
WebSphere MQ

Security
Version 5.3

SC34-6079-01

���

Note!
Before using this information and the product it supports, be sure to read the general information under Appendix B,
“Notices” on page 157.

Second edition (October 2002)

This is the second edition of this book that applies to the following IBM® WebSphere® MQ products:
v IBM WebSphere MQ for AIX, V5.3

v IBM WebSphere MQ for HP-UX, V5.3

v IBM WebSphere MQ for iSeries, V5.3

v IBM WebSphere MQ for Linux for Intel, V5.3

v IBM WebSphere MQ for Linux for zSeries, V5.3

v IBM WebSphere MQ for Solaris, V5.3

v IBM WebSphere MQ for Windows, V5.3

v IBM WebSphere MQ for z/OS, V5.3

and to any subsequent releases and modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures vii

Tables ix

About this book xi
Who this book is for xi
What you need to know to understand this book . . xi
Terms used in this book xi
How to use this book xii

Part 1. Introduction 1

Chapter 1. Security services 3
Identification and authentication. 3
Access control 4
Confidentiality. 4
Data integrity 5
Non-repudiation 5

Chapter 2. Planning for your security
requirements 7
Basic considerations 7

Authority to administer WebSphere MQ 7
Authority to work with WebSphere MQ objects. . 7
Channel security 7

Additional considerations 8
Queue manager clusters 8
MQSeries Publish/Subscribe 9
WebSphere MQ internet pass-thru 9

Link level security and application level security . . 10
Link level security 10
Application level security. 10
Comparing link level security and application
level security 11
Obtaining more information 12

Chapter 3. Cryptographic concepts . . 15
Cryptography 15
Message digests 17
Digital signatures 17
Digital certificates 18

What is in a digital certificate 19
Certification Authorities 19
Distinguished Names 19
How digital certificates work 20

Public Key Infrastructure (PKI) 21

Chapter 4. The Secure Sockets Layer
(SSL) 23
Secure Sockets Layer (SSL) concepts 23

An overview of the SSL handshake 23
How SSL provides authentication 25
How SSL provides confidentiality 26

How SSL provides integrity 26
CipherSuites and CipherSpecs 26
The Secure Sockets Layer in WebSphere MQ . . . 27

Part 2. WebSphere MQ security
provisions 29

Chapter 5. Access control 31
Authority to administer WebSphere MQ 31

Authority to administer WebSphere MQ on
UNIX and Windows systems 31
Authority to administer WebSphere MQ on
OS/400 32
Authority to administer WebSphere MQ on z/OS 33

Authority to work with WebSphere MQ objects . . 35
When authority checks are performed 36
Alternate user authority 37
Message context 38
Authority to work with WebSphere MQ objects
on OS/400, UNIX systems, and Windows
systems. 39
Authority to work with WebSphere MQ objects
on z/OS 40

Channel security. 41

Chapter 6. WebSphere MQ SSL support 45
Channel attributes 45
Queue manager attributes 46
The authentication information object (AUTHINFO) 47
The SSL key repository 47

Protecting WebSphere MQ client key repositories 48
WebSphere MQ client considerations 48
Working with WebSphere MQ internet pass-thru
(IPT). 49
Support for cryptographic hardware 49

Chapter 7. Other link level security
services 51
Channel exit programs 51

Security exit 52
Message exit 52
Send and receive exits 52
Obtaining more information 53

The DCE channel exit programs 54
The SSPI channel exit program 55
The Entrust/PKI channel exit programs 56
SNA LU 6.2 security services 56

Session level cryptography 57
Session level authentication 57
Conversation level authentication 59

Chapter 8. Providing your own link
level security 63

© Copyright IBM Corp. 2002 iii

Security exit 63
Identification and authentication 63
Access control 64
Confidentiality 66

Message exit 66
Identification and authentication 66
Access control 67
Confidentiality 67
Data integrity. 68
Non-repudiation. 68
Other uses of message exits 68

Send and receive exits 68
Confidentiality 69
Data integrity. 69
Other uses of send and receive exits 69

Chapter 9. Access Manager for
Business Integration. 71
Introduction 71
Access control 72
Identification and authentication 73
Data integrity. 73
Confidentiality 73
Non-repudiation. 74
Obtaining more information 75

Chapter 10. Providing your own
application level security 77
The API exit 77
The API-crossing exit 79
The role of the API exit and the API-crossing exit in
security. 79

Identification and authentication 80
Access control 81
Confidentiality 81
Data integrity. 82
Non-repudiation. 82

Other ways of providing your own application level
security. 82

Part 3. Working with WebSphere
MQ SSL support 85

Chapter 11. Working with the Secure
Sockets Layer (SSL) on OS/400 87
Digital Certificate Manager (DCM) 87

Accessing the DCM. 88
Setting up a key repository 88

Creating a new certificate store 89
Stashing the certificate store password 89

Working with a key repository 89
Locating the key repository for a queue manager 90
Changing the key repository location for a queue
manager 90
When changes become effective 90

Obtaining personal certificates 91
Creating CA certificates for testing. 91
Requesting a personal certificate 92

Adding personal certificates to a key repository . . 92

Managing digital certificates 93
Transferring certificates 93
Deleting certificates. 94

Configuring cryptographic hardware 95
Mapping DNs to user IDs 95

Chapter 12. Working with the Secure
Sockets Layer (SSL) on UNIX systems . 97
Setting up a key repository 98

Accessing your key database file 99
Working with a key repository 100

Locating the key repository for a queue
manager 100
Changing the key repository location for a
queue manager 100
Locating the key repository for a WebSphere
MQ client 101
Specifying the key repository location for a
WebSphere MQ client 101
When changes become effective 101

Obtaining personal certificates. 102
Creating a self-signed personal certificate . . . 102
Requesting a personal certificate 103

Adding personal certificates to a key repository 104
Managing digital certificates 105

Transferring certificates 105
Removing certificates 108
Editing a certificate label 108

Configuring for cryptographic hardware 108
Managing certificates on PKCS #11 hardware 109

Mapping DNs to user IDs 111

Chapter 13. Working with the Secure
Sockets Layer (SSL) on Windows
systems. 113
Setting up a key repository 113

Working with the WebSphere MQ default store 115
Ensuring CA certificates are available to a queue
manager 115
Ensuring CA certificates are available to a
WebSphere MQ client. 115

Working with a key repository 116
Locating the key repository for a queue
manager 117
Changing the key repository location for a
queue manager 117
Locating the key repository for a WebSphere
MQ client 117
Specifying the key repository location for a
WebSphere MQ client. 118
When changes become effective 118

Obtaining personal certificates 118
Creating a self-signed personal certificate . . . 119
Requesting a personal certificate 119

Adding personal certificates to a key repository 119
Adding a personal certificate to a queue
manager key repository 119
Adding a personal certificate to a WebSphere
MQ client key repository 120

iv Security

Assigning a personal certificate to a queue
manager 121
Assigning a personal certificate to a WebSphere
MQ client 122

Managing digital certificates 122
Transferring certificates 122
Removing and unassigning certificates 123

Mapping DNs to user IDs 123

Chapter 14. Working with the Secure
Sockets Layer (SSL) on z/OS 125
Setting the SSLTASKS parameter 125
Setting up a key repository 125

Ensuring CA certificates are available to a queue
manager 126

Working with a key repository 126
Locating the key repository for a queue
manager 126
Specifying the key repository location for a
queue manager 126
When changes become effective 127

Obtaining personal certificates. 127
Creating a self-signed personal certificate . . . 127
Requesting a personal certificate 127
Creating a RACF signed personal certificate . . 128

Adding personal certificates to a key repository 128
Managing digital certificates 128

Transferring certificates 129
Removing certificates 129

Working with Certificate Name Filters (CNFs) . . 130
Setting up a CNF 130

Chapter 15. Testing SSL 133
Defining channels to use SSL 134
Testing SSL communications 134

Testing with self-signed certificates 135
Testing on OS/400. 136

Testing for failure of SSL client authentication . . 136

Chapter 16. Working with Certificate
Revocation Lists 139

Setting up LDAP servers 139
Configuring and updating LDAP servers . . . 140

Accessing CRLs 141
Accessing CRLs with a queue manager. . . . 141
Accessing CRLs with a WebSphere MQ client 143
Accessing CRLs with the Java client and JMS 144

Manipulating authentication information objects
with PCF commands 144
Keeping CRLs up to date 144

Chapter 17. Working with
CipherSpecs. 145
Specifying CipherSpecs 146

Obtaining information about CipherSpecs using
WebSphere MQ Explorer 147
Alternatives for specifying CipherSpecs . . . 147
Specifying a CipherSpec for a WebSphere MQ
client 148
Specifying a CipherSuite with the Java client
and JMS 148

Understanding CipherSpec mismatches. 148

Chapter 18. WebSphere MQ rules for
SSLPEER values 151

Chapter 19. Understanding
authentication failures 153

Appendix A. Cryptographic hardware 155

Appendix B. Notices 157
Trademarks 159

Index 161

Sending your comments to IBM . . . 169

Contents v

vi Security

Figures

1. Link level security and application level
security 10

2. Symmetric key cryptography. 16
3. Asymmetric key cryptography 16
4. The digital signature process 18
5. Obtaining a digital certificate. 20
6. Chain of trust 21
7. Overview of the SSL handshake. 25

8. Security, message, send, and receive exits on a
message channel 51

9. Flows for session level authentication 58
10. WebSphere MQ support for conversation level

authentication. 60
11. Sample LDIF for a Certification Authority 140
12. Example of an LDAP Directory Information

Tree structure 140

© Copyright IBM Corp. 2002 vii

viii Security

Tables

1. CipherSpecs that can be used with
WebSphere MQ SSL support 146

© Copyright IBM Corp. 2002 ix

x Security

About this book

This book describes the factors you need to consider when planning to meet your
security requirements in a WebSphere MQ environment. It provides the
background information for you to evaluate the security provisions offered by
WebSphere MQ and related products. This book also describes the Secure Sockets
Layer (SSL) support in WebSphere MQ.

This book is in three parts:
v Part 1, “Introduction” on page 1
v Part 2, “WebSphere MQ security provisions” on page 29
v Part 3, “Working with WebSphere MQ SSL support” on page 85

Who this book is for
This book is for users of any of the following products:
v IBM WebSphere MQ for AIX, V5.3
v IBM WebSphere MQ for HP-UX, V5.3
v IBM WebSphere MQ for iSeries, V5.3
v IBM WebSphere MQ for Linux for Intel, V5.3
v IBM WebSphere MQ for Linux for zSeries, V5.3
v IBM WebSphere MQ for Solaris, V5.3
v IBM WebSphere MQ for Windows, V5.3
v IBM WebSphere MQ for z/OS, V5.3

What you need to know to understand this book
To understand this book, you need a good knowledge of the concepts and
terminology associated with WebSphere MQ and practical experience in
implementing WebSphere MQ, particularly distributed queuing. You also need to
be familiar with the operating systems and communications protocols you are
using.

Terms used in this book
The term UNIX® systems denotes the following UNIX operating systems:
v AIX®

v HP-UX
v Linux
v Solaris

The term Windows® systems denotes the following Windows operating systems:
v Windows NT®

v Windows XP
v Windows 2000

The term z/OS™ means any release of z/OS or OS/390® supported by the current
version of WebSphere MQ for z/OS.

© Copyright IBM Corp. 2002 xi

The term WebSphere MQ on UNIX systems means:
v WebSphere MQ for AIX
v WebSphere MQ for HP-UX
v WebSphere MQ for Linux for Intel
v WebSphere MQ for Linux for zSeries
v WebSphere MQ for Solaris

How to use this book
The descriptions of WebSphere MQ security function in this book are in addition
to, and must be used in conjunction with, the latest editions of the WebSphere MQ
cross-product books. These books are provided in softcopy form (Adobe Acrobat
PDF and HTML) on a separate CD in the product package.

You can download the WebSphere MQ SupportPacs mentioned in this book from
http://www.ibm.com/software/mqseries/txppacs/

About this book

xii Security

Part 1. Introduction

You can use WebSphere MQ for a wide variety of applications on a range of
platforms. The security requirements are likely to be different for each application.
For some, security will be a critical consideration. This part covers the factors to
consider when determining the scope of your security requirements, enabling you
to make an informed choice from the options available. It also introduces and
describes concepts associated with the Secure Sockets Layer (SSL).

This part contains the following chapters:
v Chapter 1, “Security services” on page 3
v Chapter 2, “Planning for your security requirements” on page 7
v Chapter 3, “Cryptographic concepts” on page 15

– “Cryptography” on page 15
– “Message digests” on page 17
– “Digital signatures” on page 17
– “Digital certificates” on page 18
– “Public Key Infrastructure (PKI)” on page 21

v Chapter 4, “The Secure Sockets Layer (SSL)” on page 23
– “Secure Sockets Layer (SSL) concepts” on page 23
– “CipherSuites and CipherSpecs” on page 26
– “The Secure Sockets Layer in WebSphere MQ” on page 27

© Copyright IBM Corp. 2002 1

2 Security

Chapter 1. Security services

Security services are the services within a computer system that protect its
resources. This chapter describes the five security services that are identified in the
IBM Security Architecture:
v “Identification and authentication”
v “Access control” on page 4
v “Confidentiality” on page 4
v “Data integrity” on page 5
v “Non-repudiation” on page 5

Security mechanisms are technical tools and techniques that are used to implement
security services. A mechanism might operate by itself, or in conjunction with
others, to provide a particular service. Examples of common security mechanisms
are:
v Access control lists
v Cryptography
v Digital signatures

When you are planning a WebSphere MQ implementation, you need to consider
which security services and mechanisms you require. For information about what
to consider after you have read this chapter, see Chapter 2, “Planning for your
security requirements” on page 7.

For more information about the IBM Security Architecture, see IBM Security
Architecture: Securing the Open Client/Server Distributed Enterprise, SC28-8135.

Identification and authentication
Identification is being able to identify uniquely a user of a system or an application
that is running in the system. Authentication is being able to prove that a user or
application is genuinely who that person or what that application claims to be.

For example, consider a user who logs on to a system by entering a user ID and
password. The system uses the user ID to identify the user and, at the time of
logon, authenticates the user by checking that the supplied password is correct.

Here are some examples of the identification and authentication service in a
WebSphere MQ environment:
v Every message can contain message context information. This information is held

in the message descriptor and can be generated by the queue manager when a
message is put on a queue by an application. Alternatively, the application can
supply the information if the user ID associated with the application is
authorized to do so.
The context information in a message allows the receiving application to find
out about the originator of the message. It contains, for example, the name of the
application that put the message and the user ID associated with the application.

v When a message channel starts, it is possible for the message channel agent
(MCA) at each end of the channel to authenticate its partner. This is known as
mutual authentication. For the sending MCA, this provides assurance that the

© Copyright IBM Corp. 2002 3

partner it is about to send messages to is genuine. And, for the receiving MCA,
there is a similar assurance that it is about to receive messages from a genuine
partner.

Access control
The access control service protects critical resources in a system by limiting access
only to authorized users and their applications. It prevents the unauthorized use of
a resource or the use of a resource in an unauthorized manner.

Here are some examples of the access control service in a WebSphere MQ
environment:
v Allowing only an authorized administrator to issue commands to manage

WebSphere MQ resources.
v Allowing an application to connect to a queue manager only if the user ID

associated with the application is authorized to do so.
v Allowing a user’s application to open only those queues that are necessary for

its function.
v Allowing a user’s application to perform only those operations on a queue that

are necessary for its function. For example, an application might need only to
browse messages on a particular queue, and not to put or get messages.

Confidentiality
The confidentiality service protects sensitive information from unauthorized
disclosure.

When sensitive data is stored locally, access control mechanisms might be sufficient
to protect it on the assumption that the data cannot be read if it cannot be
accessed. If a greater level of security is required, the data can be encrypted.

Sensitive data should be encrypted when it is transmitted over a communications
network, especially over an insecure network such as the Internet. In a networking
environment, access control mechanisms are not effective against attempts to
intercept the data, such as wiretapping.

Here are some examples of the confidentiality service that can be implemented in a
WebSphere MQ environment:
v After a sending MCA gets a message from a transmission queue, the message is

encrypted before it is sent over the network to the receiving MCA. At the other
end of the channel, the message is decrypted before the receiving MCA puts it
on its destination queue.

v While messages are stored on a local queue, the access control mechanisms
provided by WebSphere MQ might be considered sufficient to protect their
contents against unauthorized disclosure. However, for a greater level of
security, their contents can be encrypted as well.

Security services

4 Security

Data integrity
The data integrity service detects whether there has been unauthorized modification
of data. There are two ways in which data might be altered: accidentally, through
hardware and transmission errors, or because of a deliberate attack. Many
hardware products and transmission protocols now have mechanisms to detect and
correct hardware and transmission errors. The purpose of the data integrity service
is to detect a deliberate attack.

The data integrity service aims only to detect whether data has been modified. It
does not aim to restore data to its original state if it has been modified.

Access control mechanisms can contribute to data integrity insofar as data cannot
be modified if access is denied. But, as with confidentiality, access control
mechanisms are not effective in a networking environment.

Here are some examples of the data integrity service that can be implemented in a
WebSphere MQ environment:
v A data integrity service can be used to detect whether the contents of a message

have been deliberately modified while it was being transmitted over a network.
v While messages are stored on a local queue, the access control mechanisms

provided by WebSphere MQ might be considered sufficient to prevent deliberate
modification of the contents of the messages. However, for a greater level of
security, a data integrity service can be used to detect whether the contents of a
message have been deliberately modified between the time the message was put
on the queue and the time it was retrieved from the queue.

Non-repudiation
The non-repudiation service can be viewed as an extension to the identification and
authentication service. In general, non-repudiation applies when data is
transmitted electronically; for example, an order to a stock broker to buy or sell
stock, or an order to a bank to transfer funds from one account to another. The
overall goal is to be able to prove that a particular message is associated with a
particular individual.

The non-repudiation service can contain more than one component, where each
component provides a different function. If the sender of a message ever denies
sending it, the non-repudiation service with proof of origin can provide the receiver
with undeniable evidence that the message was sent by that particular individual.
If the receiver of a message ever denies receiving it, the non-repudiation service
with proof of delivery can provide the sender with undeniable evidence that the
message was received by that particular individual.

In practice, proof with virtually 100% certainty, or undeniable evidence, is a
difficult goal. In the real world, nothing is fully secure. Managing security is more
concerned with managing risk to a level that is acceptable to the business. In such
an environment, a more realistic expectation of the non-repudiation service is to be
able to provide evidence that is admissible, and supports your case, in a court of
law.

Non-repudiation is a relevant security service in a WebSphere MQ environment
because WebSphere MQ is a means of transmitting data electronically. For example,
you might require contemporaneous evidence that a particular message was sent
or received by an application associated with a particular individual.

Security services

Chapter 1. Security services 5

Be aware that neither IBM WebSphere MQ nor IBM Tivoli® Access Manager for
Business Integration provides a non-repudiation service as part of its base function.
However, this book does contain suggestions on how you might provide your own
non-repudiation service within a WebSphere MQ environment by writing your
own exit programs.

Security services

6 Security

Chapter 2. Planning for your security requirements

The purpose of this chapter is to explain what you need to consider when
planning security in a WebSphere MQ environment. The considerations are
discussed under three main headings:
v “Basic considerations”
v “Additional considerations” on page 8
v “Link level security and application level security” on page 10

Basic considerations
The basic considerations are those aspects of security you must consider when
implementing WebSphere MQ. On OS/400®, UNIX systems, and Windows
systems, if you ignore these considerations and do nothing, you cannot implement
WebSphere MQ. On z/OS, the effect is that your WebSphere MQ resources are
unprotected. That is, all users can access and change all WebSphere MQ resources.

Authority to administer WebSphere MQ
WebSphere MQ administrators need authority to:
v Issue commands to administer WebSphere MQ
v Use the WebSphere MQ Explorer and the WebSphere MQ Services snap-in on

Windows systems
v Use the operations and control panels on z/OS
v Use the WebSphere MQ utility program, CSQUTIL, on z/OS
v Access the queue manager data sets on z/OS

This is an aspect of access control. For more information, see “Authority to
administer WebSphere MQ” on page 31.

Authority to work with WebSphere MQ objects
Applications can access the following WebSphere MQ objects by issuing MQI calls:
v Queue managers
v Queues
v Processes
v Namelists

On OS/400, UNIX systems, and Windows systems, applications can also use
Programmable Command Format (PCF) commands to access these WebSphere MQ
objects, and to access authentication information objects as well. These objects are
protected by WebSphere MQ and the user IDs associated with the applications
need authority to access them.

This is another aspect of access control. For more information, see “Authority to
work with WebSphere MQ objects” on page 35.

Channel security
The user IDs associated with message channel agents (MCAs) need authority to
access various WebSphere MQ resources. For example, an MCA must be able to
connect to a queue manager. If it is a sending MCA, it must be able to open the

© Copyright IBM Corp. 2002 7

transmission queue for the channel. If it is a receiving MCA, it must be able to
open destination queues. On OS/400, UNIX systems, and Windows systems, the
user IDs associated with applications need authority to use PCF commands to
administer channels, channel initiators, and listeners.

This is another aspect of access control. For more information, see “Channel
security” on page 41.

Additional considerations
The following are aspects of security you need to consider only if you are using
certain WebSphere MQ function or base product extensions:
v “Queue manager clusters”
v “MQSeries Publish/Subscribe” on page 9
v “WebSphere MQ internet pass-thru” on page 9

Queue manager clusters
A queue manager cluster is a network of queue managers that are logically
associated in some way. A queue manager that is a member of a cluster is called a
cluster queue manager.

A queue that belongs to a cluster queue manager can be made known to other
queue managers in the cluster. Such a queue is called a cluster queue. Any queue
manager in a cluster can send messages to cluster queues without needing any of
the following:
v An explicit remote queue definition for each cluster queue
v Explicitly defined channels to and from each remote queue manager
v A separate transmission queue for each outbound channel

You can create a cluster in which two or more queue managers are clones. This
means that they have instances of the same local queues, including any local
queues declared as cluster queues, and can support instances of the same server
applications.

When an application connected to a cluster queue manager sends a message to a
cluster queue that has an instance on each of the cloned queue managers,
WebSphere MQ decides which queue manager to send it to. When many
applications send messages to the cluster queue, WebSphere MQ balances the
workload across each of the queue managers that have an instance of the queue. If
one of the systems hosting a cloned queue manager fails, WebSphere MQ
continues to balance the workload across the remaining queue managers until the
system that failed is restarted.

If you are using queue manager clusters, you need to consider the following
security issues:
v Allowing only selected queue managers to send messages to your queue

manager
v Allowing only selected users of a remote queue manager to send messages to a

queue on your queue manager
v Allowing applications connected to your queue manager to send messages only

to selected remote queues

These considerations are relevant even if you are not using clusters, but they
become more important if you are using clusters.

Planning for your security requirements

8 Security

If an application can send messages to one cluster queue, it can send messages to
any other cluster queue without needing additional remote queue definitions,
transmission queues, or channels. It therefore becomes more important to consider
whether you need to restrict access to the cluster queues on your queue manager,
and to restrict the cluster queues to which your applications can send messages.

There are some additional security considerations, which are relevant only if you
are using queue manager clusters:
v Allowing only selected queue managers to join a cluster
v Forcing unwanted queue managers to leave a cluster

For more information about all these considerations, see WebSphere MQ Queue
Manager Clusters. For considerations specific to WebSphere MQ for z/OS, see the
WebSphere MQ for z/OS System Setup Guide.

MQSeries Publish/Subscribe
MQSeries Publish/Subscribe is a WebSphere MQ base product extension that is
supplied in SupportPac™ MA0C.

In a Publish/Subscribe system, there are two types of application: publisher and
subscriber. Publishers supply information in the form of WebSphere MQ messages.
When a publisher publishes a message, it specifies a topic, which identifies the
subject of the information inside the message.

Subscribers are the consumers of the information that is published. A subscriber
specifies the topics it is interested in by sending a subscription request to a broker
in the form of a WebSphere MQ message.

The broker is an application supplied with MQSeries Publish/Subscribe. It receives
published messages from publishers and subscription requests from subscribers,
and routes the published messages to the subscribers. A subscriber is sent
messages only on those topics to which it has subscribed.

There are additional security considerations if you are using MQSeries
Publish/Subscribe. The user IDs associated with publishers and subscribers need
authority to access the queues that they use to communicate with a broker. For
more information, see the MQSeries Publish/Subscribe User’s Guide.

WebSphere MQ internet pass-thru
WebSphere MQ internet pass-thru is a WebSphere MQ base product extension that
is supplied in SupportPac MS81.

WebSphere MQ internet pass-thru enables two queue managers to exchange
messages, or a WebSphere MQ client application to connect to a queue manager,
over the Internet without requiring a direct TCP/IP connection. This is useful if a
firewall prohibits a direct TCP/IP connection between two systems. It makes the
passage of WebSphere MQ channel protocol flows into and out of a firewall
simpler and more manageable by tunnelling the flows inside HTTP or by acting as
a proxy. Using the Secure Sockets Layer (SSL), it can also be used to encrypt and
decrypt messages that are sent over the Internet.

For more information about WebSphere MQ internet pass-thru, see the WebSphere
MQ internet pass-thru book.

Planning for your security requirements

Chapter 2. Planning for your security requirements 9

Link level security and application level security
The remaining security considerations are discussed under two headings: link level
security and application level security.

Link level security
Link level security refers to those security services that are invoked, directly or
indirectly, by an MCA, the communications subsystem, or a combination of the
two working together. This is illustrated in Figure 1.

Here are some examples of link level security services:
v The MCA at each end of a message channel can authenticate its partner. This is

done when the channel starts and a communications connection has been
established, but before any messages start to flow. If authentication fails at either
end, the channel is closed and no messages are transferred. This is an example
of an identification and authentication service.

v A message can be encrypted at the sending end of a channel and decrypted at
the receiving end. This is an example of a confidentiality service.

v A message can be checked at the receiving end of a channel to determine
whether its contents have been deliberately modified while it was being
transmitted over the network. This is an example of a data integrity service.

Application level security
Application level security refers to those security services that are invoked at the
interface between an application and a queue manager to which it is connected.
These services are invoked when the application issues MQI calls to the queue
manager. The services might be invoked, directly or indirectly, by the application,
the queue manager, another product that supports WebSphere MQ, or a
combination of any of these working together. Application level security is
illustrated in Figure 1.

Application level security is also known as end-to-end security or message level
security.

Queue manager Queue manager

Link
level

Application
level

Application Application

Transmission
queue

Destination
queues

Message
channel

Security
services

Security
services

Security
services

Security
services

Node Node

Comms
stackMCA

Comms
stack MCA

Figure 1. Link level security and application level security

Planning for your security requirements

10 Security

Here are some examples of application level security services:
v When an application puts a message on a queue, the message descriptor

contains a user ID associated with the application. However, there is no data
present, such as an encrypted password, that can be used to authenticate the
user ID. A security service can add this data. When the message is eventually
retrieved by the receiving application, another component of the service can
authenticate the user ID using the data that has travelled with the message. This
is an example of an identification and authentication service.

v A message can be encrypted when it is put on a queue by an application and
decrypted when it is retrieved by the receiving application. This is an example
of a confidentiality service.

v A message can be checked when it is retrieved by the receiving application. This
check determines whether its contents have been deliberately modified since it
was first put on a queue by the sending application. This is an example of a
data integrity service.

Comparing link level security and application level security
The following sections discuss various aspects of link level security and application
level security, and compare the two levels of security.

Protecting messages in queues
Link level security can protect messages while they are transferred from one queue
manager to another. It is particularly important when messages are transmitted
over an insecure network. It cannot, however, protect messages while they are
stored in queues at either a source queue manager, a destination queue manager,
or an intermediate queue manager.

Application level security, by comparison, can protect messages while they are
stored in queues and applies even when distributed queuing is not used. This is
the major difference between link level security and application level security and
is illustrated in Figure 1 on page 10.

Queue managers not running in controlled and trusted
environments
If a queue manager is running in a controlled and trusted environment, the access
control mechanisms provided by WebSphere MQ might be considered sufficient to
protect the messages stored on its queues. This is particularly true if only local
queuing is involved and messages never leave the queue manager. Application
level security in this case might be considered unnecessary.

Application level security might also be considered unnecessary if messages are
transferred to another queue manager that is also running in a controlled and
trusted environment, or are received from such a queue manager. But the need for
application level security becomes greater when messages are transferred to, or
received from, a queue manager that is not running in a controlled and trusted
environment.

Differences in cost
Application level security might cost more than link level security in terms of
administration and performance.

The cost of administration is almost certainly greater because there are potentially
more constraints to configure and maintain. For example, you might need to
ensure that a particular user sends only certain types of message and sends
messages only to certain destinations. Conversely, you might need to ensure that a

Planning for your security requirements

Chapter 2. Planning for your security requirements 11

particular user receives only certain types of message and receives messages only
from certain sources. Instead of managing the link level security services on a
single message channel, you might need to be configuring and maintaining rules
for every pair of users who exchange messages across that channel.

There might be an impact on performance if security services are invoked every
time an application puts or gets a message.

Organizations tend to consider link level security first because it might be easier to
implement. They consider application level security if they discover that link level
security does not satisfy all their requirements.

Availability of components
As a general rule, in a distributed environment, a security service requires a
component on at least two systems. For example, a message might be encrypted on
one system and decrypted on another. This applies to both link level security and
application level security.

In a heterogeneous environment, with different platforms in use, each with
different levels of security function, the required components of a security service
might not be available for every platform on which they are needed and in a form
that is easy to use. This is probably more of an issue for application level security
than for link level security, particularly if you intend to provide your own
application level security by buying in components from various sources.

Messages in a dead letter queue
If a message is protected by application level security, there might be a problem if,
for any reason, the message does not reach its destination and is put on a dead
letter queue. If you cannot work out how to process the message from the
information in the message descriptor and the dead letter header, you might need
to inspect the contents of the application data. You cannot do this if the application
data is encrypted and only the intended recipient can decrypt it.

What application level security cannot do
Application level security is not a complete solution. Even if you implement
application level security, you might still require some link level security services.
For example:
v When a channel starts, the mutual authentication of the two MCAs might still be

a requirement. This can be done only by a link level security service.
v Application level security cannot protect the transmission queue header,

MQXQH, which includes the embedded message descriptor. Nor can it protect
the data in WebSphere MQ channel protocol flows other than message data.
Only link level security can provide this protection.

v If application level security services are invoked at the server end of an MQI
channel, the services cannot protect the parameters of MQI calls that are sent
over the channel. In particular, the application data in an MQPUT, MQPUT1, or
MQGET call is unprotected. Only link level security can provide the protection
in this case.

Obtaining more information
Link level and application level security services are available for you to install,
configure, and use. Some services are supplied with WebSphere MQ and
WebSphere MQ base product extensions. The remainder are provided by other IBM
products, vendor products, and the SNA LU 6.2 communications subsystem.

Planning for your security requirements

12 Security

For more information about what is available for link level security, see:
v Chapter 6, “WebSphere MQ SSL support” on page 45
v Chapter 7, “Other link level security services” on page 51

For application level security, see:
v Chapter 9, “Access Manager for Business Integration” on page 71

You can also provide your own link level and application level security services by
writing exit programs. This might involve significant effort in terms of developing
and maintaining the exit programs. For more information, see:
v Chapter 8, “Providing your own link level security” on page 63
v Chapter 10, “Providing your own application level security” on page 77

Planning for your security requirements

Chapter 2. Planning for your security requirements 13

Planning for your security requirements

14 Security

Chapter 3. Cryptographic concepts

This chapter describes the following concepts:
v “Cryptography”
v “Message digests” on page 17
v “Digital signatures” on page 17
v “Digital certificates” on page 18
v “Public Key Infrastructure (PKI)” on page 21

This chapter uses the term entity to refer to a queue manager, a WebSphere MQ
client, an individual user, or any other system capable of exchanging messages.

Cryptography
Cryptography is the process of converting between readable text, called plaintext,
and an unreadable form, called ciphertext:
1. The sender converts the plaintext message to ciphertext. This part of the

process is called encryption (sometimes encipherment).
2. The ciphertext is transmitted to the receiver.
3. The receiver converts the ciphertext message back to its plaintext form. This

part of the process is called decryption (sometimes decipherment).

The conversion involves a sequence of mathematical operations that change the
appearance of the message during transmission but do not affect the content.
Cryptographic techniques can ensure confidentiality and protect messages against
unauthorized viewing (eavesdropping), because an encrypted message is not
understandable. Digital signatures, which provide an assurance of message
integrity, use encryption techniques. See “Digital signatures” on page 17 for more
information.

Cryptographic techniques involve a general algorithm, made specific by the use of
keys. There are two classes of algorithm:
v Those that require both parties to use the same secret key. Algorithms that use a

shared key are known as symmetric algorithms. Figure 2 on page 16 illustrates
symmetric key cryptography.

v Those that use one key for encryption and a different key for decryption. One of
these must be kept secret but the other can be public. Algorithms that use public
and private key pairs are known as asymmetric algorithms. Figure 3 on page 16
illustrates asymmetric key cryptography, which is also known as public key
cryptography.

The encryption and decryption algorithms used can be public but the shared secret
key and the private key must be kept secret.

© Copyright IBM Corp. 2002 15

Figure 3 shows plaintext encrypted with the receiver’s public key and decrypted
with the receiver’s private key. Only the intended receiver holds the private key for
decrypting the ciphertext. Note that the sender can also encrypt messages with a
private key, which allows anyone that holds the sender’s public key to decrypt the
message, with the assurance that the message must have come from the sender.

With asymmetric algorithms, messages are encrypted with either the public or the
private key but can be decrypted only with the other key. Only the private key is
secret, the public key can be known by anyone. With symmetric algorithms, the
shared key must be known only to the two parties. This is called the key
distribution problem. Asymmetric algorithms are slower but have the advantage that
there is no key distribution problem.

Other terminology associated with cryptography is:

Strength
The strength of encryption is determined by the key size. Asymmetric
algorithms require large keys, for example:

512 bits Low-strength asymmetric key
768 bits Medium-strength asymmetric key
1024 bits High-strength asymmetric key

Symmetric keys are smaller: 128 bit keys give you strong encryption.

Block cipher algorithm
These algorithms encrypt data by blocks. For example, the RC2 algorithm
from RCA Data Security Inc. uses blocks 8 bytes long. Block algorithms are
usually slower than stream algorithms.

Symmetric key

plaintextplaintext

ciphertext

encrypt decrypt

Figure 2. Symmetric key cryptography

Asymmetric key pair

plaintextplaintext

ciphertext

encrypt decrypt

Private keyPublic key

Figure 3. Asymmetric key cryptography

Cryptography

16 Security

Stream cipher algorithm
These algorithms operate on each byte of data. Stream algorithms are
usually faster than block algorithms.

Message digests
Message digests are fixed size numeric representations of the contents of messages,
which are inherently variable in size. A message digest is computed by a hash
function, which is a transformation that meets two criteria:
v The hash function must be one-way. It must not be possible to reverse the

function to find the message corresponding to a given message digest, other
than by testing all possible messages.

v It must be computationally infeasible to find two messages that hash to the same
digest.

A message digest is also known as a Message Authentication Code (MAC), because
it can provide assurance that the message has not been modified. The message
digest is sent with the message itself. The receiver can generate a digest for the
message and compare it with the sender’s digest. If the two digests are the same,
this verifies the integrity of the message. Any tampering with the message during
transmission almost certainly results in a different message digest.

Digital signatures
A digital signature is formed by encrypting a representation of a message. The
encryption uses the private key of the signatory and, for efficiency, usually
operates on a message digest rather than the message itself. See “Message digests”
for more information.

Digital signatures vary with the data being signed, unlike handwritten signatures,
which do not depend on the content of the document being signed. If two different
messages are signed digitally by the same entity, the two signatures differ, but both
signatures can be verified with the same public key, that is, the public key of the
entity that signed the messages.

The steps of the digital signature process are as follows:
1. The sender computes a message digest and then encrypts the digest using the

sender’s private key, forming the digital signature.
2. The sender transmits the digital signature with the message.
3. The receiver decrypts the digital signature using the sender’s public key,

regenerating the sender’s message digest.
4. The receiver computes a message digest from the message data received and

verifies that the two digests are the same.

Figure 4 on page 18 illustrates this process.

Cryptography

Chapter 3. Cryptographic concepts 17

If the digital signature is verified, the receiver knows that:
v The message has not been modified during transmission.
v The message was sent by the entity that claims to have sent it.

Digital signatures are part of integrity and authentication services. Digital
signatures also provide proof of origin. Only the sender knows the private key,
which provides strong evidence that the sender is the originator of the message.

Note: You can also encrypt the message itself, which protects the confidentiality of
the information in the message.

Digital certificates
Digital certificates provide protection against impersonation, because a digital
certificate binds a public key to its owner, whether that owner is an individual, a
queue manager, or some other entity. Digital certificates are also known as public
key certificates, because they give you assurances about the ownership of a public
key when you use an asymmetric key scheme. A digital certificate contains the
public key for an entity and is a statement that the public key belongs to that
entity:
v When the certificate is for an individual entity, the certificate is called a personal

certificate or user certificate.
v When the certificate is for a Certification Authority, the certificate is called a CA

certificate or signer certificate.

If public keys are sent directly by their owner to another entity, there is a risk that
the message could be intercepted and the public key substituted by another. This is
known as a man in the middle attack. The solution to this problem is to exchange
public keys through a trusted third party, giving you a strong assurance that the
public key really belongs to the entity with which you are communicating. Instead
of sending your public key directly, you ask the trusted third party to incorporate
it into a digital certificate. The trusted third party that issues digital certificates is
called a Certification Authority (CA), as described in “Certification Authorities” on
page 19.

This section provides the following information:
v “What is in a digital certificate” on page 19
v “Certification Authorities” on page 19
v “Distinguished Names” on page 19

Sender

hash

hash

encrypt decrypt

Receiver

Message
digest

Digital
signature

Message
transmitted

Message
received

Digital
signature

plaintext

plaintext plaintext

Compare

Message
digest

Message
digest

Figure 4. The digital signature process

Digital signatures

18 Security

v “How digital certificates work” on page 20

What is in a digital certificate
Digital certificates used by WebSphere MQ comply with the X.509 standard, which
specifies the information that is required and the format for sending it. X.509 is the
Authentication framework part of the X.500 series of standards. X.500 is the OSI
Directory Standard.

