
MQSeries®

Queue Manager Clusters

SC34-5349-01

IBM





MQSeries®

Queue Manager Clusters

SC34-5349-01

IBM



Note!
Before using this information and the product it supports, be sure to read the general information under “Appendix.
Notices” on page 119.

Second edition (March 2000)

This edition applies to the following products:
v MQSeries for AIX® V5.1
v MQSeries for AS/400® V5.1
v MQSeries for HP-UX V5.1
v MQSeries for OS/2® V5.1
v MQSeries for OS/390® V2.1
v MQSeries for Sun Solaris V5.1
v MQSeries for Windows NT® V5.1

and to all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1999, 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

|



Contents

Figures . . . . . . . . . . . . . . vii

Tables . . . . . . . . . . . . . . . ix

About this book . . . . . . . . . . . xi
Who this book is for . . . . . . . . . . . xi
What you need to know to understand this book . . xi
How to use this book . . . . . . . . . . . xi

Summary of changes . . . . . . . . xiii
Changes for this edition (SC34-5349-01) . . . . . xiii

Part 1. Getting started with queue
manager clusters . . . . . . . . . . 1

Chapter 1. Concepts and terminology . . 3
Concepts . . . . . . . . . . . . . . . 3

Comparison with distributed queuing . . . . . 3
Overview of cluster components . . . . . . . 4

Terminology . . . . . . . . . . . . . . 5
Benefits . . . . . . . . . . . . . . . . 8
Things to consider . . . . . . . . . . . . 9
Summary of the concepts . . . . . . . . . . 10

Chapter 2. Using clusters to ease
system administration . . . . . . . . 11
How can I use clusters? . . . . . . . . . . 11
How does the system administrator benefit? . . . 12

Definitions to set up a network using distributed
queuing . . . . . . . . . . . . . . 12
Definitions to set up a network using clusters . . 13

What about my applications? . . . . . . . . 14
How should I prepare for use of clustering? . . . 14
How do I set up a cluster? . . . . . . . . . 15

Establishing communication in a cluster . . . . 16

Chapter 3. First tasks . . . . . . . . 19
Task 1: Setting up a new cluster . . . . . . . 19

The steps required to complete task 1 . . . . 20
The cluster achieved by task 1 . . . . . . . 22
Converting an existing network into a cluster . . 24

Task 2: Adding a new queue manager to a cluster 25
The steps required to complete task 2 . . . . 25
The cluster achieved by task 2 . . . . . . . 26

Part 2. Using queue manager
clusters . . . . . . . . . . . . . . 27

Chapter 4. How queue manager
clusters work . . . . . . . . . . . . 29
Components of a cluster . . . . . . . . . . 29

Queue managers and repositories . . . . . . 29

Queues . . . . . . . . . . . . . . . 29
Cluster transmission queue . . . . . . . . 30
Cluster channels . . . . . . . . . . . . 30
Auto-definition of remote queues . . . . . . 31
Auto-definition of channels . . . . . . . . 31

What makes clustering work? . . . . . . . . 32
Using aliases and remote-queue definitions with
clusters . . . . . . . . . . . . . . . . 33

Queue-manager aliases . . . . . . . . . 33
Reply-to queue aliases . . . . . . . . . . 35
Queue aliases. . . . . . . . . . . . . 35
Examples of using aliases within clusters . . . 36

Chapter 5. Using clusters for workload
management . . . . . . . . . . . . 41
More than one instance of a queue . . . . . . 41
Workload balancing . . . . . . . . . . . 42

Cluster workload user exit . . . . . . . . 43
Writing and compiling cluster workload exit
programs . . . . . . . . . . . . . . 43
Sample cluster workload exit . . . . . . . 44

Programming considerations . . . . . . . . 46
Reviewing applications for message affinities . . 46

MQI and clusters . . . . . . . . . . . . 49
MQOPEN . . . . . . . . . . . . . . 49
MQPUT and MQPUT1 . . . . . . . . . 50
MQINQ . . . . . . . . . . . . . . 50
MQSET. . . . . . . . . . . . . . . 51

Return codes . . . . . . . . . . . . . . 51

Chapter 6. MQSeries commands . . . . 53
MQSeries command attributes . . . . . . . . 54

Queue-manager definition commands . . . . 54
Channel definition commands . . . . . . . 55
Queue definition commands. . . . . . . . 56

MQSeries commands for work with clusters . . . 57
DISPLAY CLUSQMGR . . . . . . . . . 57
SUSPEND QMGR and RESUME QMGR. . . . 57
REFRESH CLUSTER . . . . . . . . . . 58
RESET CLUSTER . . . . . . . . . . . 58

Chapter 7. Managing MQSeries clusters 59
Cluster-design considerations . . . . . . . . 59

Selecting queue managers to hold repositories . . 59
Organizing a cluster . . . . . . . . . . 61
Choosing names . . . . . . . . . . . . 61
Overlapping clusters . . . . . . . . . . 61
Objects . . . . . . . . . . . . . . . 62

Cluster-administration considerations. . . . . . 63
Maintaining a queue manager . . . . . . . 63
Refreshing a queue manager. . . . . . . . 64
Maintaining the cluster transmission queue. . . 64
What happens when a queue manager fails? . . 64
What happens when a repository fails? . . . . 65
What happens if I put-disable a cluster queue? 65

© Copyright IBM Corp. 1999, 2000 iii

||

||



How long do the repositories retain information? 66
Cluster channels . . . . . . . . . . . . 66

Chapter 8. Keeping clusters secure . . 67
Stopping unauthorized queue managers sending
messages to your queue manager . . . . . . . 67
Stopping unauthorized queue managers putting
messages to your queues . . . . . . . . . . 67
Stopping your queue manager putting messages to
remote queues . . . . . . . . . . . . . 68
Preventing queue managers joining a cluster . . . 68
Forcing unwanted queue managers to leave a
cluster . . . . . . . . . . . . . . . . 69

Chapter 9. Advanced tasks . . . . . . 71
Task 3: Adding a new queue manager that hosts a
queue . . . . . . . . . . . . . . . . 71

The steps required to complete task 3 . . . . 72
The cluster achieved by task 3 . . . . . . . 73
Extensions to this task . . . . . . . . . . 74

Task 4: Removing a cluster queue from a queue
manager . . . . . . . . . . . . . . . 75

The steps required to complete task 4 . . . . 75
The cluster achieved by task 4 . . . . . . . 76
Extensions to this task . . . . . . . . . . 76

Task 5: Removing a queue manager from a cluster 77
The steps required to complete task 5 . . . . 77
The cluster achieved by task 5 . . . . . . . 78

Task 6: Moving a repository to another queue
manager . . . . . . . . . . . . . . . 79

The steps required to complete task 6 . . . . 79
The cluster achieved by task 6 . . . . . . . 80

Task 7: Converting an existing network into a
cluster . . . . . . . . . . . . . . . . 81

The steps required to complete task 7 . . . . 82
The cluster achieved by task 7 . . . . . . . 84

Task 8: Adding a new, interconnected cluster . . . 85
The steps required to complete task 8 . . . . 85
The cluster achieved by task 8 . . . . . . . 88
Extensions to this task . . . . . . . . . . 89

Part 3. Reference information . . . 91

Chapter 10. Cluster workload exit call
and data structures . . . . . . . . . 93
MQ_CLUSTER_WORKLOAD_EXIT - Cluster
workload exit. . . . . . . . . . . . . . 94

Syntax . . . . . . . . . . . . . . . 94
Parameters . . . . . . . . . . . . . 94
Usage notes . . . . . . . . . . . . . 94
C invocation . . . . . . . . . . . . . 94
System/390 assembler invocation . . . . . . 94

MQWXP - Cluster workload exit parameter
structure . . . . . . . . . . . . . . . 95

Fields . . . . . . . . . . . . . . . 95
C declaration . . . . . . . . . . . . 100
System/390 assembler declaration . . . . . 101

MQWDR - Cluster workload destination-record
structure . . . . . . . . . . . . . . . 102

Fields . . . . . . . . . . . . . . . 102

C declaration . . . . . . . . . . . . 105
System/390 assembler declaration . . . . . 105

MQWQR - Cluster workload queue-record
structure . . . . . . . . . . . . . . . 106

Fields . . . . . . . . . . . . . . . 106
C declaration . . . . . . . . . . . . 109
System/390 assembler declaration . . . . . 109

MQWCR - Cluster workload cluster-record
structure . . . . . . . . . . . . . . . 110

Fields . . . . . . . . . . . . . . . 110
C declaration . . . . . . . . . . . . 111
System/390 assembler declaration . . . . . 111

Chapter 11. Constants for the cluster
workload exit . . . . . . . . . . . 113
List of constants . . . . . . . . . . . . 113

MQ_* (Lengths of character string and byte
fields) . . . . . . . . . . . . . . . 113
MQBND_* (Binding) . . . . . . . . . . 113
MQCHS_* (Channel status) . . . . . . . . 113
MQCQT_* (Cluster queue type) . . . . . . 114
MQPER_* (Persistence) . . . . . . . . . 114
MQQA_* (Inhibit put) . . . . . . . . . 114
MQQF_* (Queue flags) . . . . . . . . . 114
MQQMF_* (Queue-manager flags) . . . . . 114
MQWDR_* (Cluster workload exit
destination-record length) . . . . . . . . 115
MQWDR_* (Cluster workload exit
destination-record structure identifier) . . . . 115
MQWDR_* (Cluster workload exit
destination-record version) . . . . . . . . 115
MQWQR_* (Cluster workload exit queue-record
length) . . . . . . . . . . . . . . 115
MQWQR_* (Cluster workload exit queue-record
structure identifier) . . . . . . . . . . 115
MQWQR_* (Cluster workload exit queue-record
version) . . . . . . . . . . . . . . 116
MQWXP_* (Cluster workload exit structure
identifier). . . . . . . . . . . . . . 116
MQWXP_* (Cluster workload exit version) . . 116
MQXCC_* (Exit response) . . . . . . . . 116
MQXR_* (Exit reason) . . . . . . . . . 116
MQXT_* (Exit identifier). . . . . . . . . 116
MQXUA_* (Exit user area) . . . . . . . . 116

Part 4. Appendixes . . . . . . . . 117

Appendix. Notices . . . . . . . . . 119
Programming interface information . . . . . . 120
Trademarks . . . . . . . . . . . . . . 121

Glossary of terms and abbreviations 123

Bibliography . . . . . . . . . . . . 129
MQSeries cross-platform publications . . . . . 129
MQSeries platform-specific publications . . . . 131
Softcopy books . . . . . . . . . . . . . 132

BookManager® format . . . . . . . . . 132
HTML format . . . . . . . . . . . . 132

iv MQSeries Queue Manager Clusters

||



Portable Document Format (PDF) . . . . . 132
PostScript format . . . . . . . . . . . 132
Windows Help format . . . . . . . . . 132

MQSeries information available on the Internet . . 132

Index . . . . . . . . . . . . . . . 133

Sending your comments to IBM . . . 137

Contents v



vi MQSeries Queue Manager Clusters



Figures

1. Distributed queuing . . . . . . . . . . 4
2. A cluster of queue managers . . . . . . . 5
3. A network of four queue managers . . . . 12
4. A small cluster of two queue managers 15
5. The INVENTORY cluster with two queue

managers . . . . . . . . . . . . . 22
6. The INVENTORY cluster with three queue

managers . . . . . . . . . . . . . 26
7. A cluster of queue managers, showing

auto-defined channels . . . . . . . . . 32
8. Putting from a queue manager outside the

cluster . . . . . . . . . . . . . . 36
9. Putting to a queue manager outside the cluster 38

10. Bridging across clusters . . . . . . . . 39
11. A cluster with multiple instances of the same

queue . . . . . . . . . . . . . . 42

12. A typical 2-repository topology . . . . . . 59
13. A hub and spoke arrangement of repositories 60
14. A complex repository topology . . . . . . 60
15. Overlapping clusters . . . . . . . . . 62
16. The INVENTORY cluster with four queue

managers . . . . . . . . . . . . . 73
17. The INVENTORY cluster, with TORONTO

outside the cluster . . . . . . . . . . 78
18. The INVENTORY cluster with the repository

moved to PARIS . . . . . . . . . . . 80
19. A hub and spoke network . . . . . . . 81
20. A cluster with a hub and spokes . . . . . 84
21. Interconnected clusters . . . . . . . . . 88

© Copyright IBM Corp. 1999, 2000 vii



viii MQSeries Queue Manager Clusters



Tables

1. Definitions for distributed queuing. . . . . 12
2. Definitions for clustering . . . . . . . . 13
3. Queue-manager attributes. . . . . . . . 93
4. Queue attributes . . . . . . . . . . . 93

5. Fields in MQWXP . . . . . . . . . . 95
6. Fields in MQWDR . . . . . . . . . . 102
7. Fields in MQWQR . . . . . . . . . . 106
8. Fields in MQWCR . . . . . . . . . . 110

© Copyright IBM Corp. 1999, 2000 ix



x MQSeries Queue Manager Clusters



About this book

This book describes how to create and use clusters of MQSeries queue managers. It
explains the concepts and terminology of clustering and shows how you can
benefit by taking advantage of clustering. It details changes to the message queue
interface (MQI), and summarizes the syntax of new and changed MQSeries
commands. It shows a number of examples of tasks you can perform to set up and
maintain clusters of queue managers.

Who this book is for
This book is for anyone who needs an understanding of MQSeries clusters. The
following readers are specifically addressed:
v Network planners responsible for designing the overall queue manager network
v Application programmers responsible for designing applications that access

queues and queue managers within clusters
v Systems administrators responsible for monitoring the local system and

implementing some of the planning details
v System programmers with responsibility for designing and programming the

user exits

What you need to know to understand this book
This book describes MQSeries clustering in detail, and includes step-by-step
examples that you should be able to follow with only limited background
knowledge about MQSeries in general. An understanding of the concepts of
message queuing, for example the purpose of queues, queue managers, and
channels would be an advantage.

To understand fully how to make the best use of clusters, it is useful to be familiar
with the MQSeries products for the specific platforms you will be using, and the
communications protocols that are used on those platforms. It is also helpful to
have an understanding of how distributed queue management works. These topics
are discussed in the MQSeries Intercommunication book.

How to use this book
This book contains three parts. The chapters in Part 1. Getting started with queue
manager clusters are aimed at users who are new to clusters. Read these chapters
first to learn what queue manager clusters are and how to use them. Throughout
this part of the book, the use of clusters is compared with more traditional
distributed-queuing techniques. If you are not familiar with distributed queuing,
you should skip the sections that are not of interest to you. You should still be able
to follow the guidance and examples given. The chapters in this part are:
v “Chapter 1. Concepts and terminology” on page 3, which introduces the concepts

of queue manager clusters, explains the associated terminology, and highlights
the differences between using clusters and using distributed queuing techniques.

v “Chapter 2. Using clusters to ease system administration” on page 11, which
shows the benefits of using clusters and shows when and where you might
choose to implement them in your existing network.

© Copyright IBM Corp. 1999, 2000 xi

|
|



v “Chapter 3. First tasks” on page 19, which describes some of the first tasks you
may need to perform in order to set up and use a cluster. You should be able to
accomplish these first tasks without an in-depth understanding of clusters or
distributed queuing.

The chapters in Part 2. Using queue manager clusters are aimed at more
experienced users who want to understand about clusters in detail. Read these
chapters to learn how to use clusters to the best advantage. The chapters in this
part are:
v “Chapter 4. How queue manager clusters work” on page 29, which provides

more detail about the components of clusters and explains how clustering
works.

v “Chapter 5. Using clusters for workload management” on page 41, which
describes how to use clusters to achieve workload balancing.

v “Chapter 6. MQSeries commands” on page 53, which introduces commands that
are specific to work with MQSeries clusters.

v “Chapter 7. Managing MQSeries clusters” on page 59, which provides
administrative information about how to design and maintain a cluster.

v “Chapter 8. Keeping clusters secure” on page 67, which discusses security
aspects associated with using clusters.

v “Chapter 9. Advanced tasks” on page 71, which guides you through a series of
more advanced tasks.

The chapters in Part 3. Reference information contain reference information about
the cluster workload exit. The chapters in this part are:
v “Chapter 10. Cluster workload exit call and data structures” on page 93.
v “Chapter 11. Constants for the cluster workload exit” on page 113.

There is a glossary and a bibliography at the back of the book.

About this book

xii MQSeries Queue Manager Clusters



Summary of changes

This section describes changes to this edition of MQSeries Queue Manager Clusters.
Changes since the previous edition of the book are marked by vertical lines to the
left of the changes.

Changes for this edition (SC34-5349-01)
The major change for this edition is the
v Addition of support for clusters on MQSeries for AS/400

© Copyright IBM Corp. 1999, 2000 xiii

|
|
|

|
|

|

|



Changes

xiv MQSeries Queue Manager Clusters



Part 1. Getting started with queue manager clusters

Chapter 1. Concepts and terminology . . . . . 3
Concepts . . . . . . . . . . . . . . . 3

Comparison with distributed queuing . . . . . 3
Overview of cluster components . . . . . . . 4

Terminology . . . . . . . . . . . . . . 5
Benefits . . . . . . . . . . . . . . . . 8
Things to consider . . . . . . . . . . . . 9
Summary of the concepts . . . . . . . . . . 10

Chapter 2. Using clusters to ease system
administration . . . . . . . . . . . . . 11
How can I use clusters? . . . . . . . . . . 11
How does the system administrator benefit? . . . 12

Definitions to set up a network using distributed
queuing . . . . . . . . . . . . . . 12
Definitions to set up a network using clusters . . 13

What about my applications? . . . . . . . . 14
How should I prepare for use of clustering? . . . 14
How do I set up a cluster? . . . . . . . . . 15

Establishing communication in a cluster . . . . 16
Channel initiator . . . . . . . . . . 16
Channel listener . . . . . . . . . . . 16

Chapter 3. First tasks . . . . . . . . . . 19
Task 1: Setting up a new cluster . . . . . . . 19

The steps required to complete task 1 . . . . 20
1. Prepare the queue managers . . . . . . 20
2. Decide on the organization of the cluster
and its name . . . . . . . . . . . . 20
3. Determine which queue managers should
hold full repositories . . . . . . . . . 20
4. Alter the queue-manager definitions to add
repository definitions . . . . . . . . . 20
5. Define the CLUSRCVR channels . . . . 21
6. Define the CLUSSDR channels . . . . . 21
7. Define the cluster queue INVENTQ . . . 22

The cluster achieved by task 1 . . . . . . . 22
Verifying task 1 . . . . . . . . . . . 23
Using the cluster set up in task 1 . . . . . 24

Converting an existing network into a cluster . . 24
Task 2: Adding a new queue manager to a cluster 25

The steps required to complete task 2 . . . . 25
1. Prepare the PARIS queue manager . . . . 25
2. Determine which full repository PARIS
should refer to first . . . . . . . . . . 25
3. Define a CLUSRCVR channel on queue
manager PARIS . . . . . . . . . . . 25
4. Define a CLUSSDR channel on queue
manager PARIS . . . . . . . . . . . 25

The cluster achieved by task 2 . . . . . . . 26

© Copyright IBM Corp. 1999, 2000 1

|



Getting started

2 MQSeries Queue Manager Clusters



Chapter 1. Concepts and terminology

This chapter introduces the concepts of queue manager clusters and explains some
of the terminology. For the benefit of customers familiar with traditional
distributed-queuing techniques, it compares the use of clusters with the use of
distributed queuing. If you are not familiar with distributed queuing, you should
skip the sections that are not of interest to you.

Concepts
Businesses are increasingly becoming aware of the advantages of establishing an
intranet or of connecting processors to a LAN. You might also have connected
some OS/390 processors to form a sysplex, or some AIX processors in the form of
an SP2®. Processors linked in these ways benefit from support from each other and
have access to a far wider range of programs and data.

In the same way, MQSeries queue managers can be connected to form a cluster.
This facility is available to queue managers on the following platforms:
v MQSeries for AIX V5.1
v MQSeries for AS/400 V5.1
v MQSeries for HP-UX V5.1
v MQSeries for OS/2 Warp V5.1
v MQSeries for OS/390
v MQSeries for Sun Solaris V5.1
v MQSeries for Windows NT V5.1

The queue managers can be connected using any of the communications protocols
that are available on your platform. That is, TCP or LU 6.2 on any platform, and
in addition, NetBIOS or SPX on OS/2 or Windows NT, and UDP on AIX.
Connections on more than one protocol may exist within a cluster. Of course, if
you try to make a connection to a queue manager using a protocol that it does not
support the channel will not become active.

Comparison with distributed queuing
If you do not use clusters, your queue managers are independent and
communicate using distributed queuing. If one queue manager needs to send
messages to another it must have defined:
v A transmission queue
v A channel to the remote queue manager
v A remote-queue definition for every queue to which it wants to send messages

Figure 1 on page 4 shows the components required for distributed queuing.

© Copyright IBM Corp. 1999, 2000 3

|
|
|

|



If you group queue managers in a cluster, the queue managers can make the
queues that they host available to every other queue manager in the cluster. Any
queue manager can send a message to any other queue manager in the same
cluster without the need for explicit channel definitions, remote-queue definitions,
or transmission queues for each destination. Every queue manager in a cluster has
a single transmission queue from which it can transmit messages to any other
queue manager in the cluster. Each queue manager in a cluster needs to define
only:
v One cluster-receiver channel on which to receive messages
v One cluster-sender channel with which it introduces itself and learns about the

cluster

Overview of cluster components
Figure 2 on page 5 shows the components of a cluster called CLUSTER.
v In this cluster there are three queue managers, QM1, QM2, and QM3.
v QM1 and QM2 host repositories of information about the queue managers in the

cluster. They are referred to as repository queue managers. (The repositories are
represented in the diagram by the shaded cylinders.)

v QM2 and QM3 host some queues that are accessible to any other queue manager
in the cluster. These are called cluster queues. (The cluster queues are represented
in the diagram by the shaded queues.)
As with distributed queuing, an application uses the MQPUT call to put a
message to a cluster queue at any queue manager. An application uses the
MQGET call to retrieve messages from a cluster queue on the local queue
manager.

v Each queue manager has a definition for the receiving end of a channel called
TO.qmgr on which it can receive messages. This is a cluster-receiver channel. A
cluster-receiver channel is similar to a receiver channel used in distributed
queuing, but in addition to carrying messages this channel can also carry
information about the cluster.

v Each queue manager also has a definition for the sending end of a channel,
which connects to the cluster-receiver channel of one of the repository queue
managers. This is a cluster-sender channel. In Figure 2 on page 5, QM1 and QM3
have cluster-sender channels connecting to TO.QM2. QM2 has a cluster-sender
channel connecting to TO.QM1. A cluster-sender channel is similar to a sender
channel used in distributed queuing, but in addition to carrying messages this
channel can also carry information about the cluster.
Once both the cluster-receiver end and the cluster-sender end of a channel have
been defined, the channel is started automatically.

QM1

Message Flow
MCA MCA

Transmission
Queue

Channel

Dead Letter Queue

QM2

Application
Queues

Remote queue
definitions

Figure 1. Distributed queuing

Concepts

4 MQSeries Queue Manager Clusters



Terminology
Before proceeding to the next chapter it is useful to understand the following
terminology:

Cluster
A cluster is a network of queue managers that are logically associated in
some way. The queue managers in a cluster may be physically remote. For
example, they might represent the branches of an international chain store
and be physically located in different countries. Each cluster within an
enterprise should have a unique name.

Cluster queue manager
A cluster queue manager is a queue manager that is a member of a cluster.
A queue manager may be a member of more than one cluster. (See
“Overlapping clusters” on page 61.) Each cluster queue manager must have
a name that is unique throughout all the clusters of which it is a member.

A cluster queue manager may host queues, which it advertises to the other
queue managers in the cluster. A cluster queue manager does not have to
host or advertise any queues. It may just feed messages into the cluster
and receive only responses that are directed explicitly to it, and not to
advertised queues.

Cluster queue managers are autonomous. They have full control over
queues and channels that they define. Their definitions cannot be modified
by other queue managers. When you make or alter a definition on a cluster
queue manager, the information is sent to the repository queue manager
and the repositories in the cluster are updated accordingly.

Cluster queue
A cluster queue is a queue that is hosted by a cluster queue manager and
made available to other queue managers in the cluster. The cluster queue

CLUSTER

QM2QM1 TO.QM1

TO.QM3

TO.QM2

QM3

Figure 2. A cluster of queue managers

Concepts

Chapter 1. Concepts and terminology 5



manager makes a local queue definition for the queue specifying the name
of the cluster that the queue is to be available in. This definition has the
effect of advertising the queue to the other queue managers in the cluster.
The other queue managers in the cluster can put messages to a cluster
queue without needing a corresponding remote-queue definition. A cluster
queue can be advertised in more than one cluster.

Repository
A repository is a collection of information about the queue managers that
are members of a cluster. This information includes queue-manager names,
their locations, their channels, what queues they host, and so on. The
information is stored in the form of messages on a queue called
SYSTEM.CLUSTER.REPOSITORY.QUEUE. (This queue is one of the default
objects created on V5.1 of MQSeries for AIX, AS/400, HP-UX, OS/2 Warp,
Sun Solaris, and Windows NT and is defined as part of queue-manager
customization on MQSeries for OS/390.) Typically, two queue managers in
a cluster hold a full repository. The remaining queue managers all hold a
partial repository.

Repository queue manager
A repository queue manager is a cluster queue manager that holds a full
repository. To ensure availability, you are recommended to set up two or
more repository queue managers in each cluster. The repository queue
managers receive information sent by the other queue managers in the
cluster and update their repositories accordingly. The repository queue
managers send messages to each other to be sure that they are both kept
up to date with new information about the cluster.

Full repository and partial repository
A repository queue manager hosts a complete set of information about
every queue manager in the cluster. This set of information is called the
repository or sometimes the full repository.

The other queue managers in the cluster inquire on the information in the
full repositories and build up their own subsets of this information in
partial repositories. A queue manager’s partial repository contains
information about only those queue managers with which the queue
manager needs to exchange messages. The queue managers request
updates to the information they need, so that if it changes, the repository
queue manager will send them the new information. For much of the time
a queue manager’s partial repository has all the information it needs to
perform within the cluster. When a queue manager needs some additional
information it makes inquiries of the full repository and updates its partial
repository. The queue managers use a queue called
SYSTEM.CLUSTER.COMMAND.QUEUE to request and receive updates to
the repositories. This queue is one of the default objects created on V5.1 of
MQSeries for AIX, AS/400, HP-UX, OS/2 Warp, Sun Solaris, and Windows
NT and is defined as part of queue-manager customization on MQSeries
for OS/390.

Cluster-receiver channel
A cluster-receiver (CLUSRCVR) channel definition defines the receiving
end of a channel on which a cluster queue manager can receive messages
from other queue managers in the cluster. A cluster-receiver channel can
also carry information about the cluster—information destined for the
repository. The definition of a cluster-receiver channel has the effect of
advertising that a queue manager is available to receive messages. You
need at least one cluster-receiver channel for each cluster queue manager.

Terminology

6 MQSeries Queue Manager Clusters

|
|
|
|

|
|
|
|



Cluster-sender channel
A cluster-sender (CLUSSDR) channel definition defines the sending end of
a channel on which a cluster queue manager can send cluster information
to one of the full repositories. The cluster-sender channel is used to notify
the repository of any changes to the queue manager’s status, for example
the addition or removal of a queue. It is also used to transmit messages.

The repository queue managers themselves have cluster-sender channels
that point to each other. They use them to communicate cluster status
changes to each other.

It is of little importance which repository a queue manager’s CLUSSDR
channel definition points to. Once the initial contact has been made, further
cluster-sender channels are defined automatically as necessary so that the
queue manager can send cluster information to every repository, and
messages to every queue manager.

Cluster transmission queue
Each cluster queue manager has a cluster transmission queue called
SYSTEM.CLUSTER.TRANSMIT.QUEUE. The cluster transmission queue
transmits all messages from the queue manager to any other queue
manager that is in the same cluster. This queue is one of the default objects
created on V5.1 of MQSeries for AIX, AS/400, HP-UX, OS/2 Warp, Sun
Solaris, and Windows NT and is defined as part of queue-manager
customization on MQSeries for OS/390.

Binding
You may create a cluster in which more than one queue manager hosts an
instance of the same cluster queue. This is discussed in “More than one
instance of a queue” on page 41. If you do this, you may need to ensure
that a sequence of messages are all sent to the same instance of the queue.
You can bind a series of messages to a particular queue by using the
MQOO_BIND_ON_OPEN option on the MQOPEN call (see “MQOPEN”
on page 49).

Terminology

Chapter 1. Concepts and terminology 7



Benefits
There are two quite different reasons for using clusters.
1. Reduced system administration.

As soon as you start to establish even a small cluster you will benefit from
simplified system administration. Establishing a network of queue managers in
a cluster involves fewer definitions than establishing a network that is to use
distributed queuing. With fewer definitions to make, you can set up or change
your network more quickly and easily, and the risk of making an error in your
definitions is reduced.

2. Increased availability and workload balancing.
You may be content to use simple clusters and benefit from the easier system
administration. It is not necessary or applicable in every case to consider the
availability and workload balancing aspects. If you do choose to use more
complicated clusters, you will benefit from scalability of the number of
instances of a queue you can define, and therefore from greater availability.
Because you can define instances of the same queue on more than one queue
manager the workload can be distributed throughout the queue managers in a
cluster.

These two objectives are discussed in detail in Chapter 2. Using clusters to ease
system administration and Chapter 5. Using clusters for workload management.

Benefits

8 MQSeries Queue Manager Clusters



Things to consider
v On OS/390 you cannot use clustering if you are using CICS® for distributed

queuing.
v To get the most benefit out of clusters, all the queue managers in the network

must be on a platform that supports clusters. Until all your systems are
migrated to a platform that supports clusters, you may have queue managers
outside a cluster that are not able to access your cluster queues without extra
manual definitions.

v If two clusters with the same name are merged, it is not possible to separate
them again. Therefore it is advisable to give all clusters a unique name.

v If a message arrives at a queue manager but there is no queue there to receive it,
the message is put to the dead-letter queue as usual. (If there is no dead-letter
queue, the channel fails and retries, as described in the MQSeries
Intercommunication book.)

v The integrity of persistent messages is maintained. Messages are not duplicated
or lost as a result of using clusters.

v Using clusters reduces system administration. Clusters make it easy to connect
larger networks with many more queue managers than you would be able to
contemplate using distributed queuing. However, as with distributed queuing,
there is a risk that you may consume excessive network resources if you attempt
to enable communication between every queue manager in a cluster.

v If you use the MQSeries Explorer, which presents the queue managers in a tree
structure, the view for large clusters may be cumbersome.

v The MQSeries Explorer cannot administer a cluster with repository queue
managers on MQSeries for OS/390. You must nominate an additional repository
on a system that the MQSeries Explorer can administer.

v The purpose of distribution lists, which are supported on V5.1 of MQSeries for
AIX, AS/400, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT, is to use a
single MQPUT command to send the same message to multiple destinations.
You can use distribution lists in conjunction with queue manager clusters.
However, in a clustering environment all the messages are expanded at MQPUT
time and so the advantage, in terms of network traffic, is not so great as in a
non-clustering environment. The advantage of distribution lists, from the
administrator’s point of view, is that the numerous channels and transmission
queues do not need to be defined manually.

v If you are going to use clusters to achieve workload balancing, you must
examine your applications to see whether they require messages to be processed
by a particular queue manager or in a particular sequence. Such applications are
said to have message affinities. You may need to modify your applications before
you can use them in complex clusters.

v If you use the MQOO_BIND_ON_OPEN option on an MQOPEN call to force
messages to be sent to a specific destination, and the destination queue manager
is not available, the messages are not delivered. Messages are not routed to
another queue manager because of the risk of duplication.

v Take care when using clustering in an environment where IP addresses change
on an unpredictable basis, for example on machines where Dynamic Host
Configuration Protocol (DHCP) is being used. If you specify the IP address
rather than the hostname in your channel definitions, you must update the IP
address each time DHCP issues a new one.

Things to consider

Chapter 1. Concepts and terminology 9

|
|

|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|



Summary of the concepts
If you are familiar with MQSeries and distributed queuing, you may like to think
of a cluster as a network of queue managers maintained by a conscientious
systems administrator. Whenever you create a receiver channel or define a queue,
the systems administrator automatically creates corresponding sender channels and
remote-queue definitions on the other queue managers.

You do not need to make transmission queue definitions because MQSeries
provides a transmission queue on each queue manager. This single transmission
queue can be used to carry messages to any other queue manager.

All the queue managers that join a cluster agree to work in this way. They send
out information about themselves and about the queues they host, and they receive
information about the other members of the cluster.

This information is stored in repositories. Most queue managers retain only the
information that they need, that is, information about queues and queue managers
with which they need to communicate. Some queue managers retain a full
repository of all the information about all queue managers in the cluster.

A cluster-receiver channel is a communication channel similar to a receiver
channel. When you define a cluster-receiver channel, not only is the object created
on your queue manager, but also information about the channel and the queue
manager that owns it is stored in the repositories. The definition of a
cluster-receiver channel is a queue manager’s initial introduction to a cluster. Once
it has been defined, other queue managers can automatically make corresponding
definitions for the cluster-sender end of the channel as needed.

A cluster-sender channel is a communication channel similar to a sender channel.
You need a cluster-sender channel only if you want to communicate with another
cluster queue manager. When another cluster queue manager wants to
communicate with you, your cluster-sender channel is created automatically by
reference to the appropriate cluster-receiver channel definition. However, each
queue manager must have one manually defined cluster-sender channel, through
which it makes its initial contact with the cluster.

Queue managers on platforms that support clusters do not have to be part of a
cluster. You can continue to use distributed queuing techniques as well as, or
instead of, using clusters.

Summary of concepts

10 MQSeries Queue Manager Clusters

|
|
|
|
|
|
|



Chapter 2. Using clusters to ease system administration

This chapter describes how you can use clusters to simplify system administration
in your environment. It is intended for users who have not used clusters before
and who want to learn how they might benefit from setting up and using a simple
cluster. This chapter covers:
v “How can I use clusters?”
v “How does the system administrator benefit?” on page 12
v “What about my applications?” on page 14
v “How should I prepare for use of clustering?” on page 14
v “How do I set up a cluster?” on page 15

For information about how to set up a more complex cluster that benefits from
workload management, refer to “Chapter 5. Using clusters for workload
management” on page 41.

How can I use clusters?
Typically a cluster contains queue managers that are logically related in some way
and need to share some data or applications. For example you may have one
queue manager for each department in your company, managing data and
applications specific to that department. You could group all these queue managers
into a cluster so that they all feed into the PAYROLL application. Or you may have
one queue manager for each branch of your chain store, managing the stock levels
and other information for that branch. If you group these queue managers into a
cluster, they are all able to access the same set of SALES and PURCHASES
applications, which are held centrally, perhaps on the head-office queue manager.

