
WebSphere MQ for iSeries

System Administration Guide
Version 5 Release 3

SC34-6070-00

���

Note!
Before using this information and the product it supports, be sure to read the general information under Appendix D,
“Notices” on page 177.

First edition (October 2002)

This edition applies to WebSphere MQ for iSeries Version 5 Release 3 and to all subsequent releases and
modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1994, 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures vii

Tables ix

About this book xi
Who this book is for xi
What you need to know to understand this book . . xi
How to use this book xi

What’s new for this release xiii
A change of name xiii
Secure Sockets Layer (SSL) support xiii
OAM generic profiles xiv
Modifications to existing commands xiv
New commands for authority profiling xiv
Setting your license units xiv
Using installable services xiv
Using API exits xv
Quiescing a WebSphere MQ or MQSeries system . . xv

Chapter 1. Introduction to WebSphere
MQ 1
WebSphere MQ and message queuing 1

Time-independent applications 1
Message-driven processing 1

Messages and queues 1
What is a message? 1
What is a queue? 2

Objects 3
Object names 4
Managing objects 4
Object attributes 4
WebSphere MQ queue managers 5
WebSphere MQ queues 5
Process definitions 8
Channels 8
Clusters 9
Namelists 9
Authentication information objects 9

System default objects 10
Clients and servers 10

WebSphere MQ applications in a client-server
environment 10

Extending queue manager facilities 11
User exits 11

Security. 11
Transactional support 11

Chapter 2. Managing WebSphere MQ
for iSeries using CL commands 13
WebSphere MQ applications 13
WebSphere MQ for iSeries CL commands 13

General usage tips 15
Before you start 15

Starting a local queue manager 15
Creating WebSphere MQ objects 16

Examples of creating a local queue 17
Examples of creating a remote queue 18
Creating a transmission queue 20
Creating an initiation queue 20
Creating an alias queue 20
Creating a model queue 21
Altering queue manager attributes. 21

Working with local queues 21
Defining a local queue. 21
Defining a dead-letter queue 22
Displaying default object attributes 22
Copying a local queue definition 22
Changing local queue attributes 23
Clearing a local queue 23
Deleting a local queue 23
Enabling large queues 23

Working with alias queues 24
Defining an alias queue 24
Using other commands with alias queues . . . 25

Working with model queues. 25
Defining a model queue 25
Using other commands with model queues. . . 25

Managing objects for triggering. 26
Defining an application queue for triggering . . 26
Defining an initiation queue 27
Creating a process definition 27
Displaying your process definition 27

Communicating between two systems 27

Chapter 3. Alternative ways of
administering WebSphere MQ. 31
Local and remote administration 31
Administration using MQSC commands 32

MQSC command files 32
Administration using PCF commands 33

Attributes in MQSC and PCF commands . . . 34
Escape PCFs 34
Using the MQAI to simplify the use of PCFs . . 34

Using the WebSphere MQ Explorer 35
What you can do with the WebSphere MQ
Explorer 35
Prerequisite software 36
Required definitions for administration 36

Managing the command server for remote
administration 37

Starting the command server 37
Displaying the status of the command server . . 37
Stopping a command server 38

Instrumentation events 38

Chapter 4. Work management 39
Description of WebSphere MQ tasks 39
WebSphere MQ work management objects 40

© Copyright IBM Corp. 1994, 2002 iii

||
||
||
||
||
||
||
||
||
||

||

||
||

||

||

How WebSphere MQ uses the work management
objects 41

The WebSphere MQ message queue 42
Configuring work management. 43

Chapter 5. Protecting WebSphere MQ
objects. 47
Security considerations 47
Understanding the Object Authority Manager . . . 48

Resources you can protect with the OAM . . . 48
WebSphere MQ authorities 48

Granting WebSphere MQ authorities to
WebSphere MQ objects 48

Understanding the authorization specification tables 53
MQI authorizations. 54
Administration authorizations 57
Authorizations for MQSC commands in escape
PCFs 57

Generic OAM profiles 59
Using wildcard characters 59
Profile priorities 59

Specifying the installed authorization service . . . 60
Working without authority profiles 60
Working with authority profiles 60

WRKMQMAUT 61
WRKMQMAUTD 62

Object Authority Manager guidelines 64
Queue manager directories 64
Queues 64
Alternate-user authority 64
Context authority 65
Remote security considerations 65
Channel command security 65

Chapter 6. The WebSphere MQ
dead-letter queue handler 69
Invoking the DLQ handler 69
The DLQ handler rules table 70

Control data 70
Rules (patterns and actions) 71
Rules table conventions 74

Processing the rules table 75
Ensuring that all DLQ messages are processed . 76

An example DLQ handler rules table 77

Chapter 7. Backup, recovery, and
restart 79
WebSphere MQ for iSeries journals 79

WebSphere MQ for iSeries journal usage. . . . 81
Media images 82
Recovery from media images 83

Backups of WebSphere MQ for iSeries data 83
Journal management 84
Restoring a complete queue manager (data and
journals) 87
Restoring journal receivers for a particular queue
manager 87

Performance considerations 88
Using SAVLIB to save WebSphere MQ libraries . . 88

Chapter 8. Analyzing problems 89
Preliminary checks 89
Problem characteristics 91

Can you reproduce the problem? 91
Is the problem intermittent? 92
Problems with commands 92
Does the problem affect all users of the
WebSphere MQ for iSeries application? 92
Does the problem affect specific parts of the
network? 92
Does the problem occur only on WebSphere MQ 93
Does the problem occur at specific times of the
day? 93
Have you failed to receive a response from a
command?. 93

Determining problems with WebSphere MQ
applications 94

Are some of your queues working? 94
Does the problem affect only remote queues? . . 94
Does the problem affect messages? 95
Unexpected messages are received when using
distributed queues 96

Obtaining diagnostic information 97
Using WebSphere MQ for iSeries trace 98
Formatting trace output 100

Error logs 100
Log files 101
Early errors 101
Operator messages 102
An example WebSphere MQ error log 102

Dead-letter queues 103
First-failure support technology (FFST) 104
Performance considerations. 106

Application design considerations 106
Number of threads in use 107
Specific performance problems 107

Chapter 9. Configuring WebSphere
MQ 109
WebSphere MQ configuration files 109

Editing configuration files 109
The WebSphere MQ configuration file mqs.ini 110
Queue manager configuration files qm.ini . . . 110

Attributes for changing WebSphere MQ
configuration information 111

The AllQueueManagers stanza. 111
The DefaultQueueManager stanza 112
The ExitProperties stanza 112
The QueueManager stanza 113

Changing queue manager configuration
information 113

The Log stanza 114
The Channels stanza 114
The TCP stanza. 116

API exits 116
Why use API exits 117
How you use API exits 117
What happens when an API exit runs? 118
Configuring API exits 118

Example mqs.ini and qm.ini files 120

iv System Administration Guide

||
||
||

||

||

||
||
||
||
||

Chapter 10. Installable services and
components 123
Why installable services? 123
Functions and components 124

Entry-points 124
Return codes 124
Component data 125

Initialization. 125
Primary initialization 125
Secondary initialization 125
Primary termination 125
Secondary termination 125

Configuring services and components 126
Service stanza format. 126
Service component stanza format 126

Creating your own service component 127
Authorization service. 127

Object authority manager (OAM). 127
Configuring authorization service stanzas . . . 128
Authorization service interface 129

Installable services interface reference information 130
How the functions are shown 130
MQZEP – Add component entry point 131
MQHCONFIG – Configuration handle 132
PMQFUNC – Pointer to function 132
MQZ_CHECK_AUTHORITY – Check authority 133
MQZ_COPY_ALL_AUTHORITY – Copy all
authority 137
MQZ_DELETE_AUTHORITY – Delete authority 140
MQZ_ENUMERATE_AUTHORITY_DATA –
Enumerate authority data 142
MQZ_GET_AUTHORITY – Get authority . . . 145
MQZ_GET_EXPLICIT_AUTHORITY – Get
explicit authority 148
MQZ_INIT_AUTHORITY – Initialize
authorization service 151
MQZ_REFRESH_CACHE – Refresh all
authorizations 153

MQZ_SET_AUTHORITY – Set authority . . . 155
MQZ_TERM_AUTHORITY – Terminate
authorization service 158
MQZAD – Authority data 160
MQZED – Entity descriptor 163

Appendix A. WebSphere MQ names
and default objects 165
WebSphere MQ object names 165
Understanding WebSphere MQ queue manager
library names 165

Understanding WebSphere MQ IFS directories
and files 166
IFS queue manager name transformation . . . 166
Object name transformation 166

System and default objects 167

Appendix B. Sample resource
definitions. 169

Appendix C. Quiescing WebSphere
MQ and MQSeries systems 173
Quiescing MQSeries for AS/400 V5.1 systems . . 173
Quiescing MQSeries for AS/400 V5.2 and
WebSphere MQ for iSeries systems 173

Shutting down a single queue manager . . . 173
Shutting down all queue managers 175

Appendix D. Notices 177
Trademarks 178

Index 181

Sending your comments to IBM . . . 187

Contents v

|
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
|
||
||
|
||
||
|
||
|
||
|
||

||
|
||
||
||

|
||
||
|
||
||
||

vi System Administration Guide

Figures

1. Create MQM Queue initial panel 17
2. Work with MQM Queues panel 18
3. Work with queue managers results panel 32
4. Extract from the MQSC command file,

myprog.in 33
5. Display MQM Command Server panel 38
6. Work with MQM Authority panel – input

display 61
7. Work with MQM Authority panel – results

display 62
8. Work with MQM Authority Data input panel 63

9. Work with MQM Authority Data output panel 63
10. Sequence of events when updating MQM

objects 82
11. WebSphere MQ for iSeries journaling 85
12. Extract from a WebSphere MQ error log 103
13. FFST report 105
14. Example of a WebSphere MQ configuration

file 121
15. Example queue manager configuration file 121
16. WebSphere MQ for iSeries authorization

service stanzas in qm.ini 128

© Copyright IBM Corp. 1994, 2002 vii

||
||

|
||
|
||
||

||

||
||

|
||

viii System Administration Guide

Tables

1. WebSphere MQ tasks. 39
2. Work management objects 40
3. Work management objects created for a queue

manager 41
4. Authorizations for MQI calls 51
5. Authorizations for context calls 52
6. Authorizations for MQSC and PCF calls 52
7. Authorizations for generic operations 52
8. Security authorization needed for MQCONN

calls 54
9. Security authorization needed for MQOPEN

calls 55
10. Security authorization needed for MQPUT1

calls 55

11. Security authorization needed for MQCLOSE
calls 55

12. MQSC commands and security authorization
needed 57

13. PCF commands and security authorization
needed 58

14. List of possible ISO CCSIDs. 112
15. Authorization service components summary 123
16. Fields in MQZAD 160
17. Fields in MQZED 163
18. System and default objects: queues 167
19. System and default objects: channels 168
20. System and default objects: processes 168
21. System and default objects: namelists 168

© Copyright IBM Corp. 1994, 2002 ix

|
||

|
||
|
||

||
||
||

||

x System Administration Guide

About this book

This book applies to WebSphere® MQ for iSeries™ V5.3, the member of the
WebSphere MQ family for the OS/400® operating system.

This product provides application programming services that enable application
programs to communicate with each other using message queues. This form of
communication is referred to as commercial messaging. The applications involved
can exist on different nodes on a wide variety of machine and operating system
types. The product uses a common application programming interface, called the
message queue interface or MQI, so that programs developed on one platform can
readily be transferred to another.

This book describes the system administration aspects of WebSphere MQ for
iSeries, V5.3, and the services provided to support commercial messaging. This
includes managing the queues that applications use to receive their messages, and
ensuring that applications have access to the queues that they require.

Installation of WebSphere MQ is described in WebSphere MQ for iSeries V5.3 Quick
Beginnings.

Post-installation configuration of a distributed queuing network is described in
WebSphere MQ Intercommunication.

Who this book is for
This book is for system administrators and system programmers who manage the
configuration and administration tasks for WebSphere MQ. It is also useful to
application programmers who need to understand WebSphere MQ administration
tasks.

What you need to know to understand this book
To use this book, you need a good understanding of the IBM® operating system
for iSeries, and of the utilities associated with it. You do not need to have worked
with message queuing products before, but you need to understand the basic
concepts of message queuing.

For a summary of the new function introduced in WebSphere MQ for iSeries, V5.3.
see “What’s new for this release” on page xiii.

For a list of the terms used in this book see the WebSphere MQ Bibliography and
Glossary.

How to use this book
This book is divided into the following sections:
v The use of WebSphere MQ for iSeries using CL commands. This is the preferred

method of operation.
v An overview of other methods of administering WebSphere MQ for iSeries, V5.3.
v The various features of the product.

© Copyright IBM Corp. 1994, 2002 xi

|
|

About this book

xii System Administration Guide

What’s new for this release

This section describes the new function, of interest to system administrators, that
has been added for this release of WebSphere MQ for iSeries.

A change of name
With the release of Version 5 Release 3, we have rebranded MQSeries® to show its
close relationship with IBM’s WebSphere brand of products that enable e-business.
Throughout this book, and the rest of the library, MQSeries is now known by its
new name, WebSphere MQ.

Secure Sockets Layer (SSL) support
The Secure Sockets Layer (SSL) protocol provides channel security, with protection
against eavesdropping, tampering, and impersonation.

SSL is an industry-standard protocol that provides a data security layer between
application protocols and the communications layer, usually TCP/IP. The SSL
protocol was designed by the Netscape Development Corporation, and is widely
deployed in both Internet applications and intranet applications. SSL defines
methods for data encryption, server authentication, message integrity, and client
authentication for a TCP/IP connection.

SSL uses public key and symmetric techniques to provide the following security
services:

Message privacy
SSL uses a combination of public-key and symmetric-key encryption to
ensure message privacy. Before exchanging messages, an SSL server and an
SSL client perform an electronic handshake during which they agree to use
a session key and an encryption algorithm. All messages sent between the
client and the server are then encrypted. Encryption ensures that the
message remains private even if eavesdroppers intercept it.

Message integrity
SSL uses the combination of a shared secret key and message hash
functions. This ensures that nothing changes the content of a message as it
travels between client and server.

Mutual authentication
During the initial SSL handshake, the server uses a public-key certificate to
convince the client of the server’s identity. Optionally, the client can also
exchange a public-key certificate with the server to ensure the authenticity
of the client.

To help you to use certificate revocation lists (CRLs), WebSphere MQ uses a new
object, the authentication information object. This book introduces the
WRKMQMAUTI, CHGMQMAUTI, CRTMQMAUTI, CPYMQMAUTI,
DLTMQMAUTI, and DSPMQMAUTI CL commands to support this object.

For a overview of SSL and the use of authentication information objects, see
WebSphere MQ Security.

© Copyright IBM Corp. 1994, 2002 xiii

|

|

|
|

|
|

|
|
|
|

|
|

|
|

|
|
|
|
|
|

|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

|
|

OAM generic profiles
OAM generic profiles enable you to set the authority a user has to many objects at
once, rather than having to issue separate GRTMQMAUT commands against each
individual object when it is created. “Generic OAM profiles” on page 59 provides
detailed information on using generic profiles.

Modifications to existing commands
GRTMQMAUT and RVKMQMAUT have an additional parameter, Service
Component name, that allows you to specify the name of the installed authorization
service component. For more information, see “Specifying the installed
authorization service” on page 60.

New commands for authority profiling
There are two new commands associated with authority profiling:
v WRKMQMAUT
v WRKMQMAUTD

For a full description of these, see “Working with authority profiles” on page 60

Setting your license units
To fulfil the conditions of your license agreement with IBM, you must have
purchased sufficient license units for the number of processors on which you are
running WebSphere MQ. The installation dialog checks for this when you install
WebSphere MQ

This book describes commands you can use to set (CHGMQMCAP) and display
(DSPMQMCAP) your license units.

Using installable services
WebSphere MQ installable services:
v Provide you with the flexibility of choosing whether to use components

provided by WebSphere MQ products, or replace or augment them with others.
v Allow vendors to participate, by providing components that might use new

technologies, without making internal changes to WebSphere MQ products.
v Allow WebSphere MQ to exploit new technologies faster and cheaper, and so

provide products earlier and at lower prices.

Previously, information on installable services for WebSphere MQ for iSeries was in
MQSeries Programmable System Management We have now moved them into this
book, in Chapter 10, “Installable services and components” on page 123.

MQSeries Programmable System Management has been completely removed. Other
information that used to be in it has moved into the following books:
v Event monitoring is now in WebSphere MQ Event Monitoring.
v Programmable command formats are now in WebSphere MQ Programmable

Command Formats and Administration Interface.

xiv System Administration Guide

|
|

|
|
|
|

|
|

|
|
|
|

|
|

|

|

|

|

|
|

|
|
|
|

|
|

|
|

|

|
|

|
|

|
|

|
|
|

|
|

|

|
|

Using API exits
API exits let you write code that changes the behavior of WebSphere MQ API calls,
such as MQPUT and MQGET, and then insert that code immediately before or
immediately after those calls. The insertion is automatic; the queue manager drives
the exit code at the registered points.

In “API exits” on page 116, this book explains why you might want to use API
exits, describes what administration tasks are involved in enabling them, and gives
a brief introduction to writing API exits. For more detailed information about
writing API exits, aimed at application programmers, see the WebSphere MQ
Application Programming Guide.

Quiescing a WebSphere MQ or MQSeries system
A new appendix, Appendix C, “Quiescing WebSphere MQ and MQSeries systems”
on page 173, explains how to end gracefully (quiesce) a WebSphere MQ for iSeries

or MQSeries for AS/400 system.

What’s new for this release xv

|
|

|
|
|
|

|
|
|
|
|

|
|

|
|
|

xvi System Administration Guide

Chapter 1. Introduction to WebSphere MQ

This chapter introduces the WebSphere MQ for iSeries Version 5.3 product from an
administrator’s perspective, and describes the basic concepts of WebSphere MQ
and messaging. It contains these sections:
v “WebSphere MQ and message queuing”
v “Messages and queues”
v “Objects” on page 3
v “System default objects” on page 10
v “Clients and servers” on page 10
v “Extending queue manager facilities” on page 11
v “Security” on page 11
v “Transactional support” on page 11

WebSphere MQ and message queuing
WebSphere MQ allows application programs to use message queuing to
participate in message-driven processing. Application programs can communicate
across different platforms by using the appropriate message queuing software
products. For example, OS/400 and z/OS™ applications can communicate through
WebSphere MQ for iSeries and WebSphere MQ for z/OS respectively. The
applications are shielded from the mechanics of the underlying communications.

WebSphere MQ products implement a common application programming interface
known as the message queue interface (or MQI) whatever platform the
applications are run on. This makes it easier for you to port application programs
from one platform to another.

The MQI is described in detail in the WebSphere MQ Application Programming
Reference.

Time-independent applications
With message queuing, the exchange of messages between the sending and
receiving programs is independent of time. This means that the sending and
receiving application programs are decoupled; the sender can continue processing
without having to wait for the receiver to acknowledge receipt of the message. In
fact, the target application does not even have to be running when the message is
sent. It can retrieve the message after it is has been started.

Message-driven processing
Upon arrival on a queue, messages can automatically start an application using a
mechanism known as triggering. If necessary, the applications can be stopped
when the message (or messages) have been processed.

Messages and queues
Messages and queues are the basic components of a message queuing system.

What is a message?
A message is a string of bytes that is meaningful to the applications that use it.
Messages are used for transferring information from one application program to

© Copyright IBM Corp. 1994, 2002 1

another (or to different parts of the same application). The applications can be
running on the same platform, or on different platforms.

WebSphere MQ messages have two parts:
v The application data

The content and structure of the application data is defined by the application
programs that use them.

v A message descriptor

The message descriptor identifies the message and contains additional control
information such as the type of message, and the priority assigned to the
message by the sending application.
The format of the message descriptor is defined by WebSphere MQ. For a
complete description of the message descriptor, see the WebSphere MQ
Application Programming Reference.

Message lengths
The default maximum message length is 4 MB, although you can increase this to a
maximum length of 100 MB (where 1 MB equals 1 048 576 bytes). In practice, the
message length is limited by:
v The maximum message length defined for the receiving queue
v The maximum message length defined for the queue manager
v The maximum message length defined by the queue
v The maximum message length defined by either the sending or receiving

application
v The amount of storage available for the message

It can take several messages to send all the information that an application
requires.

How do applications send and receive messages?
Application programs send and receive messages using MQI calls.

For example, to put a message onto a queue, an application:
1. Opens the required queue by issuing an MQI MQOPEN call
2. Issues an MQI MQPUT call to put the message onto the queue

Another application can retrieve the message from the same queue by issuing an
MQI MQGET call.

For more information about MQI calls, see the WebSphere MQ Application
Programming Reference.

What is a queue?
A queue is a data structure used to store messages. The messages are put on the
queue by application programs, or by a queue manager as part of its normal
operation.

Each queue is owned by a queue manager. The queue manager maintains the
queues it owns and stores all the messages it receives onto the appropriate queues.

Messages and queues

2 System Administration Guide

|

|

WebSphere MQ Version 5.3 supports queues over 2 GB in size; “Enabling large
queues” on page 23 discusses this in more detail. For information about planning
the amount of storage you need for queues, visit the WebSphere MQ Web site for
platform-specific performance reports:
http://www.ibm.com/software/ts/mqseries/

Predefined queues and dynamic queues
Queues can be characterized by the way that they are created:
v Predefined queues are created by an administrator using the appropriate

WebSphere MQ script (MQSC) commands. Predefined queues are permanent;
they exist independently of the applications that use them and survive
WebSphere MQ restarts.

v Dynamic queues are created when an application issues an OPEN request
specifying the name of a model queue. The queue created is based on a template
queue definition, which is the model queue. You can create a model queue using
the MQSC DEFINE QMODEL command. The attributes of a model queue, for
example the maximum number of messages that can be stored on it, are
inherited by any dynamic queue that is created from it.
Model queues have an attribute that specifies whether the dynamic queue is to
be permanent or temporary. Permanent queues survive application and queue
manager restarts; temporary queues are lost on restart.

Retrieving messages from queues
Suitably authorized applications can retrieve messages from a queue according to
the following retrieval algorithms:
v First-in-first-out (FIFO)
v Message priority, as defined in the message descriptor. Messages that have the

same priority are retrieved on a FIFO basis.
v A program request for a specific message.

The MQGET request from the application determines the method used.

Objects
Many of the tasks described in this book involve manipulating WebSphere MQ
objects.

In WebSphere MQ, the object types include queue managers, queues, process
definitions, channels, namelists, and authentication information objects.

The manipulation or administration of objects includes:
v Starting and stopping queue managers.
v Creating objects, particularly queues, for applications.
v Working with channels to create communication paths to queue managers on

other (remote) systems. This is described in detail in WebSphere MQ
Intercommunication.

v Creating clusters of queue managers to simplify the overall administration
process, or to achieve workload balancing. This is described in detail in
WebSphere MQ Queue Manager Clusters.

This book contains detailed information about administration in the following
chapters:

Messages and queues

Chapter 1. Introduction to WebSphere MQ 3

|
|

|
|

v Chapter 2, “Managing WebSphere MQ for iSeries using CL commands” on page
13

v Chapter 3, “Alternative ways of administering WebSphere MQ” on page 31

Object names
The naming convention adopted for WebSphere MQ objects depends on the object.

Each instance of a queue manager is known by its name. This name must be
unique within the network of interconnected queue managers, so that one queue
manager can unambiguously identify the target queue manager to which any
given message is sent.

For the other types of object, each object has a name associated with it and can be
referenced by that name. These names must be unique within one queue manager
and object type. For example, you can have a queue and a process with the same
name, but you cannot have two queues with the same name.

In WebSphere MQ, names can have a maximum of 48 characters, with the
exception of channels which have a maximum of 20 characters. For more
information about names, see “WebSphere MQ object names” on page 165.

Managing objects
You can manage objects using the native OS/400 menus.

You can create, alter, display, and delete objects using:
v WebSphere MQ for iSeries CL commands
v WebSphere MQ script (MQSC) commands, which can be typed in from a

keyboard or read from a file
v Programmable command format (PCF) messages, which can be used in an

automation program
v WebSphere MQ Administration Interface (MQAI) calls in a program

For more information about these methods, see Chapter 3, “Alternative ways of
administering WebSphere MQ” on page 31.

You can also administer WebSphere MQ for iSeries from a Windows® machine
using the WebSphere MQ Explorer (see “Using the WebSphere MQ Explorer” on
page 35).

Object attributes
The properties of an object are defined by its attributes. Some you can specify,
others you can only view. For example, the maximum message length that a queue
can accommodate is defined by its MaxMsgLength attribute; you can specify this
attribute when you create a queue. The DefinitionType attribute specifies how the
queue was created; you can only display this attribute.

In WebSphere MQ, there are three ways of referring to an attribute:
v Using its CL parameter name, for example, MAXMSGLEN
v Using its PCF name, for example, MaxMsgLength.
v Using its MQSC name, for example, MAXMSGL.

Objects

4 System Administration Guide

The formal name of an attribute is its PCF name. Because using the CL interface is
an important part of this book, you are more likely to see the CL name in
examples than the PCF name of a given attribute.

WebSphere MQ queue managers
A queue manager provides queuing services to applications, and manages the
queues that belong to it. It ensures that:
v Object attributes are changed according to the commands received.
v Special events such as trigger events or instrumentation events are generated

when the appropriate conditions are met.
v Messages are put on the correct queue, as requested by the application making

the MQPUT call. The application is informed if this cannot be done, and an
appropriate reason code is given.

Each queue belongs to a single queue manager and is said to be a local queue to
that queue manager.

The queue manager to which an application is connected is said to be the local
queue manager for that application. For the application, the queues that belong to
its local queue manager are local queues.

A remote queue is a queue that belongs to another queue manager.

A remote queue manager is any queue manager other than the local queue manager.
A remote queue manager exists on a remote machine across the network, or on the
same machine as the local queue manager.

WebSphere MQ for iSeries supports multiple queue managers on the same
machine.

A queue manager object can be used in some MQI calls. For example, you can
inquire about the attributes of the queue manager object using the MQI call
MQINQ.

Note: You cannot put messages on a queue manager object; messages are always
put on queue objects, not on queue manager objects.

WebSphere MQ queues
Queues are defined to WebSphere MQ using:
v The native OS/400 CRTMQMQ CL command
v The appropriate MQSC DEFINE command
v The PCF Create Queue command

Note: The WebSphere MQ process, channel, and namelist objects can be defined in
a similar manner.

The commands specify the type of queue and its attributes. For example, a local
queue object has attributes that specify what happens when applications reference
that queue in MQI calls. Examples of attributes are:
v Whether applications can retrieve messages from the queue (GET enabled).
v Whether applications can put messages on the queue (PUT enabled).
v Whether access to the queue is exclusive to one application or shared between

applications.

Objects

Chapter 1. Introduction to WebSphere MQ 5

v The maximum number of messages that can be stored on the queue at the same
time (maximum queue depth).

v The maximum length of messages that can be put on the queue.

For further details about defining queue objects, see the WebSphere MQ Script
(MQSC) Command Reference or WebSphere MQ Programmable Command Formats and
Administration Interface.

Using queue objects
There are four types of queue object available in WebSphere MQ. Each type of
object can be manipulated by the product commands and is associated with real
queues in different ways.
1. Local queue object A local queue object identifies a local queue belonging to

the queue manager to which the application is connected. All queues are local
queues in the sense that each queue belongs to a queue manager and, for that
queue manager, the queue is a local queue.

2. A remote queue object

A remote queue object identifies a queue belonging to another queue manager.
This queue must be defined as a local queue to that queue manager. The
information you specify when you define a remote queue object allows the
local queue manager to find the remote queue manager, so that any messages
destined for the remote queue go to the correct queue manager.
Before applications can send messages to a queue on another queue manager,
you must have defined a transmission queue and channels between the queue
managers, unless you have grouped one or more queue managers together into
a cluster. For more information about clusters, see WebSphere MQ Queue
Manager Clusters.

3. An alias queue object

An alias queue allows applications to access a queue by referring to it
indirectly in MQI calls. When an alias queue name is used in an MQI call, the
name is resolved to the name of either a local or a remote queue at run time.
This allows you to change the queues that applications use without changing
the application in any way. You just change the alias queue definition to reflect
the name of the new queue to which the alias resolves.
An alias queue is not a queue, but an object that you can use to access another
queue.

4. A model queue object

A model queue defines a set of queue attributes that are used as a template for
creating a dynamic queue. Dynamic queues are created by the queue manager
when an application issues an MQOPEN request specifying a queue name that
is the name of a model queue. The dynamic queue that is created in this way is
a local queue whose attributes are taken from the model queue definition. The
dynamic queue name can be specified by the application or the queue manager
can generate the name and return it to the application.
Dynamic queues defined in this way are either temporary queues, which do
not survive product restarts, or permanent queues, which do.

Specific local queue types and their uses
WebSphere MQ uses some local queues for specific purposes related to its
operation. These are:
v Application queues

Objects

6 System Administration Guide

This is a queue that is used by an application through the MQI. It can be a local
queue on the queue manager to which an application is linked, or it can be a
remote queue that is owned by another queue manager.
Applications can put messages on local or remote queues. However, they can
only get messages from a local queue.

v Initiation queues

Initiation queues are queues that are used in triggering. A queue manager puts a
trigger message on an initiation queue when a trigger event occurs. A trigger
event is a logical combination of conditions that is detected by a queue manager.
For example, a trigger event might be generated when the number of messages
on a queue reaches a predefined depth. This event causes the queue manager to
put a trigger message on a specified initiation queue. This trigger message is
retrieved by a trigger monitor, a special application that monitors an initiation
queue. The trigger monitor then starts up the application program that was
specified in the trigger message.
If a queue manager is to use triggering, at least one initiation queue must be
defined for that queue manager.
See “Managing objects for triggering” on page 26 For more information about
triggering, see the WebSphere MQ Application Programming Guide.

v Transmission queues

Transmission queues are queues that temporarily stores messages that are
destined for a remote queue manager. You must define at least one transmission
queue for each remote queue manager to which the local queue manager is to
send messages directly. These queues are also used in remote administration. For
information about the use of transmission queues in distributed queuing, see
WebSphere MQ Intercommunication.

v Cluster transmission queues

Each queue manager within a cluster has a cluster transmission queue called
SYSTEM.CLUSTER.TRANSMIT.QUEUE. A definition of this queue is created by
default on every queue manager on WebSphere MQ for AIX®, iSeries, HP-UX,
Solaris, and Windows.
A queue manager that is part of the cluster can send messages on the cluster
transmission queue to any other queue manager that is in the same cluster.
Cluster queue managers can communicate with queue managers that are not
part of the cluster. To do this, the queue manager must define channels and a
transmission queue to the other queue manager in the same way as in a
traditional distributed-queuing environment.
For more information on using clusters, see WebSphere MQ Queue Manager
Clusters.

v Dead-letter queues

A dead-letter queue is a queue that stores messages that cannot be routed to
their correct destinations. This occurs when, for example, the destination queue
is full. The supplied dead-letter queue is called SYSTEM.DEAD.LETTER.QUEUE.
These queues are sometimes referred to as undelivered-message queues.
A dead-letter queue is defined by default when each queue manager is created.
However, you must ensure that the queue manager on which this queue resides
points to the dead-letter queue that it is going to use.
The following command creates an undelivered-message queue on queue
manager neptune.queue.manager:
CRTMQM MQMNAME(neptune.queue.manager) UDLMSGQ(ANOTHERDLQ)

v Command queues

Objects

Chapter 1. Introduction to WebSphere MQ 7

The command queue, named SYSTEM.ADMIN.COMMAND.QUEUE, is a local
queue to which suitably authorized applications can send WebSphere MQ
commands for processing. These commands are then retrieved by a WebSphere
MQ component called the command server. The command server validates the
commands, passes the valid ones on for processing by the queue manager, and
returns any responses to the appropriate reply-to queue.
A command queue is created automatically for each queue manager when that
queue manager is created.

v Reply-to queues

When an application sends a request message, the application that receives the
message can send back a reply message to the sending application. This message
is put on a queue, called a reply-to queue, which is normally a local queue to
the sending application. The name of the reply-to queue is specified by the
sending application as part of the message descriptor.

v Event queues

WebSphere MQ for iSeries supports instrumentation events, which can be used
to monitor queue managers independently of MQI applications. Instrumentation
events can be generated in several ways, for example:
– An application attempting to put a message on a queue that is not available

or does not exist.
– A queue becoming full.
– A channel being started.

When an instrumentation event occurs, the queue manager puts an event
message on an event queue. This message can then be read by a monitoring
application, which informs an administrator or initiate some remedial action if
the event indicates a problem.

Note: Trigger events are quite different from instrumentation events in that
trigger events are not caused by the same conditions, and do not generate
event messages.

For more information about instrumentation events, see WebSphere MQ Event
Monitoring.

Process definitions
A process definition object defines an application that is to be started in response to a
trigger event on a WebSphere MQ queue manager. See the “Initiation queues”
entry under “Specific local queue types and their uses” on page 6 for more
information.

The process definition attributes include the application ID, the application type,
and data specific to the application.

Use the WebSphere MQ for iSeries CRTMQMPRC CL command, the MQSC
command DEFINE PROCESS, or the PCF command Create Process to create a
process definition.

Channels
Channels are objects that provide a communication path from one queue manager
to another. Channels are used in distributed message queuing to move messages
from one queue manager to another. They shield applications from the underlying
communications protocols. The queue managers exist on the same, or different,

Objects

8 System Administration Guide

platforms. For queue managers to communicate with one another, you must define
one channel object at the queue manager that is to send messages, and another,
complementary one, at the queue manager that is to receive them.

Use the WebSphere MQ for iSeries CRTMQMCHL CL command, the MQSC
command DEFINE CHANNEL, or the PCF command Create Channel to create a
channel definition.

Note: Clustering automates some of these tasks for you.

For information on channels and how to use them, see WebSphere MQ
Intercommunication.

Clusters
In a traditional WebSphere MQ network using distributed queuing, every queue
manager is independent. If one queue manager needs to send messages to another
queue manager it must have defined a transmission queue, a channel to the remote
queue manager, and a remote queue definition for every queue to which it wants
to send messages.

A cluster is a group of queue managers set up in such a way that the queue
managers can communicate directly with one another over a single network,
without the need for complex transmission queue, channel, and queue definitions.

For information about clusters, see WebSphere MQ Queue Manager Clusters.

Namelists
A namelist is a WebSphere MQ object that contains a list of other WebSphere MQ
objects. Typically, namelists are used by applications such as trigger monitors,
where they are used to identify a group of queues. The advantage of using a
namelist is that it is maintained independently of applications; that is, it can be
updated without stopping any of the applications that use it. Also, if one
application fails, the namelist is not affected and other applications can continue
using it.

Namelists are also used with queue manager clusters so that you can maintain a
list of clusters referenced by more than one WebSphere MQ object.

Use the WebSphere MQ for iSeries CRTMQMNL CL command, the MQSC
command DEFINE NAMELIST, or the PCF command Create Namelist to create a
namelist definition.

Authentication information objects
The queue manager authentication information object forms part of WebSphere MQ
support for Secure Sockets Layer (SSL) security. It provides the definitions needed
to check certificate revocation lists (CRLs) using LDAP servers. CRLs allow
Certification Authorities to revoke certificates that can no longer be trusted.

This book introduces the WRKMQMAUTI, DSPMQMAUTI, CRTMQMAUTI,
CPYMQMAUTI, CHGMQMAUTI, and DLTMQMAUTI commands for use with
the authentication information object. For an overview of SSL and the use of
authentication information objects, see WebSphere MQ Security.

Objects

Chapter 1. Introduction to WebSphere MQ 9

|

|
|
|
|

|
|
|
|

System default objects
The system default objects are a set of object definitions that are created
automatically whenever a queue manager is created. You can copy and modify any
of these object definitions for use in applications at your installation.

Default object names have the stem SYSTEM.DEF; for example, the default local
queue is SYSTEM.DEFAULT.LOCAL.QUEUE, and the default receiver channel is
SYSTEM.DEF.RECEIVER. You cannot rename these objects; default objects of these
names are required.

When you define an object, any attributes that you do not specify explicitly are
copied from the appropriate default object. For example, if you define a local
queue, those attributes that you do not specify are taken from the default queue
SYSTEM.DEFAULT.LOCAL.QUEUE.

Clients and servers
WebSphere MQ supports client-server configurations for WebSphere MQ
applications.

A WebSphere MQ client is a part of the WebSphere MQ product that is installed on
a machine to accept MQI calls from applications and pass them to an MQI server
machine. There they are processed by a queue manager. Typically, the client and
server reside on different machines but they can also exist on the same machine.

Note: WebSphere MQ for iSeries acts as a Java™ client only.

An MQI server is a queue manager that provides queuing services to one or more
clients. All the WebSphere MQ objects, for example queues, exist only on the queue
manager machine, that is, on the MQI server machine. A server can support
normal local WebSphere MQ applications as well.

For more information about creating channels for clients and servers, see WebSphere
MQ Intercommunication.

For information about client support in general, see WebSphere MQ Clients.

WebSphere MQ applications in a client-server environment
When linked to a server, client WebSphere MQ applications can issue most MQI
calls in the same way as local applications. The client application issues an
MQCONN call to connect to a specified queue manager. Any additional MQI calls
that specify the connection handle returned from the connect request are then
processed by this queue manager.

The advantages of a client are that:
v It is simple to set up
v It is simple to manage
v It has a low resource footprint

You must link your applications to the appropriate client libraries. See WebSphere
MQ Clients for further information.

System default objects

10 System Administration Guide

|

Extending queue manager facilities
The facilities provided by a queue manager can be extended by defining user exits.

User exits
User exits provide a way for you to insert your own code into a queue manager
function. The user exits supported include:
v Channel exits

These exits change the way that channels operate. Channel exits are described in
WebSphere MQ Intercommunication.

v Data conversion exits

These exits create source code fragments that can be put into application
programs to convert data from one format to another. Data conversion exits are
described in the WebSphere MQ Application Programming Guide.

v The cluster workload exit

The function performed by this exit is defined by the provider of the exit. Call
definition information is given in WebSphere MQ Queue Manager Clusters. The
exit is supported in the following environments: AIX, iSeries, HP-UX, Solaris,
Windows, and z/OS

Security
In WebSphere MQ for iSeries security is provided by the Object Authority Manager
(OAM) component. See Chapter 5, “Protecting WebSphere MQ objects” on page 47
for details of this component.

Transactional support
An application program can group a set of updates into a unit of work. These
updates are usually logically related and must all be successful for data integrity to
be preserved. If one update succeeds while another fails, data integrity is lost.

A unit of work commits when it completes successfully. At this point all updates
made within that unit of work are made permanent or irreversible. If the unit of
work fails, all updates are instead backed out. Syncpoint coordination is the process
by which units of work are either committed or backed out with integrity.

A local unit of work is one in which the only resources updated are those of the
WebSphere MQ queue manager. Here, syncpoint coordination is provided by the
queue manager itself using a dual-phase commit process and the MQI calls
MQBACK and MQCMIT.

WebSphere MQ for iSeries can support and participate in global units of work as a
resource manager, coordinated by the OS/400 COMMIT and ROLLBACK
commands.

Extending facilities

Chapter 1. Introduction to WebSphere MQ 11

|
|
|

12 System Administration Guide

Chapter 2. Managing WebSphere MQ for iSeries using CL
commands

WebSphere MQ for iSeries provides three interfaces for administration:
v A set of fully featured OS/400 commands
v Provision for processing the WebSphere MQ script (MQSC) commands. This is a

common interface used by all WebSphere MQ implementations on other
platforms

v WebSphere MQ programmable command formats (PCF). This is a lower-level
command interface, which can be used by applications to administer the
product.

This chapter gives an overview of working with WebSphere MQ for iSeries using
the WebSphere MQ OS/400 commands, together with some suggested operations,
as these commands are specific to iSeries.

WebSphere MQ applications
When you create or customize WebSphere MQ applications, it is useful to keep a
record of all WebSphere MQ definitions created. This record can be used for:
v Recovery purposes
v Maintenance
v Rolling out WebSphere MQ applications

You can do this by either:
v Creating CL programs to generate your WebSphere MQ definitions for the

server, or
v Creating MQSC text files as SRC members to generate your WebSphere MQ

definitions using the cross-platformWebSphere MQ command language.

WebSphere MQ for iSeries CL commands
The commands can be grouped as follows:
v Authentication Information Commands

CHGMQMAUTI, Change MQM Authentication Information
CPYMQMAUTI, Copy MQM Authentication Information
DLTMQMAUTI, Delete MQM Authentication Information
CRTMQMAUTI, Create MQM Authentication Information
DSPMQMAUTI, Display MQM Authentication Information
WRKMQMAUTI, Work with MQM Authentication Information

v Channel Commands
CHGMQMCHL, Change MQM Channel
CPYMQMCHL, Copy MQM Channel
CRTMQMCHL, Create MQM Channel
DLTMQMCHL, Delete MQM Channel
DSPMQMCHL, Display MQM Channel
ENDMQMCHL, End MQM Channel
ENDMQMLSR, End MQM Listener
PNGMQMCHL, Ping MQM Channel
RSTMQMCHL, Reset MQM Channel
RSVMQMCHL, Resolve MQM Channel

© Copyright IBM Corp. 1994, 2002 13

|

|

|
|
|

|
|
|

|
|
|
|
|
|
|

STRMQMCHL, Start MQM Channel
STRMQMCHLI, Start MQM Channel Initiator
STRMQMLSR, Start MQM Listener
WRKMQMCHL, Work with MQM Channel
WRKMQMCHST, Work with MQM Channel Status
WRKMQMLSR, Work with MQM Listener

v Cluster Commands
RFRMQMCL, Refresh Cluster
RSMMQMCLQM, Resume Cluster Queue Manager
RSTMQMCL, Reset Cluster
SPDMQMCLQM, Suspend Cluster Queue Manager
WRKMQMCL, Work with Clusters
WRKMQMCLQM, Work with Cluster Queue Manager

v Command Server Commands
DSPMQMCSVR, Display MQM Command Server
ENDMQMCSVR, End MQM Command Server
STRMQMCSVR, Start MQM Command Server

v Data Type Conversion Command
CVTMQMDTA, Convert MQM Data Type Command

v Dead-Letter Queue Handler Command
STRMQMDLQ, Start WebSphere MQ Dead-Letter Queue Handler

v License Unit Commands
DSPMQMCAP, Display License Units
CHGMQMCAP, Change License Units

v Media Recovery Commands
RCDMQMIMG, Record MQM Object Image
RCRMQMOBJ, Recreate MQM Object

v Name Command
DSPMQMOBJN, Display MQM Object Names

v Namelist Commands
CHGMQMNL, Change MQM Namelist
CPYMQMNL, Copy MQM Namelist
CRTMQMNL, Create MQM Namelist
DLTMQMNL, Delete MQM Namelist
DSPMQMNL, Display MQM Namelist
WRKMQMNL, Work with MQM Namelists

v Process Commands
CHGMQMPRC, Change MQM Process
CPYMQMPRC, Copy MQM Process
CRTMQMPRC, Create MQM Process
DLTMQMPRC, Delete MQM Process
DSPMQMPRC, Display MQM Process
WRKMQMPRC, Work with MQM Processes

v Queue Commands
CHGMQMQ, Change MQM Queue
CLRMQMQ, Clear MQM Queue
CPYMQMQ, Copy MQM Queue
CRTMQMQ, Create MQM Queue
DLTMQMQ, Delete MQM Queue
DSPMQMQ, Display MQM Queue
WRKMQMMSG, Work with MQM Messages
WRKMQMQ, Work with MQM Queues
WRKMQMQSTS, Work with MQM Queue Status

CL commands

14 System Administration Guide

|

|
|
|

|

v Queue Manager Commands
CCTMQM, Connect to Message Queue Manager
CHGMQM, Change Message Queue Manager
CRTMQM, Create Message Queue Manager
DLTMQM, Delete Message Queue Manager
DSCMQM, Disconnect from Message Queue Manager
DSPMQM, Display Message Queue Manager
ENDMQM, End Message Queue Manager
STRMQM, Start Message Queue Manager
WRKMQM, Work with Message Queue Manager

v Security Commands
DSPMQMAUT, Display MQM Object Authority
GRTMQMAUT, Grant MQM Object Authority
RFRMQMAUT, Refresh Security
RVKMQMAUT, Revoke MQM Object Authority
WRKMQMAUT, Work with MQM Authority
WRKMQMAUTD, Work with MQM Authority Data

v Trace Commands
TRCMQM, Trace MQM Job

v Transaction Commands
STRMQMTRN, Start WebSphere MQ Transaction
WRKMQMTRN, Work with WebSphere MQ Transactions
RSVMQMTRN, Resolve WebSphere MQ Transaction

v Trigger Monitor Command
STRMQMTRM, Start Trigger Monitor

v WebSphere MQ Commands
RUNMQSC, Run MQSC Commands
STRMQMMQSC, Start MQSC Commands

General usage tips
Most groups of WebSphere MQ commands, including those associated with queue
managers, queues, channels, namelists, process definitions, and authentication
information objects can be accessed using the relevant WRK* command.

The principal command in the set is WRKMQM. This command allows you, for
example, to display a list of all the queue managers on the system, together with
status information. Alternatively, you can process all queue-manager specific
commands using various options against each entry.

From the WRKMQM command you can select specific areas of each queue
manager, for example, working with channels or queues, and from there select
individual objects.

Before you start
Ensure that the WebSphere MQ subsystem is running (using the command STRSBS
QMQM/QMQM), and that the job queue associated with that subsystem is not held. By
default, the WebSphere MQ subsystem and job queue are both named QMQM in
library QMQM.

Starting a local queue manager
You must:

CL commands

Chapter 2. Managing WebSphere MQ for iSeries using CL commands 15

|

|

|
|

|

|

|

|
|
|

|
|
|
|

|
|
|

|

|
|
|
|

1. Create a local queue manager by issuing the CRTMQM command from an
OS/400 command line.
When you create a queue manager, you have the option of making that queue
manager the default queue manager.
The default queue manager (of which there can only be one) is the queue
manager to which a CL command applies, if the queue manager name
(MQMNAME) parameter is omitted.

Note: One queue manager must be selected as the default queue manager.
2. Start a local queue manager by issuing the STRMQM command from an

OS/400 command line.

You can stop a queue manager by issuing the ENDMQM command from the
OS/400 command line, and control a queue manager by issuing other WebSphere
MQ commands from an OS/400 command line.

The principal commands are described later in this chapter.

Remote queue managers cannot be started remotely but must be created and
started in their systems by local operators. An exception to this is where remote
operating facilities (outside WebSphere MQ for iSeries) exist to enable such
operations.

The local queue administrator cannot stop a remote queue manager.

Note: As part of quiescing a WebSphere MQ (or MQSeries) system, you have to
quiesce the active queue managers. This is described in Appendix C,
“Quiescing WebSphere MQ and MQSeries systems” on page 173.

Creating WebSphere MQ objects
The following tasks suggest various ways in which you can use WebSphere MQ
for iSeries from the command line.

There are two online methods to create WebSphere MQ objects, which are:
1. Using a Create command

CRTMQMAUTI
Create MQM Authentication Information Object

CRTMQMCHL
Create MQM Channel

CRTMQMNL
Create MQM Namelist

CRTMQMPRC
Create MQM Process

CRTMQMQ
Create MQM Queue

2. Using the appropriate Work with MQM object command, followed by F6:
WRKMQMAUTI

Work with MQM Authentication Information Object
WRKMQMCHL

Work with MQM Channels
WRKMQMNL

Work with MQM Namelists
WRKMQMPRC

Work with MQM Processes

Starting local queue manager

16 System Administration Guide

|
|
|

|
|

|
|
|

WRKMQMQ
Work with MQM Queues

Note: All MQM commands can be submitted from the Message Queue Manager
Commands menu. To display this menu, type GO CMDMQM on the command
line and press the Enter key.

The system displays the prompt panel automatically when you select a
command from this menu. To display the prompt panel for a command that
you have typed directly on the command line, press F4 before pressing the
Enter key.