Digital certificates contain at least the following information about the entity being
certified:
v The owner’s public key
v The owner’s Distinguished Name
v The Distinguished Name of the CA that is issuing the certificate
v The date from which the certificate is valid
v The expiry date of the certificate
v A version number
v A serial number

When you receive a certificate from a CA, the certificate is signed by the issuing
CA with a digital signature. You verify that signature by using a CA certificate,
from which you obtain the public key for the CA. You can use the CA public key
to validate other certificates issued by that authority. Recipients of your certificate
use the CA public key to check the signature.

Digital certificates do not contain your private key. You must keep your private
key secret.

Certification Authorities
A Certification Authority (CA) is an independent and trusted third party that
issues digital certificates to provide you with an assurance that the public key of
an entity truly belongs to that entity. The roles of a CA are:
v On receiving a request for a digital certificate, to verify the identity of the

requestor before building, signing and returning the personal certificate
v To provide the CA’s own public key in its CA certificate
v To publish lists of certificates that are no longer trusted in a Certificate

Revocation List (CRL). For more information, refer to Chapter 16, “Working with
Certificate Revocation Lists” on page 139

Distinguished Names
The Distinguished Name (DN) uniquely identifies an entity in an X.509 certificate.
The following attribute types are commonly found in the DN:

CN Common Name
T Title
O Organization name
OU Organizational Unit name
L Locality name
ST (or SP or S) State or Province name
C Country

The X.509 standard defines other attributes that do not usually form part of the
DN but can provide optional extensions to the digital certificate.

Digital certificates

Chapter 3. Cryptographic concepts 19

The X.509 standard provides for a DN to be specified in a string format. For
example:
CN=John Smith, O=IBM, OU=Test, C=GB

The Common Name (CN) can describe an individual user or any other entity, for
example a Web server.

The DN can contain multiple OU attributes, but one instance only of each of the
other attributes is permitted. The order of the OU entries is significant: the order
specifies a hierarchy of Organizational Unit names, with the highest-level unit first.

How digital certificates work
You obtain a digital certificate by sending information to a CA. The X.509 standard
defines a format for this information, but some CAs have their own format.
Certificate requests are usually generated by the certificate management tool your
system uses, for example the iKeyman tool on UNIX systems and RACF® on z/OS.
The information comprises your Distinguished Name and is accompanied by your
public key. When your certificate management tool generates your certificate
request, it also generates your private key, which you must keep secure. Never
distribute your private key.

When the CA receives your request, the authority verifies your identity before
building the certificate and returning it to you as a personal certificate.

Obtaining personal certificates
You obtain your personal certificate from a Certification Authority (CA).

When you obtain a certificate from a trusted external CA, you pay for the service.
When you are testing your system, or you need only to protect internal messages,
you can create self-signed certificates. These are created and signed by the
certificate management tool your system uses. Self-signed certificates cannot be
used to authenticate certificates from outside your organization.

Figure 5 illustrates the process of obtaining a digital certificate from a CA.

How certificate chains work
When you receive the certificate for another entity, you might need to use a
certificate chain to obtain the root CA certificate. The certificate chain, also known as
the certification path, is a list of certificates used to authenticate an entity. The chain,
or path, begins with the certificate of that entity, and each certificate in the chain is
signed by the entity identified by the next certificate in the chain. The chain

Return to user

Digital certificate

Public
key

User
identification

Certification
Authority

identification

Certification Authority

Verify
user

identification

Build
certificate

for
user

User
identification

Private
key

Public
key Request

to
Certification

Authority

User

Figure 5. Obtaining a digital certificate

Digital certificates

20 Security

terminates with a root CA certificate. The root CA certificate is always signed by
the CA itself. The signatures of all certificates in the chain must be verified until
the root CA certificate is reached. Figure 6 illustrates a certification path from the
certificate owner to the root CA, where the chain of trust begins.

When certificates are no longer valid
Digital certificates are issued for a fixed period and are not valid after their expiry
date. Certificates can also become untrustworthy for various reasons, including:
v The owner has moved to a different organization
v The private key is no longer secret

A Certification Authority can revoke a certificate that is no longer trusted by
publishing it in a Certificate Revocation List (CRL). For more information, refer to
Chapter 16, “Working with Certificate Revocation Lists” on page 139.

Public Key Infrastructure (PKI)
A Public Key Infrastructure (PKI) is a system of facilities, policies, and services that
supports the use of public key cryptography for authenticating the parties involved
in a transaction. There is no single standard that defines the components of a
Public Key Infrastructure, but a PKI typically comprises Certification Authorities
and other Registration Authorities (RAs) that provide the following services:
v Issuing digital certificates
v Validating digital certificates
v Revoking digital certificates
v Distributing public keys

The X.509 standard is a Public Key Infrastructure.

Refer to “Digital certificates” on page 18 for more information about digital
certificates and Certification Authorities (CAs). RAs verify the information
provided when digital certificates are requested. If the RA verifies that information,
the CA can issue a digital certificate to the requester.

Verify signature

Verify signature

Owner’s DN

Owner’s public key

Issuer’s (CA) DN

Issuer’s signature(CA)

Issuer’s signature(Root CA)

Issuer’s (Root CA) DN

Owner’s public key

Issuer’s (CA) DN

Root CA’s DN

Root CA’s public key

Root CA’s signature

Get certificate

Get certificate

Figure 6. Chain of trust

Digital certificates

Chapter 3. Cryptographic concepts 21

A PKI might also provide tools for managing digital certificates and public keys. A
PKI is sometimes described as a trust hierarchy for managing digital certificates, but
most definitions include additional services. Some definitions include encryption
and digital signature services, but these are not essential to the operation of a PKI.

PKI

22 Security

Chapter 4. The Secure Sockets Layer (SSL)

This chapter describes the following concepts related to the Secure Sockets Layer
(SSL):
v “Secure Sockets Layer (SSL) concepts”
v “CipherSuites and CipherSpecs” on page 26

This chapter also describes how WebSphere MQ supports the concepts of SSL:
v “The Secure Sockets Layer in WebSphere MQ” on page 27

Secure Sockets Layer (SSL) concepts
The Secure Sockets Layer (SSL) provides an industry standard protocol for
transmitting data in a secure manner over an insecure network. The SSL protocol is
widely deployed in both Internet and Intranet applications. SSL defines methods
for authentication, data encryption, and message integrity for a reliable transport
protocol, usually TCP/IP. SSL uses both asymmetric and symmetric cryptography
techniques. Refer to the following web site for a complete description of the SSL
protocol: http://home.netscape.com/eng/ssl3/

An SSL connection is initiated by the caller application, which becomes the SSL
client. The responder application becomes the SSL server. Every new SSL session
begins with an SSL handshake, as defined by the SSL protocol.

This section provides:
v “An overview of the SSL handshake”

and describes:
v “How SSL provides authentication” on page 25
v “How SSL provides confidentiality” on page 26
v “How SSL provides integrity” on page 26

Note that SSL does not provide any formal access control service, because SSL
operates at the link level.

An overview of the SSL handshake
This section provides a summary of the steps that enable the SSL client and SSL
server to:
v Agree on the version of the SSL protocol to use.
v Select cryptographic algorithms, which are described in “CipherSuites and

CipherSpecs” on page 26.
v Authenticate each other by exchanging and validating digital certificates. For

more information, refer to “Digital certificates” on page 18.
v Use asymmetric encryption techniques to generate a shared secret key, which

avoids the key distribution problem. SSL subsequently uses the shared key for
the symmetric encryption of messages, which is faster than asymmetric
encryption.

© Copyright IBM Corp. 2002 23

This section does not attempt to provide full details of the messages exchanged
during the SSL handshake. In overview, the steps involved in the SSL handshake
are as follows:
1. The SSL client sends a “client hello” message that lists cryptographic

information such as the SSL version and, in the client’s order of preference, the
CipherSuites supported by the client. The message also contains a random byte
string that is used in subsequent computations. The SSL protocol allows for the
“client hello” to include the data compression methods supported by the client,
but current SSL implementations do not usually include this provision.

2. The SSL server responds with a “server hello” message that contains the
CipherSuite chosen by the server from the list provided by the SSL client, the
session ID and another random byte string. The SSL server also sends its digital
certificate. If the server requires a digital certificate for client authentication, the
server sends a “client certificate request” that includes a list of the types of
certificates supported and the Distinguished Names of acceptable Certification
Authorities (CAs).

3. The SSL client verifies the digital signature on the SSL server’s digital certificate
and checks that the CipherSuite chosen by the server is acceptable.

4. The SSL client sends the random byte string that enables both the client and the
server to compute the secret key to be used for encrypting subsequent message
data. The random byte string itself is encrypted with the server’s public key.

5. If the SSL server sent a “client certificate request”, the SSL client sends a
random byte string encrypted with the client’s private key, together with the
client’s digital certificate, or a “no digital certificate alert”. This alert is only a
warning, but with some implementations the handshake fails if client
authentication is mandatory.

6. The SSL server verifies the signature on the client certificate.
7. The SSL client sends the SSL server a “finished” message, which is encrypted

with the secret key, indicating that the client part of the handshake is complete.
8. The SSL server sends the SSL client a “finished” message, which is encrypted

with the secret key, indicating that the server part of the handshake is
complete.

9. For the duration of the SSL session, the SSL server and SSL client can now
exchange messages that are symmetrically encrypted with the shared secret key.

Figure 7 on page 25 illustrates the SSL handshake.

SSL concepts

24 Security

How SSL provides authentication
During both client and server authentication there is a step that requires data to be
encrypted with one of the keys in an asymmetric key pair and decrypted with the
other key of the pair.

For server authentication, the client uses the server’s public key to encrypt the data
that is used to compute the secret key. The server can generate the secret key only
if it can decrypt that data with the correct private key.

For client authentication, the server uses the public key in the client certificate to
decrypt the data the client sends during step 5 of the handshake. The exchange of
finished messages that are encrypted with the secret key (steps 7 and 8 in the
overview) confirms that authentication is complete.

If any of the authentication steps fail, the handshake fails and the session
terminates.

The exchange of digital certificates during the SSL handshake is part of the
authentication process. For more information about how certificates provide
protection against impersonation, refer to “Digital certificates” on page 18. The
certificates required are as follows, where CA X issues the certificate to the SSL
client, and CA Y issues the certificate to the SSL server:

For server authentication only, the SSL server needs:
v The personal certificate issued to the server by CA Y

SSL Client SSL Server

(3)
Verify server
certificate.

Check
cryptographic
parameters

(1) "client hello”

Cryptographic information

(2) "server hello”

CipherSuite
Server certificate

"client certificate request" (optional)

(6)
Verify client
certificate

(if required)

(4) Client key exchange

Send secret key information
(encrypted with server public key)

(5) Send client certificate

(9) Exchange messages

(encrypted with shared secret key)

(7) Client “finished”

(8) Server “finished”

Figure 7. Overview of the SSL handshake

SSL concepts

Chapter 4. The Secure Sockets Layer (SSL) 25

v The server’s private key

and the SSL client needs:
v The CA certificate for CA Y or the personal certificate issued to the server by

CA Y

If the SSL server requires client authentication, the server verifies the client’s
identity by verifying the client’s digital certificate with the public key for the CA
that issued the personal certificate to the client, in this case CA X. For both server
and client authentication, the SSL server needs:
v The personal certificate issued to the server by CA Y

v The server’s private key
v The CA certificate for CA X or the personal certificate issued to the client by

CA X

and the SSL client needs:
v The personal certificate issued to the client by CA X

v The client’s private key
v The CA certificate for CA Y or the personal certificate issued to the server by

CA Y

Both the SSL server and the SSL client might need other CA certificates to form a
certificate chain to the root CA certificate. For more information about certificate
chains, refer to “How certificate chains work” on page 20.

How SSL provides confidentiality
SSL uses a combination of symmetric and asymmetric encryption to ensure
message privacy. During the SSL handshake, the SSL client and SSL server agree an
encryption algorithm and a shared secret key to be used for one session only. All
messages transmitted between the SSL client and SSL server are encrypted using
that algorithm and key, ensuring that the message remains private even if it is
intercepted. SSL supports a wide range of cryptographic algorithms. Because SSL
uses asymmetric encryption when transporting the shared secret key, there is no
key distribution problem with SSL. For more information about encryption
techniques, refer to “Cryptography” on page 15.

How SSL provides integrity
SSL signs each message digitally, which ensures that the content of the message
cannot be altered during transmission without the receiver knowing that tampering
has occurred. For more information, refer to “Digital signatures” on page 17.

CipherSuites and CipherSpecs
A CipherSuite is a suite of cryptographic algorithms used by an SSL connection. A
suite comprises three distinct algorithms:
v The key exchange and authentication algorithm, used during the SSL handshake
v The encryption algorithm, used to encipher the data
v The MAC (Message Authentication Code) algorithm, used to generate the

message digest

There are several options for each component of the suite, but only certain
combinations are valid when specified for an SSL connection. The name of a valid
CipherSuite defines the combination of algorithms used. For example, the
CipherSuite SSL_RSA_WITH_RC4_128_MD5 specifies:

SSL concepts

26 Security

v The RSA key exchange and authentication algorithm
v The RC4 encryption algorithm, using a 128–bit key
v The MD5 MAC algorithm

Several algorithms are available for key exchange and authentication, but the RSA
algorithm is currently the most widely used. There is more variety in the
encryption algorithms and MAC algorithms that are used.

A CipherSpec identifies the combination of the encryption algorithm and MAC
algorithm. Both ends of an SSL connection must agree the same CipherSpec to be
able to communicate.

Refer to the following Web site for more information about CipherSuites and
CipherSpecs: http://home.netscape.com/eng/ssl3/

The Secure Sockets Layer in WebSphere MQ
Message channels and MQI channels can use the SSL protocol to provide link level
security. A caller MCA is an SSL client and a responder MCA is an SSL server.
WebSphere MQ supports Version 3.0 of the SSL protocol. You specify the
cryptographic algorithms that are used by the SSL protocol by supplying a
CipherSpec as part of the channel definition. See “Channel attributes” on page 45
for more information about specifying CipherSpecs.

At each end of a message channel, and at the server end of an MQI channel, the
MCA acts on behalf of the queue manager to which it is connected. During the SSL
handshake, the MCA sends the digital certificate of the queue manager to its
partner MCA at the other end of the channel. The WebSphere MQ code at the
client end of an MQI channel acts on behalf of the user of the WebSphere MQ
client application. During the SSL handshake, the WebSphere MQ code sends the
user’s digital certificate to the MCA at the server end of the MQI channel.

Digital certificates are stored in a key repository. The queue manager attribute
SSLKeyRepository specifies the location of the key repository that holds the queue
manager’s digital certificate. On a WebSphere MQ client system, the MQSSLKEYR
environment variable specifies the location of the key repository that holds the
user’s digital certificate. Alternatively, a WebSphere MQ client application can
specify its location in the KeyRepository field of the SSL configuration options
structure, MQSCO, on an MQCONNX call. See Chapter 6, “WebSphere MQ SSL
support” on page 45 for more information about key repositories and how to
specify where they are located.

CipherSuites and CipherSpecs

Chapter 4. The Secure Sockets Layer (SSL) 27

28 Security

Part 2. WebSphere MQ security provisions

This part describes the security services provided by WebSphere MQ:
v Chapter 5, “Access control” on page 31
v Chapter 6, “WebSphere MQ SSL support” on page 45
v Chapter 7, “Other link level security services” on page 51
v Chapter 9, “Access Manager for Business Integration” on page 71
v Chapter 8, “Providing your own link level security” on page 63
v Chapter 10, “Providing your own application level security” on page 77

© Copyright IBM Corp. 2002 29

30 Security

Chapter 5. Access control

This chapter introduces the access control mechanisms that are provided by
WebSphere MQ. It contains the following sections:
v “Authority to administer WebSphere MQ”
v “Authority to work with WebSphere MQ objects” on page 35
v “Channel security” on page 41

Authority to administer WebSphere MQ
WebSphere MQ administrators need authority to:
v Issue commands to administer WebSphere MQ
v Use the WebSphere MQ Explorer and the WebSphere MQ Services snap-in on

Windows systems
v Use the operations and control panels on z/OS
v Use the WebSphere MQ utility program, CSQUTIL, on z/OS
v Access the queue manager data sets on z/OS

Authority to administer WebSphere MQ on UNIX and Windows
systems

To be a WebSphere MQ administrator on UNIX and Windows systems, you must
be a member of the mqm group. This group is created automatically when you
install WebSphere MQ. To allow users to perform administration, you must add
them to the mqm group. This includes the root user on UNIX systems.

All members of the mqm group have access to all WebSphere MQ resources on the
system, including being able to administer any queue manager running on the
system. This access can be revoked only by removing a user from the mqm group.
On Windows systems, members of the Administrators group also have access to all
WebSphere MQ resources.

Administrators can use control commands to administer WebSphere MQ. One of
these control commands is setmqaut, which is used to grant authorities to other
users to enable them to access WebSphere MQ resources.

Administrators can use the control command runmqsc to issue WebSphere MQ
Script (MQSC) commands. When runmqsc is used in indirect mode to send MQSC
commands to a remote queue manager, each MQSC command is encapsulated
within an Escape PCF command. If the remote queue manager is running on z/OS,
the Escape PCF command is not used and each MQSC command is formatted in a
way that is suitable for the command server on WebSphere MQ for z/OS. In either
case, administrators must have the required authorities for the MQSC commands
to be processed by the remote queue manager.

The WebSphere MQ Explorer on Windows systems issues PCF commands to
perform administration tasks. Administrators require no additional authorities to
use the WebSphere MQ Explorer to administer a queue manager on the local
system. When the WebSphere MQ Explorer is used to administer a queue manager
on another system, administrators must have the required authorities for the PCF
commands to be processed by the remote queue manager.

© Copyright IBM Corp. 2002 31

For more information about authority checks when PCF and MQSC commands are
processed, see the following:
v For PCF commands that operate on queue managers, queues, processes,

namelists, and authentication information objects, see “Authority to work with
WebSphere MQ objects” on page 35. Refer to this section for the equivalent
MQSC commands encapsulated within Escape PCF commands.

v For PCF commands that operate on channels, channel initiators, listeners, and
clusters, see “Channel security” on page 41. Refer to this section for the
equivalent MQSC commands encapsulated within Escape PCF commands.

v For MQSC commands that are processed by the command server on WebSphere
MQ for z/OS, see “Command security and command resource security” on
page 33.

Administrators can use the WebSphere MQ Services snap-in to administer local
and remote queue managers running on Windows systems. An administrator must
be a member of the mqm or Administrators group on each system that hosts a
queue manager that is administered in this way. Other users, who are not members
of the mqm or Administrators group, can be granted authority to use the
WebSphere MQ Services snap-in by using the DCOMCNFG tool supplied with
WebSphere MQ for Windows.

For more information about the authority you need to administer WebSphere MQ
on UNIX and Windows systems, see the WebSphere MQ System Administration
Guide.

Authority to administer WebSphere MQ on OS/400
To be a WebSphere MQ adminstrator on OS/400, you must be a member of the
QMQMADM group. This group has properties similar to those of the mqm group
on UNIX and Windows systems. In particular, the QMQMADM group is created
when you install WebSphere MQ for iSeries, and members of the QMQMADM
group have access to all WebSphere MQ resources on the system. You also have
access to all WebSphere MQ resources if you have *ALLOBJ authority.

Administrators can use CL commands to administer WebSphere MQ. One of these
commands is GRTMQMAUT, which is used to grant authorities to other users.
Another command, STRMQMMQSC, enables an administrator to issue MQSC
commands to a local queue manager.

There are two groups of CL command provided by WebSphere MQ for iSeries:

Group 1
To issue a command in this category, a user must be a member of the
QMQMADM group or have *ALLOBJ authority. GRTMQMAUT and
STRMQMMQSC belong to this category, for example.

Group 2
To issue a command in this category, a user does not need to be a member
of the QMQMADM group or have *ALLOBJ authority. Instead, two levels
of authority are required:
v The user requires OS/400 authority to use the command. This authority

is granted by using the GRTOBJAUT command.
v The user requires WebSphere MQ authority to access any WebSphere

MQ object associated with the command. This authority is granted by
using the GRTMQMAUT command.

The following are examples of commands in this group:

Access control

32 Security

v CRTMQMQ, Create MQM Queue
v CHGMQMPRC, Change MQM Process
v DLTMQMNL, Delete MQM Namelist
v DSPMQMAUTI, Display MQM Authentication Information

For more information about this group of commands, see “Authority to
work with WebSphere MQ objects” on page 35.

For more information about the authority you need to administer WebSphere MQ
on OS/400, see WebSphere MQ for iSeries V5.3 System Administration.

Authority to administer WebSphere MQ on z/OS
The following sections describe various aspects of the authority you need to
administer WebSphere MQ for z/OS.

Authority checks on z/OS
WebSphere MQ uses the System Authorization Facility (SAF) to route requests for
authority checks to an external security manager (ESM) such as the z/OS Security
Server Resource Access Control Facility (RACF). WebSphere MQ does no authority
checks of its own.

This book assumes that you are using RACF as your ESM. If you are using a
different ESM, you might need to interpret the information provided for RACF in a
way that is relevant to your ESM.

You can specify whether you want authority checks turned on or off for each
queue manager individually or for every queue manager in a queue-sharing group.
This level of control is called subsystem security. If you turn subsystem security off
for a particular queue manager, no authority checks are carried out for that queue
manager.

If you turn subsystem security on for a particular queue manager, authority checks
can be performed at two levels:

Queue-sharing group level security
Authority checks use RACF profiles that are shared by all queue managers
in the queue-sharing group. This means that there are fewer profiles to
define and maintain, making security administration easier.

Queue manager level security
Authority checks use RACF profiles specific to the queue manager.

You can use a combination of queue-sharing group and queue manager level
security. For example, you can arrange for profiles specific to a queue manager to
override those of the queue-sharing group to which it belongs.

Subsystem security, queue-sharing group level security, and queue manager level
security are turned on or off by defining switch profiles. A switch profile is a normal
RACF profile that has a special meaning to WebSphere MQ.

Command security and command resource security
Authority checks are carried out when a WebSphere MQ administrator issues an
MQSC command. This is called command security.

Access control

Chapter 5. Access control 33

To implement command security, you must define certain RACF profiles and give
the necessary groups and user IDs access to these profiles at the required levels.
The name of a profile for command security contains the name of an MQSC
command.

Some MQSC commands perform an operation on a WebSphere MQ resource, such
as the DEFINE QLOCAL command to create a local queue. When an administrator
issues an MQSC command, authority checks are carried out to determine whether
the requested operation can be performed on the resource specified in the
command. This is called command resource security.

To implement command resource security, you must define certain RACF profiles
and give the necessary groups and user IDs access to these profiles at the required
levels. The name of a profile for command resource security contains the name of a
WebSphere MQ resource and its type (QUEUE, PROCESS, NAMELIST,
AUTHINFO, or CHANNEL).

Command security and command resource security are independent. For example,
when an administrator issues the command:
DEFINE QLOCAL(MOON.EUROPA)

the following authority checks are performed:
v Command security checks that the administrator is authorized to issue the

DEFINE QLOCAL command.
v Command resource security checks that the administrator is authorized to

perform an operation on the local queue called MOON.EUROPA.

Command security and command resource security can be turned on or off by
defining switch profiles.

MQSC commands and the system command input queue
Command security and command resource security are also used when the
command server retrieves a message containing an MQSC command from the
system command input queue. The user ID that is used for the authority checks is
the one found in the UserIdentifier field in the message descriptor of the message
containing the MQSC command. This user ID must have the required authorities
on the queue manager where the command is processed. For more information
about the UserIdentifier field and how it is set, see “Message context” on page 38.

Messages containing MQSC commands are sent to the system command input
queue in the following circumstances:
v The operations and control panels send MQSC commands to the system

command input queue of the target queue manager. The MQSC commands
correspond to the actions you choose on the panels. The UserIdentifier field in
each message is set to the TSO user ID of the administrator.

v The COMMAND function of the WebSphere MQ utility program, CSQUTIL,
sends the MQSC commands in the input data set to the system command input
queue of the target queue manager. The COPY and EMPTY functions send
DISPLAY QUEUE and DISPLAY STGCLASS commands. The UserIdentifier field
in each message is set to the job user ID.

v The MQSC commands in the CSQINPX data sets are sent to the system
command input queue of the queue manager to which the channel initiator is
connected. The UserIdentifier field in each message is set to the channel initiator
address space user ID.

Access control

34 Security

No authority checks are performed when MQSC commands are issued from the
CSQINP1 and CSQINP2 data sets. You can control who is allowed to update
these data sets using RACF data set protection.

v Within a queue-sharing group, a channel initiator might send START CHANNEL
commands to the system command input queue of the queue manager to which
it is connected. A command is sent when an outbound channel that uses a
shared transmission queue is started by triggering. The UserIdentifier field in
each message is set to the channel initiator address space user ID.

v An application can send MQSC commands to a system command input queue.
By default, the UserIdentifier field in each message is set to the user ID associated
with the application.

v On UNIX and Windows systems, the runmqsc control command can be used in
indirect mode to send MQSC commands to the system command input queue of
a queue manager on z/OS. The UserIdentifier field in each message is set to the
user ID of the administrator who issued the runmqsc command.

Access to the queue manager data sets
WebSphere MQ administrators need authority to access the queue manager data
sets. These data sets include:
v The data sets referred to by CSQINP1, CSQINP2, and CSQXLIB in the queue

manager’s started task procedure
v The queue manager’s page sets, active log data sets, archive log data sets, and

bootstrap data sets (BSDSs)
v The data sets referred to by CSQXLIB and CSQINPX in the channel initiator’s

started task procedure

You must protect the data sets so that no unauthorized user can start a queue
manager or gain access to any queue manager data. To do this, use RACF data set
protection.

Obtaining more information
For more information about the authority you need to administer WebSphere MQ
on z/OS, see the WebSphere MQ for z/OS System Setup Guide.

Authority to work with WebSphere MQ objects
Applications can access the following WebSphere MQ objects by issuing MQI calls:
v Queue managers
v Queues
v Processes
v Namelists

On OS/400, UNIX systems, and Windows systems, applications can also use PCF
commands to access these WebSphere MQ objects, and to access authentication
information objects as well. These objects are protected by WebSphere MQ and the
user IDs associated with the applications need authority to access them.

Applications, in this context, include those written by users and vendors, and those
supplied with WebSphere MQ for z/OS. The applications supplied with
WebSphere MQ for z/OS include:
v The operations and control panels
v The WebSphere MQ utility program, CSQUTIL
v The dead letter queue handler utility, CSQUDLQH

Access control

Chapter 5. Access control 35

Applications that use the Application Messaging Interface (AMI), WebSphere MQ
classes for Java™, or WebSphere MQ classes for Java Message Service (JMS) still
use the MQI indirectly.

MCAs also issue MQI calls and the user IDs associated with the MCAs need
authority to access these WebSphere MQ objects. For more information about these
user IDs and the authorities they require, see “Channel security” on page 41.

On z/OS, applications can also use MQSC commands to access these WebSphere
MQ objects but command security and command resource security provide the
authority checks in these circumstances. For more information, see “Command
security and command resource security” on page 33 and “MQSC commands and
the system command input queue” on page 34.

On OS/400, a user that issues a CL command in Group 2 might require authority
to access a WebSphere MQ object associated with the command. For more
information, see “When authority checks are performed”.

When authority checks are performed
Authority checks are performed when an application attempts to access a
WebSphere MQ object that is a queue manager, queue, process, or namelist. On
OS/400, authority checks might also be performed when a user issues a CL
command in Group 2 that accesses any of these WebSphere MQ objects. The checks
are performed in the following circumstances:

When an application connects to a queue manager using an MQCONN or
MQCONNX call

The queue manager asks the operating system for the user ID associated
with the application. The queue manager then checks that the user ID is
authorized to connect to it and retains the user ID for future checks.

When an application opens a WebSphere MQ object using an MQOPEN or
MQPUT1 call

All authority checks are performed when an object is opened, not when it
is accessed subsequently. For example, authority checks are performed
when an application opens a queue, but not when the application puts
messages on the queue or gets messages from the queue.

When an application opens an object, it specifies the types of operation it
needs to perform on the object. For example, an application might open a
queue to browse the messages on it, get messages from it, but not to put
messages on it. For each type of operation the application specifies, the
queue manager checks that the user ID associated with the application has
the authority to perform that operation.

When an application opens a queue, the authority checks are performed
against the object named in the ObjectName field of the object descriptor
used on the MQOPEN or MQPUT1 call. If the object is an alias queue or a
remote queue definition, the authority checks are performed against the
object itself, not the queue to which the alias queue or the remote queue
definition resolves.

If an application references a remote queue explicitly by setting the
ObjectName and ObjectQMgrName fields in the object descriptor to the
names of the remote queue and the remote queue manager respectively,
the authority checks are performed against the transmission queue with
the same name as the remote queue manager. If an application references a
cluster queue explicitly by setting the ObjectName field in the object

Access control

36 Security

descriptor to the name of the cluster queue, the authority checks are
performed against the cluster transmission queue,
SYSTEM.CLUSTER.TRANSMIT.QUEUE.

The user ID that the queue manager uses for the authority checks is the
user ID obtained from the operating system when the application connects
to the queue manager.

When an application deletes a permanent dynamic queue using an MQCLOSE
call

If the object handle specified on the MQCLOSE call is not the one returned
by the MQOPEN call that created the permanent dynamic queue, the
queue manager checks that the user ID associated with the application that
issued the MQCLOSE call is authorized to delete the queue.

On OS/400, UNIX systems, and Windows systems, when a PCF command that
operates on a WebSphere MQ object is processed by the command server

This includes the case where a PCF command operates on an
authentication information object.

The user ID that is used for the authority checks is the one found in the
UserIdentifier field in the message descriptor of the PCF command. This
user ID must have the required authorities on the queue manager where
the command is processed. The equivalent MQSC command encapsulated
within an Escape PCF command is treated in the same way. For more
information about the UserIdentifier field and how it is set, see “Message
context” on page 38.

On OS/400, when a user issues a CL command in Group 2 that operates on a
WebSphere MQ object

This includes the case where a CL command in Group 2 operates on an
authentication information object.

Unless the user is a member of the QMQMADM group or has *ALLOBJ
authority, checks are performed to determine whether the user has the
authority to operate on a WebSphere MQ object associated with the
command. The authority required depends on the type of operation that
the command performs on the object. For example, the command
CHGMQMQ, Change MQM Queue, requires the authority to change the
attributes of the queue specified by the command. In contrast, the
command DSPMQMQ, Display MQM Queue, requires the authority to
display the attributes of the queue specified by the command.

Many commands operate on more than one object. For example, to issue
the command DLTMQMQ, Delete MQM Queue, the following authorities
are required:
v The authority to connect to the queue manager specified by the

command
v The authority to delete the queue specified by the command

Some commands operate on no object at all. In this case, the user requires
only OS/400 authority to issue one of these commands. STRMQMLSR,
Start MQM Listener, is an example of such a command.

Alternate user authority
When an application opens an object, the application can supply a user ID on the
MQOPEN or MQPUT1 call and ask the queue manager to use this user ID for

Access control

Chapter 5. Access control 37

authority checks instead of the one associated with the application. The application
succeeds in opening the object only if both the following conditions are met:
v The user ID associated with the application has the authority to supply a

different user ID for authority checks. The application is said to have alternate
user authority.

v The user ID supplied by the application has the authority to open the object for
the types of operation requested.

Message context
Message context information allows the application that retrieves a message to find
out about the originator of the message. The information is held in fields in the
message descriptor and the fields are divided into two categories: identity context
and origin context.

The identity context fields contain information about the user of the application that
put the message on the queue. The origin context fields contain information about
the application itself and when the message was put on the queue.

When an application puts a message on a queue, the application can ask the queue
manager to generate the context information in the message. This is the default
action. Alternatively, it can specify that the context fields are to contain no
information. The user ID associated with an application requires no special
authority to do either of these.

An application can set the identity context fields in a message, allowing the queue
manager to generate the origin context, or it can set all the context fields. An
application can also pass the identity context fields from a message it has retrieved
to a message it is putting on a queue, or it can pass all the context fields. However,
the user ID associated with an application requires authority to set or pass context
information. An application specifies that it intends to set or pass context
information when it opens the queue on which it is about to put messages, and its
authority is checked at this time.

Here is a brief description of each of the context fields:

Identity context

UserIdentifier
The user ID associated with the application that put the message. If
the queue manager sets this field, it is set to the user ID obtained
from the operating system when the application connects to the
queue manager.

AccountingToken
Information that can be used to charge for the work done as a
result of the message.

ApplIdentityData
If the user ID associated with an application has authority to set
the identity context fields, or to set all the context fields, the
application can set this field to any value related to identity. If the
queue manager sets this field, it is set to blank.

Origin context

PutApplType
The type of the application that put the message; a CICS®

transaction, for example.

Access control

38 Security

PutApplName
The name of the application that put the message.

PutDate
The date when the message was put.

PutTime
The time when the message was put.

ApplOriginData
If the user ID associated with an application has authority to set all
the context fields, the application can set this field to any value
related to origin. If the queue manager sets this field, it is set to
blank.

For a detailed description of each of the context fields, see the WebSphere MQ
Application Programming Reference. For more information about how to use message
context, see the WebSphere MQ Application Programming Guide.

Authority to work with WebSphere MQ objects on OS/400,
UNIX systems, and Windows systems

On OS/400, UNIX systems, and Windows systems, the authorization service
provides the access control when an application issues an MQI call to access a
WebSphere MQ object that is a queue manager, queue, process, or namelist. This
includes checks for alternate user authority and the authority to set or pass context
information.

The authorization service also provides authority checks when a PCF command
operates on one of these WebSphere MQ objects or an authentication information
object. The equivalent MQSC command encapsulated within an Escape PCF
command is treated in the same way.

On OS/400, unless the user is a member of the QMQMADM group or has
*ALLOBJ authority, the authorisation service also provides authority checks when a
user issues a CL command in Group 2 that operates on any of these WebSphere
MQ objects or an authentication information object.

The authorization service is an installable service, which means that it is
implemented by one or more installable service components. Each component is
invoked using a documented interface. This enables users and vendors to provide
components to augment or replace those provided by the WebSphere MQ
products.

The authorization service component provided with WebSphere MQ is called the
Object Authority Manager (OAM). The OAM is automatically enabled for each
queue manager you create.

The OAM maintains an access control list (ACL) for each WebSphere MQ object it
is controlling access to. On UNIX systems, only group IDs can appear in an ACL.
This means that all members of a group have the same authorities. On OS/400 and
on Windows systems, both user IDs and group IDs can appear in an ACL. This
means that authorities can be granted to individual users as well as to groups.

On UNIX and Windows systems, the control command setmqaut grants and
revokes authorities and is used to maintain the ACLs. For example, the command:
setmqaut -m JUPITER -t queue -n MOON.EUROPA -g VOYAGER +browse +get

Access control

Chapter 5. Access control 39

allows the members of the group VOYAGER to browse messages on the queue
MOON.EUROPA that is owned by the queue manager JUPITER. It allows the
members to get messages from the queue as well.

The command:
setmqaut -m JUPITER -t queue -n MOON.* -g VOYAGER +put

allows the members of the group VOYAGER to put messages on any queue whose
name commences with the characters MOON. . MOON.* is the name of a generic
profile. A generic profile allows you to grant authorities for a set of objects using a
single setmqaut command. Objects whose names match the profile name do not
have to exist when the setmqaut command is issued. Using generic profiles,
therefore, allows you to grant authorities for objects that you might create in the
future.

The control command dspmqaut is available to display the current authorities that
a user or group has for a specified object. The control command dmpmqaut is also
available to display the current authorities associated with generic profiles.

On OS/400, an adminstrator uses the CL command GRTMQMAUT to grant
authorities and the CL command RVKMQMAUT to revoke authorities. Generic
profiles can be used as well. For example, the CL command:
GRTMQMAUT MQMNAME(JUPITER) OBJTYPE(*Q) OBJ(’MOON.*’) USER(VOYAGER) AUT(*PUT)

provides the same function as the previous example of a setmqaut command; it
allows the members of the group VOYAGER to put messages on any queue whose
name commences with the characters MOON. .

The CL command DSPMQMAUT displays the current authorities that user or
group has for a specified object. The CL commands WRKMQMAUT and
WRKMQMAUTD are also available to work with the current authorities associated
with objects and generic profiles.

If you do not want any authority checks, for example, in a test environment, you
can disable the OAM.

For more information about the authority to work with WebSphere MQ objects,
see:
v WebSphere MQ for iSeries V5.3 System Administration

v WebSphere MQ System Administration Guide, for UNIX and Windows systems

Authority to work with WebSphere MQ objects on z/OS
On z/OS, there are six categories of authority check associated with calls to the
MQI:

Connection security
The authority checks that are performed when an application connects to a
queue manager

Queue security
The authority checks that are performed when an application opens a
queue or deletes a permanent dynamic queue

Process security
The authority checks that are performed when an application opens a
process object

Access control

40 Security

Namelist security
The authority checks that are performed when an application opens a
namelist object

Alternate user security
The authority checks that are performed when an application requests
alternate user authority when opening an object

Context security
The authority checks that are performed when an application opens a
queue and specifies that it intends to set or pass the context information in
the messages it puts on the queue

Each category of authority check is implemented in the same way that command
security and command resource security are implemented. You must define certain
RACF profiles and give the necessary groups and user IDs access to these profiles
at the required levels. For queue security, the level of access determines the types
of operation the application can perform on a queue. For context security, the level
of access determines whether the application can:
v Pass all the context fields
v Pass all the context fields and set the identity context fields
v Pass and set all the context fields

Each category of authority check can be turned on or off by defining switch
profiles.

All the categories, except connection security, are known collectively as API-resource
security.

By default, when an API-resource security check is performed as a result of an
MQI call from an application using a batch connection, only one user ID is
checked. When a check is performed as a result of an MQI call from a CICS or
IMS™ application, or from the channel initiator, two user IDs are checked.

By defining a RESLEVEL profile, however, you can control whether zero, one, or
two users IDs are checked. The number of user IDs that are checked is determined
by the user ID associated with the type of connection when an application
connects to the queue manager and the access level that user ID has to the
RESLEVEL profile. The user ID associated with each type of connection is:
v The user ID of the connecting task for batch connections
v The CICS address space user ID for CICS connections
v The IMS region address space user ID for IMS connections
v The channel initiator address space user ID for channel initiator connections

For more information about the authority to work with WebSphere MQ objects on
z/OS, see the WebSphere MQ for z/OS System Setup Guide.

Channel security
The user IDs associated with message channel agents (MCAs) need authority to
access various WebSphere MQ resources.

