
MQSeries®

Event Monitoring

SC34-5760-01

���

Note!
Before using this information and the product it supports, be sure to read the general information under “Appendix D.
Notices” on page 137.

Second edition (November 2000)

This edition applies to the following products:
v MQSeries for AIX®, Version 5 Release 1

v MQSeries for AS/400®, Version 5 Release 1

v MQSeries for AT&T GIS UNIX®, Version 2 Release 2

v MQSeries for Compaq OpenVMS, Version 2 Release 2.1.1

v MQSeries for Compaq Tru64 UNIX, Version 5 Release 1

v MQSeries for HP-UX, Version 5 Release 1

v MQSeries for OS/2® Warp, Version 5 Release 1

v MQSeries for OS/390®, Version 5 Release 2

v MQSeries for SINIX and DC/OSx, Version 2 Release 2

v MQSeries for Sun Solaris, Version 5 Release 1

v MQSeries for Sun Solaris, Intel® Platform Edition, Version 5 Release 1

v MQSeries for Tandem NonStop Kernel, Version 2 Release 2.0.1

v MQSeries for Windows NT®, Version 5 Release 1

v MQSeries for Windows®, Version 2 Release 1

and to all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1994, 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures v

Tables vii

About this book ix
Who this book is for ix
What you need to know to understand this book . . ix
How to use this book ix

Chapter 1. An introduction to
instrumentation events 1
What instrumentation events are. 1

Event notification through event queues 2
Types of event 2

Queue manager events 4
Channel events 6
Performance events 7

Enabling and disabling events 8
Enabling and disabling queue manager events . . 9
Enabling channel events 9
Enabling performance events 10

Conditions that cause events 10
Event queues 11
When an event queue is unavailable 11
Using triggered event queues 11
Format of event messages 12
Using event monitoring in an MQSeries network . . 12
Monitoring performance on Windows NT 13

Chapter 2. Understanding performance
events 15
What performance events are 15

Performance event statistics 15
Understanding queue service interval events . . . 16

What queue service interval events are 16
Understanding the service timer 17
Queue service interval events algorithm 18
Enabling queue service interval events 18

Queue service interval events examples 19
Example 1 (queue service interval events) . . . 20
What queue service interval events tell you. . . 21
Example 2 (queue service interval events) . . . 21
Example 3 (queue service interval events) . . . 23

Understanding queue depth events 24
What queue depth events are 25
Enabling queue depth events 25

Queue depth events examples 28
Example 1 (queue depth events) 28
Example 2 (queue depth events) 30

Chapter 3. Event message reference . . 33
Event message format 33

Message descriptor (MQMD) in event messages 34
Message data in event messages 35

MQMD (Message descriptor) 35
MQCFH (Event header) 41

C language declaration 43
COBOL language declaration 43
PL/I language declaration (AIX, OS/2, OS/390,
and Windows NT) 43
System/390® assembler-language declaration
(OS/390 only) 44
Visual Basic® language declaration (Windows
platforms only) 44

Event message descriptions 45
Alias Base Queue Type Error 46

Event data. 46
Bridge Started 48

Event data. 48
Bridge Stopped 49

Event data. 49
Channel Activated 51

Event data. 51
Channel Auto-definition Error 52

Event data. 52
Channel Auto-definition OK 54

Event data. 54
Channel Conversion Error 55

Event data. 55
Channel Not Activated 58

Event data. 58
Channel Started 60

Event data. 60
Channel Stopped 62

Event data. 62
Channel Stopped By User 65

Event data. 65
Default Transmission Queue Type Error 67

Event data. 67
Default Transmission Queue Usage Error 69

Event data. 69
Get Inhibited 71

Event data. 71
Not Authorized (type 1) 72

Event data. 72
Not Authorized (type 2) 74

Event data. 74
Not Authorized (type 3) 76

Event data. 76
Not Authorized (type 4) 78

Event data. 78
Put Inhibited 79

Event data. 79
Queue Depth High 81

Event data. 81
Queue Depth Low 83

Event data. 83
Queue Full 85

Event data. 85
Queue Manager Active 87

© Copyright IBM Corp. 1994, 2000 iii

Event data. 87
Queue Manager Not Active 88

Event data. 88
Queue Service Interval High. 89

Event data. 89
Queue Service Interval OK 91

Event data. 91
Queue Type Error 93

Event data. 93
Remote Queue Name Error 95

Event data. 95
Transmission Queue Type Error 97

Event data. 97
Transmission Queue Usage Error 99

Event data. 99
Unknown Alias Base Queue 101

Event data 101
Unknown Default Transmission Queue 103

Event data 103
Unknown Object Name 105

Event data 105
Unknown Remote Queue Manager 107

Event data 107
Unknown Transmission Queue 109

Event data 109

Chapter 4. Example of using
instrumentation events 111

Appendix A. Structure datatypes
MQCFIN and MQCFST 123
MQCFIN - Integer parameter 123

C language declaration (MQCFIN) 124
COBOL language declaration (MQCFIN) . . . 124
PL/I language declaration (MQCFIN) 124
System/390 assembler-language declaration
(MQCFIN) 124
Visual Basic language declaration (MQCFIN) 124

MQCFST - String parameter 124
C language declaration (MQCFST) 126
COBOL language declaration (MQCFST) . . . 127
PL/I language declaration (MQCFST) 127
System/390 assembler-language declaration
(MQCFST) 127
Visual Basic language declaration (MQCFST) 127

Appendix B. Constants 129
List of constants 129

MQ_* (Lengths of character string and byte
fields) 129
MQBT_* (Bridge type) 129
MQCA_* (Character attribute selector) 129
MQCACF_* (Character attribute command
format parameter) 130

MQCACH_* (Channel character attribute
command format parameter) 130
MQCC_* (Completion code) 130
MQCFC_* (Command format control options) 130
MQCFH_* (Command format header structure
length) 130
MQCFH_* (Command format header version) 130
MQCFIN_* (Command format integer
parameter structure length). 130
MQCFST_* (Command format string parameter
structure length) 130
MQCFT_* (Command structure type) 131
MQCHT_* (Channel type) 131
MQCMD_* (Command identifier) 131
MQIA_* (Integer attribute selector) 131
MQIACF_* (Integer attribute command format
parameter) 131
MQIACH_* (Channel Integer attribute
command format parameter) 131
MQQT_* (Queue type) 132
MQRC_* (Reason code in MQCFH) 132
MQRCCF_* (Reason code for command format) 132
MQRQ_* (Reason qualifier). 132

Appendix C. Header, COPY, and
INCLUDE files 135
C header files 135
COBOL COPY files 135
PL/I INCLUDE files 136
System/390 Assembler COPY files 136
Visual Basic header files 136

Appendix D. Notices 137
Trademarks 138

Glossary of terms and abbreviations 141

Bibliography. 153
MQSeries cross-platform publications 153
MQSeries platform-specific publications 153
Softcopy books 154

HTML format 154
Portable Document Format (PDF) 154
BookManager® format 155
PostScript format 155
Windows Help format 155

MQSeries information available on the Internet . . 155

Index 157

Sending your comments to IBM . . . 159

iv MQSeries Event Monitoring

Figures

1. Understanding instrumentation events 2
2. Monitoring queue managers across different

platforms, on a single node 4
3. Understanding queue service interval events 17
4. Queue service interval events - example 1 20
5. Queue service interval events - example 2 22

6. Queue service interval events - example 3 24
7. Definition of MYQUEUE1. 29
8. Queue depth events (1) 29
9. Queue depth events (2) 31

10. Event monitoring sample program 111

© Copyright IBM Corp. 1994, 2000 v

vi MQSeries Event Monitoring

Tables

1. Event message data summary 7
2. Enabling queue manager events using MQSC

commands 9
3. Performance event statistics 15
4. Enabling queue service interval events using

MQSC 19
5. Event statistics summary for example 1 21
6. Event statistics summary for example 2 22
7. Event statistics summary for example 3 24
8. Enabling queue depth events using MQSC 28
9. Event statistics summary for queue depth

events (example 1) 30

10. Summary showing which events are enabled 30
11. Event statistics summary for queue depth

events (example 2) 32
12. Summary showing which events are enabled 32
13. Event message structure for queue service

interval events 34
14. C header files 135
15. COBOL COPY files 135
16. PL/I INCLUDE files 136
17. System/390 Assembler COPY files 136
18. Visual Basic header files 136

© Copyright IBM Corp. 1994, 2000 vii

viii MQSeries Event Monitoring

About this book

This book describes the facilities available on MQSeries products for monitoring
instrumentation events in a network of connected systems that use IBM® MQSeries
products in different operating system environments.

MQSeries event monitoring is supported by the following MQSeries products:
v MQSeries for AS/400
v MQSeries for Compaq (DIGITAL) OpenVMS
v MQSeries for OS/2 Warp
v MQSeries for OS/390
v MQSeries for Tandem NonStop Kernel
v MQSeries for UNIX systems (see Note below)
v MQSeries for Windows NT
v MQSeries for Windows (V2.1 only)

Note: In this book, references to MQSeries for “UNIX systems” apply to:
IBM MQSeries for AIX
IBM MQSeries for AT&T GIS UNIX 1

IBM MQSeries for Compaq Tru64 UNIX
IBM MQSeries for HP-UX
IBM MQSeries for SINIX and DC/OSx
IBM MQSeries for Sun Solaris (SPARC and Intel Platform Editions)

Who this book is for
Primarily, this book is intended for system programmers who write programs to
monitor and administer MQSeries products.

What you need to know to understand this book
You should have:
v Experience in writing systems management applications
v An understanding of the Message Queue Interface (MQI)
v Experience of MQSeries programs in general, or familiarity with the content of

the other books in the MQSeries library

How to use this book
This book is based on the Event Monitoring part of the MQSeries Programmable
System Management book, SC33–1482–08.
v The introductory chapter of this book gives a general overview of

instrumentation events.
v “Chapter 2. Understanding performance events” on page 15 goes into greater

depth about performance events, specifically enabling and disabling them.
v “Chapter 3. Event message reference” on page 33 provides detailed reference

information for specific events.

1. This platform has become NCR UNIX SVR4 MP-RAS, R3.0

© Copyright IBM Corp. 1994, 2000 ix

v An example of using events is contained in “Chapter 4. Example of using
instrumentation events” on page 111.

v There is a glossary and bibliography at the back of the book.

About this book

x MQSeries Event Monitoring

Chapter 1. An introduction to instrumentation events

This chapter discusses:
v “What instrumentation events are”
v “Types of event” on page 2
v “Enabling and disabling events” on page 8
v “Conditions that cause events” on page 10
v “Event queues” on page 11
v “Format of event messages” on page 12
v “Using event monitoring in an MQSeries network” on page 12
v “Monitoring performance on Windows NT” on page 13

What instrumentation events are
In MQSeries, an instrumentation event is a logical combination of conditions that is
detected by a queue manager or channel instance. Such an event causes the queue
manager or channel instance to put a special message, called an event message, on
an event queue.

MQSeries instrumentation events provide information about errors, warnings, and
other significant occurrences in a queue manager. You can, therefore, use these
events to monitor the operation of queue managers (in conjunction with other
methods such as NetView®). This chapter tells you what these events are, and how
you use them.

Instrumentation events are supported by:
v MQSeries for AIX
v MQSeries for AS/400
v MQSeries for AT&T GIS UNIX
v MQSeries for Compaq OpenVMS
v MQSeries for Compaq Tru64 UNIX
v MQSeries for HP-UX
v MQSeries for OS/2 Warp
v MQSeries for OS/390
v MQSeries for SINIX and DC/OSx
v MQSeries for Sun Solaris
v MQSeries for Tandem NonStop Kernel
v MQSeries for Windows NT
v MQSeries for Windows V2.1

Note: This book does not discuss trigger events. When other MQSeries books
discuss triggering, they sometimes refer to a trigger event. This occurs when
a queue manager detects that the conditions for a trigger event have been
met. For example, for a queue for which triggers are active, a message of the
required priority has been put on a queue so that the trigger depth is
reached. The result of a trigger event is that a trigger message is put onto an
initiation queue and an application program is started. No other event
messages as described in this book are involved (unless, for example, the
initiation queue fills up and generates an instrumentation event).

Figure 1 on page 2 illustrates the concept of instrumentation events.

© Copyright IBM Corp. 1994, 2000 1

Event notification through event queues
When an event occurs the queue manager puts an event message on the
appropriate event queue, if defined. The event message contains information about
the event that you can retrieve by writing a suitable MQI application program that:
v Gets the message from the queue.
v Processes the message to extract the event data. For an overview of event

message formats, see “Format of event messages” on page 12. For detailed
descriptions of the format of each event message, see “Event message format” on
page 33.

Types of event
MQSeries instrumentation events may be categorized as follows:

Queue Manager

For example:

Queue full

+ event enabled1. Event conditions

2. Event message

put on event queue

3. Event message

processed by a

user application

Event message

Event queue

User Application

Figure 1. Understanding instrumentation events

Event notification through event queues

2 MQSeries Event Monitoring

Queue manager events
These events are related to the definitions of resources within queue
managers. For example, an application attempts to put a message to a
queue that does not exist.

Performance events
These events are notifications that a threshold condition has been reached
by a resource. For example, a queue depth limit has been reached.

Channel events
These events are reported by channels as a result of conditions detected
during their operation. For example, when a channel instance is stopped.

For each queue manager, each category of event has its own event queue. All
events in that category result in an event message being put onto the same queue.

This event queue: Contains messages from:
SYSTEM.ADMIN.QMGR.EVENT Queue manager events
SYSTEM.ADMIN.CHANNEL.EVENT Channel events
SYSTEM.ADMIN.PERFM.EVENT Performance events

Instrumentation events can be generated for queue managers running on Digital
OpenVMS, OS/2, OS/390, OS/400®, Tandem NonStop Kernel, Windows 95,
Windows 98, Windows NT, Windows 2000, and UNIX platforms. By incorporating
these events into your own system management application, you can monitor the
activities across many queue managers, across many different nodes, for multiple
MQSeries applications. In particular, you can monitor all the nodes in your system
from a single node (for those nodes that support MQSeries events) as shown in
Figure 2 on page 4.

Instrumentation events can be reported through a user-written reporting
mechanism to an administration application that supports the presentation of the
events to an operator.

Types of event

Chapter 1. An introduction to instrumentation events 3

Instrumentation events also enable applications acting as agents for other
administration networks, for example NetView, to monitor reports and create the
appropriate alerts.

Queue manager events
These events are related to the definitions of resources within queue managers. For
example, an application attempts to put a message to a queue that does not exist.
The event messages for queue manager events are put on the
SYSTEM.ADMIN.QMGR.EVENT queue. The following queue manager event types
are supported:
v Authority (on OS/400, Windows NT, Compaq (DIGITAL) OpenVMS, Tandem

NonStop Kernel, and UNIX systems only)
v Inhibit
v Local
v Remote
v Start and Stop (for OS/390: Start only)

For each event type in this list, there is a queue manager attribute that enables or
disables the event type. See the MQSeries MQSC Command Reference for more
information.

The conditions that give rise to the event (when enabled) include:
v An application issues an MQI call that fails. The reason code from the call is the

same as the reason code in the event message.
Note that a similar condition may occur during the internal operation of a queue
manager, for example, when generating a report message. The reason code in an
event message may match an MQI reason code, even though it is not associated
with any application. Therefore you should not assume that, because an event

Figure 2. Monitoring queue managers across different platforms, on a single node

Types of event

4 MQSeries Event Monitoring

message reason code looks like an MQI reason code, the event was necessarily
caused by an unsuccessful MQI call from an application.

v A command is issued to a queue manager and the processing of this command
causes an event. For example:
– A queue manager is stopped or started.
– A command is issued where the associated user ID is not authorized for that

command.

Authority events

Note

1. All authority events are valid on Digital OpenVMS, OS/400, Windows
NT, and UNIX systems only.

2. Tandem NSK supports only Not Authorized (type 1).

Authority events indicate that an authorization violation has been detected. For
example, an application attempts to open a queue for which it does not have the
required authority, or a command is issued from a user ID that does not have the
required authority.

For more information about the event data returned in authority event messages
see:

“Not Authorized (type 1)” on page 72
“Not Authorized (type 2)” on page 74
“Not Authorized (type 3)” on page 76
“Not Authorized (type 4)” on page 78

Inhibit events
Inhibit events indicate that an MQPUT or MQGET operation has been attempted
against a queue, where the queue is inhibited for puts or gets respectively.

For more information about the event data returned in inhibit event messages, see:
“Get Inhibited” on page 71
“Put Inhibited” on page 79

Local events
Local events indicate that an application (or the queue manager) has not been able
to access a local queue, or other local object. For example, when an application
attempts to access an object that has not been defined.

For more information about the event data returned in local event messages, see:
“Alias Base Queue Type Error” on page 46
“Unknown Alias Base Queue” on page 101
“Unknown Object Name” on page 105

Remote events
Remote events indicate that an application (or the queue manager) cannot access a
(remote) queue on another queue manager. For example, when the transmission
queue to be used is not correctly defined.

For more information about the event data returned in the remote event messages,
see:

“Default Transmission Queue Type Error” on page 67
“Default Transmission Queue Usage Error” on page 69

Types of event

Chapter 1. An introduction to instrumentation events 5

“Queue Type Error” on page 93
“Remote Queue Name Error” on page 95
“Transmission Queue Type Error” on page 97
“Transmission Queue Usage Error” on page 99
“Unknown Default Transmission Queue” on page 103
“Unknown Remote Queue Manager” on page 107
“Unknown Transmission Queue” on page 109

Start and stop events
Start and stop events (start only for OS/390) indicate that a queue manager has
been started or has been requested to stop or quiesce.

Stop events are not recorded unless the default message-persistence of the
SYSTEM.ADMIN.QMGR.EVENT queue is defined as persistent.

For more information about the event data returned in the start and stop event
messages, see:

“Queue Manager Active” on page 87
“Queue Manager Not Active” on page 88

Channel events
These events are reported by channels as a result of conditions detected during
their operation. For example, when a channel instance is stopped. Channel events
are generated:
v By a command to start or stop a channel.
v When a channel instance starts or stops.
v When a channel receives a conversion error warning when getting a message.
v When an attempt is made to create a channel automatically; the event is

generated whether the attempt succeeds or fails.

Notes:

1. No channel events are generated when using MQSeries for OS/390 with
distributed queuing provided by CICS.

2. Client connections on MQSeries for OS/390 Version 2, MQSeries Version 5, or
later products, do not cause Channel Started or Channel Stopped events.

When a command is used to start a channel, an event is generated. Another event
is generated when the channel instance starts. However, starting a channel by a
listener, runmqchl, or by a queue manager trigger message does not generate an
event; in this case the only event generated is when the channel instance starts.

A successful start or stop channel command generates at least two events. The
events are generated for both queue managers that are connected by the channel,
unless one of the queue managers does not support events, for example versions of
MQSeries for AS/400 previous to V3R2. Channel event messages are put onto the
SYSTEM.ADMIN.CHANNEL.EVENT queue, if it is available. Otherwise, they are
ignored.

If a channel event is put onto an event queue, an error condition causes the queue
manager to create an event as usual.

For more information about the event data returned in the channel event messages,
see:

“Channel Activated” on page 51
“Channel Auto-definition Error” on page 52

Types of event

6 MQSeries Event Monitoring

“Channel Auto-definition OK” on page 54
“Channel Conversion Error” on page 55
“Channel Not Activated” on page 58
“Channel Started” on page 60
“Channel Stopped” on page 62

IMS bridge events
These events are reported when an IMS bridge starts or stops (on OS/390 only).

For more information about the event data returned in the messages specific to
IMS bridge events, see

“Bridge Started” on page 48 (OS/390 only)
“Bridge Stopped” on page 49 (OS/390 only)

Performance events
These events are notifications that a threshold condition has been reached by a
resource. For example, a queue depth limit has been reached. For further details on
performance events, see “Chapter 2. Understanding performance events” on
page 15

Performance events are related to conditions that can affect the performance of
applications that use a specified queue.

The event type is returned in the command identifier field in the message data.

Performance events are not generated for the event queues themselves.

If a queue manager attempts to put a queue manager or a performance event
message on an event queue and an error that would normally create an event is
detected, another event is not created and no action is taken.

MQGET calls and MQPUT calls within a unit of work can cause performance
related events to occur regardless of whether the unit of work is committed or
backed out.

MQSeries for OS/390 supports queue depth events for QSGDISP (SHARED)
queues. Service interval events are not supported. Queue manager and channel
events remain unaffected by shared queues.

There are two types of performance event:

Queue depth events
Queue depth events are related to the number of messages on a queue; that is how
full, or empty, the queue is. This type of event is supported for shared queues.

Queue service interval events
Queue service interval events are related to whether messages are processed within
a user-specified time interval. These events are not supported for shared queues.

Table 1 on page 8 is a full list of events. Use it to locate information about a
particular type of event message:

Types of event

Chapter 1. An introduction to instrumentation events 7

Table 1. Event message data summary

Event type Event name page

Authority events Not Authorized (type 1)
Not Authorized (type 2)
Not Authorized (type 3)
Not Authorized (type 4)

72
74
76
78

Channel events Channel Activated
Channel Auto-Definition Error
Channel Auto-Definition OK
Channel Conversion Error
Channel Not Activated
Channel Started
Channel Stopped
Channel Stopped By User

51
52
54
55
58
60
62
65

IMS Bridge events Bridge Started
Bridge Stopped

48
49

Inhibit events Get Inhibited
Put Inhibited

71
79

Local events Alias Base Queue Type Error
Unknown Alias Base Queue
Unknown Object Name

46
101
105

Performance events Queue Depth High
Queue Depth Low
Queue Full
Queue Service Interval High
Queue Service Interval OK

81
83
85
89
91

Remote events Default Transmission Queue Type Error
Default Transmission Queue Usage Error
Queue Type Error
Remote Queue Name Error
Transmission Queue Type Error
Transmission Queue Usage Error
Unknown Default Transmission Queue
Unknown Remote Queue Manager
Unknown Transmission Queue

67
69
93
95
97
99

103
107
109

Start and stop
events

Queue Manager Active
Queue Manager Not Active

87
88

Enabling and disabling events
With the exception of channel events, all instrumentation events must be enabled
before they can be generated. For example, the conditions giving rise to a Queue
Full event are:
v Queue Full events are enabled for a specified queue and
v An application issues an MQPUT request to put a message on that queue, but

the request fails because the queue is full.

You can enable and disable events by specifying the appropriate values for queue
manager or queue attributes (or both) depending on the type of event. You do this
using:
v MQSC (MQSeries) commands. For more information, see the MQSeries MQSC

Command Reference manual.

Types of event

8 MQSeries Event Monitoring

v The operations and control panels for queue managers on OS/390. For more
information, see the MQSeries for OS/390 System Administration Guide. Enabling
and disabling an event depends on the category of the event:

Note: Attributes related to events for both queues and queue managers can be set
by command only. They are not supported by the MQI call MQSET.

Enabling and disabling queue manager events
You enable queue manager events by specifying the appropriate attribute on the
MQSC command ALTER QMGR. For example, to enable inhibit events on the
default queue manager, use this MQSC command:

To disable the event, set the INHIBTEV attribute to DISABLED using this MQSC:

Authority events
You enable authority events using:
v The AUTHOREV attribute on the MQSC command ALTER QMGR

Inhibit events
You enable inhibit events using:
v The INHIBTEV attribute on the MQSC command ALTER QMGR

Local events
You enable local events using:
v The LOCALEV attribute on the MQSC command ALTER QMGR

Remote events
You enable remote events using:
v The REMOTEEV attribute on the MQSC command ALTER QMGR

Start and stop events
You enable start and stop events using:
v The STRSTPEV attribute on the MQSC command ALTER QMGR

Enabling queue manager events summary
Table 2 summarizes how to enable queue manager events:

Table 2. Enabling queue manager events using MQSC commands

Event Queue manager attribute

Authority
Inhibit
Local
Remote
Start and Stop

AUTHOREV (ENABLED)
INHIBTEV (ENABLED)
LOCALEV (ENABLED)
REMOTEEV (ENABLED)
STRSTPEV (ENABLED)

Enabling channel events
Most channel events are enabled automatically and cannot be enabled or disabled
by command. The exceptions are the two automatic channel definition events.
However, channel events can be suppressed by not defining the channel events
queue, or by making it put-inhibited. Note that this could cause a queue to fill up
if remote event queues point to a put-inhibited channel events queue.

ALTER QMGR INHIBTEV (ENABLED)

ALTER QMGR INHIBTEV (DISABLED)

Enabling and disabling events

Chapter 1. An introduction to instrumentation events 9

If a queue manager does not have a SYSTEM.ADMIN.CHANNEL.EVENT queue,
or if this queue is put inhibited, all channel event messages are discarded, unless
they are being put by an MCA across a link to a remote queue. In this case they
are put on the dead-letter queue.

Channel auto-definition
The generation of these events is controlled by the ChannelAutoDefEvent
queue-manager attribute. Refer to the MQSeries Application Programming Reference
manual for further details of this attribute.

Enabling performance events
Performance events as a whole must be enabled on the queue manager, otherwise
no performance events can occur. You can then enable the specific performance
events by setting the appropriate queue attribute. You also have to specify the
conditions that give rise to the event. For more information, see “Enabling queue
service interval events” on page 18 and “Understanding queue depth events” on
page 24.

Enabling queue depth events
By default, all queue depth events are disabled. To configure a queue for any of
the queue depth events you must:
1. Enable performance events on the queue manager.
2. Enable the event on the required queue.
3. Set the limits, if required, to the appropriate levels, expressed as a percentage

of the maximum queue depth.

Enabling queue service interval events
To configure a queue for queue service interval events you must:
1. Enable performance events on the queue manager.
2. Set the control attribute, for a Queue Service Interval High or OK event on the

queue, as required.
3. Specify the service interval time by setting the QServiceInterval attribute for

the queue to the appropriate length of time.

Note: When enabled, a queue service interval event can be generated only on an
MQPUT call or an MQGET call. The event is not generated when the
elapsed time becomes equal to the service interval time.

Conditions that cause events
Conditions that can give rise to instrumentation events include:
v A threshold limit for the number of messages on a queue is reached.
v A channel instance is started or stopped.
v A queue manager becomes active, or is requested to stop.
v On the MQSeries products for AS/400 and UNIX systems, MQSeries for Digital

OpenVMS, MQSeries for Tandem NonStop Kernel, and on MQSeries for
Windows NT, an application attempts to open a queue specifying a user ID that
is not authorized.

Note: Putting a message on the dead-letter queue can cause an event to be
generated if the event conditions are met.

Enabling and disabling events

10 MQSeries Event Monitoring

Event queues
You can define event queues either as local queues, alias queues, or as local
definitions of remote queues. If you define all your event queues as local
definitions of the same remote queue on one queue manager, you can centralize
your monitoring activities.

You must not define event queues as transmission queues because event messages
have formats that are incompatible with the format of messages required for
transmission queues.

Shared event queues are local queues defined with the QSGDISP(SHARED) value.
For more information about defining shared queues, see the MQSeries for OS/390
System Setup Guide.

When an event queue is unavailable
If an event occurs when the event queue is not available, the event message is lost.
For example, if you do not define an event queue for a category of event, all event
messages for that category will be lost. The event messages are not, for example,
saved on the dead-letter (undelivered-message) queue.

However, the event queue may be defined as a remote queue. Then, if there is a
problem on the remote system putting messages to the resolved queue, the event
message will appear on the remote system’s dead-letter queue.

An event queue might be unavailable for many different reasons including:
v The queue has not been defined.
v The queue has been deleted.
v The queue is full.
v The queue has been put-inhibited.

The absence of an event queue does not prevent the event from occurring. For
example, after a performance event, the queue manager changes the queue
attributes and resets the queue statistics. This happens whether the event message
is put on the performance event queue or not. For more information about
performance events changing queue attributes, see “Chapter 2. Understanding
performance events” on page 15.

Using triggered event queues
You can set up the event queues with triggers so that when an event is generated,
the event message being put onto the event queue starts a (user-written)
monitoring application. This application can process the event messages and take
appropriate action. For example, certain events may require that an operator be
informed, other events may start off an application that performs some
administration tasks automatically.

Event queues may have trigger actions associated with them and may therefore
create trigger messages. However, if these trigger messages in turn cause
conditions that would normally generate an event, no event is generated. This
ensures that looping does not occur.

Event queues

Chapter 1. An introduction to instrumentation events 11

Format of event messages
Event messages contain information about the event and its origin. Typically, these
messages are processed by a system management application program tailored to
meet the requirements of the enterprise at which it runs. As with all MQSeries
messages, an event message has two parts: a message descriptor and the message
data. The message descriptor is based on the MQMD structure, which is defined in
the MQSeries Application Programming Reference manual. The message data is also
made up of an event header and the event data. The event header contains the reason
code that identifies the event type. The putting of the event message and any
subsequent actions arising do not affect the reason code returned by the MQI call
that caused the event. The event data provides further information about the event.

When conditions are met for an event message to be generated for a shared queue,
the queue managers in the queue sharing group decide whether to generate an
event message. Several queue managers can generate an event message for one
shared queue, resulting in several event messages being produced. To ensure a
system can correlate multiple event messages from different queue managers, these
event messages have a unique correlation identifier (CorrelId)set in the message
descriptor (MQMD). For further details of the MQMD see “Message descriptor
(MQMD) in event messages” on page 34.

Using event monitoring in an MQSeries network
If you write an application using events to monitor queue managers, you need to:
1. Set up channels between the queue managers in your network.
2. Implement the required data conversions. The normal rules of data conversion

apply. For example, if you are monitoring events on a UNIX system queue
manager from an OS/390 queue manager, you must ensure that you perform
the EBCDIC to ASCII conversions.

See the MQSeries Application Programming Guide for more information.

Event message format

12 MQSeries Event Monitoring

Monitoring performance on Windows NT
On Windows NT, performance data is stored using performance counters that can
be accessed using the system registry. Within the registry, the counters are grouped
according to the type of object to which they apply. For MQSeries the type of
object is MQSeries queues.

