (or both) depending on the type of event. You do this
using:
v WebSphere MQ script commands (MQSC). For more information, see the

WebSphere MQ Script (MQSC) Command Reference manual.
v The corresponding WebSphere MQ PCF commands. For more information see

the WebSphere MQ Programmable Command Formats and Administration Interface.
v The operations and control panels for queue managers on z/OS. For more

information, see the WebSphere MQ for z/OS System Administration Guide.
Enabling and disabling an event depends on the category of the event:

Note: Attributes related to events for both queues and queue managers can be set
by command only. They are not supported by the MQI call MQSET.

Enabling and disabling queue manager events
Enable queue manager events by specifying the appropriate attribute on the MQSC
command ALTER QMGR. For example, to enable inhibit events on the default
queue manager, use this MQSC command:

To disable the event, set the INHIBTEV attribute to DISABLED using this MQSC
command:

Authority events
You enable authority events using:
v The AUTHOREV attribute on the MQSC command ALTER QMGR

ALTER QMGR INHIBTEV (ENABLED)

ALTER QMGR INHIBTEV (DISABLED)

Types of event

Chapter 1. An introduction to instrumentation events 9

|

|
|

Inhibit events
You enable inhibit events using:
v The INHIBTEV attribute on the MQSC command ALTER QMGR

Local events
You enable local events using:
v The LOCALEV attribute on the MQSC command ALTER QMGR

Remote events
You enable remote events using:
v The REMOTEEV attribute on the MQSC command ALTER QMGR

Start and stop events
You enable start and stop events using:
v The STRSTPEV attribute on the MQSC command ALTER QMGR

Enabling queue manager events summary
Table 2 summarizes how to enable queue manager events:

Table 2. Enabling queue manager events using MQSC commands

Event Queue manager attribute

Authority
Inhibit
Local
Remote
Start and Stop

AUTHOREV (ENABLED)
INHIBTEV (ENABLED)
LOCALEV (ENABLED)
REMOTEEV (ENABLED)
STRSTPEV (ENABLED)

Enabling channel events
Most channel events are enabled automatically and you cannot enable or disable
them by command. The exceptions are the two automatic channel definition
events. However, you can suppress channel events by not defining the channel
events queue, or by making it put-inhibited. Note that this could cause a queue to
fill up if remote event queues point to a put-inhibited channel events queue.

If a queue manager does not have a SYSTEM.ADMIN.CHANNEL.EVENT queue,
or if this queue is put-inhibited, all channel event messages are discarded, unless
they are being put by an MCA across a link to a remote queue. In this case they
are put on the dead-letter queue.

Channel auto-definition
The generation of these events is controlled by the ChannelAutoDefEvent
queue-manager attribute. Refer to the WebSphere MQ Application Programming
Reference manual for further details of this attribute.

Enabling performance events
Performance events as a whole must be enabled on the queue manager, or no
performance events can occur. You can then enable specific performance events by
setting the appropriate queue attribute. You also have to specify the conditions that
give rise to the event.

Enabling queue depth events
By default, all queue depth events are disabled. To configure a queue for any of
the queue depth events you must:
1. Enable performance events on the queue manager.
2. Enable the event on the required queue.

Enabling and disabling events

10 Event Monitoring

3. Set the limits, if required, to the appropriate levels, expressed as a percentage
of the maximum queue depth. For more information, see “Enabling queue
service interval events” on page 18.

Enabling queue service interval events
To configure a queue for queue service interval events you must:
1. Enable performance events on the queue manager.
2. Set the control attribute for a Queue Service Interval High or OK event on the

queue as required.
3. Specify the service interval time by setting the QServiceInterval attribute for

the queue to the appropriate length of time. For more information, see
“Understanding queue depth events” on page 25.

Note: When enabled, a queue service interval event can be generated only on an
MQPUT call or an MQGET call. The event is not generated when the
elapsed time becomes equal to the service interval time.

Enabling configuration events
Configuration events are only available on z/OS.

Enable configuration events specifying the CONFIGEV attribute on the MQSC
command ALTER QMGR:

To disable the events, set the CONFIGEV attribute to DISABLED:

Conditions that cause events
Conditions that can give rise to instrumentation events include:
v A threshold limit for the number of messages on a queue is reached.
v A channel instance is started or stopped.
v A queue manager becomes active, or is requested to stop.
v An application tries to open a queue specifying a user ID that is not authorized

on WebSphere MQ for iSeries™, Linux, Windows, and UNIX systems, and on
MQSeries for Digital OpenVMS, Compaq NonStop Kernel, and Compaq
OpenVMS Alpha.

v Objects are created, deleted, changed or refreshed (z/OS only).

Note: Putting a message on the dead-letter queue can cause an event to be
generated if the event conditions are met.

Event queues
You can define event queues either as local queues, alias queues, or as local
definitions of remote queues. If you define all your event queues as local
definitions of the same remote queue on one queue manager, you can centralize
your monitoring activities.

You must not define event queues as transmission queues, because event messages
have formats that are incompatible with the format of messages required for
transmission queues.

ALTER QMGR CONFIGEV (ENABLED)

ALTER QMGR CONFIGEV (DISABLED)

Enabling and disabling events

Chapter 1. An introduction to instrumentation events 11

|

|

|
|
|

|
|

|
|
|
|
|

Shared event queues are local queues defined with the QSGDISP(SHARED) value.
For more information about defining shared queues, see the WebSphere MQ for
z/OS System Setup Guide.

When an event queue is unavailable
If an event occurs when the event queue is not available, the event message is lost.
For example, if you do not define an event queue for a category of event, all event
messages for that category will be lost. The event messages are not, for example,
saved on the dead-letter (undelivered-message) queue.

However, you can define the event queue as a remote queue. Then, if there is a
problem on the remote system putting messages to the resolved queue, the event
message will appear on the remote system’s dead-letter queue.

An event queue might be unavailable for many different reasons including:
v The queue has not been defined.
v The queue has been deleted.
v The queue is full.
v The queue has been put-inhibited.

The absence of an event queue does not prevent the event from occurring. For
example, after a performance event, the queue manager changes the queue
attributes and resets the queue statistics. This happens whether the event message
is put on the performance event queue or not. For more information about
performance events changing queue attributes, see Chapter 2, “Understanding
performance events”, on page 15.

In the case of configuration events the same is true again. In the absence of an
event queue, a configuration event message will not be generated, however the
command or call will go ahead and the object will be created or manipulated in
the desired way.

Using triggered event queues
You can set up the event queues with triggers so that when an event is generated,
the event message being put onto the event queue starts a user-written monitoring
application. This application can process the event messages and take appropriate
action. For example, certain events might require that an operator be informed,
other events may start off an application that performs some administration tasks
automatically.

Event queues can have trigger actions associated with them and can create trigger
messages. However, if these trigger messages in turn cause conditions that would
normally generate an event, no event is generated. This ensures that looping does
not occur.

Format of event messages
Event messages contain information about the event and its origin. Typically, these
messages are processed by a system management application program tailored to
meet the requirements of the enterprise at which it runs. As with all WebSphere
MQ messages, an event message has two parts: a message descriptor and the
message data.

Event queues

12 Event Monitoring

|
|
|
|

v The message descriptor is based on the MQMD structure, which is defined in
the WebSphere MQ Application Programming Reference manual.

v The message data is also made up of an event header and the event data. The
event header contains the reason code that identifies the event type. Putting the
event message, and any subsequent actions following that, do not affect the
reason code returned by the MQI call that caused the event. The event data
provides further information about the event.

When the conditions are met to generate an event message to be generated for a
shared queue, the queue managers in the queue sharing group decide whether to
generate an event message. Several queue managers can generate an event
message for one shared queue, resulting in several event messages being produced.
To ensure that a system can correlate multiple event messages from different queue
managers, these event messages have a unique correlation identifier (CorrelId)set
in the message descriptor (MQMD). For further details of the MQMD see
“Message descriptor (MQMD) in event messages” on page 39.

Using event monitoring in an WebSphere MQ network
If you write an application using events to monitor queue managers, you need to:
1. Set up channels between the queue managers in your network.
2. Implement the required data conversions. The normal rules of data conversion

apply. For example, if you are monitoring events on a UNIX system queue
manager from a z/OS queue manager, you must ensure that you convert
EBCDIC to ASCII.

See the WebSphere MQ Application Programming Guide for more information.

Event message format

Chapter 1. An introduction to instrumentation events 13

Monitoring performance on Windows
On Windows, performance data is stored using performance counters that can be
accessed using the system registry. Within the registry, the counters are grouped
according to the type of object to which they apply. For WebSphere MQ the type of
object is WebSphere MQ queues.

For each queue the following performance counters are available:
v The current queue depth
v The queue depth as a percentage of the maximum queue depth
v The number of messages per second being placed on the queue
v The number of messages per second being removed from the queue

For messages sent to a distribution list, the performance monitor counts the
number of messages put on to each queue.

In the case of large messages, the performance monitor counts the appropriate
number of small messages. See the WebSphere MQ System Administration Guide
guide for information on using the Windows performance monitor to view
performance information. For details of how to access the performance counters in
your own application, see the Microsoft® Web site at:
http://msdn.microsoft.com/developer/

Follow the links from this site to obtain online platform SDK information.

Monitoring performance

14 Event Monitoring

|

|

|

Chapter 2. Understanding performance events

This chapter describes what performance events are, how they are generated, how
they can be enabled, and how they are used. The chapter includes:
v “What performance events are”
v “Understanding queue service interval events” on page 16
v “Queue service interval events examples” on page 19
v “Understanding queue depth events” on page 25
v “Queue depth events examples” on page 28

In this chapter, the examples assume that you set queue attributes by using the
appropriate WebSphere MQ commands (MQSC). See the WebSphere MQ Script
(MQSC) Command Reference manual for more information. You can also set them
using the operations and controls panels, for queue managers, on z/OS.

What performance events are
Performance events are related to conditions that can affect the performance of
applications that use a specified queue.

The scope of performance events is the queue, so that MQPUT calls and MQGET
calls on one queue do not affect the generation of performance events on another
queue.

Note: A message must be either put on, or removed from, a queue for any
performance event to be generated.

Every performance event message that is generated is placed on the queue,
SYSTEM.ADMIN.PERFM.EVENT.

The event data contains a reason code that identifies the cause of the event, a set of
performance event statistics, and other data. For more information about the event
data returned in performance event messages, see:

“Queue Depth High” on page 99
“Queue Depth Low” on page 101
“Queue Full” on page 103
“Queue Service Interval High” on page 107
“Queue Service Interval OK” on page 109

Performance event statistics
The event data in the event message contains information about the event for
system management programs. For all performance events, the event data contains
the names of the queue manager and the queue associated with the event. Also,
the event data contains statistics related to the event. You can use these statistics to
analyze the behavior of a specified queue. Table 3 summarizes the event statistics.
All the statistics refer to what has happened since the last time the statistics were
reset.

Table 3. Performance event statistics

Parameter Description

TimeSinceReset The elapsed time since the statistics were last reset.

© Copyright IBM Corp. 1994, 2002 15

|
|

Table 3. Performance event statistics (continued)

Parameter Description

HighQDepth The maximum number of messages on the queue since the
statistics were last reset.

MsgEnqCount The number of messages enqueued (the number of MQPUT
calls to the queue), since the statistics were last reset.

MsgDeqCount The number of messages dequeued (the number of MQGET
calls to the queue), since the statistics were last reset.

Performance event statistics are reset when any of the following occur:
v A performance event occurs (statistics are reset on all active queue managers).
v A queue manager stops and restarts.
v On z/OS only, the RESET QSTATS command is issued at the console.
v The PCF command, Reset Queue Statistics, is issued from a user-written

administration program.

Understanding queue service interval events
Queue service interval events indicate whether a queue was ‘serviced’ within a
user-defined time interval called the service interval. Depending on the
circumstances at your installation, you can use queue service interval events to
monitor whether messages are being taken off queues quickly enough.

Note: Queue service interval events are not supported on shared queues.

What queue service interval events are
The following are types of queue service interval events:
1. Queue Service Interval OK event indicates that after one of the following:

v An MQPUT call
v An MQGET call that leaves a non-empty queue

an MQGET call was performed within a user-defined time period, known as
the service interval.

The Queue Service Interval OK event message can only be caused by an
MQGET call.

Note: In this section, Queue Service Interval OK events are referred to as OK
events.

2. Queue Service Interval High event indicates that after one of the following:
v An MQPUT call
v An MQGET call that leaves a non-empty queue

an MQGET call was not performed within a user-defined service interval.

The Queue Service Interval High event message can be caused by an MQGET
or a MQPUT call.

Note: In this section, Queue Service Interval High events are referred to as
high events.

Performance events

16 Event Monitoring

|

|
|

To enable both Queue Service Interval OK and Queue Service Interval High events
you need to set the QServiceIntervalEvent control attribute to High. Queue
Service Interval OK events are automatically enabled when a Queue Service
Interval High event is generated. You do not need to enable Queue Service Interval
OK events independently.

These events are mutually exclusive, which means that if one is enabled the other
is disabled. However, both events can be simultaneously disabled.

Figure 3 shows a graph of queue depth against time. At P1, an application issues
an MQPUT, to put a message on the queue. At G1, another application issues an
MQGET to remove the message from the queue.

In terms of queue service interval events, these are the possible outcomes:
v If the elapsed time between the put and get is less than or equal to the service

interval:
– A Queue Service Interval OK event is generated at G1, if queue service interval

events are enabled
v If the elapsed time between the put and get is greater than the service interval:

– A Queue Service Interval High event is generated at G1, if queue service
interval events are enabled.

The actual algorithm for starting the service timer and generating events is
described in “Queue service interval events algorithm” on page 18.

Understanding the service timer
Queue service interval events use an internal timer, called the service timer, which
is controlled by the queue manager. The service timer is used only if one or other
of the queue service interval events is enabled.

What precisely does the service timer measure?
The service timer measures the elapsed time between an MQPUT call to an
empty queue or an MQGET call and the next put or get, provided the
queue depth is nonzero between these two operations.

When is the service timer active?
The service timer is always active (running), if the queue has messages on
it (depth is nonzero) and a queue service interval event is enabled. If the
queue becomes empty (queue depth zero), the timer is put into an OFF
state, to be restarted on the next put.

P1

Q
u

eu
e

d
ep

th

TimeG1

GETPUT

Figure 3. Understanding queue service interval events

Queue service interval events

Chapter 2. Understanding performance events 17

When is the service timer reset?
The service timer is always reset after an MQGET call. It is also reset by an
MQPUT call to an empty queue. However, it is not necessarily reset on a
queue service interval event.

How is the service timer used?
Following an MQGET call or an MQPUT call, the queue manager
compares the elapsed time as measured by the service timer, with the
user-defined service interval. The result of this comparison is that:
v An OK event is generated if the operation is an MQGET call and the

elapsed time is less than or equal to the service interval, AND this event
is enabled.

v A high event is generated if the elapsed time is greater than the service
interval, AND this event is enabled.

Can applications read the service timer?
No, the service timer is an internal timer that is not available to
applications.

What about the TimeSinceReset parameter?
The TimeSinceReset parameter is returned as part of the event statistics in
the event data. It specifies the time between successive queue service
interval events, unless the event statistics are reset.

Queue service interval events algorithm
This section gives the formal rules associated with the timer and the queue service
interval events.

Service timer
The service timer is reset to zero and restarted:
v Following an MQPUT call to an empty queue.
v Following an MQGET call, if the queue is not empty after the MQGET call.

The resetting of the timer does not depend on whether an event has been
generated.

At queue manager startup the service timer is set to startup time if the queue
depth is greater than zero.

If the queue is empty following an MQGET call, the timer is put into an OFF state.

Queue Service Interval High events
The Queue Service Interval event must be enabled (set to HIGH).

If the service time is greater than the service interval, an event is generated on the
next MQPUT or MQGET call.

Queue Service Interval OK events
Queue Service Interval OK events are automatically enabled when a Queue Service
Interval High event is generated.

If the service time (elapsed time) is less than or equal to the service interval, an
event is generated on the next MQGET call.

Enabling queue service interval events
To configure a queue for queue service interval events you must:

Queue service interval events

18 Event Monitoring

|
|
|
|

1. Enable performance events on the queue manager, using the queue manager
attribute PerformanceEvent (PERFMEV in MQSC).

2. Set the control attribute, QServiceIntervalEvent, for a Queue Service Interval
High or OK event on the queue, as required (QSVCIEV in MQSC).

3. Specify the service interval time by setting the QServiceInterval attribute for
the queue to the appropriate length of time (QSVCINT in MQSC).

For example, to enable Queue Service Interval High events with a service interval
time of 10 seconds (10 000 milliseconds) use the following MQSC commands:

Note: When enabled, a queue service interval event can only be generated on an
MQPUT call or an MQGET call. The event is not generated when the
elapsed time becomes equal to the service interval time.

Automatic enabling of queue service interval events
The high and OK events are mutually exclusive; that is, when one is enabled, the
other is automatically disabled.

When a high event is generated on a queue, the queue manager automatically
disables high events and enables OK events for that queue.

Similarly, when an OK event is generated on a queue, the queue manager
automatically disables OK events and enables high events for that queue.

Notes™:

All performance events must be enabled using the queue manager
attribute PERFMEV.

Table 4. Enabling queue service interval events using MQSC

Queue service interval event Queue attributes

Queue Service Interval High
Queue Service Interval OK
No queue service interval events

QSVCIEV (HIGH)
QSVCIEV (OK)
QSVCIEV (NONE)

Service interval QSVCINT (tt) where tt is the service
interval time in milliseconds.

Queue service interval events examples
This section provides progressively more complex examples to illustrate the use of
queue service interval events.

The figures accompanying the examples have the same structure:
v The top section is a graph of queue depth against time, showing individual

MQGET calls and MQPUT calls.
v The middle section shows a comparison of the time constraints. There are three

time periods that you must consider:
– The user-defined service interval.

ALTER QMGR +
PERFMEV(ENABLED)

ALTER QLOCAL(’MYQUEUE’) +
QSVCINT(10000) +
QSVCIEV(HIGH)

Queue service interval events

Chapter 2. Understanding performance events 19

– The time measured by the service timer.
– The time since event statistics were last reset (TimeSinceReset in the event

data).
v The bottom section of each figure shows which events are enabled at any instant

and what events are generated.

The following examples illustrate:
v How the queue depth varies over time.
v How the elapsed time as measured by the service timer compares with the

service interval.
v Which event is enabled.
v Which events are generated.

Example 1 (queue service interval events)
This example shows a simple sequence of MQGET calls and MQPUT calls, where
the queue depth is always one or zero.

Commentary
1. At P1, an application puts a message onto an empty queue. This starts the

service timer.
Note that T0 may be queue manager startup time.

2. At G1, another application gets the message from the queue. Because the
elapsed time between P1 and G1 is greater than the service interval, a Queue

High

OK

High event OK event

TO P1 P2 G2

Q
u

e
u

e
d

e
p

th

Time

Key:

Service interval

Service timer ON

Service timer OFF

Time since reset

G1

GET GETPUT PUT

Enabled events

Figure 4. Queue service interval events - example 1

Queue service interval events

20 Event Monitoring

Service Interval High event is generated on the MQGET call at G1. When the
high event is generated, the queue manager resets the event control attribute so
that:
a. The OK event is automatically enabled.
b. The high event is disabled.

Because the queue is now empty, the service timer is switched to an OFF state.
3. At P2, a second message is put onto the queue. This restarts the service timer.
4. At G2, the message is removed from the queue. However, because the elapsed

time between P2 and G2 is less than the service interval, a Queue Service
Interval OK event is generated on the MQGET call at G2. When the OK event
is generated, the queue manager resets the control attribute so that:
a. The high event is automatically enabled.
b. The OK event is disabled.

Because the queue is empty, the service timer is again switched to an OFF state.

Event statistics summary for example 1
Table 5 summarizes the event statistics for this example.

Table 5. Event statistics summary for example 1

Event 1 Event 2

Time of event TG1 TG2

Type of event High OK

TimeSinceReset TG1 - T0 TG2 - TP2

HighQDepth 1 1

MsgEnqCount 1 1

MsgDeqCount 1 1

The middle part of Figure 4 on page 20 shows the elapsed time as measured by the
service timer compared to the service interval for that queue. To see whether a
queue service interval event will occur, compare the length of the horizontal line
representing the service timer (with arrow) to that of the line representing the
service interval. If the service timer line is longer, and the Queue Service Interval
High event is enabled, a Queue Service Interval High event will occur on the next
get. If the timer line is shorter, and the Queue Service Interval OK event is enabled,
a Queue Service Interval OK event will occur on the next get.

What queue service interval events tell you
You must exercise some caution when you look at queue statistics. Figure 4 on
page 20 shows a simple case where the messages are intermittent and each
message is removed from the queue before the next one arrives. From the event
data, you know that the maximum number of messages on the queue was one.
You can, therefore, work out how long each message was on the queue.

However, in the general case, where there is more than one message on the queue
and the sequence of MQGET calls and MQPUT calls is not predictable, you cannot
use queue service interval events to calculate how long an individual message
remains on a queue. The TimeSinceReset parameter, which is returned in the event
data, can include a proportion of time when there are no messages on the queue.
Therefore any results you derive from these statistics are implicitly averaged to
include these times.

Queue service interval events

Chapter 2. Understanding performance events 21

Example 2 (queue service interval events)
This example illustrates a sequence of MQPUT calls and MQGET calls, where the
queue depth is not always one or zero. It also shows instances of the timer being
reset without events being generated, for example, at TP2.

Commentary
In this example, OK events are enabled initially and queue statistics were reset at
T0.
1. At P1, the first put starts the service timer.
2. At P2, the second put does not generate an event because a put cannot cause

an OK event.
3. At G1, the service interval has now been exceeded and therefore an OK event

is not generated. However, the MQGET call causes the service timer to be reset.
4. At G2, the second get occurs within the service interval and this time an OK

event is generated. The queue manager resets the event control attribute so
that:
a. The high event is automatically enabled.
b. The OK event is disabled.

Because the queue is now empty, the service timer is switched to an OFF state.

High
OK

OK event

T0 P1

Q
u

e
u

e
 d

e
p

th

Time

Key:
Service interval

Service timer ON

Service timer OFF

Time since reset

Enabled events

P2 G1 G2

Figure 5. Queue service interval events - example 2

Queue service interval events

22 Event Monitoring

Event statistics summary for example 2
Table 6 summarizes the event statistics for this example.

Table 6. Event statistics summary for example 2

Time of event TG2

Type of event OK

TimeSinceReset TG2 - T0

HighQDepth 2

MsgEnqCount 2

MsgDeqCount 2

Example 3 (queue service interval events)
This example shows a sequence of MQGET calls and MQPUT calls that is more
sporadic than the previous examples.

Commentary
1. At time T0, the queue statistics are reset and Queue Service Interval High

events are enabled.
2. At P1, the first put starts the service timer.
3. At P2, the second put increases the queue depth to two. A high event is not

generated here because the service interval time has not been exceeded.
4. At P3, the third put causes a high event to be generated. (The timer has

exceeded the service interval.) The timer is not reset because the queue depth
was not zero before the put. However, OK events are enabled.

5. At G1, the MQGET call does not generate an event because the service interval
has been exceeded and OK events are enabled. The MQGET call does, however,
reset the service timer.

6. At G2, the MQGET call does not generate an event because the service interval
has been exceeded and OK events are enabled. Again, the MQGET call resets
the service timer.

7. At G3, the third get empties the queue and the service timer is equal to the
service interval. Therefore an OK event is generated. The service timer is reset
and high events are enabled. The MQGET call empties the queue, and this puts
the timer in the OFF state.

Queue service interval events

Chapter 2. Understanding performance events 23

Event statistics summary for example 3
Table 7 summarizes the event statistics for this example.

Table 7. Event statistics summary for example 3

Event 1 Event 2

Time of event TP3 TG3

Type of event High OK

TimeSinceReset TP3 - T0 TG3 - TP3

HighQDepth 3 3

MsgEnqCount 3 0

MsgDeqCount 0 3

High

OK

High event OK event

TO P1 P2 P3 G1 G2 G3

Q
u

e
u

e
d

e
p

th

Time

Key:

Service interval

Service timer ON

Service timer OFF

Time since reset

Enabled events

Figure 6. Queue service interval events - example 3

Queue service interval events

24 Event Monitoring

Understanding queue depth events
In WebSphere MQ applications, queues must not become full. If they do,
applications can no longer put messages on the queue that they specify. Although
the message is not lost if this occurs, it can be a considerable inconvenience. The
number of messages can build up on a queue if the messages are being put onto
the queue faster than the applications that process them can take them off.

The solution to this problem depends on the particular circumstances, but may
involve:
v Diverting some messages to another queue.
v Starting new applications to take more messages off the queue.
v Stopping nonessential message traffic.
v Increasing the queue depth to overcome a transient maximum.

Clearly, having advanced warning that problems may be on their way makes it
easier to take preventive action. For this purpose, queue depth events are
provided.

What queue depth events are
Queue depth events are related to the queue depth, that is, the number of
messages on the queue. The types of queue depth events are:
v Queue Depth High events, which indicate that the queue depth has increased

to a predefined threshold called the Queue Depth High limit.
v Queue Depth Low events, which indicate that the queue depth has decreased to

a predefined threshold called the Queue Depth Low limit.
v Queue Full events, which indicate that the queue has reached its maximum

depth, that is, the queue is full.

A Queue Full Event is generated when an application attempts to put a message
on a queue that has reached its maximum depth. Queue Depth High events give
advance warning that a queue is filling up. This means that having received this
event, the system administrator should take some preventive action. If this action
is successful and the queue depth drops to a ‘safe’ level, the queue manager can be
configured to generate a Queue Depth Low event indicating an ‘all clear’ state.

Figure 8 on page 29 shows a graph of queue depth against time in such a case. The
preventive action was (presumably) taken between T2 and T3 and continues to
have effect until T4 when the queue depth is well inside the ‘safe’ zone.

Shared queues and queue depth events (WebSphere MQ for
z/OS)
When a queue depth event occurs on a shared queue, the queue managers in the
queue-sharing group produce an event message, if the queue manager attribute
PerformanceEvent (PERFMEV in MQSC) is set to ENABLED. If PERFMEV is set to
DISABLED on some of the queue managers, event messages are not produced by
those queue managers, making event monitoring from an application more
difficult. To avoid this, give each queue manager the same setting for the
PerformanceEvent attribute. This event message represents the individual usage of
the shared queue by each queue manager. If a queue manager performs no activity
on the shared queue, various values in the event message are null or zero. Null
event messages:
v Allow you to ensure there is one event message for each active queue manager

in a queue-sharing group

Queue depth events

Chapter 2. Understanding performance events 25

v Can highlight cases where there has been no activity on a shared queue for a
queue manager that produced the event message

Enabling queue depth events
By default, all queue depth events are disabled. To configure a queue for any of
the queue depth events you must:
1. Enable performance events on the queue manager, using the queue manager

attribute PerformanceEvent (PERFMEV in MQSC).
2. Enable the event on the required queue by setting the following as required:

v QDepthHighEvent(QDPHIEV in MQSC)
v QDepthLowEvent(QDPLOEV in MQSC)
v QDepthMaxEvent(QDPMAXEV in MQSC)

3. Set the limits, if required, to the appropriate levels, expressed as a percentage
of the maximum queue depth, by setting either:
v QDepthHighLimit(QDEPTHHI in MQSC), and
v QDepthLowLimit(QDEPTHLO in MQSC).

Enabling queue depth events on shared queues (WebSphere MQ
for z/OS)
When a queue manager determines that an event should be issued, the shared
queue object definition is updated to toggle the active performance event
attributes. For example, depending on the definition of the queue attributes, a
Queue Depth High event enables a Queue Depth Low and a Queue Full event.
After the shared queue object has been updated successfully, the queue manager
that detected the performance event initially becomes the coordinating queue
manager.

The coordinating queue manager:
1. Determines if it has performance events enabled.
2. If it does, issues an event message that captures all shared queue performance

data it has gathered since the last time an event message was created, or since
the queue statistics were last reset. The message descriptor (MQMD) of this
message contains a unique correlation identifier (CorrelId) created by the
coordinating queue manager.

3. Broadcasts to all other active queue managers in the same queue-sharing group
to request the production of an event message for the shared queue. The
broadcast contains the correlation identifier created by the coordinating queue
manager for the set of event messages.

After receiving a request from the coordinating queue manager, an active queue
manager in a queue-sharing group:
1. Determines if its PERFMEV is ENABLED.
2. If it is, the active queue manager issues an event message for the shared queue,

recording all operations performed by the receiving (active) queue manager
since the last time an event message was created, or since the last statistics
reset. The message descriptor (MQMD) of this event message contains the
unique correlation identifier (CorrelId) specified by the coordinating queue
manager.

When performance events occur on a shared queue, n event messages are
produced, where n is 1 to the number of active queue managers in the
queue-sharing group. Each event message contains data that relates to the shared
queue activity for the queue manager where the event message was generated.

Queue depth events

26 Event Monitoring

You can view event message data for a shared queue using the:
v Queue-sharing view.

All data from event messages with the same correlation identifier is collected
here.

v Queue manager view.
Each event message shows how much it has been used by its originating queue
manager.

Differences between shared and nonshared queues: Enabling queue depth
events on shared queues differs from enabling events on nonshared queues. A key
difference is that events are switched for shared queues even if PERFMEV is
DISABLED on the queue manager. This is not the case for nonshared queues.

Consider the following example which illustrates this difference.
v QM1 is a queue manager with PerformanceEvent (PERFMEV in MQSC) set to

DISABLED.
v SQ1 is a shared queue with QSGDISP set to (SHARED) QLOCAL in MQSC.
v LQ1 is a nonshared queue with QSGDISP set to (QMGR) QLOCAL in MQSC.

Both queues have the following attributes set on their definitions:
v QDPHIEV (ENABLED)
v QDPLOEV (DISABLED)
v QDPMAXEV (DISABLED)

If messages are placed on both queues so that the depth meets or exceeds the
QDEPTHHI threshold, the QDPHIEV value on SQ1 switches to DISABLED. Also,
QDPLOEV and QDPMAXEV are switched to ENABLED. SQ1’s attributes are
automatically switched for each performance event at the time the event criteria
are met.

In contrast the attributes for LQ1 remain unchanged until PERFMEV on the queue
manager is ENABLED. This means that if the queue manager’s PERFMEV attribute
is ENABLED, DISABLED and then re-ENABLED for instance, the performance
event settings on shared queues might not be consistent with those of nonshared
queues, even though they might have initially been the same.

Enabling Queue Depth High events
When enabled, a Queue Depth High event is generated when a message is put on
the queue, causing the queue depth to be greater than or equal to the value
determined by the Queue Depth High limit.

To enable Queue Depth High events on the queue MYQUEUE with a limit set at
80%, use the following MQSC commands:

Automatically enabling Queue Depth High events: A Queue Depth High event
is automatically enabled by a Queue Depth Low event on the same queue.

A Queue Depth High event automatically enables both a Queue Depth Low and a
Queue Full event on the same queue.

ALTER QMGR PERFMEV(ENABLED)
ALTER QLOCAL(’MYQUEUE’) QDEPTHHI(80) QDPHIEV(ENABLED)

Queue depth events

Chapter 2. Understanding performance events 27

Enabling Queue Depth Low events
When enabled, a Queue Depth Low event is generated when a message is
removed from a queue by an MQGET call operation causing the queue depth to be
less than or equal to the value determined by the Queue Depth Low limit.

To enable Queue Depth Low events on the queue MYQUEUE with a limit set at
20%, use the following MQSC commands:

Automatically enabling Queue Depth Low events: A Queue Depth Low event is
automatically enabled by a Queue Depth High event or a Queue Full event on the
same queue.

A Queue Depth Low event automatically enables both a Queue Depth High and a
Queue Full event on the same queue.

Enabling Queue Full events
When enabled, a Queue Full event is generated when an application is unable to
put a message onto a queue because the queue is full.

To enable Queue Full events on the queue MYQUEUE, use the following MQSC
commands:

Automatically enabling Queue Full events: A Queue Full event is automatically
enabled by a Queue Depth High or a Queue Depth Low event on the same queue.

A Queue Full event automatically enables a Queue Depth Low event on the same
queue.

Table 8. Enabling queue depth events using MQSC

Queue depth event Queue attributes

Queue depth high

Queue depth low

Queue full

QDPHIEV (ENABLED)
QDEPTHHI (hh) where hh is the queue depth
high limit.

QDPLOEV (ENABLED)
QDEPTHLO (ll) where ll is the Queue depth
low limit. (Both values are expressed as a
percentage of the maximum queue depth, which is
specified by the queue
attribute MAXDEPTH.)

QDPMAXEV (ENABLED)

Notes: All performance events must be enabled using the queue manager attribute
PERFMEV.

Queue depth events examples
This section contains some examples of queue depth events. The following
examples illustrate how queue depth varies over time.

ALTER QMGR PERFMEV(ENABLED)
ALTER QLOCAL(’MYQUEUE’) QDEPTHLO(20) QDPLOEV(ENABLED)

ALTER QMGR PERFMEV(ENABLED)
ALTER QLOCAL(’MYQUEUE’) QDPMAXEV(ENABLED)

Queue depth events

28 Event Monitoring

Example 1 (queue depth events)
The queue, MYQUEUE1, has a maximum depth of 1000 messages, and the high
and low queue depth limits are 80% and 20% respectively. Initially, Queue Depth
High events are enabled, while the other queue depth events are disabled.