An MCA must be able to connect to a queue manager and open the dead letter
queue. If it is a sending MCA, it must be able to open the transmission queue for
the channel. If it is a receiving MCA, it must be able to open destination queues
and set context information in the messages it puts on those queues.

Access control

Chapter 5. Access control 41

If the PUTAUT parameter is set to CTX (or ALTMCA on z/OS) in the channel
definition at the receiving end of a channel, the user ID in the UserIdentifier field in
the message descriptor of each incoming message needs authority to open the
destination queue for the message. In addition, the user ID associated with the
receiving MCA needs alternate user authority to open the destination queue using
the authority of a different user ID.

On an MQI channel, the user ID associated with the server connection MCA needs
authority to issue MQI calls on behalf of the client application.

The user ID that is used for authority checks depends on whether the MCA is
connecting to a queue manager or accessing queue manager resources after it has
connected to a queue manager:

The user ID for connecting to a queue manager
On OS/400, UNIX systems, and Windows systems, the user ID whose
authority is checked when an MCA connects to a queue manager is the
one under which the MCA is running. This is known as the default user ID
of the MCA. The default user ID might be derived in various ways. Here
are some examples:
v If a caller MCA is started by a channel initiator, the MCA runs under the

same user ID as that of the channel initiator. This user ID might be
derived in various ways. For example, if the channel initiator is started
by using the WebSphere MQ Services snap-in on Windows systems, it
runs under the MUSER_MQADMIN user ID. This user ID is created
when you install WebSphere MQ for Windows and is a member of the
mqm group.

v If a responder MCA is started by a WebSphere MQ listener, the MCA
runs under the same user ID as that of the listener.

v If the communications protocol for the channel is TCP/IP and a
responder MCA is started by the inet daemon, the MCA runs under the
user ID obtained from the entry in the inetd.conf file that was used to
start the MCA.

v If the communications protocol for the channel is SNA LU 6.2, a
responder MCA might run under the user ID contained in the inbound
attach request, or under the user ID specified in the transaction program
(TP) definition for the MCA.

After an MCA has connected to a queue manager, it accesses certain queue
manager resources as part of its initialization processing. The default user
ID of the MCA is also used for the authority checks when it opens these
resources. To enable the MCA to access these resources, you must ensure
that the default user ID is a member of the QMQMADM group on OS/400,
the mqm group on UNIX and Windows systems, or the Administrators
group on Windows systems.

On z/OS, every task in the channel initiator address space that needs to
connect to the queue manager does so when the channel initiator address
space is started. This includes the dispatcher tasks that run as MCAs. The
channel initiator address space user ID is used to check the authority of a
task to connect to the queue manager.

The user ID for subsequent authority checks
After an MCA has connected to a queue manager, the user ID whose
authority is checked when the MCA accesses queue manager resources
subsequently might be different from the one that was checked when the

Access control

42 Security

MCA connected to the queue manager. In addition, on z/OS, zero, one, or
two user IDs might be checked, depending on the access level of the
channel initiator address space user ID to the RESLEVEL profile. Here are
some examples of other user IDs that might be used:
v The value of the MCAUSER parameter in the channel definition
v For a receiving MCA, the user ID in the UserIdentifier field in the

message descriptor of each incoming message, if the PUTAUT parameter
is set to CTX (or ALTMCA on z/OS) in the channel definition at the
receiving end of a channel

v For a server connection MCA, the user ID that is received from a client
system when a WebSphere MQ client application issues an MQCONN
call

On OS/400, UNIX systems, and Windows systems, access to channels, channel
initiators, listeners, and clusters is not controlled by the OAM. This means that the
authority to use PCF commands such as:
v Create Channel
v Reset Cluster
v Start Channel Initiator
v Start Channel Listener
v Stop Channel

is not checked by the OAM. Instead, the user ID in the UserIdentifier field in the
message descriptor of a PCF command must be a member of the QMQMADM
group, if the command is processed on OS/400, or a member of the mqm group, if
the command is processed on a UNIX or Windows system. Alternatively, on
OS/400, the user ID can have *ALLOBJ authority and, on Windows systems, the
user ID can be a member of the Administrators group. The equivalent MQSC
commands encapsulated within an Escape PCF commands are treated in the same
way.

On z/OS, the channel initiator address space user ID needs authority to open
certain system queues, such as SYSTEM.CHANNEL.INITQ, independently of the
MCAs that are running in the address space.

For more information about channel security, see:
v WebSphere MQ for iSeries V5.3 System Administration

v WebSphere MQ System Administration Guide, for UNIX and Windows systems
v WebSphere MQ for z/OS System Setup Guide

v WebSphere MQ Clients, for MQI channels

Access control

Chapter 5. Access control 43

Access control

44 Security

Chapter 6. WebSphere MQ SSL support

“Secure Sockets Layer (SSL) concepts” on page 23 provides a description of SSL,
which is an industry standard protocol for transmitting secure data over an
insecure network. WebSphere MQ supports SSL Version 3.0 as follows:

OS/400
SSL support is integral to the OS/400 operating system.

Java and JMS clients
These clients use the Java Secure Socket Extension (JSSE) to provide SSL
support. You can find more information about JSSE at
http://www.java.sun.com/products/jsse

UNIX systems
For all the UNIX systems, the SSL support is installed with WebSphere
MQ.

Windows systems
Windows 2000 SSL support is integral to the operating system. Microsoft®

Internet Explorer provides the SSL support on the other Windows
platforms.

z/OS SSL support is integral to the z/OS operating system. Note that the SSL
support on z/OS is known as System SSL.

For information about the prerequisites for WebSphere MQ SSL support, refer to
the appropriate book for your platform:
v WebSphere MQ for AIX, V5.3 Quick Beginnings

v WebSphere MQ for HP-UX, V5.3 Quick Beginnings

v WebSphere MQ for iSeries V5.3 Quick Beginnings

v WebSphere MQ Using Java

v WebSphere MQ for Linux for Intel and Linux for zSeries, V5.3 Quick Beginnings

v WebSphere MQ for Solaris, V5.3 Quick Beginnings

v WebSphere MQ for Windows, V5.3 Quick Beginnings

v WebSphere MQ for z/OS Concepts and Planning Guide

This chapter describes the provisions in WebSphere MQ that enable you to use and
control the SSL support:
v “Channel attributes”
v “Queue manager attributes” on page 46
v “The authentication information object (AUTHINFO)” on page 47
v “The SSL key repository” on page 47
v “WebSphere MQ client considerations” on page 48
v “Working with WebSphere MQ internet pass-thru (IPT)” on page 49
v “Support for cryptographic hardware” on page 49

Channel attributes
WebSphere MQ SSL support includes the following parameters on the DEFINE
CHANNEL MQSC command:

© Copyright IBM Corp. 2002 45

SSLCIPH
The CipherSpec for the channel to use. For more information about the
CipherSpecs that WebSphere MQ supports, refer to Chapter 17, “Working
with CipherSpecs” on page 145.

The SSLCIPH parameter is mandatory if you want your channel to use
SSL.

SSLPEER
The Distinguished Name pattern that WebSphere MQ uses to decide the
entities from which messages are accepted. The SSLPEER pattern filters the
Distinguished Names of the entities. For more information, refer to
“Distinguished Names” on page 19 and Chapter 18, “WebSphere MQ rules
for SSLPEER values” on page 151.

SSLCAUTH
Whether the SSL server requires the SSL client to send its digital certificate
for authentication. For more information about mandatory client
authentication, refer to “How SSL provides authentication” on page 25.

For more information about setting these parameters with the DEFINE CHANNEL
MQSC command, refer to the WebSphere MQ Script (MQSC) Command Reference.

Queue manager attributes
WebSphere MQ SSL support includes the following parameters on the ALTER
QMGR MQSC command:

SSLKEYR
Sets a queue manager attribute, SSLKeyRepository, which holds the name of
the SSL key repository.

SSLCRLNL
Sets a queue manager attribute, SSLCRLNamelist, which holds the name of
a namelist of authentication information objects.

SSLCRYP
Sets a queue manager attribute, SSLCryptoHardware, which holds the name
of the parameter string required to configure the cryptographic hardware
present on the system. This parameter applies only to UNIX queue
managers.

SSLTASKS
Sets a queue manager attribute, SSLTasks, which holds the number of
server subtasks to use for processing SSL calls. If you use SSL channels you
must have at least two of these tasks. This parameter applies only to z/OS
queue managers.

SSLKEYRPWD
Sets a queue manager attribute, SSLKeyRepositoryPassword, which holds the
password used to access the OS/400 certificate store. This parameter
applies only to OS/400 queue managers.

For more information about setting these parameters with the ALTER QMGR
MQSC command, refer to the WebSphere MQ Script (MQSC) Command Reference,
which also describes when changes to the SSL queue manager attributes become
effective.

On OS/400, you can set the SSLKEYR and SSLCRLNL parameters with the CHGMQM
command.

SSL support

46 Security

The authentication information object (AUTHINFO)
WebSphere MQ SSL support includes a queue manager object called an
authentication information object (AUTHINFO).

An authentication information object of type CRLLDAP holds information that
allows WebSphere MQ to obtain Certificate Revocation List (CRL) information
from an LDAP server. For more information about CRLs and working with
authentication information objects, refer to Chapter 16, “Working with Certificate
Revocation Lists” on page 139.

The SSL key repository
This book uses the general term key repository to describe the store for digital
certificates and their associated private keys. The specific store names used on the
platforms that support SSL are:

OS/400 certificate store
UNIX key database file
Windows certificate store
z/OS key ring

For more information, refer to “Digital certificates” on page 18 and “Secure Sockets
Layer (SSL) concepts” on page 23.

A fully authenticated SSL connection requires a key repository at each end of the
connection. The key repository contains:
v A number of CA certificates from various Certification Authorities that allow the

queue manager to verify certificates it receives from its partner at the remote
end of the connection. Individual certificates might be in a certificate chain.

v A personal certificate received from a Certification Authority. You associate a
single certificate with each queue manager and a single certificate with each
WebSphere MQ client.

The location of the key repository depends on the platform you are using:

OS/400
On OS/400 the key repository is a certificate store. The default system
certificate store is located at /QIBM/UserData/ICSS/Cert/Server/Default in
the integrated file system (IFS). To use a different certificate store, refer to
“Working with a key repository” on page 89.

On OS/400, WebSphere MQ stores the password for the certificate store in
a password stash file. For example, the stash file for queue manager QM1 is
/QIBM/UserData/mqm/qmgrs/QM1/ssl/Stash.sth.

On OS/400 the certificate store also contains the private key for the queue
manager.

UNIX On UNIX systems the key repository is a key database file, held in the SSL
directory for the queue manager or WebSphere MQ client. The name of the
key database file must have a file extension of .kdb. For example, the
default key database file for queue manager QM1 is
/var/mqm/qmgrs/QM1/ssl/key.kdb.

On UNIX systems each key database file has an associated password stash
file. This file holds encrypted passwords that allow programs to access the
key database. The password stash file must be in the same directory and

SSL support

Chapter 6. WebSphere MQ SSL support 47

have the same file stem as the key database, and must end with the suffix
.sth, for example /var/mqm/qmgrs/QM1/ssl/key.sth

Note: On UNIX systems, PKCS #11 cryptographic hardware cards can
contain the certificates and keys that are otherwise held in a key
database file. When certificates and keys are held on PKCS #11
cards, WebSphere MQ still requires access to both a key database file
and a password stash file.

On UNIX systems, the key database also contains the private key for the
queue manager or WebSphere MQ client.

Windows
On Windows systems the key repository is a Microsoft certificate store file.
The name of the certificate store file must have a file extension of .sto, but
you can choose the stem, for example QM1.sto

On Windows systems there is no associated password stash file. The store
databases can be read by any application with permission to access the
files. Give particular attention to controlling access to certificate stores.

On Windows systems, private keys are held separately from the key
repository.

z/OS Certificates are held in a key ring in RACF. Refer to “Setting up a key
repository” on page 125 for more information about creating a key ring in
RACF.

Other external security managers (ESMs) also use key rings for storing
certificates.

On z/OS, private keys are managed by RACF.

Protecting WebSphere MQ client key repositories
The key repository for a WebSphere MQ client is a file on the client machine.
Ensure that only the intended user can access the key repository file. This prevents
an intruder or other unauthorized user copying the key repository file to another
system, and then setting up an identical user ID on that system to impersonate the
intended user.

WebSphere MQ client considerations
WebSphere MQ provides SSL support for WebSphere MQ clients in the following
products:
v WebSphere MQ for AIX
v WebSphere MQ for HP-UX
v WebSphere MQ for Linux for Intel and Linux for zSeries
v WebSphere MQ for Solaris
v WebSphere MQ for Windows

Refer to the WebSphere MQ Using Java book for information about the Java client
and JMS.

You can specify the key repository for a WebSphere MQ client either with the
MQSSLKEYR environment variable or when your application makes an
MQCONNX call. You have three options for specifying that a channel uses SSL:
v Using a channel definition table

Key repository

48 Security

v Using the SSL configuration options structure, MQSCO, on an MQCONNX call
v Using the Active Directory (on Windows systems with Active Directory support)

You cannot use the MQSERVER environment variable to specify that a channel
uses SSL.

You can continue to run your existing WebSphere MQ client applications without
SSL.

When your WebSphere MQ client runs on a UNIX system with cryptographic
hardware, you configure that hardware with the MQSSLCRYP environment
variable. This variable is equivalent to the SSLCRYP parameter on the ALTER
QMGR MQSC command. Refer to “Queue manager attributes” on page 46 for a
description of the SSLCRYP parameter.

Refer to the WebSphere MQ Clients book for more information about the SSL
support for WebSphere MQ clients, and to “Protecting WebSphere MQ client key
repositories” on page 48.

Working with WebSphere MQ internet pass-thru (IPT)
For detailed information about IPT, refer to the WebSphere MQ internet pass-thru
SupportPac MS81.

Note that IPT does not run on OS/400 or z/OS, but you can use SSL when you
communicate with IPT from OS/400 or z/OS.

When your WebSphere MQ system communicates with IPT, unless you are using
SSLProxyMode in IPT, ensure that the CipherSpec used by WebSphere MQ
matches the CipherSuite used by IPT:
v When IPT is acting as the SSL server and WebSphere MQ is connecting as the

SSL client, the CipherSpec used by WebSphere MQ must correspond to a
CipherSuite that is enabled in the relevant IPT key ring.

v When IPT is acting as the SSL client and is connecting to a WebSphere MQ SSL
server, the IPT CipherSuite must match the CipherSpec defined on the receiving
WebSphere MQ channel.

When you migrate from IPT to the integrated WebSphere MQ SSL support, you
transfer the digital certificates from IPT:
v Using iKeyman on UNIX systems
v Using the certificate management system on Windows

For more information about importing certificates, refer to the relevant section for
your platform in Part 3, “Working with WebSphere MQ SSL support” on page 85.

Support for cryptographic hardware
On UNIX systems you can use the SSLCRYP parameter on the ALTER QMGR
MQSC command to provide configuration information to the WebSphere MQ SSL
support. Refer to “Queue manager attributes” on page 46 for a description of the
SSLCRYP parameter. Note however that some types of cryptographic hardware can
function without being configured and that WebSphere MQ can run SSL without
cryptographic hardware.

Key repository

Chapter 6. WebSphere MQ SSL support 49

To configure cryptographic hardware for a WebSphere MQ client on UNIX, set the
MQSSLCRYP environment variable. The permitted values for MQSSLCRYP are the
same as for the SSLCRYP parameter.

Refer to Appendix A, “Cryptographic hardware” on page 155 for information about
the cryptographic hardware that has been tested with WebSphere MQ SSL support.

Cryptographic hardware

50 Security

Chapter 7. Other link level security services

This chapter describes link level security services for WebSphere MQ other than
those available through WebSphere MQ SSL support. It contains the following
sections:
v “Channel exit programs”
v “The DCE channel exit programs” on page 54
v “The SSPI channel exit program” on page 55
v “The Entrust/PKI channel exit programs” on page 56
v “SNA LU 6.2 security services” on page 56

Channel exit programs
Channel exit programs are programs that are called at defined places in the
processing sequence of an MCA. Users and vendors can write their own channel
exit programs. Some are supplied by IBM.

There are several types of channel exit program, but only four have a role in
providing link level security:
v Security exit
v Message exit
v Send exit
v Receive exit

These four types of channel exit program are illustrated in Figure 8 and are
described in the following sections:
v “Security exit” on page 52
v “Message exit” on page 52
v “Send and receive exits” on page 52

Queue manager Queue manager

Transmission
queue

Destination
queues

Message channel

MCA

Message

Security

Receive

MCA

Message

Security

Send

Security messages

Figure 8. Security, message, send, and receive exits on a message channel

© Copyright IBM Corp. 2002 51

Security exit
Security exits normally work in pairs; one at each end of a channel. They are called
immediately after the initial data negotiation has completed on channel startup,
but before any messages start to flow. The primary purpose of the security exit is
to enable the MCA at each end of a channel to authenticate its partner. However,
there is nothing to prevent a security exit from performing other function, even
function that has nothing to do with security.

Security exits can communicate with each other by sending security messages. The
format of a security message is not defined and is determined by the user. One
possible outcome of the exchange of security messages is that one of the security
exits might decide not to proceed any further. In that case, the channel is closed
and messages do not flow. If there is a security exit at only one end of a channel,
the exit is still called and can elect whether to continue or to close the channel.

Security exits can be called on both message and MQI channels. The name of a
security exit is specified as a parameter in the channel definition at each end of a
channel.

Message exit
Message exits at the sending and receiving ends of a channel normally work in
pairs. A message exit at the sending end of a channel is called after the MCA has
got a message from the transmission queue. At the receiving end of a channel, a
message exit is called before the MCA puts a message on its destination queue.

A message exit has access to both the transmission queue header, MQXQH, which
includes the embedded message descriptor, and the application data in a message.
A message exit can modify the contents of the message and change its length. A
change of length might be the result of compressing, decompressing, encrypting, or
decrypting the message. It might also be the result of adding data to the message,
or removing data from it.

Message exits can be used for any purpose that requires access to the whole
message, rather than a portion of it, and not necessarily for security.

A message exit can decide that the message it is currently processing should not to
proceed any further towards its destination. The MCA then puts the message on
the dead letter queue. A message exit can also decide to close the channel.

Message exits can be called only on message channels, not on MQI channels. This
is because the purpose of an MQI channel is to enable the input and output
parameters of MQI calls to flow between the WebSphere MQ client application and
the queue manager.

The name of a message exit is specified as a parameter in the channel definition at
each end of a channel. You can also specify a list of message exits to be run in
succession.

Send and receive exits
A send exit at one end of a channel and a receive exit at the other end normally
work in pairs. A send exit is called just before an MCA issues a communications
send to send data over a communications connection. A receive exit is called just
after an MCA has regained control following a communications receive and has
received data from a communications connection.

Other link level security services

52 Security

The WebSphere MQ channel protocol flows between two MCAs on a message
channel contain control information as well as message data. Similarly, on an MQI
channel, the flows contain control information as well as the parameters of MQI
calls. Send and receive exits are called for all types of data.

Message data flows in only one direction on a message channel but, on an MQI
channel, the input parameters of an MQI call flow in one direction and the output
parameters flow in the other. On both message and MQI channels, control
information flows in both directions. As a result, send and receive exits can be
called at both ends of a channel.

Send and receive exits are not called for the initial data flows at channel startup
and for the flows of security messages between the two security exits.

The unit of data that is transmitted in a single flow between two MCAs is called a
transmission segment. Send and receive exits have access to each transmission
segment. They can modify its contents and change its length. A send exit, however,
must not change the first eight bytes of a transmission segment. These eight bytes
form part of the WebSphere MQ channel protocol header. There are also
restrictions on how much a send exit can increase the length of a transmission
segment. In particular, a send exit cannot increase its length beyond the maximum
that was negotiated between the two MCAs at channel startup.

On a message channel, if a message is too large to be sent in a single transmission
segment, the sending MCA splits the message and sends it in more than one
transmission segment. As a consequence, a send exit is called for each transmission
segment containing a portion of the message and, at the receiving end, a receive
exit is called for each transmission segment. The receiving MCA reconstitutes the
message from the transmission segments after they have been processed by the
receive exit.

Similarly, on an MQI channel, the input or output parameters of an MQI call are
sent in more than one transmission segment if they are too large. This might occur,
for example, on an MQPUT, MQPUT1, or MQGET call if the application data is
sufficiently large.

Taking these considerations into account, it is more appropriate to use send and
receive exits for purposes in which they do not need to understand the structure of
the data they are handling and can therefore treat each transmission segment as a
binary object.

A send or a receive exit can decide to close a channel.

The names of a send exit and a receive exit are specified as parameters in the
channel definition at each end of a channel. You can also specify a list of send exits
to be run in succession. Similarly, you can specify a list of receive exits.

Obtaining more information
For more information about channel exit programs, see WebSphere MQ
Intercommunication.

Other link level security services

Chapter 7. Other link level security services 53

The DCE channel exit programs
WebSphere MQ on UNIX systems and WebSphere MQ for Windows provide
security, message, send, and receive exits that use the Distributed Computing
Environment (DCE) security services. The exits can be used on message channels
and, with the exception of the message exit, on MQI channels as well. The
WebSphere MQ client for Windows 98 also provides security, send, and receive
exits for use on MQI channels.

The code of the exits interfaces to DCE through the DCE Generic Security Services
Application Programming Interface (GSS API).

The exits provide the following security services:

Identification and authentication
The security exit, when called at both ends of a message channel, provides
mutual authentication of the two queue managers. When called at both
ends of an MQI channel, it enables the server queue manager and the
WebSphere MQ client application to authenticate each other. A queue
manager is identified by its name and a client application by the login user
ID of the user who started the client application.

To perform the mutual authentication, the initiating security exit acquires
an authentication token from the DCE security server and sends the token
in a security message to its partner. The partner security exit passes the
token to the DCE security server, which checks that it is authentic. The
DCE security server generates a second token, which the partner sends in a
security message to the initiating security exit. The initiating security exit
then asks the DCE server to check that the second token is authentic.

During this exchange, if either security exit is not satisfied with the
authenticity of the token sent by the other, it instructs the MCA to close the
channel.

Confidentiality
The send exit is used to encrypt each unit of data sent by an MCA and the
receive exit is used to decrypt each unit of data received by an MCA. The
send and receive exits can be used on both message and MQI channels and
can be called at both ends of a channel.

The message exit encrypts messages when called at the sending end of a
channel and decrypts messages when called at the receiving end. The
difference between the action of the message exit and that of the send and
receive exits is that the message exit encrypts and decrypts only the
application data in a message. The send and receive exits encrypt and
decrypt all the data that is transmitted, including message headers and
control information.

At each end of a channel, the message, send, and receive exits encrypt and
decrypt data using a key managed by the security context that was
established by the security exit as a result of the token exchange. Therefore,
the message, send, and receive exits do not work unless the security exit
has been called previously.

The exits are supplied as a single program in both source and object format. You
can use the source code as a starting point for writing your own channel exit
programs or you can use the object module as supplied. The object module has
two entry points, one for the security exit and the other for the message, send, and
receive exits.

Other link level security services

54 Security

For more information about how the DCE channel exit programs work, and for
instructions on how to implement them, see WebSphere MQ Intercommunication.

The SSPI channel exit program
WebSphere MQ for Windows supplies a security exit, which can be used on both
message and MQI channels. The security exit uses the Security Support Provider
Interface (SSPI), which provides the integrated security facilities of Windows NT
and Windows 2000.

The security exit provides the following identification and authentication services:

One way authentication
This uses Windows NT LAN Manager (NTLM) authentication support.
NTLM allows servers to authenticate their clients. It does not allow a client
to authenticate a server, or one server to authenticate another. NTLM was
designed for a network environment in which servers are assumed to be
genuine. NTLM is supported on Windows NT and Windows 2000.

This service is typically used on an MQI channel to enable a server queue
manager to authenticate a WebSphere MQ client application. A client
application is identified by the user ID associated with the process that is
running.

To perform the authentication, the security exit at the client end of a
channel acquires an authentication token from NTLM and sends the token
in a security message to its partner at the other end of the channel. The
partner security exit passes the token to NTLM, which checks that the
token is authentic. If the partner security exit is not satisfied with the
authenticity of the token, it instructs the MCA to close the channel.

Two way, or mutual, authentication
This uses Kerberos authentication services. The Kerberos protocol does not
assume that servers in a network environment are genuine. Servers can
authenticate clients and other servers, and clients can authenticate servers.
Kerberos is supported only on Windows 2000.

This service can be used on both message and MQI channels. On a
message channel, it provides mutual authentication of the two queue
managers. On an MQI channel, it enables the server queue manager and
the WebSphere MQ client application to authenticate each other. A queue
manager is identified by its name prefixed by the string ibmMQSeries/. A
client application is identified by the user ID associated with the process
that is running.

The procedure for performing the mutual authentication is similar in
principle to the one described for the DCE security exit. It uses the
technique of token exchange, but uses Kerberos authentication services
instead of the equivalent DCE services.

The security exit is supplied in both source and object format. You can use the
source code as a starting point for writing your own channel exit programs or you
can use the object module as supplied. The object module has two entry points,
one for one way authentication using NTLM authentication support and the other
for two way authentication using Kerberos authentication services.

For more information about how the SSPI channel exit program works, and for
instructions on how to implement it, see the WebSphere MQ Application
Programming Guide.

Other link level security services

Chapter 7. Other link level security services 55

The Entrust/PKI channel exit programs
The Entrust/PKI channel exit programs are a WebSphere MQ base product
extension that is supplied in SupportPac MS0C.

Two exits are supplied: a security exit and a message exit. They are supported for
use on the Solaris and Windows NT operating systems only.

The exits provide the following security services:

Identification and authentication
The security exit, when called at both ends of a message channel, provides
mutual authentication of the two queue managers.

Confidentiality
The message exit encrypts messages when called at the sending end of a
channel and decrypts messages when called at the receiving end.

Data integrity
The message exit at the sending end of a channel also adds a digital
signature to every message that flows through the channel. The message
exit at the receiving end checks the digital signature of each message to
detect whether it has been deliberately modified.

The exits use the Entrust Public Key Infrastructure (PKI) to provide the security
services. Internally they use the GSS API provided in the EntrustSession Toolkit.
They follow the same basic design as the DCE channel exit programs supplied
with WebSphere MQ.

The exits are supplied in source format only. This means that you can modify them
to meet your own requirements. There is a single module with two entry points,
one for the security exit and the other for the message exit.

As supplied, the exits cannot be used on cluster channels, although you can
modify the code to enable them to work on cluster channels. The exits are
supported for use only on message channels, not on MQI channels.

For more information about how the Entrust/PKI channel exit programs work, and
for instructions on how to implement them, see the documentation that is supplied
with SupportPac MS0C: MQSeries® Security Channel Exits Using Entrust/PKI.

SNA LU 6.2 security services

Note: This section assumes that you have a basic understanding of Systems
Network Architecture (SNA). Each of the books referenced in this section
contains a brief introduction to the relevant concepts and terminology. If you
require a more comprehensive technical introduction to SNA, see Systems
Network Architecture Technical Overview, GC30-3073.

SNA LU 6.2 provides three security services:
v Session level cryptography
v Session level authentication
v Conversation level authentication

For session level cryptography and session level authentication, SNA uses the Data
Encryption Standard (DES) algorithm. The DES algorithm is a block cipher

Other link level security services

56 Security

algorithm, which uses a symmetric key for encrypting and decrypting data. Both
the block and the key are eight bytes in length.

Session level cryptography
Session level cryptography encrypts and decrypts session data using the DES
algorithm. It can therefore be used to provide a link level confidentiality service on
SNA LU 6.2 channels.

Logical units (LUs) can provide mandatory (or required) data cryptography,
selective data cryptography, or no data cryptography.

On a mandatory cryptographic session, an LU encrypts all outbound data request
units and decrypts all inbound data request units.

On a selective cryptographic session, an LU encrypts only the data request units
specified by the sending transaction program (TP). The sending LU signals that the
data is encrypted by setting an indicator in the request header. By checking this
indicator, the receiving LU can tell which request units to decrypt before passing
them on to the receiving TP.

In an SNA network, WebSphere MQ MCAs are transaction programs. MCAs do
not request encryption for any data that they send. Selective data cryptography is
not an option therefore; only mandatory data cryptography or no data
cryptography is possible on a session.

For information about how to implement mandatory data cryptography, see the
books for your SNA subsystem. Refer to the same books for information about
stronger forms of encryption that might be available for use on your platform,
such as Triple DES 24-byte encryption on z/OS.

For more general information about session level cryptography, see Systems
Network Architecture LU 6.2 Reference: Peer Protocols, SC31-6808.

Session level authentication
Session level authentication is a session level security protocol that enables two LUs
to authenticate each other while they are activating a session. It is also known as
LU-LU verification.

Because an LU is effectively the “gateway” into a system from the network, you
might consider this level of authentication to be sufficient in certain circumstances.
For example, if your queue manager needs to exchange messages with a remote
queue manager that is running in a controlled and trusted environment, you might
be prepared to trust the identities of the remaining components of the remote
system after the LU has been authenticated.

Session level authentication is achieved by each LU verifying its partner’s
password. The password is called an LU-LU password because one password is
established between each pair of LUs. The way that an LU-LU password is
established is implementation dependent and outside the scope of SNA.

Figure 9 on page 58 illustrates the flows for session level authentication.

Other link level security services

Chapter 7. Other link level security services 57

The protocol for session level authentication is as follows. The numbers in the
procedure correspond to the numbers in Figure 9.
1. The primary LU generates a random data value (RD1) and sends it to the

secondary LU in the BIND request.
2. When the secondary LU receives the BIND request with the random data, it

encrypts the data using the DES algorithm with its copy of the LU-LU
password as the key. The secondary LU then generates a second random data
value (RD2) and sends it, with the encrypted data (ERD1), to the primary LU
in the BIND response.

3. When the primary LU receives the BIND response, it computes its own version
of the encrypted data from the random data it generated originally. It does this
by using the DES algorithm with its copy of the LU-LU password as the key. It
then compares its version with the encrypted data that it received in the BIND
response. If the two values are the same, the primary LU knows that the
secondary LU has the same password as it does and the secondary LU is
authenticated. If the two values do not match, the primary LU terminates the
session.
The primary LU then encrypts the random data that it received in the BIND
response and sends the encrypted data (ERD2) to the secondary LU in a
Function Management Header 12 (FMH-12).

4. When the secondary LU receives the FMH-12, it computes its own version of
the encrypted data from the random data it generated. It then compares its
version with the encrypted data that it received in the FMH-12. If the two
values are the same, the primary LU is authenticated. If the two values do not
match, the secondary LU terminates the session.

In an enhanced version of the protocol, which provides better protection against
man in the middle attacks, the secondary LU computes a DES Message
Authentication Code (MAC) from RD1, RD2, and the fully qualified name of the

Legend:

BIND
BIND-RSP
ERD
FMH-12
RD

= BIND request unit
= BIND response unit
= Encrypted random data
= Function Management Header 12
= Random data

Primary LU Secondary LU

BIND(RD1)

BIND-RSP(ERD1, RD2)

FMH-12(ERD2)

1

3

4

2

Figure 9. Flows for session level authentication

Other link level security services

58 Security

secondary LU, using its copy of the LU-LU password as the key. The secondary
LU sends the MAC to the primary LU in the BIND response instead of ERD1.

The primary LU authenticates the secondary LU by computing its own version of
the MAC, which it compares with the MAC received in the BIND response. The
primary LU then computes a second MAC from RD1 and RD2, and sends the
MAC to the secondary LU in the FMH-12 instead of ERD2.

The secondary LU authenticates the primary LU by computing its own version of
the second MAC, which it compares with the MAC received in the FMH-12.

For information about how to configure session level authentication, see the books
for your SNA subsystem. For more general information about session level
authentication, see Systems Network Architecture LU 6.2 Reference: Peer Protocols,
SC31-6808.

Conversation level authentication
When a local TP attempts to allocate a conversation with a partner TP, the local LU
sends an attach request to the partner LU, asking it to attach the partner TP. Under
certain circumstances, the attach request can contain security information, which
the partner LU can use to authenticate the local TP. This is known as conversation
level authentication, or end user verification.

The following sections describe how WebSphere MQ provides support for
conversation level authentication.

Support for conversation level authentication in WebSphere MQ
on OS/400, UNIX systems, and Windows systems
The support for conversation level authentication in WebSphere MQ for iSeries,
WebSphere MQ on UNIX systems, and WebSphere MQ for Windows is illustrated
in Figure 10 on page 60. The numbers in the diagram correspond to the numbers in
the description that follows.

Other link level security services

Chapter 7. Other link level security services 59

On OS/400, UNIX systems, and Windows systems, an MCA uses Common
Programming Interface Communications (CPI-C) calls to communicate with a
partner MCA across an SNA network. In the channel definition at the caller end of
a channel, the value of the CONNAME parameter is a symbolic destination name,
which identifies a CPI-C side information entry (�1�). This entry specifies:
v The name of the partner LU
v The name of the partner TP, which is a responder MCA
v The name of the mode to be used for the conversation

A side information entry can also specify the following security information:
v A security type.

The commonly implemented security types are CM_SECURITY_NONE,
CM_SECURITY_PROGRAM, and CM_SECURITY_SAME, but others are defined
in the CPI-C specification.

v A user ID.
v A password.

A caller MCA prepares to allocate a conversation with a responder MCA by issuing
the CPI-C call CMINIT, using the value of CONNAME as one of the parameters on
the call. The CMINIT call identifies, for the benefit of the local LU, the side
information entry that the MCA intends to use for the conversation. The local LU
uses the values in this entry to initialize the characteristics of the conversation
(�2�).

The caller MCA then checks the values of the USERID and PASSWORD parameters
in the channel definition (�3�). If USERID is set, the caller MCA issues the
following CPI-C calls (�4�):

1

PLUTO PLUTOTP #INTER CM_SECURITY_NONE
SATURN SATURNTP #INTER CM_SECURITY_NONE

VENUS VENUSTP #INTER CM_SECURITY_NONE

CPI-C side information

MARS MARSTP #INTER CM_SECURITY_NONE
GALAXY.SOLARLU
GALAXY.SOLARLU
GALAXY.SOLARLU
GALAXY.SOLARLU

User ID
Partner LU

name
Partner TP

name
Mode
name

Symbolic
destination

name PasswordSecurity type

Caller MCA
...
CALL CMINIT(..., "MARS", ...)

CALL CMALLC(...)
...

CALL CMSCST(..., CM_SECURITY_PROGRAM, ...)
CALL CMSCSU(..., "ANDREAS", ...)
CALL CMSCSP(..., "THASOS", ...)

Logical unit

Attach request (FMH-5)
to partner LU

ANDREAS, THASOS

DEFINE CHANNEL(...) +
CHLTYPE(...) +
TRPTYPE(LU62) +
CONNAME('MARS') +
USERID('ANDREAS') +
PASSWORD('THASOS')

Set:
• Security type
• User ID
• PasswordInitialize the

characteristics of
the conversation

2

3

4

5

6
Characteristics of
the conversation

Figure 10. WebSphere MQ support for conversation level authentication

Other link level security services

60 Security

v CMSCST, to set the security type for the conversation to
CM_SECURITY_PROGRAM.

v CMSCSU, to set the user ID for the conversation to the value of USERID.
v CMSCSP, to set the password for the conversation to the value of PASSWORD.

CMSCSP is not called unless PASSWORD is set.

The security type, user ID, and password set by these calls override any values
acquired previously from the side information entry.

The caller MCA then issues the CPI-C call CMALLC to allocate the conversation
(�5�). In response to this call, the local LU sends an attach request (Function
Management Header 5, or FMH-5) to the partner LU (�6�).

If the partner LU will accept a user ID and a password, the values of USERID and
PASSWORD are included in the attach request. If the partner LU will not accept a
user ID and a password, the values are not included in the attach request. The
local LU discovers whether the partner LU will accept a user ID and a password
as part of an exchange of information when the LUs bind to form a session.

In a later version of the attach request, a password substitute can flow between the
LUs instead of a clear password. A password substitute is a DES Message
Authentication Code (MAC), or an SHA-1 message digest, formed from the
password. Password substitutes can be used only if both LUs support them.

When the partner LU receives an incoming attach request containing a user ID and
a password, it might use the user ID and password for the purposes of
identification and authentication. By referring to access control lists, the partner LU
might also determine whether the user ID has the authority to allocate a
conversation and attach the responder MCA.

In addition, the responder MCA might run under the user ID included in the
attach request. In this case, the user ID becomes the default user ID for the
responder MCA and is used for authority checks when the MCA attempts to
connect to the queue manager. It might also be used for authority checks
subsequently when the MCA attempts to access the queue manager’s resources.

The way in which a user ID and a password in an attach request can be used for
identification, authentication, and access control is implementation dependent. For
information specific to your SNA subsystem, refer to the appropriate books.

If USERID is not set, the caller MCA does not call CMSCST, CMSCSU, and
CMSCSP. In this case, the security information that flows in an attach request is
determined solely by what is specified in the side information entry and what the
partner LU will accept.

Conversation level authentication and WebSphere MQ for z/OS
On WebSphere MQ for z/OS, MCAs do not use CPI-C. Instead, they use
APPC/MVS TP Conversation Callable Services, an implementation of Advanced
Program-to-Program Communication (APPC), which has some CPI-C features.
When a caller MCA allocates a conversation, a security type of SAME is specified
on the call. Therefore, because an APPC/MVS LU supports persistent verification
only for inbound conversations, not for outbound conversations, there are two
possibilities:
v If the partner LU trusts the APPC/MVS LU and will accept an already verified

user ID, the APPC/MVS LU sends an attach request containing:
– The channel initiator address space user ID

Other link level security services

Chapter 7. Other link level security services 61

– A security profile name, which, if RACF is used, is the name of the current
connect group of the channel initiator address space user ID

– An already verified indicator
v If the partner LU does not trust the APPC/MVS LU and will not accept an

already verified user ID, the APPC/MVS LU sends an attach request containing
no security information.

On WebSphere MQ for z/OS, the USERID and PASSWORD parameters on the
DEFINE CHANNEL command cannot be used for a message channel and are valid
only at the client connection end of an MQI channel. Therefore, an attach request
from an APPC/MVS LU never contains values specified by these parameters.

Obtaining more information
For more information about conversation level authentication, see Systems Network
Architecture LU 6.2 Reference: Peer Protocols, SC31-6808. For information specific to
z/OS, see z/OS MVS™ Planning: APPC/MVS Management, SA22-7599.