Examples of creating a local queue
To create a local queue from the command line, use:
1. The Create MQM Queue (CRTMQMQ) command
2. The Work with MQM Queues (WRKMQMQ) command, followed by F6

Creating a local queue using the CRTMQMQ command
1. Type CRTMQMQ on the command line and press the F4 key.
2. On the Create MQM Queue panel, type the name of the queue that you want

to create in the Queue name field.
To specify a mixed case name, you enclose the name in apostrophes.

3. Type *LCL in the Queue type field.
4. Specify a queue manager name, unless you are using the default queue

manager, and press the Enter key. Further settings for a local queue are
displayed (see Figure 1) with the fields containing the default values. You can
overtype any of these values with a new value.
Scroll forward to see further fields. The options used for clusters are at the end
of the list of options.

5. When you have changed any values, press the Enter key to create the queue.

Create MQM Queue (CRTMQMQ)

Type choices, press Enter.

Queue name > TEST.QUEUE.LCL

Queue type > *LCL *ALS, *LCL, *MDL, *RMT
Message Queue Manager Name . . . MY.QUEUE.MANAGER__________________________

Replace *NO_ *NO, *YES
Text ’description’ ’___
___________________________________’
Put enabled *YES____ *SYSDFTQ, *NO, *YES
Default message priority 5_________ 0-9, *SYSDFTQ
Default message persistence . . *NO_____ *SYSDFTQ, *NO, *YES
Process name ’__

Triggering enabled *NO_____ *SYSDFTQ, *NO, *YES
Get enabled *YES____ *SYSDFTQ, *NO, *YES
Sharing enabled *YES____ *SYSDFTQ, *NO, *YES

More...
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys

Figure 1. Create MQM Queue initial panel

Creating WebSphere MQ objects

Chapter 2. Managing WebSphere MQ for iSeries using CL commands 17

|

Creating a local queue using the WRKMQMQ command
1. Type WRKMQMQ on the command line.
2. Enter the name of a queue manager
3. If you want to display the prompt panel, press F4.

The prompt panel is useful to reduce the number of queues displayed, by
specifying a generic queue name or queue type.

4. Press the Enter key and Figure 2 is displayed.

5. Press F6 to create a new queue; this takes you to the CRTMQMQ panel. See
“Creating a local queue using the CRTMQMQ command” on page 17 for
instructions on how to create the queue.
When you have created the queue, the Work with MQM Queues panel is
displayed again. The new queue is added to the list when you press
F5=Refresh.

Examples of creating a remote queue
Use the CRTMQMQ panel to define the queue with queue type *RMT, using one of
the following online methods:
1. The CRTMQMQ command.
2. F6=Create on the WRKMQMQ panel.

The use of remote queues is described in detail in WebSphere MQ
Intercommunication.

This section describes how to define a remote queue for each of the three uses. We
use the CRTMQMQ command in the examples; you can, of course, do the same
thing from the WRKMQMQ panel.

Creating a remote queue as a remote queue definition
This is the most straightforward use of remote queues. It is used to direct messages
to a local queue on a remote queue manager, through a transmission queue.

To create a remote queue for this use:

Work with MQ Queues

Queue Manager Name . . : mick

Type options, press Enter.
2=Change 3=Copy 4=Delete 5=Display 12=Work with messages ...

Opt Name Type Depth Jobs
SYSTEM.ADMIN.CHANNEL.EVENT *LCL 0 0
SYSTEM.ADMIN.COMMAND.QUEUE *LCL 0 0
SYSTEM.ADMIN.PERFM.EVENT *LCL 0 0
SYSTEM.ADMIN.QMGR.EVENT *LCL 1 0
SYSTEM.AUTH.DATA.QUEUE *LCL 29 1
SYSTEM.CHANNEL.INITQ *LCL 0 1
SYSTEM.CHANNEL.SYNCQ *LCL 1 0
SYSTEM.CICS.INITIATION.QUEUE *LCL 0 0
SYSTEM.CLUSTER.COMMAND.QUEUE *LCL 0 1

More...
Parameters for options 2, 3, 4, 5, 12, 13, 14, 15, 16 or command
===>
F3=Exit F4=Prompt F5=Refresh F6=Create F9=Retrieve F11=Change View
F12=Cancel F16=Repeat position to F23=More options F24=More keys

Figure 2. Work with MQM Queues panel

Creating WebSphere MQ objects

18 System Administration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|

1. Type CRTMQMQ on the command line and press the F4 key.
2. Type the queue name in the Queue name field.
3. Type *RMT in the Queue type field.
4. Type the name of the local queue manager in the Queue Manager Name field.
5. Type the name of the local queue at the remote location in the Remote queue

field.
6. Type the name of the queue manager at the remote location in the Remote

Message Queue Manager field.
7. Optionally, type the name of the transmission queue to the remote location in

the Transmission queue field.
If you do not specify a transmission queue name, the transmission queue with
the same name as the remote queue manager is used.

Creating a remote queue as a queue manager alias
Queue manager alias definitions can be used to remap the queue manager name
specified in the MQOPEN call. This enables you to alter the target queue manager
without changing your applications.

See WebSphere MQ Intercommunication for further information.

To define a remote queue as a queue manager object:
1. Type CRTMQMQ on the command line and press the F4 key.
2. Type the queue name in the Queue name field.
3. Type *RMT in the Queue type field.
4. Type the name of the local queue manager in the Queue Manager Name field.
5. Type the name of the queue manager at the remote location in the Remote

Message Queue Manager field.
6. Optionally, type the name of the transmission queue to the remote location in

the Transmission queue field.
If you do not specify a transmission queue name, the transmission queue with
the same name as the remote queue manager is used.

Creating a remote queue as an alias to a reply-to queue
An application can name a reply-to queue when it puts a message on a queue. The
reply-to queue name is used by the application that gets the message from the
queue to send reply messages. To define an alias to a reply-to queue, define a
remote queue with the same name as the reply-to queue.

See WebSphere MQ Intercommunication for further information.

To create a remote queue as an alias to a reply-to queue:
1. Type CRTMQMQ on the command line and press the F4 key.
2. Type the queue name in the Queue name field.

This must be the same as the reply-to queue named by the putting application.
3. Type *RMT in the Queue type field.
4. Type the name of the local queue manager in the Queue Manager Name field,

unless you are using the default queue manager.
5. Type the queue name in the Queue name field.

This is the name of the queue to which you want the reply-to messages sent.
6. Type the name of the queue manager at the remote location in the Remote

Message Queue Manager field.

Creating WebSphere MQ objects

Chapter 2. Managing WebSphere MQ for iSeries using CL commands 19

|

|

|

This is the name of the queue manager to which you want the reply-to
messages sent.

7. Optionally, type the name of the transmission queue to the remote location in
the Transmission queue field.
If you do not specify a transmission queue name, the transmission queue with
the same name as the remote queue manager is used.

Creating a transmission queue
A transmission queue is a local queue that is used to send messages to a remote
queue manager, through a message channel, which provides a one-way link to the
remote queue manager.

Each message channel has a transmission queue name specified at the sending end
of the message channel.

Note: If you use clusters, you do not have to create a transmission queue.

To create a transmission queue:
1. Type CRTMQMQ on the command line and press the F4 key.
2. Type the queue name in the Queue name field.

If you want to define a default transmission queue for all messages destined to
a remote queue manager, the transmission queue name must be the same as the
remote queue manager name.

3. Type *LCL in the Queue type field.
4. Type *TMQ in the Usage field.

Creating an initiation queue
An initiation queue is a local queue on which the queue manager puts trigger
messages in response to a trigger event, for example, a message arriving on a local
queue. An initiation queue is a local queue and has no special settings that define
it as an initiation queue.

For more information about triggering, see the WebSphere MQ Application
Programming Guide.

Creating an alias queue
Use an alias queue object to access another queue on the local queue manager. Any
messages put on the alias queue are redirected to the queue named in the alias
queue definition.

Note: An alias queue cannot hold messages itself.

To create an alias queue:
1. Type CRTMQMQ on the command line and press the F4 key.
2. Type the queue name in the Queue name field.
3. Type *ALS in the Queue type field.
4. Type the name of the local queue manager in the Queue Manager Name field.
5. Type the name of the local queue that you want the queue name to resolve to

in the Target queue field.

Creating WebSphere MQ objects

20 System Administration Guide

|

|

Creating a model queue
Define a model queue with a set of attributes in the same way that you define a
local queue. Type *MDL in the Queue type field.

Model queues and local queues have the same set of attributes, except that on
model queues you can specify whether the dynamic queues created are temporary
or permanent. (Permanent queues are maintained across queue manager restarts,
temporary ones are not.)

Altering queue manager attributes
To alter the attributes of the queue manager specified on the CHGMQM
command, specifying the attributes and values that you want to change. For
example, use the following options to alter the attributes of
jupiter.queue.manager:
CHGMQM MQMNAME(’jupiter.queue.manager’) UDLMSGQ(ANOTHERDLQ) INHEVT(*YES)

This command changes the dead-letter queue used, and enables inhibit events.

Working with local queues
This section contains examples of some of the commands that you can use to
manage local, model, and alias queues. All the commands shown are also available
using options from the WRKMQMQ command panel.

Defining a local queue
For an application, the local queue manager is the queue manager to which the
application is connected. Queues that are managed by the local queue manager are
said to be local to that queue manager.

Use the command CRTMQMQ QTYPE *LCL to create a definition of a local queue
and also to create the data structure that is called a queue. You can also modify the
queue characteristics from those of the default local queue.

In this example, the queue we define, ORANGE.LOCAL.QUEUE, is specified to
have these characteristics:
v It is enabled for gets, disabled for puts, and operates on a first-in-first-out (FIFO)

basis.
v It is an ordinary queue, that is, it is not an initiation queue or a transmission

queue, and it does not generate trigger messages.
v The maximum queue depth is 1000 messages; the maximum message length is

2000 bytes.

The following command does this on the default queue manager:
CRTMQMQ QNAME(’orange.local.queue’) QTYPE(*LCL)

TEXT(’Queue for messages from other systems’)
PUTENBL(*NO)
GETENBL(*YES)
TRGENBL(*NO)
MSGDLYSEQ(*FIFO)
MAXDEPTH(1000)
MAXMSGLEN(2000)
USAGE(*NORMAL)

Notes:

1. USAGE *NORMAL indicates that this queue is not a transmission queue.

Creating WebSphere MQ objects

Chapter 2. Managing WebSphere MQ for iSeries using CL commands 21

|
|

2. If you already have a local queue on the same queue manager with the name
orange.local.queue, this command fails. Use the REPLACE *YES attribute, if
you want to overwrite the existing definition of a queue, but see also
“Changing local queue attributes” on page 23.

Defining a dead-letter queue
Each queue manager must have a local queue to be used as a dead-letter queue so
that messages that cannot be delivered to their correct destination can be stored for
later retrieval. You must explicitly tell the queue manager about the dead-letter
queue. You can do this by specifying a dead-letter queue on the CRTMQM
command, or you can use the CHGMQM command to specify one later. You must
also define the dead-letter queue before it can be used.

A sample dead-letter queue called SYSTEM.DEAD.LETTER.QUEUE is supplied
with the product. This queue is automatically created when you create the queue
manager. You can modify this definition if required. There is no need to rename it,
although you can if you like.

A dead-letter queue has no special requirements except that:
v It must be a local queue
v Its MAXMSGL (maximum message length) attribute must enable the queue to

accommodate the largest messages that the queue manager has to handle plus
the size of the dead-letter header (MQDLH)

WebSphere MQ provides a dead-letter queue handler that allows you to specify
how messages found on a dead-letter queue are to be processed or removed. For
further information, see Chapter 6, “The WebSphere MQ dead-letter queue
handler” on page 69.

Displaying default object attributes
When you define a WebSphere MQ object, it takes any attributes that you do not
specify from the default object. For example, when you define a local queue, the
queue inherits any attributes that you omit in the definition from the default local
queue, which is called SYSTEM.DEFAULT.LOCAL.QUEUE. To see exactly what
these attributes are, use the following command:
DSPMQMQ MQMNAME(MYQUEUEMANAGER) QNAME(SYSTEM.DEFAULT.LOCAL.QUEUE)

Copying a local queue definition
You can copy a queue definition using the CPYMQMQ command. For example:
CPYMQMQ MQMNAME(MYQUEUEMANAGER) FROMQ(’orange.local.queue’) TOQ(’magenta.queue’)

This command creates a queue with the same attributes as our original queue
orange.local.queue, rather than those of the system default local queue.

You can also use the CPYMQMQ command to copy a queue definition, but
substituting one or more changes to the attributes of the original. For example:
CPYMQMQ MQMNAME(MYQUEUEMANAGER) FROMQ(’orange.local.queue’) TOQ(’third.queue’)

MAXMSGLEN(1024)

This command copies the attributes of the queue orange.local.queue to the queue
third.queue, but specifies that the maximum message length on the new queue is
to be 1024 bytes, rather than 2000.

Working with local queues

22 System Administration Guide

Note: When you use the CPYMQMQ command, you copy the queue attributes
only, not the messages on the queue.

Changing local queue attributes
You can change queue attributes in two ways, using either the CHGMQMQ
command or the CPYMQMQ command with the REPLACE *YES attribute. In
“Defining a local queue” on page 21, we defined the queue orange.local.queue.
Suppose, for example, you wanted to increase the maximum message length on
this queue to 10 000 bytes.
v Using the CHGMQMQ command:

CHGMQMQ MQMNAME(MYQUEUEMANAGER) QNAME(’orange.local.queue’) MAXMSGLEN(10000)

This command changes a single attribute, that of the maximum message length;
all the other attributes remain the same.

v Using the CRTMQMQ command with the REPLACE *YES option, for example:
CRTMQMQ MQMNAME(MYQUEUEMANAGER) QNAME(’orange.local.queue’) QTYPE(*LCL) MAXMSGLEN(10000)

REPLACE(*YES)

This command changes not only the maximum message length, but all the other
attributes, which are given their default values. The queue is now put enabled
whereas previously it was put inhibited. Put enabled is the default, as specified
by the queue SYSTEM.DEFAULT.LOCAL.QUEUE, unless you have changed it.

If you decrease the maximum message length on an existing queue, existing
messages are not affected. Any new messages, however, must meet the new
criteria.

Clearing a local queue
To delete all the messages from a local queue called magenta.queue, use the
following command:
CLRMQMQ MQMNAME(MYQUEUEMANAGER) QNAME(’magenta.queue’)

You cannot clear a queue if:
v There are uncommitted messages that have been put on the queue under

syncpoint.
v An application currently has the queue open.

Deleting a local queue
Use the command DLTMQMQ to delete a local queue. A queue cannot be deleted
if it has uncommitted messages on it.

Enabling large queues
WebSphere MQ Version 5.3 supports queues larger than 2 GB. See your operating
system documentation for information on how to enable OS/400 to support large
files.

Some utilities might not be able to cope with files greater than 2 GB. Before
enabling large file support, check your operating system documentation for
information on restrictions on such support.

Working with local queues

Chapter 2. Managing WebSphere MQ for iSeries using CL commands 23

|

|
|
|

|
|
|

Working with alias queues
An alias queue (sometimes known as a queue alias) provides a method of
redirecting MQI calls. An alias queue is not a real queue but a definition that
resolves to a real queue. The alias queue definition contains a target queue name,
which is specified by the TGTQNAME attribute.

When an application specifies an alias queue in an MQI call, the queue manager
resolves the real queue name at run time.

For example, an application has been developed to put messages on a queue called
my.alias.queue. It specifies the name of this queue when it makes an MQOPEN
request and, indirectly, if it puts a message on this queue. The application is not
aware that the queue is an alias queue. For each MQI call using this alias, the
queue manager resolves the real queue name, which could be either a local queue
or a remote queue defined at this queue manager.

By changing the value of the TGTQNAME attribute, you can redirect MQI calls to
another queue, possibly on another queue manager. This is useful for maintenance,
migration, and load-balancing.

Defining an alias queue
The following command creates an alias queue:
CRTMQMQ MQMNAME(MYQUEUEMANAGER) QNAME(’my.alias.queue’) QTYPE(*ALS) TGTQNAME(’yellow.queue’)

This command redirects MQI calls that specify my.alias.queue to the queue
yellow.queue. The command does not create the target queue; the MQI calls fail if
the queue yellow.queue does not exist at run time.

If you change the alias definition, you can redirect the MQI calls to another queue.
For example:
CHGMQMQ MQMNAME(MYQUEUEMANAGER) QNAME(’my.alias.queue’) TGTQNAME(’magenta.queue’)

This command redirects MQI calls to another queue, magenta.queue.

You can also use alias queues to make a single queue (the target queue) appear to
have different attributes for different applications. You do this by defining two
aliases, one for each application. Suppose there are two applications:
v Application ALPHA can put messages on yellow.queue, but is not allowed to get

messages from it.
v Application BETA can get messages from yellow.queue, but is not allowed to put

messages on it.

You can do this using the following commands:
/* This alias is put enabled and get disabled for application ALPHA */

CRTMQMQ MQMNAME(MYQUEUEMANAGER) QNAME(’alphas.alias.queue’) QTYPE(*ALS)
TGTQNAME(’yellow.queue’) PUTENBL(*YES) GETENBL(*NO)

/* This alias is put disabled and get enabled for application BETA */

CRTMQMQ MQMNAME(MYQUEUEMANAGER) QNAME(’betas.alias.queue’) QTYPE(*ALS)
TGTQNAME(’yellow.queue’) PUTENBL(*NO) GETENBL(*YES)

ALPHA uses the queue name alphas.alias.queue in its MQI calls; BETA uses the
queue name betas.alias.queue. They both access the same queue, but in different
ways.

Working with alias queues

24 System Administration Guide

You can use the REPLACE *YES attribute when you define alias queues, in the
same way that you use these attributes with local queues.

Using other commands with alias queues
You can use the appropriate commands to display or change alias queue attributes.
For example:
* Display the alias queue’s attributes */

DSPMQMQ MQMNAME(MYQUEUEMANAGER) QNAME(’alphas.alias.queue’)

/* ALTER the base queue name, to which the alias resolves. */
/* FORCE = Force the change even if the queue is open. */

CHQMQMQ MQMNAME(MYQUEUEMANAGER) QNAME(’alphas.alias.queue’)
TGTQNAME(’orange.local.queue’) FORCE(*YES)

Working with model queues
A queue manager creates a dynamic queue if it receives an MQI call from an
application specifying a queue name that has been defined as a model queue. The
name of the new dynamic queue is generated by the queue manager when the
queue is created. A model queue is a template that specifies the attributes of any
dynamic queues created from it.

Model queues provide a convenient method for applications to create queues as
they are required.

Defining a model queue
You define a model queue with a set of attributes in the same way that you define
a local queue. Model queues and local queues have the same set of attributes,
except that on model queues you can specify whether the dynamic queues created
are temporary or permanent. (Permanent queues are maintained across queue
manager restarts, temporary ones are not). For example:
CRTMQMQ QNAME(’green.model.queue’) QTYPE(*MDL) DFNTYPE(*PERMDYN)

This command creates a model queue definition. From the DFNTYPE attribute, the
actual queues created from this template are permanent dynamic queues. The
attributes not specified are automatically copied from the
SYSYTEM.DEFAULT.MODEL.QUEUE default queue.

You can use the REPLACE *YES attribute when you define model queues, in the
same way that you use them with local queues.

Using other commands with model queues
You can use the appropriate commands to display or alter a model queue’s
attributes. For example:
/* Display the model queue’s attributes */

DSPMQMQ MQMNAME(MYQUEUEMANAGER) QNAME(’green.model.queue’)

/* ALTER the model queue to enable puts on any */
/* dynamic queue created from this model. */

CHGMQMQ MQMNAME(MYQUEUEMANAGER) QNAME(’blue.model.queue’) PUTENBL(*YES)

Working with alias queues

Chapter 2. Managing WebSphere MQ for iSeries using CL commands 25

Managing objects for triggering
WebSphere MQ provides a facility for starting an application automatically when
certain conditions on a queue are met. One example of the conditions is when the
number of messages on a queue reaches a specified number. This facility is called
triggering and is described in detail in the WebSphere MQ Application Programming
Guide.

This section describes how to set up the required objects to support triggering on
WebSphere MQ.

Defining an application queue for triggering
An application queue is a local queue that is used by applications for messaging,
through the MQI. Triggering requires a number of queue attributes to be defined
on the application queue. Triggering itself is enabled by the TRGENBL attribute.

In this example, a trigger event is to be generated when there are 100 messages of
priority 5 or higher on the local queue motor.insurance.queue, as follows:
CRTMQMQ MQMNAME(MYQUEUEMANAGER) QNAME(’motor.insurance.queue’) QTYPE(*LCL)

PRCNAME(’motor.insurance.quote.process’) MAXMSGLEN(2000)
DFTMSGPST(*YES) INITQNAME(’motor.ins.init.queue’)
TRGENBL(*YES) TRGTYPE(*DEPTH) TRGDEPTH(100) TRGMSGPTY(5)

where the parameters are:

MQMNAME(MYQUEUEMANAGER)
The name of the queue manager.

QNAME(’motor.insurance.queue’)
The name of the application queue being defined.

PRCNAME(’motor.insurance.quote.process’)
The name of the application to be started by a trigger monitor program.

MAXMSGLEN(2000)
The maximum length of messages on the queue.

DFTMSGPST(*YES)
Messages on this queue are persistent by default.

INITQNAME(’motor.ins.init.queue’)
The name of the initiation queue on which the queue manager is to put the
trigger message.

TRGENBL(*YES)
The trigger attribute value.

TRGTYPE(*DEPTH)
A trigger event is generated when the number of messages of the required
priority (TRGMSGPTY) reaches the number specified in TRGDEPTH.

TRGDEPTH(100)
The number of messages required to generate a trigger event.

TRGMSGPTY(5)
The priority of messages that are to be counted by the queue manager in
deciding whether to generate a trigger event. Only messages with priority
5 or higher are counted.

Managing objects for triggering

26 System Administration Guide

Defining an initiation queue
When a trigger event occurs, the queue manager puts a trigger message on the
initiation queue specified in the application queue definition. Initiation queues
have no special settings, but you can use the following definition of the local
queue motor.ins.init.queue for guidance:
CRTMQMQ MQMNAME(MYQUEUEMANAGER) QNAME(’motor.ins.init.queue’) QTYPE(*LCL)

GETENBL(*YES) SHARE(*NO) TRGTYPE(*NONE)
MAXMSGL(2000)
MAXDEPTH(1000)

Creating a process definition
Use the CRTMQMPRC command to create a process definition. A process
definition associates an application queue with the application that is to process
messages from the queue. This is done through the PRCDEFN attribute on the
application queue motor.insurance.queue. The following command creates the
required process, motor.insurance.quote.process, identified in this example:
CRTMQMPRC MQMNAME(MYQUEUEMANAGER) PRCNAME(’motor.insurance.quote.process’)

TEXT(’Insurance request message processing’)
APPTYPE(*OS400) APPID(MQTEST/TESTPROG)
USRDATA(’open, close, 235’)

where the parameters are:

MQMNAME(MYQUEUEMANAGER)
The name of the queue manager.

PRCNAME(’motor.insurance.quote.process’)
The name of the process definition.

TEXT(’Insurance request message processing’)
A description of the application program to which this definition relates.
This text is displayed when you use the DSPMQMPRC command. This can
help you to identify what the process does. If you use spaces in the string,
you must enclose the string in single quotation marks.

APPTYPE(*OS400)
The type of application to be started.

APPID(MQTEST/TESTPROG)
The name of the application executable file, specified as a fully qualified
file name.

USRDATA(’open, close, 235’)
User-defined data, which can be used by the application.

Displaying your process definition
Use the DSPMQMPRC command to examine the results of your definition. For
example:
MQMNAME(MYQUEUEMANAGER) DSPMQMPRC(’motor.insurance.quote.process’)

You can also use the CHGMQMPRC command to alter an existing process
definition, and the DLTMQMPRC command to delete a process definition.

Communicating between two systems
The following example illustrates how to set up two WebSphere MQ for iSeries
systems, using CL commands, so that they can communicate with one another.

Managing objects for triggering

Chapter 2. Managing WebSphere MQ for iSeries using CL commands 27

The systems are called SYSTEMA and SYSTEMB, and the communications protocol
used is TCP/IP.

Carry out the following procedure:
1. Create a queue manager on SYSTEMA, calling it QMGRA1.

CRTMQM MQMNAME(QMGRA1) TEXT(’System A - Queue +
Manager 1’) UDLMSGQ(SYSTEM.DEAD.LETTER.QUEUE)

2. Start this queue manager.
STRMQM MQMNAME(QMGRA1)

3. Define the WebSphere MQ objects on SYSTEMA that you need to send messages
to a queue manager on SYSTEMB.
/* Transmission queue */
CRTMQMQ QNAME(XMITQ.TO.QMGRB1) QTYPE(*LCL) +

MQMNAME(QMGRA1) TEXT(’Transmission Queue +
to QMGRB1’) MAXDEPTH(5000) USAGE(*TMQ)

/* Remote queue that points to a queue called TARGETB */
/* TARGETB belongs to queue manager QMGRB1 on SYSTEMB */
CRTMQMQ QNAME(TARGETB.ON.QMGRB1) QTYPE(*RMT) +

MQMNAME(QMGRA1) TEXT(’Remote Q pointing +
at Q TARGETB on QMGRB1 on Remote System +
SYSTEMB’) RMTQNAME(TARGETB) +
RMTMQMNAME(QMGRB1) TMQNAME(XMITQ.TO.QMGRB1)

/* TCP/IP sender channel to send messages to the queue manager on SYSTEMB*/
CRTMQMCHL CHLNAME(QMGRA1.TO.QMGRB1) CHLTYPE(*SDR) +

MQMNAME(QMGRA1) TRPTYPE(*TCP) +
TEXT(’Sender Channel From QMGRA1 on +
SYSTEMA to QMGRB1 on SYSTEMB’) +
CONNAME(SYSTEMB) TMQNAME(XMITQ.TO.QMGRB1)

4. Create a queue manager on SYSTEMB, calling it QMGRB1.
CRTMQM MQMNAME(QMGRB1) TEXT(’System B - Queue +

Manager 1’) UDLMSGQ(SYSTEM.DEAD.LETTER.QUEUE)

5. Start the queue manager on SYSTEMB.
STRMQM MQMNAME(QMGRB1)

6. Define the WebSphere MQ objects that you need to receive messages from the
queue manager on SYSTEMA.
/* Local queue to receive messages on */
CRTMQMQ QNAME(TARGETB) QTYPE(*LCL) MQMNAME(QMGRB1) +

TEXT(’Sample Local Queue for QMGRB1’)

/* Receiver channel of the same name as the sender channel on SYSTEMA */
CRTMQMCHL CHLNAME(QMGRA1.TO.QMGRB1) CHLTYPE(*RCVR) +

MQMNAME(QMGRB1) TRPTYPE(*TCP) +
TEXT(’Receiver Channel from QMGRA1 to +
QMGRB1’)

7. Finally, start a TCP/IP listener on SYSTEMB so that the channel can be started.
This example uses the default port of 1414.
STRMQMLSR MQMNAME(QMGRB1)

You are now ready to send test messages between SYSTEMA and SYSTEMB. Using one
of the supplied samples, put a series of messages to your remote queue on
SYSTEMA.

Start the channel on SYSTEMA, either by using the command STRMQMCHL, or by
using the command WRKMQMCHL and entering a start request (Option 14)
against the sender channel.

Distributed queuing example

28 System Administration Guide

The channel should go to RUNNING status and the messages are sent to queue
TARGETB on SYSTEMB.

Check your messages by issuing the command:
WRKMQMMSG QNAME(TARGETB) MQMNAME(QMGRB1).

Distributed queuing example

Chapter 2. Managing WebSphere MQ for iSeries using CL commands 29

Distributed queuing example

30 System Administration Guide

Chapter 3. Alternative ways of administering WebSphere MQ

You normally use OS/400® CL commands to administer WebSphere MQ for
iSeries. See Chapter 2, “Managing WebSphere MQ for iSeries using CL commands”
on page 13 for an overview of these commands.

Using CL commands is the preferred method of administering the system.
However, you can use various other methods. This chapter gives an overview of
those methods and includes the following topics:
v “Local and remote administration”
v “Administration using MQSC commands” on page 32
v “Administration using PCF commands” on page 33
v “Using the WebSphere MQ Explorer” on page 35
v “Managing the command server for remote administration” on page 37

Local and remote administration
You administer WebSphere MQ objects locally or remotely.

Local administration means carrying out administration tasks on any queue
managers that you have defined on your local system. In WebSphere MQ, you can
consider this as local administration because no WebSphere MQ channels are
involved, that is, the communication is managed by the operating system. Some
commands cannot be issued in this way, in particular, creating or starting queue
managers and starting command servers. To perform this type of task, you must
either log onto the remote system and issue the commands from there, or create a
process that can issue the commands for you.

WebSphere MQ supports administration from a single point through what is
known as remote administration. Remote administration consists of sending
programmable command format (PCF) control messages to the
SYSTEM.ADMIN.COMMAND.QUEUE on the target queue manager.

There are a number of ways of generating PCF messages. These are:
1. Writing a program using PCF messages. See “Administration using PCF

commands” on page 33.
2. Writing a program using the MQAI, which sends out PCF messages. See

“Using the MQAI to simplify the use of PCFs” on page 34.
3. Using the WebSphere MQ Explorer, available with WebSphere MQ for

Windows, which allows you to use a graphical user interface (GUI) and
generates the correct PCF messages. See “Using the WebSphere MQ Explorer”
on page 35.

For example, you can issue a remote command to change a queue definition on a
remote queue manager.

Some commands cannot be issued in this way, in particular, creating or starting
queue managers and starting command servers. To perform this type of task, you
must either log onto the remote system and issue the commands from there or
create a process that can issue the commands for you.

© Copyright IBM Corp. 1994, 2002 31

Administration using MQSC commands
You use WebSphere MQ script (MQSC) commands to manage queue manager
objects, including the queue manager itself, channels, queues, and process
definitions.

You issue MQSC commands to a queue manager using the STRMQMMQSC
WebSphere MQ CL command. This is a batch method only, taking its input from a
SRC PHYSICAL file in the server library system. The default name for this source
physical file is QMQSC.

WebSphere MQ for iSeries does not supply a source file called QMQSC. To process
MQSC commands you need to create the QMQSC source file in a library of your
choice, by issuing the following command:
CRTSRCPRF FILE(MYLIB/QMQSC) TEXT(’WebSphere MQ - MQSC Source’)

MQSC source is held in members within this source file. To work with the
members enter the following command:
WRKMBRPDM MYLIB/QMQSC

You can now add new members and maintain existing ones

You can also enter MQSC commands interactively, by:
1. Typing in the queue manager name and pressing the Enter key to access the

WRKMQM results panel
2. Selecting F23=More options on this panel
3. Selecting option 26 against an active queue manager on the panel shown in

Figure 3

To end such an MQSC session, type end.

MQSC command files
MQSC commands are written in human-readable form, that is, in EBCDIC text.

Work with queue managers

Type options, press Enter.
21=Work with NameLists 22=Work with Jobs 23=Display logs
24=Work with Authorities 25=Work with AuthInfo 26=MQSC ...

Opt Name Status Default
mick ACTIVE NO
mike ACTIVE NO

Bottom

Parameters or command
===>
F3=Exit F4=Prompt F5=Refresh F6=Create F9=Retrieve F12=Cancel
F16=Repeat position to F17=Position to F23=More options F24=More keys

Figure 3. Work with queue managers results panel

Using MQSC commands

32 System Administration Guide

|
|
|

|

|
|

|

|

|

|
|

|

|
|

|
|

Figure 4 is an extract from an MQSC command file showing an MQSC command
(DEFINE QLOCAL) with its attributes.

For portability among WebSphere MQ environments, limit the line length in MQSC
command files to 72 characters. The plus sign indicates that the command is
continued on the next line.

Object attributes specified in MQSC are shown in this book in uppercase (for
example, RQMNAME), although they are not case sensitive.

Notes:

1. The format of an MQSC file does not depend on its location in the file system
2. MQSC attribute names are limited to eight characters.
3. MQSC commands are available on other platforms, including z/OS®.

The WebSphere MQ Script (MQSC) Command Reference contains a description of each
MQSC command and its syntax.

Administration using PCF commands
The purpose of WebSphere MQ programmable command format (PCF) commands
is to allow administration tasks to be programmed into an administration program.
In this way you can create queues and process definitions, and change queue
managers, from a program.

PCF commands cover the same range of functions provided by MQSC commands.
However, unlike MQSC commands, PCF commands and their replies are not in a
text format that you can read.

You can write a program to issue PCF commands to any queue manager in the
network from a single node. In this way, you can both centralize and automate
administration tasks.

Each PCF command is a data structure that is embedded in the application data
part of a WebSphere MQ message. Each command is sent to the target queue
manager using the MQI function MQPUT in the same way as any other message.
The command server on the queue manager receiving the message interprets it as
a command message and runs the command. To get the replies, the application

.

.
DEFINE QLOCAL(ORANGE.LOCAL.QUEUE) REPLACE +

DESCR(’ ’) +
PUT(ENABLED) +
DEFPRTY(0) +
DEFPSIST(NO) +
GET(ENABLED) +
MAXDEPTH(5000) +
MAXMSGL(1024) +
DEFSOPT(SHARED) +
NOHARDENBO +
USAGE(NORMAL) +
NOTRIGGER;

.

.

Figure 4. Extract from the MQSC command file, myprog.in

Using MQSC commands

Chapter 3. Alternative ways of administering WebSphere MQ 33

issues an MQGET call and the reply data is returned in another data structure. The
application can then process the reply and act accordingly.

Briefly, these are some of the things the application programmer must specify to
create a PCF command message:

Message descriptor
This is a standard WebSphere MQ message descriptor, in which:

Message type (MsqType) is MQMT_REQUEST.
Message format (Format) is MQFMT_ADMIN.

Application data
Contains the PCF message including the PCF header, in which:

The PCF message type (Type) specifies MQCFT_COMMAND.
The command identifier specifies the command, for example, Change
Queue (MQCMD_CHANGE_Q).

For a complete description of the PCF data structures and how to implement them,
see WebSphere MQ Programmable Command Formats and Administration Interface.

Attributes in MQSC and PCF commands
Object attributes specified in MQSC commands are shown in this book in
uppercase (for example, RQMNAME), although they are not case sensitive. MQSC
attribute names are limited to eight characters.

Object attributes in PCF commands, which are not limited to eight characters, are
shown in this book in italics. For example, the PCF equivalent of RQMNAME is
RemoteQMgrName.

Escape PCFs
Escape PCFs are PCF commands that contain MQSC commands within the
message text. You can use PCFs to send commands to a remote queue manager.
For more information about using escape PCFs, see WebSphere MQ Programmable
Command Formats and Administration Interface.

Using the MQAI to simplify the use of PCFs
You can use the WebSphere MQ Administration Interface (MQAI) to obtain easier
programming access to PCF messages.

It performs administration tasks on a queue manager through the use of data bags.
Data bags allow you to handle properties (or parameters) of objects in a way that
is easier than using PCFs.

Use the MQAI to:

Simplify the use of PCF messages
The MQAI is an easy way to administer WebSphere MQ; you do not have
to write your own PCF messages and this avoids the problems associated
with complex data structures.

To pass parameters in programs that are written using MQI calls, the PCF
message must contain the command and details of the string or integer
data. To do this, several statements are needed in your program for every
structure, and memory space must be allocated. This task is long and
laborious.

Using PCFs

34 System Administration Guide

On the other hand, programs written using the MQAI pass parameters into
the appropriate data bag and only one statement is required for each
structure. The use of MQAI data bags removes the need for you to handle
arrays and allocate storage, and provides some degree of isolation from the
details of the PCF.

Handle error conditions more easily
It is difficult to get return codes back from MQSC commands, but the
MQAI makes it easier for the program to handle error conditions.

After you have created and populated your data bag, you can then send an
administration command message to the command server of a queue manager,
using the mqExecute call, which waits for any response messages. The mqExecute
call handles the exchange with the command server and returns responses in a
response bag.

For more information about using the MQAI and PCFs in general, see the
WebSphere MQ Programmable Command Formats and Administration Interface.

Using the WebSphere MQ Explorer
The WebSphere MQ Explorer is an application that runs under the Microsoft®

Management Console (MMC) on Windows NT version 4.0, Windows 2000, and
Windows XP. It provides a graphical user interface for controlling WebSphere MQ
resources in a WebSphere MQ network.

The platforms and levels of WebSphere MQ that can be administered using the
WebSphere MQ Explorer are described in “Prerequisite software” on page 36.

Using the online guidance, you can:
v Define and control various resources including queue managers, queues,

channels, process definitions, client connections, namelists, and clusters.
v Start or stop a queue manager and its associated processes.
v View queue managers and their associated objects on your workstation or from

other workstations.
v Check the status of queue managers, clusters, and channels.

You can invoke the WebSphere MQ Explorer from the First Steps application, or
from the Windows Start prompt.

The configuration steps you must perform on remote WebSphere MQ queue
managers to allow the WebSphere MQ Explorer to administer them are outlined in
“Required definitions for administration” on page 36.

This section contains the following topics:
v “What you can do with the WebSphere MQ Explorer” on page 35
v “Prerequisite software” on page 36
v “Required definitions for administration” on page 36

What you can do with the WebSphere MQ Explorer
With the WebSphere MQ Explorer, you can:
v Start and stop a queue manager (on your local machine only).
v Define, display, and alter the definitions of WebSphere MQ objects such as

queues and channels.

Using PCFs

Chapter 3. Alternative ways of administering WebSphere MQ 35

|

v Browse the messages on a queue.
v Start and stop a channel.
v View status information about a channel.
v View queue managers in a cluster.
v Check to see which applications, users, or channels have a particular queue

open.
v Create a new queue manager cluster using the Create New Cluster wizard.
v Add a queue manager to a cluster using the Add Queue Manager to Cluster

wizard.
v Add an existing queue manager to a cluster using the Join Cluster wizard.
v Manage the authentication information object, used with Secure Sockets Layer

(SSL) channel security.

Prerequisite software
Before you can use the WebSphere MQ Explorer, you must have the following
installed on your Windows computer:
v The Microsoft Management Console Version 1.1 or higher (installed as part of

WebSphere MQ for Windows installation)
v Internet Explorer Version 4.01 (SP1) or later (available from the Microsoft Web

site at http://www.microsoft.com)

The WebSphere MQ Explorer can connect to remote queue managers using the
TCP/IP communication protocol only.

The WebSphere MQ Explorer handles the differences in the capabilities between
the different command levels and platforms. However, if it encounters a value that
it does not recognize as an attribute for an object, you cannot change the value of
that attribute.

Required definitions for administration
Ensure that you have satisfied the following requirements before attempting to use
the WebSphere MQ Explorer to manage WebSphere MQ on a server machine.
Check that:
1. A command server is running for any queue manager being administered,

started on the server by the STRMQMCSVR CL command.
2. A suitable TCP/IP listener exists for every remote queue manager. This is the

WebSphere MQ listener started by the STRMQMLSR command.
3. The server connection channel, called SYSTEM.ADMIN.SVRCONN, exists on

every remote queue manager. You must create this channel yourself. It is
mandatory for every remote queue manager being administered. Without it,
remote administration is not possible.

For further information on the WebSphere MQ Explorer, see the WebSphere MQ
System Administration Guide supplied with your WebSphere MQ for Windows
product.

Introduction

36 System Administration Guide

|
|

|
|

|
|

|
|
|
|

Managing the command server for remote administration
Each queue manager can have a command server associated with it. A command
server processes any incoming commands from remote queue managers, or PCF
commands from applications. It presents the commands to the queue manager for
processing and returns a completion code or operator message depending on the
origin of the command.

A command server is mandatory for all administration involving PCFs, the MQAI,
and also for remote administration.

Note: For remote administration, you must ensure that the target queue manager
is running. Otherwise, the messages containing commands cannot leave the
queue manager from which they are issued. Instead, these messages are
queued in the local transmission queue that serves the remote queue
manager. Avoid this situation if at all possible.

There are separate control commands for starting and stopping the command
server. You can perform the operations described in the following sections using
the WebSphere MQ Services snap-in.

Starting the command server
To start the command server use this CL command:
STRMQMCSVR MQMNAME(saturn.queue.manager’)

where saturn.queue.manager is the queue manager for which the command server
is being started.

Displaying the status of the command server
For remote administration, ensure that the command server on the target queue
manager is running. If it is not running, remote commands cannot be processed.
Any messages containing commands are queued in the target queue manager’s
command queue.

To display the status of the command server for a queue manager, called here
saturn.queue.manager, the CL command is:
DSPMQMCSVR MQMNAME(’saturn.queue.manager’)

Issue this command on the target machine. If the command server is running, the
panel shown in Figure 5 on page 38 appears:

Command server remote administration

Chapter 3. Alternative ways of administering WebSphere MQ 37

|

|

Stopping a command server
To end a command server, the command, using the previous example is:
ENDMQMCSVR MQMNAME(’saturn.queue.manager’)

You can stop the command server in two different ways:
v For a controlled stop, use the ENDMQMCSVR command with the *CNTRLD

option, which is the default.
v For an immediate stop, use the ENDMQMCSVR command with the *IMMED

option.

Note: Stopping a queue manager also ends the command server associated with it
(if one has been started).

Instrumentation events
You can use WebSphere MQ instrumentation events to monitor the operation of
queue managers. See WebSphere MQ Event Monitoring for information about
WebSphere MQ instrumentation events and how to use them.

Display MQM Command Server (DSPMQMCSVR)

Queue manager name > saturn.queue.manager

MQM Command Server Status. . . . > RUNNING

F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys

Figure 5. Display MQM Command Server panel

Command server remote administration

38 System Administration Guide

|

|

|

|
|
|

Chapter 4. Work management

This chapter describes the way in which WebSphere MQ handles work requests,
and details the options available for prioritizing and controlling the jobs associated
with WebSphere MQ.

Warning
Do not alter WebSphere MQ work management objects unless you fully
understand the concepts of OS/400 and WebSphere MQ work management.
Additional information regarding subsystems and job descriptions can be
found in OS/400 Work Management. Pay particular attention to the sections on
“Job Starting and Routing” and “Batch Jobs”.

WebSphere MQ for iSeries incorporates the OS/400 UNIX® environment and
OS/400 threads. Do not make any changes to the objects in the Integrated
File System (IFS).

During normal operations, a WebSphere MQ queue manager starts a number of
batch jobs to perform different tasks. By default these batch jobs run in the QMQM
subsystem that is created when WebSphere MQ is installed.

Work management refers to the process of tailoring WebSphere MQ tasks to obtain
the optimum performance from your system, or to make administration simpler.

For example, you can:
v Change the run-priority of jobs to make one queue manager more responsive

than another.
v Redirect the output of a number of jobs to a particular output queue.
v Make all jobs of a certain type run in a specific subsystem.
v Isolate errors to a subsystem.

Work management is carried out by creating or changing the job descriptions
associated with the WebSphere MQ jobs. You can configure work management for:
v An entire WebSphere MQ installation
v Individual queue managers
v Individual jobs for individual queue managers

Description of WebSphere MQ tasks
When a queue manager is running, you see some or all of the following batch jobs
running under the QMQM user profile in the WebSphere MQ subsystem. The jobs
are described briefly in Table 1, to help you decide how to prioritize them.

Table 1. WebSphere MQ tasks.

Job name Function

AMQALMPX The checkpoint processor that periodically takes journal checkpoints

AMQCLMAA Non-threaded TCP/IP listener

AMQCRSTA TCP/IP-invoked channel responder

© Copyright IBM Corp. 1994, 2002 39

|
|
|
|
|

|
|
|

|

||

||

Table 1. WebSphere MQ tasks. (continued)

Job name Function

AMQCRS6B LU62 receiver channel and client connection (see note).

AMQPCSEA PCF command processor that handles PCF and remote administration requests

AMQRMPPA Channel process pooling job

AMQRRMFA Repository manager for clusters

AMQZDMAA Deferred message handler

AMQZFUMA Object authority manager (OAM)

AMQZLAA0 Queue manager agents that perform the bulk of the work for applications that connect to
the queue manager using MQCNO_STANDARD_BINDING

AMQZXMA0 The execution controller that is the first job started by the queue manager. It deals with
MQCONN requests, and starts agent processes to process WebSphere MQ API calls

RUNMQCHI The channel initiator

RUNMQCHL Sender channel job that is started for each sender channel

RUNMQDLQ Dead letter queue handler

RUNMQLSR Threaded TCP/IP listener

RUNMQTRM Trigger monitor

Note: The LU62 receiver job runs in the communications subsystem and takes its run-time properties from the
routing and communications entries that are used to start the job. See WebSphere MQ Intercommunication for more
details.

You can view all jobs connected to a queue manager, except listeners (which do not
connect), using option 22 on the Work with Queue Manager (WRKMQM) panel.
You can view listeners using the WRKMQMLSR command.

WebSphere MQ work management objects
When WebSphere MQ is installed, various objects are supplied in the QMQM
library to assist with work management. These objects are the ones necessary for
WebSphere MQ jobs to run in their own subsystem.

Sample job descriptions are provided for two of the WebSphere MQ batch jobs. If
no specific job description is provided for a WebSphere MQ job, it runs with the
default job description QMQMJOBD.

The work management objects that are supplied when you install WebSphere MQ
are listed in Table 2 and the objects created for a queue manager are listed in
Table 3 on page 41

Note: The work management objects can be found in the QMQM library and the
queue manager objects can be found in the queue manager library.

Table 2. Work management objects

Name Type Description

AMQZLAA0 *JOBD The job description that is used by the WebSphere MQ agent
processes

AMQZXMA0 *JOBD The job description that is used by WebSphere MQ execution
controllers

QMQM *SBSD The subsystem in which all WebSphere MQ jobs run.

Description of tasks

40 System Administration Guide

||

||

||

||

||

||

||

|
|
|

|
|
|

|
|

Table 2. Work management objects (continued)

Name Type Description

QMQM *JOBQ The job queue attached to the supplied subsystem

QMQMJOBD *JOBD The default WebSphere MQ job description, used if there is not
a specific job description for a job

QMQMMSG *MSGQ The default message queue for WebSphere MQ jobs.

QMQMRUN20 *CLS A class description for high priority WebSphere MQ jobs

QMQMRUN35 *CLS A class description for medium priority WebSphere MQ jobs

QMQMRUN50 *CLS A class description for low priority WebSphere MQ jobs

Table 3. Work management objects created for a queue manager

Name Type Description

AMQA000000 *JRNRCV Local journal receiver

AMQAJRN *JRN Local journal

AMQAJRNMSG *MSGQ Local journal message queue

AMQCRC6B *PGM Program to start the LU6.2 connection

AMQRFCD4 *FILE Queue manager channel definition file

QMQMMSG *MSGQ Queue manager message queue

How WebSphere MQ uses the work management objects
To understand how to configure work management, you must first understand
how WebSphere MQ uses job descriptions.

The job description used to start the job controls many attributes of the job. For
example:
v The job queue on which the job is queued and on which subsystem the job runs.
v The routing data used to start the job and class that the job uses for its run-time

parameters.
v The output queue that the job uses for print files.

The process of starting a WebSphere MQ job can be considered in three steps:
1. WebSphere MQ selects a job description.

WebSphere MQ uses the following technique to determine which job
description to use for a batch job:
a. Look in the queue manager library for a job description with the same

name as the job. See “Understanding WebSphere MQ queue manager
library names” on page 165 for further details about the queue manager
library.

b. Look in the queue manager library for the default job description
QMQMJOBD.

c. Look in the QMQM library for a job description with the same name as the
job.

d. Use the default job description, QMQMJOBD, in the QMQM library.
2. The job is submitted to the job queue.

objects

Chapter 4. Work management 41

||

|||

|||

|||

|||

|||

|||

|||
|

Job descriptions supplied with WebSphere MQ have been set up, by default, to
put jobs on to job queue QMQM in library QMQM. The QMQM job queue is
attached to the supplied QMQM subsystem, so by default the jobs start
running in the QMQM subsystem.

3. The job enters the subsystem and goes through the routing steps.
When the job enters the subsystem, the routing data specified on the job
description is used to find routing entries for the job.
The routing data must match one of the routing entries defined in the QMQM
subsystem, and this defines which of the supplied classes (QMQMRUN20,
QMQMRUN35, or QMQMRUN50) is used by the job.