For each queue the following performance counters are available:
v The current queue depth
v The queue depth as a percentage of the maximum queue depth
v The number of messages per second being placed on the queue
v The number of messages per second being removed from the queue

For messages sent to a distribution list, the performance monitor counts the
number of messages put on to each queue.

In the case of large messages, the performance monitor counts the appropriate
number of small messages. See the MQSeries System Administration manual for
information on using the Windows NT performance monitor to view performance
information. For details of how to access the performance counters in your own
application, see the Microsoft® Web site at:
http://msdn.microsoft.com/developer/

Follow the links from this site to obtain online platform SDK information.

Monitoring performance

Chapter 1. An introduction to instrumentation events 13

14 MQSeries Event Monitoring

Chapter 2. Understanding performance events

This chapter describes what performance events are, how they are generated, how
they can be enabled, and how they are used. The chapter includes:
v “What performance events are”
v “Understanding queue service interval events” on page 16
v “Queue service interval events examples” on page 19
v “Understanding queue depth events” on page 24
v “Queue depth events examples” on page 28

In this chapter, the examples assume that you set queue attributes by using the
appropriate MQSeries commands (MQSC). See the MQSeries MQSC Command
Reference manual for more information. You can also set them using the operations
and controls panels, for queue managers, on OS/390.

What performance events are
Performance events are related to conditions that can affect the performance of
applications that use a specified queue.

The scope of performance events is the queue, so that MQPUT calls and MQGET
calls on one queue do not affect the generation of performance events on another
queue.

Note: A message must be either put on, or removed from, a queue for any
performance event to be generated.

The event data contains a reason code that identifies the cause of the event, a set of
performance event statistics, and other data. For more information about the event
data returned in performance event messages, see:

“Queue Depth High” on page 81
“Queue Depth Low” on page 83
“Queue Full” on page 85
“Queue Service Interval High” on page 89
“Queue Service Interval OK” on page 91

Performance event statistics
The event data in the event message contains information about the event for
system management programs. For all performance events, the event data contains
the names of the queue manager and the queue associated with the event. Also,
the event data contains statistics related to the event. You can use these statistics to
analyze the behavior of a specified queue. Table 3 summarizes the event statistics.
All the statistics refer to what has happened since the last time the statistics were
reset.

Table 3. Performance event statistics

Parameter Description

TimeSinceReset The elapsed time since the statistics were last reset.

HighQDepth The maximum number of messages on the queue since the
statistics were last reset.

© Copyright IBM Corp. 1994, 2000 15

Table 3. Performance event statistics (continued)

Parameter Description

MsgEnqCount The number of messages enqueued (the number of MQPUT
calls to the queue), since the statistics were last reset.

MsgDeqCount The number of messages dequeued (the number of MQGET
calls to the queue), since the statistics were last reset.

Performance event statistics are reset when any of the following occur:
v A performance event occurs (statistics are reset on all active queue managers).
v A queue manager stops and restarts.
v For shared queues only, the RESET QSTATS command is issued at the console

(statistics are reset on the queue managers specified by the CMDSCOPE for the
command).

Understanding queue service interval events
Queue service interval events indicate whether a queue was ‘serviced’ within a
user-defined time interval called the service interval. Depending on the
circumstances at your installation, you can use queue service interval events to
monitor whether messages are being taken off queues quickly enough.

Note: Queue service interval events are not supported on shared queues.

What queue service interval events are
There are two types of queue service interval event:
v A Queue Service Interval OK event, which indicates that, following an MQPUT

call or an MQGET call that leaves a non-empty queue, an MQPUT call or an
MQGET call was performed within a user-defined time period, known as the
service interval.
In this section, Queue Service Interval OK events are referred to as OK events.

v A Queue Service Interval High event, which indicates that, following an
MQGET or MQPUT call that leaves a non-empty queue, an MQGET call was not
performed within the user-defined service interval.
This event message can be caused by an MQPUT call or an MQGET call.
In this section, Queue Service Interval High events are referred to as high
events.

To enable both Queue Service Interval OK and Queue Service Interval High events
you need to set the QServiceIntervalEvent control attribute to High. Queue
Service Interval OK events are automatically enabled when a Queue Service
Interval High event is generated. You do not need to enable Queue Service Interval
OK events independently.

These events are mutually exclusive, which means that if one is enabled the other
is disabled. However, both events can be simultaneously disabled.

Figure 3 shows a graph of queue depth against time. At P1, an application issues
an MQPUT, to put a message on the queue. At G1, another application issues an
MQGET to remove the message from the queue.

Performance events

16 MQSeries Event Monitoring

In terms of queue service interval events, these are the possible outcomes:
v If the elapsed time between the put and get is less than or equal to the service

interval:
– A Queue Service Interval OK event is generated at G1, if queue service interval

events are enabled
v If the elapsed time between the put and get is greater than the service interval:

– A Queue Service Interval High event is generated at G1, if queue service
interval events are enabled.

The actual algorithm for starting the service timer and generating events is
described in “Queue service interval events algorithm” on page 18.

Understanding the service timer
Queue service interval events use an internal timer, called the service timer, which
is controlled by the queue manager. The service timer is used only if one or other
of the queue service interval events is enabled.

What precisely does the service timer measure?
The service timer measures the elapsed time between an MQPUT call to an
empty queue or an MQGET call and the next put or get, provided the
queue depth is nonzero between these two operations.

When is the service timer active?
The service timer is always active (running), if the queue has messages on
it (depth is nonzero) and a queue service interval event is enabled. If the
queue becomes empty (queue depth zero), the timer is put into an OFF
state, to be restarted on the next put.

When is the service timer reset?
The service timer is always reset after an MQGET call. It is also reset by an
MQPUT call to an empty queue. However, it is not necessarily reset on a
queue service interval event.

How is the service timer used?
Following an MQGET call or an MQPUT call, the queue manager
compares the elapsed time as measured by the service timer, with the
user-defined service interval. The result of this comparison is that:
v An OK event is generated if the operation is an MQGET call and the

elapsed time is less than or equal to the service interval, AND this event
is enabled.

v A high event is generated if the elapsed time is greater than the service
interval, AND this event is enabled.

P1
Q

u
e

u
e

d
e

p
th

TimeG1

GETPUT

Figure 3. Understanding queue service interval events

Queue service interval events

Chapter 2. Understanding performance events 17

Can applications read the service timer?
No, the service timer is an internal timer that is not available to
applications.

What about the TimeSinceReset parameter?
The TimeSinceReset parameter is returned as part of the event statistics in
the event data. It specifies the time between successive queue service
interval events, unless the event statistics are reset. The reset can be caused
by a queue depth event.

Queue service interval events algorithm
This section gives the formal rules associated with the timer and the queue service
interval events.

Service timer
The service timer is reset to zero and restarted:
v Following an MQPUT call to an empty queue.
v Following an MQGET call, if the queue is not empty after the MQGET call.

The resetting of the timer does not depend on whether an event has been
generated.

At queue manager startup the service timer is set to startup time if the queue
depth is greater than zero.

If the queue is empty following an MQGET call, the timer is put into an OFF state.

Queue Service Interval High events
The Queue Service Interval event must be enabled (set to HIGH).

If the service time is greater than the service interval, an event is generated on the
next MQPUT or MQGET call.

Queue Service Interval OK events
Queue Service Interval OK events are automatically enabled when a Queue Service
Interval High event is generated.

If the service time (elapsed time) is less than or equal to the service interval, an
event is generated on the next MQGET call.

Enabling queue service interval events
To configure a queue for queue service interval events you must:
1. Enable performance events on the queue manager, using the queue manager

attribute PerformanceEvent (PERFMEV in MQSC).
2. Set the control attribute, QServiceIntervalEvent, for a Queue Service Interval

High or OK event on the queue, as required (QSVCIEV in MQSC).
3. Specify the service interval time by setting the QServiceInterval attribute for

the queue to the appropriate length of time (QSVCINT in MQSC).

For example, to enable Queue Service Interval High events with a service interval
time of 10 seconds (10 000 milliseconds) use the following MQSC commands:

Queue service interval events

18 MQSeries Event Monitoring

Note: When enabled, a queue service interval event can only be generated on an
MQPUT call or an MQGET call. The event is not generated when the
elapsed time becomes equal to the service interval time.

Automatic enabling of queue service interval events
The high and OK events are mutually exclusive; that is, when one is enabled, the
other is automatically disabled.

When a high event is generated on a queue, the queue manager automatically
disables high events and enables OK events for that queue.

Similarly, when an OK event is generated on a queue, the queue manager
automatically disables OK events and enables high events for that queue.

Notes:

All performance events must be enabled using the queue manager attribute
PERFMEV.

Table 4. Enabling queue service interval events using MQSC

Queue service interval event Queue attributes

Queue Service Interval High
Queue Service Interval OK
No queue service interval events

QSVCIEV (HIGH)
QSVCIEV (OK)
QSVCIEV (NONE)

Service interval QSVCINT (tt) where tt is the service
interval time in milliseconds.

Queue service interval events examples
This section provides progressively more complex examples to illustrate the use of
queue service interval events.

The figures accompanying the examples have the same structure:
v The top section is a graph of queue depth against time, showing individual

MQGET calls and MQPUT calls.
v The middle section shows a comparison of the time constraints. There are three

time periods that you must consider:
– The user-defined service interval.
– The time measured by the service timer.
– The time since event statistics were last reset (TimeSinceReset in the event

data).
v The bottom section of each figure shows which events are enabled at any instant

and what events are generated.

The following examples illustrate:
v How the queue depth varies over time.
v How the elapsed time as measured by the service timer compares with the

service interval.

ALTER QMGR +
PERFMEV(ENABLED)

ALTER QLOCAL('MYQUEUE') +
QSVCINT(10000) +
QSVCIEV(HIGH)

Queue service interval events

Chapter 2. Understanding performance events 19

v Which event is enabled.
v Which events are generated.

Example 1 (queue service interval events)
This example shows a simple sequence of MQGET calls and MQPUT calls, where
the queue depth is always one or zero.

Commentary
1. At P1, an application puts a message onto an empty queue. This starts the

service timer.
Note that T0 may be queue manager startup time.

2. At G1, another application gets the message from the queue. Because the
elapsed time between P1 and G1 is greater than the service interval, a Queue
Service Interval High event is generated on the MQGET call at G1. When the
high event is generated, the queue manager resets the event control attribute so
that:
a. The OK event is automatically enabled.
b. The high event is disabled.

Because the queue is now empty, the service timer is switched to an OFF state.
3. At P2, a second message is put onto the queue. This restarts the service timer.
4. At G2, the message is removed from the queue. However, because the elapsed

time between P2 and G2 is less than the service interval, a Queue Service

High

OK

High event OK event

TO P1 P2 G2

Q
u

e
u

e
d

e
p

th

Time

Key:

Service interval

Service timer ON

Service timer OFF

Time since reset

G1

GET GETPUT PUT

Enabled events

Figure 4. Queue service interval events - example 1

Queue service interval events

20 MQSeries Event Monitoring

Interval OK event is generated on the MQGET call at G2. When the OK event
is generated, the queue manager resets the control attribute so that:
a. The high event is automatically enabled.
b. The OK event is disabled.

Because the queue is empty, the service timer is again switched to an OFF state.

Event statistics summary for example 1
Table 5 summarizes the event statistics for this example.

Table 5. Event statistics summary for example 1

Event 1 Event 2

Time of event TG1 TG2

Type of event High OK

TimeSinceReset TG1 - T0 TG2 - TP2

HighQDepth 1 1

MsgEnqCount 1 1

MsgDeqCount 1 1

The middle part of Figure 4 on page 20 shows the elapsed time as measured by the
service timer compared to the service interval for that queue. To see whether a
queue service interval event will occur, compare the length of the horizontal line
representing the service timer (with arrow) to that of the line representing the
service interval. If the service timer line is longer, and the Queue Service Interval
High event is enabled, a Queue Service Interval High event will occur on the next
get. If the timer line is shorter, and the Queue Service Interval OK event is enabled,
a Queue Service Interval OK event will occur on the next get.

What queue service interval events tell you
You must exercise some caution when you look at queue statistics. Figure 4 on
page 20 shows a simple case where the messages are intermittent and each
message is removed from the queue before the next one arrives. From the event
data, you know that the maximum number of messages on the queue was one.
You can, therefore, work out how long each message was on the queue.

However, in the general case, where there is more than one message on the queue
and the sequence of MQGET calls and MQPUT calls is not predictable, you cannot
use queue service interval events to calculate how long an individual message
remains on a queue. The TimeSinceReset parameter, which is returned in the event
data, can include a proportion of time when there are no messages on the queue.
Therefore any results you derive from these statistics are implicitly averaged to
include these times.

Example 2 (queue service interval events)
This example illustrates a sequence of MQPUT calls and MQGET calls, where the
queue depth is not always one or zero. It also shows instances of the timer being
reset without events being generated, for example, at TP2.

Queue service interval events

Chapter 2. Understanding performance events 21

Commentary
In this example, OK events are enabled initially and queue statistics were reset at
T0.
1. At P1, the first put starts the service timer.
2. At P2, the second put does not generate an event because a put cannot cause

an OK event.
3. At G1, the service interval has now been exceeded and therefore an OK event

is not generated. However, the MQGET call causes the service timer to be reset.
4. At G2, the second get occurs within the service interval and this time an OK

event is generated. The queue manager resets the event control attribute so
that:
a. The high event is automatically enabled.
b. The OK event is disabled.

Because the queue is now empty, the service timer is switched to an OFF state.

Event statistics summary for example 2
Table 6 summarizes the event statistics for this example.

Table 6. Event statistics summary for example 2

Time of event TG2

Type of event OK

High

OK

OK event

TO P1

Q
u

e
u

e
d

e
p

th

Time

Key:

Service interval

Service timer ON

Service timer OFF

Time since reset

Enabled events

P2 G1 G2

Figure 5. Queue service interval events - example 2

Queue service interval events

22 MQSeries Event Monitoring

Table 6. Event statistics summary for example 2 (continued)

TimeSinceReset TG2 - T0

HighQDepth 2

MsgEnqCount 2

MsgDeqCount 2

Example 3 (queue service interval events)
This example shows a sequence of MQGET calls and MQPUT calls that is more
sporadic than the previous examples.

Commentary
1. At time T0, the queue statistics are reset and Queue Service Interval High

events are enabled.
2. At P1, the first put starts the service timer.
3. At P2, the second put increases the queue depth to two. A high event is not

generated here because the service interval time has not been exceeded.
4. At P3, the third put causes a high event to be generated. (The timer has

exceeded the service interval.) The timer is not reset because the queue depth
was not zero before the put. However, OK events are enabled.

5. At G1, the MQGET call does not generate an event because the service interval
has been exceeded and OK events are enabled. The MQGET call does, however,
reset the service timer.

6. At G2, the MQGET call does not generate an event because the service interval
has been exceeded and OK events are enabled. Again, the MQGET call resets
the service timer.

7. At G3, the third get empties the queue and the service timer is equal to the
service interval. Therefore an OK event is generated. The service timer is reset
and high events are enabled. The MQGET call empties the queue, and this puts
the timer in the OFF state.

Queue service interval events

Chapter 2. Understanding performance events 23

Event statistics summary for example 3
The following table summarizes the statistics returned in the event message data,
for each event in this example.

Table 7. Event statistics summary for example 3

Event 1 Event 2

Time of event TP3 TG3

Type of event High OK

TimeSinceReset TP3 - T0 TG3 - TP3

HighQDepth 3 3

MsgEnqCount 3 0

MsgDeqCount 0 3

Understanding queue depth events
In MQSeries applications, queues must not become full. If they do, applications
can no longer put messages on the queue that they specify. Although the message
is not lost if this occurs, it can be a considerable inconvenience. The number of
messages can build up on a queue if the messages are being put onto the queue
faster than the applications that process them can take them off.

High

OK

High event OK event

TO P1 P2 P3 G1 G2 G3

Q
u

e
u

e
d

e
p

th

Time

Key:

Service interval

Service timer ON

Service timer OFF

Time since reset

Enabled events

Figure 6. Queue service interval events - example 3

Queue service interval events

24 MQSeries Event Monitoring

The solution to this problem depends on the particular circumstances, but may
involve:
v Diverting some messages to another queue.
v Starting new applications to take more messages off the queue.
v Stopping nonessential message traffic.
v Increasing the queue depth to overcome a transient maximum.

Clearly, having advanced warning that problems may be on their way makes it
easier to take preventive action. For this purpose, queue depth events are
provided.

What queue depth events are
Queue depth events are related to the queue depth, that is, the number of
messages on the queue. The types of queue depth events are:
v Queue Depth High events, which indicate that the queue depth has increased

to a predefined threshold called the Queue Depth High limit.
v Queue Depth Low events, which indicate that the queue depth has decreased to

a predefined threshold called the Queue Depth Low limit.
v Queue Full events, which indicate that the queue has reached its maximum

depth, that is, the queue is full.

A Queue Full Event is generated when an application attempts to put a message
on a queue that has reached its maximum depth. Queue Depth High events give
advance warning that a queue is filling up. This means that having received this
event, the system administrator should take some preventive action. If this action
is successful and the queue depth drops to a ‘safe’ level, the queue manager can be
configured to generate a Queue Depth Low event indicating an ‘all clear’ state.

Figure 8 on page 29 shows a graph of queue depth against time in such a case. The
preventive action was (presumably) taken between T2 and T3 and continues to
have effect until T4 when the queue depth is well inside the ‘safe’ zone.

Shared queues and queue depth events (MQSeries for OS/390)
When a queue depth event occurs on a shared queue, the queue managers in the
queue-sharing group produce an event message, if the queue manager attribute
PerformanceEvent (PERFMEV in MQSC) is set to ENABLED. If PERFMEV is set to
DISABLED on some of the queue managers, event messages are not produced by
those queue managers, making event monitoring from an application more
difficult. To avoid this, give each queue manager the same setting for the
PerformanceEvent attribute. This event message represents the individual usage of
the shared queue by each queue manager. If a queue manager performs no activity
on the shared queue, various values in the event message are null or zero. Null
event messages:
v Allow you to ensure there is one event message for each active queue manager

in a queue-sharing group
v Can highlight cases where there has been no activity on a shared queue for a

queue manager that produced the event message

Enabling queue depth events
By default, all queue depth events are disabled. To configure a queue for any of
the queue depth events you must:
1. Enable performance events on the queue manager, using the queue manager

attribute PerformanceEvent (PERFMEV in MQSC).

Queue depth events

Chapter 2. Understanding performance events 25

2. Enable the event on the required queue by setting the following as required:
v QDepthHighEvent(QDPHIEV in MQSC)
v QDepthLowEvent(QDPLOEV in MQSC)
v QDepthMaxEvent(QDPMAXEV in MQSC)

3. Set the limits, if required, to the appropriate levels, expressed as a percentage
of the maximum queue depth, by setting either:
v QDepthHighLimit(QDEPTHHI in MQSC), and
v QDepthLowLimit(QDEPTHLO in MQSC).

Enabling queue depth events on shared queues (MQSeries for
OS/390)
When a queue manager determines that an event should be issued, the shared
queue object definition is updated to toggle the active performance event
attributes. For example, depending on the definition of the queue attributes, a
Queue Depth High event enables a Queue Depth Low and a Queue Full event.
After the shared queue object has been updated successfully, the queue manager
that detected the performance event initially becomes the coordinating queue
manager.

The coordinating queue manager:
1. Determines if it has performance events enabled.
2. If it does, issues an event message that captures all shared queue performance

data it has gathered since the last time an event message was created, or since
the queue statistics were last reset. The message descriptor (MQMD) of this
message contains a unique correlation identifier (CorrelId) created by the
coordinating queue manager.

3. Broadcasts to all other active queue managers in the same queue-sharing group
to request the production of an event message for the shared queue. The
broadcast contains the correlation identifier created by the coordinating queue
manager for the set of event messages.

After receiving a request from the coordinating queue manager, an active queue
manager in a queue-sharing group:
1. Determines if its PERFMEV is ENABLED.
2. If it is, the active queue manager issues an event message for the shared queue,

recording all operations performed by the receiving (active) queue manager
since the last time an event message was created, or since the last statistics
reset. The message descriptor (MQMD) of this event message contains the
unique correlation identifier (CorrelId) specified by the coordinating queue
manager.

When performance events occur on a shared queue, n event messages are
produced, where n is 1 to the number of active queue managers in the
queue-sharing group. Each event message contains data that relates to the shared
queue activity for the queue manager where the event message was generated.

You can view event message data for a shared queue using the:
v Queue-sharing view.

All data from event messages with the same correlation identifier is collected
here.

v Queue manager view.
Each event message shows how much it has been used by its originating queue
manager.

Queue depth events

26 MQSeries Event Monitoring

Differences between shared and nonshared queues: Enabling queue depth
events on shared queues differs from enabling events on nonsharedqueues. A key
difference is that events are switched for shared queues even if PERFMEV is
DISABLED on the queue manager. This is not the case for nonshared queues.

Consider the following example which illustrates this difference.
v QM1 is a queue manager with PerformanceEvent (PERFMEV in MQSC) set to

DISABLED.
v SQ1 is a shared queue with QSGDISP set to (SHARED) QLOCAL in MQSC.
v LQ1 is a nonshared queue with QSGDISP set to (QMGR) QLOCAL in MQSC.

Both queues have the following attributes set on their definitions:
v QDPHIEV (ENABLED)
v QDPLOEV (DISABLED)
v QDPMAXEV (DISABLED)

If messages are placed on both queues so that the depth meets or exceeds the
QDEPTHHI threshold, the QDPHIEV value on SQ1 switches to DISABLED. Also,
QDPLOEV and QDPMAXEV are switched to ENABLED. SQ1’s attributes are
automatically switched for each performance event at the time the event criteria
are met.

In contrast the attributes for LQ1 remain unchanged until PERFMEV on the queue
manager is ENABLED. This means that if the queue manager’s PERFMEV attribute
is ENABLED, DISABLED and then re-ENABLED for instance, the performance
event settings on shared queues might not be consistent with those of nonshared
queues, even though they might have initially been the same.

Enabling Queue Depth High events
When enabled, a Queue Depth High event is generated when a message is put on
the queue, causing the queue depth to be greater than or equal to the value
determined by the Queue Depth High limit.

To enable Queue Depth High events on the queue MYQUEUE with a limit set at
80%, use the following MQSC commands:

Automatically enabling Queue Depth High events: A Queue Depth High event
is automatically enabled by a Queue Depth Low event on the same queue.

A Queue Depth High event automatically enables both a Queue Depth Low and a
Queue Full event on the same queue.

Enabling Queue Depth Low events
When enabled, a Queue Depth Low event is generated when a message is
removed from a queue by an MQGET call operation causing the queue depth to be
less than or equal to the value determined by the Queue Depth Low limit.

To enable Queue Depth Low events on the queue MYQUEUE with a limit set at
20%, use the following MQSC commands:

ALTER QMGR PERFMEV(ENABLED)
ALTER QLOCAL('MYQUEUE') QDEPTHHI(80) QDPHIEV(ENABLED)

ALTER QMGR PERFMEV(ENABLED)
ALTER QLOCAL('MYQUEUE') QDEPTHLO(20) QDPLOEV(ENABLED)

Queue depth events

Chapter 2. Understanding performance events 27

Automatically enabling Queue Depth Low events: A Queue Depth Low event is
automatically enabled by a Queue Depth High event or a Queue Full event on the
same queue.

A Queue Depth Low event automatically enables both a Queue Depth High and a
Queue Full event on the same queue.

Enabling Queue Full events
When enabled, a Queue Full event is generated when an application is unable to
put a message onto a queue because the queue is full.

To enable Queue Full events on the queue MYQUEUE, use the following MQSC
commands:

Automatically enabling Queue Full events: A Queue Full event is automatically
enabled by a Queue Depth High or a Queue Depth Low event on the same queue.

A Queue Full event automatically enables a Queue Depth Low event on the same
queue.

Table 8. Enabling queue depth events using MQSC

Queue depth event Queue attributes

Queue depth high

Queue depth low

Queue full

QDPHIEV (ENABLED)
QDEPTHHI (hh) where hh is the queue depth
high limit.

QDPLOEV (ENABLED)
QDEPTHLO (ll) where ll is the Queue depth
low limit. (Both values are expressed as a
percentage of the maximum queue depth, which is
specified by the queue
attribute MAXDEPTH.)

QDPMAXEV (ENABLED)

Notes: All performance events must be enabled using the queue manager attribute
PERFMEV.

Queue depth events examples
This section contains some examples of queue depth events. The following
examples illustrate how queue depth varies over time.

Example 1 (queue depth events)
The queue, MYQUEUE1, has a maximum depth of 1000 messages, and the high
and low queue depth limits are 80% and 20% respectively. Initially, Queue Depth
High events are enabled, while the other queue depth events are disabled.

The MQSeries commands (MQSC) to configure this queue are:

ALTER QMGR PERFMEV(ENABLED)
ALTER QLOCAL('MYQUEUE') QDPMAXEV(ENABLED)

Queue depth events

28 MQSeries Event Monitoring

Commentary
Figure 8 shows how the queue depth changes over time:
1. At T1, the queue depth is increasing (more MQPUT calls than MQGET calls)

and crosses the Queue Depth Low limit. No event is generated at this time.
2. The queue depth continues to increase until T2, when the depth high limit

(80%) is reached and a Queue Depth High event is generated.
This enables both Queue Full and Queue Depth Low events.

3. The (presumed) preventive actions instigated by the event prevent the queue
from becoming full. By time T3, the Queue Depth High limit has been reached
again, this time from above. No event is generated at this time.

4. The queue depth continues to fall until T4, when it reaches the depth low limit
(20%) and a Queue Depth Low event is generated.
This enables both Queue Full and Queue Depth High events.

ALTER QMGR PERFMEV(ENABLED)

DEFINE QLOCAL('MYQUEUE1') +
MAXDEPTH(1000) +
QDPMAXEV(DISABLED) +
QDEPTHHI(80) +
QDPHIEV(ENABLED) +
QDEPTHLO(20) +
QDPLOEV(DISABLED)

Figure 7. Definition of MYQUEUE1

High

Enabled events

100

80

20

0
T0 T1 T2 T3 T4

Depth high

l im i t

Depth low

l im i tQ
u

e
u

e
c

a
p

a
c

it
y

(%
)

Time

Queue Depth High Queue Depth Low

Low

Full

Figure 8. Queue depth events (1)

Queue depth events

Chapter 2. Understanding performance events 29

Table 9 summarizes the queue event statistics and Table 10 summarizes which
events are enabled at different times for this example.

Table 9. Event statistics summary for queue depth events (example 1)

Event 2 Event 4

Time of event T2 T4

Type of event Queue Depth
High

Queue Depth
Low

TimeSinceReset T2 - T0 T4 - T2

HighQDepth (Maximum queue depth since reset) 800 900

MsgEnqCount 1157 1220

MsgDeqCount 357 1820

Table 10. Summary showing which events are enabled

Time period Queue Depth High
event

Queue Depth Low
event

Queue Full event

Before T1 ENABLED - -

T1 to T2 ENABLED - -

T2 to T3 - ENABLED ENABLED

T3 to T4 - ENABLED ENABLED

After T4 ENABLED - ENABLED

Example 2 (queue depth events)
This is a more extensive example. However, the principles remain the same. This
example assumes the use of the same queue MYQUEUE1 as defined in Figure 7 on
page 29.

Table 11 on page 32 summarizes the queue event statistics and Table 12 on page 32
summarizes which events are enabled at different times for this example.

Figure 9 on page 31 shows the variation of queue depth over time.

Queue depth events

30 MQSeries Event Monitoring

Commentary
Some points to note are:
1. No Queue Depth Low event is generated at:

T1 (Queue depth increasing, and not enabled)
T2 (Not enabled)
T3 (Queue depth increasing, and not enabled)

2. At T4 a Queue Depth High event occurs. This enables both Queue Full and
Queue Depth Low events.

3. At T9 a Queue Full event occurs after the first message that cannot be put on
the queue because the queue is full.

4. At T12 a Queue Depth Low event occurs.

100

80

20

0
T0 T1 T2 T3 T4 T5 T8 T9 T10 T11 T12T6 T7

Queue Depth High event

Queue Depth Low event

Queue Depth High event

Queue Full event

Queue Depth Low event

Low

Full

Time

Q
u

e
u

e
c

a
p

a
c

it
y

(%
)

High

Figure 9. Queue depth events (2)

Queue depth events

Chapter 2. Understanding performance events 31

Event statistics summary (example 2)
Table 11. Event statistics summary for queue depth events (example 2)

Event 4 Event 6 Event 8 Event 9 Event 12

Time of event T4 T6 T8 T9 T12

Type of event Queue Depth
High

Queue Depth
Low

Queue Depth
High

Queue Full Queue Depth
Low

TimeSinceReset T4 - T0 T6 - T4 T8 - T6 T9 - T8 T12 - T9

HighQDepth 800 855 800 1000 1000

MsgEnqCount 1645 311 1377 324 221

MsgDeqCount 845 911 777 124 1021

Table 12. Summary showing which events are enabled

Time period Queue Depth High
event

Queue Depth Low
event

Queue Full event

T0 to T4 ENABLED - -

T4 to T6 - ENABLED ENABLED

T6 to T8 ENABLED - ENABLED

T8 to T9 - ENABLED ENABLED

T9 to T12 - ENABLED -

After T12 ENABLED - ENABLED

Note: Events are out of syncpoint. Therefore you could have an empty queue, then
fill it up causing an event, then roll back all of the messages under the
control of a syncpoint manager. However, event enabling has been
automatically set, so that the next time the queue fills up, no event is
generated.

Queue depth events

32 MQSeries Event Monitoring

Chapter 3. Event message reference

This chapter provides an overview of the event message format. It describes the
information returned in the event message for each instrumentation event,
including returned parameters.