The WebSphere MQ commands (MQSC) to configure this queue are:

Commentary
Figure 8 shows how the queue depth changes over time:
1. At T1, the queue depth is increasing (more MQPUT calls than MQGET calls)

and crosses the Queue Depth Low limit. No event is generated at this time.
2. The queue depth continues to increase until T2, when the depth high limit

(80%) is reached and a Queue Depth High event is generated.
This enables both Queue Full and Queue Depth Low events.

ALTER QMGR PERFMEV(ENABLED)

DEFINE QLOCAL(’MYQUEUE1’) +
MAXDEPTH(1000) +
QDPMAXEV(DISABLED) +
QDEPTHHI(80) +
QDPHIEV(ENABLED) +
QDEPTHLO(20) +
QDPLOEV(DISABLED)

Figure 7. Definition of MYQUEUE1

High

Enabled events

100

80

20

0
T0 T1 T2 T3 T4

Depth high
limit

Depth low
limitQ

u
eu

e
ca

p
ac

it
y

(%
)

Time

Queue Depth High Queue Depth Low

Low
Full

Figure 8. Queue depth events (1)

Queue depth events

Chapter 2. Understanding performance events 29

3. The (presumed) preventive actions instigated by the event prevent the queue
from becoming full. By time T3, the Queue Depth High limit has been reached
again, this time from above. No event is generated at this time.

4. The queue depth continues to fall until T4, when it reaches the depth low limit
(20%) and a Queue Depth Low event is generated.
This enables both Queue Full and Queue Depth High events.

Table 9 summarizes the queue event statistics and Table 10 summarizes which
events are enabled at different times for this example.

Table 9. Event statistics summary for queue depth events (example 1)

Event 2 Event 4

Time of event T2 T4

Type of event Queue Depth
High

Queue Depth
Low

TimeSinceReset T2 - T0 T4 - T2

HighQDepth (Maximum queue depth since reset) 800 900

MsgEnqCount 1157 1220

MsgDeqCount 357 1820

Table 10. Summary showing which events are enabled

Time period Queue Depth High
event

Queue Depth Low
event

Queue Full event

Before T1 ENABLED - -

T1 to T2 ENABLED - -

T2 to T3 - ENABLED ENABLED

T3 to T4 - ENABLED ENABLED

After T4 ENABLED - ENABLED

Example 2 (queue depth events)
This is a more extensive example. However, the principles remain the same. This
example assumes the use of the same queue MYQUEUE1 as defined in Figure 7 on
page 29.

Table 11 on page 32 summarizes the queue event statistics and Table 12 on page 32
summarizes which events are enabled at different times for this example.

Figure 9 on page 31 shows the variation of queue depth over time.

Queue depth events

30 Event Monitoring

Commentary
Some points to note are:
1. No Queue Depth Low event is generated at:

T1 (Queue depth increasing, and not enabled)
T2 (Not enabled)
T3 (Queue depth increasing, and not enabled)

2. At T4 a Queue Depth High event occurs. This enables both Queue Full and
Queue Depth Low events.

3. At T9 a Queue Full event occurs after the first message that cannot be put on
the queue because the queue is full.

4. At T12 a Queue Depth Low event occurs.

100

80

20

0
T0 T1 T2 T3 T4 T5 T8 T9 T10 T11 T12T6 T7

Queue Depth High event
Queue Depth Low event
Queue Depth High event
Queue Full event
Queue Depth Low event

Low
Full

Time

Q
u

eu
e

ca
p

ac
it

y
(%

)

High

Figure 9. Queue depth events (2)

Queue depth events

Chapter 2. Understanding performance events 31

Event statistics summary (example 2)
Table 11. Event statistics summary for queue depth events (example 2)

Event 4 Event 6 Event 8 Event 9 Event 12

Time of event T4 T6 T8 T9 T12

Type of event Queue Depth
High

Queue Depth
Low

Queue Depth
High

Queue Full Queue Depth
Low

TimeSinceReset T4 - T0 T6 - T4 T8 - T6 T9 - T8 T12 - T9

HighQDepth 800 855 800 1000 1000

MsgEnqCount 1645 311 1377 324 221

MsgDeqCount 845 911 777 124 1021

Table 12. Summary showing which events are enabled

Time period Queue Depth High
event

Queue Depth Low
event

Queue Full event

T0 to T4 ENABLED - -

T4 to T6 - ENABLED ENABLED

T6 to T8 ENABLED - ENABLED

T8 to T9 - ENABLED ENABLED

T9 to T12 - ENABLED -

After T12 ENABLED - ENABLED

Note: Events are out of syncpoint. Therefore you could have an empty queue, then
fill it up causing an event, then roll back all of the messages under the
control of a syncpoint manager. However, event enabling has been
automatically set, so that the next time the queue fills up, no event is
generated.

Queue depth events

32 Event Monitoring

Chapter 3. Understanding configuration events (z/OS only)

This chapter describes what configuration events are, when they are generated,
when they are not generated, and how they are used. The chapter includes:
v “What configuration events are”
v “When configuration events are generated”
v “When configuration events are not generated” on page 34
v “How configuration events are used” on page 34

What configuration events are
Configuration events are notifications about the attributes of an object. They are
generated when an object is created, changed, or deleted and are also generated by
explicit requests. There are four types of configuration events:
v Create object events
v Change object events
v Delete object events
v Refresh object events

The event data contains the following information:
1. Origin information, describes the queue manager from where the change was

made, the ID of the user that made the change, and how the change came
about, for example by a console command.

2. Context information, is a replica of the context information in the message data
from the command message.

Note: Context information will only be included in the event data if the
command was entered as a message on the SYSTEM.COMMAND.INPUT
queue.

3. Object identity, describes the name, type and disposition of the object.
4. Object attributes, describes the values of all the attributes in the object.

In the case of change object events, two messages are generated, one with the
information before the change, the other with the information after.

Every configuration event message that is generated is placed on the queue
SYSTEM.ADMIN.CONFIG.EVENT.

For more information about the event data returned in configuration event
messages see: Chapter 4, “Event message reference”, on page 37

When configuration events are generated
A configuration event message is put to the configuration event queue when the
CONFIGEV queue manager attribute is ENABLED and :

— any of the following commands are issued.
v DELETE AUTHINFO
v DELETE CFSTRUCT

© Copyright IBM Corp. 1994, 2002 33

|

|

|
|

|

|

|

|

|
|

|
|
|

|

|

|

|

|

|
|
|

|
|

|
|
|

|

|

|
|

|
|

|
|

|
|

|
|

|

|

|

v DELETE CHANNEL
v DELETE NAMELIST
v DELETE PROCESS
v DELETE QMODEL/QALIAS/QREMOTE
v DELETE STGCLASS
v REFRESH QMGR

— any of the following commands are issued, even if there is no change to the
object.
v DEFINE/ALTER AUTHINFO
v DEFINE/ALTER CFSTRUCT
v DEFINE/ALTER CHANNEL
v DEFINE/ALTER NAMELIST
v DEFINE/ALTER PROCESS
v DEFINE/ALTER QMODEL/QALIAS/QREMOTE
v DEFINE/ALTER STGCLASS
v DEFINE MAXSMSGS
v ALTER QMGR unless the CONFIGEV attribute is DISABLED and is not changed

to ENABLED

— any of the following commands are issued for a local queue that is not
temporary dynamic, even if there is no change to the queue.
v DELETE QLOCAL
v DEFINE/ALTER QLOCAL

— an MQSET is issued, other than for a temporary dynamic queue, even if there is
no change to the object.

When configuration events are not generated
Configuration events messages are not generated for:
v Command or MQSET calls that fail.
v A queue manager that encounters an error trying to put a configuration event on

the event queue. In this situation, the command or MQSET call completes, but
no event message is generated.

v Temporary dynamic queues.
v Internal changes to the TRIGGER queue attribute.
v The configuration event queue SYSTEM.ADMIN.CONFIG.EVENT, except by the

REFRESH QMGR command.

How configuration events are used
Configuration events are used for two main purposes:
1. To produce and maintain a central configuration repository, from which reports

can be produced and information about the structure of the system can be
generated.

2. To generate an audit trail. For example, if an object is changed unexpectedly,
information regarding who made the alteration and when it was done can be
stored.

Configuration events

34 Event Monitoring

|

|

|

|

|

|

|
|

|

|

|

|

|

|

|

|

|
|

|
|

|

|

|
|

|
|

|

|

|
|
|

|

|

|
|

|
|

|

|
|
|

|
|
|

The Refresh Object configuration event
The Refresh Object configuration event is different from the other configuration
events. The create, change, and delete events are generated by an MQSET call or
by a command to change an object but the refresh object event occurs only when it
is explicitly requested by the REFRESH QMGR command.

The REFRESH QMGR command is different from all the other commands that
generate configuration events. All the other commands apply to a particular object
and generate a single configuration event for that object. The REFRESH QMGR
command can produce many configuration event messages potentially representing
every object definition stored by a queue manager. One event message is generated
for each object that is selected.

The REFRESH QMGR command uses a combination of three selection criteria to
filter the number of objects involved:
v Object Name
v Object Type
v Refresh Interval

If you specify none of the selection criteria on the REFRESH QMGR command, the
default values are used for each selection criteria and a refresh configuration event
message is generated for every object definition stored by the queue manager. This
may well involve excessive processing time and event message generation. It is
recommended to always use some selection criteria.

The REFRESH QMGR command that generates the refresh events can be used in
the following situations:
v When configuration data is wanted about all or some of the objects in a system

regardless of whether the objects have been recently manipulated, for example,
when configuration events are first enabled.
It is recommended to use several commands each with a different selection of
objects, but such that all are included.

v If there has been an error in the SYSTEM.ADMIN.CONFIG.EVENT queue. In
this circumstance, no configuration event messages are generated for Create,
Change, or Delete events. When the error on the queue has been corrected, the
Refresh Queue Manager command can be used to request the generation of
event messages, which were lost whilst there was an error in the queue. In this
situation it is recommended that you use the refresh selection criteria, with the
refresh interval being the time for which the queue was unavailable.

When the configuration event queue is not available
For an MQSET call or any of the following commands:
v DEFINE object
v ALTER object
v DELETE object

if the queue manager attribute CONFIGEV is enabled, but the configuration event
message cannot be put on the configuration event queue, for example the event
queue has not been defined, the command or MQSET call will NOT fail and the
object WILL be created or manipulated in the intended way.

Configuration events

Chapter 3. Understanding configuration events (z/OS only) 35

|

|
|
|
|

|
|
|
|
|
|

|
|

|

|

|

|
|
|
|
|

|
|

|
|
|

|
|

|
|
|
|
|
|
|

|

|

|

|

|

|
|
|
|

Effects of CMDSCOPE
For commands where CMDSCOPE is used, the configuration event message or
messages will be generated on the queue manager or queue managers where the
command is executed, not where the command is entered. However, all the origin
and context information in the event data will relate to the original command as
entered, even where the command using CMDSCOPE is one that has been
generated by the source queue manager.

Where a queue sharing group includes queue managers that are not at the current
version, events will be generated for any command that is executed by means of
CMDSCOPE on a queue manager that is at the current version, but not on those
that are at a previous version. This happens even if the queue manager where the
command is entered is at the previous version, although in such a case no context
information is included in the event data.

Configuration events

36 Event Monitoring

|

|
|
|
|
|
|

|
|
|
|
|
|

Chapter 4. Event message reference

This chapter provides an overview of the event message format. It describes the
information returned in the event message for each instrumentation event,
including returned parameters.

The chapter includes:
v “Event message format” on page 38
v “MQMD (message descriptor)” on page 40
v “MQCFH (Event header)” on page 44
v “Event message descriptions” on page 49
v “Alias Base Queue Type Error” on page 50
v “Bridge Started (z/OS only)” on page 52
v “Bridge Stopped (z/OS only)” on page 53
v “Change object (z/OS only)” on page 55
v “Channel Activated” on page 59
v “Channel Auto-definition Error” on page 60
v “Channel Auto-definition OK” on page 62
v “Channel Conversion Error” on page 63
v “Channel SSL Error” on page 68
v “Channel Started” on page 71
v “Channel Stopped” on page 73
v “Channel Stopped By User” on page 76
v “Create object (z/OS only)” on page 78
v “Default Transmission Queue Type Error” on page 82
v “Default Transmission Queue Usage Error” on page 84
v “Delete object (z/OS only)” on page 86
v “Get Inhibited” on page 90
v “Not Authorized (type 1)” on page 91
v “Not Authorized (type 2)” on page 92
v “Not Authorized (type 3)” on page 94
v “Not Authorized (type 4)” on page 96
v “Put Inhibited” on page 97
v “Queue Depth High” on page 99
v “Queue Depth Low” on page 101
v “Queue Full” on page 103
v “Queue Manager Active” on page 105
v “Queue Manager Not Active” on page 106
v “Queue Service Interval High” on page 107
v “Queue Service Interval OK” on page 109
v “Queue Type Error” on page 111
v “Refresh object (z/OS only)” on page 113
v “Remote Queue Name Error” on page 117
v “Transmission Queue Type Error” on page 119
v “Transmission Queue Usage Error” on page 121
v “Unknown Alias Base Queue” on page 123
v “Unknown Default Transmission Queue” on page 125
v “Unknown Object Name” on page 127
v “Unknown Remote Queue Manager” on page 129
v “Unknown Transmission Queue” on page 131

© Copyright IBM Corp. 1994, 2002 37

|

|

|

|

|

Event message format
Event messages are standard WebSphere MQ messages containing a message
descriptor and message data.

Table 13 on page 39 shows the basic structure of these messages, and the names of
the fields in an event message for queue service interval events.

Event message format

38 Event Monitoring

Table 13. Event message structure for queue service interval events

Message descriptor Message data

MQMD structure 1 Event header
MQCFH structure 2

Event data 3

Structure identifier
Structure version
Report options
Message type
Expiration time
Feedback code
Encoding
Coded character set ID
Message format
Message priority
Persistence
Message identifier
Correlation identifier
Backout count
Reply-to queue
Reply-to queue manager
User identifier
Accounting token
Application identity data
Application type
Application name
Put date
Put time
Application origin data
Group identifier
Message sequence number
Offset
Message flags
Original length

Structure type
Structure length
Structure version

number
Command identifier

(event type)
Message sequence

number
Control options
Completion code
Reason code (MQRC_*)
Parameter count

Queue manager name
Queue name
Time since last

reset
Maximum number of

messages on the
queue

Number of messages
put on the queue

Number of messages
taken off the
queue

Notes:
1. MQMD is the standard structure for MQSeries message headers.
2. MQCFH is the standard structure for an event header.
3. The parameters shown are those returned for a queue service interval event. The actual event data

depends on the specific event.

In general, you need only a subset of this information for any system management
programs that you write. For example, your application might need the following
data:
v The name of the application causing the event
v The name of the queue manager on which the event occurred
v The queue on which the event was generated
v The event statistics

Message descriptor (MQMD) in event messages
The format of the message descriptor is defined by the MQMD data structure,
which is found in all WebSphere MQ messages and is described in the WebSphere
MQ Application Programming Reference manual. The message descriptor contains
information that can be used by a user-written system monitoring application, such
as:
v The message type
v The format type
v The date and time that the message was put on the event queue

Event message format

Chapter 4. Event message reference 39

In particular, the information in the descriptor informs a system management
application that the message type is MQMT_DATAGRAM, and the message format
is MQFMT_EVENT.

In an event message, many of these fields contain fixed data, which is supplied by
the queue manager that generated the message. The fields that make up the
MQMD structure are described in “MQMD (message descriptor)” below. The
MQMD also specifies the name of the queue manager (truncated to 28 characters)
that put the message, and the date and time when the event message was put on
the event queue.

Message data in event messages
The event message data is based on the programmable command format (PCF),
which is used in PCF command inquiries and responses.

The event message consists of two parts: the event header and the event data.

Event header (MQCFH)
The information in MQCFH specifies:
v If the message is an event message.
v The category of event. Whether the event is a queue manager, performance,

channel, or configuration event.
v A reason code specifying the cause of the event. For events caused by MQI calls,

this reason code is the same as the reason code for the MQI call.

Reason codes have names that begin with the characters MQRC_. For example, the
reason code MQRC_PUT_INHIBITED is generated when an application attempts to
put a message on a queue that is not enabled for puts. MQCFH is described in
“MQCFH (Event header)” on page 44.

Event data
See “Event message descriptions” on page 49.

MQMD (message descriptor)
The MQMD structure describes the information that accompanies the message data
of an event message. For a full description of MQMD, including a description of
the elementary datatype of each parameter, see the WebSphere MQ Application
Programming Reference manual.

For an event message, the MQMD structure contains these values:

StrucId

Description: Structure identifier.
Datatype: MQCHAR4.
Value: MQMD_STRUC_ID

Version

Description: Structure version number.
Datatype: MQLONG.

Event message format

40 Event Monitoring

|
|

|

Values:
MQMD_VERSION_1

Version-1 message descriptor structure, supported in all
environments.

MQMD_VERSION_2
Version-2 message descriptor structure, supported on AIX®,
DOS client, HP-UX, OS/2®, OS/400, Solaris, Windows NT
client and Windows platforms.

Report

Description: Options for report messages.
Datatype: MQLONG.
Value:

MQRO_NONE
No reports required.

MsgType

Description: Indicates type of message.
Datatype: MQLONG.
Value: MQMT_DATAGRAM.

Expiry

Description: Message lifetime.
Datatype: MQLONG.
Value:

MQEI_UNLIMITED
The message does not have an expiry time.

Feedback

Description: Feedback or reason code.
Datatype: MQLONG.
Value: MQFB_NONE.

Encoding

Description: Numeric encoding of message data.
Datatype: MQLONG.
Value: MQENC_NATIVE.

CodedCharSetId

Description: Character set identifier of event message data.
Datatype: MQLONG.
Value:

MQCCSI_Q_MQR
Coded character set ID (CCSID) of the queue manager
generating the event.

Format

Description: Format name of message data.
Datatype: MQCHAR8.

Message descriptor

Chapter 4. Event message reference 41

|

|
|

|

|

|

|

|

|

Value:
MQFMT_EVENT

Event message.

For the C programming language, the constant
MQFMT_EVENT_ARRAY is also defined; this has the same
value as MQFMT_EVENT, but is an array of characters not a
string.

Priority

Description: Message priority.
Datatype: MQLONG.
Value:

MQPRI_PRIORITY_AS_Q_DEF
Default priority of the event queue, if it is a local queue, or its
local definition at the queue manager generating the event.

Persistence

Description: Message persistence.
Datatype: MQLONG.
Value:

MQPER_PERSISTENCE_AS_Q_DEF
Default persistence of the event queue, if it is a local queue, or
its local definition at the queue manager generating the event.

MsgId

Description: Message identifier.
Datatype: MQBYTE24.
Initial value: MQMI_NONE.
Valid values: A unique value generated by the queue manager.

CorrelId

Description: Correlation identifier.
Datatype: MQBYTE24.
Initial value: MQCI_NONE.
Valid values:

MQCI_NONE
No correlation identifier is specified. This is for local queues
only.

For shared queues: a nonzero correlation identifier is set. For events on a
shared queue, this parameter is set, so you can track multiple event
messages from different queue managers. The characters are specified
below:

1–4 Product identifier (’CSQ ’)

5–8 Queue-sharing group name

9 Queue manager identifier

10–17 Time stamp

18–24 Nulls

BackoutCount

Description: Backout counter.

Message descriptor

42 Event Monitoring

|

|

|

|

|

Datatype: MQLONG.
Value: 0.

ReplyToQ

Description: Name of reply queue.
Datatype: MQCHAR48.
Values: Blank.

ReplyToQMgr

Description: Name of reply queue manager.
Datatype: MQCHAR48.
Value: The queue manager name at the originating system.

UserIdentifier

Description: Identifies the application that originated the message.
Datatype: MQCHAR12.
Value: Blank.

AccountingToken

Description: Accounting token that allows an application to charge for work done as
a result of the message.

Datatype: MQBYTE32.
Value: MQACT_NONE.

ApplIdentityData

Description: Application data relating to identity.
Datatype: MQCHAR32.
Values: Blank.

PutApplType

Description: Type of application that put the message.
Datatype: MQLONG.
Value:

MQAT_QMGR
Queue-manager-generated message.

PutApplName

Description: Name of application that put the message.
Datatype: MQCHAR28.
Value: The queue manager name at the originating system.

PutDate

Description: Date when message was put.
Datatype: MQCHAR8.
Value: As generated by the queue manager.

Message descriptor

Chapter 4. Event message reference 43

|

|

|

|

|

|

|

|

|

PutTime

Description: Time when message was put.
Datatype: MQCHAR8.
Value: As generated by the queue manager.

ApplOriginData

Description: Application data relating to origin.
Datatype: MQCHAR4.
Value: Blank.

Note: If Version is MQMD_VERSION_2, the following additional fields are
present:

GroupId

Description: Identifies to which message group or logical message the physical
message belongs.

Datatype: MQBYTE24.
Value:

MQGI_NONE
No group identifier specified.

MsgSeqNumber

Description: Sequence number of logical message within group.
Datatype: MQLONG.
Value: 1.

Offset

Description: Offset of data in physical message from start of logical message.
Datatype: MQLONG.
Value: 0.

MsgFlags

Description: Message flags that specify attributes of the message or control its
processing.

Datatype: MQLONG.
Value: MQMF_NONE.

OriginalLength

Description: Length of original message.
Datatype: MQLONG.
Value: MQOL_UNDEFINED.

MQCFH (Event header)
The MQCFH structure is the header structure used for event messages and for PCF
messages. When the structure is used for event messages, the message descriptor
Format field is MQFMT_EVENT. The datatype of the following parameters
(MQLONG) is described in the WebSphere MQ Application Programming Reference
manual.

Message descriptor

44 Event Monitoring

|

|

|

|

|

|

|

For an event, the MQCFH structure contains these values:

Type

Description: Structure type that identifies the content of the message.
Datatype: MQLONG.
Value:

MQCFT_EVENT
Message is reporting an event.

StrucLength

Description: Structure length.
Datatype: MQLONG.
Value:

MQCFH_STRUC_LENGTH
Length in bytes of MQCFH structure.

Version

Description: Structure version number.
Datatype: MQLONG.
Values:

MQCFH_VERSION_1
Version-1 in all events except configuration events.

MQCFH_VERSION_2
Version-2 for configuration events.

Command

Description: Command identifier. This identifies the event category.
Datatype: MQLONG.
Values:

MQCMD_Q_MGR_EVENT
Queue manager event.

MQCMD_PERFM_EVENT
Performance event.

MQCMD_CHANNEL_EVENT
Channel event.

MQCMD_CONFIG_EVENT
Configuration event.

MsgSeqNumber

Description: Message sequence number. This is the sequence number of the message
within a group of related messages.

Datatype: MQLONG.
Values:

1 For change object configuration events with attribute values
before the changes, and for all other types of events.

2 For change object configuration events with the attribute values
after the changes

Control

Description: Control options.
Datatype: MQLONG.

Event header

Chapter 4. Event message reference 45

|

|

|

|

|

Values:
MQCFC_LAST

For change object configuration events with attribute values
after the changes, and for all other types of events.

MQCFC_NOT_LAST
For Change Object configurations events only, with the attribute
values from before the changes.

CompCode

Description: Completion code.
Datatype: MQLONG.
Values:

MQCC_OK
Event reporting OK condition.

MQCC_WARNING
Event reporting warning condition. All events have this
completion code, unless otherwise specified.

Reason

Description: Reason code qualifying completion code.
Datatype: MQLONG.
Values: MQRC_* Dependent on the event being reported.

Note: Events with the same reason code are further identified by the
ReasonQualifier parameter in the event data.

ParameterCount

Description: Count of parameter structures. This is the number of parameter
structures (MQCFIN, MQCFST, MQCFSL and MQCFBS) that follow the
MQCFH structure.

Datatype: MQLONG.
Values: 0 or greater.

C language declaration (MQCFH)
typedef struct tagMQCFH {

MQLONG Type; /* Structure type */
MQLONG StrucLength; /* Structure length */
MQLONG Version; /* Structure version number */
MQLONG Command; /* Command identifier */
MQLONG MsgSeqNumber; /* Message sequence number */
MQLONG Control; /* Control options */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying completion code */
MQLONG ParameterCount; /* Count of parameter structures */
} MQCFH;

COBOL language declaration (MQCFH)
** MQCFH structure

10 MQCFH.
** Structure type

15 MQCFH-TYPE PIC S9(9) BINARY.
** Structure length

15 MQCFH-STRUCLENGTH PIC S9(9) BINARY.
** Structure version number

15 MQCFH-VERSION PIC S9(9) BINARY.
** Command identifier

Event header

46 Event Monitoring

|

|

|

|

|

15 MQCFH-COMMAND PIC S9(9) BINARY.
** Message sequence number

15 MQCFH-MSGSEQNUMBER PIC S9(9) BINARY.
** Control options

15 MQCFH-CONTROL PIC S9(9) BINARY.
** Completion code

15 MQCFH-COMPCODE PIC S9(9) BINARY.
** Reason code qualifying completion code

15 MQCFH-REASON PIC S9(9) BINARY.
** Count of parameter structures

15 MQCFH-PARAMETERCOUNT PIC S9(9) BINARY.

PL/I language declaration (MQCFH)
dcl
1 MQCFH based,
3 Type fixed bin(31), /* Structure type */
3 StrucLength fixed bin(31), /* Structure length */
3 Version fixed bin(31), /* Structure version number */
3 Command fixed bin(31), /* Command identifier */
3 MsgSeqNumber fixed bin(31), /* Message sequence number */
3 Control fixed bin(31), /* Control options */
3 CompCode fixed bin(31), /* Completion code */
3 Reason fixed bin(31), /* Reason code qualifying completion

code */
3 ParameterCount fixed bin(31); /* Count of parameter structures */

RPG/ILE declaration (MQCFH) (OS/400 only)
D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
D* MQCFH Structure
D*
D* Structure type
D FHTYP 1 4I 0
D* Structure length
D FHLEN 5 8I 0
D* Structure version number
D FHVER 9 12I 0
D* Command identifier
D FHCMD 13 16I 0
D* Message sequence number
D FHSEQ 17 20I 0
D* Control options
D FHCTL 21 24I 0
D* Completion code
D FHCMP 25 28I 0
D* Reason code qualifying completion code
D FHREA 29 32I 0
D* Count of parameter structures
D FHCNT 33 36I 0

System/390® assembler-language declaration (MQCFH) (z/OS
only)

MQCFH DSECT
MQCFH_TYPE DS F Structure type
MQCFH_STRUCLENGTH DS F Structure length
MQCFH_VERSION DS F Structure version number
MQCFH_COMMAND DS F Command identifier
MQCFH_MSGSEQNUMBER DS F Message sequence number
MQCFH_CONTROL DS F Control options
MQCFH_COMPCODE DS F Completion code
MQCFH_REASON DS F Reason code qualifying
* completion code
MQCFH_PARAMETERCOUNT DS F Count of parameter
* structures

Event header

Chapter 4. Event message reference 47

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

MQCFH_LENGTH EQU *-MQCFH Length of structure
ORG MQCFH

MQCFH_AREA DS CL(MQCFH_LENGTH)

Visual Basic® language declaration (MQCFH) (Windows
platforms only)

Type MQCFH
Type As Long ’Structure type
StrucLength As Long ’Structure length
Version As Long ’Structure version number
Command As Long ’Command identifier
MsgSeqNumber As Long ’Message sequence number
Control As Long ’Control options
CompCode As Long ’Completion code
Reason As Long ’Reason code qualifying completion code
ParameterCount As Long ’Count of parameter structures

End Type

Global MQCFH_DEFAULT As MQCFH

Event header

48 Event Monitoring

Event message descriptions
The event message data contains information specific to the event. This includes
the name of the queue manager and, where appropriate, the name of the queue.

The data structures returned depend on which particular event was generated. In
addition, for some events, certain of the structures are optional, and are returned
only if they contain information that is relevant to the circumstances giving rise to
the event. The values in the data structures depend on the circumstances that
caused the event to be generated.

Notes

1. The event structures in the event data are not returned in a defined order.
They must be identified from the parameter identifiers shown in the
description.

2. The events described in the reference section are available on all
platforms, unless specific limitations are shown at the start of an event.

3. The structure datatypes of each parameter are described in Appendix A,
“Structure datatypes MQCFBS, MQCFIN, MQCFSL and MQCFST”, on
page 145.

Event header

Chapter 4. Event message reference 49

Alias Base Queue Type Error

Event name: Alias Base Queue Type Error.

Reason code in MQCFH: MQRC_ALIAS_BASE_Q_TYPE_ERROR (2001, X'7D1').
Alias base queue not a valid type.

Event description: An MQOPEN or MQPUT1 call was issued specifying an alias queue as the
destination, but the BaseQName in the alias queue definition resolves to a queue
that is not a local queue, or local definition of a remote queue.

Event type: Local.

Platforms: All.

Event queue: SYSTEM.ADMIN.QMGR.EVENT.

Event data
QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

QName

Description: Queue name from object descriptor (MQOD).
Identifier: MQCA_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

BaseQName

Description: Queue name to which the alias resolves.
Identifier: MQCA_BASE_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

QType

Description: Type of queue to which the alias resolves.
Identifier: MQIA_Q_TYPE.
Datatype: MQCFIN.
Values:

MQQT_ALIAS
Alias queue definition.

MQQT_MODEL
Model queue definition.

Returned: Always.

ApplType

Description: Type of the application making the call that caused the event.

Alias Base Queue Type Error

50 Event Monitoring

Identifier: MQIA_APPL_TYPE.
Datatype: MQCFIN.
Returned: Always.

ApplName

Description: Name of the application making the call that caused the event.
Identifier: MQCACF_APPL_NAME.
Datatype: MQCFST.
Maximum length: MQ_APPL_NAME_LENGTH.
Returned: Always.

ObjectQMgrName

Description: Name of the object queue manager.
Identifier: MQCACF_OBJECT_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: If the ObjectName in the object descriptor (MQOD), when the object was

opened, is not the queue manager currently connected.

Note: If the application is a server for clients, the ApplType and ApplName
parameters identify the server, rather than the client.

Alias Base Queue Type Error

Chapter 4. Event message reference 51

Bridge Started (z/OS only)

Event name: Bridge Started.

Reason code in MQCFH: MQRC_BRIDGE_STARTED (2125, X'84D').
Bridge started.

Event description: The IMS bridge has been started.

Event type: IMS Bridge.

Platforms: WebSphere MQ for z/OS only.

Event queue: SYSTEM.ADMIN.CHANNEL.EVENT.

Event data
QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Data type: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

BridgeType

Description: Bridge type.
Identifier: MQIACF_BRIDGE_TYPE.
Data type: MQCFIN.
Values:

MQBT_OTMA
OTMA bridge.

Returned: Always.

BridgeName

Description: Bridge name. For bridges of type MQBT_OTMA, the name is of the form
XCFgroupXCFmember, where XCFgroup is the XCF group name to which
both IMS and WebSphere MQ belong. XCFmember is the XCF member
name of the IMS system.

Identifier: MQCACF_BRIDGE_NAME.
Data type: MQCFST.
Maximum length: MQ_BRIDGE_NAME_LENGTH.
Returned: Always.

Bridge Started

52 Event Monitoring

|

Bridge Stopped (z/OS only)

Event name: Bridge Stopped.

Reason code in MQCFH: MQRC_BRIDGE_STOPPED (2126, X'84E').
Bridge stopped.

Event description: The IMS bridge has been stopped.

Event type: IMS Bridge.

Platforms: WebSphere MQ for z/OS only.

Event queue: SYSTEM.ADMIN.CHANNEL.EVENT.

Event data
QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

ReasonQualifier

Description: Identifier that qualifies the reason code in MQCFH.
Identifier: MQIACF_REASON_QUALIFIER.
Datatype: MQCFIN.
Values:

MQRQ_BRIDGE_STOPPED_OK
Bridge has been stopped with either a zero return code or a
warning return code. For MQBT_OTMA bridges, one side or
the other issued a normal IXCLEAVE request.

MQRQ_BRIDGE_STOPPED_ERROR
Bridge has been stopped but there is an error reported.

Returned: Always.

BridgeType

Description: Bridge type.
Identifier: MQIACF_BRIDGE_TYPE.
Datatype: MQCFIN.
Value:

MQBT_OTMA
OTMA bridge.

Returned: Always.

BridgeName

Description: Bridge name. For bridges of type MQBT_OTMA, the name is of the form
XCFgroupXCFmember, where XCFgroup is the XCF group name to which
both IMS and WebSphere MQ belong. XCFmember is the XCF member
name of the IMS system.

Identifier: MQCACF_BRIDGE_NAME.
Datatype: MQCFST.
Maximum length: MQ_BRIDGE_NAME_LENGTH.
Returned: Always.

Bridge Stopped

Chapter 4. Event message reference 53

|

ErrorIdentifier

Description: When a bridge is stopped due to an error, this code identifies the error.
If the event reports a bridge stop failure, the IMS sense code is set.