Note: If WebSphere MQ jobs do not appear to be starting, make sure that the
subsystem is running and the job queue is not held,

If you have modified the WebSphere MQ work management objects, make sure
everything is associated correctly. For example, if you specify a job queue other
than QMQM/QMQM on the job description, make sure that an ADDJOBE is
performed for the subsystem, that is, QMQM.

You can create a job description for each job documented in Table 1 on page 39
using the following worksheet as an example:
What is the queue manager library name? ___________
Does job description AMQZXMA0 exist in the queue manager library? Yes No
Does job description QMQMJOBD exist in the queue manager library? Yes No
Does job description AMQZXMA0 exist in the QMQM library? Yes No
Does job description QMQMJOBD exist in the QMQM library? Yes No

If you answer No to all these questions, create a global job description
QMQMJOBD in the QMQM library.

The WebSphere MQ message queue
A WebSphere MQ message queue, QMQMMSG, is created in each queue manager
library. Operating system messages are sent to this queue when queue manager
jobs end and WebSphere MQ sends messages to the queue. For example, to report
which journal receivers are needed at startup. Keep the number of messages in this
message queue at a manageable size to make it easier to monitor.

Default system examples
The following examples show how an unmodified WebSphere MQ installation
works when some of the standard jobs are submitted at queue manager startup
time.

The first job that is started is the execution controller, AMQZXMA0.
1. Issue the STRMQM command for queue manager TESTQM.
2. WebSphere MQ searches the queue manager library QMTESTQM, firstly for job

description AMQZXMA0, and then job description QMQMJOBD.
Neither of these job descriptions exist, so WebSphere MQ looks for job
description AMQZXMA0 in the product library QMQM. This job description
exists, so it is used to submit the job.

3. The job description uses the WebSphere MQ default job queue, so the job is
submitted to job queue QMQM/QMQM.

4. The routing data on the AMQZXMA0 job description is QMQMRUN20, so the
system searches the subsystem routing entries for one that matches that data.

Work management objects

42 System Administration Guide

|
|
|
|

|
|

|
|
|
|
|

|
|

By default, the routing entry with sequence number 9900 has comparison data
that matches QMQMRUN20, so the job is started with the class defined on that
routing entry, which is also called QMQMRUN20.

5. The QMQM/QMQMRUN20 class has run priority set to 20, so the
AMQZXMA0 job runs in subsystem QMQM with the same priority as most
interactive jobs on the system.

The next job that starts is the checkpoint process, AMQALMPX.
1. WebSphere MQ searches the queue manager library QMTESTQM, firstly for job

description AMQALPMX, and then job description QMQMJOBD.
Neither of these job descriptions exist, so WebSphere MQ looks for job
descriptions AMQALMPX and QMQMJOBD in the product library QMQM.
Job description AMQALMPX does not exist but QMQMJOBD does, so
QMQMJOBD is used to submit the job.

Note: The QMQMJOBD job description is always used for WebSphere MQ jobs
that do not have their own job description.

2. The job description uses the WebSphere MQ default job queue, so the job is
submitted to job queue QMQM/QMQM.

3. The routing data on the QMQMJOBD job description is QMQMRUN35, so the
system searches the subsystem routing entries for one that matches that data.
By default, the routing entry with sequence number 9910 has comparison data
that matches QMQMRUN35, so the job is started with the class defined on that
routing entry, which is also called QMQMRUN35.

4. The QMQM/QMQMRUN35 class has run priority set to 35, so the
AMQALMPX job runs in subsystem QMQM with a lower priority than most
interactive jobs on the system, but higher priority than most batch jobs.

Configuring work management
The preceding examples show how WebSphere MQ job descriptions determine the
run-time attributes of WebSphere MQ jobs.

The following examples show how you can change and create WebSphere MQ job
descriptions to change the run-time attributes of WebSphere MQ jobs.

The key to the flexibility of WebSphere MQ work management lies in the two-tier
way that WebSphere MQ searches for job descriptions:
v If you create or change job descriptions in a queue manager library, those

changes override the global job descriptions in QMQM, but the changes are local
and affect that particular queue manager alone.

v If you create or change global job descriptions in the QMQM library, those job
descriptions affect all queue managers on the system, unless overridden locally
for individual queue managers.

Configuration examples
1. The following example increases the priority of channel control jobs for an

individual queue manager.
To make the repository manager and channel initiator jobs, AMQRRMFA and
RUNMQCHI, run as quickly as possible for queue manager TESTQM, carry out
the following steps:

Work management objects

Chapter 4. Work management 43

a. Create local duplicates of the QMQM/QMQMJOBD job description with the
names of the WebSphere MQ processes that you want to control in the
queue manager library. For example,
CRTDUPOBJ OBJ(QMQMJOBD) FROMLIB(QMQM) OBJTYPE(*JOBD) TOLIB(QMTESTQM)
NEWOBJ(RUNMQCHI)
CRTDUPOBJ OBJ(QMQMJOBD) FROMLIB(QMQM) OBJTYPE(*JOBD) TOLIB(QMTESTQM)
NEWOBJ(AMQRRMFA)

b. Change the routing data parameter on the job description to ensure that the
jobs use the QMQMRUN20 class.
CHGJOBD JOBD(QMTESTQM/RUNMQCHI) RTGDTA(’QMQMRUN20’)
CHGJOBD JOBD(QMTESTQM/AMQRRMFA) RTGDTA(’QMQMRUN20’)

The AMQRRMFA and RUNMQCHI jobs for queue manager TESTQM now:
v Use the new local job descriptions in the queue manager library
v Run with priority 20, because the QMQMRUN20 class is used when the jobs

enter the subsystem.
2. The following example defines a new run priority class for the QMQM

subsystem.
a. Create a duplicate class in the QMQM library, to allow other queue

managers to access the class, by issuing the following command:
CRTDUPOBJ OBJ(QMQMRUN20) FROMLIB(QMQM) OBJTYPE(*CLS) TOLIB(QMQM)

NEWOBJ(QMQMRUN10)

b. Change the class to have the new run priority by issuing the following
command:
CHGCLS CLS(QMQM/QMQMRUN10) RUNPTY(10)

c. Add the new class definition to the subsystem by issuing the following
command:

ADDRTGE SBSD(QMQM/QMQM) SEQNBR(8999) CMPVAL(’QMQMRUN10’) PGM(QSYS/QCMD)
CLS(QMQM/QMQMRUN10)

Note: You can specify any numeric value for the routing sequence number,
but the values must be in sequential order. This sequence number
tells the subsystem the order in which routing entries are to be
searched for a routing data match.

d. Change the local or global job description to use the new priority class by
issuing the following command:
CHGJOBD JOBD(QMQMlibname/QMQMJOBD) RTGDTA(’QMQMRUN10’)

Now all the queue manager jobs associated with the QMlibraryname use a
run priority of 10.

3. The following example runs a queue manager in its own subsystem
To make all the jobs for queue manager TESTQM run in the QBATCH
subsystem, carry out the following steps:
a. Create a local duplicate of the QMQM/QMQMJOBD job description in the

queue manager library with the command
CRTDUPOBJ OBJ(QMQMJOBD) FROMLIB(QMQM) OBJTYPE(*JOBD) TOLIB(QMTESTQM2)

b. Change the job queue parameter on the job description to ensure that the
jobs use the QBATCH job queue.
CHGJOBD JOBD(QMTESTQM2/QMQMJOBD) JOBQ(*LIBL/QBATCH)

Note: The job queue is associated with the subsystem description. If you
find that the jobs are staying on the job queue, verify that the job

Work management objects

44 System Administration Guide

|
|

|
|

|
|

|
|

|

|
|

|
|

|
|
|
|

|
|

|

|
|

queue definition is defined on the SBSD. Use the DSPSBSD command
for the subsystem and take option 6, “Job queue entries”.

All jobs for queue manager TESTQM2 now:
v Use the new local default job description in the queue manager library
v Are submitted to job queue QBATCH.

To ensure that jobs are routed and prioritized correctly:
v Either create routing entries for the WebSphere MQ jobs in subsystem

QBATCH, or
v Rely on a catch-all routing entry that calls QCMD, irrespective of what

routing data is used.
This option works only if the maximum active jobs option for job queue
QBATCH is set to *NOMAX. The system default is 1.

4. The following example creates another WebSphere MQ subsystem
a. Create a duplicate subsystem in the QMQM library by issuing the following

command:
CRTDUPOBJ OBJ(QMQM) FROMLIB(QMQM) OBJTYPE(*SBSD) TOLIB(QMQM) NEWOBJ(QMQM2)

b. Remove the QMQM job queue by issuing the following command:
RMVJOBQE SBSD(QMQM/QMQM2) JOBQ(QMQM/QMQM)

c. Create a new job queue for the subsystem by issuing the following
command:
CRTJOBQ JOBQ(QMQM/QMQM2) TEXT(’Job queue for MQSeries Queue Manager’)

d. Add a job queue entry to the subsystem by issuing the following command:
ADDJOBQE SBSD(QMQM/QMQM2) JOBQ(QMQM/QMQM2) MAXACT(*NOMAX)

e. Create a duplicate QMQMJOBD in the queue manager library by issuing
the following command:
CRTDUPOBJ OBJ(QMQMJOBD) FROMLIB(QMQM) OBJTYPE(*JOBD) TOLIB(QMlibraryname)

f. Change the job description to use the new job queue by issuing the
following command:
CHGJOBD JOBD(QMlibraryname/QMQMJOBD) JOBQ(QMQM/QMQM2)

g. Start the subsystem by issuing the following command:
STRSBS SBSD(QMQM/QMQM2)

Notes:

a. You can specify the subsystem in any library. If for any reason the product
is reinstalled, or the QMQM library is replaced, any changes you made are
removed.

b. All the queue manager jobs associated with the QMlibraryname now run
under subsystem QMQM2.

5. The following example collects all output for a job type.
To collect all the checkpoint process, AMQALMPX, job logs for multiple queue
managers onto a single output queue, carry out the following steps:
a. Create an output queue, for example

CRTOUTQ OUTQ(MYLIB/CHCKPTLOGS)

b. Create a global duplicate of the QMQM/QMQMJOBD job description, using
the name of theWebSphere MQ process that you want to control, for
example
CRTDUPOBJ OBJ(QMQMJOBD) FROMLIB(QMQM) OBJTYPE(*JOBD) NEWOBJ(AMQALMPX)

Work management objects

Chapter 4. Work management 45

|
|

|

|
|

|
|

|
|
|

|
|

|
|
|

|

|
|

|
|

|

|

|
|
|

|
|

c. Change the output queue parameter on the job description to point to your
new output queue, and change the job logging level so that all messages are
written to the job log.
CHGJOBD JOBD(QMQM/AMQALMPX) OUTQ(MYLIB/CHKPTLOGS) LOG(4 00 *SECLVL)

All WebSphere MQ AMQALMPX jobs, for all queue managers, use the new
global AMQALMPX job description, providing that there are no local
overriding job descriptions in the local queue manager library.

All job log spool files for these jobs are now written to output queue
CHKPTLOGS in library MYLIB.

Notes:

a. The preceding example works only if the QPJOBLOG, or any print file, has
a value of *JOB for its output queue parameter. In the preceding example,
the QSYS/QPDJOBLOG file needs OUTQ set to *JOB.

b. To change a system print file, use the CHGPRTF command. For example:
CHGPRTF PRTF(QJOBLOG) OUTQ(*JOB)

The *JOB option indicates that your job descriptions must be used.
c. You can send any spool files associated with the WebSphere MQ jobs to a

particular output queue. However, verify that the print file being used has
the appropriate value for the OUTQ parameter.

Work management objects

46 System Administration Guide

|

|

|
|
|

|

|

|

|
|
|

Chapter 5. Protecting WebSphere MQ objects

Security for WebSphere MQ for iSeries is implemented using the WebSphere MQ
Object Authority Manager (OAM) in conjunction with OS/400 object level security.

Security considerations
You need to consider the following points when setting up authorities to the users
in your enterprise:
1. Grant and revoke authorities to the WebSphere MQ for iSeries commands using

the OS/400 GRTOBJAUT and RVKOBJAUT commands.
2. During installation of WebSphere MQ for iSeries the following special user

profiles are created:

QMQM
Is used primarily for internal product-only functions. However, it can
be used to run trusted applications using
MQCNO_FASTPATH_BINDINGS; see the WebSphere MQ Application
Programming Guide for further information.

QMQMADM
Is used as a group profile for administrators of WebSphere MQ. The
group profile gives access to CL commands and WebSphere MQ
resources.

3. If you are sending channel commands to remote queue managers, ensure that
your user profile is a member of the group QMQMADM on the target system.
For a list of PCF and MQSC channel commands, see “Channel command
security” on page 65.

4. The group set associated with a user is cached when the group authorizations
are computed by the OAM.
Any changes made to a user’s group memberships after the group set has
been cached are not recognized until you restart the queue manager or
execute RFRMQMAUT to refresh security.

5. Limit the number of users who have authority to work with commands that
are particularly sensitive. These commands include:
v Create Message Queue Manager (CRTMQM)
v Delete Message Queue Manager (DLTMQM)
v Start Message Queue Manager (STRMQM)
v End Message Queue Manager (ENDMQM)
v Start Command Server (STRMQMCSVR)
v End Command Server (ENDMQMCSVR)

6. Channel definitions contain a security exit program specification. Channel
creation and modification requires special considerations. Details of security
exits is given in WebSphere MQ Intercommunication.

7. The channel exit and trigger monitor programs can be substituted. The security
of such replacements is the responsibility of the programmer.

© Copyright IBM Corp. 1994, 2002 47

|

|
|
|

Understanding the Object Authority Manager
The OAM manages users’ authorizations to manipulate WebSphere MQ objects,
including queues and process definitions. It also provides a command interface
through which you can grant or revoke access authority to an object for a specific
group of users. The decision to allow access to a resource is made by the OAM,
and the queue manager follows that decision. If the OAM cannot make a decision,
the queue manager prevents access to that resource.

Resources you can protect with the OAM
Through the OAM you can control:
v Access to WebSphere MQ objects through the MQI. When an application

program attempts to access an object, the OAM checks that the user profile
making the request has the authorization for the operation requested.
In particular, this means that queues, and the messages on queues, can be
protected from unauthorized access.

v Permission to use PCF and MQSC commands.

Different groups of users can have different kinds of access authority to the same
object. For example, for a specific queue, one group could perform both put and
get operations; another group might be allowed only to browse the queue
(MQGET with browse option). Similarly, some groups might have get and put
authority to a queue, but not be allowed to alter or delete the queue.

WebSphere MQ for iSeries provides commands to grant, revoke, and display the
authority that an application or user has to do the following:
v Issue WebSphere MQ for iSeries commands
v Perform operations on WebSphere MQ for iSeries objects

WebSphere MQ authorities
Access to WebSphere MQ objects is controlled by authorities to:
1. Issue the WebSphere MQ command
2. Access the WebSphere MQ objects referenced by the command

All WebSphere MQ for iSeries CL commands are shipped with an owner of
QMQM, and the administration profile (QMQMADM) has *USE rights with the
*PUBLIC access set to *EXCLUDE.

Changes to the authority structure of some of the product’s CL commands allows
public use of these commands, provided that you have the required OAM
authority to the WebSphere MQ objects to make these changes.

Granting WebSphere MQ authorities to WebSphere MQ
objects

WebSphere MQ for iSeries categorizes the product’s CL commands into two
groups:

Group 1
Users must be in the QMQMADM user group, or have *ALLOBJ authority,
to process these commands. Users having either of these authorities can
process all commands in all categories without requiring any extra
authority.

Object authority manager

48 System Administration Guide

|
|
|

|
|
|

|
|

|
|
|
|
|

Note: These authorities override any OAM authority.

These commands can be grouped as follows:
v Authentication Information Commands

CHGMQMAUTI, Change MQM Authentication Information
CPYMQMAUTI, Copy MQM Authentication Information
CRTMQMAUTI, Create MQM Authentication Information
DLTMQMAUTI, Delete MQM Authentication Information

v License Unit Command
CHGMQMCAP, Change License Units

v Channel Commands
CHGMQMCHL, Change MQM Channel
CPYMQMCHL, Copy MQM Channel
CRTMQMCHL, Create MQM Channel
DLTMQMCHL, Delete MQM Channel
RSVMQMCHL, Resolve MQM Channel

v Command Server Commands
ENDMQMCSVR, End MQM Command Server
STRMQMCSVR, Start MQM Command Server

v Dead-Letter Queue Handler Command
STRMQMDLQ, Start WebSphere MQ Dead-Letter Queue Handler

v Media Recovery Commands
RCDMQMIMG, Record MQM Object Image
RCRMQMOBJ, Recreate MQM Object

v Queue Manager Commands
CRTMQM, Create Message Queue Manager
DLTMQM, Delete Message Queue Manager
ENDMQM, End Message Queue Manager
STRMQM, Start Message Queue Manager

v Security Commands
GRTMQMAUT, Grant MQM Object Authority
RVKMQMAUT, Revoke MQM Object Authority

v Trace Commands
TRCMQM, Trace MQM Job

v Transaction Commands
STRMQMTRN, Start WebSphere MQ Transaction
WRKMQMTRN, Work with WebSphere MQ Transactions
RSVMQMTRN, Resolve WebSphere MQ Transaction

v Trigger Monitor Commands
STRMQMTRM, Start Trigger Monitor

v WebSphere MQ Commands
RUNMQSC, Run MQSC Commands
STRMQMMQSC, Start MQSC Commands

Group 2
The rest of the commands, for which two levels of authority are required:
1. OS/400 authority to run the command. A WebSphere MQ administrator

sets this using the GRTOBJAUT command to override the
*PUBLIC(*EXCLUDE) restriction for a user or group of users.
For example:
GRTOBJAUT OBJ(DSPMQMQ) OBJTYPE(*CMD) USER(MQUSER) AUT(*USE)

WebSphere MQ authorities

Chapter 5. Protecting WebSphere MQ objects 49

|

|

|
|
|
|
|

|
|

|
|
|
|
|
|

|
|
|

|
|

|
|
|

|
|
|
|
|

|
|
|

|
|

|
|
|
|

|
|

|
|
|

|
|

|
|
|

|

|

2. WebSphere MQ authority to manipulate the WebSphere MQ objects
associated with the command, or commands, given the correct OS/400
authority in Step 1.
This authority is controlled by the user having the appropriate OAM
authority for the required action, set by a WebSphere MQ administrator
using the GRTMQMAUT command
For example:
CHGMQMQ *connect authority to the queue manager + *admchg authority to

the queue

The commands can be grouped as follows:
v Display commands

To process the DSP commands you must grant the user *connect and
*admdsp authority to the queue manager, together with any specific
option listed:

DSPMQMAUT, Display MQM Object Authority
DSPMQMAUTI, Display MQM Authentication Information
DSPMQMCAP, Display License Units
DSPMQMCHL, Display MQM Channel
DSPMQMCSVR, Display MQM Command Server
DSPMQMNL, Display MQM Namelist – *admdsp to the namelist
DSPMQMOBJN, Display MQM Object Names
DSPMQMPRC, Display MQM Process – *admdsp to the process
DSPMQM, Display Message Queue Manager
DSPMQMQ, Display MQM Queue – *admdsp to the queue

v Work with commands
To process the WRK commands and display the options panel you must
grant the user *connect and *admdsp authority to the queue manager,
together with any specific option listed:

WRKMQMAUT, Work with MQM Object Authority
WRKMQMAUTD, Work with MQM Object Authority Data
WRKMQMAUTI, Work with MQM Authentication Information
WRKMQMCHL, Work with MQM Channel
WRKMQMCHST, Work with MQM Channel Status
WRKMQMCL, Work with MQM Clusters
WRKMQMCLQM, Work with MQM Cluster Queue Manager
WRKMQM, Work with Message Queue Managers
WRKMQMLSR, Work with MQM Listener
WRKMQMMSG, Work with MQM Messages – *browse to the queue
WRKMQMNL, Work with MQM Namelists
WRKMQMPRC, Work with MQM Processes
WRKMQMQ, Work with MQM queues
WRKMQMQSTS, Work with MQM Queue Status

v Other Channel commands
To process the channel commands you must grant the user the specific
authorities listed:
– ENDMQMCHL, End MQM Channel

This requires *connect authority to the queue manager and *allmqi
authority to the transmission queue associated with the channel.

– ENDMQMLSR, End MQM Listener
This requires no WebSphere MQ object authority.

– PNGMQMCHL, Ping MQM Channel

WebSphere MQ authorities

50 System Administration Guide

|
|
|

|
|
|

|

|
|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|

|
|

|

|

|

This requires *connect and *inqauthority to the queue manager.
– RSTMQMCHL, Reset MQM Channel

This requires *connect authority to the queue manager.
– STRMQMCHL, Start MQM Channel

This requires *connect authority to the queue manager and *allmqi
authority to the transmission queue associated with the channel.

– STRMQMCHLI, Start MQM Channel Initiator
This requires *connect and *inqauthority to the queue manager, and
*allmqi authority to the initiation queue associated with the
transmission queue of the channel.

– STRMQMLSR, Start MQM Listener
This requires no WebSphere MQ object authority.

v Other commands:
CCTMQM, Connect to Message Queue Manager
CHGMQM, Change Message Queue Manager
CHGMQMNL, Change MQM Namelist
CHGMQMPRC, Change MQM Process
CHGMQMQ, Change MQM Queue
CLRMQMQ, Clear MQM Queue
CPYMQMNL, Copy MQM Namelist
CPYMQMPRC, Copy MQM Process
CPYMQMQ, Copy MQM Queue
CRTMQMNL, Create MQM Namelist
CRTMQMPRC, Create MQM Process
CRTMQMQ, Create MQM Queue
CVTMQMDTA, Convert MQM Data Type Command
DLTMQMNL, Delete MQM Namelist
DLTMQMPRC, Delete MQM Process
DLTMQMQ, Delete MQM Queue
DSCMQM, Disconnect from Message Queue Manager
RFRMQMAUT, Refresh Security
RFRMQMCL, Refresh Cluster
RSMMQMCLQM, Resume Cluster Queue Manager
RSTMQMCL, Reset Cluster
SPDMQMCLQM, Suspend Cluster Queue Manager

Access authorizations
Authorizations defined by the AUT keyword on the GRTMQMAUT and
RVKMQMAUT commands can be categorized as follows:
v Authorizations related to MQI calls
v Authorization-related administration commands
v Context authorizations
v General authorizations, that is, for MQI calls, for commands, or both

The following tables list the different authorities, using the AUT parameter for
MQI calls, Context calls, MQSC and PCF commands, and generic operations.

Table 4. Authorizations for MQI calls

AUT Description

*ALTUSR Allow another user’s authority to be used for MQOPEN and MQPUT1
calls.

WebSphere MQ authorities

Chapter 5. Protecting WebSphere MQ objects 51

|

|

|

|

|
|

|

|
|
|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Table 4. Authorizations for MQI calls (continued)

AUT Description

*BROWSE Retrieve a message from a queue by issuing an MQGET call with the
BROWSE option.

*CONNECT Connect the application to the specified queue manager by issuing an
MQCONN call.

*GET Retrieve a message from a queue by issuing an MQGET call.

*INQ Make an inquiry on a specific queue by issuing an MQINQ call.

*PUT Put a message on a specific queue by issuing an MQPUT call.

*SET Set attributes on a queue from the MQI by issuing an MQSET call. If
you open a queue for multiple options, you must be authorized for
each of them.

Table 5. Authorizations for context calls

AUT Description

*PASSALL Pass all context on the specified queue. All the context fields are copied
from the original request.

*PASSID Pass identity context on the specified queue. The identity context is the
same as that of the request.

*SETALL Set all context on the specified queue. This is used by special system
utilities.

*SETID Set identity context on the specified queue. This is used by special
system utilities.

Table 6. Authorizations for MQSC and PCF calls

AUT Description

*ADMCHG Change the attributes of the specified object.

*ADMCLR Clear the specified queue (PCF Clear queue command only).

*ADMCRT Create objects of the specified type.

*ADMDLT Delete the specified object.

*ADMDSP Display the attributes of the specified object.

Table 7. Authorizations for generic operations

AUT Description

*ALL Use all operations applicable to the object.

*ALLADM Perform all administration operations applicable to the object.

*ALLMQI Use all MQI calls applicable to the object.

Using the GRTMQMAUT command
Provided that you have the required authorization, you can use the
GRTMQMAUT command to grant authorization of a user profile or user group to
access a particular object. The following examples illustrate how the
GRTMQMAUT command is used:
1. GRTMQMAUT OBJ(RED.LOCAL.QUEUE) OBJTYPE(*LCLQ) USER(GROUPA) +

AUT(*BROWSE *PUT) MQMNAME(’saturn.queue.manager’)

In this example:

WebSphere MQ authorities

52 System Administration Guide

v RED.LOCAL.QUEUE is the object name.
v *LCLQ (local queue) is the object type.
v GROUPA is the name of a user profile on the system whose authorizations are

to change. This can be used as a group profile for other users.
v *BROWSE and *PUT are the authorizations being granted to the specified queue.

*BROWSE adds authorization to browse messages on the queue (to issue
MQGET with the browse option).
*PUT adds authorization to put (MQPUT) messages on the queue.

v saturn.queue.manager is the queue manager name.
2. The following command grants to users JACK and JILL all applicable

authorizations, to all process definitions, for the default queue manager.
GRTMQMAUT OBJ(*ALL) OBJTYPE(*PRC) USER(JACK JILL) AUT(*ALL)

3. The following command grants user GEORGE authority to put a message on the
queue ORDERS, on the queue manager TRENT.

GRTMQMAUT OBJ(TRENT) OBJTYPE(*MQM) USER(GEORGE) AUT(*CONNECT) MQMNAME (TRENT)
GRTMQMAUT OBJ(ORDERS) OBJTYPE(*Q) USER(GEORGE) AUT(*PUT) MQMNAME (TRENT)

Using the RVKMQMAUT command
Provided that you have the required authorization, you can use the
RVKMQMAUT command to remove previously granted authorization of a user
profile or user group to access a particular object. The following examples illustrate
how the RVKMQMAUT command is used:
1. RVKMQMAUT OBJ(RED.LOCAL.QUEUE) OBJTYPE(*LCLQ) USER(GROUPA) +

AUT(*PUT) MQMNAME(’saturn.queue.manager’)

The authority to put messages to the specified queue, that was granted in the
previous example, is removed for GROUPA.

2. RVKMQMAUT OBJ(PAY*) OBJTYPE(*Q) USER(*PUBLIC) AUT(*GET) +
MQMNAME(PAYROLLQM)

Authority to get messages from any queue whose name starts with the
characters PAY, owned by queue manager PAYROLLQM, is removed from all users
of the system unless they, or a group to which they belong, have been
separately authorized.

Using the DSPMQMAUT command
The display MQM authority (DSPMQMAUT) command shows, for the specified
object and user, the list of authorizations that the user has for the object. The
following example illustrates how the command is used:

DSPMQMAUT OBJ(ADMINNL) OBJTYPE(*NMLIST) USER(JOE) OUTPUT(*PRINT) +
MQMNAME(ADMINQM)

Using the RFRMQMAUT command
The refresh MQM security (RFRMQMAUT) command enables you to update the
OAM’s authorization group information immediately, reflecting changes made at
the operating system level, without needing to stop and restart the queue manager.
The following example illustrates how the command is used:

RFRMQMAUT MQMNAME(ADMINQM)

Understanding the authorization specification tables
The authorization specification tables starting on page 54 define precisely how the
authorizations work and the restrictions that apply. The tables apply to these
situations:
v Applications that issue MQI calls

WebSphere MQ authorities

Chapter 5. Protecting WebSphere MQ objects 53

|
|
|
|
|

|

|

v Administration programs that issue MQSC commands as escape PCFs
v Administration programs that issue PCF commands

In this section the information is presented as a set of tables that specify the
following:

Action to be performed
MQI option, MQSC command, or PCF command.

Access control object
Queue, process, queue manager, namelist, or authentication information
object.

Authorization required
Expressed as an MQZAO_ constant.

In the tables, the constants prefixed by MQZAO_ correspond to the keywords in
the authorization list for the GRTMQMAUT and RVKMQMAUT commands for
the particular entity. For example, MQZAO_BROWSE corresponds to the keyword
*BROWSE; similarly, the keyword MQZAO_SET_ALL_CONTEXT corresponds to the
keyword *SETALL and so on. These constants are defined in the header file
cmqzc.h, which is supplied with the product.

MQI authorizations
An application is allowed to issue specific MQI calls and options only if the user
identifier under which it is running (or whose authorizations it is able to assume)
has been granted the relevant authorization.

Four MQI calls require authorization checks: MQCONN, MQOPEN, MQPUT1, and
MQCLOSE.

For MQOPEN and MQPUT1, the authority check is made on the name of the
object being opened, and not on the name, or names, resulting after a name has
been resolved. For example, an application can be granted authority to open an
alias queue without having authority to open the base queue to which the alias
resolves. The rule is that the check is carried out on the first definition encountered
during the process of name resolution that is not a queue-manager alias, unless the
queue-manager alias definition is opened directly; that is, its name appears in the
ObjectName field of the object descriptor. Authority is always needed for the
particular object being opened; in some cases additional queue-independent
authority, obtained through an authorization for the queue-manager object, is
required.

Table 8, Table 9 on page 55, Table 10 on page 55, and Table 11 on page 55 summarize
the authorizations needed for each call.

Note: You will find no mention of namelists or authentication information objects
in these tables. This is because none of the authorizations apply to these
objects, except for MQOO_INQUIRE, for which the same authorizations
apply as for the other objects.

Table 8. Security authorization needed for MQCONN calls

Authorization required for: Queue object (1) Process object Queue manager object

MQCONN option Not applicable Not applicable MQZAO_CONNECT

Authorization specification tables

54 System Administration Guide

|
|

|
|
|
|

Table 9. Security authorization needed for MQOPEN calls

Authorization required for: Queue object (1) Process object Queue manager object

MQOO_INQUIRE MQZAO_INQUIRE (2) MQZAO_INQUIRE (2) MQZAO_INQUIRE (2)

MQOO_BROWSE MQZAO_BROWSE Not applicable No check

MQOO_INPUT_* MQZAO_INPUT Not applicable No check

MQOO_SAVE_
ALL_CONTEXT (3)

MQZAO_INPUT Not applicable Not applicable

MQOO_OUTPUT (Normal
queue) (4)

MQZAO_OUTPUT Not applicable Not applicable

MQOO_PASS_
IDENTITY_CONTEXT (5)

MQZAO_PASS_
IDENTITY_CONTEXT

Not applicable No check

MQOO_PASS_ALL_
CONTEXT (5, 6)

MQZAO_PASS
_ALL_CONTEXT

Not applicable No check

MQOO_SET_
IDENTITY_CONTEXT (5, 6)

MQZAO_SET_
IDENTITY_CONTEXT

Not applicable MQZAO_SET_
IDENTITY_CONTEXT (7)

MQOO_SET_ ALL_CONTEXT
(5, 8)

MQZAO_SET_
ALL_CONTEXT

Not applicable MQZAO_SET_
ALL_CONTEXT (7)

MQOO_OUTPUT
(Transmission queue) (9)

MQZAO_SET_
ALL_CONTEXT

Not applicable MQZAO_SET_
ALL_CONTEXT (7)

MQOO_SET MQZAO_SET Not applicable No check

MQOO_ALTERNATE_
USER_AUTHORITY

(10) (10) MQZAO_ALTERNATE_
USER_AUTHORITY (10, 11)

Table 10. Security authorization needed for MQPUT1 calls

Authorization required for: Queue object (1) Process object Queue manager object

MQPMO_PASS_
IDENTITY_CONTEXT

MQZAO_PASS_
IDENTITY_CONTEXT (12)

Not applicable No check

MQPMO_PASS_ALL
_CONTEXT

MQZAO_PASS_
ALL_CONTEXT (12)

Not applicable No check

MQPMO_SET_
IDENTITY_CONTEXT

MQZAO_SET_
IDENTITY_CONTEXT (12)

Not applicable MQZAO_SET_
IDENTITY_CONTEXT (7)

MQPMO_SET_
ALL_CONTEXT

MQZAO_SET_
ALL_CONTEXT (12)

Not applicable MQZAO_SET_
ALL_CONTEXT (7)

(Transmission queue) (9) MQZAO_SET_
ALL_CONTEXT

Not applicable MQZAO_SET_
ALL_CONTEXT (7)

MQPMO_ALTERNATE_
USER_AUTHORITY

(13) Not applicable MQZAO_ALTERNATE_
USER_AUTHORITY (11)

Table 11. Security authorization needed for MQCLOSE calls

Authorization required for: Queue object (1) Process object Queue manager object

MQCO_DELETE MQZAO_DELETE (14) Not applicable Not applicable

MQCO_DELETE _PURGE MQZAO_DELETE (14) Not applicable Not applicable

Notes for the tables:

1. If a model queue is being opened:
v MQZAO_DISPLAY authority is needed for the model queue, in addition to

the authority to open the model queue for the type of access for which you
are opening.

v MQZAO_CREATE authority is not needed to create the dynamic queue.
v The user identifier used to open the model queue is automatically granted

all the queue-specific authorities (equivalent to MQZAO_ALL) for the
dynamic queue created.

Authorization specification tables

Chapter 5. Protecting WebSphere MQ objects 55

2. Either the queue, process, namelist, or queue manager object is checked,
depending on the type of object being opened.

3. MQOO_INPUT_* must also be specified. This is valid for a local, model, or
alias queue.

4. This check is performed for all output cases, except the case specified in note
9.

5. MQOO_OUTPUT must also be specified.
6. MQOO_PASS_IDENTITY_CONTEXT is also implied by this option.
7. This authority is required for both the queue manager object and the

particular queue.
8. MQOO_PASS_IDENTITY_CONTEXT, MQOO_PASS_ALL_CONTEXT, and

MQOO_SET_IDENTITY_CONTEXT are also implied by this option.
9. This check is performed for a local or model queue that has a Usage queue

attribute of MQUS_TRANSMISSION, and is being opened directly for output.
It does not apply if a remote queue is being opened (either by specifying the
names of the remote queue manager and remote queue, or by specifying the
name of a local definition of the remote queue).

10. At least one of MQOO_INQUIRE (for any object type), or (for queues)
MQOO_BROWSE, MQOO_INPUT_*, MQOO_OUTPUT, or MQOO_SET must
also be specified. The check carried out is as for the other options specified,
using the supplied alternate-user identifier for the specific-named object
authority, and the current application authority for the
MQZAO_ALTERNATE_USER_IDENTIFIER check.

11. This authorization allows any AlternateUserId to be specified.
12. An MQZAO_OUTPUT check is also carried out if the queue does not have a

Usage queue attribute of MQUS_TRANSMISSION.
13. The check carried out is as for the other options specified, using the supplied

alternate-user identifier for the named queue authority, and the current
application authority for the MQZAO_ALTERNATE_USER_IDENTIFIER
check.

14. The check is carried out only if both of the following are true:
v A permanent dynamic queue is being closed and deleted.
v The queue was not created by the MQOPEN that returned the object handle

being used.

Otherwise, there is no check.

General notes:

1. The special authorization MQZAO_ALL_MQI includes all the following that
are relevant to the object type:
v MQZAO_CONNECT
v MQZAO_INQUIRE
v MQZAO_SET
v MQZAO_BROWSE
v MQZAO_INPUT
v MQZAO_OUTPUT
v MQZAO_PASS_IDENTITY_CONTEXT
v MQZAO_PASS_ALL_CONTEXT
v MQZAO_SET_IDENTITY_CONTEXT
v MQZAO_SET_ALL_CONTEXT
v MQZAO_ALTERNATE_USER_AUTHORITY

Authorization specification tables

56 System Administration Guide

2. MQZAO_DELETE (see note 14) and MQZAO_DISPLAY are classed as
administration authorizations. They are not therefore included in
MQZAO_ALL_MQI.

3. No check means that no authorization checking is carried out.
4. Not applicable means that authorization checking is not relevant to this

operation. For example, you cannot issue an MQPUT call to a process object.

Administration authorizations
These authorizations allow a user to issue administration commands. This can be
an MQSC command as an escape PCF message or as a PCF command itself. These
methods allow a program to send an administration command as a message to a
queue manager, for execution on behalf of that user.

Authorizations for MQSC commands in escape PCFs
Table 12 summarizes the authorizations needed for each MQSC command that is
contained in an escape PCF.

Table 12. MQSC commands and security authorization needed

(2) Authorization
required for:

Queue object Process object Queue manager
object

Namelists Authentication
information object

ALTER object MQZAO_CHANGE MQZAO_CHANGE MQZAO_CHANGE MQZAO_CHANGE MQZAO_CHANGE

CLEAR QLOCAL MQZAO_CLEAR Not applicable Not applicable Not applicable Not applicable

DEFINE object
NOREPLACE (3)

MQZAO_CREATE
(4)

MQZAO_CREATE
(4)

Not applicable MQZAO_CREATE
(4)

MQZAO_CREATE
(4)

DEFINE object
REPLACE (3, 5)

MQZAO_CHANGE MQZAO_CHANGE Not applicable MQZAO_CHANGE MQZAO_CHANGE

DELETE object MQZAO_DELETE MQZAO_DELETE Not applicable MQZAO_DELETE MQZAO_DELETE

DISPLAY object MQZAO_DISPLAY MQZAO_DISPLAY MQZAO_DISPLAY MQZAO_DISPLAY MQZAO_DISPLAY

Notes for Table 12:

1. The user identifier, under which the program that submits the command is
running, must also have MQZAO_CONNECT authority to the queue manager.

2. Either the queue, process, namelist, or queue manager object is checked,
depending on the type of object.

3. For DEFINE commands, MQZAO_DISPLAY authority is also needed for the
LIKE object if one is specified, or on the appropriate SYSTEM.DEFAULT.xxx
object if LIKE is omitted.

4. The MQZAO_CREATE authority is not specific to a particular object or object
type. Create authority is granted for all objects, for a specified queue manager,
by specifying an object type of QMGR on the GRTMQMAUT command.

5. This applies if the object to be replaced already exists. If it does not, the check
is as for DEFINE object NOREPLACE.

General notes:

1. To perform any PCF command, you must have DISPLAY authority on the
queue manager.

2. The authority to execute an escape PCF depends on the MQSC command
within the text of the escape PCF message.

3. Not applicable means that authorization checking is not relevant to this
operation. For example, you cannot issue a CLEAR QLOCAL on a queue
manager object.

Authorization specification tables

Chapter 5. Protecting WebSphere MQ objects 57

||

|
|
|||
|
||
|

||||||

||||||

|
|
|
|
|
|
||
|
|
|

|
|
|||||

||||||

||||||
|

Authorizations for PCF commands
Table 13 summarizes the authorizations needed for each PCF command.

Table 13. PCF commands and security authorization needed

(2) Authorization
required for:

Queue object Process object Queue manager
object

Namelists Authentication
information object

Change object MQZAO_CHANGE MQZAO_CHANGE MQZAO_CHANGE MQZAO_CHANGE MQZAO_CHANGE

Clear Queue MQZAO_CLEAR Not applicable Not applicable Not applicable Not applicable

Copy object
(without replace) (3)

MQZAO_CREATE
(4)

MQZAO_CREATE
(4)

Not applicable MQZAO_CREATE
(4)

MQZAO_CREATE
(4)

Copy object (with
replace) (3, 6)

MQZAO_CHANGE MQZAO_CHANGE Not applicable MQZAO_CHANGE MQZAO_CHANGE

Create object
(without replace) (5)

MQZAO_CREATE
(4)

MQZAO_CREATE
(4)

Not applicable MQZAO_CREATE
(4)

MQZAO_CREATE
(4)

Create object (with
replace) (5, 6)

MQZAO_CHANGE MQZAO_CHANGE Not applicable MQZAO_CHANGE MQZAO_CHANGE

Delete object MQZAO_DELETE MQZAO_DELETE Not applicable MQZAO_DELETE MQZAO_DELETE

Inquire object MQZAO_DISPLAY MQZAO_DISPLAY MQZAO_DISPLAY MQZAO_DISPLAY MQZAO_DISPLAY

Inquire object
names

No check No check No check No check No check

Reset queue
statistics

MQZAO_DISPLAY
and
MQZAO_CHANGE

Not applicable Not applicable Not applicable Not applicable

Notes for Table 13:

1. The user identifier under which the program submitting the command is
running must also have authority to connect to its local queue manager, and to
open the command administration queue for output.

2. Either the queue, process, namelist, or queue-manager object is checked,
depending on the type of object.

3. For Copy commands, MQZAO_DISPLAY authority is also needed for the From
object.

4. The MQZAO_CREATE authority is not specific to a particular object or object
type. Create authority is granted for all objects, for a specified queue manager,
by specifying an object type of QMGR on the GRTMQMAUT command.

5. For Create commands, MQZAO_DISPLAY authority is also needed for the
appropriate SYSTEM.DEFAULT.* object.

6. This applies if the object to be replaced already exists. If it does not, the check
is as for Copy or Create without replace.

General notes:

1. To perform any PCF command, you must have DISPLAY authority on the
queue manager.

2. The special authorization MQZAO_ALL_ADMIN includes all the following that
are relevant to the object type:
v MQZAO_CHANGE
v MQZAO_CLEAR
v MQZAO_DELETE
v MQZAO_DISPLAY

MQZAO_CREATE is not included because it is not specific to a particular
object or object type.

3. No check means that no authorization checking is carried out.

Authorization specification tables

58 System Administration Guide

||

|
|
|||
|
||
|

||||||

||||||

|
|
|
|
|
|
||
|
|
|

|
|
|||||

|
|
|
|
|
|
||
|
|
|

|
|
|||||

||||||

||||||

|
|
|||||

|
|
|
|
|

||||

|

4. Not applicable means that authorization checking is not relevant to this
operation. For example, you cannot use a Clear Queue command on a process
object.

Generic OAM profiles
OAM generic profiles enable you to set the authority a user has to many objects at
once, rather than having to issue separate GRTMQMAUT commands against each
individual object when it is created. Using generic profiles in the GRTMQMAUT
command enables you to set a generic authority for all future objects created that
fit that profile.

The rest of this section describes the use of generic profiles in more detail:
v “Using wildcard characters”
v “Profile priorities”

Using wildcard characters
What makes a profile generic is the use of special characters (wildcard characters)
in the profile name. For example, the ? wildcard character matches any single
character in a name. So, if you specify ABC.?EF, the authorization you give to that
profile applies to any objects created with the names ABC.DEF, ABC.CEF, ABC.BEF,
and so on.

The wildcard characters available are:

? Use the question mark (?) instead of any single character. For example,
AB.?D would apply to the objects AB.CD, AB.ED, and AB.FD.

* Use the asterisk (*) as:
v A qualifier in a profile name to match any one qualifier in an object

name. A qualifier is the part of an object name delimited by a period.
For example, in ABC.DEF.GHI, the qualifiers are ABC, DEF, and GHI.
For example, ABC.*.JKL would apply to the objects ABC.DEF.JKL, and
ABC.GHI.JKL. (Note that it would not apply to ABC.JKL; * used in this
context always indicates one qualifier.)

v A character within a qualifier in a profile name to match zero or more
characters within the qualifier in an object name.
For example, ABC.DE*.JKL would apply to the objects ABC.DE.JKL,
ABC.DEF.JKL, and ABC.DEGH.JKL.

** Use the double asterisk (**) once in a profile name as:
v The entire profile name to match all object names. For example, if you

use the keyword OBJTYPE (*PRC) to identify processes, then use ** as the
profile name, you change the authorizations for all processes.

v As either the beginning, middle, or ending qualifier in a profile name to
match zero or more qualifiers in an object name. For example, **.ABC
identifies all objects with the final qualifier ABC.

Profile priorities
An important point to understand when using generic profiles is the priority that
profiles are given when deciding what authorities to apply to an object being
created. For example, suppose that you have issued the commands:
GRTMQMAUT OBJ(AB.*) OBJTYPE(*Q) USER(FRED) AUT(*PUT) MQMNAME(MYQMGR)
GRTMQMAUT OBJ(AB.C*) OBJTYPE(*Q) USER(FRED) AUT(*GET) MQMNAME(MYQMGR)

Authorization specification tables

Chapter 5. Protecting WebSphere MQ objects 59

|

|
|
|
|
|

|
|
|

|

|
|
|
|
|

|

||
|

||

|
|
|

|
|
|

|
|

|
|

||

|
|
|

|
|
|

|

|
|
|

|
|

The first gives put authority to all queues for the principal FRED with names that
match the profile AB.*; the second gives get authority to the same types of queue
that match the profile AB.C*.

Suppose that you now create a queue called AB.CD. According to the rules for
wildcard matching, either GRTMQMAUT could apply to that queue. So, does it
have put or get authority?

To find the answer, you apply the rule that, whenever multiple profiles can apply
to an object, only the most specific applies. The way that you apply this rule is by
comparing the profile names from left to right. Wherever they differ, a non-generic
character is more specific then a generic character. So, in the example above, the
queue AB.CD has get authority (AB.C* is more specific than AB.*).

When you are comparing generic characters, the order of specificity is:
1. ?
2. *
3. **

Specifying the installed authorization service
The parameter Service Component name on GRTMQMAUT and RVKMQMAUT
allows you to specify the name of the installed authorization service component.

Selecting F24 on the initial panel, followed by F9=All parameters on the next panel
of either command, allows you to specify either the installed authorization
component (*DFT) or the name of the required authorization service component
specified in the Service stanza of the queue manager’s qm.ini file.

DSPMQMAUT also has this extra parameter. This allows you to search all the
installed authorization components (*DFT), or the specified authorization-service
component name, for the specified object name, object type, and user

Working without authority profiles
You can work with authority profiles, as explained in “Working with authority
profiles”, or without them, as explained here.

To use no authority profiles, use *NONE as an Authority parameter on
GRTMQMAUT to create profiles without authority. This leaves any existing
profiles unchanged.

On RVKMQMAUT, use *REMOVE as an Authority parameter to remove an existing
authority profile.

Working with authority profiles
There are two commands associated with authority profiling:
v WRKMQMAUT
v WRKMQMAUTD

You can access these commands directly from the command line, or from the
WRKMQM panel by:
1. Typing in the queue manager name and pressing the Enter key to access the

WRKMQM results panel

Generic profiles

60 System Administration Guide

|
|
|

|
|
|

|
|
|
|
|

|
|
|
|

|

|
|

|
|
|

|
|

|
|

|
|

2. Selecting F23=More options on this panel

Option 24 selects the results panel for the WRKMQMAUT command (see Figure 7
on page 62) and option 25 selects the WRKMQMAUTI command, which is used

with the SSL bindings layer.

WRKMQMAUT
This command allows you to work with the authority data held in the authority
queue. Figure 6 shows the input panel for this command.

Note: To run this command you must have *connect and *admdsp authority to the
queue manager. However, to create or delete a profile, you need
QMQMADM authority.

If you output the information to the screen, a list of authority profile names,
together with their types, is displayed. If you print the output, you receive a
detailed list of all the authority data, the registered users, and their authorities.

Entering an object or profile name on this panel, and pressing ENTER takes you to
the results panel for WRKMQMAUT, shown in Figure 7 on page 62.

Work with MQ Authority (WRKMQMAUT)

Type choices, press Enter.

Object/Profile name *ALL

Object type *ALL *Q, *PRC, *MQM, *NMLIST...
Output * *, *PRINT
Message Queue Manager name . . . *DFT

Bottom

===> __
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13= How to use this display
F24=More keys

Figure 6. Work with MQM Authority panel – input display

Working with authority profiles

Chapter 5. Protecting WebSphere MQ objects 61

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|

|

If you select 4=Delete, you go to a new panel from which you can confirm that
you want to delete all the user names registered to the generic authority profile
name you specify. This option runs RVKMQMAUT with the option *REMOVE for
all the users, and applies only to generic profile names.

If you select 12=Work with profile you go to the WRKMQMAUTD command
results panel, as explained in “WRKMQMAUTD”.

WRKMQMAUTD
This command allows you to display all the users registered with a particular
authority profile name and object type. To run this command you must have
*connect and *admdsp authority to the queue manager. However, to grant, run,
create, or delete a profile you need QMQMADM authority.

Figure 8 on page 63 shows the input panel of the WRKMQMAUTD command.