The chapter includes:
v “Event message format”
v “MQMD (Message descriptor)” on page 35
v “MQCFH (Event header)” on page 41
v “Event message descriptions” on page 45
v “Alias Base Queue Type Error” on page 46
v “Bridge Started” on page 48
v “Bridge Stopped” on page 49
v “Channel Activated” on page 51
v “Channel Auto-definition Error” on page 52
v “Channel Auto-definition OK” on page 54
v “Channel Conversion Error” on page 55
v “Channel Started” on page 60
v “Channel Stopped” on page 62
v “Channel Stopped By User” on page 65
v “Default Transmission Queue Type Error” on page 67
v “Default Transmission Queue Usage Error” on page 69
v “Get Inhibited” on page 71
v “Not Authorized (type 1)” on page 72
v “Not Authorized (type 2)” on page 74
v “Not Authorized (type 3)” on page 76
v “Not Authorized (type 4)” on page 78
v “Put Inhibited” on page 79
v “Queue Depth High” on page 81
v “Queue Depth Low” on page 83
v “Queue Full” on page 85
v “Queue Manager Active” on page 87
v “Queue Manager Not Active” on page 88
v “Queue Service Interval High” on page 89
v “Queue Service Interval OK” on page 91
v “Queue Type Error” on page 93
v “Remote Queue Name Error” on page 95
v “Transmission Queue Type Error” on page 97
v “Transmission Queue Usage Error” on page 99
v “Unknown Alias Base Queue” on page 101
v “Unknown Default Transmission Queue” on page 103
v “Unknown Object Name” on page 105
v “Unknown Remote Queue Manager” on page 107
v “Unknown Transmission Queue” on page 109

Event message format
Event messages are standard MQSeries messages containing a message descriptor
and message data.

Table 13 on page 34 shows the basic structure of these messages, and the names of
the fields in an event message for queue service interval events.

© Copyright IBM Corp. 1994, 2000 33

Table 13. Event message structure for queue service interval events

Message descriptor Message data

MQMD structure 1 Event header
MQCFH structure 2

Event data 3

Structure identifier
Structure version
Report options
Message type
Expiration time
Feedback code
Encoding
Coded character set ID
Message format
Message priority
Persistence
Message identifier
Correlation identifier
Backout count
Reply-to queue
Reply-to queue manager
User identifier
Accounting token
Application identity
data
Application type
Application name
Put date
Put time
Application origin
data
Group identifier
Message sequence
number
Offset
Message flags
Original length

Structure type
Structure length
Structure version

number
Command identifier

(event type)
Message sequence

number
Control options
Completion code
Reason code (MQRC_*)
Parameter count

Queue manager name
Queue name
Time since last

reset
Maximum number of

messages on the
queue

Number of messages
put on the queue

Number of messages
taken off the
queue

Notes:
1. MQMD is the standard structure for MQSeries message headers.
2. MQCFH is the standard structure for an event header.
3. The parameters shown are those returned for a queue service interval event. The actual event data

depends on the specific event.

In general, you need only a subset of this information for any system management
programs that you write. For example, your application might need the following
data:
v The name of the application causing the event
v The name of the queue manager on which the event occurred
v The queue on which the event was generated
v The event statistics

Message descriptor (MQMD) in event messages
The format of the message descriptor is defined by the MQSeries MQMD data
structure, which is found in all MQSeries messages and is described in the
MQSeries Application Programming Reference manual. The message descriptor
contains information that can be used by a user-written system monitoring
application. For example:
v The message type
v The format type

Event message format

34 MQSeries Event Monitoring

v The date and time that the message was put on the event queue

In particular, the information in the descriptor informs a system management
application that the message type is MQMT_DATAGRAM, and the message format
is MQFMT_EVENT.

In an event message, many of these fields contain fixed data, which is supplied by
the queue manager that generated the message. The fields that make up the
MQMD structure are described in “MQMD (Message descriptor)”. The MQMD
also specifies the name of the queue manager (truncated to 28 characters) that put
the message, and the date and time when the event message was put on the event
queue.

Message data in event messages
The event message data is based on the programmable command format (PCF),
which is used in PCF command inquiries and responses.

The event message consists of two parts: the event header and the event data.

Event header (MQCFH)
The information in MQCFH specifies:
v If the message is an event message.
v The category of event, that is, whether the event is a queue manager,

performance, or channel event.
v A reason code specifying the cause of the event. For events caused by MQI calls,

this reason code is the same as the reason code for the MQI call.

Reason codes have names that begin with the characters MQRC_. For example, the
reason code MQRC_PUT_INHIBITED is generated when an application attempts to
put a message on a queue that is not enabled for puts. MQCFH is described in
“MQCFH (Event header)” on page 41.

Event data
See “Event message descriptions” on page 45.

MQMD (Message descriptor)
The MQMD structure describes the information that accompanies the message data
of an event message. For a full description of MQMD, including a description of
the elementary datatype of each parameter, see the MQSeries Application
Programming Reference manual.

For an event message, the MQMD structure contains these values:

StrucId

Description: Structure identifier.
Datatype: MQCHAR4.
Initial value: MQMD_STRUC_ID

Event message format

Chapter 3. Event message reference 35

Valid value:
MQMD_STRUC_ID

Identifier for message descriptor structure.

For the C programming language, the constant
MQMD_STRUC_ID_ARRAY is also defined; this has the same
value as MQMD_STRUC_ID, but is an array of characters not a
string.

Version

Description: Structure version number.
Datatype: MQLONG.
Initial value: MQMD_VERSION_1.
Valid values:

MQMD_VERSION_1
Version-1 message descriptor structure, supported in all
environments.

MQMD_VERSION_2
Version-2 message descriptor structure, supported on AIX, DOS
client, HP-UX, OS/2, OS/400, Sun Solaris, Windows NT client,
Windows NT, and Windows 2000 platforms.

Report

Description: Options for report messages.
Datatype: MQLONG.
Initial value: MQRO_NONE.
Valid values:

MQRO_NONE
No reports required.

MsgType

Description: Indicates type of message.
Datatype: MQLONG.
Initial value: MQMT_DATAGRAM.
Valid values:

MQMT_DATAGRAM
Message does not require a reply.

Expiry

Description: Message lifetime.
Datatype: MQLONG.
Initial value: MQEI_UNLIMITED.
Valid values:

MQEI_UNLIMITED
The message does not have an expiry time.

Feedback

Description: Feedback or reason code.
Datatype: MQLONG.

Message descriptor

36 MQSeries Event Monitoring

Initial value: MQFB_NONE.
Valid values:

MQFB_NONE
No feedback provided.

Encoding

Description: Numeric encoding of message data.
Datatype: MQLONG.
Initial value: MQENC_NATIVE.
Valid values:

MQENC_NATIVE
The default for the programming language and machine on
which the application is running.

CodedCharSetId

Description: Character set identifier of event message data.
Datatype: MQLONG.
Initial value: MQCCSI_Q_MGR.
Valid values:

MQCCSI_Q_MQR
Coded character set ID (CCSID) of the queue manager
generating the event.

Format

Description: Format name of message data.
Datatype: MQCHAR8.
Initial value: MQFMT_NONE.
Valid value:

MQFMT_EVENT
Event message.

For the C programming language, the constant
MQFMT_EVENT_ARRAY is also defined; this has the same
value as MQFMT_EVENT, but is an array of characters not a
string.

Priority

Description: Message priority.
Datatype: MQLONG.
Initial value: MQPRI_PRIORITY_AS_Q_DEF.
Valid values:

MQPRI_PRIORITY_AS_Q_DEF
Default priority of the event queue, if it is a local queue, or its
local definition at the queue manager generating the event.

Persistence

Description: Message persistence.
Datatype: MQLONG.
Initial value: MQPER_PERSISTENCE_AS_Q_DEF.

Message descriptor

Chapter 3. Event message reference 37

Valid values:
MQPER_PERSISTENCE_AS_Q_DEF

Default persistence of the event queue, if it is a local queue, or
its local definition at the queue manager generating the event.

MsgId

Description: Message identifier.
Datatype: MQBYTE24.
Initial value: MQMI_NONE.
Valid values: A unique value generated by the queue manager.

CorrelId

Description: Correlation identifier. For events on a shared queue, this parameter is set,
so you can track multiple event messages from different queue managers

Datatype: MQBYTE24.
Initial value: MQCI_NONE.
Valid values:

MQCI_NONE
No correlation identifier is specified. This is for local queues
only.

For the C programming language, the constant
MQCI_NONE_ARRAY is also defined; this has the same value
as MQCI_NONE, but is an array of characters not a string.

For shared queues: a nonzero correlation identifier is specified. The
characters are specified below:

1–4 Product identifier (’CSQ ’)

5–8 Queue-sharing group name

9 Queue manager identifier

10–17 Time stamp

18–24 Nulls

BackoutCount

Description: Backout counter.
Datatype: MQLONG.
Initial value: 0.
Valid values: 0.

ReplyToQ

Description: Name of reply queue.
Datatype: MQCHAR48.
Initial value: Null string in the C programming language, or 48 blank characters in

other programming languages.
Valid values: Always blank.

ReplyToQMgr

Description: Name of reply queue manager.
Datatype: MQCHAR48.

Message descriptor

38 MQSeries Event Monitoring

Initial value: Null string in the C programming language, or 48 blank characters in
other programming languages.

Valid values: The queue manager name at the originating system.

UserIdentifier

Description: Identifies the application that originated the message.
Datatype: MQCHAR12.
Initial value: Null string in the C programming language, or 12 blank characters in

other programming languages.
Valid values: Always blank.

AccountingToken

Description: Accounting token that allows an application to charge for work done as
a result of the message.

Datatype: MQBYTE32.
Initial value: MQACT_NONE.
Valid values:

MQACT_NONE
No accounting token is specified.

For the C programming language, the constant
MQACT_NONE_ARRAY is also defined; this has the same
value as MQACT_NONE, but is an array of characters not a
string.

ApplIdentityData

Description: Application data relating to identity.
Datatype: MQCHAR32.
Initial value: Null string in the C programming language and 32 blank characters in

other programming languages.
Valid values: Always blank.

PutApplType

Description: Type of application that put the message.
Datatype: MQLONG.
Initial value: MQAT_NO_CONTEXT.
Valid values:

MQAT_QMGR
Queue-manager-generated message.

PutApplName

Description: Name of application that put the message.
Datatype: MQCHAR28.
Initial value: Null string in the C programming language and 28 blank characters in

other programming languages.
Valid values: Dependent on the environment.

PutDate

Description: Date when message was put.

Message descriptor

Chapter 3. Event message reference 39

Datatype: MQCHAR8.
Initial value: Null string in the C programming language and 8 blank characters in

other programming languages.
Valid values: As generated by the queue manager.

PutTime

Description: Time when message was put.
Datatype: MQCHAR8.
Initial value: Null string in the C programming language and 8 blank characters in

other programming languages.
Valid values: As generated by the queue manager.

ApplOriginData

Description: Application data relating to origin.
Datatype: MQCHAR4.
Initial value: Null string in the C programming language and 4 blank characters in

other programming languages.
Valid values: Always blank.

Note: If Version is MQMD_VERSION_2, the following additional fields are
present:

GroupId

Description: Identifies to which message group or logical message the physical
message belongs.

Datatype: MQBYTE24.
Initial value: MQGI_NONE.
Valid values:

MQGI_NONE
No group identifier specified.

For the C programming language, the constant
MQGI_NONE_ARRAY is also defined; this has the same value
as MQGI_NONE, but is an array of characters not a string.

MsgSeqNumber

Description: Sequence number of logical message within group.
Datatype: MQLONG.
Initial value: 1.
Valid values: 1.

Offset

Description: Offset of data in physical message from start of logical message.
Datatype: MQLONG.
Initial value: 0.
Valid values: 0.

MsgFlags

Description: Message flags that specify attributes of the message or control its
processing.

Message descriptor

40 MQSeries Event Monitoring

Datatype: MQLONG.
Initial value: MQMF_NONE.
Valid values:

MQMF_NONE
No message flags (default message attributes).

OriginalLength

Description: Length of original message.
Datatype: MQLONG.
Initial value: MQOL_UNDEFINED.
Valid values:

MQOL_UNDEFINED
Original length of message not defined.

MQCFH (Event header)
The MQCFH structure is the header structure used for event messages and for PCF
messages. When the structure is used for event messages, the message descriptor
Format field is MQFMT_EVENT. The datatype of the following parameters
(MQLONG) is described in the MQSeries Application Programming Reference manual.

For an event, the MQCFH structure contains these values:

Type

Description: Structure type that identifies the content of the message.
Datatype: MQLONG.
Initial value: MQCFT_COMMAND.
Valid values:

MQCFT_EVENT
Message is reporting an event.

StrucLength

Description: Structure length.
Datatype: MQLONG.
Initial value: MQCFH_STRUC_LENGTH.
Valid values:

MQCFH_STRUC_LENGTH
Length in bytes of MQCFH structure.

Version

Description: Structure version number.
Datatype: MQLONG.
Initial value: MQCFH_VERSION_1.
Valid values:

MQCFH_VERSION_1
Version number for command format header structure.

Message descriptor

Chapter 3. Event message reference 41

Command

Description: Command identifier. This identifies the event category.
Datatype: MQLONG.
Initial value: 0.
Valid values:

MQCMD_Q_MGR_EVENT
Queue manager event.

MQCMD_PERFM_EVENT
Performance event.

MQCMD_CHANNEL_EVENT
Channel event.

MsgSeqNumber

Description: Message sequence number. This is the sequence number of the message
within a group of related messages.

Datatype: MQLONG.
Initial value: 1.
Valid values: 1.

Control

Description: Control options.
Datatype: MQLONG.
Initial value: MQCFC_LAST.
Valid values:

MQCFC_LAST
Last or only message in the group.

CompCode

Description: Completion code.
Datatype: MQLONG.
Initial value: MQCC_OK.
Valid values:

MQCC_OK
Event reporting OK condition.

MQCC_WARNING
Event reporting warning condition. All events have this
completion code, unless otherwise specified.

Reason

Description: Reason code qualifying completion code.
Datatype: MQLONG.
Initial value: MQRC_NONE.
Valid values: MQRC_* Dependent on the event being reported.

Note: Events with the same reason code are further identified by the
ReasonQualifier parameter in the event data.

Event header

42 MQSeries Event Monitoring

ParameterCount

Description: Count of parameter structures. This is the number of parameter
structures (MQCFIN and MQCFST) that follow the MQCFH structure.

Datatype: MQLONG.
Initial value: 0.
Valid values: 0 or greater.

C language declaration
typedef struct tagMQCFH {

MQLONG Type; /* Structure type */
MQLONG StrucLength; /* Structure length */
MQLONG Version; /* Structure version number */
MQLONG Command; /* Command identifier */
MQLONG MsgSeqNumber; /* Message sequence number */
MQLONG Control; /* Control options */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying completion code */
MQLONG ParameterCount; /* Count of parameter structures */
} MQCFH;

COBOL language declaration
** MQCFH structure

10 MQCFH.
** Structure type

15 MQCFH-TYPE PIC S9(9) BINARY.
** Structure length

15 MQCFH-STRUCLENGTH PIC S9(9) BINARY.
** Structure version number

15 MQCFH-VERSION PIC S9(9) BINARY.
** Command identifier

15 MQCFH-COMMAND PIC S9(9) BINARY.
** Message sequence number

15 MQCFH-MSGSEQNUMBER PIC S9(9) BINARY.
** Control options

15 MQCFH-CONTROL PIC S9(9) BINARY.
** Completion code

15 MQCFH-COMPCODE PIC S9(9) BINARY.
** Reason code qualifying completion code

15 MQCFH-REASON PIC S9(9) BINARY.
** Count of parameter structures

15 MQCFH-PARAMETERCOUNT PIC S9(9) BINARY.

PL/I language declaration (AIX, OS/2, OS/390, and Windows
NT)

dcl
1 MQCFH based,
3 Type fixed bin(31), /* Structure type */
3 StrucLength fixed bin(31), /* Structure length */
3 Version fixed bin(31), /* Structure version number */
3 Command fixed bin(31), /* Command identifier */
3 MsgSeqNumber fixed bin(31), /* Message sequence number */
3 Control fixed bin(31), /* Control options */
3 CompCode fixed bin(31), /* Completion code */
3 Reason fixed bin(31), /* Reason code qualifying completion

code */
3 ParameterCount fixed bin(31); /* Count of parameter structures */

Event header

Chapter 3. Event message reference 43

System/390® assembler-language declaration (OS/390 only)
MQCFH DSECT
MQCFH_TYPE DS F Structure type
MQCFH_STRUCLENGTH DS F Structure length
MQCFH_VERSION DS F Structure version number
MQCFH_COMMAND DS F Command identifier
MQCFH_MSGSEQNUMBER DS F Message sequence number
MQCFH_CONTROL DS F Control options
MQCFH_COMPCODE DS F Completion code
MQCFH_REASON DS F Reason code qualifying
* completion code
MQCFH_PARAMETERCOUNT DS F Count of parameter
* structures
MQCFH_LENGTH EQU *-MQCFH Length of structure

ORG MQCFH
MQCFH_AREA DS CL(MQCFH_LENGTH)

Visual Basic® language declaration (Windows platforms only)
Type MQCFH

Type As Long 'Structure type
StrucLength As Long 'Structure length
Version As Long 'Structure version number
Command As Long 'Command identifier
MsgSeqNumber As Long 'Message sequence number
Control As Long 'Control options
CompCode As Long 'Completion code
Reason As Long 'Reason code qualifying completion code
ParameterCount As Long 'Count of parameter structures

End Type

Global MQCFH_DEFAULT As MQCFH

Event header

44 MQSeries Event Monitoring

Event message descriptions
The event message data contains information specific to the event. This includes
the name of the queue manager and, where appropriate, the name of the queue.

The data structures returned depend on which particular event was generated. In
addition, for some events, certain of the structures are optional, and are returned
only if they contain information that is relevant to the circumstances giving rise to
the event. The values in the data structures depend on the circumstances that
caused the event to be generated.

Notes

1. The event structures in the event data are not returned in a defined order.
They must be identified from the parameter identifiers shown in the
description.

2. The events described in the reference section are available on all
platforms, unless specific limitations are shown at the start of an event.

3. The structure datatypes of each parameter are described in “Appendix A.
Structure datatypes MQCFIN and MQCFST” on page 123.

4. Version 2.0 of MQSeries for Windows does not generate MQSeries events.

Event header

Chapter 3. Event message reference 45

Alias Base Queue Type Error

Event name: Alias Base Queue Type Error.

Reason code in MQCFH: MQRC_ALIAS_BASE_Q_TYPE_ERROR (2001, X'7D1').
Alias base queue not a valid type.

Event description: An MQOPEN or MQPUT1 call was issued specifying an alias queue as the
destination, but the BaseQName in the alias queue definition resolves to a queue
that is not a local queue, or local definition of a remote queue.

Event type: Local.

Platforms: All.

Event queue: SYSTEM.ADMIN.QMGR.EVENT.

Event data
QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

QName

Description: Queue name from object descriptor (MQOD).
Identifier: MQCA_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

BaseQName

Description: Queue name to which the alias resolves.
Identifier: MQCA_BASE_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

QType

Description: Type of queue to which the alias resolves.
Identifier: MQIA_Q_TYPE.
Datatype: MQCFIN.
Values:

MQQT_ALIAS
Alias queue definition.

MQQT_MODEL
Model queue definition.

Returned: Always.

Alias Base Queue Type Error

46 MQSeries Event Monitoring

ApplType

Description: Type of the application making the call that caused the event.
Identifier: MQIA_APPL_TYPE.
Datatype: MQCFIN.
Returned: Always.

ApplName

Description: Name of the application making the call that caused the event.
Identifier: MQCACF_APPL_NAME.
Datatype: MQCFST.
Maximum length: MQ_APPL_NAME_LENGTH.
Returned: Always.

ObjectQMgrName

Description: Name of the object queue manager.
Identifier: MQCACF_OBJECT_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: If the ObjectName in the object descriptor (MQOD), when the object was

opened, is not the queue manager currently connected.

Note: If the application is a server for clients, the ApplType and ApplName
parameters identify the server, rather than the client.

Alias Base Queue Type Error

Chapter 3. Event message reference 47

Bridge Started

Event name: Bridge Started.

Reason code in MQCFH: MQRC_BRIDGE_STARTED (2125, X'84D').
Bridge started.

Event description: The IMS bridge has been started.

Event type: IMS Bridge.

Platforms: MQSeries for OS/390 only.

Event queue: SYSTEM.ADMIN.CHANNEL.EVENT.

Event data
QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Data type: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

BridgeType

Description: Bridge type.
Identifier: MQIACF_BRIDGE_TYPE.
Data type: MQCFIN.
Values:

MQBT_OTMA
OTMA bridge.

Returned: Always.

BridgeName

Description: Bridge name. For bridges of type MQBT_OTMA, the name is of the form
XCFgroupXCFmember, where XCFgroup is the XCF group name to which
both IMS and MQSeries belong. XCFmember is the XCF member name of
the IMS system.

Identifier: MQCACF_BRIDGE_NAME.
Data type: MQCFST.
Maximum length: MQ_BRIDGE_NAME_LENGTH.
Returned: Always.

Bridge Started

48 MQSeries Event Monitoring

Bridge Stopped

Event name: Bridge Stopped.

Reason code in MQCFH: MQRC_BRIDGE_STOPPED (2126, X'84E').
Bridge stopped.

Event description: The IMS bridge has been stopped.

Event type: IMS Bridge.

Platforms: MQSeries for OS/390 only.

Event queue: SYSTEM.ADMIN.CHANNEL.EVENT.

Event data
QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

ReasonQualifier

Description: Identifier that qualifies the reason code in MQCFH.
Identifier: MQIACF_REASON_QUALIFIER.
Datatype: MQCFIN.
Values:

MQRQ_BRIDGE_STOPPED_OK
Bridge has been stopped with either a zero return code or a
warning return code. For MQBT_OTMA bridges, one side or
the other issued a normal IXCLEAVE request.

MQRQ_BRIDGE_STOPPED_ERROR
Bridge has been stopped but there is an error reported.

Returned: Always.

BridgeType

Description: Bridge type.
Identifier: MQIACF_BRIDGE_TYPE.
Datatype: MQCFIN.
Value:

MQBT_OTMA
OTMA bridge.

Returned: Always.

BridgeName

Description: Bridge name. For bridges of type MQBT_OTMA, the name is of the form
XCFgroupXCFmember, where XCFgroup is the XCF group name to which
both IMS and MQSeries belong. XCFmember is the XCF member name of
the IMS system.

Identifier: MQCACF_BRIDGE_NAME.
Datatype: MQCFST.

Bridge Stopped

Chapter 3. Event message reference 49

Maximum length: MQ_BRIDGE_NAME_LENGTH.
Returned: Always.

ErrorIdentifier

Description: When a bridge is stopped due to an error, this code identifies the error.
If the event reports a bridge stop failure, the IMS sense code is set.

Identifier: MQIACF_ERROR_IDENTIFIER.
Datatype: MQCFIN.
Returned: If ReasonQualifier is MQRQ_BRIDGE_STOPPED_ERROR.

Bridge Stopped

50 MQSeries Event Monitoring

Channel Activated

Event name: Channel Activated.

Reason code in MQCFH: MQRC_CHANNEL_ACTIVATED (2295, X'8F7').
Channel activated.

Event description: This condition is detected when a channel that has been waiting to become active,
and for which a Channel Not Activated event has been generated, is now able to
become active, because an active slot has been released by another channel.

This event is not generated for a channel that is able to become active without
waiting for an active slot to be released.

Event type: Channel.

Platforms: All, except MQSeries for OS/390 if CICS® is used for distributed queue
management.

Event queue: SYSTEM.ADMIN.CHANNEL.EVENT.

Event data
QMgrName

Description: Name of the reason code.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

ChannelName

Description: Channel Name.
Identifier: MQCACH_CHANNEL_NAME.
Datatype: MQCFST.
Maximum length: MQ_CHANNEL_NAME_LENGTH.
Returned: Always.

XmitQName

Description: Transmission queue name.
Identifier: MQCACH_XMIT_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: For sender, server, cluster-sender, and cluster-receiver channels only.

ConnectionName

Description: If the channel has successfully established a TCP connection, this is the
Internet address. Otherwise it is the contents of the ConnectionName field
in the channel definition.

Identifier: MQCACH_CONNECTION_NAME.
Datatype: MQCFST.
Maximum length: MQ_CONN_NAME_LENGTH.
Returned: Only for commands that do not contain a generic name.

Channel Activated

Chapter 3. Event message reference 51

Channel Auto-definition Error

Event name: Channel Auto-definition Error.

Reason code in MQCFH: MQRC_CHANNEL_AUTO_DEF_ERROR (2234, X'8BA').
Automatic channel definition failed.

Event description: This condition is detected when the automatic definition of a channel fails; this
may be because an error occurred during the definition process, or because the
channel automatic-definition exit inhibited the definition. Additional information
indicating the reason for the failure is returned in the event message.

Event type: Channel.

Platforms: Any MQSeries Version 5 product, except MQSeries for OS/390 when using CICS
for distributed queuing.

Event queue: SYSTEM.ADMIN.CHANNEL.EVENT.

Event data
QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

ChannelName

Description: Name of the channel for which the auto-definiton has failed.
Identifier: MQCACH_CHANNEL_NAME.
Datatype: MQCFST.
Maximum length: MQ_CHANNEL_NAME_LENGTH.
Returned: Always.

ChannelType

Description: Channel Type. This specifies the type of channel for which the
auto-definition has failed.

Identifier: MQIACH_CHANNEL_TYPE.
Datatype: MQCFIN.
Values:

MQCHT_RECEIVER
Receiver.

MQCHT_SVRCONN
Server-connection (for use by clients).

MQCHT_CLUSSDR
Cluster-sender.

Returned: Always.

ErrorIdentifier

Description: Identifier of the cause of the error. This contains either the reason code
(MQRC_* or MQRCCF_*) resulting from the channel definition attempt
or the value MQRCCF_SUPPRESSED_BY_EXIT if the attempt to create
the definition was disallowed by the exit.

Channel Auto-definition Error

52 MQSeries Event Monitoring

Identifier: MQIACF_ERROR_IDENTIFIER.
Datatype: MQCFIN.
Returned: Always.

ConnectionName

Description: Name of the partner attempting to establish connection.
Identifier: MQCACH_CONNECTION_NAME.
Datatype: MQCFST.
Maximum length: MQ_CONN_NAME_LENGTH.
Returned: Always.

AuxErrorDataInt1

Description: Auxiliary error data. This contains the value returned by the exit in the
Feedback field of the MQCXP to indicate why the auto definition has
been disallowed.

Identifier: MQIACF_AUX_ERROR_DATA_INT_1.
Datatype: MQCFIN.
Returned: Only if ErrorIdentifier contains MQRCCF_SUPPRESSED_BY_EXIT.

Channel Auto-definition Error

Chapter 3. Event message reference 53

Channel Auto-definition OK

Event name: Channel Auto-definition OK.

Reason code in MQCFH: MQRC_CHANNEL_AUTO_DEF_OK (2233, X'8B9').
Automatic channel definition succeeded.

Event description: This condition is detected when the automatic definition of a channel is successful.
The channel is defined by the MCA.

Event type: Channel.

Platforms: Any MQSeries Version 5 product, except MQSeries for OS/390 when using CICS
for distributed queuing.

Event queue: SYSTEM.ADMIN.CHANNEL.EVENT.

Event data
QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

ChannelName

Description: Name of the channel being defined.
Identifier: MQCACH_CHANNEL_NAME.
Datatype: MQCFST.
Maximum length: MQ_CHANNEL_NAME_LENGTH.
Returned: Always.

ChannelType

Description: Type of channel being defined.
Identifier: MQIACH_CHANNEL_TYPE.
Datatype: MQCFIN.
Values:

MQCHT_RECEIVER
Receiver.

MQCHT_SVRCONN
Server-connection (for use by clients).

MQCHT_CLUSSDR
Cluster-sender.

Returned: Always.

ConnectionName

Description: Name of the partner attempting to establish connection.
Identifier: MQCACH_CONNECTION_NAME.
Datatype: MQCFST.
Maximum length: MQ_CONN_NAME_LENGTH.
Returned: Always.

Channel Auto-definition OK

54 MQSeries Event Monitoring

Channel Conversion Error

Event name: Channel Conversion Error.

Reason code in MQCFH: MQRC_CHANNEL_CONV_ERROR (2284, X'8EC').
Channel conversion error.

Event description: This condition is detected when a channel is unable to carry out data conversion
and the MQGET call to get a message from the transmission queue resulted in a
data conversion error. The reason for the failure is identified by
ConversionReasonCode.

Event type: Channel.

Platforms: All, except MQSeries for OS/390 if CICS is used for distributed queue
management.

Event queue: SYSTEM.ADMIN.CHANNEL.EVENT.

Note: MQSeries for Windows V2.1 does not define the channel event queue for
you, so the default action is not to generate channel events. This is because,
once you have defined a channel event queue, you cannot stop channel
event messages being generated. If you want MQSeries to generate channel
events, you must define the channel event queue yourself using the name
SYSTEM.ADMIN.CHANNEL.EVENT.

Event data
QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

ConversionReasonCode

Description: Identifier of the cause of the conversion error.
Identifier: MQIACF_CONV_REASON_CODE.
Datatype: MQCFIN.

Channel Conversion Error

Chapter 3. Event message reference 55

Values:
MQRC_CONVERTED_MSG_TOO_BIG (2120, X'848')

Converted message too big for application buffer.

MQRC_FORMAT_ERROR (2110, X'83E')
Message format not valid.

MQRC_NOT_CONVERTED (2119, X'847')
Application message data not converted.

MQRC_SOURCE_CCSID_ERROR (2111, X'83F')
Source coded character set identifier not valid.

MQRC_SOURCE_DECIMAL_ENC_ERROR (2113, X'841')
Packed-decimal encoding in message not recognized.

MQRC_SOURCE_FLOAT_ENC_ERROR (2114, X'842')
Floating-point encoding in message not recognized.

MQRC_SOURCE_INTEGER_ENC_ERROR (2112, X'840')
Integer encoding in message not recognized.

MQRC_TARGET_CCSID_ERROR (2115, X'843')
Target coded character set identifier not valid.

MQRC_TARGET_DECIMAL_ENC_ERROR (2117, X'845')
Packed-decimal encoding specified by receiver not recognized.

MQRC_TARGET_FLOAT_ENC_ERROR (2118, X'846')
Floating-point encoding specified by receiver not recognized.