For more information about CPI-C, see Common Programming Interface
Communications CPI-C Specification, SC31-6180. For more information about
APPC/MVS TP Conversation Callable Services, see z/OS MVS Programming:
Writing Transaction Programs for APPC/MVS, SA22-7621.

Other link level security services

62 Security

Chapter 8. Providing your own link level security

This chapter describes how you can provide your own link level security services.
Writing your own channel exit programs is the main way of doing this.

Channel exit programs were introduced in Chapter 7, “Other link level security
services” on page 51. The same chapter also described the channel exit programs
that are supplied with the WebSphere MQ products, or are available as WebSphere
MQ base product extensions. These channel exit programs are supplied in source
format so that you can modify the source code to suit your requirements. If none
of the channel exit programs available from IBM, or other vendors, meets your
requirements, or can be modified to meet your requirements, you can design and
write your own. This chapter suggests ways in which channel exit programs can
provide security services. For information about how to write a channel exit
program, see WebSphere MQ Intercommunication.

This chapter contains the following sections:
v “Security exit”
v “Message exit” on page 66
v “Send and receive exits” on page 68

Security exit
Security exits normally work in pairs; one at each end of a channel. They are called
immediately after the initial data negotiation has completed on channel startup.
Security exits can be used to provide the security services described in the
following sections.

Identification and authentication
The primary purpose of a security exit is to enable the MCA at each end of a
channel to authenticate its partner. At each end of a message channel, and at the
server end of an MQI channel, an MCA typically acts on behalf of the queue
manager to which it is connected. At the client end of an MQI channel, an MCA
typically acts on behalf of the user of the WebSphere MQ client application. In this
situation, mutual authentication actually takes place between two queue managers,
or between a queue manager and the user of a WebSphere MQ client application.

The supplied security exits illustrate how mutual authentication can be
implemented by exchanging authentication tokens that are generated, and
subsequently checked, by a trusted authentication server such as DCE or Kerberos.
For more details, see “The DCE channel exit programs” on page 54 and “The SSPI
channel exit program” on page 55.

Mutual authentication can also be implemented by using Public Key Infrastructure
(PKI) technology. Each security exit generates some random data, signs it using the
private key of the queue manager or user it is representing, and sends the signed
data to its partner in a security message. The partner security exit performs the
authentication by checking the digital signature using the public key of the queue
manager or user. Before exchanging digital signatures, the security exits might
need to agree the algorithm for generating a message digest, if more than one
algorithm is available for use.

© Copyright IBM Corp. 2002 63

When a security exit sends the signed data to its partner, it also needs to send
some means of identifying the queue manager or user it is representing. This
might be a Distinguished Name, or even a digital certificate. If a digital certificate
is sent, the partner security exit can validate the certificate by working through the
certificate chain to the root CA certificate. This provides assurance of the
ownership of the public key that is used to check the digital signature.

The partner security exit can validate a digital certificate only if it has access to a
key repository that contains the remaining certificates in the certificate chain. If a
digital certificate for the queue manager or user is not sent, one must be available
in the key repository to which the partner security exit has access. The partner
security exit cannot check the digital signature unless it can find the signer’s public
key.

The Secure Sockets Layer (SSL) uses PKI techniques similar to ones just described.
For more information about how the Secure Sockets Layer performs authentication,
see “Secure Sockets Layer (SSL) concepts” on page 23.

If a trusted authentication server or PKI support is not available, other techniques
can be used. A common technique, which can be implemented in security exits,
uses a symmetric key algorithm.

One of the security exits, exit A, generates a random number and sends it in a
security message to its partner security exit, exit B. Exit B encrypts the number
using its copy of a key which is known only to the two security exits. Exit B sends
the encrypted number to exit A in a security message with a second random
number that exit B has generated. Exit A verifies that the first random number has
been encrypted correctly, encrypts the second random number using its copy of the
key, and sends the encrypted number to exit B in a security message. Exit B then
verifies that the second random number has been encrypted correctly. During this
exchange, if either security exit is not satisfied with the authenticity of other, it can
instruct the MCA to close the channel.

An advantage of this technique is that no key or password is sent over the
communications connection during the exchange. A disadvantage is that it does
not provide a solution to the problem of how to distribute the shared key in a
secure way. One solution to this problem is described in “Confidentiality” on
page 66. A similar technique is used in SNA for the mutual authentication of two
LUs when they bind to form a session. The technique is described in “Session level
authentication” on page 57.

All the preceding techniques for mutual authentication can be adapted to provide
one way authentication.

Access control
Security exits can play a role in access control.

Every instance of a channel that is current has an associated channel definition
structure, MQCD. The initial values of the fields in MQCD are determined by the
channel definition that is created by a WebSphere MQ administrator. In particular,
the initial value of one of the fields, MCAUserIdentifier, is determined by the value
of the MCAUSER parameter on the DEFINE CHANNEL command, or by the
equivalent to MCAUSER if the channel definition is created in another way.

Providing your own link level security

64 Security

The MQCD structure is passed to a channel exit program when it is called by an
MCA. When a security exit is called by an MCA, the security exit can change the
value of MCAUserIdentifier, replacing any value that was specified in the channel
definition.

On OS/400, UNIX systems, and Windows systems, unless the value of
MCAUserIdentifier is blank, the queue manager uses the value of MCAUserIdentifier
as the user ID for authority checks when an MCA attempts to access the queue
manager’s resources after it has connected to the queue manager. If the value of
MCAUserIdentifier is blank, the queue manager uses the default user ID of the
MCA instead. This applies only to receiving MCAs and server connection MCAs,
and assumes that the PUTAUT parameter is set to DEF in the channel definition.
The queue manager always uses the default user ID of a sending MCA for
authority checks, even if the value of MCAUserIdentifier is not blank.

On z/OS, the queue manager might use the value of MCAUserIdentifier for
authority checks, provided it is not blank. For receiving MCAs and server
connection MCAs, whether the queue manager uses the value of MCAUserIdentifier
for authority checks depends on:
v The value of the PUTAUT parameter in the channel definition
v The RACF profile used for the checks
v The access level of the channel initiator address space user ID to the RESLEVEL

profile

For sending MCAs, it depends on:
v Whether the sending MCA is a caller or a responder
v The access level of the channel initiator address space user ID to the RESLEVEL

profile

The user ID that a security exit stores in MCAUserIdentifier can be acquired in
various ways. Here are some examples:
v Provided there is no security exit at the client end of an MQI channel, a user ID

associated with the WebSphere MQ client application flows from the client
connection MCA to the server connection MCA when the client application
issues an MQCONN call. The server connection MCA stores this user ID in the
RemoteUserIdentifier field in the channel definition structure, MQCD. If the value
of MCAUserIdentifier is blank at this time, the MCA stores the same user ID in
MCAUserIdentifier. If the MCA does not store the user ID in MCAUserIdentifier, a
security exit can do it subsequently by setting MCAUserIdentifier to the value of
RemoteUserIdentifier.
If the user ID that flows from the client system is entering a new security
domain and is not valid on the server system, the security exit can substitute the
user ID for one that is valid and store the substituted user ID in
MCAUserIdentifier.

v The user ID can be sent by the partner security exit in a security message.
On a message channel, a security exit called by the sending MCA can send the
user ID under which the sending MCA is running. A security exit called by the
receiving MCA can then store the user ID in MCAUserIdentifier. Similarly, on an
MQI channel, a security exit at the client end of the channel can send the user
ID associated with the WebSphere MQ client application. A security exit at the
server end of the channel can then store the user ID in MCAUserIdentifier. As in
the previous example, if the user ID is not valid on the target system, the
security exit can substitute the user ID for one that is valid and store the
substituted user ID in MCAUserIdentifier.

Providing your own link level security

Chapter 8. Providing your own link level security 65

If a digital certificate is received as part of the identification and authentication
service, a security exit can map the Distinguished Name in the certificate to a
user ID that is valid on the target system. It can then store the user ID in
MCAUserIdentifier.

For more information about the MCAUserIdentifier field and the channel definition
structure, MQCD, see WebSphere MQ Intercommunication. For more information
about how the MCAUserIdentifier field is used for authority checks on z/OS, see
the WebSphere MQ for z/OS System Setup Guide. For more information about the
user ID that flows from a client system on an MQI channel, see WebSphere MQ
Clients.

Confidentiality
Security exits can play a role in the confidentiality service by generating and
distributing the symmetric key for encrypting and decrypting the data that flows
on the channel. A common technique for doing this uses PKI technology.

One security exit generates a random data value, encrypts it with the public key of
the queue manager or user that the partner security exit is representing, and sends
the encrypted data to its partner in a security message. The partner security exit
decrypts the random data value with the private key of the queue manager or user
it is representing. Each security exit can now use the random data value to derive
the symmetric key independently of the other by using an algorithm known to
both of them. Alternatively, they can simply use the random data value as the key.

If the first security exit has not authenticated its partner by this time, the next
security message sent by the partner can contain an expected value encrypted with
the symmetric key. The first security exit can now authenticate its partner by
checking that the partner security exit was able to encrypt the expected value
correctly.

The security exits can also use this opportunity to agree the algorithm for
encrypting and decrypting the data that flows on the channel, if more than one
algorithm is available for use.

Message exit
A message exit can be used only on a message channel, not on an MQI channel. It
has access to both the transmission queue header, MQXQH, which includes the
embedded message descriptor, and the application data in a message. It can
modify the contents of the message and change its length. A message exit can be
used for any purpose that requires access to the whole message rather than a
portion of it.

Message exits can be used to provide the security services described in the
following sections.

Identification and authentication
When an application puts a message on a queue, the UserIdentifier field in the
message descriptor contains a user ID associated with the application. However,
there is no data present that can be used to authenticate the user ID. This data can
be added by a message exit at the sending end of a channel and checked by a
message exit at the receiving end of the channel. The authenticating data can be an
encrypted password or a digital signature, for example.

Providing your own link level security

66 Security

This service might be more effective if it is implemented at the application level.
The basic requirement is for the user of the application that receives the message to
be able to identify and authenticate the user of the application that sent the
message. It is therefore natural to consider implementing this service at the
application level. For more discussion about this, see “Identification and
authentication” on page 80.

Access control
In a client/server environment, consider a client application that sends a message
to a server application. The server application can extract the user ID from the
UserIdentifier field in the message descriptor and, provided it has alternate user
authority, ask the queue manager to use this user ID for authority checks when it
accesses WebSphere MQ resources on behalf of the client.

If the PUTAUT parameter is set to CTX (or ALTMCA on z/OS) in the channel
definition at the receiving end of a channel, the user ID in the UserIdentifier field of
each incoming message is used for authority checks when the MCA opens the
destination queue.

In certain circumstances, when a report message is generated, it is put using the
authority of the user ID in the UserIdentifier field of the message causing the report.
In particular, confirm-on-delivery (COD) reports and expiration reports are always
put with this authority.

Because of these situations, it might be necessary to substitute one user ID for
another in the UserIdentifier field as a message enters a new security domain. This
can be done by a message exit at the receiving end of the channel. Alternatively,
you can ensure that the user ID in the UserIdentifier field of an incoming message
is defined in the new security domain.

If an incoming message contains a digital certificate for the user of the application
that sent the message, a message exit can validate the certificate and map the
Distinguished Name in the certificate to a user ID that is valid on the receiving
system. It can then set the UserIdentifier field in the message descriptor to this user
ID.

If it is necessary for a message exit to change the value of the UserIdentifier field in
an incoming message, it might be appropriate for the message exit to authenticate
the sender of the message at the same time. For more details, see “Identification
and authentication” on page 66.

Confidentiality
A message exit at the sending end of a channel can encrypt the application data in
a message and another message exit at the receiving end of the channel can
decrypt the data. For performance reasons, a symmetric key algorithm is normally
used for this purpose. For more information about how the symmetric key can be
generated and distributed, see “Confidentiality” on page 66.

Headers in a message, such as the transmission queue header, MQXQH, which
includes the embedded message descriptor, must not be encrypted by a message
exit. This is because data conversion of the message headers takes place either after
a message exit is called at the sending end or before a message exit is called at the
receiving end. If the headers are encrypted, data conversion fails and the channel
stops.

Providing your own link level security

Chapter 8. Providing your own link level security 67

Data integrity
A message can be digitally signed by a message exit at the sending end of a
channel. The digital signature can then be checked by a message exit at the
receiving end of a channel to detect whether the message has been deliberately
modified.

Some protection can be provided by using a message digest instead of a digital
signature. A message digest might be effective against casual or indiscriminate
tampering, but it does not prevent the more informed individual from changing or
replacing the message, and generating a completely new digest for it. This is
particularly true if the algorithm that is used to generate the message digest is a
well known one.

Non-repudiation
If incoming messages are digitally signed, a message exit at the receiving end of a
channel can log sufficient evidence to enable the digital signature of a message to
be checked at any time in the future. This can form the basis of a non-repudiation
service with proof of origin.

Like the identification and authentication service, this service might be more
effective if it is implemented at the application level. At the application level, the
service can also be extended to provide proof of delivery. For more information
about how this service can be implemented at the application level, see
“Non-repudiation” on page 82.

Other uses of message exits
Message exits can be used for reasons other than security. For example, a message
exit can be used for application data conversion, although a data conversion exit is
normally more appropriate for this purpose. They can be used for compressing
and decompressing the application data in messages if the communications
subsystem cannot provide this function. Headers in a message must not be
compressed by a message exit because it causes data conversion of the message
headers to fail.

Message exits also play an important role in implementing reference messages.
Reference messages allow a large object, such as a file, to be transferred from one
system to another without needing to store the object in a WebSphere MQ queue at
either the source or destination queue manager. For more information about
reference messages, see the WebSphere MQ Application Programming Guide.

Send and receive exits
Send and receive exits can be used on both message and MQI channels. They are
called for all types of data that flow on a channel, and for flows in both directions.
Send and receive exits have access to each transmission segment. They can modify
its contents and change its length.

On a message channel, if an MCA needs to split a message and send it in more
than one transmission segment, a send exit is called for each transmission segment
containing a portion of the message and, at the receiving end, a receive exit is
called for each transmission segment. The same occurs on an MQI channel if the
input or output parameters of an MQI call are too large to be sent in a single
transmission segment.

Providing your own link level security

68 Security

On an MQI channel, byte 10 of a transmission segment identifies the MQI call, and
indicates whether the transmission segment contains the input or output
parameters of the call. Send and receive exits can examine this byte to determine
whether the MQI call contains application data that might need to be protected.

When a send exit is called for the first time, to acquire and initialize any resources
it needs, it can ask the MCA to reserve a specified amount of space in the buffer
that holds a transmission segment. When it is called subsequently to process a
transmission segment, it can use this space to add an encrypted key or a digital
signature, for example. The corresponding receive exit at the other end of the
channel can remove the data added by the send exit, and use it to process the
transmission segment.

It is more appropriate to use send and receive exits for purposes in which they do
not need to understand the structure of the data they are handling and can
therefore treat each transmission segment as a binary object.

Send and receive exits can be used to provide the security services described in the
following sections.

Confidentiality
Send and receive exits can be used to encrypt and decrypt the data that flows on a
channel. They are more appropriate than message exits for providing this service
for the following reasons:
v On a message channel, message headers can be encrypted as well as the

application data in the messages.
v Send and receive exits can be used on MQI channels as well as message

channels. Parameters on MQI calls might contain sensitive application data that
needs to be protected while it flows on an MQI channel. You can therefore use
the same send and receive exits on both kinds of channel.

Data integrity
On a message channel, message exits are more appropriate for providing this
service because a message exit has access to a whole message. On an MQI channel,
parameters on MQI calls might contain application data that needs to be protected
and only send and receive exits can provide this protection.

Other uses of send and receive exits
Send and receive exits can be used for reasons other than security. For example,
they can be used to compress and decompress the data that flows on a channel if
the communications subsystem cannot provide this function. On message channels,
they are more appropriate than message exits for this purpose because message
headers can be compressed as well as the application data in the messages.

Providing your own link level security

Chapter 8. Providing your own link level security 69

70 Security

Chapter 9. Access Manager for Business Integration

This chapter contains an introduction to IBM Tivoli Access Manager for Business
Integration, focusing on the support it provides for the security services introduced
in Chapter 1, “Security services” on page 3. The chapter contains the following
sections:
v “Introduction”
v “Access control” on page 72
v “Identification and authentication” on page 73
v “Data integrity” on page 73
v “Confidentiality” on page 73
v “Non-repudiation” on page 74
v “Obtaining more information” on page 75

IBM Tivoli Access Manager for Business Integration was formerly known as Tivoli
Policy Directory for MQSeries (PD/MQ).

Introduction
Access Manager for Business Integration is a separate product, which is not
supplied with WebSphere MQ. Access Manager for Business Integration provides
application level security services, which protect WebSphere MQ messages while
they are stored in queues and while they are flowing across a network. From a
single point of control, an administrator can configure and maintain security
services to protect WebSphere MQ resources belonging to more than one queue
manager.

Access Manager for Business Integration uses Public Key Infrastructure (PKI)
technology to provide authentication, confidentiality, and data integrity services for
messages. Access Manager for Business Integration has its own access control lists
to control who can gain access to messages that are stored in queues.

WebSphere MQ applications require no modification, recompilation, or relinking in
order to implement Access Manager for Business Integration. Security services are
invoked by an MQI interceptor that intercepts calls to the MQI. The MQI
interceptor might intercept the input parameters of a call, the output parameters of
a call, or both.

Access Manager for Business Integration is available on the following platforms:
v AIX
v Solaris
v Windows NT
v Windows 2000
v z/OS and OS/390

Every queue that is protected by Access Manager for Business Integration is
represented in the protected object space. Each queue in the protected object space
has an associated access control list, which specifies who can put messages on the
queue and who can get messages from the queue. For more information about the
access control list, see “Access control” on page 72.

© Copyright IBM Corp. 2002 71

Each queue also has a protected object policy (POP), which specifies the quality of
protection (QoP) that is required for the messages that are put on the queue. The
quality of protection for a queue can be one of the following:

none No cryptographic protection is required for the messages in the queue.
When a message is put on the queue, no Access Manager for Business
Integration header is added to the message. When a message is retrieved
from the queue, an Access Manager for Business Integration header is not
expected. This quality of protection is appropriate, for example, when
messages are being sent to, or arrive from, a queue manager whose queues
are not protected by Access Manager for Business Integration.

integrity
The messages in the queue are digitally signed. For more information
about this quality of protection, see “Identification and authentication” on
page 73 and “Data integrity” on page 73.

privacy
The messages in the queue are encrypted and digitally signed. For more
information about this quality of protection, see “Confidentiality” on
page 73.

The protected object policy also specifies the audit level for the queue. For more
information about the audit level, see “Non-repudiation” on page 74.

Access control
The access control list for a queue uses the following permissions:

E The user is allowed to enqueue, or put, messages on the queue

D The user is allowed to dequeue, or get, messages from the queue

When an application attempts to open a queue, Access Manager for Business
Integration inspects the access control list for the queue to check whether the user
of the application has the required permissions for the operations requested. If the
user does not have the required permissions, the MQOPEN call fails.

Access Manager for Business Integration performs these authority checks even if
the quality of protection for the queue is specified as none. You can therefore
specify a quality of protection of none for a queue if the only security service you
require is access control.

When an application attempts to get a message from a queue, Access Manager for
Business Integration checks that the sender of the message did have permission to
put the message on the queue. This check is relevant for a message that has
arrived from a remote queue manager and was actually put on the queue by an
MCA. If the sender does not have the required permission, the MQGET call fails
and the message is not delivered to the application. The message is put on the
Access Manager for Business Integration error queue, or on the local dead letter
queue if an error queue has not been created. This authority check is performed
only if the quality of protection for the queue is specified as integrity or privacy.

Access Manager for Business Integration

72 Security

Identification and authentication
When an application puts a message on a queue whose quality of protection is
specified as integrity, Access Manager for Business Integration replaces the
application data in the message with an Access Manager for Business Integration
header followed by a data structure. The data structure conforms to the PKCS #7
cryptographic message syntax standard for signed data, and includes:
v The digital certificate of the sender
v The digital signature of the sender
v The original application data

When an application attempts to get the message from the queue, Access Manager
for Business Integration performs the following checks:
v The digital certificate is validated by working through the certificate chain to the

root CA certificate. This check provides assurance that the sender, identified by
the Distinguished Name, is the genuine owner of the public key contained in the
certificate.

v The digital signature is checked using the public key contained in the digital
certificate. This check authenticates the sender.

If either of these checks fail, or if the message is not signed, the MQGET call fails
and the message is not delivered to the application. The message is put on the
Access Manager for Business Integration error queue, or on the local dead letter
queue if an error queue has not been created.

Access Manager for Business Integration supports three algorithms for generating
the message digest that is used to create a digital signature: MD2, MD5, and
SHA-1. You can specify the message digest algorithm to be used globally for all
queues in the protected object space, but you can override this global selection by
specifying a different algorithm for an individual queue. If you do not specify a
message digest algorithm, MD2 is used by default.

Data integrity
When an application attempts to get a message from a queue whose quality of
protection is specified as integrity, the check of the digital signature (as described
in “Identification and authentication”) also detects whether the message has been
deliberately modified since it was first put on a queue by the sending application.

Confidentiality
When an application puts a message on a queue whose quality of protection is
specified as privacy, Access Manager for Business Integration encrypts the
application data in the message using a randomly generated symmetric key. A
copy of the symmetric key is encrypted with the public key of each of the intended
receivers of the message. This action ensures that only an intended receiver can
decrypt the application data. The intended receivers are specified as extended
attributes of the queue in the protected object space.

Access Manager for Business Integration replaces the application data in the
message with an Access Manager for Business Integration header followed by a
data structure. The data structure conforms to the PKCS #7 cryptographic message
syntax standard for signed and enveloped data, and includes:
v The digital certificate of the sender

Access Manager for Business Integration

Chapter 9. Access Manager for Business Integration 73

v The digital signature of the sender
v A copy of the encrypted symmetric key for each of the intended receivers
v The encrypted application data

When an application attempts to get the message from the queue, Access Manager
for Business Integration decrypts the symmetric key using the private key of the
actual receiver, and then decrypts the application data using the symmetric key.
Access Manager for Business Integration also performs the checks for
authentication and data integrity that are described in “Identification and
authentication” on page 73. A quality of protection of privacy, therefore, implies
integrity.

If Access Manager for Business Integration is not able to decrypt the application
data for any reason, or if the authentication and data integrity checks fail, the
MQGET call fails and the message is not delivered to the application. The message
is put on the Access Manager for Business Integration error queue, or on the local
dead letter queue if an error queue has not been created.

Access Manager for Business Integration supports three message content
encryption algorithms:

STRONG
Triple DES with a 168-bit encryption key

MEDIUM
DES with a 56-bit encryption key

WEAK
RC2

You can specify the message content encryption algorithm to be used globally for
all queues in the protected object space, but you can override the global selection
by specifying a different algorithm for an individual queue. If you do not specify a
message content encryption algorithm, STRONG is used by default.

Non-repudiation
In addition to specifying a quality of protection, the protected object policy for a
queue specifies the audit level for the queue. The audit level can be one of the
following:

all Access Manager for Business Integration generates an audit record for each
MQOPEN, MQGET, MQPUT, MQPUT1, and MQCLOSE call on a protected
queue.

none Access Manager for Business Integration generates no audit records for
MQI calls.

Although these audit levels are available on all platforms, additional ones are
available for use with Access Manager for Business Integration on AIX, Solaris,
Windows NT, and Windows 2000.

When an application gets a message from a queue, the audit record for the
MQGET call includes the following information:
v The date and time of the MQGET call
v The name of the queue from which the message was retrieved
v The name of the queue manager that owns the queue

Access Manager for Business Integration

74 Security

v Whether the MQGET call completed successfully
v The message digest algorithm that was used to create the digital signature, if the

message was signed
v The Distinguished Name of the sender of the message
v The contents of the MsgId field in the message descriptor of the message
v The contents of the Format field in the message descriptor of the message

Although the audit record contains some information about the message, who sent
it, and where and when it was received, other evidence that might be used to
provide a non-repudiation service with proof of origin is not recorded. In
particular, the audit record does not contain:
v The digital certificate of the sender
v The digital signature of the sender
v The original message

Obtaining more information
For more information about Access Manager for Business Integration, see the
following books:
v Tivoli Policy Director for MQSeries Version 3.8 Administration Reference Guide,

GC32-0809, for Access Manager for Business Integration on AIX, Solaris,
Windows NT, and Windows 2000

v Tivoli Policy Director for MQSeries Version 3.7.1 Administration Guide, SC24-6041,
for Access Manager for Business Integration on z/OS

Access Manager for Business Integration

Chapter 9. Access Manager for Business Integration 75

Access Manager for Business Integration

76 Security

Chapter 10. Providing your own application level security

This chapter describes how you can provide your own application level security
services. To help you do this, WebSphere MQ provides two exits, the API exit and
the API-crossing exit.

This chapter contains the following sections:
v “The API exit”
v “The API-crossing exit” on page 79
v “The role of the API exit and the API-crossing exit in security” on page 79
v “Other ways of providing your own application level security” on page 82

The API exit

Note: The information in this section does not apply to WebSphere MQ for z/OS.

An API exit is a program module that monitors or modifies the function of MQI
calls. An API exit comprises multiple API exit functions, each with its own entry
point in the module.

There are two categories of exit function:

An exit function that is associated with an MQI call
There are two exit functions in this category for each MQI call and an
additional one for an MQGET call with the MQGMO_CONVERT option.
The MQCONN and MQCONNX calls share the same exit functions.

For each MQI call, one of the two exit functions is invoked before the
queue manager starts to process the call and the other is invoked after the
queue manager has completed processing the call. The exit function for an
MQGET call with the MQGMO_CONVERT option is invoked during the
MQGET call, after the message has been retrieved from the queue by the
queue manager but before any data conversion takes place. This allows, for
example, a message to be decrypted before data conversion.

An exit function can inspect and modify any of the parameters on an MQI
call. On an MQPUT call, for example, an exit function that is invoked
before the processing of the call has started can:
v Inspect and modify the contents of the application data in the message

being put
v Change the length of the application data in the message
v Modify the contents of the fields in the message descriptor structure,

MQMD
v Modify the contents of the fields in the put message options structure,

MQPMO

An exit function that is invoked before the processing of an MQI call has
started can suppress the call completely. The exit function for an MQGET
call with the MQGMO_CONVERT option can suppress data conversion of
the message being retrieved.

Initialization and termination exit functions

© Copyright IBM Corp. 2002 77

There are two exit functions in this category, the initialization exit function
and the termination exit function.

The initialization exit function is invoked by the queue manager when an
application connects to the queue manager. Its primary purpose is to
register exit functions and their respective entry points with the queue
manager and perform any initialization processing. You do not have to
register all the exit functions, only those that are required for this
connection. When the application disconnects from the queue manager, the
registrations are removed automatically.

The initialization exit function can also be used to acquire any storage
required by the exit and examine the values of any environment variables.

The termination exit function is invoked by the queue manager when an
application disconnects from the queue manager. Its purpose is to release
any storage used by the exit and perform any required cleanup operations.

An API exit can issue calls to the MQI but, if it does, the API exit is not invoked
recursively a second time. The following exit functions, however, are not able to
issue MQI calls because the correct environment is not present at the time the exit
functions are invoked:
v The initialization exit function
v The exit function for an MQCONN and MQCONNX call that is invoked before

the queue manager starts to process the call
v The exit function for the MQDISC call that is invoked after the queue manager

has completed processing the call
v The termination exit function

An API exit can also use other APIs that might be available; for example, it can
issue calls to DB2®.

An API exit can be used with a WebSphere MQ client application, but it is
important to note that the exit is invoked at the server end of an MQI channel. See
the discussion in “What application level security cannot do” on page 12.

An API exit is written using the C programming language.

To enable an API exit, you must configure it. On OS/400 and on UNIX systems,
you do this by editing the WebSphere MQ configuration file, mqs.ini, and the
queue manager configuration file, qm.ini, for each queue manager. On Windows
systems, you use the WebSphere MQ Services snap-in.

You configure an API exit by providing the following information:
v The descriptive name of the API exit.
v The name of the module and its location; for example, the full path name.
v The name of the entry point for the initialization exit function.
v The sequence in which the API exit is invoked relative to other API exits. You

can configure more than one API exit for a queue manager.
v Optionally, any data to be passed to the API exit.

For more information about how to configure an API exit, see:
v WebSphere MQ for iSeries V5.3 System Administration

v WebSphere MQ System Administration Guide, for UNIX and Windows systems

Providing your own application level security

78 Security

For information about how to write an API exit, see the WebSphere MQ Application
Programming Guide.

The API-crossing exit

Note: The information in this section applies only to CICS applications on z/OS.

An API-crossing exit is a program that monitors or modifies the function of MQI
calls issued by CICS applications on z/OS. The exit program is invoked by the
CICS adapter and runs in the CICS address space.

The API-crossing exit is invoked for the following MQI calls only:
MQCLOSE
MQGET
MQINQ
MQOPEN
MQPUT
MQPUT1
MQSET

For each MQI call, it is invoked once before the processing of the call has started
and once after the processing of the call has been completed.

The exit program can determine the name of an MQI call and can inspect and
modify any of the parameters on the call. If it is invoked before an MQI call is
processed, it can suppress the call completely.

The exit program can use any of the APIs that a CICS task-related user exit can
use; for example, the IMS, DB2, and CICS APIs. It can also use any of the MQI
calls except MQCONN, MQCONNX, and MQDISC. However, any MQI calls
issued by the exit program do not invoke the exit program a second time.

You can write an API-crossing exit in any programming language supported by
WebSphere MQ for z/OS.

Before an API-crossing exit can be used, the exit program load module must be
available when the CICS adapter connects to a queue manager. The load module is
a CICS program that must be named CSQCAPX and reside in a library in the
DFHRPL concatenation sequence. CSQCAPX must be defined in the CICS system
definition file (CSD), and the program must be enabled.

An API-crossing exit can be managed using the CICS adapter control panels,
CKQC. When CSQCAPX is loaded, a confirmation message is written to the
adapter control panels or to the system console. The adapter control panels can
also be used to enable or disable the exit program.

For more information about how to write and implement an API-crossing exit, see
the WebSphere MQ Application Programming Guide.

The role of the API exit and the API-crossing exit in security

Note: In this section, the term API exit means either an API exit or an API-crossing
exit.

Providing your own application level security

Chapter 10. Providing your own application level security 79

There are many possible uses of API exits. For example, you can use them to log
messages, monitor the use of queues, log failures in MQI calls, maintain audit
trails for accounting purposes, or collect statistics for planning purposes.

API exits can also provide the security services described in the following sections.

Identification and authentication
At the level of an individual message, identification and authentication is a service
that involves two users, the sender and the receiver of the message. The basic
requirement is for the user of the application that receives the message to be able
to identify and authenticate the user of the application that sent the message. Note
that the requirement is for one way, not two way, authentication.

Depending on how it is implemented, the users and their applications might need
to interface, or even interact, with the service. In addition, when and how the
service is used might depend on where the users and their applications are located,
and on the nature of the applications themselves. It is therefore natural to consider
implementing the service at the application level rather than at the link level.

If you consider implementing this service at the link level, you might need to
resolve issues such as the following:
v On a message channel, how do you apply the service only to those messages

that require it?
v How do you enable users and their applications to interface, or interact, with the

service, if this is a requirement?
v In a multi-hop situation, where a message is sent over more than one message

channel on the way to its destination, where do you invoke the components of
the service?

Here are some examples of how the identification and authorization service can be
implemented at the application level:
v When an application puts a message on a queue, an API exit can acquire an

authentication token from a trusted authentication server such as DCE or
Kerberos. The API exit can add this token to the application data in the message.
When the message is retrieved by the receiving application, a second API exit
can ask the authentication server to authenticate the sender by checking the
token.

v When an application puts a message on a queue, an API exit can append the
following items to the application data in the message:
– The digital certificate of the sender
– The digital signature of the sender

If different algorithms for generating a message digest are available for use, the
API exit can include the name of the algorithm it has used.

When the message is retrieved by the receiving application, a second API exit
can perform the following checks:
– The API exit can validate the digital certificate by working through the

certificate chain to the root CA certificate. To do this, the API must have
access to a key repository that contains the remaining certificates in the
certificate chain. This check provide assurance that the sender, identified by
the Distinguished Name, is the genuine owner of the public key contained in
the certificate.

Providing your own application level security

80 Security

– The API exit can check the digital signature using the public key contained in
the certificate. This check authenticates the sender.

The Distinguished Name of the sender can be sent instead of the whole digital
certificate. In this case, the key repository must contain the sender’s certificate so
that the second API exit can find the public key of the sender. Another
possibility is to send all the certificates in the certificate chain.

Tivoli Access Manager for Business Integration uses Public Key Infrastructure
(PKI) techniques similar to the ones just described. For more information about
how Access Manager for Business Integration implements this and other
application level security services, see Chapter 9, “Access Manager for Business
Integration” on page 71.

v When an application puts a message on a queue, the UserIdentifier field in the
message descriptor contains a user ID associated with the application. The user
ID can be used to identify the sender. To enable authentication, an API exit can
append some data, such as an encrypted password, to the application data in
the message. When the message is retrieved by the receiving application, a
second API exit can authenticate the user ID by using the data that has travelled
with the message.
This technique might be considered sufficient for messages that originate in a
controlled and trusted environment, and in circumstances where a trusted
authentication server or PKI support is not available.

Access control
An API exit can provide access controls to supplement those provided by
WebSphere MQ. In particular, an API exit can provide access control at the
message level. An API exit can ensure that an application puts on a queue, or gets
from a queue, only those messages that satisfy certain criteria.

Consider the following examples:
v A message contains information about an order. When an application attempts

to put a message on a queue, an API exit can check that the total value of the
order is less that some prescribed limit.

v Messages arrive on a destination queue from remote queue managers. When an
application attempts to get a message from the queue, an API exit can check that
the sender of the message is authorized to send a message to the queue.

Confidentiality
The application data in a message can be encrypted by an API exit when the
message is put by the sending application and decrypted by a second API exit
when the message is retrieved by the receiving application.

For performance reasons, a symmetric key algorithm is normally used for this
purpose. However, at the application level, where many users might be sending
messages to each other, the problem is how to ensure that only the intended
receiver of a message is able to decrypt the message. One solution is to use a
different symmetric key for each pair of users that send messages to each other.
But this solution might be difficult and time consuming to administer, particularly
if the users belong to different organizations. A standard way of solving this
problem is known as digital enveloping and uses PKI technology.

When an application puts a message on a queue, an API exit generates a random
symmetric key and uses the key to encrypt the application data in the message.

Providing your own application level security

Chapter 10. Providing your own application level security 81

The API exit encrypts the symmetric key with the public key of the intended
receiver. It then replaces the application data in the message with the encrypted
application data and the encrypted symmetric key. In this way, only the intended
receiver can decrypt the symmetric key and therefore the application data. If an
encrypted message has more than one possible intended receiver, the API exit can
encrypt a copy of the symmetric key for each intended receiver.

If different algorithms for encrypting and decrypting the application data are
available for use, the API exit can include the name of the algorithm it has used.

Data integrity
A message can be digitally signed by an API exit when the message is put by the
sending application. The digital signature can then be checked by a second API
exit when the message is retrieved by the receiving application. This can detect
whether the message has been deliberately modified.

As discussed in “Data integrity” on page 68, some protection can be provided by
using a message digest instead of a digital signature.

Non-repudiation
Consider an API exit that checks the digital signature of each message that is
retrieved from a queue by the receiving application. If the API exit logs sufficient
evidence to enable the digital signature to be checked at any time in the future,
this can form the basis of a non-repudiation service with proof of origin.

The evidence that is logged might include:
v The digital certificate of the sender
v The digital signature of the sender
v The original message

The API exit can also prepare a delivery report on behalf of the receiver of the
message and send it to the reply-to queue specified in the message descriptor of
the message. The delivery report might include :
v The date and time of delivery of the message
v The digital certificate of the receiver
v The digital signature of the receiver
v The original message, a subset of the original message, or some means of

identifying the original message

When the delivery report is retrieved from the reply-to queue, another API exit can
check the digital signature to authenticate the receiver of the original message. If
the API exit also logs sufficient evidence to enable the digital signature to be
checked at any time in the future, this can form the basis of a non-repudiation
service with proof of delivery.

Other ways of providing your own application level security
If the API exit or API-crossing exit is not supported in your system environment,
you might want to consider other ways of providing your own application level
security. One way is to develop a higher level API that encapsulates the MQI.
Programmers then use this API, instead of the MQI, to write WebSphere MQ
applications.

Providing your own application level security

82 Security

The most common reasons for using a higher level API are:
v To hide the more advanced features of the MQI from programmers.
v To enforce standards in the use of the MQI.
v To add function to the MQI. This additional function can be security services.

Some vendor products use this technique to provide application level security for
WebSphere MQ.

If you are planning to provide security services in this way, note the following
regarding data conversion:
v If a security token, such as a digital signature, has been added to the application

data in a message, any code performing data conversion must be aware of the
presence of this token.

v A security token might have been derived from a binary image of the
application data. Therefore, any checking of the token must be done before
converting the data.

v If the application data in a message has been encrypted, it must be decrypted
before data conversion.

Providing your own application level security

Chapter 10. Providing your own application level security 83

Providing your own application level security

84 Security

Part 3. Working with WebSphere MQ SSL support

This part describes the tasks you perform when implementing the WebSphere MQ
SSL support for your installation:
v Chapter 11, “Working with the Secure Sockets Layer (SSL) on OS/400” on

page 87
v Chapter 12, “Working with the Secure Sockets Layer (SSL) on UNIX systems” on

page 97
v Chapter 13, “Working with the Secure Sockets Layer (SSL) on Windows systems”

on page 113
v Chapter 14, “Working with the Secure Sockets Layer (SSL) on z/OS” on page 125
v Chapter 16, “Working with Certificate Revocation Lists” on page 139
v Chapter 17, “Working with CipherSpecs” on page 145
v Chapter 18, “WebSphere MQ rules for SSLPEER values” on page 151
v Chapter 15, “Testing SSL” on page 133
v Chapter 19, “Understanding authentication failures” on page 153

© Copyright IBM Corp. 2002 85

86 Security

Chapter 11. Working with the Secure Sockets Layer (SSL) on
OS/400

This chapter describes how you set up and work with the Secure Sockets Layer
(SSL) on OS/400. The operations you can perform are:
v “Setting up a key repository” on page 88
v “Working with a key repository” on page 89
v “Obtaining personal certificates” on page 91
v “Adding personal certificates to a key repository” on page 92
v “Managing digital certificates” on page 93
v “Configuring cryptographic hardware” on page 95
v “Mapping DNs to user IDs” on page 95

For OS/400, the SSL support is integral to the operating system. Ensure that you
have installed the prerequisites listed in WebSphere MQ for iSeries V5.3 Quick
Beginnings.