Once a cluster has been set up, the queue managers within it can communicate
with each other without the need for any channel definitions or remote-queue
definitions.

You can convert an existing network of queue managers into a cluster or you can
establish a cluster straightaway, when setting up a new network.

An MQSeries client can connect to a queue manager that is part of a cluster, just as
it can connect to any other queue manager. See the MQSeries Clients book for more
information about clients.

© Copyright IBM Corp. 1999, 2000 11

|
|
|



How does the system administrator benefit?
Using clusters leads to easier administration of a network. Look at Figure 3, which
shows four queue managers each with two queues. Let us consider how many
definitions are needed to connect these queue managers using distributed queuing.
Then we will see how many definitions are needed to set up the same network as
a cluster.

Definitions to set up a network using distributed queuing
To set up the network shown in Figure 3 using distributed queuing, you might
have the following definitions:

Table 1. Definitions for distributed queuing

Description Number per
queue

manager

Total number

A sender-channel definition for a channel on which to
send messages to every other queue manager

3 12

A receiver-channel definition for a channel on which to
receive messages from every other queue manager

3 12

A transmission-queue definition for a transmission queue
to every other queue manager

3 12

A local-queue definition for each local queue 2 8

A remote-queue definition for each remote queue to which
this queue manager wants to put messages

6 24

Optionally, on OS/390, a process definition specifying
trigger data if channels are to be triggered

3 12

While you might reduce this number of definitions by, for example, using generic
receiver-channel definitions, the maximum number of definitions could be as many
as 20 on each queue manager, which is a total of 80 for this network.

QM2

QM4QM3

QM1

Figure 3. A network of four queue managers

System administration benefits

12 MQSeries Queue Manager Clusters



Definitions to set up a network using clusters
When using clusters, you need:
v Just one CLUSSDR and one CLUSRCVR definition at each queue manager
v No separately defined transmission queues
v No remote-queue definitions

Therefore, to set up the network shown in Figure 3 on page 12 using clusters you
need the following definitions:

Table 2. Definitions for clustering

Description Number per
queue

manager

Total number

A cluster-sender channel definition for a channel on which
to send messages to a repository queue manager

1 4

A cluster-receiver channel definition for a channel on
which to receive messages from other queue managers in
the cluster

1 4

A local-queue definition for each local queue 2 8

To set up this cluster of queue managers (with two full repositories), you would
need 4 definitions on each queue manager — a total of 16 definitions all together.
You would also need to alter the queue-manager definitions for two of the queue
managers, to make them repository queue managers for the cluster.

The CLUSSDR and CLUSRCVR channel definitions need be made only once. When
the cluster is in place you can add or remove queue managers (other than the
repository queue managers) without any disruption to the other queue managers.

Clearly, this amounts to a significant reduction in the number of definitions
required to set up a network containing a large number of queue managers.

With fewer definitions to make there is less risk of error.
v There is no danger of a mismatch of object names, for example the channel

name in a sender-receiver pair.
v You do not need to worry that the transmission queue name specified in a

channel definition matches the correct transmission queue definition or matches
the transmission queue name specified in a remote queue definition.

v There is no danger of a QREMOTE definition pointing to the wrong queue at
the remote queue manager.

Furthermore, once a cluster is set up, you can move cluster queues from one queue
manager to another within the cluster without having to do any system
management work on any other queue manager. There is no danger of forgetting
to delete or modify channel, remote-queue, or transmission-queue definitions. You
can add new queue managers to a cluster without any disruption to the existing
network.

System administration benefits

Chapter 2. Using clusters to ease system administration 13



What about my applications?
You need not make any alterations to your applications if you are going to set up a
simple MQSeries cluster. The application names the target queue on the MQOPEN
call as usual and need not be concerned about the location of the queue manager.

However, if you set up a cluster in which there are multiple definitions for the
same queue, as described in “Chapter 5. Using clusters for workload management”
on page 41, you must review your applications and modify them as necessary.

How should I prepare for use of clustering?
You can create queue-manager clusters on the following platforms:
v MQSeries for AIX V5.1
v MQSeries for AS/400 V5.1
v MQSeries for HP-UX V5.1
v MQSeries for OS/2 Warp V5.1
v MQSeries for OS/390
v MQSeries for Sun Solaris V5.1
v MQSeries for Windows NT V5.1

Installation procedures for your platform are described in:
v The MQSeries for AIX V5.1 Quick Beginnings book
v The MQSeries for AS/400 V5.1 Quick Beginnings book
v The MQSeries for OS/2 Warp V5.1 Quick Beginnings book
v The MQSeries for HP-UX V5.1 Quick Beginnings book
v The MQSeries for Sun Solaris V5.1 Quick Beginnings book
v The MQSeries for Windows NT V5.1 Quick Beginnings book
v The MQSeries for OS/390 Program Directory

V5.1 of MQSeries for AIX, AS/400, HP-UX, OS/2 Warp, Sun Solaris, and
Windows NT

After installing the product, you have to create queue managers. You use
the command crtmqm to create a queue manager with all the default
objects that you need. Creation of queue managers is described in the
MQSeries System Administration book and in the MQSeries for AS/400 V5.1
System Administration book.

MQSeries for OS/390
You need to customize your queue managers as described in the MQSeries
for OS/390 System Management Guide. Ensure that you customize the queue
managers to use distributed queuing and clustering.

Effect on applications

14 MQSeries Queue Manager Clusters

|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|



How do I set up a cluster?
Having decided that you want to create a cluster of certain queue managers, you
need to consider which queue managers in the cluster are to hold the full
repositories of cluster information. You can choose any number of queue managers
for this purpose but the recommended number is two. See “Selecting queue
managers to hold repositories” on page 59 for more information.

The smallest possible cluster would contain only two queue managers. In this case
both queue managers would contain full repositories. You need only a small
number of definitions to set this up, and yet there is a high degree of autonomy at
each queue manager.

Figure 4 shows a cluster of two queue managers. You could set up a cluster like
this using MQSeries commands (MQSC), or any other type of administration
command or utility that is available on your platform. See “Chapter 6. MQSeries
commands” on page 53 for more information.

The steps you should take to set up a cluster like this are described in “Task 1:
Setting up a new cluster” on page 19.

DEMO

QM2QM1

Q1

Cluster
queue

TO.QM1

TO.QM2

Figure 4. A small cluster of two queue managers

How to set up a cluster

Chapter 2. Using clusters to ease system administration 15



Establishing communication in a cluster
To establish communication between queue managers in a cluster you need to
configure a link using one of the supported communication protocols. The
supported protocols are TCP or LU 6.2 on any platform, and in addition NetBIOS
or SPX on OS/2 or Windows NT, and UDP on AIX. Configuring communication
links is described in detail in the MQSeries Intercommunication book. As part of this
configuration, you also need channel initiators and channel listeners just as you do
with distributed queuing.

Channel initiator
All cluster queue managers need a channel initiator to monitor the system-defined
initiation queue SYSTEM.CHANNEL.INITQ. This is the initiation queue for all
transmission queues including the cluster transmission queue.

MQSeries for OS/390
There is one channel initiator for each queue manager and it runs as a
separate address space. You start it using the MQSeries command START
CHINIT, which you would normally issue as part of your queue manager
startup.

V5.1 of MQSeries for AIX, AS/400, HP-UX, OS/2 Warp, Sun Solaris, and
Windows NT

When you start a queue manager, a channel initiator is automatically
started too.

Channel listener
You need to run a channel listener program on each queue manager. A channel
listener program ‘listens’ for incoming network requests and starts the appropriate
receiver channel when it is needed.

The implementation of channel listeners is platform specific.

MQSeries for OS/390
Use the channel listener program provided by MQSeries. To start an
MQSeries channel listener use the MQSeries command START LISTENER,
which you would normally issue as part of your channel initiator startup.
For example:
START LISTENER PORT(1414) TRPTYPE(TCP)

MQSeries for AS/400
Use the channel listener program provided by MQSeries. To start an
MQSeries channel listener use the MQSeries for AS/400 CL command
STRMQMLSR. For example:
STRMQMLSR MQMNAME(QM1) PORT(1414)

Alternatively, you could use the MQSeries command START LISTENER.

How to set up a cluster

16 MQSeries Queue Manager Clusters

|
|
|
|

|

|



MQSeries for OS/2 Warp
Use either the channel listener program provided by MQSeries, or inetd, or
the facilities provided by the operating system (for example, Attach
manager for LU 6.2 communications).

To start the MQSeries channel listener use the RUNMQLSR command. For
example:
RUNMQLSR -t tcp -p 1414 -m QM1

Alternatively, you could use the MQSeries command START LISTENER.

To use inetd to start channels, two files must be configured:
1. Edit the file TCPIP\ETC\SERVICES. If you do not have the following

line in that file, add it as shown:
MQSeries 1414/tcp # MQSeries channel listener

where 1414 is the port number required for MQSeries. You can change
this, but it must match the port number specified at the sending end.

2. Edit the file TCPIP\ETC\INETD.LST. If you do not have the following
line in that file, add it as shown:
MQSeries tcp C:\MQM\BIN\AMQCRSTA -m queue.manager.name

where queue.manager.name is the name of your queue manager. If you
have MQSeries for OS/2 Warp installed on a different drive, replace the
C: with the correct drive letter.

MQSeries for Windows NT
Use either the channel listener program provided by MQSeries, or the
facilities provided by the operating system.

To start the MQSeries channel listener use the RUNMQLSR command. For
example:
RUNMQLSR -t tcp -p 1414 -m QM1

Alternatively, you could use the MQSeries command START LISTENER.

How to set up a cluster

Chapter 2. Using clusters to ease system administration 17

|

|



MQSeries on UNIX® systems
Use either the channel listener program provided by MQSeries, or the
facilities provided by the operating system (for example, inetd for TCP
communications).

To start the MQSeries channel listener use the runmqlsr command. For
example:
runmqlsr -t tcp -p 1414 -m QM1

Alternatively, you could use the MQSeries command START LISTENER.

To use inetd to start channels, two files must be configured:
1. Edit the file /etc/services. (To do this you must be logged in as a

superuser or root.) If you do not have the following line in that file,
add it as shown:
MQSeries 1414/tcp # MQSeries channel listener

where 1414 is the port number required by MQSeries. You can change
this, but it must match the port number specified at the sending end.

2. Edit the file /etc/inetd.conf. If you do not have the following line in
that file, add it as shown:
For AIX:
MQSeries stream tcp nowait root /usr/mqm/bin/amqcrsta amqcrsta
-m queue.manager.name

For Sun Solaris or HP-UX:
MQSeries stream tcp nowait mqm /opt/mqm/bin/amqcrsta amqcrsta
-m queue.manager.name

The updates become active after inetd has reread the configuration files.
Issue the following commands from the root user ID:

On AIX:
refresh -s inetd

On HP-UX:
inetd -c

On Sun Solaris:
1. Find the process ID of the inetd with the command:

ps -ef | grep inetd

2. Run the command:
kill -1 inetd processid

How to set up a cluster

18 MQSeries Queue Manager Clusters

|

|

|

|



Chapter 3. First tasks

This chapter shows how you can perform the following tasks:
v “Task 1: Setting up a new cluster”
v “Task 2: Adding a new queue manager to a cluster” on page 25

Much of the information you need to achieve these tasks is documented elsewhere
in the MQSeries library. This chapter gives pointers to that information and fills in
details relating specifically to work with clusters.

Notes:

1. Throughout the examples in this chapter and Chapter 9. Advanced tasks the
queue managers have illustrative names such as LONDON and NEWYORK.
Don’t forget that on MQSeries for OS/390, queue-manager names are limited to
4 characters.

2. The names of the queue managers imply that each queue manager is on a
separate machine. You could just as easily set up these examples with all the
queue managers on the same machine.

3. The examples in these chapters show MQSeries Commands (MQSC) as they
would be entered by the system administrator at the command console. For
information about other ways of entering commands, refer to “Chapter 6.
MQSeries commands” on page 53.

Task 1: Setting up a new cluster
Scenario:
v You are setting up a new MQSeries network for a chain store. The store has two

branches, one in London and one in New York. The data and applications for
each store are hosted by systems running separate queue managers. The two
queue managers are called LONDON and NEWYORK.

v The inventory application runs on the system in New York, connected to queue
manager NEWYORK. The application is driven by the arrival of messages on the
INVENTQ queue, hosted by NEWYORK.

v The two queue managers, LONDON and NEWYORK, are to be linked in a
cluster called ‘INVENTORY’ so that they can both put messages to the
INVENTQ.

v The network protocol is TCP.

Figure 5 on page 22 shows what this cluster is to look like.

Note: On MQSeries for Windows NT you can use one of the wizards supplied
with MQSeries Explorer to create a new cluster similar to the one
accomplished by this task.

© Copyright IBM Corp. 1999, 2000 19

|
|
|

|
|
|
|

|

|



The steps required to complete task 1
To set up this cluster, follow these steps.

1. Prepare the queue managers
Preparation of queue managers is described in “How should I prepare for use of
clustering?” on page 14.

2. Decide on the organization of the cluster and its name
You have decided to link the two queue managers, LONDON and NEWYORK,
into a cluster. A cluster with only two queue managers offers only marginal benefit
over a network that is to use distributed queuing, but is a good way to start and
does provide scope for future expansion. When you open new branches of your
store, you will be able to add the new queue managers to the cluster easily and
without any disruption to the existing network. “Task 2: Adding a new queue
manager to a cluster” on page 25 describes how to do this.

For the time being the only application you are running is the inventory
application. The cluster name is INVENTORY.

3. Determine which queue managers should hold full repositories
In any cluster you need to nominate at least one queue manager, or preferably two,
to hold full repositories. See “Selecting queue managers to hold repositories” on
page 59 for more information. In this example there are only two queue managers,
LONDON and NEWYORK. You are recommended to make both of these queue
managers hold full repositories.

Notes:

1. The remaining steps may be performed in any order. The sequence shown is
logical but need not be adhered to.

2. As you proceed through the steps, you may notice that warning messages are
written to the queue-manager log or the OS/390 system console if some
expected definitions have yet to be made.

3. Before proceeding with these steps make sure that the queue managers are
started.

4. Alter the queue-manager definitions to add repository
definitions
On each queue manager that is to hold a full repository, you need to make an
alteration to the queue-manager definition. Do this using the ALTER QMGR
command and specifying the REPOS attribute:
ALTER QMGR REPOS(INVENTORY)

Examples of the responses to the commands are shown in a box
like this after each step in this task.
These examples show the responses returned by MQSeries for AIX.
The responses vary on other platforms.

1 : ALTER QMGR REPOS(INVENTORY)
AMQ8005: MQSeries queue manager changed.

Setting up a cluster

20 MQSeries Queue Manager Clusters



5. Define the CLUSRCVR channels
On every queue manager in a cluster you need to define a cluster-receiver channel
on which the queue manager can receive messages. This definition defines the
queue manager’s network address and has the effect of advertising the queue
manager’s availability to receive messages from other queue managers in the
cluster.

On the LONDON queue manager, define:
DEFINE CHANNEL(TO.LONDON) CHLTYPE(CLUSRCVR) TRPTYPE(TCP)
CONNAME(LONDON.CHSTORE.COM) CLUSTER(INVENTORY)

In this example the channel name is TO.LONDON, the transport protocol is TCP,
and the network address (CONNAME) of the machine the queue manager resides
on is LONDON.CHSTORE.COM. The CLUSTER keyword causes the definition to
be advertised to the other queue managers in the cluster. The machine’s network
address is stored in the repositories, where it can be referenced by other queue
managers. (The network address could be entered either as an alphanumeric DNS
hostname, or as a dotted-decimal IP address.)

On the NEWYORK queue manager, define:
DEFINE CHANNEL(TO.NEWYORK) CHLTYPE(CLUSRCVR) TRPTYPE(TCP)
CONNAME(NEWYORK.CHSTORE.COM) CLUSTER(INVENTORY)

6. Define the CLUSSDR channels
On every queue manager in a cluster you need to define one cluster-sender
channel on which the queue manager can send messages to one of the repository
queue managers. In this case there are only two queue managers, both of which
hold repositories. They must each have a CLUSSDR definition that points to the
CLUSRCVR channel defined at the other queue manager. Note that the channel
names given on the CLUSSDR definitions must match those on the corresponding
CLUSRCVR definitions.

On the LONDON queue manager, define:
DEFINE CHANNEL(TO.NEWYORK) CHLTYPE(CLUSSDR) TRPTYPE(TCP)
CONNAME(NEWYORK.CHSTORE.COM) CLUSTER(INVENTORY)

On the NEWYORK queue manager, define:
DEFINE CHANNEL(TO.LONDON) CHLTYPE(CLUSSDR) TRPTYPE(TCP)
CONNAME(LONDON.CHSTORE.COM) CLUSTER(INVENTORY)

Once a queue manager has definitions for both a cluster-receiver channel and a
cluster-sender channel in the same cluster, the cluster-sender channel is started.

1 : DEFINE CHANNEL(TO.LONDON) CHLTYPE(CLUSRCVR) TRPTYPE(TCP)
CONNAME(LONDON.CHSTORE.COM) CLUSTER(INVENTORY)

AMQ8014: MQSeries channel created.
07/09/98 12:56:35 No repositories for cluster 'INVENTORY'

1 : DEFINE CHANNEL(TO.NEWYORK) CHLTYPE(CLUSSDR) TRPTYPE(TCP)
CONNAME(NEWYORK.CHSTORE.COM) CLUSTER(INVENTORY)

AMQ8014: MQSeries channel created.
07/09/98 13:00:18 Channel program started.

Setting up a cluster

Chapter 3. First tasks 21

|
|



7. Define the cluster queue INVENTQ
Define the INVENTQ queue on the NEWYORK queue manager, specifying the
CLUSTER keyword.
DEFINE QLOCAL(INVENTQ) CLUSTER(INVENTORY)

The CLUSTER keyword causes the queue to be advertised to the cluster. As soon
as the queue is defined it becomes available to the other queue managers in the
cluster. They can send messages to it without having to make a remote-queue
definition for it.

Now that you have completed all the definitions, if you have not already done so
you should start the channel initiator on MQSeries for OS/390 and, on all
platforms, start a listener program on each queue manager. The listener program
listens for incoming network requests and starts the cluster-receiver channel when
it is needed. See “Establishing communication in a cluster” on page 16 for more
information.

The cluster achieved by task 1
The cluster set up by this task looks like this:

Clearly, this is a very small cluster. However, it is useful as a proof of concept. The
important thing to understand about this cluster is the scope it offers for future
enhancement.

1 : DEFINE QLOCAL(INVENTQ) CLUSTER(INVENTORY)
AMQ8006: MQSeries queue created.

INVENTORY

LONDON

NEWYORK

INVENTQ

TO.LONDON

TO.NEWYORK

Figure 5. The INVENTORY cluster with two queue managers

Setting up a cluster

22 MQSeries Queue Manager Clusters

|
|
|
|



Verifying task 1
You could issue some DISPLAY commands to verify the cluster that you have set
up. The responses you see should be similar to those shown in the examples that
follow.

From the NEWYORK queue manager, issue the command:
dis clusqmgr(*)

Now issue the corresponding DISPLAY CHANNEL STATUS command:
dis chstatus(*)

1 : dis clusqmgr(*)
AMQ8441: Display Cluster Queue Manager details.

CLUSQMGR(NEWYORK) CLUSTER(INVENTORY)
CHANNEL(TO.NEWYORK)

AMQ8441: Display Cluster Queue Manager details.
CLUSQMGR(LONDON) CLUSTER(INVENTORY)
CHANNEL(TO.LONDON)

1 : dis chstatus(*)
AMQ8417: Display Channel Status details.

CHANNEL(TO.NEWYORK) XMITQ( )
CONNAME(9.20.40.24) CURRENT
CHLTYPE(CLUSRCVR) STATUS(RUNNING)

AMQ8417: Display Channel Status details.
CHANNEL(TO.LONDON) XMITQ(SYSTEM.CLUSTER.TRANSMIT.QUEUE)
CONNAME(9.20.51.25) CURRENT
CHLTYPE(CLUSSDR) STATUS(RUNNING)

Setting up a cluster

Chapter 3. First tasks 23



Using the cluster set up in task 1
Because the INVENTQ queue has been advertised to the cluster there is no need
for remote-queue definitions. Applications running on NEWYORK and
applications running on LONDON can put messages to the INVENTQ queue.
They can receive responses to their messages by providing a reply-to queue and
specifying its name when they put messages.

Test your setup by sending some messages between the two queue managers. In
the following example LONDON puts a message to the INVENTQ at NEWYORK
and receives a reply on its queue LONDON_reply.

Note: The definition for the local queue LONDON_reply does not need the
CLUSTER attribute. NEWYORK replies to this queue by explicitly specifying
the queue manager name. Another way of doing this would be to use a
temporary dynamic queue. See the MQSeries Application Programming Guide
for more information.

You could also test the setup of this cluster using the amqsput sample application.

Converting an existing network into a cluster
If you were converting an existing network into a cluster like this, you might not
need to follow step 1, depending on what version of MQSeries the existing
network was on. In step 7, you would need to alter the existing queue definition.
You would also need to delete the remote queue definition at LONDON for the
INVENTQ queue. See “Task 7: Converting an existing network into a cluster” on
page 81 for an example of this.

On LONDON:

Define a local queue called LONDON_reply
Set the MQOPEN options to MQOO_OUTPUT
Issue the MQOPEN call to open the queue INVENTQ
Set the ReplyToQ name in the message descriptor to LONDON_reply
Issue the MQPUT call to put the message

On NEWYORK:

Set the MQOPEN options to MQOO_BROWSE
Issue the MQOPEN call to open the queue INVENTQ
Issue the MQGET call to get the message from INVENTQ
Retrieve the ReplyToQ name from the message descriptor
Put the ReplyToQ name in the ObjectName field of the object descriptor
Set the MQOPEN options to MQOO_OUTPUT
Issue the MQOPEN call to open LONDON_reply at queue manager LONDON
Issue the MQPUT call to put the message to LONDON_reply

On LONDON:
Set the MQOPEN options to MQOO_BROWSE
Issue the MQOPEN call to open the queue LONDON_reply
Issue the MQGET call to get the message from LONDON_reply

Setting up a cluster

24 MQSeries Queue Manager Clusters

|



Task 2: Adding a new queue manager to a cluster
Scenario:
v The INVENTORY cluster has been set up as described in “Task 1: Setting up a

new cluster” on page 19. It contains two queue managers, LONDON and
NEWYORK, which both hold full repositories.

v A new branch of the chain store is being set up in Paris and you want to add a
queue manager called PARIS to the cluster.

v Queue manager PARIS will send inventory updates to the application running
on the system in New York by putting messages on the INVENTQ queue.

v Network connectivity exists between all three systems.
v The network protocol is TCP.

The steps required to complete task 2
To achieve this, follow these steps:

1. Prepare the PARIS queue manager
Preparation of queue managers is described in “How should I prepare for use of
clustering?” on page 14.

2. Determine which full repository PARIS should refer to first
Every queue manager in a cluster must refer to one or other of the full repositories
in order to gather information about the cluster and so build up its own partial
repository. It is of no particular significance which repository you choose because
as soon as a new queue manager is added to the cluster it immediately learns
about the other repository as well. Information about changes to a queue manager
is sent directly to two repositories. In this example we choose to link PARIS to the
queue manager LONDON, purely for geographical reasons.

Note: The remaining steps may be performed in any order. Before proceeding with
these steps make sure that queue manager PARIS is started.

3. Define a CLUSRCVR channel on queue manager PARIS
Every queue manager in a cluster needs to define a cluster-receiver channel on
which it can receive messages. On PARIS, define:
DEFINE CHANNEL(TO.PARIS) CHLTYPE(CLUSRCVR) TRPTYPE(TCP)
CONNAME(PARIS.CHSTORE.COM) CLUSTER(INVENTORY)

This advertises the queue manager’s availability to receive messages from other
queue managers in the cluster INVENTORY. There is no need to make definitions
on other queue managers for a sending end to the cluster-receiver channel
TO.PARIS. These will be made automatically when needed.

4. Define a CLUSSDR channel on queue manager PARIS
Every queue manager in a cluster needs to define one cluster-sender channel on
which it can send messages to its initial repository. On PARIS, make the following
definition for a channel called TO.LONDON to the queue manager whose network
address is LONDON.CHSTORE.COM.
DEFINE CHANNEL(TO.LONDON) CHLTYPE(CLUSSDR) TRPTYPE(TCP)
CONNAME(LONDON.CHSTORE.COM) CLUSTER(INVENTORY)

Adding a queue manager

Chapter 3. First tasks 25



Now that you have completed all the definitions, if you have not already done so
you should start the channel initiator on MQSeries for OS/390 and, on all
platforms, start a listener program on queue manager PARIS. The listener program
listens for incoming network requests and starts the cluster-receiver channel when
it is needed. See “Establishing communication in a cluster” on page 16 for more
information.

The cluster achieved by task 2
The cluster set up by this task looks like this:

By making only two definitions, a CLUSRCVR definition and a CLUSSDR
definition, we have added the queue manager PARIS to the cluster.

Now the PARIS queue manager learns, from the repository at LONDON, that the
INVENTQ queue is hosted by queue manager NEWYORK. When an application
hosted by the system in Paris tries to put messages to the INVENTQ, PARIS
automatically defines a cluster-sender channel to connect to the cluster-receiver
channel TO.NEWYORK. The application can receive responses when its
queue-manager name is specified as the target queue manager and a reply-to
queue is provided.

LONDON

NEWYORK

INVENTQ

PARIS

TO.LONDON

TO.NEWYORK

TO.PARIS

Figure 6. The INVENTORY cluster with three queue managers

Adding a queue manager

26 MQSeries Queue Manager Clusters



Part 2. Using queue manager clusters

Chapter 4. How queue manager clusters work . . 29
Components of a cluster . . . . . . . . . . 29

Queue managers and repositories . . . . . . 29
Queues . . . . . . . . . . . . . . . 29
Cluster transmission queue . . . . . . . . 30
Cluster channels . . . . . . . . . . . . 30
Auto-definition of remote queues . . . . . . 31
Auto-definition of channels . . . . . . . . 31

What makes clustering work? . . . . . . . . 32
Using aliases and remote-queue definitions with
clusters . . . . . . . . . . . . . . . . 33

Queue-manager aliases . . . . . . . . . 33
Reply-to queue aliases . . . . . . . . . . 35
Queue aliases. . . . . . . . . . . . . 35
Examples of using aliases within clusters . . . 36

Putting from a queue manager outside a
cluster . . . . . . . . . . . . . . 36
Replying to a queue manager outside the
cluster . . . . . . . . . . . . . . 37
Putting from a queue manager outside the
cluster - alternative . . . . . . . . . . 37
Putting to a queue manager outside the
cluster . . . . . . . . . . . . . . 38
Replying from a queue manager outside the
cluster . . . . . . . . . . . . . . 39
Putting across clusters . . . . . . . . . 39

Chapter 5. Using clusters for workload
management . . . . . . . . . . . . . 41
More than one instance of a queue . . . . . . 41
Workload balancing . . . . . . . . . . . 42

Cluster workload user exit . . . . . . . . 43
Writing and compiling cluster workload exit
programs . . . . . . . . . . . . . . 43

MQSeries for OS/390 . . . . . . . . . 43
V5.1 of MQSeries for AIX, AS/400, HP-UX,
OS/2 Warp, Sun Solaris, and Windows NT . . 44

Sample cluster workload exit . . . . . . . 44
Programming considerations . . . . . . . . 46

Reviewing applications for message affinities . . 46
Handling message affinities . . . . . . . 47

MQI and clusters . . . . . . . . . . . . 49
MQOPEN . . . . . . . . . . . . . . 49

Resolved queue manager name . . . . . . 50
MQPUT and MQPUT1 . . . . . . . . . 50
MQINQ . . . . . . . . . . . . . . 50
MQSET. . . . . . . . . . . . . . . 51

Return codes . . . . . . . . . . . . . . 51

Chapter 6. MQSeries commands . . . . . . 53
MQSeries command attributes . . . . . . . . 54

Queue-manager definition commands . . . . 54
Channel definition commands . . . . . . . 55
Queue definition commands. . . . . . . . 56

MQSeries commands for work with clusters . . . 57
DISPLAY CLUSQMGR . . . . . . . . . 57

SUSPEND QMGR and RESUME QMGR. . . . 57
REFRESH CLUSTER . . . . . . . . . . 58
RESET CLUSTER . . . . . . . . . . . 58

Chapter 7. Managing MQSeries clusters . . . . 59
Cluster-design considerations . . . . . . . . 59

Selecting queue managers to hold repositories . . 59
Organizing a cluster . . . . . . . . . . 61
Choosing names . . . . . . . . . . . . 61
Overlapping clusters . . . . . . . . . . 61
Objects . . . . . . . . . . . . . . . 62

Cluster-administration considerations. . . . . . 63
Maintaining a queue manager . . . . . . . 63
Refreshing a queue manager. . . . . . . . 64
Maintaining the cluster transmission queue. . . 64
What happens when a queue manager fails? . . 64
What happens when a repository fails? . . . . 65
What happens if I put-disable a cluster queue? 65
How long do the repositories retain information? 66
Cluster channels . . . . . . . . . . . . 66

Chapter 8. Keeping clusters secure . . . . . 67
Stopping unauthorized queue managers sending
messages to your queue manager . . . . . . . 67
Stopping unauthorized queue managers putting
messages to your queues . . . . . . . . . . 67
Stopping your queue manager putting messages to
remote queues . . . . . . . . . . . . . 68
Preventing queue managers joining a cluster . . . 68
Forcing unwanted queue managers to leave a
cluster . . . . . . . . . . . . . . . . 69

Chapter 9. Advanced tasks . . . . . . . . 71
Task 3: Adding a new queue manager that hosts a
queue . . . . . . . . . . . . . . . . 71

The steps required to complete task 3 . . . . 72
1. Prepare the TORONTO queue manager . . 72
2. Determine which full repository TORONTO
should refer to first . . . . . . . . . . 72
3. Define the CLUSRCVR channel . . . . . 72
4. Define a CLUSSDR channel on queue
manager TORONTO . . . . . . . . . 72
5. Review the inventory application for
message affinities . . . . . . . . . . 72
6. Install the inventory application on the
system in Toronto . . . . . . . . . . 72
7. Define the cluster queue INVENTQ . . . 72

The cluster achieved by task 3 . . . . . . . 73
Extensions to this task . . . . . . . . . . 74

Task 4: Removing a cluster queue from a queue
manager . . . . . . . . . . . . . . . 75

The steps required to complete task 4 . . . . 75
1. Indicate that the queue is no longer
available . . . . . . . . . . . . . 75
2. Disable the queue . . . . . . . . . 75

© Copyright IBM Corp. 1999, 2000 27

||

|
||



3. Monitor the queue until it is empty . . . 75
4. Monitor the channel to ensure there are no
in-doubt messages . . . . . . . . . . 75
5. Delete the local queue . . . . . . . . 75

The cluster achieved by task 4 . . . . . . . 76
Extensions to this task . . . . . . . . . . 76

Task 5: Removing a queue manager from a cluster 77
The steps required to complete task 5 . . . . 77

1. Suspend queue manager TORONTO . . . 77
2. Stop the CLUSRCVR channel at TORONTO 77
3. Remove the CLUSRCVR channel definition 77
4. Delete the CLUSSDR channel definition . . 77

The cluster achieved by task 5 . . . . . . . 78
Task 6: Moving a repository to another queue
manager . . . . . . . . . . . . . . . 79

The steps required to complete task 6 . . . . 79
1. Alter PARIS to make it a repository queue
manager . . . . . . . . . . . . . 79
2. Add a CLUSSDR channel on PARIS . . . 79
3. Define a CLUSSDR channel on NEWYORK
that points to PARIS . . . . . . . . . 79
4. Alter the queue-manager definition on
LONDON . . . . . . . . . . . . . 79
5. Remove or change any outstanding
definitions . . . . . . . . . . . . . 80

The cluster achieved by task 6 . . . . . . . 80
Task 7: Converting an existing network into a
cluster . . . . . . . . . . . . . . . . 81

The steps required to complete task 7 . . . . 82
1. Upgrade MQSeries on your system . . . 82
2. Review the inventory application for
message affinities . . . . . . . . . . 82
3. Prepare the new queue manager at the
central site. . . . . . . . . . . . . 82
4. Alter the two central queue managers to
make them repository queue managers . . . 82
5. Define a CLUSRCVR channel on each
queue manager . . . . . . . . . . . 82
6. Define a CLUSSDR channel on each queue
manager . . . . . . . . . . . . . 82
7. Install the inventory application on
CHICAGO2 . . . . . . . . . . . . 82
8. Define the INVENTQ queue on the central
queue managers . . . . . . . . . . . 83
9. Delete all remote-queue definitions for the
INVENTQ . . . . . . . . . . . . . 83
10. Implement the cluster workload exit
(optional step) . . . . . . . . . . . 83

The cluster achieved by task 7 . . . . . . . 84
Task 8: Adding a new, interconnected cluster . . . 85

The steps required to complete task 8 . . . . 85
1. Create a namelist of the cluster names . . 85
2. Alter the two queue-manager definitions . . 85
3. Alter the CLUSRCVR channels on
CHICAGO and CHICAGO2 . . . . . . . 85
4. Alter the CLUSSDR channels on CHICAGO
and CHICAGO2 . . . . . . . . . . . 86
5. Create a namelist on SEATTLE and
ATLANTA. . . . . . . . . . . . . 86
6. Alter the CLUSRCVR channels on SEATTLE
and ATLANTA . . . . . . . . . . . 86

7. Alter the CLUSSDR channels on SEATTLE
and ATLANTA . . . . . . . . . . . 86
8. Prepare the queue managers HARTFORD
and OMAHA. . . . . . . . . . . . 86
9. Define CLUSRCVR and CLUSSDR channels
on HARTFORD and OMAHA . . . . . . 87
10. Define the MORDERQ queue on OMAHA 87

The cluster achieved by task 8 . . . . . . . 88
Extensions to this task . . . . . . . . . . 89

Using clusters

28 MQSeries Queue Manager Clusters



Chapter 4. How queue manager clusters work

This chapter provides more detailed information about clusters and how they
work. It discusses:
v “Components of a cluster”
v “What makes clustering work?” on page 32
v “Using aliases and remote-queue definitions with clusters” on page 33

Components of a cluster
Let us now consider how the components of a cluster work together and look at
some more of the components and features of MQSeries clusters.

Queue managers and repositories
As discussed, every cluster has at least one (preferably two) queue managers
holding full repositories of information about the queue managers, queues, and
channels in a cluster. These repositories also contain requests from the other queue
managers in the cluster for updates to the information.