Work with MQ Authority

Queue Manager Name . . : *DFT

Type options, press Enter.
4=Delete 12=Work with profile

Opt Authority Profile Name Type
SYSTEM.DEFAULT.NAMELIST *NMLIST
SYSTEM.DEFAULT.PROCESS *PRC
SYSTEM.DEFAULT.REMOTE.QUEUE *Q
SYSTEM.MQSC.REPLY.QUEUE *Q
SYSTEM.PENDING.DATA.QUEUE *Q

Bottom
===>
F3=Exit F4=Prompt F5=Refresh F6=Create F9=Retrieve F12=Cancel
F16=Repeat position to F17=Position to F21=Print

Figure 7. Work with MQM Authority panel – results display

Working with authority profiles

62 System Administration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|

|
|
|
|

|
|

|
|

Selecting F24=More keys from the initial input panel, followed by option F9=All
Parameters displays the Service Component Name as for GRTMQMAUT and
RVKMQMAUT.

Figure 9 shows the results panel of the WRKMQMAUTD command.

Note: The F11=Display Object Authorizations key toggles between the following
types of authorities:
v Object authorizations
v Context authorizations
v MQI authorizations

The options on the screen are:

Work with MQ Authority Data (WRKMQMAUTD)

Type choices, press Enter.

Object/Profile name

Object type *Q, *PRC, *MQM, *NMLIST...
User name Name, *PUBLIC, *ALL
Message Queue Manager name . . .

Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys

Figure 8. Work with MQM Authority Data input panel

Work with MQ Authority Data

Queue Manager Name . . : *DFT
Authority Profile Name : SYSTEM.DEFAULT.PROCESS
Object Type : *PRC

Type options, press Enter.
2=Grant 3=Revoke 4=Delete 5=Display

Opt UserName GET BROWSE PUT CONNECT INQ SET ALTUSR
MQUSER X X X
QMQMADM X X X X X X X

Bottom
===>
F3=Exit F4=Prompt F5=Refresh F6=Create F9=Retrieve
F11=Display Object Authorizations F12=Cancel F24=More keys

Figure 9. Work with MQM Authority Data output panel

Working with authority profiles

Chapter 5. Protecting WebSphere MQ objects 63

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|

|
|

|

2=Grant Takes you to the GRTMQMAUT panel to add to the current
authorities.

3=Revoke Takes you to the RVKMQMAUT panel to remove some of the
current definitions

4=Delete Takes you to a panel that allows you to delete the authority data
for specified users. This runs RVKMQMAUT with the option
*REMOVE.

5=Display Takes you to the existing DSPMQMAUT command

F6=Create Takes you to the GRTMQMAUT panel that allows you to create a
new profile authority record.

Object Authority Manager guidelines
Some operations are particularly sensitive; limit them to privileged users. For
example,
v Accessing some special queues, such as transmission queues or the command

queue SYSTEM.ADMIN.COMMAND.QUEUE
v Running programs that use full MQI context options
v Creating and copying application queues

Queue manager directories
The directories and libraries containing queues and other queue manager data are
private to the product. Do not use standard operating system commands to grant
or revoke authorizations to MQI resources.

Queues
The authority to a dynamic queue is based on, but is not necessarily the same as,
that of the model queue from which it is derived.

For alias queues and remote queues, the authorization is that of the object itself,
not the queue to which the alias or remote queue resolves. It is possible to
authorize a user profile to access an alias queue that resolves to a local queue to
which the user profile has no access permissions.

Limit the authority to create queues to privileged users. If you do not, users can
bypass the normal access control simply by creating an alias.

Alternate-user authority
Alternate-user authority controls whether one user profile can use the authority of
another user profile when accessing a WebSphere MQ object. This is essential
where a server receives requests from a program and the server wants to ensure
that the program has the required authority for the request. The server might have
the required authority, but it needs to know whether the program has the authority
for the actions it has requested.

For example:
v A server program running under user profile PAYSERV retrieves a request

message from a queue that was put on the queue by user profile USER1.
v When the server program gets the request message, it processes the request and

puts the reply back into the reply-to queue specified with the request message.

Working with authority profiles

64 System Administration Guide

v Instead of using its own user profile (PAYSERV) to authorize opening the
reply-to queue, the server can specify some other user profile, in this case,
USER1. In this example, you can use alternate-user authority to control whether
PAYSERV is allowed to specify USER1 as an alternate-user profile when it opens
the reply-to queue.

The alternate-user profile is specified on the AlternateUserId field of the object
descriptor.

Note: You can use alternate-user profiles on any WebSphere MQ object. Use of an
alternate-user profile does not affect the user profile used by any other
resource managers.

Context authority
Context is information that applies to a particular message and is contained in the
message descriptor, MQMD, which is part of the message.

For descriptions of the message descriptor fields relating to context, see the
WebSphere MQ Application Programming Reference.

For information about the context options, see the WebSphere MQ Application
Programming Guide.

Remote security considerations
For remote security, consider:

Put authority
For security across queue managers you can specify the put authority that
is used when a channel receives a message sent from another queue
manager.

Specify the channel attribute PUTAUT as follows:

DEF Default user profile. This is the QMQM user profile under which
the message channel agent is running.

CTX The user profile in the message context.

Transmission queues
Queue managers automatically put remote messages on a transmission
queue; no special authority is required for this. However, putting a
message directly on a transmission queue requires special authorization.

Channel exits
Channel exits can be used for added security.

For more information about remote security, see WebSphere MQ Intercommunication.

Channel command security
Channel commands can be issued as PCF commands, through the MQAI, MQSC
commands, and control commands.

PCF commands
You can issue PCF channel commands by sending a PCF message to the
SYSTEM.ADMIN.COMMAND.QUEUE on a remote WebSphere MQ system. The
user profile, as specified in the message descriptor of the PCF message, must have
the appropriate authorizations in the relevant group on the target system.

OAM guidelines

Chapter 5. Protecting WebSphere MQ objects 65

On WebSphere MQ for iSeries the actual group is QMQMADM, and on UNIX systems
the name of the group is mqm.

These commands are:
v ChangeChannel
v CopyChannel
v CreateChannel
v DeleteChannel
v PingChannel
v ResetChannel
v StartChannel
v StartChannelInitiator
v StartChannelListener
v StopChannel
v ResolveChannel

See WebSphere MQ Programmable Command Formats and Administration Interface for
the PCF security requirements.

MQSC channel commands
You can issue MQSC channel commands to a remote WebSphere MQ system either
by sending the command directly in a PCF escape message or by issuing the
command using STRMQMMQSC. The user profile as specified in the message
descriptor of the associated PCF message must belong to the relevant group on the
target system. (PCF commands are implicit in MQSC commands issued from
STRMQMMQSC) These commands are:
v ALTER CHANNEL
v DEFINE CHANNEL
v DELETE CHANNEL
v PING CHANNEL
v RESET CHANNEL
v START CHANNEL
v START CHINIT
v START LISTENER
v STOP CHANNEL
v RESOLVE CHANNEL

For MQSC commands issued from the STRMQMMQSC command, the user
profile in the PCF message is normally that of the current user.

Protecting channels with SSL
The Secure Sockets Layer (SSL) protocol provides out of the box channel security,
with protection against eavesdropping, tampering, and impersonation. WebSphere
MQ support for SSL enables you to specify, on the channel definition, that a
particular channel uses SSL security. You can also specify details of the kind of
security you want, such as the encryption algorithm you want to use.

SSL support in WebSphere MQ uses the queue manager authentication information
object and various CL and MQSC commands and queue manager and channel
parameters that define the SSL support required in detail.

The following CL commands support SSL:

WRKMQMAUTI
Work with the attributes of an authentication information object.

OAM guidelines

66 System Administration Guide

|
|
|
|
|
|

|
|
|

|

|
|

CHGMQMAUTI
Modify the attributes of an authentication information object.

CRTMQMAUTI
Create a new authentication information object.

CPYMQMAUTI
Create a new authentication information object by copying an existing one.

DLTMQMAUTI
Delete an authentication information object.

DSPMQMAUTI
Displays the attributes for a specific authentication information object.

For an overview of channel security using SSL, see WebSphere MQ Security.

For details of PCF commands associated with SSL, see WebSphere MQ Programmable
Command Formats and Administration Interface.

OAM guidelines

Chapter 5. Protecting WebSphere MQ objects 67

|
|

|
|

|
|

|
|

|
|

|

|
|

68 System Administration Guide

Chapter 6. The WebSphere MQ dead-letter queue handler

A dead-letter queue (DLQ), sometimes referred to as an undelivered-message queue, is a
holding queue for messages that cannot be delivered to their destination queues.
Every queue manager in a network should have an associated DLQ.

Note: It is often preferable to avoid placing messages on a DLQ. For information
about the use and avoidance of DLQs, see the WebSphere MQ Application
Programming Guide.

Queue managers, message channel agents, and applications can put messages on
the DLQ. All messages on the DLQ must be prefixed with a dead-letter header
structure, MQDLH. Messages put on the DLQ by a queue manager or by a
message channel agent always have an MQDLH. Always supply an MQDLH to
applications putting messages on the DLQ. The Reason field of the MQDLH
structure contains a reason code that identifies why the message is on the DLQ.

In all WebSphere MQ environments, there must be a routine that runs regularly to
process messages on the DLQ. WebSphere MQ supplies a default routine, called
the dead-letter queue handler (the DLQ handler), which you invoke using the
STRMQMDLQ command. A user-written rules table supplies instructions to the
DLQ handler, for processing messages on the DLQ. That is, the DLQ handler
matches messages on the DLQ against entries in the rules table. When a DLQ
message matches an entry in the rules table, the DLQ handler performs the action
associated with that entry.

Invoking the DLQ handler
Use the STRMQMDLQ command to invoke the DLQ handler. You can name the
DLQ you want to process and the queue manager you want to use in two ways:
v As parameters to STRMQMDLQ from the command prompt. For example:

STRMQMDLQ UDLMSGQ(ABC1.DEAD.LETTER.QUEUE) SRCMBR(QRULE) SRCFILE(library/QTXTSRC)
MQMNAME(MY.QUEUE.MANAGER)

v In the rules table. For example:
INPUTQ(ABC1.DEAD.LETTER.QUEUE)

Note: The rules table is a member within a source physical file that can take any
name.

The above examples apply to the DLQ called ABC1.DEAD.LETTER.QUEUE,
owned by the default queue manager.

If you do not specify the DLQ or the queue manager as shown above, the default
queue manager for the installation is used along with the DLQ belonging to that
queue manager.

The STRMQMDLQ command takes its input from the rules table.

You must be authorized to access both the DLQ itself, and any message queues to
which messages on the DLQ are forwarded, in order to run the DLQ handler. You
must also be authorized to assume the identity of other users, for the DLQ to put
messages on queues with the authority of the user ID in the message context.

© Copyright IBM Corp. 1994, 2002 69

|
|

The DLQ handler rules table
The DLQ handler rules table defines how the DLQ handler is to process messages
that arrive on the DLQ. There are two types of entry in a rules table:
v The first entry in the table, which is optional, contains control data.
v All other entries in the table are rules for the DLQ handler to follow. Each rule

consists of a pattern (a set of message characteristics) that a message is matched
against, and an action to be taken when a message on the DLQ matches the
specified pattern. There must be at least one rule in a rules table.

Each entry in the rules table comprises one or more keywords.

Control data
This section describes the keywords that you can include in a control-data entry in
a DLQ handler rules table. Note the following:
v The default value for a keyword, if any, is underlined.
v The vertical line (|) separates alternatives. You can specify only one of these.
v All keywords are optional.

INPUTQ (QueueName|' ')
The name of the DLQ you want to process:
1. Any UDLMSGQ value (or *DFT) you specify as a parameter to the

STRMQMDLQ command overrides any INPUTQ value in the rules table.
2. If you specify a blank UDLMSGQ value as a parameter to the

STRMQMDLQ command, the INPUTQ value in the rules table is used.
3. If you specify a blank UDLMSGQ value as a parameter to the

STRMQMDLQ command, and a blank INPUTQ value in the rules table, the
system default dead-letter queue is used.

INPUTQM (QueueManagerName|' ')
The name of the queue manager that owns the DLQ named on the INPUTQ
keyword.

If you do not specify a queue manager, or you specify INPUTQM(' ') in the
rules table, the system uses the default queue manager for the installation.

RETRYINT (Interval|60)
The interval, in seconds, at which the DLQ handler should attempt to
reprocess messages on the DLQ that could not be processed at the first
attempt, and for which repeated attempts have been requested. By default, the
retry interval is 60 seconds.

WAIT (YES|NO|nnn)
Whether the DLQ handler should wait for further messages to arrive on the
DLQ when it detects that there are no further messages that it can process.

YES Causes the DLQ handler to wait indefinitely.

NO Causes the DLQ handler to terminate when it detects that the DLQ is
either empty or contains no messages that it can process.

nnn Causes the DLQ handler to wait for nnn seconds for new work to
arrive before terminating, after it detects that the queue is either empty
or contains no messages that it can process.

Specify WAIT (YES) for busy DLQs, and WAIT (NO) or WAIT (nnn) for DLQs
that have a low level of activity. If the DLQ handler is allowed to terminate,
re-invoke it using triggering.

The handler rules table

70 System Administration Guide

You can supply the name of the DLQ as an input parameter to the STRMQMDLQ
command, as an alternative to including control data in the rules table. If any
value is specified both in the rules table and on input to the STRMQMDLQ
command, the value specified on the STRMQMDLQ command takes precedence.

Note: If a control-data entry is included in the rules table, it must be the first entry
in the table.

Rules (patterns and actions)
Here is an example rule from a DLQ handler rules table:
PERSIST(MQPER_PERSISTENT) REASON (MQRC_PUT_INHIBITED) +
ACTION (RETRY) RETRY (3)

This rule instructs the DLQ handler to make 3 attempts to deliver to its destination
queue any persistent message that was put on the DLQ because MQPUT and
MQPUT1 were inhibited.

This section describes the keywords that you can include in a rule. Note the
following:
v The default value for a keyword, if any, is underlined. For most keywords, the

default value is * (asterisk), which matches any value.
v The vertical line (|) separates alternatives. You can specify only one of these.
v All keywords except ACTION are optional.

This section begins with a description of the pattern-matching keywords (those
against which messages on the DLQ are matched). It then describes the action
keywords (those that determine how the DLQ handler is to process a matching
message).

The pattern-matching keywords
The pattern-matching keywords are described below. Use them to specify values
against which messages on the DLQ are matched. All pattern-matching keywords
are optional.

APPLIDAT (ApplIdentityData|*)
The ApplIdentityData value of the message on the DLQ, specified in the
message descriptor, MQMD.

APPLNAME (PutApplName|*)
The name of the application that issued the MQPUT or MQPUT1 call, as
specified in the PutApplName field of the message descriptor, MQMD, of the
message on the DLQ.

APPLTYPE (PutApplType|*)
The PutApplType value specified in the message descriptor, MQMD, of the
message on the DLQ.

DESTQ (QueueName|*)
The name of the message queue for which the message is destined.

DESTQM (QueueManagerName|*)
The queue manager name for the message queue for which the message is
destined.

FEEDBACK (Feedback|*)
When the MsgType value is MQMT_REPORT, Feedback describes the nature of
the report.

The handler rules table

Chapter 6. The WebSphere MQ dead-letter queue handler 71

You can use symbolic names. For example, you can use the symbolic name
MQFB_COA to identify those messages on the DLQ that require confirmation
of their arrival on their destination queues.

FORMAT (Format|*)
The name that the sender of the message uses to describe the format of the
message data.

MSGTYPE (MsgType|*)
The message type of the message on the DLQ.

You can use symbolic names. For example, you can use the symbolic name
MQMT_REQUEST to identify those messages on the DLQ that require replies.

PERSIST (Persistence|*)
The persistence value of the message. (The persistence of a message determines
whether it survives restarts of the queue manager.)

You can use symbolic names. For example, you can use the symbolic name
MQPER_PERSISTENT to identify those messages on the DLQ that are
persistent.

REASON (ReasonCode|*)
The reason code that describes why the message was put to the DLQ.

You can use symbolic names. For example, you can use the symbolic name
MQRC_Q_FULL to identify those messages placed on the DLQ because their
destination queues were full.

REPLYQ (QueueName|*)
The reply-to queue name specified in the message descriptor, MQMD, of the
message on the DLQ.

REPLYQM (QueueManagerName|*)
The queue manager name of the reply-to queue specified in the REPLYQ
keyword.

USERID (UserIdentifier|*)
The user ID of the user who originated the message on the DLQ, as specified
in the message descriptor, MQMD.

The action keywords
The action keywords are described below. Use them to describe how a matching
message is processed.

ACTION (DISCARD|IGNORE|RETRY|FWD)
The action taken for any message on the DLQ that matches the pattern defined
in this rule.

DISCARD
Causes the message to be deleted from the DLQ.

IGNORE
Causes the message to be left on the DLQ.

RETRY
Causes the DLQ handler to try again to put the message on its
destination queue.

FWD Causes the DLQ handler to forward the message to the queue named
on the FWDQ keyword.

The handler rules table

72 System Administration Guide

You must specify the ACTION keyword. The number of attempts made to
implement an action is governed by the RETRY keyword. The RETRYINT
keyword of the control data controls the interval between attempts.

FWDQ (QueueName|&DESTQ|&REPLYQ)
The name of the message queue to which the message is forwarded when you
select the ACTION keyword.

QueueName
The name of a message queue. FWDQ(' ') is not valid.

&DESTQ
Take the queue name from the DestQName field in the MQDLH
structure.

&REPLYQ
Take the queue name from the ReplyToQ field in the message
descriptor, MQMD.

You can specify REPLYQ (?*) in the message pattern to avoid error
messages, when a rule specifying FWDQ (&REPLYQ) matches a
message with a blank ReplyToQ field.

FWDQM (QueueManagerName|&DESTQM|&REPLYQM|' ')
The queue manager of the queue to which a message is forwarded.

QueueManagerName
The queue manager name for the queue to which the message is
forwarded when you select the ACTION (FWD) keyword.

&DESTQM
Take the queue manager name from the DestQMgrName field in the
MQDLH structure.

&REPLYQM
Take the queue manager name from the ReplyToQMgr field in the
message descriptor, MQMD.

' ' FWDQM(' '), which is the default value, identifies the local queue
manager.

HEADER (YES|NO)
Whether the MQDLH should remain on a message for which ACTION (FWD)
is requested. By default, the MQDLH remains on the message. The HEADER
keyword is not valid for actions other than FWD.

PUTAUT (DEF|CTX)
The authority with which messages should be put by the DLQ handler:

DEF Puts messages with the authority of the DLQ handler itself.

CTX Causes the messages to be put with the authority of the user ID in the
message context. You must be authorized to assume the identity of
other users, if you specify PUTAUT (CTX).

RETRY (RetryCount|1)
The number of times, in the range 1–999 999 999, to attempt an action (at the
interval specified on the RETRYINT keyword of the control data).

Note: The count of attempts made by the DLQ handler to implement any
particular rule is specific to the current instance of the DLQ handler; the
count does not persist across restarts. If you restart the DLQ handler, the
count of attempts made to apply a rule is reset to zero.

The handler rules table

Chapter 6. The WebSphere MQ dead-letter queue handler 73

Rules table conventions
The rules table must adhere to the following conventions regarding its syntax,
structure, and contents:
v A rules table must contain at least one rule.
v Keywords can occur in any order.
v A keyword can be included once only in any rule.
v Keywords are not case sensitive.
v A keyword and its parameter value must be separated from other keywords by

at least one blank or comma.
v Any number of blanks can occur at the beginning or end of a rule, and between

keywords, punctuation, and values.
v Each rule must begin on a new line.
v For portability, the significant length of a line must not be greater than 72

characters.
v Use the plus sign (+) as the last non-blank character on a line to indicate that the

rule continues from the first non-blank character in the next line. Use the minus
sign (−) as the last non-blank character on a line to indicate that the rule
continues from the start of the next line. Continuation characters can occur
within keywords and parameters.
For example:
APPLNAME(’ABC+

D’)

results in ’ABCD’.
APPLNAME(’ABC-

D’)

results in ’ABC D’.
v Comment lines, which begin with an asterisk (*), can occur anywhere in the

rules table.
v Blank lines are ignored.
v Each entry in the DLQ handler rules table comprises one or more keywords and

their associated parameters. The parameters must follow these syntax rules:
– Each parameter value must include at least one significant character. The

delimiting quotation marks in quoted values are not considered significant.
For example, these parameters are valid:

FORMAT(’ABC’) 3 significant characters
FORMAT(ABC) 3 significant characters
FORMAT(’A’) 1 significant character
FORMAT(A) 1 significant character
FORMAT(’ ’) 1 significant character

These parameters are invalid because they contain no significant characters:

FORMAT(’’)
FORMAT()
FORMAT()
FORMAT

– Wildcard characters are supported. You can use the question mark (?) in place
of any single character, except a trailing blank. You can use the asterisk (*) in

The handler rules table

74 System Administration Guide

place of zero or more adjacent characters. The asterisk (*) and the question
mark (?) are always interpreted as wildcard characters in parameter values.

– You cannot include wildcard characters in the parameters of these keywords:
ACTION, HEADER, RETRY, FWDQ, FWDQM, and PUTAUT.

– Trailing blanks in parameter values, and in the corresponding fields in the
message on the DLQ, are not significant when performing wildcard matches.
However, leading and embedded blanks within strings in quotation marks are
significant to wildcard matches.

– Numeric parameters cannot include the question mark (?) wildcard character.
You can include the asterisk (*) in place of an entire numeric parameter, but
the asterisk cannot be included as part of a numeric parameter. For example,
these are valid numeric parameters:

MSGTYPE(2) Only reply messages are eligible
MSGTYPE(*) Any message type is eligible
MSGTYPE(’*’) Any message type is eligible

However, MSGTYPE(’2*’) is not valid, because it includes an asterisk (*) as part
of a numeric parameter.

– Numeric parameters must be in the range 0–999 999 999. If the parameter
value is in this range, it is accepted, even if it is not currently valid in the
field to which the keyword relates. You can use symbolic names for numeric
parameters.

– If a string value is shorter than the field in the MQDLH or MQMD to which
the keyword relates, the value is padded with blanks to the length of the
field. If the value, excluding asterisks, is longer than the field, an error is
diagnosed. For example, these are all valid string values for an 8-character
field:

’ABCDEFGH’ 8 characters
’A*C*E*G*I’ 5 characters excluding asterisks
’*A*C*E*G*I*K*M*O*’ 8 characters excluding asterisks

– Strings that contain blanks, lowercase characters, or special characters other
than period (.), forward slash (/), underscore (_), and percent sign (%) must
be enclosed in single quotation marks. Lowercase characters not enclosed in
quotation marks are folded to uppercase. If the string includes a quotation,
two single quotation marks must be used to denote both the beginning and
the end of the quotation. When the length of the string is calculated, each
occurrence of double quotation marks is counted as a single character.

Processing the rules table
The DLQ handler searches the rules table for a rule whose pattern matches a
message on the DLQ. The search begins with the first rule in the table, and
continues sequentially through the table. When a rule with a matching pattern is
found, the rules table attempts the action from that rule. The DLQ handler
increments the retry count for a rule by 1 whenever it attempts to apply that rule.
If the first attempt fails, the attempt is repeated until the count of attempts made
matches the number specified on the RETRY keyword. If all attempts fail, the DLQ
handler searches for the next matching rule in the table.

This process is repeated for subsequent matching rules until an action is successful.
When each matching rule has been attempted the number of times specified on its

The handler rules table

Chapter 6. The WebSphere MQ dead-letter queue handler 75

RETRY keyword, and all attempts have failed, ACTION (IGNORE) is assumed.
ACTION (IGNORE) is also assumed if no matching rule is found.

Notes:

1. Matching rule patterns are sought only for messages on the DLQ that begin
with an MQDLH. Messages that do not begin with an MQDLH are reported
periodically as being in error, and remain on the DLQ indefinitely.

2. All pattern keywords can default, so that a rule can consist of an action only.
Note, however, that action-only rules are applied to all messages on the queue
that have MQDLHs and that have not already been processed in accordance
with other rules in the table.

3. The rules table is validated when the DLQ handler starts, and errors flagged at
that time. (Error messages issued by the DLQ handler are described in
WebSphere MQ Messages.) You can make changes to the rules table at any time,
but those changes do not come into effect until the DLQ handler is restarted.

4. The DLQ handler does not alter the content of messages, of the MQDLH, or of
the message descriptor. The DLQ handler always puts messages to other
queues with the message option MQPMO_PASS_ALL_CONTEXT.

5. Consecutive syntax errors in the rules table might not be recognized, because
the validation of the rules table is designed to eliminate the generation of
repetitive errors.

6. The DLQ handler opens the DLQ with the MQOO_INPUT_AS_Q_DEF option.
7. Multiple instances of the DLQ handler can run concurrently against the same

queue, using the same rules table. However, it is more usual for there to be a
one-to-one relationship between a DLQ and a DLQ handler.

Ensuring that all DLQ messages are processed
The DLQ handler keeps a record of all messages on the DLQ that have been seen
but not removed. If you use the DLQ handler as a filter to extract a small subset of
the messages from the DLQ, the DLQ handler still keeps a record of those
messages on the DLQ that it did not process. Also, the DLQ handler cannot
guarantee that new messages arriving on the DLQ will be seen, even if the DLQ is
defined as first-in first-out (FIFO). If the queue is not empty, the DLQ is
periodically re-scanned to check all messages.

For these reasons, try to ensure that the DLQ contains as few messages as possible.
If messages that cannot be discarded or forwarded to other queues (for whatever
reason) are allowed to accumulate on the queue, the workload of the DLQ handler
increases and the DLQ itself is in danger of filling up.

You can take specific measures to enable the DLQ handler to empty the DLQ. For
example, try not to use ACTION (IGNORE), which simply leaves messages on the
DLQ. (Remember that ACTION (IGNORE) is assumed for messages that are not
explicitly addressed by other rules in the table.) Instead, for those messages that
you would otherwise ignore, use an action that moves the messages to another
queue. For example:

Similarly, make the final rule in the table a catchall to process messages that have
not been addressed by earlier rules in the table. For example, the final rule in the
table could be something like this:

ACTION (FWD) FWDQ (IGNORED.DEAD.QUEUE) HEADER (YES)

ACTION (FWD) FWDQ (REALLY.DEAD.QUEUE) HEADER (YES)

Processing the rules table

76 System Administration Guide

This causes messages that fall through to the final rule in the table to be forwarded
to the queue REALLY.DEAD.QUEUE, where they can be processed manually. If you do
not have such a rule, messages are likely to remain on the DLQ indefinitely.

An example DLQ handler rules table
Here is an example rules table that contains a single control-data entry and several
rules:

* An example rules table for the STRMQMDLQ command *

* Control data entry
* ------------------
* If no queue manager name is supplied as an explicit parameter to
* STRMQMDLQ, use the default queue manager for the machine.
* If no queue name is supplied as an explicit parameter to STRMQMDLQ,
* use the DLQ defined for the local queue manager.
*
inputqm(’ ’) inputq(’ ’)

* Rules
* -----
* We include rules with ACTION (RETRY) first to try to
* deliver the message to the intended destination.

* If a message is placed on the DLQ because its destination
* queue is full, attempt to forward the message to its
* destination queue. Make 5 attempts at approximately
* 60-second intervals (the default value for RETRYINT).

REASON(MQRC_Q_FULL) ACTION(RETRY) RETRY(5)

* If a message is placed on the DLQ because of a put inhibited
* condition, attempt to forward the message to its
* destination queue. Make 5 attempts at approximately
* 60-second intervals (the default value for RETRYINT).

REASON(MQRC_PUT_INHIBITED) ACTION(RETRY) RETRY(5)

* The AAAA corporation is always sending messages with incorrect
* addresses. When we find a request from the AAAA corporation,
* we return it to the DLQ (DEADQ) of the reply-to queue manager
* (&REPLYQM).
* The AAAA DLQ handler attempts to redirect the message.

MSGTYPE(MQMT_REQUEST) REPLYQM(AAAA.*) +
ACTION(FWD) FWDQ(DEADQ) FWDQM(&REPLYQM)

* The BBBB corporation never does things by half measures. If
* the queue manager BBBB.1 is unavailable, try to
* send the message to BBBB.2

DESTQM(bbbb.1) +
action(fwd) fwdq(&DESTQ) fwdqm(bbbb.2) header(no)

* The CCCC corporation considers itself very security
* conscious, and believes that none of its messages
* will ever end up on one of our DLQs.
* Whenever we see a message from a CCCC queue manager on our
* DLQ, we send it to a special destination in the CCCC organization
* where the problem is investigated.

REPLYQM(CCCC.*) +
ACTION(FWD) FWDQ(ALARM) FWDQM(CCCC.SYSTEM)

Processing the rules table

Chapter 6. The WebSphere MQ dead-letter queue handler 77

* Messages that are not persistent run the risk of being
* lost when a queue manager terminates. If an application
* is sending nonpersistent messages, it must be able
* to cope with the message being lost, so we can afford to
* discard the message.

PERSIST(MQPER_NOT_PERSISTENT) ACTION(DISCARD)

* For performance and efficiency reasons, we like to keep
* the number of messages on the DLQ small.
* If we receive a message that has not been processed by
* an earlier rule in the table, we assume that it
* requires manual intervention to resolve the problem.
* Some problems are best solved at the node where the
* problem was detected, and others are best solved where
* the message originated. We do not have the message origin,
* but we can use the REPLYQM to identify a node that has
* some interest in this message.
* Attempt to put the message onto a manual intervention
* queue at the appropriate node. If this fails,
* put the message on the manual intervention queue at
* this node.

REPLYQM(’?*’) +
ACTION(FWD) FWDQ(DEADQ.MANUAL.INTERVENTION) FWDQM(&REPLYQM)

ACTION(FWD) FWDQ(DEADQ.MANUAL.INTERVENTION)

Example rules table

78 System Administration Guide

Chapter 7. Backup, recovery, and restart

WebSphere MQ for iSeries uses the OS/400 journaling support to help its backup
and restore strategy. You must be familiar with standard OS/400 backup and
recovery methods, and with the use of journals and their associated journal
receivers on OS/400, before reading this section. For information on these topics,
see OS/400 Backup and Recovery.

To understand the backup and recovery strategy, you first need to understand how
WebSphere MQ for iSeries organizes its data in the OS/400 file system and the
integrated file system (IFS)

WebSphere MQ for iSeries holds its data in an individual library for each queue
manager, and in stream files in the IFS file system.

The queue manager specific libraries contain journals, journal receivers, and objects
required to control the work management of the queue manager. The IFS
directories and files contain WebSphere MQ configuration files, the descriptions of
WebSphere MQ objects, and the data they contain.

Every change to these objects, that is recoverable across a system failure, is
recorded in a journal before it is applied to the appropriate object. This has the
effect that such changes can be recovered by replaying the information recorded in
the journal.

WebSphere MQ for iSeries journals
WebSphere MQ for iSeries uses journals in its operation to control updates to local
objects. Each queue manager library contains a journal for that queue manager,
which has the name QMGRLIB/AMQAJRN, where QMGRLIB is the name of the queue
manager library.

QMGRLIB takes the name QM, followed by the name of the queue manager in a
unique form. For example, a queue manager named TEST has a journal receiver
library named QMTEST.

These journals have associated journal receivers that contain the information being
journaled. These receivers are objects to which information can only be appended
and will fill up eventually.

They also use up valuable disk space with out-of-date information. However, you
can place the information in permanent storage to minimize this problem. One
journal receiver is attached to the journal at any particular time. If the journal
receiver reaches its predetermined threshold size, it is detached and replaced by a
new journal receiver.

The journal receivers associated with the local WebSphere MQ for iSeries journal
exist in each queue manager library, and adopt a naming convention as follows:

AMQArnnnnn

where

© Copyright IBM Corp. 1994, 2002 79

nnnnn
is decimal 00000 to 99999

r is decimal 0 to 9

The sequence of the journals is based on date. However, the naming of the next
journal is based on the following rules:
1. AMQArnnnnn goes to AMQAr(nnnnn+1), and nnnnn wraps when it reaches

99999. For example, AMQA000000 goes to AMQA000001, and AMQA999999
goes to AMQA000000.

2. If a journal with a name generated by rule 1 already exists, the message
CPI7OE3 is sent to the QSYSOPR message queue and automatic receiver
switching stops.
The currently-attached receiver continues to be used until you investigate the
problem and manually attach a new receiver.

3. If no new name is available in the sequence (that is, all possible journal names
are on the system) you need to do both of the following:
a. Delete journals no longer needed (see “Journal management” on page 84).
b. Record the journal changes into the latest journal receiver using

(RCDMQMIMG) and then repeat the previous step. This allows the old
journal receiver names to be reused.

The AMQAJRN journal uses the MNGRCV(*SYSTEM) option to enable the
operating system to automatically change journal receivers when the threshold is
reached. For more information on how the system manages receivers, see OS/400
Backup and Recovery.

The journal receiver’s default threshold value is 100 000 KB. This is set when the
queue manager is created and is determined by the MaxReceiverSize value
defined in the LogDefaults stanza of the mqs.ini file. See Chapter 9, “Configuring
WebSphere MQ” on page 109 for further details on configuring the system.

If you need to change the size of journal receivers after the queue manager has
been created, create a new journal receiver and set its owner to QMQM using the
following commands:
CRTJRNRCV JRNRCV(QMGRLIB/AMQAnnnnnn) THRESHOLD(xxxxxx) +

TEXT(’MQM LOCAL JOURNAL RECEIVER’)
CHGOBJOWN OBJ(QMGRLIB/AMQAnnnnnn) OBJTYPE(*JRNRCV) NEWOWN(QMQM)

where

QmgrLib
Is the name of your queue manager library

nnnnnnn
Is the next journal receiver in the naming sequence described

xxxxxx Is the new receiver threshold (in KB)

Note: The maximum size of the receiver is governed by the operating
system. To check this value look at the THRESHOLD keyword on
the CRTJRNRCV command.

Now attach the new receiver to the AMQAJRN journal with the command:
CHGJRN JRN(QMGRLIB/AMQAJRN) JRNRCV(QMGRLIB/AMQAnnnnnn)

Journals

80 System Administration Guide

|

See “Journal management” on page 84 for details on how to manage these journal
receivers.

WebSphere MQ for iSeries journal usage
Persistent updates to message queues happen in two stages. The records
representing the update are first written to the journal, then the queue file is
updated.

The journal receivers can therefore become more up-to-date than the queue files.
To ensure that restart processing begins from a consistent point, WebSphere MQ
uses checkpoints.

A checkpoint is a point in time when the record described in the journal is the
same as the record in the queue. The checkpoint itself consists of the series of
journal records needed to restart the queue manager. For example, the state of all
transactions (that is, units of work) active at the time of the checkpoint.

Checkpoints are generated automatically by WebSphere MQ. They are taken when
the queue manager starts and shuts down, and after every 10 000 operations
logged.

You can force a queue manager to take a checkpoint by issuing the RCDMQMIMG
command against all objects on a queue manager and displaying the results, as
follows:
RCDMQMIMG OBJ(*ALL) OBJTYPE(*ALL) DSPJRNDTA(*YES)

As the queues handle further messages, the checkpoint record becomes
inconsistent with the current state of the queues.

When WebSphere MQ is restarted, it locates the latest checkpoint record in the log.
This information is held in the checkpoint file that is updated at the end of every
checkpoint. The checkpoint record represents the most recent point of consistency
between the log and the data. The data from this checkpoint is used to rebuild the
queues as they existed at the checkpoint time. When the queues are recreated, the
log is then played forward to bring the queues back to the state they were in
before system failure or close down.

To understand how WebSphere MQ uses the journal, consider the case of a local
queue called TESTQ in the queue manager TEST. This is represented by the IFS file:
/QIBM/UserData/mqm/qmgrs/TEST/queues

If a specified message is put on this queue, and then retrieved from the queue, the
actions that take place are shown in Figure 10.

Journals

Chapter 7. Backup, recovery, and restart 81

|

|
|
|

|

The five points, A through E, shown in the diagram represent points in time that
define the following states:

A The IFS file representation of the queue is consistent with the information
contained in the journal.

B A journal entry is written to the journal defining a Put operation on the
queue.

C The appropriate update is made to the queue.

D A journal entry is written to the journal defining a Get operation from the
queue.

E The appropriate update is made to the queue.

The key to the recovery capabilities of WebSphere MQ for iSeries is that the user
can save the IFS file representation of TESTQ as at time A, and subsequently
recover the IFS file representation of TESTQ as at time E, simply by restoring the
saved object and replaying the entries in the journal from time A onwards.

This strategy is used by WebSphere MQ for iSeries to recover persistent messages
after system failure. WebSphere MQ remembers a particular entry in the journal
receivers, and ensures that on startup it replays the entries in the journals from this
point onwards. This startup entry is periodically recalculated so that WebSphere
MQ only has to perform the minimum necessary replay on the next startup.

WebSphere MQ provides individual recovery of objects. All persistent information
relating to an object is recorded in the local WebSphere MQ for iSeries journals.
Any WebSphere MQ object that becomes damaged or corrupt can be completely
rebuilt from the information held in the journal.

For more information on how the system manages receivers, see OS/400 Backup and
Recovery.

Media images
A WebSphere MQ object of long duration can represent a large number of journal
entries, going back to the point at which it was created. To avoid this overhead,
WebSphere MQ for iSeries has the concept of a media image of an object.

This media image is a complete copy of the WebSphere MQ object recorded in the
journal. If an image of an object is taken, the object can be rebuilt by replaying
journal entries from this image onwards. The entry in the journal that represents
the replay point for each WebSphere MQ object is referred to as its media recovery
entry.

Journal entries

Put on Get from
TESTQ TESTQ

A B C D E Time

TESTQ Update Update
FILE TESTQ TESTQ

WebSphere MQ
for iSeries

Figure 10. Sequence of events when updating MQM objects

Journals

82 System Administration Guide

Images of the *CTLG object and the *MQM object are regularly taken, because
these objects are required for WebSphere MQ to run at all.

Images of other objects are taken when convenient, particularly when the
WebSphere MQ queue manager is ended. WebSphere MQ keeps track of the:
v Media recovery entry for each MQM object
v Oldest entry from within this set

WebSphere MQ automatically records an image of an object, if it finds a convenient
point at which an object can be compactly described by a small entry in the
journal. However, this might never happen for some objects, for example, queues
that consistently contain large numbers of messages.

Rather than allow the date of the oldest media recovery entry to continue for an
unnecessarily long period, use the WebSphere MQ command RCDMQMIMG, which
enables you to take an image of selected objects manually.

Recovery from media images
WebSphere MQ automatically recovers some objects from their media image if it is
found that they are corrupt or damaged. In particular, this applies to the special
*MQM and *CTLG objects as part of the normal queue manager startup. If any
syncpoint transaction was incomplete at the time of the last shutdown of the queue
manager, any queue affected is also recovered automatically, in order to complete
the startup operation.

You must recover other objects manually, using the WebSphere MQ command
RCRMQMOBJ. This command replays the entries in the journal to re-create the
WebSphere MQ object. Should a WebSphere MQ object become damaged, the only
valid actions are to delete it or re-create it by this method. Note, however, that
nonpersistent messages cannot be recovered in this fashion.

Backups of WebSphere MQ for iSeries data
For each queue manager, there are two types of WebSphere MQ backup to
consider:
v Data and journal backup.

To ensure that both sets of data are consistent, do this only after shutting down
the queue manager.

v Journal backup.
You can do this while the queue manager is active.

For both methods, you need to find the names of the queue manager IFS directory
and the queue manager library. You can find these in the WebSphere MQ
configuration file (mqs.ini). For more information, see “The QueueManager stanza”
on page 113.

Use the procedures below to do both types of backup:

Data and journal backup of a particular queue manager

Note: Do not use a save-while-active request when the queue manager is
running. Such a request cannot complete unless all commitment
definitions with pending changes are committed or rolled back. If

Journals

Chapter 7. Backup, recovery, and restart 83

|
|

|
|

|

|
|

|

|

|
|
|
|

|
|
|

this command is used when the queue manager is active, the
channel connections might not end normally. Always use the
procedure described below.

1. Create an empty journal receiver, using the command:
CHGJRN JRN(QMTEST/AMQAJRN) JRNRCV(*GEN)

2. Use the RCDMQMIMG command to record an MQM image for all
WebSphere MQ objects, and then force a checkpoint using the
command:
RCDMQMIMG OBJ(*ALL) OBJTYPE(*ALL) DSPJRNDTA(*YES) MQMNAME(TEST)

3. End channels and ensure that the queue manager is not running. If
your queue manager is running, stop it with the ENDMQM command.

4. Backup the queue manager library by issuing the following command:
SAVLIB LIB(QMTEST)

5. Back up the queue manager IFS directories by issuing the following
command:
SAV DEV(...) OBJ((’/QIBM/UserData/mqm/qmgrs/test’))

Journal backup of a particular queue manager
Because all relevant information is held in the journals, as long as you
perform a full save at some time, partial backups can be performed by
saving the journal receivers. These record all changes since the time of the
full backup and are performed by issuing the following commands:
1. Create an empty journal receiver, using the command:

CHGJRN JRN(QMTEST/AMQAJRN) JRNRCV(*GEN)

2. Use the RCDMQMIMG command to record an MQM image for all
WebSphere MQ objects, and then force a checkpoint using the
command:
RCDMQMIMG OBJ(*ALL) OBJTYPE(*ALL) DSPJRNDTA(*YES) MQMNAME(TEST)

3. Save the journal receivers using the command:
SAVOBJ OBJ(AMQ*) LIB(QMTEST) OBJTYPE(*JRNRCV)

A simple backup strategy is to perform a full backup of the WebSphere MQ
libraries every week, and perform a daily journal backup. This, of course, depends
on how you have set up your backup strategy for your enterprise.

Journal management
As part of your backup strategy, take care of your journal receivers. It is useful to
remove journal receivers from the WebSphere MQ libraries, in order to:
1. Release space; this applies to all journal receivers
2. Improve the performance when starting (STRMQM)
3. Improve the performance of recreating objects (RCRMQMOBJ)

Before deleting a journal receiver, be sure that:
1. You have a backup copy.
2. You no longer need the journal receiver.

Journal receivers can be removed from the queue manager library after they have
been detached from the journals and saved, provided that they are available for
restoration if needed for a recovery operation.

The concept of journal management is shown in Figure 11 on page 85.

Backups of data

84 System Administration Guide

|
|
|

|

|

|
|
|

|

|

|

|
|
|

|

It is important to know how far back in the journals WebSphere MQ is likely to
need to go, in order to determine when a journal receiver that has been backed up
can be removed from the queue manager library, and when the backup itself can
be discarded.

To help determine this time, WebSphere MQ issues two messages to the queue
manager message queue (QMQMMSG in the queue manager library) when:
v It starts up
v It changes a local journal receiver
v You use RCDMQIMG to force a checkpoint

These messages are:

AMQ7460
Startup recovery point. This message defines the date and time of the
startup entry from which WebSphere MQ replays the journal in the event
of a startup recovery pass. If the journal receiver that contains this record
is available in the WebSphere MQ libraries, this message also contains the
name of the journal receiver containing the record.

AMQ7462
Oldest media recovery entry. This message defines the date and time of the
oldest entry to use to re-create an object from its media image.

The journal receiver identified is the oldest one required. Any other
WebSphere MQ journal receivers with older creation dates are no longer

WebSphere MQ
for iSeries

Journal

RCVA 9

RCVA 8

RCVA 7

RCVA 6

RCVA 5 RCVA 4

Currently-attached Journal Receiver

Previous Journal Receiver

On-line

Off-line
Long term storage

Date info

Date info

Figure 11. WebSphere MQ for iSeries journaling

Backups of data

Chapter 7. Backup, recovery, and restart 85

|

needed. If only stars are displayed, you need to restore backups from the
date indicated to determine which is the oldest journal receiver.

When these messages are logged, WebSphere MQ also writes a user space object to
the queue manager library that contains only one entry: the name of the oldest
journal receiver that needs to be kept on the system. This user space is called
AMQJRNINF, and the data is written in the format:
JJJJJJJJJJLLLLLLLLLLYYYYMMDDHHMMSSmmm

where:

JJJJJJJJJJ
Is the oldest receiver name that WebSphere MQ still needs.

LLLLLLLLLL
Is the journal receiver library name.

YYYY Is the year of the oldest journal entry that WebSphere MQ needs.

MM Is the month of the oldest journal entry that WebSphere MQ needs.

DD Is the day of the oldest journal entry that WebSphere MQ needs.

HH Is the hour of the oldest journal entry that WebSphere MQ needs.

SS Is the seconds of the oldest journal entry that WebSphere MQ needs.

mmm Is the milliseconds of the oldest journal entry that WebSphere MQ needs.

When the oldest journal receiver has been deleted from the system, this user space
contains asterisks (*) for the journal receiver name.

Note: Periodically performing RCDMQMIMG OBJ(*ALL) OBJTYPE(*ALL)
DSPJRNDTA(*YES) can save startup time for WebSphere MQ and reduce the
number of local journal receivers you need to save and restore for recovery.

WebSphere MQ for iSeries does not refer to the journal receivers unless it is
performing a recovery pass either for startup, or for recreating an object. If it finds
that a journal it requires is not present, it issues message AMQ7432 to the queue
manager message queue (QMQMMSG), reporting the time and date of the journal
entry it requires to complete the recovery pass.

If this happens, restore all journal receivers that were detached after this date from
the backup, in order to allow the recovery pass to succeed.

Keep the journal receiver that contains the startup entry, and any subsequent
journal receivers, available in the queue manager library.

Keep the journal receiver containing the oldest Media Recovery Entry, and any
subsequent journal receivers, available at all times, and either present in the queue
manager library or backed-up.

When you force a checkpoint:
v If the journal receiver named in AMQ7460 is not advanced, this indicates that

there is an incomplete unit of work that needs to be committed or rolled back.
v If the journal receiver named in AMQ7462 is not advanced, this indicates that

there are one or more damaged objects.

Backups of data

86 System Administration Guide

|
|
|
|

|

|

|
|

|
|

||

||

||

||

||

||

|
|

|
|

|

|
|

|
|

Restoring a complete queue manager (data and journals)
If you need to recover one or more WebSphere MQ queue managers from a
backup, perform the following steps.
1. Quiesce the WebSphere MQ queue managers.
2. Locate your latest backup set, consisting of your most recent full backup and

subsequently backed up journal receivers.
3. Perform a RSTLIB operation, from the full backup, to restore the WebSphere

MQ data libraries to their state at the time of the full backup, by issuing the
following commands:

RSTLIB LIB(QMQRLIB1)
RSTLIB LIB(QMQRLIB2)

If a journal receiver was partially saved in one journal backup, and fully saved
in a subsequent backup, restore only the fully saved one. Restore journals
individually, in chronological order.

4. Perform an RST operation to restore the WebSphere MQ IFS directories to the
IFS file system, using the following command:
RST DEV(...) OBJ((’/QIBM/UserData/mqm/qmgrs/testqm’)) ...

5. Start the message queue manager. This replays all journal records written since
the full backup and restores all the WebSphere MQ objects to the consistent
state at the time of the journal backup.

If you want to restore a complete queue manager on a different machine, use the
procedure below to restore everything from the queue manager library. (We use
TEST as the sample queue manager name.)
1. CRTMQM TEST

2. DLTLIB LIB(QMTEST)

3. RSTLIB SAVLIB(QMTEST) DEV(*SAVF) SAVF(QMGRLIBSAV)

4. Delete the following IFS files:
’/qibm/userdata/mqm/qmgrs/TEST/QMQMCHKPT’
’/qibm/userdata/mqm/qmgrs/TEST/qmanager/QMQMOBJCAT’
’/qibm/userdata/mqm/qmgrs/TEST/queues/SYSTEM.AUTH.DATA.QUEUE’

5. STRMQM TEST

6. RCRMQMOBJ OBJ(*ALL) OBJTYPE(*ALL) MQMNAME(TEST)

Restoring journal receivers for a particular queue manager
The most common action is to restore a backed-up journal receiver to a queue
manager library, if a receiver that has been removed is needed again for a
subsequent recovery function.