On OS/400, you manage keys and digital certificates with the Digital Certificate
Manager (DCM) tool.

Digital Certificate Manager (DCM)
The Digital Certificate Manager (DCM) enables you to manage digital certificates
and to use them in secure applications on the iSeries server. With Digital Certificate
Manager, you can request and process digital certificates from Certification
Authorities (CAs) or other third-parties. You can also act as a local Certification
Authority to create and manage digital certificates for your users.

DCM also supports using CRLs to provide a stronger certificate and application
validation process. You can use DCM to define the location where a specific
Certificate Authority CRL resides on an LDAP server so that WebSphere MQ can
verify that a specific certificate has not been revoked.

On OS/400 V5R1, DCM supports and can automatically detect certificates in the
following formats: Base64, PKCS #7, PKCS #12 V1 and V3 (new in V5R1) and the
C3 encoded standard. C3 is an IBM internal format, used when importing from, or
exporting to, AS/400 systems with OS/400 V4R3. When DCM detects a PKCS #12
encoded certificate, or a PKCS #7 certificate that contains encrypted data, it
automatically prompts the user to enter the password that was used to encrypt the
certificate. DCM does not prompt for PKCS #7 certificates that do not contain
encrypted data.

DCM provides a browser-based user interface that you can use to manage digital
certificates for your applications and users. The user interface is divided into two
main frames: a navigation frame and a task frame.

You use the navigation frame to select the tasks to manage certificates or the
applications that use them. Some individual tasks appear directly in the main
navigation frame, but most tasks in the navigation frame are organized into
categories. For example, Manage Certificates is a task category that contains a
variety of individual guided tasks, such as View certificate, Renew certificate,

© Copyright IBM Corp. 2002 87

Import certificate. If an item in the navigation frame is a category that contains
more than one task, an arrow appears to the left of it. The arrow indicates that
when you select the category link, an expanded list of tasks displays, enabling you
to choose which task to perform.

For more information about DCM, see the following IBM Redbooks:
v IBM iSeries Wired Network Security: OS/400 V5R1 DCM and Cryptographic

Enhancements, SG24-6168.
v AS/400 Internet Security: Developing a Digital Certificate Infrastructure, SG24-5659

Accessing the DCM

To access the DCM interface, use a web browser that can display frames and
perform the following steps:
1. Go to either http://machine.domain:2001 or https://machine.domain:2010,

where machine is the name of your computer.
2. A dialog box appears, requesting a user name and a password. Type a valid

user profile and password.
Ensure your user profile has *ALLOBJ and *SECADM special authorities to
enable you to create new certificate stores. If you do not have the special
authorities, you can only manage your personal certificates or view the object
signatures for the objects for which you are authorized. If you are authorized to
use an object signing application, you can also sign objects from DCM.

3. On the AS/400 Tasks page, click Digital Certificate Manager. The Digital
Certificate Manager page displays.

Setting up a key repository
An SSL connection requires a key repository at each end of the connection. Each
queue manager must have access to a key repository. See “The SSL key repository”
on page 47 for more information.

On OS/400, digital certificates are stored in a certificate store that is managed with
DCM.

Note: These digital certificates have labels. A label associates a certificate with a
queue manager. SSL uses that certificate for authentication purposes. On
OS/400, WebSphere MQ uses the ibmwebspheremq prefix on a label to avoid
confusion with certificates for other products. The prefix is followed by the
name of the queue manager, folded to lower case. Ensure that you specify
the entire certificate label in lower case.

The queue manager certificate store name comprises a path and stem name. The
default path is /QIBM/UserData/ICSS/Cert/Server/ and the default stem name is
Default. On OS/400, the default certificate store,
/QIBM/UserData/ICSS/Cert/Server/Default.kdb, is also known as *SYSTEM.
Optionally, you can choose your own path and stem name, but the extension must
be .kdb.

“Working with a key repository” on page 89 tells you about checking and
specifying the certificate store name. You can specify the certificate store name
either before or after creating the certificate store.

DCM

88 Security

Note: The operations you can perform with DCM might be limited by the
authority of your user profile. For example, you require *ALLOBJ and
*SECADM authorities to create a CA certificate.

Creating a new certificate store

Note: You create a new certificate store only if you do not want to use the OS/400
default certificate store.

Use the following procedure to create a new certificate store for a queue manager:
1. Access the DCM interface, as described in “Accessing the DCM” on page 88.
2. In the navigation panel, click Create New Certificate Store. The Create New

Certificate Store page displays in the task frame.
3. In the task frame, select the Other System Certificate Store radio button. Click

Continue. The Create a Certificate in New Certificate Store page displays in the
task frame.

4. Select the No - Do not create a certificate in the certificate store radio button.
Click Continue. The Certificate Store Name and Password page displays in the
task frame.

5. In the Certificate store path and filename field, type an IFS path and filename,
for example /QIBM/UserData/mqm/qmgrs/qm1/key.kdb

6. Type a password in the Password field and type it again in the Confirm
Password field. Click Continue. A window displays, containing a list of the CA
certificates that are pre-installed in the certificate store. This list includes the
certificate for the local CA, if you have created one.

7. To exit from DCM, close your browser window.

When you have created the certificate store using DCM, ensure you stash the
password, as described in “Stashing the certificate store password”.

Stashing the certificate store password
When you have created the certificate store using DCM, use the following
commands to stash the password:
STRMQM MQMNAME(’queue manager name’)

CHGMQM MQMNAME(’queue manager name’) SSLKEYRPWD(’password’)

You can also use the ALTER QMGR MQSC command to set the SSLKEYRPWD
parameter.

Note: If you do not stash the password, attempts to start SSL channels fail because
they cannot obtain the password required to access the certificate store.

Working with a key repository
This section tells you how to perform the following tasks:
v “Locating the key repository for a queue manager” on page 90
v “Changing the key repository location for a queue manager” on page 90

Note: When you change either the key repository attribute, or the certificates in
the key repository, check “When changes become effective” on page 90.

Setting up a key repository on OS/400

Chapter 11. Working with the Secure Sockets Layer (SSL) on OS/400 89

Locating the key repository for a queue manager
Use this procedure to obtain information about the location of your queue
manager’s certificate store:
1. Display your queue manager’s attributes, using the following command:

DSPMQM MQMNAME(’queue manager name’)

2. Examine the command output for the path and stem name of the certificate
store. For example: /QIBM/UserData/ICSS/Cert/Server/Default, where
/QIBM/UserData/ICSS/Cert/Server is the path and Default is the stem name.

Changing the key repository location for a queue manager
You can change the location of your queue manager’s certificate store using any of
the following methods:
v Use either the CHGMQM command or the ALTER QMGR MQSC command to

set your queue manager’s key repository attribute, for example:
CHGMQM MQMNAME(’qm1’) SSLKEYR(’/QIBM/UserData/ICSS/Cert/Server/MyKey’)

ALTER QMGR SSLKEYR(’/QIBM/UserData/ICSS/Cert/Server/MyKey’)

The certificate store has the fully-qualified filename:
/QIBM/UserData/ICSS/Cert/Server/MyKey.kdb

Note: The .kdb extension is a mandatory part of the filename, but is not
included as part of the value of the parameter.

v Use WebSphere MQ Explorer on a Windows system to work with your OS/400
queue manager’s certificate store, as described in “Working with a key
repository” on page 116.

When you change the the location of a queue manager’s certificate store,
certificates are not transferred from the old location. If the CA certificates
pre-installed when you created the certificate store are insufficient, you must
populate the new certificate store with certificates, as described in “Managing
digital certificates” on page 93. You must also stash the password for the new
location, as described in “Stashing the certificate store password” on page 89.

When changes become effective
Changes to the certificates in the certificate store and to the key repository attribute
become effective:
v When a new outbound single channel process first runs an SSL channel.
v When a new inbound TCP/IP single channel process first receives a request to

start an SSL channel.
v For channels that run as threads of a process pooling process (amqrmppa), when

the process pooling process is started or restarted and first runs an SSL channel.
If the process pooling process has already run an SSL channel, and you want the
change to become effective immediately, restart the queue manager.

v For channels that run as threads of the channel initiator, when the channel
initiator is started or restarted and first runs an SSL channel. If the channel
initiator process has already run an SSL channel, and you want the change to
become effective immediately, restart the queue manager.

v For channels that run as threads of a TCP/IP listener, when the listener is
started or restarted and first receives a request to start an SSL channel.

Working with a key repository on OS/400

90 Security

Obtaining personal certificates
You apply to a Certification Authority for the personal certificate that is used to
verify the identity of your queue manager. You can also create CA certificates for
signing certificates for testing SSL on OS/400.

This section tells you how to use DCM for:
1. “Creating CA certificates for testing”
2. “Requesting a personal certificate” on page 92

Creating CA certificates for testing
The CA certificates that are provided when you install SSL are signed by the
issuing CA. On OS/400, you can generate a local Certification Authority that can
sign personal certificates for testing SSL communications on your system.

Use the following procedure in Internet Explorer to create a local CA certificate to
sign certificate requests:
1. Access the DCM interface, as described in “Accessing the DCM” on page 88.
2. In the navigation panel, click Create a Certificate Authority. The Create a

Certificate Authority page displays in the task frame.
3. Type a password in the Certificate store password field and type it again in

the Confirm password field.
4. Type a name in the Certificate Authority (CA) name field, for example SSL

Test Certification Authority.
5. Type a Common Name and Organization, and select a Country. For the

remaining optional fields, type the values you require.
6. Type a validity period for the local CA in the Validity period field. The

default value is 1095 days.
7. Click Continue. The CA is created, and DCM creates a certificate store and a

CA certificate for your local CA.
8. Click Install certificate. The download manager dialog box displays.
9. Type the full path name for the temporary file in which you want to store the

CA certificate and click Save.
10. When download is complete, click Open. The Certificate window displays
11. Click Install certificate. The Certificate Import Wizard displays.
12. Click Next.
13. Type the full path name of the temporary file in which you stored the CA

certificate, or click Browse to find the temporary file.
14. Click Next.
15. Select the Automatically select the certificate store based on the type of

certificate check box.
16. Click Next.
17. Click Finish. A confirmation window appears.
18. Click OK.
19. Click OK in the Certificate window.
20. Click Continue. The Certificate Authority Policy page displays in the task

frame.
21. In the allow creation of user certificates field, select the Yes radio button.

Obtaining personal certificates on OS/400

Chapter 11. Working with the Secure Sockets Layer (SSL) on OS/400 91

22. In the Validity period field, type the validity period of certificates that are
issued by your local CA. The default value is 365 days.

23. Click Continue. The Create a Certificate in New Certificate Store page
displays in the task frame.

24. Ensure none of the applications are selected.
25. Click Continue to complete the setup of the local CA.

When you make certificate requests to the local CA, as described in “Requesting a
personal certificate”, the signed certificates can be exported and imported in PKCS
#12 format into certificate stores to test SSL.

Requesting a personal certificate
To apply for a personal certificate, use the DCM tool as follows:
1. Access the DCM interface, as described in “Accessing the DCM” on page 88.
2. In the navigation panel, click Select a Certificate Store. The Select a

Certificate Store page displays in the task frame.
3. Select the Other System Certificate Store check box and click Continue. The

Certificate Store and Password page displays.
4. In the Certificate store path and filename field, type the IFS path and

filename you set when “Creating a new certificate store” on page 89.
5. Type a password in the Certificate Store Password field. Click Continue. The

Current Certificate Store page displays in the task frame.
6. In the navigation panel, click Create Certificate.
7. In the task frame, select the Server or client certificate radio button and click

Continue. The Select a Certificate Authority (CA) page displays in the task
frame.

8. If you have a local CA on your machine you choose either the local CA or a
commercial CA to sign the certificate. Select the radio button for the CA you
want and click Continue. The Create a Certificate page displays in the task
frame.

9. In the Certificate label field, type ibmwebspheremq followed by the name of
your queue manager folded to lower case. For example, for QM1,
ibmwebspheremqqm1

10. Type a Common Name and Organization, and select a Country. For the
remaining optional fields, type the values you require.

11. If you selected a commercial CA to sign your certificate, DCM creates a
certificate request in PEM (Privacy-Enhanced Mail) format. Forward the
request to your chosen CA.
If you selected the local CA to sign your certificate, DCM informs you that the
certificate has been created in the certificate store and can be used.

Adding personal certificates to a key repository
After the CA sends you a new personal certificate, you add it to the certificate
store from which you generated the request. If the CA sends the certificate as part
of an e-mail message, copy the certificate into a separate file.

Notes:

1. You do not need to perform this procedure if the personal certificate is signed
by your local CA.

2. Before you import a personal certificate in PKCS #12 format into DCM, you
must first import the corresponding CA certificate.

Obtaining personal certificates on OS/400

92 Security

Use the following procedure to receive a personal certificate into the queue
manager certificate store:
1. Access the DCM interface, as described in “Accessing the DCM” on page 88.
2. In the Manage Certificates task category in the navigation panel, click Import

Certificate. The Import Certificate page displays in the task frame.
3. Select the radio button for your certificate type and click Continue. Either the

Import Server or Client Certificate page or the Import Certificate Authority
(CA) Certificate page displays in the task frame.

4. In the Import File field, type the filename of the certificate you want to import
and click Continue. DCM automatically determines the format of the file.

5. If the certificate is a Server or client certificate, type the password in the task
frame and click Continue. DCM informs you that the certificate has been
imported.

Managing digital certificates
This section tells you about managing the digital certificates in your certificate
store.

When you make changes to the certificates in a certificate store, refer to “When
changes become effective” on page 90.

Transferring certificates
This section tells you how to extract a certificate from a certificate store to allow it
to be copied to another system, and how to add a certificate from another system
into your certificate store.

Exporting a certificate from a key repository
Perform the following steps on the machine from which you want to export the
certificate:
1. Access the DCM interface, as described in “Accessing the DCM” on page 88.
2. In the navigation panel, click Select a Certificate Store. The Select a

Certificate Store page displays in the task frame.
3. Select the Other System Certificate Store check box and click Continue. The

Certificate Store and Password page displays.
4. In the Certificate store path and filename field, type the IFS path and

filename you set when “Creating a new certificate store” on page 89.
5. Type a password in the Certificate Store Password field. Click Continue. The

Current Certificate Store page displays in the task frame.
6. In the Manage Certificates task category in the navigation panel, click Export

Certificate. The Export a Certificate page displays in the task frame.
7. Select the radio button for your certificate type and click Continue. Either the

Export Server or Client Certificate page or the Export Certificate Authority
(CA) Certificate page displays in the task frame.

8. Select the certificate you want to export.
9. Select the radio button to specify whether you want to export the certificate to

a file or directly into another certificate store.
10. If you selected to export a server or client certificate to a file, you provide the

following information:
v The path and file name of the location where you want to store the

exported certificate.

Adding personal certificates on OS/400

Chapter 11. Working with the Secure Sockets Layer (SSL) on OS/400 93

v For a personal certificate, the password that is used to encrypt the exported
certificate and the target release. The target release specifies the minimum
level of OS/400 to which the certificate can be exported. For CA certificates,
you do not need to specify the password.
If you selected to export a certificate directly into another certificate store,
specify the target certificate store and its password. Click Continue.

Importing a certificate into a key repository

Note: Before you import a personal certificate in PKCS #12 format into DCM, you
must first import the corresponding CA certificate.

Perform the following steps on the machine to which you want to import the
certificate:
1. Access the DCM interface, as described in “Accessing the DCM” on page 88.
2. In the navigation panel, click Select a Certificate Store. The Select a Certificate

Store page displays in the task frame.
3. Select the Other System Certificate Store check box and click Continue. The

Certificate Store and Password page displays.
4. In the Certificate store path and filename field, type the IFS path and filename

you set when “Creating a new certificate store” on page 89.
5. Type a password in the Certificate Store Password field. Click Continue. The

Current Certificate Store page displays in the task frame.
6. In the Manage Certificates task category in the navigation panel, click Import

Certificate. The Import Certificate page displays in the task frame.
7. Select the radio button for your certificate type and click Continue. Either the

Import Server or Client Certificate page or the Import Certificate Authority
(CA) Certificate page displays in the task frame.

8. In the Import File field, type the filename of the certificate you want to import
and click Continue. DCM automatically determines the format of the file.

9. If the certificate is a Server or client certificate, type the password in the task
frame and click Continue. DCM informs you that the certificate has been
imported.

Deleting certificates
Use the following procedure to remove personal certificates:
1. Access the DCM interface, as described in “Accessing the DCM” on page 88.
2. In the navigation panel, click Select a Certificate Store. The Select a Certificate

Store page displays in the task frame.
3. Select the Other System Certificate Store check box and click Continue. The

Certificate Store and Password page displays.
4. In the Certificate store path and filename field, type the IFS path and filename

you set when “Creating a new certificate store” on page 89.
5. Type a password in the Certificate Store Password field. Click Continue. The

Current Certificate Store page displays in the task frame.
6. In the Manage Certificates task category in the navigation panel, click Delete

Certificate. The Delete a Certificate page displays in the task frame.
7. Select the radio button for your certificate type and click Continue. The

Confirm Delete a Certificate page displays in the task frame.
8. Select the certificate you want to delete. Click Delete.

Managing certificates on OS/400

94 Security

9. Click Yes to confirm that you want to delete the certificate. Otherwise, click No.
DCM informs you if it has deleted the certificate.

Configuring cryptographic hardware
Use the following procedure to configure the 4758 PCI Cryptographic Coprocessor
on OS/400:
1. Go to either http://machine.domain:2001 or https://machine.domain:2010,

where machine is the name of your computer.
2. A dialog box appears, requesting a user name and a password. Type a valid

OS/400 user profile and password.
Ensure your user profile has *ALLOBJ and *SECADM special authorities to
enable you to configure the coprocessor hardware.

3. On the AS/400 Tasks page, click 4758 PCI Cryptographic Coprocessor.

For more information about configuring the 4758 PCI Cryptographic Coprocessor,
refer to the iSeries Information Center at
http://publib.boulder.ibm.com/html/as400/infocenter.html

Mapping DNs to user IDs
WebSphere MQ on OS/400 does not support the OS/400 function that is
equivalent to the z/OS CNFs, which are described in “Working with Certificate
Name Filters (CNFs)” on page 130. If you want to implement a function that maps
Distinguished Names to user IDs, consider using a channel security exit.

Managing certificates on OS/400

Chapter 11. Working with the Secure Sockets Layer (SSL) on OS/400 95

96 Security

Chapter 12. Working with the Secure Sockets Layer (SSL) on
UNIX systems

This chapter applies to the following products:
v WebSphere MQ for AIX
v WebSphere MQ for HP-UX
v WebSphere MQ for Linux for Intel and Linux for zSeries
v WebSphere MQ for Solaris

This chapter describes how you set up and work with the Secure Sockets Layer
(SSL) on UNIX systems. The operations you can perform are:
v “Setting up a key repository” on page 98
v “Working with a key repository” on page 100
v “Obtaining personal certificates” on page 102
v “Adding personal certificates to a key repository” on page 104
v “Managing digital certificates” on page 105
v “Configuring for cryptographic hardware” on page 108
v “Mapping DNs to user IDs” on page 111

For all the UNIX systems, the SSL support is installed with WebSphere MQ.

Notes:

1. You cannot run SSL channels from a WebSphere MQ installation that uses DCE
security exits or the DCE name service.

2. A DCE-threaded WebSphere MQ client application cannot use SSL on AIX,
Solaris, or HP-UX. TXSeries uses DCE threads, so it cannot run as a WebSphere
MQ client that uses SSL on AIX, Solaris, or HP-UX. DCE threads are
incompatible with the threads used by the WebSphere MQSSL support.

3. Before you run SSL on HP-UX, recompile and link your WebSphere MQ client
applications using the C++ compiler.

On UNIX systems, you manage keys and digital certificates with the iKeyman key
management tool, which you can run either as a GUI or from the command line:
v Use the gsk6ikm command to start the iKeyman GUI.
v Use the gsk6cmd command to perform tasks with the IKEYCMD command line

interface.

See the WebSphere MQ System Administration Guide for a full description of the
IKEYCMD command line interface.

Before you execute the gsk6ikm command to start the iKeyman GUI, ensure you
are working on a machine that is able to run the X Window System and that you
do the following:
v Set the DISPLAY environment variable, for example:

export DISPLAY=mypc:0

v Set the JAVA_HOME environment variable:

AIX export JAVA_HOME=/usr/mqm/ssl/jre
HP-UX export JAVA_HOME=/opt/mqm/ssl

© Copyright IBM Corp. 2002 97

Linux export JAVA_HOME=/opt/mqm/ssl/jre
Solaris export JAVA_HOME=/opt/mqm/ssl

v If you are using Linux for zSeries, set the LD_PRELOAD environment variable:
export LD_PRELOAD=/usr/lib/libstdc++-libc6.1-2.so.3

To request SSL tracing on UNIX systems, see the WebSphere MQ System
Administration Guide.

Setting up a key repository
An SSL connection requires a key repository at each end of the connection. Each
queue manager and WebSphere MQ client must have access to a key repository.
See “The SSL key repository” on page 47 for more information.

On UNIX systems, digital certificates are stored in a key database file that is
managed with iKeyman.

Note: These digital certificates have labels. A label associates a certificate with a
queue manager or WebSphere MQ client. SSL uses that certificate for
authentication purposes. On UNIX systems, WebSphere MQ uses the
ibmwebspheremq prefix on a label to avoid confusion with certificates for
other products. The prefix is followed by the name of the queue manager or
WebSphere MQ client, folded to lower case. Ensure that you specify the
entire certificate label in lower case.

The key database file name comprises a path and stem name:
v For a queue manager, the default path, set when you create the queue manager,

is /var/mqm/qmgrs/<queue_manager_name>/ssl and the default stem name is key.
Optionally, you can choose your own path and stem name, but the extension
must be .kdb.

v For a WebSphere MQ client, there is no default path or stem name. Choose a
key database file to which you can restrict access.

“Working with a key repository” on page 100 tells you about checking and
specifying the key database file name. You can specify the key database file name
either before or after creating the key database file.

Notes:

1. The user ID from which you run iKeyman must have write permission for the
directory in which the key database file is created or updated.

2. For a queue manager, the user ID from which you run iKeyman must be a
member of the mqm group. For a WebSphere MQ client, if you run iKeyman
from a user ID different from that under which the client runs, you must alter
the permissions to enable the WebSphere MQ client to access the key database
file at run time. For more information, refer to “Accessing your key database
file” on page 99.

Use the following procedure to create a new key database file for either a queue
manager or a WebSphere MQ client:
1. Execute the gsk6ikm command to start the iKeyman GUI.
2. From the Key Database File menu, click New. The New window displays.
3. Click Key database type and select CMS (Certificate Management System).

Using SSL on UNIX

98 Security

4. In the File Name field, type a file name. This field already contains the text
key.kdb. If your stem name is key, leave this field unchanged. If you have
specified a different stem name, replace key with your stem name but you
must not change the .kdb.

5. In the Location field, type the path, for example:
v For a queue manager: /var/mqm/qmgrs/QM1/ssl
v For a WebSphere MQ client: /var/mqm/ssl

6. Click Open. The Password Prompt window displays.
7. Type a password in the Password field, and type it again in the Confirm

Password field.
8. Select the Stash the password to a file check box.

Note: If you do not stash the password, attempts to start SSL channels fail
because they cannot obtain the password required to access the key
database file.

9. Click OK. A window displays, confirming that the password is in file key.sth
(unless you specified a different stem name).

10. Click OK. The Signer Certificates window displays, containing a list of the CA
certificates that are provided with iKeyman and pre-installed in the key
database.

11. Set the access permissions, as described in “Accessing your key database file”.

Use the following command to create a new CMS key database file using
IKEYCMD:
gsk6cmd -keydb -create -db filename -pw password -type cms -expire days -stash

where:

-db filename is the fully qualified path name of a CMS key database.
-pw password is the password for the CMS key database.
-type cms is the type of database.
-expire days is the expiration time in days of the database password. The

default is 60 days for a database password.
-stash tells IKEYCMD to stash the key database password to a file.

For more information about CA certificates, refer to “Digital certificates” on
page 18.

Accessing your key database file
When you create your key database file using iKeyman, the access permissions for
the key database file are set to give access only to the user ID from which you
used iKeyman.

The key database file is accessed by an MCA, so ensure that the user ID under
which the MCA runs has permission to read both the key database file and the
password stash file. MCAs usually run under the mqm user ID, which is in the
mqm group. After you have created your queue manager key database file, work
with the same user ID to add read permission for the mqm group, using the UNIX
chmod command. For example:
chmod g+r /var/mqm/qmgrs/QM1/ssl/key.kdb

chmod g+r /var/mqm/qmgrs/QM1/ssl/key.sth

Setting up a key repository on UNIX

Chapter 12. Working with the Secure Sockets Layer (SSL) on UNIX systems 99

When you set up the key database file for a WebSphere MQ client, consider
working with the user ID under which you run the WebSphere MQ client. This
allows you to restrict access to that single user ID. When you need to grant access
to a user ID in the same group, use the UNIX chmod command. For example:
chmod g+r /var/mqm/ssl/key.kdb

chmod g+r /var/mqm/ssl/key.sth

Avoid giving permission to user IDs that are in different groups. For more
information, refer to “Protecting WebSphere MQ client key repositories” on
page 48.

Working with a key repository
This section tells you how to perform the following tasks:
v “Locating the key repository for a queue manager”
v “Changing the key repository location for a queue manager”
v “Locating the key repository for a WebSphere MQ client” on page 101
v “Specifying the key repository location for a WebSphere MQ client” on page 101

Note: When you change either the key repository attribute, or the certificates in
the key database file, check “When changes become effective” on page 101.

Locating the key repository for a queue manager
Use this procedure to obtain information about the location of your queue
manager’s key database file:
1. Display your queue manager’s attributes, using either of the following MQSC

commands:
DISPLAY QMGR ALL
DISPLAY QMGR SSLKEYR

2. Examine the command output for the path and stem name of the key database
file. For example: /var/mqm/qmgrs/QM1/ssl/key, where /var/mqm/qmgrs/QM1/ssl
is the path and key is the stem name.

Changing the key repository location for a queue manager
You can change the location of your queue manager’s key database file using
either of the following methods:
v Use the ALTER QMGR MQSC command to set your queue manager’s key

repository attribute, for example:
ALTER QMGR SSLKEYR(’/var/mqm/qmgrs/QM1/ssl/MyKey’)

The key database file has the fully-qualified filename:
/var/mqm/qmgrs/QM1/ssl/MyKey.kdb

Note: The .kdb extension is a mandatory part of the filename, but is not
included as part of the value of the parameter.

v Use WebSphere MQ Explorer on a Windows system to work with your UNIX
queue manager’s key repository attribute, as described in “Working with a key
repository” on page 116.

When you change the location of a queue manager’s key database file, certificates
are not transferred from the old location. If the CA certificates pre-installed when

Setting up a key repository on UNIX

100 Security

you created the certificate store are insufficient, you must populate the new key
database file with certificates, as described in “Managing digital certificates” on
page 105.

Locating the key repository for a WebSphere MQ client
Examine the MQSSLKEYR environment variable to obtain the location of your
WebSphere MQ client’s key database file. For example:
echo $MQSSLKEYR

Also check your application, because the key database file can be set in an
MQCONNX call, as described in “Specifying the key repository location for a
WebSphere MQ client”. The value set in an MQCONNX call overrides the value of
MQSSLKEYR.

Specifying the key repository location for a WebSphere MQ
client

There is no default key repository for a WebSphere MQ client. Ensure that the key
database file can be accessed only by intended users or administrators to prevent
unauthorized copying to other systems.

You can specify the location of your WebSphere MQ client’s key database file by:
v Setting the MQSSLKEYR environment variable, for example:

export MQSSLKEYR=/var/mqm/ssl/key

The key database file has the fully-qualified filename:
/var/mqm/ssl/key.kdb

Note: The .kdb extension is a mandatory part of the filename, but is not
included as part of the value of the environment variable.

v Providing the path and stem name of the key database file in the KeyRepository
field of the MQSCO structure when an application makes an MQCONNX call.
For more information about using the MQSCO structure in MQCONNX, refer to
the WebSphere MQ Application Programming Reference.

When changes become effective
Changes to the certificates in the key database file and to the key repository
attribute become effective:
v When a new outbound single channel process first runs an SSL channel.
v When a new inbound TCP/IP single channel process first receives a request to

start an SSL channel.
v For channels that run as threads of a process pooling process (amqrmppa), when

the process pooling process is started or restarted and first runs an SSL channel.
If the process pooling process has already run an SSL channel, and you want the
change to become effective immediately, restart the queue manager.

v For channels that run as threads of the channel initiator, when the channel
initiator is started or restarted and first runs an SSL channel. If the channel
initiator process has already run an SSL channel, and you want the change to
become effective immediately, restart the queue manager.

v For channels that run as threads of a TCP/IP listener, when the listener is
started or restarted and first receives a request to start an SSL channel.

Working with a key repository on UNIX

Chapter 12. Working with the Secure Sockets Layer (SSL) on UNIX systems 101

Obtaining personal certificates
You apply to a Certification Authority for the personal certificate that is used to
verify the identity of your queue manager or WebSphere MQ client. You can also
create self-signed certificates for testing SSL on your UNIX system.

This section tells you how to use iKeyman for:
1. “Creating a self-signed personal certificate”
2. “Requesting a personal certificate” on page 103

Creating a self-signed personal certificate
The CA certificates that are provided when you install SSL are signed by the
issuing CA. No self-signed personal certificates are provided at installation, but
they are useful when testing SSL communications on your system. Use the
following procedure to obtain a self-signed certificate for your queue manager or
WebSphere MQ client:
1. Execute the gsk6ikm command to start the iKeyman GUI.
2. From the Key Database File menu, click Open. The Open window displays.
3. Click Key database type and select CMS (Certificate Management System).
4. Click Browse to navigate to the directory that contains the key database files.
5. Select the key database file in which you want to save the certificate, for

example key.kdb.
6. Click Open. The Password Prompt window displays.
7. Type the password you set when you created the key database and click OK.

The name of your key database file displays in the File Name field.
8. From the Create menu, click New Self-Signed Certificate. The Create New

Self-Signed Certificate window displays.
9. In the Key Label field, type:

v For a queue manager, ibmwebspheremq followed by the name of your queue
manager folded to lower case. For example, for QM1, ibmwebspheremqqm1,
or,

v For a WebSphere MQ client, ibmwebspheremq followed by your logon user
ID folded to lower case, for example ibmwebspheremqmyuserid.

10. Type a Common Name and Organization, and select a Country. For the
remaining optional fields, either accept the default values, or type or select
new values. Note that you can supply only one name in the Organizational
Unit field. For more information about these fields, refer to “Distinguished
Names” on page 19.

11. Click OK. The Personal Certificates field shows the name of the self-signed
personal certificate you created.

Use the following command to create a self-signed personal certificate using
IKEYCMD:
gsk6cmd -cert -create -db filename -pw password -label label

-dn distinguished_name -size key_size -x509version version -expire days

where:

-db filename is the fully qualified path name of a CMS key database.
-pw password is the password for the CMS key database.
-label label is the label attached to the certificate.

Obtaining personal certificates on UNIX

102 Security

-dn distinguished_name is the X.500 distinguished name enclosed in double quotes.
Note that only the CN, O, and C attributes are required, and
that you can supply only one OU attribute.

-size key_size is the key size. The value can be 512 or 1024.
-x509version version is the version of X.509 certificate to create. The value can be 1,

2, or 3. The default is 3.
-expire days is the expiration time in days of the certificate. The default is

365 days for a certificate.

Requesting a personal certificate
To apply for a personal certificate, use the iKeyman tool as follows:
1. Execute the gsk6ikm command to start the iKeyman GUI.
2. From the Key Database File menu, click Open. The Open window displays.
3. Click Key database type and select CMS (Certificate Management System).
4. Click Browse to navigate to the directory that contains the key database files.
5. Select the key database file from which you want to generate the request, for

example key.kdb.
6. Click Open. The Password Prompt window displays.
7. Type the password you set when you created the key database and click OK.

The name of your key database file displays in the File Name field.
8. From the Create menu, click New Certificate Request. The Create New Key

and Certificate Request window displays.
9. In the Key Label field, type:

v For a queue manager, ibmwebspheremq followed by the name of your queue
manager folded to lower case. For example, for QM1, ibmwebspheremqqm1, or

v For a WebSphere MQ client, ibmwebspheremq followed by your logon user
ID folded to lower case, for example ibmwebspheremqmyuserid.

10. Type a Common Name and Organization, and select a Country. For the
remaining optional fields, either accept the default values, or type or select
new values. Note that you can supply only one name in the Organizational
Unit field. For more information about these fields, refer to “Distinguished
Names” on page 19.

11. In the Enter the name of a file in which to store the certificate request field,
either accept the default certreq.arm, or type a new value with a full path.

12. Click OK. A confirmation window displays.
13. Click OK. The Personal Certificate Requests field shows the label of the new

personal certificate request you created. The certificate request is stored in the
file you chose in step 11.

14. Request the new personal certificate either by sending the file to a
Certification Authority (CA), or by copying the file into the request form on
the Web site for the CA.

Use the following command to request a personal certificate using IKEYCMD:
gsk6cmd -certreq -create -db filename -pw password -label label

-dn distinguished_name -size key_size -file filename

where:

-db filename is the fully qualified path name of a CMS key database.
-pw password is the password for the CMS key database.
-label label is the label attached to the certificate.

Obtaining personal certificates on UNIX

Chapter 12. Working with the Secure Sockets Layer (SSL) on UNIX systems 103

-dn distinguished_name is the X.500 distinguished name enclosed in double quotes.
Note that only the CN, O, and C attributes are required, and
that you can supply only one OU attribute.

-size key_size is the key size. The value can be 512 or 1024.
-file filename is the filename for the certificate request.

If you are using cryptographic hardware, refer to “Requesting a personal certificate
for your PKCS #11 hardware” on page 110.

Adding personal certificates to a key repository
After the CA sends you a new personal certificate, you add it to the key database
file from which you generated the request. If the CA sends the certificate as part of
an e-mail message, copy the certificate into a separate file.

Use the following procedure for either a queue manager or a WebSphere MQ client
to receive a personal certificate into the key database file:
1. Execute the gsk6ikm command to start the iKeyman GUI.
2. From the Key Database File menu, click Open. The Open window displays.
3. Click Key database type and select CMS (Certificate Management System).
4. Click Browse to navigate to the directory that contains the key database files.
5. Select the key database file to which you want to add the certificate, for

example key.kdb.
6. Click Open. The Password Prompt window displays.
7. Type the password you set when you created the key database and click OK.

The name of your key database file displays in the File Name field and
Personal Certificates is selected.

8. Click Receive. The Receive Certificate from a File window displays.
9. Select the Data type of the new personal certificate, for example

Base64–encoded ASCII data for a file with the .arm extension.
10. Type the certificate file name and location for the new personal certificate, or

click Browse to select the name and location.
11. Click OK. If you already have a personal certificate in your key database, a

window appears, asking if you want to set the key you are adding as the
default key in the database.

12. Click Yes or No. The Enter a Label window displays.
13. Type a label, for example the label you used when you requested the personal

certificate. Note that the label must be in the correct WebSphere MQ format:
v For a queue manager, ibmwebspheremq followed by the name of your queue

manager folded to lower case. For example, for QM1, ibmwebspheremqqm1,
or,

v For a WebSphere MQ client, ibmwebspheremq followed by your logon user
ID folded to lower case, for example ibmwebspheremqmyuserid.

14. Click OK. The Personal Certificates field shows the label of the new personal
certificate you added.

Use the following command to add a personal certificate to a key database file
using IKEYCMD:
gsk6cmd -cert -receive -file filename -db filename -pw password -label label

-format ascii

Obtaining personal certificates on UNIX

104 Security

where:

-file filename is the fully qualified path name of the file containing the
personal certificate.

-db filename is the fully qualified path name of a CMS key database.
-pw password is the password for the CMS key database.
-label label is the label attached to the certificate.
-format ascii is the format of the certificate. The value can be ascii for

Base64-encoded ASCII or binary for Binary DER data. The
default is ascii.

If you are using cryptographic hardware, refer to “Importing a personal certificate
to your PKCS #11 hardware” on page 110.

Managing digital certificates
This section tells you about managing the digital certificates in your key database
file.

When you make changes to the certificates in a key database file, refer to “When
changes become effective” on page 101.

Perform the following steps to work with your key database file:
1. Execute the gsk6ikm command to start the iKeyman GUI.
2. From the Key Database File menu, click Open. The Open window displays.
3. Click Key database type and select CMS (Certificate Management System).
4. Click Browse to navigate to the directory that contains the key database files.
5. Select the key database file to which you want to add the certificate, for

example key.kdb.
6. Click Open. The Password Prompt window displays.
7. Type the password you set when you created the key database and click OK.

The name of your key database file displays in the File Name field.

Transferring certificates
This section tells you how to perform the following tasks:
v “Extracting a CA certificate from a key repository”
v “Adding a CA certificate into a key repository” on page 106
v “Exporting a personal certificate from a key repository” on page 106
v “Importing a personal certificate into a key repository” on page 107

Extracting a CA certificate from a key repository
Perform the following steps on the machine from which you want to extract the
CA certificate:
1. In the Key database content field, select Signer Certificates and select the

certificate you want to extract.
2. Click Extract. The Extract a Certificate to a File window displays.
3. Select the Data type of the certificate, for example Base64-encoded ASCII data

for a file with the .arm extension.
4. Type the certificate file name and location where you want to store the

certificate, or click Browse to select the name and location.
5. Click OK. The certificate is written to the file you specified.

Adding personal certificates on UNIX

Chapter 12. Working with the Secure Sockets Layer (SSL) on UNIX systems 105

Use the following command to extract a CA certificate using IKEYCMD:
gsk6cmd -cert -extract -db filename -pw password -label label -target filename

-format ascii

where:

-db filename is the fully qualified path name of a CMS key database.
-pw password is the password for the CMS key database.
-label label is the label attached to the certificate.
-target filename is the name of the destination file.
-format ascii is the format of the certificate. The value can be ascii for

Base64-encoded ASCII or binary for Binary DER data. The
default is ascii.