The other queue managers each hold a partial repository, containing information
about the subset of queues and queue managers with which they need to
communicate. The queue managers build up their partial repositories by making
inquiries when they first need to access another queue or queue manager, and by
requesting that thereafter they be notified of any new information concerning that
queue or queue manager.

Each queue manager stores its repository information in messages on a queue
called SYSTEM.CLUSTER.REPOSITORY.QUEUE. The queue managers exchange
repository information in messages on a queue called
SYSTEM.CLUSTER.COMMAND.QUEUE.

Each queue manager that joins a cluster defines a cluster-sender (CLUSSDR)
channel to one of the repositories. When it does this, it immediately ‘learns’ which
other queue managers in the cluster hold full repositories. From then on the queue
manager can request information from any of the repositories. When the queue
manager sends out any information about itself, for example when it creates a new
queue definition, this information is sent to the chosen repository and also to one
other repository (if there is one).

A full repository is updated when the queue manager hosting it receives new
information from one of the queue managers that is linked to it. The new
information is in fact sent to another repository as well, to reduce the risk of it
being delayed if a repository queue manager is out of service. Because all the
information is sent twice, the repositories have to discard duplicates. Each item of
information carries a sequence number, which the repositories use to identify
duplicates. All repositories are kept in step with each other by exchanges of
messages between them.

Queues
A queue manager that hosts cluster queues must advertise its queues to the cluster.
It does this using the DEFINE QLOCAL command with the CLUSTER option, for
example:

© Copyright IBM Corp. 1999, 2000 29



DEFINE QLOCAL(Q1) CLUSTER(SALES)

Once a queue has been advertised, any queue manager in the cluster can put
messages to it. To put a message, the queue manager has to find out, from the full
repositories, where the queue is hosted. Then it adds some routing information to
the message and puts the message on its cluster transmission queue.

Cluster transmission queue
Each cluster queue manager has a cluster transmission queue called
SYSTEM.CLUSTER.TRANSMIT.QUEUE. A definition for this queue (and others
required for clustering) is created by default on every queue manager on V5.1 of
MQSeries for AIX, AS/400, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT. On
OS/390 it can be defined using the supplied sample CSQ4INSX.

A queue manager that is part of a cluster can send messages on the cluster
transmission queue to any other queue manager that is in the same cluster.
Applications must not write directly to the cluster transmission queue. They
should write to named queues and not be aware that the queue names resolve to
the cluster transmission queue.

In addition, queue managers may communicate with other queue managers that
are not part of a cluster. To do this, a queue manager must define channels and a
transmission queue to the other queue manager, in the same way as in a
distributed-queuing environment.

During name resolution, the cluster transmission queue takes precedence over the
default transmission queue. When a queue manager that is not part of a cluster
puts a message to a remote queue, the default action, if there is no transmission
queue with the same name as the destination queue manager, is to use the default
transmission queue. When the sending queue manager is part of a cluster, the
default action is to use SYSTEM.CLUSTER.TRANSMIT.QUEUE, except when the
destination queue is not part of the cluster. In short, if the normal resolution takes
place, the normal transmission queue is used, however, if the queue is resolved via
the repository, SYSTEM.CLUSTER.TRANSMIT.QUEUE is used.

Cluster channels
The MQSeries Intercommunication book describes how message channels are used in
distributed queuing. Within clusters, messages are distributed between cluster
queue managers on a special type of channel for which you need cluster-receiver
channel definitions and cluster-sender channel definitions.

A cluster-receiver channel definition defines a channel on which a queue manager
can receive messages. A queue manager’s CLUSRCVR definition enables other
queue managers to auto-define their corresponding CLUSSDR channel definitions
to that queue manager. First, however, each queue manager must manually define
a cluster-sender channel. This definition enables the queue manager to make its
initial contact with the cluster. It names the repository queue manager to which the
queue manager preferentially chooses to send cluster information.

The CLUSSDR definitions made on the repository queue managers are special. All
the updates exchanged by the repositories flow exclusively on these channels. This
means that the administrator can control the network of repositories explicitly.

Components of a cluster

30 MQSeries Queue Manager Clusters

|
|
|
|
|

|



Auto-definition of remote queues
When you use distributed queuing, a queue manager that wants to put a message
to a queue on a remote queue manager must have a remote-queue definition for
that queue.

A queue manager in a cluster does not need a remote-queue definition for remote
queues in the cluster. The cluster queue manager finds out the location of a remote
queue (from the repository) and then adds routing information to the message and
puts it on the cluster transmission queue. MQSeries automatically creates a
definition equivalent to a remote-queue definition so that the message can be sent.

You cannot alter or delete an automatically-created remote-queue definition.
However, you can look at it using the DISPLAY QUEUE command with the
CLUSINFO attribute. For example:
DISPLAY QUEUE(*) CLUSINFO

See the MQSeries Command Reference book for more information about the DISPLAY
QUEUE command.

Auto-definition of channels
When you use distributed queuing, a queue manager must have a definition for a
sender channel before it can send a message to a remote destination.

However, once a queue manager has joined a cluster by making its initial
CLUSSDR and CLUSRCVR definitions, it does not need to make any other
definitions for channels to other queue managers in the cluster. MQSeries
automatically makes cluster-sender channel definitions when they are needed.
Auto-defined cluster-sender channels take their attributes from those specified in
the corresponding cluster-receiver channel definition on the receiving queue
manager. (Even if there is a manually-defined cluster-sender channel, its attributes
may be automatically modified to ensure that they match those on the
corresponding cluster-receiver definition.) When both the cluster-sender end and
the cluster-receiver end of a channel are defined, the channel is started. An
auto-defined channel remains active until it is no longer needed and is shut down
using the normal disconnect-interval rules.

You cannot see automatically-defined channels using the DISPLAY CHANNEL
command. To see the auto-defined channels use the command DISPLAY
CLUSQMGR(qmname) to see all channels defined on the named queue manager.
You can also use the command DISPLAY CHSTATUS(channelname) to display the
status of the auto-defined CLUSSDR channel corresponding to the CLUSRCVR
channel definition you created. For more information about these commands, refer
to the MQSeries Command Reference book.

You can enable the MQSeries channel auto-definition exit if you wish to write a
user exit program to customize a cluster-sender channel or cluster-receiver channel.
You might, for example, do this in a cluster environment to:
v Tailor communications definitions, that is, SNA LU 6.2 names
v Add or remove other exits, for example, security exits

See the MQSeries Intercommunication book for information about the channel
auto-definition exit and how to use it.

Components of a cluster

Chapter 4. How queue manager clusters work 31

|

|
|
|

|
|
|
|
|

|
|
|

|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|



What makes clustering work?
The definition of a cluster-sender channel has the effect of introducing a queue
manager to one of the repository queue managers. The repository queue manager
updates the information in its repository accordingly. Then it automatically creates
a cluster-sender channel back to the queue manager, and sends the queue manager
information about the cluster. Thus a queue manager learns about a cluster and a
cluster learns about a queue manager.

Look again at Figure 2 on page 5. Suppose that queue manager QM1 wants to send
some messages to the queues at QM2. It knows what queues are available at QM2,
because QM2 has defined a cluster-sender channel to it and so introduced itself.
QM1 has defined a cluster-sender channel to QM2, on which it can send messages.

QM3 has introduced itself to QM2. Because QM1 also holds a repository, QM2 has
passed on all the information about QM3 to QM1. Therefore, QM1 knows what
queues are available at QM3, and what cluster-receiver channel QM3 has defined.
If QM1 wants to send some messages to queues at QM3, it automatically creates a
cluster-sender channel connecting to the cluster-receiver channel at QM3.

Figure 7 shows the same cluster, and, in addition, shows the two cluster-sender
channels that have been created automatically. (These are represented by the two
dashed lines that join with the cluster-receiver channel TO.QM3.) It also shows the
cluster transmission queue, SYSTEM.CLUSTER.TRANSMIT.QUEUE, which QM1
uses to send its messages. All queue managers in the cluster have a cluster
transmission queue, from which they can send messages to any other queue
manager in the same cluster.

Message
flow

SYSTEM.
CLUSTER.
TRANSMIT.
QUEUE

CLUSTER

QM2QM1 TO.QM1

TO.QM3

TO.QM2

QM3

Figure 7. A cluster of queue managers, showing auto-defined channels

How clusters work

32 MQSeries Queue Manager Clusters



The auto-definition of cluster-sender channels—defined automatically when
needed—is crucial to the function and efficiency of clusters. However, so that you
can see only what you need to define to make clusters work, the diagrams
throughout this book show only channels (or the receiving ends of channels) for
which you make manual definitions.

Using aliases and remote-queue definitions with clusters
There are three types of alias; queue-manager aliases, reply-to queue aliases, and
queue aliases. These apply in a clustered environment just as well as in a
distributed-queuing environment. This section describes how aliases can be used in
conjunction with clusters. When reading this section, it may be useful to refer to
the MQSeries Application Programming Guide.

Queue-manager aliases
The concept of queue-manager aliasing is described in detail in the MQSeries
Intercommunication book.

Queue-manager aliases, which are created using a remote-queue definition with a
blank RNAME, have three uses:

Remapping the queue-manager name when sending messages
A queue-manager alias can be used to remap the queue-manager name
specified in an MQOPEN call to another queue-manager. This may be a
cluster queue manager. For example, a queue manager might have the
queue-manager alias definition:
DEFINE QREMOTE(YORK) RNAME(' ') RQMNAME(CLUSQM)

This defines YORK as a queue-manager name that can be used as an alias
for the queue manager called CLUSQM. When an application on the queue
manager that made this definition puts a message to queue manager
YORK, the local queue manager resolves the name to CLUSQM. If the local
queue manager is not called CLUSQM, it puts the message on the cluster
transmission queue, to be moved to CLUSQM, and changes the
transmission header to say CLUSQM instead of YORK.

Note: This does not mean that all queue managers in the cluster will
resolve the name YORK to CLUSQM. The definition applies only on
the queue manager that makes it. To advertise the alias to the whole
cluster, you would need to add the CLUSTER attribute to the
remote-queue definition. Then messages from other queue managers
that were destined for YORK would be sent to the queue manager
with the alias definition and the alias would be resolved.

How clusters work

Chapter 4. How queue manager clusters work 33



Altering or specifying the transmission queue when sending messages
This method of aliasing can be used to join a cluster to a non-cluster
system. For example, for queue managers in the cluster ITALY to
communicate with the queue manager called PALERMO, which is outside
the cluster, one of the queue managers in the cluster must act as a gateway.
From this queue manager, issue the command:
DEFINE QREMOTE(ROME) RNAME(' ') RQMNAME(PALERMO) XMITQ(X) CLUSTER(ITALY)

This is a queue-manager alias definition, which defines and advertises
ROME as a queue manager over which messages from any queue manager
in the cluster ITALY can multi-hop to reach their destination at PALERMO.
Any message put to a queue opened with the queue-manager name set to
ROME in the open handle, is sent to the gateway queue manager, where
the queue manager alias definition was made. Once there, it is put on the
transmission queue X and moved by conventional, non-cluster channels to
the queue manager PALERMO.

The choice of the name ROME in this example is not significant. The
values for QREMOTE and RQMNAME could both be the same.

Determining the destination when receiving messages
When a queue manager receives a message it looks in the transmission
header to see the name of the destination queue and queue manager. If it
has a queue-manager alias definition with the same name as the queue
manager referenced, it substitutes the RQMNAME from its definition in
place of the queue manager name in the transmission header.

There are two reasons for using a queue-manager alias in this way:
v To direct messages to another queue manager
v To alter the queue manager name to be the same as the local queue

manager

Aliasing and remote-queue definitions

34 MQSeries Queue Manager Clusters



Reply-to queue aliases
A reply-to queue alias definition is used to specify alternative names for reply
information. Reply-to queue alias definitions can be used in conjunction with
clusters just the same as in a distributed queuing environment. For example:
v Queue manager VENICE sends a message to queue manager PISA using the

MQPUT call and specifying the following in the message descriptor:
ReplyToQ=‘QUEUE’
ReplyToQMgr=‘’

v So that replies sent to QUEUE can actually be received on OTHERQ at PISA,
you create a reply-to queue alias definition on VENICE:
DEFINE QREMOTE(QUEUE) RNAME(OTHERQ) RQMNAME(PISA)

This form of the remote-queue definition creates a reply-to alias. This alias is
effective only on the system on which it was created.

It is possible for RQMNAME and QREMOTE to specify the same names even if
RQMNAME is itself a cluster queue manager.

See the MQSeries Intercommunication book for more information.

Queue aliases
A QALIAS definition is used to create an ALIAS by which a queue is to be known.
You might do this if, for example, you want to start using a different queue but
you do not want to change your applications. You might also do this if for some
reason you do not want your applications to know the real name of the queue to
which they are putting messages, or because you have a naming convention that
differs from the one where the queue is defined. Another reason might be security;
your applications may not be authorized to access the queue by its real name but
only by its alias.

You create a QALIAS definition on a queue manager using the DEFINE QALIAS
command. For example, the command:
DEFINE QALIAS(PUBLIC) TARGQ(LOCAL) CLUSTER(C)

advertises a queue called PUBLIC to the queue managers in cluster C. PUBLIC is
an alias that resolves to the queue that is really called LOCAL. Messages sent to
PUBLIC are routed to the queue called LOCAL.

You can also use a queue alias definition to resolve a queue name to a cluster
queue. For example the command:
DEFINE QALIAS(PRIVATE) TARGQ(PUBLIC)

enables a queue manager to use the name PRIVATE to access a queue advertised
elsewhere in the cluster by the name PUBLIC. Because this definition does not
include the CLUSTER attribute it applies only to the queue manager that makes it.

Aliasing and remote-queue definitions

Chapter 4. How queue manager clusters work 35



Examples of using aliases within clusters
Figure 8 and Figure 9 on page 38 show a queue manager called QM3 that is outside
the cluster called DEMO. (QM3 could be a queue manager on an MQSeries
product that does not support clusters.) QM3 hosts a queue called Q3, which is
defined as follows:
DEFINE QLOCAL(Q3)

Inside the cluster, are two queue managers called QM1 and QM2. QM2 hosts a
cluster queue called Q2, which is defined as follows:
DEFINE QLOCAL(Q2) CLUSTER(DEMO)

To communicate with a queue manager outside the cluster, one or more queue
managers inside the cluster must act as a gateway. The gateway in this example is
QM1.

Putting from a queue manager outside a cluster

QM2

Q2

DEMO
QM1

Reply

Message

Q3

(q-m alias)
QM3

Q2

QM3

app2

Figure 8. Putting from a queue manager outside the cluster

Aliasing and remote-queue definitions

36 MQSeries Queue Manager Clusters



Let us consider how the queue manager that is outside the cluster can put a
message to the queue Q2 at QM2, which is inside the cluster.

The queue manager outside the cluster (QM3 in Figure 8 on page 36) must have a
QREMOTE definition for each queue in the cluster that it wants to put messages
to. For example:
DEFINE QREMOTE(Q2) RNAME(Q2) RQMNAME(QM2) XMITQ(QM1)

You can see this remote queue on QM3 in Figure 8 on page 36.

Because QM3 is not part of a cluster, it must communicate using distributed
queuing techniques. Therefore, it must also have a sender channel to QM1 and a
transmission queue to QM1. QM1 needs a corresponding receiver channel. The
channels and transmission queues are not shown explicitly in Figure 8 on page 36.

When an application at QM3 issues an MQPUT call to put a message to Q2, the
QREMOTE definition causes the message to be routed through the gateway queue
manager QM1.

Replying to a queue manager outside the cluster
To form a return path for replies, the gateway (QM1) advertises a queue-manager
alias for the queue manager outside the cluster. It advertises this alias to the whole
cluster by adding the cluster attribute to its queue-manager alias definition.
(Remember that a queue-manager alias definition is like a remote queue definition,
but with a blank RNAME.) For example:
DEFINE QREMOTE(QM3) RNAME(' ') RQMNAME(QM3) CLUSTER(DEMO)

Again, because QM3 is not part of a cluster, it must communicate using distributed
queuing techniques. Therefore, QM1 must also have a sender channel to QM3 and
a transmission queue to QM3. QM3 needs a corresponding receiver channel. The
channels and transmission queues are not shown explicitly in Figure 8 on page 36.

When the application (app2) on QM2 issues an MQPUT call to send a reply to Q3
at QM3, the reply is sent to the gateway, which uses its queue-manager alias to
resolve the destination-queue and queue-manager name.

Note: You may define more than one route out of a cluster.

Putting from a queue manager outside the cluster - alternative
There is another technique for putting from a queue manager outside a cluster.

On the gateway queue manager define a queue-manager alias called, for example,
ANY.CLUSTER:
DEFINE QREMOTE(ANY.CLUSTER) RNAME(' ') RQMNAME(' ')

This maps any response to the queue manager ANY.CLUSTER to ‘null’, which
means the QREMOTE definition in the queue manager outside the cluster can use
the queue manager name ANY.CLUSTER instead of having to use the exact queue
manager name. Therefore, on the queue manager outside the cluster, the definition:
DEFINE QREMOTE(Q2) RNAME(Q2) RQMNAME(ANY.CLUSTER) XMITQ(QM1)

would cause messages to go to QM1 initially, and from there be routed to any
queue manager in the cluster that hosts the cluster queue Q2.

Aliasing and remote-queue definitions

Chapter 4. How queue manager clusters work 37



Putting to a queue manager outside the cluster

Now let us consider how to put a message from QM2, which is inside the cluster,
to the queue Q3 at QM3, which is outside the cluster.

The gateway, in this example QM1, has a QREMOTE definition that advertises the
remote queue (Q3) to the cluster:
DEFINE QREMOTE(Q3) RNAME(Q3) RQMNAME(QM3) CLUSTER(DEMO)

It also has a sender channel and a transmission queue to the queue manager that is
outside the cluster. QM3 has a corresponding receiver channel. These are not
shown in Figure 9.

To put a message, an application on QM2 issues an MQPUT call specifying the
target queue name (Q3) and specifying the name of the queue to which replies are
to be sent (Q2). The message is sent to QM1, which uses its remote-queue
definition to resolve the queue name to Q3 at QM3.

Note: You may define more than one route out of a cluster.

QM2

Q2

DEMO

QM3

Q3

QM1

Q3

(q-m alias)
QM2

Reply

Message

app3

Figure 9. Putting to a queue manager outside the cluster

Aliasing and remote-queue definitions

38 MQSeries Queue Manager Clusters



Replying from a queue manager outside the cluster
So that QM3 can send replies to the queue managers inside the cluster, it must
have a queue-manager alias for each queue manager in the cluster with which it
needs to communicate. This queue-manager alias must specify the name of the
gateway through which messages are to be routed, that is, the name of the
transmission queue to the gateway queue manager. In this example, QM3 needs a
queue manager alias definition for QM2:
DEFINE QREMOTE(QM2) RNAME(' ') RQMNAME(QM2) XMITQ(QM1)

QM3 also needs a sender channel and transmission queue to QM1 and QM1 needs
a corresponding receiver channel.

The application (app3) on QM3 can then send replies to QM2, by issuing an
MQPUT call and specifying the queue name (Q2) and the queue manager name
(QM2).

Putting across clusters
Instead of grouping all your queue managers together in one big cluster, you may
have many smaller clusters with one or more queue managers in each acting as a
bridge. The advantage of this is that you can restrict the visibility of queue and
queue-manager names across the clusters. (See “Overlapping clusters” on page 61.)
You can use aliases to change the names of queues and queue managers to avoid
name conflicts or to comply with local naming conventions.

Figure 10 shows two clusters with a bridge between them. (There could be more
than one bridge.) QM1 has defined a cluster queue Q1, as follows:
DEFINE QLOCAL(Q1) CLUSTER(CORNISH)

QM3 has defined a cluster queue Q3, as follows:
DEFINE QLOCAL(Q3) CLUSTER(WINDSOR)

QM2QM2

QM1

CORNISH WINDSOR

Q1

Q2

QM3

Q3

Figure 10. Bridging across clusters

Aliasing and remote-queue definitions

Chapter 4. How queue manager clusters work 39



QM2 has created a namelist called CORNISHWINDSOR, containing the names of
both clusters:
DEFINE NAMELIST(CORNISHWINDSOR)
DESCR('CornishWindsor namelist')
NAMES(CORNISH, WINDSOR)

QM2 has also defined a cluster queue Q2, as follows:
DEFINE QLOCAL(Q2) CLUSNL(CORNISHWINDSOR)

QM2 is a member of both clusters and is the bridge between them. For each queue
that you want to make visible across the bridge, you need a QALIAS definition on
the bridge. For example in Figure 10 on page 39, on QM2, you would have:
DEFINE QALIAS(MYQ3) TARGQ(Q3) CLUSTER(CORNISH)

This would mean that an application connected to a queue manager in CORNISH
(for example QM1), could put a message to a queue, which it refers to as MYQ3,
and this message would be routed to Q3 at QM3.

For each queue manager that you want to make visible, you have a
queue-manager alias definition. For example on QM2 you would have:
DEFINE QREMOTE(QM1) RNAME(' ') RQMNAME(QM1) CLUSTER(WINDSOR)

This would mean that an application connected to any queue manager in
WINDSOR (for example QM3), could put a message to any queue on QM1, by
naming QM1 explicitly on the MQOPEN call.

Aliasing and remote-queue definitions

40 MQSeries Queue Manager Clusters



Chapter 5. Using clusters for workload management

This chapter describes the advanced method of using MQSeries clusters. It
describes how you can set up a cluster that has more than one definition for the
same queue, and can therefore benefit from increased availability and workload
balancing in your network. This chapter discusses workload management and the
implications of using clusters in this way.

More than one instance of a queue
As well as setting up clusters to reduce system administration, (as described in
“Chapter 2. Using clusters to ease system administration” on page 11) there is
another way of using them. You can create clusters in which more than one queue
manager hosts an instance of the same queue.

You may organize your cluster such that the queue managers in it are clones of
each other. This means that they are able to run the same applications and have
local definitions of the same queues. For example, in a System/390® parallel
sysplex the cloned applications might access and update data in a shared DB2®

database or a shared Virtual Storage Access Method (VSAM) database. Because
you can have more than one instance of an application each receiving messages
and running independently of each other, the workload can be spread between
your queue managers.

The advantages of using clusters in this way are:
v Increased availability of your queues and applications
v Faster throughput of messages
v More even distribution of workload in your network

Any one of the queue managers that hosts an instance of a particular queue can
handle messages destined for that queue. This means that applications need not
explicitly name the queue manager when sending messages. A workload
management algorithm determines which queue manager should handle the
message.

Figure 11 on page 42 shows a cluster in which there is more than one definition for
the queue Q3. When an application at QM1 puts a message to Q3, it does not
necessarily know which particular instance of Q3 will process its message. (Note,
however, that when an application on QM2 or an application on QM4 puts a
message to Q3 the local instance of the queue is used.)

Because more than one queue manager is able to handle the same message, the
risk of delayed delivery when a queue manager or communications link is
unavailable is greatly reduced. The workload management algorithm tries one
queue manager after another, if an initial attempt to deliver a message should fail.

© Copyright IBM Corp. 1999, 2000 41



If the destination queue manager goes out of service while there is still a message
on the transmission queue for it, the system attempts to reroute the message.
However, in so doing it does not affect the integrity of the message by running the
risk of losing it or by creating a duplicate. If a queue manager fails and leaves a
message in doubt, that message is not rerouted.

Notes:

1. Before setting up a cluster that has multiple instances of the same queue, it is
important to ensure that your messages do not have dependencies on each
other, for example needing to be processed in a specific sequence or by the
same queue manager. See “Programming considerations” on page 46.

2. It is advisable to make the definitions for different instances of the same queue
identical. Otherwise you will get different results from different MQINQ calls.

“Task 3: Adding a new queue manager that hosts a queue” on page 71 shows how
to set up a cluster with more than one instance of a queue.

Workload balancing
When you have clusters containing more than one instance of the same queue,
MQSeries uses a workload management algorithm to determine the best queue
manager to route a message to. The workload management algorithm selects the
local queue manager as the destination whenever possible. If there is no instance of
the queue on the local queue manager, the algorithm determines which
destinations are suitable. Suitability is based on the state of the channel (including
any priority you might have assigned to the channel), and also the availability of
the queue manager and queue. The algorithm uses a round-robin approach to
finalize its choice between the suitable queue managers.

QM1

Q1

Q5

QM2

Q1

Q3

QM4

Q3

Q4

QM3

Q2

Figure 11. A cluster with multiple instances of the same queue

Multiple queue definitions

42 MQSeries Queue Manager Clusters

|
|



Cluster workload user exit
In most cases the workload management algorithm will be sufficient for your
needs. However, so that you can provide your own user-exit program to tailor
workload management, MQSeries includes a user exit, the cluster workload exit.

If you have some particular information about your network or messages that you
could use to influence workload balancing, you may decide to write a cluster
workload exit program or use one supplied by a third party. For example, you
may know which are the high-capacity channels or the cheap network routes, or
you might decide that you want to route messages depending upon their content.

The cluster workload exit is called when a cluster queue is opened using the
MQOPEN or MQPUT1 call, and when a message is put to a queue using the
MQPUT call. The target queue manager selected at MQOPEN time is fixed if
MQOO_BIND_ON_OPEN is specified (see “MQOPEN” on page 49). In this case,
even if the target queue manager fails, the exit is not run again. In cases where the
target queue manager is not fixed, if the target queue manager chosen at the time
of an MQPUT call is unavailable, or fails while the message is still on the
transmission queue, the exit is called again to select a new target queue manager.

You name cluster workload exits in the queue-manager definition. Do this by
specifying the CLWLEXIT attribute on the ALTER QMGR command. For example:
ALTER QMGR CLWLEXIT(myexit)

If the queue-manager definition does not contain a workload-exit program name,
the workload exit is not called.

Cluster workload exits are called with an exit parameter structure (MQWXP), a
message definition structure (MQMD), a message length parameter, and a copy of
the message (or part of the message). See “Chapter 10. Cluster workload exit call
and data structures” on page 93 for reference information about the cluster
workload exit and the associated data structures.

Writing and compiling cluster workload exit programs
The following guidance applies specifically to cluster workload exit programs.
Read it in conjunction with the general application-programming guidance given
in the MQSeries Application Programming Guide.

MQSeries for OS/390
Cluster workload exits are invoked as if by an OS/390 LINK, in:
v Non-authorized problem program state
v Primary address space control mode
v Non-cross-memory mode
v Non-access register mode
v 31-bit addressing mode
v Storage key 8
v Program Key Mask 8
v TCB key 8

The link-edited modules must be placed in the data set that is specified by the
CSQXLIB DD statement of the queue manager address space procedure. The
names of the load modules are specified as the workload exit names in the
queue-manager definition.

Workload balancing

Chapter 5. Using clusters for workload management 43

|
|
|



When writing workload exits for MQSeries for OS/390, the following rules apply:
v Exits must be written in assembler or C. If C is used, it must conform to the C

systems programming environment for system exits, described in the OS/390
C/C++ Programming Guide, SC09-2362.

v Exits are loaded from the non-authorized libraries that are defined by a
CSQXLIB DD statement. Providing CSQXLIB has DISP=SHR, exits can be
updated while the queue manager is running, with the new version used when
the next MQCONN thread is started by the queue manager.

v Exits must be reentrant, and capable of running anywhere in virtual storage.
v Exits must reset the environment, on return, to that at entry.
v Exits must free any storage obtained, or ensure that it will be freed by a

subsequent exit invocation.
v No MQI calls are allowed.
v Exits should not use any system services that could cause a wait, because this

would severely degrade the performance of the queue manager. In general,
therefore, SVCs, PCs, and I/O should be avoided.

v Exits should not issue ESTAEs or SPIEs, apart from within any subtasks they
attach.

Note that there are no absolute restrictions on what you can do in an exit.
However, most SVCs involve waits, so you should avoid them, except for the
following:
v GETMAIN/FREEMAIN
v LOAD/DELETE

You should not use ESTAEs and ESPIEs because their error handling might
interfere with the error handling performed by MQSeries. This means that
MQSeries might not be able to recover from an error, or that your exit program
might not receive all the error information.

The system parameter EXITLIM, which is described in the MQSeries for OS/390
System Management Guide, limits the amount of time an exit may run for. The
default value for EXITLIM is 30 seconds. If you see the return code
MQRC_CLUSTER_EXIT_ERROR (2266 X'8DA') your exit may be looping. If you
think the exit does need more than 30 seconds to complete, you should increase
the value of EXITLIM.

For information about building your application see the MQSeries Application
Programming Guide book and the MQSeries Intercommunication book.

V5.1 of MQSeries for AIX, AS/400, HP-UX, OS/2 Warp, Sun
Solaris, and Windows NT
Cluster workload exits must not use MQI calls.

In other respects, the rules for writing and compiling cluster workload exit
programs on V5.1 of MQSeries for AIX, AS/400, HP-UX, OS/2 Warp, Sun Solaris,
and Windows NT, are similar to the rules that apply to channel exit programs.
These are described in detail in the MQSeries Intercommunication book.

Sample cluster workload exit
MQSeries includes a sample cluster workload exit program. You can copy this
sample and use it as a basis for your own programs.

Workload balancing

44 MQSeries Queue Manager Clusters

|
|

|
|
|

|
|
|
|



MQSeries for OS/390
The sample cluster workload exit program is supplied in Assembler and in
C. The Assembler version is called CSQ4BAF1 and can be found in the
library thlqual.SCSQASMS. The C version is called CSQ4BCF1 and can be
found in the library thlqual.SCSQC37S. (thlqual is the target library
high-level qualifier for MQSeries data sets in your installation.)

V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT
The sample cluster workload exit program is supplied in C and is called
amqswlm0.c. It can be found in:
v /usr/mqm/samp on AIX
v /opt/mqm/samp on Sun Solaris and HP-UX
v C:\mqm\tools\c\samples on OS/2 Warp
v C:\Program Files\MQSeries\Tools\c\Samples on Windows NT

(Where C is the drive on which you have installed the product.)

MQSeries for AS/400 V5.1
The sample cluster workload exit program is supplied in C and is called
AMQSWLM4. It can be found in file QCSRC of library QMQMSAMP.

The purpose of this sample exit is to route all messages to a particular queue
manager, except if that queue manager becomes unavailable. It reacts to the failure
of the queue manager by routing messages to another queue manager instead.

You indicate which queue manager you want messages to be sent to by supplying
the name of its cluster-receiver channel in the CLWLDATA attribute on the
queue-manager definition. For example:
ALTER QMGR CLWLDATA('TO.myqmgr')

To enable the exit, supply its full path and name in the CLWLEXIT attribute:

On UNIX systems:
ALTER QMGR CLWLEXIT('path/amqswlm(clwlFunction)')

On OS/2 Warp and Windows NT:
ALTER QMGR CLWLEXIT('path\amqswlm(clwlFunction)')

On OS/390:
ALTER QMGR CLWLEXIT(CSQ4BxF1)

where x is either ‘A’ or ‘C’, depending on the programming language of the
version you are using.

On OS/400®:

Either enter the MQSC command:
ALTER QMGR CLWLEXIT('AMQSWLM library ')

(both the program name and the library name occupy 10 characters and are
blank-padded to the right if necessary). Alternatively, use the CL command:
CHGMQM MQMNAME(qmgrname) CLWLEXIT('library/AMQSWLM')

Now, instead of using the supplied workload management algorithm, MQSeries
calls this exit to route all messages to your chosen queue manager.

Workload balancing

Chapter 5. Using clusters for workload management 45

|
|
|

|

|

|

|
|

|

|



Programming considerations
As described in the MQSeries Application Programming Reference book, applications
can open a queue using the MQOPEN call. Applications use the MQPUT call to
put messages onto a queue that is open. Applications can put a single message
onto a queue that is not already open, using the MQPUT1 call.

If you set up clusters that do not have multiple instances of the same queue, there
are no specific application programming considerations.

However, if you set up a network in which there are multiple definitions of the
same queue you must review your applications for message affinities as described
in “Reviewing applications for message affinities”.

If an application opens a target queue for input or for set, that is, so that it can
read messages from it or set its attributes, the MQOPEN call operates only on the
local version of the queue.

To benefit from the workload management aspects of clustering, you may need to
modify your applications.

If you have an instance of a cluster queue on the local queue manager and also on
another queue manager, and you open the queue for output, the MQOPEN call
operates only on the local instance of the queue. This may limit the ability of your
applications to exploit clustering.

Reviewing applications for message affinities
Before starting to use clusters with multiple definitions for the same queue, you
must examine your applications to see whether there are any that have message
affinities, that is, a requirement for an exchange of related messages. With clusters,
a message may be routed to any queue manager that hosts a copy of the correct
queue. Therefore, the logic of applications with message affinities may be upset.

For example, you may have two applications that rely on a series of messages
flowing between them in the form of questions and answers. It may be important
that all the questions are sent to the same queue manager and that all the answers
are sent back to the other queue manager. In this situation, it is important that the
workload management routine does not send the messages to any queue manager
that just happens to host a copy of the correct queue.

Similarly, you may have applications that require messages to be processed in
sequence, for example a file transfer application or database replication application
that sends batches of messages that must be retrieved in sequence.

You may find other circumstances in which a series of messages must be processed
by a particular queue manager or in a particular sequence.

Note: The use of segmented messages may also result in an affinity problem.

Programming considerations

46 MQSeries Queue Manager Clusters



Handling message affinities
If you find that you have applications with message affinities, you should attempt,
where possible, to remove the affinities before starting to use clusters.

Removing message affinities improves the availability of applications. If an
application that has message affinities sends a batch of messages to a queue
manager and the queue manager fails after receiving only part of the batch, the
sending queue manager must wait for it to recover before it can send any more
messages.

Removing messages affinities also improves the scalability of applications. A batch
of messages with affinities may cause resources at the destination queue manager
to become locked while waiting for subsequent messages. These resources may
remain locked for long periods of time, and this might prevent other applications
from doing their work.

Furthermore, message affinities prevent the cluster workload management routines
from making the best choice of queue manager.

To remove affinities, consider the following possibilities:
v Carrying state information in the messages
v Maintaining state information in nonvolatile storage that is accessible to any

queue manager, for example in a DB2 database
v Replicating read-only data so that it is accessible to more than one queue

manager

If it is not appropriate to modify your applications to remove message affinities,
there are a number of other possible solutions to the problem. For example, you
can:

Name a specific destination on the MQOPEN call
One solution is to specify the remote-queue name and the queue manager
name on each MQOPEN call. If you do this, all messages put to the queue
using that object handle go to the same queue manager. (This may be the
local queue manager.)

The disadvantages to this technique are:
v No workload management is carried out. This prevents you from taking

advantage of the benefits of cluster workload management.
v If the target queue manager is remote and there is more than one

channel to it, the messages may take different routes and so the
sequence of messages is still not preserved.

v If your queue manager has a definition for a transmission queue with
the same name as the destination queue manager, messages go on that
transmission queue rather than on the cluster transmission queue.