This is a simple task, and requires the journal receivers to be restored using the
standard OS/400 RSTOBJ command:

RSTOBJ OBJ(QMQMDATA/AMQA000005) OBJTYPE(*JRNRCV)

A series of journal receivers might need to be restored, rather than a single
receiver. For example, AMQA000007 is the oldest receiver in the WebSphere MQ
libraries, and both AMQA000005 and AMQA000006 need to be restored.

In this case, restore the receivers individually in reverse chronological order. This is
not always necessary, but is good practice. In severe situations, you might need to
use the OS/400 command WRKJRNA to associate the restored journal receivers with
the journal.

Backups of data

Chapter 7. Backup, recovery, and restart 87

|
|
|

|

|

|

|
|
|
|

|

|

When restoring journals, the system automatically creates an attached journal
receiver with a new name in the journal receiver sequence. However, the new
name generated might be the same as a journal receiver you need to restore.
Manual intervention is needed to overcome this problem; to create a new name
journal receiver in sequence, and new journal before restoring the journal receiver.

For instance, consider the problem with saved journal AMQAJRN and the
following journal receivers:

AMQA000000
AMQA100000
AMQA200000
AMQA300000
AMQA400000
AMQA500000
AMQA600000
AMQA700000
AMQA800000
AMQA900000

When restoring journal AMQAJRN to a queue manager library, the system
automatically creates journal receiver AMQA000000. This automatically generated
receiver conflicts with one of the existing journal receivers (AMQA000000) you
want to restore, which you cannot restore.

The solution is:
1. Manually create the next journal receiver (see “WebSphere MQ for iSeries

journals” on page 79):
CRTJRNRCV JRNRCV(QMQRLIB/AMQA900001) THRESHOLD(XXXXX)

2. Manually create the journal with the above journal receiver:
CRTJRN JRN(QMGRLIB/AMQAJRN) MNGRCV(*SYSTEM) +
JRNRCV(QMGRLIB/AMQA9000001) MSGQ(QMGRLIB/AMQAJRNMSG)

3. Restore the local journal receivers AMQA000000 to AMQA900000.

Performance considerations
If you use a large number of persistent messages or large messages in your
applications, there is an associated overhead of journaling these messages.

This increases your system disk input/output. If this disk input/output becomes
excessive, performance suffers.

Ensure that you have sufficient disk activation to cope with this possibility, or
consider a separate ASP in which to hold your queue manager journal receivers.
For more information, see OS/400 V4R4M0 Backup and Recovery.

Using SAVLIB to save WebSphere MQ libraries
You cannot use SAVLIB LIB(*ALLUSR) to save the WebSphere MQ libraries, because
these libraries have names beginning with Q.

You can use SAVLIB LIB(QM*) to save all the queue manager libraries, but only if
you are using a save device other than *SAVF. For DEV(*SAVF), you must use a
SAVLIB command for each and every queue manager library on your system.

Backups of data

88 System Administration Guide

|

|
|

|
|
|

Chapter 8. Analyzing problems

This chapter suggests reasons for problems you might have with WebSphere MQ
for iSeries, to help you in problem determination. You usually start with a
symptom, or set of symptoms, and trace them back to their cause.

Do not confuse problem determination with problem solving although the process
of problem determination often enables you to solve a problem. For example, if
you find that the cause of the problem is an error in an application program, you
can solve the problem by correcting the error.

However, you might not always be able to solve a problem after determining its
cause. For example:
v A performance problem might be caused by a limitation of your hardware.
v The cause of the problem might be in the WebSphere MQ for iSeries code. If this

happens, you need to contact your IBM support center for a solution.

This chapter is divided into the following sections:
v “Preliminary checks”
v “Problem characteristics” on page 91
v “Determining problems with WebSphere MQ applications” on page 94
v “Obtaining diagnostic information” on page 97
v “Error logs” on page 100
v “Dead-letter queues” on page 103
v “First-failure support technology (FFST)” on page 104
v “Performance considerations” on page 106

Preliminary checks
Before you start problem determination in detail, it is worth considering the facts
to see if there is something obvious with which to start your investigation. This
approach to debugging can often save a lot of work by highlighting a simple error,
or by narrowing down the range of possibilities.

The cause of your problem could be in any of the following:
v Hardware
v Operating system
v Related software, for example, a language compiler
v The network
v The WebSphere MQ product
v Your WebSphere MQ application
v Other applications
v Site operating procedures

The sections that follow raise some fundamental questions that you need to
consider.

As you go through the questions, make a note of anything that might be relevant
to the problem. Even if your observations do not suggest a cause immediately, they
could be useful later if you have to carry out a systematic problem determination
exercise.

© Copyright IBM Corp. 1994, 2002 89

The following steps are intended to help you isolate the problem and are taken
from the viewpoint of an WebSphere MQ application. Check all the suggestions at
each stage.
1. Has WebSphere MQ for iSeries run successfully before?

Yes Proceed to Step 2.

No It is likely that you have not installed or set up WebSphere MQ
correctly.

2. Has the WebSphere MQ application run successfully before?

Yes Proceed to Step 3.

No Consider the following:
a. The application might have failed to compile or link, and fails if

you attempt to invoke it. Check the output from the compiler or
linker.
Refer to the appropriate programming language reference manual,
or the WebSphere MQ Application Programming Guide, for information
on how to build your application.

b. Consider the logic of the application. For example, do the
symptoms of the problem indicate that a function is failing and,
therefore, that a piece of code is in error.
Check the following common programming errors:
v Assuming that queues can be shared, when they are in fact

exclusive.
v Trying to access queues and data without the correct security

authorization.
v Passing incorrect parameters in an MQI call; if the wrong number

of parameters is passed, no attempt can be made to complete the
completion code and reason code fields, and the task is ended
abnormally.

v Failing to check return codes from MQI requests.
v Using incorrect addresses.
v Passing variables with incorrect lengths specified.
v Passing parameters in the wrong order.
v Failing to initialize MsgId and CorrelId correctly.

3. Has the WebSphere MQ application changed since the last successful run?

Yes It is likely that the error lies in the new or modified part of the
application. Check all the changes and see if you can find an obvious
reason for the problem.
a. Have all the functions of the application been fully exercised before?

Could it be that the problem occurred when part of the application
that had never been invoked before was used for the first time? If
so, it is likely that the error lies in that part of the application. Try
to find out what the application was doing when it failed, and
check the source code in that part of the program for errors.

b. If the program has run successfully before, check the current queue
status and files that were being processed when the error occurred.
It is possible that they contain some unusual data value that causes
a rarely used path in the program to be invoked.

c. The application received an unexpected MQI return code. For
example:

Preliminary checks

90 System Administration Guide

v Does your application assume that the queues it accesses are
shareable? If a queue has been redefined as exclusive, can your
application deal with return codes indicating that it can no longer
access that queue?

v Have any queue definition or security profiles been changed? An
MQOPEN call could fail because of a security violation; can your
application recover from the resulting return code?

Refer to the information in the WebSphere MQ Application
Programming Reference for your programming language for a
description of each return code.

d. If you have applied any PTF to WebSphere MQ for iSeries, check
that you received no error messages when you installed the PTF.

No Ensure that you have eliminated all the preceding suggestions and
proceed to Step 4.

4. Has the server system remained unchanged since the last successful run?

Yes Proceed to “Problem characteristics”.

No Consider all aspects of the system and review the appropriate
documentation on how the change might have impacted the WebSphere
MQ application. For example :
v Interfaces with other applications
v Installation of new operating system or hardware
v Application of PTFs
v Changes in operating procedures

Problem characteristics
Perhaps the preliminary checks have enabled you to find the cause of the problem.
If so, you can probably now resolve it, possibly with the help of other books in the
WebSphere MQ library, and in the libraries of other licensed programs.

If you have not yet found the cause, start to look at the problem in greater detail.
Use the following questions as pointers to the problem. Answering the appropriate
question, or questions, should lead you to the cause of the problem.

Can you reproduce the problem?
If you can reproduce the problem, consider the conditions under which you do so:
v Is it caused by a command?

Does the operation work if it is entered by another method? If the command
works if it is entered on the command line, but not otherwise, check that the
command server has not stopped, and that the queue definition of the
SYSTEM.ADMIN.COMMAND.QUEUE has not been changed.

v Is it caused by a program? If so, does it fail in batch? Does it fail on all
WebSphere MQ for iSeries systems, or only on some?

v Can you identify any application that always seems to be running in the system
when the problem occurs? If so, examine the application to see if it is in error.

v Does the problem occur with any queue manager, or when connected to one
specific queue manager?

v Does the problem occur with the same type of object on any queue manager, or
only one particular object? What happens after this object has been cleared or
redefined?

Preliminary checks

Chapter 8. Analyzing problems 91

v Is the problem independent of any message persistence settings?
v Does the problem occur only when syncpoints are used?
v Does the problem occur only when one or more queue-manager events are

enabled?

Is the problem intermittent?
An intermittent problem could be caused by failing to take into account the fact
that processes can run independently of each other. For example, a program might
issue an MQGET call, without specifying a wait option, before an earlier process
has completed. You might also encounter this if your application tries to get a
message from a queue while the call that put the message is in-doubt (that is,
before it has been committed or backed out).

Problems with commands
Be careful when including special characters, for example back slash (\) and
double quote (”) characters, in descriptive text for some commands. If you use
either of these characters in descriptive text, precede them with a \, that is, enter
\\ or \” if you want \ or ” in your text.

Queue managers and their associated object names are case sensitive. By default,
OS/400 uses uppercase characters, unless you surround the name in quotes.

For example, MYQUEUE and myqueue translate to MYQUEUE, whereas ‘myqueue’
translates to myqueue.

Does the problem affect all users of the WebSphere MQ for
iSeries application?

If the problem affects only some users, look for differences in how the users
configure their systems and queue manager settings.

Check the library lists and user profiles. Can the problem be circumvented by
having *ALLOBJ authority?

Does the problem affect specific parts of the network?
You might be able to identify specific parts of the network that are affected by the
problem (remote queues, for example). If the link to a remote message queue
manager is not working, the messages cannot flow to a remote queue.

Check the following:
v Is the connection between the two systems available, and has the

intercommunication component of WebSphere MQ for iSeries started?
Check that messages are reaching the transmission queue, the local queue
definition of the transmission queue, and any remote queues.

v Have you made any network-related changes that might account for the
problem or changed any WebSphere MQ for iSeries definitions?

v Can you distinguish between a channel definition problem and a channel
message problem?
For example, redefine the channel to use an empty transmission queue. If the
channel starts correctly, the definition is correctly configured.

Problem characteristics

92 System Administration Guide

Does the problem occur only on WebSphere MQ
If the problem occurs only on this version of WebSphere MQ, check the
appropriate database on RETAIN®, or the Web site
http://www.ibm.com/software/ts/mqseries/support/summary/400.html, to ensure
that you have applied all the relevant PTFs.

Does the problem occur at specific times of the day?
If the problem occurs at specific times of day, it could be that it is dependent on
system loading. Typically, peak system loading is at mid-morning and
mid-afternoon, and so these are the times when load-dependent problems are most
likely to occur. (If your WebSphere MQ for iSeries network extends across more
than one time zone, peak system loading might seem to occur at some other time
of day.)

Have you failed to receive a response from a command?
If you have issued a command but you have not received a response, consider the
following questions:
v Is the command server running?

Work with the DSPMQMCSVR command to check the status of the command
server.
– If the response to this command indicates that the command server is not

running, use the STRMQMCSVR command to start it.
– If the response to the command indicates that the

SYSTEM.ADMIN.COMMAND.QUEUE is not enabled for MQGET requests,
enable the queue for MQGET requests.

v Has a reply been sent to the dead-letter queue?
The dead-letter queue header structure contains a reason or feedback code
describing the problem. See the WebSphere MQ Application Programming Reference
for information about the dead-letter queue header structure (MQDLH).
If the dead-letter queue contains messages, you can use the provided browse
sample application (amqsbcg) to browse the messages using the MQGET call.
The sample application steps through all the messages on a named queue for a
named queue manager, displaying both the message descriptor and the message
context fields for all the messages on the named queue.

v Has a message been sent to the error log?
See “Error logs” on page 100 for further information.

v Are the queues enabled for put and get operations?
v Is the WaitInterval long enough?

If your MQGET call has timed out, a completion code of MQCC_FAILED and a
reason code of MQRC_NO_MSG_AVAILABLE are returned. (See the WebSphere
MQ Application Programming Reference for information about the WaitInterval
field, and completion and reason codes from MQGET.)

v If you are using your own application program to put commands onto the
SYSTEM.ADMIN.COMMAND.QUEUE, do you need to take a syncpoint?
Unless you have specifically excluded your request message from syncpoint, you
need to take a syncpoint before attempting to receive reply messages.

v Are the MAXDEPTH and MAXMSGL attributes of your queues set sufficiently
high?

v Are you using the CorrelId and MsgId fields correctly?

Problem characteristics

Chapter 8. Analyzing problems 93

Set the values of MsgId and CorrelId in your application to ensure that you
receive all messages from the queue.

Try stopping the command server and then restarting it, responding to any error
messages that are produced.

If the system still does not respond, the problem could be with either a queue
manager or the whole of the WebSphere MQ system. First try stopping individual
queue managers to try and isolate a failing queue manager. If this does not reveal
the problem, try stopping and restarting WebSphere MQ, responding to any
messages that are produced in the error log.

If the problem still occurs after restart, contact your IBM Support Center for help.

If you have still not identified the cause of the problem, see “Determining
problems with WebSphere MQ applications”.

Determining problems with WebSphere MQ applications
This section discusses problems you might encounter with WebSphere MQ
applications, commands, and messages.

Are some of your queues working?
If you suspect that the problem occurs with only a subset of queues, select the
name of a local queue that you think is having problems.
1. Display the information about this queue, using WRKMQMQSTS or

DSPMQMQ.
2. Use the data displayed to do the following checks:

v If CURDEPTH is at MAXDEPTH, the queue is not being processed. Check
that all applications are running normally.

v If CURDEPTH is not at MAXDEPTH, check the following queue attributes to
ensure that they are correct:
– If triggering is being used:

- Is the trigger monitor running?
- Is the trigger depth too big?
- Is the process name correct?

– Can the queue be shared? If not, another application could already have it
open for input.

– Is the queue enabled appropriately for GET and PUT?
v If there are no application processes getting messages from the queue,

determine why this is so (for example, because the applications need to be
started, a connection has been disrupted, or because the MQOPEN call has
failed for some reason).

If you cannot solve the problem, contact your IBM support center for help.

Does the problem affect only remote queues?
If the problem affects only remote queues, check the following:
1. Check that the programs that should be putting messages to the remote queues

have run successfully.

Problem characteristics

94 System Administration Guide

|
|

2. If you use triggering to start the distributed queuing process, check that the
transmission queue has triggering set on. Also, check that the trigger monitor is
running.

3. If necessary, start the channel manually. See WebSphere MQ Intercommunication
for information about how to do this.

4. Check the channel with a PING command.

See WebSphere MQ Intercommunication for information about how to define
channels.

Does the problem affect messages?
This section deals with message problems, including:
v “Messages do not appear on the queue”
v “Messages contain unexpected or corrupted information” on page 96
v “Unexpected messages are received when using distributed queues” on page 96

Messages do not appear on the queue
If messages do not appear when you are expecting them, check for the following:
v Have you selected the correct queue manager, that is, the default queue manager

or a named queue manager?
v Has the message been put on the queue successfully?

– Has the queue been defined correctly, for example is MAXMSGLEN
sufficiently large?

– Can applications put messages on the queue (is the queue enabled for
putting)?

– Is the queue already full? This could mean that an application was unable to
put the required message on the queue.

v Can you get the message from the queue?
– Do you need to take a syncpoint?

If messages are being put or retrieved within syncpoint, they are not available
to other tasks until the unit of recovery has been committed.

– Is your timeout interval long enough?
– Are you waiting for a specific message that is identified by a message or

correlation identifier (MsgId or CorrelId)?
Check that you are waiting for a message with the correct MsgId or Correlid.
A successful MQGET call sets both these values to that of the message
retrieved, so you might need to reset these values in order to get another
message successfully.
Also check if you can get other messages from the queue.

– Can other applications get messages from the queue?
– Was the message you are expecting defined as persistent?

If not, and WebSphere MQ for iSeries has been restarted, the message will
have been lost.

If you cannot find anything wrong with the queue, and the queue manager itself is
running, make the following checks on the process that you expected to put the
message on to the queue:
v Did the application start?

If it should have been triggered, check that the correct trigger options were
specified.

v Is a trigger monitor running?

WebSphere MQ application problems

Chapter 8. Analyzing problems 95

v Was the trigger process defined correctly?
v Did it complete correctly?

Look for evidence of an abnormal end in the job log.
v Did the application commit its changes, or were they backed out?

If multiple transactions are serving the queue, they might occasionally conflict with
one another. For example, one transaction might issue an MQGET call with a
buffer length of zero to find out the length of the message, and then issue a
specific MQGET call specifying the MsgId of that message. However, in the
meantime, another transaction might have issued a successful MQGET call for that
message, so the first application receives a completion code of
MQRC_NO_MSG_AVAILABLE. Applications that are expected to run in a
multi-server environment must be designed to cope with this situation.

Consider that the message could have been received, but that your application
failed to process it in some way. For example, did an error in the expected format
of the message cause your program to reject it? If this is the case, refer to
“Messages contain unexpected or corrupted information”.

Messages contain unexpected or corrupted information
If the information contained in the message is not what your application was
expecting, or has been corrupted in some way, consider the following points:
v Has your application, or the application that put the message on to the queue,

changed?
Ensure that all changes are simultaneously reflected on all systems that need to
be aware of the change.
For example, a copyfile formatting the message might have been changed, in
which case, re-compile both applications to pick up the changes. If one
application has not been recompiled, the data appears corrupt to the other.

v Is an application sending messages to the wrong queue?
Check that the messages your application is receiving are not really intended for
an application servicing a different queue. If necessary, change your security
definitions to prevent unauthorized applications from putting messages on to
the wrong queues.
If your application has used an alias queue, check that the alias points to the
correct queue.

v Has the trigger information been specified correctly for this queue?
Check that your application should have been started, or should a different
application have been started?

v Has the CCSID been set correctly, or is the message format incorrect because of
data conversion.

If these checks do not enable you to solve the problem, check your application
logic, both for the program sending the message, and for the program receiving it.

Unexpected messages are received when using distributed
queues

If your application uses distributed queues, consider the following points:
v Has distributed queuing been correctly installed on both the sending and

receiving systems?
v Are the links available between the two systems?

WebSphere MQ application problems

96 System Administration Guide

Check that both systems are available, and connected to WebSphere MQ for
iSeries. Check that the connection between the two systems is active.

v Is triggering set on in the sending system?
v Is the message you are waiting for a reply message from a remote system?

Check that triggering is activated in the remote system.
v Is the queue already full?

This could mean that an application was unable to put the required message on
to the queue. If this is so, check if the message has been put onto the
undelivered-message queue.
The dead-letter queue message header (dead-letter header structure) contains a
reason or feedback code explaining why the message could not be put on to the
target queue. See the WebSphere MQ Application Programming Reference or the
WebSphere MQ for iSeries Application Programming Reference (ILE RPG), as
appropriate, for information about the dead-letter header structure.

v Is there a mismatch between the sending and receiving queue managers?
For example, the message length could be longer than the receiving queue
manager can handle.

v Are the channel definitions of the sending and receiving channels compatible?
For example, a mismatch in sequence number wrap stops the distributed
queuing component. See WebSphere MQ Intercommunication for more information
about distributed queuing.

Obtaining diagnostic information
You can find diagnostic information about WebSphere MQ in the following places:

User’s job log
The job log records the commands processed by the job and the messages
returned from running those commands.

Reviewing the job log of a user who experiences a problem, by issuing the
DSPJOBLOG command, identifies the WebSphere MQ commands issued
and the sequence of those commands.

WebSphere MQ job log
WebSphere MQ specific jobs, for example, the command server and
channel programs, run under the WebSphere MQ profile QMQM. If you
have a problem in these areas, review these job logs by issuing the
command WRKSPLF QMQM to display them.

System history log
Reviewing the history log, by issuing the DSPLOG command, displays
information about the operation of the system and system status. This can
be useful for identifying channel connection problems.

OS/400 message queue
It is useful to view messages sent to various OS/400 message queues using
the DSPMSG command. Use the command DSPMSG QSYSOPR to check the
system operator message queue, used for WebSphere MQ journaling
messages, and job completion messages in particular.

Work with problems
Use the WRKPRB command to display descriptions of system problems.
WebSphere MQ reports problems related to unusual usage and internal
code by using this command.

WebSphere MQ application problems

Chapter 8. Analyzing problems 97

Error logs in the IFS
See “Error logs” on page 100 for further information on using the error logs
generated.

Generation of FFSTs
See “First-failure support technology (FFST)” on page 104 for further
information on First Failure Support Technology™ and an example of a
WebSphere MQ for iSeries FFST™ report.

Using WebSphere MQ for iSeries trace
Although you need to use certain traces on occasion, running the trace facility
slows your systems.

You also need to consider to what destination you want your trace information
sent.

Notes:

1. To run the WebSphere MQ for iSeries trace commands, you must have the
appropriate authority.

2. Trace data is written to IFS only when trace is ended, with option *OFF.
3. Trace data remains in the system until you delete it from the IFS.

Trace usage
There are two stages in using trace:
1. Decide whether you want early tracing. Early tracing lets you trace the creation

and startup of queue managers. Note, however, that early trace can easily
generate large amounts of trace, because it is implemented by tracing all jobs
for all queue managers. To enable early tracing, use TRCMQM with the
TRCEARLY parameter set to *YES.

2. Start tracing WebSphere MQ work using TRCMQM *ON. To stop the trace, you
have two options:
v TRCMQM *OFF, to stop collecting trace records for a queue manager. The trace

records are written to files in the /QIBM/UserData/mqm/trace directory.
v TRCMQM *END, to stop collecting trace records for all queue managers and to

disable early trace. This option ignores the value of the TRCEARLY
parameter.

You can also specify the level of detail you want, using the TRCLEVEL parameter
set to:

*DFT For minimum-detail level for flow processing trace points.

*DETAIL
For high-detail level for flow processing trace points.

*PARMS
For default-detail level for flow processing trace points.

Selective trace
You can reduce the amount of trace data being saved, improving run-time
performance, using the command TRCMQM with F4=prompt, then F9 to customize the
TRCTYPE and EXCLUDE parameters:

TRCTYPE
Specifies the type of trace data to store in the trace file. If you omit this
parameter, all trace points except those specified in EXCLUDE are enabled.

Diagnostic information

98 System Administration Guide

|

|

|

|
|
|
|
|

|
|

|
|

|
|
|

|
|

||

|
|

|
|

|
|
|

|
|
|

EXCLUDE
Specifies the type of trace data to omit from the trace file. If you omit this
parameter, all trace points specified in TRCTYPE are enabled.

The options available on both TRCTYPE and EXCLUDE are:

*ALL (TRCTYPE only)
All the trace data as specified by the following keywords is stored in the
trace file.

trace-type-list
You can specify more than one option from the following keywords, but
each option can appear only once.

*API Output data for trace points associated with the MQI and major queue
manager components.

*CMTRY
Output data for trace points associated with comments in the WebSphere
MQ components.

*COMMS
Output data for trace points associated with data flowing over
communications networks.

*CSDATA
Output data for trace points associated with internal data buffers in
common services.

*CSFLOW
Output data for trace points associated with processing flow in common
services.

*LQMDATA
Output data for trace points associated with internal data buffers in the
local queue manager.

*LQMFLOW
Output data for trace points associated with processing flow in the local
queue manager.

*OTHDATA
Output data for trace points associated with internal data buffers in other
components.

*OTHFLOW
Output data for trace points associated with processing flow in other
components.

*RMTDATA
Output data for trace points associated with internal data buffers in the
communications component.

*RMTFLOW
Output data for trace points associated with processing flow in the
communications component.

*SVCDATA
Output data for trace points associated with internal data buffers in the
service component.

Diagnostic information

Chapter 8. Analyzing problems 99

|
|
|

*SVCFLOW
Output data for trace points associated with processing flow in the service
component.

*VSNDATA
Output data for trace points associated with the version of WebSphere MQ
running.

Wrapping trace
Use the MAXSTG parameter to wrap trace, and to specify the maximum size of
storage to be used for the collected trace records. The options are:

*DFT Trace wrapping is not enabled. For each job, trace data is written to a file
with the suffix .TRC until tracing is stopped.

maximum-K-bytes
Trace wrapping is enabled. When the trace file reaches its maximum size, it
is renamed with the suffix .TRS, and a new trace file with suffix .TRC is
opened. Any existing .TRS file is deleted. Specify a value in the range 1
through 16 000.

Formatting trace output
To format any trace output:
v Enter the QShell
v Enter the command

dspmqtrc [-t Format] [-h] [-s] [-o OutputFileName] InputFileName

where:

InputFileName
Is a required parameter specifying the name of the file containing the
unformatted trace. For example /QIBM/UserData/mqm/trace/AMQ12345.TRC.

-t FormatTemplate
Specifies the name of the template file containing details of how to display
the trace. The default value is /QIBM/ProdData/mqm/lib/amqtrc.fmt.

-h Omit header information from the report.

-s Extract trace header and put to stdout.

-o output_filename
The name of the file into which to write formatted data.

You can also specify dspmqtrc * to format all trace.

Error logs
WebSphere MQ uses a number of error logs to capture messages concerning the
operation of WebSphere MQ itself, any queue managers that you start, and error
data coming from the channels that are in use.

The location of the error logs depends on whether the queue manager name is
known.

In the IFS:
v If the queue manager name is known and the queue manager is available, error

logs are located in:
/QIBM/UserData/mqm/qmname/errors

Diagnostic information

100 System Administration Guide

|
|
|

||
|

|
|
|
|
|

|

||

|

v If the queue manager is not available, error logs are located in:
/QIBM/UserData/mqm/&SYSTEM/errors

You can use the system utility EDTF to browse the errors directories and files. For
example:

EDTF ’/QIBM/UsedData/mqm/errors’

Alternatively, you can use option 23 against the queue manager from the
WRKMQM panel.

Log files
At installation time, an &SYSTEM errors subdirectory is created in the IFS. The
errors subdirectory can contain up to three error log files named:
v AMQERR01.LOG
v AMQERR02.LOG
v AMQERR03.LOG

After you have created a queue manager, three error log files are created when
they are needed by the queue manager. These files have the same names as the
&SYSTEM ones, that is AMQERR01, AMQERR02, and AMQERR03, and each has a
capacity of 256 KB. The files are placed in the errors subdirectory of each queue
manager that you create, that is /QIBM/UserData/mqm/qmname/errors.

As error messages are generated, they are placed in AMQERR01. When
AMQERR01 gets bigger than 256 KB, it is copied to AMQERR02. Before the copy,
AMQERR02 is copied to AMQERR03.LOG. The previous contents, if any, of
AMQERR03 are discarded.

The latest error messages are thus always placed in AMQERR01, the other files
being used to maintain a history of error messages.

All messages relating to channels are also placed in the appropriate queue
manager’s errors files, unless the name of their queue manager is unknown or the
queue manager is unavailable. When the queue manager name is unavailable or its
name cannot be determined, channel-related messages are placed in the &SYSTEM
errors subdirectory.

To examine the contents of any error log file, use your system editor, EDTF, to
view the stream files in the IFS.

Notes:

1. Do not change ownership of these error logs.
2. If any error log file is deleted, it is automatically re-created when the next error

message is logged.

Early errors
There are a number of special cases where the error logs have not yet been
established and an error occurs. WebSphere MQ attempts to record any such errors
in an error log. The location of the log depends on how much of a queue manager
has been established.

If, because of a corrupt configuration file, for example, no location information can
be determined, errors are logged to an errors directory that is created at installation
time.

Error logs

Chapter 8. Analyzing problems 101

|

|
|

|

|

|

|

|

|

|
|

If both the WebSphere MQ configuration file and the DefaultPrefix attribute of the
AllQueueManagers stanza are readable, errors are logged in the errors subdirectory
of the directory identified by the DefaultPrefix attribute.

Operator messages
Operator messages identify normal errors, typically caused directly by users doing
things like using parameters that are not valid on a command. Operator messages
are national language enabled, with message catalogs installed in standard
locations.

These messages are written to the joblog, if any. In addition, some operator
messages are written to the AMQERR01.LOG file in the queue manager directory,
and others to the &SYSTEM directory copy of the error log.

An example WebSphere MQ error log
Figure 12 on page 103 shows a typical extract from a WebSphere MQ error log.

Error logs

102 System Administration Guide

|

Dead-letter queues
Messages that cannot be delivered for some reason are placed on the dead-letter
queue. You can check whether the queue contains any messages by issuing an
MQSC DISPLAY QUEUE command. If the queue contains messages, you can use
the provided browse sample application (amqsbcg) to browse messages on the
queue using the MQGET call. The sample application steps through all the

************Beginning of data**************
07/19/02 11:15:56 AMQ9411: Repository manager ended normally.

EXPLANATION:
Cause : The repository manager ended normally.
Recovery . . . : None.
Technical Description : None.

07/19/02 11:15:57 AMQ9542: Queue manager is ending.

EXPLANATION:
Cause : The program will end because the queue manager is quiescing.
Recovery . . . : None.
Technical Description : None.
----- amqrimna.c : 773 --

07/19/02 11:16:00 AMQ8004: WebSphere MQ queue manager ’mick’ ended.
EXPLANATION:
Cause : WebSphere MQ queue manager ’mick’ ended.
Recovery . . . : None.
Technical Description : None.

07/19/02 11:16:48 AMQ7163: WebSphere MQ job number 18429 started.

EXPLANATION:
Cause : This job has started to perform work for Queue Manager

mick, The job’s PID is 18429 the CCSID is 37. The job name is
582775/MQUSER/AMQZXMA0.

Recovery . . . : None

07/19/02 11:16:49 AMQ7163: WebSphere MQ job number 18430 started.

EXPLANATION:
Cause : This job has started to perform work for Queue Manager

mick, The job’s PID is 18430 the CCSID is 0. The job name is
582776/MQUSER/AMQZFUMA.

Recovery . . . : None

07/19/02 11:16:49 AMQ7163: WebSphere MQ job number 18431 started.

EXPLANATION:
Cause : This job has started to perform work for Queue Manager

mick, The job’s PID is 18431 the CCSID is 37. The job name is
582777/MQUSER/AMQZXMAX.

Recovery . . . : None

07/19/02 11:16:50 AMQ7163: WebSphere MQ job number 18432 started.

EXPLANATION:
Cause : This job has started to perform work for Queue Manager

mick, The job’s PID is 18432 the CCSID is 37. The job name is
582778/MQUSER/AMQALMPX.

Recovery . . . : None

Figure 12. Extract from a WebSphere MQ error log

Dead-letter queues

Chapter 8. Analyzing problems 103

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

messages on a named queue for a named queue manager, displaying both the
message descriptor and the message context fields for all the messages on the
named queue.

You must decide how to dispose of any messages found on the dead-letter queue,
depending on the reasons for the messages being put on the queue.

Problems might occur if you do not associate a dead-letter queue with each queue
manager. For more information about dead-letter queues, see Chapter 6, “The
WebSphere MQ dead-letter queue handler” on page 69.

First-failure support technology (FFST)
This section describes the role of first-failure support technology (FFST).

For OS/400, FFST information is recorded in a stream file in the
/QIBM/UserData/mqm/errors directory, and, for non-threaded jobs, in the problem
database accessed using the OS/400 command WRKPRB.

These errors are normally severe, unrecoverable errors, and indicate either a
configuration problem with the system or a WebSphere MQ internal error.

The stream files are named AMQnnnnn.mm.FDC, where:

nnnnn Is the ID of the process reporting the error
mm Is a sequence number, normally 0

Some typical FFST data is shown in Figure 13 on page 105.

Dead-letter queues

104 System Administration Guide

|

|
|

| WebSphere MQ First Failure Symptom Report |
| ===================================== |
| |
| Date/Time :- Friday June 21 18:40:34 2002 |
| Host Name :- WINAS12B.HURSLEY.IBM.COM |
| PIDS :- 5733A38 |
| LVLS :- 520 |
| Product Long Name :- WebSphere MQ for iSeries |
| Vendor :- IBM |
| Probe Id :- XY353001 |
| Application Name :- MQM |
| Component :- xehAS400ConditionHandler |
| Build Date :- May 10 2002 |
| UserID :- 00000331 (MAYFCT) |
| Program Name :- STRMQM_R MAYFCT |
| Job Name :- 020100/MAYFCT/STRMQM_R |
| Activation Group :- 101 (QMQM) (QMQM/STRMQM_R) |
| Process :- 00001689 |
| Thread :- 00000001 |
| QueueManager :- TEST.AS400.OE.P |
| Major Errorcode :- STOP |
| Minor Errorcode :- OK |
| Probe Type :- HALT6109 |
| Probe Severity :- 1 |
| Probe Description :- 0 |
| Arith1 :- 1 1 |
Comment1 :- 00d0

MQM Function Stack
lpiSPIMQConnect
zstMQConnect
ziiMQCONN
ziiClearUpAgent
xcsTerminate
xlsThreadInitialization
xcsConnectSharedMem
xstConnSetInSPbyHandle
xstConnSharedMemSet
xcsFFST

MQM Trace History
<-- xcsCheckProcess rc=xecP_E_INVALID_PID
--> xcsCheckProcess
<-- xcsCheckProcess rc=xecP_E_INVALID_PID
--> xlsThreadInitialization
--> xcsConnectSharedMem
--> xcsRequestThreadMutexSem
<-- xcsRequestThreadMutexSem rc=OK
--> xihGetConnSPDetailsFromList
<-- xihGetConnSPDetailsFromList rc=OK
--> xstCreateConnExtentList
<-- xstCreateConnExtentList rc=OK
--> xstConnSetInSPbyHandle
--> xstSerialiseSPList
--> xllSpinLockRequest
<-- xllSpinLockRequest rc=OK
<-- xstSerialiseSPList rc=OK
--> xstGetSetDetailsFromSPByHandle
<-- xstGetSetDetailsFromSPByHandle rc=OK
--> xstConnSharedMemSet
--> xstConnectExtent
--> xstAddConnExtentToList
<-- xstAddConnExtentToList rc=OK
<-- xstConnectExtent rc=OK
--> xcsBuildDumpPtr
--> xcsGetMem
<-- xcsGetMem rc=OK
<-- xcsBuildDumpPtr rc=OK
--> xcsBuildDumpPtr
<-- xcsBuildDumpPtr rc=OK
--> xcsBuildDumpPtr
<-- xcsBuildDumpPtr rc=OK
--> xcsFFST

Process Control Block
SPP:0000 :1aefSTRMQM_R MAYFCT 020100 :8bba0:0:6d E7C9C8D7 000004E0 00000699 00000000 XIHP...\...r....
SPP:0000 :1aefSTRMQM_R MAYFCT 020100 :8bbb0:1:6d 00000000 00000002 00000000 00000000
SPP:0000 :1aefSTRMQM_R MAYFCT 020100 :8bbc0:2:6d 80000000 00000000 EC161F7C FC002DB0@...¢
SPP:0000 :1aefSTRMQM_R MAYFCT 020100 :8bbd0:3:6d 80000000 00000000 EC161F7C FC002DB0@...¢
SPP:0000 :1aefSTRMQM_R MAYFCT 020100 :8bbe0:4:6d 00000000 00000000 00000000 00000000

Thread Control Block
SPP:0000 :1aefSTRMQM_R MAYFCT 020100 :1db0:20:6d E7C9C8E3 00001320 00000000 00000000 XIHT............
SPP:0000 :1aefSTRMQM_R MAYFCT 020100 :1dc0:21:6d 00000001 00000000 00000000 00000000
SPP:0000 :1aefSTRMQM_R MAYFCT 020100 :1dd0:22:6d 80000000 00000000 DD13C17B 81001000A#a...
SPP:0000 :1aefSTRMQM_R MAYFCT 020100 :1de0:23:6d 00000000 00000046 00000002 00000001
SPP:0000 :1aefSTRMQM_R MAYFCT 020100 :1df0:24:6d 00000000 00000000 00000000 00000000

RecoveryIndex
SPP:0000 :1aefSTRMQM_R MAYFCT 020100 :2064:128:6d 00000000

Figure 13. FFST report

FFST

Chapter 8. Analyzing problems 105

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

Notes:

1. The MQM Trace History section is a log of the 200 most recent function trace
statements, and is recorded in the FFST report regardless of any TRCMQM
settings.

2. The queue manager details are recorded only for jobs that are connected to a
queue manager subpool.

3. When the failing component is xehAS400ConditionHandler, additional data is
logged in the errors directory giving extracts from the joblog relating to the
exception condition.

The function stack and trace history are used by IBM to assist in problem
determination. In most cases there is little that the system administrator can do
when an FFST report is generated, apart from raising problems through the IBM
Support Center.

Performance considerations
This section discusses:
v General design considerations; see “Application design considerations”
v Specific performance problems; see “Specific performance problems” on page 107

Application design considerations
There are a number of ways in which poor program design can affect performance.
These can be difficult to detect because the program can appear to perform well,
while impacting the performance of other tasks. Several problems specific to
programs making WebSphere MQ for iSeries calls are discussed in the following
sections.

For more information about application design, see the WebSphere MQ Application
Programming Guide.

Effect of message length
Although WebSphere MQ for iSeries allows messages to hold up to 100 MB of
data, the amount of data in a message affects the performance of the application
that processes the message. To achieve the best performance from your application,
send only the essential data in a message; for example, in a request to debit a bank
account, the only information that might need to be passed from the client to the
server application is the account number and the amount of the debit.

Effect of message persistence
Persistent messages are journaled. Journaling messages reduces the performance of
your application, so use persistent messages for essential data only. If the data in a
message can be discarded if the queue manager stops or fails, use a nonpersistent
message.

Searching for a particular message
The MQGET call usually retrieves the first message from a queue. If you use the
message and correlation identifiers (MsgId and CorrelId) in the message descriptor
to specify a particular message, the queue manager has to search the queue until it
finds that message. The use of the MQGET call in this way affects the performance
of your application.

Queues that contain messages of different lengths
If the messages on a queue are of different lengths, to determine the size of a
message, your application could use the MQGET call with the BufferLength field

FFST

106 System Administration Guide

|

|
|
|

|
|

|
|
|

set to zero so that, even though the call fails, it returns the size of the message
data. The application could then repeat the call, specifying the identifier of the
message it measured in its first call and a buffer of the correct size. However, if
there are other applications serving the same queue, you might find that the
performance of your application is reduced because its second MQGET call spends
time searching for a message that another application has retrieved in the time
between your two calls.

If your application cannot use messages of a fixed length, another solution to this
problem is to use the MQINQ call to find the maximum size of messages that the
queue can accept, then use this value in your MQGET call. The maximum size of
messages for a queue is stored in the MaxMsgLen attribute of the queue. This
method could use large amounts of storage, however, because the value of this
queue attribute could be the maximum allowed by WebSphere MQ for iSeries,
which could be greater than 2 GB.

Frequency of syncpoints
Programs that issue numerous MQPUT calls within syncpoint, without committing
them, can cause performance problems. Affected queues can fill up with messages
that are currently unusable, while other tasks might be waiting to get these
messages. This has implications in terms of storage, and in terms of threads tied
up with tasks that are attempting to get messages.

Use of the MQPUT1 call
Use the MQPUT1 call only if you have a single message to put on a queue. If you
want to put more than one message, use the MQOPEN call, followed by a series of
MQPUT calls and a single MQCLOSE call.

Number of threads in use
An application might require a large number of threads. Each queue manager
process is allocated a maximum allowable number of threads.

If some applications are troublesome, it could be due to their design using too
many threads. Consider whether the application takes into account this possibility
and that it takes actions either to stop or to report this type of occurrence.

The maximum number of threads that OS/400 allows is 4095. However, the default
is 64. WebSphere MQ makes available up to 63 threads to its processes.

Specific performance problems
This section discusses the problems of storage and poor performance.

Storage problems
If you receive the system message CPF0907. Serious storage condition may exist
it is possible that you are filling up the space associated with the WebSphere MQ
for iSeries queue managers.

Is your application or WebSphere MQ for iSeries running slowly?
If your application is running slowly, this could indicate that it is in a loop, or
waiting for a resource that is not available.

This could also be caused by a performance problem. Perhaps it is because your
system is operating near the limits of its capacity. This type of problem is probably
worst at peak system load times, typically at mid-morning and mid-afternoon. (If
your network extends across more than one time zone, peak system load might
seem to you to occur at some other time.)

Performance considerations

Chapter 8. Analyzing problems 107

|

If you find that performance degradation is not dependent on system loading, but
happens sometimes when the system is lightly loaded, a poorly designed
application program is probably to blame. This could manifest itself as a problem
that only occurs when certain queues are accessed.

QTOTJOB and QADLTOTJ are system values worth investigating.

The following symptoms might indicate that WebSphere MQ for iSeries is running
slowly:
v If your system is slow to respond to MQSC commands.
v If repeated displays of the queue depth indicate that the queue is being

processed slowly for an application with which you would expect a large
amount of queue activity.

v Is MQ trace running?

Performance considerations

108 System Administration Guide

Chapter 9. Configuring WebSphere MQ

This chapter explains how to change the behavior of queue managers to suit your
installation’s needs.

You change WebSphere MQ configuration information by modifying the values
specified on a set of configuration attributes (or parameters) that govern
WebSphere MQ. You change these attributes by editing the WebSphere MQ
configuration files.

This chapter:
v Describes the methods for configuring WebSphere MQ in “WebSphere MQ

configuration files”.
v Describes the attributes you can use to modify configuration information in

“Attributes for changing WebSphere MQ configuration information” on page
111.

v Describes the attributes you can use to modify queue manager configuration
information in “Changing queue manager configuration information” on page
113.

v Provides examples of mqs.ini and qm.ini files for WebSphere MQ for iSeries in
“Example mqs.ini and qm.ini files” on page 120.

WebSphere MQ configuration files
You modify WebSphere MQ configuration attributes within:
v A WebSphere MQ configuration file (mqs.ini) to effect changes on the node as a

whole. There is one mqs.ini file for each WebSphere MQ installation.
v A queue manager configuration file (qm.ini) to effect changes for specific queue

managers. There is one qm.ini file for each queue manager on the node.

Note that .ini files are stream files resident in the IFS.

A configuration file (which can be referred to as a stanza file) contains one or
more stanzas, which are simply groups of lines in the .ini file that together have a
common function or define part of a system, for example, log functions and
channel functions.

Any changes you make to a configuration file do not take effect until the next time
the queue manager is started.

Editing configuration files
Before editing a configuration file, back it up so that you have a copy you can
revert to if the need arises.

You can edit configuration files either:
v Automatically, using commands that change the configuration of queue

managers on the node
v Manually, using the EDTF CL editor

© Copyright IBM Corp. 1994, 2002 109

You can edit the default values in the WebSphere MQ configuration files after
installation.

If you set an incorrect value on a configuration file attribute, the value is ignored
and an operator message is issued to indicate the problem. (The effect is the same
as missing out the attribute entirely.)

When you create a new queue manager:
v Back up the WebSphere MQ configuration file
v Back up the new queue manager configuration file

When do you need to edit a configuration file?
You might need to edit a configuration file if, for example:
v You lose a configuration file; recover from backup if possible.
v You need to move one or more queue managers to a new directory.
v You need to change your default queue manager; this could happen if you

accidentally delete the existing queue manager.
v You are advised to do so by your IBM Support Center.

Configuration file priorities
The attribute values of a configuration file are set according to the following
priorities:
v Parameters entered on the command line take precedence over values defined in

the configuration files.
v Values defined in the qm.ini files take precedence over values defined in the

mqs.ini file.

The WebSphere MQ configuration file mqs.ini
The WebSphere MQ configuration file, mqs.ini, contains information relevant to all
the queue managers on a WebSphere MQ installation. It is created automatically
during installation. In particular, the mqs.ini file is used to locate the data
associated with each queue manager.

The mqs.ini file is stored in /QIBM/UserData/mqm

The mqs.ini file contains:
v The names of the queue managers
v The name of the default queue manager
v The location of the files associated with each queue manager
v Information identifying any API exits (see “API exits” on page 116 for more

information)

Queue manager configuration files qm.ini
A queue manager configuration file, qm.ini, contains information relevant to a
specific queue manager. There is one queue manager configuration file for each
queue manager. The qm.ini file is automatically created when the queue manager
with which it is associated is created.

A qm.ini file is held in the <mqmdata directory>/QMNAME/qm.ini, where:
v <mqmdata directory> is /QIBM/UserData/mqm by default.
v QMNAME is the name of the queue manager to which the initialization file applies.

Notes:

1. You can change the <mqmdata directory> in the mqs.ini file.

Configuration files

110 System Administration Guide

|
|

2. The queue manager name can be up to 48 characters in length. However, this
does not guarantee that the name is valid or unique. Therefore, a directory
name is generated based on the queue manager name. This process is known
as name transformation. See “Understanding WebSphere MQ queue manager
library names” on page 165 for further information.

Attributes for changing WebSphere MQ configuration information
The following groups of attributes appear in mqs.ini:
v The AllQueueManagers stanza
v “The DefaultQueueManager stanza” on page 112
v “The ExitProperties stanza” on page 112
v “The QueueManager stanza” on page 113

There are also two stanzas associated with API exits, ApiExitCommon and
ApiExitTemplate. For details on using these, see “Configuring API exits” on
page 118.

Note: In the descriptions of the stanzas, the value underlined is the default value
and the | symbol means or.

The AllQueueManagers stanza
The AllQueueManagers stanza can specify:
v The path to the qmgrs directory where the files associated with a queue

manager are stored
v The path to the executable library
v The method for converting EBCDIC-format data to ASCII format

DefaultPrefix=directory_name
The path to the qmgrs directory, below which the queue manager data is kept.

If you change the default prefix for the queue manager, you must replicate the
directory structure that was created at installation time.

In particular, you must create the qmgrs structure. Stop WebSphere MQ before
changing the default prefix, and restart WebSphere MQ only after moving the
structures to the new location and changing the default prefix.

As an alternative to changing the default prefix, you can use the environment
variable MQSPREFIX to override the DefaultPrefix for the CRTMQM
command.

ConvEBCDICNewline=NL_TO_LF|TABLE|ISO
EBCDIC code pages contain a new line (NL) character that is not supported by
ASCII code pages, although some ISO variants of ASCII contain an equivalent.

Use the ConvEBCDICNewline attribute to specify the method WebSphere MQ
is to use when converting the EBCDIC NL character into ASCII format.

NL_TO_LF
Convert the EBCDIC NL character (X'15') to the ASCII line feed character,
LF (X'0A'), for all EBCDIC to ASCII conversions.

NL_TO_LF is the default.

TABLE
Convert the EBCDIC NL character according to the conversion tables used
on OS/400 for all EBCDIC to ASCII conversions.

Queue manager configuration file

Chapter 9. Configuring WebSphere MQ 111

|
|
|

Note that the effect of this type of conversion can vary from from language
to language .

ISO
Specify ISO if you want:
v ISO CCSIDs to be converted using the TABLE method
v All other CCSIDs to be converted using the NL_TO_CF method.

Possible ISO CCSIDs are shown in Table 14.

Table 14. List of possible ISO CCSIDs

CCSID Code Set

819 ISO8859-1

912 ISO8859-2

915 ISO8859-5

1089 ISO8859-6

813 ISO8859-7

916 ISO8859-8

920 ISO8859-9

1051 roman8

If the ASCII CCSID is not an ISO subset, ConvEBCDICNewline defaults to
NL_TO_LF.

The DefaultQueueManager stanza
The DefaultQueueManager stanza specifies the default queue manager for the node.

Name=default_queue_manager
The default queue manager processes any commands for which a queue
manager name is not explicitly specified. The DefaultQueueManager attribute is
automatically updated if you create a new default queue manager. If you
inadvertently create a new default queue manager and then want to revert to
the original, you must alter the DefaultQueueManager attribute manually.

The ExitProperties stanza
The ExitProperties stanza specifies configuration options used by queue manager
exit programs.

CLWLMode=SAFE|FAST
The cluster workload exit, CLWL, allows you to specify which cluster queue in
the cluster is to be opened in response to an MQI call (MQOPEN, MQPUT, and
so on). The CLWL exit runs either in FAST mode or SAFE mode depending on
the value you specify on the CLWLMode attribute. If you omit the CLWLMode
attribute, the cluster workload exit runs in SAFE mode.