MQRC_TARGET_INTEGER_ENC_ERROR (2116, X'844')
Integer encoding specified by receiver not recognized.

MQRC_TRUNCATED_MSG_ACCEPTED (2079, X'81F')
Truncated message returned (processing completed).

MQRC_TRUNCATED_MSG_FAILED (2080, X'820')
Truncated message returned (processing not completed).

Returned: Always.

ChannelName

Description: Channel name.
Identifier: MQCACH_CHANNEL_NAME.
Datatype: MQCFST.
Maximum length: MQ_CHANNEL_NAME_LENGTH.
Returned: Always.

Format

Description: Format name.
Identifier: MQCACH_FORMAT_NAME.
Datatype: MQCFST.
Maximum length: MQ_FORMAT_LENGTH.
Returned: Always.

XmitQName

Description: Transmission queue name.
Identifier: MQCACH_XMIT_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.

Channel Conversion Error

56 MQSeries Event Monitoring

Returned: Always.

ConnectionName

Description: If the channel has successfully established a TCP connection, this is the
Internet address. Otherwise it is the contents of the ConnectionName field
in the channel definition.

Identifier: MQCACH_CONNECTION_NAME.
Datatype: MQCFST.
Maximum length: MQ_CONN_NAME_LENGTH.
Returned: Always.

Channel Conversion Error

Chapter 3. Event message reference 57

Channel Not Activated

Event name: Channel Not Activated.

Reason code in MQCFH: MQRC_CHANNEL_NOT_ACTIVATED (2296, X'8F8').
Channel cannot be activated.

Event description: This condition is detected when a channel is required to become active, either
because it is starting, or because it is about to make another attempt to establish
connection with its partner. However, it is unable to do so because the limit on the
number of active channels has been reached. See the:

v MaxActiveChannels parameter in the qm.ini file for OS/2, AIX, HP-UX, and Sun
Solaris

v MaxActiveChannels parameter in the Registry for Windows NT

v ACTCHL parameter in CSQXPARM for OS/390

The channel waits until it is able to take over an active slot released when another
channel ceases to be active. At that time a Channel Activated event is generated.

Event type: Channel.

Platforms: All, except MQSeries for OS/390 if CICS is used for distributed queue
management.

Event queue: SYSTEM.ADMIN.CHANNEL.EVENT.

Note: MQSeries for Windows V2.1 does not define the channel event queue for
you, so the default action is not to generate channel events. This is because,
once you have defined a channel event queue, you cannot stop channel
event messages being generated. If you want MQSeries to generate channel
events, you must define the channel event queue yourself using the name
SYSTEM.ADMIN.CHANNEL.EVENT.

Event data
QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

ChannelName

Description: Channel name.
Identifier: MQCACH_CHANNEL_NAME.
Datatype: MQCFST.
Maximum length: MQ_CHANNEL_NAME_LENGTH.
Returned: Always.

XmitQName

Description: Transmission queue name.
Identifier: MQCACH_XMIT_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.

Channel Not Activated

58 MQSeries Event Monitoring

Returned: For sender, server, cluster-sender, and cluster-receiver channel types
only.

ConnectionName

Description: If the channel has successfully established a TCP connection, this is the
Internet address. Otherwise it is the contents of the ConnectionName field
in the channel definition.

Identifier: MQCACH_CONNECTION_NAME.
Datatype: MQCFST.
Maximum length: MQ_CONN_NAME_LENGTH.
Returned: Only for commands that do not contain a generic name.

Channel Not Activated

Chapter 3. Event message reference 59

Channel Started

Event name: Channel Started.

Reason code in MQCFH: MQRC_CHANNEL_STARTED (2282, X'8EA').
Channel started.

Event description: Either an operator has issued a Start Channel command, or an instance of a
channel has been successfully established. This condition is detected when Initial
Data negotiation is complete and resynchronization has been performed where
necessary, such that message transfer can proceed.

Event type: Channel.

Platforms: All, except MQSeries for OS/390 if CICS is used for distributed queue
management. Client connections on MQSeries for OS/390, or MQSeries Version 5
products do not produce this event.

Event queue: SYSTEM.ADMIN.CHANNEL.EVENT.

Note: MQSeries for Windows V2.1 does not define the channel event queue for
you, so the default action is not to generate channel events. This is because,
once you have defined a channel event queue, you cannot stop channel
event messages being generated. If you want MQSeries to generate channel
events, you must define the channel event queue yourself using the name
SYSTEM.ADMIN.CHANNEL.EVENT.

Event data
QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

ChannelName

Description: Channel name.
Identifier: MQCACH_CHANNEL_NAME.
Datatype: MQCFST.
Maximum length: MQ_CHANNEL_NAME_LENGTH.
Returned: Always.

XmitQName

Description: Transmission queue name.
Identifier: MQCACH_XMIT_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: For sender, server, cluster-sender, and cluster-receiver channels only.

ConnectionName

Description: If the channel has successfully established a TCP connection, this is the
Internet address. Otherwise it is the contents of the ConnectionName field
in the channel definition.

Identifier: MQCACH_CONNECTION_NAME.

Channel Started

60 MQSeries Event Monitoring

Datatype: MQCFST.
Maximum length: MQ_CONN_NAME_LENGTH.
Returned: Only for commands that do not contain a generic name.

Channel Started

Chapter 3. Event message reference 61

Channel Stopped

Event name: Channel Stopped.

Reason code in MQCFH: MQRC_CHANNEL_STOPPED (2283, X'8EB').
Channel stopped.

Event description: This condition is detected when a channel has been stopped. ReasonQualifier
identifies the reasons for stopping.

Event type: Channel.

Platforms: All, except MQSeries for OS/390 if CICS is used for distributed queue
management. Client connections on MQSeries for OS/390, or MQSeries Version 5
products do not produce this event.

Event queue: SYSTEM.ADMIN.CHANNEL.EVENT.

Note: MQSeries for Windows V2.1 does not define the channel event queue for
you, so the default action is not to generate channel events. This is because,
once you have defined a channel event queue, you cannot stop channel
event messages being generated. If you want MQSeries to generate channel
events, you must define the channel event queue yourself using the name
SYSTEM.ADMIN.CHANNEL.EVENT.

Event data
QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

ReasonQualifier

Description: Identifier that qualifies the reason code.
Identifier: MQIACF_REASON_QUALIFIER.
Datatype: MQCFIN.
Values:

MQRQ_CHANNEL_STOPPED_OK
Channel has been closed with either a zero return code or a
warning return code.

MQRQ_CHANNEL_STOPPED_ERROR
Channel has been closed but there is an error reported and the
channel is not in stopped or retry state.

MQRQ_CHANNEL_STOPPED_RETRY
Channel has been closed and it is in retry state.

MQRQ_CHANNEL_STOPPED_DISABLED
Channel has been closed and it is in a stopped state.

Returned: Always.

ChannelName

Description: Channel name.
Identifier: MQCACH_CHANNEL_NAME.

Channel Stopped

62 MQSeries Event Monitoring

Datatype: MQCFST.
Maximum length: MQ_CHANNEL_NAME_LENGTH.
Returned: Always.

ErrorIdentifier

Description: Identifier of the cause of the error. If a channel is stopped due to an
error, this is the code that identifies the error. If the event message is
because of a channel stop failure, the following fields are set:
1. ReasonQualifier, containing the value

MQRQ_CHANNEL_STOPPED_ERROR
2. ErrorIdentifier, containing the code number of an error message

that describes the error
3. AuxErrorDataInt1, containing error message integer insert 1
4. AuxErrorDataInt2, containing error message integer insert 2
5. AuxErrorDataStr1, containing error message string insert 1
6. AuxErrorDataStr2, containing error message string insert 2
7. AuxErrorDataStr3, containing error message string insert 3

The meanings of the error message inserts depend on the code number
of the error message. Details of error-message code numbers and the
inserts for specific platforms can be found as follows:

v For OS/390, see the section “Distributed queuing message codes” in
the MQSeries for OS/390 Messages and Codes book.

v For other platforms, the last four digits of ErrorIdentifier when
displayed in hexadecimal notation indicate the decimal code number
of the error message.

For example, if ErrorIdentifier has the value X'xxxxyyyy', the
message code of the error message explaining the error is AMQyyyy.
See the MQSeries Messages book for a description of these error
messages.

Identifier: MQIACF_ERROR_IDENTIFIER.
Datatype: MQCFIN.
Returned: Always.

AuxErrorDataInt1

Description: First integer of auxiliary error data for channel errors. If a channel is
stopped due to an error, this is the first integer parameter that qualifies
the error. This information is for use by IBM service personnel; include it
in any problem report that you submit to IBM regarding this event
message.

Identifier: MQIACF_AUX_ERROR_DATA_INT_1.
Datatype: MQCFIN.
Returned: Always.

AuxErrorDataInt2

Description: Second integer of auxiliary error data for channel errors. If a channel is
stopped due to an error, this is the second integer parameter that
qualifies the error. This information is for use by IBM service personnel;
include it in any problem report that you submit to IBM regarding this
event message.

Identifier: MQIACF_AUX_ERROR_DATA_INT_2.
Datatype: MQCFIN.
Returned: Always.

Channel Stopped

Chapter 3. Event message reference 63

AuxErrorDataStr1

Description: First string of auxiliary error data for channel errors. If a channel is
stopped due to an error, this is the first string parameter that qualifies
the error. This information is for use by IBM service personnel; include it
in any problem report that you submit to IBM regarding this event
message.

Identifier: MQCACF_AUX_ERROR_DATA_STR_1.
Datatype: MQCFST.
Returned: Always.

AuxErrorDataStr2

Description: Second string of auxiliary error data for channel errors. If a channel is
stopped due to an error, this is the second string parameter that qualifies
the error. This information is for use by IBM service personnel; include it
in any problem report that you submit to IBM regarding this event
message.

Identifier: MQCACF_AUX_ERROR_DATA_STR_2.
Datatype: MQCFST.
Returned: Always.

AuxErrorDataStr3

Description: Third string of auxiliary error data for channel errors. If a channel is
stopped due to an error, this is the third string parameter that qualifies
the error. This information is for use by IBM service personnel; include it
in any problem report that you submit to IBM regarding this event
message.

Identifier: MQCACF_AUX_ERROR_DATA_STR_3.
Datatype: MQCFST.
Returned: Always.

XmitQName

Description: Transmission queue name.
Identifier: MQCACH_XMIT_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: For sender, server, cluster-sender, and cluster-receiver channels only.

ConnectionName

Description: If the channel has successfully established a TCP connection, this is the
Internet address. Otherwise it is the contents of the ConnectionName field
in the channel definition.

Identifier: MQCACH_CONNECTION_NAME.
Datatype: MQCFST.
Maximum length: MQ_CONN_NAME_LENGTH.
Returned: Only for commands that do not contain a generic name.

Channel Stopped

64 MQSeries Event Monitoring

Channel Stopped By User

Event name: Channel Stopped By User.

Reason code in MQCFH: MQRC_CHANNEL_STOPPED_BY_USER (2279, X'8E7').
Channel stopped by user.

Event description: This condition is detected when a channel has been stopped by the operator.
ReasonQualifier identifies the reasons for stopping.

Event type: Channel.

Platforms: All, except MQSeries for Tandem NonStop Kernel, MQSeries for Compaq Tru64
UNIX, or MQSeries for OS/390 if CICS is used for distributed queue management.

Event queue: SYSTEM.ADMIN.CHANNEL.EVENT.

Note: MQSeries for Windows V2.1 does not define the channel event queue for
you, so the default action is not to generate channel events. This is because,
once you have defined a channel event queue, you cannot stop channel
event messages being generated. If you want MQSeries to generate channel
events, you must define the channel event queue yourself using the name
SYSTEM.ADMIN.CHANNEL.EVENT.

Event data
QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

ReasonQualifier

Description: Identifier that qualifies the reason code.
Identifier: MQIACF_REASON_QUALIFIER.
Datatype: MQCFIN.
Values:

MQRQ_CHANNEL_STOPPED_DISABLED
Channel has been closed and it is in a stopped state.

Returned: Always.

ChannelName

Description: Channel name.
Identifier: MQCACH_CHANNEL_NAME.
Datatype: MQCFST.
Maximum length: MQ_CHANNEL_NAME_LENGTH.
Returned: Always.

Channel Stopped By User

Chapter 3. Event message reference 65

ErrorIdentifier

Description: Identifier of the cause of the error. As the event message is generated by
a Stop Channel command and not a channel error, the following fields
are set:
1. ReasonQualifier, containing the same value as in the

ReasonQualifier(MQCFIN) field.
2. AuxErrorDataInt1, containing zeros
3. AuxErrorDataInt2, containing zeros
4. AuxErrorDataStr1, containing zeros
5. AuxErrorDataStr2, containing zeros
6. AuxErrorDataStr3, containing zeros

Identifier: MQIACF_ERROR_IDENTIFIER.
Datatype: MQCFIN.
Returned: Always.

XmitQName

Description: Transmission queue name.
Identifier: MQCACH_XMIT_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: For sender, server, cluster-sender, and cluster-receiver channels only.

ConnectionName

Description: If the channel has successfully established a TCP connection, this is the
Internet address. Otherwise it is the contents of the ConnectionName field
in the channel definition.

Identifier: MQCACH_CONNECTION_NAME.
Datatype: MQCFST.
Maximum length: MQ_CONN_NAME_LENGTH.
Returned: Only for commands that do not contain a generic name.

Channel Stopped By User

66 MQSeries Event Monitoring

Default Transmission Queue Type Error

Event name: Default Transmission Queue Type Error.

Reason code in MQCFH: MQRC_DEF_XMIT_Q_TYPE_ERROR (2198, X'896').
Default transmission queue not local.

Event description: An MQOPEN or MQPUT1 call was issued specifying a remote queue as the
destination. Either a local definition of the remote queue was specified, or a
queue-manager alias was being resolved, but in either case the XmitQName attribute
in the local definition is blank.

No transmission queue is defined with the same name as the destination queue
manager, so the local queue manager has attempted to use the default
transmission queue. However, although there is a queue defined by the
DefXmitQName queue-manager attribute, it is not a local queue. See the MQSeries
Application Programming Guide for more information.

Event type: Remote.

Platforms: All.

Event queue: SYSTEM.ADMIN.QMGR.EVENT.

Event data
QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

QName

Description: Queue name from object descriptor (MQOD).
Identifier: MQCA_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

XmitQName

Description: Default transmission queue name.
Identifier: MQCA_XMIT_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

QType

Description: Type of default transmission queue.
Identifier: MQIA_Q_TYPE.
Datatype: MQCFIN.

Default Transmission Queue Type Error

Chapter 3. Event message reference 67

Values:
MQQT_ALIAS

Alias queue definition.

MQQT_REMOTE
Local definition of a remote queue.

Returned: Always.

ApplType

Description: Type of application making the MQI call that caused the event.
Identifier: MQIA_APPL_TYPE.
Datatype: MQCFIN.
Returned: Always.

ApplName

Description: Name of the application making the MQI call that caused the event.
Identifier: MQCACF_APPL_NAME.
Datatype: MQCFST.
Maximum length: MQ_APPL_NAME_LENGTH.
Returned: Always.

ObjectQMgrName

Description: Name of the object queue manager.
Identifier: MQCACF_OBJECT_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: If the ObjectName in the object descriptor (MQOD), when the object was

opened, is not the queue manager currently connected.

Note: If the application is a server for clients, the ApplType and ApplName
parameters identify the server, not the client.

Default Transmission Queue Type Error

68 MQSeries Event Monitoring

Default Transmission Queue Usage Error

Event name: Default Transmission Queue Usage Error.

Reason code in MQCFH: MQRC_DEF_XMIT_Q_USAGE_ERROR (2199, X'897').
Default transmission queue usage error.

Event description: An MQOPEN or MQPUT1 call was issued specifying a remote queue as the
destination. Either a local definition of the remote queue was specified, or a
queue-manager alias was being resolved, but in either case the XmitQName attribute
in the local definition is blank.

No transmission queue is defined with the same name as the destination queue
manager, so the local queue manager has attempted to use the default
transmission queue. However, the queue defined by the DefXmitQName
queue-manager attribute does not have a Usage attribute of
MQUS_TRANSMISSION. See the MQSeries Application Programming Guide for more
information.

Event type: Remote.

Platforms: All.

Event queue: SYSTEM.ADMIN.QMGR.EVENT.

Event data
QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

QName

Description: Queue name from object descriptor (MQOD).
Identifier: MQCA_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

XmitQName

Description: Default transmission queue name.
Identifier: MQCA_XMIT_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

ApplType

Description: Type of application making the MQI call that caused the event.
Identifier: MQIA_APPL_TYPE.
Datatype: MQCFIN.
Returned: Always.

Default Transmission Queue Usage Error

Chapter 3. Event message reference 69

ApplName

Description: Name of the application making the MQI call that caused the event.
Identifier: MQCACF_APPL_NAME.
Datatype: MQCFST.
Maximum length: MQ_APPL_NAME_LENGTH.
Returned: Always.

ObjectQMgrName

Description: Name of the object queue manager.
Identifier: MQCACF_OBJECT_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: If the ObjectName in the object descriptor (MQOD), when the object was

opened, is not the queue manager currently connected.

Note: If the application is a server for clients, the ApplType and ApplName
parameters identify the server, not the client.

Default Transmission Queue Usage Error

70 MQSeries Event Monitoring

Get Inhibited

Event name: Get Inhibited.

Reason code in MQCFH: MQRC_GET_INHIBITED (2016, X'7E0').
Gets inhibited for the queue.

Event description: MQGET calls are currently inhibited for the queue (see the InhibitGet queue
attribute in the MQSeries Application Programming Reference manual) or for the
queue to which this queue resolves.

Event type: Inhibit.

Platforms: All.

Event queue: SYSTEM.ADMIN.QMGR.EVENT.

Event data
QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

QName

Description: Queue name from object descriptor (MQOD).
Identifier: MQCA_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

ApplType

Description: Type of application that issued the get.
Identifier: MQIA_APPL_TYPE.
Datatype: MQCFIN.
Returned: Always.

ApplName

Description: Name of the application that issued the get.
Identifier: MQCACF_APPL_NAME.
Datatype: MQCFST.
Maximum length: MQ_APPL_NAME_LENGTH.
Returned: Always.

Note: If the application is a server for clients, the ApplType and ApplName
parameters identify the server, not the client.

Get Inhibited

Chapter 3. Event message reference 71

Not Authorized (type 1)

Event name: Not Authorized (type 1).

Reason code in MQCFH: MQRC_NOT_AUTHORIZED (2035, X'7F3').
Not authorized for access.

Event description: On an MQCONN call, the user is not authorized to connect to the queue manager.

Event type: Authority.

Platforms: All, except MQSeries for OS/390, MQSeries for OS/2 Warp, and MQSeries for
Windows Version 2.1.

Event queue: SYSTEM.ADMIN.QMGR.EVENT.

Event data
QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

ReasonQualifier

Description: Identifier for type 1 authority events.
Identifier: MQIACF_REASON_QUALIFIER.
Datatype: MQCFIN.
Values:

MQRQ_CONN_NOT_AUTHORIZED
Connection not authorized.

Returned: Always.

UserIdentifier

Description: User identifier that caused the authorization check.
Identifier: MQCACF_USER_IDENTIFIER.
Datatype: MQCFST.
Maximum length: MQ_USER_ID_LENGTH.
Returned: Always.

ApplType

Description: Type of application causing the event.
Identifier: MQIA_APPL_TYPE.
Datatype: MQCFIN.
Returned: Always.

ApplName

Description: Name of the application causing the event.
Identifier: MQCACF_APPL_NAME.
Datatype: MQCFST.
Maximum length: MQ_APPL_NAME_LENGTH.
Returned: Always.

Not Authorized (type 1)

72 MQSeries Event Monitoring

Note: If the application is a server for clients, the ApplType and ApplName
parameters identify the server, not the client.

Not Authorized (type 1)

Chapter 3. Event message reference 73

Not Authorized (type 2)

Event name: Not Authorized (type 2).

Reason code in MQCFH: MQRC_NOT_AUTHORIZED (2035, X'7F3').
Not authorized for access.

Event description: On an MQOPEN or MQPUT1 call, the user is not authorized to open the object for
the options specified.

Event type: Authority.

Platforms: All, except MQSeries for OS/390, MQSeries for OS/2 Warp, MQSeries for Tandem
NSK, and MQSeries for Windows Version 2.1.

Event queue: SYSTEM.ADMIN.QMGR.EVENT.

Event data
QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

ReasonQualifier

Description: Identifier for type 2 authority events.
Identifier: MQIACF_REASON_QUALIFIER.
Datatype: MQCFIN.
Values:

MQRQ_OPEN_NOT_AUTHORIZED
Open not authorized.

Returned: Always.

Options

Description: Options specified on the MQOPEN call.
Identifier: MQIACF_OPEN_OPTIONS.
Datatype: MQCFIN.
Returned: Always.

UserIdentifier

Description: User identifier that caused the authorization check.
Identifier: MQCACF_USER_IDENTIFIER.
Datatype: MQCFST.
Maximum length: MQ_USER_ID_LENGTH.
Returned: Always.

ApplType

Description: Type of application that caused the authorization check.
Identifier: MQIA_APPL_TYPE.
Datatype: MQCFIN.
Returned: Always.

Not Authorized (type 2)

74 MQSeries Event Monitoring

ApplName

Description: Name of the application that caused the authorization check.
Identifier: MQCACF_APPL_NAME.
Datatype: MQCFST.
Maximum length: MQ_APPL_NAME_LENGTH.
Returned: Always.

ObjectQMgrName

Description: Object queue manager name from object descriptor (MQOD).
Identifier: MQCACF_OBJECT_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: If the ObjectQMgrName in the object descriptor (MQOD) when the object

was opened is not the queue manager currently connected.

QName

Description: Object name from object descriptor (MQOD).
Identifier: MQCA_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: If the object opened is not a process object.

ProcessName

Description: Name of process object from object descriptor (MQOD).
Identifier: MQCA_PROCESS_NAME.
Datatype: MQCFST.
Maximum length: MQ_PROCESS_NAME_LENGTH.
Returned: If the object opened is a process object.

Note: If the application is a server for clients, the ApplType and ApplName
parameters identify the server, not the client.

Not Authorized (type 2)

Chapter 3. Event message reference 75

Not Authorized (type 3)

Event name: Not Authorized (type 3).

Reason code in MQCFH: MQRC_NOT_AUTHORIZED (2035, X'7F3').
Not authorized for access.

Event description: On an MQCLOSE call, the user is not authorized to delete the object, which is a
permanent dynamic queue, and the Hobj parameter specified on the MQCLOSE
call is not the handle returned by the MQOPEN call that created the queue.

Event type: Authority.

Platforms: All, except MQSeries for OS/390, MQSeries for OS/2 Warp, MQSeries for Tandem
NSK, and MQSeries for Windows Version 2.1.

Event queue: SYSTEM.ADMIN.QMGR.EVENT.

Event data
QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

ReasonQualifier

Description: Identifier for type 3 authority events.
Identifier: MQIACF_REASON_QUALIFIER.
Datatype: MQCFIN.
Values:

MQRQ_CLOSE_NOT_AUTHORIZED
Close not authorized.

Returned: Always.

QName

Description: Object name from object descriptor (MQOD).
Identifier: MQCA_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

UserIdentifier

Description: User identifier that caused the authorization check.
Identifier: MQCACF_USER_IDENTIFIER.
Datatype: MQCFST.
Maximum length: MQ_USER_ID_LENGTH.
Returned: Always.

ApplType

Description: Type of application causing the authorization check.
Identifier: MQIA_APPL_TYPE.

Not Authorized (type 3)

76 MQSeries Event Monitoring

Datatype: MQCFIN.
Returned: Always.

ApplName

Description: Name of the application causing the authorization check.
Identifier: MQCACF_APPL_NAME.
Datatype: MQCFST.
Maximum length: MQ_APPL_NAME_LENGTH.
Returned: Always.

Note: If the application is a server for clients, the ApplType and ApplName
parameters identify the server, not the client.

Not Authorized (type 3)

Chapter 3. Event message reference 77

Not Authorized (type 4)

Event name: Not Authorized (type 4).

Reason code in MQCFH: MQRC_NOT_AUTHORIZED (2035, X'7F3').
Not authorized for access.

Event description: Indicates that a command has been issued from a user ID that is not authorized to
access the object specified in the command.

Event type: Authority.

Platforms: All, except MQSeries for OS/390, MQSeries for OS/2 Warp, MQSeries for Tandem
NSK, and MQSeries for Windows Version 2.1.

Event queue: SYSTEM.ADMIN.QMGR.EVENT.

Event data
QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

ReasonQualifier

Description: Identifier for type 4 authority events.
Identifier: MQIACF_REASON_QUALIFIER.
Datatype: MQCFIN.
Values:

MQRQ_CMD_NOT_AUTHORIZED
Command not authorized.

Returned: Always.

Command

Description: Command identifier. See the MQCFH header structure, described in
“MQCFH (Event header)” on page 41.

Identifier: MQIACF_COMMAND.
Datatype: MQCFIN.
Returned: Always.

UserIdentifier

Description: User identifier that caused the authorization check.
Identifier: MQCACF_USER_IDENTIFIER.
Datatype: MQCFST.
Maximum length: MQ_USER_ID_LENGTH.
Returned: Always.

Not Authorized (type 4)

78 MQSeries Event Monitoring

Put Inhibited

Event name: Put Inhibited.

Reason code in MQCFH: MQRC_PUT_INHIBITED (2051, X'803').
Put calls inhibited for the queue.

Event description: MQPUT and MQPUT1 calls are currently inhibited for the queue (see the
InhibitPut queue attribute in in the MQSeries Application Programming Reference
manual) or for the queue to which this queue resolves.

Event type: Inhibit.

Platforms: All.

Event queue: SYSTEM.ADMIN.QMGR.EVENT.

Event data
QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

QName

Description: Queue name from object descriptor (MQOD).
Identifier: MQCA_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

ApplType

Description: Type of application that issued the put.
Identifier: MQIA_APPL_TYPE.
Datatype: MQCFIN.
Returned: Always.

ApplName

Description: Name of the application that issued the put.
Identifier: MQCACF_APPL_NAME.
Datatype: MQCFST.
Maximum length: MQ_APPL_NAME_LENGTH.
Returned: Always.

ObjectQMgrName

Description: Name of queue manager from object descriptor (MQOD).
Identifier: MQCACF_OBJECT_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.

Put Inhibited

Chapter 3. Event message reference 79

Returned: Only if this parameter has a value different from QMgrName. This occurs
when the ObjectQMgrName field in the object descriptor provided by the
application on the MQOPEN or MQPUT1 call is neither blank nor the
name of the application’s local queue manager. However, it can also
occur when ObjectQMgrName in the object descriptor is blank, but a name
service provides a queue-manager name that is not the name of the
application’s local queue manager.

Note: If the application is a server for clients, the ApplType and ApplName
parameters identify the server, not the client.

Put Inhibited

80 MQSeries Event Monitoring

Queue Depth High

Event name: Queue Depth High.

Reason code in MQCFH: MQRC_Q_DEPTH_HIGH (2224, X'8B0').
Queue depth high limit reached or exceeded.

Event description: An MQPUT or MQPUT1 call has caused the queue depth to be incremented to or
above the limit specified in the QDepthHighLimit attribute.

Corrective action: None. This reason code is used only to identify the corresponding event message.

Event type: Performance.

Platforms: All.

Event queue: SYSTEM.ADMIN.PERFM.EVENT.

Notes:

1. MQSeries for OS/390 supports queue depth events on shared queues. You
might receive a NULL event message for a shared queue if a queue manager
has performed no activity on that shared queue.

2. For shared queues, the correlation identifier, CorrelId in the message descriptor
(MQMD) is set. See “MQMD (Message descriptor)” on page 35 for more
information.

Event data
QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

QName

Description: Name of the queue on which the limit has been reached.
Identifier: MQCA_BASE_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

TimeSinceReset

Description: Time, in seconds, since the statistics were last reset. The value recorded
by this timer is also used as the interval time in queue service interval
events.

Identifier: MQIA_TIME_SINCE_RESET.
Datatype: MQCFIN.
Returned: Always.

HighQDepth

Description: Maximum number of messages on the queue since the queue statistics
were last reset.

Identifier: MQIA_HIGH_Q_DEPTH.
Datatype: MQCFIN.

Queue Depth High

Chapter 3. Event message reference 81

Returned: Always.

MsgEnqCount

Description: Number of messages enqueued. This is the number of messages put on
the queue since the queue statistics were last reset.

Identifier: MQIA_MSG_ENQ_COUNT.
Datatype: MQCFIN.
Returned: Always.

MsgDeqCount

Description: Number of messages removed from the queue since the queue statistics
were last reset.

Identifier: MQIA_MSG_DEQ_COUNT.
Datatype: MQCFIN.
Returned: Always.

Queue Depth High

82 MQSeries Event Monitoring

Queue Depth Low

Event name: Queue Depth Low.

Reason code in MQCFH: MQRC_Q_DEPTH_LOW (2225, X'8B1').
Queue depth low limit reached or exceeded.

Event description: An MQGET call has caused the queue depth to be decremented to or below the
limit specified in the QDepthLowLimit attribute.

Corrective action: None. This reason code is used only to identify the corresponding event message.

Event type: Performance.

Platforms: All.

Event queue: SYSTEM.ADMIN.PERFM.EVENT.

Notes:

1. MQSeries for OS/390 supports queue depth events on shared queues. You
might receive a NULL event message for a shared queue if a queue manager
has performed no activity on that shared queue.

2. For shared queues, the correlation identifier, CorrelId in the message descriptor
(MQMD) is set. See “MQMD (Message descriptor)” on page 35 for more
information.

Event data
QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

QName

Description: Name of the queue on which the limit has been reached.
Identifier: MQCA_BASE_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

TimeSinceReset

Description: Time, in seconds, since the statistics were last reset. The value recorded
by this timer is also used as the interval time in queue service interval
events.

Identifier: MQIA_TIME_SINCE_RESET.
Datatype: MQCFIN.
Returned: Always.