Return the queue-manager name in the reply-to queue manager field
A variation on the first solution is to allow the queue manager that
receives the first message in a batch to return its name in its response. It
does this using the ReplyToQMgr field of the message descriptor. The
queue manager at the sending end can then extract this queue manager
name and specify it on all subsequent messages.

The advantage of this method over the previous one is that some workload
balancing is carried out in order to deliver the first message.

Programming considerations

Chapter 5. Using clusters for workload management 47



The disadvantage of this method is that the first queue manager must wait
for a response to its first message and must be prepared to find and use
the ReplyToQMgr information before sending subsequent messages. As
with the previous method, if there is more than one route to the queue
manager, the sequence of the messages may not be preserved.

Use the MQOO_BIND_ON_OPEN option on the MQOPEN call
Another solution to the message affinities problem is to force all your
messages to be put to the same destination. Do this using the
MQOO_BIND_ON_OPEN option on the MQOPEN call. By opening a
queue and specifying MQOO_BIND_ON_OPEN you force all messages
that are sent to this queue to be sent to the same instance of the queue.
MQOO_BIND_ON_OPEN binds all messages to the same queue manager
and also to the same route. Therefore, if there is, for example, an IP route
and a NetBIOS route to the same destination, one of these will be selected
when the queue is opened and this selection will be honored for all
messages put to the same queue using the object handle obtained.

By specifying MQOO_BIND_ON_OPEN you force all messages to be
routed to the same destination. Therefore applications with message
affinities are not disrupted. If the destination is not available, the messages
remain on the transmission queue until it becomes available again.

MQOO_BIND_ON_OPEN also applies when the queue manager name is
specified in the object descriptor when you open a queue. There may be
more than one route to the named queue manager (for example, there may
be multiple network paths or another queue manager may have defined an
alias). If you specify MQOO_BIND_ON_OPEN, a route is selected when
the queue is opened.

Note: This is the recommended technique. However, it does not work in a
multi-hop configuration in which a queue manager advertises an
alias for a cluster queue. Nor does it help in situations in which
applications specifically use different queues on the same queue
manager for different groups of messages.

As an alternative to specifying MQOO_BIND_ON_OPEN on the MQOPEN
call, you can achieve the same effect by modifying your queue definitions.
On your queue definitions, specify DEFBIND(OPEN), and allow the
MQOO_BIND option on the MQOPEN call to default to
MQOO_BIND_AS_Q_DEF. See “Queue definition commands” on page 56
for more information about using the DEFBIND attribute in queue
definitions.

Use the cluster workload exit
Instead of modifying your applications you could circumvent the message
affinities problem by writing a cluster workload exit program. This would
not be easy and is not a recommended solution. This program would have
to be designed to recognize the affinity by inspecting the content of
messages. Having recognized the affinity, the program would have to force
the workload management utility to route all related messages to the same
queue manager.

Programming considerations

48 MQSeries Queue Manager Clusters



MQI and clusters
Some changes have been made to the MQSeries application programming interface
to facilitate the use of clusters. The affected calls are:
v MQOPEN
v MQPUT and MQPUT1
v MQINQ
v MQSET

The options on these calls that relate specifically to clustering are described here.
This information should be read in conjunction with the MQSeries Application
Programming Reference book, which describes each call in full.

The remainder of this chapter contains general-use programming interface
information.

MQOPEN
An option on the MQOPEN call, the MQOO_BIND_ON_OPEN option, allows you
to specify that when there are multiple instances of the same queue within a
cluster, the target queue manager needs to be fixed. That is, all messages put to the
queue specifying the object handle returned from the MQOPEN call must be
directed to the same queue manager via the same route.

You might use this option when you have messages with affinities. For example, if
you need a batch of messages all to be processed by the same queue manager,
specify MQOO_BIND_ON_OPEN when you open the queue. This causes MQSeries
to fix the queue manager and also the route to be taken by all messages put to that
queue.

If you do not want to force all your messages to be written to the same
destination, specify MQOO_BIND_NOT_FIXED on the MQOPEN call. This causes
a destination to be selected at MQPUT time, that is, on a message-by-message
basis.

Note: Do not specify MQOO_BIND_NOT_FIXED and
MQMF_SEGMENTATION_ALLOWED at the same time. If you do, the
segments of your message may all be delivered to different queue managers,
scattered throughout the cluster.

If you do not specify either MQOO_BIND_ON_OPEN or
MQOO_BIND_NOT_FIXED, the default option is MQOO_BIND_AS_Q_DEF. Using
MQOO_BIND_AS_Q_DEF causes the binding that is used for the queue handle to
be taken from the DefBind queue attribute. See “Queue definition commands” on
page 56.

You can also cause a destination queue manager to be chosen, by specifying its
name in the object descriptor on the MQOPEN call. In this way, you can select any
queue manager, including the local one.

MQI and clusters

Chapter 5. Using clusters for workload management 49

|
|
|



If you specify one or more of the options MQOO_BROWSE, MQOO_INPUT_*, or
MQOO_SET on the MQOPEN call, there must be a local instance of the cluster
queue in order for the open to succeed. If you specify one or more of the options
MQOO_OUTPUT, MQOO_BIND_*, or MQOO_INQUIRE on the MQOPEN call,
and none of the options MQOO_BROWSE, MQOO_INPUT_*, or MQOO_SET
(which always cause the local instance to be selected) the instance opened is either:
v The instance on the local queue manager, if there is one, or
v An instance elsewhere in the cluster, if there is no local queue-manager instance

For full details about the MQOPEN call and how to use it, see the MQSeries
Application Programming Reference book.

Resolved queue manager name
When a queue manager name is resolved at MQOPEN time, the resolved name is
returned to the application. If the application tries to use this name on a
subsequent MQOPEN call, it may find that is it not authorized to access the name.

MQPUT and MQPUT1
If MQOO_BIND_NOT_FIXED is specified on an MQOPEN call, each subsequent
MQPUT call invokes the workload management routine to determine which queue
manager to send the message to. Therefore, the destination and route to be taken
are selected on a message-by-message basis. The destination and route may be
changed after the message has been put if conditions in the network change. The
MQPUT1 call always operates as though MQOO_BIND_NOT_FIXED were in
effect, that is, it always invokes the workload management routine.

When the workload management routine has selected a queue manager, the local
queue manager completes the put operation. If the target queue manager is a
member of the same cluster as the local queue manager, the local queue manager
puts the message on the cluster transmission queue,
SYSTEM.CLUSTER.TRANSMIT.QUEUE, for transmission to the destination. If the
target queue manager is outside the cluster, and the local queue manager has a
transmission queue with the same name as the target queue manager, it puts the
message on that transmission queue.

If MQOO_BIND_ON_OPEN is specified on the MQOPEN call, MQPUT calls do
not need to invoke the workload management routine because the destination and
route have already been selected.

MQINQ
Before you can inquire on a queue, you must open it using the MQOPEN call and
specifying MQOO_INQUIRE.

If you have clusters in which there are multiple instances of the same queue, you
should be aware that the attributes that can be inquired depend on whether there
is a local instance of the cluster queue, and on how the queue is opened.

If, on the MQOPEN call, in addition to specifying MQOO_INQUIRE, you also
specify one of the options MQOO_BROWSE, MQOO_INPUT_*, or MQOO_SET,
then there must be a local instance of the cluster queue for the open to succeed. In
this case you can inquire on all the attributes that are valid for local queues.

MQI and clusters

50 MQSeries Queue Manager Clusters



If, on the MQOPEN call, you specify only MQOO_INQUIRE, or MQOO_INQUIRE
and MQOO_OUTPUT (but specify none of the options MQOO_BROWSE,
MQOO_INPUT_*, or MQOO_SET, which always cause the local instance of a
cluster queue to be selected) the instance opened is either:
v The instance on the local queue manager, if there is one, or
v An instance elsewhere in the cluster, if there is no local queue-manager instance

If the queue that is opened is not a local queue, only the attributes listed below can
be inquired. The QType attribute has the value MQQT_CLUSTER in this case.
v DefBind
v DefPersistence
v DefPriority
v InhibitPut
v QDesc
v QName
v QType

To inquire on the DefBind attribute of a cluster queue, use the MQINQ call with
the selector MQIA_DEF_BIND. The value returned is either
MQBND_BIND_ON_OPEN or MQBND_BIND_NOT_FIXED. To inquire on the
CLUSTER and CLUSNL attributes of the local instance of a queue, use the MQINQ
call with the selector MQCA_CLUSTER_NAME or the selector
MQCA_CLUSTER_NAMELIST respectively.

Note: If you open a cluster queue with no fixed binding (that is, specifying
MQOO_BIND_NOT_FIXED on the MQOPEN call, or specifying
MQOO_BIND_AS_Q_DEF when the DefBind attribute of the queue has the
value MQBND_BIND_NOT_FIXED) successive MQINQ calls may inquire
different instances of the cluster queue.

MQSET
If you open a cluster queue to set its attributes (specifying the MQOO_SET option),
there must be a local instance of the cluster queue for the open to succeed.
Therefore you cannot use the MQSET call to set the attributes of a queue elsewhere
in the cluster. However, if you open an alias queue or a remote queue that was
defined with the cluster attribute you can use the MQSET call to set attributes of
the alias queue or remote queue even if the target queue or remote queue it
resolves to is a cluster queue.

Return codes
These are the return codes specific to work with clusters.

MQRC_CLUSTER_EXIT_ERROR (2266 X'8DA')
Occurs when an MQOPEN, MQPUT, or MQPUT1 call was issued to open
or put a message on a cluster queue, but the cluster workload exit defined
by the queue-manager’s ClusterWorkloadExit attribute failed unexpectedly
or did not respond in time.

On MQSeries for OS/390 a message is written to the system log giving
more information about this error.

Subsequent MQOPEN, MQPUT, and MQPUT1 calls for this queue handle
are processed as though the ClusterWorkloadExit attribute were blank.

MQI and clusters

Chapter 5. Using clusters for workload management 51



MQRC_CLUSTER_EXIT_LOAD_ERROR (2267 X'8DB')
Occurs on V5.1 of MQSeries for AIX, AS/400, HP-UX, OS/2 Warp, Sun
Solaris, and Windows NT when an MQCONN or MQCONNX call was
issued to connect to a queue manager, but the call failed because the
cluster workload exit defined by the queue-manager’s ClusterWorkloadExit
attribute could not be loaded.

On OS/390, if the cluster workload exit cannot be loaded, a message is
written to the system log and processing continues as though the
ClusterWorkloadExit attribute had been blank.

MQRC_CLUSTER_PUT_INHIBITED (2268 X'8DC')
Occurs when an MQOPEN call with the MQOO_OUTPUT and
MQOO_BIND_ON_OPEN options in effect is issued for a cluster queue,
but all of the instances of the queue in the cluster are currently
put-inhibited, that is, all of the queue instances have the “InhibitPut”
attribute set to MQQA_PUT_INHIBITED. Because there are no queue
instances available to receive messages, the MQOPEN call fails.

This reason code occurs only when both of the following are true:
v There is no local instance of the queue. (If there is a local instance, the

MQOPEN call succeeds, even if the local instance is put-inhibited.)
v There is no cluster workload exit for the queue, or there is a cluster

workload exit but it did not choose a queue instance. (If the cluster
workload exit does choose a queue instance, the MQOPEN call succeeds,
even if that instance is put-inhibited.)

If the MQOO_BIND_NOT_FIXED option is specified on the MQOPEN call,
the call can succeed even if all of the queues in the cluster are
put-inhibited. However, a subsequent MQPUT call may fail if all of the
queues are still put-inhibited at the time of that call.

MQRC_CLUSTER_RESOLUTION_ERROR (2189 X'88D')
Occurs when an MQOPEN, MQPUT, or MQPUT1 call was issued to open
or put a message on a cluster queue, but the queue definition could not be
resolved correctly because a response was required from the repository
queue manager but none was available.

MQRC_NO_DESTINATIONS_AVAILABLE (2270 X'8DE')
Occurs when an MQPUT or MQPUT1 call was issued to put a message on
a cluster queue, but at the time of the call there were no longer any
instances of the queue in the cluster. The PUT fails and the message is not
sent.

This situation can occur when MQOO_BIND_NOT_FIXED is specified on
the MQOPEN call that opens the queue, or MQPUT1 is used to put the
message.

MQRC_STOPPED_BY_CLUSTER_EXIT (2188 X'88C')
Occurs when an MQOPEN, MQPUT, or MQPUT1 call was issued to open
or put a message on a cluster queue, but the cluster workload exit rejected
the call.

Return codes

52 MQSeries Queue Manager Clusters

|
|
|
|
|



Chapter 6. MQSeries commands

This chapter gives an overview of all the MQSeries commands (MQSC), attributes,
and parameters that apply specifically to the use of clusters. This information
should help you to follow the examples in this book. It should be read in
conjunction with the MQSeries Command Reference book, which provides details
about all the MQSeries commands, their syntax, attributes, and parameters.

Note that the attributes used in commands shown in the MQSeries Command
Reference book differ from the full-length attribute names that are shown in the
MQSeries Application Programming Reference book. See Table 3 and Table 4 on
page 93 for some examples.

For each MQSC described here, there is an equivalent Programmable Command
Format (PCF) command that you can use on V5.1 of MQSeries for AIX, AS/400,
HP-UX, OS/2 Warp, Sun Solaris, and Windows NT. For details about PCFs, refer to
the MQSeries Programmable System Management book.

Throughout this book, MQSeries commands are shown as they would be entered
by the system administrator at the command console. Remember that you do not
have to issue the commands in this way. There are a number of other methods,
depending on your platform. For example:
v On V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows

NT you can store the commands in a file and use runmqsc, as described in the
MQSeries System Administration book.

v On MQSeries for AS/400 you can use CL commands or you can store MQSC
commands in a file and use the STRMQMMQSC CL command. See the MQSeries
for AS/400 V5.1 System Administration book for more information.

v On OS/390 you can use the COMMAND function of the CSQUTIL utility, or
you can use the operations and control panels. These are described in the
MQSeries for OS/390 System Management Guide.

v On MQSeries for Windows NT you can use Web Administration, which is a
web-based application that allows you to administer your MQSeries network
from a Windows NT workstation.

For a complete description of the different methods of issuing MQSC, refer to the
MQSeries Planning Guide book.

On MQSeries for Windows NT you can also use MQSeries Explorer to work with
clusters. For example you can view cluster queues and inquire about the status of
cluster-sender and cluster-receiver channels. MQSeries Explorer includes three
wizards, which you can use to guide you through the following tasks:
v Creating a new cluster
v Joining an independent queue manager to a cluster
v Joining a cluster queue manager to another cluster

See the MQSeries System Administration book for more information about using
MQSeries Explorer.

© Copyright IBM Corp. 1999, 2000 53

|
|
|
|

|
|
|



MQSeries command attributes
A number of MQSeries commands (MQSC) have attributes that relate specifically
to work with clusters. These attributes are introduced here, under the following
headings:
v Queue-manager definition commands
v Channel definition commands
v Queue definition commands

In the commands, a cluster name, specified using the CLUSTER attribute, may be
up to 48 characters long. Cluster names must conform to the rules described in the
MQSeries Command Reference book.

A list of cluster names, specified using the CLUSNL attribute, may contain up to
256 names. To create a cluster namelist, use the command DEFINE NAMELIST
described in the MQSeries Command Reference book.

Queue-manager definition commands
The ALTER QMGR and DISPLAY QMGR commands have attributes associated
with clusters and cluster workload management. To specify that a queue manager
holds a repository for a cluster, use the ALTER QMGR command specifying the
attribute REPOS(clustername). To specify a list of several cluster names, define a
cluster namelist and then use the attribute REPOSNL(namelist) on the ALTER
QMGR command:
DEFINE NAMELIST(CLUSTERLIST)

DESCR('List of clusters whose repositories I host')
NAMES(CLUS1, CLUS2, CLUS3)

ALTER QMGR REPOSNL(CLUSTERLIST)

Use the CLWLEXIT(name) attribute to specify the name of a user exit to be called
when a message is put to a cluster queue. Use the CLWLDATA(data) attribute to
specify data to be passed to the cluster workload user exit. Use the
CLWLLEN(length) attribute to specify the maximum amount of message data to be
passed to the cluster workload user exit.

The attributes on the ALTER QMGR command also apply to the DISPLAY QMGR
command.

For full details of the attributes and syntax of the ALTER QMGR command and
the DISPLAY QMGR command, refer to the MQSeries Command Reference book.

The equivalent PCFs are MQCMD_CHANGE_Q_MGR and
MQCMD_INQUIRE_Q_MGR. These are described in the MQSeries Programmable
System Management book.

Command attributes

54 MQSeries Queue Manager Clusters



Channel definition commands
The DEFINE CHANNEL, ALTER CHANNEL, and DISPLAY CHANNEL
commands have parameters and attributes specifically applicable to clusters. There
are two specific CHLTYPE parameters; CLUSRCVR and CLUSSDR. To define a
cluster-receiver channel you use the DEFINE CHANNEL command, specifying
CHLTYPE(CLUSRCVR). Many of the other attributes needed on a cluster-receiver
channel definition are the same as those that apply to a receiver-channel or a
sender-channel definition. To define a cluster-sender channel you use the DEFINE
CHANNEL command, specifying CHLTYPE(CLUSSDR), and many of the same
attributes as you use to define a sender channel.

The attributes on the DEFINE CHANNEL and ALTER CHANNEL commands that
are specific to clusters are:
v CLUSTER
v CLUSNL
v NETPRTY

The CLUSTER and CLUSNL attributes are applicable only if you specify
CHLTYPE(CLUSRCVR) or CHLTYPE(CLUSSDR). The NETPRTY attribute is
applicable only to cluster-receiver channels.

Use the CLUSTER attribute to specify the name of the cluster with which this
channel is associated. Alternatively, you can use the CLUSNL attribute to specify a
namelist of cluster names.

Use the NETPRTY attribute to specify a priority for the channel. This is to assist
the workload management routines. If there is more than one possible route to a
destination, the workload management routine selects the one with the highest
priority.

These attributes on the DEFINE CHANNEL command and ALTER CHANNEL
command also apply to the DISPLAY CHANNEL command.

Note that the DISPLAY CHANNEL command does not display auto-defined
channels. However, you can use the DISPLAY CLUSQMGR command, introduced
in “DISPLAY CLUSQMGR” on page 57 to examine the attributes of auto-defined
cluster-sender channels.

You can use the DISPLAY CHSTATUS command to display the status of a
cluster-sender or cluster-receiver channel. This command gives the status of all
channels, not just manually defined channels. Therefore, it will return the status of
auto-defined channels.

For full details of the attributes and syntax of the DEFINE CHANNEL, ALTER
CHANNEL, DISPLAY CHANNEL, and DISPLAY CHSTATUS commands, refer to
the MQSeries Command Reference book.

The equivalent PCFs are MQCMD_CHANGE_CHANNEL,
MQCMD_COPY_CHANNEL, MQCMD_CREATE_CHANNEL, and
MQCMD_INQUIRE_CHANNEL. For information about these PCFs, refer to the
MQSeries Programmable System Management book.

Command attributes

Chapter 6. MQSeries commands 55



Queue definition commands
The DEFINE QLOCAL, DEFINE QREMOTE, and DEFINE QALIAS commands,
and the three equivalent ALTER commands, have attributes specifically associated
with clusters.
v Use the CLUSTER attribute to specify the name of the cluster to which the

queue belongs.
v Alternatively, use the CLUSNL attribute to specify a namelist of cluster names.
v Use the DEFBIND attribute to specify the binding to be used when an

application specifies MQOO_BIND_AS_Q_DEF on the OPEN call. The default
for this attribute is DEFBIND(OPEN), which specifies that the queue handle is to
be bound to a specific instance of the cluster queue when the queue is opened.
The alternative is to specify DEFBIND(NOTFIXED) so that the queue handle is
not bound to any particular instance of the cluster queue. When you specify
DEFBIND on a queue definition, the queue is defined with one of the following
attributes, MQBND_BIND_ON_OPEN or MQBND_BIND_NOT_FIXED.
You are recommended to set the DEFBIND attribute to the same value on all
instances of the same cluster queue.

These attributes on the DEFINE QLOCAL, DEFINE QREMOTE, and DEFINE
QALIAS commands also apply to the DISPLAY QUEUE command. To display
information about cluster queues, specify a queue type of QCLUSTER or specify
the keyword CLUSINFO on the DISPLAY QUEUE command, or alternatively, use
the command DISPLAY QCLUSTER.

The DISPLAY QUEUE or DISPLAY QCLUSTER command returns the name of the
queue manager that hosts the queue (or the names of all queue managers if there
is more than one instance of the queue). It also returns the system name for each
queue manager that hosts the queue, the queue type represented, and the date and
time at which the definition became available to the local queue manager. This
information is returned using the CLUSQMGR, QMID, CLUSQT, CLUSDATE, and
CLUSTIME attributes respectively.

The system name for the queue manager (QMID), is a unique, system-generated
name for the queue manager.

For full details of the parameters and syntax of the QUEUE definition commands,
refer to the MQSeries Command Reference book.

The equivalent PCFs are MQCMD_CHANGE_Q, MQCMD_COPY_Q,
MQCMD_CREATE_Q, and MQCMD_INQUIRE_Q. For information about these
PCFs, refer to the MQSeries Programmable System Management book.

Command attributes

56 MQSeries Queue Manager Clusters



MQSeries commands for work with clusters
This section introduces MQSeries commands (MQSC) that apply specifically to
work with MQSeries clusters:
v DISPLAY CLUSQMGR
v SUSPEND QMGR
v RESUME QMGR
v REFRESH CLUSTER
v RESET CLUSTER

The PCF equivalents to these commands are:
v MQCMD_INQUIRE_CLUSTER_Q_MGR
v MQCMD_SUSPEND_Q_MGR_CLUSTER
v MQCMD_RESUME_Q_MGR_CLUSTER
v MQCMD_REFRESH_CLUSTER
v MQCMD_RESET_CLUSTER

These are described in the MQSeries Programmable System Management book.

DISPLAY CLUSQMGR
Use the DISPLAY CLUSQMGR command to display cluster information about
queue managers in a cluster. If you issue this command from a queue manager
with a full repository, the information returned pertains to every queue manager in
the cluster. If you issue this command from a queue manager that does not have a
full repository, the information returned pertains only to the queue managers in
which you have an interest. That is, every queue manager to which you have tried
to send a message and every queue manager that holds a full repository.

The information includes:
v How the queue manager was defined (DEFTYPE)
v Whether it holds a repository (QMTYPE)
v The date and time at which the definition became available to the local queue

manager (CLUSDATE and CLUSTIME)
v The current status of the cluster-sender channel for this queue manager

(STATUS)
v Whether the queue manager is suspended (SUSPEND)
v What clusters the queue manager is in (CLUSTER)
v The cluster-receiver channel name for the queue manager (CHANNEL)

and most other channel attributes that apply to cluster-sender and cluster-receiver
channels.

SUSPEND QMGR and RESUME QMGR
The SUSPEND QMGR command and RESUME QMGR command are used to
remove a queue manager from a cluster temporarily, for example for maintenance,
and then to reinstate it. Use of these commands is discussed in “Maintaining a
queue manager” on page 63.

Commands for work with clusters

Chapter 6. MQSeries commands 57



REFRESH CLUSTER
You can issue the REFRESH CLUSTER command from a queue manager to discard
all locally held information about a cluster. It is unlikely that you will need to use
this command during normal circumstances. Use it only if you want your queue
manager to make a fresh start in a cluster. For example you might use it if you
think your repository may not be up-to-date, perhaps because you have
accidentally restored an out-of-date backup. The format of the command is:
REFRESH CLUSTER(clustername)

The queue manager from which you issue this command loses all the information
in its repository concerning the named cluster. It also loses any auto-defined
channels that are in doubt and which are not attached to a repository queue
manager. The queue manager has to make a cold-start in that cluster. It must
reissue all information about itself and must renew its requests for updates to
other information that it is interested in. (It does this automatically.)

Since you are unlikely to need to use this command, except in exceptional
circumstances, you may choose to avoid the danger of issuing it accidentally. On
MQSeries for OS/390 you can use a security profile to protect the command and
prevent it from being issued.

RESET CLUSTER
You may, under certain circumstances, need to forcibly remove a queue manager
from a cluster. You can do this from a repository queue manager by issuing the
command:
RESET CLUSTER(clustername) QMNAME(qmname) ACTION(FORCEREMOVE)

You might do this if, for example, a queue manager has been deleted but still has
cluster-receiver channels defined to the cluster. Instead of waiting for MQSeries to
remove these definitions (which it does automatically) you could issue the RESET
CLUSTER command to tidy up sooner. All other queue managers in the cluster are
then informed that the queue manager is no longer available.

Using the RESET CLUSTER command is the only way to delete auto-defined
cluster-sender channels. You are unlikely to need this command in normal
circumstances but may be advised by your IBM® Support Center to issue the
command to tidy up the cluster information held by cluster queue managers. Do
not use this command as a short cut to removing a queue manager from a cluster.
The correct way to do this is described in “Task 5: Removing a queue manager
from a cluster” on page 77.

You can issue the RESET CLUSTER command only from repository queue
managers.

The queue manager that was forcibly removed can reconnect to the cluster later. It
does this automatically (unless it has been deleted). If you wish to prevent a queue
manager from rejoining a cluster it is your responsibility to take appropriate
security measures. See “Preventing queue managers joining a cluster” on page 68.

Commands for work with clusters

58 MQSeries Queue Manager Clusters

|
|
|
|
|
|

|
|
|
|
|
|
|



Chapter 7. Managing MQSeries clusters

This chapter provides information for the system administrator, including:
v “Cluster-design considerations”
v “Cluster-administration considerations” on page 63

Cluster-design considerations
Let us now look at how you might design a new cluster.

Selecting queue managers to hold repositories
In each cluster you must select at least one, preferably two, or possibly more of the
queue managers to hold repositories. A cluster could work quite adequately with
only one repository but using two improves availability.

Figure 12 shows a typical 2-repository topology. This is the topology used in the
cluster shown in Figure 2 on page 5.

The repository queue managers must be fully interconnected with each other and
positioned in the network so as to give a high level of availability.
v The most important consideration is that the queue managers chosen need to be

reliable and well managed. For example, it would be far better to choose queue
managers on a stable OS/390 system than queue managers on a portable
personal computer that is frequently disconnected from the network.

v You might also consider the location of the queue managers and choose ones
that are in a central position geographically or perhaps ones that are located on
the same system as a number of other queue managers in the cluster.

v Another consideration might be whether a queue manager already holds the
repositories for other clusters. Having made the decision once, and made the
necessary definitions to set up a queue manager as a repository for one cluster,
you may well choose to rely on the same queue manager to hold the repositories
for other clusters of which it is a member.

When a queue manager sends out some information about itself or requests some
information about another queue manager, the information or request is sent to
two repositories. A repository named on a CLUSSDR definition handles the request
whenever possible but if the chosen repository is not available another repository
is used. When the first repository becomes available again it collects the latest new
and changed information from the others so that they keep in step.

Figure 12. A typical 2-repository topology

© Copyright IBM Corp. 1999, 2000 59



In very large clusters, containing thousands of queue managers, you may want to
have more than two repositories. Then you might, for example, have one of the
following topologies.

If all the repository queue managers go out of service at the same time, queue
managers continue to work using the information they have in their partial
repositories. Clearly they are limited to using the information that they have. New
information and requests for updates cannot be processed. When the repository
queue managers reconnect to the network, messages are exchanged to bring all
repositories (both full and partial) back up to date.

Figure 13. A hub and spoke arrangement of repositories

Figure 14. A complex repository topology

Design considerations

60 MQSeries Queue Manager Clusters



Organizing a cluster
Having selected some queue managers to hold repositories, you need to decide
which queue managers should link to which repository. The CLUSSDR channel
definition links a queue manager to a repository from which it finds out about the
other repositories in the cluster. From then on, the queue manager sends messages
to any two repositories, but it always tries to use the one to which it has a
CLUSSDR channel definition first. It is not significant which repository you choose.
However, you should consider the topology of your configuration, and perhaps the
physical or geographical location of the queue managers as shown in Figure 12
through Figure 14.

It is not advisable to use a repository queue manager on an OS/390 system as the
repository queue manager through which the MQSeries Explorer connects to a
cluster. This is because there is no command server on MQSeries for OS/390. To
ensure that a particular repository queue manager is not used by the MQSeries
Explorer, include the string ‘%NOREPOS%’ in the description field of its
cluster-receiver channel definition. When the explorer is choosing which repository
to link to, it ignores those whose channel description contains ‘%NOREPOS%’, and
treats them as though they did not hold a repository for the cluster.

Because all cluster information is sent to two repositories, there may be situations
in which you want to make a second CLUSSDR channel definition. You might do
this in a cluster that has a large number of repositories, spread over a wide area, to
control which repositories your information is sent to.

Choosing names
When setting up a new cluster, you may want to consider a naming convention for
the queue managers. Every queue manager must have a different name, but it may
help you to remember which queue managers are grouped where if you give them
a set of similar names.

Also, every cluster-receiver channel must have a unique name. One possibility is to
use the queue-manager name preceded by the preposition ‘to’. For example TO.QM1,
TO.QM2, and so on. If you have more than one channel to the same queue manager,
each with different priorities or using different protocols, for example, you might
extend this convention to use names such as TO.QM1.A1, TO.QM1.N3, and TO.QM1.T4.
A1 might be the first APPC channel, N3 might be the NetBIOS channel with a
network priority of 3, and so on.

Remember that all cluster-sender channels have the same name as their
corresponding cluster-receiver channel.

Overlapping clusters
You may create clusters that overlap, as illustrated in Figure 15 on page 62.

Design considerations

Chapter 7. Managing MQSeries clusters 61

|
|
|
|
|
|
|
|



There are a number of reasons you might do this, for example:
v To allow different organizations to have their own administration.
v To allow independent applications to be administered separately.
v To create a class of service. For example you could have a cluster called STAFF

that is a subset of the cluster called STUDENTS. When you put a message to a
queue advertised in the STAFF cluster, a restricted channel is used. When you
put a message to a queue advertised in the STUDENTS cluster, either a general
channel or a restricted channel may be used.

v To create test and production environments.

If you do have more than one cluster in your network it is essential to give them
different names. If two clusters with the same name are ever merged, it will not
be possible to separate them again. It is also a good idea to give the clusters,
queue managers, and channels different names so that they are more easy to
distinguish when you look at the output from DISPLAY commands.

In Figure 15 the queue manager QM5 is a member of both the clusters illustrated.
When a queue manager is a member of more than one cluster, you can take
advantage of namelists to reduce the number of definitions you need. A namelist
can contain a list of names, for example, cluster names. Therefore, you could create
a namelist naming the clusters TEAMA and TEAMB, and then specify this namelist
on the ALTER QMGR command for QM5 to make QM5 a repository queue
manager for both of the clusters. See “Task 8: Adding a new, interconnected
cluster” on page 85 for some examples of how to use namelists.

Objects
The following objects are needed when using MQSeries clusters. They are included
in the set of default objects defined when you create a queue manager on V5.1 of
MQSeries for AIX, AS/400, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT,
and in the customization samples for MQSeries for OS/390.

QM3

QM1

QM5

QM4

QM2

TEAMA
TEAMB

Figure 15. Overlapping clusters

Design considerations

62 MQSeries Queue Manager Clusters

|
|
|
|



Do not alter the default queue definitions. You could alter the default channel
definitions in the same way as any other channel definition, using MQSC or PCF
commands.

SYSTEM.CLUSTER.REPOSITORY.QUEUE
Each queue manager in a cluster has a local queue called
SYSTEM.CLUSTER.REPOSITORY.QUEUE. This queue is used to store all
the repository information.

SYSTEM.CLUSTER.COMMAND.QUEUE
Each queue manager in a cluster has a local queue called
SYSTEM.CLUSTER.COMMAND.QUEUE. This queue is used to carry
messages to the repository. The queue manager uses this queue to send
any new or changed information about itself to the repository queue
manager and to send any requests for information about other queue
managers.

SYSTEM.CLUSTER.TRANSMIT.QUEUE
Each queue manager has a definition for a local queue called
SYSTEM.CLUSTER.TRANSMIT.QUEUE. This is the transmission queue for
all messages to all queues and queue managers that are within clusters.

SYSTEM.DEF.CLUSSDR
Each cluster has a default CLUSSDR channel definition called
SYSTEM.DEF.CLUSSDR. This is used to supply default values for any
attributes that you do not specify when you create a cluster-sender channel
on a queue manager in the cluster.

SYSTEM.DEF.CLUSRCVR
Each cluster has a default CLUSRCVR channel definition called
SYSTEM.DEF.CLUSRCVR. This is used to supply default values for any
attributes that you do not specify when you create a cluster-receiver
channel on a queue manager in the cluster.

Cluster-administration considerations
Let us now look at some considerations affecting the system administrator.

Maintaining a queue manager
From time to time, you may need to perform maintenance on a queue manager
that is part of a cluster. For example, you may need to take backups of the data in
its queues, or apply fixes to the software. If the queue manager hosts any queues,
its activities must be suspended. When the maintenance is complete, its activities
can be resumed.

To suspend a queue manager, issue the SUSPEND QMGR command, for example:
SUSPEND QMGR CLUSTER(SALES)

This sends a notification to the queue managers in the cluster SALES advising
them that this queue manager has been suspended. The purpose of the SUSPEND
QMGR command is only to advise other queue managers that they should avoid
sending messages to this queue manager if possible. It does not mean that the
queue manager is disabled. While the queue manager is suspended the workload
management routines avoid sending messages to it, other than messages that have
to be handled by that queue manager. Messages that have to be handled by that
queue manager include messages sent by the local queue manager. The workload
management routines choose the local queue manager whenever possible - even if
it is suspended.

Design considerations

Chapter 7. Managing MQSeries clusters 63



When the maintenance is complete the queue manager can resume its position in
the cluster. It should issue the command RESUME QMGR, for example:
RESUME QMGR CLUSTER(SALES)

This sends a notification to the repositories advising them that the queue manager
is available again. The repository queue managers disseminate this information to
other queue managers that have requested updates to information concerning this
queue manager.

It is possible to enforce the suspension of a queue manager by using the FORCE
option on the SUSPEND QMGR command, for example:
SUSPEND QMGR CLUSTER(SALES) MODE(FORCE)

This forcibly stops all inbound channels to other queue managers in the cluster. If
you do not specify MODE(FORCE), the default MODE(QUIESCE) applies.

Refreshing a queue manager
A queue manager can make a fresh start in a cluster. This is unlikely to be
necessary in normal circumstances but you may be asked to do this by your IBM
Support Center. You can issue the REFRESH CLUSTER command from a queue
manager to remove all cluster queue-manager objects and all cluster queue objects
relating to queue managers other than the local one, from the local repository. The
command also removes any auto-defined channels that do not have messages on
the cluster transmission queue and which are not attached to a repository queue
manager. Effectively, the REFRESH CLUSTER command allows a queue manager
to be “cold started” with respect to its repository content. (MQSeries ensures that
no data is lost from your queues.)