SAFE
Run the CLWL exit in a separate process to the queue manager. This is the
default.

If a problem arises with the user-written CLWL exit when running in SAFE
mode, the following happens:
v The CLWL server process (amqzlwa0) fails
v The queue manager restarts the CLWL server process

Configuration information attributes

112 System Administration Guide

v The error is reported to you in the error log. If an MQI call is in
progress, you receive notification in the form of a bad return code.

The integrity of the queue manager is preserved.

Note: There is a possible performance overhead associated with running
the CLWL exit in a separate process.

FAST
Run the cluster exit inline in the queue manager process.

Specifying this option improves performance by avoiding the overheads
associated with running in SAFE mode, but does so at the expense of
queue manager integrity. Run the CLWL exit in FAST mode only if you are
convinced that there are no problems with your CLWL exit, and you are
particularly concerned about performance overheads.

If a problem arises when the CLWL exit is running in FAST mode, the
queue manager fails and you run the risk of compromising the integrity of
the queue manager.

The QueueManager stanza
There is one QueueManager stanza for every queue manager. These attributes
specify the queue manager name and the name of the directory containing the files
associated with that queue manager. The name of the directory is based on the
queue manager name, but is transformed if the queue manager name is not a valid
file name.

See “Understanding WebSphere MQ queue manager library names” on page 165
for more information about name transformation.

Name=queue_manager_name
The name of the queue manager.

Prefix=prefix
Where the queue manager files are stored. By default, this is the same as the
value specified on the DefaultPrefix attribute of the AllQueueManager stanza in
the mqs.ini file.

Directory=name
The name of the subdirectory under the <prefix>\QMGRS directory where the
queue manager files are stored. This name is based on the queue manager
name, but can be transformed if there is a duplicate name, or if the queue
manager name is not a valid file name.

Library=name
The name of the library where OS/400 objects pertinent to this queue manager,
for example, journals and journal receivers, are stored. This name is based on
the queue manager name, but can be transformed if there is a duplicate name,
or if the queue manager name is not a valid library name.

Changing queue manager configuration information
The following groups of attributes can appear in a qm.ini file particular to a given
queue manager, or used to override values set in mqs.ini.
v “The Log stanza” on page 114
v “The Channels stanza” on page 114
v “The TCP stanza” on page 116

Configuration information attributes

Chapter 9. Configuring WebSphere MQ 113

There is also a stanza associated with API exits, ApiExitLocal. For details on using
this, see “Configuring API exits” on page 118.

The Log stanza
The Log stanza specifies the log attributes for a particular queue manager. By
default, these are inherited from the settings specified in the LogDefaults stanza in
the mqs.ini file when the queue manager is created.

Only change attributes of this stanza if you want to configure a queue manager
differently from others.

The values specified on the attributes in the qm.ini file are read when the queue
manager is started. The file is created when the queue manager is created.

LogPath=library_name
The name of the library used to store journals and journal receivers for this
queue manager.

LogReceiverSize
The journal receiver size.

The Channels stanza
The Channels stanza contains information about the channels.

MaxChannels=100|number
The maximum number of channels allowed. The default is 100.

MaxActiveChannels=MaxChannels_value
The maximum number of channels allowed to be active at any time. The
default is the value specified on the MaxChannels attribute.

MaxInitiators=3|number
The maximum number of initiators.

MQIBINDTYPE=FASTPATH|STANDARD
The binding for applications.

FASTPATH
Channels connect using MQCONNX FASTPATH. That is, there is no agent
process.

STANDARD
Channels connect using STANDARD.

ThreadedListener=NO|YES
Whether to start RUNMQLSR (YES) or AMQCLMAA (NO) as a listener.

AdoptNewMCA=NO|SVR|SNDR|RCVR|CLUSRCVR|ALL|FASTPATH
If WebSphere MQ receives a request to start a channel, but finds that an
amqcrsta process already exists for the same channel, the existing process must
be stopped before the new one can start. The AdoptNewMCA attribute allows you
to control the ending of an existing process and the startup of a new one for a
specified channel type.

If you specify the AdoptNewMCA attribute for a given channel type, but the new
channel fails to start because the channel is already running:
1. The new channel tries to end the previous one.
2. If the previous channel server does not end by the time the

AdoptNewMCATimeout wait interval expires, the process (or the thread)
for the previous channel server is ended.

Changing queue manager configuration

114 System Administration Guide

|
|

|
|

3. If the previous channel server has not ended after step 2, and after the
AdoptNewMCATimeout wait interval expires for a second time, WebSphere
MQ ends the channel with a CHANNEL IN USE error.

You specify one or more values, separated by commas or blanks, from the
following list:

NO
The AdoptNewMCA feature is not required. This is the default.

SVR
Adopt server channels

SNDR
Adopt sender channels

RCVR
Adopt receiver channels

CLUSRCVR
Adopt cluster receiver channels

ALL
Adopt all channel types, except for FASTPATH channels

FASTPATH
Adopt the channel if it is a FASTPATH channel. This happens only if the
appropriate channel type is also specified, for example,
AdoptNewMCA=RCVR,SVR,FASTPATH

Attention!
The AdoptNewMCA attribute can behave in an unpredictable fashion
with FASTPATH channels because of the internal design of the queue
manager. Exercise great caution when enabling the AdoptNewMCA
attribute for FASTPATH channels.

AdoptNewMCATimeout=60|1—3600
The amount of time, in seconds, that the new process waits for the old process
to end. Specify a value, in seconds, in the range 1 to 3600. The default value is
60.

AdoptNewMCACheck=QM|ADDRESS|NAME|ALL
The AdoptNewMCACheck attribute allows you to specify the type checking
required when enabling the AdoptNewMCA attribute. It is important for you to
perform all three of the following checks, if possible, to protect your channels
from being shut down, inadvertently or maliciously. At the very least check
that the channel names match.

Specify one or more values, separated by commas or blanks, from the
following:

QM
The listener process checks that the queue manager names match.

ADDRESS
The listener process checks the communications address, for example, the
TCP/IP address.

NAME
The listener process checks that the channel names match.

Changing queue manager configuration

Chapter 9. Configuring WebSphere MQ 115

ALL
The listener process checks for matching queue manager names, the
communications address, and for matching channel names.

AdoptNewMCACheck=NAME,ADDRESS is the default for FAP1, FAP2, and FAP3;
while AdoptNewMCACheck=NAME,ADDRESS,QM is the default for FAP4 and later.

The TCP stanza
This stanza specifies network protocol configuration parameters. They override the
default attributes for channels.

Note: Only attributes representing changes to the default values need to be
specified.

TCP
The following attributes can be specified:

Port=1414|port_number
The default port number, in decimal notation, for TCP/IP sessions. The
well known port number for WebSphere MQ is 1414.

KeepAlive=YES|NO
Switch the KeepAlive function on or off. KeepAlive=YES causes TCP/IP to
check periodically that the other end of the connection is still available. If it
is not, the channel is closed.

ListenerBacklog=number
When receiving on TCP/IP, a maximum number of outstanding connection
requests is set. This can be considered to be a backlog of requests waiting
on the TCP/IP port for the listener to accept the request. The default
listener backlog value for OS/400 is 255; the maximum is 512. If the
backlog reaches the value of 512, the TCP/IP connection is rejected and the
channel cannot start.

For MCA channels, this results in the channel going into a RETRY state
and retrying the connection at a later time.

For client connections, the client receives an
MQRC_Q_MGR_NOT_AVAILABLE reason code from MQCONN and
should retry the connection at a later time.

The ListenerBacklog attribute allows you to override the default number
of outstanding requests for the TCP/IP listener.

API exits
API exits let you write code that changes the behavior of WebSphere MQ API calls,
such as MQPUT and MQGET, and then insert that code immediately before or
immediately after those calls. The insertion is automatic; the queue manager drives
the exit code at the registered points.

This chapter explains why you might want to use API exits, then describes what
administration tasks are involved in enabling them. The sections are:
v “Why use API exits” on page 117
v “How you use API exits” on page 117
v “What happens when an API exit runs?” on page 118
v “Configuring API exits” on page 118

Changing queue manager configuration

116 System Administration Guide

|
|

|

|
|
|
|

|
|

|

|

|

|

We give a brief introduction to writing API exits in “How to write an API exit”.
For detailed information about writing API exits, aimed at application
programmers, see the WebSphere MQ Application Programming Guide.

For detailed reference information about API exits, see the WebSphere MQ System
Administration Guide.

Why use API exits
There are many reasons why you might want to insert code that modifies the
behavior of applications at the level of the queue manager. Each of your
applications has a specific job to do, and its code should do that task as efficiently
as possible. At a higher level, you might want to apply standards or business
processes to a particular queue manager for all the applications that use that queue
manager. It is more efficient to do this above the level of individual applications,
and thus without having to change the code of each application affected.

Here are a few suggestions of areas in which API exits might be useful:
v For security, you can provide authentication, checking that applications are

authorized to access a queue or queue manager. You can also police applications’
use of the API, authenticating the individual API calls, or even the parameters
they use.

v For flexibility, you can respond to rapid changes in your business environment
without changing the applications that rely on the data in that environment. You
could, for example, have API exits that respond to changes in interest rates,
currency exchange rates, or the price of components in a manufacturing
environment.

v For monitoring use of a queue or queue manager, you can trace the flow of
applications and messages, log errors in the API calls, set up audit trails for
accounting purposes, or collect usage statistics for planning purposes.

How you use API exits
This section gives a brief overview of the tasks involved in setting up API exits.

How to configure WebSphere MQ for API exits
You configure WebSphere MQ to enable API exits by editing the configuration
files, mqs.ini and qm.ini, and adding new stanzas that.
v Name the API exit
v Identify the module and entry point of the API exit code to run
v Optionally pass data with the exit
v Identify the sequence of this exit in relation to other exits

For detailed information on this configuration, see “Configuring API exits” on
page 118. For a description of how API exits run, see “What happens when an API
exit runs?” on page 118.

How to write an API exit
This section introduces writing API exits. For detailed information, aimed at
application programmers, see the WebSphere MQ Application Programming Guide.

You write your exits using the C programming language. To help you do so, we
provide a sample exit, amqsaxe0, that generates trace entries to a named file. When
you start writing exits, we recommend that you use this as your starting point.

Changing queue manager configuration

Chapter 9. Configuring WebSphere MQ 117

|
|
|

|
|

|

|
|
|
|
|
|
|

|

|
|
|
|

|
|
|
|
|

|
|
|

|

|

|
|
|

|

|

|

|

|
|
|

|
|
|

|
|
|

Exits are available for every API call, as follows. Within API exits, these calls take
the general form:
MQ_call_EXIT (parameters, context, ApiCallParameters)

where call is the API call name without the MQ suffix (PUT, GET, and so on),
parameters control the function of the exit, context describes the context in which
the API exit was called, and ApiCallParameters represent the parameters to the
MQI call,

What happens when an API exit runs?
The API exit routines to run are identified in stanzas in mqs.ini and qm.ini. The
definition of the routines can occur in three places:
1. ApiExitCommon, in the mqs.ini file, identifies routines, for the whole of

WebSphere MQ, applied when queue managers start up. These can be
overridden by routines defined for individual queue managers.

2. ApiExitTemplate, in the mqs.ini file, identifies routines, for the whole of
WebSphere MQ, copied to the ApiExitLocal set when a new queue manager is
created.

3. ApiExitLocal, in the qm.ini file, identifies routines applicable to a particular
queue manager.

When a new queue manager is created, the ApiExitTemplate definitions in mqs.ini
are copied to the ApiExitLocal definitions in qm.ini for the new queue manager.
When a queue manager is started, both the ApiExitCommon and ApiExitLocal
definitions are used. The ApiExitLocal definitions replace the ApiExitCommon
definitions if both identify a routine of the same name. The Sequence attribute,
described in “Attributes for all stanzas” determines the order in which the routines
defined in the stanzas run.

Configuring API exits
This section tells you how to configure API exits.

You define your API exits in stanzas in the mqs.ini and qm.ini files. The sections
below describe these stanzas, and the attributes within them that define the exit
routines and the sequence in which they run. For guidance on the process of
changing these stanzas, see “Changing the configuration information” on page 120.

Stanzas in mqs.ini are:

ApiExitCommon
When any queue manager starts, the attributes in this stanza are read, and
then overridden by the API exits defined in qm.ini.

ApiExitTemplate
When any queue manager is created, the attributes in this stanza are
copied into the newly created qm.ini file under the ApiExitLocal stanza.

The stanza in qm.ini is:

ApiExitLocal
When the queue manager starts, API exits defined here override the
defaults defined in mqs.ini.

Attributes for all stanzas
All these stanzas have the following attributes:

Changing queue manager configuration

118 System Administration Guide

|
|

|

|
|
|
|

|

|
|

|
|
|

|
|
|

|
|

|
|
|
|
|
|
|

|

|

|
|
|
|

|

|
|
|

|
|
|

|

|
|
|

|
|

Name=ApiExit_name
The descriptive name of the API exit passed to it in the ExitInfoName field
of the MQAXP structure.

This name must be unique, no longer than 48 characters, and contain only
valid characters for the names of WebSphere MQ objects (for example,
queue names).

Function=function_name
The name of the function entry point into the module containing the API
exit code. This entry point is the MQ_INIT_EXIT function.

The length of this field is limited to MQ_EXIT_NAME_LENGTH.

Module=module_name
The module containing the API exit code.

If this field contains the full path name of the module it is used as is.

If this field contains just the module name, the module is located using the
ExitsDefaultPath attribute in the ExitPath in qm.ini.

The length of this field is limited to the maximum path length the platform
supports.

Data=data_name
Data to be passed to the API exit in the ExitData field of the MQAXP
structure.

If you include this attribute, leading and trailing blanks are removed, the
remaining string is truncated to 32 characters, and the result is passed to
the exit. If you omit this attribute, the default value of 32 blanks is passed
to the exit.

The maximum length of this field is 32 characters.

Sequence=sequence_number
The sequence in which this API exit is called relative to other API exits. An
exit with a low sequence number is called before an exit with a higher
sequence number. There is no need for the sequence numbering of exits to
be contiguous; a sequence of 1, 2, 3 has the same result as a sequence of 7,
42, 1096. If two exits have the same sequence number, the queue manager
decides which one to call first. You can tell which was called after the event
by putting the time or a marker in ExitChainArea indicated by the
ExitChainAreaPtr in MQAXP or by writing your own log file.

This attribute is an unsigned numeric value.

Sample stanzas
Once you have created an exit as a service program, you must refer to it in the
appropriate stanza in a configuration file using LIBRARY/PROGRAM syntax, as
shown in the examples.

The mqs.ini file below contains the following stanzas:

ApiExitTemplate
This stanza defines an exit with the descriptive name
OurPayrollQueueAuditor, module name MYAUDIT, and sequence number 2.
A data value of 123 is passed to the exit.

Changing queue manager configuration

Chapter 9. Configuring WebSphere MQ 119

|
|
|

|
|
|

|
|
|

|

|
|

|

|
|

|
|

|
|
|

|
|
|
|

|

|
|
|
|
|
|
|
|
|

|

|
|
|
|

|

|
|
|
|

ApiExitCommon
This stanza defines an exit with the descriptive name MQPoliceman, module
name MYSECURE, and sequence number 1. The data passed is an instruction
(CheckEverything).

mqs.ini

ApiExitTemplate:
Name=OurPayrollQueueAuditor
Sequence=2
Function=EntryPoint
Module=MYLIB/MYAUDIT
Data=123

ApiExitCommon:
Name=MQPoliceman
Sequence=1
Function=EntryPoint
Module=MYLIB/MYSECURE
Data=CheckEverything

The qm.ini file below contains an ApiExitLocal definition of an exit with the
descriptive name ClientApplicationAPIchecker, module name MYCHECK, and
sequence number 3.
qm.ini

ApiExitLocal:
Name=ClientApplicationAPIchecker
Sequence=3
Function=EntryPoint
Module=MYLIB/MYCHECK
Data=9.20.176.20

Changing the configuration information
The WebSphere MQ configuration file, mqs.ini, contains information relevant to all
the queue managers on a particular node.

A queue manager configuration file, qm.ini, contains information relevant to a
specific queue manager. There is one queue manager configuration file for each
queue manager, stored in its own subdirectory.

The configuration files are stored in the IFS, as follows:
/QIBM/UserData/mqm/mqs.ini
/QIBM/UserData/mqm/qmgrs/<queue-manager-name>/qm.ini

Before editing a configuration file, back it up so that you have a copy you can
revert to if the need arises.

You can edit configuration files using the EDTF CL command.

If you set an incorrect value on a configuration file attribute, the value is ignored
and an operator message is issued to indicate the problem. (The effect is the same
as missing out the attribute entirely.)

Example mqs.ini and qm.ini files
Figure 14 on page 121 shows an example of an mqs.ini file.

Changing queue manager configuration

120 System Administration Guide

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|
|

|

|
|

|
|

|

|
|
|

Figure 15 shows how groups of attributes might be arranged in a queue manager
configuration file.

#***#
#* Module Name: mqs.ini *#
#* Type : WebSphere MQ Configuration File *#
#* Function : Define WebSphere MQ resources for the node *#
#* *#
#***#
#* Notes : *#
#* 1) This is an example WebSphere MQ configuration file *#
#* *#
#***#
AllQueueManagers:
#***#
#* The path to the qmgrs directory, below which queue manager data *#
#* is stored *#
#***#
DefaultPrefix=/QIBM/UserData/mqm

QueueManager:
Name=saturn.queue.manager
Prefix=/QIBM/UserData/mqm
Library=QMSATURN.Q
Directory=saturn!queue!manager

QueueManager:
Name=pluto.queue.manager
Prefix=/QIBM/UserData/mqm
Library=QMPLUTO.QU
Directory=pluto!queue!manager

DefaultQueueManager:
Name=saturn.queue.manager

Figure 14. Example of a WebSphere MQ configuration file

#***#
#* Module Name: qm.ini *#
#* Type : WebSphere MQ queue manager configuration file *#
Function : Define the configuration of a single queue manager *#
#* *#
#***#
#* Notes : *#
#* 1) This file defines the configuration of the queue manager *#
#* *#
#***#
Log:

LogPath=QMSATURN.Q
LogReceiverSize=65536

CHANNELS:
MaxChannels = 20 ; Maximum number of channels allowed.

; Default is 100.
MaxActiveChannels = 10 ; Maximum number of channels allowed to be

; active at any time. The default is the
; value of MaxChannels.

TCP: ; TCP/IP entries.
KeepAlive = Yes ; Switch KeepAlive on

Figure 15. Example queue manager configuration file

mqs.ini and qm.ini files

Chapter 9. Configuring WebSphere MQ 121

Notes:

1. WebSphere MQ on the node uses the default locations for queue managers and
the journals.

2. The queue manager saturn.queue.manager is the default queue manager for the
node. The directory for files associated with this queue manager has been
automatically transformed into a valid file name for the file system.

3. Because the WebSphere MQ configuration file is used to locate the data
associated with queue managers, a nonexistent or incorrect configuration file
can cause some or all WebSphere MQ commands to fail. Also, applications
cannot connect to a queue manager that is not defined in the WebSphere MQ
configuration file.

mqs.ini and qm.ini files

122 System Administration Guide

Chapter 10. Installable services and components

This chapter introduces the installable services and the functions and components
associated with them. We document the interface to these functions so that you, or
software vendors, can supply components.

The chapter includes:
v “Why installable services?”
v “Functions and components” on page 124
v “Initialization” on page 125
v “Configuring services and components” on page 126
v “Creating your own service component” on page 127

The installable services interface is described in “Installable services interface
reference information” on page 130.

Why installable services?
The main reasons for providing WebSphere MQ installable services are:
v To provide you with the flexibility of choosing whether to use components

provided by WebSphere MQ for iSeries, or replace or augment them with others.
v To allow vendors to participate, by providing components that might use new

technologies, without making internal changes to WebSphere MQ for iSeries.
v To allow WebSphere MQ to exploit new technologies faster and cheaper, and so

provide products earlier and at lower prices.

Installable services and service components are part of the WebSphere MQ product
structure. At the center of this structure is the part of the queue manager that
implements the function and rules associated with the Message Queue Interface
(MQI). This central part requires a number of service functions, called installable
services, in order to perform its work. The installable service available in
WebSphere MQ for iSeries is the authorization service.

Each installable service is a related set of functions implemented using one or more
service components. Each component is invoked using a properly-architected,
publicly-available interface. This enables independent software vendors and other
third parties to provide installable components to augment or replace those
provided by WebSphere MQ for iSeries. Table 15 summarizes support for the
authorization service.

Table 15. Authorization service components summary

Supplied component Function Requirements

Object Authority
Manager (OAM)

Provides authorization checking
on commands and MQI calls.
Users can write their own
component to augment or replace
the OAM.

(Appropriate platform
authorization facilities are
assumed)

© Copyright IBM Corp. 1994, 2002 123

|

|

|
|
|

|
|
|
|
|
|

|
|

|
|

|

|
|

|
|

|
|

|
|
|
|
|
|

|
|
|
|
|
|

||

|||

|
|
|
|
|
|
|

|
|
|

Table 15. Authorization service components summary (continued)

Supplied component Function Requirements

DCE name service
component

v Allows queue managers to
share queues, or

v User defined

Note: Shared queues must have
their Scope attribute set to CELL.

v DCE is required for the
supplied component, or

v A third-party or
user-written name
manager

Functions and components
Each service consists of a set of related functions. For example, the name service
contains function for:
v Looking up a queue name and returning the name of the queue manager where

the queue is defined
v Inserting a queue name into the service’s directory
v Deleting a queue name from the service’s directory

It also contains initialization and termination functions.

An installable service is provided by one or more service components. Each
component can perform some or all of the functions that are defined for that
service. The component is also responsible for managing any underlying resources
or software (for example, DCE name services) that it needs to implement the
service. Configuration files provide a standard way of loading the component and
determining the addresses of the functional routines that it provides.

Services and components are related as follows:
v A service is defined to a queue manager by stanzas in a configuration file.
v Each service is supported by supplied code in the queue manager. Users cannot

change this code and therefore cannot create their own services.
v Each service is implemented by one or more components; these can be supplied

with the product or user-written. Multiple components for a service can be
invoked, each supporting different facilities within the service.

v Entry points connect the service components to the supporting code in the
queue manager.

Entry-points
Each service component is represented by a list of the entry-point addresses of the
routines that support a particular installable service. The installable service defines
the function to be performed by each routine.

The ordering of the service components when they are configured defines the
order in which entry-points are called in an attempt to satisfy a request for the
service.

In the supplied header file cmqzc.h, the supplied entry points to each service have
an MQZID_ prefix.

Return codes
Service components provide return codes to the queue manager to report on a
variety of conditions. They report the success or failure of the operation, and

Installable services

124 System Administration Guide

|

|||

|
|
|
|

|

|
|

|
|

|
|
|

|

|
|

|
|

|
|

|

|

|

|
|
|
|
|
|

|

|

|
|

|
|
|

|
|

|

|
|
|

|
|
|

|
|

|

|
|

indicate whether the queue manager is to proceed to the next service component.
A separate Continuation parameter carries this indication.

Component data
A single service component might require data to be shared between its various
functions. Installable services provide an optional data area to be passed on each
invocation of a given service component. This data area is for the exclusive use of
the service component. It is shared by all the invocations of a given function, even
if they are made from different address spaces or processes. It is guaranteed to be
addressable from the service component whenever it is called. You must declare
the size of this area in the ServiceComponent stanza.

Initialization
When the component initialization routine is invoked, it must call the queue
manager MQZEP function for each entry-point supported by the component.
MQZEP defines an entry-point to the service. All the undefined exit points are
assumed to be NULL.

Primary initialization
A component is always invoked with this option once, before it is invoked in any
other way.

Secondary initialization
A component can be invoked with this option on certain platforms. For example, it
can be invoked once for each operating system process, thread, or task by which
the service is accessed.

If secondary initialization is used:
v The component can be invoked more than once for secondary initialization. For

each such call, a matching call for secondary termination is issued when the
service is no longer needed.
For authorization services this is the MQZ_TERM_AUTHORITY call.

v The entry points must be re-specified (by calling MQZEP) each time the
component is called for primary and secondary initialization.

v Only one copy of component data is used for the component; there is not a
different copy for each secondary initialization.

v The component is not invoked for any other calls to the service (from the
operating system process, thread, or task, as appropriate) before secondary
initialization has been carried out.

v The component must set the Version parameter to the same value for primary
and secondary initialization.

Primary termination
The primary termination component is always invoked with this option once,
when it is no longer required. No further calls are made to this component.

Secondary termination
The secondary termination component is invoked with this option, if it has been
invoked for secondary initialization.

Functions and components

Chapter 10. Installable services and components 125

|
|

|

|
|
|
|
|
|
|

|
|

|
|
|
|

|

|
|

|

|
|
|

|

|
|
|

|

|
|

|
|

|
|
|

|
|

|

|
|

|

|
|

Configuring services and components
Configure service components using the queue manager configuration files. Each
service used must have a Service stanza, which defines the service to the queue
manager.

For each component within a service, there must be a ServiceComponent stanza.
This identifies the name and path of the module containing the code for that
component.

The authorization service component, known as the Object Authority Manager
(OAM), is supplied with the product. When you create a queue manager, the
queue manager configuration file is automatically updated to include the
appropriate stanzas for the authorization service and for the default component
(the OAM).

The code for each service component is loaded into the queue manager when the
queue manager is started, using dynamic binding, where this is supported on the
platform.

Service stanza format
The format of the Service stanza is:

Service:
Name=<service_name>
EntryPoints=<entries>

where:

<service_name>
The name of the service. This is defined by the service.

<entries>
The number of entry-points defined for the service. This includes the
initialization and termination entry points.

Service component stanza format
The format of the Service component stanza is:

ServiceComponent:
Service=<service_name>
Name=<component_name>
Module=<module_name>
ComponentDataSize=<size>

where:

<service_name>
The name of the service. This must match the Name specified in a service
stanza.

<component_name>
A descriptive name of the service component. This must be unique, and
contain only the characters that are valid for the names of WebSphere MQ
objects (for example, queue names). This name occurs in operator messages
generated by the service. We recommend that you use a name starting
with a company trademark or similar distinguishing string.

Configuring

126 System Administration Guide

|
|

|
|
|

|
|
|

|
|
|
|
|

|
|
|

|

|

|
|
|

|

|
|

|
|
|

|

|

|
|
|
|
|

|

|
|
|

|
|
|
|
|
|

<module_name>
The name of the module to contain the code for this component. Specify a
full path name.

<size> The size in bytes of the component data area passed to the component on
each call. Specify zero if no component data is required.

These two stanzas can appear in any order and the stanza keys under them can
also appear in any order. For either of these stanzas, all the stanza keys must be
present. If a stanza key is duplicated, the last one is used.

At startup time, the queue manager processes each service component entry in the
configuration file in turn. It then loads the specified component module, invoking
the entry-point of the component (which must be the entry-point for initialization
of the component), passing it a configuration handle.

Creating your own service component
To create your own service component:
v Ensure that the header file cmqzc.h is included in your program.
v Create the shared library by compiling the program and linking it with the

shared libraries libmqm* and libmqmzf*.

Note: Because the agent can run in a threaded environment, you must build the
OAM to run in a threaded environment. This includes using the threaded
versions of libmqm and libmqmzf.

v Add stanzas to the queue manager configuration file to define the service to the
queue manager and to specify the location of the module. Refer to the
individual chapters for each service, for more information.

v Stop and restart the queue manager to activate the component.

Authorization service
The authorization service is an installable service that enables queue managers to
invoke authorization facilities, for example, checking that a user ID has authority
to open a queue.

This service is a component of the WebSphere MQ security enabling interface (SEI),
which is part of the WebSphere MQ framework.

This chapter discusses:
v “Object authority manager (OAM)”
v “Configuring authorization service stanzas” on page 128
v “Authorization service interface” on page 129

Object authority manager (OAM)
The authorization service component supplied with the WebSphere MQ products is
called the Object Authority Manager (OAM). By default, the OAM is active and
works with the control commands WRKMQMAUT (work with authority),
WRKMQMAUTD (work with authority data), DSPMQMAUT (display object
authority), GRTMQMAUT (grant object authority), RVKMQMAUT (revoke object
authority), and RFRMQMAUT (refresh security).

The syntax of these commands and how to use them are described in the CL
command help.

Configuring

Chapter 10. Installable services and components 127

|
|
|

||
|

|
|
|

|
|
|
|

|
|

|

|

|
|

|
|
|

|
|
|

|

|
|

|
|
|

|
|

|
|
|
|

|

|
|
|
|
|
|

|
|

The OAM works with the entity of a principal or group.

When an MQI request is made or a command is issued, the OAM checks the
authorization of the entity associated with the operation to see whether it can:
v Perform the requested operation.
v Access the specified queue manager resources.

The authorization service enables you to augment or replace the authority checking
provided for queue managers by writing your own authorization service
component.

Defining the service to the operating system
The authorization service stanzas in the queue manager configuration file qm.ini
define the authorization service to the queue manager. See “Configuring services
and components” on page 126 for information about the types of stanza.

Configuring authorization service stanzas
On WebSphere MQ for iSeries:

Principal
Is an OS/400 system user profile.

Group Is an OS/400 system group profile.

Authorizations can be granted or revoked at the group level only. A request to
grant or revoke a user’s authority updates the primary group for that user.

Each queue manager has its own queue manager configuration file. For example,
the default path and file name of the queue manager configuration file for queue
manager QMNAME is /QIBM/UserData/mqm/qmgrs/QMNAME/qm.ini.

The Service stanza and the ServiceComponent stanza for the default authorization
component are added to qm.ini automatically, but can be overridden by WRKENVVAR.
Any other ServiceComponent stanzas must be added manually.

For example, the following stanzas in the queue manager configuration file define
two authorization service components:

Service:
Name=AuthorizationService
EntryPoints=7

ServiceComponent:
Service=AuthorizationService
Name=MQ.UNIX.authorization.service
Module=QMQM/AMQZFU
ComponentDataSize=0

ServiceComponent:
Service=AuthorizationService
Name=user.defined.authorization.service
Module=LIBRARY/SERVICE PROGRAM NAME
ComponentDataSize=96

Figure 16. WebSphere MQ for iSeries authorization service stanzas in qm.ini

Authorization service

128 System Administration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|

|
|
|
|

|
|
|

|
|
|
|

|

|

|
|

||

|
|

|
|
|

|
|
|

|
|
|

The first service component stanza (MQ.UNIX.authorization.service) defines the
default authorization service component, the OAM. If you remove this stanza and
restart the queue manager, the OAM is disabled and no authorization checks are
made.

Authorization service interface
The authorization service provides the following entry points for use by the queue
manager:

MQZ_INIT_AUTHORITY
Initializes authorization service component.

MQZ_TERM_AUTHORITY
Terminates authorization service component.

MQZ_CHECK_AUTHORITY
Checks whether an entity has authority to perform one or more operations
on a specified object.

MQZ_SET_AUTHORITY
Sets the authority that an entity has to a specified object.

MQZ_GET_AUTHORITY
Gets the authority that an entity has to access a specified object.

MQZ_GET_EXPLICIT_AUTHORITY
Gets either the authority that a named group has to access a specified
object (but without the additional authority of the nobody group) or the
authority that the primary group of the named principal has to access a
specified object.

MQZ_COPY_ALL_AUTHORITY
Copies all the current authorizations that exist for a referenced object to
another object.

MQZ_ENUMERATE_AUTHORITY_DATA
Retrieves all the authority data that matches the selection criteria specified.

MQZ_DELETE_AUTHORITY
Deletes all authorizations associated with a specified object.

MQZ_REFRESH_CACHE
Refresh all authorizations.

These entry points support the use of the Windows Security Identifier (NT SID).

These names are defined as typedefs, in the header file cmqzc.h, which can be used
to prototype the component functions.

The initialization function (MQZ_INIT_AUTHORITY) must be the main entry
point for the component. The other functions are invoked through the entry point
address that the initialization function has added into the component entry point
vector.

See “Creating your own service component” on page 127 for more information.

Authorization service

Chapter 10. Installable services and components 129

|
|
|
|

|

|
|

|
|

|
|

|
|
|

|
|

|
|

|
|
|
|
|

|
|
|

|
|

|
|

|
|

|

|
|

|
|
|
|

|

Installable services interface reference information
This section provides reference information for the installable services. It includes:
v “How the functions are shown”
v “MQZEP – Add component entry point” on page 131
v “MQZ_CHECK_AUTHORITY – Check authority” on page 133
v “MQZ_COPY_ALL_AUTHORITY – Copy all authority” on page 137
v “MQZ_DELETE_AUTHORITY – Delete authority” on page 140
v “MQZ_ENUMERATE_AUTHORITY_DATA – Enumerate authority data” on

page 142
v “MQZ_GET_AUTHORITY – Get authority” on page 145
v “MQZ_GET_EXPLICIT_AUTHORITY – Get explicit authority” on page 148
v “MQZ_INIT_AUTHORITY – Initialize authorization service” on page 151
v “MQZ_REFRESH_CACHE – Refresh all authorizations” on page 153
v “MQZ_SET_AUTHORITY – Set authority” on page 155
v “MQZ_TERM_AUTHORITY – Terminate authorization service” on page 158
v “MQZAD – Authority data” on page 160
v “MQZED – Entity descriptor” on page 163

The functions and data types are in alphabetic order within the group for each
service type.

How the functions are shown
For each function there is a description, including the function identifier (for
MQZEP).

The parameters are shown listed in the order they must occur. They must all be
present.

Parameters and data types
Each parameter name is followed by its data type in parentheses. These are the
elementary data types described in the WebSphere MQ Application Programming
Reference manual.

The C language invocation is also given, after the description of the parameters.

Authorization service

130 System Administration Guide

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|

|
|

|
|

|
|
|
|

|

MQZEP – Add component entry point
This function is invoked by a service component, during initialization, to add an
entry point to the entry point vector for that service component.

Syntax

Parameters
The MQZEP call has the following parameters.

Hconfig (MQHCONFIG) – input: Configuration handle.

This handle represents the component which is being configured for this particular
installable service. It must be the same as the one passed to the component
configuration function by the queue manager on the component initialization call.

Function (MQLONG) – input: Function identifier.

Valid values for this are defined for each installable service.

If MQZEP is called more than once for the same function, the last call made
provides the entry point which is used.

EntryPoint (PMQFUNC) – input: Function entry point.

This is the address of the entry point provided by the component to perform the
function.

The value NULL is valid, and indicates that the function is not provided by this
component. NULL is assumed for entry points which are not defined using
MQZEP.

CompCode (MQLONG) – output: Completion code.

It is one of the following:
MQCC_OK

Successful completion.
MQCC_FAILED

Call failed.

Reason (MQLONG) – output: Reason code qualifying CompCode.

If CompCode is MQCC_OK:
MQRC_NONE

(0, X’000’) No reason to report.

If CompCode is MQCC_FAILED:
MQRC_FUNCTION_ERROR

(2281, X’8E9’) Function identifier not valid.
MQRC_HCONFIG_ERROR

(2280, X’8E8’) Configuration handle not valid.

For more information on these reason codes, see the WebSphere MQ Application
Programming Reference.

MQZEP (Hconfig, Function, EntryPoint, CompCode, Reason)

MQZEP call

Chapter 10. Installable services and components 131

|
|
|

|

|
|

|
||

|
|

|

|
|
|

|

|

|
|

|

|
|

|
|
|

|

|
|
|
|
|

|

|
|
|

|
|
|
|
|

|
|

C invocation
MQZEP (Hconfig, Function, EntryPoint, &CompCode, &Reason);

Declare the parameters as follows:
MQHCONFIG Hconfig; /* Configuration handle */
MQLONG Function; /* Function identifier */
PMQFUNC EntryPoint; /* Function entry point */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

MQHCONFIG – Configuration handle
The MQHCONFIG data type represents a configuration handle, that is, the
component that is being configured for a particular installable service. A
configuration handle must be aligned on its natural boundary.

Note: Applications must test variables of this type for equality only.

C declaration
typedef void MQPOINTER MQHCONFIG;

PMQFUNC – Pointer to function
Pointer to a function.

C declaration
typedef void MQPOINTER PMQFUNC;

MQZEP call

132 System Administration Guide

|
|

|

|
|
|
|
|

|

|
|
|

|

|
|

|

|

|
|

|

MQZ_CHECK_AUTHORITY – Check authority
This function is provided by a MQZAS_VERSION_1 authorization service
component, and is invoked by the queue manager to check whether an entity has
authority to perform a particular action, or actions, on a specified object.

The function identifier for this function (for MQZEP) is
MQZID_CHECK_AUTHORITY.

Syntax

Parameters
The MQZ_CHECK_AUTHORITY call has the following parameters.

QMgrName (MQCHAR48) – input: Queue manager name.

The name of the queue manager calling the component. This name is padded with
blanks to the full length of the parameter; the name is not terminated by a null
character.

The queue-manager name is passed to the component for information; the
authorization service interface does not require the component to make use of it in
any defined manner.

EntityName (MQCHAR12) – input: Entity name.

The name of the entity whose authorization to the object is to be checked. The
maximum length of the string is 12 characters; if it is shorter than that it is padded
to the right with blanks. The name is not terminated by a null character.

It is not essential for this entity to be known to the underlying security service. If it
is not known, the authorizations of the special nobody group (to which all entities
are assumed to belong) are used for the check. An all-blank name is valid and can
be used in this way.

EntityType (MQLONG) – input: Entity type.

The type of entity specified by EntityName. It is one of the following:
MQZAET_PRINCIPAL

Principal.
MQZAET_GROUP

Group.

ObjectName (MQCHAR48) – input: Object name.

The name of the object to which access is required. The maximum length of the
string is 48 characters; if it is shorter than that it is padded to the right with
blanks. The name is not terminated by a null character.

If ObjectType is MQOT_Q_MGR, this name is the same as QMgrName.

ObjectType (MQLONG) – input: Object type.

MQZ_CHECK_AUTHORITY (QMgrName, EntityName, EntityType,
ObjectName, ObjectType, Authority, ComponentData, Continuation, CompCode,
Reason)

MQZ_CHECK_AUTHORITY

Chapter 10. Installable services and components 133

|
|
|
|

|

|
|
|

|
|

|
||

|
|

|

|
|
|

|
|
|

|

|
|
|

|
|
|
|

|

|
|
|
|
|

|

|
|
|

|

|

The type of entity specified by ObjectName. It is one of the following:
MQOT_AUTH_INFO

Authentication information.
MQOT_NAMELIST

Namelist.
MQOT_PROCESS

Process definition.
MQOT_Q

Queue.
MQOT_Q_MGR

Queue manager.

Authority (MQLONG) – input: Authority to be checked.

If one authorization is being checked, this field is equal to the appropriate
authorization operation (MQZAO_* constant). If more than one authorization is
being checked, it is the bitwise OR of the corresponding MQZAO_* constants.

The following authorizations apply to use of the MQI calls:
MQZAO_CONNECT

Ability to use the MQCONN call.
MQZAO_BROWSE

Ability to use the MQGET call with a browse option.

This allows the MQGMO_BROWSE_FIRST,
MQGMO_BROWSE_MSG_UNDER_CURSOR, or
MQGMO_BROWSE_NEXT option to be specified on the MQGET call.

MQZAO_INPUT
Ability to use the MQGET call with an input option.

This allows the MQOO_INPUT_SHARED, MQOO_INPUT_EXCLUSIVE, or
MQOO_INPUT_AS_Q_DEF option to be specified on the MQOPEN call.

MQZAO_OUTPUT
Ability to use the MQPUT call.

This allows the MQOO_OUTPUT option to be specified on the MQOPEN
call.

MQZAO_INQUIRE
Ability to use the MQINQ call.

This allows the MQOO_INQUIRE option to be specified on the MQOPEN
call.

MQZAO_SET
Ability to use the MQSET call.

This allows the MQOO_SET option to be specified on the MQOPEN call.
MQZAO_PASS_IDENTITY_CONTEXT

Ability to pass identity context.

This allows the MQOO_PASS_IDENTITY_CONTEXT option to be specified
on the MQOPEN call, and the MQPMO_PASS_IDENTITY_CONTEXT
option to be specified on the MQPUT and MQPUT1 calls.

MQZAO_PASS_ALL_CONTEXT
Ability to pass all context.

This allows the MQOO_PASS_ALL_CONTEXT option to be specified on
the MQOPEN call, and the MQPMO_PASS_ALL_CONTEXT option to be
specified on the MQPUT and MQPUT1 calls.

MQZAO_SET_IDENTITY_CONTEXT
Ability to set identity context.

MQZ_CHECK_AUTHORITY

134 System Administration Guide

|
|
|
|
|
|
|
|
|
|
|

|

|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|

This allows the MQOO_SET_IDENTITY_CONTEXT option to be specified
on the MQOPEN call, and the MQPMO_SET_IDENTITY_CONTEXT option
to be specified on the MQPUT and MQPUT1 calls.

MQZAO_SET_ALL_CONTEXT
Ability to set all context.

This allows the MQOO_SET_ALL_CONTEXT option to be specified on the
MQOPEN call, and the MQPMO_SET_ALL_CONTEXT option to be
specified on the MQPUT and MQPUT1 calls.

MQZAO_ALTERNATE_USER_AUTHORITY
Ability to use alternate user authority.

This allows the MQOO_ALTERNATE_USER_AUTHORITY option to be
specified on the MQOPEN call, and the
MQPMO_ALTERNATE_USER_AUTHORITY option to be specified on the
MQPUT1 call.

MQZAO_ALL_MQI
All of the MQI authorizations.

This enables all of the authorizations described above.

The following authorizations apply to administration of a queue manager:
MQZAO_CREATE

Ability to create objects of a specified type.
MQZAO_DELETE

Ability to delete a specified object.
MQZAO_DISPLAY

Ability to display the attributes of a specified object.
MQZAO_CHANGE

Ability to change the attributes of a specified object.
MQZAO_CLEAR

Ability to delete all messages from a specified queue.
MQZAO_AUTHORIZE

Ability to authorize other users for a specified object.
MQZAO_ALL_ADMIN

All of the administration authorizations, other than MQZAO_CREATE.

The following authorizations apply to both use of the MQI and to administration
of a queue manager:
MQZAO_ALL

All authorizations, other than MQZAO_CREATE.
MQZAO_NONE

No authorizations.

ComponentData (MQBYTE×ComponentDataLength) – input/output: Component
data.

This data is kept by the queue manager on behalf of this particular component;
any changes made to it by any of the functions provided by this component are
preserved, and presented the next time one of this component’s functions is called.

The length of this data area is passed by the queue manager in the
ComponentDataLength parameter of the MQZ_INIT_AUTHORITY call.

Continuation (MQLONG) – output: Continuation indicator set by component.

The following values can be specified:

MQZ_CHECK_AUTHORITY

Chapter 10. Installable services and components 135

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|

|
|
|

|
|

|

|

MQZCI_DEFAULT
Continuation dependent on queue manager.

For MQZ_CHECK_AUTHORITY this has the same effect as MQZCI_STOP.
MQZCI_CONTINUE

Continue with next component.
MQZCI_STOP

Do not continue with next component.

CompCode (MQLONG) – output: Completion code.

It is one of the following:
MQCC_OK

Successful completion.
MQCC_FAILED

Call failed.

Reason (MQLONG) – output: Reason code qualifying CompCode.

If CompCode is MQCC_OK:
MQRC_NONE

(0, X’000’) No reason to report.

If CompCode is MQCC_FAILED:
MQRC_NOT_AUTHORIZED

(2035, X’7F3’) Not authorized for access.
MQRC_SERVICE_ERROR

(2289, X’8F1’) Unexpected error occurred accessing service.
MQRC_SERVICE_NOT_AVAILABLE

(2285, X’8ED’) Underlying service not available.

For more information on these reason codes, see the WebSphere MQ Application
Programming Reference.

C invocation
MQZ_CHECK_AUTHORITY (QMgrName, EntityName, EntityType, ObjectName,

ObjectType, Authority, ComponentData,
&Continuation, &CompCode, &Reason);

The parameters passed to the service are declared as follows:
MQCHAR48 QMgrName; /* Queue manager name */
MQCHAR12 EntityName; /* Entity name */
MQLONG EntityType; /* Entity type */
MQCHAR48 ObjectName; /* Object name */
MQLONG ObjectType; /* Object type */
MQLONG Authority; /* Authority to be checked */
MQBYTE ComponentData[n]; /* Component data */
MQLONG Continuation; /* Continuation indicator set by

component */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

MQZ_CHECK_AUTHORITY

136 System Administration Guide

|
|

|
|
|
|
|

|

|
|
|
|
|

|

|
|
|

|
|
|
|
|
|
|

|
|

|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|

|

MQZ_COPY_ALL_AUTHORITY – Copy all authority
This function is provided by an authorization service component. It is invoked by
the queue manager to copy all of the authorizations that are currently in force for a
reference object to another object.

The function identifier for this function (for MQZEP) is
MQZID_COPY_ALL_AUTHORITY.

Syntax

Parameters
The MQZ_COPY_ALL_AUTHORITY call has the following parameters.

QMgrName (MQCHAR48) – input: Queue manager name.

The name of the queue manager calling the component. This name is padded with
blanks to the full length of the parameter; the name is not terminated by a null
character.

The queue-manager name is passed to the component for information; the
authorization service interface does not require the component to make use of it in
any defined manner.

RefObjectName (MQCHAR48) – input: Reference object name.

The name of the reference object, the authorizations for which are to be copied.
The maximum length of the string is 48 characters; if it is shorter than that it is
padded to the right with blanks. The name is not terminated by a null character.

ObjectName (MQCHAR48) – input: Object name.

The name of the object for which accesses are to be set. The maximum length of
the string is 48 characters; if it is shorter than that it is padded to the right with
blanks. The name is not terminated by a null character.

ObjectType (MQLONG) – input: Object type.

The type of object specified by RefObjectName and ObjectName. It is one of the
following:
MQOT_AUTH_INFO

Authentication information.
MQOT_NAMELIST

Namelist.
MQOT_PROCESS

Process definition.
MQOT_Q

Queue.
MQOT_Q_MGR

Queue manager.

ComponentData (MQBYTE×ComponentDataLength) – input/output: Component
data.

MQZ_COPY_ALL_AUTHORITY (QMgrName, RefObjectName, ObjectName,
ObjectType, ComponentData, Continuation, CompCode, Reason)

MQZ_COPY_ALL_AUTHORITY

Chapter 10. Installable services and components 137

|
|
|

|

|
|
|

|
|

|
||

|
|

|

|
|
|

|
|
|

|

|
|
|

|

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|

|
|

This data is kept by the queue manager on behalf of this particular component;
any changes made to it by any of the functions provided by this component are
preserved, and presented the next time one of this component’s functions is called.

The length of this data area is passed by the queue manager in the
ComponentDataLength parameter of the MQZ_INIT_AUTHORITY call.

Continuation (MQLONG) – output: Continuation indicator set by component.

The following values can be specified:
MQZCI_DEFAULT

Continuation dependent on queue manager.

For MQZ_COPY_ALL_AUTHORITY this has the same effect as
MQZCI_STOP.

MQZCI_CONTINUE
Continue with next component.

MQZCI_STOP
Do not continue with next component.

CompCode (MQLONG) – output: Completion code.

It is one of the following:
MQCC_OK

Successful completion.
MQCC_FAILED

Call failed.

Reason (MQLONG) – output: Reason code qualifying CompCode.

If CompCode is MQCC_OK:
MQRC_NONE

(0, X’000’) No reason to report.

If CompCode is MQCC_FAILED:
MQRC_SERVICE_ERROR

(2289, X’8F1’) Unexpected error occurred accessing service.
MQRC_SERVICE_NOT_AVAILABLE

(2285, X’8ED’) Underlying service not available.
MQRC_UNKNOWN_REF_OBJECT

(2294, X’8F6’) Reference object unknown.

For more information on these reason codes, see the WebSphere MQ Application
Programming Reference.