Identifier: MQIACF_ERROR_IDENTIFIER.
Datatype: MQCFIN.
Returned: If ReasonQualifier is MQRQ_BRIDGE_STOPPED_ERROR.

Bridge Stopped

54 Event Monitoring

Change object (z/OS only)

Event name: Change object.

Reason code in MQCFH: MQRC_CONFIG_CHANGE_OBJECT (2368, X'940').
Existing object changed.

Event description: An ALTER or DEFINE REPLACE command or an MQSET call was issued that
successfully changed an existing object.

Event type: Configuration.

Platforms: WebSphere MQ for z/OS.

Event queue: SYSTEM.ADMIN.CONFIG.EVENT.

Note: Two event messages are generated for the change object event. The first has
the object attribute values before the change, the second has the attribute
values after the change.

Event data
EventUserId

Description: The user id that issued the command or call that generated the event.
(This is the same user id that is used to check the authority to issue the
command or call; for commands received from a queue, this is also the
user identifier (UserIdentifier) from the MD of the command message).

Identifier: MQCACF_EVENT_USER_ID.
Datatype: MQCFST.
Maximum length: MQ_USER_ID_LENGTH.
Returned: Always.

EventOrigin

Description: The origin of the action causing the event.
Identifier: MQIACF_EVENT_ORIGIN.
Datatype: MQCFIN.
Values:

MQEVO_CONSOLE
Console.

MQEVO_INIT
Initialization input data set.

MQEVO_MSG
Message on SYSTEM.COMMAND.INPUT.

MQEVO_MQSET
MQSET call.

MQEVO_INTERNAL
Directly by queue manager.

MQEVO_OTHER
None of the above.

Returned: Always.

Change object

Chapter 4. Event message reference 55

|

|

|

|

|

|

|
|

|
|

|
|

|
|

|
|
||
|

EventQMgr

Description: The queue manager where the command or call was entered. (The
queue manager where the command is executed and that generates the
event is in the MD of the event message).

Identifier: MQCACF_EVENT_Q_MGR.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

EventAccountingToken

Description: For commands received as a message (MQEVO_MSG), the accounting
token (AccountingToken) from the MD of the command message.

Identifier: MQBACF_EVENT_ACCOUNTING_TOKEN.
Datatype: MQCFBS.
Maximum length: MQ_ACCOUNTING_TOKEN_LENGTH.
Returned: Only if EventOrigin is MQEVO_MSG.

EventApplIdentity

Description: For commands received as a message (MQEVO_MSG), application
identity data (ApplIdentityData) from the MD of the command message.

Identifier: MQCACF_EVENT_APPL_IDENTITY.
Datatype: MQCFST.
Maximum length: MQ_APPL_IDENTITY_DATA_LENGTH.
Returned: Only if EventOrigin is MQEVO_MSG.

EventApplType

Description: For commands received as a message (MQEVO_MSG), the type of
application (PutApplType) from the MD of the command message.

Identifier: MQIACF_EVENT_APPL_TYPE.
Datatype: MQCFIN.
Returned: Only if EventOrigin is MQEVO_MSG.

EventApplName

Description: For commands received as a message (MQEVO_MSG), the name of the
application (PutApplName) from the MD of the command message.

Identifier: MQCACF_EVENT_APPL_NAME.
Datatype: MQCFST.
Maximum length: MQ_APPL_NAME_LENGTH.
Returned: Only if EventOrigin is MQEVO_MSG.

EventApplOrigin

Description: For commands received as a message (MQEVO_MSG), the application
origin data (ApplOriginData) from the MD of the command message.

Identifier: MQCACF_EVENT_APPL_ORIGIN.
Datatype: MQCFST.
Maximum length: MQ_APPL_ORIGIN_DATA_LENGTH.
Returned: Only if EventOrigin is MQEVO_MSG.

Change object

56 Event Monitoring

|

|||
|
|
||
||
||
||
|

|

|||
|
||
||
||
||
|

|

|||
|
||
||
||
||
|

|

|||
|
||
||
||
|

|

|||
|
||
||
||
||
|

|

|||
|
||
||
||
||
|

ObjectType

Description: Object type:
Identifier: MQIACF_OBJECT_TYPE.
Datatype: MQCFIN.
Values:

MQOT_CHANNEL
Channel.

MQOT_NAMELIST
Namelist.

MQOT_PROCESS
Process.

MQOT_Q
Queue.

MQOT_STORAGE_CLASS
Storage class.

MQOT_Q_MGR
Queue manager.

MQOT_AUTH_INFO
Authentication information.

MQOT_CF_STRUC
CF structure.

Returned: Always.

ObjectName

Description: Object name:
Identifier : Identifier will be according to object type.

v MQCACH_CHANNEL_NAME

v MQCA_NAMELIST_NAME

v MQCA_PROCESS_NAME

v MQCA_Q_NAME

v MQCA_STORAGE_CLASS

v MQCA_Q_MGR_NAME

v MQCA_AUTH_INFO_NAME

v MQCA_CF_STRUC_NAME
Datatype: MQCFST.
Maximum length: MQ_OBJECT_NAME_LENGTH.
Returned: Always

Disposition

Description: Object disposition:
Identifier: MQIA_QSG_DISP.
Datatype: MQCFIN.

Change object

Chapter 4. Event message reference 57

|

|||
||
||
|
|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
||
|

|

|||
||

|

|

|

|

|

|

|

|
||
||
||
|

|

|||
||
||

Values:
MQQSGD_Q_MGR

Object resides on page set of queue manager.

MQQSGD_SHARED
Object resides in shared repository and messages are shared in
coupling facility.

MQQSGD_GROUP
Object resides in shared repository.

MQQSGD_COPY
Object resides on page set of queue manager and is a local copy
of a GROUP object.

Returned: Always, except for queue manager and CF structure objects.

Object attributes
A parameter structure is returned for each attribute of the object. The attributes
returned depend on the object type. For more information see Appendix D, “Event
data for object attributes”, on page 167

Change object

58 Event Monitoring

|
|
|

|
|
|

|
|

|
|
|
||
|

|
|
|
|

Channel Activated

Event name: Channel Activated.

Reason code in MQCFH: MQRC_CHANNEL_ACTIVATED (2295, X'8F7').
Channel activated.

Event description: This condition is detected when a channel that has been waiting to become active,
and for which a Channel Not Activated event has been generated, is now able to
become active, because an active slot has been released by another channel.

This event is not generated for a channel that is able to become active without
waiting for an active slot to be released.

Event type: Channel.

Platforms: All, except WebSphere MQ for z/OS if CICS is used for distributed queue
management.

Event queue: SYSTEM.ADMIN.CHANNEL.EVENT.

Event data
QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

ChannelName

Description: Channel Name.
Identifier: MQCACH_CHANNEL_NAME.
Datatype: MQCFST.
Maximum length: MQ_CHANNEL_NAME_LENGTH.
Returned: Always.

XmitQName

Description: Transmission queue name.
Identifier: MQCACH_XMIT_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: For sender, server, cluster-sender, and cluster-receiver channels only.

ConnectionName

Description: If the channel has successfully established a TCP connection, this is the
Internet address. Otherwise it is the contents of the ConnectionName field
in the channel definition.

Identifier: MQCACH_CONNECTION_NAME.
Datatype: MQCFST.
Maximum length: MQ_CONN_NAME_LENGTH.
Returned: Only for commands that do not contain a generic name.

Channel Activated

Chapter 4. Event message reference 59

Channel Auto-definition Error

Event name: Channel Auto-definition Error.

Reason code in MQCFH: MQRC_CHANNEL_AUTO_DEF_ERROR (2234, X'8BA').
Automatic channel definition failed.

Event description: This condition is detected when the automatic definition of a channel fails; this
may be because an error occurred during the definition process, or because the
channel automatic-definition exit inhibited the definition. Additional information
indicating the reason for the failure is returned in the event message.

Event type: Channel.

Platforms: Any MQSeries Version 5 product or later release, except WebSphere MQ for z/OS
when using CICS for distributed queuing.

Event queue: SYSTEM.ADMIN.CHANNEL.EVENT.

Event data
QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

ChannelName

Description: Name of the channel for which the auto-definiton has failed.
Identifier: MQCACH_CHANNEL_NAME.
Datatype: MQCFST.
Maximum length: MQ_CHANNEL_NAME_LENGTH.
Returned: Always.

ChannelType

Description: Channel Type. This specifies the type of channel for which the
auto-definition has failed.

Identifier: MQIACH_CHANNEL_TYPE.
Datatype: MQCFIN.
Values:

MQCHT_RECEIVER
Receiver.

MQCHT_SVRCONN
Server-connection (for use by clients).

MQCHT_CLUSSDR
Cluster-sender.

Returned: Always.

ErrorIdentifier

Description: Identifier of the cause of the error. This contains either the reason code
(MQRC_* or MQRCCF_*) resulting from the channel definition attempt
or the value MQRCCF_SUPPRESSED_BY_EXIT if the attempt to create
the definition was disallowed by the exit.

Identifier: MQIACF_ERROR_IDENTIFIER.

Channel Auto-definition Error

60 Event Monitoring

|

Datatype: MQCFIN.
Returned: Always.

ConnectionName

Description: Name of the partner attempting to establish connection.
Identifier: MQCACH_CONNECTION_NAME.
Datatype: MQCFST.
Maximum length: MQ_CONN_NAME_LENGTH.
Returned: Always.

AuxErrorDataInt1

Description: Auxiliary error data. This contains the value returned by the exit in the
Feedback field of the MQCXP to indicate why the auto definition has
been disallowed.

Identifier: MQIACF_AUX_ERROR_DATA_INT_1.
Datatype: MQCFIN.
Returned: Only if ErrorIdentifier contains MQRCCF_SUPPRESSED_BY_EXIT.

Channel Auto-definition Error

Chapter 4. Event message reference 61

Channel Auto-definition OK

Event name: Channel Auto-definition OK.

Reason code in MQCFH: MQRC_CHANNEL_AUTO_DEF_OK (2233, X'8B9').
Automatic channel definition succeeded.

Event description: This condition is detected when the automatic definition of a channel is successful.
The channel is defined by the MCA.

Event type: Channel.

Platforms: Any MQSeries Version 5 product or later release, except WebSphere MQ for z/OS
when using CICS for distributed queuing.

Event queue: SYSTEM.ADMIN.CHANNEL.EVENT.

Event data
QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

ChannelName

Description: Name of the channel being defined.
Identifier: MQCACH_CHANNEL_NAME.
Datatype: MQCFST.
Maximum length: MQ_CHANNEL_NAME_LENGTH.
Returned: Always.

ChannelType

Description: Type of channel being defined.
Identifier: MQIACH_CHANNEL_TYPE.
Datatype: MQCFIN.
Values:

MQCHT_RECEIVER
Receiver.

MQCHT_SVRCONN
Server-connection (for use by clients).

MQCHT_CLUSSDR
Cluster-sender.

Returned: Always.

ConnectionName

Description: Name of the partner attempting to establish connection.
Identifier: MQCACH_CONNECTION_NAME.
Datatype: MQCFST.
Maximum length: MQ_CONN_NAME_LENGTH.
Returned: Always.

Channel Auto-definition OK

62 Event Monitoring

Channel Conversion Error

Event name: Channel Conversion Error.

Reason code in MQCFH: MQRC_CHANNEL_CONV_ERROR (2284, X'8EC').
Channel conversion error.

Event description: This condition is detected when a channel is unable to carry out data conversion
and the MQGET call to get a message from the transmission queue resulted in a
data conversion error. The reason for the failure is identified by
ConversionReasonCode.

Event type: Channel.

Platforms: All, except WebSphere MQ for z/OS if CICS is used for distributed queue
management.

Event queue: SYSTEM.ADMIN.CHANNEL.EVENT.

Note: MQSeries for Windows V2.1 does not define the channel event queue for
you, so the default action is not to generate channel events. This is because,
once you have defined a channel event queue, you cannot stop channel
event messages being generated. If you want WebSphere MQ to generate
channel events, you must define the channel event queue yourself using the
name SYSTEM.ADMIN.CHANNEL.EVENT.

Event data
QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

ConversionReasonCode

Description: Identifier of the cause of the conversion error.
Identifier: MQIACF_CONV_REASON_CODE.
Datatype: MQCFIN.

Channel Conversion Error

Chapter 4. Event message reference 63

Values:
MQRC_CONVERTED_MSG_TOO_BIG (2120, X'848')

Converted message too big for application buffer.

MQRC_FORMAT_ERROR (2110, X'83E')
Message format not valid.

MQRC_NOT_CONVERTED (2119, X'847')
Application message data not converted.

MQRC_SOURCE_CCSID_ERROR (2111, X'83F')
Source coded character set identifier not valid.

MQRC_SOURCE_DECIMAL_ENC_ERROR (2113, X'841')
Packed-decimal encoding in message not recognized.

MQRC_SOURCE_FLOAT_ENC_ERROR (2114, X'842')
Floating-point encoding in message not recognized.

MQRC_SOURCE_INTEGER_ENC_ERROR (2112, X'840')
Integer encoding in message not recognized.

MQRC_TARGET_CCSID_ERROR (2115, X'843')
Target coded character set identifier not valid.

MQRC_TARGET_DECIMAL_ENC_ERROR (2117, X'845')
Packed-decimal encoding specified by receiver not recognized.

MQRC_TARGET_FLOAT_ENC_ERROR (2118, X'846')
Floating-point encoding specified by receiver not recognized.

MQRC_TARGET_INTEGER_ENC_ERROR (2116, X'844')
Integer encoding specified by receiver not recognized.

MQRC_TRUNCATED_MSG_ACCEPTED (2079, X'81F')
Truncated message returned (processing completed).

MQRC_TRUNCATED_MSG_FAILED (2080, X'820')
Truncated message returned (processing not completed).

Returned: Always.

ChannelName

Description: Channel name.
Identifier: MQCACH_CHANNEL_NAME.
Datatype: MQCFST.
Maximum length: MQ_CHANNEL_NAME_LENGTH.
Returned: Always.

Format

Description: Format name.
Identifier: MQCACH_FORMAT_NAME.
Datatype: MQCFST.
Maximum length: MQ_FORMAT_LENGTH.
Returned: Always.

XmitQName

Description: Transmission queue name.
Identifier: MQCACH_XMIT_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

Channel Conversion Error

64 Event Monitoring

ConnectionName

Description: If the channel has successfully established a TCP connection, this is the
Internet address. Otherwise it is the contents of the ConnectionName field
in the channel definition.

Identifier: MQCACH_CONNECTION_NAME.
Datatype: MQCFST.
Maximum length: MQ_CONN_NAME_LENGTH.
Returned: Always.

Channel Conversion Error

Chapter 4. Event message reference 65

Channel Not Activated

Event name: Channel Not Activated.

Reason code in MQCFH: MQRC_CHANNEL_NOT_ACTIVATED (2296, X'8F8').
Channel cannot be activated.

Event description: This condition is detected when a channel is required to become active, either
because it is starting, or because it is about to make another attempt to establish
connection with its partner. However, it is unable to do so because the limit on the
number of active channels has been reached. See the:

v MaxActiveChannels parameter in the qm.ini file for OS/2, AIX, HP-UX, and
Solaris

v MaxActiveChannels parameter in the Registry for Windows NT

v ACTCHL parameter in CSQXPARM for z/OS

The channel waits until it is able to take over an active slot released when another
channel ceases to be active. At that time a Channel Activated event is generated.

Event type: Channel.

Platforms: All, except WebSphere MQ for z/OS if CICS is used for distributed queue
management.

Event queue: SYSTEM.ADMIN.CHANNEL.EVENT.

Note: MQSeries for Windows V2.1 does not define the channel event queue for
you, so the default action is not to generate channel events. This is because,
once you have defined a channel event queue, you cannot stop channel
event messages being generated. If you want WebSphere MQ to generate
channel events, you must define the channel event queue yourself using the
name SYSTEM.ADMIN.CHANNEL.EVENT.

Event data
QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

ChannelName

Description: Channel name.
Identifier: MQCACH_CHANNEL_NAME.
Datatype: MQCFST.
Maximum length: MQ_CHANNEL_NAME_LENGTH.
Returned: Always.

XmitQName

Description: Transmission queue name.
Identifier: MQCACH_XMIT_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.

Channel Not Activated

66 Event Monitoring

|

Returned: For sender, server, cluster-sender, and cluster-receiver channel types
only.

ConnectionName

Description: If the channel has successfully established a TCP connection, this is the
Internet address. Otherwise it is the contents of the ConnectionName field
in the channel definition.

Identifier: MQCACH_CONNECTION_NAME.
Datatype: MQCFST.
Maximum length: MQ_CONN_NAME_LENGTH.
Returned: Only for commands that do not contain a generic name.

Channel Not Activated

Chapter 4. Event message reference 67

Channel SSL Error

Event name: Channel SSL Error.

Reason code in MQCFH: MQRC_CHANNEL_SSL_ERROR (2371, X'943').
Channel SSL Error.

Event description: This condition is detected when a channel using Secure Sockets Layer (SSL) fails to
establish an SSL connection. ReasonQualifier identifies the nature of the error.

Event type: SSL.

Platforms: v WebSphere MQ for AIX

v WebSphere MQ for HP-UX

v WebSphere MQ for iSeries

v WebSphere MQ for Linux

v WebSphere MQ for Solaris

v WebSphere MQ for Windows

v WebSphere MQ for z/OS

Event queue: SYSTEM.ADMIN.CHANNEL.EVENT.

Event data
QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

ReasonQualifier

Description: Identifier that qualifies the reason code.
Identifier: MQIACF_REASON_QUALIFIER.
Datatype: MQCFIN.
Values:

MQRQ_SSL_HANDSHAKE_ERROR
The key exchange / authentication failure arose during the SSL
handshake.

MQRQ_SSL_CIPHER_SPEC_ERROR
This error can mean any one of the following:

v The SSL client CipherSpec does not match that on the SSL
server channel definition.

v An invalid CipherSpec has been specified.

v A CipherSpec has only been specified on one end of the SSL
channel.

MQRQ_SSL_PEER_NAME_ERROR
The Distinguished Name in the certificate sent by one end of
the SSL channel does not match the peer name on the end of
the channel definition at the other end of the SSL channel.

MQRQ_SSL_CLIENT_AUTH_ERROR
The SSL server channel definition specified either
SSLCAUTH(REQUIRED) or a SSLPEER value that was not
blank, but the SSL client did not provide a certificate.

Returned: Always.

Channel SSL Error

68 Event Monitoring

|

|||

||
|

||
|

||

||

|

|

|

|

|

|

||
|

|

|

|||
||
||
||
||
|

|

|||
||
||
|
|
|
|

|
|

|
|

|

|
|

|
|
|
|

|
|
|
|
||

ChannelName

Description: Channel Name.
Identifier: MQCACH_CHANNEL_NAME.
Datatype: MQCFST.
Maximum length: MQ_CHANNEL_NAME_LENGTH.
Returned: The ChannelName may not be available if the channel has not yet got far

enough through its start-up process, in this case the channel name will
not be returned. Otherwise always.

XmitQName

Description: Transmission queue name.
Identifier: MQCACH_XMIT_Q_NAME.
Datatype: MQCFST.
Returned: For sender, server, cluster-sender and cluster-receiver channels only.

ConnectionName

Description: If the channel has successfully established a TCP connection, this is the
Internet address. Otherwise it is the contents of the ConnectionName
field in the channel definition.

Identifier: MQCACH_CONNECTION_NAME.
Datatype: MQCFST.
Maximum length: MQ_CONN_NAME_LENGTH.
Returned: The ConnectionName may not be available if the channel has not yet got

far enough through its start-up process, in this case the connection name
will not be returned. Otherwise always.

SSLHandshakeStage

Description: The name of the SSL function call giving the error, or on Windows, a
description of the error is given in some cases. Details of these function
names for specific platforms can be found as follows:

v For z/OS, see the System Secure Sockets Layer Programming Guide and
Reference, SC24-5877.

v For other platforms, see WebSphere MQ Messages, GC34-6057.

v For Windows, when the text consists of a description of the error, no
further information is available.

Identifier: MQCACH_SSL_HANDSHAKE_STAGE.
Datatype: MQCFST.
Maximum length: MQ_SSL_HANDSHAKE_STAGE_LENGTH.
Returned: This field is only present if ReasonQualifier is set to

MQRQ_SSL_HANDSHAKE_ERROR.

Channel SSL Error

Chapter 4. Event message reference 69

|

|

|||
||
||
||
||
|
|
|

|

|||
||
||
||
|

|

|||
|
|
||
||
||
||
|
|
|

|

|||
|
|

|
|

|

|
|
||
||
||
||
|
|

SSLReturnCode

Description: A numeric return code from a failing SSL call.

On Windows, if the SSLHandshakeStage contains a description of the
error, the numeric return code will be an MQRC_* value.

Details of SSL Return Codes for specific platforms can be found as
follows:

v For z/OS, see WebSphere MQ for z/OS Messages and Codes, GC34-6056.

v For other platforms, see WebSphere MQ Messages, GC34-6057.

v For Windows, if the return code is an MQRC_* value see the
WebSphere MQ Application Programming Reference, SC34-6062.

Identifier: MQIACH_SSL_RETURN_CODE.
Datatype: MQCFIN.
Returned: This field is only present if ReasonQualifier is set to

MQRQ_SSL_HANDSHAKE_ERROR.

SSLPeerName

Description: The Distinguished Name in the certificate sent from the remote system.
Identifier: MQCACH_SSL_PEER_NAME.
Datatype: MQCFST.
Maximum length: MQ_DISTINGUISHED_NAME_LENGTH.
Returned: This field is only present if ReasonQualifier is set to

MQRQ_SSL_PEER_NAME_ERROR and is not always present for this
reason qualifier.

Channel SSL Error

70 Event Monitoring

|

|||

|
|

|
|

|

|

|
|
||
||
||
|
|

|

|||
||
||
||
||
|
|
|

|

Channel Started

Event name: Channel Started.

Reason code in MQCFH: MQRC_CHANNEL_STARTED (2282, X'8EA').
Channel started.

Event description: Either an operator has issued a Start Channel command, or an instance of a
channel has been successfully established. This condition is detected when Initial
Data negotiation is complete and resynchronization has been performed where
necessary, such that message transfer can proceed.

Event type: Channel.

Platforms: All, except WebSphere MQ for z/OS if CICS is used for distributed queue
management. Client connections do not produce this event.

Event queue: SYSTEM.ADMIN.CHANNEL.EVENT.

Note: MQSeries for Windows V2.1 does not define the channel event queue for
you, so the default action is not to generate channel events. This is because,
once you have defined a channel event queue, you cannot stop channel
event messages being generated. If you want WebSphere MQ to generate
channel events, you must define the channel event queue yourself using the
name SYSTEM.ADMIN.CHANNEL.EVENT.

Event data
QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

ChannelName

Description: Channel name.
Identifier: MQCACH_CHANNEL_NAME.
Datatype: MQCFST.
Maximum length: MQ_CHANNEL_NAME_LENGTH.
Returned: Always.

XmitQName

Description: Transmission queue name.
Identifier: MQCACH_XMIT_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: For sender, server, cluster-sender, and cluster-receiver channels only.

ConnectionName

Description: If the channel has successfully established a TCP connection, this is the
Internet address. Otherwise it is the contents of the ConnectionName field
in the channel definition.

Identifier: MQCACH_CONNECTION_NAME.

Channel Started

Chapter 4. Event message reference 71

Datatype: MQCFST.
Maximum length: MQ_CONN_NAME_LENGTH.
Returned: Only for commands that do not contain a generic name.

Channel Started

72 Event Monitoring

Channel Stopped

Event name: Channel Stopped.

Reason code in MQCFH: MQRC_CHANNEL_STOPPED (2283, X'8EB').
Channel stopped.

Event description: This is issued when a channel instance stops. It will only be issued if the channel
instance previously issued a channel started event.

Event type: Channel.

Platforms: All, except WebSphere MQ for z/OS if CICS is used for distributed queue
management. Client connections on WebSphere MQ for z/OS, or MQSeries
Version 5 products do not produce this event.

Event queue: SYSTEM.ADMIN.CHANNEL.EVENT.

Note: MQSeries for Windows V2.1 does not define the channel event queue for
you, so the default action is not to generate channel events. This is because,
once you have defined a channel event queue, you cannot stop channel
event messages being generated. If you want WebSphere MQ to generate
channel events, you must define the channel event queue yourself using the
name SYSTEM.ADMIN.CHANNEL.EVENT.

Event data
QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

ReasonQualifier

Description: Identifier that qualifies the reason code.
Identifier: MQIACF_REASON_QUALIFIER.
Datatype: MQCFIN.
Values:

MQRQ_CHANNEL_STOPPED_OK
Channel has been closed with either a zero return code or a
warning return code.

MQRQ_CHANNEL_STOPPED_ERROR
Channel has been closed but there is an error reported and the
channel is not in stopped or retry state.

MQRQ_CHANNEL_STOPPED_RETRY
Channel has been closed and it is in retry state.

MQRQ_CHANNEL_STOPPED_DISABLED
Channel has been closed and it is in a stopped state.

Returned: Always.

ChannelName

Description: Channel name.
Identifier: MQCACH_CHANNEL_NAME.
Datatype: MQCFST.

Channel Stopped

Chapter 4. Event message reference 73

|

Maximum length: MQ_CHANNEL_NAME_LENGTH.
Returned: Always.

ErrorIdentifier

Description: Identifier of the cause of the error. If a channel is stopped due to an
error, this is the code that identifies the error. If the event message is
because of a channel stop failure, the following fields are set:
1. ReasonQualifier, containing the value

MQRQ_CHANNEL_STOPPED_ERROR
2. ErrorIdentifier, containing the code number of an error message

that describes the error
3. AuxErrorDataInt1, containing error message integer insert 1
4. AuxErrorDataInt2, containing error message integer insert 2
5. AuxErrorDataStr1, containing error message string insert 1
6. AuxErrorDataStr2, containing error message string insert 2
7. AuxErrorDataStr3, containing error message string insert 3

The meanings of the error message inserts depend on the code number
of the error message. Details of error-message code numbers and the
inserts for specific platforms can be found as follows:

v For z/OS, see the section “Distributed queuing message codes” in the
WebSphere MQ for z/OS Messages and Codes book.

v For other platforms, the last four digits of ErrorIdentifier when
displayed in hexadecimal notation indicate the decimal code number
of the error message.

For example, if ErrorIdentifier has the value X'xxxxyyyy', the
message code of the error message explaining the error is AMQyyyy.
See the WebSphere MQ Messages book for a description of these error
messages.

Identifier: MQIACF_ERROR_IDENTIFIER.
Datatype: MQCFIN.
Returned: Always.

AuxErrorDataInt1

Description: First integer of auxiliary error data for channel errors. If a channel is
stopped due to an error, this is the first integer parameter that qualifies
the error. This information is for use by IBM service personnel; include it
in any problem report that you submit to IBM regarding this event
message.

Identifier: MQIACF_AUX_ERROR_DATA_INT_1.
Datatype: MQCFIN.
Returned: Always.

AuxErrorDataInt2

Description: Second integer of auxiliary error data for channel errors. If a channel is
stopped due to an error, this is the second integer parameter that
qualifies the error. This information is for use by IBM service personnel;
include it in any problem report that you submit to IBM regarding this
event message.

Identifier: MQIACF_AUX_ERROR_DATA_INT_2.
Datatype: MQCFIN.
Returned: Always.

Channel Stopped

74 Event Monitoring

AuxErrorDataStr1

Description: First string of auxiliary error data for channel errors. If a channel is
stopped due to an error, this is the first string parameter that qualifies
the error. This information is for use by IBM service personnel; include it
in any problem report that you submit to IBM regarding this event
message.

Identifier: MQCACF_AUX_ERROR_DATA_STR_1.
Datatype: MQCFST.
Returned: Always.

AuxErrorDataStr2

Description: Second string of auxiliary error data for channel errors. If a channel is
stopped due to an error, this is the second string parameter that qualifies
the error. This information is for use by IBM service personnel; include it
in any problem report that you submit to IBM regarding this event
message.

Identifier: MQCACF_AUX_ERROR_DATA_STR_2.
Datatype: MQCFST.
Returned: Always.

AuxErrorDataStr3

Description: Third string of auxiliary error data for channel errors. If a channel is
stopped due to an error, this is the third string parameter that qualifies
the error. This information is for use by IBM service personnel; include it
in any problem report that you submit to IBM regarding this event
message.

Identifier: MQCACF_AUX_ERROR_DATA_STR_3.
Datatype: MQCFST.
Returned: Always.

XmitQName

Description: Transmission queue name.
Identifier: MQCACH_XMIT_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: For sender, server, cluster-sender, and cluster-receiver channels only.

ConnectionName

Description: If the channel has successfully established a TCP connection, this is the
Internet address. Otherwise it is the contents of the ConnectionName field
in the channel definition.

Identifier: MQCACH_CONNECTION_NAME.
Datatype: MQCFST.
Maximum length: MQ_CONN_NAME_LENGTH.
Returned: Only for commands that do not contain a generic name.

Channel Stopped

Chapter 4. Event message reference 75

Channel Stopped By User

Event name: Channel Stopped By User.

Reason code in MQCFH: MQRC_CHANNEL_STOPPED_BY_USER (2279, X'8E7').
Channel stopped by user.

Event description: This is issued when a user issues a STOP CHL command. ReasonQualifier
identifies the reasons for stopping.

Event type: Channel.

Platforms: All, except MQSeries for Compaq NonStop Kernel, MQSeries for Compaq Tru64
UNIX, or WebSphere MQ for z/OS if CICS is used for distributed queue
management.

Event queue: SYSTEM.ADMIN.CHANNEL.EVENT.

Event data
QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

ReasonQualifier

Description: Identifier that qualifies the reason code.
Identifier: MQIACF_REASON_QUALIFIER.
Datatype: MQCFIN.
Values:

MQRQ_CHANNEL_STOPPED_DISABLED
Channel has been closed and it is in a stopped state.

Returned: Always.

ChannelName

Description: Channel name.
Identifier: MQCACH_CHANNEL_NAME.
Datatype: MQCFST.
Maximum length: MQ_CHANNEL_NAME_LENGTH.
Returned: Always.

ErrorIdentifier

Description: Identifier of the cause of the error. As the event message is generated by
a Stop Channel command and not a channel error, the following fields
are set:
1. ReasonQualifier, containing the same value as in the

ReasonQualifier(MQCFIN) field.
2. AuxErrorDataInt1, containing zeros
3. AuxErrorDataInt2, containing zeros
4. AuxErrorDataStr1, containing zeros
5. AuxErrorDataStr2, containing zeros
6. AuxErrorDataStr3, containing zeros

Identifier: MQIACF_ERROR_IDENTIFIER.
Datatype: MQCFIN.

Channel Stopped By User

76 Event Monitoring

|

||
|
|

Returned: Always.

XmitQName

Description: Transmission queue name.
Identifier: MQCACH_XMIT_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: For sender, server, cluster-sender, and cluster-receiver channels only.

ConnectionName

Description: If the channel has successfully established a TCP connection, this is the
Internet address. Otherwise it is the contents of the ConnectionName field
in the channel definition.

Identifier: MQCACH_CONNECTION_NAME.
Datatype: MQCFST.
Maximum length: MQ_CONN_NAME_LENGTH.
Returned: Only for commands that do not contain a generic name.

Channel Stopped By User

Chapter 4. Event message reference 77

Create object (z/OS only)

Event name: Create object.

Reason code in MQCFH: MQRC_CONFIG_CREATE_OBJECT (2367, X'93F').
New object created.

Event description: A DEFINE or DEFINE REPLACE command was issued which successfully created
a new object.

Event type: Configuration.

Platforms: WebSphere MQ for z/OS.

Event queue: SYSTEM.ADMIN.CONFIG.EVENT.

Event data
EventUserId

Description: The user id that issued the command or call that generated the event.
(This is the same user id that is used to check the authority to issue the
command or call; for commands received from a queue, this is also the
user identifier (UserIdentifier) from the MD of the command message).

Identifier: MQCACF_EVENT_USER_ID.
Datatype: MQCFST.
Maximum length: MQ_USER_ID_LENGTH.
Returned: Always.

EventOrigin

Description: The origin of the action causing the event.
Identifier: MQIACF_EVENT_ORIGIN.
Datatype: MQCFIN.
Values:

MQEVO_CONSOLE
Console.

MQEVO_INIT
Initialization input data set.

MQEVO_MSG
Message on SYSTEM.COMMAND.INPUT.

MQEVO_MQSET
MQSET call.

MQEVO_INTERNAL
Directly by queue manager.

MQEVO_OTHER
None of the above.

Returned: Always.

EventQMgr

Description: The queue manager where the command or call was entered. (The
queue manager where the command is executed and that generates the
event is in the MD of the event message).

Identifier: MQCACF_EVENT_Q_MGR.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.

Create object

78 Event Monitoring

|

||
|

||
|

||

||

||
|

|

|

|||
|
|
|
||
||
||
||
|

|

|||
||
||
|
|
|

|
|

|
|

|
|

|
|

|
|
||
|

|

|||
|
|
||
||
||

Returned: Always.