Maintaining the cluster transmission queue
The availability and performance of the cluster transmission queue are essential to
the performance of clusters. Make sure that it does not become full, and take care
not to accidentally issue an ALTER command to set it either get-disabled or
put-disabled. Also make sure that the medium the cluster transmission queue is
stored on (for example OS/390 page sets) does not become full. For performance
reasons, on OS/390 the INDXTYPE of the cluster transmission queue should be set
to CORRELID.

What happens when a queue manager fails?
If a message-batch is sent to a particular queue manager and that queue manager
becomes unavailable there are several courses of action:
v With the exception of non-persistent messages on a fast channel (which might be

lost) the undelivered batch of messages is backed out to the cluster transmission
queue on the sending queue manager.
– If the backed-out batch of messages is not in doubt and the messages are not

bound to the particular queue manager, the workload management routine is
called. The workload management routine selects a suitable alternative queue
manager and the messages are sent there.

– Messages that have already been delivered to the queue manager, or are in
doubt, or have no suitable alternative, must wait until the original queue
manager becomes available again.

Administration considerations

64 MQSeries Queue Manager Clusters

|
|
|
|
|
|
|
|
|
|



The restart can be automated using Automatic Restart Management (ARM) on
OS/390, HACMP on AIX, or any other restart mechanism available on the
platform.

What happens when a repository fails?
Cluster information is carried to repositories (whether full or partial) on a local
queue called SYSTEM.CLUSTER.COMMAND.QUEUE. If this queue should fill up,
perhaps because the queue manager has stopped working, the cluster-information
messages are routed to the dead-letter queue. If you observe that this is happening,
from the messages on your queue-manager log or OS/390 system console, you will
need to run an application to retrieve the messages from the dead-letter queue and
reroute them to the correct destination.

If errors occur on a repository queue manager you will see messages telling you
what error has occurred and how long the queue manager will wait before trying
to restart. On MQSeries for OS/390 the SYSTEM.CLUSTER.COMMAND.QUEUE is
get-disabled. When you have identified and resolved the error, you must
get-enable the SYSTEM.CLUSTER.COMMAND.QUEUE so that the queue manager
will be able to restart successfully.

In the unlikely event of a queue manager’s repository running out of storage, you
will see storage allocation errors appearing on your queue-manager log or OS/390
system console. If this happens, stop and then restart the queue manager. When
the queue manager is restarted, more storage is automatically allocated to hold all
the repository information.

What happens if I put-disable a cluster queue?
When a cluster queue is put-disabled, this situation is reflected in the repository of
each queue manager that is interested in that queue. The workload management
algorithm attempts when possible to send messages to destinations that are
put-enabled. If there are no put-enabled destinations and no local instance of a
queue, an MQOPEN call that specified MQOO_BIND_ON_OPEN returns a return
code of MQRC_CLUSTER_PUT_INHIBITED to the application. If
MQOO_BIND_NOT_FIXED is specified, or there is a local instance of the queue,
an MQOPEN call succeeds but subsequent MQPUT calls fail with return code
MQRC_PUT_INHIBITED.

You may write a user exit program to modify the workload management routines
so that messages can be routed to a destination that is put-disabled. If a message
arrives at a destination that is put-disabled (because it was in flight at the time the
queue became disabled or because a workload exit chose the destination explicitly),
then the workload management routine at the queue manager may choose another
appropriate destination if there is one, or may place the message on the dead-letter
queue, or if there is no dead-letter queue, return the message to the originator.

Administration considerations

Chapter 7. Managing MQSeries clusters 65



How long do the repositories retain information?
When a queue manager sends out some information about itself, for example to
advertise the creation of a new queue, the repository queue managers store the
information for 30 days. To prevent information in the repositories from expiring,
queue managers automatically resend all information about themselves after 27
days. If no update is received within 90 days of the expiry date, the information is
removed from the repositories. The period of 90 days is to allow for the fact that a
queue manager may have been temporarily out of service. If a queue manager
becomes disconnected from a cluster for more than 90 days it will cease to be part
of the cluster at all. However, if it reconnects to the network it will become part of
the cluster again. Note that repositories do not use information that has expired to
satisfy new requests from other queue managers.

Similarly, when a queue manager sends a request for up-to-date information from
a repository, the request lasts for 30 days. After 27 days MQSeries checks the
request. If it has been referenced during the 27 days, it is remade automatically. If
not, it is left to expire and is remade by the queue manager if it is needed again.
This is to prevent a build up of requests for information about dormant queue
managers.

Cluster channels
Although using clusters relieves you of the need to define channels (because
MQSeries defines them for you) the same channel technology used in distributed
queuing is used for communication between queue managers in a cluster. You
need to be familiar with matters such as:
v How channels operate
v How to find their status
v How to use channel exits

These topics are all discussed in the MQSeries Intercommunication book.

Do not set the disconnect interval on your cluster-sender channels and
cluster-receiver channels too low (less than about 10 seconds). If you do, the
channel may close down between sending a request to a repository queue manager
and receiving the response.

If the cluster-sender end of a channel fails and subsequently tries to restart, the
restart is rejected if the cluster-receiver end of the channel has remained active. To
avoid this problem on V5.1 of MQSeries for AIX, AS/400, HP-UX, OS/2 Warp, Sun
Solaris, and Windows NT, you can arrange for the cluster-receiver channel to be
terminated and restarted, when a cluster-sender channel attempts to restart. To
control this, use the AdoptNewMCA, AdoptNewMCATimeout, and
AdoptNewMCACheck attributes in the qm.ini file or the Windows NT Registry.
See the MQSeries System Administration book for more information.

Administration considerations

66 MQSeries Queue Manager Clusters

|
|
|
|

|
|
|
|
|
|
|
|



Chapter 8. Keeping clusters secure

This chapter discusses the following security considerations:
v “Stopping unauthorized queue managers sending messages to your queue

manager”
v “Stopping unauthorized queue managers putting messages to your queues”
v “Stopping your queue manager putting messages to remote queues” on page 68
v “Preventing queue managers joining a cluster” on page 68
v “Forcing unwanted queue managers to leave a cluster” on page 69

Stopping unauthorized queue managers sending messages to your
queue manager

You may want to prevent certain queue managers from sending messages to your
queue manager. You can do this by defining a channel security exit program on the
CLUSRCVR channel definition. Write a program that authenticates queue
managers trying to send messages on your cluster-receiver channel and denies
them access if they are not authorized. Channel security exit programs are called at
MCA initiation and termination. See the MQSeries Intercommunication book for
more information.

Clustering has no effect on the way security exits work. You can restrict access to a
queue manager in the same way as you would in a distributed queuing
environment.

Stopping unauthorized queue managers putting messages to your
queues

You may want to prevent certain queue managers from putting messages to a
queue. All MQSeries resources are protected by security facilities available on the
platform. For example:
v RACF® or other external security managers on MQSeries for OS/390
v The Object Authority Manager (OAM) on MQSeries for AS/400, MQSeries on

UNIX systems, and MQSeries for Windows NT
v User-written procedures on MQSeries for OS/2 Warp

You can take advantage of these facilities to protect your queues.

In addition, you can use the PUT authority (PUTAUT) attribute on the CLUSRCVR
channel definition. The PUTAUT attribute allows you to specify what user IDs are
to be used to establish authority to put a message to a queue. The options on the
PUTAUT attribute are:

DEF The default user ID is used. On OS/390 this may involve using both the
user ID received from the network and that derived from MCAUSER.

CTX The user ID in the context information associated with the message is
used. On OS/390 this may involve using either the user ID received from
the network, or that derived from MCAUSER, or both. Use this option if
the link is trusted and authenticated.

© Copyright IBM Corp. 1999, 2000 67

|
|



ONLYMCA
As DEF, but any user ID received from the network will not be used. This
option is supported on MQSeries for OS/390 only. Use this option if the
link is not trusted and you want to allow only a specific set of actions on
it, which are defined for the MCAUSER.

ALTMCA
As CTX, but any user ID received from the network will not be used.

For more information about using the PUTAUT attribute on a channel definition,
see the MQSeries Intercommunication book or see the MQSeries Command Reference
book.

Note: As with any other transmission queue, it is not possible for applications to
put messages directly to SYSTEM.CLUSTER.TRANSMIT.QUEUE without
special authorization.

Stopping your queue manager putting messages to remote queues
MQSeries for OS/390

You can use RACF to prevent your queue manager putting messages to a
remote queue. With RACF you can set up permissions for a named queue
regardless of whether that queue exists on your system. The authorization
required is MQOO_OUTPUT.

V5.1 of MQSeries for AIX, AS/400, HP-UX, OS/2 Warp, Sun Solaris, and
Windows NT

On these platforms you cannot restrict access to individual queues that do
not exist on your queue manager. However, you can restrict access to all
the queues in a cluster. On queue manager CORK, to grant the user
MYUSER access to the queues in a cluster, issue the following setmqaut
commands:
setmqaut -m CORK -t qmgr -p MYUSER +connect
setmqaut -m CORK -t qmgr -p MYUSER +setall
setmqaut -m CORK -n SYSTEM.CLUSTER.TRANSMIT.QUEUE

-t queue -p MYUSER +setall

On OS/400, the equivalent CL commands are:
GRTMQAUT OBJ(CORK) OBJYTPE(*MQM) USER(MYUSER) AUT(*CONNECT)
GRTMQAUT OBJ(CORK) OBJYTPE(*MQM) USER(MYUSER) AUT(*SETALL)
GRTMQAUT OBJ(SYSTEM.CLUSTER.TRANSMIT.QUEUE) OBJYTPE(*Q) +

USER(MYUSER) AUT(*SETALL) MQMNAME(CORK)

Setting access in this way allows the user MYUSER to put messages to any
queue in the cluster.

Preventing queue managers joining a cluster
If you want to ensure that only certain authorized queue managers attempt to join
a cluster you must either use a security exit program on the cluster-receiver
channel, or you must write an exit program to prevent unauthorized queue
managers from writing to SYSTEM.CLUSTER.COMMAND.QUEUE. You must not
restrict access to SYSTEM.CLUSTER.COMMAND.QUEUE such that no queue
manager can write to it. If you did, you would prevent any queue manager from
being able to join the cluster.

Restricting access to your queues

68 MQSeries Queue Manager Clusters

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|

|
|
|
|

|
|



It is difficult to stop a queue manager that is a member of a cluster from defining a
queue. Therefore, there is a danger that a rogue queue manager could join a
cluster, learn what queues are in it, define its own instance of one of those queues,
and so receive messages that it should not be authorized to receive.

To prevent a queue manager receiving messages that it should not, you could
write:
v A channel exit program on each cluster-sender channel, which uses the

connection name to determine the suitability of the destination queue manager
to be sent the messages

v A cluster workload exit program, which uses the destination records to
determine the suitability of the destination queue and queue manager to be sent
the messages

v A channel auto-definition exit program, which uses the connection name to
determine the suitability of defining channels to the destination queue manager

Forcing unwanted queue managers to leave a cluster
You can force an unwanted queue manager to leave a cluster. You may need to do
this to tidy up, if for example, a queue manager was deleted but its cluster-receiver
channels are still defined to the cluster. You may have other reasons for wanting to
eject a queue manager.

Only repository queue managers are authorized to eject a queue manager from a
cluster. For example, to eject the queue manager OSLO from the cluster NORWAY,
the repository queue manager would issue the command:
RESET CLUSTER(NORWAY) QMNAME(OSLO) ACTION(FORCEREMOVE)

Preventing queue managers joining

Chapter 8. Keeping clusters secure 69



Forcing queue managers to leave

70 MQSeries Queue Manager Clusters



Chapter 9. Advanced tasks

This chapter shows some advanced tasks that you can perform to extend the
cluster created in “Task 1: Setting up a new cluster” on page 19 and “Task 2:
Adding a new queue manager to a cluster” on page 25. These tasks are:
v “Task 3: Adding a new queue manager that hosts a queue”
v “Task 4: Removing a cluster queue from a queue manager” on page 75
v “Task 5: Removing a queue manager from a cluster” on page 77
v “Task 6: Moving a repository to another queue manager” on page 79

The chapter then goes on to demonstrate two further tasks:
v “Task 7: Converting an existing network into a cluster” on page 81
v “Task 8: Adding a new, interconnected cluster” on page 85

You can perform these tasks, and the two described in “Chapter 3. First tasks” on
page 19 without stopping your existing cluster queue managers or disrupting your
existing network in any way.

Much of the information you need to achieve these tasks is documented elsewhere
in the MQSeries library. This chapter gives pointers to that information and fills in
details relating specifically to work with clusters.

Notes:

1. Throughout the examples in this chapter and Chapter 3. First tasks the queue
managers have illustrative names such as LONDON and NEWYORK. Don’t
forget that on MQSeries for OS/390, queue-manager names are limited to 4
characters.

2. The names of the queue managers imply that each queue manager is on a
separate machine. You could just as easily set up these examples with all the
queue managers on the same machine.

3. The examples in these chapters show MQSeries Commands (MQSC) as they
would be entered by the system administrator at the command console. For
information about other ways of entering commands, refer to “Chapter 6.
MQSeries commands” on page 53.

Task 3: Adding a new queue manager that hosts a queue
Scenario:
v The INVENTORY cluster has been set up as described in “Task 2: Adding a new

queue manager to a cluster” on page 25. It contains three queue managers;
LONDON and NEWYORK both hold full repositories, PARIS holds a partial
repository. The inventory application runs on the system in New York,
connected to the NEWYORK queue manager. The application is driven by the
arrival of messages on the INVENTQ queue.

v A new store is being set up in Toronto. To provide additional capacity you want
to run the inventory application on the system in Toronto as well as New York.

v Network connectivity exists between all four systems.
v The network protocol is TCP.

© Copyright IBM Corp. 1999, 2000 71

|
|
|

|
|
|
|



The steps required to complete task 3
To achieve this, follow these steps:

1. Prepare the TORONTO queue manager
Preparation of queue managers is described in “How should I prepare for use of
clustering?” on page 14.

2. Determine which full repository TORONTO should refer to first
Every queue manager in a cluster must refer to one or other of the repositories in
order to gather information about the cluster and so build up its own partial
repository. It is of no particular significance which repository you choose. In this
example we choose NEWYORK. Once the new queue manager has joined the
cluster it will communicate with both of the repositories.

3. Define the CLUSRCVR channel
Every queue manager in a cluster needs to define a cluster-receiver channel on
which it can receive messages. On TORONTO, define:
DEFINE CHANNEL(TO.TORONTO) CHLTYPE(CLUSRCVR) TRPTYPE(TCP)
CONNAME(TORONTO.CHSTORE.COM) CLUSTER(INVENTORY)

This advertises the queue manager’s availability to receive messages from other
queue managers in the cluster, INVENTORY.

4. Define a CLUSSDR channel on queue manager TORONTO
Every queue manager in a cluster needs to define one cluster-sender channel on
which it can send messages to its first repository. In this case we have chosen
NEWYORK, so TORONTO needs the following definition:
DEFINE CHANNEL(TO.NEWYORK) CHLTYPE(CLUSSDR) TRPTYPE(TCP)
CONNAME(NEWYORK.CHSTORE.COM) CLUSTER(INVENTORY)

5. Review the inventory application for message affinities
Before proceeding, you must ensure that the inventory application does not have
any dependencies on the sequence of processing of messages. See “Reviewing
applications for message affinities” on page 46 for more information.

6. Install the inventory application on the system in Toronto
See the MQSeries Application Programming Guide for information about how to do
this.

7. Define the cluster queue INVENTQ
The INVENTQ queue, which is already hosted by the NEWYORK queue manager,
is also to be hosted by TORONTO. Define it on the TORONTO queue manager as
follows:
DEFINE QLOCAL(INVENTQ) CLUSTER(INVENTORY)

Now that you have completed all the definitions, if you have not already done so
you should start the channel initiator on MQSeries for OS/390 and, on all
platforms, start a listener program on queue manager TORONTO. The listener
program listens for incoming network requests and starts the cluster-receiver
channel when it is needed. See “Establishing communication in a cluster” on
page 16 for more information.

Adding a queue manager that hosts a queue

72 MQSeries Queue Manager Clusters



The cluster achieved by task 3
The cluster set up by this task looks like this:

The INVENTQ queue and the inventory application are now hosted on two queue
managers in the cluster. This increases their availability, speeds up throughput of
messages, and allows the workload to be distributed between the two queue
managers. Messages put to INVENTQ by either TORONTO or NEWYORK are
handled by the instance on the local queue manager whenever possible. Messages
put by LONDON or PARIS are routed alternately to TORONTO or NEWYORK, so
that the workload is balanced.

This modification to the cluster was accomplished without you having to make
any alterations to the queue managers NEWYORK, LONDON, and PARIS. The
repositories in these queue managers are updated automatically with the
information they need to be able to send messages to INVENTQ at TORONTO.

Assuming that the inventory application is designed appropriately and that there
is sufficient processing capacity on the systems in New York and Toronto, the
inventory application will continue to function if either the NEWYORK or the
TORONTO queue manager becomes unavailable.

INVENTORY

LONDON

PARIS

TORONTO

INVENTQ

NEWYORK

INVENTQ

TO.NEWYORKTO.TORONTO TO.PARIS

TO.LONDON

Figure 16. The INVENTORY cluster with four queue managers

Adding a queue manager that hosts a queue

Chapter 9. Advanced tasks 73



Extensions to this task
As you can see from the result of this task, it is possible to have the same
application running on more than one queue manager. You can use the facility to
allow even distribution of your workload, or you may decide to control the
distribution yourself by using a data partitioning technique.

For example, suppose that you decide to add a customer-account query and
update application running in LONDON and NEWYORK. Account information
can only be held in one place, but you could arrange for half the records, for
example for account numbers 00000 to 49999, to be held in LONDON, and the
other half, in the range 50000 to 99999, to be held in NEWYORK. You would write
a cluster workload exit program to examine the account field in all messages, and
route the messages to the appropriate queue manager.

This is just one example of data partitioning. There are, of course, other ways you
could do this.

Adding a queue manager that hosts a queue

74 MQSeries Queue Manager Clusters



Task 4: Removing a cluster queue from a queue manager
Scenario:
v The INVENTORY cluster has been set up as described in “Task 3: Adding a new

queue manager that hosts a queue” on page 71. It contains four queue managers.
LONDON and NEWYORK hold full repositories. PARIS and TORONTO hold
partial repositories. The inventory application runs on the systems in New York
and Toronto and is driven by the arrival of messages on the INVENTQ queue.

v Because of reduced workload, you no longer want to run the inventory
application in Toronto. You want to disable the INVENTQ queue hosted by the
queue manager TORONTO, and have TORONTO feed messages to the
INVENTQ queue in NEWYORK.

v Network connectivity exists between all four systems.
v The network protocol is TCP.

The steps required to complete task 4
To achieve this, you need to perform the following tasks:

1. Indicate that the queue is no longer available
To remove a queue from a cluster, you need to remove the cluster name from the
local queue definition. Do this from queue manager TORONTO, using the ALTER
QLOCAL command and specifying a blank cluster name, like this:
ALTER QLOCAL(INVENTQ) CLUSTER(' ')

2. Disable the queue
Disable the INVENTQ queue at TORONTO so that no further messages can be
written to it:
ALTER QLOCAL(INVENTQ) PUT(DISABLED)

Now messages in transit to this queue using MQOO_BIND_ON_OPEN will go to
the dead-letter queue. You need to stop all applications from putting messages
explicitly to the queue on this queue manager.

3. Monitor the queue until it is empty
Monitor the queue using the DISPLAY QUEUE command and specifying the
attributes IPPROCS, OPPROCS, and CURDEPTH. When the number of input
processes, the number of output processes, and the current depth of the queue are
all zero, you can be sure that the queue is empty.

4. Monitor the channel to ensure there are no in-doubt messages
To be sure that there are no in-doubt messages on the channel TO.TORONTO,
monitor the cluster-sender channel called TO.TORONTO on each of the other
queue managers. To do this, issue the DISPLAY CHSTATUS command specifying
the INDOUBT parameter from each queue manager:
DISPLAY CHSTATUS(TO.TORONTO) INDOUBT

If there are any in-doubt messages, you must take action to resolve them before
proceeding. For example, you might try issuing the RESOLVE channel command
or stopping and restarting the channel.

5. Delete the local queue
When you are satisfied that there are no more messages to be delivered to the
inventory application at TORONTO, you can delete the queue:
DELETE QLOCAL(INVENTQ)

Removing a cluster queue from a queue manager

Chapter 9. Advanced tasks 75



The cluster achieved by task 4
The cluster set up by this task is similar to that set up by the previous task, except
that the INVENTQ queue is no longer available at queue manager TORONTO.

When you took the queue out of service (step 1), the TORONTO queue manager
sent a message to the two repository queue managers notifying them of the change
in status. The repository queue managers pass on this information to other queue
managers in the cluster that have requested updates to information concerning the
INVENTQ.

Now when a queue manager wants to put a message to the INVENTQ, it sees,
from its updated partial repository, that the INVENTQ is available only at
NEWYORK, and so sends its message there.

You may now choose to remove the inventory application from the system in
Toronto, to avoid duplication and save space on the system.

Extensions to this task
In this task description there is only one queue to remove and only one cluster to
remove it from.

Suppose that there were many queues referring to a namelist containing many
cluster names. For example, the TORONTO queue manager might host not only
the INVENTQ, but also the PAYROLLQ, SALESQ, and PURCHASESQ. TORONTO
would make these queues available in all the appropriate clusters, INVENTORY,
PAYROLL, SALES, and PURCHASES. To do this, TORONTO would define a
namelist of the cluster names:
DEFINE NAMELIST(TOROLIST)

DESCR('List of clusters TORONTO is in')
NAMES(INVENTORY, PAYROLL, SALES, PURCHASES)

and specify this namelist on each queue definition, like this:
DEFINE QLOCAL(INVENTQ) CLUSNL(TOROLIST)
DEFINE QLOCAL(PAYROLLQ) CLUSNL(TOROLIST)
DEFINE QLOCAL(SALESQ) CLUSNL(TOROLIST)
DEFINE QLOCAL(PURCHASESQ) CLUSNL(TOROLIST)

Now suppose that you want to remove all those queues from the SALES cluster,
because the SALES operation is to be taken over by the PURCHASES operation.
All you would need to do is alter the TOROLIST namelist to remove the name of
the SALES cluster from it.

If you wanted to remove a single queue from one of the clusters in the namelist,
you would need to create a new namelist, containing the remaining list of cluster
names, and then alter the queue definition to use the new namelist. To remove the
PAYROLLQ from the INVENTORY cluster:
1. Create a new namelist:

DEFINE NAMELIST(TOROSHORTLIST)
DESCR('List of clusters TORONTO is in other than INVENTORY')
NAMES(PAYROLL, SALES, PURCHASES)

2. Alter the PAYROLLQ queue definition:
ALTER QLOCAL(PAYROLLQ) CLUSNL(TOROSHORTLIST)

Removing a cluster queue from a queue manager

76 MQSeries Queue Manager Clusters



Task 5: Removing a queue manager from a cluster
Scenario:
v The INVENTORY cluster has been set up as described in “Task 3: Adding a new

queue manager that hosts a queue” on page 71 and modified as described in
“Task 4: Removing a cluster queue from a queue manager” on page 75.

v For business reasons you no longer wish to carry out any inventory work at
Toronto and so you wish to remove the TORONTO queue manager from the
cluster.

The steps required to complete task 5
To achieve this, you need to perform the following tasks at the TORONTO queue
manager.

1. Suspend queue manager TORONTO
Issue the SUSPEND QMGR command to suspend availability of the queue
manager to the INVENTORY cluster:
SUSPEND QMGR CLUSTER(INVENTORY)

When you issue this command, other queue managers are advised that they
should refrain from sending messages to TORONTO.

2. Stop the CLUSRCVR channel at TORONTO
Issue the STOP CHANNEL command to stop the cluster-receiver channel:
STOP CHANNEL(TO.TORONTO)

Once the channel is stopped, no more messages can be sent to TORONTO.

3. Remove the CLUSRCVR channel definition
You should now remove the CLUSRCVR definition from the cluster:
ALTER CHANNEL(TO.TORONTO) CHLTYPE(CLUSRCVR) CLUSTER(' ')

This command causes the repository queue managers to remove all information
about that channel from their repositories, so that queue managers will no longer
try to send messages to it.

Later, to tidy up, you will probably want to delete the channel:
DELETE CHANNEL(TO.TORONTO)

4. Delete the CLUSSDR channel definition
The CLUSSDR channel definition points to the repository at queue manager
NEWYORK. Stop this channel as follows:
STOP CHANNEL(TO.NEWYORK)

and then delete it:
DELETE CHANNEL(TO.NEWYORK)

Removing a queue manager

Chapter 9. Advanced tasks 77



The cluster achieved by task 5
The cluster set up by this task looks like this:

The queue manager TORONTO is no longer part of the cluster. However, it can
still function as an independent queue manager.

This modification to the cluster was accomplished without you having to make
any alterations to the queue managers NEWYORK, LONDON, and PARIS.

Note: Before you can remove a repository queue manager from a cluster you must
perform an additional step. You must alter the queue manager definition to
set the REPOS and REPOSNL attributes to blank. This sends a notification to
other queue managers advising them that they must stop sending cluster
information to this queue manager.

TORONTO

INVENTORY

LONDON

NEWYORK

INVENTQ

PARIS

TO.LONDON

TO.NEWYORK

TO.PARIS

Figure 17. The INVENTORY cluster, with TORONTO outside the cluster

Removing a queue manager

78 MQSeries Queue Manager Clusters



Task 6: Moving a repository to another queue manager
Scenario:
v The INVENTORY cluster has been set up as described in “Task 3: Adding a new

queue manager that hosts a queue” on page 71 and modified as described in
“Task 4: Removing a cluster queue from a queue manager” on page 75 and “Task
5: Removing a queue manager from a cluster” on page 77.

v For business reasons you now want to remove the repository from queue
manager LONDON, and replace it with a repository at queue manager PARIS.
The NEWYORK queue manager is to continue holding a full repository.

The steps required to complete task 6
To achieve this, you need to perform the following tasks.

1. Alter PARIS to make it a repository queue manager
On PARIS, issue the following command:
ALTER QMGR REPOS(INVENTORY)

2. Add a CLUSSDR channel on PARIS
PARIS currently has a cluster-sender channel pointing to LONDON. Now that
LONDON is no longer to hold a full repository for the cluster, PARIS must have a
new cluster-sender channel that points to NEWYORK, where the other repository
is held.
DEFINE CHANNEL(TO.NEWYORK) CHLTYPE(CLUSSDR) TRPTYPE(TCP)
CONNAME(NEWYORK.CHSTORE.COM) CLUSTER(INVENTORY)

3. Define a CLUSSDR channel on NEWYORK that points to
PARIS
Currently NEWYORK has a cluster-sender channel pointing to LONDON. Now
that the other repository has moved to PARIS, you need to add a new
cluster-sender channel at NEWYORK that points to PARIS.
DEFINE CHANNEL(TO.PARIS) CHLTYPE(CLUSSDR) TRPTYPE(TCP)
CONNAME(PARIS.CHSTORE.COM) CLUSTER(INVENTORY)

When you do this, the PARIS queue manager immediately learns all about the
cluster, from NEWYORK, and builds up its own repository.

4. Alter the queue-manager definition on LONDON
The final step is to alter the queue manager at LONDON so that it no longer holds
a full repository for the cluster. On LONDON, issue the command:
ALTER QMGR REPOS(' ')

The queue manager no longer receives any cluster information. After 30 days the
information that is stored in its repository expires. The queue manager LONDON
now builds up its own partial repository.

Moving a repository

Chapter 9. Advanced tasks 79



5. Remove or change any outstanding definitions
When you are sure that the new arrangement of your cluster is working as
expected, you may remove or change any outstanding definitions that are no
longer up-to-date. It is not essential that you do this, but you may choose to in
order to tidy up.
v On the PARIS queue manager, delete the cluster-sender channel to LONDON.

DELETE CHANNEL(TO.LONDON)

v On the NEWYORK queue manager, delete the cluster-sender channel to
LONDON.
DELETE CHANNEL(TO.LONDON)

v Similarly, replace all other cluster-sender channels in the cluster that point to
LONDON with channels that point to either NEWYORK or PARIS. (In this small
example there are no others.) To check whether there were any others that you
had forgotten about, you could issue the DISPLAY CHANNEL command from
each queue manager, specifying TYPE(CLUSSDR). For example:
DISPLAY CHANNEL(*) TYPE(CLUSSDR)

The cluster achieved by task 6
The cluster set up by this task looks like this:

TORONTO

INVENTORY

LONDON

NEWYORK

INVENTQ

PARIS

TO.LONDON

TO.NEWYORK

TO.PARIS

Figure 18. The INVENTORY cluster with the repository moved to PARIS

Moving a repository

80 MQSeries Queue Manager Clusters



Task 7: Converting an existing network into a cluster
“Task 1: Setting up a new cluster” on page 19 through “Task 6: Moving a
repository to another queue manager” on page 79 have been concerned with
setting up and then extending a new cluster. The remaining two tasks explore a
different approach: that of converting an existing network of queue managers into
a cluster.

Scenario:
v An MQSeries network is already in place, connecting the nation-wide branches

of a chain store. It has a hub and spoke structure: all the queue managers are
connected to one central queue manager. The central queue manager is on the
system on which the inventory application runs. The application is driven by the
arrival of messages on the INVENTQ queue, for which each queue manager has
a remote-queue definition.
This network is illustrated in Figure 19.

v To ease administration you are going to convert this network into a cluster and
create another queue manager at the central site to share the workload.

v Both the central queue managers are to host full repositories and be accessible to
the inventory application.

v The inventory application is to be driven by the arrival of messages on the
INVENTQ queue hosted by either of the central queue managers.

v The inventory application is to be the only application running in parallel and
accessible by more than one queue manager. All other applications will continue
to run as before.

v All the branches have network connectivity to the two central queue managers.
v The network protocol is TCP.

Figure 19. A hub and spoke network

Converting an existing network

Chapter 9. Advanced tasks 81



The steps required to complete task 7
To achieve this, you need to perform the following tasks.

Note: You do not need to convert your entire network all at once. This task could
be completed in stages.

1. Upgrade MQSeries on your system
To use clusters, you must install one of the following products, V5.1 of MQSeries
for AIX, AS/400, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT, or MQSeries
for OS/390.

2. Review the inventory application for message affinities
Before proceeding it is important to ensure that the application will not have a
problem with message affinities. See “Reviewing applications for message
affinities” on page 46 for more information.

3. Prepare the new queue manager at the central site
Preparation of queue managers is described in “How should I prepare for use of
clustering?” on page 14.

4. Alter the two central queue managers to make them repository
queue managers
The two queue managers CHICAGO and CHICAGO2 are at the hub of this
network. You have decided to concentrate all activity associated with the
chainstore cluster on to those two queue managers. As well as the inventory
application and the definitions for the INVENTQ queue, you want these queue
managers to host the two full repositories for the cluster. At each of the two queue
managers, issue the following command:
ALTER QMGR REPOS(CHAINSTORE)

5. Define a CLUSRCVR channel on each queue manager
At each queue manager in the cluster, you need to define a cluster-receiver channel
and a cluster-sender channel. It does not matter which of these you define first.

Make a CLUSRCVR definition to advertise each queue manager, its network
address, and so on, to the cluster. For example, on queue manager ATLANTA:
DEFINE CHANNEL(TO.ATLANTA) CHLTYPE(CLUSRCVR) TRPTYPE(TCP)
CONNAME(ATLANTA.CHSTORE.COM) CLUSTER(CHAINSTORE)

6. Define a CLUSSDR channel on each queue manager
Make a CLUSSDR definition at each queue manager to link that queue manager to
one or other of the repository queue managers. For example, you might link
ATLANTA to CHICAGO2:
DEFINE CHANNEL(TO.CHICAGO2) CHLTYPE(CLUSSDR) TRPTYPE(TCP)
CONNAME(CHICAGO2.CHSTORE.COM) CLUSTER(CHAINSTORE)

7. Install the inventory application on CHICAGO2
You already have the inventory application on queue manager CHICAGO. Now
you need to make a copy of this application on queue manager CHICAGO2. Refer
to the MQSeries Application Programming Guide and install the inventory application
on CHICAGO2.

Converting an existing network

82 MQSeries Queue Manager Clusters

|
|
|



8. Define the INVENTQ queue on the central queue managers
On CHICAGO you need to modify the local queue definition for the queue
INVENTQ to make the queue available to the cluster. Issue the command:
ALTER QLOCAL(INVENTQ) CLUSTER(CHAINSTORE)

On CHICAGO2 you need to make a definition for the same queue:
DEFINE QLOCAL(INVENTQ) CLUSTER(CHAINSTORE)

(On OS/390 you could use the MAKEDEF option of the COMMAND function of
CSQUTIL to make an exact copy on CHICAGO2 of the INVENTQ on CHICAGO.
See the MQSeries for OS/390 System Management Guide for details.)

When you make these definitions, a message is sent to the repositories at
CHICAGO and CHICAGO2 and the information in them is updated. From then
on, when a queue manager wants to put a message to the INVENTQ, it will find
out from the repositories that there is a choice of destinations for messages sent to
that queue.

9. Delete all remote-queue definitions for the INVENTQ
Now that you have linked all your queue managers together in the CHAINSTORE
cluster, and have defined the INVENTQ to the cluster, the queue managers no
longer need remote-queue definitions for the INVENTQ. At every queue manager,
issue the command:
DELETE QREMOTE(INVENTQ)

Until you do this, the remote-queue definitions will continue to be used and you
will not get the benefit of using clusters.

10. Implement the cluster workload exit (optional step)
Because there is more than one destination for messages sent to the INVENTQ, the
workload management algorithm will determine which destination each message
will be sent to.

If you wish to implement your own workload management routine, you can write
a cluster workload exit program. See “Workload balancing” on page 42 for more
information.

Now that you have completed all the definitions, if you have not already done so
you should start the channel initiator on MQSeries for OS/390 and, on all
platforms, start a listener program on each queue manager. The listener program
listens for incoming network requests and starts the cluster-receiver channel when
it is needed. See “Establishing communication in a cluster” on page 16 for more
information.

Converting an existing network

Chapter 9. Advanced tasks 83



The cluster achieved by task 7
The cluster set up by this task looks like this:

Remember, that as with the other diagrams in this book, this diagram shows only
the channels that you have to define manually. Cluster-sender channels are defined
automatically when needed so that ultimately all queue managers can receive
cluster information from the two repository queue managers and also messages
from the two applications.