C invocation
MQZ_COPY_ALL_AUTHORITY (QMgrName, RefObjectName, ObjectName, ObjectType,

ComponentData, &Continuation, &CompCode,
&Reason);

The parameters passed to the service are declared as follows:
MQCHAR48 QMgrName; /* Queue manager name */
MQCHAR48 RefObjectName; /* Reference object name */
MQCHAR48 ObjectName; /* Object name */
MQLONG ObjectType; /* Object type */
MQBYTE ComponentData[n]; /* Component data */
MQLONG Continuation; /* Continuation indicator set by

MQZ_COPY_ALL_AUTHORITY

138 System Administration Guide

|
|
|

|
|

|

|
|
|

|
|
|
|
|
|

|

|
|
|
|
|

|

|
|
|

|
|
|
|
|
|
|

|
|

|
|
|
|

|

|
|
|
|
|
|

component */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

MQZ_COPY_ALL_AUTHORITY

Chapter 10. Installable services and components 139

|
|
|

|

MQZ_DELETE_AUTHORITY – Delete authority
This function is provided by an authorization service component, and is invoked
by the queue manager to delete all of the authorizations associated with the
specified object.

The function identifier for this function (for MQZEP) is
MQZID_DELETE_AUTHORITY.

Syntax

Parameters
The MQZ_DELETE_AUTHORITY call has the following parameters.

QMgrName (MQCHAR48) – input: Queue manager name.

The name of the queue manager calling the component. This name is padded with
blanks to the full length of the parameter; the name is not terminated by a null
character.

The queue-manager name is passed to the component for information; the
authorization service interface does not require the component to make use of it in
any defined manner.

ObjectName (MQCHAR48) – input: Object name.

The name of the object for which accesses are to be deleted. The maximum length
of the string is 48 characters; if it is shorter than that it is padded to the right with
blanks. The name is not terminated by a null character.

If ObjectType is MQOT_Q_MGR, this name is the same as QMgrName.

ObjectType (MQLONG) – input: Object type.

The type of entity specified by ObjectName. It is one of the following:
MQOT_AUTH_INFO

Authentication information.
MQOT_NAMELIST

Namelist.
MQOT_PROCESS

Process definition.
MQOT_Q

Queue.
MQOT_Q_MGR

Queue manager.

ComponentData (MQBYTE×ComponentDataLength) – input/output: Component
data.

This data is kept by the queue manager on behalf of this particular component;
any changes made to it by any of the functions provided by this component are
preserved, and presented the next time one of this component’s functions is called.

MQZ_DELETE_AUTHORITY (QMgrName, ObjectName, ObjectType,
ComponentData, Continuation, CompCode, Reason)

MQZ_DELETE_AUTHORITY

140 System Administration Guide

|
|
|

|

|
|
|

|
|

|
||

|
|

|

|
|
|

|
|
|

|

|
|
|

|

|

|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|

The length of this data area is passed by the queue manager in the
ComponentDataLength parameter of the MQZ_INIT_AUTHORITY call.

Continuation (MQLONG) – output: Continuation indicator set by component.

The following values can be specified:
MQZCI_DEFAULT

Continuation dependent on queue manager.

For MQZ_DELETE_AUTHORITY this has the same effect as MQZCI_STOP.
MQZCI_CONTINUE

Continue with next component.
MQZCI_STOP

Do not continue with next component.

CompCode (MQLONG) – output: Completion code.

It is one of the following:
MQCC_OK

Successful completion.
MQCC_FAILED

Call failed.

Reason (MQLONG) – output: Reason code qualifying CompCode.

If CompCode is MQCC_OK:
MQRC_NONE

(0, X’000’) No reason to report.

If CompCode is MQCC_FAILED:
MQRC_SERVICE_ERROR

(2289, X’8F1’) Unexpected error occurred accessing service.
MQRC_SERVICE_NOT_AVAILABLE

(2285, X’8ED’) Underlying service not available.

For more information on these reason codes, see the WebSphere MQ Application
Programming Reference.

C invocation
MQZ_DELETE_AUTHORITY (QMgrName, ObjectName, ObjectType, ComponentData,

&Continuation, &CompCode, &Reason);

The parameters passed to the service are declared as follows:
MQCHAR48 QMgrName; /* Queue manager name */
MQCHAR48 ObjectName; /* Object name */
MQLONG ObjectType; /* Object type */
MQBYTE ComponentData[n]; /* Component data */
MQLONG Continuation; /* Continuation indicator set by

component */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

MQZ_DELETE_AUTHORITY

Chapter 10. Installable services and components 141

|
|

|

|
|
|

|
|
|
|
|

|

|
|
|
|
|

|

|
|
|

|
|
|
|
|

|
|

|
|
|

|

|
|
|
|
|
|
|
|

|

MQZ_ENUMERATE_AUTHORITY_DATA – Enumerate authority
data

This function is provided by an MQZAS_VERSION_4 authorization service
component, and is invoked repeatedly by the queue manager to retrieve all of the
authority data that matches the selection criteria specified on the first invocation.

The function identifier for this function (for MQZEP) is
MQZID_ENUMERATE_AUTHORITY_DATA.

Syntax

Parameters
The MQZ_ENUMERATE_AUTHORITY_DATA call has the following parameters.

QMgrName (MQCHAR48) – input: Queue manager name.

The name of the queue manager calling the component. This name is padded with
blanks to the full length of the parameter; the name is not terminated by a null
character.

The queue-manager name is passed to the component for information; the
authorization service interface does not require the component to make use of it in
any defined manner.

StartEnumeration (MQLONG) – input: Flag indicating whether call should start
enumeration.

This indicates whether the call should start the enumeration of authority data, or
continue the enumeration of authority data started by a previous call to
MQZ_ENUMERATE_AUTHORITY_DATA. The value is one of the following:
MQZSE_START

Start enumeration.

The call is invoked with this value to start the enumeration of authority
data. The Filter parameter specifies the selection criteria to be used to
select the authority data returned by this and successive calls.

MQZSE_CONTINUE
Continue enumeration.

The call is invoked with this value to continue the enumeration of
authority data. The Filter parameter is ignored in this case, and can be
specified as the null pointer (the selection criteria are determined by the
Filter parameter specified by the call that had StartEnumeration set to
MQZSE_START).

Filter (MQZAD) – input: Filter.

If StartEnumeration is MQZSE_START, Filter specifies the selection criteria to be
used to select the authority data to return. If Filter is the null pointer, no selection
criteria are used, that is, all authority data is returned. See “MQZAD – Authority
data” on page 160 for details of the selection criteria that can be used.

MQZ_ENUMERATE_AUTHORITY_DATA (QMgrName, StartEnumeration,
Filter, AuthorityBufferLength, AuthorityBuffer, AuthorityDataLength,
ComponentData, Continuation, CompCode, Reason)

MQZ_ENUMERATE_AUTHORITY_DATA

142 System Administration Guide

|
|
|
|

|

|

|
|
|

|
|

|
||

|
|

|

|
|
|

|
|
|

|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|

|
|
|
|

If StartEnumeration is MQZSE_CONTINUE, Filter is ignored, and can be
specified as the null pointer.

AuthorityBufferLength (MQLONG) – input: Length of AuthorityBuffer.

This is the length in bytes of the AuthorityBuffer parameter. The authority buffer
must be big enough to accommodate the data to be returned.

AuthorityBuffer (MQZAD) – output: Authority data.

This is the buffer in which the authority data is returned. The buffer must be big
enough to accommodate an MQZAD structure, an MQZED structure, plus the
longest entity name and longest domain name defined.

Note: This parameter is defined as an MQZAD, as the MQZAD always occurs at
the start of the buffer. However, if the buffer is actually declared as an
MQZAD, the buffer will be too small – it needs to be bigger than an
MQZAD so that it can accommodate the MQZAD, MQZED, plus entity and
domain names.

AuthorityDataLength (MQLONG) – output: Length of data returned in
AuthorityBuffer.

This is the length of the data returned in AuthorityBuffer. If the authority buffer is
too small, AuthorityDataLength is set to the length of the buffer required, and the
call returns completion code MQCC_FAILED and reason code
MQRC_BUFFER_LENGTH_ERROR.

ComponentData (MQBYTE×ComponentDataLength) – input/output: Component
data.

This data is kept by the queue manager on behalf of this particular component;
any changes made to it by any of the functions provided by this component are
preserved, and presented the next time one of this component’s functions is called.

The length of this data area is passed by the queue manager in the
ComponentDataLength parameter of the MQZ_INIT_AUTHORITY call.

Continuation (MQLONG) – output: Continuation indicator set by component.

The following values can be specified:
MQZCI_DEFAULT

Continuation dependent on queue manager.

For MQZ_ENUMERATE_AUTHORITY_DATA this has the same effect as
MQZCI_CONTINUE.

MQZCI_CONTINUE
Continue with next component.

MQZCI_STOP
Do not continue with next component.

CompCode (MQLONG) – output: Completion code.

It is one of the following:
MQCC_OK

Successful completion.

MQZ_ENUMERATE_AUTHORITY_DATA

Chapter 10. Installable services and components 143

|
|

|

|
|

|

|
|
|

|
|
|
|
|

|
|

|
|
|
|

|
|

|
|
|

|
|

|

|
|
|

|
|
|
|
|
|

|

|
|
|

MQCC_FAILED
Call failed.

Reason (MQLONG) – output: Reason code qualifying CompCode.

If CompCode is MQCC_OK:
MQRC_NONE

(0, X’000’) No reason to report.

If CompCode is MQCC_FAILED:
MQRC_BUFFER_LENGTH_ERROR

(2005, X’7D5’) Buffer length parameter not valid.
MQRC_NO_DATA_AVAILABLE

(2379, X’94B’) No data available.
MQRC_SERVICE_ERROR

(2289, X’8F1’) Unexpected error occurred accessing service.

For more information on these reason codes, see the WebSphere MQ Application
Programming Reference.

C invocation
MQZ_ENUMERATE_AUTHORITY_DATA (QMgrName, StartEnumeration, &Filter,

AuthorityBufferLength,
&AuthorityBuffer,
&AuthorityDataLength, ComponentData,
&Continuation, &CompCode,
&Reason);

The parameters passed to the service are declared as follows:
MQCHAR48 QMgrName; /* Queue manager name */
MQLONG StartEnumeration; /* Flag indicating whether call should

start enumeration */
MQZAD Filter; /* Filter */
MQLONG AuthorityBufferLength; /* Length of AuthorityBuffer */
MQZAD AuthorityBuffer; /* Authority data */
MQLONG AuthorityDataLength; /* Length of data returned in

AuthorityBuffer */
MQBYTE ComponentData[n]; /* Component data */
MQLONG Continuation; /* Continuation indicator set by

component */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

MQZ_ENUMERATE_AUTHORITY_DATA

144 System Administration Guide

|
|

|

|
|
|

|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|

|

MQZ_GET_AUTHORITY – Get authority
This function is provided by a MQZAS_VERSION_1 authorization service
component, and is invoked by the queue manager to retrieve the authority that an
entity has to access the specified object.

The function identifier for this function (for MQZEP) is
MQZID_GET_AUTHORITY.

Syntax

Parameters
The MQZ_GET_AUTHORITY call has the following parameters.

QMgrName (MQCHAR48) – input: Queue manager name.

The name of the queue manager calling the component. This name is padded with
blanks to the full length of the parameter; the name is not terminated by a null
character.

The queue-manager name is passed to the component for information; the
authorization service interface does not require the component to make use of it in
any defined manner.

EntityName (MQCHAR12) – input: Entity name.

The name of the entity whose access to the object is to be retrieved. The maximum
length of the string is 12 characters; if it is shorter than that it is padded to the
right with blanks. The name is not terminated by a null character.

EntityType (MQLONG) – input: Entity type.

The type of entity specified by EntityName. The following value can be specified:
MQZAET_PRINCIPAL

Principal.
MQZAET_GROUP

Group.

ObjectName (MQCHAR48) – input: Object name.

The name of the object for which the entity’s authority is to be retrieved. The
maximum length of the string is 48 characters; if it is shorter than that it is padded
to the right with blanks. The name is not terminated by a null character.

If ObjectType is MQOT_Q_MGR, this name is the same as QMgrName.

ObjectType (MQLONG) – input: Object type.

The type of entity specified by ObjectName. It is one of the following:
MQOT_AUTH_INFO

Authentication information.
MQOT_NAMELIST

Namelist.

MQZ_GET_AUTHORITY (QMgrName, EntityName, EntityType, ObjectName,
ObjectType, Authority, ComponentData, Continuation, CompCode, Reason)

MQZ_GET_AUTHORITY

Chapter 10. Installable services and components 145

|
|
|

|

|
|
|

|
|

|
||

|
|

|

|
|
|

|
|
|

|

|
|
|

|

|
|
|
|
|

|

|
|
|

|

|

|
|
|
|
|

MQOT_PROCESS
Process definition.

MQOT_Q
Queue.

MQOT_Q_MGR
Queue manager.

Authority (MQLONG) – output: Authority of entity.

If the entity has one authority, this field is equal to the appropriate authorization
operation (MQZAO_* constant). If it has more than one authority, this field is the
bitwise OR of the corresponding MQZAO_* constants.

ComponentData (MQBYTE×ComponentDataLength) – input/output: Component
data.

This data is kept by the queue manager on behalf of this particular component;
any changes made to it by any of the functions provided by this component are
preserved, and presented the next time one of this component’s functions is called.

The length of this data area is passed by the queue manager in the
ComponentDataLength parameter of the MQZ_INIT_AUTHORITY call.

Continuation (MQLONG) – output: Continuation indicator set by component.

The following values can be specified:
MQZCI_DEFAULT

Continuation dependent on queue manager.

For MQZ_GET_AUTHORITY this has the same effect as
MQZCI_CONTINUE.

MQZCI_CONTINUE
Continue with next component.

MQZCI_STOP
Do not continue with next component.

CompCode (MQLONG) – output: Completion code.

It is one of the following:
MQCC_OK

Successful completion.
MQCC_FAILED

Call failed.

Reason (MQLONG) – output: Reason code qualifying CompCode.

If CompCode is MQCC_OK:
MQRC_NONE

(0, X’000’) No reason to report.

If CompCode is MQCC_FAILED:
MQRC_NOT_AUTHORIZED

(2035, X’7F3’) Not authorized for access.
MQRC_SERVICE_ERROR

(2289, X’8F1’) Unexpected error occurred accessing service.
MQRC_SERVICE_NOT_AVAILABLE

(2285, X’8ED’) Underlying service not available.

MQZ_GET_AUTHORITY

146 System Administration Guide

|
|
|
|
|
|

|

|
|
|

|
|

|
|
|

|
|

|

|
|
|

|
|
|
|
|
|

|

|
|
|
|
|

|

|
|
|

|
|
|
|
|
|
|

MQRC_UNKNOWN_ENTITY
(2292, X’8F4’) Entity unknown to service.

For more information on these reason codes, see the WebSphere MQ Application
Programming Reference.

C invocation
MQZ_GET_AUTHORITY (QMgrName, EntityName, EntityType, ObjectName,

ObjectType, &Authority, ComponentData,
&Continuation, &CompCode, &Reason);

The parameters passed to the service are declared as follows:
MQCHAR48 QMgrName; /* Queue manager name */
MQCHAR12 EntityName; /* Entity name */
MQLONG EntityType; /* Entity type */
MQCHAR48 ObjectName; /* Object name */
MQLONG ObjectType; /* Object type */
MQLONG Authority; /* Authority of entity */
MQBYTE ComponentData[n]; /* Component data */
MQLONG Continuation; /* Continuation indicator set by

component */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

MQZ_GET_AUTHORITY

Chapter 10. Installable services and components 147

|
|

|
|

|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|

|

MQZ_GET_EXPLICIT_AUTHORITY – Get explicit authority
This function is provided by a MQZAS_VERSION_1 authorization service
component, and is invoked by the queue manager to retrieve the authority that a
named group has to access a specified object (but without the additional authority
of the nobody group), or the authority that the primary group of the named
principal has to access a specified object.

The function identifier for this function (for MQZEP) is
MQZID_GET_EXPLICIT_AUTHORITY.

Syntax

Parameters
The MQZ_GET_EXPLICIT_AUTHORITY call has the following parameters.

QMgrName (MQCHAR48) – input: Queue manager name.

The name of the queue manager calling the component. This name is padded with
blanks to the full length of the parameter; the name is not terminated by a null
character.

The queue-manager name is passed to the component for information; the
authorization service interface does not require the component to make use of it in
any defined manner.

EntityName (MQCHAR12) – input: Entity name.

The name of the entity whose access to the object is to be retrieved. The maximum
length of the string is 12 characters; if it is shorter than that it is padded to the
right with blanks. The name is not terminated by a null character.

EntityType (MQLONG) – input: Entity type.

The type of entity specified by EntityName. The following value can be specified:
MQZAET_PRINCIPAL

Principal.
MQZAET_GROUP

Group.

ObjectName (MQCHAR48) – input: Object name.

The name of the object for which the entity’s authority is to be retrieved. The
maximum length of the string is 48 characters; if it is shorter than that it is padded
to the right with blanks. The name is not terminated by a null character.

If ObjectType is MQOT_Q_MGR, this name is the same as QMgrName.

ObjectType (MQLONG) – input: Object type.

The type of entity specified by ObjectName. It is one of the following:
MQOT_AUTH_INFO

Authentication information.

MQZ_GET_EXPLICIT_AUTHORITY (QMgrName, EntityName, EntityType,
ObjectName, ObjectType, Authority, ComponentData, Continuation, CompCode,
Reason)

MQZ_GET_EXPLICIT_AUTHORITY

148 System Administration Guide

|
|
|
|

|

|
|
|
|
|

|
|

|
||

|
|

|

|
|
|

|
|
|

|

|
|
|

|

|
|
|
|
|

|

|
|
|

|

|

|
|
|

MQOT_NAMELIST
Namelist.

MQOT_PROCESS
Process definition.

MQOT_Q
Queue.

MQOT_Q_MGR
Queue manager.

Authority (MQLONG) – output: Authority of entity.

If the entity has one authority, this field is equal to the appropriate authorization
operation (MQZAO_* constant). If it has more than one authority, this field is the
bitwise OR of the corresponding MQZAO_* constants.

ComponentData (MQBYTE×ComponentDataLength) – input/output: Component
data.

This data is kept by the queue manager on behalf of this particular component;
any changes made to it by any of the functions provided by this component are
preserved, and presented the next time one of this component’s functions is called.

The length of this data area is passed by the queue manager in the
ComponentDataLength parameter of the MQZ_INIT_AUTHORITY call.

Continuation (MQLONG) – output: Continuation indicator set by component.

The following values can be specified:
MQZCI_DEFAULT

Continuation dependent on queue manager.

For MQZ_GET_EXPLICIT_AUTHORITY this has the same effect as
MQZCI_CONTINUE.

MQZCI_CONTINUE
Continue with next component.

MQZCI_STOP
Do not continue with next component.

CompCode (MQLONG) – output: Completion code.

It is one of the following:
MQCC_OK

Successful completion.
MQCC_FAILED

Call failed.

Reason (MQLONG) – output: Reason code qualifying CompCode.

If CompCode is MQCC_OK:
MQRC_NONE

(0, X’000’) No reason to report.

If CompCode is MQCC_FAILED:
MQRC_NOT_AUTHORIZED

(2035, X’7F3’) Not authorized for access.
MQRC_SERVICE_ERROR

(2289, X’8F1’) Unexpected error occurred accessing service.

MQZ_GET_EXPLICIT_AUTHORITY

Chapter 10. Installable services and components 149

|
|
|
|
|
|
|
|

|

|
|
|

|
|

|
|
|

|
|

|

|
|
|

|
|
|
|
|
|

|

|
|
|
|
|

|

|
|
|

|
|
|
|
|

MQRC_SERVICE_NOT_AVAILABLE
(2285, X’8ED’) Underlying service not available.

MQRC_UNKNOWN_ENTITY
(2292, X’8F4’) Entity unknown to service.

For more information on these reason codes, see the WebSphere MQ Application
Programming Reference.

C invocation
MQZ_GET_EXPLICIT_AUTHORITY (QMgrName, EntityName, EntityType,

ObjectName, ObjectType, &Authority,
ComponentData, &Continuation,
&CompCode, &Reason);

The parameters passed to the service are declared as follows:
MQCHAR48 QMgrName; /* Queue manager name */
MQCHAR12 EntityName; /* Entity name */
MQLONG EntityType; /* Entity type */
MQCHAR48 ObjectName; /* Object name */
MQLONG ObjectType; /* Object type */
MQLONG Authority; /* Authority of entity */
MQBYTE ComponentData[n]; /* Component data */
MQLONG Continuation; /* Continuation indicator set by

component */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

MQZ_GET_EXPLICIT_AUTHORITY

150 System Administration Guide

|
|
|
|

|
|

|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|

|

MQZ_INIT_AUTHORITY – Initialize authorization service
This function is provided by an authorization service component, and is invoked
by the queue manager during configuration of the component. It is expected to call
MQZEP in order to provide information to the queue manager.

The function identifier for this function (for MQZEP) is
MQZID_INIT_AUTHORITY.

Syntax

Parameters
The MQZ_INIT_AUTHORITY call has the following parameters.

Hconfig (MQHCONFIG) – input: Configuration handle.

This handle represents the particular component being initialized. It is to be used
by the component when calling the queue manager with the MQZEP function.

Options (MQLONG) – input: Initialization options.

It is one of the following:
MQZIO_PRIMARY

Primary initialization.
MQZIO_SECONDARY

Secondary initialization.

QMgrName (MQCHAR48) – input: Queue manager name.

The name of the queue manager calling the component. This name is padded with
blanks to the full length of the parameter; the name is not terminated by a null
character.

The queue-manager name is passed to the component for information; the
authorization service interface does not require the component to make use of it in
any defined manner.

ComponentDataLength (MQLONG) – input: Length of component data.

Length in bytes of the ComponentData area. This length is defined in the component
configuration data.

ComponentData (MQBYTE×ComponentDataLength) – input/output: Component
data.

This is initialized to all zeroes before calling the component’s primary initialization
function. This data is kept by the queue manager on behalf of this particular
component; any changes made to it by any of the functions (including the
initialization function) provided by this component are preserved, and presented
the next time one of this component’s functions is called.

Version (MQLONG) – input/output: Version number.

MQZ_INIT_AUTHORITY (Hconfig, Options, QMgrName, ComponentDataLength,
ComponentData, Version, CompCode, Reason)

MQZ_INIT_AUTHORITY

Chapter 10. Installable services and components 151

|
|
|

|

|
|
|

|
|

|
||

|
|

|

|
|

|

|
|
|
|
|

|

|
|
|

|
|
|

|

|
|

|
|

|
|
|
|
|

|

On input to the initialization function, this identifies the highest version number
that the queue manager supports. The initialization function must change this, if
necessary, to the version of the interface which it supports. If on return the queue
manager does not support the version returned by the component, it calls the
component’s MQZ_TERM_AUTHORITY function and makes no further use of this
component.

The following values are supported:
MQZAS_VERSION_1

Version 1.
MQZAS_VERSION_2

Version 2.
MQZAS_VERSION_3

Version 3.
MQZAS_VERSION_4

Version 4.

CompCode (MQLONG) – output: Completion code.

It is one of the following:
MQCC_OK

Successful completion.
MQCC_FAILED

Call failed.

Reason (MQLONG) – output: Reason code qualifying CompCode.

If CompCode is MQCC_OK:
MQRC_NONE

(0, X’000’) No reason to report.

If CompCode is MQCC_FAILED:
MQRC_INITIALIZATION_FAILED

(2286, X’8EE’) Initialization failed for an undefined reason.
MQRC_SERVICE_NOT_AVAILABLE

(2285, X’8ED’) Underlying service not available.

For more information on these reason codes, see the WebSphere MQ Application
Programming Reference.

C invocation
MQZ_INIT_AUTHORITY (Hconfig, Options, QMgrName, ComponentDataLength,

ComponentData, &Version, &CompCode,
&Reason);

The parameters passed to the service are declared as follows:
MQHCONFIG Hconfig; /* Configuration handle */
MQLONG Options; /* Initialization options */
MQCHAR48 QMgrName; /* Queue manager name */
MQLONG ComponentDataLength; /* Length of component data */
MQBYTE ComponentData[n]; /* Component data */
MQLONG Version; /* Version number */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

MQZ_INIT_AUTHORITY

152 System Administration Guide

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|

|
|
|
|
|

|

|
|
|

|
|
|
|
|

|
|

|
|
|
|

|

|
|
|
|
|
|
|
|

|

MQZ_REFRESH_CACHE – Refresh all authorizations
This function is provided by an MQZAS_VERSION_3 authorization service
component, and is invoked by the queue manager to refresh the list of
authorizations held internally by the component.

The function identifier for this function (for MQZEP) is
MQZID_REFRESH_CACHE (8L).

Syntax
MQZ_REFRESH_CACHE

(QMgrName, ComponentData, Continuation, CompCode, Reason)

Parameters
QMgrName (MQCHAR48) — input

Queue manager name.

The name of the queue manager calling the component. This name is
padded with blanks to the full length of the parameter; the name is not
terminated by a null character.

The queue-manager name is passed to the component for information; the
authorization service interface does not require the component to make use
of it in any defined manner.

ComponentData (MQBYTE×ComponentDataLength) — input/output
Component data.

This data is kept by the queue manager on behalf of this particular
component; any changes made to it by any of the functions provided by
this component are preserved, and presented the next time one of this
component’s functions is called.

The length of this data area is passed by the queue manager in the
ComponentDataLength parameter of the MQZ_INIT_AUTHORITY call.

Continuation (MQLONG) — output
Continuation indicator set by component.

The following values can be specified:
MQZCI_DEFAULT

Continuation dependent on queue manager.

For MQZ_REFRESH_CACHE this has the same effect as
MQZCI_CONTINUE.

MQZCI_CONTINUE
Continue with next component.

MQZCI_STOP
Do not continue with next component.

CompCode (MQLONG) — output
Completion code.

It is one of the following:
MQCC_OK

Successful completion.
MQCC_FAILED

Call failed.

Reason (MQLONG) — output
Reason code qualifying CompCode.

MQZ_INIT_AUTHORITY

Chapter 10. Installable services and components 153

|

|
|
|

|
|

|

|
|

|

|
|

|
|
|

|
|
|

|
|

|
|
|
|

|
|

|
|

|
|
|

|
|
|
|
|
|

|
|

|
|
|
|
|

|
|

If CompCode is MQCC_OK:
MQRC_NONE

(0, X’000’) No reason to report.

If CompCode is MQCC_FAILED:
MQRC_SERVICE_ERROR

(2289, X’8F1’) Unexpected error occurred accessing service.

For more information on this reason code, see the WebSphere MQ
Application Programming Reference book.

C invocation
MQZ_REFRESH_CACHE (QMgrName, ComponentData,

&Continuation, &CompCode, &Reason);

Declare the parameters as follows:
MQCHAR48 QMgrName; /* Queue manager name */
MQBYTE ComponentData[n]; /* Component data */
MQLONG Continuation; /* Continuation indicator set by

component */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

MQZ_INIT_AUTHORITY

154 System Administration Guide

|
|
|

|
|
|

|
|

|
|
|

|

|
|
|
|
|
|

|

MQZ_SET_AUTHORITY – Set authority
This function is provided by a MQZAS_VERSION_1 authorization service
component, and is invoked by the queue manager to set the authority that an
entity has to access the specified object.

The function identifier for this function (for MQZEP) is MQZID_SET_AUTHORITY.

Note: This function overrides any existing authorities. To preserve any existing
authorities you must set them again with this function.

Syntax

Parameters
The MQZ_SET_AUTHORITY call has the following parameters.

QMgrName (MQCHAR48) – input: Queue manager name.

The name of the queue manager calling the component. This name is padded with
blanks to the full length of the parameter; the name is not terminated by a null
character.

The queue-manager name is passed to the component for information; the
authorization service interface does not require the component to make use of it in
any defined manner.

EntityName (MQCHAR12) – input: Entity name.

The name of the entity whose access to the object is to be set. The maximum
length of the string is 12 characters; if it is shorter than that it is padded to the
right with blanks. The name is not terminated by a null character.

EntityType (MQLONG) – input: Entity type.

The type of entity specified by EntityName. The following value can be specified:
MQZAET_PRINCIPAL

Principal.
MQZAET_GROUP

Group.

ObjectName (MQCHAR48) – input: Object name.

The name of the object to which access is required. The maximum length of the
string is 48 characters; if it is shorter than that it is padded to the right with
blanks. The name is not terminated by a null character.

If ObjectType is MQOT_Q_MGR, this name is the same as QMgrName.

ObjectType (MQLONG) – input: Object type.

The type of entity specified by ObjectName. It is one of the following:
MQOT_AUTH_INFO

Authentication information.

MQZ_SET_AUTHORITY (QMgrName, EntityName, EntityType, ObjectName,
ObjectType, Authority, ComponentData, Continuation, CompCode, Reason)

MQZ_SET_AUTHORITY

Chapter 10. Installable services and components 155

|
|
|

|

|
|
|

|

|
|

|
||

|
|

|

|
|
|

|
|
|

|

|
|
|

|

|
|
|
|
|

|

|
|
|

|

|

|
|
|

MQOT_NAMELIST
Namelist.

MQOT_PROCESS
Process definition.

MQOT_Q
Queue.

MQOT_Q_MGR
Queue manager.

Authority (MQLONG) – input: Authority to be checked.

If one authorization is being set, this field is equal to the appropriate authorization
operation (MQZAO_* constant). If more than one authorization is being set, it is
the bitwise OR of the corresponding MQZAO_* constants.

ComponentData (MQBYTE×ComponentDataLength) – input/output: Component
data.

This data is kept by the queue manager on behalf of this particular component;
any changes made to it by any of the functions provided by this component are
preserved, and presented the next time one of this component’s functions is called.

The length of this data area is passed by the queue manager in the
ComponentDataLength parameter of the MQZ_INIT_AUTHORITY call.

Continuation (MQLONG) – output: Continuation indicator set by component.

The following values can be specified:
MQZCI_DEFAULT

Continuation dependent on queue manager.

For MQZ_SET_AUTHORITY this has the same effect as MQZCI_STOP.
MQZCI_CONTINUE

Continue with next component.
MQZCI_STOP

Do not continue with next component.

CompCode (MQLONG) – output: Completion code.

It is one of the following:
MQCC_OK

Successful completion.
MQCC_FAILED

Call failed.

Reason (MQLONG) – output: Reason code qualifying CompCode.

If CompCode is MQCC_OK:
MQRC_NONE

(0, X’000’) No reason to report.

If CompCode is MQCC_FAILED:
MQRC_NOT_AUTHORIZED

(2035, X’7F3’) Not authorized for access.
MQRC_SERVICE_ERROR

(2289, X’8F1’) Unexpected error occurred accessing service.

MQZ_SET_AUTHORITY

156 System Administration Guide

|
|
|
|
|
|
|
|

|

|
|
|

|
|

|
|
|

|
|

|

|
|
|

|
|
|
|
|

|

|
|
|
|
|

|

|
|
|

|
|
|
|
|

MQRC_SERVICE_NOT_AVAILABLE
(2285, X’8ED’) Underlying service not available.

MQRC_UNKNOWN_ENTITY
(2292, X’8F4’) Entity unknown to service.

For more information on these reason codes, see the WebSphere MQ Application
Programming Reference.

C invocation
MQZ_SET_AUTHORITY (QMgrName, EntityName, EntityType, ObjectName,

ObjectType, Authority, ComponentData,
&Continuation, &CompCode, &Reason);

The parameters passed to the service are declared as follows:
MQCHAR48 QMgrName; /* Queue manager name */
MQCHAR12 EntityName; /* Entity name */
MQLONG EntityType; /* Entity type */
MQCHAR48 ObjectName; /* Object name */
MQLONG ObjectType; /* Object type */
MQLONG Authority; /* Authority to be checked */
MQBYTE ComponentData[n]; /* Component data */
MQLONG Continuation; /* Continuation indicator set by

component */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

MQZ_SET_AUTHORITY

Chapter 10. Installable services and components 157

|
|
|
|

|
|

|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|

|

MQZ_TERM_AUTHORITY – Terminate authorization service
This function is provided by an authorization service component, and is invoked
by the queue manager when it no longer requires the services of this component.
The function must perform any cleanup required by the component.

The function identifier for this function (for MQZEP) is
MQZID_TERM_AUTHORITY.

Syntax

Parameters
The MQZ_TERM_AUTHORITY call has the following parameters.

Hconfig (MQHCONFIG) – input: Configuration handle.

This handle represents the particular component being terminated.

Options (MQLONG) – input: Termination options.

It is one of the following:
MQZTO_PRIMARY

Primary termination.
MQZTO_SECONDARY

Secondary termination.

QMgrName (MQCHAR48) – input: Queue manager name.

The name of the queue manager calling the component. This name is padded with
blanks to the full length of the parameter; the name is not terminated by a null
character.

The queue-manager name is passed to the component for information; the
authorization service interface does not require the component to make use of it in
any defined manner.

ComponentData (MQBYTE×ComponentDataLength) – input/output: Component
data.

This data is kept by the queue manager on behalf of this particular component;
any changes made to it by any of the functions provided by this component are
preserved, and presented the next time one of this component’s functions is called.

The length of this data area is passed by the queue manager in the
ComponentDataLength parameter on the MQZ_INIT_AUTHORITY call.

When the MQZ_TERM_AUTHORITY call has completed, the queue manager
discards this data.

CompCode (MQLONG) – output: Completion code.

It is one of the following:
MQCC_OK

Successful completion.

MQZ_TERM_AUTHORITY (Hconfig, Options, QMgrName, ComponentData,
CompCode, Reason)

MQZ_TERM_AUTHORITY

158 System Administration Guide

|
|
|

|

|
|
|

|
|

|
||

|
|

|

|

|

|
|
|
|
|

|

|
|
|

|
|
|

|
|

|
|
|

|
|

|
|

|

|
|
|

MQCC_FAILED
Call failed.

Reason (MQLONG) – output: Reason code qualifying CompCode.

If CompCode is MQCC_OK:
MQRC_NONE

(0, X’000’) No reason to report.

If CompCode is MQCC_FAILED:
MQRC_SERVICE_NOT_AVAILABLE

(2285, X’8ED’) Underlying service not available.
MQRC_TERMINATION_FAILED

(2287, X’8FF’) Termination failed for an undefined reason.

For more information on these reason codes, see the WebSphere MQ Application
Programming Reference.

C invocation
MQZ_TERM_AUTHORITY (Hconfig, Options, QMgrName, ComponentData,

&CompCode, &Reason);

The parameters passed to the service are declared as follows:
MQHCONFIG Hconfig; /* Configuration handle */
MQLONG Options; /* Termination options */
MQCHAR48 QMgrName; /* Queue manager name */
MQBYTE ComponentData[n]; /* Component data */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

MQZ_TERM_AUTHORITY

Chapter 10. Installable services and components 159

|
|

|

|
|
|

|
|
|
|
|

|
|

|
|
|

|

|
|
|
|
|
|

|

MQZAD – Authority data
The following table summarizes the fields in the structure.

Table 16. Fields in MQZAD

Field Description Page

StrucId Structure identifier 160

Version Structure version number 160

ProfileName Profile name 160

ObjectType Object type 161

Authority Authority 161

EntityDataPtr Address of MQZED structure identifying an entity 161

EntityType Type of entity 161

The MQZAD structure is used on the MQZ_ENUMERATE_AUTHORITY_DATA
call for two parameters:
v MQZAD is used for the Filter parameter which is input to the call. This

parameter specifies the selection criteria that are to be used to select the
authority data returned by the call.

v MQZAD is also used for the AuthorityBuffer parameter which is output from
the call. This parameter specifies the authorizations for one combination of
profile name, object type, and entity.

Fields

StrucId (MQCHAR4): Structure identifier.

The value is:
MQZAD_STRUC_ID

Identifier for authority data structure.

For the C programming language, the constant
MQZAD_STRUC_ID_ARRAY is also defined; this has the same value as
MQZAD_STRUC_ID, but is an array of characters instead of a string.

This is an input field to the service.

Version (MQLONG): Structure version number.

The value is:
MQZAD_VERSION_1

Version-1 authority data structure.

The following constant specifies the version number of the current version:
MQZAD_CURRENT_VERSION

Current version of authority data structure.

This is an input field to the service.

ProfileName (MQCHAR48): Profile name.

For the Filter parameter, this field is the profile name whose authority data is
required. If the name is entirely blank up to the end of the field or the first null
character, authority data for all profile names is returned.

MQZAD – Authority data

160 System Administration Guide

|

|

||

|||

|||

|||

|||

|||

|||

|||

|||
|

|
|

|
|
|

|
|
|

|

|

|
|
|

|
|
|

|

|

|
|
|

|
|
|

|

|

|
|
|

For the AuthorityBuffer parameter, this field is the name of a profile that matches
the specified selection criteria.

ObjectType (MQLONG): Object type.

For the Filter parameter, this field is the object type for which authority data is
required. If the value is MQOT_ALL, authority data for all object types is returned.

For the AuthorityBuffer parameter, this field is the object type to which the profile
identified by ProfileName applies.

The value is one of the following; for the Filter parameter, the value MQOT_ALL
is also valid:
MQOT_Q

Queue.
MQOT_NAMELIST

Namelist.
MQOT_PROCESS

Process definition.
MQOT_Q_MGR

Queue manager.
MQOT_AUTH_INFO

Authentication information.

Authority (MQLONG): Authority.

For the Filter parameter, this field is ignored.

For the AuthorityBuffer parameter, this field represents the authorizations that the
entity has to the objects identified by ProfileName and ObjectType. If the entity has
only one authority, the field is equal to the appropriate authorization value
(MQZAO_* constant). If the entity has more than one authority, the field is the
bitwise OR of the corresponding MQZAO_* constants.

EntityDataPtr (PMQZED): Address of MQZED structure identifying an entity.

For the Filter parameter, this field points to an MQZED structure that identifies
the entity whose authority data is required. If EntityDataPtr is the null pointer,
authority data for all entities is returned.

For the AuthorityBuffer parameter, this field points to an MQZED structure that
identifies the entity whose authority data has been returned.

EntityType (MQLONG): Entity type.

For the Filter parameter, this field specifies the entity type for which authority
data is required. If the value is MQZAET_NONE, authority data for all entity types
is returned.

For the AuthorityBuffer parameter, this field specifies the type of the entity
identified by the MQZED structure pointed to by EntityDataPtr.

The value is one of the following; for the Filter parameter, the value
MQZAET_NONE is also valid:
MQZAET_PRINCIPAL

Principal.

MQZAD – Authority data

Chapter 10. Installable services and components 161

|
|

|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|
|
|
|

|

|
|
|

|
|

|

|
|
|

|
|

|
|
|
|

MQZAET_GROUP
Group.

C declaration
typedef struct tagMQZAD MQZAD;
struct tagMQZAD {

MQCHAR4 StrucId; /* Structure identifier */
MQLONG Version; /* Structure version number */
MQCHAR48 ProfileName; /* Profile name */
MQLONG ObjectType; /* Object type */
MQLONG Authority; /* Authority */
PMQZED EntityDataPtr; /* Address of MQZED structure identifying an

entity */
MQLONG EntityType; /* Entity type */

};

MQZAD – Authority data

162 System Administration Guide

|
|

|
|
|
|
|
|
|
|
|
|
|
|

|

MQZED – Entity descriptor
The following table summarizes the fields in the structure.

Table 17. Fields in MQZED

Field Description Page

StrucId Structure identifier 163

Version Structure version number 163

EntityNamePtr Address of entity name 163

EntityDomainPtr Address of entity domain name 163

SecurityId Security identifier 163

The MQZED structure describes the information that is passed to the
MQZAS_VERSION_2 authorization service calls.

Fields

StrucId (MQCHAR4): Structure identifier.

The value is:

MQZED_STRUC_ID
Identifier for entity descriptor structure.

For the C programming language, the constant
MQZED_STRUC_ID_ARRAY is also defined; this has the same value as
MQZED_STRUC_ID, but is an array of characters instead of a string.

This is an input field to the service.

Version (MQLONG): Structure version number.

The value is:

MQZED_VERSION_1
Version-1 entity descriptor structure.

The following constant specifies the version number of the current version:

MQZED_CURRENT_VERSION
Current version of entity descriptor structure.

This is an input field to the service.

EntityNamePtr (PMQCHAR): Address of entity name.

This is a pointer to the name of the entity whose authorization is to be checked.

EntityDomainPtr (PMQCHAR): Address of entity domain name.

This is a pointer to the name of the domain containing the definition of the entity
whose authorization is to be checked.

SecurityId (MQBYTE40): Security identifier.

This is the security identifier whose authorization is to be checked.

MQZED – Entity descriptor

Chapter 10. Installable services and components 163

|

|

||

|||

|||

|||

|||

|||

|||
|

|
|

|

|

|

|
|

|
|
|

|

|

|

|
|

|

|
|

|

|

|

|

|
|

|

|

C declaration
typedef struct tagMQZED MQZED;
struct tagMQZED {

MQCHAR4 StrucId; /* Structure identifier */
MQLONG Version; /* Structure version number */
PMQCHAR EntityNamePtr; /* Address of entity name */
PMQCHAR EntityDomainPtr; /* Address of entity domain name */
MQBYTE40 SecurityId; /* Security identifier */

};

MQZED – Entity descriptor

164 System Administration Guide

|
|
|
|
|
|
|
|
|

|

Appendix A. WebSphere MQ names and default objects

This appendix describes the requirements for WebSphere MQ object names, queue
manager name transformations, and lists the system default objects.

WebSphere MQ object names
The names of the followingWebSphere MQ objects can have up to 48 single-byte
characters:
v Queue managers
v Queues
v Process definitions
v Namelists

The names of channels are restricted to 20 single-byte characters.

The characters that can be used for all WebSphere MQ names are:
v Uppercase A–Z
v Numerics 0–9
v Period (.)
v Underscore (_)
v Lowercase a–z (see note 1)
v Forward slash (/) (see note 1)
v Percent sign (%) (see note 1)

Notes:

1. Lowercase a–z, forward slash, and percent are special characters. If you use any
of these characters in a name, the name must be enclosed in quotation marks.
(Lowercase a–z characters are changed to uppercase if the name is not enclosed
in quotation marks.)
You cannot use lowercase characters on systems using EBCDIC Katakana.

2. Leading or embedded blanks are not allowed.

Understanding WebSphere MQ queue manager library names
A library is associated with each queue manager, and library names cannot be
more than 10 characters long. However in WebSphere MQ, you can give a queue
manager a name containing up to 48 characters.

For example, you can name a queue manager:
ACCOUNTING.SERVICES.QUEUE.MANAGER

The queue manager name must therefore be transformed to give a unique library
name. The rules for governing this transformation are:
1. Add QM to the start of the name

v Truncate the name to 10 characters
v Convert individual characters so that % becomes _, and / becomes #.

After this transformation, ACCOUNTING.SERVICES.QUEUE.MANAGER becomes
QMACCOUNTI.

2. If the name is still not valid, or the library exists:
v Truncate the name transformed above to 8 characters

© Copyright IBM Corp. 1994, 2002 165

v Append a two-character numeric suffix

After this transformation, ACCOUNTING.SERVICES.QUEUE.MGR2 also becomes
QMACCOUNTI, but, if a library already exists with this name, it becomes
QMACCOUN00.

3. If the name is still not valid, increment the two-character numeric suffix by one
and apply rule 2 on page 165 again.
This suffix can be incremented up to 99 times to find a valid name.

Understanding WebSphere MQ IFS directories and files
The OS/400 Integrated File System (IFS) is used extensively by WebSphere MQ to
store data. For more information about the IFS see the Integrated File System
Introduction.

Each WebSphere MQ queue, queue manager, namelist, and process object is
represented by a file. Because object names are not necessarily valid file names, the
queue manager converts the object name into a valid file name where necessary.

The path to a queue manager directory is formed from the following:
v A prefix, which is defined in the queue manager configuration file, qm.ini. The

default prefix is /QIBM/UserData/mqm.
v A literal, qmgrs.
v A coded queue manager name, which is the queue manager name transformed

into a valid directory name. For example, the queue manager queue/manager is
represented by queue&manager.

This process is referred to as name transformation.

IFS queue manager name transformation
In WebSphere MQ, you can give a queue manager a name containing up to 48
characters.

For example, you can name a queue manager QUEUE/MANAGER/ACCOUNTING/SERVICES.
In the same way that a library is created for each queue manager, each queue
manager is also represented by a file. Because of variant codepoints in EBCDIC,
there are limitations to the characters that can be used in the name. As a result, the
names of IFS files representing objects are automatically transformed to meet the
requirements of the file system.

Using the example of a queue manager with the name queue/manager,
transforming the character / to &, and assuming the default prefix, the queue
manager name in WebSphere MQ for iSeries becomes
/QIBM/UserData/mqm/qmgrs/queue&manager.

Object name transformation
Object names are not necessarily valid file system names, so the object names
might need to be transformed. The method used is different from that for queue
manager names because, although there only a few queue manager names for each
machine, there can be a large number of other objects for each queue manager.
Only process definitions, queues, and namelists are represented in the file system;
channels are not affected by these considerations.

WebSphere MQ file names

166 System Administration Guide

|
|

|

|
|

|
|
|
|

When a new name is generated by the transformation process, there is no simple
relationship with the original object name. You can use the DSPMQMOBJN
command to view the transformed names for WebSphere MQ objects.

System and default objects
When you create a queue manager using the CRTMQM command, the system
objects and the default objects are created automatically.
v The system objects are those WebSphere MQ objects required for the operation

of a queue manager or channel.
v The default objects define all the attributes of an object. When you create an

object, such as a local queue, any attributes that you do not specify explicitly are
inherited from the default object.

The following tables list the system and default objects created by CRTMQM:
v Table 18 lists the system and default queue objects.
v Table 19 lists the system and default channel objects.
v Table 20 gives the system and default process object.
v Table 21 on page 168 gives the system and default namelist object.

Table 18. System and default objects: queues

Object name Description

SYSTEM.ADMIN.CHANNEL.EVENT Event queue for channels.

SYSTEM.ADMIN.COMMAND.QUEUE Administration command queue. Used for
remote MQSC commands and PCF
commands.

SYSTEM.ADMIN.PERFM.EVENT Event queue for performance events.

SYSTEM.ADMIN.QMGR.EVENT Event queue for queue manager events.

SYSTEM.AUTH.DATA.QUEUE Used by the object authority manager
(OAM).

SYSTEM.CHANNEL.INITQ Channel initiation queue.

SYSTEM.CHANNEL.SYNCQ The queue that holds the synchronization
data for channels.

SYSTEM.CICS.INITIATION.QUEUE Default CICS® initiation queue.

SYSTEM.CLUSTER.COMMAND.QUEUE The queue used to carry messages to the
repository queue manager.

SYSTEM.CLUSTER.REPOSITORY.QUEUE The queue used to store all repository
information.

SYSTEM.CLUSTER.TRANSMIT.QUEUE The transmission queue for all messages to
all clusters.

SYSTEM.DEAD.LETTER.QUEUE Dead-letter (undelivered message) queue.

SYSTEM.DEFAULT.ALIAS.QUEUE Default alias queue.

SYSTEM.DEFAULT.AUTHINFO.CRLLDAP Default authentication information
definition.

SYSTEM.DEFAULT.INITIATION.QUEUE Default initiation queue.

SYSTEM.DEFAULT.LOCAL.QUEUE Default local queue.

SYSTEM.DEFAULT.MODEL.QUEUE Default model queue.

SYSTEM.DEFAULT.REMOTE.QUEUE Default remote queue.

WebSphere MQ file names

Appendix A. WebSphere MQ names and default objects 167

|

||
|

||
|

Table 18. System and default objects: queues (continued)

Object name Description

SYSTEM.MQSC.REPLY.QUEUE MQSC command reply-to queue. This is a
model queue that creates a temporary
dynamic queue for replies to remote MQSC
commands.

SYSTEM.PENDING.DATA.QUEUE Support deferred messages in JMS.

Table 19. System and default objects: channels

Object name Description

SYSTEM.AUTO.RECEIVER Dynamic receiver channel.

SYSTEM.AUTO.SVRCONN Dynamic server-connection channel.

SYSTEM.DEF.CLNTCONN Default client connection channel, used to
supply default values for any attributes not
specified when a CLNTCONN channel is
created on a queue manager.

SYSTEM.DEF.CLUSRCVR Default receiver channel for the cluster used
to supply default values for any attributes
not specified when a CLUSRCVR channel is
created on a queue manager in the cluster.