EventAccountingToken

Description: For commands received as a message (MQEVO_MSG), the accounting
token (AccountingToken) from the MD of the command message.

Identifier: MQBACF_EVENT_ACCOUNTING_TOKEN.
Datatype: MQCFBS.
Maximum length: MQ_ACCOUNTING_TOKEN_LENGTH.
Returned: Only if EventOrigin is MQEVO_MSG.

EventApplIdentity

Description: For commands received as a message (MQEVO_MSG), application
identity data (ApplIdentityData) from the MD of the command message.

Identifier: MQCACF_EVENT_APPL_IDENTITY.
Datatype: MQCFST.
Maximum length: MQ_APPL_IDENTITY_DATA_LENGTH.
Returned: Only if EventOrigin is MQEVO_MSG.

EventApplType

Description: For commands received as a message (MQEVO_MSG), the type of
application (PutApplType) from the MD of the command message.

Identifier: MQIACF_EVENT_APPL_TYPE.
Datatype: MQCFIN.
Returned: Only if EventOrigin is MQEVO_MSG.

EventApplName

Description: For commands received as a message (MQEVO_MSG), the name of the
application (PutApplName) from the MD of the command message.

Identifier: MQCACF_EVENT_APPL_NAME.
Datatype: MQCFST.
Maximum length: MQ_APPL_NAME_LENGTH.
Returned: Only if EventOrigin is MQEVO_MSG.

EventApplOrigin

Description: For commands received as a message (MQEVO_MSG), the application
origin data (ApplOriginData) from the MD of the command message.

Identifier: MQCACF_EVENT_APPL_ORIGIN.
Datatype: MQCFST.
Maximum length: MQ_APPL_ORIGIN_DATA_LENGTH.
Returned: Only if EventOrigin is MQEVO_MSG.

ObjectType

Description: Object type:
Identifier: MQIACF_OBJECT_TYPE.
Datatype: MQCFIN.

Create object

Chapter 4. Event message reference 79

||
|

|

|||
|
||
||
||
||
|

|

|||
|
||
||
||
||
|

|

|||
|
||
||
||
|

|

|||
|
||
||
||
||
|

|

|||
|
||
||
||
||
|

|

|||
||
||

Values:
MQOT_CHANNEL

Channel.

MQOT_NAMELIST
Namelist.

MQOT_PROCESS
Process.

MQOT_Q
Queue.

MQOT_STORAGE_CLASS
Storage class.

MQOT_Q_MGR
Queue manager.

MQOT_AUTH_INFO
Authentication information.

MQOT_CF_STRUC
CF structure.

Returned: Always.

ObjectName

Description: Object name:
Identifier : Identifier will be according to object type.

v MQCACH_CHANNEL_NAME

v MQCA_NAMELIST_NAME

v MQCA_PROCESS_NAME

v MQCA_Q_NAME

v MQCA_STORAGE_CLASS

v MQCA_Q_MGR_NAME

v MQCA_AUTH_INFO_NAME

v MQCA_CF_STRUC_NAME
Datatype: MQCFST.
Maximum length: MQ_OBJECT_NAME_LENGTH.
Returned: Always

Disposition

Description: Object disposition:
Identifier: MQIA_QSG_DISP.
Datatype: MQCFIN.
Values:

MQQSGD_Q_MGR
Object resides on page set of queue manager.

MQQSGD_SHARED
Object resides in shared repository and messages are shared in
coupling facility.

MQQSGD_GROUP
Object resides in shared repository.

MQQSGD_COPY
Object resides on page set of queue manager and is a local copy
of a GROUP object.

Returned: Always, except for queue manager and CF structure objects.

Create object

80 Event Monitoring

|
|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
||
|

|

|||
||

|

|

|

|

|

|

|

|
||
||
||
|

|

|||
||
||
|
|
|

|
|
|

|
|

|
|
|
||

Object attributes
A parameter structure is returned for each attribute of the object. The attributes
returned depend on the object type. For more information see Appendix D, “Event
data for object attributes”, on page 167

Create object

Chapter 4. Event message reference 81

|

|
|
|
|

Default Transmission Queue Type Error

Event name: Default Transmission Queue Type Error.

Reason code in MQCFH: MQRC_DEF_XMIT_Q_TYPE_ERROR (2198, X'896').
Default transmission queue not local.

Event description: An MQOPEN or MQPUT1 call was issued specifying a remote queue as the
destination. Either a local definition of the remote queue was specified, or a
queue-manager alias was being resolved, but in either case the XmitQName attribute
in the local definition is blank.

No transmission queue is defined with the same name as the destination queue
manager, so the local queue manager has attempted to use the default
transmission queue. However, although there is a queue defined by the
DefXmitQName queue-manager attribute, it is not a local queue. See the WebSphere
MQ Application Programming Guide for more information.

Event type: Remote.

Platforms: All.

Event queue: SYSTEM.ADMIN.QMGR.EVENT.

Event data
QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

QName

Description: Queue name from object descriptor (MQOD).
Identifier: MQCA_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

XmitQName

Description: Default transmission queue name.
Identifier: MQCA_XMIT_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

QType

Description: Type of default transmission queue.
Identifier: MQIA_Q_TYPE.
Datatype: MQCFIN.

Default Transmission Queue Type Error

82 Event Monitoring

Values:
MQQT_ALIAS

Alias queue definition.

MQQT_REMOTE
Local definition of a remote queue.

Returned: Always.

ApplType

Description: Type of application making the MQI call that caused the event.
Identifier: MQIA_APPL_TYPE.
Datatype: MQCFIN.
Returned: Always.

ApplName

Description: Name of the application making the MQI call that caused the event.
Identifier: MQCACF_APPL_NAME.
Datatype: MQCFST.
Maximum length: MQ_APPL_NAME_LENGTH.
Returned: Always.

ObjectQMgrName

Description: Name of the object queue manager.
Identifier: MQCACF_OBJECT_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: If the ObjectName in the object descriptor (MQOD), when the object was

opened, is not the queue manager currently connected.

Note: If the application is a server for clients, the ApplType and ApplName
parameters identify the server, not the client.

Default Transmission Queue Type Error

Chapter 4. Event message reference 83

Default Transmission Queue Usage Error

Event name: Default Transmission Queue Usage Error.

Reason code in MQCFH: MQRC_DEF_XMIT_Q_USAGE_ERROR (2199, X'897').
Default transmission queue usage error.

Event description: An MQOPEN or MQPUT1 call was issued specifying a remote queue as the
destination. Either a local definition of the remote queue was specified, or a
queue-manager alias was being resolved, but in either case the XmitQName attribute
in the local definition is blank.

No transmission queue is defined with the same name as the destination queue
manager, so the local queue manager has attempted to use the default
transmission queue. However, the queue defined by the DefXmitQName
queue-manager attribute does not have a Usage attribute of
MQUS_TRANSMISSION. See the WebSphere MQ Application Programming Guide for
more information.

Event type: Remote.

Platforms: All.

Event queue: SYSTEM.ADMIN.QMGR.EVENT.

Event data
QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

QName

Description: Queue name from object descriptor (MQOD).
Identifier: MQCA_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

XmitQName

Description: Default transmission queue name.
Identifier: MQCA_XMIT_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

ApplType

Description: Type of application making the MQI call that caused the event.
Identifier: MQIA_APPL_TYPE.
Datatype: MQCFIN.
Returned: Always.

Default Transmission Queue Usage Error

84 Event Monitoring

ApplName

Description: Name of the application making the MQI call that caused the event.
Identifier: MQCACF_APPL_NAME.
Datatype: MQCFST.
Maximum length: MQ_APPL_NAME_LENGTH.
Returned: Always.

ObjectQMgrName

Description: Name of the object queue manager.
Identifier: MQCACF_OBJECT_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: If the ObjectName in the object descriptor (MQOD), when the object was

opened, is not the queue manager currently connected.

Note: If the application is a server for clients, the ApplType and ApplName
parameters identify the server, not the client.

Default Transmission Queue Usage Error

Chapter 4. Event message reference 85

Delete object (z/OS only)

Event name: Delete object.

Reason code in MQCFH: MQRC_CONFIG_DELETE_OBJECT (2369, X'941').
Object deleted.

Event description: A DELETE command or MQCLOSE call was issued that successfully deleted an
object.

Event type: Configuration.

Platforms: WebSphere MQ for z/OS.

Event queue: SYSTEM.ADMIN.CONFIG.EVENT.

Event data
EventUserId

Description: The user id that issued the command or call that generated the event.
(This is the same user id that is used to check the authority to issue the
command or call; for commands received from a queue, this is also the
user identifier (UserIdentifier) from the MD of the command message).

Identifier: MQCACF_EVENT_USER_ID.
Datatype: MQCFST.
Maximum length: MQ_USER_ID_LENGTH.
Returned: Always.

EventOrigin

Description: The origin of the action causing the event.
Identifier: MQIACF_EVENT_ORIGIN.
Datatype: MQCFIN.
Values:

MQEVO_CONSOLE
Console.

MQEVO_INIT
Initialization input data set.

MQEVO_MSG
Message on SYSTEM.COMMAND.INPUT.

MQEVO_MQSET
MQSET call.

MQEVO_INTERNAL
Directly by queue manager.

MQEVO_OTHER
None of the above.

Returned: Always.

EventQMgr

Description: The queue manager where the command or call was entered. (The
queue manager where the command is executed and that generates the
event is in the MD of the event message).

Identifier: MQCACF_EVENT_Q_MGR.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.

Delete object

86 Event Monitoring

|

|

|

|

|

|

|
|

|
|

|
|

|
|

|
|
||
|

|

|||
|
|
||
||
||

Returned: Always.

EventAccountingToken

Description: For commands received as a message (MQEVO_MSG), the accounting
token (AccountingToken) from the MD of the command message.

Identifier: MQBACF_EVENT_ACCOUNTING_TOKEN.
Datatype: MQCFBS.
Maximum length: MQ_ACCOUNTING_TOKEN_LENGTH.
Returned: Only if EventOrigin is MQEVO_MSG.

EventApplIdentity

Description: For commands received as a message (MQEVO_MSG), application
identity data (ApplIdentityData) from the MD of the command message.

Identifier: MQCACF_EVENT_APPL_IDENTITY.
Datatype: MQCFST.
Maximum length: MQ_APPL_IDENTITY_DATA_LENGTH.
Returned: Only if EventOrigin is MQEVO_MSG.

EventApplType

Description: For commands received as a message (MQEVO_MSG), the type of
application (PutApplType) from the MD of the command message.

Identifier: MQIACF_EVENT_APPL_TYPE.
Datatype: MQCFIN.
Returned: Only if EventOrigin is MQEVO_MSG.

EventApplName

Description: For commands received as a message (MQEVO_MSG), the name of the
application (PutApplName) from the MD of the command message.

Identifier: MQCACF_EVENT_APPL_NAME.
Datatype: MQCFST.
Maximum length: MQ_APPL_NAME_LENGTH.
Returned: Only if EventOrigin is MQEVO_MSG.

EventApplOrigin

Description: For commands received as a message (MQEVO_MSG), the application
origin data (ApplOriginData) from the MD of the command message.

Identifier: MQCACF_EVENT_APPL_ORIGIN.
Datatype: MQCFST.
Maximum length: MQ_APPL_ORIGIN_DATA_LENGTH.
Returned: Only if EventOrigin is MQEVO_MSG.

ObjectType

Description: Object type:
Identifier: MQIACF_OBJECT_TYPE.
Datatype: MQCFIN.

Delete object

Chapter 4. Event message reference 87

||
|

|

|||
|
||
||
||
||
|

|

|||
|
||
||
||
||
|

|

|||
|
||
||
||
|

|

|||
|
||
||
||
||
|

|

|||
|
||
||
||
||
|

|

|||
||
||

Values:
MQOT_CHANNEL

Channel.

MQOT_NAMELIST
Namelist.

MQOT_PROCESS
Process.

MQOT_Q
Queue.

MQOT_STORAGE_CLASS
Storage class.

MQOT_Q_MGR
Queue manager.

MQOT_AUTH_INFO
Authentication information.

MQOT_CF_STRUC
CF structure.

Returned: Always.

ObjectName

Description: Object name:
Identifier : Identifier will be according to object type.

v MQCACH_CHANNEL_NAME

v MQCA_NAMELIST_NAME

v MQCA_PROCESS_NAME

v MQCA_Q_NAME

v MQCA_STORAGE_CLASS

v MQCA_Q_MGR_NAME

v MQCA_AUTH_INFO_NAME

v MQCA_CF_STRUC_NAME
Datatype: MQCFST.
Maximum length: MQ_OBJECT_NAME_LENGTH.
Returned: Always

Disposition

Description: Object disposition:
Identifier: MQIA_QSG_DISP.
Datatype: MQCFIN.
Values:

MQQSGD_Q_MGR
Object resides on page set of queue manager.

MQQSGD_SHARED
Object resides in shared repository and messages are shared in
coupling facility.

MQQSGD_GROUP
Object resides in shared repository.

MQQSGD_COPY
Object resides on page set of queue manager and is a local copy
of a GROUP object.

Returned: Always, except for queue manager and CF structure objects.

Delete object

88 Event Monitoring

|
|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
||
|

|

|||
||

|

|

|

|

|

|

|

|
||
||
||
|

|

|||
||
||
|
|
|

|
|
|

|
|

|
|
|
||

Object attributes
A parameter structure is returned for each attribute of the object. The attributes
returned depend on the object type. For more information see Appendix D, “Event
data for object attributes”, on page 167

Delete object

Chapter 4. Event message reference 89

|

|
|
|
|

Get Inhibited

Event name: Get Inhibited.

Reason code in MQCFH: MQRC_GET_INHIBITED (2016, X'7E0').
Gets inhibited for the queue.

Event description: MQGET calls are currently inhibited for the queue (see the InhibitGet queue
attribute in the WebSphere MQ Application Programming Reference manual) or for the
queue to which this queue resolves.

Event type: Inhibit.

Platforms: All.

Event queue: SYSTEM.ADMIN.QMGR.EVENT.

Event data
QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

QName

Description: Queue name from object descriptor (MQOD).
Identifier: MQCA_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

ApplType

Description: Type of application that issued the get.
Identifier: MQIA_APPL_TYPE.
Datatype: MQCFIN.
Returned: Always.

ApplName

Description: Name of the application that issued the get.
Identifier: MQCACF_APPL_NAME.
Datatype: MQCFST.
Maximum length: MQ_APPL_NAME_LENGTH.
Returned: Always.

Note: If the application is a server for clients, the ApplType and ApplName
parameters identify the server, not the client.

Get Inhibited

90 Event Monitoring

Not Authorized (type 1)

Event name: Not Authorized (type 1).

Reason code in MQCFH: MQRC_NOT_AUTHORIZED (2035, X'7F3').
Not authorized for access.

Event description: On an MQCONN call, the user is not authorized to connect to the queue manager.

Event type: Authority.

Platforms: All, except WebSphere MQ for z/OS , MQSeries for OS/2 Warp, and MQSeries for
Windows Version 2.1.

Event queue: SYSTEM.ADMIN.QMGR.EVENT.

Event data
QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

ReasonQualifier

Description: Identifier for type 1 authority events.
Identifier: MQIACF_REASON_QUALIFIER.
Datatype: MQCFIN.
Values:

MQRQ_CONN_NOT_AUTHORIZED
Connection not authorized.

Returned: Always.

UserIdentifier

Description: User identifier that caused the authorization check.
Identifier: MQCACF_USER_IDENTIFIER.
Datatype: MQCFST.
Maximum length: MQ_USER_ID_LENGTH.
Returned: Always.

ApplType

Description: Type of application causing the event.
Identifier: MQIA_APPL_TYPE.
Datatype: MQCFIN.
Returned: Always.

ApplName

Description: Name of the application causing the event.
Identifier: MQCACF_APPL_NAME.
Datatype: MQCFST.
Maximum length: MQ_APPL_NAME_LENGTH.
Returned: Always.

Not Authorized (type 1)

Chapter 4. Event message reference 91

||
|

Not Authorized (type 2)

Event name: Not Authorized (type 2).

Reason code in MQCFH: MQRC_NOT_AUTHORIZED (2035, X'7F3').
Not authorized for access.

Event description: On an MQOPEN or MQPUT1 call, the user is not authorized to open the object for
the options specified.

Event type: Authority.

Platforms: All, except WebSphere MQ for z/OS, MQSeries for OS/2 Warp, MQSeries for
Compaq NonStop Kernel, and MQSeries for Windows Version 2.1.

Event queue: SYSTEM.ADMIN.QMGR.EVENT.

Event data
QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

ReasonQualifier

Description: Identifier for type 2 authority events.
Identifier: MQIACF_REASON_QUALIFIER.
Datatype: MQCFIN.
Values:

MQRQ_OPEN_NOT_AUTHORIZED
Open not authorized.

Returned: Always.

Options

Description: Options specified on the MQOPEN call.
Identifier: MQIACF_OPEN_OPTIONS.
Datatype: MQCFIN.
Returned: Always.

UserIdentifier

Description: User identifier that caused the authorization check.
Identifier: MQCACF_USER_IDENTIFIER.
Datatype: MQCFST.
Maximum length: MQ_USER_ID_LENGTH.
Returned: Always.

ApplType

Description: Type of application that caused the authorization check.
Identifier: MQIA_APPL_TYPE.
Datatype: MQCFIN.
Returned: Always.

Not Authorized (type 2)

92 Event Monitoring

||
|

ApplName

Description: Name of the application that caused the authorization check.
Identifier: MQCACF_APPL_NAME.
Datatype: MQCFST.
Maximum length: MQ_APPL_NAME_LENGTH.
Returned: Always.

ObjectQMgrName

Description: Object queue manager name from object descriptor (MQOD).
Identifier: MQCACF_OBJECT_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: If the ObjectQMgrName in the object descriptor (MQOD) when the object

was opened is not the queue manager currently connected.

QName

Description: Object name from object descriptor (MQOD).
Identifier: MQCA_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: If the object opened is not a process object.

ProcessName

Description: Name of process object from object descriptor (MQOD).
Identifier: MQCA_PROCESS_NAME.
Datatype: MQCFST.
Maximum length: MQ_PROCESS_NAME_LENGTH.
Returned: If the object opened is a process object.

Note: If the application is a server for clients, the ApplType and ApplName
parameters identify the server, not the client.

Not Authorized (type 2)

Chapter 4. Event message reference 93

Not Authorized (type 3)

Event name: Not Authorized (type 3).

Reason code in MQCFH: MQRC_NOT_AUTHORIZED (2035, X'7F3').
Not authorized for access.

Event description: On an MQCLOSE call, the user is not authorized to delete the object, which is a
permanent dynamic queue, and the Hobj parameter specified on the MQCLOSE
call is not the handle returned by the MQOPEN call that created the queue.

Event type: Authority.

Platforms: All, except WebSphere MQ for z/OS, MQSeries for OS/2 Warp, MQSeries for
Compaq NonStop Kernel, and MQSeries for Windows Version 2.1.

Event queue: SYSTEM.ADMIN.QMGR.EVENT.

Event data
QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

ReasonQualifier

Description: Identifier for type 3 authority events.
Identifier: MQIACF_REASON_QUALIFIER.
Datatype: MQCFIN.
Values:

MQRQ_CLOSE_NOT_AUTHORIZED
Close not authorized.

Returned: Always.

QName

Description: Object name from object descriptor (MQOD).
Identifier: MQCA_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

UserIdentifier

Description: User identifier that caused the authorization check.
Identifier: MQCACF_USER_IDENTIFIER.
Datatype: MQCFST.
Maximum length: MQ_USER_ID_LENGTH.
Returned: Always.

ApplType

Description: Type of application causing the authorization check.
Identifier: MQIA_APPL_TYPE.
Datatype: MQCFIN.

Not Authorized (type 3)

94 Event Monitoring

||
|

Returned: Always.

ApplName

Description: Name of the application causing the authorization check.
Identifier: MQCACF_APPL_NAME.
Datatype: MQCFST.
Maximum length: MQ_APPL_NAME_LENGTH.
Returned: Always.

Note: If the application is a server for clients, the ApplType and ApplName
parameters identify the server, not the client.

Not Authorized (type 3)

Chapter 4. Event message reference 95

Not Authorized (type 4)

Event name: Not Authorized (type 4).

Reason code in MQCFH: MQRC_NOT_AUTHORIZED (2035, X'7F3').
Not authorized for access.

Event description: Indicates that a command has been issued from a user ID that is not authorized to
access the object specified in the command.

Event type: Authority.

Platforms: All, except WebSphere MQ for z/OS, MQSeries for OS/2 Warp, MQSeries for
Compaq NonStop Kernel, and MQSeries for Windows Version 2.1.

Event queue: SYSTEM.ADMIN.QMGR.EVENT.

Event data
QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

ReasonQualifier

Description: Identifier for type 4 authority events.
Identifier: MQIACF_REASON_QUALIFIER.
Datatype: MQCFIN.
Values:

MQRQ_CMD_NOT_AUTHORIZED
Command not authorized.

Returned: Always.

Command

Description: Command identifier. See the MQCFH header structure, described in
“MQCFH (Event header)” on page 44.

Identifier: MQIACF_COMMAND.
Datatype: MQCFIN.
Returned: Always.

UserIdentifier

Description: User identifier that caused the authorization check.
Identifier: MQCACF_USER_IDENTIFIER.
Datatype: MQCFST.
Maximum length: MQ_USER_ID_LENGTH.
Returned: Always.

Not Authorized (type 4)

96 Event Monitoring

||
|

Put Inhibited

Event name: Put Inhibited.

Reason code in MQCFH: MQRC_PUT_INHIBITED (2051, X'803').
Put calls inhibited for the queue.

Event description: MQPUT and MQPUT1 calls are currently inhibited for the queue (see the
InhibitPut queue attribute in in the WebSphere MQ Application Programming
Reference manual) or for the queue to which this queue resolves.

Event type: Inhibit.

Platforms: All.

Event queue: SYSTEM.ADMIN.QMGR.EVENT.

Event data
QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

QName

Description: Queue name from object descriptor (MQOD).
Identifier: MQCA_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

ApplType

Description: Type of application that issued the put.
Identifier: MQIA_APPL_TYPE.
Datatype: MQCFIN.
Returned: Always.

ApplName

Description: Name of the application that issued the put.
Identifier: MQCACF_APPL_NAME.
Datatype: MQCFST.
Maximum length: MQ_APPL_NAME_LENGTH.
Returned: Always.

ObjectQMgrName

Description: Name of queue manager from object descriptor (MQOD).
Identifier: MQCACF_OBJECT_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.

Put Inhibited

Chapter 4. Event message reference 97

Returned: Only if this parameter has a value different from QMgrName. This occurs
when the ObjectQMgrName field in the object descriptor provided by the
application on the MQOPEN or MQPUT1 call is neither blank nor the
name of the application’s local queue manager. However, it can also
occur when ObjectQMgrName in the object descriptor is blank, but a name
service provides a queue-manager name that is not the name of the
application’s local queue manager.

Note: If the application is a server for clients, the ApplType and ApplName
parameters identify the server, not the client.

Put Inhibited

98 Event Monitoring

Queue Depth High

Event name: Queue Depth High.

Reason code in MQCFH: MQRC_Q_DEPTH_HIGH (2224, X'8B0').
Queue depth high limit reached or exceeded.

Event description: An MQPUT or MQPUT1 call has caused the queue depth to be incremented to or
above the limit specified in the QDepthHighLimit attribute.

Corrective action: None. This reason code is used only to identify the corresponding event message.

Event type: Performance.

Platforms: All.

Event queue: SYSTEM.ADMIN.PERFM.EVENT.

Notes:

1. WebSphere MQ for z/OS supports queue depth events on shared queues. You
might receive a NULL event message for a shared queue if a queue manager
has performed no activity on that shared queue.

2. For shared queues, the correlation identifier, CorrelId in the message descriptor
(MQMD) is set. See “MQMD (message descriptor)” on page 40 for more
information.

Event data
QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

QName

Description: Name of the queue on which the limit has been reached.
Identifier: MQCA_BASE_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

TimeSinceReset

Description: Time, in seconds, since the statistics were last reset. The value recorded
by this timer is also used as the interval time in queue service interval
events.

Identifier: MQIA_TIME_SINCE_RESET.
Datatype: MQCFIN.
Returned: Always.

HighQDepth

Description: Maximum number of messages on the queue since the queue statistics
were last reset.

Identifier: MQIA_HIGH_Q_DEPTH.
Datatype: MQCFIN.

Queue Depth High

Chapter 4. Event message reference 99

Returned: Always.

MsgEnqCount

Description: Number of messages enqueued. This is the number of messages put on
the queue since the queue statistics were last reset.

Identifier: MQIA_MSG_ENQ_COUNT.
Datatype: MQCFIN.
Returned: Always.

MsgDeqCount

Description: Number of messages removed from the queue since the queue statistics
were last reset.

Identifier: MQIA_MSG_DEQ_COUNT.
Datatype: MQCFIN.
Returned: Always.

Queue Depth High

100 Event Monitoring

Queue Depth Low

Event name: Queue Depth Low.

Reason code in MQCFH: MQRC_Q_DEPTH_LOW (2225, X'8B1').
Queue depth low limit reached or exceeded.

Event description: An MQGET call has caused the queue depth to be decremented to or below the
limit specified in the QDepthLowLimit attribute.

Corrective action: None. This reason code is used only to identify the corresponding event message.

Event type: Performance.

Platforms: All.

Event queue: SYSTEM.ADMIN.PERFM.EVENT.

Notes:

1. WebSphere MQ for z/OS supports queue depth events on shared queues. You
might receive a NULL event message for a shared queue if a queue manager
has performed no activity on that shared queue.

2. For shared queues, the correlation identifier, CorrelId in the message descriptor
(MQMD) is set. See “MQMD (message descriptor)” on page 40 for more
information.

Event data
QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

QName

Description: Name of the queue on which the limit has been reached.
Identifier: MQCA_BASE_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

TimeSinceReset

Description: Time, in seconds, since the statistics were last reset. The value recorded
by this timer is also used as the interval time in queue service interval
events.

Identifier: MQIA_TIME_SINCE_RESET.
Datatype: MQCFIN.
Returned: Always.

HighQDepth

Description: Maximum number of messages on the queue since the queue statistics
were last reset.

Identifier: MQIA_HIGH_Q_DEPTH.
Datatype: MQCFIN.

Queue Depth Low

Chapter 4. Event message reference 101

Returned: Always.

MsgEnqCount

Description: Number of messages enqueued. This is the number of messages put on
the queue since the queue statistics were last reset.

Identifier: MQIA_MSG_ENQ_COUNT.
Datatype: MQCFIN.
Returned: Always.

MsgDeqCount

Description: Number of messages removed from the queue since the queue statistics
were last reset.

Identifier: MQIA_MSG_DEQ_COUNT.
Datatype: MQCFIN.
Returned: Always.

Queue Depth Low

102 Event Monitoring

Queue Full

Event name: Queue Full.

Reason code in MQCFH: MQRC_Q_FULL (2053, X'805').
Queue already contains maximum number of messages.

Event description: On an MQPUT or MQPUT1 call, the call failed because the queue is full. That is, it
already contains the maximum number of messages possible (see the MaxQDepth
local-queue attribute in the WebSphere MQ Application Programming Reference
manual).

This reason code can also occur in the Feedback field in the message descriptor of
a report message; in this case it indicates that the error was encountered by a
message channel agent when it attempted to put the message on a remote queue.

Corrective action: Retry the operation later. Consider increasing the maximum depth for this queue,
or arranging for more instances of the application to service the queue.

Event type: Performance.

Platforms: All.

Event queue: SYSTEM.ADMIN.PERFM.EVENT.

Notes:

1. WebSphere MQ for z/OS supports queue depth events on shared queues. You
might receive a NULL event message for a shared queue if a queue manager
has performed no activity on that shared queue.

2. For shared queues, the correlation identifier, CorrelId in the message descriptor
(MQMD) is set. See “MQMD (message descriptor)” on page 40 for more
information.

Event data
QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

QName

Description: Name of the queue on which the put was rejected.
Identifier: MQCA_BASE_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

TimeSinceReset

Description: Time, in seconds, since the statistics were last reset.
Identifier: MQIA_TIME_SINCE_RESET.
Datatype: MQCFIN.
Returned: Always.

Queue Full

Chapter 4. Event message reference 103

HighQDepth

Description: Maximum number of messages on a queue.
Identifier: MQIA_HIGH_Q_DEPTH.
Datatype: MQCFIN.
Returned: Always.

MsgEnqCount

Description: Number of messages enqueued. This is the number of messages put on
the queue since the queue statistics were last reset.

Identifier: MQIA_MSG_ENQ_COUNT.
Datatype: MQCFIN.
Returned: Always.

MsgDeqCount

Description: Number of messages removed from the queue since the queue statistics
were last reset.

Identifier: MQIA_MSG_DEQ_COUNT.
Datatype: MQCFIN.
Returned: Always.

Queue Full

104 Event Monitoring

Queue Manager Active

Event name: Queue Manager Active.

Reason code in MQCFH: MQRC_Q_MGR_ACTIVE (2222, X'8AE').
Queue manager created.

Event description: This condition is detected when a queue manager becomes active.

Event type: Start And Stop.

Platforms: All, except the first start of a WebSphere MQ for z/OS queue manager. In this case
it is produced only on subsequent restarts.

Event queue: SYSTEM.ADMIN.QMGR.EVENT.

Event data
QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

Queue Manager Active

Chapter 4. Event message reference 105

Queue Manager Not Active

Event name: Queue Manager Not Active.

Reason code in MQCFH: MQRC_Q_MGR_NOT_ACTIVE (2223, X'8AF').
Queue manager unavailable.

Event description: This condition is detected when a queue manager is requested to stop or quiesce.

Event type: Start And Stop.

Platforms: All, except WebSphere MQ for z/OS.

Event queue: SYSTEM.ADMIN.QMGR.EVENT.

Event data
QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

ReasonQualifier

Description: Identifier of causes of this reason code. This specifies the type of stop
that was requested.

Identifier: MQIACF_REASON_QUALIFIER.
Datatype: MQCFIN.
Values:

MQRQ_Q_MGR_STOPPING
Queue manager stopping.

MQRQ_Q_MGR_QUIESCING
Queue manager quiescing.

Returned: Always.

Queue Manager Not Active

106 Event Monitoring

Queue Service Interval High

Event name: Queue Service Interval High.

Reason code in MQCFH: MQRC_Q_SERVICE_INTERVAL_HIGH (2226, X'8B2').
Queue service interval high.

Event description: No successful gets or puts have been detected within an interval greater than the
limit specified in the QServiceInterval attribute.

Corrective action: None. This reason code is used only to identify the corresponding event message.

Event type: Performance.

Platforms: All.

Event queue: SYSTEM.ADMIN.PERFM.EVENT.

Note: WebSphere MQ for z/OS does not support service interval events on shared
queues.

Event data
QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

QName

Description: Name of the queue specified on the command that caused this queue
service interval event to be generated.

Identifier: MQCA_BASE_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

TimeSinceReset

Description: Time, in seconds, since the statistics were last reset. For a service interval
high event, this value is greater than the service interval.

Identifier: MQIA_TIME_SINCE_RESET.
Datatype: MQCFIN.
Returned: Always.

HighQDepth

Description: Maximum number of messages on the queue since the queue statistics
were last reset.

Identifier: MQIA_HIGH_Q_DEPTH.
Datatype: MQCFIN.
Returned: Always.

Queue Service Interval High

Chapter 4. Event message reference 107

MsgEnqCount

Description: Number of messages enqueued. This is the number of messages put on
the queue since the queue statistics were last reset.

Identifier: MQIA_MSG_ENQ_COUNT.
Datatype: MQCFIN.
Returned: Always.

MsgDeqCount

Description: Number of messages removed from the queue since the queue statistics
were last reset.

Identifier: MQIA_MSG_DEQ_COUNT.
Datatype: MQCFIN.
Returned: Always.

Queue Service Interval High

108 Event Monitoring

Queue Service Interval OK

Event name: Queue Service Interval OK.

Reason code in MQCFH: MQRC_Q_SERVICE_INTERVAL_OK (2227, X'8B3').
Queue service interval OK.

Event description: A successful get has been detected within an interval less than or equal to the
limit specified in the QServiceInterval attribute.

Corrective action: None. This reason code is used only to identify the corresponding event message.

Event type: Performance.

Platforms: All.

Event queue: SYSTEM.ADMIN.PERFM.EVENT.

Note: WebSphere MQ for z/OS does not support service interval events on shared
queues.

Event data
QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

QName

Description: Queue name specified on the command that caused this queue service
interval event to be generated.

Identifier: MQCA_BASE_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

TimeSinceReset

Description: Time, in seconds, since the statistics were last reset.
Identifier: MQIA_TIME_SINCE_RESET.
Datatype: MQCFIN.
Returned: Always.

HighQDepth

Description: Maximum number of messages on the queue since the queue statistics
were last reset.

Identifier: MQIA_HIGH_Q_DEPTH.
Datatype: MQCFIN.
Returned: Always.

MsgEnqCount

Description: Number of messages enqueued. This is the number of messages put on
the queue since the queue statistics were last reset.

Queue Service Interval OK

Chapter 4. Event message reference 109

Identifier: MQIA_MSG_ENQ_COUNT.
Datatype: MQCFIN.
Returned: Always.