Once again, this is a very small example - little more than a proof of concept. In
your enterprise it is unlikely that you would have a cluster of this size with only
one queue.

You could easily add more queues to the cluster environment by adding the
CLUSTER parameter to your queue definitions, and then removing all
corresponding remote-queue definitions from the other queue managers.

Figure 20. A cluster with a hub and spokes

Converting an existing network

84 MQSeries Queue Manager Clusters



Task 8: Adding a new, interconnected cluster
Scenario:
v An MQSeries cluster has been set up as described in “Task 7: Converting an

existing network into a cluster” on page 81.
v A new cluster called MAILORDER is to be implemented. This cluster will

comprise four of the queue managers that are in the CHAINSTORE cluster;
CHICAGO, CHIGACO2, SEATTLE, and ATLANTA, and two additional queue
managers; HARTFORD and OMAHA. The MAILORDER application will run on
the system at Omaha, connected to queue manager OMAHA. It will be driven
by the other queue managers in the cluster putting messages on the MORDERQ
queue.

v The repositories for the MAILORDER cluster will be maintained on the two
queue managers CHICAGO and CHICAGO2.

v The network protocol is TCP.

The steps required to complete task 8
To achieve this, you need to perform the following tasks.

1. Create a namelist of the cluster names
The repository queue managers at CHICAGO and CHICAGO2 are now going to
hold the repositories for both of the clusters CHAINSTORE and MAILORDER. You
need to alter the queue-manager definitions to add the new cluster name, but
before you can do this you must create a namelist containing the names of the
clusters. Define the namelist on CHICAGO and CHICAGO2, as follows:
DEFINE NAMELIST(CHAINMAIL)

DESCR('List of cluster names')
NAMES(CHAINSTORE, MAILORDER)

2. Alter the two queue-manager definitions
Now you can alter the two queue-manager definitions, at CHICAGO and
CHICAGO2. Currently these definitions show that the queue managers hold
repositories for the cluster CHAINSTORE. You need to change that definition to
show that the queue managers hold repositories for all clusters listed in the
CHAINMAIL namelist. To do this, at both CHICAGO and CHICAGO2, specify:
ALTER QMGR REPOS(' ') REPOSNL(CHAINMAIL)

3. Alter the CLUSRCVR channels on CHICAGO and CHICAGO2
The CLUSRCVR channel definitions at CHICAGO and CHICAGO2 show that the
channels are available in the cluster CHAINSTORE. You need to change this to
show that the channels are available to all clusters listed in the CHAINMAIL
namelist. To do this, at CHICAGO, enter the command:
ALTER CHANNEL(TO.CHICAGO) CHLTYPE(CLUSRCVR)

CLUSTER(' ') CLUSNL(CHAINMAIL)

At CHICAGO2, enter the command:
ALTER CHANNEL(TO.CHICAGO2) CHLTYPE(CLUSRCVR)

CLUSTER(' ') CLUSNL(CHAINMAIL)

Interconnecting a new cluster

Chapter 9. Advanced tasks 85



4. Alter the CLUSSDR channels on CHICAGO and CHICAGO2
Similarly, you need to change the two CLUSSDR channel definitions to add the
namelist. At CHICAGO, enter the command:
ALTER CHANNEL(TO.CHICAGO2) CHLTYPE(CLUSSDR)

CLUSTER(' ') CLUSNL(CHAINMAIL)

At CHICAGO2, enter the command:
ALTER CHANNEL(TO.CHICAGO) CHLTYPE(CLUSSDR)

CLUSTER(' ') CLUSNL(CHAINMAIL)

5. Create a namelist on SEATTLE and ATLANTA
Because SEATTLE and ATLANTA are going to be members of more than one
cluster, you must create a namelist containing the names of the clusters. Define the
namelist on SEATTLE and ATLANTA, as follows:
DEFINE NAMELIST(CHAINMAIL)

DESCR('List of cluster names')
NAMES(CHAINSTORE, MAILORDER)

6. Alter the CLUSRCVR channels on SEATTLE and ATLANTA
The CLUSRCVR channel definitions at SEATTLE and ATLANTA show that the
channels are available in the cluster CHAINSTORE. You need to change this to
show that the channels are available to all clusters listed in the CHAINMAIL
namelist. To do this, at SEATTLE, enter the command:
ALTER CHANNEL(TO.SEATTLE) CHLTYPE(CLUSRCVR)

CLUSTER(' ') CLUSNL(CHAINMAIL)

At ATLANTA, enter the command:
ALTER CHANNEL(TO.ATLANTA) CHLTYPE(CLUSRCVR)

CLUSTER(' ') CLUSNL(CHAINMAIL)

7. Alter the CLUSSDR channels on SEATTLE and ATLANTA
Similarly, you need to change the two CLUSSDR channel definitions to add the
namelist. At SEATTLE, enter the command:
ALTER CHANNEL(TO.CHICAGO) CHLTYPE(CLUSSDR)

CLUSTER(' ') CLUSNL(CHAINMAIL)

At ATLANTA, enter the command:
ALTER CHANNEL(TO.CHICAGO2) CHLTYPE(CLUSSDR)

CLUSTER(' ') CLUSNL(CHAINMAIL)

8. Prepare the queue managers HARTFORD and OMAHA
Preparation of queue managers is described in “How should I prepare for use of
clustering?” on page 14.

Interconnecting a new cluster

86 MQSeries Queue Manager Clusters



9. Define CLUSRCVR and CLUSSDR channels on HARTFORD
and OMAHA
On the two new queue managers HARTFORD and OMAHA, you need to define
cluster-receiver and cluster-sender channels. It doesn’t matter in which sequence
you do this. At HARTFORD, enter:
DEFINE CHANNEL(TO.HARTFORD) CHLTYPE(CLUSRCVR) TRPTYPE(TCP)
CONNAME(HARTFORD.CHSTORE.COM) CLUSTER(MAILORDER)

DEFINE CHANNEL(TO.CHICAGO) CHLTYPE(CLUSSDR) TRPTYPE(TCP)
CONNAME(CHICAGO.CHSTORE.COM) CLUSTER(MAILORDER)

At OMAHA, enter:
DEFINE CHANNEL(TO.OMAHA) CHLTYPE(CLUSRCVR) TRPTYPE(TCP)
CONNAME(OMAHA.CHSTORE.COM) CLUSTER(MAILORDER)

DEFINE CHANNEL(TO.CHICAGO) CHLTYPE(CLUSSDR) TRPTYPE(TCP)
CONNAME(CHICAGO.CHSTORE.COM) CLUSTER(MAILORDER)

10. Define the MORDERQ queue on OMAHA
The final step to complete this task is to define the queue MORDERQ on the queue
manager OMAHA. To do this, enter:
DEFINE QLOCAL(MORDERQ) CLUSTER(MAILORDER)

Interconnecting a new cluster

Chapter 9. Advanced tasks 87



The cluster achieved by task 8
The cluster set up by this task looks like this:

Figure 21. Interconnected clusters

Interconnecting a new cluster

88 MQSeries Queue Manager Clusters



Now we have two overlapping clusters. The repositories for both clusters are held
at CHICAGO and CHICAGO2. The mailorder application that runs on OMAHA is
independent of the inventory application that runs at CHICAGO. However, some
of the queue managers that are in the CHAINSTORE cluster are also in the
MAILORDER cluster, and so they can send messages to either application. Before
carrying out this task to overlap two clusters, you should be aware of the
possibility of queue-name clashes. Suppose that on NEWYORK in cluster
CHAINSTORE and on OMAHA in cluster MAILORDER, there was a queue called
ACCOUNTQ. If you overlap the clusters and then an application on a queue
manager that is a member of both clusters, for example SEATTLE, puts a message
to the queue ACCOUNTQ, the message could go to either instance of the
ACCOUNTQ. This may or may not be what you intended.

Before starting this task the system administrators of the two clusters must check
for queue-name clashes and be sure that they understand the consequences. You
may need to rename a queue, or perhaps set up queue aliases before you can
proceed.

Extensions to this task
One day in the future you might decide to merge the MAILORDER cluster with
the CHAINSTORE cluster to form one large cluster called CHAINSTORE.

To merge the MAILORDER cluster with the CHAINSTORE cluster, such that
CHICAGO and CHICAGO2 hold the repositories, you need to:
v Alter the queue manager definitions for CHICAGO and CHICAGO2, removing

the REPOSNL attribute, which specifies the namelist (CHAINMAIL), and
replacing it with a REPOS attribute specifying the cluster name (CHAINSTORE).
For example:
ALTER QMGR(CHICAGO) REPOSNL(' ') REPOS(CHAINSTORE)

v On each queue manager in the MAILORDER cluster, alter all the channel
definitions and queue definitions to change the value of the CLUSTER attribute
from MAILORDER to CHAINSTORE. For example, at HARTFORD, enter:
ALTER CHANNEL(TO.HARTFORD) CLUSTER(CHAINSTORE)

At OMAHA enter:
ALTER QLOCAL(MORDERQ) CLUSTER(CHAINSTORE)

v Alter all definitions that specify the cluster namelist CHAINMAIL, that is, the
CLUSRCVR and CLUSSDR channel definitions at CHICAGO, CHICAGO2,
SEATTLE, and ATLANTA, to specify instead the cluster CHAINSTORE.

From this example, you can see the advantage of using namelists. Instead of
altering the queue manager definitions for CHICAGO and CHICAGO2 you could
just alter the value of the namelist CHAINMAIL. Similarly, instead of altering the
CLUSRCVR and CLUSSDR channel definitions at CHICAGO, CHICAGO2,
SEATTLE, and ATLANTA, you could achieve the required result by altering the
namelist.

Interconnecting a new cluster

Chapter 9. Advanced tasks 89



Using clusters

90 MQSeries Queue Manager Clusters



Part 3. Reference information

Chapter 10. Cluster workload exit call and data
structures . . . . . . . . . . . . . . 93
MQ_CLUSTER_WORKLOAD_EXIT - Cluster
workload exit. . . . . . . . . . . . . . 94

Syntax . . . . . . . . . . . . . . . 94
Parameters . . . . . . . . . . . . . 94
Usage notes . . . . . . . . . . . . . 94
C invocation . . . . . . . . . . . . . 94
System/390 assembler invocation . . . . . . 94

MQWXP - Cluster workload exit parameter
structure . . . . . . . . . . . . . . . 95

Fields . . . . . . . . . . . . . . . 95
C declaration . . . . . . . . . . . . 100
System/390 assembler declaration . . . . . 101

MQWDR - Cluster workload destination-record
structure . . . . . . . . . . . . . . . 102

Fields . . . . . . . . . . . . . . . 102
C declaration . . . . . . . . . . . . 105
System/390 assembler declaration . . . . . 105

MQWQR - Cluster workload queue-record
structure . . . . . . . . . . . . . . . 106

Fields . . . . . . . . . . . . . . . 106
C declaration . . . . . . . . . . . . 109
System/390 assembler declaration . . . . . 109

MQWCR - Cluster workload cluster-record
structure . . . . . . . . . . . . . . . 110

Fields . . . . . . . . . . . . . . . 110
C declaration . . . . . . . . . . . . 111
System/390 assembler declaration . . . . . 111

Chapter 11. Constants for the cluster workload
exit . . . . . . . . . . . . . . . . 113
List of constants . . . . . . . . . . . . 113

MQ_* (Lengths of character string and byte
fields) . . . . . . . . . . . . . . . 113
MQBND_* (Binding) . . . . . . . . . . 113
MQCHS_* (Channel status) . . . . . . . . 113
MQCQT_* (Cluster queue type) . . . . . . 114
MQPER_* (Persistence) . . . . . . . . . 114
MQQA_* (Inhibit put) . . . . . . . . . 114
MQQF_* (Queue flags) . . . . . . . . . 114
MQQMF_* (Queue-manager flags) . . . . . 114
MQWDR_* (Cluster workload exit
destination-record length) . . . . . . . . 115
MQWDR_* (Cluster workload exit
destination-record structure identifier) . . . . 115
MQWDR_* (Cluster workload exit
destination-record version) . . . . . . . . 115
MQWQR_* (Cluster workload exit queue-record
length) . . . . . . . . . . . . . . 115
MQWQR_* (Cluster workload exit queue-record
structure identifier) . . . . . . . . . . 115
MQWQR_* (Cluster workload exit queue-record
version) . . . . . . . . . . . . . . 116
MQWXP_* (Cluster workload exit structure
identifier). . . . . . . . . . . . . . 116

MQWXP_* (Cluster workload exit version) . . 116
MQXCC_* (Exit response) . . . . . . . . 116
MQXR_* (Exit reason) . . . . . . . . . 116
MQXT_* (Exit identifier). . . . . . . . . 116
MQXUA_* (Exit user area) . . . . . . . . 116

© Copyright IBM Corp. 1999, 2000 91

||



Reference information

92 MQSeries Queue Manager Clusters



Chapter 10. Cluster workload exit call and data structures

This chapter provides reference information concerning the cluster workload exit
and the data structures it uses. This is general-use programming interface
information.

You can write cluster workload exits in the following programming languages:
v C
v System/390 assembler (MQSeries for OS/390)

The call is described in:
v “MQ_CLUSTER_WORKLOAD_EXIT - Cluster workload exit” on page 94

The structure data types used by the exit are described in:
v “MQWXP - Cluster workload exit parameter structure” on page 95
v “MQWDR - Cluster workload destination-record structure” on page 102
v “MQWQR - Cluster workload queue-record structure” on page 106
v “MQWCR - Cluster workload cluster-record structure” on page 110

Constants relating to the cluster workload exit are listed with their values in
“Chapter 11. Constants for the cluster workload exit” on page 113.

Throughout the following pages queue-manager attributes and queue attributes are
shown in full, as defined in the MQSeries Application Programming Reference book.
The equivalent names that are used in the MQSC commands described in the
MQSeries Command Reference book are shown in Table 3 and Table 4.

Table 3. Queue-manager attributes

Full name Name used in MQSC

ClusterWorkloadData CLWLDATA

ClusterWorkloadExit CLWLEXIT

ClusterWorkloadLength CLWLLEN

Table 4. Queue attributes

Full name Name used in MQSC

DefBind DEFBIND

DefPersistence DEFPSIST

DefPriority DEFPRTY

InhibitPut PUT

QDesc DESCR

© Copyright IBM Corp. 1999, 2000 93

|
|
|

|



MQ_CLUSTER_WORKLOAD_EXIT - Cluster workload exit
This call definition describes the parameters that are passed to the cluster
workload exit called by the queue manager.

Note: No entry point called MQ_CLUSTER_WORKLOAD_EXIT is actually
provided by the queue manager. This is because the name of the cluster
workload exit is defined by the ClusterWorkloadExit queue-manager
attribute.

This exit is supported in the following environments: AIX, HP-UX, OS/2, OS/390,
OS/400, Sun Solaris, and Windows NT.

Syntax

Parameters
ExitParms (MQWXP) – input/output

Exit parameter block.

This structure contains information relating to the invocation of the exit. The
exit sets information in this structure to indicate how the workload should be
managed.

Usage notes
1. The function performed by the cluster workload exit is defined by the provider

of the exit. The exit, however, must conform to the rules defined in the
associated control block MQWXP.

2. No entry point called MQ_CLUSTER_WORKLOAD_EXIT is actually provided
by the queue manager. However, a typedef is provided for the name
MQ_CLUSTER_WORKLOAD_EXIT in the C programming language, and this
can be used to declare the user-written exit, to ensure that the parameters are
correct.

C invocation
exitname (&ExitParms);

Declare the parameters as follows:
MQWXP ExitParms; /* Exit parameter block */

System/390 assembler invocation
CALL EXITNAME,(EXITPARMS)

Declare the parameters as follows:
EXITPARMS CMQWXPA Exit parameter block

MQ_CLUSTER_WORKLOAD_EXIT (ExitParms)

Cluster workload exit call and data structures

94 MQSeries Queue Manager Clusters

|
|



MQWXP - Cluster workload exit parameter structure
The following table summarizes the fields in the structure.

Table 5. Fields in MQWXP

Field Description Page

StrucId Structure identifier 95

Version Structure version number 96

ExitId Type of exit 96

ExitReason Reason for invoking exit 96

ExitResponse Response from exit 97

ExitResponse2 Secondary response from exit 97

Feedback Feedback code 97

ExitUserArea Exit user area 98

ExitData Exit data 98

MsgDescPtr Address of message descriptor (MQMD) 98

MsgBufferPtr Address of buffer containing some or all of the
message data

98

MsgBufferLength Length of buffer containing message data 99

MsgLength Length of complete message 99

QName Name of queue 99

QMgrName Name of local queue manager 99

DestinationCount Number of possible destinations 99

DestinationChosen Destination chosen 99

DestinationArrayPtr Address of an array of pointers to destination
records (MQWDR)

100

QArrayPtr Address of an array of pointers to queue records
(MQWQR)

100

The MQWXP structure describes the information that is passed to the cluster
workload exit.

This structure is supported in the following environments: AIX, HP-UX, OS/390,
OS/400, OS/2, Sun Solaris, and Windows NT.

Fields
StrucId (MQCHAR4)

Structure identifier.

The value is:

MQWXP_STRUC_ID
Identifier for cluster workload exit parameter structure.

For the C programming language, the constant
MQWXP_STRUC_ID_ARRAY is also defined; this has the same value
as MQWXP_STRUC_ID, but is an array of characters instead of a
string.

MQWXP structure

Chapter 10. Cluster workload exit call and data structures 95

|
|



This is an input field to the exit.

Version (MQLONG)
Structure version number.

The value is:

MQWXP_VERSION_1
Version-1 cluster workload exit parameter structure.

The following constant specifies the version number of the current version:

MQWXP_CURRENT_VERSION
Current version of cluster workload exit parameter structure.

This is an input field to the exit.

ExitId (MQLONG)
Type of exit.

This indicates the type of exit being called. The value is:

MQXT_CLUSTER_WORKLOAD_EXIT
Cluster workload exit.

This type of exit is supported in the following environments: AIX,
HP-UX, OS/2, OS/390, OS/400, Sun Solaris, and Windows NT.

This is an input field to the exit.

ExitReason (MQLONG)
Reason for invoking exit.

This indicates the reason why the exit is being called. Possible values are:

MQXR_INIT
Exit initialization.

This indicates that the exit is being invoked for the first time. It allows
the exit to acquire and initialize any resources that it may need (for
example: main storage).

MQXR_TERM
Exit termination.

This indicates that the exit is about to be terminated. The exit should
free any resources that it may have acquired since it was initialized (for
example: main storage).

MQXR_CLWL_OPEN
Called from MQOPEN processing.

MQXR_CLWL_PUT
Called from MQPUT or MQPUT1 processing.

MQXR_CLWL_MOVE
Called from MCA when the message state has changed.

MQXR_CLWL_REPOS
Called from MQPUT or MQPUT1 processing for a repository-manager
PCF message.

MQWXP structure

96 MQSeries Queue Manager Clusters

|
|



MQXR_CLWL_REPOS_MOVE
Called from MCA for a repository-manager PCF message when the
message state has changed.

This is an input field to the exit.

ExitResponse (MQLONG)
Response from exit.

This is set by the exit to indicate whether processing of the message should
continue. It must be one of the following:

MQXCC_OK
Continue normally.

This indicates that processing of the message should continue
normally. DestinationChosen identifies the destination to which the
message should be sent.

MQXCC_SUPPRESS_FUNCTION
Suppress function.

This indicates that processing of the message should be discontinued:
v For MQXR_CLWL_OPEN, MQXR_CLWL_PUT, and

MQXR_CLWL_REPOS invocations, the MQOPEN, MQPUT, or
MQPUT1 call fails with completion code MQCC_FAILED and reason
code MQRC_STOPPED_BY_CLUSTER_EXIT.

v For MQXR_CLWL_MOVE and MQXR_CLWL_REPOS_MOVE
invocations, the message is placed on the dead-letter queue.

MQXCC_SUPPRESS_EXIT
Suppress exit.

This indicates that processing of the current message should continue
normally, but that the exit should not be invoked again until
termination of the queue manager. The queue manager processes
subsequent messages as if the ClusterWorkloadExit queue-manager
attribute were blank. DestinationChosen identifies the destination to
which the current message should be sent.

If any other value is returned by the exit, the queue manager processes the
message as if MQXCC_SUPPRESS_FUNCTION had been specified.

This is an output field from the exit.

ExitResponse2 (MQLONG)
Reserved.

This is a reserved field. The value is zero.

Feedback (MQLONG)
Reserved.

This is a reserved field. The value is zero.

Reserved (MQLONG)
Reserved.

This is a reserved field. The value is zero.

MQWXP structure

Chapter 10. Cluster workload exit call and data structures 97



ExitUserArea (MQBYTE16)
Exit user area.

This is a field that is available for the exit to use. It is initialized to
MQXUA_NONE (binary zero) before the first invocation of the exit, and
thereafter any changes made to this field by the exit are preserved across the
invocations of the exit that occur between the MQCONN call and the matching
MQDISC call. The field is reset to MQXUA_NONE when the MQDISC call
occurs. The first invocation of the exit is indicated by the ExitReason field
having the value MQXR_INIT.

The following value is defined:

MQXUA_NONE
No user information.

The value is binary zero for the length of the field.

For the C programming language, the constant
MQXUA_NONE_ARRAY is also defined; this has the same value as
MQXUA_NONE, but is an array of characters instead of a string.

The length of this field is given by MQ_EXIT_USER_AREA_LENGTH. This is
an input/output field to the exit.

ExitData (MQCHAR32)
Exit data.

This is set on input to the exit routine to the value of the ClusterWorkloadData
queue-manager attribute. If no value has been defined for that attribute, this
field is all blanks.

The length of this field is given by MQ_EXIT_DATA_LENGTH. This is an
input field to the exit.

MsgDescPtr (PMQMD)
Address of message descriptor.

This is the address of a copy of the message descriptor (MQMD) for the
message being processed. Any changes made to the message descriptor by the
exit are ignored by the queue manager.

No message descriptor is passed to the exit if ExitReason has one of the
following values:

MQXR_INIT
MQXR_TERM
MQXR_CLWL_OPEN

In these cases, MsgDescPtr is the null pointer.

This is an input field to the exit.

MsgBufferPtr (PMQVOID)
Address of buffer containing some or all of the message data.

This is the address of a buffer containing a copy of the first MsgBufferLength
bytes of the message data. Any changes made to the message data by the exit
are ignored by the queue manager.

MQWXP structure

98 MQSeries Queue Manager Clusters



No message data is passed to the exit in the following cases:
v When MsgDescPtr is the null pointer.
v When the message has no data.
v When the ClusterWorkloadLength queue-manager attribute is zero.

In these cases, MsgBufferPtr is the null pointer.

This is an input field to the exit.

MsgBufferLength (MQLONG)
Length of buffer containing message data.

This is the length of the message data passed to the exit. This length is
controlled by the ClusterWorkloadLength queue-manager attribute, and may be
less than the length of the complete message (see MsgLength).

This is an input field to the exit.

MsgLength (MQLONG)
Length of complete message.

Be aware that the length of the message data passed to the exit
(MsgBufferLength) may be less than the length of the complete message.
MsgLength is zero if ExitReason is MQXR_INIT, MQXR_TERM, or
MQXR_CLWL_OPEN.

This is an input field to the exit.

QName (MQCHAR48)
Queue name.

This is the name of the destination queue; this queue is a cluster queue.

The length of this field is given by MQ_Q_NAME_LENGTH. This is an input
field to the exit.

QMgrName (MQCHAR48)
Name of local queue manager.

This is the name of the queue manager that has invoked the cluster workload
exit.

The length of this field is given by MQ_Q_MGR_NAME_LENGTH. This is an
input field to the exit.

DestinationCount (MQLONG)
Number of possible destinations.

This specifies the number of destination records (MQWDR) that describe
instances of the destination queue. There is one MQWDR structure for each
possible route to each instance of the queue. The MQWDR structures are
addressed by an array of pointers (see DestinationArrayPtr).

This is an input field to the exit.

DestinationChosen (MQLONG)
Destination chosen.

MQWXP structure

Chapter 10. Cluster workload exit call and data structures 99



This is the number of the MQWDR structure that identifies the route and
queue instance to which the message should be sent. The value is in the range
1 through DestinationCount.

On input to the exit, DestinationChosen indicates the route and queue instance
that the queue manager has selected. The exit can accept this choice, or choose
a different route and queue instance. However, the value returned by the exit
must be in the range 1 through DestinationCount. If any other value is
returned, the queue manager uses the value that DestinationChosen had on
input to the exit.

This is an input/output field to the exit.

DestinationArrayPtr (PPMQWDR)
Address of an array of pointers to destination records.

This is the address of an array of pointers to destination records (MQWDR).
There are DestinationCount destination records.

This is an input field to the exit.

QArrayPtr (PPMQWQR)
Address of an array of pointers to queue records.

This is the address of an array of pointers to queue records (MQWQR). If
queue records are available, there are DestinationCount of them. If no queue
records are available, QArrayPtr is the null pointer.

Note: QArrayPtr can be the null pointer even when DestinationCount is
greater than zero.

This is an input field to the exit.

C declaration
typedef struct tagMQWXP {
MQCHAR4 StrucId; /* Structure identifier */
MQLONG Version; /* Structure version number */
MQLONG ExitId; /* Type of exit */
MQLONG ExitReason; /* Reason for invoking exit */
MQLONG ExitResponse; /* Response from exit */
MQLONG ExitResponse2; /* Reserved */
MQLONG Feedback; /* Reserved */
MQLONG Reserved; /* Reserved */
MQBYTE16 ExitUserArea; /* Exit user area */
MQCHAR32 ExitData; /* Exit data */
PMQMD MsgDescPtr; /* Address of message descriptor */
PMQVOID MsgBufferPtr; /* Address of buffer containing some

or all of the message data */
MQLONG MsgBufferLength; /* Length of buffer containing message

data */
MQLONG MsgLength; /* Length of complete message */
MQCHAR48 QName; /* Queue name */
MQCHAR48 QMgrName; /* Name of local queue manager */
MQLONG DestinationCount; /* Number of possible destinations */
MQLONG DestinationChosen; /* Destination chosen */
PPMQWDR DestinationArrayPtr; /* Address of an array of pointers to

destination records */
PPMQWQR QArrayPtr; /* Address of an array of pointers to

queue records */
} MQWXP;

MQWXP structure

100 MQSeries Queue Manager Clusters



System/390 assembler declaration
MQWXP DSECT
MQWXP_STRUCID DS CL4 Structure identifier
MQWXP_VERSION DS F Structure version number
MQWXP_EXITID DS F Type of exit
MQWXP_EXITREASON DS F Reason for invoking exit
MQWXP_EXITRESPONSE DS F Response from exit
MQWXP_EXITRESPONSE2 DS F Reserved
MQWXP_FEEDBACK DS F Reserved
MQWXP_RESERVED DS F Reserved
MQWXP_EXITUSERAREA DS XL16 Exit user area
MQWXP_EXITDATA DS CL32 Exit data
MQWXP_MSGDESCPTR DS F Address of message
* descriptor
MQWXP_MSGBUFFERPTR DS F Address of buffer containing
* some or all of the message
* data
MQWXP_MSGBUFFERLENGTH DS F Length of buffer containing
* message data
MQWXP_MSGLENGTH DS F Length of complete message
MQWXP_QNAME DS CL48 Queue name
MQWXP_QMGRNAME DS CL48 Name of local queue manager
MQWXP_DESTINATIONCOUNT DS F Number of possible
* destinations
MQWXP_DESTINATIONCHOSEN DS F Destination chosen
MQWXP_DESTINATIONARRAYPTR DS F Address of an array of
* pointers to destination
* records
MQWXP_QARRAYPTR DS F Address of an array of
* pointers to queue records
MQWXP_LENGTH EQU *-MQWXP Length of structure

ORG MQWXP
MQWXP_AREA DS CL(MQWXP_LENGTH)

MQWXP structure

Chapter 10. Cluster workload exit call and data structures 101



MQWDR - Cluster workload destination-record structure
The following table summarizes the fields in the structure.

Table 6. Fields in MQWDR

Field Description Page

StrucId Structure identifier 102

Version Structure version number 102

StrucLength Length of MQWDR structure 103

QMgrFlags Queue-manager flags 103

QMgrIdentifier Queue-manager identifier 103

QMgrName Queue-manager name 103

ClusterRecOffset Offset of first cluster record (MQWCR) 104

ChannelState Channel state 104

ChannelDefOffset Offset of channel-definition structure (MQCD) 104

The MQWDR structure contains information relating to one of the possible
destinations for the message. There is one MQWDR structure for each instance of
the destination queue.

This structure is supported in the following environments: AIX, HP-UX, OS/2,
OS/390, OS/400, Sun Solaris, and Windows NT.

Fields
StrucId (MQCHAR4)

Structure identifier.

The value is:

MQWDR_STRUC_ID
Identifier for cluster workload destination record.

For the C programming language, the constant
MQWDR_STRUC_ID_ARRAY is also defined; this has the same value
as MQWDR_STRUC_ID, but is an array of characters instead of a
string.

This is an input field to the exit.

Version (MQLONG)
Structure version number.

The value is:

MQWDR_VERSION_1
Version-1 cluster workload destination record.

The following constant specifies the version number of the current version:

MQWDR_CURRENT_VERSION
Current version of cluster workload destination record.

This is an input field to the exit.

MQWDR structure

102 MQSeries Queue Manager Clusters

|
|



StrucLength (MQLONG)
Length of MQWDR structure.

The value is:

MQWDR_LENGTH_1
Length of version-1 cluster workload destination record.

The following constant specifies the length of the current version:

MQWDR_CURRENT_LENGTH
Length of current version of cluster workload destination record.

This is an input field to the exit.

QMgrFlags (MQLONG)
Queue-manager flags

These are bit flags that indicate various properties of the queue manager that
hosts the instance of the destination queue described by this MQWDR
structure. The following flags are defined:

MQQMF_REPOSITORY_Q_MGR
Destination is a repository queue manager.

MQQMF_CLUSSDR_USER_DEFINED
Cluster sender channel was defined manually.

MQQMF_CLUSSDR_AUTO_DEFINED
Cluster sender channel was defined automatically.

MQQMF_AVAILABLE
Destination queue manager is available to receive messages.

Note: Other flags in the field may be set by the queue manager for internal
purposes.

This is an input field to the exit.

QMgrIdentifier (MQCHAR48)
Queue-manager identifier.

This is a string that acts as a unique identifier for the queue manager. It is
generated by the queue manager.

The length of this field is given by MQ_Q_MGR_IDENTIFIER_LENGTH. This
is an input field to the exit.

QMgrName (MQCHAR48)
Queue-manager name.

This is the name of the queue manager that hosts the instance of the
destination queue described by this MQWDR structure. This can be the name
of the local queue manager.

The length of this field is given by MQ_Q_MGR_NAME_LENGTH. This is an
input field to the exit.

MQWDR structure

Chapter 10. Cluster workload exit call and data structures 103



ClusterRecOffset (MQLONG)
Offset of first cluster record.

This is the offset of the first MQWCR structure that belongs to this MQWDR
structure. The offset is measured in bytes from the start of the MQWDR
structure.

This is an input field to the exit.

ChannelState (MQLONG)
Channel state.

This indicates the state of the channel that links the local queue manager to the
queue manager identified by this MQWDR structure. The following values are
possible:

MQCHS_INACTIVE
Channel is not active.

MQCHS_BINDING
Channel is negotiating with the partner.

MQCHS_STARTING
Channel is waiting to become active.

MQCHS_RUNNING
Channel is transferring or waiting for messages.

MQCHS_STOPPING
Channel is in the process of stopping.

MQCHS_RETRYING
Channel is reattempting to establish connection.

MQCHS_STOPPED
Channel is stopped.

MQCHS_REQUESTING
Requester channel is requesting connection.

MQCHS_PAUSED
Channel is paused.

MQCHS_INITIALIZING
Channel is initializing.

This is an input field to the exit.

ChannelDefOffset (MQLONG)
Offset of channel definition structure.

This is the offset of the channel definition (MQCD) for the channel that links
the local queue manager to the queue manager identified by this MQWDR
structure. The offset is measured in bytes from the start of the MQWDR
structure.

This is an input field to the exit.

MQWDR structure

104 MQSeries Queue Manager Clusters



C declaration
typedef struct tagMQWDR {
MQCHAR4 StrucId; /* Structure identifier */
MQLONG Version; /* Structure version number */
MQLONG StrucLength; /* Length of MQWDR structure */
MQLONG QMgrFlags; /* Queue-manager flags */
MQCHAR48 QMgrIdentifier; /* Queue-manager identifier */
MQCHAR48 QMgrName; /* Queue-manager name */
MQLONG ClusterRecOffset; /* Offset of first cluster record */
MQLONG ChannelState; /* Channel state */
MQLONG ChannelDefOffset; /* Offset of channel definition

structure */
} MQWDR;

System/390 assembler declaration
MQWDR DSECT
MQWDR_STRUCID DS CL4 Structure identifier
MQWDR_VERSION DS F Structure version number
MQWDR_STRUCLENGTH DS F Length of MQWDR structure
MQWDR_QMGRFLAGS DS F Queue-manager flags
MQWDR_QMGRIDENTIFIER DS CL48 Queue-manager identifier
MQWDR_QMGRNAME DS CL48 Queue-manager name
MQWDR_CLUSTERRECOFFSET DS F Offset of first cluster
* record
MQWDR_CHANNELSTATE DS F Channel state
MQWDR_CHANNELDEFOFFSET DS F Offset of channel definition
* structure
MQWDR_LENGTH EQU *-MQWDR Length of structure

ORG MQWDR
MQWDR_AREA DS CL(MQWDR_LENGTH)

MQWDR structure

Chapter 10. Cluster workload exit call and data structures 105



MQWQR - Cluster workload queue-record structure
The following table summarizes the fields in the structure.

Table 7. Fields in MQWQR

Field Description Page

StrucId Structure identifier 106

Version Structure version number 106

StrucLength Length of MQWQR structure 107

QFlags Queue flags 107

QName Queue name 107

QMgrIdentifier Queue-manager identifier 107

ClusterRecOffset Offset of first cluster record (MQWCR) 107

QType Queue type 108

QDesc Queue description 108

DefBind Default binding 108

DefPersistence Default message persistence 108

DefPriority Default message priority 108

InhibitPut Whether put operations on the queue are allowed 109

The MQWQR structure contains information relating to one of the possible
destinations for the message. There is one MQWQR structure for each instance of
the destination queue.

This structure is supported in the following environments: AIX, HP-UX, OS/2,
OS/390, OS/400, Sun Solaris, and Windows NT.

Fields
StrucId (MQCHAR4)

Structure identifier.

The value is:

MQWQR_STRUC_ID
Identifier for cluster workload queue record.

For the C programming language, the constant
MQWQR_STRUC_ID_ARRAY is also defined; this has the same value
as MQWQR_STRUC_ID, but is an array of characters instead of a
string.