HighQDepth

Description: Maximum number of messages on the queue since the queue statistics
were last reset.

Identifier: MQIA_HIGH_Q_DEPTH.
Datatype: MQCFIN.

Queue Depth Low

Chapter 3. Event message reference 83

Returned: Always.

MsgEnqCount

Description: Number of messages enqueued. This is the number of messages put on
the queue since the queue statistics were last reset.

Identifier: MQIA_MSG_ENQ_COUNT.
Datatype: MQCFIN.
Returned: Always.

MsgDeqCount

Description: Number of messages removed from the queue since the queue statistics
were last reset.

Identifier: MQIA_MSG_DEQ_COUNT.
Datatype: MQCFIN.
Returned: Always.

Queue Depth Low

84 MQSeries Event Monitoring

Queue Full

Event name: Queue Full.

Reason code in MQCFH: MQRC_Q_FULL (2053, X'805').
Queue already contains maximum number of messages.

Event description: On an MQPUT or MQPUT1 call, the call failed because the queue is full. That is, it
already contains the maximum number of messages possible (see the MaxQDepth
local-queue attribute in the MQSeries Application Programming Reference manual).

This reason code can also occur in the Feedback field in the message descriptor of
a report message; in this case it indicates that the error was encountered by a
message channel agent when it attempted to put the message on a remote queue.

Corrective action: Retry the operation later. Consider increasing the maximum depth for this queue,
or arranging for more instances of the application to service the queue.

Event type: Performance.

Platforms: All.

Event queue: SYSTEM.ADMIN.PERFM.EVENT.

Notes:

1. MQSeries for OS/390 supports queue depth events on shared queues. You
might receive a NULL event message for a shared queue if a queue manager
has performed no activity on that shared queue.

2. For shared queues, the correlation identifier, CorrelId in the message descriptor
(MQMD) is set. See “MQMD (Message descriptor)” on page 35 for more
information.

Event data
QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

QName

Description: Name of the queue on which the put was rejected.
Identifier: MQCA_BASE_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

TimeSinceReset

Description: Time, in seconds, since the statistics were last reset.
Identifier: MQIA_TIME_SINCE_RESET.
Datatype: MQCFIN.
Returned: Always.

Queue Full

Chapter 3. Event message reference 85

HighQDepth

Description: Maximum number of messages on a queue.
Identifier: MQIA_HIGH_Q_DEPTH.
Datatype: MQCFIN.
Returned: Always.

MsgEnqCount

Description: Number of messages enqueued. This is the number of messages put on
the queue since the queue statistics were last reset.

Identifier: MQIA_MSG_ENQ_COUNT.
Datatype: MQCFIN.
Returned: Always.

MsgDeqCount

Description: Number of messages removed from the queue since the queue statistics
were last reset.

Identifier: MQIA_MSG_DEQ_COUNT.
Datatype: MQCFIN.
Returned: Always.

Queue Full

86 MQSeries Event Monitoring

Queue Manager Active

Event name: Queue Manager Active.

Reason code in MQCFH: MQRC_Q_MGR_ACTIVE (2222, X'8AE').
Queue manager created.

Event description: This condition is detected when a queue manager becomes active.

Event type: Start And Stop.

Platforms: All, except the first start of an MQSeries for OS/390 queue manager. In this case it
is produced only on subsequent restarts.

Event queue: SYSTEM.ADMIN.QMGR.EVENT.

Event data
QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

Queue Manager Active

Chapter 3. Event message reference 87

Queue Manager Not Active

Event name: Queue Manager Not Active.

Reason code in MQCFH: MQRC_Q_MGR_NOT_ACTIVE (2223, X'8AF').
Queue manager unavailable.

Event description: This condition is detected when a queue manager is requested to stop or quiesce.

Event type: Start And Stop.

Platforms: All, except MQSeries for OS/390.

Event queue: SYSTEM.ADMIN.QMGR.EVENT.

Event data
QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

ReasonQualifier

Description: Identifier of causes of this reason code. This specifies the type of stop
that was requested.

Identifier: MQIACF_REASON_QUALIFIER.
Datatype: MQCFIN.
Values:

MQRQ_Q_MGR_STOPPING
Queue manager stopping.

MQRQ_Q_MGR_QUIESCING
Queue manager quiescing.

Returned: Always.

Queue Manager Not Active

88 MQSeries Event Monitoring

Queue Service Interval High

Event name: Queue Service Interval High.

Reason code in MQCFH: MQRC_Q_SERVICE_INTERVAL_HIGH (2226, X'8B2').
Queue service interval high.

Event description: No successful gets or puts have been detected within an interval greater than the
limit specified in the QServiceInterval attribute.

Corrective action: None. This reason code is used only to identify the corresponding event message.

Event type: Performance.

Platforms: All.

Event queue: SYSTEM.ADMIN.PERFM.EVENT.

Note: MQSeries for OS/390 does not support service interval events on shared
queues

Event data
QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

QName

Description: Name of the queue specified on the command that caused this queue
service interval event to be generated.

Identifier: MQCA_BASE_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

TimeSinceReset

Description: Time, in seconds, since the statistics were last reset. For a service interval
high event, this value is greater than the service interval.

Identifier: MQIA_TIME_SINCE_RESET.
Datatype: MQCFIN.
Returned: Always.

HighQDepth

Description: Maximum number of messages on the queue since the queue statistics
were last reset.

Identifier: MQIA_HIGH_Q_DEPTH.
Datatype: MQCFIN.
Returned: Always.

Queue Service Interval High

Chapter 3. Event message reference 89

MsgEnqCount

Description: Number of messages enqueued. This is the number of messages put on
the queue since the queue statistics were last reset.

Identifier: MQIA_MSG_ENQ_COUNT.
Datatype: MQCFIN.
Returned: Always.

MsgDeqCount

Description: Number of messages removed from the queue since the queue statistics
were last reset.

Identifier: MQIA_MSG_DEQ_COUNT.
Datatype: MQCFIN.
Returned: Always.

Queue Service Interval High

90 MQSeries Event Monitoring

Queue Service Interval OK

Event name: Queue Service Interval OK.

Reason code in MQCFH: MQRC_Q_SERVICE_INTERVAL_OK (2227, X'8B3').
Queue service interval OK.

Event description: A successful get has been detected within an interval less than or equal to the
limit specified in the QServiceInterval attribute.

Corrective action: None. This reason code is used only to identify the corresponding event message.

Event type: Performance.

Platforms: All.

Event queue: SYSTEM.ADMIN.PERFM.EVENT.

Note: MQSeries for OS/390 does not support service interval events on shared
queues.

Event data
QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

QName

Description: Queue name specified on the command that caused this queue service
interval event to be generated.

Identifier: MQCA_BASE_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

TimeSinceReset

Description: Time, in seconds, since the statistics were last reset.
Identifier: MQIA_TIME_SINCE_RESET.
Datatype: MQCFIN.
Returned: Always.

HighQDepth

Description: Maximum number of messages on the queue since the queue statistics
were last reset.

Identifier: MQIA_HIGH_Q_DEPTH.
Datatype: MQCFIN.
Returned: Always.

MsgEnqCount

Description: Number of messages enqueued. This is the number of messages put on
the queue since the queue statistics were last reset.

Queue Service Interval OK

Chapter 3. Event message reference 91

Identifier: MQIA_MSG_ENQ_COUNT.
Datatype: MQCFIN.
Returned: Always.

MsgDeqCount

Description: Number of messages removed from the queue since the queue statistics
were last reset.

Identifier: MQIA_MSG_DEQ_COUNT.
Datatype: MQCFIN.
Returned: Always.

Queue Service Interval OK

92 MQSeries Event Monitoring

Queue Type Error

Event name: Queue Type Error.

Reason code in MQCFH: MQRC_Q_TYPE_ERROR (2057, X'809').
Queue type not valid.

Event description: On an MQOPEN call, the ObjectQMgrName field in the object descriptor specifies
the name of a local definition of a remote queue (in order to specify a
queue-manager alias). In that local definition the RemoteQMgrName attribute is the
name of the local queue manager. However, the ObjectName field specifies the
name of a model queue on the local queue manager, which is not allowed. See the
MQSeries Application Programming Guide for more information.

Event type: Remote.

Platforms: All.

Event queue: SYSTEM.ADMIN.QMGR.EVENT.

Event data
QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

QName

Description: Queue name from object descriptor (MQOD).
Identifier: MQCA_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

ApplType

Description: Type of application making the MQI call that caused the event.
Identifier: MQIA_APPL_TYPE.
Datatype: MQCFIN.
Returned: Always.

ApplName

Description: Name of the application making the MQI call that caused the event.
Identifier: MQCACF_APPL_NAME.
Datatype: MQCFST.
Maximum length: MQ_APPL_NAME_LENGTH.
Returned: Always.

ObjectQMgrName

Description: Name of the object queue manager.
Identifier: MQCACF_OBJECT_Q_MGR_NAME.
Datatype: MQCFST.

Queue Type Error

Chapter 3. Event message reference 93

Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

Note: If the application is a server for clients, the ApplType and ApplName
parameters identify the server, not the client.

Queue Type Error

94 MQSeries Event Monitoring

Remote Queue Name Error

Event name: Remote Queue Name Error.

Reason code in MQCFH: MQRC_REMOTE_Q_NAME_ERROR (2184, X'888').
Remote queue name not valid.

Event description: On an MQOPEN or MQPUT1 call either:

v A local definition of a remote queue (or an alias to one) was specified, but the
RemoteQName attribute in the remote queue definition is blank. Note that this
error occurs even if the XmitQName in the definition is not blank.

or

v the ObjectQMgrName field in the object descriptor was not blank and not the
name of the local queue manager, but the ObjectName field is blank.

Event type: Remote.

Platforms: All.

Event queue: SYSTEM.ADMIN.QMGR.EVENT.

Event data
QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

QName

Description: Queue name from object descriptor (MQOD).
Identifier: MQCA_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

ApplType

Description: Type of application making the MQI call that caused the event.
Identifier: MQIA_APPL_TYPE.
Datatype: MQCFIN.
Returned: Always.

ApplName

Description: Name of the application making the MQI call that caused the event.
Identifier: MQCACF_APPL_NAME.
Datatype: MQCFST.
Maximum length: MQ_APPL_NAME_LENGTH.
Returned: Always.

ObjectQMgrName

Description: Name of the object queue manager.

Remote Queue Name Error

Chapter 3. Event message reference 95

Identifier: MQCACF_OBJECT_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: If the ObjectName in the object descriptor (MQOD), when the object was

opened, is not the queue manager currently connected.

Note: If the application is a server for clients, the ApplType and ApplName
parameters identify the server, not the client.

Remote Queue Name Error

96 MQSeries Event Monitoring

Transmission Queue Type Error

Event name: Transmission Queue Type Error.

Reason code in MQCFH: MQRC_XMIT_Q_TYPE_ERROR (2091, X'82B').
Transmission queue not local.

Event description: On an MQOPEN or MQPUT1 call, a message is to be sent to a remote queue
manager. The ObjectName or ObjectQMgrName field in the object descriptor specifies
the name of a local definition of a remote queue but one of the following applies
to the XmitQName attribute of the definition. Either:

v XmitQName is not blank, but specifies a queue that is not a local queue

or

v XmitQName is blank, but RemoteQMgrName specifies a queue that is not a local
queue

This also occurs if the queue name is resolved through a cell directory, and the
remote queue manager name obtained from the cell directory is the name of a
queue, but this is not a local queue.

Event type: Remote.

Platforms: All.

Event queue: SYSTEM.ADMIN.QMGR.EVENT.

Event data
QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

QName

Description: Queue name from object descriptor (MQOD).
Identifier: MQCA_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

XmitQName

Description: Transmission queue name.
Identifier: MQCA_XMIT_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

QType

Description: Type of transmission queue.
Identifier: MQIA_Q_TYPE.
Datatype: MQCFIN.

Transmission Queue Type Error

Chapter 3. Event message reference 97

Values:
MQQT_ALIAS

Alias queue definition.

MQQT_REMOTE
Local definition of a remote queue.

Returned: Always.

ApplType

Description: Type of application making the MQI call that caused the event.
Identifier: MQIA_APPL_TYPE.
Datatype: MQCFIN.
Returned: Always.

ApplName

Description: Name of the application making the MQI call that caused the event.
Identifier: MQCACF_APPL_NAME.
Datatype: MQCFST.
Maximum length: MQ_APPL_NAME_LENGTH.
Returned: Always.

ObjectQMgrName

Description: Name of the object queue manager.
Identifier: MQCACF_OBJECT_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: If the ObjectName in the object descriptor (MQOD), when the object was

opened, is not the queue manager currently connected.

Note: If the application is a server for clients, the ApplType and ApplName
parameters identify the server, not the client.

Transmission Queue Type Error

98 MQSeries Event Monitoring

Transmission Queue Usage Error

Event name: Transmission Queue Usage Error.

Reason code in MQCFH: MQRC_XMIT_Q_USAGE_ERROR (2092, X'82C').
Transmission queue with wrong usage.

Event description: On an MQOPEN or MQPUT1 call, a message is to be sent to a remote queue
manager, but one of the following occurred. Either:

v ObjectQMgrName specifies the name of a local queue, but it does not have a Usage
attribute of MQUS_TRANSMISSION.

or

v The ObjectName or ObjectQMgrName field in the object descriptor specifies the
name of a local definition of a remote queue but one of the following applies to
the XmitQName attribute of the definition:

– XmitQName is not blank, but specifies a queue that does not have a Usage
attribute of MQUS_TRANSMISSION

– XmitQName is blank, but RemoteQMgrName specifies a queue that does not have a
Usage attribute of MQUS_TRANSMISSION

or

v The queue name is resolved through a cell directory, and the remote queue
manager name obtained from the cell directory is the name of a local queue, but
it does not have a Usage attribute of MQUS_TRANSMISSION.

Event type: Remote.

Platforms: All.

Event queue: SYSTEM.ADMIN.QMGR.EVENT.

Event data
QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

QName

Description: Queue name from object descriptor (MQOD).
Identifier: MQCA_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

XmitQName

Description: Transmission queue name.
Identifier: MQCA_XMIT_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

Transmission Queue Usage Error

Chapter 3. Event message reference 99

ApplType

Description: Type of application making the MQI call that caused the event.
Identifier: MQIA_APPL_TYPE.
Datatype: MQCFIN.
Returned: Always.

ApplName

Description: Name of the application making the MQI call that caused the event.
Identifier: MQCACF_APPL_NAME.
Datatype: MQCFST.
Maximum length: MQ_APPL_NAME_LENGTH.
Returned: Always.

ObjectQMgrName

Description: Name of the object queue manager.
Identifier: MQCACF_OBJECT_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: If the ObjectName in the object descriptor (MQOD), when the object was

opened, is not the queue manager currently connected.

Note: If the application is a server for clients, the ApplType and ApplName
parameters identify the server, not the client.

Transmission Queue Usage Error

100 MQSeries Event Monitoring

Unknown Alias Base Queue

Event name: Unknown Alias Base Queue.

Reason code in MQCFH: MQRC_UNKOWN_ALIAS_BASE_Q (2082, X'822').
Unknown alias base queue.

Event description: An MQOPEN or MQPUT1 call was issued specifying an alias queue as the
destination, but the BaseQName in the alias queue attributes is not recognized as a
queue name.

Event type: Local.

Platforms: All.

Event queue: SYSTEM.ADMIN.QMGR.EVENT.

Event data
QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

QName

Description: Queue name from object descriptor (MQOD).
Identifier: MQCA_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

BaseQName

Description: Queue name to which the alias resolves.
Identifier: MQCA_BASE_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

ApplType

Description: Type of the application making the MQI call that caused the event.
Identifier: MQIA_APPL_TYPE.
Datatype: MQCFIN.
Returned: Always.

ApplName

Description: Name of the application making the MQI call that caused the event.
Identifier: MQCACF_APPL_NAME.
Datatype: MQCFST.
Maximum length: MQ_APPL_NAME_LENGTH.
Returned: Always.

Unknown Alias Base Queue

Chapter 3. Event message reference 101

ObjectQMgrName

Description: Name of the object queue manager.
Identifier: MQCACF_OBJECT_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: If the ObjectName in the object descriptor (MQOD), when the object was

opened, is not the queue manager currently connected.

Note: If the application is a server for clients, the ApplType and ApplName
parameters identify the server, not the client.

Unknown Alias Base Queue

102 MQSeries Event Monitoring

Unknown Default Transmission Queue

Event name: Unknown Default Transmission Queue.

Reason code in MQCFH: MQRC_UNKNOWN_DEF_XMIT_Q (2197, X'895').
Unknown default transmission queue.

Event description: An MQOPEN or MQPUT1 call was issued specifying a remote queue as the
destination. If a local definition of the remote queue was specified, or if a
queue-manager alias is being resolved, the XmitQName attribute in the local
definition is blank.

No queue is defined with the same name as the destination queue manager. The
queue manager has therefore attempted to use the default transmission queue.
However, the name defined by the DefXmitQName queue-manager attribute is not
the name of a locally-defined queue.

Event type: Remote.

Platforms: All.

Event queue: SYSTEM.ADMIN.QMGR.EVENT.

Event data
QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

QName

Description: Queue name from object descriptor (MQOD).
Identifier: MQCA_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

XmitQName

Description: Default transmission queue name.
Identifier: MQCA_XMIT_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

ApplType

Description: Type of application attempting to open the remote queue.
Identifier: MQIA_APPL_TYPE.
Datatype: MQCFIN.
Returned: Always.

ApplName

Description: Name of the application attempting to open the remote queue.

Unknown Default Transmission Queue

Chapter 3. Event message reference 103

Identifier: MQCACF_APPL_NAME.
Datatype: MQCFST.
Maximum length: MQ_APPL_NAME_LENGTH.
Returned: Always.

ObjectQMgrName

Description: Name of the object queue manager.
Identifier: MQCACF_OBJECT_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: If the ObjectName in the object descriptor (MQOD), when the object was

opened, is not the queue manager currently connected.

Note: If the application is a server for clients, the ApplType and ApplName
parameters identify the server, not the client.

Unknown Default Transmission Queue

104 MQSeries Event Monitoring

Unknown Object Name

Event name: Unknown Object Name.

Reason code in MQCFH: MQRC_UNKNOWN_OBJECT_NAME (2085, X'825').
Unknown object name.

Event description: On an MQOPEN or MQPUT1 call, the ObjectQMgrName field in the object
descriptor MQOD is set to one of the following. It is either:

v Blank

or

v The name of the local queue manager

or

v The name of a local definition of a remote queue (a queue-manager alias) in
which the RemoteQMgrName attribute is the name of the local queue manager

However, the ObjectName in the object descriptor is not recognized for the
specified object type.

See also MQRC_Q_DELETED.

Event type: Local.

Platforms: All.

Event queue: SYSTEM.ADMIN.QMGR.EVENT.

Event data
QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

ApplType

Description: Type of the application making the MQI call that caused the event.
Identifier: MQIA_APPL_TYPE.
Datatype: MQCFIN.
Returned: Always.

ApplName

Description: Name of the application making the MQI call that caused the event.
Identifier: MQCACF_APPL_NAME.
Datatype: MQCFST.
Maximum length: MQ_APPL_NAME_LENGTH.
Returned: Always.

QName

Description: Queue name from object descriptor (MQOD).
Identifier: MQCA_Q_NAME.
Datatype: MQCFST.

Unknown Object Name

Chapter 3. Event message reference 105

Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always, unless ProcessName is returned. Either QName or ProcessName is

returned.

ProcessName

Description: Name of the process (application) making the MQI call that caused the
event.

Identifier: MQCA_PROCESS_NAME.
Datatype: MQCFST.
Maximum length: MQ_PROCESS_NAME_LENGTH.
Returned: Always, unless QName is returned. Either ProcessName or QName is

returned.

ObjectQMgrName

Description: Name of the object queue manager.
Identifier: MQCACF_OBJECT_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: If the ObjectName in the object descriptor (MQOD), when the object was

opened, is not the queue manager currently connected.

Note: If the application is a server for clients, the ApplType and ApplName
parameters identify the server, not the client.

Unknown Object Name

106 MQSeries Event Monitoring

Unknown Remote Queue Manager

Event name: Unknown Remote Queue Manager.

Reason code in MQCFH: MQRC_UNKNOWN_REMOTE_Q_MGR (2087, X'827').
Unknown remote queue manager.

Event description: On an MQOPEN or MQPUT1 call, an error occurred with the queue-name
resolution, for one of the following reasons:

v ObjectQMgrName is either blank or the name of the local queue manager, and
ObjectName is the name of a local definition of a remote queue that has a blank
XmitQName. However, there is no (transmission) queue defined with the name of
RemoteQMgrName, and the DefXmitQName queue-manager attribute is blank.

v ObjectQMgrName is the name of a queue-manager alias definition (held as the
local definition of a remote queue) that has a blank XmitQName. However, there is
no (transmission) queue defined with the name of RemoteQMgrName, and the
DefXmitQName queue-manager attribute is blank.

v ObjectQMgrName specified is not:
– Blank
– The name of the local queue manager
– The name of a local queue
– The name of a queue-manager alias definition (that is, a local definition of a

remote queue with a blank RemoteQName)

and the DefXmitQName queue-manager attribute is blank.

v ObjectQMgrName is blank or is the name of the local queue manager, and
ObjectName is the name of a local definition of a remote queue (or an alias to
one), for which RemoteQMgrName is either blank or is the name of the local queue
manager. Note that this error occurs even if the XmitQName is not blank.

v ObjectQMgrName is the name of a local definition of a remote queue. In this case,
it should be a queue-manager alias definition, but the RemoteQName in the
definition is not blank.

v ObjectQMgrName is the name of a model queue.

v The queue name is resolved through a cell directory. However, there is no queue
defined with the same name as the remote queue manager name obtained from
the cell directory. Also, the DefXmitQName queue-manager attribute is blank.

Event type: Remote.

Platforms: All.

Event queue: SYSTEM.ADMIN.QMGR.EVENT.

Event data
QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

QName

Description: Queue name from object descriptor (MQOD).
Identifier: MQCA_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.

Unknown Remote Queue Manager

Chapter 3. Event message reference 107

Returned: Always.

ApplType

Description: Type of application attempting to open the remote queue.
Identifier: MQIA_APPL_TYPE.
Datatype: MQCFIN.
Returned: Always.

ApplName

Description: Name of the application attempting to open the remote queue.
Identifier: MQCACF_APPL_NAME.
Datatype: MQCFST.
Maximum length: MQ_APPL_NAME_LENGTH.
Returned: Always.

ObjectQMgrName

Description: Name of the object queue manager.
Identifier: MQCACF_OBJECT_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: If the ObjectName in the object descriptor (MQOD), when the object was

opened, is not the queue manager currently connected.

Note: If the application is a server for clients, the ApplType and ApplName
parameters identify the server, not the client.

Unknown Remote Queue Manager

108 MQSeries Event Monitoring

Unknown Transmission Queue

Event name: Unknown Transmission Queue.

Reason code in MQCFH: MQRC_UNKNOWN_XMIT_Q (2196, X'894').
Unknown transmission queue.

Event description: On an MQOPEN or MQPUT1 call, a message is to be sent to a remote queue
manager. The ObjectName or the ObjectQMgrName in the object descriptor specifies
the name of a local definition of a remote queue (in the latter case queue-manager
aliasing is being used). However, the XmitQName attribute of the definition is not
blank and not the name of a locally-defined queue.

Event type: Remote.

Platforms: All.

Event queue: SYSTEM.ADMIN.QMGR.EVENT.

Event data
QMgrName

Description: Name of the queue manager generating the event.
Identifier: MQCA_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: Always.

QName

Description: Queue name from object descriptor (MQOD).
Identifier: MQCA_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

XmitQName

Description: Transmission queue name.
Identifier: MQCA_XMIT_Q_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_NAME_LENGTH.
Returned: Always.

ApplType

Description: Type of application making the MQI call that caused the event.
Identifier: MQIA_APPL_TYPE.
Datatype: MQCFIN.
Returned: Always.

ApplName

Description: Name of the application making the MQI call that caused the event.
Identifier: MQCACF_APPL_NAME.
Datatype: MQCFST.
Maximum length: MQ_APPL_NAME_LENGTH.

Unknown Transmission Queue

Chapter 3. Event message reference 109

Returned: Always.

ObjectQMgrName

Description: Name of the object queue manager.
Identifier: MQCACF_OBJECT_Q_MGR_NAME.
Datatype: MQCFST.
Maximum length: MQ_Q_MGR_NAME_LENGTH.
Returned: If the ObjectName in the object descriptor (MQOD), when the object was

opened, is not the queue manager currently connected.

Note: If the application is a server for clients, the ApplType and ApplName
parameters identify the server, not the client.

Unknown Transmission Queue

110 MQSeries Event Monitoring

Chapter 4. Example of using instrumentation events

This example shows how you can write a program for instrumentation events. It is
written in C for queue managers on OS/2 Warp, Windows NT, AS/400, or UNIX
systems. It is not part of any MQSeries product and is therefore supplied as source
only. The example is incomplete in that it does not enumerate all the possible
outcomes of specified actions. Bearing this in mind, you can use this sample as a
basis for your own programs that use events, in particular, the PCF formats used
in event messages. However, you will need to modify this program to get it to run
on your systems.

/**/
/* */
/* Program name: EVMON */
/* */
/* Description: C program that acts as an event monitor */
/* */
/* */
/**/
/* */
/* Function: */
/* */
/* */
/* EVMON is a C program that acts as an event monitor - reads an */
/* event queue and tells you if anything appears on it */
/* */
/* Its first parameter is the queue manager name, the second is */
/* the event queue name. If these are not supplied it uses the */
/* defaults. */
/* */
/**/
#include <time.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifndef min

#define min(a,b) (((a) < (b)) ? (a) : (b))
#endif
#ifdef OS2

/**/
/* for beep */
/**/
#define INCL_DOSPROCESS
#include <os2.h>

#endif

Figure 10. Event monitoring sample program (Part 1 of 11)

© Copyright IBM Corp. 1994, 2000 111

/**/
/* includes for MQI */
/**/
#include <cmqc.h>
#include <cmqcfc.h>
void printfmqcfst(MQCFST* pmqcfst);
void printfmqcfin(MQCFIN* pmqcfst);
void printreas(MQLONG reason);

#define PRINTREAS(param) \
case param: \

printf("Reason = %s\n",#param); \
break;

/**/
/* global variable */
/**/
MQCFH *evtmsg; /* evtmsg message buffer */

int main(int argc, char **argv)
{

/**/
/* declare variables */
/**/
int i; /* auxiliary counter */
/**/
/* Declare MQI structures needed */
/**/
MQOD od = {MQOD_DEFAULT}; /* Object Descriptor */
MQMD md = {MQMD_DEFAULT}; /* Message Descriptor */
MQGMO gmo = {MQGMO_DEFAULT}; /* get message options */
/**/
/* note, uses defaults where it can */
/**/

Figure 10. Event monitoring sample program (Part 2 of 11)

Example using events

112 MQSeries Event Monitoring

MQHCONN Hcon; /* connection handle */
MQHOBJ Hobj; /* object handle */
MQLONG O_options; /* MQOPEN options */
MQLONG C_options; /* MQCLOSE options */
MQLONG CompCode; /* completion code */
MQLONG OpenCode; /* MQOPEN completion code */
MQLONG Reason; /* reason code */
MQLONG CReason; /* reason code for MQCONN */
MQLONG buflen; /* buffer length */
MQLONG evtmsglen; /* message length received */
MQCHAR command[1100]; /* call command string ... */
MQCHAR p1[600]; /* ApplId insert */
MQCHAR p2[900]; /* evtmsg insert */
MQCHAR p3[600]; /* Environment insert */
MQLONG mytype; /* saved application type */
char QMName[50]; /* queue manager name */
MQCFST *paras; /* the parameters */
int counter; /* loop counter */
time_t ltime;

/**/
/* Connect to queue manager */
/**/
QMName[0] = 0; /* default queue manager */
if (argc > 1)

strcpy(QMName, argv[1]);
MQCONN(QMName, /* queue manager */

&Hcon, /* connection handle */
&CompCode, /* completion code */
&CReason); /* reason code */

/**/
/* Initialize object descriptor for subject queue */
/**/
strcpy(od.ObjectName, "SYSTEM.ADMIN.QMGR.EVENT");
if (argc > 2)

strcpy(od.ObjectName, argv[2]);

/**/
/* Open the event queue for input; exclusive or shared. Use of */
/* the queue is controlled by the queue definition here */
/**/

Figure 10. Event monitoring sample program (Part 3 of 11)

Example using events

Chapter 4. Example of using instrumentation events 113

O_options = MQOO_INPUT_AS_Q_DEF /* open queue for input */
+ MQOO_FAIL_IF_QUIESCING /* but not if qmgr stopping */
+ MQOO_BROWSE;

MQOPEN(Hcon, /* connection handle */
&od, /* object descriptor for queue*/
O_options, /* open options */
&Hobj, /* object handle */
&CompCode, /* completion code */
&Reason); /* reason code */

/**/
/* Get messages from the message queue */
/**/
while (CompCode != MQCC_FAILED)
{

/**/
/* I don't know how big this message is so just get the */
/* descriptor first */
/**/
gmo.Options = MQGMO_WAIT + MQGMO_LOCK

+ MQGMO_BROWSE_FIRST + MQGMO_ACCEPT_TRUNCATED_MSG;
/* wait for new messages */

gmo.WaitInterval = MQWI_UNLIMITED;/* no time limit */
buflen = 0; /* amount of message to get */

/**/
/* clear selectors to get messages in sequence */
/**/
memcpy(md.MsgId, MQMI_NONE, sizeof(md.MsgId));
memcpy(md.CorrelId, MQCI_NONE, sizeof(md.CorrelId));

/**/
/* wait for event message */
/**/
printf("...>\n");
MQGET(Hcon, /* connection handle */

Hobj, /* object handle */
&md, /* message descriptor */
&gmo, /* get message options */
buflen, /* buffer length */
evtmsg, /* evtmsg message buffer */
&evtmsglen, /* message length */
&CompCode, /* completion code */
&Reason); /* reason code */

/**/
/* report reason, if any */
/**/

Figure 10. Event monitoring sample program (Part 4 of 11)

Example using events

114 MQSeries Event Monitoring

if (Reason != MQRC_NONE && Reason != MQRC_TRUNCATED_MSG_ACCEPTED)
{

printf("MQGET ==> %ld\n", Reason);
}
else
{

gmo.Options = MQGMO_NO_WAIT + MQGMO_MSG_UNDER_CURSOR;
buflen = evtmsglen; /* amount of message to get */
evtmsg = malloc(buflen);
if (evtmsg != NULL)
{

/**/
/* clear selectors to get messages in sequence */
/**/
memcpy(md.MsgId, MQMI_NONE, sizeof(md.MsgId));
memcpy(md.CorrelId, MQCI_NONE, sizeof(md.CorrelId));

/**/
/* get the event message */
/**/
printf("...>\n");
MQGET(Hcon, /* connection handle */

Hobj, /* object handle */
&md, /* message descriptor */
&gmo, /* get message options */
buflen, /* buffer length */
evtmsg, /* evtmsg message buffer */
&evtmsglen, /* message length */
&CompCode, /* completion code */
&Reason); /* reason code */

/**/
/* report reason, if any */
/**/
if (Reason != MQRC_NONE)
{

printf("MQGET ==> %ld\n", Reason);
}

}
else
{

CompCode = MQCC_FAILED;
}

}
/**/
/* . . . process each message received */
/**/

Figure 10. Event monitoring sample program (Part 5 of 11)

Example using events

Chapter 4. Example of using instrumentation events 115

if (CompCode != MQCC_FAILED)
{

/**/
/* announce a message */
/**/
#ifdef OS2

{
unsigned short tone;
for (tone = 1; tone < 8000; tone = tone * 2)
{

DosBeep(tone,50);
}

}
#else

printf("\a\a\a\a\a\a\a");
#endif
time(<ime);
printf(ctime(<ime));

if (evtmsglen != buflen)
printf("DataLength = %ld?\n", evtmsglen);

else
{

/**/
/* right let's look at the data */
/**/
if (evtmsg->Type != MQCFT_EVENT)
{

printf("Something's wrong this isn't an event message,"
" its type is %ld\n",evtmsg->Type);

}
else
{

if (evtmsg->Command == MQCMD_Q_MGR_EVENT)
{

printf("Queue Manager event: ");
}
else

if (evtmsg->Command == MQCMD_CHANNEL_EVENT)
{

printf("Channel event: ");
}
else

...