Adding a CA certificate into a key repository
Perform the following steps on the machine to which you want to add the CA
certificate:
1. In the Key database content field, select Signer Certificates and select the

certificate you want to add.
2. Click Add. The Add CA’s Certificate from a File window displays.
3. Select the Data type of the certificate you transferred, for example

Base64-encoded ASCII data for a file with the .arm extension.
4. Type the certificate file name and location where the certificate is stored, or

click Browse to select the name and location.
5. Click OK. The Enter a Label window displays.
6. In the Enter a Label window, type the name of the certificate.
7. Click OK. The certificate is added to the key database.

Use the following command to add a CA certificate using IKEYCMD:
gsk6cmd -cert -add -db filename -pw password -label label -file filename

-format ascii

where:

-db filename is the fully qualified path name of the CMS key database.
-pw password is the password for the CMS key database.
-label label is the label attached to the certificate.
-file filename is the name of the file containing the certificate.
-format ascii is the format of the certificate. The value can be ascii for

Base64-encoded ASCII or binary for Binary DER data. The
default is ascii.

Exporting a personal certificate from a key repository
Perform the following steps on the machine from which you want to export the
personal certificate:
1. In the Key database content field, select Personal Certificates and select the

certificate you want to export.
2. Click Export/Import. The Export/Import key window displays.
3. Select Export Key.
4. Select the Key file type of the certificate you want to export, for example

PKCS12.
5. Type the file name and location to which you want to export the certificate, or

click Browse to select the name and location.

Managing certificates on UNIX

106 Security

6. Click OK. The Password Prompt window displays.
7. Type a password in the Password field, and type it again in the Confirm

Password field.
8. Click OK. The certificate is exported to the file you specified.

Use the following command to export a personal certificate using IKEYCMD:
gsk6cmd -cert -export -db filename -pw password -label label -type cms

-target filename -target_pw password -target_type pkcs12

where:

-db filename is the fully qualified path name of the CMS key database.
-pw password is the password for the CMS key database.
-label label is the label attached to the certificate.
-type cms is the type of the database.
-target filename is the name of the destination file.
-target_pw password is the password for encrypting the certificate.
-target_type pkcs12 is the type of the certificate.

Importing a personal certificate into a key repository
Notes:

1. Before you import a personal certificate in PKCS #12 format into iKeyman, you
must first import the corresponding CA certificates.

2. You cannot import a personal certificate that has multiple OU attributes.

Perform the following steps on the machine to which you want to import the
personal certificate:
1. In the Key database content field, select Personal Certificates and select the

certificate you want to import.
2. Click Export/Import. The Export/Import key window displays.
3. Select Import Key.
4. Select the Key file type of the certificate you want to import, for example

PKCS12.
5. Type the certificate file name and location where the certificate is stored, or

click Browse to select the name and location.
6. Click OK. The Password Prompt window displays.
7. In the Password field, type the password used when the certificate was

exported.
8. Click OK. The certificate is imported to the key database.

Use the following command to import a personal certificate using IKEYCMD:
gsk6cmd -cert -import -file filename -pw password -type pkcs12 -target filename

-target_pw password -target_type cms

where:

-file filename is the fully qualified path name of the file containing the PKCS
#12 certificate.

-pw password is the password for the PKCS #12 certificate.
-type pkcs12 is the type of the file.
-target filename is the name of the destination CMS key database.
-target_pw password is the password for the CMS key database.

Managing certificates on UNIX

Chapter 12. Working with the Secure Sockets Layer (SSL) on UNIX systems 107

-target_type cms is the type of the database specified by -target

Removing certificates
Use the following procedure to remove personal certificates:
1. In the Personal Certificates field, select the certificate labelled:

v For a queue manager, ibmwebspheremq followed by the name of your queue
manager folded to lower case. For example, for qm1, ibmwebspheremqqm1,
or,

v For a WebSphere MQ client, ibmwebspheremq followed by your logon user ID
folded to lower case, for example ibmwebspheremqmyuserid.

2. If you do not already have a copy of the certificate and you want to save it:
a. Click Extract. The Extract a Certificate to a File window displays.
b. Select the Data type of the new personal certificate, for example

Base64-encoded ASCII data for a file with the .arm extension.
c. Type the certificate file name and location where you want to store the

certificate, or click Browse to select the name and location.
d. Click OK. The certificate is written to the file you specified.

3. With the certificate selected, click Delete. The Confirm window displays.
4. Click Yes. The Personal Certificates field no longer shows the label of the

certificate you deleted.

Use the following command to remove a certificate using IKEYCMD:
gsk6cmd -cert -delete -db filename -pw password -label label

where:

-db filename is the fully qualified path name of a CMS key database.
-pw password is the password for the CMS key database.
-label label is the label attached to the certificate.

Editing a certificate label
When you import a personal certificate into iKeyman for use with WebSphere MQ,
ensure that the Friendly name attribute is set to the correct value:
v For a queue manager, ibmwebspheremq followed by the name of your queue

manager folded to lower case. For example, for qm1, ibmwebspheremqqm1,
or,

v For a WebSphere MQ client, ibmwebspheremq followed by your logon user ID
folded to lower case, for example ibmwebspheremqmyuserid.

Note: The value of the attribute must be exact. When you receive your personal
certificate from the Certification Authority and edit the Friendly name
property, some browsers add extra characters, for example a carriage return.
After editing, you might need to import the certificate into a different
browser and export it before the import the certificate into iKeyman.

Configuring for cryptographic hardware
You can configure cryptographic hardware for a queue manager on UNIX using
either of the following methods:

Managing certificates on UNIX

108 Security

v Use the ALTER QMGR MQSC command with the SSLCRYP parameter, as
described in the WebSphere MQ Script (MQSC) Command Reference.

v Use WebSphere MQ Explorer to configure the cryptographic hardware on your
UNIX system. For more information, refer to the online help.

You can configure cryptographic hardware for a WebSphere MQ client on UNIX
using either of the following methods:
v Set the MQSSLCRYP environment variable. The permitted values for

MQSSLCRYP are the same as for the SSLCRYP parameter.
v Set the CryptoHardware field of the SSL configuration options structure, MQSCO,

on an MQCONNX call.

Managing certificates on PKCS #11 hardware
This section tells you about managing digital certificates on cryptographic
hardware that supports the PKCS #11 interface. Note that you still need a key
database file, even when you store all your certificates on your cryptographic
hardware.

Perform the following steps to work with your cryptographic hardware:
1. Login as the root user.
2. Execute the gsk6ikm command to start the iKeyman GUI.
3. From the Key Database File menu, click Open. The Open window displays.
4. Click Key database type and select Cryptographic token.
5. In the File Name field, type the name of the module for managing your

cryptographic hardware, for example PKCS11_API.so

6. In the Location field, type the path, for example /usr/lib/pksc11

7. Click OK. The Open Cryptographic Token window displays.
8. In the Cryptographic Token Password field, type the password that you set

when you configured the cryptographic hardware.
9. If your cryptographic hardware has the capacity to hold the signer certificates

required to receive or import a personal certificate, clear both secondary key
database check boxes and continue from step 17.
If you require a secondary CMS key database to hold the signer certificates,
select either the Open existing secondary key database file check box or the
Create new secondary key database file check box.

10. In the File Name field, type a file name. This field already contains the text
key.kdb. If your stem name is key, leave this field unchanged. If you have
specified a different stem name, replace key with your stem name but you
must not change the .kdb

11. In the Location field, type the path, for example:
v For a queue manager: /var/mqm/qmgrs/QM1/ssl
v For a WebSphere MQ client: /var/mqm/ssl

12. Click OK. The Password Prompt window displays.
13. If you selected the Open existing secondary key database file check box in

step 9, type a password in the Password field, and continue from step 17.
14. If you selected the Create new secondary key database file check box in step

9, type a password in the Password field, and type it again in the Confirm
Password field.

15. Select the Stash the password to a file check box.

Configuring cryptographic hardware on UNIX

Chapter 12. Working with the Secure Sockets Layer (SSL) on UNIX systems 109

Note: If you do not stash the password, attempts to start SSL channels fail
because they cannot obtain the password required to access the key
database file.

16. Click OK. A window displays, confirming that the password is in file key.sth
(unless you specified a different stem name).

17. Click OK. The Key database content frame displays.

Requesting a personal certificate for your PKCS #11 hardware
Use the following procedure for either a queue manager or a WebSphere MQ client
to request a personal certificate for your cryptographic hardware:
1. Perform the “steps to work with your cryptographic hardware” on page 109.
2. From the Create menu, click New Certificate Request. The Create New Key

and Certificate Request window displays.
3. In the Key Label field, type:

v For a queue manager, ibmwebspheremq followed by the name of your queue
manager folded to lower case. For example, for QM1, ibmwebspheremqqm1, or

v For a WebSphere MQ client, ibmwebspheremq followed by your logon user ID
folded to lower case, for example ibmwebspheremqmyuserid.

4. Type a Common Name and Organization, and select a Country. For the
remaining optional fields, either accept the default values, or type or select new
values. Note that you can supply only one name in the Organizational Unit
field. For more information about these fields, refer to “Distinguished Names”
on page 19.

5. In the Enter the name of a file in which to store the certificate request field,
either accept the default certreq.arm, or type a new value with a full path.

6. Click OK. A confirmation window displays.
7. Click OK. The Personal Certificate Requests field shows the label of the new

personal certificate request you created. The certificate request is stored in the
file you chose in step 5.

8. Request the new personal certificate either by sending the file to a Certification
Authority (CA), or by copying the file into the request form on the Web site for
the CA.

Importing a personal certificate to your PKCS #11 hardware
Use the following procedure for either a queue manager or a WebSphere MQ client
to import a personal certificate to your cryptographic hardware:
1. Perform the “steps to work with your cryptographic hardware” on page 109.
2. Click Receive. The Receive Certificate from a File window displays.
3. Select the Data type of the new personal certificate, for example

Base64–encoded ASCII data for a file with the .arm extension.
4. Type the certificate file name and location for the new personal certificate, or

click Browse to select the name and location.
5. Click OK. If you already have a personal certificate in your key database, a

window appears, asking if you want to set the key you are adding as the
default key in the database.

6. Click Yes or No. The Enter a Label window displays.
7. Type a label, for example the label you used when you requested the personal

certificate. Note that the label must be in the correct WebSphere MQ format:
v For a queue manager, ibmwebspheremq followed by the name of your queue

manager folded to lower case. For example, for QM1, ibmwebspheremqqm1,
or,

Configuring cryptographic hardware on UNIX

110 Security

v For a WebSphere MQ client, ibmwebspheremq followed by your logon user ID
folded to lower case, for example ibmwebspheremqmyuserid.

8. Click OK. The Personal Certificates field shows the label of the new personal
certificate you added.

Mapping DNs to user IDs
UNIX systems do not have a function equivalent to the z/OS CNFs, which are
described in “Working with Certificate Name Filters (CNFs)” on page 130. If you
want to implement a function that maps Distinguished Names to user IDs,
consider using a channel security exit.

Configuring cryptographic hardware on UNIX

Chapter 12. Working with the Secure Sockets Layer (SSL) on UNIX systems 111

112 Security

Chapter 13. Working with the Secure Sockets Layer (SSL) on
Windows systems

This chapter describes how you set up and work with the Secure Sockets Layer
(SSL) on Windows systems. The operations you can perform are:
v “Setting up a key repository”
v “Working with a key repository” on page 116
v “Obtaining personal certificates” on page 118
v “Adding personal certificates to a key repository” on page 119
v “Managing digital certificates” on page 122
v “Mapping DNs to user IDs” on page 123

On Windows 2000 and XP, SSL support is integral to the operating system.
Microsoft Internet Explorer provides the SSL support on the other Windows
platforms. Windows SSL support is documented on the MSDN (Microsoft
Developer Network) CDs and at http://msdn.microsoft.com

Note: Most of the examples provided in this chapter use WebSphere MQ Explorer.
As an alternative, you can open WebSphere MQ Services, right-click the
object you want to work with, select All Tasks and click Manage SSL
Certificates. When you work with digital certificates, you can also use the
amqmcert control command. For more information about amqmcert, refer to
the WebSphere MQ System Administration Guide.

Setting up a key repository
An SSL connection requires a key repository at each end of the connection. Each
queue manager and WebSphere MQ client must have access to a key repository.
See “The SSL key repository” on page 47 for more information.

On Windows systems, digital certificates are held in Microsoft certificate stores.
There are physical stores and logical stores. Physical stores contain the digital
certificates. Usually you do not need to know the location of a physical store and
can refer to the store or a group of stores using a logical store name.

Use the following procedure to view the certificates on your Windows system with
Microsoft Internet Explorer:
1. Click Tools —> Internet Options.
2. Click the Content tab.
3. Click Certificates. The Certificates window (on Windows NT, the Certificate

Manager window) appears.

The Certificates window has the following tabs:
v Personal
v Other People
v Intermediate Certification Authorities
v Trusted Root Certification Authorities

When you view certificates with Internet Explorer, you see the certificates in both
the computer context and the current user context. Certificates in the computer

© Copyright IBM Corp. 2002 113

context are available to all users on the system. Certificates in the current user
context are private to the current user. You can also use the MMC Certificates
snap-in to view certificates.

Use the following procedure to view certificates in the current user context, using
WebSphere MQ Explorer:
1. Open WebSphere MQ Explorer and expand the Queue Managers folder.
2. Ensure you have started the queue manager you want to work with.
3. Right-click the queue manager and select Properties.
4. Select the SSL property page.
5. Click Manage SSL Certificates. The Manage SSL Certificates window appears.

WebSphere MQ provides three logical views of the Microsoft certificate stores:

MY (Current User)
Contains personal certificates, and refers to the physical store for the
current user. These certificates are listed under Personal when you view
the certificates with Internet Explorer.

Certification Authorities (CA)
Contains intermediate CA certificates, and refers to two physical stores: the
store for the current user and the store that is in the computer context and
available to all users. These certificates are listed under Intermediate
Certification Authorities when you view the certificates with Internet
Explorer.

ROOT
Contains root CA certificates, and refers to two physical stores: the store
for the current user and the store that is in the computer context and
available to all users. These certificates are listed under Trusted Root
Certification Authorities when you view the certificates with Internet
Explorer.

The logical stores that contain CA certificates include the CA certificates that the
SSL support on Windows systems provides. A certificate chain can be constructed
from certificates in the CA and ROOT logical stores. You can copy certificates from
these stores to a queue manager store, as described in “Transferring certificates” on
page 122. For more information about CA certificates and certificate chains, refer to
“Digital certificates” on page 18.

WebSphere MQ physical stores are files that must have the .sto file extension. You
can also store an individual certificate in a file, for example, if you have exported
the certificate.

When your queue manager or WebSphere MQ client receives a personal certificate
over an SSL channel, that certificate can be verified only with CA certificates held
in the physical store for that queue manager or WebSphere MQ client. If the
required CA certificates are installed in another store on the machine, but not in
the physical store for your queue manager or WebSphere MQ client, the certificate
is rejected. Note that all the certificates in a certificate chain must be verified, as
described in “How certificate chains work” on page 20.

On Windows systems, private keys are held separately from the certificate store.
Only members of the mqm group and the Administrators group can access private
key data.

Setting up a key repository on Windows

114 Security

Working with the WebSphere MQ default store
When you install WebSphere MQ on your Windows system, WebSphere MQ
provides you with a default store. The default store can hold root CA certificates,
intermediate CA certificates, and personal certificates. WebSphere MQ
automatically populates the default store with CA certificates from the major
Certification Authorities. When you create a new queue manager store, WebSphere
MQ automatically copies the contents of the default store to the physical store for
the queue manager.

When WebSphere MQ copies personal certificates from the default store, the
associated private key is already available to the queue manager. This is because
the private key data is stored when you import the personal certificate to a
WebSphere MQ store, and is then available to any queue manager.

After installation, if you have mqm or administrator authority, you can maintain
the default store in the same manner as you maintain a queue manager store. For
example, you might want to add a personal certificate to the default store to enable
you to use the same certificate for more than one queue manager.

Use the following procedure to work with the WebSphere MQ default store:
1. Open WebSphere MQ Services.
2. Right-click IBM WebSphere MQ Services and click All Tasks —> Manage

Default SSL Certificates. The Manage SSL Certificates – WebSphere MQ
Default Store window appears.

Ensuring CA certificates are available to a queue manager
Ensure that the queue manager certificate store contains all the CA certificates that
might be required to validate certificates received from other queue managers and
from WebSphere MQ clients:
1. Check the certificates that are automatically copied from the WebSphere MQ

default store when you create the queue manager. You can control which
certificates are copied either by modifying the contents of the default store
before you create the queue manager or by removing unwanted certificates
afterwards, as described in “Removing and unassigning certificates” on
page 123.

2. If you require CA certificates that are not in the WebSphere MQ default store,
copy the CA certificates from WebSphere MQ certificate stores, as described in
“Transferring certificates” on page 122.

Ensuring CA certificates are available to a WebSphere MQ
client

WebSphere MQ does not provide a default store for WebSphere MQ clients. Use
one of the following methods to ensure that the WebSphere MQ client certificate
store contains all the CA certificates that might be required to validate certificates
received from queue managers and from other WebSphere MQ clients:
v On Windows 2000 or later, use the amqmcert control command to import

certificates directly to your WebSphere MQ client certificate store. For example:
amqmcert -a -s mqcacert.cer

imports the certificate in mqcacert.cer to the current user’s WebSphere MQ
client store. The value of the MQSSLKEYR environment variable determines the
location of the store.

Setting up a key repository on Windows

Chapter 13. Working with the Secure Sockets Layer (SSL) on Windows systems 115

v On Windows NT, you cannot import a certificate directly into a WebSphere MQ
certificate store. Use the following procedure:
1. Import the CA certificate into the appropriate Microsoft certificate store using

Internet Explorer:
a. Click Tools —> Internet Options.
b. Click the Content tab.
c. Click Certificates. The Certificate Manager window appears.
d. Click Import. The Certificate Manager Import Wizard window appears.
e. Click Next.
f. Type the name of the temporary disk file with a full path, or click Browse

to find the temporary disk file.
g. Click Next.
h. Select the Automatically select the certificate store based on the type of

certificate check box.
i. Click Next.
j. Click Finish. A confirmation window appears.
k. Click OK. The Certificate Manager window shows the certificate you

imported.
2. Ensure the MQSSLKEYR environment variable is set to the location of your

WebSphere MQ client certificate store.
3. List the contents of the appropriate store using the amqmcert command:

– For a root certificate:
amqmcert -k ROOT -l

– For an intermediate certificate:
amqmcert -k CA -l

4. Add the certificate using the amqmcert command:
– For a root certificate:

amqmcert -k ROOT -a xxxxx

– For an intermediate certificate:
amqmcert -k CA -a xxxxx

where xxxxx is the numeric handle of the certificate you require.
v Using WebSphere MQ Explorer, create and populate a certificate store on a

queue manager and copy the .sto file to the location of your WebSphere MQ
client’s certificate store. To obtain that location, refer to “Locating the key
repository for a WebSphere MQ client” on page 117.

Working with a key repository
With Windows queue managers, you can manage your digital certificates using
either WebSphere MQ Explorer or the amqmcert control command, as described in
“Managing digital certificates” on page 122. In most circumstances you do not need
to know the physical location of the certificate store. In certain circumstances, you
might want to change the location of the queue manager certificate store, for
example to use a shared store for all the queue managers on a single machine.

This section tells you about:
v “Locating the key repository for a queue manager” on page 117
v “Changing the key repository location for a queue manager” on page 117
v “Locating the key repository for a WebSphere MQ client” on page 117

Setting up a key repository on Windows

116 Security

v “Specifying the key repository location for a WebSphere MQ client” on page 118

Note: When you change either the key repository attribute, or the certificates in
the certificate store, check “When changes become effective” on page 118.

Locating the key repository for a queue manager
Use the following procedure to obtain information about the location of your
queue manager’s certificate store:
1. Display your queue manager’s attributes, using either of the following MQSC

commands:
DISPLAY QMGR ALL
DISPLAY QMGR SSLKEYR

2. Examine the command output for the location of the certificate store.

Changing the key repository location for a queue manager
Use this procedure to change the location of your queue manager’s certificate store:
1. Open WebSphere MQ Explorer and expand the Queue Managers folder.
2. Ensure you have started the queue manager you want to work with.
3. Right-click the queue manager and select Properties.
4. Select the SSL property page.
5. Edit the path in the Key Repository to point to your chosen directory.
6. Click Yes to confirm the change.

Alternatively, you can use the ALTER QMGR MQSC command to set your queue
manager’s key repository attribute, for example:
ALTER QMGR SSLKEYR(’C:\Program Files\IBM\WebSphere MQ\Qmgrs\QM1\ssl\MyKey’)

The certificate store has the fully-qualified filename:
C:\Program Files\IBM\WebSphere MQ\Qmgrs\QM1\ssl\MyKey.sto

Notes:

1. The .sto extension is a mandatory part of the filename, but is not included as
part of the value of the parameter.

2. The directory you specify must exist.
3. WebSphere MQ creates the file the first time it accesses the new certificate store,

unless the file already exists.

When you change the location of the queue manager’s certificate store, WebSphere
MQ automatically copies the certificates from the default store to the new
certificate store. To ensure that you have all the certificates you require, refer to
“Ensuring CA certificates are available to a queue manager” on page 115.

Locating the key repository for a WebSphere MQ client
Examine the MQSSLKEYR environment variable to obtain the location of your
WebSphere MQ client’s certificate store.
echo %MQSSLKEYR%

Also check your application, because the key repository can be set in an
MQCONNX call, as described in “Specifying the key repository location for a
WebSphere MQ client” on page 118. The value set in an MQCONNX call overrides
the value of MQSSLKEYR.

Working with a key repository on Windows

Chapter 13. Working with the Secure Sockets Layer (SSL) on Windows systems 117

Specifying the key repository location for a WebSphere MQ
client

There is no default key repository for a WebSphere MQ client because the files are
stored in the user’s private file system. Ensure that the key database file can be
accessed only by the intended user to prevent unauthorized copying to other
systems.

You can specify the location of your WebSphere MQ client’s certificate store using
either of the following methods:
v Setting the MQSSLKEYR environment variable, for example:

set MQSSLKEYR=C:\users\john\ssl\key

The certificate store has the fully-qualified filename: C:\users\john\ssl\key.sto

Notes:

1. The .sto extension is a mandatory part of the filename, but is not included
as part of the value of the parameter.

2. The directory you specify must exist.
3. WebSphere MQ creates the file the first time it accesses the new certificate

store, unless the file already exists.
v Providing the path and stem name of the certificate store in the KeyRepository

field of the MQSCO structure when an application makes an MQCONNX call.
For more information about using the MQSCO structure in MQCONNX, refer to
the WebSphere MQ Application Programming Reference.

When changes become effective
Changes to the certificates in the certificate store become effective immediately.

Changes to the key repository attribute become effective:
v When a new outbound single channel process first runs an SSL channel.
v When a new inbound TCP/IP single channel process first receives a request to

start an SSL channel.
v For channels that run as threads of a process pooling process (amqrmppa), when

the process pooling process is started or restarted and first runs an SSL channel.
If the process pooling process has already run an SSL channel, and you want the
change to become effective immediately, restart the queue manager.

v For channels that run as threads of the channel initiator, when the channel
initiator is started or restarted and first runs an SSL channel. If the channel
initiator process has already run an SSL channel, and you want the change to
become effective immediately, restart the queue manager.

v For channels that run as threads of a TCP/IP listener, when the listener is
started or restarted and first receives a request to start an SSL channel.

Obtaining personal certificates
You apply to a Certification Authority for the personal certificate that is used to
verify the identity of your queue manager or WebSphere MQ client. You can also
create self-signed certificates for testing SSL.

This section tells you about:
v “Creating a self-signed personal certificate” on page 119
v “Requesting a personal certificate” on page 119

Working with a key repository on Windows

118 Security

You can also copy a certificate from one store to another, then assign it to your
queue manager or WebSphere MQ client, as described in “Managing digital
certificates” on page 122.

Creating a self-signed personal certificate
No self-signed personal certificates are provided at installation, but they are useful
when testing SSL communications on your system. You can create a self-signed
personal certificate for testing SSL with the Microsoft makecert certificate creation
tool, as described in the Microsoft “Platform SDK: Security” documentation.
Alternatively, you can ask your system administrator to create a self-signed
personal certificate using the Microsoft CA Server.

Requesting a personal certificate
You apply to a Certification Authority for the personal certificate that is used to
authenticate your queue manager or WebSphere MQ client. For a description of
how to apply for a personal certificate, refer to the Help information provided by
the Certification Authority you choose.

Note: When you request a personal certificate from a CA, ask for an exportable
private key, otherwise you cannot set up secure channels. An exportable
private key enables you to copy private key data between key repositories.

Adding personal certificates to a key repository
When you receive the certificate from the CA, you either import the certificate
directly into a system store or you can save the certificate to a temporary disk file.
You then add the certificate from the temporary disk file to a certificate store, as
described in:
v “Adding a personal certificate to a queue manager key repository”
v “Adding a personal certificate to a WebSphere MQ client key repository” on

page 120

To associate the certificate with a queue manager or WebSphere MQ client, assign
the certificate, as described in:
v “Assigning a personal certificate to a queue manager” on page 121
v “Assigning a personal certificate to a WebSphere MQ client” on page 122

SSL uses the certificate that you assign for authentication purposes.

Adding a personal certificate to a queue manager key
repository

On Windows NT, you import the personal certificate from a temporary disk file to
a logical store and then transfer the certificate to a queue manager store. On
Windows 2000, you can add the certificate in a single procedure.

On Windows NT, use the following procedure to import a personal certificate from
a temporary disk file to a logical store using Internet Explorer:
1. Click Tools —> Internet Options.
2. Click the Content tab.
3. Click Certificates. The Certificate Manager window appears.
4. Click Import. The Certificate Manager Import Wizard window appears.
5. Click Next.

Obtaining personal certificates on Windows

Chapter 13. Working with the Secure Sockets Layer (SSL) on Windows systems 119

6. Type the name of the temporary disk file with a full path, or click Browse to
find the temporary disk file.

7. Click Next.
8. Type the password that you received from the CA, select the Mark the private

key as exportable check box, and click Next.
9. Select the Automatically select the certificate store based on the type of

certificate check box and click Next.
10. Click Finish. A confirmation window appears.
11. Click OK. The Certificate Manager window shows the certificate you

imported.

Transfer the certificate from the logical store to a queue manager store, as
described in “Transferring certificates” on page 122.

On Windows 2000, use the following procedure to add a personal certificate from a
temporary disk file to a queue manager certificate store using WebSphere MQ
Explorer:
1. Open WebSphere MQ Explorer and expand the Queue Managers folder.
2. Ensure you have started the queue manager you want to work with.
3. Right-click the queue manager and select Properties.
4. Select the SSL page and click the Manage SSL Certificates button to open the

Manage SSL Certificates window.
5. Click Add... in the Manage SSL Certificates window.
6. In the Import from a file field in the Add Certificate window, type the

fully-qualified name of the temporary disk file in which you stored the
personal certificate.

7. Click Add in the Add Certificate window. The Manage SSL Certificates window
shows the label of the certificate you imported.

8. Click OK in the Manage SSL Certificates window.

Adding a personal certificate to a WebSphere MQ client key
repository

On Windows 2000 or later, use the amqmcert control command to add a personal
certificate from a temporary disk file directly to a WebSphere MQ client certificate
store. For example:
amqmcert -a -p mqper.pfx -z password

imports the certificate in mqper.pfx to the current user’s WebSphere MQ client
store using the specified password to decrypt the private key. The key is then
stored in the local machine’s registry.

On Windows NT, you cannot import a certificate directly into a WebSphere MQ
certificate store. Use the following procedure:
1. Import the certificate into the Microsoft personal (MY) certificate store using

Internet Explorer. Use the following procedure:
a. Click Tools —> Internet Options.
b. Click the Content tab.
c. Click Certificates. The Certificate Manager window appears.
d. Click Import. The Certificate Manager Import Wizard window appears.
e. Click Next.

Adding personal certificates on Windows

120 Security

f. Type the name of the temporary disk file with a full path, or click Browse to
find the temporary disk file.

g. Click Next.
h. Type the password that you received from the CA, select the Mark the

private key as exportable check box, and click Next.
i. Select the Automatically select the certificate store based on the type of

certificate check box and click Next.
j. Click Finish. A confirmation window appears.
k. Click OK. The Certificate Manager window shows the certificate you

imported.
2. Ensure the MQSSLKEYR environment variable is set to the location of your

WebSphere MQ client certificate store.
3. List the contents of the MY store using the amqmcert command:

amqmcert -k MY -l

4. Add the certificate using the amqmcert command:
amqmcert -k MY -a xxxxx

where xxxxx is the numeric handle of the certificate you require.

Refer to the WebSphere MQ System Administration Guide for a description of the
amqmcert control command.

Assigning a personal certificate to a queue manager
For a queue manager to use an SSL channel, you must assign a personal certificate
to the queue manager and the process that is running the channel must be able to
access the associated private key. All personal certificates that are in WebSphere
MQ stores have private key data, which members of the mqm group and the
Administrators group can access.

To assign a personal certificate to a queue manager:
1. Open WebSphere MQ Explorer and expand the Queue Managers folder.
2. Ensure you have started the queue manager you want to work with.
3. Right-click the queue manager and select Properties.
4. Select the SSL page and click Manage SSL Certificates to open the Manage

SSL Certificates window.
5. Click Assign to open the Assign Queue Manager Certificate window.
6. If no suitable certificate is already in the store, click Add to open the Add

Certificate window. By default, the list that displays shows the contents of all
certificate stores, but the list contains only personal certificates, that is,
certificates with associated private keys.

7. Select the certificate you want to copy.
On Windows 2000, you can also click Browse to find a suitable file from
which to import the certificate.

8. Click Add. The certificate appears in the Assign Queue Manager Certificate
window.

9. Select the certificate you intend to use and click OK.
10. Click OK to close the Manage SSL Certificates window.

Adding personal certificates on Windows

Chapter 13. Working with the Secure Sockets Layer (SSL) on Windows systems 121

Assigning a personal certificate to a WebSphere MQ client
Use the amqmcert control command to assign a personal certificate to a
WebSphere MQ client. For example:
amqmcert -d 123

assigns the certificate with handle 123 to the WebSphere MQ client that is the
interactive user.

Refer to the WebSphere MQ System Administration Guide for a description of the
amqmcert control command.

Managing digital certificates
You can manage digital certificates with WebSphere MQ Explorer, WebSphere MQ
Services, or the amqmcert control command. Refer to the WebSphere MQ System
Administration Guide for a description of the amqmcert control command.

Note that changes to the certificates in a certificate store becoime effective
immediately.

Note that you can access the WebSphere MQ default store only with WebSphere
MQ Services.

This section contains the following procedures:
v “Transferring certificates”
v “Removing and unassigning certificates” on page 123

Transferring certificates
This section tells you how to transfer certificates from one store to another, for
example:
v From one queue manager store to another queue manager store.
v From a Windows logical store to a WebSphere MQ store.
v From the default store to a queue manager store.
v From another store to the default store. Use WebSphere MQ Services to access

the default store:
1. Open WebSphere MQ Services.
2. Right-click WebSphere MQ Services and click All Tasks —> Manage

Default SSL Certificates. The Manage SSL Certificates – WebSphere MQ
Default Store window appears.

3. Click Add to open the Add Certificate window.
4. From the list of certificates, select the certificate you want to copy and click

Add. The certificate is copied to the certificate store for the queue manager
you are working with.

5. Click OK to close the Manage SSL Certificates window.

To copy a certificate using WebSphere MQ Explorer:
1. Open WebSphere MQ Explorer and expand the Queue Managers folder.
2. Ensure you have started the queue manager you want to work with.
3. Right-click the queue manager and select Properties.
4. Select the SSL page and click Manage SSL Certificates to open the Manage

SSL Certificates window.

Adding personal certificates on Windows

122 Security

5. Click Add to open the Add Certificate window.
6. From the list of certificates, select the certificate you want to copy and click

Add. The certificate is copied to the certificate store for the queue manager you
are working with.

7. Click OK to close the Manage SSL Certificates window.

Removing and unassigning certificates
When you remove a certificate, it is deleted from the certificate store for the queue
manager or WebSphere MQ client. When you unassign a certificate, it remains in
the certificate store but cannot be used for authentication purposes.

To remove or unassign a certificate from a queue manager using WebSphere MQ
Explorer:
1. Open WebSphere MQ Explorer and expand the Queue Managers folder.
2. Ensure you have started the queue manager you want to work with.
3. Right-click the queue manager and select Properties.
4. Select the SSL page and click Manage SSL Certificates to open the Manage

SSL Certificates window.
5. From the list of certificates, select the certificate you want to remove and click

either Remove or Unassign.
6. Click OK to close the Manage SSL Certificates window.

To remove or unassign a certificate from the current WebSphere MQ client, use the
amqmcert control command. For example:
amqmcert -u

unassigns the certificate from the current WebSphere MQ client.

Mapping DNs to user IDs
Windows systems do not have a function equivalent to the z/OS CNFs, which are
described in “Working with Certificate Name Filters (CNFs)” on page 130. If you
want to implement a function that maps Distinguished Names to user IDs,
consider using a channel security exit.

Managing digital certificates on Windows

Chapter 13. Working with the Secure Sockets Layer (SSL) on Windows systems 123

124 Security

Chapter 14. Working with the Secure Sockets Layer (SSL) on
z/OS

This chapter describes how you set up and work with the Secure Sockets Layer
(SSL) on z/OS. The operations you can perform are:
v “Setting up a key repository”
v “Working with a key repository” on page 126
v “Obtaining personal certificates” on page 127
v “Adding personal certificates to a key repository” on page 128
v “Managing digital certificates” on page 128
v “Working with Certificate Name Filters (CNFs)” on page 130

Each section includes examples of performing each task using RACF. You can
perform similar tasks using the other external security managers.

On z/OS, you must also set the number of server subtasks that each queue
manager uses for processing SSL calls, as described in “Setting the SSLTASKS
parameter”.

z/OS SSL support is integral to the operating system, and is known as System SSL.
System SSL is part of the Cryptographic Services Base element of z/OS. The
Cryptographic Services Base members are installed in the pdsname.SGSKLOAD
partitioned data set (PDS). When you install System SSL, ensure that you choose
the appropriate options to provide the CipherSpecs you require.

Setting the SSLTASKS parameter
To use SSL channels, ensure that there are at least two server subtasks by setting
the SSLTASKS parameter, using the ALTER QMGR command. For example:
ALTER QMGR SSLTASKS(5)

To avoid problems with storage allocation, do not set the SSLTASKS parameter to a
value greater than 50.

For more information about the ALTER QMGR MQSC command, refer to the
WebSphere MQ Script (MQSC) Command Reference.

Setting up a key repository
An SSL connection requires a key repository at each end of the connection. Each
queue manager must have access to a key repository. Use the SSLKEYR parameter
on the ALTER QMGR command to associate a key repository with a queue
manager. See “The SSL key repository” on page 47 for more information.

On z/OS, digital certificates are stored in a key ring that is managed by RACF.

Note: These digital certificates have labels. A label associates a certificate with a
queue manager. SSL uses that certificate for authentication purposes. On
z/OS, WebSphere MQ uses the ibmWebSphereMQ prefix on a label to avoid
confusion with certificates for other products. The prefix is followed by the
name of the queue manager.

© Copyright IBM Corp. 2002 125

The key repository name for a queue manager is the name of a key ring in your
RACF database. You can specify the key ring name either before or after creating
the key ring.

Use the following procedure to create a new key ring for a queue manager:
1. Ensure that you have the appropriate authority to issue the RACDCERT

command (see the SecureWay® Security Server RACF Command Language Reference
for more details).

2. Issue the following command:
RACDCERT ID(userid) ADDRING(ring-name)

where:
v userid is the user ID of the channel initiator address space.
v ring-name is the name you want to give to your key ring. The length of this

name can be up to 237 characters. This name is case-sensitive. Specify
ring-name in upper case to avoid problems.

Ensuring CA certificates are available to a queue manager
After you have created your key ring, you need to connect any relevant CA
certificates to it. For example, to connect a CA certificate for My CA to your key
ring, use the following command:
RACDCERT ID(userid)
CONNECT(CERTAUTH LABEL(’My CA’) RING(ring-name) USAGE(CERTAUTH))

For more information about CA certificates, refer to “Digital certificates” on
page 18.

Working with a key repository
This section tells you how to perform the following tasks:
v “Locating the key repository for a queue manager”
v “Specifying the key repository location for a queue manager”

Note: When you change either the key repository attribute, or the certificates in
the key ring, check “When changes become effective” on page 127.

Locating the key repository for a queue manager
Use the following procedure to obtain information about the location of your
queue manager’s key ring:
1. Display your queue manager’s attributes, using either of the following MQSC

commands:
DISPLAY QMGR ALL
DISPLAY QMGR SSLKEYR

2. Examine the command output for the location of the key ring.

Specifying the key repository location for a queue manager
To specify the location of your queue manager’s key ring, use the ALTER QMGR
MQSC command to set your queue manager’s key repository attribute. For
example:
ALTER QMGR SSLKEYR(CSQ1RING)

Setting up a key repository on z/OS

126 Security

When changes become effective
Changes to the certificates in the key ring and to the key repository attribute
become effective when the channel initiator is started or restarted.

Obtaining personal certificates
You apply to a Certification Authority (CA) for the personal certificate that is used
to verify the identity of your queue manager. You can also create self-signed
certificates for testing SSL on your z/OS system.

This section tells you how to use RACF for:
1. “Creating a self-signed personal certificate”
2. “Requesting a personal certificate”
3. “Creating a RACF signed personal certificate” on page 128

Creating a self-signed personal certificate
Use the following procedure to create a self-signed personal certificate:
1. Generate a certificate and a public and private key pair using the following

command:
RACDCERT ID(userid) GENCERT
SUBJECTSDN(CN(’common-name’)

T(’title’)
OU(’organizational-unit’)
O(’organization’)
L(’locality’)
SP(’state-or-province’)
C(’country’))

WITHLABEL(’label-name’)

2. Connect the certificate to your key ring using the following command:
RACDCERT ID(userid)
CONNECT(ID(userid) LABEL(’label-name’) RING(ring-name) USAGE(PERSONAL))

where:
v userid is the user ID of the channel initiator address space.
v ring-name is the name you gave the key ring in “Setting up a key repository” on

page 125.
v label-name must be in the correct WebSphere MQ format for a queue manager:

ibmWebSphereMQ followed by the name of your queue manager, for example,
ibmWebSphereMQCSQ1.