This is an input field to the exit.

Version (MQLONG)
Structure version number.

The value is:

MQWQR_VERSION_1
Version-1 cluster workload queue record.

The following constant specifies the version number of the current version:

MQWQR structure

106 MQSeries Queue Manager Clusters

|
|



MQWQR_CURRENT_VERSION
Current version of cluster workload queue record.

This is an input field to the exit.

StrucLength (MQLONG)
Length of MQWQR structure.

The value is:

MQWQR_LENGTH_1
Length of version-1 cluster workload queue record.

The following constant specifies the length of the current version:

MQWQR_CURRENT_LENGTH
Length of current version of cluster workload queue record.

This is an input field to the exit.

QFlags (MQLONG)
Queue flags.

These are bit flags that indicate various properties of the queue. The following
flag is defined:

MQQF_LOCAL_Q
Destination is a local queue.

Note: Other flags in the field may be set by the queue manager for internal
purposes.

This is an input field to the exit.

QName (MQCHAR48)
Queue name.

The length of this field is given by MQ_Q_NAME_LENGTH. This is an input
field to the exit.

QMgrIdentifier (MQCHAR48)
Queue-manager identifier.

This is a string that acts as a unique identifier for the queue manager that
hosts the instance of the queue described by this MQWQR structure. The
identifier is generated by the queue manager.

The length of this field is given by MQ_Q_MGR_IDENTIFIER_LENGTH. This
is an input field to the exit.

ClusterRecOffset (MQLONG)
Offset of first cluster record.

This is the offset of the first MQWCR structure that belongs to this MQWQR
structure. The offset is measured in bytes from the start of the MQWQR
structure.

This is an input field to the exit.

MQWQR structure

Chapter 10. Cluster workload exit call and data structures 107



QType (MQLONG)
Queue type.

The following values are possible:
MQCQT_LOCAL_Q

Local queue.
MQCQT_ALIAS_Q

Alias queue.
MQCQT_REMOTE_Q

Remote queue.
MQCQT_Q_MGR_ALIAS

Queue-manager alias.

This is an input field to the exit.

QDesc (MQCHAR64)
Queue description.

This is the value of the QDesc queue attribute as defined on the queue manager
that hosts the instance of the destination queue described by this MQWQR
structure.

The length of this field is given by MQ_Q_DESC_LENGTH. This is an input
field to the exit.

DefBind (MQLONG)
Default binding.

This is the value of the DefBind queue attribute as defined on the queue
manager that hosts the instance of the destination queue described by this
MQWQR structure. The following values are possible:
MQBND_BIND_ON_OPEN

Binding fixed by MQOPEN call.
MQBND_BIND_NOT_FIXED

Binding not fixed.

This is an input field to the exit.

DefPersistence (MQLONG)
Default message persistence.

This is the value of the DefPersistence queue attribute as defined on the
queue manager that hosts the instance of the destination queue described by
this MQWQR structure. The following values are possible:
MQPER_PERSISTENT

Message is persistent.
MQPER_NOT_PERSISTENT

Message is not persistent.

This is an input field to the exit.

DefPriority (MQLONG)
Default message priority.

This is the value of the DefPriority queue attribute as defined on the queue
manager that hosts the instance of the destination queue described by this
MQWQR structure. Priorities are in the range zero (lowest) through

MQWQR structure

108 MQSeries Queue Manager Clusters



MaxPriority (highest), where MaxPriority is the queue-manager attribute of
the queue manager that hosts this instance of the destination queue.

This is an input field to the exit.

InhibitPut (MQLONG)
Whether put operations on the queue are allowed.

This is the value of the InhibitPut queue attribute as defined on the queue
manager that hosts the instance of the destination queue described by this
MQWQR structure. The following values are possible:
MQQA_PUT_INHIBITED

Put operations are inhibited.
MQQA_PUT_ALLOWED

Put operations are allowed.

This is an input field to the exit.

C declaration
typedef struct tagMQWQR {
MQCHAR4 StrucId; /* Structure identifier */
MQLONG Version; /* Structure version number */
MQLONG StrucLength; /* Length of MQWQR structure */
MQLONG QFlags; /* Queue flags */
MQCHAR48 QName; /* Queue name */
MQCHAR48 QMgrIdentifier; /* Queue-manager identifier */
MQLONG ClusterRecOffset; /* Offset of first cluster record */
MQLONG QType; /* Queue type */
MQCHAR64 QDesc; /* Queue description */
MQLONG DefBind; /* Default binding */
MQLONG DefPersistence; /* Default message persistence */
MQLONG DefPriority; /* Default message priority */
MQLONG InhibitPut; /* Whether put operations on the queue

are allowed */
} MQWQR;

System/390 assembler declaration
MQWQR DSECT
MQWQR_STRUCID DS CL4 Structure identifier
MQWQR_VERSION DS F Structure version number
MQWQR_STRUCLENGTH DS F Length of MQWQR structure
MQWQR_QFLAGS DS F Queue flags
MQWQR_QNAME DS CL48 Queue name
MQWQR_QMGRIDENTIFIER DS CL48 Queue-manager identifier
MQWQR_CLUSTERRECOFFSET DS F Offset of first cluster
* record
MQWQR_QTYPE DS F Queue type
MQWQR_QDESC DS CL64 Queue description
MQWQR_DEFBIND DS F Default binding
MQWQR_DEFPERSISTENCE DS F Default message persistence
MQWQR_DEFPRIORITY DS F Default message priority
MQWQR_INHIBITPUT DS F Whether put operations on
* the queue are allowed
MQWQR_LENGTH EQU *-MQWQR Length of structure

ORG MQWQR
MQWQR_AREA DS CL(MQWQR_LENGTH)

MQWQR structure

Chapter 10. Cluster workload exit call and data structures 109



MQWCR - Cluster workload cluster-record structure
The following table summarizes the fields in the structure.

Table 8. Fields in MQWCR

Field Description Page

ClusterName Name of cluster 110

ClusterRecOffset Offset of next cluster record (MQWCR) 110

ClusterFlags Cluster flags 110

The MQWCR structure contains information relating to a cluster to which an
instance of the destination queue belongs. There is one MQWCR for each such
cluster.

This structure is supported in the following environments: AIX, HP-UX, OS/2,
OS/390, OS/400, Sun Solaris, and Windows NT.

Fields
ClusterName (MQCHAR48)

Cluster name.

This is the name of a cluster to which the instance of the destination queue
that owns this MQWCR structure belongs. The destination queue instance is
described by an MQWDR structure.

The length of this field is given by MQ_CLUSTER_NAME_LENGTH. This is
an input field to the exit.

ClusterRecOffset (MQLONG)
Offset of next cluster record.

This is the offset of the next MQWCR structure. The offset is measured in bytes
from the start of the current MQWCR structure. If there are no more MQWCR
structures, ClusterRecOffset is zero.

This is an input field to the exit.

ClusterFlags (MQLONG)
Cluster flags.

These are bit flags that indicate various properties of the queue manager
identified by this MQWCR structure. The following flags are defined:

MQQMF_REPOSITORY_Q_MGR
Destination is a repository queue manager.

MQQMF_CLUSSDR_USER_DEFINED
Cluster sender channel was defined manually.

MQQMF_CLUSSDR_AUTO_DEFINED
Cluster sender channel was defined automatically.

MQQMF_AVAILABLE
Destination queue manager is available to receive messages.

MQWCR structure

110 MQSeries Queue Manager Clusters

|
|



Note: Other flags in the field may be set by the queue manager for internal
purposes.

This is an input field to the exit.

C declaration
typedef struct tagMQWCR {
MQCHAR48 ClusterName; /* Cluster name */
MQLONG ClusterRecOffset; /* Offset of next cluster record */
MQLONG ClusterFlags; /* Cluster flags */

} MQWCR;

System/390 assembler declaration
MQWCR DSECT
MQWCR_CLUSTERNAME DS CL48 Cluster name
MQWCR_CLUSTERRECOFFSET DS F Offset of next cluster
* record
MQWCR_CLUSTERFLAGS DS F Cluster flags
MQWCR_LENGTH EQU *-MQWCR Length of structure

ORG MQWCR
MQWCR_AREA DS CL(MQWCR_LENGTH)

MQWCR structure

Chapter 10. Cluster workload exit call and data structures 111



MQWCR structure

112 MQSeries Queue Manager Clusters



Chapter 11. Constants for the cluster workload exit

This chapter specifies the values of the named constants that apply to the cluster
workload exit. This information is general-use programming interface information.

The constants are grouped according to the parameter or field to which they relate.
All of the names of the constants in a group begin with a common prefix of the
form “MQxxxx_”, where xxxx represents a string of 0 through 4 characters that
indicates the parameter or field to which the values relate. The constants are
ordered alphabetically by this prefix.

Notes:

1. For constants with numeric values, the values are shown in both decimal and
hexadecimal forms.

2. Hexadecimal values are represented using the notation X'hhhh', where each “h”
denotes a single hexadecimal digit.

3. Character values are shown delimited by single quotation marks; the quotation
marks are not part of the value.

4. Blanks in character values are represented by one or more occurrences of the
symbol “b”.

List of constants
The following sections list all of the named constants mentioned in this book, and
show their values.

MQ_* (Lengths of character string and byte fields)

MQ_CLUSTER_NAME_LENGTH 48 X'00000030'
MQ_EXIT_DATA_LENGTH 32 X'00000020'
MQ_EXIT_USER_AREA_LENGTH 16 X'00000010'
MQ_Q_DESC_LENGTH 64 X'00000040'
MQ_Q_MGR_IDENTIFIER_LENGTH 48 X'00000030'
MQ_Q_MGR_NAME_LENGTH 48 X'00000030'
MQ_Q_NAME_LENGTH 48 X'00000030'

MQBND_* (Binding)
See the DefBind field described in “MQWQR - Cluster workload queue-record
structure” on page 106.

MQBND_BIND_ON_OPEN 0 X'00000000'
MQBND_BIND_NOT_FIXED 1 X'00000001'

MQCHS_* (Channel status)
See the ChannelState field described in “MQWDR - Cluster workload
destination-record structure” on page 102.

MQCHS_INACTIVE 0 X'00000000'
MQCHS_BINDING 1 X'00000001'
MQCHS_STARTING 2 X'00000002'

© Copyright IBM Corp. 1999, 2000 113

|

|
|

||||
|||
|

|



MQCHS_RUNNING 3 X'00000003'
MQCHS_STOPPING 4 X'00000004'
MQCHS_RETRYING 5 X'00000005'
MQCHS_STOPPED 6 X'00000006'
MQCHS_REQUESTING 7 X'00000007'
MQCHS_PAUSED 8 X'00000008'
MQCHS_INITIALIZING 13 X'0000000D'

MQCQT_* (Cluster queue type)
See the QType field described in “MQWQR - Cluster workload queue-record
structure” on page 106.

MQCQT_LOCAL_Q 1 X'00000001'
MQCQT_ALIAS_Q 2 X'00000002'
MQCQT_REMOTE_Q 3 X'00000003'
MQCQT_Q_MGR_ALIAS 4 X'00000004'

MQPER_* (Persistence)
See the DefPersistence field described in “MQWQR - Cluster workload
queue-record structure” on page 106.

MQPER_NOT_PERSISTENT 0 X'00000000'
MQPER_PERSISTENT 1 X'00000001'

MQQA_* (Inhibit put)
See the InhibitPut field described in “MQWQR - Cluster workload queue-record
structure” on page 106.

MQQA_PUT_ALLOWED 0 X'00000000'
MQQA_PUT_INHIBITED 1 X'00000001'

MQQF_* (Queue flags)
See the QFlags field described in “MQWQR - Cluster workload queue-record
structure” on page 106.

MQQF_LOCAL_Q 1 X'00000001'

MQQMF_* (Queue-manager flags)
See the QMgrFlags field described in “MQWDR - Cluster workload
destination-record structure” on page 102.

MQQMF_REPOSITORY_Q_MGR 2 X'00000002'
MQQMF_CLUSSDR_USER_DEFINED 8 X'00000008'
MQQMF_CLUSSDR_AUTO_DEFINED 16 X'00000010'
MQQMF_AVAILABLE 32 X'00000020'

Constants

114 MQSeries Queue Manager Clusters



MQWDR_* (Cluster workload exit destination-record length)
See the StrucLength field described in “MQWDR - Cluster workload
destination-record structure” on page 102.

MQWDR_LENGTH_1 124 X'0000007C'
MQWDR_CURRENT_LENGTH 124 X'0000007C'

MQWDR_* (Cluster workload exit destination-record structure
identifier)

See the StrucId field described in “MQWDR - Cluster workload destination-record
structure” on page 102.

MQWDR_STRUC_ID 'WDRb'

For the C programming language, the following array version is also defined:

MQWDR_STRUC_ID_ARRAY 'W','D','R','b'

MQWDR_* (Cluster workload exit destination-record version)
See the Version field described in “MQWDR - Cluster workload destination-record
structure” on page 102.

MQWDR_VERSION_1 1 X'00000001'
MQWDR_CURRENT_VERSION 1 X'00000001'

MQWQR_* (Cluster workload exit queue-record length)
See the StrucLength field described in “MQWQR - Cluster workload queue-record
structure” on page 106.

MQWQR_LENGTH_1 200 X'000000C8'
MQWQR_CURRENT_LENGTH 200 X'000000C8'

MQWQR_* (Cluster workload exit queue-record structure
identifier)

See the StrucId field described in “MQWQR - Cluster workload queue-record
structure” on page 106.

MQWQR_STRUC_ID 'WQRb'

For the C programming language, the following array version is also defined:

MQWQR_STRUC_ID_ARRAY 'W','Q','R','b'

Constants

Chapter 11. Constants for the cluster workload exit 115



MQWQR_* (Cluster workload exit queue-record version)
See the Version field described in “MQWQR - Cluster workload queue-record
structure” on page 106.

MQWQR_VERSION_1 1 X'00000001'
MQWQR_CURRENT_VERSION 1 X'00000001'

MQWXP_* (Cluster workload exit structure identifier)
See the StrucId field described in “MQWXP - Cluster workload exit parameter
structure” on page 95.

MQWXP_STRUC_ID 'WXPb'

For the C programming language, the following array version is also defined:

MQWXP_STRUC_ID_ARRAY 'W','X','P','b'

MQWXP_* (Cluster workload exit version)
See the Version field described in “MQWXP - Cluster workload exit parameter
structure” on page 95.

MQWXP_VERSION_1 1 X'00000001'
MQWXP_CURRENT_VERSION 1 X'00000001'

MQXCC_* (Exit response)
See the ExitResponse field described in “MQWXP - Cluster workload exit
parameter structure” on page 95.

MQXR_* (Exit reason)
See the ExitReason field described in “MQWXP - Cluster workload exit parameter
structure” on page 95.

MQXT_* (Exit identifier)
See the ExitId field described in “MQWXP - Cluster workload exit parameter
structure” on page 95.

MQXUA_* (Exit user area)
See the ExitUserArea field described in “MQWXP - Cluster workload exit
parameter structure” on page 95.

MQXUA_NONE X'00...00' (16 nulls)

For the C programming language, the following array version is also defined:

MQXUA_NONE_ARRAY '\0','\0',...'\0','\0'

Constants

116 MQSeries Queue Manager Clusters



Part 4. Appendixes

© Copyright IBM Corp. 1999, 2000 117



118 MQSeries Queue Manager Clusters



Appendix. Notices

This information was developed for products and services offered in the United
States. IBM may not offer the products, services, or features discussed in this
information in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply
that only that IBM product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any IBM intellectual
property right may be used instead. However, it is the user’s responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this information. The furnishing of this information does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the information. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
information at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1999, 2000 119



Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM United Kingdom Laboratories,
Mail Point 151,
Hursley Park,
Winchester,
Hampshire,
England
SO21 2JN.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

Programming interface information
This book is intended to help you understand and control clusters of MQSeries
queue managers.

This book also documents General-use Programming Interface and Associated
Guidance Information provided by:

MQSeries for AIX V5.1
MQSeries for AS/400 V5.1
MQSeries for HP-UX V5.1
MQSeries for OS/2 Warp V5.1
MQSeries for OS/390 V2.1
MQSeries for Sun Solaris V5.1
MQSeries for Windows NT V5.1

General-use programming interfaces allow the customer to write programs that
obtain the services of these products.

General-use Programming Interface and Associated Guidance Information is
identified where it occurs, by an introductory statement to a chapter or section.

Notices

120 MQSeries Queue Manager Clusters

|



Trademarks
The following terms are trademarks of International Business Machines
Corporation in the United States, or other countries, or both:

AIX AS/400 BookManager
CICS DB2 IBM
IBMLink IMS MQSeries
OS/2 OS/390 OS/400
RACF SP2 System/390
VSE/ESA 400

Lotus and LotusScript are trademarks of Lotus Development Corporation in the
United States, or other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other countries.

Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and/or other countries
licensed exclusively through X/Open Company Limited.

Other company, product, and service names may be trademarks or service marks
of others.

Notices

Appendix. Notices 121



Reference information

122 MQSeries Queue Manager Clusters



Glossary of terms and abbreviations

This glossary defines MQSeries terms and
abbreviations used in this book. If you do not
find the term you are looking for, see the Index or
the IBM Dictionary of Computing, New York:
McGraw-Hill, 1994.

This glossary includes terms and definitions from
the American National Dictionary for Information
Systems, ANSI X3.172-1990, copyright 1990 by the
American National Standards Institute (ANSI).
Copies may be purchased from the American
National Standards Institute, 11 West 42 Street,
New York, New York 10036. Definitions are
identified by the symbol (A) after the definition.

A
administrator commands. MQSeries commands used
to manage MQSeries objects, such as queues, processes,
and namelists.

Advanced Program-to-Program Communication
(APPC). The general facility characterizing the LU 6.2
architecture and its various implementations in
products.

affinity. An association between objects that have
some relationship or dependency upon each other.

alias queue object. An MQSeries object, the name of
which is an alias for a base queue defined to the local
queue manager. When an application or a queue
manager uses an alias queue, the alias name is resolved
and the requested operation is performed on the
associated base queue.

alternate user security. A security feature in which the
authority of one user ID can be used by another user
ID; for example, to open an MQSeries object.

APPC. Advanced Program-to-Program
Communication.

application log. In Windows NT, a log that records
significant application events.

application queue. A queue used by an application.

asynchronous messaging. A method of
communication between programs in which programs
place messages on message queues. With asynchronous
messaging, the sending program proceeds with its own
processing without waiting for a reply to its message.
Contrast with synchronous messaging.

attribute. One of a set of properties that defines the
characteristics of an MQSeries object.

authorization checks. Security checks that are
performed when a user tries to issue administration
commands against an object, for example to open a
queue or connect to a queue manager.

authorization file. In MQSeries on UNIX systems, a
file that provides security definitions for an object, a
class of objects, or all classes of objects.

B
browse. In message queuing, to use the MQGET call
to copy a message without removing it from the queue.
See also get.

C
channel. See message channel.

channel exit program. A user-written program that
can be entered from one of a defined number of places
during channel operation.

channel initiator. A component of MQSeries
distributed queuing, which monitors the initiation
queue to see when triggering criteria have been met
and then starts the sender channel.

channel listener. A component of MQSeries
distributed queuing, which monitors the network for a
startup request and then starts the receiving channel.

CL. Control Language.

CLUSRCVR. Cluster-receiver channel definition.

CLUSSDR. Cluster-sender channel definition.

cluster. A network of queue managers that are
logically associated in some way.

cluster queue. A queue that is hosted by a cluster
queue manager and made available to other queue
managers in the cluster.

cluster queue manager. A queue manager that is a
member of a cluster. A queue manager may be a
member of more than one cluster.

cluster-receiver channel (CLUSRCVR). A channel on
which a cluster queue manager can receive messages
from other queue managers in the cluster and cluster
information from the repository queue managers.

© Copyright IBM Corp. 1999, 2000 123



cluster-sender channel (CLUSSDR). A channel on
which a cluster queue manager can send messages to
other queue managers in the cluster and cluster
information to the repository queue managers.

cluster transmission queue. A transmission queue
that transmits all messages from a queue manager to
any other queue manager that is in the same cluster.
The queue is called
SYSTEM.CLUSTER.TRANSMIT.QUEUE.

command. In MQSeries, an administration instruction
that can be carried out by the queue manager.

completion code. A return code indicating how an
MQI call has ended.

connection handle. The identifier or token by which a
program accesses the queue manager to which it is
connected.

context security. In MQSeries, a method of allowing
security to be handled such that messages are obliged
to carry details of their origins in the message
descriptor.

control command. In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, a command that can be entered interactively from
the operating system command line. Such a command
requires only that the MQSeries product be installed; it
does not require a special utility or program to run it.

Control Language (CL). In MQSeries for AS/400, a
language that can be used to issue commands, either at
the command line or by writing a CL program.

D
dead-letter queue (DLQ). A queue to which a queue
manager or application sends messages that it cannot
deliver to their correct destination.

default object. A definition of an object (for example,
a queue) with all attributes defined. If a user defines an
object but does not specify all possible attributes for
that object, the queue manager uses default attributes
in place of any that were not specified.

distributed application. In message queuing, a set of
application programs that can each be connected to a
different queue manager, but that collectively constitute
a single application.

distributed queue management (DQM). In message
queuing, the setup and control of message channels to
queue managers on other systems.

distribution list. A list of queues to which a message
can be put using a single MQPUT or MQPUT1
statement.

DLQ. Dead-letter queue.

DQM. Distributed queue management.

E
ESM. External security manager.

external security manager (ESM). A security product
that is invoked by the OS/390 System Authorization
Facility. RACF is an example of an ESM.

F
full repository. A complete set of information about
every queue manager in a cluster. This set of
information is called the repository or sometimes the
full repository and is held usually by two of the queue
managers in the cluster. Contrast with partial repository.

G
get. In message queuing, to use the MQGET call to
remove a message from a queue. See also browse.

H
handle. See connection handle and object handle.

I
in-doubt unit of recovery. In MQSeries, the status of a
unit of recovery for which a syncpoint has been
requested but not yet confirmed.

Internet Protocol (IP). A protocol used to route data
from its source to its destination in an Internet
environment. This is the base layer, on which other
protocol layers, such as TCP and UDP are built.

IP. Internet Protocol.

L
listener. In MQSeries distributed queuing, a program
that monitors for incoming network connections.

local definition. An MQSeries object belonging to a
local queue manager.

local definition of a remote queue. An MQSeries
object belonging to a local queue manager. This object
defines the attributes of a queue that is owned by
another queue manager. In addition, it is used for
queue-manager aliasing and reply-to-queue aliasing.

local queue. A queue that belongs to the local queue
manager. A local queue can contain a list of messages
waiting to be processed. Contrast with remote queue.

124 MQSeries Queue Manager Clusters



local queue manager. The queue manager to which a
program is connected and that provides message
queuing services to the program. Queue managers to
which a program is not connected are called remote
queue managers, even if they are running on the same
system as the program.

log. In MQSeries, a file recording the work done by
queue managers while they receive, transmit, and
deliver messages, to enable them to recover in the
event of failure.

log file. In MQSeries on UNIX systems, MQSeries for
OS/2 Warp, and MQSeries for Windows NT, a file in
which all significant changes to the data controlled by a
queue manager are recorded. If the primary log files
become full, MQSeries allocates secondary log files.

logical unit of work (LUW). See unit of work.

LU 6.2. A type of logical unit (LU) that supports
general communication between programs in a
distributed processing environment.

M
MCA. Message channel agent.

message. In message queuing applications, a
communication sent between programs. In system
programming, information intended for the terminal
operator or system administrator.

message channel. In distributed message queuing, a
mechanism for moving messages from one queue
manager to another. A message channel comprises two
message channel agents (a sender at one end and a
receiver at the other end) and a communication link.
Contrast with MQI channel.

message channel agent (MCA). A program that
transmits prepared messages from a transmission
queue to a communication link, or from a
communication link to a destination queue. See also
message queue interface.

message queue. Synonym for queue.

message queue interface (MQI). The programming
interface provided by the MQSeries queue managers.
This programming interface allows application
programs to access message queuing services.

message queuing. A programming technique in which
each program within an application communicates with
the other programs by putting messages on queues.

message-retry. An option available to an MCA that is
unable to deliver a message. The MCA can wait for a
predefined amount of time and then try to send the
message again.

messaging. See synchronous messaging and asynchronous
messaging.

MQI. Message queue interface.

MQI channel. Connects an MQSeries client to a queue
manager on a server system, and transfers only MQI
calls and responses in a bidirectional manner. Contrast
with message channel.

MQSC. MQSeries commands.

MQSeries. A family of IBM licensed programs that
provides message queuing services.

MQSeries commands (MQSC). Human readable
commands, uniform across all platforms, that are used
to manipulate MQSeries objects. Contrast with
programmable command format (PCF).

multi-hop. To pass through one or more intermediate
queue managers when there is no direct
communication link between a source queue manager
and the target queue manager.

N
namelist. An MQSeries object that contains a list of
names, for example, queue names.

NetBIOS. Network Basic Input/Output System. An
operating system interface for application programs
used on IBM personal computers that are attached to
the IBM Token-Ring Network.

null character. The character that is represented by
X'00'.

O
object. In MQSeries, an object is a queue manager, a
queue, a process definition, a channel, a namelist, or a
storage class (OS/390 only).

object handle. The identifier or token by which a
program accesses the MQSeries object with which it is
working.

P
partial repository. A partial set of information about
queue managers in a cluster. A partial repository is
maintained by all cluster queue managers that do not
host a full repository.

PCF. Programmable command format.

PCF command. See programmable command format.

platform. In MQSeries, the operating system under
which a queue manager is running.

Glossary of terms and abbreviations 125



process definition object. An MQSeries object that
contains the definition of an MQSeries application. For
example, a queue manager uses the definition when it
works with trigger messages.

programmable command format (PCF). A type of
MQSeries message used by:

v User administration applications, to put PCF
commands onto the system command input queue of
a specified queue manager

v User administration applications, to get the results of
a PCF command from a specified queue manager

v A queue manager, as a notification that an event has
occurred

Contrast with MQSC.

Q
queue. An MQSeries object. Message queuing
applications can put messages on, and get messages
from, a queue. A queue is owned and maintained by a
queue manager. Local queues can contain a list of
messages waiting to be processed. Queues of other
types cannot contain messages—they point to other
queues, or can be used as models for dynamic queues.

queue manager. A system program that provides
queuing services to applications. It provides an
application programming interface so that programs
can access messages on the queues that the queue
manager owns. See also local queue manager and remote
queue manager. An MQSeries object that defines the
attributes of a particular queue manager.

queuing. See message queuing.

R
reason code. A return code that describes the reason
for the failure or partial success of an MQI call.

receiver channel. In message queuing, a channel that
responds to a sender channel, takes messages from a
communication link, and puts them on a local queue.

remote queue. A queue belonging to a remote queue
manager. Programs can put messages on remote
queues, but they cannot get messages from remote
queues. Contrast with local queue.

remote queue manager. To a program, a queue
manager that is not the one to which the program is
connected.

remote queue object. See local definition of a remote
queue.

remote queuing. In message queuing, the provision of
services to enable applications to put messages on
queues belonging to other queue managers.

reply message. A type of message used for replies to
request messages. Contrast with request message and
report message.

reply-to queue. The name of a queue to which the
program that issued an MQPUT call wants a reply
message or report message sent.

report message. A type of message that gives
information about another message. A report message
can indicate that a message has been delivered, has
arrived at its destination, has expired, or could not be
processed for some reason. Contrast with reply message
and request message.

repository. A collection of information about the
queue managers that are members of a cluster. This
information includes queue manager names, their
locations, their channels, what queues they host, and so
on. See also full repository and partial repository.

repository queue manager. A queue manager that
hosts the full repository of information about a cluster.

requester channel. In message queuing, a channel that
may be started remotely by a sender channel. The
requester channel accepts messages from the sender
channel over a communication link and puts the
messages on the local queue designated in the message.
See also server channel.

request message. A type of message used to request a
reply from another program. Contrast with reply
message and report message.

resource. Any facility of the computing system or
operating system required by a job or task. In MQSeries
for OS/390, examples of resources are buffer pools,
page sets, log data sets, queues, and messages.

resource manager. An application, program, or
transaction that manages and controls access to shared
resources such as memory buffers and data sets.
MQSeries, CICS, and IMS™ are resource managers.

return codes. The collective name for completion
codes and reason codes.

return-to-sender. An option available to an MCA that
is unable to deliver a message. The MCA can send the
message back to the originator.

S
Scalable Parallel 2 (SP2). IBM’s parallel UNIX system
— effectively parallel AIX systems on a high-speed
network.

sender channel. In message queuing, a channel that
initiates transfers, removes messages from a
transmission queue, and moves them over a
communication link to a receiver or requester channel.

126 MQSeries Queue Manager Clusters



sequential delivery. In MQSeries, a method of
transmitting messages with a sequence number so that
the receiving channel can reestablish the message
sequence when storing the messages. This is required
where messages must be delivered only once, and in
the correct order.

server channel. In message queuing, a channel that
responds to a requester channel, removes messages
from a transmission queue, and moves them over a
communication link to the requester channel.

server connection channel type. The type of MQI
channel definition associated with the server that runs
a queue manager. See also client connection channel type.

SNA. Systems Network Architecture.

source queue manager. See local queue manager.

SPX. Sequenced Packet Exchange transmission
protocol.

SP2. Scalable Parallel 2

store and forward. The temporary storing of packets,
messages, or frames in a data network before they are
retransmitted toward their destination.

synchronous messaging. A method of communication
between programs in which programs place messages
on message queues. With synchronous messaging, the
sending program waits for a reply to its message before
resuming its own processing. Contrast with
asynchronous messaging.

sysplex. A multiple OS/390-system environment that
allows multiple-console support (MCS) consoles to
receive console messages and send operator commands
across systems.

system control commands. Commands used to
manipulate platform-specific entities such as buffer
pools, storage classes, and page sets.

Systems Network Architecture (SNA). The
description of the logical structure, formats, protocols,
and operational sequences for transmitting information
units through, and controlling the configuration and
operation of, networks.

T
target queue manager. See remote queue manager.

TCP. Transmission Control Protocol.

TCP/IP. Transmission Control Protocol/Internet
Protocol.

trace. In MQSeries, a facility for recording MQSeries
activity. The destinations for trace entries can include
GTF and the system management facility (SMF).

Transmission Control Protocol (TCP). Part of the
TCP/IP protocol suite. A host-to-host protocol between
hosts in packet-switched communications networks.
TCP provides connection-oriented data stream delivery.
Delivery is reliable and orderly.

Transmission Control Protocol/Internet Protocol
(TCP/IP). A suite of communication protocols that
support peer-to-peer connectivity functions for both
local and wide area networks.

transmission queue. A local queue on which prepared
messages destined for a remote queue manager are
temporarily stored.

U
UDP. User Datagram Protocol.

undelivered-message queue. See dead-letter queue.

unit of work. A recoverable sequence of operations
performed by an application between two points of
consistency. A unit of work begins when a transaction
starts or after a user-requested syncpoint. It ends either
at a user-requested syncpoint or at the end of a
transaction.

User Datagram Protocol (UDP). Part of the TCP/IP
protocol suite. A packet-level protocol built directly on
the Internet Protocol layer. UDP is a connectionless and
less reliable alternative to TCP. It is used for
application-to-application programs between TCP/IP
host systems.

utility. In MQSeries, a supplied set of programs that
provide the system operator or system administrator
with facilities in addition to those provided by the
MQSeries commands. Some utilities invoke more than
one function.

Glossary of terms and abbreviations 127



128 MQSeries Queue Manager Clusters



Bibliography

This section describes the documentation
available for all current MQSeries products.

MQSeries cross-platform
publications
Most of these publications, which are sometimes
referred to as the MQSeries “family” books, apply
to all MQSeries Level 2 products. The latest
MQSeries Level 2 products are:
v MQSeries for AIX V5.1
v MQSeries for AS/400 V5.1
v MQSeries for AT&T GIS UNIX V2.2
v MQSeries for Compaq (DIGITAL) OpenVMS

V2.2.1.1
v MQSeries for DIGITAL UNIX (Compaq Tru64

UNIX) V2.2.1
v MQSeries for HP-UX V5.1
v MQSeries for OS/2 Warp V5.1
v MQSeries for OS/390 V2.1
v MQSeries for SINIX and DC/OSx V2.2
v MQSeries for Sun Solaris V5.1
v MQSeries for Tandem NonStop Kernel V2.2.0.1
v MQSeries for VSE/ESA V2.1
v MQSeries for Windows® V2.0
v MQSeries for Windows V2.1
v MQSeries for Windows NT V5.1

Any exceptions to this general rule are indicated.

MQSeries Brochure
The MQSeries Brochure, G511-1908, gives a
brief introduction to the benefits of
MQSeries. It is intended to support the
purchasing decision, and describes some
authentic customer use of MQSeries.

MQSeries: An Introduction to Messaging and
Queuing

An Introduction to Messaging and Queuing,
GC33-0805, describes briefly what
MQSeries is, how it works, and how it
can solve some classic interoperability
problems. This book is intended for a
more technical audience than the
MQSeries Brochure.

MQSeries Planning Guide
The MQSeries Planning Guide, GC33-1349,
describes some key MQSeries concepts,
identifies items that need to be considered
before MQSeries is installed, including

storage requirements, backup and
recovery, security, and migration from
earlier releases, and specifies hardware
and software requirements for every
MQSeries platform.

MQSeries Intercommunication
The MQSeries Intercommunication book,
SC33-1872, defines the concepts of
distributed queuing and explains how to
set up a distributed queuing network in a
variety of MQSeries environments. In
particular, it demonstrates how to (1)
configure communications to and from a
representative sample of MQSeries
products, (2) create required MQSeries
objects, and (3) create and configure
MQSeries channels. The use of channel
exits is also described.

MQSeries Queue Manager Clusters
MQSeries Queue Manager Clusters,
SC34-5349, describes MQSeries clustering.
It explains the concepts and terminology
and shows how you can benefit by taking
advantage of clustering. It details changes
to the MQI, and summarizes the syntax of
new and changed MQSeries commands. It
shows a number of examples of tasks you
can perform to set up and maintain
clusters of queue managers.

This book applies to the following
MQSeries products only:
v MQSeries for AIX V5.1
v MQSeries for AS/400 V5.1
v MQSeries for HP-UX V5.1
v MQSeries for OS/2 Warp V5.1
v MQSeries for OS/390 V2.1
v MQSeries for Sun Solaris V5.1
v MQSeries for Windows NT V5.1

MQSeries Clients
The MQSeries Clients book, GC33-1632,
describes how to install, configure, use,
and manage MQSeries client systems.