Figure 10. Event monitoring sample program (Part 6 of 11)

Example using events

116 MQSeries Event Monitoring

{
printf("Unknown Event message, %ld.",

evtmsg->Command);
}

if (evtmsg->CompCode == MQCC_OK)
printf("CompCode(OK)\n");

else if (evtmsg->CompCode == MQCC_WARNING)
printf("CompCode(WARNING)\n");

else if (evtmsg->CompCode == MQCC_FAILED)
printf("CompCode(FAILED)\n");

else
printf("* CompCode wrong * (%ld)\n",

evtmsg->CompCode);

if (evtmsg->StrucLength != MQCFH_STRUC_LENGTH)
{

printf("it's the wrong length, %ld\n",evtmsg->StrucLength);
}

if (evtmsg->Version != MQCFH_VERSION_1)
{

printf("it's the wrong version, %ld\n",evtmsg->Version);
}

if (evtmsg->MsgSeqNumber != 1)
{

printf("it's the wrong sequence number, %ld\n",
evtmsg->MsgSeqNumber);

}

if (evtmsg->Control != MQCFC_LAST)
{

printf("it's the wrong control option, %ld\n",
evtmsg->Control);

}

printreas(evtmsg->Reason);
printf("parameter count is %ld\n", evtmsg->ParameterCount);
/**/
/* get a pointer to the start of the parameters */
/**/

Figure 10. Event monitoring sample program (Part 7 of 11)

Example using events

Chapter 4. Example of using instrumentation events 117

paras = (MQCFST *)(evtmsg + 1);
counter = 1;
while (counter <= evtmsg->ParameterCount)
{

switch (paras->Type)
{

case MQCFT_STRING:
printfmqcfst(paras);
paras = (MQCFST *)((char *)paras

+ paras->StrucLength);
break;

case MQCFT_INTEGER:
printfmqcfin((MQCFIN*)paras);
paras = (MQCFST *)((char *)paras

+ paras->StrucLength);
break;

default:
printf("unknown parameter type, %ld\n",

paras->Type);
counter = evtmsg->ParameterCount;
break;

}
counter++;

}
}

} /* end evtmsg action */
free(evtmsg);

} /* end process for successful GET */
} /* end message processing loop */

/**/
/* close the event queue - if it was opened */
/**/
if (OpenCode != MQCC_FAILED)
{

C_options = 0; /* no close options */
MQCLOSE(Hcon, /* connection handle */

&Hobj, /* object handle */
C_options,
&CompCode, /* completion code */
&Reason); /* reason code */

/**/
/* Disconnect from queue manager (unless previously connected) */
/**/
if (CReason != MQRC_ALREADY_CONNECTED)
{

MQDISC(&Hcon, /* connection handle */
&CompCode, /* completion code */
&Reason); /* reason code */

Figure 10. Event monitoring sample program (Part 8 of 11)

Example using events

118 MQSeries Event Monitoring

/**/
/* */
/* END OF EVMON */
/* */
/**/
}

#define PRINTPARAM(param) \
case param: \

{ \
char *p = #param; \

strncpy(thestring,pmqcfst->String,min(sizeof(thestring), \
pmqcfst->StringLength)); \

printf("%s %s\n",p,thestring); \
} \
break;

#define PRINTAT(param) \
case param: \

printf("MQIA_APPL_TYPE = %s\n",#param); \
break;

void printfmqcfst(MQCFST* pmqcfst)
{

char thestring[100];

switch (pmqcfst->Parameter)
{

PRINTPARAM(MQCA_BASE_Q_NAME)
PRINTPARAM(MQCA_PROCESS_NAME)
PRINTPARAM(MQCA_Q_MGR_NAME)
PRINTPARAM(MQCA_Q_NAME)
PRINTPARAM(MQCA_XMIT_Q_NAME)
PRINTPARAM(MQCACF_APPL_NAME)

...
default:
printf("Invalid parameter, %ld\n",pmqcfst->Parameter);
break;

}
}

Figure 10. Event monitoring sample program (Part 9 of 11)

Example using events

Chapter 4. Example of using instrumentation events 119

void printfmqcfin(MQCFIN* pmqcfst)
{

switch (pmqcfst->Parameter)
{

case MQIA_APPL_TYPE:
switch (pmqcfst->Value)
{

PRINTAT(MQAT_UNKNOWN)
PRINTAT(MQAT_OS2)
PRINTAT(MQAT_DOS)
PRINTAT(MQAT_UNIX)
PRINTAT(MQAT_QMGR)
PRINTAT(MQAT_OS400)
PRINTAT(MQAT_WINDOWS)
PRINTAT(MQAT_CICS_VSE)
PRINTAT(MQAT_VMS)
PRINTAT(MQAT_GUARDIAN)
PRINTAT(MQAT_VOS)

}
break;

case MQIA_Q_TYPE:
if (pmqcfst->Value == MQQT_ALIAS)
{

printf("MQIA_Q_TYPE is MQQT_ALIAS\n");
}
else

...
{

if (pmqcfst->Value == MQQT_REMOTE)
{

printf("MQIA_Q_TYPE is MQQT_REMOTE\n");
if (evtmsg->Reason == MQRC_ALIAS_BASE_Q_TYPE_ERROR)
{

printf("but remote is not valid here\n");
}

}
else
{

printf("MQIA_Q_TYPE is wrong, %ld\n",pmqcfst->Value);
}

}
break;

Figure 10. Event monitoring sample program (Part 10 of 11)

Example using events

120 MQSeries Event Monitoring

case MQIACF_REASON_QUALIFIER:
printf("MQIACF_REASON_QUALIFIER %ld\n",pmqcfst->Value);
break;

case MQIACF_ERROR_IDENTIFIER:
printf("MQIACF_ERROR_INDENTIFIER %ld (X'%lX')\n",

pmqcfst->Value,pmqcfst->Value);
break;

case MQIACF_AUX_ERROR_DATA_INT_1:
printf("MQIACF_AUX_ERROR_DATA_INT_1 %ld (X'%lX')\n",

pmqcfst->Value,pmqcfst->Value);
break;

case MQIACF_AUX_ERROR_DATA_INT_2:
printf("MQIACF_AUX_ERROR_DATA_INT_2 %ld (X'%lX')\n",

pmqcfst->Value,pmqcfst->Value);
break;...

default :
printf("Invalid parameter, %ld\n",pmqcfst->Parameter);
break;

}
}

void printreas(MQLONG reason)
{

switch (reason)
{

PRINTREAS(MQRCCF_CFH_TYPE_ERROR)
PRINTREAS(MQRCCF_CFH_LENGTH_ERROR)
PRINTREAS(MQRCCF_CFH_VERSION_ERROR)
PRINTREAS(MQRCCF_CFH_MSG_SEQ_NUMBER_ERR)

...
PRINTREAS(MQRC_NO_MSG_LOCKED)
PRINTREAS(MQRC_CONNECTION_NOT_AUTHORIZED)
PRINTREAS(MQRC_MSG_TOO_BIG_FOR_CHANNEL)
PRINTREAS(MQRC_CALL_IN_PROGRESS)
default:

printf("It's an unknown reason, %ld\n",
reason);

break;
}

}

Figure 10. Event monitoring sample program (Part 11 of 11)

Chapter 4. Example of using instrumentation events 121

122 MQSeries Event Monitoring

Appendix A. Structure datatypes MQCFIN and MQCFST

In this appendix, the structures MQCFIN and MQCFST are described in a
language-independent form. The declarations are shown in the following
programming languages:
v C
v COBOL
v PL/I (AIX, OS/2 Warp, OS/390, and Windows NT)
v S/390® assembler (OS/390 only)
v Visual Basic (Windows platforms only)

The elementary data types of the fields in MQCFIN and MQCFST are described in
the MQSeries Application Programming Reference manual.

The initial value of each field is shown under its description. This is the value of
the field in the default structure.

MQCFIN - Integer parameter
The MQCFIN structure describes an integer parameter in an event message.

Type

Description: Indicates that the structure type is MQCFIN and describes an integer
parameter.

Datatype: MQLONG.
Initial value: MQCFT_INTEGER.
Valid value:

MQCFT_INTEGER
Structure defining an integer.

StrucLength

Description: Length in bytes of the MQCFIN structure.
Datatype: MQLONG.
Initial value: MQCFIN_STRUC_LENGTH.
Valid value:

MQCFIN_STRUC_LENGTH
Length of MQCFIN structure.

Parameter

Description: Identifies the parameter whose value is contained in the structure.
Datatype: MQLONG.
Initial value: 0.
Valid values: Dependent on the event message.

Value

Description: Value of parameter identified by the Parameter field.
Datatype: MQLONG.
Initial value: 0.

© Copyright IBM Corp. 1994, 2000 123

C language declaration (MQCFIN)
typedef struct tagMQCFIN {

MQLONG Type; /* Structure type */
MQLONG StrucLength; /* Structure length */
MQLONG Parameter; /* Parameter identifier */
MQLONG Value; /* Parameter value */
} MQCFIN;

COBOL language declaration (MQCFIN)
** MQCFIN structure

10 MQCFIN.
** Structure type

15 MQCFIN-TYPE PIC S9(9) BINARY.
** Structure length

15 MQCFIN-STRUCLENGTH PIC S9(9) BINARY.
** Parameter identifier

15 MQCFIN-PARAMETER PIC S9(9) BINARY.
** Parameter value

15 MQCFIN-VALUE PIC S9(9) BINARY.

PL/I language declaration (MQCFIN)
dcl
1 MQCFIN based,
3 Type fixed bin(31), /* Structure type */
3 StrucLength fixed bin(31), /* Structure length */
3 Parameter fixed bin(31), /* Parameter identifier */
3 Value fixed bin(31); /* Parameter value */

System/390 assembler-language declaration (MQCFIN)
MQCFIN DSECT
MQCFIN_TYPE DS F Structure type
MQCFIN_STRUCLENGTH DS F Structure length
MQCFIN_PARAMETER DS F Parameter identifier
MQCFIN_VALUE DS F Parameter value
MQCFIN_LENGTH EQU *-MQCFIN Length of structure

ORG MQCFIN
MQCFIN_AREA DS CL(MQCFIN_LENGTH)

Visual Basic language declaration (MQCFIN)
Type MQCFIN

Type As Long ' Structure type
StrucLength As Long ' Structure length
Parameter As Long ' Parameter identifier
Value As Long ' Parameter value

End Type

Global MQCFIN_DEFAULT As MQCFIN

MQCFST - String parameter
The MQCFST structure describes a string parameter in an event message.

The structure ends with a variable-length character string; see the String field
below for further details.

Type

Description: Indicates that the structure type is MQCFST and describes a string
parameter.

MQCFIN

124 MQSeries Event Monitoring

Datatype: MQLONG.
Initial value: MQCFT_STRING.
Valid value:

MQCFT_STRING
Structure defining a string.

StrucLength

Description: Length in bytes of the MQCFST structure, including the string at the end
of the structure (the String field). The length must be a multiple of four,
and must be sufficient to contain the string; any bytes between the end
of the string and the length defined by the StrucLength field are not
significant.

Datatype: MQLONG.
Initial value:

MQCFST_STRUC_LENGTH_FIXED.
Length of the fixed part of the MQCFST structure, excluding the
String field.

Parameter

Description: Identifies the parameter whose value is contained in the structure.
Datatype: MQLONG.
Initial value: 0.
Valid values: Dependent on the event message.

CodedCharSetId

Description: Coded character set identifier of the data in the String field.
Datatype: MQLONG.
Initial value:

MQCCSI_DEFAULT.
Default coded character set identifier, indicating that character
data is in the character set defined by the CodedCharSetId field
in the MQ header structure that precedes the MQCFH
structure, or by the CodedCharSetId field in the MQMD if the
MQCFH structure is at the start of the message.

Valid values: v If all of the strings in an event message have the same coded
character-set identifier, the CodedCharSetId field in the message
descriptor MQMD or in the MQ header structure preceding MQCFH
should be set to that identifier when the message is put, and the
CodedCharSetId fields in the MQCFST structure within the message
should be set to MQCCSI_DEFAULT.

v If some of the strings in the message have different character-set
identifiers, the CodedCharSetId field in MQMD or in the MQ header
structure preceding MQCFH should be set to MQCCSI_EMBEDDED
when the message is put, and the CodedCharSetId fields in the
MQCFST structure within the message should be set to the identifiers
that apply.

Do not specify MQCCSI_EMBEDDED in MQMD or in the MQ header
structure preceding MQCFH when the message is put, with
MQCCSI_DEFAULT in the MQCFST structure within the message, as
this will prevent conversion of the message.

MQCFST

Appendix A. Structure datatypes MQCFIN and MQCFST 125

StringLength

Description: Length in bytes of the data in the String field; it must be zero or greater.
This length need not be a multiple of four.

Datatype: MQLONG.
Initial value: 0.

String

Description: The value of the parameter identified by the Parameter
field.

In MQFMT_EVENT messages, trailing blanks are omitted
from string parameters (that is, the string may be shorter
than the defined length of the parameter). StringLength
gives the length of the string actually present in the
message.

Datatype: MQCHAR×StringLength.
Initial value: In C, the initial value of this field is the null string.
Valid value: The string can contain any characters that are in the

character set defined by CodedCharSetId, and that are
valid for the parameter identified by Parameter.

Language considerations: The way that this field is declared depends on the
programming language:

v For the C programming language, the field is declared
as an array with one element. Storage for the structure
should be allocated dynamically, and pointers used to
address the fields within it.

v For the COBOL, PL/I, System/390 assembler, and
Visual Basic programming languages, the field is
omitted from the structure declaration. When an
instance of the structure is declared, the user should
include MQCFST in a larger structure, and declare
additional fields following MQCFST, to represent the
String field as required.

Special note: A null character in the string is treated as normal data,
and does not act as a delimiter for the string. This means
that when a receiving application reads an
MQFMT_EVENT message, the receiving application
receives all of the data specified by the sending
application. The data may, of course, have been
converted between character sets (for example, by the
receiving application specifying the MQGMO_CONVERT
option on the MQGET call).

C language declaration (MQCFST)
typedef struct tagMQCFST {

MQLONG Type; /* Structure type */
MQLONG StrucLength; /* Structure length */
MQLONG Parameter; /* Parameter identifier */
MQLONG CodedCharSetId; /* Coded character set identifier */
MQLONG StringLength; /* Length of string */
MQCHAR String[1]; /* String value - first

character */
} MQCFST;

MQCFST

126 MQSeries Event Monitoring

In the C programming language, the macro variable MQCFST_DEFAULT contains
the initial values of the MQCFST structure. It can be used in the following way to
provide initial values for the fields in the structure:
struct {

MQCFST Hdr;
MQCHAR Data[99];

} MyCFST = {MQCFST_DEFAULT};

COBOL language declaration (MQCFST)
** MQCFST structure

10 MQCFST.
** Structure type

15 MQCFST-TYPE PIC S9(9) BINARY.
** Structure length

15 MQCFST-STRUCLENGTH PIC S9(9) BINARY.
** Parameter identifier

15 MQCFST-PARAMETER PIC S9(9) BINARY.
** Coded character set identifier

15 MQCFST-CODEDCHARSETID PIC S9(9) BINARY.
** Length of string

15 MQCFST-STRINGLENGTH PIC S9(9) BINARY.

PL/I language declaration (MQCFST)
dcl
1 MQCFST based,
3 Type fixed bin(31), /* Structure type */
3 StrucLength fixed bin(31), /* Structure length */
3 Parameter fixed bin(31), /* Parameter identifier */
3 CodedCharSetId fixed bin(31), /* Coded character set identifier */
3 StringLength fixed bin(31); /* Length of string */

System/390 assembler-language declaration (MQCFST)
MQCFST DSECT
MQCFST_TYPE DS F Structure type
MQCFST_STRUCLENGTH DS F Structure length
MQCFST_PARAMETER DS F Parameter identifier
MQCFST_CODEDCHARSETID DS F Coded character set
* identifier
MQCFST_STRINGLENGTH DS F Length of string
MQCFST_LENGTH EQU *-MQCFST Length of structure

ORG MQCFST
MQCFST_AREA DS CL(MQCFST_LENGTH)

Visual Basic language declaration (MQCFST)
Type MQCFST

Type As Long ' Structure type
StrucLength As Long ' Structure length
Parameter As Long ' Parameter identifier
CodedCharSetId As Long ' Coded character set identifier
StringLength As Long ' Length of string

End Type

Global MQCFST_DEFAULT As MQCFST

MQCFST

Appendix A. Structure datatypes MQCFIN and MQCFST 127

MQCFST

128 MQSeries Event Monitoring

Appendix B. Constants

This appendix specifies the values of the named constants that apply to events.

The constants are grouped according to the parameter or field to which they relate.
All of the names of the constants in a group begin with a common prefix of the
form “MQxxxx_”, where xxxx represents a string of 0 through 4 characters that
indicates the nature of the values defined in that group. The constants are ordered
alphabetically by the prefix.

Notes:

1. For constants with numeric values, the values are shown in both decimal and
hexadecimal forms.

2. Hexadecimal values are represented using the notation X'hhhh', where each “h”
denotes a single hexadecimal digit.

3. Character values are shown delimited by single quotation marks; the quotation
marks are not part of the value.

4. Blanks in character values are represented by one or more occurrences of the
symbol “b”.

List of constants
The following sections list all of the named constants mentioned in this book, and
show their values.

MQ_* (Lengths of character string and byte fields)

MQ_APPL_NAME_LENGTH 28 X'0000001C'
MQ_BRIDGE_NAME_LENGTH 24 X'00000018'
MQ_CHANNEL_NAME_LENGTH 20 X'00000014'
MQ_CONN_NAME_LENGTH 264 X'00000108'
MQ_FORMAT_LENGTH 8 X'00000008'
MQ_PROCESS_NAME_LENGTH 48 X'00000030'
MQ_Q_MGR_NAME_LENGTH 48 X'00000030'
MQ_Q_NAME_LENGTH 48 X'00000030'
MQ_USER_ID_LENGTH 12 X'0000000C'

MQBT_* (Bridge type)

MQBT_OTMA 1 X'00000001'

MQCA_* (Character attribute selector)

MQCA_BASE_Q_NAME 2002 X'000007D2'
MQCA_PROCESS_NAME 2012 X'000007DC'
MQCA_Q_MGR_NAME 2015 X'000007DF'
MQCA_Q_NAME 2016 X'000007E0'
MQCA_XMIT_Q_NAME 2024 X'000007E8'

© Copyright IBM Corp. 1994, 2000 129

MQCACF_* (Character attribute command format parameter)

MQCACF_OBJECT_Q_MGR_NAME 3023 X'00000BCF'
MQCACF_APPL_NAME 3024 X'00000BD0'
MQCACF_USER_IDENTIFIER 3025 X'00000BD1'
MQCACF_AUX_ERROR_DATA_STR_1 3026 X'00000BD2'
MQCACF_AUX_ERROR_DATA_STR_2 3027 X'00000BD3'
MQCACF_AUX_ERROR_DATA_STR_3 3028 X'00000BD4'
MQCACF_BRIDGE_NAME 3029 X'00000BD5'

MQCACH_* (Channel character attribute command format
parameter)

MQCACH_CHANNEL_NAME 3501 X'00000DAD'
MQCACH_XMIT_Q_NAME 3505 X'00000DB1'
MQCACH_CONNECTION_NAME 3506 X'00000DB2'
MQCACH_FORMAT_NAME 3533 X'00000DCD'

MQCC_* (Completion code)

MQCC_OK 0 X'00000000'
MQCC_WARNING 1 X'00000001'

MQCFC_* (Command format control options)

MQCFC_LAST 1 X'00000001'

MQCFH_* (Command format header structure length)

MQCFH_STRUC_LENGTH 36 X'00000024'

MQCFH_* (Command format header version)

MQCFH_VERSION_1 1 X'00000001'

MQCFIN_* (Command format integer parameter structure
length)

MQCFIN_STRUC_LENGTH 16 X'00000010'

MQCFST_* (Command format string parameter structure
length)

MQCFST_STRUC_LENGTH_FIXED 20 X'00000014'

Constants

130 MQSeries Event Monitoring

MQCFT_* (Command structure type)

MQCFT_COMMAND 1 X'00000001'
MQCFT_INTEGER 3 X'00000003'
MQCFT_STRING 4 X'00000004'
MQCFT_EVENT 7 X'00000007'

MQCHT_* (Channel type)

MQCHT_RECEIVER 3 X'00000003'
MQCHT_SVRCONN 7 X'00000007'
MQCHT_CLUSSDR 9 X'00000009'

MQCMD_* (Command identifier)

MQCMD_Q_MGR_EVENT 44 X'0000002C'
MQCMD_PERFM_EVENT 45 X'0000002D'
MQCMD_CHANNEL_EVENT 46 X'0000002E'

MQIA_* (Integer attribute selector)

MQIA_APPL_TYPE 1 X'00000001'
MQIA_Q_TYPE 20 X'00000014'
MQIA_TIME_SINCE_RESET 35 X'00000023'
MQIA_HIGH_Q_DEPTH 36 X'00000024'
MQIA_MSG_ENQ_COUNT 37 X'00000025'
MQIA_MSG_DEQ_COUNT 38 X'00000026'
MQIA_Q_DEPTH_HIGH_LIMIT 40 X'00000028'
MQIA_Q_DEPTH_LOW_LIMIT 41 X'00000029'
MQIA_Q_DEPTH_MAX_EVENT 42 X'0000002A'
MQIA_Q_DEPTH_HIGH_EVENT 43 X'0000002B'
MQIA_Q_DEPTH_LOW_EVENT 44 X'0000002C'

MQIACF_* (Integer attribute command format parameter)

MQIACF_ERROR_IDENTIFIER 1013 X'000003F5'
MQIACF_REASON_QUALIFIER 1020 X'000003FC'
MQIACF_COMMAND 1021 X'000003FD'
MQIACF_OPEN_OPTIONS 1022 X'000003FE'
MQIACF_AUX_ERROR_DATA_INT_1 1070 X'0000042E'
MQIACF_AUX_ERROR_DATA_INT_2 1071 X'0000042F'
MQIACF_CONV_REASON_CODE 1072 X'00000430'
MQIACF_BRIDGE_TYPE 1073 X'00000431'

MQIACH_* (Channel Integer attribute command format
parameter)

MQIACH_CHANNEL_TYPE 1511 X'000005E7'

Constants

Appendix B. Constants 131

MQQT_* (Queue type)

MQQT_MODEL 2 X'00000002'
MQQT_ALIAS 3 X'00000003'
MQQT_REMOTE 6 X'00000006'

MQRC_* (Reason code in MQCFH)

MQRC_ALIAS_BASE_Q_TYPE_ERROR 2001 X'000007D1'
MQRC_BRIDGE_STARTED 2125 X'0000084D'
MQRC_BRIDGE_STOPPED 2126 X'0000084E'
MQRC_CHANNEL_ACTIVATED 2295 X'000008F7'
MQRC_CHANNEL_AUTO_DEF_ERROR 2234 X'000008BA'
MQRC_CHANNEL_AUTO_DEF_OK 2233 X'000008B9'
MQRC_CHANNEL_CONV_ERROR 2284 X'000008EC'
MQRC_CHANNEL_NOT_ACTIVATED 2296 X'000008F8'
MQRC_CHANNEL_STARTED 2282 X'000008EA'
MQRC_CHANNEL_STOPPED 2283 X'000008EB'
MQRC_CHANNEL_STOPPED_BY_USER 2279 X'000008E7'
MQRC_DEF_XMIT_Q_TYPE_ERROR 2198 X'00000896'
MQRC_DEF_XMIT_Q_USAGE_ERROR 2199 X'00000897'
MQRC_GET_INHIBITED 2016 X'000007E0'
MQRC_NOT_AUTHORIZED 2035 X'000007F3'
MQRC_PUT_INHIBITED 2051 X'00000803'
MQRC_Q_DEPTH_HIGH 2224 X'000008B0'
MQRC_Q_DEPTH_LOW 2225 X'000008B1'
MQRC_Q_FULL 2053 X'00000805'
MQRC_Q_MGR_ACTIVE 2222 X'000008AE'
MQRC_Q_MGR_NOT_ACTIVE 2223 X'000008AF'
MQRC_Q_SERVICE_INTERVAL_HIGH 2226 X'000008B2'
MQRC_Q_SERVICE_INTERVAL_OK 2227 X'000008B3'
MQRC_Q_TYPE_ERROR 2057 X'00000809'
MQRC_REMOTE_Q_NAME_ERROR 2184 X'00000888'
MQRC_XMIT_Q_TYPE_ERROR 2091 X'0000082B'
MQRC_XMIT_Q_USAGE_ERROR 2092 X'0000082C'
MQRC_UNKOWN_ALIAS_BASE_Q 2082 X'00000822'
MQRC_UNKNOWN_DEF_XMIT_Q 2197 X'00000895'
MQRC_UNKNOWN_OBJECT_NAME 2085 X'00000825'
MQRC_UNKNOWN_REMOTE_Q_MGR 2087 X'00000827'
MQRC_UNKNOWN_XMIT_Q 2196 X'00000894'

MQRCCF_* (Reason code for command format)

MQRCCF_SUPPRESSED_BY_EXIT 4085 X'00000FF5'

MQRQ_* (Reason qualifier)

MQRQ_CONN_NOT_AUTHORIZED 1 X'00000001'
MQRQ_OPEN_NOT_AUTHORIZED 2 X'00000002'
MQRQ_CLOSE_NOT_AUTHORIZED 3 X'00000003'
MQRQ_CMD_NOT_AUTHORIZED 4 X'00000004'
MQRQ_Q_MGR_STOPPING 5 X'00000005'
MQRQ_Q_MGR_QUIESCING 6 X'00000006'

Constants

132 MQSeries Event Monitoring

MQRQ_CHANNEL_STOPPED_OK 7 X'00000007'
MQRQ_CHANNEL_STOPPED_ERROR 8 X'00000008'
MQRQ_CHANNEL_STOPPED_RETRY 9 X'00000009'
MQRQ_CHANNEL_STOPPED_DISABLED 10 X'0000000A'
MQRQ_BRIDGE_STOPPED_OK 11 X'0000000B'
MQRQ_BRIDGE_STOPPED_ERROR 12 X'0000000C'

Constants

Appendix B. Constants 133

Constants

134 MQSeries Event Monitoring

Appendix C. Header, COPY, and INCLUDE files

Various header, COPY, and INCLUDE files are provided to assist applications with
the processing of event messages. These are described below for each of the
supported programming languages. Not all of the files are available in all
environments.

See:
v “C header files”
v “COBOL COPY files”
v “PL/I INCLUDE files” on page 136
v “System/390 Assembler COPY files” on page 136
v “Visual Basic header files” on page 136

C header files
The following header files are provided for the C programming language.

Table 14. C header files

Filename Contents relating to this book

CMQC Elementary data types, some named constants for events

CMQCFC Additional named constants for events

CMQXC Named constants for events relating to channels

COBOL COPY files
The following COPY files are provided for the COBOL programming language.
Two COPY files are provided for each structure; one COPY file has initial values,
the other does not.

Table 15. COBOL COPY files

File name
(with initial
values)

File name
(without initial
values)

Contents relating to this book

CMQV – Some named constants for events (not available on DOS
clients and Windows clients)

CMQCFV – Additional named constants for events (available only on
OS/390 and OS/400)

CMQXV – Named constants for events relating to channels
(available only on OS/390 and AS/400)

CMQCFHV CMQCFHL Header structure for events (available only on OS/390)

CMQCFINV CMQCFINL Single-integer parameter structure for events (available
only on OS/390)

CMQCFSTV CMQCFSTL Single-string parameter structure for events (available
only on OS/390)

© Copyright IBM Corp. 1994, 2000 135

PL/I INCLUDE files
The following INCLUDE files are provided for the PL/I programming language.
These files are available only on AIX, OS/390, OS/2, and Windows NT.