Requesting a personal certificate
To apply for a personal certificate, use RACF as follows:
1. Create a self-signed personal certificate, as in “Creating a self-signed personal

certificate”. This certificate provides the request with the attribute values for the
Distinguished Name.

2. Create a PKCS #10 Base64-encoded certificate request written to a data set,
using the following command:
RACDCERT ID(userid) GENREQ(LABEL(’label-name’)) DSN(output-data-set-name)

where label-name is the label used when creating the self-signed certificate.
3. Send the data set to a Certification Authority (CA) to request a new personal

certificate.

Working with a key repository on z/OS

Chapter 14. Working with the Secure Sockets Layer (SSL) on z/OS 127

Creating a RACF signed personal certificate
RACF can function as a Certification Authority and issue its own CA certificate.
This section uses the term signer certificate to denote a CA certificate issued by
RACF.

The private key for the signer certificate must be in the RACF database before you
carry out the following procedure:
1. Use the following command to generate a personal certificate signed by RACF,

using the signer certificate contained in your RACF database:
RACDCERT ID(userid) GENCERT
SUBJECTSDN(CN(’common-name’)

T(’title’)
OU(’organizational-unit’)
O(’organization’)
L(’locality’)
SP(’state-or-province’)
C(’country’))

WITHLABEL(’label-name’)
SIGNWITH(CERTAUTH LABEL(’signer-label’))

2. Connect the certificate to your key ring using the following command:
RACDCERT ID(userid)
CONNECT(ID(userid) LABEL(’label-name’) RING(ring-name) USAGE(PERSONAL))

where:
v userid is the user ID of the channel initiator address space.
v ring-name is the name you gave the key ring in “Setting up a key repository” on

page 125.
v label-name must be in the correct WebSphere MQ format for a queue manager:

ibmWebSphereMQ followed by the name of your queue manager, for example,
ibmWebSphereMQCSQ1.

v signer-label is the label of your own signer certificate.

Adding personal certificates to a key repository
After the Certification Authority sends you a new personal certificate, add it to the
key ring using the following procedure:
1. Add the certificate to the RACF database using the following command:

RACDCERT ID(userid) ADD(input-data-set-name) WITHLABEL(’label-name’)

2. Connect the certificate to your key ring using the following command:
RACDCERT ID(userid)
CONNECT(ID(userid) LABEL(’label-name’) RING(ring-name) USAGE(PERSONAL))

where:
v userid is the user ID of the channel initiator address space.
v ring-name is the name you gave the key ring in “Setting up a key repository” on

page 125.
v label-name must be in the correct WebSphere MQ format for a queue manager:

ibmWebSphereMQ followed by the name of your queue manager, for example,
ibmWebSphereMQCSQ1.

Managing digital certificates
This section tells you about managing the digital certificates in your key ring.

Obtaining personal certificates on z/OS

128 Security

When you make changes to the certificates in a key ring, refer to “When changes
become effective” on page 127.

This section contains the following procedures:
v “Transferring certificates”
v “Removing certificates”

Transferring certificates
This section describes how to extract a certificate from a key ring to allow it to be
copied to another system, and how to import a certificate from another system into
a key ring.

Extracting a certificate from a key repository
On the system from which you want to extract the certificate, use the following
command:
RACDCERT ID(userid) EXPORT(LABEL(’label-name’))
DSN(output-data-set-name) FORMAT(CERTB64)

where:
v userid is the user ID under which the certificate was added to the key ring.
v label-name is the label of the certificate you want to extract.
v output-data-set-name is the data set into which the certificate is placed.
v CERTB64 is a DER encoded X.509 certificate that is in Base64 format. You can

choose an alternative format, for example:

CERTDER DER encoded X.509 certificate in binary format

PKCS12B64 PKCS #12 certificate in Base64 format

PKCS12DER PKCS #12 certificate in binary format

Note that PKCS12DER is supported only on OS/390 V2.10 and
z/OS V1.1 and subsequent releases.

Importing a certificate into a key repository
To import the extracted certificate into a different key ring, follow the procedure
described in “Adding personal certificates to a key repository” on page 128.

Removing certificates
This section describes two methods of removing a certificate:
v “Deleting a personal certificate from a key repository”
v “Renaming a personal certificate in a key repository” on page 130

Deleting a personal certificate from a key repository
Before deleting a personal certificate, you might want to save a copy of it. To copy
your personal certificate to a data set before deleting it, follow the procedure in
“Extracting a certificate from a key repository”. Then use the following command
to delete your personal certificate:
RACDCERT ID(userid) DELETE(LABEL(’label-name’))

where:
v userid is the user ID under which the certificate was added to the key ring.
v label-name is the name of the certificate you want to delete.

Managing digital certificates on z/OS

Chapter 14. Working with the Secure Sockets Layer (SSL) on z/OS 129

Renaming a personal certificate in a key repository
If you do not want a certificate with a specific label to be found, but do not want
to delete it, you can rename it temporarily using the following command:
RACDCERT ID(userid) LABEL(’label-name’) NEWLABEL(’new-label-name’)

where:
v userid is the user ID under which the certificate was added to the key ring.
v label-name is the name of the certificate you want to rename.
v new-label-name is the new name of the certificate.

This can be useful when testing SSL client authentication.

Working with Certificate Name Filters (CNFs)
When an entity at one end of an SSL channel receives a certificate from a remote
connection, the entity asks RACF if there is a user ID associated with that
certificate. The entity uses that user ID as the channel user ID. If there is no user
ID associated with the certificate, the entity uses the user ID under which the
channel initiator is running. For more information about which user ID is used,
refer to the WebSphere MQ for z/OS System Setup Guide.

There are two ways to associate a user ID with a certificate:
v Install that certificate into the RACF database under the user ID with which you

wish to associate it, as described in “Adding personal certificates to a key
repository” on page 128.

v Use a Certificate Name Filter (CNF) to map the Distinguished Name of the
subject or issuer of the certificate to the user ID, as described in “Setting up a
CNF”.

Setting up a CNF
Perform the following steps to set up a CNF. Refer to the SecureWay Security Server
RACF Security Administrator’s Guide for more information about the commands you
use to manipulate CNFs.
1. Enable CNF functions. You require update authority on the class DIGTNMAP

to do this:
SETROPTS CLASSACT(DIGTNMAP) RACLIST(DIGTNMAP)

2. Define the CNF. For example:
RACDCERT ID(USER1) MAP WITHLABEL(’filter1’) TRUST
SDNFILTER(’O=IBM.C=UK’) IDNFILTER(’O=ExampleCA.L=Internet’)

where USER1 is the user ID to be used when:
v The DN of the subject has an Organization of IBM and a Country of UK.
v The DN of the issuer has an Organization of ExampleCA and a Locality of

Internet.
3. Refresh the CNF mappings:

SETROPTS RACLIST(DIGTNMAP) REFRESH

Notes:

1. If the actual certificate is stored in the RACF database, the user ID under which
it is installed is used in preference to the user ID associated with any CNF. If
the certificate is not stored in the RACF database, the user ID associated with
the most specific matching CNF is used. Matches of the subject DN are
considered more specific than matches of the issuer DN.

Managing digital certificates on z/OS

130 Security

2. Changes to CNFs do not apply until you refresh the CNF mappings.
3. A DN matches the DN filter in a CNF only if the DN filter is identical to the

least significant portion of the DN. The least significant portion of the DN
comprises the attributes that are usually listed at the right-most end of the DN,
but which appear at the beginning of the certificate.
For example, consider the SDNFILTER ’O=IBM.C=UK’. A subject DN of
’CN=QM1.O=IBM.C=UK’ matches that filter, but a subject DN of
’CN=QM1.O=IBM.L=Hursley.C=UK’ does not match that filter.
Note that the least significant portion of some certificates can contain fields that
do not match the DN filter. Consider excluding these certificates by specifying a
DN pattern in the SSLPEER pattern on the DEFINE CHANNEL command.

4. If the most specific matching CNF is defined to RACF as NOTRUST, the entity
uses the user ID under which the channel initiator is running.

5. RACF uses the ’.’ character as a separator. WebSphere MQ uses either a
comma or a semicolon.

You can define CNFs to ensure that the entity never sets the channel user ID to the
default, which is the user ID under which the channel initiator is running. For each
CA certificate in the key ring associated with the entity, define a CNF with an
IDNFILTER that exactly matches the subject DN of that CA certificate. This ensures
that all certificates that the entity might use match at least one of these CNFs. This
is because all such certificates must either be connected to the key ring associated
with the entity, or must be issued by a CA for which a certificate is connected to
the key ring associated with the entity.

Certificate Name Filters

Chapter 14. Working with the Secure Sockets Layer (SSL) on z/OS 131

132 Security

Chapter 15. Testing SSL

To test your SSL installation you must define your channels to use SSL. You must
also create and manage your digital certificates. On UNIX sytems, Windows
systems, and on z/OS, you can perform the tests with self–signed certificates. On
OS/400, Windows systems, and on z/OS, you can work with personal certificates
signed by a local CA. For full information about creating and managing
certificates, see:
v Chapter 11, “Working with the Secure Sockets Layer (SSL) on OS/400” on

page 87
v Chapter 12, “Working with the Secure Sockets Layer (SSL) on UNIX systems” on

page 97
v Chapter 13, “Working with the Secure Sockets Layer (SSL) on Windows systems”

on page 113
v Chapter 14, “Working with the Secure Sockets Layer (SSL) on z/OS” on page 125

The following sections tell you about testing SSL:
v “Defining channels to use SSL” on page 134
v “Testing SSL communications” on page 134
v “Testing for failure of SSL client authentication” on page 136

You might also want to test SSL client authentication, which is an optional part of
the SSL protocol. During the SSL handshake the SSL client always obtains and
validates a digital certificate from the SSL server. With the WebSphere MQ
implementation, the SSL server always requests a certificate from the SSL client.

On UNIX systems and on z/OS, the SSL client sends a certificate only if it has
either of the following:
v A certificate labelled in the correct WebSphere MQ format:

– For a queue manager on UNIX systems, ibmwebspheremq followed by the
name of your queue manager folded to lower case. For example, for QM1,
ibmwebspheremqqm1

– For a queue manager on z/OS, ibmWebSphereMQ followed by the name of your
queue manager, for example ibmWebSphereMQQM1

– For a WebSphere MQ client on UNIX systems, ibmwebspheremq followed by
your logon user ID folded to lower case, for example
ibmwebspheremqmyuserid.

v A default certificate (which might be the ibmwebspheremq or ibmWebSphereMQ
certificate).

On Windows systems, the SSL client sends a certificate only if a certificate has been
added to the queue manager or WebSphere MQ client certificate store, and then
assigned, as described in “Adding personal certificates to a key repository” on
page 119.

On OS/400, the SSL client sends a certificate only if it has a certificate labelled in
the correct WebSphere MQ format: ibmwebspheremq followed by the name of your
queue manager folded to lower case. For example, for QM1, ibmwebspheremqqm1

© Copyright IBM Corp. 2002 133

Note: On OS/400 and UNIX systems, WebSphere MQ uses the ibmwebspheremq
prefix, and on z/OS the ibmWebSphereMQ prefix, on a label to avoid confusion
with certificates for other products. On OS/400 and UNIX systems, ensure
that you specify the entire certificate label in lower case.

The SSL server always validates the client certificate if one is sent. If the SSL client
does not send a certificate, authentication fails only if the end of the channel acting
as the SSL server is defined:
v With the SSLCAUTH parameter set to REQUIRED

or
v With an SSLPEER parameter value

“Testing for failure of SSL client authentication” on page 136 tells you how to test
this process.

Chapter 19, “Understanding authentication failures” on page 153 provides general
information that might help you when testing SSL authentication.

Defining channels to use SSL
Use the DEFINE CHANNEL MQSC command with the following parameters to
control how channels use SSL:
v SSLCIPH
v SSLPEER
v SSLCAUTH

On OS/400, you can also use the CRTMQMCHL command with the same SSL
parameters.

Only the SSLCIPH parameter is mandatory if you want your channel to use SSL.
Refer to Chapter 17, “Working with CipherSpecs” on page 145 for information
about the permitted values for the SSLCIPH parameter.

Refer to the WebSphere MQ Script (MQSC) Command Reference for a complete
description of the DEFINE CHANNEL command, and to the WebSphere MQ
Intercommunication book for general information about WebSphere MQ channels.

For a description of the OS/400 CRTMQMCHL command, refer to the WebSphere
MQ for iSeries V5.3 System Administration.

Testing SSL communications
When you are testing SSL communications on your system, you might want to use
certificates that you create on your own system.

On UNIX systems, Windows systems, and z/OS, you can create self-signed
certificates for testing.

On OS/400, you cannot create self-signed certificates. Use personal certificates
signed by a local CA to test SSL on OS/400. When testing on OS/400, ensure that
the other end of the test connection has a copy of your local CA’s certificate.

Refer to the WebSphere MQ Intercommunication book to obtain the procedure for
checking that channel communication works.

Testing SSL

134 Security

Testing with self-signed certificates
This section tells you how to use self-signed certificates to test SSL authentication
between two queue managers. For illustration purposes, the names QM1 and QM2 are
used. For a certificate to be authenticated when it is received on another system,
the receiving system must have a copy of the CA certificate for the CA that issued
the certificate. That certificate can be a self-signed certificate. Note that you can
adapt the procedure described in this section for testing SSL communication
between a WebSphere MQ client and a queue manager.

When you test with self-signed certificates, you authenticate with a copy of the
certificate itself that you add to the key repository:
v On OS/400, import the certificate, as described in “Importing a certificate into a

key repository” on page 94.
v On UNIX systems, add the certificate as a signer certificate, as described in

“Adding a CA certificate into a key repository” on page 106.
v On Windows systems, add the certificate to the queue manager store, as

described in “Ensuring CA certificates are available to a queue manager” on
page 115.

v On z/OS, connect the certificate to the key ring. For more information, refer to
the z/OS Security Server RACF Command Language Reference, SA22-7687.

This section describes:
v “Copying the certificate for QM1 to QM2”
v “Copying the certificate for QM2 to QM1” on page 136

These procedures might require you to transfer a certificate from one system to the
other, for example by ftp.

Transferring certificates by ftp
When you transfer certificates by ftp, you must ensure that you do so in the
correct format.

Transfer the following certificate types in binary format:
v DER encoded binary X.509
v PKCS #7 (CA certificates)
v PKCS #12 (personal certificates)

and transfer the following certificate types in ASCII format:
v PEM (privacy-enhanced mail)
v Base64 encoded X.509

Copying the certificate for QM1 to QM2
Perform the following steps on the system on which QM1 is running:
1. Create a self–signed certificate for QM1.
2. Extract a copy of the QM1 certificate.
3. If queue manager QM2 is running on a different system, transfer the QM1

certificate to the QM2 system, for example by ftp.

Add the QM1 certificate to the key repository for QM2:
v On OS/400, import the certificate to the certificate store.
v On UNIX systems, add the certificate as a signer certificate.
v On Windows systems, add the certificate to the queue manager store.

Testing SSL communications

Chapter 15. Testing SSL 135

v On z/OS, connect the certificate to the key ring.

Copying the certificate for QM2 to QM1
Perform the following steps on the system on which QM2 is running:
1. Create a self–signed certificate for QM2.
2. Extract a copy of the QM2 certificate.
3. If queue manager QM1 is running on a different system, transfer the QM2

certificate to the QM1 system, for example by ftp.

Add the QM2 certificate to the key repository for QM1:
v On OS/400, import the certificate to the certificate store.
v On UNIX systems, add the certificate as a signer certificate.
v On Windows systems, add the certificate to the queue manager store.
v On z/OS, connect the certificate to the key ring.

Testing on OS/400
On OS/400, you can use personal certificates signed by a local CA to test SSL
communications. The procedures for creating a local CA certificate and using the
local CA to sign your personal certificate are described in “Obtaining personal
certificates” on page 91.

Copying a local CA certificate from OS/400 to QM2
Perform the following steps on the OS/400 on which the local CA is running:
1. Create a local CA certificate, as described in “Creating CA certificates for

testing” on page 91.
2. Export a copy of the local CA certificate, as described in “Exporting a certificate

from a key repository” on page 93.
3. Transfer the local CA certificate to the QM2 system, for example by ftp.

Add the OS/400 local CA certificate to the key repository for QM2:
v On OS/400, import the certificate to the certificate store.
v On UNIX systems, add the certificate as a signer certificate.
v On Windows systems, add the certificate to the queue manager store.
v On z/OS, connect the certificate to the key ring.

Testing for failure of SSL client authentication
To test for failure of SSL client authentication, you must prevent the the SSL client
from sending a certificate in response to a request from the SSL server.

On OS/400, remove the certificate labelled ibmwebspheremq followed by the name
of your queue manager folded to lower case. For example, for QM1,
ibmwebspheremqqm1

On UNIX systems, remove from the SSL client’s key repository both:
v The certificate labelled:

– For a queue manager, ibmwebspheremq followed by the name of your queue
manager folded to lower case. For example, for QM1, ibmwebspheremqqm1,
or,

– For a WebSphere MQ client, ibmwebspheremq followed by your logon user ID
folded to lower case, for example ibmwebspheremqmyuserid.

Testing SSL communications

136 Security

v The default certificate (which might be the ibmwebspheremq certificate).

On z/OS, remove from the SSL client’s key repository both:
v The certificate labelled ibmWebSphereMQ followed by the name of your queue

manager, for example ibmWebSphereMQQM1

v The default certificate (which might be the ibmWebSphereMQ certificate).

On Windows systems, unassign the certificate from the queue manager or
WebSphere MQ client, as described in “Removing and unassigning certificates” on
page 123.

Note: On OS/400, UNIX systems, and z/OS, you remove the certificates from the
key repository. If you do not already have a copy of a certificate and you
want to restore it after testing for failure of SSL client authentication, you
must save a copy of the certificate.

The following procedure assumes that:
v QM1 is the SSL client
v QM2 is the SSL server
1. Remove the personal certificates for QM1.
2. On QM2, define the channel with SSLCAUTH set to REQUIRED.
3. On QM1, start the channel. Note that the authentication failure produces an error

message at both ends of the channel and raises an error event at both ends of
the channel.

When testing is complete, if necessary, restore the personal certificates you
removed to the key repository for QM1.

Testing client authentication

Chapter 15. Testing SSL 137

138 Security

Chapter 16. Working with Certificate Revocation Lists

During the SSL handshake, the communicating partners authenticate each other
with digital certificates. Authentication can include a check that the certificate
received can still be trusted. Certification Authorities (CAs) revoke certificates for
various reasons, including:
v The owner has moved to a different organization
v The private key is no longer secret

CAs publish revoked personal certificates in a Certificate Revocation List (CRL).
CA certificates that have been revoked are published in an Authority Revocation
List (ARL).

For more information about Certification Authorities, refer to “Digital certificates”
on page 18.

WebSphere MQ SSL support implements CRL checking using LDAP (Lightweight
Directory Access Protocol) servers. This chapter tells you about:
v “Setting up LDAP servers”
v “Accessing CRLs” on page 141
v “Manipulating authentication information objects with PCF commands” on

page 144
v “Keeping CRLs up to date” on page 144

For more information about LDAP, refer to the WebSphere MQ Application
Programming Guide.

The WebSphere MQ CRL support on each platform is as follows:
v On OS/400, the CRL support complies with PKIX X.509 V2 CRL profile

recommendations.
v On UNIX systems, the CRL support complies with PKIX X.509 V2 CRL profile

recommendations.
v On Windows 2000, the CRL support corresponds to that provided by the

operating system.
v On Windows NT, the CRL support corresponds to that provided by Microsoft

Internet Explorer.
v On z/OS, System SSL supports CRLs stored in LDAP servers by the Tivoli

Public Key Infrastructure product.

Setting up LDAP servers
Configure the LDAP Directory Information Tree (DIT) structure to use the
hierarchy corresponding to the Distinguished Names of the CAs that issue the
certificates and CRLs. You can set up the DIT structure with a file that uses the
LDAP Data Interchange Format (LDIF). You can also use LDIF files to update a
directory.

© Copyright IBM Corp. 2002 139

LDIF files are ASCII text files that contain the information required to define
objects within an LDAP directory. LDIF files contain one or more entries, each of
which comprises a Distinguished Name, at least one object class definition and,
optionally, multiple attribute definitions.

The certificateRevocationList;binary attribute contains a list, in binary form, of
revoked user certificates. The authorityRevocationList;binary attribute contains a
binary list of CA certificates that have been revoked. The binary data for these
attributes is in PEM (Privacy-Enhanced Mail) format, that is, Base 64 encoded data.
For more information about LDIF files, refer to the documentation provided with
your LDAP server.

Figure 11 shows a sample LDIF file that you might create as input to your LDAP
server to load the CRLs and ARLs issued by CA1, which is an imaginary
Certification Authority with the Distinguished Name “CN=CA1, OU=Test, O=IBM,
C=GB”, set up by the Test organization within IBM.

Figure 12 shows the DIT structure that your LDAP server creates when you load
the sample LDIF file shown in Figure 11 together with a similar file for CA2, an
imaginary Certification Authority set up by the PKI organization, also within IBM.

“Configuring and updating LDAP servers” describes the procedure for setting up
your LDAP server.

Configuring and updating LDAP servers
Use the following procedure to configure or update your LDAP server:

dn: o=IBM, c=GB
o: IBM
objectclass: top
objectclass: organization

dn: ou=Test, o=IBM, c=GB
ou: Test
objectclass: organizationalUnit

dn: cn=CA1, ou=Test, o=IBM, c=GB
cn: CA1
objectclass: cRLDistributionPoint
objectclass: certificationAuthority
authorityRevocationList;binary:: (PEM format data)
certificateRevocationList;binary:: (PEM format data)
caCertificate;binary:: (PEM format data)

Figure 11. Sample LDIF for a Certification Authority

c = GB

o = IBM

ou = Test

cn = CA1

ou = PKI

cn = CA2

Figure 12. Example of an LDAP Directory Information Tree structure

Working with CRLs

140 Security

1. Obtain the CRLs and ARLs in PEM format from your Certification Authority, or
Authorities.

2. Using a text editor or the tool provided with your LDAP server, create one or
more LDIF files that contain the Distinguished Name of the CA and the
required object class definitions. Copy the PEM format data into the LDIF file
as the values of either the certificateRevocationList;binary attribute, the
authorityRevocationList;binary attribute, or both.

3. Start your LDAP server.
4. Add the entries from the LDIF file or files you created at step 2.

Note: Ensure that the access control list for your LDAP server allows authorized
users to read, search, and compare the entries that hold the CRLs and ARLs.

Accessing CRLs
This section describes:
v “Accessing CRLs with a queue manager”
v “Accessing CRLs with a WebSphere MQ client” on page 143
v “Accessing CRLs using WebSphere MQ Explorer” on page 143
v “Accessing CRLs with the Java client and JMS” on page 144

On the following platforms, WebSphere MQ maintains a cache of CRLs that have
been accessed in the preceding 12 hours:
v OS/400 from V5R2M0 onwards
v UNIX systems
v Windows systems

When the queue manager or WebSphere MQ client receives a certificate, it checks
the CRL to confirm that the certificate is still valid. WebSphere MQ first checks in
the cache, if there is a cache. If the CRL is not in the cache, WebSphere MQ
interrogates the CRL locations in the order they appear in the namelist of
authentication information objects specified by the SSLCRLNamelist attribute, until
WebSphere MQ finds an available CRL. If the namelist is not specified, or is
specified with a blank value, CRLs are not checked.

Accessing CRLs with a queue manager
You tell the queue manager how to access CRLs by supplying the queue manager
with authentication information objects, each of which holds the address of an
LDAP CRL server. The authentication information objects are held in a namelist,
which is specified in the SSLCRLNamelist queue manager attribute.
1. Define authentication information objects using the DEFINE AUTHINFO

MQSC command, with the AUTHTYPE parameter set to CRLLDAP. On
OS/400, you can also use the CRTMQMAUTI CL command.
WebSphere MQ V5.3 supports only the value CRLLDAP for the AUTHTYPE
parameter, which indicates that CRLs are accessed on LDAP servers. Each
authentication information object with type CRLLDAP that you create holds the
address of an LDAP server. When you have more than one authentication
information object, the LDAP servers to which they point must contain identical
information. This provides continuity of service if one or more LDAP servers
fail.

2. Using the DEFINE NAMELIST MQSC command, define a namelist for the
names of your authentication information objects. On z/OS ensure that:

Working with CRLs

Chapter 16. Working with Certificate Revocation Lists 141

v The NLTYPE namelist attribute is set to AUTHINFO
v There is only one authentication information object in the namelist

3. Using the ALTER QMGR MQSC command, supply the namelist to the queue
manager. For example:
ALTER QMGR SSLCRLNL(sslcrlnlname)

where sslcrlnlname is your namelist of authentication information objects.

This command sets a new queue manager attribute called SSLCRLNamelist. The
default value for this attribute is blank.

On OS/400, you can specify authentication information objects, but the queue
manager uses neither authentication information objects nor a namelist of
authentication information objects. Only WebSphere MQ clients that use a client
connection table generated by an OS/400 queue manager use the authentication
information specified for that OS/400 queue manager. The SSLCRLNamelist queue
manager attribute on OS/400 determines what authentication information such
clients use. See “Accessing CRLs on OS/400” for information about telling an
OS/400 queue manager how to access CRLs.

On platforms other than z/OS, you can add up to 10 connections to alternative
LDAP servers to the namelist, to ensure continuity of service if one or more LDAP
servers fail. Note that the LDAP servers must contain identical information.

Accessing CRLs on OS/400
Use the following procedure to set up a CRL location for a specific certificate on
OS/400:
1. Access the DCM interface, as described in “Accessing the DCM” on page 88.
2. In the Manage CRL locations task category in the navigation panel, click Add

CRL location. The Manage CRL Locations page displays in the task frame.
3. In the CRL Location Name field, type a CRL location name, for example LDAP

Server #1

4. In the LDAP Server field, type the LDAP server name.
5. In the Use Secure Sockets Layer (SSL) field, select Yes if you want to connect

to the LDAP server using SSL. Otherwise, select No.
6. In the Port Number field, type a port number for the LDAP server, for

example 389.
7. If your LDAP server does not allow anonymous users to query the directory,

type a login distinguished name for the server in the login distinguished
name field.

8. Click OK. DCM informs you that it has created the CRL location.
9. In the navigation panel, click Select a Certificate Store. The Select a

Certificate Store page displays in the task frame.
10. Select the Other System Certificate Store check box and click Continue. The

Certificate Store and Password page displays.
11. In the Certificate store path and filename field, type the IFS path and

filename you set when “Creating a new certificate store” on page 89.
12. Type a password in the Certificate Store Password field. Click Continue. The

Current Certificate Store page displays in the task frame.
13. In the Manage Certificates task category in the navigation panel, click Update

CRL location assignment. The CRL Location Assignment page displays in the
task frame.

Working with CRLs

142 Security

14. Select the radio button for the CA certificate to which you want to assign the
CRL location. Click Update CRL Location Assignment. The Update CRL
Location Assignment page displays in the task frame.

15. Select the radio button for the CRL location which you want to assign to the
certificate. Click Update Assignment. DCM informs you that it has updated
the the assignment.

Note that DCM allows you to assign a different LDAP server by Certification
Authority.

Accessing CRLs using WebSphere MQ Explorer
You can use WebSphere MQ Explorer to tell a queue manager how to access CRLs.

Use the following procedure to set up an LDAP connection to a CRL:
1. Ensure that you have started your queue manager.
2. In WebSphere MQ Explorer, expand the Advanced folder of your queue

manager.
3. Right-click the Authentication Information folder and click New ->

CRL(LDAP). In the property sheet that opens:
a. On the General page, type a name for the CRL(LDAP) object.
b. Select the CRL(LDAP) page.
c. Type the LDAP server name as either the network name or the IP address.
d. If the server requires login details, provide a user ID and if necessary a

password.
e. Click OK.

4. Right-click the Namelists folder and click New -> Namelist. In the property
sheet that opens:
a. Type a name for the namelist.
b. Add the name of the CRL(LDAP) object (from step 3a) to the list.
c. Click OK.

5. Right-click the queue manager, select Properties, and select the SSL page:
a. Select the Check certificates received by this queue manager against

Certification Revocation Lists check box.
b. Type the name of the namelist (from step 4a) in the CRL Namelist field.

Accessing CRLs with a WebSphere MQ client
You have three options for specifying the LDAP servers that hold CRLs for
checking by a WebSphere MQ client:
v Using a channel definition table
v Using the SSL configuration options structure, MQSCO, on an MQCONNX call
v Using the Active Directory (on Windows systems with Active Directory support)

For more information, refer to the WebSphere MQ Clients book, the WebSphere MQ
Application Programming Reference, and the setmqcrl command in the WebSphere MQ
System Administration Guide.

You can include up to 10 connections to alternative LDAP servers to ensure
continuity of service if one or more LDAP servers fail. Note that the LDAP servers
must contain identical information.

Working with CRLs

Chapter 16. Working with Certificate Revocation Lists 143

Accessing CRLs with the Java client and JMS
Refer to WebSphere MQ Using Java for information about working with CRLs with
the Java client and JMS.

Manipulating authentication information objects with PCF commands
This section does not apply to z/OS.

You can manipulate authentication information objects with the following
Programmable Command Format commands:
v Create Authentication Information
v Copy Authentication Information
v Change Authentication Information
v Delete Authentication Information
v Inquire Authentication Information
v Inquire Authentication Information Names

For a complete description of these commands, refer to the WebSphere MQ
Programmable Command Formats and Administration Interface book.

Keeping CRLs up to date
Obtain updated CRLs from the Certification Authorities frequently. Consider doing
this on your LDAP servers every 12 hours.

Use the procedure described in “Configuring and updating LDAP servers” on
page 140 to include the new CRLs.

Working with CRLs

144 Security

Chapter 17. Working with CipherSpecs

The CipherSpec identifies the combination of encryption algorithm and hash
function used by an SSL connection. A CipherSpec forms part of a CipherSuite,
which identifies the key exchange and authentication mechanism as well as the
encryption and hash function algorithms.

WebSphere MQ supports only the RSA key exchange and authentication
algorithms. The size of the key used during the SSL handshake can depend on the
digital certificate you use, but some of the CipherSpecs supported by WebSphere
MQ include a specification of the handshake key size. Note that larger handshake
key sizes provide stronger authentication. With smaller key sizes, the handshake is
faster.

For more information, refer to “CipherSuites and CipherSpecs” on page 26 and
“An overview of the SSL handshake” on page 23.

© Copyright IBM Corp. 2002 145

Specifying CipherSpecs
You specify the CipherSpec in the SSLCIPH parameter using either the DEFINE
CHANNEL MQSC command or the ALTER CHANNEL MQSC command.

You can choose from the CipherSpecs listed in Table 1:

Table 1. CipherSpecs that can be used with WebSphere MQ SSL support

CipherSpec name Hash
algorithm

Encryption
algorithm

Encryption
bits

NULL_MD51 MD5 None 0

NULL_SHA1 SHA None 0

RC4_MD5_EXPORT1 MD5 RC4 40

RC4_MD5_US2 MD5 RC4 128

RC4_SHA_US2 SHA RC4 128

RC2_MD5_EXPORT1 MD5 RC2 40

DES_SHA_EXPORT1 SHA DES 56

RC4_56_SHA_EXPORT10243,4,5 SHA RC4 56

DES_SHA_EXPORT10243,4,5,6 SHA DES 56

TRIPLE_DES_SHA_US4 SHA 3DES 168

TLS_RSA_WITH_AES_128_CBC_SHA7 SHA AES 128

TLS_RSA_WITH_AES_256_CBC_SHA7 SHA AES 256

AES_SHA_US8 SHA AES 128

Notes:

1. On OS/400, available when either AC2 or AC3 are installed

2. On OS/400, available only when AC3 is installed

3. Not available for z/OS

4. Not available for OS/400

5. Specifies a 1024–bit handshake key size

6. Not available for Windows

7. Available for AIX, HP-UX, and Linux for Intel platforms only

8. Available for OS/400, AC3 only

When you request a personal certificate, you specify a key size for the public and
private key pair. The key size that is used during the SSL handshake can depend
on the size stored in the certificate and on the CipherSpec:
v On UNIX systems and z/OS, when a CipherSpec name includes _EXPORT, the

maximum handshake key size is 512 bits. If either of the certificates exchanged
during the SSL handshake has a key size greater than 512 bits, a temporary
512-bit key is generated for use during the handshake.

v On UNIX systems, when a CipherSpec name includes _EXPORT1024, the
handshake key size is 1024 bits. Refer to note 5 in Table 1.

v Otherwise the handshake key size is the size stored in the certificate.

Working with CipherSpecs

146 Security

Obtaining information about CipherSpecs using WebSphere
MQ Explorer

When you are working on a Windows system, use the following procedure to
obtain information about the CipherSpecs in Table 1 on page 146:
1. Open WebSphere MQ Explorer and expand the Queue Managers folder.
2. Ensure that you have started your queue manager.
3. Select the queue manager you want to work with and click Advanced –>

Channels.
4. Right–click the channel you want to work with and select Properties.
5. Select the SSL property page.
6. Select from the list the CipherSpec you want to work with. A description

appears in the window below the list.

Alternatives for specifying CipherSpecs

Note: This section does not apply to UNIX systems, because the CipherSpecs are
provided with the WebSphere MQ product, so new CipherSpecs do not
become available after shipment.

For those platforms where the operating system provides the SSL support, your
system might support new CipherSpecs that are not included in Table 1 on
page 146. You can specify a new CipherSpec with the SSLCIPH parameter, but the
value you supply depends on your platform. In all cases the specification must
correspond to an SSL CipherSpec that is both valid and supported by the version
of SSL your system is running.

OS/400
A two-character string representing a hexadecimal value.

For more information about the permitted values, refer to the iSeries
Information Center at
http://publib.boulder.ibm.com/html/as400/infocenter.html

You can use either the CHGMQMCHL or the CRTMQMCHL command to
specify the value, for example:
CRTMQMCHL CHLNAME(’channnel name’) SSLCIPH(’hexadecimal value’)

You can also use the ALTER QMGR MQSC command to set the SSLCIPH
parameter.

Windows
A string of three values, separated by commas, and in the order:
1. A character string representing a hexadecimal value that defines the

encryption algorithm
2. A number that specifies the strength of the encryption algorithm
3. A character string representing a hexadecimal value that defines the

hash function

For example, 0x6801,128,0x8004 would specify the RC4_SHA_US
CipherSpec.

You can derive the numeric values for the encryption algorithm and the
hash function from the ALG_ID data types provided by Microsoft. These
data types represent algorithm identifiers and are described in the
Microsoft “Platform SDK: Security” documentation.

Working with CipherSpecs

Chapter 17. Working with CipherSpecs 147

z/OS A two-character string representing a hexadecimal value. The hexadecimal
codes correspond to the SSL protocol values defined at
http://home.netscape.com/eng/ssl3/ssl-toc.html

For more information, refer to the z/OS System SSL Programming, SC24-5901
book.

Considerations for WebSphere MQ clusters
With WebSphere MQ clusters you should try to use the CipherSpec names in
Table 1 on page 146. If you use an alternative specification, be aware that the
specification might not be valid on other platforms. For more information, refer to
the WebSphere MQ Queue Manager Clusters book.

Specifying a CipherSpec for a WebSphere MQ client
You have three options for specifying a CipherSpec for a WebSphere MQ client:
v Using a channel definition table
v Using the SSL configuration options structure, MQSCO, on an MQCONNX call
v Using the Active Directory (on Windows systems with Active Directory support)

For more information, refer to the WebSphere MQ Clients book and the WebSphere
MQ Application Programming Reference.

Specifying a CipherSuite with the Java client and JMS
Refer to WebSphere MQ Using Java for information about specifying a CipherSuite
with the Java client and JMS.

Understanding CipherSpec mismatches
A CipherSpec identifies the combination of the encryption algorithm and hash
function. Both ends of a WebSphere MQ SSL channel must use the same
CipherSpec, although they can specify that CipherSpec in a different manner.
Mismatches can be detected at two stages:

During the SSL handshake
The SSL handshake fails when the CipherSpec specified by the SSL client is
unacceptable to the SSL support at the SSL server end of the connection. A
CipherSpec failure during the SSL handshake arises when the SSL client
proposes a CipherSpec that is not supported by the SSL provision on the
SSL server. For example:
v When an SSL client running on AIX proposes the

TLS_RSA_WITH_AES_128_CBC_SHA CipherSpec to an SSL server running on
OS/390

v When an SSL server running on Windows requires a security upgrade

The SSL handshake fails when an SSL client running on Windows specifies
a CipherSpec for which that client requires a security upgrade. This failure
occurs if a WebSphere MQ CipherSpec requires 128 or more encryption
bits.

If you require a CipherSpec that uses 128 or more encryption bits, and
your Windows system does not support that cipher strength, download the
appropriate upgrade from Microsoft. For Windows 2000, the security
upgrade package is the Windows 2000 High Encryption Pack. For
Windows NT, upgrade to Internet Explorer Version 6, or Version 5.5 with
Service Pack 2. Windows XP is supplied with high encryption support.

Working with CipherSpecs

148 Security

During channel startup
Channel startup fails when there is a mismatch between the CipherSpec
defined for the responding end of the channel and the CipherSpec defined
for the calling end of channel. Channel startup also fails when only one
end of the channel defines a CipherSpec.

Refer to “Specifying CipherSpecs” on page 146 for more information.

Note: SSL servers do not detect mismatches in the following
circumstances:
v When an SSL client channel on UNIX specifies the

DES_SHA_EXPORT1024 CipherSpec and the corresponding SSL server
channel on UNIX is using the DES_SHA_EXPORT CipherSpec

v When an SSL client channel on UNIX specifies the
DES_SHA_EXPORT1024 CipherSpec and the corresponding SSL server
channel on Windows is using the DES_SHA_EXPORT CipherSpec

v When an SSL client channel on Windows specifies the
DES_SHA_EXPORT CipherSpec and the corresponding SSL server
channel on UNIX is using the DES_SHA_EXPORT1024 CipherSpec

WebSphere MQ does not detect these mismatches for one or both of
the following reasons:
v WebSphere MQ cannot change the handshake key size at channel

start on Windows systems, so WebSphere MQ for Windows does
not support the DES_SHA_EXPORT1024 CipherSpec. The operating
system SSL support might set the handshake key size to 1024 bits
based, for example, on information held in the certificates.

v On all platforms, the SSL support cannot detect which platform is
at the other end of the SSL channel.

In these circumstances, the channel runs normally.