MsgDeqCount

Description: Number of messages removed from the queue since the queue statistics
were last reset.

Identifier: MQIA_MSG_DEQ_COUNT.
Datatype: MQCFIN.
Returned: Always.

Queue Service Interval OK

110 Event Monitoring

Queue Type Error

Event name: Queue Type Error.

Reason code in MQCFH: MQRC_Q_TYPE_ERROR (2057, X'809').
Queue type not valid.

Event description: On an MQOPEN call, the ObjectQMgrName field in the object descriptor specifies
the name of a local definition of a remote queue (in order to specify a
queue-manager alias). In that local definition the RemoteQMgrName attribute is the
name of the local queue manager. However, the ObjectName field specifies the
name of a model queue on the local queue manager, which is not allowed. See the
WebSphere MQ Application Programming Guide for more information.

Event type: Remote.

Platforms: All.

Event queue: SYSTEM.ADMIN.QMGR.EVENT.

Event data
QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

QName

Description: Queue name from object descriptor (MQOD).
Identifier: MQCA_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

ApplType

Description: Type of application making the MQI call that caused the event.
Identifier: MQIA_APPL_TYPE.
Datatype: MQCFIN.
Returned: Always.

ApplName

Description: Name of the application making the MQI call that caused the event.
Identifier: MQCACF_APPL_NAME.
Datatype: MQCFST.
Maximum length: MQ_APPL_NAME_LENGTH.
Returned: Always.

ObjectQMgrName

Description: Name of the object queue manager.
Identifier: MQCACF_OBJECT_Q_MGR_NAME.
Datatype: MQCFST.

Queue Type Error

Chapter 4. Event message reference 111

Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

Note: If the application is a server for clients, the ApplType and ApplName
parameters identify the server, not the client.

Queue Type Error

112 Event Monitoring

Refresh object (z/OS only)

Event name: Refresh object.

Reason code in MQCFH: MQRC_CONFIG_REFRESH_OBJECT (2370, X'942').
Refresh queue manager configuration.

Event description: A REFRESH QMGR command specifying TYPE (CONFIGEV) was issued.

Event type: Configuration.

Platforms: WebSphere MQ for z/OS.

Event queue: SYSTEM.ADMIN.CONFIG.EVENT.

Note: The REFRESH QMGR command can produce many configuration events;
one event is generated for each object that is selected by the command.

Event data
EventUserId

Description: The user id that issued the command or call that generated the event.
(This is the same user id that is used to check the authority to issue the
command or call; for commands received from a queue, this is also the
user identifier (UserIdentifier) from the MD of the command message).

Identifier: MQCACF_EVENT_USER_ID.
Datatype: MQCFST.
Maximum length: MQ_USER_ID_LENGTH.
Returned: Always.

EventOrigin

Description: The origin of the action causing the event.
Identifier: MQIACF_EVENT_ORIGIN.
Datatype: MQCFIN.
Values:

MQEVO_CONSOLE
Console.

MQEVO_INIT
Initialization input data set.

MQEVO_MSG
Message on SYSTEM.COMMAND.INPUT.

MQEVO_MQSET
MQSET call.

MQEVO_INTERNAL
Directly by queue manager.

MQEVO_OTHER
None of the above.

Returned: Always.

EventQMgr

Description: The queue manager where the command or call was entered. (The
queue manager where the command is executed and that generates the
event is in the MD of the event message).

Identifier: MQCACF_EVENT_Q_MGR.

Refresh object

Chapter 4. Event message reference 113

|

|

|

|
|

|

|

|||
|
|
|
||
||
||
||
|

|

|||
||
||
|
|
|

|
|

|
|

|
|

|
|

|
|
||
|

|

|||
|
|
||

Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

EventAccountingToken

Description: For commands received as a message (MQEVO_MSG), the accounting
token (AccountingToken) from the MD of the command message.

Identifier: MQBACF_EVENT_ACCOUNTING_TOKEN.
Datatype: MQCFBS.
Maximum length: MQ_ACCOUNTING_TOKEN_LENGTH.
Returned: Only if EventOrigin is MQEVO_MSG.

EventApplIdentity

Description: For commands received as a message (MQEVO_MSG), application
identity data (ApplIdentityData) from the MD of the command message.

Identifier: MQCACF_EVENT_APPL_IDENTITY.
Datatype: MQCFST.
Maximum length: MQ_APPL_IDENTITY_DATA_LENGTH.
Returned: Only if EventOrigin is MQEVO_MSG.

EventApplType

Description: For commands received as a message (MQEVO_MSG), the type of
application (PutApplType) from the MD of the command message.

Identifier: MQIACF_EVENT_APPL_TYPE.
Datatype: MQCFIN.
Returned: Only if EventOrigin is MQEVO_MSG.

EventApplName

Description: For commands received as a message (MQEVO_MSG), the name of the
application (PutApplName) from the MD of the command message.

Identifier: MQCACF_EVENT_APPL_NAME.
Datatype: MQCFST.
Maximum length: MQ_APPL_NAME_LENGTH.
Returned: Only if EventOrigin is MQEVO_MSG.

EventApplOrigin

Description: For commands received as a message (MQEVO_MSG), the application
origin data (ApplOriginData) from the MD of the command message.

Identifier: MQCACF_EVENT_APPL_ORIGIN.
Datatype: MQCFST.
Maximum length: MQ_APPL_ORIGIN_DATA_LENGTH.
Returned: Only if EventOrigin is MQEVO_MSG.

ObjectType

Description: Object type:
Identifier: MQIACF_OBJECT_TYPE.
Datatype: MQCFIN.

Refresh object

114 Event Monitoring

||
||
||
|

|

|||
|
||
||
||
||
|

|

|||
|
||
||
||
||
|

|

|||
|
||
||
||
|

|

|||
|
||
||
||
||
|

|

|||
|
||
||
||
||
|

|

|||
||
||

Values:
MQOT_CHANNEL

Channel.

MQOT_NAMELIST
Namelist.

MQOT_PROCESS
Process.

MQOT_Q
Queue.

MQOT_STORAGE_CLASS
Storage class.

MQOT_Q_MGR
Queue manager.

MQOT_AUTH_INFO
Authentication information.

MQOT_CF_STRUC
CF structure.

Returned: Always.

ObjectName

Description: Object name:
Identifier : Identifier will be according to object type.

v MQCACH_CHANNEL_NAME

v MQCA_NAMELIST_NAME

v MQCA_PROCESS_NAME

v MQCA_Q_NAME

v MQCA_STORAGE_CLASS

v MQCA_Q_MGR_NAME

v MQCA_AUTH_INFO_NAME

v MQCA_CF_STRUC_NAME
Datatype: MQCFST.
Maximum length: MQ_OBJECT_NAME_LENGTH.
Returned: Always

Disposition

Description: Object disposition:
Identifier: MQIA_QSG_DISP.
Datatype: MQCFIN.
Values:

MQQSGD_Q_MGR
Object resides on page set of queue manager.

MQQSGD_SHARED
Object resides in shared repository and messages are shared in
coupling facility.

MQQSGD_GROUP
Object resides in shared repository.

MQQSGD_COPY
Object resides on page set of queue manager and is a local copy
of a GROUP object.

Returned: Always, except for queue manager and CF structure objects.

Refresh object

Chapter 4. Event message reference 115

|
|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
||
|

|

|||
||

|

|

|

|

|

|

|

|
||
||
||
|

|

|||
||
||
|
|
|

|
|
|

|
|

|
|
|
||

Object attributes
A parameter structure is returned for each attribute of the object. The attributes
returned depend on the object type. For more information see Appendix D, “Event
data for object attributes”, on page 167

Refresh object

116 Event Monitoring

|

|
|
|
|

Remote Queue Name Error

Event name: Remote Queue Name Error.

Reason code in MQCFH: MQRC_REMOTE_Q_NAME_ERROR (2184, X'888').
Remote queue name not valid.

Event description: On an MQOPEN or MQPUT1 call either:

v A local definition of a remote queue (or an alias to one) was specified, but the
RemoteQName attribute in the remote queue definition is blank. Note that this
error occurs even if the XmitQName in the definition is not blank.

or

v The ObjectQMgrName field in the object descriptor is not blank and not the name
of the local queue manager, but the ObjectName field is blank.

Event type: Remote.

Platforms: All.

Event queue: SYSTEM.ADMIN.QMGR.EVENT.

Event data
QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

QName

Description: Queue name from object descriptor (MQOD).
Identifier: MQCA_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

ApplType

Description: Type of application making the MQI call that caused the event.
Identifier: MQIA_APPL_TYPE.
Datatype: MQCFIN.
Returned: Always.

ApplName

Description: Name of the application making the MQI call that caused the event.
Identifier: MQCACF_APPL_NAME.
Datatype: MQCFST.
Maximum length: MQ_APPL_NAME_LENGTH.
Returned: Always.

ObjectQMgrName

Description: Name of the object queue manager.

Remote Queue Name Error

Chapter 4. Event message reference 117

Identifier: MQCACF_OBJECT_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: If the ObjectName in the object descriptor (MQOD), when the object was

opened, is not the queue manager currently connected.

Note: If the application is a server for clients the ApplType and ApplName
parameters identify the server not the client.

Remote Queue Name Error

118 Event Monitoring

Transmission Queue Type Error

Event name: Transmission Queue Type Error.

Reason code in MQCFH: MQRC_XMIT_Q_TYPE_ERROR (2091, X'82B').
Transmission queue not local.

Event description: On an MQOPEN or MQPUT1 call, a message is to be sent to a remote queue
manager. The ObjectName or ObjectQMgrName field in the object descriptor specifies
the name of a local definition of a remote queue but one of the following applies
to the XmitQName attribute of the definition. Either:

v XmitQName is not blank, but specifies a queue that is not a local queue

or

v XmitQName is blank, but RemoteQMgrName specifies a queue that is not a local
queue

This also occurs if the queue name is resolved through a cell directory, and the
remote queue manager name obtained from the cell directory is the name of a
queue, but this is not a local queue.

Event type: Remote.

Platforms: All.

Event queue: SYSTEM.ADMIN.QMGR.EVENT.

Event data
QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

QName

Description: Queue name from object descriptor (MQOD).
Identifier: MQCA_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

XmitQName

Description: Transmission queue name.
Identifier: MQCA_XMIT_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

QType

Description: Type of transmission queue.
Identifier: MQIA_Q_TYPE.
Datatype: MQCFIN.

Transmission Queue Type Error

Chapter 4. Event message reference 119

Values:
MQQT_ALIAS

Alias queue definition.

MQQT_REMOTE
Local definition of a remote queue.

Returned: Always.

ApplType

Description: Type of application making the MQI call that caused the event.
Identifier: MQIA_APPL_TYPE.
Datatype: MQCFIN.
Returned: Always.

ApplName

Description: Name of the application making the MQI call that caused the event.
Identifier: MQCACF_APPL_NAME.
Datatype: MQCFST.
Maximum length: MQ_APPL_NAME_LENGTH.
Returned: Always.

ObjectQMgrName

Description: Name of the object queue manager.
Identifier: MQCACF_OBJECT_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: If the ObjectName in the object descriptor (MQOD), when the object was

opened, is not the queue manager currently connected.

Note: If the application is a server for clients, the ApplType and ApplName
parameters identify the server, not the client.

Transmission Queue Type Error

120 Event Monitoring

Transmission Queue Usage Error

Event name: Transmission Queue Usage Error.

Reason code in MQCFH: MQRC_XMIT_Q_USAGE_ERROR (2092, X'82C').
Transmission queue with wrong usage.

Event description: On an MQOPEN or MQPUT1 call, a message is to be sent to a remote queue
manager, but one of the following occurred. Either:

v ObjectQMgrName specifies the name of a local queue, but it does not have a Usage
attribute of MQUS_TRANSMISSION.

v The ObjectName or ObjectQMgrName field in the object descriptor specifies the
name of a local definition of a remote queue but one of the following applies to
the XmitQName attribute of the definition:

– XmitQName is not blank, but specifies a queue that does not have a Usage
attribute of MQUS_TRANSMISSION

– XmitQName is blank, but RemoteQMgrName specifies a queue that does not have a
Usage attribute of MQUS_TRANSMISSION

v The queue name is resolved through a cell directory, and the remote queue
manager name obtained from the cell directory is the name of a local queue, but
it does not have a Usage attribute of MQUS_TRANSMISSION.

Event type: Remote.

Platforms: All.

Event queue: SYSTEM.ADMIN.QMGR.EVENT.

Event data
QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

QName

Description: Queue name from object descriptor (MQOD).
Identifier: MQCA_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

XmitQName

Description: Transmission queue name.
Identifier: MQCA_XMIT_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

ApplType

Description: Type of application making the MQI call that caused the event.
Identifier: MQIA_APPL_TYPE.

Transmission Queue Usage Error

Chapter 4. Event message reference 121

Datatype: MQCFIN.
Returned: Always.

ApplName

Description: Name of the application making the MQI call that caused the event.
Identifier: MQCACF_APPL_NAME.
Datatype: MQCFST.
Maximum length: MQ_APPL_NAME_LENGTH.
Returned: Always.

ObjectQMgrName

Description: Name of the object queue manager.
Identifier: MQCACF_OBJECT_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: If the ObjectName in the object descriptor (MQOD), when the object was

opened, is not the queue manager currently connected.

Note: If the application is a server for clients, the ApplType and ApplName
parameters identify the server, not the client.

Transmission Queue Usage Error

122 Event Monitoring

Unknown Alias Base Queue

Event name: Unknown Alias Base Queue.

Reason code in MQCFH: MQRC_UNKOWN_ALIAS_BASE_Q (2082, X'822').
Unknown alias base queue.

Event description: An MQOPEN or MQPUT1 call was issued specifying an alias queue as the
destination, but the BaseQName in the alias queue attributes is not recognized as a
queue name.

Event type: Local.

Platforms: All.

Event queue: SYSTEM.ADMIN.QMGR.EVENT.

Event data
QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

QName

Description: Queue name from object descriptor (MQOD).
Identifier: MQCA_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

BaseQName

Description: Queue name to which the alias resolves.
Identifier: MQCA_BASE_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

ApplType

Description: Type of application making the MQI call that caused the event.
Identifier: MQIA_APPL_TYPE.
Datatype: MQCFIN.
Returned: Always.

ApplName

Description: Name of the application making the MQI call that caused the event.
Identifier: MQCACF_APPL_NAME.
Datatype: MQCFST.
Maximum length: MQ_APPL_NAME_LENGTH.
Returned: Always.

Unknown Alias Base Queue

Chapter 4. Event message reference 123

ObjectQMgrName

Description: Name of the object queue manager.
Identifier: MQCACF_OBJECT_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: If the ObjectName in the object descriptor (MQOD), when the object was

opened, is not the queue manager currently connected.

Note: If the application is a server for clients, the ApplType and ApplName
parameters identify the server, not the client.

Unknown Alias Base Queue

124 Event Monitoring

Unknown Default Transmission Queue

Event name: Unknown Default Transmission Queue.

Reason code in MQCFH: MQRC_UNKNOWN_DEF_XMIT_Q (2197, X'895').
Unknown default transmission queue.

Event description: An MQOPEN or MQPUT1 call was issued specifying a remote queue as the
destination. If a local definition of the remote queue was specified, or if a
queue-manager alias is being resolved, the XmitQName attribute in the local
definition is blank.

No queue is defined with the same name as the destination queue manager. The
queue manager has therefore attempted to use the default transmission queue.
However, the name defined by the DefXmitQName queue-manager attribute is not
the name of a locally-defined queue.

Event type: Remote.

Platforms: All.

Event queue: SYSTEM.ADMIN.QMGR.EVENT.

Event data
QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

QName

Description: Queue name from object descriptor (MQOD).
Identifier: MQCA_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

XmitQName

Description: Default transmission queue name.
Identifier: MQCA_XMIT_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

ApplType

Description: Type of application attempting to open the remote queue.
Identifier: MQIA_APPL_TYPE.
Datatype: MQCFIN.
Returned: Always.

ApplName

Description: Name of the application attempting to open the remote queue.

Unknown Default Transmission Queue

Chapter 4. Event message reference 125

Identifier: MQCACF_APPL_NAME.
Datatype: MQCFST.
Maximum length: MQ_APPL_NAME_LENGTH.
Returned: Always.

ObjectQMgrName

Description: Name of the object queue manager.
Identifier: MQCACF_OBJECT_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: If the ObjectName in the object descriptor (MQOD), when the object was

opened, is not the queue manager currently connected.

Note: If the application is a server for clients, the ApplType and ApplName
parameters identify the server, not the client.

Unknown Default Transmission Queue

126 Event Monitoring

Unknown Object Name

Event name: Unknown Object Name.

Reason code in MQCFH: MQRC_UNKNOWN_OBJECT_NAME (2085, X'825').
Unknown object name.

Event description: On an MQOPEN or MQPUT1 call, the ObjectQMgrName field in the object
descriptor MQOD is set to one of the following. It is either:

v Blank

v The name of the local queue manager

v The name of a local definition of a remote queue (a queue-manager alias) in
which the RemoteQMgrName attribute is the name of the local queue manager

However, the ObjectName in the object descriptor is not recognized for the
specified object type.

See also MQRC_Q_DELETED.

Event type: Local.

Platforms: All.

Event queue: SYSTEM.ADMIN.QMGR.EVENT.

Event data
QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

ApplType

Description: Type of application making the MQI call that caused the event.
Identifier: MQIA_APPL_TYPE.
Datatype: MQCFIN.
Returned: Always.

ApplName

Description: Name of the application making the MQI call that caused the event.
Identifier: MQCACF_APPL_NAME.
Datatype: MQCFST.
Maximum length: MQ_APPL_NAME_LENGTH.
Returned: Always.

QName

Description: Queue name from object descriptor (MQOD).
Identifier: MQCA_BASE_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always unless ProcessName is returned. Either ProcessName or QName is

returned.

Unknown Object Name

Chapter 4. Event message reference 127

|

|

ProcessName

Description: Name of the process (application) making the MQI call that caused the
event.

Identifier: MQCA_PROCESS_NAME.
Datatype: MQCFST.
Maximum length: MQ_PROCESS_NAME_LENGTH.
Returned: Always, unless QName is returned. Either ProcessName or QName is

returned.

ObjectQMgrName

Description: Name of the object queue manager.
Identifier: MQCACF_OBJECT_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: If the ObjectName in the object descriptor (MQOD), when the object was

opened, is not the queue manager currently connected.

Note: If the application is a server for clients, the ApplType and ApplName
parameters identify the server, not the client.

Unknown Object Name

128 Event Monitoring

Unknown Remote Queue Manager

Event name: Unknown Remote Queue Manager.

Reason code in MQCFH: MQRC_UNKNOWN_REMOTE_Q_MGR (2087, X'827').
Unknown remote queue manager.

Event description: On an MQOPEN or MQPUT1 call, an error occurred with the queue-name
resolution, for one of the following reasons:

v ObjectQMgrName is either blank or the name of the local queue manager, and
ObjectName is the name of a local definition of a remote queue that has a blank
XmitQName. However, there is no (transmission) queue defined with the name of
RemoteQMgrName, and the DefXmitQName queue-manager attribute is blank.

v ObjectQMgrName is the name of a queue-manager alias definition (held as the
local definition of a remote queue) that has a blank XmitQName. However, there is
no (transmission) queue defined with the name of RemoteQMgrName, and the
DefXmitQName queue-manager attribute is blank.

v ObjectQMgrName specified is not:
– Blank
– The name of the local queue manager
– The name of a local queue
– The name of a queue-manager alias definition (that is, a local definition of a

remote queue with a blank RemoteQName)

and the DefXmitQName queue-manager attribute is blank.

v ObjectQMgrName is blank or is the name of the local queue manager, and
ObjectName is the name of a local definition of a remote queue (or an alias to
one), for which RemoteQMgrName is either blank or is the name of the local queue
manager. Note that this error occurs even if the XmitQName is not blank.

v ObjectQMgrName is the name of a local definition of a remote queue. In this case,
it should be a queue-manager alias definition, but the RemoteQName in the
definition is not blank.

v ObjectQMgrName is the name of a model queue.

v The queue name is resolved through a cell directory. However, there is no queue
defined with the same name as the remote queue manager name obtained from
the cell directory. Also, the DefXmitQName queue-manager attribute is blank.

Event type: Remote.

Platforms: All.

Event queue: SYSTEM.ADMIN.QMGR.EVENT.

Event data
QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

QName

Description: Queue name from object descriptor (MQOD).
Identifier: MQCA_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.

Unknown Remote Queue Manager

Chapter 4. Event message reference 129

Returned: Always.

ApplType

Description: Type of application attempting to open the remote queue.
Identifier: MQIA_APPL_TYPE.
Datatype: MQCFIN.
Returned: Always.

ApplName

Description: Name of the application attempting to open the remote queue.
Identifier: MQCACF_APPL_NAME.
Datatype: MQCFST.
Maximum length: MQ_APPL_NAME_LENGTH.
Returned: Always.

ObjectQMgrName

Description: Name of the object queue manager.
Identifier: MQCACF_OBJECT_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: If the ObjectName in the object descriptor (MQOD), when the object was

opened, is not the queue manager currently connected.

Note: If the application is a server for clients, the ApplType and ApplName
parameters identify the server, not the client.

Unknown Remote Queue Manager

130 Event Monitoring

Unknown Transmission Queue

Event name: Unknown Transmission Queue.

Reason code in MQCFH: MQRC_UNKNOWN_XMIT_Q (2196, X'894').
Unknown transmission queue.

Event description: On an MQOPEN or MQPUT1 call, a message is to be sent to a remote queue
manager. The ObjectName or the ObjectQMgrName in the object descriptor specifies
the name of a local definition of a remote queue (in the latter case queue-manager
aliasing is being used). However, the XmitQName attribute of the definition is not
blank and not the name of a locally-defined queue.

Event type: Remote.

Platforms: All.

Event queue: SYSTEM.ADMIN.QMGR.EVENT.

Event data
QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

QName

Description: Queue name from object descriptor (MQOD).
Identifier: MQCA_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

XmitQName

Description: Transmission queue name.
Identifier: MQCA_XMIT_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

ApplType

Description: Type of application making the MQI call that caused the event.
Identifier: MQIA_APPL_TYPE.
Datatype: MQCFIN.
Returned: Always.

ApplName

Description: Name of the application making the MQI call that caused the event.
Identifier: MQCACF_APPL_NAME.
Datatype: MQCFST.
Maximum length: MQ_APPL_NAME_LENGTH.

Unknown Transmission Queue

Chapter 4. Event message reference 131

Returned: Always.

ObjectQMgrName

Description: Name of the object queue manager.
Identifier: MQCACF_OBJECT_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: If the ObjectName in the object descriptor (MQOD), when the object was

opened, is not the queue manager currently connected.

Note: If the application is a server for clients, the ApplType and ApplName
parameters identify the server, not the client.

Unknown Transmission Queue

132 Event Monitoring

Chapter 5. Example of using instrumentation events

This example shows how to write a program for instrumentation events. It is
written for queue managers in C, for information about which platforms support C
see the WebSphere MQ Application Programming Reference manual. It is not part of
any WebSphere MQ product and is therefore supplied as source only. The example
is incomplete in that it does not enumerate all the possible outcomes of specified
actions. Bearing this in mind, you can use this sample as a basis for your own
programs that use events, in particular, the PCF formats used in event messages.
However, you will need to modify this program to get it to run on your systems.

/**/
/* */
/* Program name: EVMON */
/* */
/* Description: C program that acts as an event monitor */
/* */
/* */
/**/
/* */
/* Function: */
/* */
/* */
/* EVMON is a C program that acts as an event monitor - reads an */
/* event queue and tells you if anything appears on it */
/* */
/* Its first parameter is the queue manager name, the second is */
/* the event queue name. If these are not supplied it uses the */
/* defaults. */
/* */
/**/
#include <time.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifndef min

#define min(a,b) (((a) < (b)) ? (a) : (b))
#endif
#ifdef OS2

/**/
/* for beep */
/**/
#define INCL_DOSPROCESS
#include <os2.h>

#endif

Figure 10. Event monitoring sample program (Part 1 of 11)

© Copyright IBM Corp. 1994, 2002 133

|
|
|

/**/
/* includes for MQI */
/**/
#include <cmqc.h>
#include <cmqcfc.h>
void printfmqcfst(MQCFST* pmqcfst);
void printfmqcfin(MQCFIN* pmqcfst);
void printreas(MQLONG reason);

#define PRINTREAS(param) \
case param: \

printf("Reason = %s\n",#param); \
break;

/**/
/* global variable */
/**/
MQCFH *evtmsg; /* evtmsg message buffer */

int main(int argc, char **argv)
{

/**/
/* declare variables */
/**/
int i; /* auxiliary counter */
/**/
/* Declare MQI structures needed */
/**/
MQOD od = {MQOD_DEFAULT}; /* Object Descriptor */
MQMD md = {MQMD_DEFAULT}; /* Message Descriptor */
MQGMO gmo = {MQGMO_DEFAULT}; /* get message options */
/**/
/* note, uses defaults where it can */
/**/

Figure 10. Event monitoring sample program (Part 2 of 11)

Example using events

134 Event Monitoring

MQHCONN Hcon; /* connection handle */
MQHOBJ Hobj; /* object handle */
MQLONG O_options; /* MQOPEN options */
MQLONG C_options; /* MQCLOSE options */
MQLONG CompCode; /* completion code */
MQLONG OpenCode; /* MQOPEN completion code */
MQLONG Reason; /* reason code */
MQLONG CReason; /* reason code for MQCONN */
MQLONG buflen; /* buffer length */
MQLONG evtmsglen; /* message length received */
MQCHAR command[1100]; /* call command string ... */
MQCHAR p1[600]; /* ApplId insert */
MQCHAR p2[900]; /* evtmsg insert */
MQCHAR p3[600]; /* Environment insert */
MQLONG mytype; /* saved application type */
char QMName[50]; /* queue manager name */
MQCFST *paras; /* the parameters */
int counter; /* loop counter */
time_t ltime;

/**/
/* Connect to queue manager */
/**/
QMName[0] = 0; /* default queue manager */
if (argc > 1)

strcpy(QMName, argv[1]);
MQCONN(QMName, /* queue manager */

&Hcon, /* connection handle */
&CompCode, /* completion code */
&CReason); /* reason code */

/**/
/* Initialize object descriptor for subject queue */
/**/
strcpy(od.ObjectName, "SYSTEM.ADMIN.QMGR.EVENT");
if (argc > 2)

strcpy(od.ObjectName, argv[2]);

/**/
/* Open the event queue for input; exclusive or shared. Use of */
/* the queue is controlled by the queue definition here */
/**/

Figure 10. Event monitoring sample program (Part 3 of 11)

Example using events

Chapter 5. Example of using instrumentation events 135

O_options = MQOO_INPUT_AS_Q_DEF /* open queue for input */
+ MQOO_FAIL_IF_QUIESCING /* but not if qmgr stopping */
+ MQOO_BROWSE;

MQOPEN(Hcon, /* connection handle */
&od, /* object descriptor for queue*/
O_options, /* open options */
&Hobj, /* object handle */
&CompCode, /* completion code */
&Reason); /* reason code */

/**/
/* Get messages from the message queue */
/**/
while (CompCode != MQCC_FAILED)
{

/**/
/* I don’t know how big this message is so just get the */
/* descriptor first */
/**/
gmo.Options = MQGMO_WAIT + MQGMO_LOCK

+ MQGMO_BROWSE_FIRST + MQGMO_ACCEPT_TRUNCATED_MSG;
/* wait for new messages */

gmo.WaitInterval = MQWI_UNLIMITED;/* no time limit */
buflen = 0; /* amount of message to get */

/**/
/* clear selectors to get messages in sequence */
/**/
memcpy(md.MsgId, MQMI_NONE, sizeof(md.MsgId));
memcpy(md.CorrelId, MQCI_NONE, sizeof(md.CorrelId));

/**/
/* wait for event message */
/**/
printf("...>\n");
MQGET(Hcon, /* connection handle */

Hobj, /* object handle */
&md, /* message descriptor */
&gmo, /* get message options */
buflen, /* buffer length */
evtmsg, /* evtmsg message buffer */
&evtmsglen, /* message length */
&CompCode, /* completion code */
&Reason); /* reason code */

/**/
/* report reason, if any */
/**/

Figure 10. Event monitoring sample program (Part 4 of 11)

Example using events

136 Event Monitoring

if (Reason != MQRC_NONE && Reason != MQRC_TRUNCATED_MSG_ACCEPTED)
{

printf("MQGET ==> %ld\n", Reason);
}
else
{

gmo.Options = MQGMO_NO_WAIT + MQGMO_MSG_UNDER_CURSOR;
buflen = evtmsglen; /* amount of message to get */
evtmsg = malloc(buflen);
if (evtmsg != NULL)
{

/**/
/* clear selectors to get messages in sequence */
/**/
memcpy(md.MsgId, MQMI_NONE, sizeof(md.MsgId));
memcpy(md.CorrelId, MQCI_NONE, sizeof(md.CorrelId));

/**/
/* get the event message */
/**/
printf("...>\n");
MQGET(Hcon, /* connection handle */

Hobj, /* object handle */
&md, /* message descriptor */
&gmo, /* get message options */
buflen, /* buffer length */
evtmsg, /* evtmsg message buffer */
&evtmsglen, /* message length */
&CompCode, /* completion code */
&Reason); /* reason code */

/**/
/* report reason, if any */
/**/
if (Reason != MQRC_NONE)
{

printf("MQGET ==> %ld\n", Reason);
}

}
else
{

CompCode = MQCC_FAILED;
}

}
/**/
/* . . . process each message received */
/**/

Figure 10. Event monitoring sample program (Part 5 of 11)

Example using events

Chapter 5. Example of using instrumentation events 137

if (CompCode != MQCC_FAILED)
{

/**/
/* announce a message */
/**/
#ifdef OS2

{
unsigned short tone;
for (tone = 1; tone < 8000; tone = tone * 2)
{

DosBeep(tone,50);
}

}
#else

printf("\a\a\a\a\a\a\a");
#endif
time(<ime);
printf(ctime(<ime));

if (evtmsglen != buflen)
printf("DataLength = %ld?\n", evtmsglen);

else
{

/**/
/* right let’s look at the data */
/**/
if (evtmsg->Type != MQCFT_EVENT)
{

printf("Something’s wrong this isn’t an event message,"
" its type is %ld\n",evtmsg->Type);

}
else
{

if (evtmsg->Command == MQCMD_Q_MGR_EVENT)
{

printf("Queue Manager event: ");
}
else

if (evtmsg->Command == MQCMD_CHANNEL_EVENT)
{

printf("Channel event: ");
}
else

...