Table 16. PL/I INCLUDE files

Filename Contents relating to this book

CMQP Some named constants for events

CMQCFP Additional named constants for events

CMQXP Named constants for events relating to channels

System/390 Assembler COPY files
The following COPY files are provided for the System/390 Assembler
programming language. These files are available only on OS/390.

Table 17. System/390 Assembler COPY files

Filename Contents relating to this book

CMQA Some named constants for events

CMQCFA Additional named constants for events

CMQXA Named constants for events relating to channels

CMQCFHA Header structure for events

CMQCFINA Single-integer parameter structure for events

CMQCFSTA Single-string parameter structure for events

Visual Basic header files
The following .BAS files are provided for the Visual Basic programming language.
These files are available only on Windows platforms.

Table 18. Visual Basic header files

Filename Contents relating to this book

CMQB Some named constants for events

CMQCFB Additional named constants for events

CMQXB Named constants for events relating to channels

PL/I INCLUDE files

136 MQSeries Event Monitoring

Appendix D. Notices

This information was developed for products and services offered in the United
States. IBM may not offer the products, services, or features discussed in this
information in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply
that only that IBM product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any IBM intellectual
property right may be used instead. However, it is the user’s responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this information. The furnishing of this information does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the information. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
information at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1994, 2000 137

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM United Kingdom Laboratories,
Mail Point 151,
Hursley Park,
Winchester,
Hampshire,
England
SO21 2JN.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Trademarks
The following are trademarks of International Business Machines Corporation in
the United States, or other countries, or both:

AIX AS/400 CICS
IBM MQSeries OS/2
OS/390 OS/400 S/390
System/390

Tivoli® and NetView are trademarks of Tivoli Systems Inc. in the United States,
other countries, or both.

Notices

138 MQSeries Event Monitoring

ActionMedia, LANDesk®, MMX™, Pentium® and ProShare® are trademarks of Intel
Corporation in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, and service names may be trademarks or service marks
of others.

Notices

Appendix D. Notices 139

140 MQSeries Event Monitoring

Glossary of terms and abbreviations

This glossary defines MQSeries terms and
abbreviations used in this book. If you do not
find the term you are looking for, see the Index or
the IBM Dictionary of Computing, New York:
McGraw-Hill, 1994.

This glossary includes terms and definitions from
the American National Dictionary for Information
Systems, ANSI X3.172-1990, copyright 1990 by the
American National Standards Institute (ANSI).
Copies may be purchased from the American
National Standards Institute, 11 West 42 Street,
New York, New York 10036. Definitions are
identified by the symbol (A) after the definition.

A
abend reason code. A 4-byte hexadecimal code that
uniquely identifies a problem with MQSeries for
OS/390. A complete list of MQSeries for OS/390 abend
reason codes and their explanations is contained in the
MQSeries for OS/390 Messages and Codes manual.

active log. See recovery log.

adapter. An interface between MQSeries for OS/390
and TSO, IMS™, CICS, or batch address spaces. An
adapter is an attachment facility that enables
applications to access MQSeries services.

address space. The area of virtual storage available for
a particular job.

address space identifier (ASID). A unique,
system-assigned identifier for an address space.

administrator commands. MQSeries commands used
to manage MQSeries objects, such as queues, processes,
and namelists.

alert. A message sent to a management services focal
point in a network to identify a problem or an
impending problem.

alert monitor. In MQSeries for OS/390, a component
of the CICS adapter that handles unscheduled events
occurring as a result of connection requests to
MQSeries for OS/390.

alias queue object. An MQSeries object, the name of
which is an alias for a base queue defined to the local
queue manager. When an application or a queue
manager uses an alias queue, the alias name is resolved
and the requested operation is performed on the
associated base queue.

allied address space. See ally.

ally. An OS/390 address space that is connected to
MQSeries for OS/390.

alternate user security. A security feature in which the
authority of one user ID can be used by another user
ID; for example, to open an MQSeries object.

APAR. Authorized program analysis report.

application environment. The software facilities that
are accessible by an application program. On the
OS/390 platform, CICS and IMS are examples of
application environments.

application log. In Windows NT, a log that records
significant application events.

application queue. A queue used by an application.

archive log. See recovery log.

ASID. Address space identifier.

asynchronous messaging. A method of
communication between programs in which programs
place messages on message queues. With asynchronous
messaging, the sending program proceeds with its own
processing without waiting for a reply to its message.
Contrast with synchronous messaging.

attribute. One of a set of properties that defines the
characteristics of an MQSeries object.

authorization checks. Security checks that are
performed when a user tries to issue administration
commands against an object, for example to open a
queue or connect to a queue manager.

authorization file. In MQSeries on UNIX systems, a
file that provides security definitions for an object, a
class of objects, or all classes of objects.

authorization service. In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, a service that provides authority checking of
commands and MQI calls for the user identifier
associated with the command or call.

authorized program analysis report (APAR). A report
of a problem caused by a suspected defect in a current,
unaltered release of a program.

B
backout. An operation that reverses all the changes
made during the current unit of recovery or unit of

© Copyright IBM Corp. 1994, 2000 141

work. After the operation is complete, a new unit of
recovery or unit of work begins. Contrast with commit.

bag. See data bag.

basic mapping support (BMS). An interface between
CICS and application programs that formats input and
output display data and routes multiple-page output
messages without regard for control characters used by
various terminals.

BMS. Basic mapping support.

bootstrap data set (BSDS). A VSAM data set that
contains:

v An inventory of all active and archived log data sets
known to MQSeries for OS/390

v A wrap-around inventory of all recent MQSeries for
OS/390 activity

The BSDS is required if the MQSeries for OS/390
subsystem has to be restarted.

browse. In message queuing, to use the MQGET call
to copy a message without removing it from the queue.
See also get.

browse cursor. In message queuing, an indicator used
when browsing a queue to identify the message that is
next in sequence.

BSDS. Bootstrap data set.

buffer pool. An area of main storage used for
MQSeries for OS/390 queues, messages, and object
definitions. See also page set.

C
call back. In MQSeries, a requester message channel
initiates a transfer from a sender channel by first calling
the sender, then closing down and awaiting a call back.

CCF. Channel control function.

CCSID. Coded character set identifier.

CDF. Channel definition file.

channel. See message channel.

channel control function (CCF). In MQSeries, a
program to move messages from a transmission queue
to a communication link, and from a communication
link to a local queue, together with an operator panel
interface to allow the setup and control of channels.

channel definition file (CDF). In MQSeries, a file
containing communication channel definitions that
associate transmission queues with communication
links.

channel event. An event indicating that a channel
instance has become available or unavailable. Channel
events are generated on the queue managers at both
ends of the channel.

checkpoint. A time when significant information is
written on the log. Contrast with syncpoint. In
MQSeries on UNIX systems, the point in time when a
data record described in the log is the same as the data
record in the queue. Checkpoints are generated
automatically and are used during the system restart
process.

CI. Control interval.

circular logging. In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, the process of keeping all restart data in a ring of
log files. Logging fills the first file in the ring and then
moves on to the next, until all the files are full. At this
point, logging goes back to the first file in the ring and
starts again, if the space has been freed or is no longer
needed. Circular logging is used during restart
recovery, using the log to roll back transactions that
were in progress when the system stopped. Contrast
with linear logging.

CL. Control Language.

client. A run-time component that provides access to
queuing services on a server for local user applications.
The queues used by the applications reside on the
server. See also MQSeries client.

client application. An application, running on a
workstation and linked to a client, that gives the
application access to queuing services on a server.

client connection channel type. The type of MQI
channel definition associated with an MQSeries client.
See also server connection channel type.

cluster. A network of queue managers that are
logically associated in some way.

coded character set identifier (CCSID). The name of a
coded set of characters and their code point
assignments.

command. In MQSeries, an administration instruction
that can be carried out by the queue manager.

command prefix (CPF). In MQSeries for OS/390, a
character string that identifies the queue manager to
which MQSeries for OS/390 commands are directed,
and from which MQSeries for OS/390 operator
messages are received.

command processor. The MQSeries component that
processes commands.

Glossary

142 MQSeries Event Monitoring

command server. The MQSeries component that reads
commands from the system-command input queue,
verifies them, and passes valid commands to the
command processor.

commit. An operation that applies all the changes
made during the current unit of recovery or unit of
work. After the operation is complete, a new unit of
recovery or unit of work begins. Contrast with backout.

completion code. A return code indicating how an
MQI call has ended.

configuration file. In MQSeries on UNIX systems,
MQSeries for AS/400, MQSeries for OS/2 Warp, and
MQSeries for Windows NT, a file that contains
configuration information related to, for example, logs,
communications, or installable services. Synonymous
with .ini file. See also stanza.

connect. To provide a queue manager connection
handle, which an application uses on subsequent MQI
calls. The connection is made either by the MQCONN
or MQCONNX call, or automatically by the MQOPEN
call.

connection handle. The identifier or token by which a
program accesses the queue manager to which it is
connected.

context. Information about the origin of a message.

context security. In MQSeries, a method of allowing
security to be handled such that messages are obliged
to carry details of their origins in the message
descriptor.

control command. In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, a command that can be entered interactively from
the operating system command line. Such a command
requires only that the MQSeries product be installed; it
does not require a special utility or program to run it.

control interval (CI). A fixed-length area of direct
access storage in which VSAM stores records and
creates distributed free spaces. The control interval is
the unit of information that VSAM transmits to or from
direct access storage.

Control Language (CL). In MQSeries for AS/400, a
language that can be used to issue commands, either at
the command line or by writing a CL program.

controlled shutdown. See quiesced shutdown.

CPF. Command prefix.

Cross Systems Coupling Facility (XCF). Provides the
OS/390 coupling services that allow authorized
programs in a multisystem environment to
communicate with programs on the same or different
OS/390 systems.

coupling facility. On OS/390, a special logical
partition that provides high-speed caching, list
processing, and locking functions in a parallel sysplex.

D
DAE. Dump analysis and elimination.

data bag. In the MQAI, a bag that allows you to
handle properties (or parameters) of objects.

data item. In the MQAI, an item contained within a
data bag. This can be an integer item or a
character-string item, and a user item or a system item.

data conversion interface (DCI). The MQSeries
interface to which customer- or vendor-written
programs that convert application data between
different machine encodings and CCSIDs must
conform. A part of the MQSeries Framework.

datagram. The simplest message that MQSeries
supports. This type of message does not require a reply.

DCE. Distributed Computing Environment.

DCI. Data conversion interface.

dead-letter queue (DLQ). A queue to which a queue
manager or application sends messages that it cannot
deliver to their correct destination.

dead-letter queue handler. An MQSeries-supplied
utility that monitors a dead-letter queue (DLQ) and
processes messages on the queue in accordance with a
user-written rules table.

default object. A definition of an object (for example,
a queue) with all attributes defined. If a user defines an
object but does not specify all possible attributes for
that object, the queue manager uses default attributes
in place of any that were not specified.

deferred connection. A pending event that is activated
when a CICS subsystem tries to connect to MQSeries
for OS/390 before MQSeries for OS/390 has been
started.

distributed application. In message queuing, a set of
application programs that can each be connected to a
different queue manager, but that collectively constitute
a single application.

Distributed Computing Environment (DCE).
Middleware that provides some basic services, making
the development of distributed applications easier. DCE
is defined by the Open Software Foundation (OSF).

distributed queue management (DQM). In message
queuing, the setup and control of message channels to
queue managers on other systems.

DLQ. Dead-letter queue.

Glossary

Glossary of terms and abbreviations 143

DQM. Distributed queue management.

dual logging. A method of recording MQSeries for
OS/390 activity, where each change is recorded on two
data sets, so that if a restart is necessary and one data
set is unreadable, the other can be used. Contrast with
single logging.

dual mode. See dual logging.

dump analysis and elimination (DAE). An OS/390
service that enables an installation to suppress SVC
dumps and ABEND SYSUDUMP dumps that are not
needed because they duplicate previously written
dumps.

dynamic queue. A local queue created when a
program opens a model queue object. See also
permanent dynamic queue and temporary dynamic queue.

E
environment. See application environment.

ESM. External security manager.

ESTAE. Extended specify task abnormal exit.

event. See channel event, instrumentation event,
performance event, and queue manager event.

event data. In an event message, the part of the
message data that contains information about the event
(such as the queue manager name, and the application
that gave rise to the event). See also event header.

event header. In an event message, the part of the
message data that identifies the event type of the
reason code for the event.

event log. See application log.

event message. Contains information (such as the
category of event, the name of the application that
caused the event, and queue manager statistics) relating
to the origin of an instrumentation event in a network
of MQSeries systems.

event queue. The queue onto which the queue
manager puts an event message after it detects an
event. Each category of event (queue manager,
performance, or channel event) has its own event
queue.

Event Viewer. A tool provided by Windows NT to
examine and manage log files.

extended specify task abnormal exit (ESTAE). An
OS/390 macro that provides recovery capability and
gives control to the specified exit routine for
processing, diagnosing an abend, or specifying a retry
address.

external security manager (ESM). A security product
that is invoked by the OS/390 System Authorization
Facility. RACF® is an example of an ESM.

F
FFST™. First Failure Support Technology™.

FIFO. First-in-first-out.

First Failure Support Technology (FFST). Used by
MQSeries on UNIX systems, MQSeries for OS/2 Warp,
MQSeries for Windows NT, and MQSeries for AS/400
to detect and report software problems.

first-in-first-out (FIFO). A queuing technique in which
the next item to be retrieved is the item that has been
in the queue for the longest time. (A)

forced shutdown. A type of shutdown of the CICS
adapter where the adapter immediately disconnects
from MQSeries for OS/390, regardless of the state of
any currently active tasks. Contrast with quiesced
shutdown.

Framework. In MQSeries, a collection of programming
interfaces that allow customers or vendors to write
programs that extend or replace certain functions
provided in MQSeries products. The interfaces are:

v MQSeries data conversion interface (DCI)

v MQSeries message channel interface (MCI)

v MQSeries name service interface (NSI)

v MQSeries security enabling interface (SEI)

v MQSeries trigger monitor interface (TMI)

FRR. Functional recovery routine.

functional recovery routine (FRR). An OS/390
recovery/termination manager facility that enables a
recovery routine to gain control in the event of a
program interrupt.

G
GCPC. Generalized command preprocessor.

generalized command preprocessor (GCPC). An
MQSeries for OS/390 component that processes
MQSeries commands and runs them.

Generalized Trace Facility (GTF). An OS/390 service
program that records significant system events, such as
supervisor calls and start I/O operations, for the
purpose of problem determination.

get. In message queuing, to use the MQGET call to
remove a message from a queue.

global trace. An MQSeries for OS/390 trace option
where the trace data comes from the entire MQSeries
for OS/390 subsystem.

Glossary

144 MQSeries Event Monitoring

globally-defined object. On OS/390, an object whose
definition is stored in the shared repository. The object
is available to all queue managers in the queue-sharing
group. See also locally-defined object.

GTF. Generalized Trace Facility.

H
handle. See connection handle and object handle.

hardened message. A message that is written to
auxiliary (disk) storage so that the message will not be
lost in the event of a system failure. See also persistent
message.

I
ILE. Integrated Language Environment®.

immediate shutdown. In MQSeries, a shutdown of a
queue manager that does not wait for applications to
disconnect. Current MQI calls are allowed to complete,
but new MQI calls fail after an immediate shutdown
has been requested. Contrast with quiesced shutdown
and preemptive shutdown.

inbound channel. A channel that receives messages
from another queue manager. See also shared inbound
channel.

in-doubt unit of recovery. In MQSeries, the status of a
unit of recovery for which a syncpoint has been
requested but not yet confirmed.

Integrated Language Environment® (ILE). The
AS/400 Integrated Language Environment. This
replaces the AS/400 Original Program Model (OPM).

.ini file. See configuration file.

initialization input data sets. Data sets used by
MQSeries for OS/390 when it starts up.

initiation queue. A local queue on which the queue
manager puts trigger messages.

input/output parameter. A parameter of an MQI call
in which you supply information when you make the
call, and in which the queue manager changes the
information when the call completes or fails.

input parameter. A parameter of an MQI call in which
you supply information when you make the call.

installable services. In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, additional functionality provided as independent
components. The installation of each component is
optional: in-house or third-party components can be
used instead. See also authorization service, name service,
and user identifier service.

instrumentation event. A facility that can be used to
monitor the operation of queue managers in a network
of MQSeries systems. MQSeries provides
instrumentation events for monitoring queue manager
resource definitions, performance conditions, and
channel conditions. Instrumentation events can be used
by a user-written reporting mechanism in an
administration application that displays the events to a
system operator. They also allow applications acting as
agents for other administration networks to monitor
reports and create the appropriate alerts.

Interactive Problem Control System (IPCS). A
component of OS/390 that permits online problem
management, interactive problem diagnosis, online
debugging for disk-resident abend dumps, problem
tracking, and problem reporting.

Interactive System Productivity Facility (ISPF). An
IBM licensed program that serves as a full-screen editor
and dialog manager. It is used for writing application
programs, and provides a means of generating
standard screen panels and interactive dialogues
between the application programmer and terminal user.

IPCS. Interactive Problem Control System.

ISPF. Interactive System Productivity Facility.

L
linear logging. In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, the process of keeping restart data in a sequence of
files. New files are added to the sequence as necessary.
The space in which the data is written is not reused
until the queue manager is restarted. Contrast with
circular logging.

listener. In MQSeries distributed queuing, a program
that monitors for incoming network connections.

local definition. An MQSeries object belonging to a
local queue manager.

local definition of a remote queue. An MQSeries
object belonging to a local queue manager. This object
defines the attributes of a queue that is owned by
another queue manager. In addition, it is used for
queue-manager aliasing and reply-to-queue aliasing.

local queue. A queue that belongs to the local queue
manager. A local queue can contain a list of messages
waiting to be processed. Contrast with remote queue.

local queue manager. The queue manager to which a
program is connected and that provides message
queuing services to the program. Queue managers to
which a program is not connected are called remote
queue managers, even if they are running on the same
system as the program.

Glossary

Glossary of terms and abbreviations 145

locale. On UNIX systems, a subset of a user’s
environment that defines conventions for a specific
culture (such as time, numeric, or monetary formatting
and character classification, collation, or conversion).
The queue manager CCSID is derived from the locale
of the user ID that created the queue manager.

locally-defined object. On OS/390, an object whose
definition is stored on page set zero. The definition can
be accessed only by the queue manager that defined it.
Also known as a privately-defined object.

log. In MQSeries, a file recording the work done by
queue managers while they receive, transmit, and
deliver messages, to enable them to recover in the
event of failure.

log control file. In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, the file containing information needed to monitor
the use of log files (for example, their size and location,
and the name of the next available file).

log file. In MQSeries on UNIX systems, MQSeries for
OS/2 Warp, and MQSeries for Windows NT, a file in
which all significant changes to the data controlled by a
queue manager are recorded. If the primary log files
become full, MQSeries allocates secondary log files.

logical unit of work (LUW). See unit of work.

M
machine check interrupt. An interruption that occurs
as a result of an equipment malfunction or error. A
machine check interrupt can be either hardware
recoverable, software recoverable, or nonrecoverable.

MCA. Message channel agent.

MCI. Message channel interface.

media image. In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, the sequence of log records that contain an image
of an object. The object can be recreated from this
image.

message. In message queuing applications, a
communication sent between programs. In system
programming, information intended for the terminal
operator or system administrator.

message channel. In distributed message queuing, a
mechanism for moving messages from one queue
manager to another. A message channel comprises two
message channel agents (a sender at one end and a
receiver at the other end) and a communication link.
Contrast with MQI channel.

message channel agent (MCA). A program that
transmits prepared messages from a transmission

queue to a communication link, or from a
communication link to a destination queue. See also
message queue interface.

message channel interface (MCI). The MQSeries
interface to which customer- or vendor-written
programs that transmit messages between an MQSeries
queue manager and another messaging system must
conform. A part of the MQSeries Framework.

message descriptor. Control information describing
the message format and presentation that is carried as
part of an MQSeries message. The format of the
message descriptor is defined by the MQMD structure.

message priority. In MQSeries, an attribute of a
message that can affect the order in which messages on
a queue are retrieved, and whether a trigger event is
generated.

message queue. Synonym for queue.

message queue interface (MQI). The programming
interface provided by the MQSeries queue managers.
This programming interface allows application
programs to access message queuing services.

message queuing. A programming technique in which
each program within an application communicates with
the other programs by putting messages on queues.

message sequence numbering. A programming
technique in which messages are given unique numbers
during transmission over a communication link. This
enables the receiving process to check whether all
messages are received, to place them in a queue in the
original order, and to discard duplicate messages.

messaging. See synchronous messaging and asynchronous
messaging.

model queue object. A set of queue attributes that act
as a template when a program creates a dynamic
queue.

MQAI. MQSeries Administration Interface.

MQI. Message queue interface.

MQI channel. Connects an MQSeries client to a queue
manager on a server system, and transfers only MQI
calls and responses in a bidirectional manner. Contrast
with message channel.

MQSC. MQSeries commands.

MQSeries. A family of IBM licensed programs that
provides message queuing services.

MQSeries Administration Interface (MQAI). A
programming interface to MQSeries.

MQSeries client. Part of an MQSeries product that
can be installed on a system without installing the full

Glossary

146 MQSeries Event Monitoring

queue manager. The MQSeries client accepts MQI calls
from applications and communicates with a queue
manager on a server system.

MQSeries commands (MQSC). Human readable
commands, uniform across all platforms, that are used
to manipulate MQSeries objects.

N
namelist. An MQSeries object that contains a list of
names, for example, queue names.

name service. In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, the facility that determines which queue manager
owns a specified queue.

name service interface (NSI). The MQSeries interface
to which customer- or vendor-written programs that
resolve queue-name ownership must conform. A part of
the MQSeries Framework.

name transformation. In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, an internal process that changes a queue manager
name so that it is unique and valid for the system
being used. Externally, the queue manager name
remains unchanged.

New Technology File System (NTFS). A Windows NT
recoverable file system that provides security for files.

nonpersistent message. A message that does not
survive a restart of the queue manager. Contrast with
persistent message.

NSI. Name service interface.

NTFS. New Technology File System.

null character. The character that is represented by
X'00'.

O
OAM. Object authority manager.

object. In MQSeries, an object is a queue manager, a
queue, a process definition, a channel, a namelist, or a
storage class (OS/390 only).

object authority manager (OAM). In MQSeries on
UNIX systems, MQSeries for AS/400, and MQSeries for
Windows NT, the default authorization service for
command and object management. The OAM can be
replaced by, or run in combination with, a
customer-supplied security service.

object descriptor. A data structure that identifies a
particular MQSeries object. Included in the descriptor
are the name of the object and the object type.

object handle. The identifier or token by which a
program accesses the MQSeries object with which it is
working.

off-loading. In MQSeries for OS/390, an automatic
process whereby a queue manager’s active log is
transferred to its archive log.

Open Transaction Manager Access (OTMA). A
transaction-based, connectionless client/server protocol.
It functions as an interface for host-based
communications servers accessing IMS TM applications
through the OS/390 Cross Systems Coupling Facility
(XCF). OTMA is implemented in an OS/390 sysplex
environment. Therefore, the domain of OTMA is
restricted to the domain of XCF.

OPM. Original Program Model.

Original Program Model (OPM). The AS/400
Original Program Model. This is no longer supported
on MQSeries. It is replaced by the Integrated Language
Environment (ILE).

OTMA. Open Transaction Manager Access.

outbound channel. A channel that takes messages
from a transmission queue and sends them to another
queue manager. See also shared outbound channel.

output log-buffer. In MQSeries for OS/390, a buffer
that holds recovery log records before they are written
to the archive log.

output parameter. A parameter of an MQI call in
which the queue manager returns information when
the call completes or fails.

P
page set. A VSAM data set used when MQSeries for
OS/390 moves data (for example, queues and
messages) from buffers in main storage to permanent
backing storage (DASD).

PCF. Programmable command format.

PCF command. See programmable command format.

pending event. An unscheduled event that occurs as a
result of a connect request from a CICS adapter.

percolation. In error recovery, the passing along a
preestablished path of control from a recovery routine
to a higher-level recovery routine.

performance event. A category of event indicating
that a limit condition has occurred.

performance trace. An MQSeries trace option where
the trace data is to be used for performance analysis
and tuning.

Glossary

Glossary of terms and abbreviations 147

permanent dynamic queue. A dynamic queue that is
deleted when it is closed only if deletion is explicitly
requested. Permanent dynamic queues are recovered if
the queue manager fails, so they can contain persistent
messages. Contrast with temporary dynamic queue.

persistent message. A message that survives a restart
of the queue manager. Contrast with nonpersistent
message.

ping. In distributed queuing, a diagnostic aid that
uses the exchange of a test message to confirm that a
message channel or a TCP/IP connection is
functioning.

platform. In MQSeries, the operating system under
which a queue manager is running.

point of recovery. In MQSeries for OS/390, the term
used to describe a set of backup copies of MQSeries for
OS/390 page sets and the corresponding log data sets
required to recover these page sets. These backup
copies provide a potential restart point in the event of
page set loss (for example, page set I/O error).

preemptive shutdown. In MQSeries, a shutdown of a
queue manager that does not wait for connected
applications to disconnect, nor for current MQI calls to
complete. Contrast with immediate shutdown and
quiesced shutdown.

principal. In MQSeries on UNIX systems, MQSeries
for OS/2 Warp, and MQSeries for Windows NT, a term
used for a user identifier. Used by the object authority
manager for checking authorizations to system
resources.

privately-defined object. In OS/390, an object whose
definition is stored on page set zero. The definition can
be accessed only by the queue manager that defined it.
Also known as a locally-defined object.

process definition object. An MQSeries object that
contains the definition of an MQSeries application. For
example, a queue manager uses the definition when it
works with trigger messages.

programmable command format (PCF). A type of
MQSeries message used by:

v User administration applications, to put PCF
commands onto the system command input queue of
a specified queue manager

v User administration applications, to get the results of
a PCF command from a specified queue manager

v A queue manager, as a notification that an event has
occurred

Contrast with MQSC.

program temporary fix (PTF). A solution or by-pass of
a problem diagnosed by IBM field engineering as the
result of a defect in a current, unaltered release of a
program.

PTF. Program temporary fix.

Q
queue. An MQSeries object. Message queuing
applications can put messages on, and get messages
from, a queue. A queue is owned and maintained by a
queue manager. Local queues can contain a list of
messages waiting to be processed. Queues of other
types cannot contain messages—they point to other
queues, or can be used as models for dynamic queues.

queue manager. A system program that provides
queuing services to applications. It provides an
application programming interface so that programs
can access messages on the queues that the queue
manager owns. See also local queue manager and remote
queue manager. An MQSeries object that defines the
attributes of a particular queue manager.

queue manager event. An event that indicates:

v An error condition has occurred in relation to the
resources used by a queue manager. For example, a
queue is unavailable.

v A significant change has occurred in the queue
manager. For example, a queue manager has stopped
or started.

queue-sharing group. In MQSeries for OS/390, a
group of queue managers in the same sysplex that can
access a single set of object definitions stored in the
shared repository, and a single set of shared queues
stored in the coupling facility. See also shared queue.

queuing. See message queuing.

quiesced shutdown. In MQSeries, a shutdown of a
queue manager that allows all connected applications
to disconnect. Contrast with immediate shutdown and
preemptive shutdown. A type of shutdown of the CICS
adapter where the adapter disconnects from MQSeries,
but only after all the currently active tasks have been
completed. Contrast with forced shutdown.

quiescing. In MQSeries, the state of a queue manager
prior to it being stopped. In this state, programs are
allowed to finish processing, but no new programs are
allowed to start.

R
RBA. Relative byte address.

reason code. A return code that describes the reason
for the failure or partial success of an MQI call.

Glossary

148 MQSeries Event Monitoring

receiver channel. In message queuing, a channel that
responds to a sender channel, takes messages from a
communication link, and puts them on a local queue.

recovery log. In MQSeries for OS/390, data sets
containing information needed to recover messages,
queues, and the MQSeries subsystem. MQSeries for
OS/390 writes each record to a data set called the active
log. When the active log is full, its contents are
off-loaded to a DASD or tape data set called the archive
log. Synonymous with log.

recovery termination manager (RTM). A program that
handles all normal and abnormal termination of tasks
by passing control to a recovery routine associated with
the terminating function.

Registry. In Windows NT, a secure database that
provides a single source for system and application
configuration data.

Registry Editor. In Windows NT, the program item
that allows the user to edit the Registry.

Registry Hive. In Windows NT, the structure of the
data stored in the Registry.

relative byte address (RBA). The displacement in
bytes of a stored record or control interval from the
beginning of the storage space allocated to the data set
to which it belongs.

remote queue. A queue belonging to a remote queue
manager. Programs can put messages on remote
queues, but they cannot get messages from remote
queues. Contrast with local queue.

remote queue manager. To a program, a queue
manager that is not the one to which the program is
connected.

remote queue object. See local definition of a remote
queue.

remote queuing. In message queuing, the provision of
services to enable applications to put messages on
queues belonging to other queue managers.

reply message. A type of message used for replies to
request messages. Contrast with request message and
report message.

reply-to queue. The name of a queue to which the
program that issued an MQPUT call wants a reply
message or report message sent.

report message. A type of message that gives
information about another message. A report message
can indicate that a message has been delivered, has
arrived at its destination, has expired, or could not be
processed for some reason. Contrast with reply message
and request message.

requester channel. In message queuing, a channel that
may be started remotely by a sender channel. The
requester channel accepts messages from the sender
channel over a communication link and puts the
messages on the local queue designated in the message.
See also server channel.

request message. A type of message used to request a
reply from another program. Contrast with reply
message and report message.