Working with CipherSpecs

Chapter 17. Working with CipherSpecs 149

Working with CipherSpecs

150 Security

Chapter 18. WebSphere MQ rules for SSLPEER values

This chapter tells you about the rules you use when specifying SSLPEER values
and which WebSphere MQ uses for matching Distinguished Names in digital
certificates. For a full description of Distinguished Names, refer to “Distinguished
Names” on page 19.

When SSLPEER values are compared with DNs, the rules for specifying and
matching attribute values are:
1. You can use either a comma or a semicolon as a separator.
2. Spaces before or after the separator are ignored. For example:

CN=John Smith, O=IBM ,OU=Test , C=GB

3. The values of attribute types CN, T, O, OU, L, ST, SP, S, C are text strings
that usually include only the following:
v Upper and lower case alphabetic characters A through Z and a through z

v Numeric characters 0 through 9

v The space character
v Characters , . ; ’ " () / -

To avoid conversion problems between different platforms, do not use other
characters in an attribute value. Note that the attribute types, for example CN,
must be in upper case.

4. Strings containing the same alphabetical characters match irrespective of case.
5. Spaces are not allowed between the attribute type and the = character.
6. Optionally, you can enclose attribute values in double quotes, for example

CN="John Smith". The quotes are discarded when matching values.
7. Spaces at either end of the string are ignored unless the string is enclosed in

double quotes.
8. The comma and semicolon attribute separator characters are considered to be

part of the string when enclosed in double quotes.
9. The names of attribute types, for example CN or OU, are considered to be part

of the string when enclosed in double quotes.
10. Any of the attribute types ST, SP, and S can be used for the State or Province

name.
11. Any attribute value can have an asterisk (*) as a pattern-matching character at

the beginning, the end, or in both places. The asterisk character substitutes for
any number of characters at the beginning or end of the string to be matched.
This enables your SSLPEER value specification to match a range of
Distinguished Names. For example, OU=IBM* matches every Organizational
Unit beginning with IBM, such as IBM Corporation.
Note that the asterisk character can also be a valid character in a
Distinguished Name. To obtain an exact match with an asterisk at the
beginning or end of the string, the backslash escape character (\) must precede
the asterisk: *. Asterisks in the middle of the string are considered to be part
of the string and do not require the backslash escape character.

12. When multiple OU attributes are specified, all must exist and be in the same
order in both the SSLPEER value and the DN being matched.

© Copyright IBM Corp. 2002 151

DN rules

152 Security

Chapter 19. Understanding authentication failures

This chapter explains some common reasons for authentication failures during the
SSL handshake:

The SSL client does not have a certificate
The SSL server always validates the client certificate if one is sent. If the
SSL client does not send a certificate, authentication fails if the end of the
channel acting as the SSL server is defined:
v With the SSLCAUTH parameter set to REQUIRED

or
v With an SSLPEER parameter value

A certificate has expired or is not yet active
Each digital certificate has a date from which it is valid and a date after
which it is no longer valid, so an attempt to authenticate with a certificate
that is outside its lifetime fails.

There is no matching CA root certificate or the certificate chain is incomplete
Each digital certificate is issued by a Certification Authority (CA), which
also provides a root certificate that contains the public key for the CA.
Root certificates are signed by the issuing CA itself. If the key repository
on the machine that is performing the authentication does not contain a
valid root certificate for the CA that issued the incoming user certificate,
authentication fails.

Authentication often involves a chain of trusted certificates. The digital
signature on a user certificate is verified with the public key from the
certificate for the issuing CA. If that CA certificate is a root certificate, the
verification process is complete. If that CA certificate was issued by an
intermediate CA, the digital signature on the intermediate CA certificate
must itself be verified. This process continues along a chain of CA
certificates until a root certificate is reached. In such cases, all certificates in
the chain must be verified correctly. If the key repository on the machine
that is performing the authentication does not contain a valid chain leading
to a root certificate, authentication fails. For more information, refer to
“How certificate chains work” on page 20.

A certificate is not supported
If the certificate is in a format that is not supported, authentication fails,
even if the certificate is still within its lifetime.

A certificate is corrupted
If the information in a digital certificate is incomplete or damaged,
authentication fails.

A certificate has been found in a Certificate Revocation List
You have the option to check certificates against the revocation lists
published by the Certification Authorities.

A Certification Authority can revoke a certificate that is no longer trusted
by publishing it in a Certificate Revocation List (CRL). For more
information, refer to Chapter 16, “Working with Certificate Revocation
Lists” on page 139.

For more information about the terms used in this chapter, refer to:

© Copyright IBM Corp. 2002 153

v “Secure Sockets Layer (SSL) concepts” on page 23
v “Digital certificates” on page 18

Understanding authentication failures

154 Security

Appendix A. Cryptographic hardware

Note: On OS/400, Windows systems and on z/OS, the operating system provides
the cryptographic hardware support.

On OS/400 and z/OS, if your system has an IBM 4758-023 PCI Cryptographic
Coprocessor installed, you can use it to store your certificate keys more securely.
You can also use the IBM 4758 Cryptographic Coprocessor to improve SSL
performance and provide more secure private key storage.

On OS/400, when you use DCM to create or renew certificates, you can choose to
store the key directly in the coprocessor or to use the coprocessor master key to
encrypt the private key and store it in a special key store file.

On z/OS, when you use RACF to create certificates, you can choose to store the
key using ICSF (Integrated Cryptographic Service Facility) to obtain improved
performance and more secure key storage.

On UNIX systems, WebSphere MQ currently provides support for the following
cryptographic hardware:

Rainbow Cryptoswift
Interface: BSAFE 3.0

Platforms:

v HP-UX 11

nCipher nFast
Interface: BHAPI plug-in under BSAFE 4.0

Platforms:

v Solaris 2.7

IBM FC 4963
Interface: PKCS #11

Platforms:

v AIX 4.3.3

© Copyright IBM Corp. 2002 155

Cryptographic hardware

156 Security

Appendix B. Notices

This information was developed for products and services offered in the United
States. IBM may not offer the products, services, or features discussed in this
information in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply
that only that IBM product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any IBM intellectual
property right may be used instead. However, it is the user’s responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this information. The furnishing of this information does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the information. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
information at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2002 157

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM United Kingdom Laboratories,
Mail Point 151,
Hursley Park,
Winchester,
Hampshire,
England
SO21 2JN.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Notices

158 Security

Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

AIX CICS
DB2 IBM
IMS iSeries
MQSeries MVS
OS/390 OS/400
SecureWay SupportPac
TXSeries Tivoli
WebSphere z/OS

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.

Notices

Appendix B. Notices 159

160 Security

Index

A
access control

Access Manager for Business
Integration 72

API exit 81
authority to administer WebSphere

MQ 31
authority to work with WebSphere

MQ objects 35
channel security 41
introduction 4
user written message exit 67
user written security exit 64

Access Manager for Business
Integration 71

accessing CRLs
Java client and JMS 144
OS/400 142
queue manager 141
WebSphere MQ client 143
Windows 143

alternate user authority
introduction 37
server application 67

alternate user security 41
AMI

See Application Messaging Interface
(AMI)

amqmcert command
Windows 113

API exit
introduction 77
providing your own application level

security 79
API-crossing exit

introduction 79
providing your own application level

security 79
API-resource security 41
application level security

Access Manager for Business
Integration 71

API exit 77
API-crossing exit 79
comparison with link level

security 11
introduction 10
providing your own 77

Application Messaging Interface
(AMI) 36

ARL
See Authority Revocation List (ARL)

asymmetric cryptography algorithm 15
authentication

Access Manager for Business
Integration 73

API exit 80
application level security service,

example 11
DCE channel exit programs 54
digital signature 17

authentication (continued)
Entrust/PKI channel exit

programs 56
information, SSL 47
introduction 3
link level security service,

example 10
obtaining personal certificates

OS/400 91
UNIX 102
Windows 118
z/OS 127

SNA LU 6.2
conversation level

authentication 59
session level authentication 57

SSL 25
SSPI channel exit program 55
testing SSL client 136
understanding failures 153
user written message exit 66
user written security exit 63

authentication information object
(AUTHINFO)

accessing CRLs 141
manipulating with PCF

commands 144
SSL 47

authority checks
alternate user authority 37
CL command in Group 2 37
command resource security 34
command security 33
message context 38
MQCLOSE call 37
MQCONN call 36
MQCONNX call 36
MQOPEN call 36
MQPUT1 call 36
PCF command 37
z/OS 33

Authority Revocation List (ARL) 139
authority to administer WebSphere

MQ 31
authority to work with WebSphere MQ

objects 35
authorization service 39

B
Base64

transferring certificate type by
ftp 135

block cipher algorithm 16
bootstrap data sets (BSDSs) 35

BSDSs
See bootstrap data sets (BSDSs)

C
CA

See Certification Authority
CA certificate

adding, NIX 106
creating for testing

OS/400 91
extracting, UNIX 105

CA store on Windows 114
certificate

chain 20
editing labels, UNIX 108
ensuring availability

Windows 115
z/OS 126

expiry 21
exporting, OS/400 93
importing, OS/400 94
obtaining personal

OS/400 91
UNIX 102
Windows 118
z/OS 127

role in authentication failure 153
transferring

OS/400 93
UNIX 105
Windows 122
z/OS 129

transferring by ftp 135
untrustworthy

in CRL 139
introduction 21

viewing on Windows 113
when changes are effective

OS/400 90
UNIX 101
Windows 118
z/OS 127

Certificate Name Filters (CNFs)
setting up on z/OS 130
using on z/OS 130

Certificate Revocation List (CRL)
accessing

Java client and JMS 144
OS/400 142
queue manager 141
WebSphere MQ client 143
WebSphere MQ Explorer 143

keeping up to date 144
role in authentication failure 153
working with 139

certificate store
CA store 113
creating new

OS/400 89
description 113

© Copyright IBM Corp. 2002 161

certificate store (continued)
MY store 113
populating for a queue manager 115
ROOT store 113
setting up on OS/400 88
stashing password

OS/400 89
Windows key repository 47

Certification Authority
digital certificates 18
introduction 19
obtaining personal certificates

OS/400 91
UNIX 102
Windows 118
z/OS 127

public key infrastructure (PKI) 21
working with Certificate Revocation

Lists 139
certification path 20
changing key repository

OS/400 90
UNIX 100
Windows

queue manager 117
channel attributes, SSL

SSLCAUTH parameter 46
SSLCIPH parameter 45
SSLPEER parameter 46

channel definition structure (MQCD) 64
channel exit programs

DCE 54
Entrust/PKI 56
introduction 51
message exit

DCE 54
Entrust/PKI 56
introduction 52
providing your own link level

security 66
receive exit

DCE 54
introduction 52
providing your own link level

security 68
security exit

DCE 54
Entrust/PKI 56
introduction 52
providing your own link level

security 63
SSPI 55

send exit
DCE 54
introduction 52
providing your own link level

security 68
SSPI 55

channel initiator
authority to access system queues 43
START CHANNEL commands 35

channel protocol flows
See WebSphere MQ channel protocol

flows
channel security 41
cipher algorithm

block 16

cipher algorithm (continued)
stream 16

cipher strength 16
CipherSpec

alternatives for specifying 147
introduction 26
obtaining information using

WebSphere MQ Explorer 147
specifying for WebSphere MQ

client 148
understanding mismatches 148
using with clusters 148
working with 145

CipherSuite
introduction 26
specifying for Java client and

JMS 148
ciphertext 15
CL commands

accessing WebSphere MQ objects 36
Group 2

authority checks 37
definition 32

introduction 32
clusters

See queue manager clusters
CNF

See Certificate Name Filters (CNFs)
command resource security 33
command security 33
confidentiality

Access Manager for Business
Integration 73

API exit 81
application level security service,

example 11
cryptography 15
DCE channel exit programs 54
Entrust/PKI channel exit

programs 56
introduction 4
link level security service,

example 10
SNA LU 6.2 session level

cryptography 57
SSL 26
user written message exit 67
user written security exit 66
user written send and receive

exits 69
configuring LDAP servers 139
connection security 40
context

See message context
context security 41
control commands 31
creating

new certificate store on OS/400 89
CRL

See Certificate Revocation List (CRL)
cryptographic hardware

configuring on OS/400 95
configuring on UNIX 108
list of, UNIX 155
support for 49

cryptography
algorithm 15

cryptography (continued)
cryptographic hardware 49
introduction 15

CSQINP1 data sets
authority to access 35
MQSC commands 34

CSQINP2 data sets
authority to access 35
MQSC commands 34

CSQINPX data sets
authority to access 35
MQSC commands 34

CSQUDLQH utility
See dead letter queue handler utility

(CSQUDLQH)
CSQUTIL utility

See WebSphere MQ utility program
(CSQUTIL)

D
data conversion

API exit 77
application level security 83
user written message exit 67

Data Encryption Standard (DES)
algorithm

Access Manager for Business
Integration 74

SNA LU 6.2 security services 56
Message Authentication Code (MAC)

SNA LU 6.2 conversation level
authentication 61

SNA LU 6.2 session level
authentication 58

data integrity
Access Manager for Business

Integration 73
API exit 82
application level security service,

example 11
cryptography 15
Entrust/PKI channel exit

programs 56
introduction 5
link level security service,

example 10
message digests 17
SSL 26
user written message exit 68
user written send and receive

exits 69
DCE

See Distributed Computing
Environment (DCE)

DCM
See Digital Certificate Manager

DCOMCNFG tool 32
dead letter queue 12
dead letter queue handler utility

(CSQUDLQH) 35
decipherment 15
decryption 15
default store on Windows 115
DER

transferring certificate type by
ftp 135

162 Security

DES
See Data Encryption Standard (DES)

digital certificate
certificate chain 20
Certification Authority 19
content 19
Distinguished Name (DN) 19
expiry 21
introduction 18
key repository 47
label on OS/400 88
label on UNIX 98
label on z/OS 125
public key infrastructure (PKI) 21
role in authentication failure 153
SSL authentication 25
SSL handshake 27
untrustworthy 21
use of 20

Digital Certificate Manager
accessing 88
OS/400 87

digital enveloping 81
digital signature

introduction 17
SSL integrity 26

Distinguished Name (DN)
filter on z/OS 130
introduction 19
pattern 151
WebSphere MQ rules 151

Distributed Computing Environment
(DCE)

channel exit programs 54
dmpmqaut command 40
DN

See Distinguished Name (DN)
dspmqaut command 40
DSPMQMAUT command 40

E
eavesdropping 15
encipherment 15
encryption

CipherSpecs 145
introduction 15
SSL confidentiality 26

end-to-end security 10
Entrust/PKI

channel exit programs 56
EntrustSession Toolkit 56
Escape PCF commands 31
ESM

See external security manager (ESM)
expiry of digital certificate 21
external security manager (ESM) 33

F
firewall 9

G
generic profile 40

Generic Security Service Application
Programming Interface (GSS API)

DCE 54
EntrustSession Toolkit 56

GRTMQMAUT command
example 40
introduction 32

gsk6ikm on UNIX 97
GSS API

See Generic Security Service
Application Programming Interface
(GSS API)

H
handshake, SSL 23
hardware, cryptographic 155
hash function

CipherSpecs 145
overview 17

I
identification

Access Manager for Business
Integration 73

API exit 80
application level security service,

example 11
DCE channel exit programs 54
Entrust/PKI channel exit

programs 56
introduction 3
link level security service,

example 10
SSPI channel exit program 55
user written message exit 66
user written security exit 63

identity context 38
iKeyman

generating certificate requests 20
UNIX 97

impersonation 25
installable service 39
IPT (internet pass-thru) on SSL 49

J
Java 36
Java Message Service (JMS) 36
JAVA_HOME on UNIX 97
JMS

See Java Message Service (JMS)

K
Kerberos 55
key 15
key database file

setting up 98
UNIX key repository 47

key distribution problem
a solution 66
symmetric cryptography 16

key repository
access permission

UNIX 99
adding personal certificate

OS/400 92
UNIX 104
Windows 119
z/OS 128

changing
queue manager on OS/400 90
queue manager on UNIX 100
queue manager on Windows 117

defining 27
introduction 47
locating

queue manager on OS/400 90
queue manager on UNIX 100
queue manager on Windows 117
queue manager on z/OS 126
WebSphere MQ client on

UNIX 101
WebSphere MQ client on

Windows 117
setting up

OS/400 88
UNIX 98
Windows 113
z/OS 125

specifying
queue manager on z/OS 126
WebSphere MQ client on

UNIX 101
WebSphere MQ client on

Windows 118
working with

OS/400 89
UNIX 100
Windows 116
z/OS 126

key ring
setting up 125
z/OS key repository 47

KeyRepository field 27

L
LDAP server

configuring and updating 140
setting up 139
use of authentication information 47
working with Certificate Revocation

Lists 139
LDIF (LDAP Data Interchange

Format) 139
link level security

available services other than
WebSphere MQ SSL support 51

channel exit programs
introduction 51
writing your own 63

comparison with application level
security 11

DCE channel exit programs 54
Entrust/PKI channel exit

programs 56
introduction 10
providing your own 63

Index 163

link level security (continued)
SNA LU 6.2 security services 56
SSL 27
SSPI channel exit program 55

local CA certificate
copying from OS/400 136

locating key repository
OS/400

queue manager 90
queue manager on z/OS 126
UNIX

queue manager 100
WebSphere MQ client 101

Windows
queue manager 117
WebSphere MQ client 117

log data sets 35
logical store on Windows 113

M
MAC

See Message Authentication Code
(MAC)

man in the middle attack
introduction 18
SNA LU 6.2 session level

authentication 58
managing digital certificates

OS/400 93
UNIX 105
Windows 122
z/OS 128

mapping DNs
OS/400 95
UNIX 111
Windows 123

MCA
See message channel agent (MCA)

MCAUSER parameter
initial value of MCAUserIdentifier

field 64
MCA user ID for authority checks 43

MCAUserIdentifier field 64
Message Authentication Code (MAC)

Data Encryption Standard (DES)
SNA LU 6.2 conversation level

authentication 61
SNA LU 6.2 session level

authentication 58
introduction 17
part of CipherSuite 26

message channel agent (MCA)
authority to access WebSphere MQ

resources 41
channel exit programs 51
channel security 41
default user ID

definition 42
role in access control 65
user ID in an SNA LU 6.2 attach

request 61
use in SSL 27
user ID for authority checks 42

message context
introduction 3
role in access control 38

message digest 17
message exit

DCE channel exit programs 54
Entrust/PKI channel exit

programs 56
introduction 52
providing your own link level

security 66
message level security 10
MQCD structure

See channel definition structure
(MQCD)

MQI channel
comparing link level security and

application level security 12
mqm group 31
MQSC commands

command security 33
encapsulated within Escape PCF

commands 31
runmqsc command 31
STRMQMMQSC command 32
system command input queue 34

MQSCO structure 27
MQSeries Publish/Subscribe 9
MQSSLKEYR

environment variable 27
UNIX 100
Windows 116

MQXQH structure
See transmission queue header

structure (MQXQH)
MUSER_MQADMIN user ID 42
mutual authentication

comparing link level security and
application level security 12

DCE channel exit programs 54
definition 3
Entrust/PKI channel exit

programs 56
SSPI channel exit program 55

MY store on Windows 114

N
namelist security 41
non-repudiation

Access Manager for Business
Integration 74

API exit 82
digital signature 18
introduction 5
proof of delivery 5
proof of origin 5
user written message exit 68

NTLM
See Windows NT LAN Manager

(NTLM)

O
Object Authority Manager (OAM) 39
operations and control panels

accessing WebSphere MQ objects 35
MQSC commands 34

origin context 38

P
page sets 35
PASSWORD parameter

SNA LU 6.2 conversation level
authentication

OS/400, UNIX, Windows 60
z/OS 62

password stashing
certificate store on OS/400 89

PCF commands
See Programmable Command Format

(PCF) commands
PD/MQ

See Access Manager for Business
Integration

PEM
transferring certificate type by

ftp 135
personal certificate

adding to key repository
OS/400 92
UNIX 104
Windows 119
z/OS 128

assigning on Windows
queue manager 121
WebSphere MQ client 122

copying for testing 135
creating RACF signed 128
creating self-signed

UNIX 102
Windows 119
z/OS 127

deleting
OS/400 94

exporting, UNIX 106
importing, UNIX 107
introduction 18
managing

OS/400 93
UNIX 105
Windows 122
z/OS 128

obtaining
OS/400 91
UNIX 102
Windows 118
z/OS 127

removing
UNIX 108
Windows 123
z/OS 129

requesting
OS/400 92
UNIX 103
Windows 119
z/OS 127

transferring
OS/400 93
UNIX 105
Windows 122
z/OS 129

unassigning
Windows 123

physical store on Windows 113

164 Security

PKCS #11
cryptographic hardware cards on

UNIX 48
cryptographic hardware interface 155

PKCS #11 hardware
managing certificates on 109
personal certificate

importing 110
requesting 110

PKCS #12
transferring certificate type by

ftp 135
PKCS #7

Access Manager for Business
Integration

signed and enveloped data 73
signed data 73

transferring certificate type by
ftp 135

PKI
See Public Key Infrastructure (PKI)

plaintext 15
Policy Director for MQSeries

See Access Manager for Business
Integration

privacy
SSL 26

private key
digital certificate 18
introduction 15

process security 40
Programmable Command Format (PCF)

commands
accessing channels, channel initiators,

listeners, and clusters 43
accessing WebSphere MQ objects 35
authority checks 37
issued by WebSphere MQ

Explorer 31
manipulating authentication

information objects 144
proof of delivery

API exit 82
API-crossing exit 82
introduction 5

proof of origin
API exit 82
API-crossing exit 82
digital signature 18
introduction 5
user written message exit 68

protocol
SSL

concepts 23
in WebSphere MQ 27

public key
cryptography 15
digital certificate 18
digital signature 17
infrastructure 21
introduction 15

Public Key Infrastructure (PKI)
Entrust/PKI channel exit

programs 56
introduction 21

Publish/Subscribe 9
PUTAUT parameter 41

Q
QMQMADM group 32
queue manager attributes, SSL

SSLCRLNL parameter 46
SSLCRYP parameter 46
SSLKEYR parameter 46
SSLKEYRPWD parameter 46
SSLTASKS parameter 46
when changes are effective 46

queue manager clusters 8
queue manager level security 33
queue security 40
queue-sharing group level security 33

R
RACF

See Resource Access Control Facility
(RACF)

receive exit
DCE channel exit programs 54
introduction 52
providing your own link level

security 68
Registration Authority 21
RemoteUserIdentifier field 65
RESLEVEL profile

channel security 43
introduction 41

Resource Access Control Facility (RACF)
authority checks on z/OS 33
generating certificate requests 20

ROOT store on Windows 114
RSA 26
runmqsc command

introduction 31
sending MQSC commands to a system

command input queue 35
RVKMQMAUT command 40

S
SAF

See System Authorization Facility
(SAF)

secret key 15
security exit

DCE channel exit programs 54
Entrust/PKI channel exit

programs 56
introduction 52
providing your own link level

security 63
SSPI channel exit program 55

security mechanisms 3
security messages 52
security services

access control
Access Manager for Business

Integration 72
API exit 81
authority to administer WebSphere

MQ 31
authority to work with WebSphere

MQ objects 35
channel security 41

security services (continued)
access control (continued)

introduction 4
user written message exit 67
user written security exit 64

application level
Access Manager for Business

Integration 71
introduction 10
providing your own 77

authentication
Access Manager for Business

Integration 73
API exit 80
DCE channel exit programs 54
Entrust/PKI channel exit

programs 56
introduction 3
SNA LU 6.2 conversation level

authentication 59
SNA LU 6.2 session level

authentication 57
SSPI channel exit program 55
user written message exit 66
user written security exit 63

confidentiality
Access Manager for Business

Integration 73
API exit 81
DCE channel exit programs 54
Entrust/PKI channel exit

programs 56
introduction 4
SNA LU 6.2 session level

cryptography 57
user written message exit 67
user written security exit 66
user written send and receive

exits 69
data integrity

Access Manager for Business
Integration 73

API exit 82
Entrust/PKI channel exit

programs 56
introduction 5
user written message exit 68
user written send and receive

exits 69
identification

Access Manager for Business
Integration 73

API exit 80
DCE channel exit programs 54
Entrust/PKI channel exit

programs 56
introduction 3
SSPI channel exit program 55
user written message exit 66
user written security exit 63

introduction 3
link level

available services other than
WebSphere MQ SSL support 51

introduction 10
providing your own 63

Index 165

security services (continued)
non-repudiation

Access Manager for Business
Integration 74

API exit 82
introduction 5
proof of delivery 5
proof of origin 5
user written message exit 68

SNA LU 6.2 56
Security Support Provider Interface (SSPI)

channel exit program 55
self-signed certificate

creating
UNIX 102
Windows 119
z/OS 127

introduction 20
testing with 135

send exit
DCE channel exit programs 54
introduction 52
providing your own link level

security 68
setmqaut command

examples 39
introduction 31

signer certificate
introduction 18

SNA LU 6.2
conversation level authentication

introduction 59
PASSWORD parameter, OS/400,

UNIX, Windows 60
PASSWORD parameter, z/OS 62
security type, OS/400, UNIX,

Windows 60
security type, z/OS 61
USERID parameter, OS/400, UNIX,

Windows 60
USERID parameter, z/OS 62

default user ID for a responder
MCA 42

end user verification 59
LU-LU verification 57
security services 56
session level authentication 57
session level cryptography 57

specifying
CipherSpec

WebSphere MQ client 148
CipherSuite

Java client and JMS 148
key repository

queue manager on z/OS 126
WebSphere MQ client on

UNIX 101
WebSphere MQ client on

Windows 118
SSL 47

authentication information object 47
channel attributes

SSLCAUTH parameter 46
SSLCIPH parameter 45
SSLPEER parameter 46

configuration options 27
DEFINE CHANNEL 134

SSL (continued)
handshake 23, 27
IPT (internet pass-thru) 49
OS/400 87
platforms 45
protocol 23, 27
queue manager attributes

SSLCRLNL parameter 46
SSLCRYP parameter 46
SSLKEYR parameter 46
SSLKEYRPWD parameter 46
SSLTASKS parameter 46

testing
client authentication 136
communication 134
defining channels 134
introduction 133
on OS/400 136
with self-signed certificates 135

UNIX systems 97
WebSphere MQ client 48
Windows systems 113
z/OS 125

SSLCAUTH parameter
channel attribute 46
testing SSL 134

SSLCIPH parameter
channel attribute 45
specifying CipherSpecs 146
testing SSL 134

SSLCRLNL parameter
accessing CRLs 141
queue manager attribute 46

SSLCRYP parameter
cryptographic hardware 49
queue manager attribute 46

SSLKEYR parameter
OS/400 89
queue manager attribute 46
UNIX 100
Windows 116
z/OS 126

SSLKeyRepository field 27
SSLKEYRPWD parameter

queue manager attribute 46
SSLPEER parameter

channel attribute 46
testing SSL 134

SSLTASKS parameter
queue manager attribute 46
setting on z/OS 125

SSPI
See Security Support Provider

Interface (SSPI)
stream cipher algorithm 17
strength of encryption 16

Windows upgrade 148
STRMQMMQSC command 32
subsystem security 33
switch profiles

authority checks associated with MQI
calls 41

introduction 33
symmetric cryptography algorithm 15
System Authorization Facility (SAF) 33
system command input queue 34

T
tampering 17
testing

SSL client authentication 136
SSL communication 134
SSL on OS/400 136
with self-signed certificate 135

trademarks 159
transmission queue header structure

(MQXQH)
comparing link level security and

application level security 12
message exit 52
user written message exit 67

transmission segment
introduction 53
user written send and receive

exits 68

U
user certificate

introduction 18
USERID parameter

SNA LU 6.2 conversation level
authentication

OS/400, UNIX, Windows 60
z/OS 62

UserIdentifier field
authentication in a user written

message exit 66
authentication in an API exit 81
message containing an MQSC

command 34
message context 38
PCF command

accessing channels, channel
initiators, listeners, and
clusters 43

operating on a WebSphere MQ
object 37

PUTAUT parameter 41
use by a server application 67

W
WebSphere MQ channel protocol flows

comparing link level security and
application level security 12

send and receive exits 52
WebSphere MQ internet pass-thru 9

WebSphere MQ classes for Java 36
WebSphere MQ classes for Java Message

Service (JMS) 36
WebSphere MQ client

SSL 48
WebSphere MQ Explorer

authority to use 31
WebSphere MQ internet pass-thru 9
WebSphere MQ objects 35
WebSphere MQ Script commands

See MQSC commands
WebSphere MQ Services snap-in

authority to use 32

166 Security

WebSphere MQ utility program
(CSQUTIL)

accessing WebSphere MQ objects 35
MQSC commands 34

Windows NT LAN Manager (NTLM) 55
WRKMQMAUT command 40
WRKMQMAUTD command 40

X
X.509 standard

defines format for CA information 20
digital certificates comply with 19
DN identifies entity 19
public key infrastructure (PKI) 21

Index 167

168 Security

Sending your comments to IBM

If you especially like or dislike anything about this book, please use one of the
methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on
the accuracy, organization, subject matter, or completeness of this book.

Please limit your comments to the information in this book and the way in which
the information is presented.

To make comments about the functions of IBM products or systems, talk to your
IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate, without incurring
any obligation to you.

You can send your comments to IBM in any of the following ways:
v By mail, to this address:

User Technologies Department (MP095)
IBM United Kingdom Laboratories
Hursley Park
WINCHESTER,
Hampshire
SO21 2JN
United Kingdom

v By fax:
– From outside the U.K., after your international access code use

44–1962–816151
– From within the U.K., use 01962–816151

v Electronically, use the appropriate network ID:
– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
– IBMLink™: HURSLEY(IDRCF)
– Internet: idrcf@hursley.ibm.com

Whichever method you use, ensure that you include:
v The publication title and order number
v The topic to which your comment applies
v Your name and address/telephone number/fax number/network ID.

© Copyright IBM Corp. 2002 169

170 Security

����

Printed in U.S.A.

SC34-6079-01

	Contents
	Figures
	Tables
	About this book
	Who this book is for
	What you need to know to understand this book
	Terms used in this book
	How to use this book

	Part 1. Introduction
	Chapter 1. Security services
	Identification and authentication
	Access control
	Confidentiality
	Data integrity
	Non-repudiation

	Chapter 2. Planning for your security requirements
	Basic considerations
	Authority to administer WebSphere MQ
	Authority to work with WebSphere MQ objects
	Channel security

	Additional considerations
	Queue manager clusters
	MQSeries Publish/Subscribe
	WebSphere MQ internet pass-thru

	Link level security and application level security
	Link level security
	Application level security
	Comparing link level security and application level security
	Protecting messages in queues
	Queue managers not running in controlled and trusted environments
	Differences in cost
	Availability of components
	Messages in a dead letter queue
	What application level security cannot do

	Obtaining more information

	Chapter 3. Cryptographic concepts
	Cryptography
	Message digests
	Digital signatures
	Digital certificates
	What is in a digital certificate
	Certification Authorities
	Distinguished Names
	How digital certificates work
	Obtaining personal certificates
	How certificate chains work
	When certificates are no longer valid

	Public Key Infrastructure (PKI)

	Chapter 4. The Secure Sockets Layer (SSL)
	Secure Sockets Layer (SSL) concepts
	An overview of the SSL handshake
	How SSL provides authentication
	How SSL provides confidentiality
	How SSL provides integrity

	CipherSuites and CipherSpecs
	The Secure Sockets Layer in WebSphere MQ

	Part 2. WebSphere MQ security provisions
	Chapter 5. Access control
	Authority to administer WebSphere MQ
	Authority to administer WebSphere MQ on UNIX and Windows systems
	Authority to administer WebSphere MQ on OS/400
	Authority to administer WebSphere MQ on z/OS
	Authority checks on z/OS
	Command security and command resource security
	MQSC commands and the system command input queue
	Access to the queue manager data sets
	Obtaining more information

	Authority to work with WebSphere MQ objects
	When authority checks are performed
	Alternate user authority
	Message context
	Authority to work with WebSphere MQ objects on OS/400, UNIX systems, and Windows systems
	Authority to work with WebSphere MQ objects on z/OS

	Channel security

	Chapter 6. WebSphere MQ SSL support
	Channel attributes
	Queue manager attributes
	The authentication information object (AUTHINFO)
	The SSL key repository
	Protecting WebSphere MQ client key repositories

	WebSphere MQ client considerations
	Working with WebSphere MQ internet pass-thru (IPT)
	Support for cryptographic hardware

	Chapter 7. Other link level security services
	Channel exit programs
	Security exit
	Message exit
	Send and receive exits
	Obtaining more information

	The DCE channel exit programs
	The SSPI channel exit program
	The Entrust/PKI channel exit programs
	SNA LU 6.2 security services
	Session level cryptography
	Session level authentication
	Conversation level authentication
	Support for conversation level authentication in WebSphere MQ on OS/400, UNIX systems, and Windows systems
	Conversation level authentication and WebSphere MQ for z/OS
	Obtaining more information

	Chapter 8. Providing your own link level security
	Security exit
	Identification and authentication
	Access control
	Confidentiality

	Message exit
	Identification and authentication
	Access control
	Confidentiality
	Data integrity
	Non-repudiation
	Other uses of message exits

	Send and receive exits
	Confidentiality
	Data integrity
	Other uses of send and receive exits

	Chapter 9. Access Manager for Business Integration
	Introduction
	Access control
	Identification and authentication
	Data integrity
	Confidentiality
	Non-repudiation
	Obtaining more information

	Chapter 10. Providing your own application level security
	The API exit
	The API-crossing exit
	The role of the API exit and the API-crossing exit in security
	Identification and authentication
	Access control
	Confidentiality
	Data integrity
	Non-repudiation

	Other ways of providing your own application level security

	Part 3. Working with WebSphere MQ SSL support
	Chapter 11. Working with the Secure Sockets Layer (SSL) on OS/400
	Digital Certificate Manager (DCM)
	Accessing the DCM

	Setting up a key repository
	Creating a new certificate store
	Stashing the certificate store password

	Working with a key repository
	Locating the key repository for a queue manager
	Changing the key repository location for a queue manager
	When changes become effective

	Obtaining personal certificates
	Creating CA certificates for testing
	Requesting a personal certificate

	Adding personal certificates to a key repository
	Managing digital certificates
	Transferring certificates
	Exporting a certificate from a key repository
	Importing a certificate into a key repository

	Deleting certificates

	Configuring cryptographic hardware
	Mapping DNs to user IDs

	Chapter 12. Working with the Secure Sockets Layer (SSL) on UNIX systems
	Setting up a key repository
	Accessing your key database file

	Working with a key repository
	Locating the key repository for a queue manager
	Changing the key repository location for a queue manager
	Locating the key repository for a WebSphere MQ client
	Specifying the key repository location for a WebSphere MQ client
	When changes become effective

	Obtaining personal certificates
	Creating a self-signed personal certificate
	Requesting a personal certificate

	Adding personal certificates to a key repository
	Managing digital certificates
	Transferring certificates
	Extracting a CA certificate from a key repository
	Adding a CA certificate into a key repository
	Exporting a personal certificate from a key repository
	Importing a personal certificate into a key repository

	Removing certificates
	Editing a certificate label

	Configuring for cryptographic hardware
	Managing certificates on PKCS #11 hardware
	Requesting a personal certificate for your PKCS #11 hardware
	Importing a personal certificate to your PKCS #11 hardware

	Mapping DNs to user IDs

	Chapter 13. Working with the Secure Sockets Layer (SSL) on Windows systems
	Setting up a key repository
	Working with the WebSphere MQ default store
	Ensuring CA certificates are available to a queue manager
	Ensuring CA certificates are available to a WebSphere MQ client

	Working with a key repository
	Locating the key repository for a queue manager
	Changing the key repository location for a queue manager
	Locating the key repository for a WebSphere MQ client
	Specifying the key repository location for a WebSphere MQ client
	When changes become effective

	Obtaining personal certificates
	Creating a self-signed personal certificate
	Requesting a personal certificate

	Adding personal certificates to a key repository
	Adding a personal certificate to a queue manager key repository
	Adding a personal certificate to a WebSphere MQ client key repository
	Assigning a personal certificate to a queue manager
	Assigning a personal certificate to a WebSphere MQ client

	Managing digital certificates
	Transferring certificates
	Removing and unassigning certificates

	Mapping DNs to user IDs

	Chapter 14. Working with the Secure Sockets Layer (SSL) on z/OS
	Setting the SSLTASKS parameter
	Setting up a key repository
	Ensuring CA certificates are available to a queue manager

	Working with a key repository
	Locating the key repository for a queue manager
	Specifying the key repository location for a queue manager
	When changes become effective

	Obtaining personal certificates
	Creating a self-signed personal certificate
	Requesting a personal certificate
	Creating a RACF signed personal certificate

	Adding personal certificates to a key repository
	Managing digital certificates
	Transferring certificates
	Extracting a certificate from a key repository
	Importing a certificate into a key repository

	Removing certificates
	Deleting a personal certificate from a key repository
	Renaming a personal certificate in a key repository

	Working with Certificate Name Filters (CNFs)
	Setting up a CNF

	Chapter 15. Testing SSL
	Defining channels to use SSL
	Testing SSL communications
	Testing with self-signed certificates
	Transferring certificates by ftp
	Copying the certificate for QM1 to QM2
	Copying the certificate for QM2 to QM1

	Testing on OS/400
	Copying a local CA certificate from OS/400 to QM2

	Testing for failure of SSL client authentication

	Chapter 16. Working with Certificate Revocation Lists
	Setting up LDAP servers
	Configuring and updating LDAP servers

	Accessing CRLs
	Accessing CRLs with a queue manager
	Accessing CRLs on OS/400
	Accessing CRLs using WebSphere MQ Explorer

	Accessing CRLs with a WebSphere MQ client
	Accessing CRLs with the Java client and JMS

	Manipulating authentication information objects with PCF commands
	Keeping CRLs up to date

	Chapter 17. Working with CipherSpecs
	Specifying CipherSpecs
	Obtaining information about CipherSpecs using WebSphere MQ Explorer
	Alternatives for specifying CipherSpecs
	Considerations for WebSphere MQ clusters

	Specifying a CipherSpec for a WebSphere MQ client
	Specifying a CipherSuite with the Java client and JMS

	Understanding CipherSpec mismatches

	Chapter 18. WebSphere MQ rules for SSLPEER values
	Chapter 19. Understanding authentication failures
	Appendix A. Cryptographic hardware
	Appendix B. Notices
	Trademarks

	Index
	Sending your comments to IBM