Figure 10. Event monitoring sample program (Part 6 of 11)

Example using events

138 Event Monitoring

{
printf("Unknown Event message, %ld.",

evtmsg->Command);
}

if (evtmsg->CompCode == MQCC_OK)
printf("CompCode(OK)\n");

else if (evtmsg->CompCode == MQCC_WARNING)
printf("CompCode(WARNING)\n");

else if (evtmsg->CompCode == MQCC_FAILED)
printf("CompCode(FAILED)\n");

else
printf("* CompCode wrong * (%ld)\n",

evtmsg->CompCode);

if (evtmsg->StrucLength != MQCFH_STRUC_LENGTH)
{

printf("it’s the wrong length, %ld\n",evtmsg->StrucLength);
}

if (evtmsg->Version != MQCFH_VERSION_1)
{

printf("it’s the wrong version, %ld\n",evtmsg->Version);
}

if (evtmsg->MsgSeqNumber != 1)
{

printf("it’s the wrong sequence number, %ld\n",
evtmsg->MsgSeqNumber);

}

if (evtmsg->Control != MQCFC_LAST)
{

printf("it’s the wrong control option, %ld\n",
evtmsg->Control);

}

printreas(evtmsg->Reason);
printf("parameter count is %ld\n", evtmsg->ParameterCount);
/**/
/* get a pointer to the start of the parameters */
/**/

Figure 10. Event monitoring sample program (Part 7 of 11)

Example using events

Chapter 5. Example of using instrumentation events 139

paras = (MQCFST *)(evtmsg + 1);
counter = 1;
while (counter <= evtmsg->ParameterCount)
{

switch (paras->Type)
{

case MQCFT_STRING:
printfmqcfst(paras);
paras = (MQCFST *)((char *)paras

+ paras->StrucLength);
break;

case MQCFT_INTEGER:
printfmqcfin((MQCFIN*)paras);
paras = (MQCFST *)((char *)paras

+ paras->StrucLength);
break;

default:
printf("unknown parameter type, %ld\n",

paras->Type);
counter = evtmsg->ParameterCount;
break;

}
counter++;

}
}

} /* end evtmsg action */
free(evtmsg);

} /* end process for successful GET */
} /* end message processing loop */

/**/
/* close the event queue - if it was opened */
/**/
if (OpenCode != MQCC_FAILED)
{

C_options = 0; /* no close options */
MQCLOSE(Hcon, /* connection handle */

&Hobj, /* object handle */
C_options,
&CompCode, /* completion code */
&Reason); /* reason code */

/**/
/* Disconnect from queue manager (unless previously connected) */
/**/
if (CReason != MQRC_ALREADY_CONNECTED)
{

MQDISC(&Hcon, /* connection handle */
&CompCode, /* completion code */
&Reason); /* reason code */

Figure 10. Event monitoring sample program (Part 8 of 11)

Example using events

140 Event Monitoring

/**/
/* */
/* END OF EVMON */
/* */
/**/
}

#define PRINTPARAM(param) \
case param: \

{ \
char *p = #param; \

strncpy(thestring,pmqcfst->String,min(sizeof(thestring), \
pmqcfst->StringLength)); \

printf("%s %s\n",p,thestring); \
} \
break;

#define PRINTAT(param) \
case param: \

printf("MQIA_APPL_TYPE = %s\n",#param); \
break;

void printfmqcfst(MQCFST* pmqcfst)
{

char thestring[100];

switch (pmqcfst->Parameter)
{

PRINTPARAM(MQCA_BASE_Q_NAME)
PRINTPARAM(MQCA_PROCESS_NAME)
PRINTPARAM(MQCA_Q_MGR_NAME)
PRINTPARAM(MQCA_Q_NAME)
PRINTPARAM(MQCA_XMIT_Q_NAME)
PRINTPARAM(MQCACF_APPL_NAME)

...
default:
printf("Invalid parameter, %ld\n",pmqcfst->Parameter);
break;

}
}

Figure 10. Event monitoring sample program (Part 9 of 11)

Example using events

Chapter 5. Example of using instrumentation events 141

void printfmqcfin(MQCFIN* pmqcfst)
{

switch (pmqcfst->Parameter)
{

case MQIA_APPL_TYPE:
switch (pmqcfst->Value)
{

PRINTAT(MQAT_UNKNOWN)
PRINTAT(MQAT_OS2)
PRINTAT(MQAT_DOS)
PRINTAT(MQAT_UNIX)
PRINTAT(MQAT_QMGR)
PRINTAT(MQAT_OS400)
PRINTAT(MQAT_WINDOWS)
PRINTAT(MQAT_CICS_VSE)
PRINTAT(MQAT_VMS)
PRINTAT(MQAT_GUARDIAN)
PRINTAT(MQAT_VOS)

}
break;

case MQIA_Q_TYPE:
if (pmqcfst->Value == MQQT_ALIAS)
{

printf("MQIA_Q_TYPE is MQQT_ALIAS\n");
}
else

...
{

if (pmqcfst->Value == MQQT_REMOTE)
{

printf("MQIA_Q_TYPE is MQQT_REMOTE\n");
if (evtmsg->Reason == MQRC_ALIAS_BASE_Q_TYPE_ERROR)
{

printf("but remote is not valid here\n");
}

}
else
{

printf("MQIA_Q_TYPE is wrong, %ld\n",pmqcfst->Value);
}

}
break;

Figure 10. Event monitoring sample program (Part 10 of 11)

Example using events

142 Event Monitoring

case MQIACF_REASON_QUALIFIER:
printf("MQIACF_REASON_QUALIFIER %ld\n",pmqcfst->Value);
break;

case MQIACF_ERROR_IDENTIFIER:
printf("MQIACF_ERROR_INDENTIFIER %ld (X’%lX’)\n",

pmqcfst->Value,pmqcfst->Value);
break;

case MQIACF_AUX_ERROR_DATA_INT_1:
printf("MQIACF_AUX_ERROR_DATA_INT_1 %ld (X’%lX’)\n",

pmqcfst->Value,pmqcfst->Value);
break;

case MQIACF_AUX_ERROR_DATA_INT_2:
printf("MQIACF_AUX_ERROR_DATA_INT_2 %ld (X’%lX’)\n",

pmqcfst->Value,pmqcfst->Value);
break;...

default :
printf("Invalid parameter, %ld\n",pmqcfst->Parameter);
break;

}
}

void printreas(MQLONG reason)
{

switch (reason)
{

PRINTREAS(MQRCCF_CFH_TYPE_ERROR)
PRINTREAS(MQRCCF_CFH_LENGTH_ERROR)
PRINTREAS(MQRCCF_CFH_VERSION_ERROR)
PRINTREAS(MQRCCF_CFH_MSG_SEQ_NUMBER_ERR)

...
PRINTREAS(MQRC_NO_MSG_LOCKED)
PRINTREAS(MQRC_CONNECTION_NOT_AUTHORIZED)
PRINTREAS(MQRC_MSG_TOO_BIG_FOR_CHANNEL)
PRINTREAS(MQRC_CALL_IN_PROGRESS)
default:

printf("It’s an unknown reason, %ld\n",
reason);

break;
}

}

Figure 10. Event monitoring sample program (Part 11 of 11)

Chapter 5. Example of using instrumentation events 143

144 Event Monitoring

Appendix A. Structure datatypes MQCFBS, MQCFIN, MQCFSL
and MQCFST

In this appendix, the structures MQCFBS, MQCFIN, MQCFSL and MQCFST are
described in a language-independent form. The declarations are shown in the
following programming languages:
v C
v COBOL
v PL/I
v RPG (ILE) (OS/400 only)
v S/390® assembler (z/OS only)
v Visual Basic (Windows platforms only)

Where the platform is not declared in the list above, see the WebSphere MQ
Application Programming Reference manual for information about which compilers
and programming languages are supported on each platform.

The elementary data types of the fields in MQCFBS, MQCFIN, MQCFSL and
MQCFST are described in the WebSphere MQ Application Programming Reference
manual.

The initial value of each field is shown under its description. This is the value of
the field in the default structure.

MQCFBS - Byte string parameter
The MQCFBS structure describes an byte string parameter in an event message.

Type

Description: This indicates that the structure is an MQCFBS structure describing a
byte string parameter.

Datatype: MQLONG.
Initial value: MQCFT_BYTE_STRING.
Valid value:

MQCFT_BYTE_STRING
Structure defining a byte string.

StrucLength

Description: This is the length in bytes of the MQCFBS structure, including the
variable-length string at the end of the structure (the String field). The
length must be a multiple of four, and must be sufficient to contain the
string; any bytes between the end of the string and the length defined
by the StrucLength field are not significant.

Datatype: MQLONG.
Initial value: MQCFBS_STRUC_LENGTH_FIXED.
Valid value:

MQCFBS_STRUC_LENGTH_FIXED
Length of fixed part of the MQCFBS structure, that is the length
excluding the String field.

© Copyright IBM Corp. 1994, 2002 145

|

|
|
|

|
|
|

|

|

|

|||
|
||
||
|
|
|
|

|

|||
|
|
|
|
||
||
|
|
|
|
|

Parameter

Description: This identifies the parameter whose value is contained in the structure.
The values that can occur in this field depend on the value of the
Command field in the MQCFH structure.

Datatype: MQLONG.
Initial value: 0.

StringLength

Description: This is the length in bytes of the data in the String field; it must be zero
or greater. This length need not be a multiple of four.

Datatype: MQLONG.
Initial value: 0.

String

Description: This is the value of the parameter identified by the Parameter field. The
string is a byte string, and so is not subject to character-set conversion
when sent between different systems.
Note: A null byte in the string is treated as normal data, and does not
act as a delimiter for the string.

Datatype: MQBYTE ×StringLength.
Initial value: Null string. (Only present in C)

C language declaration (MQCFBS)
typedef struct tagMQCFBS MQCFBS;
struct tagMQCFBS {

MQLONG Type; /* Structure type */
MQLONG StrucLength; /* Structure length */
MQLONG Parameter; /* Parameter identifier */
MQLONG StringLength; /* Length of string */
MQBYTE String[1]; /* String value -- first character */

};

COBOL language declaration (MQCFBS)
** MQCFBS structure

10 MQCFBS.
** Structure type

15 MQCFBS-TYPE PIC S9(9) BINARY.
** Structure length

15 MQCFBS-STRUCLENGTH PIC S9(9) BINARY.
** Parameter identifier

15 MQCFBS-PARAMETER PIC S9(9) BINARY.
** Length of string

15 MQCFBS-STRINGLENGTH PIC S9(9) BINARY.

PL/I language declaration (MQCFBS) (z/OS only)
dcl
1 MQCFBS based,
3 Type fixed bin(31), /* Structure type */
3 StrucLength fixed bin(31), /* Structure length */
3 Parameter fixed bin(31), /* Parameter identifier */
3 StringLength fixed bin(31); /* Length of string */

MQCFBS

146 Event Monitoring

|

|||
|
|
||
||
|

|

|||
|
||
||
|

|

|||
|
|
|
|
||
||
|

|

|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|

System/390 assembler-language declaration (MQCFBS) (z/OS
only)

MQCFBS DSECT
MQCFBS_TYPE DS F Structure type
MQCFBS_STRUCLENGTH DS F Structure length
MQCFBS_PARAMETER DS F Parameter identifier
MQCFBS_STRINGLENGTH DS F Length of string
*
MQCFBS_LENGTH EQU *-MQCFBS

ORG MQCFBS
MQCFBS_AREA DS CL(MQCFBS_LENGTH)

MQCFIN - Integer parameter
The MQCFIN structure describes an integer parameter in an event message.

Type

Description: Indicates that the structure type is MQCFIN and describes an integer
parameter.

Datatype: MQLONG.
Initial value: MQCFT_INTEGER.
Valid value:

MQCFT_INTEGER
Structure defining an integer.

StrucLength

Description: Length in bytes of the MQCFIN structure.
Datatype: MQLONG.
Initial value: MQCFIN_STRUC_LENGTH.
Valid value:

MQCFIN_STRUC_LENGTH
Length of MQCFIN structure.

Parameter

Description: Identifies the parameter whose value is contained in the structure.
Datatype: MQLONG.
Initial value: 0.
Valid values: Dependent on the event message.

Value

Description: Value of parameter identified by the Parameter field.
Datatype: MQLONG.
Initial value: 0.

C language declaration (MQCFIN)
typedef struct tagMQCFIN {

MQLONG Type; /* Structure type */
MQLONG StrucLength; /* Structure length */
MQLONG Parameter; /* Parameter identifier */
MQLONG Value; /* Parameter value */
} MQCFIN;

MQCFBS

Appendix A. Structure datatypes MQCFIN, MQCFST, MQCFBS and MQCFSL 147

|

|

|
|
|
|
|
|
|
|
|

COBOL language declaration (MQCFIN)
** MQCFIN structure

10 MQCFIN.
** Structure type

15 MQCFIN-TYPE PIC S9(9) BINARY.
** Structure length

15 MQCFIN-STRUCLENGTH PIC S9(9) BINARY.
** Parameter identifier

15 MQCFIN-PARAMETER PIC S9(9) BINARY.
** Parameter value

15 MQCFIN-VALUE PIC S9(9) BINARY.

PL/I language declaration (MQCFIN)
dcl
1 MQCFIN based,
3 Type fixed bin(31), /* Structure type */
3 StrucLength fixed bin(31), /* Structure length */
3 Parameter fixed bin(31), /* Parameter identifier */
3 Value fixed bin(31); /* Parameter value */

RPG/ILE declaration (MQCFIN) (OS/400 only)
D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
D* MQCFIN Structure
D*
D* Structure type
D INTYP 1 4I 0
D* Structure length
D INLEN 5 8I 0
D* Parameter identifier
D INPRM 9 12I 0
D* Parameter value
D INVAL 13 16I 0

System/390 assembler-language declaration (MQCFIN)
MQCFIN DSECT
MQCFIN_TYPE DS F Structure type
MQCFIN_STRUCLENGTH DS F Structure length
MQCFIN_PARAMETER DS F Parameter identifier
MQCFIN_VALUE DS F Parameter value
MQCFIN_LENGTH EQU *-MQCFIN Length of structure

ORG MQCFIN
MQCFIN_AREA DS CL(MQCFIN_LENGTH)

Visual Basic language declaration (MQCFIN)
Type MQCFIN

Type As Long ’ Structure type
StrucLength As Long ’ Structure length
Parameter As Long ’ Parameter identifier
Value As Long ’ Parameter value

End Type

Global MQCFIN_DEFAULT As MQCFIN

MQCFSL - String list parameter
The MQCFSL structure describes a string list parameter in an event message.

MQCFIN

148 Event Monitoring

|

|
|
|
|
|
|
|
|
|
|
|

|

|

Type

Description: This indicates that the structure is an MQCFSL structure describing a
string-list parameter.

Datatype: MQLONG.
Initial value: MQCFT_STRING_LIST.
Valid value:

MQCFT_STRING_LIST
Structure defining a string list.

StrucLength

Description: This is the length in bytes of the MQCFSL structure, including the data
at the end of the structure (the Strings field). The length must be a
multiple of four, and must be sufficient to contain all of the strings; any
bytes between the end of the strings and the length defined by the
StrucLength field are not significant.

Datatype: MQLONG.
Initial value: MQCFSL_STRUC_LENGTH_FIXED.
Valid value:

MQCFSL_STRUC_LENGTH_FIXED
Length of fixed part, that is the length excluding the Strings
field, of the command format string-list parameter structure.

Parameter

Description: This identifies the parameter whose values are contained in the
structure. The values that can occur in this field depend on the value of
the Command field in the MQCFH structure.

Datatype: MQLONG.
Initial value: 0.

CodedCharSetId

Description: This specifies the coded character set identifier of the data in the
Strings field.

Datatype: MQLONG.
Initial value: MQCCSI_DEFAULT.
Valid value:

MQCFSI_DEFAULT
Default character set identifier. The string data is in the
character set defined by the CodedCharSetId field in the MQ
header structure that precedes the MQCFH structure, or by the
CodedCharSetId field in the MQMD if the MQCFH structure is
at the start of the message.

Count

Description: This is the number of strings present in the Strings field; it must be
zero or greater.

Datatype: MQLONG.
Initial value: 0.

StringLength

Description: This is the length in bytes of one parameter value, that is the length of
one string in the Strings field; all of the strings are this length. The
length must be zero or greater, and need not be a multiple of four.

Datatype: MQLONG.

MQCFSL

Appendix A. Structure datatypes MQCFIN, MQCFST, MQCFBS and MQCFSL 149

|

|||
|
||
||
|
|
|
|

|

|||
|
|
|
|
||
||
|
|
|
|
|

|

|||
|
|
||
||
|

|

|||
|
||
||
|
|
|
|
|
|
|
|

|

|||
|
||
||
|

|

|||
|
|
||

Initial value: 0.

String

Description: This is a set of string values for the parameter identified by the
Parameter field. The number of strings is given by the Count field, and
the length of each string is given by the StringLength field. The strings
are concatenated together, with no bytes skipped between adjacent
strings. The total length of the strings is the length of one string
multiplied by the number of strings present (that is,
StringLength×Count).

In MQFMT_EVENT messages, trailing blanks are omitted from string
parameters (that is, the string may be shorter than the defined length of
the parameter). StringLength gives the length of the string actually
present in the message.
Note: In the MQCFSL structure, a null character in a string is treated as
normal data, and does not act as a delimiter for the string. This means
that when a receiving application reads a MQFMT_EVENT message, the
receiving application receives all of the data specified by the sending
application. The data may, of course, have been converted between
character sets (for example, by the receiving application specifying the
MQGMO_CONVERT option on the MQGET call).

In contrast, when the queue manager reads an MQFMT_ADMIN
message from the command input queue, the queue manager processes
the data as though it had been specified on an MQI call. This means that
within each string, the first null and the characters following it (up to
the end of the string) are treated as blanks.

Datatype: MQCHAR × StringLength×Count.
Initial value: Null string. (Present only in C).

COBOL language declaration (MQCFSL)
** MQCFSL structure

10 MQCFSL.
** Structure type

15 MQCFSL-TYPE PIC S9(9) BINARY.
** Structure length

15 MQCFSL-STRUCLENGTH PIC S9(9) BINARY.
** Parameter identifier

15 MQCFSL-PARAMETER PIC S9(9) BINARY.
** Coded character set identifier

15 MQCFSL-CODEDCHARSETID PIC S9(9) BINARY.
** Count of parameter values

15 MQCFSL-COUNT PIC S9(9) BINARY.
** Length of one string

15 MQCFSL-STRINGLENGTH PIC S9(9) BINARY.

PL/I language declaration (MQCFSL)
dcl
1 MQCFSL based,
3 Type fixed bin(31), /* Structure type */
3 StrucLength fixed bin(31), /* Structure length */
3 Parameter fixed bin(31), /* Parameter identifier */
3 CodedCharSetId fixed bin(31), /* Coded character set identifier */
3 Count fixed bin(31), /* Count of parameter values */
3 StringLength fixed bin(31); /* Length of one string */

MQCFSL

150 Event Monitoring

||
|

|

|||
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
||
||
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|

RPG/ILE declaration (MQCFSL) (OS/400 only)
D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
D* MQCFSL Structure
D*
D* Structure type
D SLTYP 1 4I 0
D* Structure length
D SLLEN 5 8I 0
D* Parameter identifier
D SLPRM 9 12I 0
D* Coded character set identifier
D SLCSI 13 16I 0
D* Count of parameter values
D SLCNT 17 20I 0
D* Length of one string
D SLSTL 21 24I 0

System/390 assembler-language declaration (MQCFSL) (z/OS
only)

MQCFSL DSECT
MQCFSL_TYPE DS F Structure type
MQCFSL_STRUCLENGTH DS F Structure length
MQCFSL_PARAMETER DS F Parameter identifier
MQCFSL_CODEDCHARSETID DS F Coded character set identifier
MQCFSL_COUNT DS F Count of parameter values
MQCFSL_STRINGLENGTH DS F Length of one string
*
MQCFSL_LENGTH EQU *-MQCFSL

ORG MQCFSL
MQCFSL_AREA DS CL(MQCFSL_LENGTH)

Visual Basic language declaration (MQCFSL) (Windows
systems only)

Type MQCFSL
Type As Long ’Structure type’
StrucLength As Long ’Structure length’
Parameter As Long ’Parameter identifier’
CodedCharSetId As Long ’Coded character set identifier’
Count As Long ’Count of parameter values’
StringLength As Long ’Length of one string’

End Type

MQCFST - String parameter
The MQCFST structure describes a string parameter in an event message.

The structure ends with a variable-length character string; see the String field
below for further details.

Type

Description: Indicates that the structure type is MQCFST and describes a string
parameter.

Datatype: MQLONG.
Initial value: MQCFT_STRING.
Valid value:

MQCFT_STRING
Structure defining a string.

MQCFSL

Appendix A. Structure datatypes MQCFIN, MQCFST, MQCFBS and MQCFSL 151

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|
|
|
|
|
|
|
|
|
|

|

|

|
|
|
|
|
|
|
|

StrucLength

Description: Length in bytes of the MQCFST structure, including the string at the end
of the structure (the String field). The length must be a multiple of four,
and must be sufficient to contain the string; any bytes between the end
of the string and the length defined by the StrucLength field are not
significant.

Datatype: MQLONG.
Initial value:

MQCFST_STRUC_LENGTH_FIXED.
Length of the fixed part of the MQCFST structure, excluding the
String field.

Parameter

Description: Identifies the parameter whose value is contained in the structure.
Datatype: MQLONG.
Initial value: 0.
Valid values: Dependent on the event message.

CodedCharSetId

Description: Coded character set identifier of the data in the String field.
Datatype: MQLONG.
Initial value:

MQCCSI_DEFAULT.
Default coded character set identifier, indicating that character
data is in the character set defined by the CodedCharSetId field
in the MQ header structure that precedes the MQCFH
structure, or by the CodedCharSetId field in the MQMD if the
MQCFH structure is at the start of the message.

Valid values: v If all of the strings in an event message have the same coded
character-set identifier, the CodedCharSetId field in the message
descriptor MQMD or in the MQ header structure preceding MQCFH
should be set to that identifier when the message is put, and the
CodedCharSetId fields in the MQCFST structure within the message
should be set to MQCCSI_DEFAULT.

v If some of the strings in the message have different character-set
identifiers, the CodedCharSetId field in MQMD or in the MQ header
structure preceding MQCFH should be set to MQCCSI_EMBEDDED
when the message is put, and the CodedCharSetId fields in the
MQCFST structure within the message should be set to the identifiers
that apply.

Do not specify MQCCSI_EMBEDDED in MQMD or in the MQ header
structure preceding MQCFH when the message is put, with
MQCCSI_DEFAULT in the MQCFST structure within the message, as
this will prevent conversion of the message.

StringLength

Description: Length in bytes of the data in the String field; it must be zero or greater.
This length need not be a multiple of four.

Datatype: MQLONG.
Initial value: 0.

MQCFST

152 Event Monitoring

String

Description: The value of the parameter identified by the Parameter
field.

In MQFMT_EVENT messages, trailing blanks are omitted
from string parameters (that is, the string may be shorter
than the defined length of the parameter). StringLength
gives the length of the string actually present in the
message.

Datatype: MQCHAR×StringLength.
Initial value: In C, the initial value of this field is the null string.
Valid value: The string can contain any characters that are in the

character set defined by CodedCharSetId, and that are
valid for the parameter identified by Parameter.

Language considerations: The way that this field is declared depends on the
programming language:

v For the C programming language, the field is declared
as an array with one element. Storage for the structure
should be allocated dynamically, and pointers used to
address the fields within it.

v For the COBOL, PL/I, System/390 assembler, and
Visual Basic programming languages, the field is
omitted from the structure declaration. When an
instance of the structure is declared, the user should
include MQCFST in a larger structure, and declare
additional fields following MQCFST, to represent the
String field as required.

Special note: A null character in the string is treated as normal data,
and does not act as a delimiter for the string. This means
that when a receiving application reads an
MQFMT_EVENT message, the receiving application
receives all of the data specified by the sending
application. The data may, of course, have been
converted between character sets (for example, by the
receiving application specifying the MQGMO_CONVERT
option on the MQGET call).

C language declaration (MQCFST)
typedef struct tagMQCFST {

MQLONG Type; /* Structure type */
MQLONG StrucLength; /* Structure length */
MQLONG Parameter; /* Parameter identifier */
MQLONG CodedCharSetId; /* Coded character set identifier */
MQLONG StringLength; /* Length of string */
MQCHAR String[1]; /* String value - first

character */
} MQCFST;

In the C programming language, the macro variable MQCFST_DEFAULT contains
the initial values of the MQCFST structure. It can be used in the following way to
provide initial values for the fields in the structure:
struct {

MQCFST Hdr;
MQCHAR Data[99];

} MyCFST = {MQCFST_DEFAULT};

MQCFST

Appendix A. Structure datatypes MQCFIN, MQCFST, MQCFBS and MQCFSL 153

COBOL language declaration (MQCFST)
** MQCFST structure

10 MQCFST.
** Structure type

15 MQCFST-TYPE PIC S9(9) BINARY.
** Structure length

15 MQCFST-STRUCLENGTH PIC S9(9) BINARY.
** Parameter identifier

15 MQCFST-PARAMETER PIC S9(9) BINARY.
** Coded character set identifier

15 MQCFST-CODEDCHARSETID PIC S9(9) BINARY.
** Length of string

15 MQCFST-STRINGLENGTH PIC S9(9) BINARY.

PL/I language declaration (MQCFST)
dcl
1 MQCFST based,
3 Type fixed bin(31), /* Structure type */
3 StrucLength fixed bin(31), /* Structure length */
3 Parameter fixed bin(31), /* Parameter identifier */
3 CodedCharSetId fixed bin(31), /* Coded character set identifier */
3 StringLength fixed bin(31); /* Length of string */

RPG/ILE declaration (MQCFST) (OS/400 only)
D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
D* MQCFST Structure
D*
D* Structure type
D STTYP 1 4I 0
D* Structure length
D STLEN 5 8I 0
D* Parameter identifier
D STPRM 9 12I 0
D* Coded character set identifier
D STCSI 13 16I 0
D* Length of string
D STSTL 17 20I 0

System/390 assembler-language declaration (MQCFST)
MQCFST DSECT
MQCFST_TYPE DS F Structure type
MQCFST_STRUCLENGTH DS F Structure length
MQCFST_PARAMETER DS F Parameter identifier
MQCFST_CODEDCHARSETID DS F Coded character set
* identifier
MQCFST_STRINGLENGTH DS F Length of string
MQCFST_LENGTH EQU *-MQCFST Length of structure

ORG MQCFST
MQCFST_AREA DS CL(MQCFST_LENGTH)

Visual Basic language declaration (MQCFST)
Type MQCFST

Type As Long ’ Structure type
StrucLength As Long ’ Structure length
Parameter As Long ’ Parameter identifier
CodedCharSetId As Long ’ Coded character set identifier
StringLength As Long ’ Length of string

End Type

Global MQCFST_DEFAULT As MQCFST

MQCFST

154 Event Monitoring

|

|
|
|
|
|
|
|
|
|
|
|
|
|

Appendix B. Constants

This appendix specifies the values of the named constants that apply to events.

The constants are grouped according to the parameter or field to which they relate.
All the names of the constants in a group begin with a common prefix of the form
MQxxxx_, where xxxx represents a string of 0 through 4 characters that indicates the
nature of the values defined in that group. The constants are ordered alphabetically
by the prefix.

Notes:

1. For constants with numeric values, the values are shown in both decimal and
hexadecimal forms.

2. Hexadecimal values are represented using the notation X'hhhh', where each h
denotes a single hexadecimal digit.

3. Character values are shown delimited by single quotation marks; the quotation
marks are not part of the value.

4. Blanks in character values are represented by one or more occurrences of the
symbol �.

List of constants
The following sections list all the named constants mentioned in this book, with
their values.

MQ_* (Lengths of character string and byte fields)

MQ_APPL_NAME_LENGTH 28 X’0000001C’
MQ_AUTH_INFO_NAME_LENGTH 48 X’00000030’
MQ_BRIDGE_NAME_LENGTH 24 X’00000018’
MQ_CHANNEL_NAME_LENGTH 20 X’00000014’
MQ_CONN_NAME_LENGTH 264 X’00000108’
MQ_FORMAT_LENGTH 8 X’00000008’
MQ_PROCESS_NAME_LENGTH 48 X’00000030’
MQ_SSL_HANDSHAKE_STAGE_LENGTH 32 X’00000020’
MQ_STORAGE_CLASS_LENGTH 8 X’00000008’
MQ_STORAGE_CLASS_DESC_LENGTH 64 X’00000040’
MQ_Q_MGR_NAME_LENGTH 48 X’00000030’
MQ_Q_NAME_LENGTH 48 X’00000030’
MQ_USER_ID_LENGTH 12 X’0000000C’
MQ_XCF_GROUP_NAME_LENGTH 8 X’00000008’
MQ_XCF_MEMBER_NAME_LENGTH 16 X’00000010’

MQBACF_* (Byte attribute command format parameter)

MQBACF_EVENT_ACCOUNTING_TOKEN 7001 X’00001B59’
MQBACF_EVENT_SECURITY_ID 7002 X’00001B5A’

© Copyright IBM Corp. 1994, 2002 155

|

|
|||
|||

|||
|||

|

||||
|||

MQBT_* (Bridge type)

MQBT_OTMA 1 X’00000001’

MQCA_* (Character attribute selector)

MQCA_APPL_ID 2001 X’000007D1’
MQCA_BASE_Q_NAME 2002 X’000007D2’
MQCA_COMMAND_INPUT_Q_NAME 2003 X’000007D3’
MQCA_CREATION_DATE 2004 X’000007D4’
MQCA_CREATION_TIME 2005 X’000007D5’
MQCA_DEAD_LETTER_Q_NAME 2006 X’000007D6’
MQCA_ENV_DATA 2007 X’000007D7’
MQCA_INITIATION_Q_NAME 2008 X’000007D8’
MQCA_NAMELIST_DESC 2009 X’000007D9’
MQCA_NAMELIST_NAME 2010 X’000007DA’
MQCA_PROCESS_DESC 2011 X’000007DB’
MQCA_PROCESS_NAME 2012 X’000007DC’
MQCA_Q_DESC 2013 X’000007DD’
MQCA_Q_MGR_DESC 2014 X’000007DE’
MQCA_Q_MGR_NAME 2015 X’000007DF’
MQCA_Q_NAME 2016 X’000007E0’
MQCA_REMOTE_Q_MGR_NAME 2017 X’000007E1’
MQCA_REMOTE_Q_NAME 2018 X’000007E2’
MQCA_BACKOUT_REQ_Q_NAME 2019 X’000007E3’
MQCA_USER_DATA 2021 X’000007E5’
MQCA_STORAGE_CLASS 2022 X’000007E6’
MQCA_TRIGGER_DATA 2023 X’000007E7’
MQCA_XMIT_Q_NAME 2024 X’000007E8’
MQCA_DEF_XMIT_Q_NAME 2025 X’000007E9’
MQCA_CHANNEL_AUTO_DEF_EXIT 2026 X’000007EA’
MQCA_Q_MGR_IDENTIFIER 2032 X’000007F0’
MQCA_CLUSTER_WORKLOAD_EXIT 2033 X’000007F1’
MQCA_CLUSTER_WORKLOAD_DATA 2034 X’000007F2’
MQCA_CF_STRUC_NAME 2039 X’000007F7’
MQCA_IGQ_USER_ID 2041 X’000007F9’
MQCA_STORAGE_CLASS_DESC 2042 X’000007FA’
MQCA_XCF_GROUP_NAME 2043 X’000007FB’
MQCA_XCF_MEMBER_NAME 2044 X’000007FC’
MQCA_AUTH_INFO_NAME 2045 X’000007FD’
MQCA_AUTH_INFO_DESC 2046 X’000007FE’
MQCA_LDAP_USER_NAME 2047 X’000007FF’
MQCA_LDAP_PASSWORD 2048 X’00000800’
MQCA_SSL_KEY_REPOSITORY 2049 X’00000801’
MQCA_SSL_CRL_NAMELIST 2050 X’00000802’
MQCA_AUTH_INFO_CONN_NAME 2053 X’00000805’
MQCA_LAST_USED 2053 X’00000805’

MQCACF_* (Character attribute command format parameter)

MQCACF_OBJECT_Q_MGR_NAME 3023 X’00000BCF’
MQCACF_APPL_NAME 3024 X’00000BD0’
MQCACF_USER_IDENTIFIER 3025 X’00000BD1’
MQCACF_AUX_ERROR_DATA_STR_1 3026 X’00000BD2’

Constants

156 Event Monitoring

|

MQCACF_AUX_ERROR_DATA_STR_2 3027 X’00000BD3’
MQCACF_AUX_ERROR_DATA_STR_3 3028 X’00000BD4’
MQCACF_BRIDGE_NAME 3029 X’00000BD5’
MQCACF_EVENT_USER_ID 3045 X’00000BE5’
MQCACF_EVENT_Q_MGR 3047 X’00000BE7’
MQCACF_EVENT_APPL_IDENTITY 3049 X’00000BE9’
MQCACF_EVENT_APPL_NAME 3050 X’00000BEA’
MQCACF_EVENT_APPL_ORIGIN 3051 X’00000BEB’
MQCACF_LAST_USED 3051 X’00000BEB’

MQCACH_* (Channel character attribute command format
parameter)

MQCACH_CHANNEL_NAME 3501 X’00000DAD’
MQCACH_DESC 3502 X’00000DAE’
MQCACH_MODE_NAME 3503 X’00000DAF’
MQCACH_TP_NAME 3504 X’00000DB0’
MQCACH_XMIT_Q_NAME 3505 X’00000DB1’
MQCACH_CONNECTION_NAME 3506 X’00000DB2’
MQCACH_SEC_EXIT_NAME 3508 X’00000DB4’
MQCACH_MSG_EXIT_NAME 3509 X’00000DB5’
MQCACH_SEND_EXIT_NAME 3510 X’00000DB6’
MQCACH_RCV_EXIT_NAME 3511 X’00000DB7’
MQCACH_CHANNEL_NAMES 3512 X’00000DB8’
MQCACH_SEC_EXIT_USER_DATA 3513 X’00000DB9’
MQCACH_MSG_EXIT_USER_DATA 3514 X’00000DBA’
MQCACH_SEND_EXIT_USER_DATA 3515 X’00000DBB’
MQCACH_RCV_EXIT_USER_DATA 3516 X’00000DBC’
MQCACH_USER_ID 3517 X’00000DBD’
MQCACH_LOCAL_ADDRESS 3520 X’00000DC0’
MQCACH_PASSWORD 3518 X’00000DBE’
MQCACH_MCA_USER_ID 3527 X’00000DC7’
MQCACH_FORMAT_NAME 3533 X’00000DCD’
MQCACH_SSL_CIPHER_SPEC 3544 X’00000DD8’
MQCACH_SSL_PEER_NAME 3545 X’00000DD9’
MQCACH_SSL_HANDSHAKE_STAGE 3546 X’00000DDA’

MQCC_* (Completion code)

MQCC_OK 0 X’00000000’
MQCC_WARNING 1 X’00000001’

MQCFC_* (Command format control options)

MQCFC_LAST 1 X’00000001’

MQCFH_* (Command format header structure length)

MQCFH_STRUC_LENGTH 36 X’00000024’

Constants

Appendix B. Constants 157

|

|

MQCFH_* (Command format header version)

MQCFH_VERSION_1 1 X’00000001’

MQCFIN_* (Command format integer parameter structure
length)

MQCFIN_STRUC_LENGTH 16 X’00000010’

MQCFST_* (Command format string parameter structure
length)