MQSeries System Administration
The MQSeries System Administration book,
SC33-1873, supports day-to-day
management of local and remote
MQSeries objects. It includes topics such
as security, recovery and restart,
transactional support, problem

© Copyright IBM Corp. 1999, 2000 129

|

|
|
|
|

|

|



determination, and the dead-letter queue
handler. It also includes the syntax of the
MQSeries control commands.

This book applies to the following
MQSeries products only:
v MQSeries for AIX V5.1
v MQSeries for HP-UX V5.1
v MQSeries for OS/2 Warp V5.1
v MQSeries for Sun Solaris V5.1
v MQSeries for Windows NT V5.1

MQSeries Command Reference
The MQSeries Command Reference,
SC33-1369, contains the syntax of the
MQSC commands, which are used by
MQSeries system operators and
administrators to manage MQSeries
objects.

MQSeries Programmable System Management
The MQSeries Programmable System
Management book, SC33-1482, provides
both reference and guidance information
for users of MQSeries events,
Programmable Command Format (PCF)
messages, and installable services.

MQSeries Administration Interface
Programming Guide and Reference

The MQSeries Administration Interface
Programming Guide and Reference,
SC34-5390, provides information for users
of the MQAI. The MQAI is a
programming interface that simplifies the
way in which applications manipulate
Programmable Command Format (PCF)
messages and their associated data
structures.

This book applies to the following
MQSeries products only:
v MQSeries for AIX V5.1
v MQSeries for AS/400 V5.1
v MQSeries for HP-UX V5.1
v MQSeries for OS/2 Warp V5.1
v MQSeries for Sun Solaris V5.1
v MQSeries for Windows NT V5.1

MQSeries Messages
The MQSeries Messages book, GC33-1876,
which describes “AMQ” messages issued
by MQSeries, applies to these MQSeries
products only:
v MQSeries for AIX V5.1
v MQSeries for HP-UX V5.1
v MQSeries for OS/2 Warp V5.1
v MQSeries for Sun Solaris V5.1
v MQSeries for Windows NT V5.1

v MQSeries for Windows V2.0
v MQSeries for Windows V2.1

This book is available in softcopy only.

For other MQSeries platforms, the
messages are supplied with the system.
They do not appear in softcopy manual
form.

MQSeries Application Programming Guide
The MQSeries Application Programming
Guide, SC33-0807, provides guidance
information for users of the message
queue interface (MQI). It describes how to
design, write, and build an MQSeries
application. It also includes full
descriptions of the sample programs
supplied with MQSeries.

MQSeries Application Programming Reference
The MQSeries Application Programming
Reference, SC33-1673, provides
comprehensive reference information for
users of the MQI. It includes: data-type
descriptions; MQI call syntax; attributes of
MQSeries objects; return codes; constants;
and code-page conversion tables.

MQSeries Application Programming Reference
Summary

The MQSeries Application Programming
Reference Summary, SX33-6095,
summarizes the information in the
MQSeries Application Programming
Reference manual.

MQSeries Using C++
MQSeries Using C++, SC33-1877, provides
both guidance and reference information
for users of the MQSeries C++
programming-language binding to the
MQI. MQSeries C++ is supported by
these MQSeries products:
v MQSeries for AIX V5.1
v MQSeries for HP-UX V5.1
v MQSeries for OS/2 Warp V5.1
v MQSeries for AS/400 V5.1
v MQSeries for OS/390 V2.1
v MQSeries for Sun Solaris V5.1
v MQSeries for Windows NT V5.1

MQSeries C++ is also supported by
MQSeries clients supplied with these
products and installed in the following
environments:
v AIX
v HP-UX

130 MQSeries Queue Manager Clusters

|

|



v OS/2
v Sun Solaris
v Windows NT
v Windows 3.1
v Windows 95 and Windows 98

MQSeries Using Java™

MQSeries Using Java, SC34-5456, provides
both guidance and reference information
for users of the MQSeries Bindings for
Java and the MQSeries Client for Java.
MQSeries classes for Java are supported
by these MQSeries products:
v MQSeries for AIX V5.1
v MQSeries for AS/400 V5.1
v MQSeries for HP-UX V5.1
v MQSeries for MVS/ESA V1.2
v MQSeries for OS/2 Warp V5.1
v MQSeries for Sun Solaris V5.1
v MQSeries for Windows NT V5.1

This book is available in softcopy only.

MQSeries platform-specific
publications
Each MQSeries product is documented in at least
one platform-specific publication, in addition to
the MQSeries family books.

MQSeries for AIX

MQSeries for AIX V5.1 Quick
Beginnings, GC33-1867

MQSeries for AS/400

MQSeries for AS/400 V5.1 Quick
Beginnings, GC34-5557
MQSeries for AS/400 V5.1 System
Administration, SC34-5558
MQSeries for AS/400 V5.1 Application
Programming Reference (ILE RPG),
SC34-5559

MQSeries for AT&T GIS UNIX

MQSeries for AT&T GIS UNIX System
Management Guide, SC33-1642

MQSeries for Compaq (DIGITAL) OpenVMS

MQSeries for Digital OpenVMS System
Management Guide, GC33-1791

MQSeries for Digital UNIX (Compaq Tru64
UNIX)

MQSeries for Digital UNIX System
Management Guide, GC34-5483

MQSeries for HP-UX

MQSeries for HP-UX V5.1 Quick
Beginnings, GC33-1869

MQSeries for OS/2 Warp

MQSeries for OS/2 Warp V5.1 Quick
Beginnings, GC33-1868

MQSeries for OS/390

MQSeries for OS/390 Version 2 Release 1
Licensed Program Specifications,
GC34-5377
MQSeries for OS/390 Version 2 Release 1
Program Directory

MQSeries for OS/390 System
Management Guide, SC34-5374
MQSeries for OS/390 Messages and
Codes, GC34-5375
MQSeries for OS/390 Problem
Determination Guide, GC34-5376

MQSeries link for R/3

MQSeries link for R/3 Version 1.2 User’s
Guide, GC33-1934

MQSeries for SINIX and DC/OSx

MQSeries for SINIX and DC/OSx System
Management Guide, GC33-1768

MQSeries for Sun Solaris

MQSeries for Sun Solaris V5.1 Quick
Beginnings, GC33-1870

MQSeries for Tandem NonStop Kernel

MQSeries for Tandem NonStop Kernel
System Management Guide, GC33-1893

MQSeries for VSE/ESA™

MQSeries for VSE/ESA Version 2 Release
1 Licensed Program Specifications,
GC34-5365
MQSeries for VSE/ESA System
Management Guide, GC34-5364

MQSeries for Windows

MQSeries for Windows V2.0 User’s
Guide, GC33-1822
MQSeries for Windows V2.1 User’s
Guide, GC33-1965

MQSeries for Windows NT

MQSeries for Windows NT V5.1 Quick
Beginnings, GC34-5389
MQSeries for Windows NT Using the
Component Object Model Interface,
SC34-5387

Bibliography 131

|

|

|

|
|

|
|

|
|
|

|

|
|

|
|

|
|

|

|
|



MQSeries LotusScript Extension,
SC34-5404

Softcopy books
Most of the MQSeries books are supplied in both
hardcopy and softcopy formats.

BookManager ® format
The MQSeries library is supplied in IBM
BookManager format on a variety of online
library collection kits, including the Transaction
Processing and Data collection kit, SK2T-0730. You
can view the softcopy books in IBM BookManager
format using the following IBM licensed
programs:

BookManager READ/2
BookManager READ/6000
BookManager READ/DOS
BookManager READ/MVS
BookManager READ/VM
BookManager READ for Windows

HTML format
Relevant MQSeries documentation is provided in
HTML format with these MQSeries products:
v MQSeries for AIX V5.1
v MQSeries for AS/400 V5.1
v MQSeries for HP-UX V5.1
v MQSeries for OS/2 Warp V5.1
v MQSeries for Sun Solaris V5.1
v MQSeries for Windows NT V5.1 (compiled

HTML)
v MQSeries link for R/3 V1.2

The MQSeries books are also available in HTML
format from the MQSeries product family Web
site at:
http://www.ibm.com/software/ts/mqseries/

Portable Document Format (PDF)
PDF files can be viewed and printed using the
Adobe Acrobat Reader.

If you need to obtain the Adobe Acrobat Reader,
or would like up-to-date information about the
platforms on which the Acrobat Reader is
supported, visit the Adobe Systems Inc. Web site
at:
http://www.adobe.com/

PDF versions of relevant MQSeries books are
supplied with these MQSeries products:
v MQSeries for AIX V5.1
v MQSeries for AS/400 V5.1

v MQSeries for HP-UX V5.1
v MQSeries for OS/2 Warp V5.1
v MQSeries for Sun Solaris V5.1
v MQSeries for Windows NT V5.1
v MQSeries link for R/3 V1.2

PDF versions of all current MQSeries books are
also available from the MQSeries product family
Web site at:
http://www.ibm.com/software/ts/mqseries/

PostScript format
The MQSeries library is provided in PostScript
(.PS) format with many MQSeries Version 2
products. Books in PostScript format can be
printed on a PostScript printer or viewed with a
suitable viewer.

Windows Help format
The MQSeries for Windows User’s Guide is
provided in Windows Help format with MQSeries
for Windows Version 2.0 and MQSeries for
Windows Version 2.1.

MQSeries information available
on the Internet
The MQSeries product family Web site is at:

http://www.ibm.com/software/ts/mqseries/

By following links from this Web site you can:
v Obtain latest information about the MQSeries

product family.
v Access the MQSeries books in HTML and PDF

formats.
v Download MQSeries SupportPacs.

132 MQSeries Queue Manager Clusters

|

|



Index

A
accessing queue managers outside

cluster 36
adding a new, interconnected cluster 85
adding a new queue manager to a

cluster 25
adding a queue manager that hosts a

queue 71
administration

commands 53
considerations 63
MQSeries Explorer 53

affinities 46
aliases

examples of use 36
queue 35
queue-manager 33
reply-to queue 35

ALTDATE attribute 56
ALTER CHANNEL command 55
ALTER QALIAS command 56
ALTER QLOCAL command 56
ALTER QMGR command 54
ALTER QREMOTE command 56
ALTTIME attribute 56
applications using clusters 14, 46
attributes

channel definition commands
CHLTYPE 55
CLUSNL 55
CLUSTER 55
NETPRTY 55
PUTAUT 67

DISPLAY CLUSQMGR command
CLUSDATE 57
CLUSTIME 57
DEFTYPE 57
QMTYPE 57
STATUS 57
SUSPEND 57

DISPLAY QUEUE command
CLUSQMGR 56

queue definition commands
CLUSDATE 56
CLUSINFO 56
CLUSNL 56
CLUSQMGR 56
CLUSQT 56
CLUSTER 56
CLUSTIME 56
DEFBIND 56
QMID 56

queue-manager definition commands
CLWLDATA 54
CLWLEXIT 54
CLWLLEN 54
REPOS 54
REPOSNL 54

auto-definition of channels 32
auto-definition of queues 31
auto-definition user exit 31

availability, increasing 41

B
benefits

easier administration 11
general 8
to application programmer 14
to system administrator 12
workload balancing 41

bibliography 129
binding 7
BookManager 132
building a cluster workload exit 44

C
calls, detailed description

MQ_CLUSTER_WORKLOAD_EXIT 94
changing a network into a cluster 81
channel

administration 66
auto-definition 31
cluster-receiver, overview 6
cluster-sender, overview 7
definition commands 55
disconnect interval 66
in distributed queuing 3
overview 30
restarting 66

CHANNEL attribute
DISPLAY CLUSQMGR command 57

channel initiator 16
channel listener 16
ChannelDefOffset field

MQWDR structure 104
ChannelState field

MQWDR structure 104
CHLTYPE attribute 55
CL commands 53
class of service 62
clients 11
CLUSDATE attribute

DISPLAY CLUSQMGR command 57
queue definition commands 56

CLUSINFO attribute 56
CLUSNL attribute

channel definition commands 55
queue definition commands 56

CLUSQMGR attribute
DISPLAY QUEUE command 56
queue definition commands 56

CLUSQT attribute, queue definition
commands 56

CLUSRCVR
overview 6
parameter, channel definition

commands 55
CLUSSDR

auto-definition 31
overview 7

CLUSSDR (continued)
parameter, channel definition

commands 55
cluster

designing 59
keeping secure 67
merging 89
naming conventions 61
organizing 61
overlapping 62
overview 5
preparing to use 14
preventing queue managers

joining 68
setting up 15

CLUSTER attribute
channel definition commands 55
DISPLAY CLUSQMGR command 57
queue definition commands 56

cluster queue 6
cluster queue manager

maintaining 63
overview 5

cluster transmission queue
maintaining 64
overview 7
purpose 30

cluster workload exit
building 44
reference information 93
sample 44
use of 43
writing and compiling 43

ClusterFlags field 110
ClusterName field

MQWCR structure 110
ClusterRecOffset field

MQWCR structure 110
MQWDR structure 104
MQWQR structure 107

clusters, use of
achieving workload balancing 41
administration considerations 63
benefits 8
commands 53
comparison with distributed

queuing 13
components 29
considerations 9
definitions to set up a network 13
easing system administration 11
how they work 32
introduction 3
MQI 49
objects 62
return codes 51
security 67
terminology 5
workload balancing 41

CLUSTIME attribute
DISPLAY CLUSQMGR command 57

© Copyright IBM Corp. 1999, 2000 133



CLUSTIME attribute (continued)
queue definition commands 56

CLWLDATA attribute, queue-manager
definition 54

CLWLEXIT attribute, queue-manager
definition 54

CLWLLEN attribute, queue-manager
definition 54

commands
ALTER CHANNEL 55
ALTER QALIAS 56
ALTER QLOCAL 56
ALTER QMGR 54
ALTER QREMOTE 56
DEFINE CHANNEL 55
DEFINE NAMELIST 54
DEFINE QALIAS 35, 56
DEFINE QLOCAL 56
DEFINE QREMOTE 33, 56
DISPLAY CHANNEL 55
DISPLAY CHSTATUS 55
DISPLAY CLUSQMGR 57
DISPLAY QCLUSTER 56
DISPLAY QMGR 54
DISPLAY QUEUE 56
REFRESH CLUSTER 58
RESET CLUSTER 58
RESUME QMGR 57, 63
RUNMQLSR 17
setmqaut 68
START LISTENER 16
STRMQMLSR 16
SUSPEND QMGR 57, 63

communication, establishing 16
communication protocols

LU 6.2 3
NetBIOS 3
SPX 3
TCP 3
UDP 3

comparing distributed queuing with
clustering 12

compiling a cluster workload exit 44
components

cluster 29
cluster, overview 4
distributed queuing network 3

concepts of clustering 3
considerations 9
constants, values of 113

binding (MQBND_*) 113
channel status (MQCHS_*) 113
cluster queue type (MQCQT_*) 114
cluster workload exit

destination-record length
(MQWDR_*) 115

cluster workload exit
destination-record structure
identifier (MQWDR_*) 115

cluster workload exit
destination-record version
(MQWDR_*) 115

cluster workload exit queue-record
length (MQWQR_*) 115

cluster workload exit queue-record
structure identifier
(MQWQR_*) 115

constants, values of 113 (continued)
cluster workload exit queue-record

version (MQWQR_*) 116
cluster workload exit structure

identifier (MQWXP_*) 116
cluster workload exit version

(MQWXP_*) 116
exit identifier (MQXT_*) 116
exit reason (MQXR_*) 116
exit response (MQXCC_*) 116
exit user area (MQXUA_*) 116
inhibit put (MQQA_*) 114
lengths of character string and byte

fields (MQ_*) 113
persistence (MQPER_*) 114
queue flags (MQQF_*) 114
queue-manager flags

(MQQMF_*) 114
creating a cluster 15
CSQ4INSX sample program 30
CSQUTIL 53

D
data partitioning 74
data types, detailed description

structure
MQWCR 110
MQWDR 102
MQWQR 106
MQWXP 95

DEFBIND attribute
inquiring on a queue 51
opening a queue 49
queue definition commands 56

DefBind field
MQWQR structure 108

DEFINE CHANNEL command 55
DEFINE NAMELIST command 54
DEFINE QALIAS command 56
DEFINE QLOCAL command 56
DEFINE QREMOTE command 56
definitions to set up a network 12
DefPersistence field

MQWQR structure 108
DefPriority field

MQWQR structure 108
DEFTYPE attribute 57
designing clusters 59
DestinationArrayPtr field

MQWXP structure 100
DestinationChosen field

MQWXP structure 100
DestinationCount field

MQWXP structure 99
disconnect interval 66
DISPLAY CHANNEL command 55
DISPLAY CHSTATUS command 55
DISPLAY CLUSQMGR command 57
DISPLAY QCLUSTER command 56
DISPLAY QMGR command 54
DISPLAY QUEUE command 56
distributed queuing 3

comparison with clustering 12
definitions to set up a network 12

distribution lists 9

E
easing system administration 11
establishing communication 16
example tasks

advanced tasks 71
first tasks 19

examples
adding a new, interconnected

cluster 85
adding a new queue manager to a

cluster 25
adding a queue manager that hosts a

queue 71
changing a network into a cluster 81
cluster topologies 59
communicating with other

clusters 39
communicating with queue managers

outside the cluster 36
invoking the cluster workload

exit 45
moving a repository 79
removing a queue from a queue

manager 75
removing a queue manager from a

cluster 77
setting up a new cluster 19
starting a channel listener 16
using aliases 33

exit, cluster workload
reference information 93
sample 44
use of 43
writing and compiling 43

ExitData field
MQWXP structure 98

ExitId field
MQWXP structure 96

ExitParms parameter 94
ExitReason field

MQWXP structure 96
ExitResponse field

MQWXP structure 97
ExitResponse2 field

MQWXP structure 97
ExitUserArea field

MQWXP structure 98

F
Feedback field

MQWXP structure 97
finding message affinities 46
full repository, overview 6

G
glossary 123

H
handling message affinities 47
how clusters work 32
HTML (Hypertext Markup

Language) 132

134 MQSeries Queue Manager Clusters



Hypertext Markup Language
(HTML) 132

I
increasing availability 41
inetd 17, 18
InhibitPut field

MQWQR structure 109
installation 14
introduction to clusters 3

J
joining a cluster 29

L
listener 16
LU 6.2 3

M
maintaining a cluster queue manager 63
maintaining the cluster transmission

queue 64
merging clusters 89
message affinities

finding 46
removing 47
resolving 47

mixing clusters with non-clustered
networks 34, 36

more than 1 instance of a queue 41
moving a repository 79
MQ_* values 113
MQ_CLUSTER_WORKLOAD_EXIT

call 94
MQI calls

MQINQ 50
MQOPEN 49
MQPUT 50
MQPUT1 50
MQSET 51

MQINQ call 50
MQMF_SEGMENTATION_ALLOWED

option 49
MQOO_BIND_AS_Q_DEF option 49
MQOO_BIND_NOT_FIXED option 49
MQOO_BIND_ON_OPEN option 49
MQOPEN call

description 49
specifying a destination on 47
using the MQOO_BIND_ON_OPEN

option 48
MQPUT call 50
MQPUT1 call 50
MQQF_* values 107
MQQMF_* values 103, 110
MQRC_* return codes

CLUSTER_EXIT_ERROR 44, 51
CLUSTER_EXIT_LOAD_ERROR 52
CLUSTER_PUT_INHIBITED 52
CLUSTER_RESOLUTION_ERROR 52
NO_DESTINATIONS_AVAILABLE 52
STOPPED_BY_CLUSTER_EXIT 52

MQSeries Explorer 53
MQSeries for AIX V5.1 3
MQSeries for AS/400 V5.1 3
MQSeries for HP-UX V5.1 3
MQSeries for OS/2 Warp V5.1 3
MQSeries for OS/390 3
MQSeries for Sun Solaris V5.1 3
MQSeries for Windows NT V5.1 3

MQSeries Explorer 53
MQSeries publications 129
MQSET call 51
MQWCR structure 110
MQWDR_* values 102
MQWDR structure 102
MQWQR_* values 106
MQWQR structure 106
MQWXP_* values 95
MQWXP data structure 43
MQWXP structure 95
MQXCC_* values 97
MQXR_* values 96
MQXUA_* values 98
MsgBufferLength field

MQWXP structure 99
MsgBufferPtr field

MQWXP structure 98
MsgDescPtr field

MQWXP structure 98
MsgLength field

MQWXP structure 99
multiple clusters 62
multiple queue definitions

use of 42
using clusters with 41

N
name resolution 30
namelist

altering 76
defining 54
example of using 76

naming conventions 61
NetBIOS 3
NETPRTY attribute

channel definition commands 55
non-clustered network

receiving messages from 36
replying from 39
replying to 37
sending messages to 34, 38

O
objects 62
operations and control panels 53
organizing a cluster 61
overlapping clusters 62, 85
overview of clustering 3

P
parameters

CLUSRCVR 55
CLUSSDR 55
cluster workload exit 93

partial repository, overview 6

PCF (Programmable Command
Format) 53

PDF (Portable Document Format) 132
platforms

MQSeries for AIX V5.1 3
MQSeries for AS/400 V5.1 3
MQSeries for HP-UX V5.1 3
MQSeries for OS/2 Warp V5.1 3
MQSeries for OS/390 3
MQSeries for Sun Solaris V5.1 3
MQSeries for Windows NT V5.1 3

Portable Document Format (PDF) 132
PostScript format 132
preparation 14
Programmable Command Format

(PCF) 53
programming considerations

affinities 46
general 46

publications, MQSeries 129
PUTAUT attribute 67

Q
QArrayPtr field

MQWXP structure 100
QDesc field

MQWQR structure 108
QFlags field

MQWQR structure 107
QMgrFlags field

MQWDR structure 103
QMgrIdentifier field

MQWDR structure 103
MQWQR structure 107

QMgrName field
MQWDR structure 103
MQWXP structure 99

QMID attribute, queue definition
commands 56

QMTYPE attribute 57
QName field

MQWQR structure 107
MQWXP structure 99

QType field
MQWQR structure 108

queue manager
aliases 33
definition commands 54
failure, handling 64
in distributed queuing 3
joining a cluster 29
maintaining 63
outside cluster 36, 78
restricting access to 67

queues
advertising 29
aliases 35
auto-definition 31
cluster transmission queue 30
definition commands 56
more than 1 instance 41
restricting access to 67

R
REFRESH CLUSTER command 58, 64

Index 135



remote-queue definition
equivalent when using clusters 31
in distributed queuing 3

removing a queue from a queue
manager 75

removing a queue manager from a
cluster 77

removing message affinities 47
reply-to queue aliases 35
REPOS attribute, queue-manager

definition 54
repository

building 29
failure, handling 65
full, overview 6
keeping up-to-date 29
lifetime of information 66
out of service 59
partial, overview 6
selecting 15, 59
sending information to 29
topologies 59

repository queue manager, overview 6
REPOSNL attribute, queue-manager

definition 54
Reserved field

MQWXP structure 97
RESET CLUSTER command 58
resolving message affinities 47
restricting access to queue managers 67
restricting access to queues 67
RESUME QMGR command 57, 63
return codes 51
RUNMQLSR command 17
runmqsc 53

S
sample cluster workload exit 44
sample program, CSQ4INSX 30
security 67
segmented messages 46
selecting repositories 15
setmqaut command 68
setting up a cluster 15
setting up a new cluster 19
softcopy books 132
SPX 3
START LISTENER command 16
starting channel initiator 16
starting channel listener 16
STATUS attribute 57
STRMQMLSR CL command 16
STRMQMMQSC 53
StrucId field

MQWDR structure 102
MQWQR structure 106
MQWXP structure 95

StrucLength field
MQWDR structure 103
MQWQR structure 107

SUSPEND attribute 57
SUSPEND QMGR command 57, 63
system administration, easing 11
SYSTEM.CLUSTER.COMMAND.QUEUE 29,

63, 65
SYSTEM.CLUSTER.REPOSITORY.QUEUE 29,

63

SYSTEM.CLUSTER.TRANSMIT.QUEUE 30,
63

SYSTEM.DEF.CLUSRCVR 63

SYSTEM.DEF.CLUSSDR 63

T
task examples

adding a new, interconnected
cluster 85

adding a new queue manager to a
cluster 25

adding a queue manager that hosts a
queue 71

changing a network into a cluster 81
moving a repository 79
removing a queue from a queue

manager 75
removing a queue manager from a

cluster 77
setting up a new cluster 19

TCP 3

terminology 5

terminology used in this book 123

topologies 59

transmission queue

cluster 30
in distributed queuing 3

U
UDP 3

user exit

auto-definition 31
cluster workload 93
writing and compiling 43

V
Version field

MQWDR structure 102
MQWQR structure 106
MQWXP structure 96

W
which queue managers should hold

repositories 59

Windows Help 132

wizard 53

working with queue manager outside
cluster 34, 36, 78

workload balancing

achieving 41
algorithm 41, 42
user exit 42, 48
with multiple queue definitions 41

136 MQSeries Queue Manager Clusters



Sending your comments to IBM

If you especially like or dislike anything about this book, please use one of the
methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on
the accuracy, organization, subject matter, or completeness of this book.

Please limit your comments to the information in this book and the way in which
the information is presented.

To request additional publications, or to ask questions or make comments about
the functions of IBM products or systems, you should talk to your IBM
representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate, without incurring
any obligation to you.

You can send your comments to IBM in any of the following ways:
v By mail, to this address:

Information Development Department (MP095)
IBM United Kingdom Laboratories
Hursley Park
WINCHESTER,
Hampshire
United Kingdom

v By fax:
– From outside the U.K., after your international access code use

44–1962–870229
– From within the U.K., use 01962–870229

v Electronically, use the appropriate network ID:
– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
– IBMLink

™

: HURSLEY(IDRCF)
– Internet: idrcf@hursley.ibm.com

Whichever you use, ensure that you include:
v The publication number and title
v The topic to which your comment applies
v Your name and address/telephone number/fax number/network ID.

© Copyright IBM Corp. 1999, 2000 137



IBMR

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC34-5349-01



Spine information:

IBM MQSeries® MQSeries Queue Manager Clusters


	Contents
	Figures
	Tables
	About this book
	Who this book is for
	What you need to know to understand this book
	How to use this book

	Summary of changes
	Changes for this edition (SC34-5349-01)

	Part 1. Getting started with queue manager clusters
	Chapter 1. Concepts and terminology
	Concepts
	Comparison with distributed queuing
	Overview of cluster components

	Terminology
	Benefits
	Things to consider
	Summary of the concepts

	Chapter 2. Using clusters to ease system administration
	How can I use clusters?
	How does the system administrator benefit?
	Definitions to set up a network using distributed queuing
	Definitions to set up a network using clusters

	What about my applications?
	How should I prepare for use of clustering?
	How do I set up a cluster?
	Establishing communication in a cluster
	Channel initiator
	Channel listener



	Chapter 3. First tasks
	Task 1: Setting up a new cluster
	The steps required to complete task 1
	1. Prepare the queue managers
	2. Decide on the organization of the cluster and its name
	3. Determine which queue managers should hold full repositories
	4. Alter the queue-manager definitions to add repositorydefinitions
	5. Define the CLUSRCVR channels
	6. Define the CLUSSDR channels
	7. Define the cluster queue INVENTQ

	The cluster achieved by task 1
	Verifying task 1
	Using the cluster set up in task 1

	Converting an existing network into a cluster

	Task 2: Adding a new queue manager to a cluster
	The steps required to complete task 2
	1. Prepare the PARIS queue manager
	2. Determine which full repository PARIS should refer to first
	3. Define a CLUSRCVR channel on queue manager PARIS
	4. Define a CLUSSDR channel on queue manager PARIS

	The cluster achieved by task 2


	Part 2. Using queue manager clusters
	Chapter 4. How queue manager clusters work
	Components of a cluster
	Queue managers and repositories
	Queues
	Cluster transmission queue
	Cluster channels
	Auto-definition of remote queues
	Auto-definition of channels

	What makes clustering work?
	Using aliases and remote-queue definitions with clusters
	Queue-manager aliases
	Reply-to queue aliases
	Queue aliases
	Examples of using aliases within clusters
	Putting from a queue manager outside a cluster
	Replying to a queue manager outside the cluster
	Putting from a queue manager outside the cluster - alternative
	Putting to a queue manager outside the cluster
	Replying from a queue manager outside the cluster
	Putting across clusters



	Chapter 5. Using clusters for workload management
	More than one instance of a queue
	Workload balancing
	Cluster workload user exit
	Writing and compiling cluster workload exit programs
	MQSeries for OS/390
	V5.1 of MQSeries for AIX, AS/400, HP-UX, OS/2 Warp, SunSolaris, and Windows NT

	Sample cluster workload exit

	Programming considerations
	Reviewing applications for message affinities
	Handling message affinities


	MQI and clusters
	MQOPEN
	Resolved queue manager name

	MQPUT and MQPUT1
	MQINQ
	MQSET

	Return codes

	Chapter 6. MQSeries commands
	MQSeries command attributes
	Queue-manager definition commands
	Channel definition commands
	Queue definition commands

	MQSeries commands for work with clusters
	DISPLAY CLUSQMGR
	SUSPEND QMGR and RESUME QMGR
	REFRESH CLUSTER
	RESET CLUSTER


	Chapter 7. Managing MQSeries clusters
	Cluster-design considerations
	Selecting queue managers to hold repositories
	Organizing a cluster
	Choosing names
	Overlapping clusters
	Objects

	Cluster-administration considerations
	Maintaining a queue manager
	Refreshing a queue manager
	Maintaining the cluster transmission queue
	What happens when a queue manager fails?
	What happens when a repository fails?
	What happens if I put-disable a cluster queue?
	How long do the repositories retain information?
	Cluster channels


	Chapter 8. Keeping clusters secure
	Stopping unauthorized queue managers sending messages to yourqueue manager
	Stopping unauthorized queue managers putting messages to yourqueues
	Stopping your queue manager putting messages to remote queues
	Preventing queue managers joining a cluster
	Forcing unwanted queue managers to leave a cluster

	Chapter 9. Advanced tasks
	Task 3: Adding a new queue manager that hosts a queue
	The steps required to complete task 3
	1. Prepare the TORONTO queue manager
	2. Determine which full repository TORONTO should refer to first
	3. Define the CLUSRCVR channel
	4. Define a CLUSSDR channel on queue manager TORONTO
	5. Review the inventory application for message affinities
	6. Install the inventory application on the system in Toronto
	7. Define the cluster queue INVENTQ

	The cluster achieved by task 3
	Extensions to this task

	Task 4: Removing a cluster queue from a queue manager
	The steps required to complete task 4
	1. Indicate that the queue is no longer available
	2. Disable the queue
	3. Monitor the queue until it is empty
	4. Monitor the channel to ensure there are no in-doubt messages
	5. Delete the local queue

	The cluster achieved by task 4
	Extensions to this task

	Task 5: Removing a queue manager from a cluster
	The steps required to complete task 5
	1. Suspend queue manager TORONTO
	2. Stop the CLUSRCVR channel at TORONTO
	3. Remove the CLUSRCVR channel definition
	4. Delete the CLUSSDR channel definition

	The cluster achieved by task 5

	Task 6: Moving a repository to another queue manager
	The steps required to complete task 6
	1. Alter PARIS to make it a repository queue manager
	2. Add a CLUSSDR channel on PARIS
	3. Define a CLUSSDR channel on NEWYORK that points toPARIS
	4. Alter the queue-manager definition on LONDON
	5. Remove or change any outstanding definitions

	The cluster achieved by task 6

	Task 7: Converting an existing network into a cluster
	The steps required to complete task 7
	1. Upgrade MQSeries on your system
	2. Review the inventory application for message affinities
	3. Prepare the new queue manager at the central site
	4. Alter the two central queue managers to make them repositoryqueue managers
	5. Define a CLUSRCVR channel on each queue manager
	6. Define a CLUSSDR channel on each queue manager
	7. Install the inventory application on CHICAGO2
	8. Define the INVENTQ queue on the central queue managers
	9. Delete all remote-queue definitions for the INVENTQ
	10. Implement the cluster workload exit (optional step)

	The cluster achieved by task 7

	Task 8: Adding a new, interconnected cluster
	The steps required to complete task 8
	1. Create a namelist of the cluster names
	2. Alter the two queue-manager definitions
	3. Alter the CLUSRCVR channels on CHICAGO and CHICAGO2
	4. Alter the CLUSSDR channels on CHICAGO and CHICAGO2
	5. Create a namelist on SEATTLE and ATLANTA
	6. Alter the CLUSRCVR channels on SEATTLE and ATLANTA
	7. Alter the CLUSSDR channels on SEATTLE and ATLANTA
	8. Prepare the queue managers HARTFORD and OMAHA
	9. Define CLUSRCVR and CLUSSDR channels on HARTFORDand OMAHA
	10. Define the MORDERQ queue on OMAHA

	The cluster achieved by task 8
	Extensions to this task


	Part 3. Reference information
	Chapter 10. Cluster workload exit call and data structures
	MQ_CLUSTER_WORKLOAD_EXIT - Cluster workload exit
	Syntax
	Parameters
	Usage notes
	C invocation
	System/390 assembler invocation

	MQWXP - Cluster workload exit parameter structure
	Fields
	C declaration
	System/390 assembler declaration

	MQWDR - Cluster workload destination-record structure
	Fields
	C declaration
	System/390 assembler declaration

	MQWQR - Cluster workload queue-record structure
	Fields
	C declaration
	System/390 assembler declaration

	MQWCR - Cluster workload cluster-record structure
	Fields
	C declaration
	System/390 assembler declaration


	Chapter 11. Constants for the cluster workload exit
	List of constants
	MQ_* (Lengths of character string and byte fields)
	MQBND_* (Binding)
	MQCHS_* (Channel status)
	MQCQT_* (Cluster queue type)
	MQPER_* (Persistence)
	MQQA_* (Inhibit put)
	MQQF_* (Queue flags)
	MQQMF_* (Queue-manager flags)
	MQWDR_* (Cluster workload exit destination-record length)
	MQWDR_* (Cluster workload exit destination-record structureidentifier)
	MQWDR_* (Cluster workload exit destination-record version)
	MQWQR_* (Cluster workload exit queue-record length)
	MQWQR_* (Cluster workload exit queue-record structureidentifier)
	MQWQR_* (Cluster workload exit queue-record version)
	MQWXP_* (Cluster workload exit structure identifier)
	MQWXP_* (Cluster workload exit version)
	MQXCC_* (Exit response)
	MQXR_* (Exit reason)
	MQXT_* (Exit identifier)
	MQXUA_* (Exit user area)


	Part 4. Appendixes
	Appendix. Notices
	Programming interface information
	Trademarks

	Glossary of terms and abbreviations
	Bibliography
	MQSeries cross-platformpublications
	MQSeries platform-specificpublications
	Softcopy books
	BookManager® format
	HTML format
	Portable Document Format (PDF)
	PostScript format
	Windows Help format

	MQSeries information availableon the Internet

	Index
	Sending your comments to IBM