RESLEVEL. In MQSeries for OS/390, an option that
controls the number of CICS user IDs checked for
API-resource security in MQSeries for OS/390.

resolution path. The set of queues that are opened
when an application specifies an alias or a remote
queue on input to an MQOPEN call.

resource. Any facility of the computing system or
operating system required by a job or task. In MQSeries
for OS/390, examples of resources are buffer pools,
page sets, log data sets, queues, and messages.

resource manager. An application, program, or
transaction that manages and controls access to shared
resources such as memory buffers and data sets.
MQSeries, CICS, and IMS are resource managers.

responder. In distributed queuing, a program that
replies to network connection requests from another
system.

resynch. In MQSeries, an option to direct a channel to
start up and resolve any in-doubt status messages, but
without restarting message transfer.

return codes. The collective name for completion
codes and reason codes.

rollback. Synonym for back out.

RTM. Recovery termination manager.

rules table. A control file containing one or more rules
that the dead-letter queue handler applies to messages
on the DLQ.

S
SAF. System Authorization Facility.

SDWA. System diagnostic work area.

security enabling interface (SEI). The MQSeries
interface to which customer- or vendor-written
programs that check authorization, supply a user
identifier, or perform authentication must conform. A
part of the MQSeries Framework.

SEI. Security enabling interface.

Glossary

Glossary of terms and abbreviations 149

sender channel. In message queuing, a channel that
initiates transfers, removes messages from a
transmission queue, and moves them over a
communication link to a receiver or requester channel.

sequential delivery. In MQSeries, a method of
transmitting messages with a sequence number so that
the receiving channel can reestablish the message
sequence when storing the messages. This is required
where messages must be delivered only once, and in
the correct order.

sequential number wrap value. In MQSeries, a
method of ensuring that both ends of a communication
link reset their current message sequence numbers at
the same time. Transmitting messages with a sequence
number ensures that the receiving channel can
reestablish the message sequence when storing the
messages.

server. (1) In MQSeries, a queue manager that
provides queue services to client applications running
on a remote workstation. (2) The program that
responds to requests for information in the particular
two-program, information-flow model of client/server.
See also client.

server channel. In message queuing, a channel that
responds to a requester channel, removes messages
from a transmission queue, and moves them over a
communication link to the requester channel.

server connection channel type. The type of MQI
channel definition associated with the server that runs
a queue manager. See also client connection channel type.

service interval. A time interval, against which the
elapsed time between a put or a get and a subsequent
get is compared by the queue manager in deciding
whether the conditions for a service interval event have
been met. The service interval for a queue is specified
by a queue attribute.

service interval event. An event related to the service
interval.

session ID. In MQSeries for OS/390, the CICS-unique
identifier that defines the communication link to be
used by a message channel agent when moving
messages from a transmission queue to a link.

shared inbound channel. In MQSeries for OS/390, a
channel that was started by a listener using the group
port. The channel definition of a shared channel can be
stored either on page set zero (private) or in the shared
repository (global).

shared outbound channel. In MQSeries for OS/390, a
channel that moves messages from a shared
transmission queue. The channel definition of a shared
channel can be stored either on page set zero (private)
or in the shared repository (global).

shared queue. In MQSeries for OS/390, a type of local
queue. The messages on the queue are stored in the
coupling facility and can be accessed by one or more
queue managers in a queue-sharing group. The definition
of the queue is stored in the shared repository.

shared repository. In MQSeries for OS/390, a shared
DB2® database that is used to hold object definitions
that have been defined globally.

shutdown. See immediate shutdown, preemptive
shutdown, and quiesced shutdown.

signaling. In MQSeries for OS/390 and MQSeries for
Windows 2.1, a feature that allows the operating
system to notify a program when an expected message
arrives on a queue.

single logging. A method of recording MQSeries for
OS/390 activity where each change is recorded on one
data set only. Contrast with dual logging.

single-phase backout. A method in which an action in
progress must not be allowed to finish, and all changes
that are part of that action must be undone.

single-phase commit. A method in which a program
can commit updates to a queue without coordinating
those updates with updates the program has made to
resources controlled by another resource manager.
Contrast with two-phase commit.

SIT. System initialization table.

stanza. A group of lines in a configuration file that
assigns a value to a parameter modifying the behavior
of a queue manager, client, or channel. In MQSeries on
UNIX systems, MQSeries for OS/2 Warp, and
MQSeries for Windows NT, a configuration (.ini) file
may contain a number of stanzas.

storage class. In MQSeries for OS/390, a storage class
defines the page set that is to hold the messages for a
particular queue. The storage class is specified when
the queue is defined.

store and forward. The temporary storing of packets,
messages, or frames in a data network before they are
retransmitted toward their destination.

subsystem. In OS/390, a group of modules that
provides function that is dependent on OS/390. For
example, MQSeries for OS/390 is an OS/390
subsystem.

supervisor call (SVC). An OS/390 instruction that
interrupts a running program and passes control to the
supervisor so that it can perform the specific service
indicated by the instruction.

SVC. Supervisor call.

switch profile. In MQSeries for OS/390, a RACF
profile used when MQSeries starts up or when a

Glossary

150 MQSeries Event Monitoring

refresh security command is issued. Each switch profile
that MQSeries detects turns off checking for the
specified resource.

symptom string. Diagnostic information displayed in
a structured format designed for searching the IBM
software support database.

synchronous messaging. A method of communication
between programs in which programs place messages
on message queues. With synchronous messaging, the
sending program waits for a reply to its message before
resuming its own processing. Contrast with
asynchronous messaging.

syncpoint. An intermediate or end point during
processing of a transaction at which the transaction’s
protected resources are consistent. At a syncpoint,
changes to the resources can safely be committed, or
they can be backed out to the previous syncpoint.

System Authorization Facility (SAF). An OS/390
facility through which MQSeries for OS/390
communicates with an external security manager such
as RACF.

system.command.input queue. A local queue on
which application programs can put MQSeries
commands. The commands are retrieved from the
queue by the command server, which validates them
and passes them to the command processor to be run.

system control commands. Commands used to
manipulate platform-specific entities such as buffer
pools, storage classes, and page sets.

system diagnostic work area (SDWA). Data recorded
in a SYS1.LOGREC entry, which describes a program or
hardware error.

system initialization table (SIT). A table containing
parameters used by CICS on start up.

SYS1.LOGREC. A service aid containing information
about program and hardware errors.

T
target library high-level qualifier (thlqual).
High-level qualifier for OS/390 target data set names.

task control block (TCB). An OS/390 control block
used to communicate information about tasks within an
address space that are connected to an OS/390
subsystem such as MQSeries for OS/390 or CICS.

task switching. The overlapping of I/O operations
and processing between several tasks. In MQSeries for
OS/390, the task switcher optimizes performance by
allowing some MQI calls to be executed under subtasks
rather than under the main CICS TCB.

TCB. Task control block.

temporary dynamic queue. A dynamic queue that is
deleted when it is closed. Temporary dynamic queues
are not recovered if the queue manager fails, so they
can contain nonpersistent messages only. Contrast with
permanent dynamic queue.

termination notification. A pending event that is
activated when a CICS subsystem successfully connects
to MQSeries for OS/390.

thlqual. Target library high-level qualifier.

thread. In MQSeries, the lowest level of parallel
execution available on an operating system platform.

time-independent messaging. See asynchronous
messaging.

TMI. Trigger monitor interface.

trace. In MQSeries, a facility for recording MQSeries
activity. The destinations for trace entries can include
GTF and the system management facility (SMF).

tranid. See transaction identifier.

transaction identifier. In CICS, a name that is
specified when the transaction is defined, and that is
used to invoke the transaction.

transmission program. See message channel agent.

transmission queue. A local queue on which prepared
messages destined for a remote queue manager are
temporarily stored.

trigger event. An event (such as a message arriving
on a queue) that causes a queue manager to create a
trigger message on an initiation queue.

triggering. In MQSeries, a facility allowing a queue
manager to start an application automatically when
predetermined conditions on a queue are satisfied.

trigger message. A message containing information
about the program that a trigger monitor is to start.

trigger monitor. A continuously-running application
serving one or more initiation queues. When a trigger
message arrives on an initiation queue, the trigger
monitor retrieves the message. It uses the information
in the trigger message to start a process that serves the
queue on which a trigger event occurred.

trigger monitor interface (TMI). The MQSeries
interface to which customer- or vendor-written trigger
monitor programs must conform. A part of the
MQSeries Framework.

two-phase commit. A protocol for the coordination of
changes to recoverable resources when more than one
resource manager is used by a single transaction.
Contrast with single-phase commit.

Glossary

Glossary of terms and abbreviations 151

U
UIS. User identifier service.

undelivered-message queue. See dead-letter queue.

undo/redo record. A log record used in recovery. The
redo part of the record describes a change to be made
to an MQSeries object. The undo part describes how to
back out the change if the work is not committed.

unit of recovery. A recoverable sequence of operations
within a single resource manager. Contrast with unit of
work.

unit of work. A recoverable sequence of operations
performed by an application between two points of
consistency. A unit of work begins when a transaction
starts or after a user-requested syncpoint. It ends either
at a user-requested syncpoint or at the end of a
transaction. Contrast with unit of recovery.

user identifier service (UIS). In MQSeries for OS/2
Warp, the facility that allows MQI applications to
associate a user ID, other than the default user ID, with
MQSeries messages.

utility. In MQSeries, a supplied set of programs that
provide the system operator or system administrator
with facilities in addition to those provided by the
MQSeries commands. Some utilities invoke more than
one function.

X
XCF. Cross Systems Coupling Facility.

Glossary

152 MQSeries Event Monitoring

Bibliography

This section describes the documentation
available for all current MQSeries products.

MQSeries cross-platform
publications
Most of these publications, which are sometimes
referred to as the MQSeries “family” books, apply
to all MQSeries Level 2 products. The latest
MQSeries Level 2 products are:
v MQSeries for AIX, V5.1
v MQSeries for AS/400, V5.1
v MQSeries for AT&T GIS UNIX, V2.2
v MQSeries for Compaq (DIGITAL) OpenVMS,

V2.2.1.1
v MQSeries for Compaq Tru64 UNIX, V5.1
v MQSeries for HP-UX, V5.1
v MQSeries for OS/2 Warp, V5.1
v MQSeries for OS/390, V5.2
v MQSeries for SINIX and DC/OSx, V2.2
v MQSeries for Sun Solaris, V5.1
v MQSeries for Sun Solaris, Intel Platform

Edition, V5.1
v MQSeries for Tandem NonStop Kernel, V2.2.0.1
v MQSeries for VSE/ESA, V2.1
v MQSeries for Windows, V2.0
v MQSeries for Windows, V2.1
v MQSeries for Windows NT, V5.1

The MQSeries cross-platform publications are:
v MQSeries Brochure, G511-1908
v An Introduction to Messaging and Queuing,

GC33-0805
v MQSeries Intercommunication, SC33-1872
v MQSeries Queue Manager Clusters, SC34-5349
v MQSeries Clients, GC33-1632
v MQSeries System Administration, SC33-1873
v MQSeries MQSC Command Reference, SC33-1369
v MQSeries Event Monitoring, SC34-5760
v MQSeries Programmable System Management,

SC33-1482
v MQSeries Administration Interface Programming

Guide and Reference, SC34-5390
v MQSeries Messages, GC33-1876
v MQSeries Application Programming Guide,

SC33-0807

v MQSeries Application Programming Reference,
SC33-1673

v MQSeries Programming Interfaces Reference
Summary, SX33-6095

v MQSeries Using C++, SC33-1877
v MQSeries Using Java™, SC34-5456
v MQSeries Application Messaging Interface,

SC34-5604

MQSeries platform-specific
publications
Each MQSeries product is documented in at least
one platform-specific publication, in addition to
the MQSeries family books.

MQSeries for AIX, V5.1

MQSeries for AIX Quick Beginnings,
GC33-1867

MQSeries for AS/400, V5.1

MQSeries for AS/400 Quick Beginnings,
GC34-5557
MQSeries for AS/400 System
Administration, SC34-5558
MQSeries for AS/400 Application
Programming Reference (ILE RPG),
SC34-5559

MQSeries for AT&T GIS UNIX, V2.2

MQSeries for AT&T GIS UNIX System
Management Guide, SC33-1642

MQSeries for Compaq (DIGITAL) OpenVMS,
V2.2.1.1

MQSeries for Digital OpenVMS System
Management Guide, GC33-1791

MQSeries for Compaq Tru64 UNIX, V5.1

MQSeries for Compaq Tru64 UNIX Quick
Beginnings, GC34-5684

MQSeries for HP-UX, V5.1

MQSeries for HP-UX Quick Beginnings,
GC33-1869

MQSeries for OS/2 Warp, V5.1

MQSeries for OS/2 Warp Quick
Beginnings, GC33-1868

© Copyright IBM Corp. 1994, 2000 153

MQSeries for OS/390, V5.2

MQSeries for OS/390 Concepts and
Planning Guide, GC34-5650
MQSeries for OS/390 System Setup
Guide, SC34-5651
MQSeries for OS/390 System
Administration Guide, SC34-5652
MQSeries for OS/390 Problem
Determination Guide, GC34-5892
MQSeries for OS/390 Messages and
Codes, GC34-5891
MQSeries for OS/390 Licensed Program
Specifications, GC34-5893
MQSeries for OS/390 Program Directory

MQSeries link for R/3, Version 1.2

MQSeries link for R/3 User’s Guide,
GC33-1934

MQSeries for SINIX and DC/OSx, V2.2

MQSeries for SINIX and DC/OSx System
Management Guide, GC33-1768

MQSeries for Sun Solaris, V5.1

MQSeries for Sun Solaris Quick
Beginnings, GC33-1870

MQSeries for Sun Solaris, Intel Platform
Edition, V5.1

MQSeries for Sun Solaris, Intel Platform
Edition Quick Beginnings, GC34-5851

MQSeries for Tandem NonStop Kernel, V2.2.0.1

MQSeries for Tandem NonStop Kernel
System Management Guide, GC33-1893

MQSeries for VSE/ESA, V2.1

MQSeries for VSE/ESA, Version 2
Release 1 Licensed Program Specifications,
GC34-5365
MQSeries for VSE/ESA™ System
Management Guide, GC34-5364

MQSeries for Windows, V2.0

MQSeries for Windows User’s Guide,
GC33-1822

MQSeries for Windows, V2.1

MQSeries for Windows User’s Guide,
GC33-1965

MQSeries for Windows NT, V5.1

MQSeries for Windows NT Quick
Beginnings, GC34-5389

MQSeries for Windows NT Using the
Component Object Model Interface,
SC34-5387
MQSeries LotusScript Extension,
SC34-5404

Softcopy books
Most of the MQSeries books are supplied in both
hardcopy and softcopy formats.

HTML format
Relevant MQSeries documentation is provided in
HTML format with these MQSeries products:
v MQSeries for AIX, V5.1
v MQSeries for AS/400, V5.1
v MQSeries for Compaq Tru64 UNIX, V5.1
v MQSeries for HP-UX, V5.1
v MQSeries for OS/2 Warp, V5.1
v MQSeries for OS/390, V5.2
v MQSeries for Sun Solaris, V5.1
v MQSeries for Windows NT, V5.1 (compiled

HTML)
v MQSeries link for R/3, V1.2

The MQSeries books are also available in HTML
format from the MQSeries product family Web
site at:

http://www.ibm.com/software/mqseries/

Portable Document Format (PDF)
PDF files can be viewed and printed using the
Adobe Acrobat Reader.

If you need to obtain the Adobe Acrobat Reader,
or would like up-to-date information about the
platforms on which the Acrobat Reader is
supported, visit the Adobe Systems Inc. Web site
at:

http://www.adobe.com/

PDF versions of relevant MQSeries books are
supplied with these MQSeries products:
v MQSeries for AIX, V5.1
v MQSeries for AS/400, V5.1
v MQSeries for Compaq Tru64 UNIX, V5.1
v MQSeries for HP-UX, V5.1
v MQSeries for OS/2 Warp, V5.1
v MQSeries for OS/390, V5.2
v MQSeries for Sun Solaris, V5.1
v MQSeries for Windows NT, V5.1
v MQSeries link for R/3, V1.2

Bibliography

154 MQSeries Event Monitoring

PDF versions of all current MQSeries books are
also available from the MQSeries product family
Web site at:

http://www.ibm.com/software/mqseries/

BookManager® format
The MQSeries library is supplied in IBM
BookManager format on a variety of online
library collection kits, including the Transaction
Processing and Data collection kit, SK2T-0730. You
can view the softcopy books in IBM BookManager
format using the following IBM licensed
programs:

BookManager READ/2
BookManager READ/6000
BookManager READ/DOS
BookManager READ/MVS
BookManager READ/VM
BookManager READ for Windows

PostScript format
The MQSeries library is provided in PostScript
(.PS) format with many MQSeries Version 2
products. Books in PostScript format can be
printed on a PostScript printer or viewed with a
suitable viewer.

Windows Help format
The MQSeries for Windows User’s Guide is
provided in Windows Help format with MQSeries
for Windows, Version 2.0 and MQSeries for
Windows, Version 2.1.

MQSeries information available
on the Internet
The MQSeries product family Web site is at:

http://www.ibm.com/software/mqseries/

By following links from this Web site you can:
v Obtain latest information about the MQSeries

product family.
v Access the MQSeries books in HTML and PDF

formats.
v Download MQSeries SupportPacs.

Bibliography

Bibliography 155

MQSeries on the Internet

156 MQSeries Event Monitoring

Index

A
algorithms for queue service interval

events 18
Alias Base Queue Type Error 46
authority events 5

B
bibliography 153
BookManager 155
Bridge Started 48
Bridge Stopped 49

C
C header files 135
Channel Activated 51
Channel Auto-definition Error 52
Channel Auto-definition OK 54
Channel Conversion Error 55
channel event

enabling 9
queue 3, 6

Channel Not Activated 58
Channel Started 60
Channel Stopped 62
Channel Stopped By User 65
COBOL COPY files 135
CodedCharSetId field

MQCFST structure 125
Command field

MQCFH structure 42
CompCode field

MQCFH structure 42
conditions giving events 10
constants, values of 129
control attribute for queue service

interval events 10, 18
Control field

MQCFH structure 42
COPY files 135
correlation identifier 26

D
data

conversions 12
event 34
header 34

data types, detailed description
structure

MQCFH 41
MQMD 35

default structures 123
Default Transmission Queue Type

Error 67
Default Transmission Queue Usage

Error 69
disabling

events 8

disabling (continued)
events other than queue manager 9
queue manager events 9

distributed monitoring 12

E
enabling

events 8
events other than queue manager 9
Queue Depth events 25

differences between nonshared and
shared queues 26

Queue Depth High events 27
Queue Depth Low events 27
Queue Full events 28
queue manager events 9
queue service interval events 10, 18

error
on channels 6
on event queues 7

event 2
attribute setting 9
authority 5
channel 3, 6
data 15, 33
enabling and disabling 8
enabling queue manager 9
header reason codes 35
IMS bridge 7
inhibit 5
instrumentation example 111
local 5
message

data 34
descriptions 45

message data summary 7
messages

event queues 3
format 12
formats 33
lost 11
null 25
unit of work 7

notification 2
overview of 1
platforms supported 1
queue depth

Queue Depth High 25
Queue Depth Low 25
Queue Full 25

queue manager 4
queues

errors 7
names for 3
transmission 11
triggered 11
unavailable 11
use of 3

remote 5
reporting 3
service interval 16

event 2 (continued)
start and stop 6
statistics

example 1 summary 21
example 2 summary 22
example 3 summary 24
resetting 16

timer 17
transmission queues, as event

queues 11
trigger 1
types of 2
use for 1

events, constants
constants 129

events for shared queues (MQSeries for
OS/390) 7

example
instrumentation event 111

examples
queue depth events 28
queue service interval events 19

F
format of event messages 12, 33

G
Get Inhibited 71
glossary 141

H
header 41

files 135
MQSeries events 41
MQSeries messages 33

high (service interval) event 16
HTML (Hypertext Markup

Language) 154
Hypertext Markup Language

(HTML) 154

I
IMS bridge event 7
INCLUDE files 136
inhibit events 5
instrumentation event example 111
instrumentation events

description of 1

L
limits, queue depth 29
local events 5

M
maximum depth reached 25

© Copyright IBM Corp. 1994, 2000 157

message descriptor
events 34

monitoring
MQSeries network 12
performance on Windows NT 13
queue managers 1

MQ_* values 129
MQCFH 41
MQCFIN 123
MQCFST 124
MQCFST_DEFAULT 125, 127
MQMD message descriptor 35
MQSeries publications 153
MsgSeqNumber field

MQCFH structure 42

N
names, of event queues 3
network

event monitoring 12
Not Authorized (type 1) 72
Not Authorized (type 2) 74
Not Authorized (type 3) 76
Not Authorized (type 4) 78
notification of events 2
null event messages 25

O
OK (service interval) event 16
OK events algorithm 18

P
Parameter field

MQCFIN structure 123
MQCFST structure 125

ParameterCount field
MQCFH structure 43

PDF (Portable Document Format) 154
performance event

enabling 10
performance event queue 3
performance events 15

control attribute 16, 18
enabling 10
event data 15
event statistics 15
types of 7, 16

performance monitoring on Windows
NT 13

PL/I INCLUDE files 136
platforms for events 1
Portable Document Format (PDF) 154
PostScript format 155
publications, MQSeries 153
Put Inhibited 79

Q
queue

channel events 6
depth events 24

enabling 27
examples 28

queue (continued)
depth limits 29

Queue Depth High 81
Queue Depth Low 83
Queue Full 85
queue manager

event queue 3
events

enabling 9
start and stop 6

monitoring 1
Queue Manager Active 87
Queue Manager Not Active 88
queue service interval events

algorithm for 18
enabling 10, 18
examples 19
high 16
OK 16

Queue Service Interval High 89
Queue Service Interval OK 91
queue-sharing group 26
Queue Type Error 93

R
reason codes for command format

numeric list 132
Reason field

MQCFH structure 42
Reason field, MQCFH structure 43
remote events 5
Remote Queue Name Error 95
reporting events 3
reset service timer 17

S
S/390 Assembler COPY files 136
service interval events 16
service timer

algorithm for 18
resetting 17

shared queues
coordinating queue manager 26
queue depth events 25, 26

softcopy books 154
start and stop events 6
statistics, events 15
String field, MQCFST structure 126
StringLength field

MQCFST structure 126
StrucLength field

MQCFH structure 41
MQCFIN structure 123
MQCFST structure 125

structure of event messages 33
structures

MQCFH 41
MQCFIN 123
MQCFST 124

SupportPac 155
System/390 Assembler COPY files 136

T
terminology used in this book 141
thresholds for queue depth 25

time since reset 15
timer

service 17
Transmission Queue Type Error 97
Transmission Queue Usage Error 99
trigger events 1
trigger messages, from event queues 11
triggered event queues 11
Type field

MQCFH structure 41
MQCFIN structure 123
MQCFST structure 124

types of event 2

U
unavailable event queues 11
unit of work, and events 7
Unknown Alias Base Queue 101
Unknown Default Transmission

Queue 103
Unknown Object Name 105
Unknown Remote Queue Manager 107
Unknown Transmission Queue 109
using events 1

V
Value field, MQCFIN structure 123
Version field

MQCFH structure 41
Visual Basic header files 136

W
Windows Help 155
Windows NT

monitoring performance 13

158 MQSeries Event Monitoring

Sending your comments to IBM

If you especially like or dislike anything about this book, please use one of the
methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on
the accuracy, organization, subject matter, or completeness of this book.

Please limit your comments to the information in this book and the way in which
the information is presented.

To make comments about the functions of IBM products or systems, talk to your
IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate, without incurring
any obligation to you.

You can send your comments to IBM in any of the following ways:
v By mail, to this address:

User Technologies Department (MP095)
IBM United Kingdom Laboratories
Hursley Park
WINCHESTER,
Hampshire
SO21 2JN
United Kingdom

v By fax:
– From outside the U.K., after your international access code use

44–1962–870229
– From within the U.K., use 01962–870229

v Electronically, use the appropriate network ID:
– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
– IBMLink™: HURSLEY(IDRCF)
– Internet: idrcf@hursley.ibm.com

Whichever method you use, ensure that you include:
v The publication title and order number
v The topic to which your comment applies
v Your name and address/telephone number/fax number/network ID.

© Copyright IBM Corp. 1994, 2000 159

160 MQSeries Event Monitoring

����

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC34-5760-01

	Contents
	Figures
	Tables
	About this book
	Who this book is for
	What you need to know to understand this book
	How to use this book

	Chapter 1. An introduction to instrumentation events
	What instrumentation events are
	Event notification through event queues

	Types of event
	Queue manager events
	Authority events
	Inhibit events
	Local events
	Remote events
	Start and stop events

	Channel events
	IMS bridge events

	Performance events
	Queue depth events
	Queue service interval events

	Enabling and disabling events
	Enabling and disabling queue manager events
	Authority events
	Inhibit events
	Local events
	Remote events
	Start and stop events
	Enabling queue manager events summary

	Enabling channel events
	Channel auto-definition

	Enabling performance events
	Enabling queue depth events
	Enabling queue service interval events

	Conditions that cause events
	Event queues
	When an event queue is unavailable
	Using triggered event queues
	Format of event messages
	Using event monitoring in an MQSeries network
	Monitoring performance on Windows NT

	Chapter 2. Understanding performance events
	What performance events are
	Performance event statistics

	Understanding queue service interval events
	What queue service interval events are
	Understanding the service timer
	Queue service interval events algorithm
	Service timer
	Queue Service Interval High events
	Queue Service Interval OK events

	Enabling queue service interval events
	Automatic enabling of queue service interval events

	Queue service interval events examples
	Example 1 (queue service interval events)
	Commentary
	Event statistics summary for example 1

	What queue service interval events tell you
	Example 2 (queue service interval events)
	Commentary
	Event statistics summary for example 2

	Example 3 (queue service interval events)
	Commentary
	Event statistics summary for example 3

	Understanding queue depth events
	What queue depth events are
	Shared queues and queue depth events (MQSeries for OS/390)

	Enabling queue depth events
	Enabling queue depth events on shared queues (MQSeries forOS/390)
	Enabling Queue Depth High events
	Enabling Queue Depth Low events
	Enabling Queue Full events

	Queue depth events examples
	Example 1 (queue depth events)
	Commentary

	Example 2 (queue depth events)
	Commentary
	Event statistics summary (example 2)

	Chapter 3. Event message reference
	Event message format
	Message descriptor (MQMD) in event messages
	Message data in event messages
	Event header (MQCFH)
	Event data

	MQMD (Message descriptor)
	MQCFH (Event header)
	C language declaration
	COBOL language declaration
	PL/I language declaration (AIX, OS/2, OS/390, and WindowsNT)
	System/390® assembler-language declaration (OS/390 only)
	Visual Basic® language declaration (Windows platforms only)

	Event message descriptions
	Alias Base Queue Type Error
	Event data

	Bridge Started
	Event data

	Bridge Stopped
	Event data

	Channel Activated
	Event data

	Channel Auto-definition Error
	Event data

	Channel Auto-definition OK
	Event data

	Channel Conversion Error
	Event data

	Channel Not Activated
	Event data

	Channel Started
	Event data

	Channel Stopped
	Event data

	Channel Stopped By User
	Event data

	Default Transmission Queue Type Error
	Event data

	Default Transmission Queue Usage Error
	Event data

	Get Inhibited
	Event data

	Not Authorized (type 1)
	Event data

	Not Authorized (type 2)
	Event data

	Not Authorized (type 3)
	Event data

	Not Authorized (type 4)
	Event data

	Put Inhibited
	Event data

	Queue Depth High
	Event data

	Queue Depth Low
	Event data

	Queue Full
	Event data

	Queue Manager Active
	Event data

	Queue Manager Not Active
	Event data

	Queue Service Interval High
	Event data

	Queue Service Interval OK
	Event data

	Queue Type Error
	Event data

	Remote Queue Name Error
	Event data

	Transmission Queue Type Error
	Event data

	Transmission Queue Usage Error
	Event data

	Unknown Alias Base Queue
	Event data

	Unknown Default Transmission Queue
	Event data

	Unknown Object Name
	Event data

	Unknown Remote Queue Manager
	Event data

	Unknown Transmission Queue
	Event data

	Chapter 4. Example of using instrumentation events
	Appendix A. Structure datatypes MQCFIN and MQCFST
	MQCFIN - Integer parameter
	C language declaration (MQCFIN)
	COBOL language declaration (MQCFIN)
	PL/I language declaration (MQCFIN)
	System/390 assembler-language declaration (MQCFIN)
	Visual Basic language declaration (MQCFIN)

	MQCFST - String parameter
	C language declaration (MQCFST)
	COBOL language declaration (MQCFST)
	PL/I language declaration (MQCFST)
	System/390 assembler-language declaration (MQCFST)
	Visual Basic language declaration (MQCFST)

	Appendix B. Constants
	List of constants
	MQ_* (Lengths of character string and byte fields)
	MQBT_* (Bridge type)
	MQCA_* (Character attribute selector)
	MQCACF_* (Character attribute command format parameter)
	MQCACH_* (Channel character attribute command formatparameter)
	MQCC_* (Completion code)
	MQCFC_* (Command format control options)
	MQCFH_* (Command format header structure length)
	MQCFH_* (Command format header version)
	MQCFIN_* (Command format integer parameter structurelength)
	MQCFST_* (Command format string parameter structurelength)
	MQCFT_* (Command structure type)
	MQCHT_* (Channel type)
	MQCMD_* (Command identifier)
	MQIA_* (Integer attribute selector)
	MQIACF_* (Integer attribute command format parameter)
	MQIACH_* (Channel Integer attribute command formatparameter)
	MQQT_* (Queue type)
	MQRC_* (Reason code in MQCFH)
	MQRCCF_* (Reason code for command format)
	MQRQ_* (Reason qualifier)

	Appendix C. Header, COPY, and INCLUDE files
	C header files
	COBOL COPY files
	PL/I INCLUDE files
	System/390 Assembler COPY files
	Visual Basic header files

	Appendix D. Notices
	Trademarks

	Glossary of terms and abbreviations
	Bibliography
	MQSeries cross-platformpublications
	MQSeries platform-specificpublications
	Softcopy books
	HTML format
	Portable Document Format (PDF)
	BookManager® format
	PostScript format
	Windows Help format

	MQSeries information availableon the Internet

	Index
	Sending your comments to IBM