MQCFST_STRUC_LENGTH_FIXED 20 X’00000014’

MQCFT_* (Command structure type)

MQCFT_COMMAND 1 X’00000001’
MQCFT_INTEGER 3 X’00000003’
MQCFT_STRING 4 X’00000004’
MQCFT_EVENT 7 X’00000007’

MQCHT_* (Channel type)

MQCHT_SENDER 1 X’00000001’
MQCHT_SERVER 2 X’00000002’
MQCHT_RECEIVER 3 X’00000003’
MQCHT_REQUESTER 4 X’00000004’
MQCHT_CLNTCONN 6 X’00000006’
MQCHT_SVRCONN 7 X’00000007’
MQCHT_CLUSRCVR 8 X’00000008’
MQCHT_CLUSSDR 9 X’00000009’

MQCMD_* (Command identifier)

MQCMD_CONFIG_EVENT 43 X’0000002B’
MQCMD_Q_MGR_EVENT 44 X’0000002C’
MQCMD_PERFM_EVENT 45 X’0000002D’
MQCMD_CHANNEL_EVENT 46 X’0000002E’

MQEVO_* (Event origin)

MQEVO_OTHER 0 X’00000000’
MQEVO_CONSOLE 1 X’00000001’
MQEVO_INIT 2 X’00000002’
MQEVO_MSG 3 X’00000003’
MQEVO_MQSET 4 X’00000004’
MQEVO_INTERNAL 5 X’00000005’

Constants

158 Event Monitoring

|
|

|
|

|

|||

|

MQIA_* (Integer attribute selector)

MQIA_APPL_TYPE 1 X’00000001’
MQIA_CODED_CHAR_SET_ID 2 X’00000002’
MQIA_DEF_INPUT_OPEN_OPTION 4 X’00000004’
MQIA_DEF_PERSISTENCE 5 X’00000005’
MQIA_DEF_PRIORITY 6 X’00000006’
MQIA_DEFINITION_TYPE 7 X’00000007’
MQIA_HARDEN_GET_BACKOUT 8 X’00000008’
MQIA_INHIBIT_GET 9 X’00000009’
MQIA_INHIBIT_PUT 10 X’0000000A’
MQIA_MAX_HANDLES 11 X’0000000B’
MQIA_USAGE 12 X’0000000C’
MQIA_MAX_MSG_LENGTH 13 X’0000000D’
MQIA_MAX_PRIORITY 14 X’0000000E’
MQIA_MAX_Q_DEPTH 15 X’0000000F’
MQIA_MSG_DELIVERY_SEQUENCE 16 X’00000010’
MQIA_Q_TYPE 20 X’00000014’
MQIA_RETENTION_INTERVAL 21 X’00000015’
MQIA_SHAREABILITY 23 X’00000017’
MQIA_TRIGGER_CONTROL 24 X’00000018’
MQIA_TRIGGER_INTERVAL 25 X’00000019’
MQIA_TRIGGER_MSG_PRIORITY 26 X’0000001A’
MQIA_TRIGGER_TYPE 28 X’0000001C’
MQIA_TRIGGER_DEPTH 29 X’0000001D’
MQIA_SYNCPOINT 30 X’0000001E’
MQIA_COMMAND_LEVEL 31 X’0000001F’
MQIA_PLATFORM 32 X’00000020’
MQIA_MAX_UNCOMMITED_MSGS 33 X’00000021’
MQIA_TIME_SINCE_RESET 35 X’00000023’
MQIA_HIGH_Q_DEPTH 36 X’00000024’
MQIA_MSG_ENQ_COUNT 37 X’00000025’
MQIA_MSG_DEQ_COUNT 38 X’00000026’
MQIA_Q_DEPTH_HIGH_LIMIT 40 X’00000028’
MQIA_Q_DEPTH_LOW_LIMIT 41 X’00000029’
MQIA_Q_DEPTH_MAX_EVENT 42 X’0000002A’
MQIA_Q_DEPTH_HIGH_EVENT 43 X’0000002B’
MQIA_Q_DEPTH_LOW_EVENT 44 X’0000002C’
MQIA_AUTHORITY_EVENT 47 X’0000002F’
MQIA_INHIBIT_EVENT 48 X’00000030’
MQIA_LOCAL_EVENT 49 X’00000031’
MQIA_REMOTE_EVENT 50 X’00000032’
MQIA_CONFIGURATION_EVENT 51 X’00000033’
MQIA_START_STOP_EVENT 52 X’00000034’
MQIA_PERFORMANCE_EVENT 53 X’00000035’
MQIA_Q_SERVICE_INTERVAL 54 X’00000036’
MQIA_INDEX_TYPE 57 X’00000039’
MQIA_CLUSTER_WORKLOAD_LENGTH 58 X’0000003A’
MQIA_DEF_BIND 61 X’0000003D’
MQIA_PAGESET_ID 62 X’0000003E’
MQIA_QSG_DISP 63 X’0000003F’
MQIA_INTRA_GROUP_QUEUING 64 X’00000040’
MQIA_IGQ_PUT_AUTHORITY 65 X’00000041’
MQIA_AUTH_INFO_TYPE 66 X’00000042’
MQIA_SSL_TASKS 69 X’00000045’

Constants

Appendix B. Constants 159

|

MQIACF_* (Integer attribute command format parameter)

MQIACF_EVENT_APPL_TYPE 1010 X’000003F2’
MQIACF_EVENT_ORIGIN 1011 X’000003F3’
MQIACF_ERROR_IDENTIFIER 1013 X’000003F5’
MQIACF_OBJECT_TYPE 1016 X’000003F8’
MQIACF_REASON_QUALIFIER 1020 X’000003FC’
MQIACF_COMMAND 1021 X’000003FD’
MQIACF_OPEN_OPTIONS 1022 X’000003FE’
MQIACF_AUX_ERROR_DATA_INT_1 1070 X’0000042E’
MQIACF_AUX_ERROR_DATA_INT_2 1071 X’0000042F’
MQIACF_CONV_REASON_CODE 1072 X’00000430’
MQIACF_BRIDGE_TYPE 1073 X’00000431’
MQIACF_REFRESH_TYPE 1078 X’00000436’

MQIACH_* (Channel Integer attribute command format
parameter)

MQIACH_XMIT_PROTOCOL_TYPE 1501 X’000005DD’
MQIACH_BATCH_SIZE 1502 X’000005DE’
MQIACH_DISC_INTERVAL 1503 X’000005DF’
MQIACH_SHORT_TIMER 1504 X’000005E0’
MQIACH_SHORT_RETRY 1505 X’000005E1’
MQIACH_LONG_TIMER 1506 X’000005E2’
MQIACH_LONG_RETRY 1507 X’000005E3’
MQIACH_PUT_AUTHORITY 1508 X’000005E4’
MQIACH_SEQUENCE_NUMBER_WRAP 1509 X’000005E5’
MQIACH_MAX_MSG_LENGTH 1510 X’000005E6’
MQIACH_CHANNEL_TYPE 1511 X’000005E7’
MQIACH_DATA_CONVERSION 1515 X’000005EB’
MQIACH_MCA_TYPE 1517 X’000005ED’
MQIACH_SSL_RETURN_CODE 1533 X’000005FD’
MQIACH_NPM_SPEED 1562 X’0000061A’
MQIACH_BATCH_INTERVAL 1564 X’0000061C’
MQIACH_NETWORK_PRIORITY 1565 X’0000061D’
MQIACH_BATCH_HB 1567 X’0000061F’
MQIACH_SSL_CLIENT_AUTH 1568 X’00000620’

MQOT_* (Object type)

MQOT_Q 1 X’00000001’
MQOT_NAMELIST 2 X’00000002’
MQOT_PROCESS 3 X’00000003’
MQOT_STORAGE_CLASS 4 X’00000004’
MQOT_Q_MGR 5 X’00000005’
MQOT_CHANNEL 6 X’00000006’
MQOT_AUTH_INFO 7 X’00000007’
MQOT_CF_STRUC 10 X’0000000A’

MQQSGD_* (Queue Sharing Group Disposition)

MQQSGD_Q_MGR 0 X’00000000’

Constants

160 Event Monitoring

|||
|||

|||

|||

|

|

|

|

||||

MQQSGD_COPY 1 X’00000001’
MQQSGD_SHARED 2 X’00000002’
MQQSGD_GROUP 3 X’00000003’

MQQT_* (Queue type)

MQQT_LOCAL 1 X’00000001’
MQQT_MODEL 2 X’00000002’
MQQT_ALIAS 3 X’00000003’
MQQT_REMOTE 6 X’00000006’

MQRC_* (Reason code in MQCFH)

MQRC_ALIAS_BASE_Q_TYPE_ERROR 2001 X’000007D1’
MQRC_BRIDGE_STARTED 2125 X’0000084D’
MQRC_BRIDGE_STOPPED 2126 X’0000084E’
MQRC_CHANNEL_ACTIVATED 2295 X’000008F7’
MQRC_CHANNEL_AUTO_DEF_ERROR 2234 X’000008BA’
MQRC_CHANNEL_AUTO_DEF_OK 2233 X’000008B9’
MQRC_CHANNEL_CONV_ERROR 2284 X’000008EC’
MQRC_CHANNEL_NOT_ACTIVATED 2296 X’000008F8’
MQRC_CHANNEL_SSL_ERROR 2371 X’00000943’
MQRC_CHANNEL_STARTED 2282 X’000008EA’
MQRC_CHANNEL_STOPPED 2283 X’000008EB’
MQRC_CHANNEL_STOPPED_BY_USER 2279 X’000008E7’
MQRC_CONFIG_CHANGE_OBJECT 2368 X’00000940’
MQRC_CONFIG_CREATE_OBJECT 2367 X’0000093F’
MQRC_CONFIG_DELETE_OBJECT 2369 X’00000941’
MQRC_CONFIG_REFRESH_OBJECT 2370 X’00000942’
MQRC_DEF_XMIT_Q_TYPE_ERROR 2198 X’00000896’
MQRC_DEF_XMIT_Q_USAGE_ERROR 2199 X’00000897’
MQRC_GET_INHIBITED 2016 X’000007E0’
MQRC_NOT_AUTHORIZED 2035 X’000007F3’
MQRC_PUT_INHIBITED 2051 X’00000803’
MQRC_Q_DEPTH_HIGH 2224 X’000008B0’
MQRC_Q_DEPTH_LOW 2225 X’000008B1’
MQRC_Q_FULL 2053 X’00000805’
MQRC_Q_MGR_ACTIVE 2222 X’000008AE’
MQRC_Q_MGR_NOT_ACTIVE 2223 X’000008AF’
MQRC_Q_SERVICE_INTERVAL_HIGH 2226 X’000008B2’
MQRC_Q_SERVICE_INTERVAL_OK 2227 X’000008B3’
MQRC_Q_TYPE_ERROR 2057 X’00000809’
MQRC_REMOTE_Q_NAME_ERROR 2184 X’00000888’
MQRC_UNKOWN_ALIAS_BASE_Q 2082 X’00000822’
MQRC_UNKNOWN_DEF_XMIT_Q 2197 X’00000895’
MQRC_UNKNOWN_OBJECT_NAME 2085 X’00000825’
MQRC_UNKNOWN_REMOTE_Q_MGR 2087 X’00000827’
MQRC_UNKNOWN_XMIT_Q 2196 X’00000894’
MQRC_XMIT_Q_TYPE_ERROR 2091 X’0000082B’
MQRC_XMIT_Q_USAGE_ERROR 2092 X’0000082C’

Constants

Appendix B. Constants 161

|

|

MQRCCF_* (Reason code for command format)

MQRCCF_SUPPRESSED_BY_EXIT 4085 X’00000FF5’

MQRQ_* (Reason qualifier)

MQRQ_CONN_NOT_AUTHORIZED 1 X’00000001’
MQRQ_OPEN_NOT_AUTHORIZED 2 X’00000002’
MQRQ_CLOSE_NOT_AUTHORIZED 3 X’00000003’
MQRQ_CMD_NOT_AUTHORIZED 4 X’00000004’
MQRQ_Q_MGR_STOPPING 5 X’00000005’
MQRQ_Q_MGR_QUIESCING 6 X’00000006’
MQRQ_CHANNEL_STOPPED_OK 7 X’00000007’
MQRQ_CHANNEL_STOPPED_ERROR 8 X’00000008’
MQRQ_CHANNEL_STOPPED_RETRY 9 X’00000009’
MQRQ_CHANNEL_STOPPED_DISABLED 10 X’0000000A’
MQRQ_BRIDGE_STOPPED_OK 11 X’0000000B’
MQRQ_BRIDGE_STOPPED_ERROR 12 X’0000000C’
MQRQ_SSL_HANDSHAKE_ERROR 13 X’0000000D’
MQRQ_SSL_CIPHER_SPEC_ERROR 14 X’0000000E’
MQRQ_SSL_CLIENT_AUTH_ERROR 15 X’0000000F’
MQRQ_SSL_PEER_NAME_ERROR 16 X’00000010’

Constants

162 Event Monitoring

|
|
|
|

Appendix C. Header, COPY, and INCLUDE files

We provide various header, COPY, and INCLUDE files to help applications process
event messages. These are described below for each supported programming
language. Not all the files are available in all environments.

See:
v “C header files”
v “COBOL COPY files”
v “PL/I INCLUDE files” on page 164
v “RPG (ILE) COPY files” on page 164
v “System/390 Assembler macros” on page 164
v “Visual Basic header files” on page 165

C header files
The following header files are provided for the C programming language.

Table 14. C header files

File Contents relating to this book

CMQC Elementary data types, some named constants.

CMQCFC PCF structures and additional named constants.

CMQXC Named constants relating to channels

COBOL COPY files
The following COPY files are provided for the COBOL programming language.
Two COPY files are provided for each structure; one COPY file has initial values,
the other does not. COBOL is not supported by Windows clients.

Table 15. COBOL COPY files

File (with
initial values)

File name
(without initial
values)

Contents relating to this book

CMQV – Some named constants

CMQCFV – Additional named constants

CMQXV – Named constants relating to channels

CMQCFHV CMQCFHL Header structure

CMQCFINV CMQCFINL Single-integer parameter structure

CMQCFSTV CMQCFSTL Single-string parameter structure

CMQCFBSV CMQCFBSL Byte string parameters structure

CMQCFSLV CMQCFSLL String list parameters structure

© Copyright IBM Corp. 1994, 2002 163

|

|

|

|
|
|

|

|

|

|

|

|

|

|

|

PL/I INCLUDE files
The following INCLUDE files are provided for the PL/I programming language.
These files are available only on z/OS, OS/2, and Windows.

Table 16. PL/I INCLUDE files

File Contents relating to this book

CMQP Some named constants

CMQCFP PCF structures and additional named constants

CMQXP Named constants relating to channels

RPG (ILE) COPY files
The following COPY files are provided for the RPG (ILE) programming language.
Two COPY files are provided for each structure; one COPY file has initial values,
the other does not. These files are available only on OS/400.

Table 17. RPG (ILE) COPY files

File (with
initial values)

File name
(without initial
values)

Contents relating to this book

CMQG – Some named constants (not available on DOS clients
and Windows clients)

CMQCFG – Additional named constants

CMQXG – Named constants relating to channels

CMQCFHG CMQCFHH Header structure

CMQCFING CMQCFINH Single-integer parameter structure

CMQCFSTG CMQCFSTH Single-string parameter structure

CMQCFBSG CMQCFBSH Byte string parameters structure

CMQCFSLG CMQCFSLH String list parameters structure

System/390 Assembler macros
The following macros are provided for the System/390 Assembler programming
language. These files are available only on z/OS.

Table 18. System/390 Assembler macros

File Contents relating to this book

CMQA Some named constants

CMQCFA Additional named constants

CMQXA Named constants relating to channels

CMQCFHA Header structure

CMQCFINA Single-integer parameter structure

CMQCFSTA Single-string parameter structure

CMQCFBSA Byte string parameters structure

CMQCFSLA String list parameter structure

PL/I INCLUDE files

164 Event Monitoring

|
|

|

|

|

|
|
|

||

|
|
|
|
|

|

|||
|

|||

|||

|||

|||

|||

|||

|||

|

|
|

|

|

|

Visual Basic header files
The following .BAS files are provided for the Visual Basic programming language.
These files are available only on Windows platforms.

Table 19. Visual Basic header files

File Contents relating to this book

CMQB Some named constants

CMQCFB PCF structures and additional named constants

CMQXB Named constants relating to channels

S/390 Assembler COPY files

Appendix C. Header, COPY, and INCLUDE files 165

|

|

S/390 Assembler COPY files

166 Event Monitoring

Appendix D. Event data for object attributes

This appendix specifies the object attributes data that can be included in the event
data of configuration events.

Every object has a different amount of event data, which depends on the type of
object to which the configuration event relates.

Authentication information attributes
AuthInfoType (MQCFIN)

Authentication information type (parameter identifier:
MQIA_AUTH_INFO_TYPE).

The value is MQAIT_CRL_LDAP.

AuthInfoDesc (MQCFST)
Authentication information description (parameter identifier:
MQIA_AUTH_INFO_DESC).

The maximum length of the string is MQ_AUTH_INFO_DESC_LENGTH.

AuthInfoConnName (MQCFST)
Authentication information connection name (parameter identifier:
MQ_AUTH_INFO_CONN_NAME).

The maximum length of the string is 48.

LDAPUserName (MQCFST)
LDAP user name (parameter identifier: MQCA_LDAP_USER_NAME).

The maximum length of the string is 256.

LDAPPassword (MQCFST)
LDAP password (parameter identifier: MQCA_LDAP_PASSWORD).

The maximum length of the string is MQ_LDAP_PASSWORD_LENGTH.

AlterationDate (MQCFST)
Alteration date (parameter identifier: MQCA_ALTERATION_DATE).

The date when the information was last altered.

AlterationTime (MQCFST)
Alteration time (parameter identifier: MQCA_ALTERATION_TIME).

The time when the information was last altered.

CF structure attributes
CFStrucDesc (MQCFST)

CF Structure description (parameter identifier: MQCA_CF_STRUC_DESC).

The maximum length of the string is MQCA_CF_STRUC_DESC_LENGTH.

CFLevel (MQCFIN)
CF level (parameter identifier: MQCA_CF_LEVEL).

Recovery (MQCFIN)
Recovery (parameter identifier: MQIA_CF_RECOVER).

© Copyright IBM Corp. 1994, 2002 167

|
|

|
|

|

|
|
|

|

|
|
|

|

|
|
|

|

|
|

|

|
|

|

|
|

|

|
|

|

|

|
|

|

|
|

|
|

AlterationDate (MQCFST)
Alteration date (parameter identifier: MQCA_ALTERATION_DATE).

The date when the information was last altered.

AlterationTime (MQCFST)
Alteration time (parameter identifier: MQCA_ALTERATION_TIME).

The time when the information was last altered.

Channel attributes
Only those attributes that apply to the type of channel in question are included in
the event data.

ChannelName (MQCFST)
Channel name (parameter identifier: MQCACH_CHANNEL_NAME).

The maximum length of the string is MQ_CHANNEL_NAME_LENGTH.

ChannelType (MQCFIN)
Channel type (parameter identifier: MQIACH_CHANNEL_TYPE).

The value can be:

MQCHT_SENDER
Sender.

MQCHT_SERVER
Server.

MQCHT_RECEIVER
Receiver.

MQCHT_REQUESTER
Requester.

MQCHT_SVRCONN
Server-connection (for use by clients).

MQCHT_CLNTCONN
Client connection.

MQCHT_CLUSRCVR
Cluster-receiver.

MQCHT_CLUSSDR
Cluster-sender.

TransportType (MQCFIN)
Transmission protocol type (parameter identifier:
MQIACH_XMIT_PROTOCOL_TYPE).

The value may be:
MQXPT_LU62

LU 6.2.
MQXPT_TCP

TCP.
MQXPT_NETBIOS

NetBIOS.
MQXPT_SPX

SPX.

ModeName (MQCFST)
Mode name (parameter identifier: MQCACH_MODE_NAME).

Event data for object attributes

168 Event Monitoring

|
|

|

|
|

|

|

|
|

|
|

|

|
|

|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|

|
|
|
|
|
|
|
|
|

|
|

The maximum length of the string is MQ_MODE_NAME_LENGTH.

TpName (MQCFST)
Transaction program name (parameter identifier: MQCACH_TP_NAME).

The maximum length of the string is MQ_TP_NAME_LENGTH.

QMgrName (MQCFST)
Queue manager name (parameter identifier: MQCA_Q_MGR_NAME).

The maximum length of the string is MQ_Q_MGR_NAME_LENGTH.

XmitQName (MQCFST)
Transmission queue name (parameter identifier: MQCACH_XMIT_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

ConnectionName (MQCFST)
Connection name (parameter identifier: MQCACH_CONNECTION_NAME).

The maximum length of the string is MQ_CONN_NAME_LENGTH.

MCAName (MQCFST)
Message channel agent name (parameter identifier: MQCACH_MCA_NAME).

The maximum length of the string is MQ_MCA_NAME_LENGTH.

ChannelDesc (MQCFST)
Channel description (parameter identifier: MQCACH_DESC).

The maximum length of the string is MQ_CHANNEL_DESC_LENGTH.

BatchSize (MQCFIN)
Batch size (parameter identifier: MQIACH_BATCH_SIZE).

DiscInterval (MQCFIN)
Disconnection interval (parameter identifier: MQIACH_DISC_INTERVAL).

ShortRetryCount (MQCFIN)
Short retry count (parameter identifier: MQIACH_SHORT_RETRY).

ShortRetryInterval (MQCFIN)
Short timer (parameter identifier: MQIACH_SHORT_TIMER).

LongRetryCount (MQCFIN)
Long retry count (parameter identifier: MQIACH_LONG_RETRY).

LongRetryInterval (MQCFIN)
Long timer (parameter identifier: MQIACH_LONG_TIMER).

DataConversion (MQCFIN)
Whether sender should convert application data (parameter identifier:
MQIACH_DATA_CONVERSION).

The value can be:

MQCDC_NO_SENDER_CONVERSION
No conversion by sender.

MQCDC_SENDER_CONVERSION
Conversion by sender.

SecurityExit (MQCFST)
Security exit name (parameter identifier: MQCACH_SEC_EXIT_NAME).

The maximum length of the exit name is MQ_EXIT_NAME_LENGTH.

Event data for object attributes

Appendix D. Event data for object attributes 169

|

|
|

|

|
|

|

|
|

|

|
|

|

|
|

|

|
|

|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|

|

|
|

|
|

|
|

|

MsgExit (MQCFSL)
Message exit name (parameter identifier: MQCACH_MSG_EXIT_NAME).

The number of names in the list is given by the Count field in the MQCFSL
structure. It will be the same as the Count for MsgUserData. It may exceed the
number of exit names specified for the channel, in which case the excess names
are blank; the minimum is 1. The length of each name is given by the
StringLength field in that structure.

The maximum length of the exit name is MQ_EXIT_NAME_LENGTH.

SendExit (MQCFSL)
Send exit name (parameter identifier: MQCACH_SEND_EXIT_NAME).

The number of names in the list is given by the Count field in the MQCFSL
structure. It will be the same as the Count for SendUserData. It may exceed the
number of exit names specified for the channel, in which case the excess names
are blank; the minimum is 1. The length of each name is given by the
StringLength field in that structure.

The maximum length of the exit name is MQ_EXIT_NAME_LENGTH.

ReceiveExit (MQCFSL)
Receive exit name (parameter identifier: MQCACH_RCV_EXIT_NAME).

The number of names in the list is given by the Count field in the MQCFSL
structure. It will be the same as the Count for ReceiveUserData. It may exceed
the number of exit names specified for the channel, in which case the excess
names are blank; the minimum is 1. The length of each name is given by the
StringLength field in that structure.

The maximum length of the exit name is MQ_EXIT_NAME_LENGTH.

PutAuthority (MQCFIN)
Put authority (parameter identifier: MQIACH_PUT_AUTHORITY).

The value can be:

MQPA_DEFAULT
Default user identifier is used.

MQPA_CONTEXT
Context user identifier is used.

MQPA_ALTERNATE_OR_MCA
Alternate or MCA user identifier is used.

MQPA_ONLY_MCA
Only MCA user identifier is used.

SeqNumberWrap (MQCFIN)
Sequence wrap number (parameter identifier:
MQIACH_SEQUENCE_NUMBER_WRAP).

MaxMsgLength (MQCFIN)
Maximum message length (parameter identifier:
MQIACH_MAX_MSG_LENGTH).

SecurityUserData (MQCFST)
Security exit user data (parameter identifier:
MQCACH_SEC_EXIT_USER_DATA).

The maximum length of the string is MQ_EXIT_DATA_LENGTH.

Event data for object attributes

170 Event Monitoring

|
|

|
|
|
|
|

|

|
|

|
|
|
|
|

|

|
|

|
|
|
|
|

|

|
|

|

|
|

|
|

|
|

|
|

|
|
|

|
|
|

|
|
|

|

MsgUserData (MQCFSL)
Message exit user data (parameter identifier:
MQCACH_MSG_EXIT_USER_DATA).

The number of names in the list is given by the Count field in the MQCFSL
structure. It will be the same as the count for MsgExit. The length of each name
is given by the StringLength field in that structure.

The maximum length of the string is MQ_EXIT_DATA_LENGTH.

SendUserData (MQCFSL)
Send exit user data (parameter identifier:
MQCACH_SEND_EXIT_USER_DATA).

The number of names in the list is given by the Count field in the MQCFSL
structure. It will be the same as the count for SendExit. The length of each
name is given by the StringLength field in that structure.

The maximum length of the string is MQ_EXIT_DATA_LENGTH.

ReceiveUserData (MQCFSL)
Receive exit user data (parameter identifier:
MQCACH_RCV_EXIT_USER_DATA).

The number of names in the list is given by the Count field in the MQCFSL
structure. It will be the same as the count for ReceiveExit. The length of each
name is given by the StringLength field in that structure.

The maximum length of the string is MQ_EXIT_DATA_LENGTH.

MCAType (MQCFIN)
Message channel agent type (parameter identifier: MQIACH_MCA_TYPE).

The value can be:

MQMCAT_PROCESS
Process

MQMCAT_THREAD
Thread

MCAUserIdentifier (MQCFST)
Message channel agent user identifier (parameter identifier:
MQCACH_MCA_USER_ID).

The maximum length of the MCA user identifier is
MQ_MCA_USER_ID_LENGTH.

UserIdentifier (MQCFST)
Task user identifier (parameter identifier: MQCACH_USER_ID).

The maximum length of the string is MQ_USER_ID_LENGTH.

Password (MQCFST)
Password (parameter identifier: MQCACH_PASSWORD).

The maximum length of the string is MQ_PASSWORD_LENGTH.

BatchInterval (MQCFIN)
Batch interval (parameter identifier: MQIACH_BATCH_INTERVAL).

HeartbeatInterval (MQCFIN)
Heartbeat interval (parameter identifier: MQIACH_HB_INTERVAL).

Event data for object attributes

Appendix D. Event data for object attributes 171

|
|
|

|
|
|

|

|
|
|

|
|
|

|

|
|
|

|
|
|

|

|
|

|

|
|

|
|

|
|
|

|
|

|
|

|

|
|

|

|
|

|
|

NonPersistentMsgSpeed (MQCFIN)
Speed at which non-persistent messages are to be sent (parameter identifier:
MQIACH_NPM_SPEED).

The value can be:

MQNPMS_NORMAL
Normal speed.

MQNPMS_FAST
Fast speed.

AlterationDate (MQCFST)
Alteration date (parameter identifier: MQCA_ALTERATION_DATE).

The date when the information was last altered.

AlterationTime (MQCFST)
Alteration time (parameter identifier: MQCA_ALTERATION_TIME).

The time when the information was last altered.

ClusterName (MQCFST)
Cluster name (parameter identifier: MQCA_CLUSTER_NAME).

ClusterNamelist (MQCFSL)
Cluster namelist (parameter identifier: MQCA_CLUSTER_NAMELIST).

NetworkPriority (MQCFIN)
Network priority (parameter identifier: MQIACH_NETWORK_PRIORITY).

LocalAddress (MQCFST)
Local communications address for the channel (parameter identifier:
MQCACH_LOCAL_ADDRESS).

The maximum length of the string is MQ_LOCAL_ADDRESS_LENGTH.

BatchHeartbeat (MQCFIN)
The value being used for the batch heartbeating (parameter identifier:
MQIACH_BATCH_HB).

The value can be between 0 and 999999. A value of 0 indicates heartbeating is
not in use.

KeepAliveInterval (MQCFIN)
Keep alive interval (parameter identifier: MQIACH_KEEP_ALIVE_INTERVAL).

CipherSpec (MQCFST)
SSL cipher specification (parameter identifier: MQCACH_SSL_CIPHER_SPEC).

The maximum length of the string is MQ_SSL_CIPHER_SPEC_LENGTH.

PeerName (MQCFST)
SSL peer name (parameter identifier: MQCACH_SSL_PEER_NAME).

The maximum length of the string is 256.

SSLClientAuthentication (MQCFIN)
SSL client authentication (parameter identifier:
MQCACH_SSL_CLIENT_AUTH).

The value can be:

MQSCA_REQUIRED
Certificate required.

Event data for object attributes

172 Event Monitoring

|
|
|

|

|
|

|
|

|
|

|

|
|

|

|
|

|
|

|
|

|
|
|

|

|
|
|

|
|

|
|

|
|

|

|
|

|

|
|
|

|

|
|

MQSCA_OPTIONAL
Certificate optional.

Namelist attributes
NamelistName (MQCFST)

The name of the namelist definition (parameter identifier:
MQCA_NAMELIST_NAME).

The maximum length of the string is MQ_NAMELIST_NAME_LENGTH.

NamelistDesc (MQCFST)
Description of namelist definition (parameter identifier:
MQCA_NAMELIST_DESC).

The maximum length of the string is MQ_NAMELIST_DESC_LENGTH.

NamelistType (MQCFIN)
Namelist type (parameter identifier: MQCA_NAMELIST_TYPE).

Names (MQCFSL)
The names contained in the namelist (parameter identifier: MQCA_NAMES).

The number of names in the list is given by the Count field in the MQCFSL
structure. The length of each name is given by the StringLength field in that
structure. The maximum length of a name is MQ_OBJECT_NAME_LENGTH.

AlterationDate (MQCFST)
Alteration date (parameter identifier: MQCA_ALTERATION_DATE).

The date when the information was last altered.

AlterationTime (MQCFST)
Alteration time (parameter identifier: MQCA_ALTERATION_TIME).

The time when the information was last altered.

NameCount (MQCFIN)
Number of names in the namelist (parameter identifier:
MQIA_NAME_COUNT).

The number of names contained in the namelist.

Process attributes
ProcessName (MQCFST)

The name of the process definition (parameter identifier:
MQCA_PROCESS_NAME).

The maximum length of the string is MQ_PROCESS_NAME_LENGTH.

ProcessDesc (MQCFST)
Description of process definition (parameter identifier:
MQCA_PROCESS_DESC).

The maximum length of the string is MQ_PROCESS_DESC_LENGTH.

ApplType (MQCFIN)
Application type (parameter identifier: MQIA_APPL_TYPE).

ApplId (MQCFST)
Application identifier (parameter identifier: MQCA_APPL_ID).

The maximum length of the string is MQ_PROCESS_APPL_ID_LENGTH.

Event data for object attributes

Appendix D. Event data for object attributes 173

|
|

|
|

|
|
|

|

|
|
|

|

|
|

|
|

|
|
|

|
|

|

|
|

|

|
|
|

|

|

EnvData (MQCFST)
Environment data (parameter identifier: MQCA_ENV_DATA).

The maximum length of the string is MQ_PROCESS_ENV_DATA_LENGTH.

UserData (MQCFST)
User data (parameter identifier: MQCA_USER_DATA).

The maximum length of the string is MQ_PROCESS_USER_DATA_LENGTH.

AlterationDate (MQCFST)
Alteration date (parameter identifier: MQCA_ALTERATION_DATE).

The date when the information was last altered.

AlterationTime (MQCFST)
Alteration time (parameter identifier: MQCA_ALTERATION_TIME).

The time when the information was last altered.

Queue attributes
Only those attributes that apply to the type of queue in question are included in
the event data.

QName (MQCFST)
Queue name (parameter identifier: MQCA_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

QType (MQCFIN)
Queue type (parameter identifier: MQIA_Q_TYPE).

The value can be:

MQQT_ALIAS
Alias queue definition.

MQQT_LOCAL
Local queue.

MQQT_REMOTE
Local definition of a remote queue.

MQQT_MODEL
Model queue definition.

QDesc (MQCFST)
Queue description (parameter identifier: MQCA_Q_DESC).

The maximum length of the string is MQ_Q_DESC_LENGTH.

InhibitGet (MQCFIN)
Whether get operations are allowed (parameter identifier:
MQIA_INHIBIT_GET).

The value can be:

MQQA_GET_ALLOWED
Get operations are allowed.

MQQA_GET_INHIBITED
Get operations are inhibited.

InhibitPut (MQCFIN)
Whether put operations are allowed (parameter identifier:
MQIA_INHIBIT_PUT).