SYSTEM.DEF.CLUSSDR Default sender channel for the cluster used
to supply default values for any attributes
not specified when a CLUSSDR channel is
created on a queue manager in the cluster.

SYSTEM.DEF.RECEIVER Default receiver channel.

SYSTEM.DEF.REQUESTER Default requester channel.

SYSTEM.DEF.SENDER Default sender channel.

SYSTEM.DEF.SERVER Default server channel.

SYSTEM.DEF.SVRCONN Default server-connection channel.

Table 20. System and default objects: processes

Object name Description

SYSTEM.DEFAULT.PROCESS Default process definition.

Table 21. System and default objects: namelists

Object name Description

SYSTEM.DEFAULT.NAMELIST Default namelist definition.

Default objects

168 System Administration Guide

||
|
|
|

||

||
|
|
|

||

||

||
|

Appendix B. Sample resource definitions

This appendix contains the AMQSAMP4 sample OS/400 CL program.
/**/
/* */
/* Program name: AMQSAMP4 */
/* */
/* Description: Sample CL program defining MQM queues */
/* to use with the sample programs */
/* Can be run, with changes as needed, after */
/* starting the MQM */
/* */
/* Statement: Licensed Materials - Property of IBM */
/* */
/* 5724-B41 */
/* (C) Copyright IBM Corporation 1993, 2002. */
/* */
/**/
/* */
/* Function: */
/* */
/* */
/* AMQSAMP4 is a sample CL program to create or reset the */
/* MQI resources to use with the sample programs. */
/* */
/* This program, or a similar one, can be run when the MQM */
/* is started - it creates the objects if missing, or resets */
/* their attributes to the prescribed values. */
/* */
/* */
/* */
/* */
/* Exceptions signaled: none */
/* Exceptions monitored: none */
/* */
/* AMQSAMP4 has no parameters. */
/* */
/**/

PGM

/**/
/* EXAMPLES OF DIFFERENT QUEUE TYPES */
/* */
/* Create local, alias and remote queues */
/* */
/* Uses system defaults for most attributes */
/* */
/**/
/* Create a local queue */

CRTMQMQ QNAME(’SYSTEM.SAMPLE.LOCAL’) +
QTYPE(*LCL) REPLACE(*YES) +

+
TEXT(’Sample local queue’) /* description */+
SHARE(*YES) /* Shareable */+
DFTMSGPST(*YES) /* Persistent messages OK */

/* Create an alias queue */
CRTMQMQ QNAME(’SYSTEM.SAMPLE.ALIAS’) +

QTYPE(*ALS) REPLACE(*YES) +

© Copyright IBM Corp. 1994, 2002 169

+
TEXT(’Sample alias queue’) +
DFTMSGPST(*YES) /* Persistent messages OK */+
TGTQNAME(’SYSTEM.SAMPLE.LOCAL’)

/* Create a remote queue - in this case, an indirect reference */
/* is made to the sample local queue on OTHER queue manager */

CRTMQMQ QNAME(’SYSTEM.SAMPLE.REMOTE’) +
QTYPE(*RMT) REPLACE(*YES) +

+
TEXT(’Sample remote queue’)/* description */+
DFTMSGPST(*YES) /* Persistent messages OK */+
RMTQNAME(’SYSTEM.SAMPLE.LOCAL’) +
RMTMQMNAME(OTHER) /* Queue is on OTHER */

/* Create a transmission queue for messages to queues at OTHER */
/* By default, use remote node name */

CRTMQMQ QNAME(’OTHER’) /* transmission queue name */+
QTYPE(*LCL) REPLACE(*YES) +
TEXT(’transmision queue to OTHER’) +
USAGE(*TMQ) /* transmission queue */

/**/
/* SPECIFIC QUEUES AND PROCESS USED BY SAMPLE PROGRAMS */
/* */
/* Create local queues used by sample programs */
/* Create MQI process associated with sample initiation queue */
/* */
/**/
/* General reply queue */

CRTMQMQ QNAME(’SYSTEM.SAMPLE.REPLY’) +
QTYPE(*LCL) REPLACE(*YES) +

+
TEXT(’General reply queue’) +
DFTMSGPST(*YES) /* Persistent messages OK */

/* Queue used by AMQSINQA */
CRTMQMQ QNAME(’SYSTEM.SAMPLE.INQ’) +

QTYPE(*LCL) REPLACE(*YES) +
+

TEXT(’queue for AMQSINQA’) +
SHARE(*YES) /* Shareable */+
DFTMSGPST(*YES)/* Persistent messages OK */+

+
TRGENBL(*YES) /* Trigger control on */+
TRGTYPE(*FIRST)/* Trigger on first message*/+
PRCNAME(’SYSTEM.SAMPLE.INQPROCESS’) +
INITQNAME(’SYSTEM.SAMPLE.TRIGGER’)

/* Queue used by AMQSSETA */
CRTMQMQ QNAME(’SYSTEM.SAMPLE.SET’) +

QTYPE(*LCL) REPLACE(*YES) +
+

TEXT(’queue for AMQSSETA’) +
SHARE(*YES) /* Shareable */ +
DFTMSGPST(*YES)/* Persistent messages OK */ +

+
TRGENBL(*YES) /* Trigger control on */ +
TRGTYPE(*FIRST)/* Trigger on first message*/+
PRCNAME(’SYSTEM.SAMPLE.SETPROCESS’) +
INITQNAME(’SYSTEM.SAMPLE.TRIGGER’)

/* Queue used by AMQSECHA */
CRTMQMQ QNAME(’SYSTEM.SAMPLE.ECHO’) +

AMQSAMP4

170 System Administration Guide

QTYPE(*LCL) REPLACE(*YES) +
+

TEXT(’queue for AMQSECHA’) +
SHARE(*YES) /* Shareable */ +
DFTMSGPST(*YES)/* Persistent messages OK */ +

+
TRGENBL(*YES) /* Trigger control on */ +
TRGTYPE(*FIRST)/* Trigger on first message*/+
PRCNAME(’SYSTEM.SAMPLE.ECHOPROCESS’) +
INITQNAME(’SYSTEM.SAMPLE.TRIGGER’)

/* Initiation Queue used by AMQSTRG4, sample trigger process */
CRTMQMQ QNAME(’SYSTEM.SAMPLE.TRIGGER’) +

QTYPE(*LCL) REPLACE(*YES) +
TEXT(’trigger queue for sample programs’)

/* MQI Processes associated with triggered sample programs */
/* */
/***** Note - there are versions of the triggered samples ******/
/***** in different languages - set APPID for these ******/
/***** process to the variation you want to trigger ******/
/* */

CRTMQMPRC PRCNAME(’SYSTEM.SAMPLE.INQPROCESS’) +
REPLACE(*YES) +

+
TEXT(’trigger process for AMQSINQA’) +
ENVDATA(’JOBPTY(3)’) /* Submit parameter */ +

/** Select the triggered program here **/ +
APPID(’AMQSINQA’) /* C */ +

/* APPID(’AMQ0INQA’) /* COBOL */ +
/* APPID(’AMQ3INQ4’) /* RPG - ILE */

CRTMQMPRC PRCNAME(’SYSTEM.SAMPLE.SETPROCESS’) +
REPLACE(*YES) +

+
TEXT(’trigger process for AMQSSETA’) +
ENVDATA(’JOBPTY(3)’) /* Submit parameter */ +

/** Select the triggered program here **/ +
APPID(’AMQSSETA’) /* C */ +

/* APPID(’AMQ0SETA’) /* COBOL */ +
/* APPID(’AMQ3SET4’) /* RPG - ILE */

CRTMQMPRC PRCNAME(’SYSTEM.SAMPLE.ECHOPROCESS’) +
REPLACE(*YES) +

+
TEXT(’trigger process for AMQSECHA’) +
ENVDATA(’JOBPTY(3)’) /* Submit parameter */ +

/** Select the triggered program here **/ +
APPID(’AMQSECHA’) /* C */ +

/* APPID(’AMQ0ECHA’) /* COBOL */ +
/* APPID(’AMQ3ECH4’) /* RPG - ILE */

/**/
/* Normal return. */
/**/

RETURN
ENDPGM

/**/
/* END OF AMQSAMP4 */
/**/

AMQSAMP4

Appendix B. Sample resource definitions 171

172 System Administration Guide

Appendix C. Quiescing WebSphere MQ and MQSeries
systems

This appendix explains how to end gracefully (quiesce) a WebSphere MQ for
iSeries or MQSeries for AS/400 system. There are two different processes:
1. “Quiescing MQSeries for AS/400 V5.1 systems”
2. “Quiescing MQSeries for AS/400 V5.2 and WebSphere MQ for iSeries systems”

Quiescing MQSeries for AS/400 V5.1 systems
To quiesce an MQSeries for AS/400 Version 5.1 system:
1. Sign on to a new interactive MQSeries for AS/400 session, ensuring that you

are not accessing any MQSeries objects.
2. Ensure that you have:

v *ALLOBJ authority , or object management authority for the QMQM library
v Sufficient authority to use the ENDSBS command
v *USE authority for the following programs:

QMQM/AMQIQEM4
QMQM/AMQSTOP4
QMQM/AMQSPECA

3. Advise all users that you are going to stop MQSeries for AS/400.
4. Quiesce queue managers by running the AMQSTOP4 program, as follows:

CALL QMQM/AMQSTOP4 PARM(*ALL *CNTRLD 15)

If this fails, you can force a stop by issuing:
CALL QMQM/AMQSTOP4 PARM(*ALL *FORCE 15)

Quiescing MQSeries for AS/400 V5.2 and WebSphere MQ for iSeries
systems

To quiesce MQSeries for AS/400 V5.2 and WebSphere MQ for iSeries systems:
1. Sign on to a new interactive MQSeries for AS/400 or WebSphere MQ for iSeries

session, ensuring that you are not accessing any objects.
2. Ensure that you have:

v *ALLOBJ authority , or object management authority for the QMQM library
v Sufficient authority to use the ENDSBS command

3. Advise all users that you are going to stop MQSeries for AS/400.
4. How you then proceed depends on whether you want to shut down (quiesce) a

single queue manager (where others might exist) (see “Shutting down a single
queue manager”) or all the queue managers (see “Shutting down all queue
managers” on page 175).

Shutting down a single queue manager
There are three types of shutdown:
v “Planned shutdown” on page 174
v “Unplanned shutdown” on page 174
v “Shutdown under abnormal conditions” on page 174

© Copyright IBM Corp. 1994, 2002 173

|

|

|

|
|

|

|

|
|

|

|
|

|

|

|

|

|
|
|

|

|

|

|

|

|
|

|

|

|
|

|

|

|

|

|
|
|
|

|

|
|
|
|

In the procedures that follow, we use a sample queue manager name of QMgr1 and
a sample subsystem name of SUBX. Replace these with your own.

Planned shutdown
1. One hour before shutdown, execute:

RCDMQMIMG OBJ(*ALL) OBJTYPE(*ALL) MQMNAME(QMgr1) DSPJRNDTA(*YES)

2. To shut down the queue manager, execute:
ENDMQM MQMNAME(QMgr1) OPTION(*CNTRLD)

If QMgr1 does not end, the channel or applications are probably busy.
3. If you need to shut down QMgr1 immediately, execute the following:

ENDMQM MQMNAME(QMgr1) OPTION(*IMMED)
ENDCCTJOB(*YES) TIMEOUT(15)

Unplanned shutdown
1. To shut down the queue manager, execute:

ENDMQM MQMNAME(QMgr1) OPTION(*IMMED)

If QMgr1 does not end, the channel or applications are probably busy.
2. If you need to shut down QMgr1 immediately, execute the following:

ENDMQM MQMNAME(QMgr1) OPTION(*IMMED)
ENDCCTJOB(*YES) TIMEOUT(15)

Shutdown under abnormal conditions
1. To shut down the queue manager, execute:

ENDMQM MQMNAME(QMgr1) OPTION(*IMMED)

If QMgr1 does not end, continue with step 3 providing that:
v QMgr1 is in its own subsystem, or
v You can end all queue managers that share the same subsystem as QMgr1.

Use the unplanned shutdown procedure for all such queue managers.
2. When you have taken all the steps in the procedure for all the queue managers

sharing the subsystem (SUBX in our examples), execute:
ENDSBS SUBX *IMMED

If this command fails to complete, shut down all queue managers, using the
unplanned shutdown procedure, and IPL your machine.

Warning
Do not use ENDJOBABN for MQSeries or WebSphere MQ jobs that fail to end
as result of ENDJOB or ENDSBS, unless you are prepared to IPL your
machine immediately after.

3. Start the subsystem by executing:
STRSBS SUBX

4. Shut the queue manager down immediately, by executing:
ENDMQM MQMNAME(QMgr1) OPTION(*IMMED)
ENDCCTJOB(*YES) TIMEOUT(10)

5. Restart the queue manager by executing:
STRMQM MQMNAME(QMgr1)

If this fails, and you:

174 System Administration Guide

|
|

|
|

|

|

|

|

|

|
|

|
|

|

|

|

|
|

|
|

|

|

|

|
|

|
|

|

|
|
|

|
|
|
||||

|

|

|

|
|

|

|

|

v Have restarted your machine with an IPL, or
v Have only a single queue manager

Tidy up MQSeries or WebSphere MQ shared memory by executing:
ENDMQM MQMNAME(*ALL) OPTION(*IMMED)
ENDCCTJOB(*YES) TIMEOUT(15)

before repeating step 5.

If you still have problems restarting your queue manager, contact IBM support.
Any further action you might take could damage the queue manager, leaving
MQSeries or WebSphere MQ unable to recover.

Shutting down all queue managers
There are three types of shutdown:
v “Planned shutdown”
v “Unplanned shutdown”
v “Shutdown under abnormal conditions” on page 176

The procedures are almost the same as for a single queue manager, but using *ALL
instead of the queue manager name where possible, and otherwise using a
command repeatedly using each queue manager name in turn. Throughout the
procedures, we use a sample queue manager name of QMgr1 and a sample
subsystem name of SUBX. Replace these with your own.

Planned shutdown
1. One hour before shutdown, execute:

RCDMQMIMG OBJ(*ALL) OBJTYPE(*ALL) MQMNAME(QMgr1) DSPJRNDTA(*YES)

Repeat this for every queue manager that you want to shut down.
2. To shut down the queue manager, execute:

ENDMQM MQMNAME(QMgr1) OPTION(*CNTRLD)

Repeat this for every queue manager that you want to shut down; separate
commands can run in parallel.

If any queue manager does not end within a reasonable time (for example 10
minutes), proceed to step 3.

3. To shut down all queue managers immediately, execute the following:
ENDMQM MQMNAME(*ALL) OPTION(*IMMED)
ENDCCTJOB(*YES) TIMEOUT(15)

Unplanned shutdown
1. To shut down a queue manager, execute:

ENDMQM MQMNAME(QMgr1) OPTION(*IMMED)

Repeat this for every queue manager that you want to shut down; separate
commands can run in parallel.

If queue managers do not end, the channel or applications are probably busy.
2. If you need to shut down the queue managers immediately, execute the

following:
ENDMQM MQMNAME(*ALL) OPTION(*IMMED)
ENDCCTJOB(*YES) TIMEOUT(15)

Appendix C. Quiescing WebSphere MQ and MQSeries systems 175

|
|

|

|
|

|

|
|
|

|

|
|
|
|

|
|
|
|
|

|
|

|

|

|

|

|
|

|
|

|

|
|

|
|

|

|
|

|

|
|

|
|

Shutdown under abnormal conditions
1. To shut down the queue managers, execute:

ENDMQM MQMNAME(QMgr1) OPTION(*IMMED)

Repeat this for every queue manager that you want to shut down; separate
commands can run in parallel.

2. End the subsystems (SUBX in our examples), by executing:
ENDSBS SUBX *IMMED

Repeat this for every subsystem that you want to shut down; separate
commands can run in parallel.

If this command fails to complete, IPL your machine.

Warning
Do not use ENDJOBABN for MQSeries or WebSphere MQ jobs that fail to end
as result of ENDJOB or ENDSBS, unless you are prepared to IPL your
machine immediately after.

3. Start the subsystems by executing:
STRSBS SUBX

Repeat this for every subsystem that you want to start.
4. Shut the queue managers down immediately, by executing:

ENDMQM MQMNAME(*ALL) OPTION(*IMMED)
ENDCCTJOB(*YES) TIMEOUT(15)

5. Restart the queue managers by executing:
STRMQM MQMNAME(QMgr1)

Repeat this for every queue manager that you want to start.

If you still have problems restarting any queue manager, contact IBM support.
Any further action you might take could damage the queue managers, leaving
MQSeries or WebSphere MQ unable to recover.

176 System Administration Guide

|
|

|

|
|

|

|

|
|

|
|

|
|
|
||||

|

|

|

|

|
|

|

|

|

|
|
|

Appendix D. Notices

This information was developed for products and services offered in the United
States. IBM may not offer the products, services, or features discussed in this
information in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply
that only that IBM product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any IBM intellectual
property right may be used instead. However, it is the user’s responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this information. The furnishing of this information does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the information. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
information at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1994, 2002 177

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM United Kingdom Laboratories,
Mail Point 151,
Hursley Park,
Winchester,
Hampshire,
England
SO21 2JN.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Trademarks
The following are trademarks of International Business Machines Corporation in
the United States, or other countries, or both:

AIX CICS FFST
First Failure Support
Technology

IBM IBMLink

iSeries MQSeries OS/400
WebSphere z/OS

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

Notices

178 System Administration Guide

||||
|
|
||

|||
|||
|

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, and service names may be trademarks or service marks
of others.

Notices

Appendix D. Notices 179

180 System Administration Guide

Index

A
ACTION keyword, rules table 72
action keywords, rules table 72
administration

authorizations 57
description of 35
introduction to 31
local, definition of 31
MQAI, using 34
PCF commands 33
queue manager name

transformation 165
remote administration, definition

of 31
understanding WebSphere MQ file

names 165
using PCF commands 33
WebSphere MQ script (MQSC)

commands 32
alias queues

authorizations to 64
defining alias queues 24
working with alias queues 24

AllQueueManagers stanza, mqs.ini 111
alternate-user authority 64
AMQA000000 work management

object 41
AMQAJRN work management object 41
AMQAJRNMSG work management

object 41
AMQALMPX task 39
AMQCLMAA task 39
AMQCRC6B work management

object 41
AMQCRS6B task 40
AMQCRSTA task 39
AMQLAA0 work management object 40
AMQPCSEA task 40
AMQRFCD4 work management

object 41
AMQRMPPA task 40
AMQRRMFA task 40
AMQZDMAA task 40
AMQZFUMA task 40
AMQZLAA0 task 40
AMQZXMA0 task 40
AMQZXMA0 work management

object 40
API exits

what’s new for this release xv
application design, performance

considerations 106
application programming errors,

examples of 90
application programs

receiving messages 2
retrieving messages from queues 3
sending messages 2
time-independent applications 1

application queues
creating and copying, restrict access

to 64
defining application queues for

triggering 26
description of 6

APPLIDAT keyword, rules table 71
APPLNAME keyword, rules table 71
APPLTYPE keyword, rules table 71
attributes

changing local queue attributes 23
queue manager 21
queues 5

authority
alternate-user 64
context authority 65

authority data
WRKMQMAUT command 61
WRKMQMAUTD command 62

Authority field
MQZAD structure 161

Authority parameter
check authority call 134
get authority call 146
get explicit authority call 149
set authority call 156

authority profiles
working with 60
working without 60

AuthorityBuffer parameter
enumerate authority data call 143

AuthorityBufferLength parameter
enumerate authority data call 143

AuthorityDataLength parameter
enumerate authority data call 143

authorization service
component 127
defining 128
specifying the installed 60
stanza 128
user interface 129

authorizations
administration 57
MQI 54
specification tables 53

B
backup

data 83
introduction 79
journals 83
media images 82
performance 88
using journals 81

C
changing

local queue attributes 23

changing (continued)
queue manager attributes 21

channels
channel command security 65
Channels stanza, qm.ini 114
command security requirements 65
description of 8
escape command authorizations 57
exits 11
security requirements for PCF

commands 65
security, MQSC channel

commands 66
Channels stanza, qm.ini 114
characters allowed in object names 165
CL commands

creating a queue
alias 20
initiation 20
model 21
remote 18
transmission 20
using CRTMQMQ for local

queues 17
using WRKMQMQ for local

queues 18
creating WebSphere MQ objects 16
starting a local queue manager 15

clearing a local queue 23
clients and servers

definition 10
WebSphere MQ applications 10

clusters
cluster transmission queues 7
description of 9
ExitProperties stanza attributes 112

command files 32
command queue 7
command queues

command server status 37
description of 7

command server
displaying status 37
remote administration 37
starting a command server 37
stopping a command server 38

commands, PCF 33
CompCode parameter

check authority call 136
copy all authority call 138
delete authority call 141
enumerate authority data call 143
get authority call 146
get explicit authority call 149
initialize authorization service

call 152
MQZEP call 131
set authority call 156
terminate authorization service

call 158

© Copyright IBM Corp. 1994, 2002 181

complete queue manager (data and
journals), Restoring a 87

ComponentData parameter
check authority call 135
copy all authority call 138
delete authority call 140
enumerate authority data call 143
get authority call 146
get explicit authority call 149
initialize authorization service

call 151
set authority call 156
terminate authorization service

call 158
ComponentDataLength parameter

initialize authorization service
call 151

components, installable services 123
configuration file

authorization service 128
configuration files

AllQueueManagers stanza,
mqs.ini 111

Channels stanza, qm.ini 114
DefaultQueueManager stanza,

mqs.ini 112
editing 109
example mqs.ini file 120
example qm.ini file 121
ExitProperties stanza, mqs.ini 112
Log stanza, qm.ini 114
mqs.ini, description of 110
priorities 110
queue manager configuration file,

qm.ini 110
QueueManager stanza, mqs.ini 113
TCP stanza, qm.ini 116

configuring logs 114
context authority 65
Continuation parameter

check authority call 135
copy all authority call 138
delete authority call 141
enumerate authority data call 143
get authority call 146
get explicit authority call 149
set authority call 156

CorrelId, performance
considerations 106

creating
dynamic (temporary) queue 3
model queue 3
predefined (permanent) queue 3
process definition 27

creating service components 127
creating WebSphere MQ objects 16

D
data

backup 83
restoring 87

data conversion
ConvEBCDICNewline attribute,

AllQueueManagers stanza 111
EBCDIC NL character conversion to

ASCII 111

data types, detailed description
elementary

MQHCONFIG 132
PMQFUNC 132

structure
MQZAD 160
MQZED 163

dead-letter header, MQDLH 69
dead-letter queues

defining a dead-letter queue 22
description of 7

default objects
introduction 10
list of 167

DefaultQueueManager stanza,
mqs.ini 112

defining
alias queue 24
application queue for triggering 26
dead-letter queue 22
initiation queue 27
local queue 21
model queue 25
WebSphere MQ queues 5

deleting a local queue 23
DESTQ keyword, rules table 71
DESTQM keyword, rules table 71
diagnostic information, obtaining 97
directories, queue manager 64
display

default object attributes 22
process definitions 27
status of command server 37

distributed queuing example 27
DLQ handler

invoking 69
rules table 70

DSPMQMAUT command 60
dynamic binding 126
dynamic queues

authorizations 64
description of 3

E
EBCDIC NL character conversion to

ASCII 111
EntityDataPtr field

MQZAD structure 161
EntityDomainPtr field

MQZED structure 163
EntityName parameter

check authority call 133
get authority call 145
get explicit authority call 148
set authority call 155

EntityNamePtr field
MQZED structure 163

EntityType field
MQZAD structure 161

EntityType parameter
check authority call 133
get authority call 145
get explicit authority call 148
set authority call 155

EntryPoint parameter
MQZEP call 131

environment variables
MQSPREFIX 111

error logs
errors occurring before log

established 101
example, WebSphere MQ 102
log files 101

escape PCFs 34
event queues, description of 8
examples

creating a transmission queue 20
creating an alias queue 20
creating local queues

using the CRTMQMQ
command 17

using the WRKMQMQ
command 18

creating remote queues
as a queue manager alias 19
as a remote queue definition 18
as an alias to a reply-to queue 19

error log, WebSphere MQ 102
mqs.ini file 120
qm.ini file 121

ExitProperties stanza, mqs.ini 112
extending queue manager facilities 11

F
FEEDBACK keyword, rules table 71
FFST (first-failure support

technology) 104
file names 165
files

IFS directories 166
log files, in problem

determination 101
queue manager configuration 110
understanding names 165
WebSphere MQ configuration 110

Filter parameter
enumerate authority data call 142

FORMAT keyword, rules table 72
formatting trace 100
function

MQZ_REFRESH_CACHE 153
Function parameter

MQZEP call 131
FWDQ keyword, rules table 73
FWDQM keyword, rules table 73

G
generic profiles 59

what’s new for this release xiv
GRTMQMAUT command 60

H
Hconfig parameter

initialize authorization service
call 151

MQZEP call 131
terminate authorization service

call 158
HEADER keyword, rules table 73

182 System Administration Guide

I
initialization 125
initiation queues

defining 27
description of 7

INPUTQ keyword, rules table 70
INPUTQM keyword, rules table 70
installable service

authorization service 127
component

check authority 133
copy all authority 137
delete authority 140
enumerate authority data 142
get authority 145
get explicit authority 148
initialize authorization

service 151
MQZEP 131
set authority 155
terminate authorization

service 158
Component data 125
component entry-points 124
components 124
configuring services 126
functions 124
initialization 125
interface to 130
return information 124

installable services 153
installed authorization service

specifying 60
installed authorization service, Specifying

the 60

J
journals

backup 83
introduction 79
managing 84
restoring 87
using 81

L
length of object names 165
libraries, using SAVLIB to save

WebSphere MQ 88
local administration, definition of 31
local queues 21

changing queue attributes, commands
to use 23

clearing 23
copying a local queue definition 22
defining 21
defining application queues for

triggering 26
deleting 23
description of 5
specific queues used by WebSphere

MQ 6
working with local queues 21

Log stanza, qm.ini 114
logical unit of work, definition of 11

logs
configuring 114
errors occurring before error log

established 101
log files, in problem

determination 101
Log stanza, qm.ini 114

M
managing objects for triggering 26
maximum line length, MQSC

commands 33
media images

introduction 82
recovery 83

message length, decreasing 23
message persistence, performance

considerations 106
message queuing 1
message-driven processing 1
messages

application data 2
containing unexpected

information 96
definition of 1
message descriptor 2
message lengths 2
message-driven processing 1
not appearing on queues 95
operator messages 102
queuing 1
retrieval algorithms 3
retrieving messages from queues 3
sending and receiving 2
undelivered 103

model queues
creating a model queue 3
defining 25
working with 25

MQAI, description of 34
MQDLH, dead-letter header 69
MQHCONFIG 132
MQI (message-queuing interface)

authorization specification tables 53
authorizations 54
definition of 1
queue manager calls 5
receiving messages 2
sending messages 2

MQI authorizations 54
MQOPEN authorizations 54
MQOT_* values 161
MQPUT and MQPUT1, performance

considerations 107
MQPUT authorizations 54
mqs.ini configuration file

AllQueueManagers stanza 111
DefaultQueueManager stanza 112
definition of 109
editing 109
ExitProperties stanza 112
priorities 110
QueueManager stanza 113

MQSC commands
authorization 57
command files, input 32

MQSC commands (continued)
escape PCFs 34
maximum line length 33
object attribute names 4
overview 32
security requirements, channel

commands 66
MQSeries for AS/400, quiescing 173
MQSPREFIX, environment variable 111
MQZ_CHECK_AUTHORITY call 133
MQZ_COPY_ALL_AUTHORITY

call 137
MQZ_DELETE_AUTHORITY call 140
MQZ_ENUMERATE_AUTHORITY

_DATA call 142
MQZ_GET_AUTHORITY call 145
MQZ_GET_EXPLICIT_AUTHORITY

call 148
MQZ_INIT_AUTHORITY call 151
MQZ_REFRESH_CACHE function 153
MQZ_SET_AUTHORITY call 155
MQZ_TERM_AUTHORITY call 158
MQZAD structure 160
MQZAD_* values 160
MQZAET_* values 161
MQZAO_* values 161
MQZAO, constants and authority 54
MQZED structure 163
MQZED_* values 163
MQZEP call 131
MQZSE_* values 142
MsgId, performance considerations 106
MSGTYPE keyword, rules table 72

N
namelists, description of 9
naming conventions 3
national language support

EBCDIC NL character conversion to
ASCII 111

operator messages 102
new function xiii
NL character, EBCDIC conversion to

ASCII 111

O
OAM (Object Authority Manager)

description of 48
guidelines for using 64
resources protected by 48
sensitive operations 64

object authority manager 127
object names 4
ObjectName parameter

check authority call 133
copy all authority call 137
delete authority call 140
get authority call 145
get explicit authority call 148
set authority call 155

objects
access to 47
administration of 31
attributes of 4

Index 183

objects (continued)
automation of administration

tasks 33
channels, description of 8
clusters, description of 9
creating 16
default object attributes,

displaying 22
generic profiles 59
local queues 5
managing objects for triggering 26
multiple queues 5
naming conventions 4
process definitions 8
queue manager objects used by MQI

calls 5
queue managers 5
queue objects, using 6
remote queues 5
system default objects 10
using MQSC commands to

administer 32
ObjectType field

MQZAD structure 161
ObjectType parameter

check authority call 134
copy all authority call 137
delete authority call 140
get authority call 145
get explicit authority call 148
set authority call 155

operator
commands, no response from 93
messages 102

Options parameter
initialize authorization service

call 151
terminate authorization service

call 158
OS/400 message queue 97

P
pattern-matching keywords, rules

table 71
PCF (programmable command format)

administration tasks 33
attributes in PCFs 34
authorization specification tables 53
automating administrative tasks using

PCF 33
channel security, requirements 65
escape PCFs 34
MQAI, using to simplify use of 34
object attribute names 4

performance considerations
application design 106
CorrelId 106
message persistence 106
MQPUT and MQPUT1 107
MsgId 106
syncpoint 107
trace 98
variable length 106

permanent (predefined) queues 3
PERSIST keyword, rules table 72
PMQFUNC 132

predefined (permanent) queues 3
primary initialization 125
primary termination 125
problem determination

application design 106
applications 94
command errors 92
dead-letter queues 103
diagnostic information 97
distributed queues 96
error logs 100
error logs in the IFS 98
errors occurring before error log

established 101
FFST (first-failure support

technology) 104
introduction 89
log files 101
message length 106
message persistence 106
messages 95
no response from commands 93
operator messages 102
OS/400 message queue 97
performance 106
preliminary checks

network effects 92
operating system 93
problem affects all users 92
problem intermittent 92
problem occurs at specific

times 93
problem that can be

reproduced 91
problem characteristics 91
programming errors 90
queue problems 94
remote queues 94
sample error log 102
storage 107
syncpoint frequency 107
system history log 97
threads 107
trace 98
undelivered messages 103
unexpected message information 96
user’s job log 97
WebSphere MQ job log 97
work with problems 97
WRKPRB command 97

process definitions
creating 27
description of 8
displaying 27

processing, message-driven 1
ProfileName field

MQZAD structure 160
programming errors, examples of 90
protected resources 48
PUTAUT keyword, rules table 73

Q
qm.ini configuration file

Channels stanza 114
definition of 110
editing 109

qm.ini configuration file (continued)
Log stanza 114
priorities 110
TCP stanza 116

QMgrName parameter
check authority call 133
copy all authority call 137
delete authority call 140
enumerate authority data call 142
get authority call 145
get explicit authority call 148
initialize authorization service

call 151
set authority call 155
terminate authorization service

call 158
QMQM work management object 40
QMQMJOBD work management

object 41
QMQMMSG work management

object 41
QMQMRUN20 work management

object 41
QMQMRUN35 work management

object 41
QMQMRUN50 work management

object 41
queue manager

ini file
authorization service 128

restoring complete 87
queue manager ini file 128
queue managers

attributes, changing 21
authorizations 64
command server 37
description of 5
directories 64
extending queue manager

facilities 11
name transformation 165
object authority manager,

description 48
objects used in MQI calls 5
qm.ini files 110

QueueManager stanza, mqs.ini 113
queues

alias 24
application queues 26
attributes 5
authorizations to 64
changing queue attributes 23
clearing local queues 23
dead-letter, defining 22
defining WebSphere MQ queues 5
definition of 2
deleting a local queue 23
dynamic (temporary) queues 3
extending queue manager

facilities 11
initiation queues 27
local queues 5
local, working with 21
model queues 3, 25
multiple queues 5
predefined (permanent) queues 3
queue managers, description of 5

184 System Administration Guide

queues (continued)
queue objects, using 6
retrieving messages from 3
specific local queues used by

WebSphere MQ 6
quiescing

MQSeries systems 173
WebSphere MQ systems 173

R
REASON keyword, rules table 72
Reason parameter

check authority call 136
copy all authority call 138
delete authority call 141
enumerate authority data call 144
get authority call 146
get explicit authority call 149
initialize authorization service

call 152
MQZEP call 131
set authority call 156
terminate authorization service

call 159
recovery

introduction 79
media images 82
performance 88
using journals 81

RefObjectName parameter
copy all authority call 137

remote administration
command server 37
definition of remote

administration 31
remote queues

authorizations to 64
examples of creating 18
security considerations 65

reply-to queues, description of 8
REPLYQ keyword, rules table 72
REPLYQM keyword, rules table 72
resources, updating under syncpoint

control 11
restart

introduction 79
media images 82
performance 88
using journals 81

restoring
complete queue manager 87
journal receivers 87

restricting access to MQM objects 47
retrieval algorithms for messages 3
RETRY keyword, rules table 73
RETRYINT keyword, rules table 70
rules table, DLQ handler

control data entry
INPUTQ keyword 70
INPUTQM keyword 70
RETRYINT keyword 70
WAIT keyword 70

example of 77
patterns and actions (rules)

ACTION keyword 72
APPLIDAT keyword 71

rules table, DLQ handler (continued)
patterns and actions (rules) (continued)

APPLNAME keyword 71
APPLTYPE keyword 71
DESTQ keyword 71
DESTQM keyword 71
FEEDBACK keyword 71
FORMAT keyword 72
FWDQ keyword 73
FWDQM keyword 73
HEADER keyword 73
introduction 71
MSGTYPE keyword 72
PERSIST keyword 72
PUTAUT keyword 73
REASON keyword 72
REPLYQ keyword 72
REPLYQM keyword 72
RETRY keyword 73
USERID keyword 72

processing 75
syntax 74

RUNMQCHI task 40
RUNMQCHL task 40
RUNMQDLQ task 40
RUNMQLSR task 40
RUNMQTRM task 40
RVKMQMAUT command 60

S
SAVLIB, using to save WebSphere MQ

libraries 88
secondary initialization 125
secondary termination 125
secure sockets layer (SSL)

MQSC commands 66
protecting channels 66
what’s new for this release xiii

security
administration authorizations 57
command security requirements 65
considerations 47
context authority 65
MQI authorizations 54
MQSC channel commands 66
object authority manager (OAM) 48
remote queues 65
resources protected by the OAM 48
security requirements for PCF

commands 65
sensitive operations, OAM 64
WebSphere MQ authorities 48

security enabling interface (SEI) 127
SecurityId field

MQZED structure 163
SEI (WebSphere MQ security enabling

interface) 127
sensitive operations, OAM 64
servers 10
service component

authorization 127
creating your own 127
stanza 126

service stanza 126
setting your processor capacity

what’s new for this release xiv, xv

specifying the installed authorization
service 60

stanza
authorization service 128

stanzas
AllQueueManagers, mqs.ini 111
Channels, qm.ini 114
DefaultQueueManager, mqs.ini 112
ExitProperties, mqs.ini 112
Log, qm.ini 114
QueueManager, mqs.ini 113
TCP, qm.ini 116

StartEnumeration parameter
enumerate authority data call 142

starting a command server 37
stopping a command server 38
storage problems 107
STRMQMDLQ command 69
StrucId field

MQZAD structure 160
MQZED structure 163

syncpoint, performance
considerations 107

system default objects 10
system history log 97
system objects 167

T
tasks, WebSphere MQ 39
TCP stanza, qm.ini 116
temporary (dynamic) queues 3
termination 125
time-independent applications 1
trace data

formatting 100
lifetime of 98
selective 98
usage of 98
wrapping 100

trace, performance considerations 98
transactional support, updating under

syncpoint control 11
transmission queues

cluster transmission queues 7
description of 7

triggering
defining an application queue for

triggering 26
managing objects for triggering 26
message-driven processing 1

U
user exits

channel exits 11
data conversion exits 11

user’s job log 97
USERID keyword, rules table 72
using CL commands 13
using SAVLIB to save WebSphere MQ

libraries 88

Index 185

V
variable length, performance

considerations 106
Version field

MQZAD structure 160
MQZED structure 163

Version parameter
initialize authorization service

call 152

W
WAIT keyword, rules table 70
WebSphere MQ

creating objects 16
job log 97
security enabling interface (SEI) 127

WebSphere MQ Explorer
description of 35
prerequisite software 36
required resource definitions 36

WebSphere MQ for iSeries
backups of data 83
CL commands 13
journal management 84
journal usage 81
journals 79
media images 82
quiescing 173
recovery from media images 83
restoring a complete queue

manager 87
restoring journal receivers 87

WebSphere MQ objects, creating 16
WebSphere MQ tasks 39
What’s new for this release xiii
work management

objects 40
tasks 39
using 41

work with problems 97
working with authority profiles 60
working without authority profiles 60
wrapping trace 100
WRKMQMAUT command 61
WRKMQMAUTD command 62
WRKPRB command 97

186 System Administration Guide

Sending your comments to IBM

If you especially like or dislike anything about this book, please use one of the
methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on
the accuracy, organization, subject matter, or completeness of this book.

Please limit your comments to the information in this book and the way in which
the information is presented.

To make comments about the functions of IBM products or systems, talk to your
IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate, without incurring
any obligation to you.

You can send your comments to IBM in any of the following ways:
v By mail, to this address:

User Technologies Department (MP095)
IBM United Kingdom Laboratories
Hursley Park
WINCHESTER,
Hampshire
SO21 2JN
United Kingdom

v By fax:
– From outside the U.K., after your international access code use

44–1962–816151
– From within the U.K., use 01962–816151

v Electronically, use the appropriate network ID:
– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
– IBMLink™: HURSLEY(IDRCF)
– Internet: idrcf@hursley.ibm.com

Whichever method you use, ensure that you include:
v The publication title and order number
v The topic to which your comment applies
v Your name and address/telephone number/fax number/network ID.

© Copyright IBM Corp. 1994, 2002 187

188 System Administration Guide

����

Printed in U.S.A.

SC34-6070-00

	Contents
	Figures
	Tables
	About this book
	Who this book is for
	What you need to know to understand this book
	How to use this book

	What's new for this release
	A change of name
	Secure Sockets Layer (SSL) support
	OAM generic profiles
	Modifications to existing commands
	New commands for authority profiling
	Setting your license units
	Using installable services
	Using API exits
	Quiescing a WebSphere MQ or MQSeries system

	Chapter 1. Introduction to WebSphere MQ
	WebSphere MQ and message queuing
	Time-independent applications
	Message-driven processing

	Messages and queues
	What is a message?
	Message lengths
	How do applications send and receive messages?

	What is a queue?
	Predefined queues and dynamic queues
	Retrieving messages from queues

	Objects
	Object names
	Managing objects
	Object attributes
	WebSphere MQ queue managers
	WebSphere MQ queues
	Using queue objects
	Specific local queue types and their uses

	Process definitions
	Channels
	Clusters
	Namelists
	Authentication information objects

	System default objects
	Clients and servers
	WebSphere MQ applications in a client-server environment

	Extending queue manager facilities
	User exits

	Security
	Transactional support

	Chapter 2. Managing WebSphere MQ for iSeries using CL commands
	WebSphere MQ applications
	WebSphere MQ for iSeries CL commands
	General usage tips

	Before you start
	Starting a local queue manager
	Creating WebSphere MQ objects
	Examples of creating a local queue
	Creating a local queue using the CRTMQMQ command
	Creating a local queue using the WRKMQMQ command

	Examples of creating a remote queue
	Creating a remote queue as a remote queue definition
	Creating a remote queue as a queue manager alias
	Creating a remote queue as an alias to a reply-to queue

	Creating a transmission queue
	Creating an initiation queue
	Creating an alias queue
	Creating a model queue
	Altering queue manager attributes

	Working with local queues
	Defining a local queue
	Defining a dead-letter queue
	Displaying default object attributes
	Copying a local queue definition
	Changing local queue attributes
	Clearing a local queue
	Deleting a local queue
	Enabling large queues

	Working with alias queues
	Defining an alias queue
	Using other commands with alias queues

	Working with model queues
	Defining a model queue
	Using other commands with model queues

	Managing objects for triggering
	Defining an application queue for triggering
	Defining an initiation queue
	Creating a process definition
	Displaying your process definition

	Communicating between two systems

	Chapter 3. Alternative ways of administering WebSphere MQ
	Local and remote administration
	Administration using MQSC commands
	MQSC command files

	Administration using PCF commands
	Attributes in MQSC and PCF commands
	Escape PCFs
	Using the MQAI to simplify the use of PCFs

	Using the WebSphere MQ Explorer
	What you can do with the WebSphere MQ Explorer
	Prerequisite software
	Required definitions for administration

	Managing the command server for remote administration
	Starting the command server
	Displaying the status of the command server
	Stopping a command server

	Instrumentation events

	Chapter 4. Work management
	Description of WebSphere MQ tasks
	WebSphere MQ work management objects
	How WebSphere MQ uses the work management objects
	The WebSphere MQ message queue
	Default system examples

	Configuring work management
	Configuration examples

	Chapter 5. Protecting WebSphere MQ objects
	Security considerations
	Understanding the Object Authority Manager
	Resources you can protect with the OAM

	WebSphere MQ authorities
	Granting WebSphere MQ authorities to WebSphere MQ objects
	Access authorizations
	Using the GRTMQMAUT command
	Using the RVKMQMAUT command
	Using the DSPMQMAUT command
	Using the RFRMQMAUT command

	Understanding the authorization specification tables
	MQI authorizations
	Administration authorizations
	Authorizations for MQSC commands in escape PCFs
	Authorizations for PCF commands

	Generic OAM profiles
	Using wildcard characters
	Profile priorities

	Specifying the installed authorization service
	Working without authority profiles
	Working with authority profiles
	WRKMQMAUT
	WRKMQMAUTD

	Object Authority Manager guidelines
	Queue manager directories
	Queues
	Alternate-user authority
	Context authority
	Remote security considerations
	Channel command security
	PCF commands
	MQSC channel commands
	Protecting channels with SSL

	Chapter 6. The WebSphere MQ dead-letter queue handler
	Invoking the DLQ handler
	The DLQ handler rules table
	Control data
	Rules (patterns and actions)
	The pattern-matching keywords
	The action keywords

	Rules table conventions

	Processing the rules table
	Ensuring that all DLQ messages are processed

	An example DLQ handler rules table

	Chapter 7. Backup, recovery, and restart
	WebSphere MQ for iSeries journals
	WebSphere MQ for iSeries journal usage
	Media images
	Recovery from media images

	Backups of WebSphere MQ for iSeries data
	Journal management
	Restoring a complete queue manager (data and journals)
	Restoring journal receivers for a particular queue manager

	Performance considerations
	Using SAVLIB to save WebSphere MQ libraries

	Chapter 8. Analyzing problems
	Preliminary checks
	Problem characteristics
	Can you reproduce the problem?
	Is the problem intermittent?
	Problems with commands
	Does the problem affect all users of the WebSphere MQ for iSeries application?
	Does the problem affect specific parts of the network?
	Does the problem occur only on WebSphere MQ
	Does the problem occur at specific times of the day?
	Have you failed to receive a response from a command?

	Determining problems with WebSphere MQ applications
	Are some of your queues working?
	Does the problem affect only remote queues?
	Does the problem affect messages?
	Messages do not appear on the queue
	Messages contain unexpected or corrupted information

	Unexpected messages are received when using distributed queues

	Obtaining diagnostic information
	Using WebSphere MQ for iSeries trace
	Trace usage
	Selective trace
	Wrapping trace

	Formatting trace output

	Error logs
	Log files
	Early errors
	Operator messages
	An example WebSphere MQ error log

	Dead-letter queues
	First-failure support technology (FFST)
	Performance considerations
	Application design considerations
	Effect of message length
	Effect of message persistence
	Searching for a particular message
	Queues that contain messages of different lengths
	Frequency of syncpoints
	Use of the MQPUT1 call

	Number of threads in use
	Specific performance problems
	Storage problems
	Is your application or WebSphere MQ for iSeries running slowly?

	Chapter 9. Configuring WebSphere MQ
	WebSphere MQ configuration files
	Editing configuration files
	When do you need to edit a configuration file?
	Configuration file priorities

	The WebSphere MQ configuration file mqs.ini
	Queue manager configuration files qm.ini

	Attributes for changing WebSphere MQ configuration information
	The AllQueueManagers stanza
	The DefaultQueueManager stanza
	The ExitProperties stanza
	The QueueManager stanza

	Changing queue manager configuration information
	The Log stanza
	The Channels stanza
	The TCP stanza

	API exits
	Why use API exits
	How you use API exits
	How to configure WebSphere MQ for API exits
	How to write an API exit

	What happens when an API exit runs?
	Configuring API exits
	Attributes for all stanzas
	Sample stanzas
	Changing the configuration information

	Example mqs.ini and qm.ini files

	Chapter 10. Installable services and components
	Why installable services?
	Functions and components
	Entry-points
	Return codes
	Component data

	Initialization
	Primary initialization
	Secondary initialization
	Primary termination
	Secondary termination

	Configuring services and components
	Service stanza format
	Service component stanza format

	Creating your own service component
	Authorization service
	Object authority manager (OAM)
	Defining the service to the operating system

	Configuring authorization service stanzas
	Authorization service interface

	Installable services interface reference information
	How the functions are shown
	Parameters and data types

	MQZEP – Add component entry point
	Syntax
	Parameters
	C invocation

	MQHCONFIG – Configuration handle
	C declaration

	PMQFUNC – Pointer to function
	C declaration

	MQZ_CHECK_AUTHORITY – Check authority
	Syntax
	Parameters
	C invocation

	MQZ_COPY_ALL_AUTHORITY – Copy all authority
	Syntax
	Parameters
	C invocation

	MQZ_DELETE_AUTHORITY – Delete authority
	Syntax
	Parameters
	C invocation

	MQZ_ENUMERATE_AUTHORITY_DATA – Enumerate authority data
	Syntax
	Parameters
	C invocation

	MQZ_GET_AUTHORITY – Get authority
	Syntax
	Parameters
	C invocation

	MQZ_GET_EXPLICIT_AUTHORITY – Get explicit authority
	Syntax
	Parameters
	C invocation

	MQZ_INIT_AUTHORITY – Initialize authorization service
	Syntax
	Parameters
	C invocation

	MQZ_REFRESH_CACHE – Refresh all authorizations
	Syntax
	Parameters
	C invocation

	MQZ_SET_AUTHORITY – Set authority
	Syntax
	Parameters
	C invocation

	MQZ_TERM_AUTHORITY – Terminate authorization service
	Syntax
	Parameters
	C invocation

	MQZAD – Authority data
	Fields
	C declaration

	MQZED – Entity descriptor
	Fields
	C declaration

	Appendix A. WebSphere MQ names and default objects
	WebSphere MQ object names
	Understanding WebSphere MQ queue manager library names
	Understanding WebSphere MQ IFS directories and files
	IFS queue manager name transformation
	Object name transformation

	System and default objects

	Appendix B. Sample resource definitions
	Appendix C. Quiescing WebSphere MQ and MQSeries systems
	Quiescing MQSeries for AS/400 V5.1 systems
	Quiescing MQSeries for AS/400 V5.2 and WebSphere MQ for iSeries systems
	Shutting down a single queue manager
	Planned shutdown
	Unplanned shutdown
	Shutdown under abnormal conditions

	Shutting down all queue managers
	Planned shutdown
	Unplanned shutdown
	Shutdown under abnormal conditions

	Appendix D. Notices
	Trademarks

	Index
	Sending your comments to IBM