Event data for object attributes

174 Event Monitoring

|

|

|
|

|
|

|

|
|

|

|
|

|
|

|
|

|
|

|
|

|

|
|
|

|

|
|

|
|

|
|
|

The value can be:

MQQA_PUT_ALLOWED
Put operations are allowed.

MQQA_PUT_INHIBITED
Put operations are inhibited.

DefPriority (MQCFIN)
Default priority (parameter identifier: MQIA_DEF_PRIORITY).

DefPersistence (MQCFIN)
Default persistence (parameter identifier: MQIA_DEF_PERSISTENCE).

The value can be:

MQPER_PERSISTENT
Message is persistent.

MQPER_NOT_PERSISTENT
Message is not persistent.

ProcessName (MQCFST)
Name of process definition for queue (parameter identifier:
MQCA_PROCESS_NAME).

The maximum length of the string is MQ_PROCESS_NAME_LENGTH.

MaxQDepth (MQCFIN)
Maximum queue depth (parameter identifier: MQIA_MAX_Q_DEPTH).

MaxMsgLength (MQCFIN)
Maximum message length (parameter identifier: MQIA_MAX_MSG_LENGTH).

BackoutThreshold (MQCFIN)
Backout threshold (parameter identifier: MQIA_BACKOUT_THRESHOLD).

BackoutRequeueName (MQCFST)
Excessive backout requeue name (parameter identifier:
MQCA_BACKOUT_REQ_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

Shareability (MQCFIN)
Whether queue can be shared (parameter identifier: MQIA_SHAREABILITY).

The value can be:

MQQA_SHAREABLE
Queue is shareable.

MQQA_NOT_SHAREABLE
Queue is not shareable.

DefInputOpenOption (MQCFIN)
Default input open option for defining whether queues can be shared
(parameter identifier: MQIA_DEF_INPUT_OPEN_OPTION).

The value can be:

MQOO_INPUT_EXCLUSIVE
Open queue to get messages with exclusive access.

MQOO_INPUT_SHARED
Open queue to get messages with shared access.

Event data for object attributes

Appendix D. Event data for object attributes 175

|

|
|

|
|

|
|

|
|

|

|
|

|
|

|
|
|

|

|
|

|
|

|
|

|
|
|

|

|
|

|

|
|

|
|

|
|
|

|

|
|

|
|

HardenGetBackout (MQCFIN)
Whether to harden backout (parameter identifier:
MQIA_HARDEN_GET_BACKOUT).

The value can be:

MQQA_BACKOUT_HARDENED
Backout count remembered.

MQQA_BACKOUT_NOT_HARDENED
Backout count may not be remembered.

MsgDeliverySequence (MQCFIN)
Whether priority is relevant (parameter identifier:
MQIA_MSG_DELIVERY_SEQUENCE).

The value can be:

MQMDS_PRIORITY
Messages are returned in priority order.

MQMDS_FIFO
Messages are returned in FIFO order (first in, first out).

RetentionInterval (MQCFIN)
Retention interval (parameter identifier: MQIA_RETENTION_INTERVAL).

DefinitionType (MQCFIN)
Queue definition type (parameter identifier: MQIA_DEFINITION_TYPE).

The value can be:

MQQDT_PREDEFINED
Predefined permanent queue.

MQQDT_PERMANENT_DYNAMIC
Dynamically defined permanent queue.

MQQDT_SHARED_DYNAMIC
Dynamically defined permanent queue that is shared.

Usage (MQCFIN)
Usage (parameter identifier: MQIA_USAGE).

The value can be:

MQUS_NORMAL
Normal usage.

MQUS_TRANSMISSION
Transmission queue.

CreationDate (MQCFST)
Queue creation date (parameter identifier: MQCA_CREATION_DATE).

The maximum length of the string is MQ_CREATION_DATE_LENGTH.

CreationTime (MQCFST)
Creation time (parameter identifier: MQCA_CREATION_TIME).

The maximum length of the string is MQ_CREATION_TIME_LENGTH.

InitiationQName (MQCFST)
Initiation queue name (parameter identifier: MQCA_INITIATION_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

Event data for object attributes

176 Event Monitoring

|
|
|

|

|
|

|
|

|
|
|

|

|
|

|
|

|
|

|
|

|

|
|

|
|

|
|

|
|

|

|
|

|
|

|
|

|

|
|

|

|
|

|

TriggerControl (MQCFIN)
Trigger control (parameter identifier: MQIA_TRIGGER_CONTROL).

The value can be:

MQTC_OFF
Trigger messages not required.

MQTC_ON
Trigger messages required.

TriggerType (MQCFIN)
Trigger type (parameter identifier: MQIA_TRIGGER_TYPE).

The value can be:

MQTT_NONE
No trigger messages.

MQTT_FIRST
Trigger message when queue depth goes from 0 to 1.

MQTT_EVERY
Trigger message for every message.

MQTT_DEPTH
Trigger message when depth threshold exceeded.

TriggerMsgPriority (MQCFIN)
Threshold message priority for triggers (parameter identifier:
MQIA_TRIGGER_MSG_PRIORITY).

TriggerDepth (MQCFIN)
Trigger depth (parameter identifier: MQIA_TRIGGER_DEPTH).

TriggerData (MQCFST)
Trigger data (parameter identifier: MQCA_TRIGGER_DATA).

The maximum length of the string is MQ_TRIGGER_DATA_LENGTH.

BaseQName (MQCFST)
Queue name to which the alias resolves (parameter identifier:
MQCA_BASE_Q_NAME).

This is the name of a queue that is defined to the local queue manager.

The maximum length of the string is MQ_Q_NAME_LENGTH.

RemoteQName (MQCFST)
Name of remote queue as known locally on the remote queue manager
(parameter identifier: MQCA_REMOTE_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

RemoteQMgrName (MQCFST)
Name of remote queue manager (parameter identifier:
MQCA_REMOTE_Q_MGR_NAME).

The maximum length of the string is MQ_Q_MGR_NAME_LENGTH.

XmitQName (MQCFST)
Transmission queue name (parameter identifier: MQCA_XMIT_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

Event data for object attributes

Appendix D. Event data for object attributes 177

|
|

|

|
|

|
|

|
|

|

|
|

|
|

|
|

|
|

|
|
|

|
|

|
|

|

|
|
|

|

|

|
|
|

|

|
|
|

|

|
|

|

QDepthHighLimit (MQCFIN) (MQCFIN)
High limit for queue depth (parameter identifier:
MQIA_Q_DEPTH_HIGH_LIMIT).

The threshold against which the queue depth is compared to generate a Queue
Depth High event.

QDepthLowLimit (MQCFIN)
Low limit for queue depth (parameter identifier:
MQIA_Q_DEPTH_LOW_LIMIT).

The threshold against which the queue depth is compared to generate a Queue
Depth Low event.

QServiceInterval (MQCFIN)
Target for queue service interval (parameter identifier:
MQIA_Q_SERVICE_INTERVAL).

The service interval used for comparison to generate Queue Service Interval
High and Queue Service Interval OK events.

AlterationDate (MQCFST)
Alteration date (parameter identifier: MQCA_ALTERATION_DATE).

The date when the information was last altered.

AlterationTime (MQCFST)
Alteration time (parameter identifier: MQCA_ALTERATION_TIME).

The time when the information was last altered.

ClusterName (MQCFST)
Cluster name (parameter identifier: MQCA_CLUSTER_NAME).

ClusterNamelist (MQCFST)
Cluster namelist (parameter identifier: MQCA_CLUSTER_NAMELIST).

DefBind (MQCFIN)
Default binding (parameter identifier: MQIA_DEF_BIND).

The value can be:

MQBND_BIND_ON_OPEN
Binding fixed by MQOPEN call.

MQBND_BIND_NOT_FIXED
Binding not fixed.

IndexType (MQCFIN)
Index type (parameter identifier: MQIA_INDEX_TYPE).

StorageClass (MQCFST)
Storage class name (parameter identifier: MQCA_STORAGE_CLASS).

The maximum length of the string is MQ_STORAGE_CLASS_LENGTH.

CFstructure (MQCFST)
CF structure name (parameter identifier: MQCA_CF_STRUC_NAME).

The maximum length of the string is MQ_CF_STRUC_NAME_LENGTH.

Event data for object attributes

178 Event Monitoring

|
|
|

|
|

|
|
|

|
|

|
|
|

|
|

|
|

|

|
|

|

|
|

|
|

|
|

|

|
|

|
|

|
|

|
|

|

|
|

|

Queue manager attributes
QMgrName (MQCFST)

Name of local queue manager (parameter identifier: MQCA_Q_MGR_NAME).

The maximum length of the string is MQ_Q_MGR_NAME_LENGTH.

QMgrDesc (MQCFST)
Queue manager description (parameter identifier: MQCA_Q_MGR_DESC).

The maximum length of the string is MQ_Q_MGR_DESC_LENGTH.

Platform (MQCFIN)
Platform on which the queue manager resides (parameter identifier:
MQIA_PLATFORM).

CommandLevel (MQCFIN)
Command level supported by queue manager (parameter identifier:
MQIA_COMMAND_LEVEL).

CPILevel (MQCFIN)
CPI level (parameter identifier: MQIA_CPI_LEVEL).

IGQPutAuthority (MQCFIN)
IGQ put authority (parameter identifier: MQIA_IGQ_PUT_AUTHORITY).

IGQUserId (MQCFST)
IGQ user identifier (parameter identifier: MQIA_IGQ_USER_ID).

The maximum length of the string is MQ_USER_ID_LENGTH.

IntraGroupQueueing (MQCFIN)
Intra group queueing (parameter identifier:
MQIA_INTRA_GROUP_QUEUING).

ExpiryInterval (MQCFIN)
Expiry interval (parameter identifier: MQIA_EXPIRY_INTERVAL).

SSLTasks (MQCFIN)
SSL tasks (parameter identifier: MQIA_SSL_TASKS).

SSLKeyRepository (MQCFST)
SSL key repository (parameter identifier: MQCA_SSL_KEY_REPOSITORY).

The maximum length of the string is MQ_SSL_KEY_REPOSITORY_LENGTH.

SSLCRLNameList (MQCFST)
SSL CRL name list (parameter identifier: MQCA_SSL_CRL_NAMELIST).

The maximum length of the string is MQ_NAMELIST_NAME_LENGTH.

ConfigurationEvent (MQCFIN)
Controls whether configuration events are generated (parameter identifier:
MQIA_CONFIGURATION_EVENT).

QSGName (MQCFST)
Queue sharing group name (parameter identifier: MQCA_QSG_NAME).

The maximum length of the string is MQ_QSG_NAME_LENGTH.

TriggerInterval (MQCFIN)
Trigger interval (parameter identifier: MQIA_TRIGGER_INTERVAL).

Specifies the trigger time interval, expressed in milliseconds, for use only with
queues where TriggerType has a value of MQTT_FIRST.

Event data for object attributes

Appendix D. Event data for object attributes 179

|

|
|

|
|

|
|

|

|
|
|

|
|

|
|

|
|

|

|
|

|

|
|
|

|
|

|

|
|

|
|

DeadLetterQName (MQCFST)
Dead letter (undelivered message) queue name (parameter identifier:
MQCA_DEAD_LETTER_Q_NAME).

Specifies the name of the local queue that is to be used for undelivered
messages. Messages are put on this queue if they cannot be routed to their
correct destination.

The maximum length of the string is MQ_Q_NAME_LENGTH.

MaxPriority (MQCFIN)
Maximum priority (parameter identifier: MQIA_MAX_PRIORITY).

CommandInputQName (MQCFST)
Command input queue name (parameter identifier:
MQCA_COMMAND_INPUT_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

DefXmitQName (MQCFST)
Default transmission queue name (parameter identifier:
MQCA_DEF_XMIT_Q_NAME).

This is the name of the default transmission queue that is used for the
transmission of messages to remote queue managers, if there is no other
indication of which transmission queue to use.

The maximum length of the string is MQ_Q_NAME_LENGTH.

CodedCharSetId (MQCFIN)
Coded character set identifier (parameter identifier:
MQIA_CODED_CHAR_SET_ID).

MaxHandles (MQCFIN)
Maximum number of handles (parameter identifier: MQIA_MAX_HANDLES).

Specifies the maximum number of handles that any one job can have open at
the same time.

MaxUncommittedMsgs (MQCFIN)
Maximum number of uncommitted messages within a unit of work (parameter
identifier: MQIA_MAX_UNCOMMITTED_MSGS).

That is:
v The number of messages that can be retrieved, plus
v The number of messages that can be put on a queue, plus
v Any trigger messages generated within this unit of work

under any one syncpoint. This limit does not apply to messages that are
retrieved or put outside syncpoint.

MaxMsgLength (MQCFIN)
Maximum message length (parameter identifier: MQIA_MAX_MSG_LENGTH).

SyncPoint (MQCFIN)
Syncpoint availability (parameter identifier: MQIA_SYNCPOINT).

AuthorityEvent (MQCFIN)
Controls whether authorization (Not Authorized) events are generated
(parameter identifier: MQIA_AUTHORITY_EVENT).

The value can be:

MQEVR_DISABLED
Event reporting disabled.

Event data for object attributes

180 Event Monitoring

|
|
|

|
|
|

|

|
|

|
|
|

|

|
|
|

|
|
|

|

|
|
|

|
|

|
|

|
|
|

|
|
|
|

|
|

|
|

|
|

|
|
|

|

|
|

MQEVR_ENABLED
Event reporting enabled.

InhibitEvent (MQCFIN)
Controls whether inhibit (Inhibit Get and Inhibit Put) events are generated
(parameter identifier: MQIA_INHIBIT_EVENT).

The value can be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

LocalEvent (MQCFIN)
Controls whether local error events are generated (parameter identifier:
MQIA_LOCAL_EVENT).

The value can be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

RemoteEvent (MQCFIN)
Controls whether remote error events are generated (parameter identifier:
MQIA_REMOTE_EVENT).

The value can be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

StartStopEvent (MQCFIN)
Controls whether start and stop events are generated (parameter identifier:
MQIA_START_STOP_EVENT).

The value can be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

PerformanceEvent (MQCFIN)
Controls whether performance-related events are generated (parameter
identifier: MQIA_PERFORMANCE_EVENT).

The value can be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

ChannelAutoDefExit (MQCFST)
Channel auto-definition exit name (parameter identifier:
MQCA_CHANNEL_AUTO_DEF_EXIT).

Event data for object attributes

Appendix D. Event data for object attributes 181

|
|

|
|
|

|

|
|

|
|

|
|
|

|

|
|

|
|

|
|
|

|

|
|

|
|

|
|
|

|

|
|

|
|

|
|
|

|

|
|

|
|

|
|
|

The maximum length of the exit name is MQ_EXIT_NAME_LENGTH.

This parameter is supported only in the environments in which an MQSeries
Version 5.1 product, or later, is available.

AlterationDate (MQCFST)
Alteration date (parameter identifier: MQCA_ALTERATION_DATE).

The date when the information was last altered.

AlterationTime (MQCFST)
Alteration time (parameter identifier: MQCA_ALTERATION_TIME).

The time when the information was last altered.

ClusterWorkLoadExit (MQCFST)
Name of the cluster workload exit (parameter identifier:
MQCA_CLUSTER_WORKLOAD_EXIT).

The maximum length of the exit name is MQ_EXIT_NAME_LENGTH.

ClusterWorkLoadData (MQCFST)
Data passed to the cluster workload exit (parameter identifier:
MQCA_CLUSTER_WORKLOAD_DATA).

ClusterWorkLoadLength (MQCFIN)
Cluster workload length (parameter identifier:
MQIA_CLUSTER_WORKLOAD_LENGTH).

The maximum length of the message passed to the cluster workload exit.

QMgrIdentifier (MQCFST)
Queue manager identifier (parameter identifier: MQCA_Q_MGR_IDENTIFIER).

The unique identifier of the queue manager.

RepositoryName (MQCFST)
Repository name (parameter identifier: MQCA_REPOSITORY_NAME).

The name of a cluster for which this queue manager is to provide a repository
service.

RepositoryNamelist (MQCFST)
Repository name list (parameter identifier: MQCA_REPOSITORY_NAMELIST).

The name of a list of clusters for which this queue manager is to provide a
repository service.

Storage class attributes
PageSetId (MQCFIN)

Page set identifier (parameter identifier: MQIA_PAGE_SET_ID).

StgClassDesc (MQCFST)
Storage class description (parameter identifier:
MQCA_STORAGE_CLASS_DESC).

The maximum length of the string is MQ_STORAGE_CLASS_DESC_LENGTH.

XCFGroupName (MQCFST)
XCF group name (parameter identifier: MQCA_XCF_GROUP_NAME).

The maximum length of the string is MQ_XCF_GROUP_NAME_LENGTH.

XCFMemberName (MQCFST)
XCF member name (parameter identifier: MQCA_XCF_MEMBER_NAME).

Event data for object attributes

182 Event Monitoring

|

|
|

|
|

|

|
|

|

|
|
|

|

|
|
|

|
|
|

|

|
|

|

|
|

|
|

|
|

|
|

|

|
|

|
|
|

|

|
|

|

|
|

The maximum length of the string is MQ_XCF_MEMBER_NAME_LENGTH.

AlterationDate (MQCFST)
Alteration date (parameter identifier: MQCA_ALTERATION_DATE).

The date when the information was last altered.

AlterationTime (MQCFST)
Alteration time (parameter identifier: MQCA_ALTERATION_TIME).

The time when the information was last altered.

Event data for object attributes

Appendix D. Event data for object attributes 183

|

|
|

|

|
|

|

Event data for object attributes

184 Event Monitoring

Notices

This information was developed for products and services offered in the United
States. IBM may not offer the products, services, or features discussed in this
information in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply
that only that IBM product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any IBM intellectual
property right may be used instead. However, it is the user’s responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this information. The furnishing of this information does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the information. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
information at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1994, 2002 185

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM United Kingdom Laboratories,
Mail Point 151,
Hursley Park,
Winchester,
Hampshire,
England
SO21 2JN.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Trademarks
The following are trademarks of International Business Machines Corporation in
the United States, or other countries, or both:

AIX AS/400 CICS
IBM IBMLink IMS
iSeries MQSeries NetView
OS/2 OS/390 OS/400
S/390 System/390 WebSphere
z/OS

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel
Corporation in the United States, other countries, or both.

Notices

186 Event Monitoring

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, and service names may be trademarks or service marks
of others.

Notices

Notices 187

188 Event Monitoring

Index

A
algorithms for queue service interval

events 18
Alias Base Queue Type Error 50
authority events 5

B
Bridge Started 52
Bridge Stopped 53

C
C header files 163
Change object 55
Channel

Activated 59
Auto-definition Error 60
Auto-definition OK 62
Conversion Error 63
Not Activated 66
SSL Error 68
Started 71
Stopped 73
Stopped By User 76

channel event
enabling 10
queue 3, 6

COBOL COPY files 163
CodedCharSetId field

MQCFSL structure 149
MQCFST structure 152

Command field, MQCFH structure 45
CompCode field, MQCFH structure 46
conditions giving events 11
configuration events 33

enabling 11
constants, values of 155
control attribute for queue service

interval events 11, 19
Control field, MQCFH structure 45
COPY files 163
correlation identifier 26
Count field

MQCFSL structure 149
Create object 78

D
data

conversions 13
event 39
header 39

data types, detailed description
structure

MQCFH 44
MQMD 40

default structures 145

Default Transmission Queue
Type Error 82
Usage Error 84

Delete object 86
disabling

events 9
events other than queue manager 10
queue manager events 9

distributed monitoring 13

E
enabling

events 9
events other than queue manager 10
Queue Depth events 26

differences between nonshared and
shared queues 26

Queue Depth High events 27
Queue Depth Low events 28
Queue Full events 28
queue manager events 9, 10
queue service interval events 11, 18

error
on channels 6
on event queues 7

event 2
attribute setting 9
authority 5
channel 3, 6
constants 155
data 15, 38
enabling and disabling 9
enabling queue manager 9
header reason codes 40
IMS bridge 7
inhibit 5
instrumentation example 133
local 5
message

data 39
data summary 8
descriptions 49

messages
event queues 3
format 12
formats 38
lost 12
null 25
unit of work 7

notification 2
overview of 1
platforms supported 1
queue depth

Queue Depth High 25
Queue Depth Low 25
Queue Full 25

queue manager 4
queues

errors 7
names for 3

event (continued)
queues (continued)

transmission 11
triggered 12
unavailable 12
use of 3

remote 5
reporting 3
service interval 16
shared queues (WebSphere MQ for

z/OS) 7
SSL 7
start and stop 6
statistics

example 1 summary 21
example 2 summary 23
example 3 summary 24
resetting 16

timer 17
transmission queues, as event

queues 11
types of 2
use for 1

examples
instrumentation event 133
queue depth events 28
queue service interval events 19

F
format of event messages 12, 38

G
Get Inhibited 90

H
header 44

files 163
WebSphere MQ events 44
WebSphere MQ messages 38

high (service interval) event 16

I
IMS bridge event 7
INCLUDE files 164
inhibit events 5
instrumentation event

example 133
instrumentation events

description of 1

L
LDAPPassword parameter

Inquire Authentication Information
(Response) command 167

© Copyright IBM Corp. 1994, 2002 189

limits, queue depth 30
local events 5

M
maximum depth reached 25
message descriptor

events 39
monitoring

performance on Windows 14
queue managers 1
WebSphere MQ network 13

MQ_* values 155
MQCFBS structure 145
MQCFH structure 44
MQCFIN structure 147
MQCFSL structure 148
MQCFST structure 151
MQCFST_DEFAULT 153
MQMD message descriptor 40
MsgSeqNumber field, MQCFH

structure 45

N
names, of event queues 3
network

event monitoring 13
Not Authorized (type 1) 91
Not Authorized (type 2) 92
Not Authorized (type 3) 94
Not Authorized (type 4) 96
notification of events 2
null event messages 25

O
object, definition of term xi
OK

(service interval) event 16
events algorithm 18

P
Parameter field

MQCFBS structure 146
MQCFIN structure 147
MQCFSL structure 149
MQCFST structure 152

ParameterCount field, MQCFH
structure 46

performance event
control attribute 16, 19
enabling 10
event data 15
event statistics 15
queue 3
types of 7, 16

performance events
enabling 11

performance monitoring on Windows 14
PL/I INCLUDE files 164
platforms for events 1
Put Inhibited 97

Q
queue

channel events 6
depth events 25

enabling 27
examples 28

depth limits 30
Queue Depth High 99
Queue Depth Low 101
Queue Full 103
queue manager

event queue 3
events

enabling 9, 10
start and stop 6

monitoring 1
Queue Manager Active 105
Queue Manager Not Active 106
queue service interval events

algorithm for 18
enabling 11, 18
examples 19
high 16
OK 16

Queue Service Interval High 107
Queue Service Interval OK 109
Queue Type Error 111
queue-sharing group 26

R
reason codes for command format

numeric list 161, 162
Reason field, MQCFH structure 46
Refresh object 113
remote events 5
Remote Queue Name Error 117
reporting events 3
reset queue statistics 16
reset service timer 18
RPG COPY files 164

S
S/390 Assembler macros 164
service interval events 16
service timer

algorithm for 18
resetting 18

shared queues
coordinating queue manager 26
queue depth events 25, 26

SSL event 7
start and stop events 6
statistics, events 15
String field

MQCFBS structure 146
MQCFSL structure 150

String field, MQCFST structure 153
StringLength field

MQCFBS structure 146
MQCFSL structure 149
MQCFST structure 152

StrucLength field
MQCFBS structure 145
MQCFH structure 45

StrucLength field (continued)
MQCFIN structure 147
MQCFSL structure 149
MQCFST structure 152

structure of event messages 38
structures

MQCFBS 145
MQCFH 45
MQCFIN 147
MQCFSL 148
MQCFST 151

System/390 Assembler macros 164

T
thresholds for queue depth 25
time since reset 15
timer

service 18
Transmission Queue

Type Error 119
Usage Error 121

trigger messages, from event queues 12
triggered event queues 12
Type field

MQCFBS structure 145
MQCFH structure 45
MQCFIN structure 147
MQCFSL structure 149
MQCFST structure 151

types of event 2

U
unavailable event queues 12
unit of work, and events 7
Unknown

Alias Base Queue 123
Default Transmission Queue 125
Object Name 127
Remote Queue Manager 129
Transmission Queue 131

using events 1

V
Value field, MQCFIN structure 147
Version field, MQCFH structure 45
Visual Basic header files 165

W
Windows

monitoring performance 14

Z
z/OS

definition of term xi

190 Event Monitoring

Sending your comments to IBM

If you especially like or dislike anything about this book, please use one of the
methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on
the accuracy, organization, subject matter, or completeness of this book.

Please limit your comments to the information in this book and the way in which
the information is presented.

To make comments about the functions of IBM products or systems, talk to your
IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate, without incurring
any obligation to you.

You can send your comments to IBM in any of the following ways:
v By mail, to this address:

User Technologies Department (MP095)
IBM United Kingdom Laboratories
Hursley Park
WINCHESTER,
Hampshire
SO21 2JN
United Kingdom

v By fax:
– From outside the U.K., after your international access code use

44–1962–816151
– From within the U.K., use 01962–816151

v Electronically, use the appropriate network ID:
– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
– IBMLink™: HURSLEY(IDRCF)
– Internet: idrcf@hursley.ibm.com

Whichever method you use, ensure that you include:
v The publication title and order number
v The topic to which your comment applies
v Your name and address/telephone number/fax number/network ID.

© Copyright IBM Corp. 1994, 2002 191

192 Event Monitoring

����

Printed in U.S.A.

SC34-6069-02

	Contents
	Figures
	Tables
	About this book
	Who this book is for
	What you need to know to understand this book
	Conventions used in this book
	How this book is organized

	Summary of changes
	Changes for this edition (SC34-6069-02)
	Changes for the previous editions (SC34-6069-00 and -01)

	Chapter 1. An introduction to instrumentation events
	What instrumentation events are
	Event notification through event queues

	Types of event
	Queue manager events
	Authority events
	Inhibit events
	Local events
	Remote events
	Start and stop events

	Channel events
	IMS™ bridge events (z/OS only)
	SSL events

	Performance events
	Queue depth events
	Queue service interval events

	Configuration events (z/OS only)
	Event message data summary

	Enabling and disabling events
	Enabling and disabling queue manager events
	Authority events
	Inhibit events
	Local events
	Remote events
	Start and stop events
	Enabling queue manager events summary

	Enabling channel events
	Channel auto-definition

	Enabling performance events
	Enabling queue depth events
	Enabling queue service interval events

	Enabling configuration events

	Conditions that cause events
	Event queues
	When an event queue is unavailable
	Using triggered event queues
	Format of event messages
	Using event monitoring in an WebSphere MQ network
	Monitoring performance on Windows

	Chapter 2. Understanding performance events
	What performance events are
	Performance event statistics

	Understanding queue service interval events
	What queue service interval events are
	Understanding the service timer
	Queue service interval events algorithm
	Service timer
	Queue Service Interval High events
	Queue Service Interval OK events

	Enabling queue service interval events
	Automatic enabling of queue service interval events

	Queue service interval events examples
	Example 1 (queue service interval events)
	Commentary
	Event statistics summary for example 1

	What queue service interval events tell you
	Example 2 (queue service interval events)
	Commentary
	Event statistics summary for example 2

	Example 3 (queue service interval events)
	Commentary
	Event statistics summary for example 3

	Understanding queue depth events
	What queue depth events are
	Shared queues and queue depth events (WebSphere MQ for z/OS)

	Enabling queue depth events
	Enabling queue depth events on shared queues (WebSphere MQ for z/OS)
	Enabling Queue Depth High events
	Enabling Queue Depth Low events
	Enabling Queue Full events

	Queue depth events examples
	Example 1 (queue depth events)
	Commentary

	Example 2 (queue depth events)
	Commentary
	Event statistics summary (example 2)

	Chapter 3. Understanding configuration events (z/OS only)
	What configuration events are
	When configuration events are generated
	When configuration events are not generated
	How configuration events are used
	The Refresh Object configuration event
	When the configuration event queue is not available
	Effects of CMDSCOPE

	Chapter 4. Event message reference
	Event message format
	Message descriptor (MQMD) in event messages
	Message data in event messages
	Event header (MQCFH)
	Event data

	MQMD (message descriptor)
	MQCFH (Event header)
	C language declaration (MQCFH)
	COBOL language declaration (MQCFH)
	PL/I language declaration (MQCFH)
	RPG/ILE declaration (MQCFH) (OS/400 only)
	System/390® assembler-language declaration (MQCFH) (z/OS only)
	Visual Basic® language declaration (MQCFH) (Windows platforms only)

	Event message descriptions
	Alias Base Queue Type Error
	Event data

	Bridge Started (z/OS only)
	Event data

	Bridge Stopped (z/OS only)
	Event data

	Change object (z/OS only)
	Event data
	Object attributes

	Channel Activated
	Event data

	Channel Auto-definition Error
	Event data

	Channel Auto-definition OK
	Event data

	Channel Conversion Error
	Event data

	Channel Not Activated
	Event data

	Channel SSL Error
	Event data

	Channel Started
	Event data

	Channel Stopped
	Event data

	Channel Stopped By User
	Event data

	Create object (z/OS only)
	Event data
	Object attributes

	Default Transmission Queue Type Error
	Event data

	Default Transmission Queue Usage Error
	Event data

	Delete object (z/OS only)
	Event data
	Object attributes

	Get Inhibited
	Event data

	Not Authorized (type 1)
	Event data

	Not Authorized (type 2)
	Event data

	Not Authorized (type 3)
	Event data

	Not Authorized (type 4)
	Event data

	Put Inhibited
	Event data

	Queue Depth High
	Event data

	Queue Depth Low
	Event data

	Queue Full
	Event data

	Queue Manager Active
	Event data

	Queue Manager Not Active
	Event data

	Queue Service Interval High
	Event data

	Queue Service Interval OK
	Event data

	Queue Type Error
	Event data

	Refresh object (z/OS only)
	Event data
	Object attributes

	Remote Queue Name Error
	Event data

	Transmission Queue Type Error
	Event data

	Transmission Queue Usage Error
	Event data

	Unknown Alias Base Queue
	Event data

	Unknown Default Transmission Queue
	Event data

	Unknown Object Name
	Event data

	Unknown Remote Queue Manager
	Event data

	Unknown Transmission Queue
	Event data

	Chapter 5. Example of using instrumentation events
	Appendix A. Structure datatypes MQCFBS, MQCFIN, MQCFSL and MQCFST
	MQCFBS - Byte string parameter
	C language declaration (MQCFBS)
	COBOL language declaration (MQCFBS)
	PL/I language declaration (MQCFBS) (z/OS only)
	System/390 assembler-language declaration (MQCFBS) (z/OS only)

	MQCFIN - Integer parameter
	C language declaration (MQCFIN)
	COBOL language declaration (MQCFIN)
	PL/I language declaration (MQCFIN)
	RPG/ILE declaration (MQCFIN) (OS/400 only)
	System/390 assembler-language declaration (MQCFIN)
	Visual Basic language declaration (MQCFIN)

	MQCFSL - String list parameter
	COBOL language declaration (MQCFSL)
	PL/I language declaration (MQCFSL)
	RPG/ILE declaration (MQCFSL) (OS/400 only)
	System/390 assembler-language declaration (MQCFSL) (z/OS only)
	Visual Basic language declaration (MQCFSL) (Windows systems only)

	MQCFST - String parameter
	C language declaration (MQCFST)
	COBOL language declaration (MQCFST)
	PL/I language declaration (MQCFST)
	RPG/ILE declaration (MQCFST) (OS/400 only)
	System/390 assembler-language declaration (MQCFST)
	Visual Basic language declaration (MQCFST)

	Appendix B. Constants
	List of constants
	MQ_* (Lengths of character string and byte fields)
	MQBACF_* (Byte attribute command format parameter)
	MQBT_* (Bridge type)
	MQCA_* (Character attribute selector)
	MQCACF_* (Character attribute command format parameter)
	MQCACH_* (Channel character attribute command format parameter)
	MQCC_* (Completion code)
	MQCFC_* (Command format control options)
	MQCFH_* (Command format header structure length)
	MQCFH_* (Command format header version)
	MQCFIN_* (Command format integer parameter structure length)
	MQCFST_* (Command format string parameter structure length)
	MQCFT_* (Command structure type)
	MQCHT_* (Channel type)
	MQCMD_* (Command identifier)
	MQEVO_* (Event origin)
	MQIA_* (Integer attribute selector)
	MQIACF_* (Integer attribute command format parameter)
	MQIACH_* (Channel Integer attribute command format parameter)
	MQOT_* (Object type)
	MQQSGD_* (Queue Sharing Group Disposition)
	MQQT_* (Queue type)
	MQRC_* (Reason code in MQCFH)
	MQRCCF_* (Reason code for command format)
	MQRQ_* (Reason qualifier)

	Appendix C. Header, COPY, and INCLUDE files
	C header files
	COBOL COPY files
	PL/I INCLUDE files
	RPG (ILE) COPY files
	System/390 Assembler macros
	Visual Basic header files

	Appendix D. Event data for object attributes
	Authentication information attributes
	CF structure attributes
	Channel attributes
	Namelist attributes
	Process attributes
	Queue attributes
	Queue manager attributes
	Storage class attributes

	Notices
	Trademarks

	Index
	Sending your comments to IBM

